
77

Competences of Undergraduate Computer
Science Students

Kathrin Bröker, Uwe Kastens, Johannes Magenheim
Institute of Computer Science

University of Paderborn
Fürstenallee 11

33102 Paderborn Germany
{kathyb, uwe, jsm}@upb.de

Abstract: The paper presents two approaches to the development of
a Computer Science Competence Model for the needs of curriculum
development and evaluation in Higher Education. A normative-
theoretical approach is based on the AKT and ACM/IEEE curriculum
and will be used within the recommendations of the German
Informatics Society (GI) for the design of CS curricula. An empirically
oriented approach refines the categories of the first one with regard to
specific subject areas by conducting content analysis on CS curricula of
important universities from several countries. The refined model will be
used for the needs of students’ e-assessment and subsequent affirmative
action of the CS departments.

Keywords: Competences, Competence Measurement, Curriculum
Development, Computer Science Education, Recommendations for
CS-Curricula in Higher Education

1	 Introduction

The central demand of the Bologna reform is the outcome-oriented implemen-
tation of study courses, which include competence-oriented descriptions of the
curricula and respective competence-oriented assessment procedures. The-
se demands are often implemented only in a superficial way. To accomplish
the demands of Bologna it is not enough to adapt the curricula. Developing a
competence-oriented course of studies is a process, which consists of several
activities. According to Schaper (2012) these are e.g.: developing a compe-
tence oriented curriculum, approaches for a competence oriented organization

78

of teaching and learning, methods for a competence oriented assessment and
also approaches for a course related advancement of competences.

The base for most of these activities is a competence model. It is needed
for the definition of learning outcomes on different levels of granularity of a
study course like modules, lectures or seminars. Additionally for the needs of
assessment and in order to identify affirmative action a concept of competence
measurement is necessary.

This paper explains two different methodologies for developing a compe-
tence model for computer science undergraduates. The results of these approa-
ches and the additional value of relating them to each other are described.

The first methodology represents a normative approach. The competence
model is the agreed and confirmed result of a broad discussion between CS
domain experts on the basis of a generic psychological competence model. In
this case, a CS expert group of the German National Computer Society (GI)
developed a CS competence model in order to issue design recommendations
for CS curricula in Higher Education; see Methodology A in Fig. 1.

The second methodology represents an empirically oriented approach and
derives the competence model by means of the content analysis of internatio-
nal CS curricula; see Methodology B in Fig. 1. The applied content analysis
reveals common CS-competences addressed in different CS study courses of
universities. The students at the end of their CS-bachelor studies should have
achieved them. This research is part of a project conducted by the Computer
Science Learning Center (LZI)1 of our university. The main objective of the
project is to support CS-students’ learning processes by identifying learning
barriers and contribute to resolve them. An empirically grounded competence
model in the area of software engineering, software development and pro-
gramming forms the basis of competence measurement instruments, which can
be used for purposes of diagnosis, students’ self-assessment and for affirmative
action of the LZI.

1	 Funded by the Ministry of Education and Research (BMBF).

79

Figure 1: Methodologies for competence model development

2 Concepts of Competence

During recent years the research landscape in the fi eld of competence models
and competence measurement diversifi ed. Origin of these research efforts was
the Bologna process and STEM-related research, especially the PISA project.
Nevertheless, only little research for higher education and academic compe-
tences exists. Before we introduce both approaches to a competence model we
give a short defi nition of the term competence followed by a short introduction
to AKT and related psychological models of cognition and a short overview on
theoretical aspects of competence models and measurement.

2.1 Competences and Models of Cognition

The term competence has many defi nitions in different subjects. In the area
of curriculum development e.g. the competence structure model provided by
the EU-Tuning project is often applied (Tuning, 2013). This is not the place
to discuss all the different defi nitions. Consequently we only introduce the
defi nition used in our projects. As applied in most of the recent projects we
use the defi nition of Weinert (2001) (original in German, translation by the
author). Competences are “the existence of learnable cognitive abilities and
skills which are needed for problem solving as well as the associated moti-

80

vational, volitional and social capabilities and skills which are essential for
successful and responsible problem solving in variable situations.” (Weinert,
2001, p. 27) This definition implies, that competences are learnable by inter-
ventions. Accordingly we can use a competence assessment to measure if any
intervention during the educational process helps to develop competences or to
achieve a higher competence level. To take account of this aspect during curri-
cula development we need a competence model that allows grading. Therefore
in both methodologies presented here, we refer to the “Taxonomy for learning,
teaching, and assessing” by Anderson and Krathwohl (Krathwohl, 2002) also
named as AKT, which is a revision of the well known taxonomy of Bloom. It
can be applied for grading of the cognitive dimensions of competence. The
AKT model regards learning objectives as a combination of a certain type of
knowledge and a certain cognitive process, forming the two dimensions of
the original Bloom’s taxonomy in the following way (see Krathwohl, 2002,
p. 214): A: Knowledge Dimension (Factual, Conceptual, Procedural and Me-
tacognitive knowledge); B: Cognitive Process Dimension (Remember, Un-
derstand, Apply, Analyze, Evaluate, Create). While the knowledge dimension
offers classification of knowledge types, which are relevant in the context of
learning, the second dimension of cognitive processes can be used for a hier-
archical classification of competences. The AKT model is also applied in both
methodologies for CS curriculum development and competence assessment
presented in this paper.

2.2	 Competence Modeling and Measurement in CS

In Computer Science many projects exist in the context of key competences,
especially ICT competences. In contrast there are only a few projects where
subject specific competence models are developed. Two of these projects are
the German KUI (Berges et al., 2013) and MoKoM (Linck et al., 2013) project.
The MoKoM project has its focus on developing a competence model for stu-
dents at schools. They developed a competence model for informatics modeling
and system comprehension. In contrast to that of the project KUI which focu-
ses on competences for future teachers. The competence model here is divided
into 3 parts: competences on subject matter knowledge (CK), competences on
pedagogical content knowledge (PCK) and non-cognitive competences (NCC)
(Hubwieser, Magenheim, Mühling, and Ruf, 2013), (Schaper et al., 2013).
In addition there are some projects with research in students’ competences at
universities. Nevertheless until now, no national or international project has
developed a concrete competence model for subject specific competences in

81

computer science for academics. The only existing models are for example
the IEEE Software Engineering Body of Knowledge (SWEBOK) (Society,
Bourque, and Dupuis, 2004) or the ACM/IEEE Curriculum (The Joint Task
Force on Computing Curricula Association for Computing Machinery IEEE-
Computer Society 2012, 2013). Nevertheless these documents rather describe
knowledge, which should be part of a curriculum, than real competences. Fur-
thermore, these documents are not empirically verified. Consequently we don’t
know if universities really teach the topics mentioned in these curricula. Only
accreditation rules give us a first hint. Moreover they are not as specific as the
ACM/IEEE Curriculum. However these documents form a good basis for the
development of a specific CS competence model. Therefore, we refer to these
approaches when we contextualize and specify our cognitive competence ac-
cording to the AKT-model. In addition to missing CS competence models there
are hardly assessment results for CS competences, which are based on a sound
methodology derived from a CS competence model by now.

2.3	 Competence Models and Measurement

Competence Models are the basis for developing measuring instruments and
the description of their results. According to Koeppen, Hartig, Klieme, and
Leutner (2013) there are several requirements for competence models. First
such a model should represent the internal competence structure. Second the
levels of competences should be described and at last these models should
consider changes arising in educational processes. The competence structu-
re models should reveal existing relations between the accomplishments of
different requirements. Competence level models in particular can describe
which requirements different people can accomplish. These models give us the
opportunity to identify persons with distinguished competences. Competence
level models are used for measuring the outcomes of educational processes, for
example, if we want to measure the effectiveness of interventions at the Infor-
matics Learning Center. For the measurement of competences psychometric
models are used. For both forms of models the Item-Response-Theory (IRT)
(Hambleton, Waminanthan, and Rogers, 1991) is applicable. For CS Fuller
(Fuller et al., 2007) developed a competence model based on AKT. The diffe-
rences and similarities between the CS-AKT presented here and the concept of
Fuller is not subject of this article. In the authors’ opinion the CS-AKT meets
better the demands for developing CS program guidelines, while Fuller’s con-
cept fits very well for the analysis of specific competence-oriented CS learning
processes.

82

3 Theoretical Approach to a CS Competence Model

In the following we describe two different strategies for developing a compe-
tence model. The fi rst approach was applied by an expert group of the German
Informatics Society (GI). The task of the group was to develop recommen-
dations and guidelines for the educational design of Bachelor and Master CS
study programs at German Universities and Universities of Applied Science.
The group’s strategy to resolve this problem comprises the following tasks
(see Fig. 1):

1. Selection and rationale of a generic competence model that enables
the grading of cognitive competence components: AKT

2. Adaption of the AKT to the needs of a CS competence model: adap-
ted CS-AKT

3. Selection and rationale of core CS subject areas according to former
and current national and international CS curricula and CS curricula
guidelines: CS core subject areas (CS-CSA)

4. Defi nition and classifi cation of CS competences according to CS-
AKT and CS-CSA

5. Describing the competence profi le of CS study courses according to
the expected competences students’ should achieve when attending
mandatory modules, lectures and seminars during the study program.

Figure 2: Adapted CS-AKT for cognitive CS competences

(1): In order to describe CS competence structures and levels we use the AKT-
matrix (Krathwohl, 2002) as a generic cognitive competence model. The AKT
provides us with a differentiated concept of competence components regar-

83

ding action-oriented process dimensions of knowledge achievement as well as
dimensions of knowledge that take internal aspects of knowledge processing
in the human brain into account. We are aware of the fact, that the AKT origi-
nally addresses learning objectives. Therefore, we relate the activities, which
were described in the cells of the matrix, to specific CS topics, combined CS
subject-related activities to a specific context of action and also considered the
complexity of the tasks. Thus, the descriptions in the cells meet the require-
ments of the competence definition according to Weinert. The motivational
and volitional aspects of competence remain largely excluded from this clas-
sification.

(2): In order to reduce the complexity of the matrix we deleted those cells,
which are not or less relevant for CS competences according to the following
principles:

a.	 Competences that are characterized only by remembering without un-
derstanding are not sufficient in higher education CS study programs.
Therefore, the column ‘remembering’ of the original AKT-matrix was
deleted.

b.	 At the other end of the process dimension scale the generation of new
knowledge is mostly out of scope in CS Bachelor study programs, but
it is not deleted in the adapted CS-AKT in anticipation of future de-
scriptions of master’s degrees.

c.	 In order to enable a compact and coherent description of competences
of the process dimension with regard to different types of knowledge,
we merged the original four rows into one. The addressed types of
knowledge in the competence description are indicated by respective
annotations W1 to W4.

d.	 For the description of CS study programs, it is important that compe-
tences are characterized with regard to their requested application con-
text. Since the original AKT-matrix doesn’t offer a specific structure
for this demand, we added a second row that addresses the types and
the complexity of the application context. By means of annotations we
can classify competences with K1-K5 when describing them (see Fig.
2). For the level ‘understand’ we didn’t introduce this concept, because
small examples are always used in this area of knowledge achievement
and the application of more complex examples already can be assigned
to the process dimension ‘apply’.

84

e.	 The competence component P2a ‘transfer’ considers the ability to
perform competence related action in different application contexts,
while P3a ‘evaluate’ indicate a student’s ability to evaluate an infor-
matics system on the basis of a previous analysis. In CS study pro-
grams the competence components ‘transfer’ and ‘evaluate’ do make
sense in our opinion only with regard to the context. Therefore, those
components are assigned to the dimension (row) ‘Types and comple-
xity of context’. The accuracy of the competence descriptions is not
affected by this assignment.

The adapted CS-AKT has proven to be effective for describing competences of
CS Bachelor programs. The reduction and adaption should have preserved the
underlying AKT methodology.

(3): After an intensive discourse considering current CS curricula recommen-
dations, (e.g. ACM/IEEE, 2013) and former GI CS recommendations the GI
expert group selected core CS subject areas (CS-CSA), where students’ should
have achieved competences according to the CS-AKT model at the end of their
Bachelor programs.

The subject areas were derived from the knowledge areas of the ACM/
IEEE curriculum without considering the different aspiration levels.

(4): For each of those CS-CSA, competences will be described according to
the CS-AKT. In order to illustrate this procedure, we show an example for
using the adapted CS-AKT:

Fig. 3 instantiates the CS-AKT scheme of Fig. 2 for the subject area of
Programming Languages and Programming Methods, which is one of about
20 subject areas to cover Bachelor programs in Computer Science. The stated
competences have been cross-checked against the ACM Computer Science
Curriculum (ACM/IEEE, 2013), the (FTI, 2004), and a particular Bachelors
Program at the University of Paderborn (UPB, 2009).

85

Figure 3: CS-AKT applied for Programming Languages and Programming Methods

In the Knowledge dimension the overall objective is formulated in fi eld P3:
At the end of a Bachelors program students shall be able to learn any new
language autonomously on the base of published language documents. That
competence is essential, because several new languages will be developed and
some paradigm shifts will happen during their professional life. The compe-
tences formulated in P1 and P2 are preconditions for that of P3. The example
Bachelor program (UPB, 2009) addresses these competences by a sequence of
lectures: Foundations of Programming in the fi rst and second semester, where
students are introduced into programming in one particular language (Java, in
this case), Foundations of Programming Languages in the second semester,
where they learn to understand constructs and properties of different langua-
ges and programming paradigms, and fi nally in the fi fth semester an advanced
course on Programming Languages and Compilers, where they achieve a dee-
per insight in language development and implementation.

86

In the Complexity and Context dimension the competences stated in field
P3a also build on those stated in P2a. Both address the ability of the students
to use their understanding of programming languages and methods to develop
software of good quality in projects of increasing complexity and with decre-
asing guidance of supervisors. In our example Bachelor program (UPB, 2009)
the competences of P2a are to be achieved in a practical course in the third and
fourth semester; P3a is usually a result of the implementation developed in
context of the Bachelor thesis.

In the cognitive process dimension P5: Create usually does not apply for
Bachelor programs. It is kept in the adapted CS-AKT to be used for the de-
scription of competences achieved in Masters programs. For this subject area
one would for example describe in the knowledge dimension the competence
to develop and implement new domain-specific languages. Of course, it re-
quires that more advanced competences are achieved by Masters students in
the lower levels of the process dimension.

(5): Finally the competence profiles of CS study programs can be described
according to the expected competences students’ should achieve during their
studies. A classification of types of scientific activities in the modules, semi-
nars and lectures of the study program will be provided, that applies the CS-
AKT. The classification of scientific working will be conducted on the basis of
those competences, which are expected that they are mediated primarily in the
respective course or module. The profile of a program is then obtained from the
frequency of occurrence of types of scientific work and its distribution in the
average view on a program. By providing this differentiated profile of a study
program the CS-AKT also contributes to resolve problems of the bipolar ca-
tegorization of ‘scientific-oriented’ and ‘application-oriented’ study programs.

4	 Empirically Oriented Approach to a CS Competence
Model

As a second strategy for developing a CS competence model we now describe
the approach that is part of an initiative of our learning center (LZI). This is
an empirically oriented approach using content analysis. The result should be
a more detailed competence model in a specific topic area in contrast to the
model developed by the GI experts. Therefore, we can use this strategy to spe-
cify the competences of the experts mentioned before. Since the LZI initiative
aims ultimately on affirmative action for students to successfully graduate in
CS, the results of the research must be very specific and target group oriented.

87

This is the reason why we focus in this approach on the areas of Software
Development, Software Engineering and Programming. The applied research
methodology B (see Fig. 1) consists of the following steps:

1.	 Content analysis of existing CS curricula of selected Universities on
the basis of the topic categories provided ACM/IEEE recommenda-
tions (ACM /IEEE, 2013).

2.	 Conducting expert ratings in order to validate the derived competen-
ces in the identified topic areas.

3.	 Aggregate the results of the expert interviews with existing empirical
derived competence models in order to gain a consolidated compe-
tence model in the topic area.

4.	 Development of test instruments for students’ self-assessment and
the evaluation of seminars and lectures in order to derive affirmative
action at the LZI.

In the following sections we focus on the empirical research indicated in (1).

4.1	 A Competence Model derived by Content Analysis

To develop a Competence Model by means of content analysis we adapted the
strategy used in previous projects like MoKoM and KUI. Fig. 1 provides an
overview of this process (Methodology B). Firstly we analyzed several Com-
puter Science Bachelor Curricula of universities from all over the world app-
lying the method of deductive content analysis according to Mayring (2010).
Here we start with the ACM/IEEE Curriculum (ACM/IEEE, 2013) in order to
firstly derive classification categories. For practical coding we used the softwa-
re MaxQDA (www.maxqda.com).

In the ACM/IEEE Curriculum, the basis of our analysis experts defined a
catalog of 18 knowledge areas to cover computer science. Each knowledge area
consists of several knowledge units. For each of these knowledge units there is
a description of the content and the learning outcomes. In addition, it is defined
how many hours should be taken for each knowledge unit during a computer
science program. In short the importance of each knowledge unit is shown.

We used these knowledge areas and knowledge units as our categories and
subcategories during the content analysis. As the text corpus served different
computer science bachelor curricula: The top ten of the QA Ranking2 and in

2	 http://www.topuniversities.com/university-rankings/university-subject-rankings/2013/
computer-scienceand-information-systems

88

addition the top Universities of Switzerland, Singapore, India and eight of the
Top Ten of German Universities in Computer Science3 We decided to use the-
se additional Universities, because we want to gain an overview of different
countries. The Top Ten of the QA Ranking contains mostly Universities from
the US. Because curricula often have obligatory and non-obligatory courses
we decided to analyze only the obligatory courses. Otherwise there are too
many variants. Additionally, our observations at the Learning Center and at
our institute indicate that students’ problems often begin early during the basic
courses. Thus, if we want to measure competences according these courses, a
look at obligatory subjects is sufficient.

After building the category system and the text corpus the minimal (single
word/subject term) and maximal (paragraph) coding units were defined. Du-
ring the following analysis, the coder assigned the identified coding units to the
appropriate categories of the ACM/IEEE curriculum. It was possible to map
all code units to our category system derived from the ACM/IEEE curriculum,
so there was no need to add other categories to the system during our analysis.

It has to be mentioned that the richness in details of the curricula varies
considerably. Some only contain information about the course like title and
some organizational information. Other curricula provide detailed descriptions
of the course contents and learning outcomes or competences. In addition the
representation of the learning contents differs in its form. On the one hand
curricula provide only pure lists of keywords, on the other hand some list con-
crete competences. Fig. 4 shows two examples for the difference in course
descriptions.

3	 http://www.wiwo.de/ranking-die-besten-unis-und-fachhochschulen/8046582.html

89

Figure 4: Cuttings from two different curricula

On the basis of these curricula analysis we have got an overview about CS
teaching content of several universities and additionally if there exists a kind of
core knowledge to be achieved by the students. Because we focus on the areas
of Software Development, Software Engineering and Programming we only
covered the ACM/IEEE knowledge areas: Programming Languages, Softwa-
re development Fundamentals and Software Engineering during our curricula
analysis.

4.2	 Results of the Curricula Analysis

We now present our first results of the curricula analysis after the coding pro-
cess. As mentioned before the richness in details of the curricula descriptions
varies considerably. As a result we do not consider the number of occurrences

Ludwig-Maximilian University
Munich4

Course: Introduction to Programming

Indian Institute of Technology
Bombay5

Course: Computer Programming and
Utilization

Qualification Aims:

The students will be able to
implement solutions for small
and manageable problems
algorithmically and to realize them
with a high level programming
language as executable programs.
Furthermore, students develop
an understanding of the general
principles of programming and
programming languages. This lays
the foundation to ensure that the
students (after further experiences
in the course of study) may become
familiar quickly and accurately with
any programming language.

Additional there exists a course
description with the covered topics.

Description:

This course provides an introduction
to problem solving with computers
using a modern language
such as Java or C/C++. Topics
covered will include: * Utilization:
Developer fundamentals such as
editor, integrated programming
environment, Unix shell, modules,
libraries. * Programming features:
Machine representation, primitive
types, arrays and records, objects,
expressions, control statements,
iteration, procedures, functions and
basic i/o. * Applications: Sample
problems in engineering, science,
text processing and numerical
methods.

4	 http://www.uni-muenchen.de/studium/studienangebot/studiengaenge/studienfaecher/
informatik/bachelor1/modulhandbuch/16_mhdb_nf_informatik_60_ects_psto_07_10_2010_
en.pdf [l.v. 14.02.2014]
5	 http://www.cse.iitb.ac.in/page95 [l.v. 14.02.2014]

90

of a single coding, but only the existence of a coding for a category in a curri-
culum. The frequencies of curricula that address a category can be seen in Fig.
5. Fig. 5 shows that about half of these subcategories occur in 50 % or more of
the curricula. For building our competence model we decide to concentrate on
the coding of these subcategories, which are shown in Fig. 6.

Figure 5: Results of the Curricula Analysis

Figure 6: Subcategories occur in 50 % or more of the curricula

In a second step we compared these categories with the ACM/IEEE Curricu-
lum again. In the ACM/IEEE Curriculum all knowledge units are classifi ed
by the categories “Core” or “Elective” where core is subdivided into “Tier-1”
and “Tier-2”. With these categories the ACM/IEEE Curriculum defi nes the
relevance of the included subject areas and knowledge units for CS-curricula.
Additionally a curriculum should include signifi cant elective material (ACM/
IEEE, 2013).

During the comparison of our results with such categories belonging to
Tier-1 or Tier-2 we only found four subcategories, which belong to Tier-2 and
which occur in not more than 50 % our curricula. These categories are: Soft-
ware Reliability (3), Software Evolution (6), Program Representation (2) and
Event Driven (6). During our next step, to develop the competence model,
we will not consider the codings of these categories. Consequently we have
to check, if our later validation of the competence model shows a lack regar-
ding these categories. According to this validation we will add or not add the

91

competences for these categories to our competence model. Nevertheless our
results show that many curricula contain the topics the ACM/IEEE Curriculum
suggests and we can say that these categories are part of a common computer
science knowledge every computer scientist should have. On the basis of to
such an empirically derived subject areas we will develop our competence
model considering the CS-AKT described above.

4.3	 Next steps – Follow up research

According to (2) and (3) a validation of the derived competence model by ex-
perts, a comparison with the IEEE Software Engineering Body of Knowledge
(SWEBOK) (Society, Bourque and Dupuis, 2004) and other existing research
like e.g. the model of Fuller (Fuller et. al., 2007) will be conducted. This ag-
gregated and consolidated competence model will structure the competences
in competence components and will graduate levels for each of these compo-
nents. Finally, according to (4) we want to develop an e-Assessment tool for
competence measurement in this specific topic area. E-Assessment will give
reason for specific affirmative action at the LZI at our university and analyses
e.g.: equality of learning conditions for each tested person, direct interpretati-
on of the data, instant feedback and greater flexibility with respect to location
and time. Additional reasons for an e-Assessment regarding to the aims of our
Learning Center are that its use provides the opportunity to utilize such an
assessment as a ubiquitous self-Assessment tool. That means students can use
our assessment tool for their own to check their personal skills and identify
their deficits. This is for example useful before they start a master study. An
additional advantage is the opportunity to build an adaptive test or an adap-
tive e-Learning course later, based on the outcomes of the test. With such an
instrument we can directly support our students to overcome their deficits and
learning barriers with the greatest flexibility regarding location and time. For
an assessment we have to create different exercises and items. At the end we
need at least one item for each competence component mentioned in our com-
petence model. In addition we have to add the aspiration level for each item.

To measure the competences, a competence model and test items are not
enough, additionally a psychometric model is needed. With such a model we
can map the answers of a person to the corresponding test criterion (here a
competence). Here the Item-Response-Theory (IRT) will be applied. The re-
ason for using IRT is, that it gives us the opportunity to measure different
levels of competences. Based on our competence model, derived items and an

92

assigned psychometric model e-assessment and measurement of competences
at our LZI will be conducted.

4.4	 Comparison

In contrast to the GI-experts who developed a competence model for curricula
development, the results of the empirically oriented approach should be a more
detailed competence model for a specific topic area. Furthermore, the compe-
tence model of the experts can be used as a framework for the concrete com-
petences of the empirically oriented approach. For example, the competence:
“Understand the characteristics of the programming paradigms: imperative,
object-oriented, functional and logic programming.” of the experts doesn’t
name the concrete characteristics of the programming paradigms. Certainly
they are not important for curricula development. In contrast this information
is important for developing lectures and competence assessments. Here the
empirically oriented approach provides a more detailed competence model.
Our first results show topics like object-oriented, functional and logic pro-
gramming. In a next step we will derive competences for these topics. Af-
ter this our competence model should describe the concrete competences for
programming paradigms in object-oriented, functional and logic programming
like the characteristics for each. All in all it refines the components of the CS-
AKT-model and describes its competences in a more specific way and focused
on a specific subject area.

5	 Conclusion and Further Work

In this paper we present two methodologies for developing a computer science
competence model. The first approach is a normative one where an expert con-
sortium develops the competence model on the basis of existing curricula and
references. This approach has the objective to develop national guidelines and
recommendations for CS curriculum design in Higher Education. The results
of this approach can be seen as a framework for the second methodology we
present.

This second approach is an empirically oriented one and starts with a con-
tent analysis on different CS-curricula. Afterwards a competence model is
build on the basis of the codings of the content analysis. This competence
model should be more concrete than the expert one and can be used for the de-
velopment of an instrument for competence measurement in the subject area of
software development and programming. Next steps in this second approach

93

are to derive the competences from the coding’s and to validate and revise the
resulting competence model. After this step we can start with the development
of the assessment tools. This procedure of refinement may be applied also for
other subject areas of the CS-AKT model. With our competence models we
firstly provide the ability to develop guidelines and recommendations for CS
curricula in Higher Education and secondly, in addition with our assessment,
the ability to find out the deficits of our students in a more concrete way than
by means of observation only. These concrete results will give computer sci-
ence departments the opportunity to develop competence oriented curricula
and specific interventions to help students in overcoming their deficits and in
addition to measure the effect of these interventions accordingly.

94

References

Berges, M., Hubwieser, P., Magenheim, J., Bender, E., Bröker, K., Margaritis-Kopecki,
M., Neugebauer, J., Schaper, N., Schubert, S., Ohrndorf, L. (2013). Developing a
competency model for teaching computer science in schools. In Proceedings of the
18th ACM conference on Innovation and technology in computer science education
(ITiCSE ‘13) (p. 327). ACM, New York, NY, USA.

Denning, P. J. (November 2003). Great principles of computing. In Communications of
the ACM, 34(11), pp. 15–20.

Fakultätentag Informatik (2004). Recommendations for Setting Up Consecutive Bach-
elor’s and Master’s Programs in Informatics at Universities. Resolution passed by
the Plenary Session of the German Council of Informatics Departments. Retrieved
from: http://www.ft-informatik.de/uploads/tx_sbdownloader/BaMaRecommenda-
tions.pdf. last access: 17.02.2014.

Fuller, U. et. al (2007). Developing a computer science-specific learning taxonomy.
SIGCSE Bull.39, 4, pp. 152–170.

Hambleton, R. K., Swaminathan, H., Rogers, H. J. (1991). Fundamentals of Item Re-
sponse Theory. Newbury Park, CA. Sage Press.

Hubwieser, P., Magenheim, J., Mühling, A., Ruf, A. (2013). Towards a conceptualiza-
tion of pedagogical content knowledge of computer science. In Proceedings of the
ninth annual international ACM conference on International computing education
research, pp. 1–8.

Koeppen, K., Hartig, J., Klieme, E., Leutner, D. (2013). Competence Models for As-
sessing Individual Learning Outcomes and Evaluating Educational Processes –
A Priority Program of the German Research Foundation (DFG) In Blömeke, S.,
Zlatkin-Troitschanskaia, O., Kuhn, C., Leutne, D. (Eds.), Modeling and Measuring
Competencies in Higher Education (pp. 171–192). Volume 1 of Professional and
Vet Learning. AW Rotterdam: SensePublishers.

Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy: An Overview, Theory Into
Practice, 41(4), pp. 212–218.

Linck, B., Ohrndorf, L., Schubert, S., Stechert, P., Magenheim, J., Nelles, W., Neuge-
bauer, J., Schaper, N. (March 2013). Competence model for informatics modelling
and system comprehension. In Global Engineering Education Conference (EDU-
CON’13), pp. 85–93.

Mayring, P. (2010). Qualitative Inhaltsanalyse: Grundlagen und Techniken. Weinheim:
Beltz Pädagogik, Beltz.

Schaper, N. Kompetenzorientierung in Studium und Lehre (2012). Fachgutachten für
die Hochschulrektorenkonferenz, Bonn: HRK.

Schaper, N., Magenheim, J., Schubert, S., Hubwieser, P., Bender, E., Margaritis, M.,
Ohrndorf, L., Berges, M. (2013). Competencies of Teaching Computer Science. In

95

Blömeke, S., Zlatkin-Troitschanskaia, O. (Eds) KoKoHs Working Papers no.3, pp.
32–34.

Society, I. C., Bourque, P., Dupuis, R. (eds.) (2004). Software Engineering Body of
Knowledge (SWEBOK). EUA: Angela Burgess.

The Joint Task Force on Computing Curricula Association for Computing Machinery
IEEE-Computer Society 2012 (2013). Computer Science Curricula 2013

Tuning, Educational Structures in Europe, Competenceshttp://www.unideusto.org/tun-
ingeu/competences.html last access: 14.02.2014.

UNESCO (2012). UNESCO ICT Competency Framework for Teachers. UNESCO.
Retrieved from: http://unesdoc.unesco.org/images/0021/002134/213475E.pdf, last
access: 14.10.2013.

Universität Paderborn (2009). Module Handbook 2009 Version 2-Bachelor and Master
Program. Retrieved from: http://www.cs.uni-paderborn.de/fileadmin/Informatik/In-
stitut/englishPage/ModulHandBook/Module_Handbook_GB_11_02_2013-Mod-
uleMaster.pdf, last access: 17.02.1014.

Weinert, F. E. (2001). Vergleichende Leistungsmessung in Schulen – eine umstrittende
Selbstverständlichkeit. In Weinert, F. E. (Ed.). Leistungsmessungen in Schulen (pp.
17–31). Weinheim: Beltz

Biographies
Kathrin Bröker is research associate and PhD-Student at
the Computer Science Education Group at the University of
Paderborn, Germany. There she is responsible for the Computer
Science Learning Center. Her research areas are CSE and
E-Learning.

Uwe Kastens is head of the Research Group Programming
Languages and Compilers at the University of Paderborn. The
research interest of this group centers around the design, the
compilation, and the application of programming languages
and domain-specific languages. He is member of the board of
the German Council of Informatics Departments and Chairman
of the Study Commission. He is also member of IFIP WG 2.4.

96

Johannes Magenheim is a Professor for Computer Science
Education at the Institute of Computer Science at the University
of Paderborn. His primary areas of research and teaching are
CSE and E-Learning. He is member of different working
groups of the German Informatics Society (GI) and member
of IFIP WGs 3.1 & 3.3 and national German representative to
TC3.

Copyright
This work is licensed under a Creative Commons Attribution–NonCommercial–NoDerivs 3.0
Unported License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/3.0/

	Competences of Undergraduate Computer Science Students (Kathrin Bröker, Uwe Kastens, Johannes Magenheim)
	Abstract
	1 Introduction
	2 Concepts of Competence
	2.1 Competences and Models of Cognition
	2.2 Competence Modeling and Measurement in CS
	2.3 Competence Models and Measurement

	3 Theoretical Approach to a CS Competence Model
	4 Empirically Oriented Approach to a CS Competence Model
	4.1 A Competence Model derived by Content Analysis
	4.2 Results of the Curricula Analysis
	4.3 Next steps – Follow up research
	4.4 Comparison

	5 Conclusion and Further Work
	References
	Biographies

