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Zusammenfassung

Transportvorgänge in und von Zellen sind von herausragender Bedeutung für das Überleben des
Organismus. Muskeln müssen sich kontrahieren können, Chromosomen während der Mitose an
entgegengesetzte Enden der Zelle bewegt und Organellen, das sind von Membranen umschlossene
Kompartimente, entlang molekularer Schienen transportiert werden.

Molekulare Motoren sind Proteine, deren Hauptaufgabe es ist, andere Moleküle zu bewegen.
Dazu wandeln sie die bei der ATP-Hydrolyse freiwerdende chemische Energie in mechanische
Arbeit um. Die Motoren des Zellskeletts gehören zu den drei Superfamilien Myosin, Kinesin und
Dynein. Ihre Schienen sind Filamente des Zellskeletts, Actin und die Microtubuli.

In dieser Arbeit werden stochastische Modelle untersucht, welche dazu dienen, die Fortbewe-
gung dieser linearen molekularen Motoren zu beschreiben. Die Skala, auf der wir die Bewegung
betrachten, reicht von einzelnen Schritten eines Motorproteins bis in den Bereich der gerichteten
Bewegung entlang eines Filaments. Ein Einzelschritt überbrückt je nach Protein etwa 10 nm und
wird in ungefähr 10ms zurückgelegt. Unsere Modelle umfassen M Zustände oder Konformationen,
die der Motor annehmen kann, während er sich entlang einer eindimensionalen Schiene bewegt.
An K Orten dieser Schiene sind Übergänge zwischen den Zuständen möglich. Die Geschwindigkeit
des Proteins lässt sich in Abhängigkeit von den vertikalen Übergangsraten zwischen den einzelnen
Zuständen analytisch bestimmen. Wir berechnen diese Geschwindigkeit für Systeme mit bis zu vier
Zuständen und Orten und können weiterhin eine Reihe von Regeln ableiten, die uns einschätzen
helfen, wie sich ein beliebiges vorgegebenes System verhalten wird.

Darüber hinaus betrachten wir entkoppelte Subsysteme, also einen oder mehrere Zustände, die
keine Verbindung zum übrigen System haben. Mit einer bestimmten Wahrscheinlichkeit kann ein
Motor einen Zyklus von Konformationen durchlaufen, mit einer anderen Wahrscheinlichkeit einen
davon unabhängigen anderen.

Aktive Elemente werden in realen Transportvorgängen durch Motorproteine nicht auf die
Übergänge zwischen den Zuständen beschränkt sein. In verzerrten Netzwerken oder ausgehend
von der diskreten Mastergleichung des Systems können auch horizontale Raten spezifiziert wer-
den und müssen weiterhin nicht mehr die Bedingungen der detaillierten Balance erfüllen. Damit
ergeben sich eindeutige, komplette Pfade durch das jeweilige Netzwerk und Regeln für die Ab-
hängigkeit des Gesamtstroms von allen Raten des Systems. Außerdem betrachten wir die zeitliche
Entwicklung für vorgegebene Anfangsverteilungen.

Bei Enzymreaktionen gibt es die Idee des Hauptpfades, dem diese bevorzugt folgen. Wir
bestimmen optimale Pfade und den maximalen Fluss durch vorgegebene Netzwerke.

Um darüber hinaus die Geschwindigkeit des Motors in Abhängigkeit von seinem Treibstoff
ATP angeben zu können, betrachten wir mögliche Reaktionskinetiken, die den Zusammenhang
zwi- schen den unbalancierten Übergangsraten und der ATP-Konzentration bestimmen. Je nach
Typ der Reaktionskinetik und Anzahl unbalancierter Raten ergeben sich qualitativ unterschiedliche
Verläufe der Geschwindigkeitskurven in Abhängigkeit von der ATP-Konzentration.

Die molekularen Wechselwirkungspotentiale, die der Motor entlang seiner Schiene erfährt, sind
unbekannt. Wir vergleichen unterschiedliche einfache Potentiale und die Auswirkungen auf die
Transportkoeffizienten, die sich durch die Lokalisation der vertikalen Übergänge im Netzwerk-
modell im Vergleich zu anderen Ansätzen ergeben.
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Abstract

Transport processes in and of cells are of major importance for the survival of the organism.
Muscles have to be able to contract, chromosomes have to be moved to opposing ends of the
cell during mitosis, and organelles, which are compartments enclosed by membranes, have to be
transported along molecular tracks.

Molecular motors are proteins whose main task is moving other molecules. For that purpose
they transform the chemical energy released in the hydrolysis of ATP into mechanical work. The
motors of the cytoskeleton belong to the three super families myosin, kinesin and dynein. Their
tracks are filaments of the cytoskeleton, namely actin and the microtubuli.

Here, we examine stochastic models which are used for describing the movements of these linear
molecular motors. The scale of the movements comprises the regime of single steps of a motor
protein up to the directed walk along a filament. A single step bridges around 10 nm, depending
on the protein, and takes about 10ms, if there is enough ATP available. Our models comprise M
states or conformations the motor can attain during its movement along a one-dimensional track.
At K locations along the track transitions between the states are possible. The velocity of the
protein depending on the transition rates between the single states can be determined analytically.
We calculate this velocity for systems of up to four states and locations and are able to derive a
number of rules which are helpful in estimating the behaviour of an arbitrary given system.

Beyond that we have a look at decoupled subsystems, i.e., one or a couple of states which have
no connection to the remaining system. With a certain probability a motor undergoes a cycle of
conformational changes, with another probability an independent other cycle.

Active elements in real transport processes by molecular motors will not be limited to the
transitions between the states. In distorted networks or starting from the discrete Master equation
of the system, it is possible to specify horizontal rates, too, which furthermore no longer have to
fulfill the conditions of detailed balance. Doing so, we obtain unique, complete paths through the
respective network and rules for the dependence of the total current on all the rates of the system.
Besides, we view the time evolutions for given initial distributions.

In enzymatic reactions there is the idea of a main pathway these reactions follow preferably.
We determine optimal paths and the maximal flow for given networks.

In order to specify the dependence of the motor’s velocity on its fuel ATP, we have a look at
possible reaction kinetics determining the connection between unbalanced transitions rates and
ATP-concentration. Depending on the type of reaction kinetics and the number of unbalanced
rates, we obtain qualitatively different curves connecting the velocity to the ATP-concentration.

The molecular interaction potentials the motor experiences on its way along its track are
unknown. We compare different simple potentials and the effects the localization of the vertical
rates in the network model has on the transport coefficients in comparison to other models.
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Chapter 1

Introduction

The topic of our work are the movements of molecular motors, which we describe by stochastic
models based on the idea of ratchets. At the beginning, we provide the reader with an overview
explaining the properties of molecular motors, their occurrences in living beings and the idea of
ratchets and its foundations.

1.1 Introduction to molecular motors

Molecular motors are ubiquitous in the cells of living beings. The biological outcomes and the
experimental results obtained up to now are starting points for choosing models which describe
the movements of these motors with respect to the underlying chemistry.

1.1.1 Basic biological knowledge on molecular motors

A eucaryotic cell, which, in contrast to the smaller and simpler procaryotic cells of bacteria, is
found in contemporary animals and plants, contains up to one billion of protein molecules. In
a single cell of a vertebrate, there are about ten thousand different types of proteins, most of
which are spatially oriented. The cytoskeleton, the protein scaffold of eucaryotic cells, creates
and maintains a high level of organization, so that the living cell might be compared to a city
with services concentrated in different areas and cross-linked in various ways [1]. The cytoskeleton
is formed by three different types of protein filaments, namely actin filaments, microtubuli and
intermediate filaments, which, among other tasks as stabilizing the cell, serve as tracks for the
transport of organelles or of chromosomes to opposite ends of the cell during mitosis. Actin
filaments or so-called microfilaments are two-stranded helical polymers of the protein actin and
have a diameter between 5 and 9 nm. Microtubules are long, hollow cylinders which are made of
the protein tubulin. Their outer diameter is 25 nm, and they are more rigid than actin filaments.
Intermediate filaments have a diameter of around 10 nm and consist of intermediate filament
proteins. The actin and microtubule tracks are used by molecular motors, which themselves are
proteins capable of converting chemical energy into mechanical work without going a roundabout
way over heat or electrical energy. This chemical energy, which is used in order to generate cellular
motility [2], is released in the hydrolysis of adenosine triphosphate (ATP), see 1.1.4.

Linear molecular motors bind to a cytoskeletal filament, transport cargoes as organelles along
it or control the movements of filaments, e.g. by causing them to slide against each other. Repeated
cycles of ATP hydrolysis provide the energy necessary for a steady movement.

The contributions of molecular motors to the going well of the human body become obvious
if they fail to work properly. There are many diseases or defects in the course of which molecular
motors play a role [3]. People with Griscelli syndrome (GS) have a mutation in the molecular motor
myosin V, which is involved in organelle transport along actin bundles. Melanosomes are badly
transferred from the melanocytic cytoplasm toward their neighbouring keratinocytes. Accordingly,
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Silvery hair due to mutated myosin V [4].

a typical symptom in patients with GS is their silvery hair, see fig. 1.1. Usher’s syndrome, to name
a second example, is caused by mutations of myosin VII. The typical symptoms of this syndrome
are a loss of hearing, night blindness and a loss of peripheral vision.

There are dozens of different motor proteins in every eucaryotic cell. They differ in the types
of filaments they bind to, in the direction of movement along them, and in the cargo they carry.
The cytoskeletal motor proteins associate with their filaments through a head region, the motor
domain, which binds and hydrolyzes ATP. The proteins undergo a cycle of nucleotide hydrolysis
and conformational change with states in which they are bound to their filamental tracks and states
in which they are unbound. Through a mechanochemical cycle of filament binding, conformational
change, filament release, conformational relaxation, and filament rebinding, the motor protein and
its cargo move one step at a time along the filament. The motor head determines the motor’s track
and the direction of movement along it, while the tail determines the cargo and the corresponding
biological function. Altogether, there are three groups of cytoskeletal motor proteins. All known
motor proteins which move on actin filaments are members of the myosin superfamily, whereas
the motor proteins which move on microtubules are members either of the kinesin superfamily or
the dynein family [1]. The only structural element shared among all members of each superfamily
is the motor head domain. These heads can be attached to a wide variety of tails, which on the
other hand attach to different types of cargo and enable the various family members to perform
different functions in the cell.

Fig. 1.2 shows a cartoon of the two types of motor proteins which move along microtubules.
In general, kinesins move in the direction of the plus end of the microtubule, dyneins move in the
minus direction. However, recently, an experimental group has observed mutants of the motor
protein kinesin moving in both directions along their filaments [5], and certain myosins also move
in another direction along actin than the majority of the myosin family members [6]. Fig. 1.2
illustrates the many different members of the families of the two motor proteins kinesin and
dynein. Presumably, each of these different members carries another cargo, and some dyneins
even bind to a microtubule on both ends.

1.1.2 Experimental results on the movement of molecular motors

In vitro motility assays with optical tweezers and glass fibers as well as atomic force microscopes
have been used to measure the mechanics of cytoskeletal motors bound to their filaments [2].
Motors which are able to move continuously along their filaments are said to be processive. There
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Figure 1.2: The motor proteins of the families kinesin and dynein move along microtubules. This
is only a rough cartoon, as naturally-occurring dyneins, e.g., have two or three heads.

have been experiments on two-headed kinesin [7, 8, 9, 10, 11, 12, 13, 14, 15], one-headed kinesin
[16], myosin V [17, 18, 19, 20], and dynein [21, 22, 23]. Conventional kinesin, cytoplasmic dynein
and myosin V are examples of processive motors.

Several of the experiments on two-headed kinesin have shown that the average motor velocity
v increases monotonically with the ATP concentration Γ and exhibits a saturation behaviour for
large values of Γ. The hyperbolic form v (Γ) ' vmaxΓ/ (Γ∗ + Γ) has been used to fit the data for
zero or small external load forces F [7, 9, 11]. Visscher et al. [15] have assumed force-dependent
fit parameters vmax (F ) and Γ∗ (F ), and have found that the preceding fit is even possible over
the whole range of accessible forces, 0 ≤ |F | ≤ 5.6 pN , which leads to

v (Γ, F ) ' vmax (F ) Γ/ [Γ∗ (F ) + Γ] . (1.1)

Rief et al. as well as Mehta [18, 19] have proposed an analogous relation for the experimental data
on myosin V.

1.1.3 Regimes of motor movement and models

Before beginning to model molecular motors, one has to make sure what pieces of information one
wants to obtain knowledge on. The starting point for modelling is the differentiation between the
three different scales of motor movement as described in the following.

Regime (i) is the regime of the molecular dynamics of a single step. Here, one considers the
actual stepping process of the molecular motor in the context of single steps of about ∼ 10 nm
with corresponding stepping times of ∼ 10 ms, if there is enough ATP present.

Regime (ii) deals with the directed walk of a motor along a filament. The typical walking
distances are in the range of µm and the walking times span seconds.
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Figure 1.3: Model for the motility cycle of conventional kinesin taken from [28]. The two heads
work in a coordinated way to move processively along their filament.

Finally, regime (iii) is concerned with the general topic of intracellular transport. Here, the
distances which have to be bridged are many µm or even mm.

Our work deals with the regimes (i) and (ii). We study theoretical models for the motor cycle
which governs the short time regime (i) and determine the transport properties for the directed
walks of the motor in the intermediate time regime (ii).

Regime (iii) is the topic of [24, 25, 26, 27] and will not be dealt with here.

1.1.4 The mechanochemical cycle of motor proteins

The mechanochemical cycle of the motor proteins is at the root of regime (i). It deals with the
question of how the underlying chemistry is coupled to the actual mechanical movement. Water
can be added to ATP to form ADP and inorganic phosphate. This hydrolysis of the terminal
phosphate of ATP yields between 11 and 13 kcal/mole (around 20 kT/molecule) of usable energy,
depending on the intracellular conditions. Experiments suggest that kinesin spends half of the
time of one hydrolysis cycle attached to its filament and the other half detached. At the start of
the cycle, one of the two kinesin heads, called the leading head, is bound to the microtubule, while
the rear or trailing head is detached. ATP binds to the leading head and causes the rear head
to be thrown forward, past the binding site of the attached head, to another binding site further
toward the plus end of the microtubule. Release of ADP from the second head and hydrolysis of
ATP on the first head, which is now in the rear, brings the dimer back to the original state. Now,
the motor protein has moved one step along the filament [1]. The strength of the mechanochemical
coupling is a matter of detailed discussions, see 1.2.2.

Fig. 1.3 shows a model for the motility cycle of conventional kinesin, which has been developed
by R. D. Vale and R. A. Milligan [28].

1.2 The idea of ratchets

The notion of a ratchet and pawl mechanism was brought up at the beginning of the twentieth cen-
tury. In a naive approach the second law of thermodynamics seems to be violated with Maxwell’s
demon having reappeared. Today, there are various modifications of the original ratchet idea,
some of which are used in the description of the movements of molecular motors.

1.2.1 History of ratchets

Ever since the discovery of Brownian motion, people have been fascinated by the idea of using
thermal fluctuations in order to obtain directed motion, just as on a macroscopic scale the wind
drives a windmill in spite of its shifts. It was Smoluchowski, who was the first one to suggest
a ratchet and pawl mechanism based on microscopic fluctuations in a conference talk he gave in
Münster in 1912 [29].

The heart of Smoluchowski’s idea is an axle with paddles at one end and a ratchet and pawl at
the other end. A ratchet can be described as a disc with asymmetric saw-teeth. The arrangement
as a whole is imagined to be surrounded by a gas under conditions of thermal equilibrium. The
random blows of the gas molecules against the paddles can be assumed to cause a rotational
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Figure 1.4: Ratchet and pawl system [32]. According to Feynman, the flea can be lifted if the
thermal equilibrium is broken with T1 > T2.

motion. The pawl serves as a rectifier of the random motion, as it prevents the ratchet from
backward rotation with a high probability. One might imagine to find a one-way forward rotation
on average.

However, this naive idea is wrong. There cannot be a preferred direction of motion, as otherwise
one would have constructed a perpetuum mobile of the second kind, which on the other hand would
violate the second law of thermodynamics. The mistake is to be found in the mechanism according
to which the pawl is assumed to work. The small blows of the gas molecules have to be supposed
to be microscopic, therefore the pawl should be extremely small in order to allow for a forward
rotation. But under these circumstances, the pawl itself is affected by random thermal fluctuations.
The pawl might be lifted, and a backward rotation of the saw-teeth might occur. So on average
one will find a balance under conditions of thermal equilibrium which leads to no effective net
rotation. Experimental realizations with a triptycene as the ratchet wheel and helicenes as the
pawls and springs have shown that there is no net rotation under conditions of thermal equilibrium
[30, 31].

In his Lectures on Physics [32], Feynman discusses a situation where the gases surrounding the
paddles and the pawl, respectively, do not have the same temperatures. In this extended version of
Smoluchowski’s idea, see fig. 1.4, he breaks the thermal equilibrium, and concludes that a forward
movement is obtained for T1 > T2, that is, if the temperature of the bath of the paddles is higher
than that of the pawl [33]. Then, the flea attached to the string in fig. 1.4 would be lifted, at least
as long as the temperatures do not adapt.

1.2.2 Ratchet effect and molecular motors

As explained in 1.2.1, a realization of the concept used in Smoluchowski’s gedanken experiment,
requires additional ingredients. In general, a ratchet effect is generated when the equilibrium
conditions and the spatial inversion symmetry are broken. Fig. 1.5 shows a typical asymmetric
ratchet potential. The periodicity of ratchets creates a simple connection to the quite uniform
walks of molecular motors along filaments with a regular or even periodic structure on their own.
In the case of actin filaments, for example, a pseudorepeat of 37 nm has been identified. So the
choice of ratchets in order to describe the potential landscape for the movement of molecular
motors is rather obvious.

To explain the directed transport, which molecular motors perform in cells, via a ratchet
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Figure 1.5: The asymmetric potential breaks the spatial inversion symmetry. The cartoon shows
a motor carrying a cargo through this potential landscape.

mechanism, one has to focus on the potential landscape they experience and, in addition to
that, on the enzymatic activity of the motor, which then breaks the chemical equilibrium. The
movements of motors and their enzymatic activities are coupled, and the way this coupling is
treated differentiates between different theoretical motor models and has been a matter of debate.

Several models assume a tight coupling including the basic idea that the biochemical cycle is
independent of the mechanical movement [34, 35, 36]. The cycle may comprise several conforma-
tional states. The movement of the motor is supposed to just follow the cycle.

Models which use uniform ratchets [37, 38, 39] take into account a motor which can attain
different internal states and whose degrees of freedom of movement are explicitly considered.
Now, the position of the motor is described via a spatial coordinate, while the enzymatic activity
is assumed to be independent of the conformation and position.

On the other hand, nonuniform ratchets comprise various internal states as well as the position
of the motor, and they consider an enzymatic activity which depends on the spatial position. Their
main characteristic are transition rates between the internal states which depend on the spatial
coordinate [40, 41].

Besides, there are models with flashing potentials where single potential segments can be
switched independently [42]. These models are intermediate between the uniform and nonuniform
ratchets.

The approach which is presented in the following uses nonuniform ratchets with M internal
states and transitions localized at K locations, see chapter 2 and [43, 44].



Chapter 2

Models for molecular motors

As pointed out in chapter 1, our approach for modelling the directed walks of molecular motors
is based on nonuniform stochastic ratchets. These stochastic ratchets are equivalent to diffusion-
reaction models or composite Markov processes [45] with space-dependent transition rates. They
can be mapped onto stochastic networks of discrete states. Our models can be solved analytically.

2.1 Stochastic models

Our models for molecular motors are based on a Smoluchowski-equation approach. In this section
we focus on the basic ingredients of the model and take a look at the time evolution in the
multi-state system.

2.1.1 Motor cycles

The cytoskeletal motor proteins associate with their filamental tracks through their head region
or motor domain, which binds and hydrolyzes ATP. Coordinated with their cycle of nucleotide
hydrolysis and conformational change, the proteins cycle between states in which they are bound
strongly to their filament, states in which they are unbound and several intermediate states.

Usually, the mechanochemical cycles of molecular motors are discussed in terms of biochemical
reactions and enzyme kinetics, compare the overview in 1.1.4. One then has kinetic pathways
which are coupled to the conformational changes of the motor molecule. In our case a pathway
denotes a cyclic sequence of molecular conformations which leads to a forward or backward step
of the molecular motor along the filament.

2.1.2 Basic ingredients

We use multi-state models with space-dependent transition rates. The basic ingredients are
(i) a spatial coordinate x which describes the displacement of the centre-of-mass of the motor

molecule along the filament,
(ii) M internal states which represent the various conformations the molecule can attain for a

fixed value of x,
(iii) K spatial positions per motor cycle at which the motor molecule can undergo transitions

between these different internal states [43, 44].
We visualize the meaning of these basic ingredients by taking a second look at fig. 1.3. On the

far left, each catalytic core is bound to a tubulin heterodimer along a microtubule. We can say
that the motor is in conformation m = 1 at location x1. It is possible that the motor unbinds
or stretches further in both directions along the filament without a change in the centre-of-mass
coordinate. In this case the motor would be in the internal state m = 2 or m = 3 at position
x1. So, the conformations or states of our models do not necessarily refer to different chemical

7
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conformations in a strict sense, but imply that the motor has somehow changed with respect to
its environment.

In the next picture of fig. 1.3, the leading head is still bound, but the second head has moved
in the forward direction for 16 nm and is now unbound. The conformation of the motor is again
different from the above mentioned, it can be m = 4. The centre-of-mass has moved forward to
position x2. Between this unbound situation and the rebinding in the third picture, the motor
head “searches” for the new binding site, so that we can distinguish a couple of subconformations,
partly with centre-of-mass coordinates which are different from x2 or the new one x3, 8 nm away
from its starting position, in picture three. In the last picture we see that ADP dissociates and
ATP binds to the new leading head. If we make a distinction between the two heads, the motor
has attained a new conformation once again. After that, the cycle starts again. If there was
something different in the second cycle, for example a defect of the filament, we have the choice
between not starting at location x1 again, but introducing further locations, or otherwise starting
at x1 with additional conformations. The second choice is sensible if the lengths of the “substeps”
of the cycle are not changed. In general, the distances between the locations xk where transitions
between the states are possible are arbitrary. There are no constraints by a “lattice constant” of
any kind.

2.1.3 Langevin and Smoluchowski equation

One of the basic examples of a stochastic process is the Brownian motion of a particle. It is
described by the Langevin equation

v̇ = −ζv + f (t) . (2.1)

In order to explain this equation we imagine a heavy particle whose mass is set to one and which
has the velocity v. It moves in a liquid of light particles and receives pushes by the particles of
the fluid at random. The pushes cause a slowing-down force −mζv with the friction coefficient ζ
and the stochastic force f (t).

As a next step, we introduce the probability density

P (ξ, t) = 〈δ (ξ − v (t))〉 (2.2)

that the Brownian particle has the velocity ξ at time t. The equation of motion for the probability
densities is then given by the Fokker-Planck-equation

∂

∂t
P (v, t) = ζ

∂

∂v
vP (v, t) + ζT

∂2

∂v2
P (v, t) , (2.3)

which can also be written as a continuity equation,

∂

∂t
P (v, t) = −ζ

∂

∂v

(
−vP (v, t) − T

∂

∂v
P (v, t)

)
. (2.4)

Here and in the following, we use energy units for the temperature. The current density, which is
the part in brackets, contains a drift part and a diffusional part. The equilibrium distribution of
the Fokker-Planck equations is the Maxwell distribution with P (v, t) ∝ exp

(
−v2/ (2T )

)

Now, we have a look at the Brownian motion in an effective external force field −∂V (x) /∂x.
Note that V (x) is proportional to T−1.

The corresponding Langevin equation is

ẍ = −ζẋ −
∂V (x)

∂x
+ f (t) . (2.5)

The case of a strong damping ζẋ � ẍ leads to the over-damped Langevin equation

ẋ = −
D

T

∂V

∂x
+ r (t) (2.6)
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with the diffusion coefficient D and the fluctuating force r (t) as given by

D ≡
T

ζ
,

r (t) ≡
1

ζ
f (t) . (2.7)

In the following we use the probability density

P (ξ, t) = 〈δ (ξ − x (t))〉 (2.8)

with P (ξ, t) dξ being the probability of finding the particle at time t at location ξ in the interval
dξ. The equation of motion is given by

∂

∂t
P (ξ, t) = −

∂

∂ξ
〈δ (ξ − x (t)) ẋ (t)〉

= −
∂

∂ξ

〈
δ (ξ − x (t))

(
−

D

T

∂V (ξ)

∂ξ
+ r (t)

)〉

=
∂

∂ξ

(
D

T
P (ξ, t)

∂V (ξ)

∂ξ

)
−

∂

∂ξ
〈δ (ξ − x (t)) r (t)〉

(2.9)

with

〈δ (ξ − x (t)) r (t)〉 = 2D

〈
δ

δr (t)
δ (ξ − x (t))

〉

= −2D
∂

∂ξ

〈
δ (ξ − x (t))

δx (t)

δr (t)

〉

= −D
∂

∂ξ
P (ξ, t) . (2.10)

(2.9) and (2.10) yield the Smoluchowski equation

∂

∂t
P (ξ, t) =

∂

∂ξ

(
D

T
P (ξ, t)

∂V (ξ)

∂ξ

)
+ D

∂2

∂ξ2
P (ξ, t) . (2.11)

The Smoluchowski equation on the other hand can be written as a continuity equation,

∂

∂t
P (x, t) = −

∂

∂x
J (x, t) (2.12)

with the current

J (x, t) = −D

(
∂V (x)

∂x
+

∂

∂x

)
P (x, t) , (2.13)

compare [46, 45, 47].
A stationary solution of the Smoluchowski equation is

P (x, t) ∝ exp (−V (x)) , (2.14)

which leads to a vanishing current. This solution only holds in the case that there are no restrictions
of the x-coordinate. In the following, we will use periodic systems where P (x, t) has to fulfill
periodic boundary conditions. Nevertheless, the Smoluchowski equation as given by (2.12) can be
used to describe the lateral movement for a one-state model of a motor protein, compare chapter
4.1.1, where the periodicity is explicitly imposed.
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2.1.4 Time evolution in the multi-state system

In general, we need more than one state to describe the movement of a motor. Actually, it is
often necessary to consider more than two states, and accordingly, in contrast to the approaches
discussed in [37, 38, 39, 48, 49], we examine multi-state systems. So in our systems, we have a
number of M states, and for each of these states we can write down a current equation (2.13), but
with level-dependent Jm, Dm, Vm and Pm. Then, we look at the time evolution of the probability
densities Pm (x, t) to find the particle or molecular motor at the centre-of-mass coordinate x and
in its internal state or level m. The state variable m can attain the M values m = 1, ..., M .

The models include two ingredients by which a change of the probability density Pm (x) may
take place, namely

(i) lateral diffusion within state m, which leads to lateral currents Jm and
(ii) transitions between the different internal states.
Therefore, the probability densities Pm satisfy the equations

∂Pm (x, t) /∂t + ∂Jm (x, t) /∂x = Im (x, t) (2.15)

with the transition current densities Im and the lateral currents Jm. As we have already pointed
out before, the lateral currents Jm have the form (2.13),

Jm (x, t) ≡ −Dm

(
∂

∂x
Vm (x) +

∂

∂x

)
Pm (x, t)

= −Dme−Vm(x) ∂

∂x

(
eVm(x)Pm (x, t)

)
, (2.16)

with the small-scale diffusion coefficient Dm in level m. The friction coefficients are given by
T/Dm.

The lateral currents Jm depend on the molecular interaction potentials Um (x) and on the
external force F , which together define the effective force potentials

Vm (x) ≡ [Um (x) − Fx] /T, (2.17)

where T is the temperature in energy units. The external force F is an applied tangential force,
which might be caused by a cargo. In experimental situations, people use artificial cargoes as
beads, which, for example, are held in an optical trap. It is natural to assume periodic and
asymmetric molecular interaction potentials Um (x). The precise shape of the molecular interaction
potentials Um (x) is unknown, though, as these potentials are not accessible to experiments. So,
as an example, we might imagine a simple asymmetric ratchet potential as drawn in fig. 1.5. The
molecular interaction potentials are assumed to be periodic with the characteristic length scale
` representing the potential period, Um (x + `) = Um (x). In terms of experiments on motor
proteins, F is the applied tangential force.

The transition current densities Im in (2.15) on their parts depend on the transition rate
functions Ωmn from state m to state n via

Im (x, t) ≡
∑

n,n6=m

[−Pm (x, t) Ωmn (x) + Pn (x, t) Ωnm (x)] . (2.18)

The transition rates are localized in space following recent considerations in the context of molec-
ular motors [39, 40, 41], as we assume that the conformational changes of the motor depend on
the spatial position, compare 1.2.2, for example given by a localized binding site of the filamental
track. In the general case, the transitions can take place between any two states of the system.
There is no fixed sequence of transitions.

The transition functions obey Ωmn (x) ≥ 0 and are given by

Ωmn (x) ≡
∑

k

ωmn (xk) `Ωδ (x − xk) , (2.19)

so that they are localized at the discrete set of positions x = xk with k = 1, ..., K and xk within
the interval 0 ≤ x1 < ... < xK < ` [40, 41, 43]. In (2.19), the ωmn (xk) ≥ 0 are transition rates,
whereas `Ω � ` represents a molecular localization length, and δ (z) is Dirac’s delta function.
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2.2 General solution for stationary states

Now, the model systems which we have introduced in section 2.1 will be solved for stationary
states. Recursion relations for the currents and densities in the system are written down with the
use of a transfer matrix formalism. In the end, we obtain a result for the total lateral current,
which is proportional to the velocity of the motor particle. A shorter version of this solution
procedure is outlined in [43, 44].

2.2.1 Stationary states

Calculating the sum over all M states in (2.18), we find

∑

m

Im (x, t) = 0, (2.20)

which is obvious from the structure of (2.18), as each term occurs twice, but the second time
with a change in its sign. If the probability densities Pm are stationary with ∂Pm/∂t = 0, we
have ∂Ptot/∂t = 0 for the total probability Ptot =

∑
m Pm. Then the total lateral current fulfills

Jtot =
∑

m Jm = const, which is a result of (2.15). We consider such a stationary state, and
integrate the expression (2.16) for the lateral currents Jm in the region between x∗ and x, which
leads to

Pm (x) = Pm (x∗) em (x∗, x) −
1

Dm

∫ x

x∗

dyJm (y) em (x∗, x) , (2.21)

where we introduce the exponential functions

em (y, z) ≡ exp (Vm (y) − Vm (z)) = 1/em (y, z) , (2.22)

which on the other hand depend on the effective force potentials Vm (x) = [Um (x) − Fx] /T as
defined in (2.17). In 2.2.4, equation (2.21) will be evaluated for several choices of the yet unspecified
limits x and x∗.

It is clear from their definitions that the exponential functions (2.22) obey the product rule

em (x1, x2) em (x2, x3) = e (x1, x3) . (2.23)

2.2.2 Boundary conditions and normalization

As indicated in fig. 1.5, it stands to reason to choose periodic molecular interaction potentials.
The periodicity is an obvious assumption for the rather regular walks of molecular motors with
steps and substeps along filaments, which themselves show an inherent periodicity as in the case of
the natural pseudorepeat distance of actin. The distances of the sites along the filament where a
binding of the motor is most probable are fixed for “normal”filaments and motors. Accordingly, in
order to obtain a well-defined stationary state, we restrict ourselves to the finite interval 0 ≤ x < `
and use periodic boundary conditions with the box normalization

∫ x1+`

x1

dxPtot (x) =

∫ x1+`

x1

dx
∑

m

Pm (x) ≡ 1, (2.24)

which implies one particle per box. The size of the box can be identified with the potential period
of the periodic potentials Um (x) or with multiples thereof, so that we have Um (x + `) = Um (x).
The particle velocity v is proportional to the total current with v = `Jtot.

2.2.3 Currents

In (2.19), we have introduced spatially localized transition rates, which are now shown to result in
rather simple expressions for the local currents. First of all, we define the local transition current

Jmn (xk) ≡ Pm (xk) ωmn (xk) `Ω ≥ 0, (2.25)
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by which we describe the current from level m to level n at the spatial position xk.
Then the localized transition rates (2.19) are inserted into the transition current densities Im

as given by (2.18). Integration of the equation ∂Jm/∂x = Im yields

Jm (x) = Jm +

K∑

k=1

∆Jm (xk) θ (x − xk) (2.26)

with spatially independent coefficients Jm and with the current discontinuities

∆Jm (xk) ≡
∑

n,n6=m

[−Jmn (xk) + Jnm (xk)] . (2.27)

θ is Heaviside’s step function,

θ (x − xk) =

{
0 for x < xk

1 for x > xk
. (2.28)

For the sum of the current discontinuities, we have
∑

m ∆Jm (xk) = 0 for all xk, because the
double sum over m and n again contains each term twice but with opposite sign. Therefore,
summation of (2.26) over m leads to a total lateral current Jtot =

∑
m Jm =

∑
m Jm.

According to (2.26), the currents Jm (x) are piecewise constant functions of the spatial coor-
dinate x. The local lateral current Jm (xk , xk+1) between position xk and position xk+1 in level
m is given by

Jm (xk, xk+1) = Jm +

k∑

q=1

∆Jm (xq)

= Jm +
k∑

q=1

∑

n,n6=m

[−Jmn (xq) + Jnm (xq)] . (2.29)

This relationship is equivalent to

Jm (xk, xk+1) = Jm (xk−1, xk) +
∑

n,n6=m

[−Jmn (xk) + Jnm (xk)] , (2.30)

which is an obvious consequence of (2.29) written down for Jm (xk−1, xk).
In summary, we conclude that the systems we have introduced consist of a network of ver-

tices (m, xk). These vertices are ordered pairs whose first components are given by the respective
internal states m and whose second components are the corresponding spatial positions xk . Neigh-
bouring vertices are connected via local currents as suggested by (2.29). At each vertex, the sum
of all local currents vanishes, which defines a knot rule similar to Kirchhoff’s first rule in the case
of electric currents.

The networks and their representations as graphs are the topic of the chapters 3 and 4. A
listing of the terminology and the basic concepts of graph theory is provided in appendix C.
Fig. 2.1 shows an overview of the vertices and their mutual connections via rates in a typical
network. For fixed k, each pair of internal states, m and m′, can be connected by a pair of
vertical transition rates ωmn (xk) and ωnm (xk). This means that a motor whose centre-of-mass is
at location xk in conformation m = 1 can change into conformation 2 with a certain probability,
but also into conformation 3 or 4. This is an extension compared to other models with a fixed
sequence of states [50, 51, 52]. Such fixed sequences of states correspond to a special path out of
the total number of paths, which the motors can take along the networks in our models.

Now, we anticipate some expressions from the field of graph theory, compare appendix C,
which will be used later on. A graph G is an ordered 2-tuple, (V (G) , E (G)), which consists of a
set V (G) of vertices and a set E (G) of edges. The arrows in fig. 2.1, which connect two vertices,
are called directed edges of the network. A walk or an edge train in the network of fig. 2.1 is an
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k=1 k=2 k=K

m=2

m=1

m=M

Figure 2.1: Network of discrete motor states represented by vertices (m, xk) with 1 ≤ m ≤ M and
1 ≤ k ≤ K. For fixed m, each pair of adjacent locations k and k + 1 is connected by a pair of
horizontal rates (see chapter 4 for details concerning the horizontal rates). Since the network is
periodic in the horizontal direction, the first column with k = 1 and the last column with k = K
are connected, too. For fixed k, each pair of internal states, m and m′, is connected by a pair of
vertical transition rates ωmn (xk) and ωnm (xk). For k = 1, the representation indicates all vertical
transition rates, while otherwise a limited subset is shown for simplicity.

edge sequence with multiplicity one for each edge. The multiplicity of an edge in an edge sequence
is the number of times an edge appears in an edge sequence. A path is a walk for which no vertex
occurs twice (the degree of each nonterminal vertex is two and the degree of each terminal vertex is
one), and a cycle is a closed path [53, 54]. Because of the periodic boundary conditions, any path
which starts at vertex (k = 1, m), spans the whole network parallel to the x-direction, and ends
at vertex (k = K, m) can be supplemented with the di-edge between (k = K, m) and (k = 1, m)
to form a spanning-cycle or short s-cycle.

In the field of enzyme reactions people talk about a main pathway which is the most important
reaction pathway. In the context of our networks, the main pathway can be imagined as an s-
cycle starting at k = 1 and carrying a maximum current across the network. Nevertheless, there
is a certain possibility that the enzyme follows a different pathway. In our extended models we
can also include non-chemical influences as defects of the filaments or pushes by other molecules.
Furthermore, we can describe backward steps via paths which start at k = K. This will be
discussed in more detail in chapter4.

2.2.4 Current-resistance relationships

Now, we take a closer look at the general relations (2.21) which describe the probability densities
Pm in terms of the currents Jm. The choice of x = xk+1 and x∗ = xk with k = 1, 2, ..., K − 1
yields

Pm (xk) em (xk, xk+1) − Pm (xk+1) = Jm (xk , xk+1) Em (xk, xk+1) . (2.31)

The Em (x, y) are defined by

Em (x, y) ≡
1

Dm

∫ y

x

dzem (z, y) =
1

Dm

∫ y

x

dz exp (Vm (z) − Vm (y)) . (2.32)

Since the effective force potentials Vm (x) have the general form Vm (x) = [Um (x) − Fx] /T as
indicated in (2.17), the E-functions depend both on the molecular force potentials Um (x) and on
the applied force F .
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In 2.2.3 we have seen that the currents obey a knot rule. Now, we consider relation (2.31) and
assume the difference Pm (xk) em (xk, xk+1) − Pm (xk+1) to be the local voltage and the function
Em (xk, xk+1) to be the local resistance of the networks. The equations (2.31) thus are current-
resistance relationships which resemble Ohm’s law for electrical circuits. If a molecular interaction
potential Um (x) has a high potential barrier within a given interval xk < x < xk+1, we derive
from (2.32) that in this case we will find a large resistance Em (xk , xk+1) and, correspondingly, a
small current Jm (xk, xk+1).

We consider a vertex (m, xk) at which all local transition currents Jmn (xk), i.e., the vertical
currents given by (2.25), vanish. We have Jm (xk , xk+1) = Jm (xk−1, xk) ≡ Jk

m. Considering
a series combination of the corresponding two resistances Em (xk−1, xk) and Em (xk, xk+1), the
current-resistance relationships (2.31) with xk−1, xk and xk, xk+1, respectively, lead to the equa-
tion

Pm (xk−1) em (xk−1, xk+1) − Pm (xk+1) = Jk
mEm (xk−1, xk+1) , (2.33)

which contains the combined series resistance Em (xk−1, xk+1) which is calculated from (2.32) as

Em (xk−1, xk+1) = Em (xk−1, xk) em (xk, xk+1) + Em (xk , xk+1) , (2.34)

or, if we introduce the modified resistances

E ′
m (x, y) = Em (x, y) exp (Vm (y)) , (2.35)

as
E ′

m (xk−1, xk+1) = E ′
m (xk−1, xk) + E ′

m (xk, xk+1) . (2.36)

Thus, the series combination of two modified resistances is the sum of the two single resistances
as in the case of electric circuits.

2.2.5 Recursion relation for currents and densities

Now, our aim is to combine the vertex rules (2.30) for the local currents and the current-resistance
relationships (2.31) into recursion relations for the local currents and densities.

At first, we consider the vertex rules (2.30) for the local currents and express the local transition
currents Jmn (xk) in terms of the probability densities Pm (xk) as done in (2.25). This yields the
recursion relation

Jm (xk, xk+1) = Jm (xk−1, xk)

+
∑

n,n6=m

[−Pm (xk) ωmn (xk) + Pn (xk) ωnm (xk)] lΩ, (2.37)

which provides us with a possibility of calculating the outgoing lateral currents Jm (xk , xk+1) from
position xk to xk+1 in terms of the incoming lateral currents Jm (xk−1, xk) and the probability
densities Pm (xk) at location xk.

We introduce the two transfer matrices TJJ with

T JJ
nm ≡ δnm (2.38)

and TPJ (xk) which is given by

T PJ
nm (xk) ≡ −δnm

∑

p6=m

ωmp (xk) `Ω + (1 − δnm) ωnm (xk) `Ω. (2.39)

In order to further simplify our writing, we define the row vectors J ≡ (J1, ..., JM ) and P ≡
(P1, .., PM ). Using this short notation, the recursion relation for the currents (2.37) can be written
in the compact form

J (xk, xk+1) = J (xk−1, xk)TJJ + P (xk)TPJ (xk) (2.40)
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where the first transfer matrix TJJ is equal to the unit matrix according to (2.38).
There is a second set of equations which can be obtained from the current-resistance relations

(2.31) and which is needed for the recursion relation for the probability densities. We rewrite
(2.31) as

Pm (xk+1) = −Jm (xk, xk+1) Em (xk, xk+1) + Pm (xk) em (xk, xk+1) (2.41)

and obtain a way of calculating the densities Pm (xk+1) at location xk+1 in terms of the outgoing
currents Jm (xk , xk+1) from xk to xk+1 and the densities Pm (xk) at the former location xk .

As we want to use the row vectors J and P for a comprehensive formulation of this second set
of recursion relations again, we further set up two diagonal matrices DJP and DPP with matrix
elements

DJP
nm (xk, xk+1) ≡ −δnmEm (xk, xk+1) (2.42)

and
DPP

nm (xk , xk+1) ≡ δnmem (xk, xk+1) . (2.43)

Besides, we define the additional transfer matrices

TJP ≡ TJJDJP (2.44)

and
TPP ≡ TPJDJP + DPP . (2.45)

With the help of these matrices, the recursion relations (2.41) can be rewritten in the compact
form

P (xk+1) = J (xk, xk+1)D
JP (xk, xk+1) + P (xk)DPP (xk , xk+1)

= J (xk−1, xk)TJP (xk, xk+1) + P (xk)TPP (xk, xk+1) , (2.46)

where we have reused (2.40) to obtain the second equation. In this way, we arrive at recursion
relations which express the probability densities P (xk+1) at xk+1 in terms of the incoming currents
J (xk−1, xk), which arrive at location xk from xk−1, and the probability densities P (xk) at location
xk.

Finally, the two recursion relations (2.40) and (2.46) for the outgoing currents and the new
densities may be united in a single recursion relation given by

(J (xk, xk+1) , P (xk+1)) = (J (xk−1, xk) , P (xk))T (xk, xk+1) , (2.47)

where we have defined the row vector (J, P ) with 2M components and the 2M × 2M transfer
matrix T which contains the four M × M transfer matrices TJJ , TPJ , TJP and TPP .

The system as described so far comprises a set of 2MK variables, which is made up of MK lat-
eral currents J (xk, xk+1) and MK probability densities P (xk). As a result we have characterized
a network consisting of MK discrete states.

Now, we focus on a further reduction of the number of variables. To do so, we use the recursion
relation (2.47) and express all lateral currents and probability densities in terms of the densities
Pm (x1) of location x1 and the lateral currents which enter the system from x < x1 (2.26).

Using the notation J ≡
(
J1, ..., JM

)
, iteration of (2.47) leads to

(J (xk−1, xk) , P (xk)) =
(
J, P (x1)

)
T(k) (2.48)

with the combined transfer matrices

T(k) ≡

k−1∏

j=1

T (xj , xj+1) . (2.49)

The combined transfer matrices T(k) with k = 2, ..., K relate the local lateral currents Jm (xk−1, xk)
arriving at x = xk and the densities Pm (xk) to the average currents Jm and the densities Pm (x1)
at location x1. We supplement these matrices by the matrix T(1) which is equal to the unit matrix.
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Now, we take a closer look at the separate components of (2.48). The first M components of
this equation determine the local lateral currents J (xk−1, xk) via

Jm (xk−1, xk) =
M∑

i=1

J iT
(k)
i,m +

2M∑

i=M+1

Pi−M (x1) T
(k)
i,m (2.50)

where T
(k)
i,m denotes the matrix element of T(k) in the ith row and the mth column. Jm (xk−1, xk)

is calculated via the elements in column m of T(k).
The remaining M components of the transfer matrix equation (2.48) determine the densities

Pm (xk) via

Pm (xk) =
M∑

i=1

J iT
(k)
i,M+m +

2M∑

i=M+1

Pi−M (x1) T
(k)
i,M+m. (2.51)

We notice that the densities Pm (xk) on the other hand depend on the matrix elements in the
(M + m)th column of T(k).

2.2.6 Implementation of periodic boundary conditions

In 2.2.5 we have come to conclude that in order to solve our problem, we need 2M equations
which define the 2M unknowns Jm and Pm (x1). These equations are provided by the periodic
boundary conditions together with the normalization condition. In this subsection we implement
the periodic boundary conditions. The normalization condition is treated in 2.2.7.

The system is taken to be periodic in the spatial coordinates x with 0 ≤ x < `, see 2.2.2.
This implies that the currents and densities satisfy the periodic boundary conditions Jm (x + `) =
Jm (x) and Pm (x + `) = Pm (x) with xK+1 ≡ x1 + ` per definition.

We start with the periodic boundary conditions for the lateral currents using Jm (x) = Jm +∑K
k=1 ∆Jm (xk) θ (x − xk) as in (2.26). If we now choose x > xK with Jm (x) = Jm, we obtain

K∑

k=1

∆Jm (xk) /`Ω =
K∑

k=1

∑

n,n6=m

[−Pm (xk) ωmn (xk) + Pn (xk)ωnm (xk))] = 0 for m = 1, ..., M.

(2.52)

The above equation results from inserting (2.25).
Since

∑
m ∆Jm (xk) = 0 for any value of xk as explained in 2.2.3, only M − 1 of the M

equations given by (2.52) are linearly independent. In general, we can choose any subset which
contains (M − 1) equations from this set of M equations. However, we can always relabel the
internal states so that the omitted equation corresponds to m = M . We will assume this to be
done and therefore keep the first (M − 1) equations from (2.52).

As announced, in these (M − 1) equations we replace all densities Pm (xk) with k ≥ 2 by the
average currents Jm and the densities Pm (x1) by using the transfer matrix equations (2.51). In
this way, we arrive at a new set of equations as given by

M∑

i=1

J iA
(M,K)
i,m +

2M∑

i=M+1

Pi−M (x1) A
(M,K)
i,m = 0 (2.53)

with 1 ≤ m ≤ M −1 which defines the first (M − 1) columns of a new matrix A(M,K) with matrix
elements

A
(M,K)
i,m ≡

K∑

k=1

∑

n,n6=m

S (k, m, n) (2.54)

and
S (k, m, n) ≡ −T

(k)
i,M+mωmn (xk) + T

(k)
i,M+nωnm (xk) . (2.55)
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It is noteworthy that each term of the matrix elements A
(M,K)
i,m in (2.54) contains one explicit

factor ωmn (xk) or ωnm (xk), i.e., in the case of non-vanishing transfer matrix elements each term
is proportional to one or more vertical transition rates. In fact, for K 6= 1 there is always at

least one non-vanishing transfer matrix element T
(K)
i,j since in a single row of T(K)there are no M

neighbouring columns which contain elements equal to zero.

Now, we take into account the periodic boundary conditions for the densities Pm (x). First,
we use equation (2.41) for k = K which leads to

Pm (xK+1) = −Jm (xK , xK+1) Em (xK , xK+1) + Pm (xK) em (xK , xK+1) (2.56)

with xK+1 = x1+` as before. The periodic boundary conditions imply Pm (xK+1) = Pm (x1 + `) =
Pm (x1) and Jm (xK , xK+1) = Jm. If this is inserted into (2.56), we obtain, after rearranging the
equation,

Pm (xK) = Jm
Em (xK , xK+1)

em (xK , xK+1)
+ Pm (x1)

1

em (xK , xK+1)
. (2.57)

On the other hand, it follows from (2.51) when inserting k = K that

Pm (xK) =

M∑

i=1

J iT
(K)
i,M+m +

2M∑

i=M+1

Pi−M (x1) T
(K)
i,M+m. (2.58)

Now, if we equate (2.57) and (2.58), we obtain another set of M equations given by

M∑

i=1

J iA
(M,K)
i,M+m−1 +

2M∑

i=M+1

Pi−M (x1) A
(M,K)
i,M+m−1 = 0 (2.59)

with m = 1, ..., M . The new elements of the matrix A(M,K) are given by

A
(M,K)
i,M+m−1 ≡ T

(K)
i,M+m − δi,m

Em (xK , xK+1)

em (xK , xK+1)
for 1 ≤ i ≤ M (2.60)

and by

A
(M,K)
i,M+m−1 ≡ T

(K)
i,M+m −

δi−M,m

em (xK , xK+1)
for M + 1 ≤ i ≤ 2M. (2.61)

According to (2.49), the combined transfer matrix T(K) is a product of transfer matrices
T (xj , xj+1) with j ≤ K − 1. The latter transfer matrices depend on the local transition cur-
rents Jmn (xk) with k ≤ K − 1 but are independent of the local transition currents Jmn (xK) ≡
Pm (xK) ωmn (xK) `Ω. Therefore, the combined transfer matrix T(K) is independent of these latter

currents, too. This implies that the matrix elements A
(M,K)
i,M+m−1 in (2.60) and (2.61) do not depend

on the vertical transition rates ωmn (xK).

2.2.7 Implementation of normalization condition

As we have shown in 2.2.6, the periodic boundary conditions lead to 2M − 1 linearly independent
equations which are provided by (2.53) and (2.59). In order to determine the 2M variables Jm and
Pm (x1) unambiguously, we need one additional equation which is supplied by the normalization
condition.

When the explicit form of the densities and currents is inserted into the normalization condition
(2.24), we obtain the expression

1 =
∑

m

[
Pm (x1) em − JmEm (x1) −

K∑

k=1

∆Jm (xk) Em (xk)

]
, (2.62)
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which depends on the integrals

em ≡

∫ x1+`

x1

dxem (x1, x) (2.63)

and

Em (xk) ≡

∫ x1+`

xk

dxEm (xk, x) . (2.64)

The normalization condition (2.62) contains the current discontinuities ∆Jm (xk) for all k. How-
ever, it follows from the relation (2.52) that

∆Jm (xK) = −
K−1∑

k=1

∆Jm (xk) . (2.65)

When this relation is inserted into (2.62), we obtain

∑

m

[
−JmEm (x1) + Pm (x1) em −

K−1∑

k=1

∆Jm (xk)Dm (xk)

]
= 1 (2.66)

with
Dm (xk) ≡ Em (xk) − Em (xK) . (2.67)

Since this equation no longer involves the current discontinuities ∆Jm (xK) at location xK , it does
not depend on the transition rate constants ωmn (xK).

The current discontinuities ∆Jm (xk) with 1 ≤ k ≤ K − 1 can be expressed in terms of the
densities Pm (xk) via (2.27) and (2.25). These densities on the other hand can be expressed in
terms of the variables Jm and Pm (x1) using the transfer matrix relations (2.51).

In this way we get the equation

M∑

i=1

J iA
(M,K)
i,2M +

2M∑

i=M+1

Pi−M (x1) A
(M,K)
i,2M = 1, (2.68)

which defines the last or 2Mth column of the matrix A(M,K) with elements

A
(M,K)
i,2M ≡ −E i (x1) −

K−1∑

k=1

∑

m

∑

n,n6=m

S (k, m, n)Dm (xk) lΩ for 1 ≤ i ≤ M (2.69)

and

A
(M,K)
i,2M ≡ ei−M −

K−1∑

k=1

∑

m

∑

n,n6=m

S (k, m, n)Dm (xk) lΩ for M + 1 ≤ i ≤ 2M (2.70)

with S (k, n, m) as defined in (2.55).

2.2.8 Calculation of the total current

As all lateral currents and probability densities can be described in terms of the 2M densities
Pm (x1) and the lateral currents Jm which enter the system from x < x1, we have

[
J, P (x1)

]
= [0, ..., 0, 1]

(
A(M,K)

)−1

= [0, ..., 0, 1]
C

detA(M,K)
, (2.71)

where A(M,K) is a 2M×2M matrix as explained in the preceding sections. The matrix elements of
C are the cofactors Cij ≡ (−1)

i+j
detA(M,K)[j, i], where A(M,K) [j, i] is the (2M − 1)× (2M − 1)
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matrix obtained from A(M,K) by erasing its jth row and ith column. Each of the first M − 1
columns of A(M,K) corresponds to the periodic boundary condition for one lateral current Jm,
each of the next M columns to the periodic boundary condition for one density Pm and the last

one to the normalization condition. The total current J
(M,K)
tot =

∑M
m=1 Jm which determines the

motor velocity v(M,K) via v(M,K) = `J
(M,K)
tot is

J
(M,K)
tot =

M∑

m=1

Jm =
M∑

m=1

(−1)2M+m detA(M,K) [m, 2M ] /detA(M,K). (2.72)

As we use algebraic computer systems [55], which soon reach their limitations in complex

matrix calculations, computing the complete inverse matrix
(
A(M,K)

)−1
is often impossible so

that we generally confine ourselves to the calculation of the elements contributing to J
(M,K)
tot as

explained above.
It is convenient to write

J
(M,K)
tot =

Pol
(M,K)
1

(
ω12 (x1) , ω12 (x2) , . . . , ω(M−1)M (xK)

)

Pol
(M,K)
2

(
ω12 (x1) , ω12 (x2) , . . . , ω(M−1)M (xK)

) (2.73)

with two polynomials Pol
(M,K)
1 and Pol

(M,K)
2 which depend on the vertical transition rates of the

respective model. In chapter 3 we will calculate and characterize the total current and the two
polynomials for various model systems.
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Chapter 3

Results for various (M,K)-models

and universal rules

In chapter 2 we have shown that our stochastic ratchets can be mapped onto stochastic networks
of MK discrete states, which are represented by their respective vertices (m, xk), where m is the
coordinate of the state or level, and xk is the spatial coordinate.

Here, we present a detailed investigation of models with explicitly specified values of M and
K [44]. The maximal number of states as well as the number of locations in these models varies
between one and four. In this way we show that our general class of models has the advantage
of comprising the possibility of describing the movements of a variety of different motor proteins.

At first, we calculate the resulting total current J
(M,K)
tot for each of these models, then we take

a closer look at the various terms which contribute to the current and their dependence on the
vertical transition rates of the model. We also discuss conceivable implications of these models
in terms of the mechanochemical cycles of molecular motors and their structures. Several rules

concerning the matrices A(M,K) and the total current J
(M,K)
tot , which is calculated with the help

of these matrices, can be derived. These rules impose constraints on the terms contributing to the
current, so that if we have a network with a specified number of states and locations, we can list

the combinations of vertical rates occurring in the terms of J
(M,K)
tot without actually calculating

the matrix A(M,K) for this special case. Furthermore, we examine ratchets with several explicitly
unbalanced transitions, which can arise from the enzymatic activity of the motor. With the help
of the rules for the current we can predict possible simplifications in the dependence of the motor
velocity on these unbalanced rates, too.

3.1 Examples of (M, K)-models

Here, we investigate models with different values of M and K. The inspected models comprise one
to four states and one to four locations. We focus on the question of how the vertical transition

rates enter the total current, which is the quotient of the two polynomials Pol
(M,K)
1 and Pol

(M,K)
2 .

Mainly, we centre on the terms of Pol
(M,K)
1 as they correspond to paths through the network,

whereas Pol
(M,K)
2 provides a standardization of the total current with respect to the set of vertical

rates which actually occur in the present model.

3.1.1 The special case of a single internal state

In the case of a single internal state , there are no vertical transition rates, i.e., the state is
fixed. We have diffusion within this state, and there can be a periodic landscape described by
the state’s effective force potential, but no chemical reaction or conformational change. Without
an external force the motor might find itself in a situation as the one depicted in fig. 1.5. The
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single-state situation applies to a motor which is for some reason cut off its supply of fuel and
whose conformation is fixed. The fixed conformation might be a consequence of the lack of fuel,
but it can also result from a genetic defect.

The corresponding matrix A(1,K) is a 2 × 2 matrix whose elements depend on the effective
force potential V1 (x), the small-scale diffusion coefficient D1 and the spatial positions xk . In the
case of a single location, i.e., K = 1, A(1,1) reads

A(1,1) =

(
−E1 (x1, x1 + `) /e1 (x1, x1 + `) −E1 (x1)

1 − 1/e1 (x1, x1 + `) e1

)
(3.1)

with E1 (x1, x1 + `), e1 (x1, x1 + `), E1 (x1) and e1 as defined in chapter 2. The total current J
(1,1)
tot

is calculated as

J
(1,1)
tot =

1 − e1 (x1, x1 + `)

(e1 (x1, x1 + `) − 1) E1 (x1) − E1 (x1, x1 + `) e1

. (3.2)

This current vanishes in the absence of an external force for all single state models, no matter what
is the choice of K, as there cannot be a net current with a single fixed molecular interaction poten-
tial. This is obvious in 3.2, since in this case we have e1 (x1, x1 + `) = exp (U1 (x1) − U1 (x1)) = 1.

If there is a finite external force, while the molecular interaction potential vanishes, the total
current reads

J
(1,1)
tot (U1 = 0) =

FD1

`T
, (3.3)

This relationship will be explained further in 4.1.1.

3.1.2 Results for two internal levels

A model with two internal states can describe a one-headed motor which has the chance to change
between a state where its binding to the filament is strong and a state where this binding is weak
or where it is even unbound, though still only free to move in the x-direction. Then we say that
the motor is in state one, if its conformation is the conformation of strong binding, and in state
two for the case of weak or no binding at all. As the labelling of the states is arbitrary, the two
conformations might be classed with swapped numbers.

The two-state model also works for a simple two-headed motor with a strong cooperation so
that the rebinding of the momentarily unbound head correlates with the ATP-adsorption of the
bound head. In this case the two levels correspond to the first head unbound and the second head
unbound, respectively.

Two states and one or two locations

For two internal states and one spatial position , the number of possible vertical transition
rates is limited to two, namely ω12 (x1) and ω21 (x1). We might imagine a motor which binds
ATP at location x1, changes its conformation to m = 2, but whose movement is blocked by an
obstacle, so that it falls back into state m = 1 without having performed an effective movement
in the second state. Of course, the two states might be swapped again.

In the following, A
(M,K)
ij denotes the element in row i and in column j of the matrix A(M,K).

The vertical rates ω12 (x1) and ω21 (x1) occur in the matrix elements A
(2,1)
31 and A

(2,1)
41 of the 4× 4

matrix A(2,1). This means in a more general formulation that we have ω12 (x1) in row M + 1 and
ω21 (x1) in row M + 2 :




0 −E1(x1,x1+`)
e1(x1,x1+`) 0 −E1 (x1)

0 0 −E2(x1,x1+`)
e2(x1,x1+`) −E2 (x1)

−ω12 (x1) 1 − 1
e1(x1,x1+`) 0 e1

ω21 (x1) 0 1 − 1
e2(x1,x1+`) e2


 . (3.4)
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k=1 k=2

m=1

m=2

Figure 3.1: Network representation for (M, K) = (2, 2). In this general model, there are four
vertical transition rates connecting the two states.

If there is no external force, F = 0, the total current J
(2,1)
tot vanishes as expected from the idea

of the blocked motor above. There is no ratchet effect present, the switching back to the original
state takes place at the same position.

For an external force F 6= 0, the polynomials Pol
(2,1)
1 and Pol

(2,1)
2 which enter the total current

as explained in chapter 2, consist of terms containing a single vertical transition rate. Squares
(or higher powers) or products of the two rates do not occur. Here, a net movement can occur
because of the external force, which might even be effective against hindrances.

For two states and two locations , we have a maximum number of four possible vertical
transition rates. The network situation is outlined in fig. 3.1, visualize fig. 2.1 for comparison, too.
The matrix A(2,2)reads




E1 (x1, x2) ω12 (x2)
−E1 (x1,x2)

−E1(x2,x1+`)
E1(x2,x1+`)

0 −E1 (x1)

−E2 (x1, x2) ω21 (x2) 0
−E2 (x1,x2)

−E2(x2,x1+`)
e2(x2,x1+`)

−E2 (x1)

−ω12 (x2) [ω12 (x1) `Ω

·E1 (x1,x2)
+e1 (x1, x2)] − ω12 (x1) `Ω

·E2 (x1,x2) ω21 (x2) − ω12 (x1)

ω12 (x1) `Ω

·E1 (x1,x2)
+e1 (x1, x2)
− 1

e1(x2,x1+`)

−ω12 (x1) `Ω

·E2 (x1,x2)

e1 + ω12 (x1) ·
·
[
E1 (x1) − E1 (x2)

]

·`Ω − ω12 (x1)
·
[
E2 (x1) − E2 (x2)

]
`Ω

ω21 (x2) [ω21 (x1) `Ω

·E2 (x1,x2)
+e2 (x1, x2)] + ω21 (x1) `Ω

·E1 (x1,x2) ω12 (x2) + ω21 (x1)

−ω21 (x1) `Ω

·E1 (x1,x2)

ω21 (x1) `Ω

·E2 (x1,x2)
+e2 (x1, x2)
− 1

e2(x2,x1+`)

e2 − ω21 (x1)
·
[
E1 (x1) − E1 (x2)

]

·`Ω + ω21 (x1)

·
[
E2 (x1) − E2 (x2)

]
`Ω




.

(3.5)

Each term in the first column of A(2,2) is proportional to at least one vertical transition rate. The
incidence of ω12 (x1) is restricted to the third row of the matrix A(2,2), whereas ω21 (x1) can only
be found in row four. Vertical rates belonging to location xK are restricted to the first column.

The terms of the polynomials Pol
(M,K)
1 and Pol

(M,K)
2 , which are products containing the

verticals transition rates, will be named T in the following. The polynomials Pol
(2,2)
1 and Pol

(2,2)
2

for arbitrary F are found to be multilinear in the vertical transition rates ωmn (xk) with m, n = 1, 2
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m=1

m=2

k=1 k=2

m=1

m=2

k=1 k=2

Figure 3.2: The two different combinations of vertical rates which occur in Pol
(2,2)
1 for F = 0 in

the (M, K) = (2, 2)-case, see (3.6). Left: the combination ω12 (x1) ω21 (x2) (bold). In order to
obtain complete paths, we have to add horizontal rates, compare 4.3 for details. The thin di-edges
show the complete set of horizontal rates in the system. If we start at x < x1 in state m = 1,
follow the di-edge ω12 (x1), take the horizontal rate leading from x1 to x2 in state m = 2 and then
follow ω21 (x2) back into state m = 1, the left combination belongs to a forward cycle in positive
x-direction. Starting at x > x2 in state m = 2, changing into state m = 1 with ω21 (x2) and going
from location x2 to x1 in the first state, we obtain a backward cycle. Right: the combination
ω21 (x1) ω12 (x2) (bold). This combination occurs in a forward and a backward-cycle, too.

and k = 1, 2, i.e., the rates occur as ωz
mn (xk) with z = 0 or z = 1. The degree of the polynomials

in the ωmn (xk) with m, n and k as above varies between one and two, so that each term contains
one or two vertical transition rates.

For F 6= 0, there are eight different combinations of vertical rates, the four one-rate combi-
nations with ω12 (x1), ω21 (x1), ω12 (x2) and ω21 (x2) and then the four two-rate combinations
ω12 (x1) ω21 (x2), ω12 (x1) ω12 (x2), ω21 (x1) ω12 (x2) and ω21 (x1) ω21 (x2). The two combinations
ω12 (x1) ω21 (x1) and ω12 (x2) ω21 (x2) connecting the two states at one location do not occur.

We take a closer look at the numerator polynomial Pol
(2,2)
1 for F = 0. There are four terms

with two different combinations of two vertical transition rates. These combinations are illustrated
in fig. 3.2. We have

Pol
(2,2)
1 = a1ω12 (x1) ω21 (x2) − a2ω12 (x1) ω21 (x2)

+b1ω12 (x2) ω21 (x1) − b2ω12 (x2) ω21 (x1) (3.6)

with coefficients ai and bi which contain the respective em (xk, xl), Em (xk,xl) and `Ω. The terms
with a minus sign belong to backward combinations. Then the motor takes a step in the negative
x-direction. The combination ω12 (x1) ω21 (x2), e.g., describes a forward path starting in the first
level (first term) and a backward path starting in level two at x > x2 (second term).

The rest of the combinations of two rates, ω12 (x1) ω21 (x1), ω12 (x2) ω21 (x2), ω12 (x1) ω12 (x2)
and ω21 (x1) ω21 (x2), vanish for F = 0 as well as the terms with a single vertical transition rate.
The remaining terms in (3.6) contain the combinations ω12 (x1) ω21 (x2) or ω21 (x1) ω12 (x2). These
two combinations of vertical rates can be supplemented with the accompanying horizontal rates to
form s-cycles (see 2.2.3). This supplementation with horizontal rates will be tacitly assumed in the
following. In section 4.3 the horizontal rates will be considered explicitly, too. We keep in mind
that an s-cycle is a path of di-edges which starts at vertex (k = 1, m), i.e., with an arbitrary confor-
mation, spans the whole network parallel to the x-direction, and ends at vertex (k = K, m) to be
supplemented with the di-edge between (k = K, m) and (k = 1, m). Concentrating on the vertical
di-edges of the term this means that we have a combination ωmn (xi) ωno (xj) ...ωpq (xk) ωqm (xl)
leading from state m back to state m with at least to different locations i, j, ..., k or l.

In a situation where we have no external force and no enzymatic activity, the corresponding
vertical transition rates fulfill the condition of detailed balance,

ωdb
mn (xk) = eVm(xk)−Vn(xk)ωdb

nm (xk) . (3.7)
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k=1 k=2

m=2

m=1

k=3 k=1 k=2

m=2

m=1

k=3

Figure 3.3: The six different three-rate combinations in Pol
(2,3)
1 for F = 0 can be derived from the

above shown two combinations by cyclic permutations of the rates with respect to the locations.
The three combinations derived from the left combination have two upward rates, the three derived
from the right two downward rates. All of these combinations contain an s-cycle of the type
ω12 (xk) ω21 (xl) with k 6= l. As these are the terms for F = 0, the combination which contains
only upward rates and the combination with three downward rates do not occur.

Then, each indiviual transition is balanced, and the incoming rates balance the outgoing rates

for every vertex (m, xk) of our network. In this case we obtain Pol
(2,2)
1 = 0 for F = 0, i.e., the

total current J
(2,2)
tot vanishes. Terms in (3.6) which comprise ω12 (x1) ω21 (x2) cancel with terms

originally including the s-cycle ω21 (x1) ω12 (x2) with opposite directionality. So if detailed balance
is fulfilled, the first term in (3.6) cancels with the last one and the second one with the third.

Properties of Pol
(2,3)
1 and Pol

(2,3)
2

The elements of the matrix A(2,3) for the case of two internal states and three spatial posi-

tions are listed in appendix A.1.
Altogether, there are six different vertical transition rates ω12 (xk) and ω21 (xk) with k = 1, 2, 3.

For F 6= 0, the terms T of the polynomials Pol
(2,3)
1 and Pol

(2,3)
2 comprise between one and three

vertical transition rates.
There are 26 different combinations of vertical rates in the polynomials Pol

(2,3)
1 and Pol

(2,3)
2

for F 6= 0. These are the six combinations with a single rate, twelve combinations with two rates
and eight with three rates. Again, combinations with rates connecting the two states in different
directions at one location are missing.

For F = 0, the polynomial Pol
(2,3)
1 reduces to twelve different combinations of vertical rates,

all of which include an s-cycle of the type ωmn (xk) ωnm (xl) with k 6= l and m 6= n, and six of
these contain two vertical transition rates, the other six comprise three of them. The six three-rate
combinations can be derived from the two combinations shown in fig. 3.3 by cyclic permutations
of the rates with respect to the locations. The figure on the left provides us with the three
combinations ω12 (x1) ω12 (x2) ω21 (x3), ω12 (x1) ω21 (x2) ω12 (x3) and ω21 (x1) ω12 (x2) ω12 (x3).

Total current: properties of Pol
(2,4)
1 and Pol

(2,4)
2

For two internal states and four spatial positions the corresponding matrix A(2,4) is given
in appendix A.2.

The eight different vertical transition rates occur in Pol
(2,4)
1 and Pol

(2,4)
2 for arbitrary F in

terms including one to four rates. We focus on summands with four vertical transition rates. There

are

(
8
4

)
= 70 possibilities of choosing four rates out of a total number of eight. Actually, Pol

(2,4)
1

and Pol
(2,4)
2 contain the limited number of 16 different combinations of four vertical rates. These

combinations consist of four rates at four different locations. There is one combination without
an upward rate and a second one without a downward rate. There are four combinations each
with one or three upward rates, and there are six combinations with two rates pointing upwards.
Altogether this sums up to 1 + 1 + 4 + 4 + 6 = 16 different combinations. In analogy to the
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k=1 k=2 k=3 k=4
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Figure 3.4: The 14 different four-rate combinations in Pol
(2,4)
1 for F = 0 can be derived from

the above four combinations by cyclic permutations of the rates with respect to the locations.
From the upper left combination we derive four combinations with three upward rates. The upper
right combination leads to four combinations with three rates pointing downwards. The two
combinations at the bottom imply three combinations each, all of them with two upward and two
downward rates.

previous models we conclude that combinations with ωmn (xk) ωnm (xk), i.e., two rates connecting
the two states in opposite directions at one location, do not appear. Such a cycle of vertical rates
restricted to a single location, whose extended form is ωmn (xk) ωno (xk) ωop (xk) ...ωrm (xk), will
be called a localized or l-cycle in the following.

In the case of F = 0, the terms of two to four vertical transition rates which appear in Pol
(2,4)
1

can be mapped onto one or two s-cycles of the type ωmn (xk) ωnm (xl) with k 6= l. For F = 0
the number of different combinations of four rates reduces to 14, as the combination with all four
rates pointing upwards as well as the combination with all four rates pointing downwards do not

occur, because they do not contain an s-cycle. The 14 different four-rate combinations in Pol
(2,4)
1

for F = 0 can be derived from the combinations displayed in fig. 3.4 if we use cyclic permutations
of the rates with respect to the locations.

3.1.3 Model with three states

One interpretation of a model with three internal states is that of a two-headed motor with a
doubly-bound state, in which both heads are bound to the filament, and two excited states with
one of the two heads unbound, respectively. We might also imagine a motor with a single head
and a state of strong binding, a loosely bound state and an unbound state, where nevertheless the
movement is limited to the direction of the filament.

Three states and one or two locations

The polynomials Pol
(3,1)
1 and Pol

(3,1)
2 for arbitrary F in the case of three internal states and one

spatial position contain two vertical transition rates per term. The total number of conceivable
vertical rates in a certain network is in general M (M − 1)K , which results in six in the present

case, compare fig. 2.1. For F = 0, Pol
(3,1)
1 vanishes equal to zero.

For three internal states and two spatial positions, the elements of the matrix A(3,2) are
listed in appendix A.3. Concentrating on the vertical rates ωmn (x1) at the first location, we see
that the occurrence of ω1n (x1) is restricted to row four, while ω2n (x1) occurs in row five (and
nowhere else), and ω3n (x1) can only be found in row six. The rates ω12 (x2) and ω21 (x2) as well
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as ω21 (x2) and ω12 (x2) are limited to the first two columns, ω31 (x2) and ω13 (x2) are restricted
to column one, ω32 (x2) and ω23 (x2) to column two.

For arbitrary F , we have terms including two to four vertical transition rates in Pol
(3,2)
1 and

Pol
(3,2)
2 .

Pol
(3,2)
1 for F = 0 consists of terms of three and four vertical transition rates, each of which

includes an s-cycle. If a product consists of four vertical transition rates, these four rates divide
up equally in pairs of two rates belonging to the respective location. Four rates belonging to one
location or three rates at a single location and the remaining one at the other do not appear.
Any such non-occurring combination would either include two vertical rates rising from the same
vertex as ωmn (xk) ωmo (xk) or lead to an l-cycle.

Each location provides us with

(
6
2

)
= 15 possibilities of choosing two vertical rates out

of a total number of six. In order to explain the four-rate combinations, we subtract the six
combinations consisting of non-occurring products of rates and end up with 9·9 = 81 possibilities, a
number which reduces further after subtracting the 9 cases of equal combinations at both locations
and the 18 combinations which do not lead to s-cycles or which include vertical transition rates
leading into a state from which no other vertical transition rate emanates, as these dead ends do
not occur, too. Doing so, we can explain the 81 − 9 − 18 = 54 different four-rate combinations
which are actually observed. In the case of three vertical rates, there are 9 ·6 ·2 = 108 combinations
taking into account the nine possibilities of choosing two rates belonging to a single location which
have already turned out to appear. Another 36 possibilities are dropped as they do not comprise
an s-cycle or because the terminal vertices of vertical transitions belong to a state from which no
other vertical rate rises, so that there are 108 − 2 · 36 = 36 possibilities left (the factor of two
enters because of a possible swapping of locations). In summary, the 90 different combinations

of vertical transition rates in Pol
(3,2)
1 for F = 0 are found by writing down all the combinations

which are multilinear in these rates, contain M = 3 to K (M − 1) = 4 rates, do not include rates
rising from identical vertices, ending in a dead end or forming l-cycles, but which can be mapped
onto an s-cycle at the same time.

S-cycles for (M, K) = (3, 2)

In order to improve the understanding of the notion of s-cycles, we introduce a classification of
the spanning cycles which can occur in the case of three states and two locations. Namely, we
distinguish between five different types of s-cycles.

The simplest type of an s-cycle is type 1 : Spanning cycles of this type do not contain more
than two vertical transition rates. These two transition rates connect two states at different spatial
positions in opposite directions, i.e., we have ωmn (xk) ωnm (xl) with m 6= n and k 6= l. As this
type comprises two vertical rates and in this way less than the minimal number of three vertical

rates in Pol
(3,2)
1 for F = 0, its occurrence requires one or two additional rates. The simple two-rate

form is restricted to (2, 2)-models. The additional rates always lead directly or in more extensive
models via other additional rates into states occurring in the s-cycle, compare fig. 3.11. As they are
not a part of the s-cycle, their task can be to empty or drain single states, as we will see in section
4.3. In this case, if one of the terms with additional rates stands on its own, the probabilities in the
state affected by the emptying will be zero in the stationary state. In general, such an emptying
will be compensated by other terms. In any case, the additional vertical rates do not violate the
periodic boundary conditions of our systems.

The next type of s-cycles is type 2 : Double spanning cycles of type 2 consist of two s-cycles
of type 1 so that there are two pairs of vertical transition rate constants. This type of s-cycle
comprises four-rate cycles. With its maximal number of vertical rates it actually can occur in
(3, 2)-models.

Fig. 3.5 shows s-cycles of the types 1 and 2 which appear in a general network.
As in a (3, 2)-model there are no four-rate s-cycles which are not of type 2, we now concentrate

on combinations of three vertical rates, which set up s-cycles. Considering these s-cycles with
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m=1
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m=1
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Figure 3.5: Left: s-cycle of type 1 in Pol
(3,2)
1 for F = 0 given by ω13 (x1) ω31 (x2). S-cycles of this

type contain two vertical transition rates connecting two states at different spatial positions in op-
posite directions. Right: s-cycle of type 2 with the vertical rates ω12 (x1) ω23 (x1) ω32 (x2) ω21 (x2).
This type consists of two s-cycles of type 1, so that there are two pairs of vertical transition rate
constants. S-cycles of type 2 are the only four-rate s-cycles in a (3, 2)-system.

three rates, we come across three additional types of cycles as shown in fig. 3.6.
Type 3: S-cycles of type 3 at one of the two locations contain a vertical rate which connects

the states m = 1 and m = 3, i.e., the outer states in the present labelling of states. At the
second location, there are two vertical rates coupling one of the outer states to the inner one. The
direction of the rates at location two is the same. Both of them show either upwards or downwards.

Type 4: This type has a single vertical rate at one location which connects the inner state
m = 2 and an outer state. At the second location we find one vertical rate coupling the states
m = 1 and m = 3 and a second rate which starts from the terminal vertex of the first rate and
leads into the inner state.

Type 5: This type is similar to type 4 with the difference that here the second rate at the
location with two rates arises from the inner state, and not from the terminal vertex of the first
rate.

In the case of combinations with a total number of three vertical transition rates, there can
be s-cycles of the types 1, 3, 4 and 5. Taking into account the rates forming the s-cycles and
the possible additional rates, one finds that s-cycles of the types 3 to 5 are not preserved under
permutations of the symmetric group S3, which means that a permutation in the labelling of the
states leads to an s-cycle of a different type. Nevertheless, it is sensible to distinguish between
these types, as we will see in the following that there are rules of priority for these types so that
we can determine the “right” s-cycle in four-rate combinations where there is no unique s-cycle.

As there are six different vertical transitions possible at each of the two locations in a system
with three states, there are six different s-cycles of type 1. The missing or additional third rate
can be chosen in four different ways, as each location provides us with two rates having a terminal
vertex belonging to one of the states connected by the s-cycle. As a result, we find 6 · 4 = 24
different combinations. A fourth rate leads to another 24 combinations.

In the following we have a closer look at the s-cycle ω12 (x1) ω21 (x2) which is of type 1. The four
rates ω31 (x1), ω32 (x1), ω31 (x2) and ω32 (x2) can be chosen to complete this two-rate combination
to a three- or, if we have two additional rates, to a four-rate combination, compare fig. 3.7. The
possible number of three-rate-combinations is four. Besides, there are four combinations with
four rates, as combinations with ω31 (xk) and ω32 (xk), i.e., with two rates rising from the same
vertex, do not occur. In a (3, 2)-system which contains only the above-mentioned six rates, the
s-cycle ω12 (x1) ω21 (x2) is unique. In the stationary state the factor c1ω31 (x1) + ... + c4ω32 (x2) +
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k=1 k=2

m=2

m=1

m=3

type 3

k=1 k=2

m=2

m=1

m=3

type 4

k=1 k=2

m=2

m=1

m=3

type 5

Figure 3.6: The remaining three types of s-cycles in Pol
(3,2)
1 for F = 0 (bold di-edges). Left: s-cycle

of type 3 with ω13 (x1) ω32 (x2) ω21 (x2). Middle: s-cycle of type 4 with ω13 (x1) ω32 (x1) ω21 (x2).
Right: s-cycle of type 5 with ω13 (x1) ω21 (x1) ω32 (x2). These types are not preserved under
permutations of the states.

k=1 k=2

m=2

m=1

m=3

Figure 3.7: The s-cycle ω12 (x1) ω21 (x2) (of type 1, bold lines) and the four rates ω31 (x1), ω32 (x1),
ω31 (x2) and ω32 (x2) which occur in terms completing the two-rate s-cycle to a combination of

three or four rates in Pol
(3,2)
1 for F = 0. None of the completed terms contains ω31 (xk) and

ω32 (xk), i.e., two rates rising from the same vertex.

c13ω31 (xx) ω31 (x2)+ ...+ c24ω31 (x1) ω32 (x2) reduces from the numerator and denominator in the

expression for J
(3,2)
tot so that the result equals J

(2,2)
tot . Then we have an effective (2, 2)-system. From

this result it becomes clear why it makes sense to classify the eight combinations of three or four
rates with respect to the s-cycle ω12 (x1) ω21 (x2) as of type 1.

For s-cycles of type 2 we consider the 15 different possibilities of choosing two rates at one
location. Six of them lead to“forbidden”combinations, whereas three have equal terminal vertices,
which cause a “forbidden” combination with two rates rising from the same initial vertex at the
other location. In this context, “forbidden” means that these combinations have turned out to be
non-occurring in our calculations, so it is not an outer constraint, but a result from the inherent
properties of our systems. So there are 15 − 6 − 3 = 6 different double s-cycles.

The types 4 and 5 result in another four plus four different s-cycles. The four combinations
forming s-cycles of type 3 are displayed in fig. 3.8.

If we consider the three-rate s-cycles as parts of four-rate combinations of vertical rates, this
results in another eight combinations per type. Table 3.1 summarizes how the total number of 90
combinations splits up among these five different types of s-cycles.
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type 1 48
type 2 6
type 3 12
type 4 12
type 5 12
sum 90

Table 3.1: The number of different combinations of vertical rates in Pol
(3,2)
1 for F = 0 listed

according to their corresponding types of s-cycles.

k=1 k=2

m=2

m=1

m=3

k=1 k=2

m=2

m=1

m=3

k=1 k=2

m=2

m=1

m=3

k=1 k=2

m=2

m=1

m=3

Figure 3.8: Different possibilities of s-cycles of type 3 in Pol
(3,2)
1 for F = 0 (bold di-edges) in the

case of terms with only three vertical transition rates and therefore without additional rates.
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If the vertical rates fulfill the conditions of detailed balance, we end up with v = 0 and therefore

Pol
(3,2)
1 = 0. When using the conditions of detailed balance for F = 0, we find that pairs of terms

sum up to zero. The two terms of such a pair contain the same set of vertical transition rates of
the s-cycle except for their directions or orientations, which are opposed. The vertical transition
rates which do not contribute to the s-cycle remain unchanged. These unchanged transition rates
are the additional rates mentioned above. This result can be used for interpreting combinations
of four vertical rates which allow for more than one s-cycle. In this case we say that the “right”
s-cycle is the one which is contained with changed direction in the term summing up to zero with
the original term, compare fig. 3.9. The additional rate has the same orientation as in the original
term.

Now, we consider all combinations of four rates, which allow for more than one s-cycle of three
rates. We take the term cancelling with the original one under conditions of detailed balance. In
this way we identify the “right” s-cycle. Altogether, we obtain the following results of priority for
the s-cycles in the (M, K) = (3, 2)-case. We say that an s-cycle of a certain type has priority over
another type, if a combination of vertical rates contains both a combination of the first and of the
second kind, but detailed balance reveals that the first type, having priority, is the “right” one.

1. In case there is an s-cycle containing two rates and another one containing more than two
rates, this other s-cycle is the “right” one (s-cycles of any type have priority over s-cycles of
type 1).

2. S-cycles of type 4 have priority over s-cycles of type 3.

3. S-cycles of type 3 have priority over s-cycles of type 5.

4. Type 5 has priority over type 4 (fig. 3.9).

The rules of priority are easily understood when looking at examples. If we have a term with
a combination of four rates where the “right” s-cycle cannot be identified straightaway, we draw
both of the two possible s-cycles of three vertical rates. Then we change the orientations of the
edges for both combinations. Together with the fourth rate, one of the two changed combinations
with opposite directions of the rates will lead to a “forbidden” combination. For example, if we
choose the s-cycle with the vertical rates ω21 (x1), ω13 (x2) and ω32 (x2) in fig. 3.9 (type 4), the
inversion of the s-cycle in order to find the corresponding combination for a cancellation in the
case of detailed balance leads to the product ω13 (x1)ω12 (x1) of two rates rising from the same
vertex where ω13 (x1) is the unchanged additional rate.

Three states and three or four locations

In the case of three internal states and three spatial positions there is a total number
of M (M − 1) K = 18 possible vertical transition rates. Combinations of two to six rates per

term can occur. For F = 0, there are terms of three to six vertical transition rates in Pol
(3,3)
1 ,

which belong to two or more spatial positions. Fig. 3.10 shows a representation of two terms with
four vertical transition rates. These two terms cancel when detailed balance is assumed. They
contain the s-cycles ω12 (x1) ω21 (x2) and ω12 (x2) ω21 (x1), respectively, and the additional rates
ω31 (x2) ω13 (x3). This example shows that the rules of priority for different types of s-cycles which
we have found for the (3, 2)-case do not hold for the (3, 3)-model. In contrast to the first rule for
the (3, 2)-case, here the “right” s-cycle is a combination of two rates, not the four-rate combination
with the two additional rates. This can be understood if we try to change the direction of the four-
rate cycle ω13 (x3) ω31 (x2) ω21 (x2) ω12 (x1), as in this case we obtain a “forbidden” combination
with the rates ω13 (x2) ω12 (x2) arising from the same vertex.

For three states and four spatial positions there are 24 vertical transition rates. Pol
(3,4)
1

and Pol
(3,4)
2 comprise two to eight vertical transition rates for arbitrary F . The (M, K) = (3, 4)-

models will be studied in the context of unbalanced vertical transition rates in section 3.3.
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k=1 k=2

m=2

m=1

m=3

Figure 3.9: The “right” s-cycle in this combination from Pol
(3,2)
1 for F = 0 is given by the vertical

transition rates ω13 (x1), ω32 (x2) and ω21 (x1). This is an s-cycle of type 5. The combination
ω13 (x2), ω32 (x2) and ω21 (x1) represents an s-cycle of type 4. As type 5 has priority over type
4, we will see that under conditions of detailed balance this term is cancelled by a term which
contains the s-cycle of type 5 with changed direction.

k=1 k=2 k=3

m=1

m=3

m=2

Figure 3.10: Representation of two combinations in Pol
(3,3)
1 for F = 0 with different vertical

transition rates (marked by points and broken lines, respectively) which cancel when detailed
balance is supposed; horizontal transition rates are not specified for simplicity.
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k=1 k=2

m=4

m=2

m=3

m=1

Figure 3.11: A combination of vertical transition rates occurring in Pol
(4,2)
1 for arbitrary F . The

rates ω41 (x1) ω14 (x2) form an s-cycle.

3.1.4 Four internal states

For a two-headed motor protein we need four internal states in order to distinguish between a
conformation or state in which both heads are bound to the filament, a second conformation where
one of the two heads is unbound, a third conformation where the situation is just the opposite
and the other head is bound, whereas the first one is unbound, and a last fourth state in which
both heads are unbound. These four conformations differ in the binding state of the motor with
respect to its filament.

If we concentrate on the ATP hydrolysis instead, the conformations of the motor differ with
respect to the adsorbed substrate. In this case we need four states for the description of a one-
headed motor which is either in a state of no substrate, in a state of adsorbed ATP, adsorbed
ADP/P or, as the last possibility, in a state of adsorbed ADP.

Four states and one or two locations

For four states and one spatial position , there are 12 different vertical transition rates. In the

case of F = 0, Pol
(4,1)
1 is equal to zero as s-cycles are impossible with one location only. In order

to obtain a net current, there has to be an external force F 6= 0. Then, the polynomials contain
terms with M − 1 = 3 vertical transition rates each.

In the case of four internal states and two spatial positions there are 24 different vertical

transition rates. Pol
(4,2)
1 for F = 0 contains combinations of four to six vertical transition rate

constants. In the case F 6= 0, there are additional terms containing three vertical rates. Fig. 3.11

shows a combination of vertical transition rates in Pol
(4,2)
1 . The labelling of the states is arbitrary,

a change of direction, here in the additional vertical rates as given by ω23 (x1) ω31 (x1), can occur
at an inner state, too, here at m = 3.

Four states and three or four locations

The number of different vertical transition rates for four internal states and three spatial posi-

tions is 36. The minimal degree of the polynomials is 3, the maximal degree is 9. Fig. 3.12 shows a
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k=1 k=2 k=3

m=4

m=3

m=2

m=1

Figure 3.12: Example of a combination of vertical rates in Pol
(4,3)
1 for F = 0. The rates

ω23 (x2) ω32 (x1) determine an s-cycle.

combination with four vertical transition rates containing an s-cycle of the type ωmn (xk) ωnm (xl)
with m 6= n and k 6= l.

For four internal states and four spatial positions , there are 48 different vertical tran-

sition rates. The degree of Pol
(4,4)
1 and Pol

(4,4)
2 varies between M − 1 = 3 and (M − 1) K = 12.

Fig. 3.13 shows a combination of ten vertical transition rates with an s-cycle formed by five vertical
rates.

3.2 Generic rules for the matrices and polynomials

Now, we summarize the general relationships we have drawn up in section 3.1 concerning the

matrices A(M,K) and the polynomials Pol
(M,K)
1 and Pol

(M,K)
2 , which determine the total current

J
(M,K)
tot and the velocity of the motor particle. These relationships are direct consequences of the

equations for the calculation of A(M,K) for arbitrary values of M and K. They become obvious
from the computations for the model systems. In the following, we repeat some of the results
obtained in section 3.1 in order to illustrate the general properties and rules.

3.2.1 Matrix A(M,K) and vertical transition rates

The dependence of the matrix A(M,K) on the vertical transition rates ωmn (xk) shows the following
general properties [43]:

For (M, K) = (2, 1), the occurrence of ω12 (x1) is restricted to the third row, while ω21 (x1) can
only be found in row four. This is also true in the case of (M, K) = (2, 2). For (M, K) = (3, 2),
the occurrence of ω1n (x1) is limited to row four, the one of ω2n (x1) to row five, and ω3n (x1) can
only be found in the last row. In summary, we derive

(A1): All matrix elements of A(M,K), which depend on ωmn (x1), are located in the (M + m)th
row of A(M,K).

The determinants det A(M,K) and the minor determinants detA(M,K)[j, i] can be calculated
doing an expansion to the (M + m)th row of A(M,K), thus ωmn (x1) enters linearly in each sum-
mand according to (A1) and

(A2): The determinant det A(M,K) and the cofactors Cij ∼ detA(M,K)[j, i] are multilinear in
the vertical transition rates ωmn (x1).
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k=1 k=2

m=2

m=3

m=4

m=1

k=4k=3

Figure 3.13: Combination of ten vertical transition rates for F = 0 in Pol
(4,4)
1 . An s-cycle is given

by ω12 (x1)ω23 (x1)ω34 (x3)ω42 (x3)ω21 (x4).

When calculating the polynomials Pol
(M,K)
1 and Pol

(M,K)
2 , we always observe multilinearity

concerning the vertical rates ωmn (xk), irrespective of the value of k. As the total current must
not depend on the labelling of the discrete set of states, it must be invariant under permutations
of the labels m of the states and under a shift of the labels k of xk using the periodic boundary
conditions xK+1 = x1. Together with (A1), this implies

(A3): Both the determinant detA(M,K) and the cofactor sum

M∑

m=1

(−1)
2M+m

detA(M,K)[m, 2M ] (3.8)

are multilinear in the transition rates ωmn (xk) for all k.
For (M, K) = (2, 2), we see that vertical rates at location xK are restricted in their occurrence

to the first column of A(2,2). This is comparable to the case of (M, K) = (3, 2) where the rates
ω12 (x2) as well as ω21 (x2) are limited to the first two columns, ω31 (x2) and ω13 (x2) are restricted
to column one, ω32 (x2) and ω23 (x2) to column two. In order to achieve the reduction to the 2M
variables Jm and Pm (x1), we need (K − 1) transfer matrices T (xk, xk+1) with k 6= K. For any
pair of values for m and n, there is a set of (M − 1) periodic boundary conditions which does not
contain the periodic boundary condition for Jn. In this case, all elements depending on ωmn (xK)
are in column m. We deduce

(A4): All matrix elements of A(M,K) which depend on ωmn (xK) are located in the two columns
of A(M,K) corresponding to the two PBCs for Jm and Jn.

The examples of the matrices A(M,K) show that
(A5): All terms occurring in the first (M − 1) columns of A(M,K) with K > 1 are proportional

to at least one transition rate ωmn (xk).
The matrices A(M,K) have the general form given in table 3.2.

3.2.2 Polynomials Pol
(M,K)
i and vertical transition rates

The functional relationship between the total current J
(M,K)
tot and the transition rates ωmn (xk)

exhibits some universal features. In the following we will sometimes use the short-hand notation
ωr with 1 ≤ r ≤ N ≡ KM (M − 1) for ωmn (xk), where N equals the number of all vertical
di-edges in the network of MK discrete states.
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row\column 1 ... M-1 M ... ... 2M

1 K-1 K-1 K-1 K-2 K-2 K-2 K-2
... K-1 K-1 K-1 K-2 K-2 K-2 K-2

M-1 K-1 K-1 K-1 K-2 K-2 K-2 K-2
M K-1 K-1 K-1 K-2 K-2 K-2 K-2
... K K K K-1 K-1 K-1 K-1
... K K K K-1 K-1 K-1 K-1
2M K K K K-1 K-1 K-1 K-1

Table 3.2: General form of matrices A(M,K). The elements of the table denote the maximum
number of vertical transition rates found in a single term of the corresponding matrix element.
For K = 1 the negative value of K − 2 is to be replaced with 0.

The generic features of the current-rate relationships can be summarized in terms of the fol-
lowing rules, compare [43]:

As J
(M,K)
tot is calculated as

J
(M,K)
tot =

M∑

m=1

Jm =

M∑

m=1

(−1)
2M+m

detA(M,K) [m, 2M ] /detA(M,K), (3.9)

we state
Rule 0 : The dependence of the total current J

(M,K)
tot on the transition rates ωr has the form

J
(M,K)
tot =

Pol
(M,K)
1 (ω1, ω2, . . . , ωN )

Pol
(M,K)
2 (ω1, ω2, . . . , ωN )

(3.10)

with two polynomials Pol
(M,K)
1 and Pol

(M,K)
2 .

Due to (A3) we have

Rule 1 : Both polynomials are multilinear in all ωr, i.e., each term T of both Pol
(M,K)
1 and

Pol
(M,K)
2 reads as

T ∼ ωz1

1 ωz2

2 ...ωzN

N with zr = 0, 1, (3.11)

i.e., it cannot contain powers ωz
r with z ≥ 2.

The polynomials are calculated via the determinants of the A(M,K) and the minor determinants
after erasing the last column. Together with (A5) we have

Rule 2 : Each polynomial term T contains at least M − 1 factors ωr, i.e.,

∑

r

zr ≥ M − 1 for each T . (3.12)

There is also an upper limit of vertical transition rates per term. For (M, K) = (2, 2) we have
found two, for (2, 3) three and for (2, 4) four. In the case of (3, 2) we have come across four again,
while for (3, 3) the maximal number of vertical rates per term is six. In summary, each polynomial
term T contains at most K (M − 1) factors ωr, i.e.,

∑

r

zr ≤ K (M − 1) for each T . (3.13)

This maximal number grows as ∼ M , whereas the total number of rates in the general system
grows as ∼ M2. This upper limit is a consequence of the following two rules.

The minimal number of factors in Pol
(M,K)
1 for F = 0 is found to be M . The vertices belonging

to the vertical transition rates include every single internal state, while there has to be an s-cycle
at the same time, see rule 6.
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k=1 k=2 k=3 k=1 k=2 k=3

m=M

m=2

m=1

Figure 3.14: Left: a localized cycle or l-cycle at k = 2 marked by bold di-edges, compare rule
4 in the text. Right: pair of opposite s-cycles (bold di-edges). These two s-cycles correspond to

two terms in Pol
(M,K)
1 which cancel if the system satisfies detailed balance, see rule 6 in the text.

Since here the state m = 1 is not included in the s-cycle, there will be at least one additional
vertical rate in each of the two terms (and identical in both terms) which connects this state to
the s-cycle.

In the examples with two internal states, the polynomials Pol
(2,K)
1 and Pol

(2,K)
2 never contain

the combinations ω12 (xk) ω21 (xk) of vertical rates at identical locations. For three internal states,
we never have ω12 (xk) ω13 (xk) or ω12 (xk) ω23 (xk) ω31 (xk). We deduce rule 3 and rule 4:

Rule 3 : No term T contains a product of the form ωmn (xk) ωmo (xk), or in words, there is
no product of two vertical rates with the same starting vertex. This is a consequence of (A1).

Rule 4 : No term T contains a product of the form ωmn (xk) ωnm (xk) (see (A4)). Such a
product corresponds to the smallest l-cycle possible. Likewise, no term T contains a product of
the form

ωmm′ (xk) ωm′m′′ (xk) ...ωnm (xk) .

The latter products correspond to all possible l-cycles at x = xk with 1 ≤ k ≤ K.

Rule 5 : The combination of vertical rates in each term T of Pol
(M,K)
1 or Pol

(M,K)
2 contains

vertices of every single internal state m as starting or final vertices of vertical rates.
For example, for M = 3 and K = 2 and arbitrary F , the combination ω12 (x1) ω31 (x2) oc-

curs in Pol
(M,K)
1 , whereas ω13 (x1) ω31 (x2) does not appear. For M = 4 and K = 2, we find

ω13 (x1) ω24 (x1) ω42 (x2), but not ω12 (x1) ω24 (x1) ω41 (x2), as in the second combination the third
state does not contribute. A derivation using the structure of A(M,K) is given in appendix B.

For (M, K) = (2, 2) and F = 0, there are only two combinations of vertical rates left in

the terms T of Pol
(2,2)
1 , namely ω12 (x1) ω21 (x2) and ω21 (x1) ω12 (x2). Likewise, for (M, K) =

(3, 2) and F = 0, Pol
(3,2)
1 contains ω12 (x1) ω23 (x1) ω32 (x2) ω21 (x2), but not ω12 (x1) ω23 (x1)

ω12 (x2) ω23 (x2). We state

Rule 6: For F = 0, each term T of Pol
(M,K)
1 can be mapped onto an s-cycle of the network.

In general, this mapping is not one-to-one and several terms will be mapped onto the same s-
cycle. The smallest such s-cycles involve a pair of transitions which connect two levels in opposite
directions at two different x-locations. The latter s-cycles lead to polynomial terms of the form

T ∼ ωmn (xk) ωnm (xl) with k 6= l. (3.14)

This rule follows from the limiting case of detailed balance stated in the next rule.
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Rule 7: If all the vertical transition rates satisfy detailed balance with ωr = ωdb
r as in (3.17),

one has

J
(M,K)
tot ∼ Pol

(M,K)
1

(
ωdb

1 , ωdb
2 , ...

)
= 0 for F = 0. (3.15)

In fact, each term of Pol
(M,K)
1 corresponding to a certain s-cycle is cancelled by another term

corresponding to the opposite s-cycle, i.e., to the cycle which contains the same vertices but has
an opposite orientation of di-edges and an opposite sequence of vertices, see the right graph in
fig. 3.14.

Rule 5 and the minimal number of factors in Pol
(M,K)
1 for F = 0 in rule 2 have not been listed

in [43].

3.3 Enzymatic activity - unbalanced transitions

Up to now we have not specified the vertical transition rates ωmn (xk). In this section we focus on
the results for the total current in different models which contain vertical rates explicitly breaking
the conditions of detailed balance. We limit ourselves to (M, K) = (3, 4)-models.

In an (M, K) = (3, 4)-model, there are 24 possible vertical transition rates. If there is no
enzymatic activity and the applied force F = 0, the system obeys detailed balance (db) with

Ωdb
mn (x) = e(Um(x)−Un(x))/T Ωdb

nm (x) = eVm(x)−Vn(x)Ωdb
nm (x) , (3.16)

and the corresponding vertical transition rates ωdb
mn (xk) satisfy equation (3.7),

ωdb
mn (xk) = eVm(xk)−Vn(xk)ωdb

nm (xk) . (3.17)

If all the vertical rates satisfy (3.17) and there is no external force, there will be no net current
carried through the system. Here, we view a situation where the vertical transition rates are only
partly balanced so that there can be a net current arising from the contributions of the unbalanced
parts even if an external force is missing. In the context of molecular motors this will usually imply
that the chemical equilibrium is broken. Then, the ωmn (xk) can be divided up into balanced parts
ωdb

mn and unbalanced parts ∆mn arising from the enzymatic activity,

ωmn (xk) = ωdb
mn (xk) + ∆mn (xk) . (3.18)

3.3.1 A single unbalanced vertical transition

Fig. 3.15 shows an example of a ratchet with Q = 1 unbalanced vertical transition. In the following,
Q is the total number of unbalanced transitions. At first, we consider a situation where the motor
is one-headed. This head may bind to and unbind from the filament. Likewise, ATP can bind to
the head, and ADP and/or the phosphate ion (Pi) can unbind from this head after the hydrolysis.
It is also possible that there are reverse processes of ATP unbinding and ADP binding, too.

In order to simplify the situation, it is reasonable to confine the use of unbalanced transitions
to those steps of the chemical reaction where actually a chemical bond is broken or rearranged.
So in this approach, the binding of the motor to the filament, for example, is not described by an
unbalanced transition. This approach is justified since the replacement of ATP by an analogue
which can not be hydrolyzed, as, for example, AMP-PNP, leaves us with balanced adsorption and
desorption processes only. Without the hydrolysis, the motor does not gain the energy it needs to
perform a directed walk along the filament.

For cytoskeletal motors, the chemical reaction which changes the bonds is the hydrolysis of
ATP. It obeys the simplified reaction scheme

ATP ⇀↽ ADP + Pi. (3.19)

In this reaction scheme, Pi is a phosphate ion.
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Figure 3.15: Ratchet with Q = 1 unbalanced transition at location k = 1 in a (3, 4)-system.
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Figure 3.16: Ratchet with Q = 1 unbalanced transition as in fig. 3.15, but without the balanced
vertical transition rates ωdb

32 (x2), ωdb
23 (x2) and ωdb

31 (x4), ωdb
13 (x4). This example no longer contains

an s-cycle with the unbalanced rate ∆1.

Monomeric kinesin, for example, has a single enzymatic domain. In general, we expect that a
single-headed motor undergoes one hydrolysis step per motor cycle. Here, a motor cycle is again
defined as in 1.1.4 and belongs to one complete step of the motor. The hydrolysis step of the
reaction is assigned with one location xk at which we find one unbalanced transition rate Q = 1
as indicated in fig. 3.15. For the example in fig. 3.15 we define ∆13 (x1) =: ∆1,Q1. For F = 0, we
find

J
(3,4)
tot (∆1,Q1, F = 0) =

a1 (F = 0)∆1,Q1

b0 (F = 0) + b1 (F = 0) ∆1,Q1
(3.20)

with non-zero coefficients a1 (F = 0), b0 (F = 0) and b1 (F = 0). By contrast with (3.6) these
coefficients comprise, apart from the em (xk , xl), Em (xk,xl) etc., combinations of balanced parts
ωdb

mn of vertical transition rates. Equation (3.20) is explainable as follows: The coefficient a0,

which belongs to (∆1)
0
, vanishes equal to zero, since a combination of balanced rates without an

external force leads to Pol
(3,4)
1 = 0 according to rule 7 in 3.2.2. The maximal power of ∆1,Q1 in

both the numerator and the denominator is one because of rule 1, which states the multilinearity
of the polynomials in the vertical transition rates. If there was no possibility of forming an s-cycle
which included the unbalanced rate ∆1,Q1, the coefficient a1 in the numerator of (3.20) would be

equal to zero for F = 0 and we had J
(3,4)
tot (∆1,Q1, F = 0) = 0. In the present situation this would

happen if there were no balanced rates ωdb
31 (x4) and ωdb

32 (x2). This situation is depicted in fig. 3.16.



40 CHAPTER 3. RESULTS FOR VARIOUS (M, K)-MODELS AND UNIVERSAL RULES
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Figure 3.17: Ratchet with Q = 2 unbalanced transitions at the locations k = 1 and k = 3.

3.3.2 Two unbalanced vertical transitions

The ratchet in fig. 3.17 has Q = 2 unbalanced transitions. Such a model can be used for molecular
motors such as dimeric kinesin, dynein, or myosin V which have two identical enzymatic domains
or heads, so that within one motor cycle for a forward step of the motor protein there can be two
locations with enzymatic activity at which one of these heads can be activated a time. In our
example the unbalanced parts are ∆13 (x1) =: ∆1,Q2 and ∆31 (x3) =: ∆2,Q2. Using this notation,
the total current for general F reads

J
(3,4)
tot (∆1,Q2, ∆2,Q2, F ) =

a0 + a1∆1,Q1 + a2∆2,Q2 + a12∆1,Q1∆2,Q2

b0 + b1∆1,Q1 + b2∆2,Q2 + b12∆1,Q1∆2,Q2
(3.21)

with new coefficients ai and bi.
If we had ∆13 (x1) and ∆31 (x1) as the two unbalanced rates, the contributions with a12 and

b12 would vanish because of rule 4 about the l-cycles. So if we have two conformations in which
enzymatic activity of the motor is possible at the same location and whose unbalanced rates
connect to states as in ∆mn (xk) and ∆nm (xk), there are no terms with products of these two
unbalanced rates contributing to the total current.

3.3.3 Four unbalanced vertical transitions

We still stick to the picture of a two-headed motor protein, but the situation is changed slightly
in that respect that each head can make both forward and backward steps and, accordingly, it
can be activated at both locations k = 1 and k = 3 in fig. 3.18. In summary, this leads to Q = 4
unbalanced transitions.

The total current is given by

J
(3,4)
tot (∆1,Q4, ∆2,Q4, ∆3,Q4, ∆4,Q4, F ) =

a

b
(3.22)

with

a := a0 + a1∆1,Q4 + a2∆2,Q4 + a3∆3,Q4 + a4∆4,Q4 + a13∆1,Q4∆3,Q4

+a14∆1,Q4∆4,Q4 + a23∆2,Q4∆3,Q4 + a24∆2,Q4∆4,Q4

b := b0 + b1∆1,Q4 + b2∆2,Q4 + b3∆3,Q4 + b4∆4,Q4 + b13∆1,Q4∆3,Q4

+b14∆1,Q4∆4,Q4 + b23∆2,Q4∆3,Q4 (3.23)

and with ∆23 (x1) =: ∆1,Q4, ∆21 (x1) =: ∆2,Q4, ∆23 (x3) =: ∆3,Q4, ∆21 (x3) =: ∆4,Q4 and once

more with new coefficients ai and bi. Because of rule 3, the degree of the polynomials Pol
(3,4)
1

and Pol
(3,4)
2 in the unbalanced vertical transition rate parts is bounded from above by two, as the
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Figure 3.18: Example with Q = 4 unbalanced transitions arising from state 2 at the locations
k = 1 and k = 3.

unbalanced parts split up into two pairs with the same starting vertex, respectively. The terms in

Pol
(3,4)
1 for F = 0 with two unbalanced parts comprise ∆21 (x1) ∆21 (x3), ∆21 (x1) ∆23 (x3) and

∆23 (x1) ∆21 (x3), whereas ∆21 (x1) ∆23 (x1) and ∆21 (x3) ∆23 (x3) do not occur due to rule 3 and
∆23 (x1) ∆23 (x3) does not appear because of rule 4 about the l-cycles, as this last combination
leads into state three, which must be left again, as according to rule 5 these rates have to reach
states of the s-cycle either directly or indirectly, which in the assumed situation cannot be done
without just creating an l-cycle.

In summary, we have seen how a general (M, K)-model simplifies according to the rules in
3.2.2. There are further simplifications in the case where we have a limited number of unbalanced
vertical transition rates, whereas the other vertical rates of the system fulfill the conditions of
detailed balance. The reason for breaking detailed balance might be different from enzymatic
activity, of course, for example, there could be physical influences. This can happen if there is
another motor particle in the neighbourhood which approaches our motor and pushes it. If the
cargo of this new motor is heavy, the push can even put the old motor in a conformation in which
rebinding to the filament is impossible, maybe because of some damage done to it.

Nevertheless, if we focus on enzymatic activity as the background or reason for the occurrence
of an unbalanced rate, the next step is to examine the connection between these unbalanced rates
and the ATP concentration. This will be done in chapter 5.1. There we concentrate on the question
of how the unbalanced rates depend on the concentration of fuel near the respective location in
the motor’s box and discuss several different models describing this dependence.
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Chapter 4

Decoupled states, horizontal rates

and networks

The models of the (M, K)-systems as examined in chapter 3 still have various restrictions or
inconveniences. Here we show how to overcome them and introduce several new concepts, too.

We take a look at decoupled states or subsystems without a mutual coupling via vertical
transition rates. The motor has a certain probability of being in these decoupled subsystems, but
it cannot change between them. The reasons may be outer influences on the motor as a shortage
of fuel or inner reasons as mutations of the motor protein. We explain why decoupled subsystems
have not occurred in our previous calculations in chapter 3.

Furthermore, the horizontal rates in our systems are specified now, and active, unbalanced
transitions in x-direction are introduced. From a discrete Master-equation approach we derive
new rules for the total current, which now include the dependence on horizontal rates, too. Then
we examine the time evolution for given initial probabilities on the way to a stationary state.

In the context of the idea of a main pathway and several other minor pathways in chemical
reactions, we eventually focus on the different importance of single paths or pathways through a
network of vertices.

Most of the concepts which we establish here are based on the network representation indicated
in fig. 2.1. For a listing of the terminology and concepts of graph theory which are used in this
chapter see appendix C.

4.1 Decoupled states

A decoupled state is a state which has no connection to any other state. There are no vertical
rates starting from or ending in this state. Likewise, there can be subsystems of states which have
no connections to states of the remaining system. With certain initial probabilities the motor can
be in these decoupled states in the beginning, but it cannot leave them or their subsystem. This
can be the case if, with a certain probability, we are dealing with a mutation of a motor which is
unable to take part in the enzymatic reaction or if the binding sites of the motor’s filament are
blocked so that the motor still diffuses or even is driven by an external force, but its conformation
is frozen.

The stationary state in such a decoupled system depends on the initial probability distribution,
as the contribution of each of the decoupled subsystems to the total current depends on its part
of the initial probability. For identical subsystems with a small or no coupling there can be bifur-
cations, so that the same “macroscopic”stationary total current belongs to different “microscopic”
situations. Here, we at first consider a continuous x-direction. Then we return to network-based
systems with localized vertical transitions.

43
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4.1.1 Decoupled states and continuous x-direction

Here, the centre of interest is on analytic calculations of the total current for simple cases of
decoupled states. Initially, we abstain from the idea of networks as presented in the chapters 2
and 3, but focus on the case of decoupled states with continuous coordinates in x-direction. At
first, there is no molecular interaction potential, but a constant external force. Then we introduce a
localized coupling between the states and consider situations with molecular interaction potentials,
too.

In the restricted cases presented here the results for the currents and the probability distribu-
tions can be written down with their explicit coefficients. A straight decoupling of states has been
impossible in the formalism of chapter 3 because of rule 5 in 3.2.2 stating that vertices of every

state have to occur in the combination of vertical rates of every term of the polynomials Pol
(M,K)
i .

Decoupled states, no potentials and constant force

We calculate the total current for a number of decoupled states under the conditions that the
external force is an arbitrary constant, but there are no molecular interaction potentials. In this
case the effective force potentials in (2.17) reduce to

Vm (x) ≡ −Fx/T. (4.1)

Initially, we look at a single internal state. Without a molecular interaction potential Um, the
Smoluchowski equation (2.11) for this single state m reads

∂Pm (x, t)

∂t
≡ Dm

∂

∂x

[
∂

∂x
(−Fx) /T +

∂

∂x

]
Pm (x, t) = −

∂Jm (x, t)

∂x
. (4.2)

In the stationary state, the probability current Jm (x, t) is constant with

Jm/Dm = (F/T )Pm − ∂Pm/∂x. (4.3)

The solution of (4.2) for the probability density of the stationary state is given by

Pm (x) = exp (Fx/T )

[
C − Jm/Dm

∫ x

0

exp (−Fx′/T ) dx′

]
(4.4)

with the integration constant C [47]. Although we have no molecular interaction potential, we
still stick to the period `. It is reasonable to assume that Pm (x) is bounded for x large enough.
We calculate the integral

∫ `n+x

0

exp (−Fx′/T ) dx′ =

∫ `

0

exp (−Fx′/T ) dx′ + ...

+

∫ `n+x

n`

exp (−Fx′/T ) dx′. (4.5)

Because of −F/T · (x + `n) = −Fx/T − `nF/T we obtain
∫ `n+x

0

exp (−Fx′/T )dx′ =

∫ `

0

exp (−Fx/T )dx
1 − exp (−`nF/T )

1 − exp (−`F/T )
=

+ exp (−`nF/T )

∫ x

0

exp (−Fx′/T ) dx′. (4.6)

This leads to

Pm (x + `n) = exp (Fx/T )

[
C − Jm

I

Dm (1 − exp (−`F/T ))

]
· exp (`nF/T )

+ exp (Fx/T )

[
−Jm

I

Dm (1 − exp (−`F/T ))
+

Jm

Dm

∫ x

0

exp (−Fx′/T ) dx

]
.

(4.7)
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In order to obtain a bounded expression in the limits F > 0, n → +∞ and F < 0, n → −∞
respectively, the first bracket has to vanish,

JmI/Dm = C (1 − exp (−`F/T )) , (4.8)

so that Pm (x) is periodic in x with period `, Pm (x + `) = Pm (x). The distribution of the
probability density is normalized in the interval from 0 to `,

∫ `

0

Pm (x) dx = C

∫ `

0

exp (Fx/T ) dx

−Jm/Dm

∫ `

0

exp (Fx/T )

(∫ x

0

exp (−Fx′/T )dx′

)
dx

= 1. (4.9)

We solve (4.8) with respect to C and obtain

C =
JmT

DmF
. (4.10)

This expression can then be inserted into (4.9) and supplies us with

Jm =
FDm

`T
. (4.11)

This is the same result obtained for Jm in equation (3.3).
Insertion of the preceding results into (4.4) yields Pm (x) = 1/`. This stationary solution is

different from (2.14) to the effect that the above given Pm does not violate the periodic boundary
conditions. Here, the current Jm is non-zero for F 6= 0, and the probability distribution is constant,
as is to be expected in a periodic system without a molecular interaction potential.

The next step is to assume a situation where we look at a set of an arbitrary number M internal
states, each without any molecular interaction potential. The external force stays constant. The
M states are considered to be completely decoupled.

In this case we have to solve M Smoluchowski equations (4.2). The normalization of the
distribution is then given by

∫ `

0

(
P multi

1 (x) + P multi
2 (x) + ... + P multi

M (x)
)
dx = 1, (4.12)

where the index “multi” refers to the multi-state system we consider now. If we assume equidistri-
bution of the probability densities in the initial configuration, we have to choose a normalization
which is weighted by 1/M for each single state. The current in state m of the multi-state system
is then accordingly given by

Jmulti
m =

FDm

M`T
, (4.13)

while the total current reads

Jmulti
tot =

FD1

M`T
+

FD2

M`T
+ ... +

FDM

M`T
. (4.14)

By choosing different small-scale diffusion coefficients Dm, a specific hindrance or promotion
against or in favour of moving in the horizontal direction, which might be inherent to a certain
conformation of the protein, can easily be modelled.

It is also possible that the initial weights of the internal states vary. This is the case if the
conformations refer to defects or mutations of the motor protein which in general occur with
different probabilities. Then we have

1

M1
+

1

M2
+ ... +

1

MM
= 1 (4.15)
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and, accordingly,

Jmulti
tot =

FD1

M1`T
+

FD2

M2`T
+ ... +

FDM

MM`T
. (4.16)

In this situation of decoupled levels the resulting lateral currents Jmulti
m depend on the initial

probability distribution of our system. In the special case that the motor can be localized in a
certain state at time t = 0, the weights of the other states are zero.

Connection to coupling between states

Now, we reintroduce a coupling between the states. This coupling is attained by vertical transition
rates ωmn, which enter the transition current densities Im as explained in chapter 2. If all these
transition rates are chosen to be equal to ω, ωmn (xk) =: ω, for any values of m, n and k, they
fulfill the conditions of detailed balance, as up to now we still do not have any potentials, but
Um (x) =: 0 for all m, and therefore exp (Vm (xk) − Vn (xk)) = 1, irrespective of the choices of m,
n or k.

The vertical rates drop out from the total current Jmulti
tot and we obtain equipartition with 1/M

as in (4.14). If the small-scale diffusion coefficients fulfill D1 + D2 + ... + DM = MD1, this means
that the same value of the total current might result either from a single-state system or from the
above-mentioned M -state system. The number of locations where vertical transitions can occur
is arbitrary, as a different choice does not change the result.

In a next step, we consider a situation with two states and two locations where vertical tran-
sitions can take place. The vertical transition rates are completely unbalanced,

ωmn (xk) = ∆mn (xk) , (4.17)

compare equation (3.18). The upward rates are chosen to be ω12 (x1) = ω12 (x2) =: ∆1, the
downward rates are ω21 (x1) = ω21 (x2) =: ∆2. For ∆1 := ∆2 and ∆2 := ∆, the total lateral
current reads

Jmulti
tot =

F∆ (D1 + D2)

2`T∆
=

F (D1 + D2)

2`T
. (4.18)

If we have ∆1 6= ∆2, the symmetry between the states is broken. In this general case, Jmulti
tot is

calculated as

Jmulti
tot =

FD1∆2

`T (∆1 + ∆2)
+

FD2∆1

`T (∆1 + ∆2)
, (4.19)

where the first summand belongs to the lateral current in the first state, the second one accordingly
to the current in state two. The contribution of one single state to the total current Jmulti

tot grows
with the share the rates leading into this state have of the sum of all rates.

If D1 = D2 and D2 =: D, Jmulti
tot yields for arbitrary values of ∆1 and ∆2

Jmulti
tot =

FD

`T
. (4.20)

As ∆1 and ∆2 can take arbitrary values, the contributions of the respective states to the total
lateral current might be considerably distinct, whereas the total lateral current Jmulti

tot itself remains
unchanged.

Result with potential

Here, we consider a situation where we have non-zero molecular interaction potentials. The one
or more states are uncoupled or either coupled by balanced vertical transition rates again.

At first, m is the only state the motor can attain. The Smoluchowski equation with an effective
force potential V (x) = [U (x) − Fx] /T is given by

∂Pm (x, t)

∂t
≡ Dm

∂

∂x

[
∂

∂x
Vm (x) +

∂

∂x

]
Pm (x, t) = −

∂Jm (x, t)

∂x
. (4.21)
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Here, the solution for the probability density reads

Pm (x) = exp (Vm (x))

[
C ′ − Jm/Dm

∫ x

0

exp (−Vm (x′)) dx′

]
(4.22)

with the new integration constant C ′. Because of Vm (x + `n) = Vm (x) − `nF we obtain

∫ `n+x

0

exp (Vm (x′)) dx′ =

∫ `

0

exp (Vm (x)) dx
1 − exp (−`nF/T )

1 − exp (−`F/T )

+ exp (−`nF/T )

∫ x

0

exp (Vm (x′)) dx′. (4.23)

Again, we impose the normalization condition and the condition that we must get a bounded
expression for Pm (x + `n) in the limits F > 0, n → +∞ and F < 0, n → −∞. This yields

C ′ =
Jm

Dm

∫ `

0

exp (V (x)) dx/ (1 − exp (−F`/T )) (4.24)

for the integration constant. The current results as

Jm = Dm

[∫ `

0

exp (Vm (x)) dx

∫ `

0

exp (−Vm (x)) dx/ (1 − exp (−F`/T ))

−

∫ `

0

exp (−Vm (x))

(∫ x

0

exp (Vm (x′)) dx′

)
dx

]−1

, (4.25)

which is in general a non-zero expression. In terms of a (M, K) = (1, 1)-model as in 3.1.1, we have
J1 = Jtot. Then (4.25) is equal to

Jtot =
1 − e1 (0, `)

(e1 (0, `) − 1)E1 (0) − E1 (0, `) e1

, (4.26)

which follows from (3.2) for x1 = 0.
The distribution Pm (x) reads

Pm (x) = Jm/Dm (exp (−V (x)))

[∫ `

0

exp (V (x)) dx/ (1 − exp (−F`/T ))

−

∫ x

0

exp (V (x′)) dx′

]
. (4.27)

As we have used the same considerations as in the context of (4.7), we have Pm (x + `n) = Pm (x)
for all n. The probability distribution shows the same periodicity as the underlying molecular
interaction potentials.

If the external force F is zero, we have

Pm (x + `n) = exp (−U (x) /T )

[
C ′′ −

Jm

Dm

∫ x+`n

0

exp (U (x′) /T ) dx′

]

= exp (−U (x) /T )

[
C ′′ − n

Jm

Dm

∫ `

0

exp (U (x′) /T ) dx′+

Jm

Dm

∫ x

0

exp (U (x′) /T )dx′

]
. (4.28)

In order to receive a bounded expression for Pm (x + `n) in the limits n → +∞ and n → −∞, the
condition

n
Jm

Dm

∫ `

0

exp (U (x′) /T )dx′ = 0 (4.29)
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has to be fulfilled. Therefore we can conclude that in a one-state system in the case of an arbitrary
exponentially integrable molecular interaction potential, but no external force we have Jm = 0 as
in 3.1.1.

In a multi-state system with M states and arbitrary constant force F we impose the normal-
ization (4.12). For a balanced coupling between the states this leads to the total current

Jmulti
tot = Jmulti

1 + Jmulti
2 + ... + Jmulti

M (4.30)

with the single-state currents Jmulti
m = Jm/M and Jm as in (4.25). The same is true for the

probability densities P multi
m ,

P multi
tot = P multi

1 + P multi
2 + ... + P multi

M (4.31)

with P multi
m = Pm/M and Pm as in (4.27). In this way we have shown that in a multi-state system

with an external force in which all transitions fulfill the conditions of detailed balance the currents
Jmulti

m are in general finite with Jm 6= 0 due to F , and the probability densities P multi
m reflect the

periodicity of the molecular interaction potentials. The conditions of detailed balance are fulfilled
in a model without active processes as enzymatic activity.

In this subsection we have treated the decoupling of states for special simple systems. For more
complex systems, we return to the network-based approach, compare 4.1.2.

4.1.2 Decoupled levels and localized transitions

The calculation of the total current with the use of linear algebra as in (3.9) fails in the presence
of decoupled levels, as in this case we have detA(M,K) = 0. Here we show how the network-
based approach used in chapter 3 has to be modified so that more comprehensive systems with
decoupling of states or subsystems can be dealt with, too. We remember that a decoupled state is
defined as a level without any non-zero vertical rates connecting it to another state. The matrices
A(M,K) as calculated in chapter 2 and their submatrices are singular. The corresponding graph is
disconnected, which means that there are vertices which are not connected by a path. No vertex
belonging to the states one and two in fig. 4.1 can be reached by a path from a vertex of state three
or the other way round. In the following, the decoupled level is taken to be M . As the labelling of
the states is arbitrary, we can choose any level to be the decoupled one without a loss of generality.
In contrast to chapter 4.1.1, here decoupled levels are treated in the discrete network approach.

Decoupled states: algebraic approach

Single decoupled state

In the following, A(M,K),{1,2,...,M−1},{M} denotes the 2M × 2M -matrix, which is obtained from
A(M,K) by neglecting the vertical rates between state M and other states, i.e., we set ωMm (xk) = 0
and ωmM (xk) = 0 for arbitrary m and k. The first braces in the exponent refer to the subsystem
with the states 1, 2, ..., M − 1, the second braces to the subsystem with the single state M .

We consider an example with (M, K) = (3, 2), where we decouple the third state M = 3 as in
fig. 4.1.

The resulting matrix A(3,2),{1,2},{3} is given in appendix A.4. The general matrix A(2,2) as
in (3.5) is regained from A(3,2),{1,2},{3} if we cross out the second and the fifth column and the
third and sixth row. Similarly, the A(1,1) matrix is obtained from the matrix A(2,1),{1},{2} by
eliminating the first and third column as well as the second and fourth row, and the A(3,1) matrix
can be obtained from the A(4,1),{1,2,3},{4}-matrix by cancelling the columns three and seven and
the rows four and eight. A(2,3) results from A(3,3),{1,2},{3} when we cross out the columns two
and five as well as the rows three and six.

In summary, we obtain the matrix A(M−1,K) from A(M,K),{1,2,...,M−1},{M} by erasing the
(M − 1) th and the (2M − 1) th column as well as the Mth and 2Mth row. The elements of the
(2M − 1) th column and the Mth and 2Mth row of A(M,K),{1,2,...,M−1},{M} are equal to zero or
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V

Figure 4.1: The third state in this system of three states and two locations is decoupled and
the graph disintegrates into two parts whose vertices belong to the subsets of vertices V1 and V2,
respectively. V1 contains the vertices of the states m = 1 and m = 2, V2 the vertices of m = 3.
There are no rates connecting V1 and V2.

refer to state M . The elements of the (M − 1) th column are, except for a change of sign, contained
in the elements of the preceding columns.

The lateral current in the decoupled state is zero if the external force F is zero. Otherwise we
have

Jm =
FDm

MM `T
, (4.32)

as in section 4.1.1, where 1/MM is the probability weight of state M . Subject to these considera-
tions the total lateral current in the case of one decoupled state is calculated easily from A(M−1,K)

and its submatrices. The probability weight 1/MM is one if the motor is frozen in this state. In
this way we can describe situations when a motor has certain defects as the ones leading to the
syndromes mentioned in section 1.1. If our motor is an “ill” one, it is in state M at the begin-
ning and cannot produce net movement without an external force. If it is “healthy” its starting
conformation will belong to the other M −1 states with probability one and it will move regularly.

Arbitrary number of decoupled states

Now, we view a situation where we have a set of vertically decoupled states, in general more than
one, forming a subsystem. The graph divides into two parts whose vertices belong to different
subsets V1 and V2 with V1 = {(m1, k) , (n1, k) , ...} and V2 = {(m2, k) , (n2, k) , ...} for all k ∈
{1, ..., K} and m1 6= n1 6= m2 6= n2 6= .... The graph is disconnected in such a way that there are
no di-edges connecting any two vertices v1 and v2 with v1 ∈ V1 and v2 ∈ V2. The 2M1 × 2M1-
matrix A({m1,n1,...},K)(M1,K)eff , where M1 is the number of states comprised in in the first subset
of vertices V1, describes the subnetwork belonging to V1. The m1, n1, ... are the states in this
subset V1, and K is, as usual, the total number of locations where transitions into other states are
possible. The matrix A({m1,n1,...},K)(M1,K)eff is obtained from the matrix A(M,K) of the complete
(M, K)-network by erasing the rows m2, n2, ... and M + m2, M + n2, ... as well as the columns
m2−1, n2−1, ... and M −1+m2, M −1+n2, ... for all m2,n2, ... with (m2, k) , (n2, k) , ... ∈ V2. If
m2 − 1 = 0 or n2 − 1 = 0, the columns m2 and n2 are crossed out instead. This is a generalization
of the procedure described in the case of a single decoupled state before. In an analogous way,
A({m2,n2,...},K)(M2,K)eff is obtained by cancelling the rows m1, n1, ... and M + m1, M + n1, ...
as well as the columns m1 − 1, n1 − 1, ... and M − 1 + m1, M − 1 + n1, ... for all m1,n1, ... with
(m1, k) , (n1, k) , ... ∈ V1.

Fig. 4.2 shows a (4, 2)-network which decouples into two (2, 2)-networks. The decoupling is
achieved by limiting the vertical rates to the altogether eight rates ω12 (xk), ω21 (xk) and ω34 (xk),
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Figure 4.2: (M, K) = (4, 2)-network which decouples into two (2, 2)-networks. The first subset of
vertices, V1, comprises all the vertices in the states m = 1 and m = 2. The subset V2 comprises
the vertices of the states m = 3 and m = 4. There is no rate which connects the two subsets V1

and V2, they are completely decoupled.

ω43 (xk). Appendix A.5 shows in detail the elements of the matrix A(4,2),{1,2},{3,4}, i.e., the matrix
A(4,2) without the vertical rates connecting the different subsets of vertices, and how the subma-
trices A({1,2},2)(2,2)eff and A({3,4},2)(2,2)eff describing the (M, K) = (2, 2)-subsystem formed by
the states m = 1, 2 and m = 3, 4, respectively, are derived. Fig. 4.3 provides a schematic overview

of this example with A({1,2},2)(2,2)eff denoted by����������������
and A({3,4},2)(2,2)eff by����������������

. The total cur-
rent is calculated from the submatrices A({1,2},2)(2,2)eff and A({3,4},2)(2,2)eff after adapting the
normalization condition for the probability densities.

4.1.3 Numerical approach to decoupled levels

Singular value decomposition methods

If we consider an example where we know all the quantities which enter the elements of a numerical

matrix A
(M,K)
num and want to calculate the numerical value of the total current, we can use standard

singular value decomposition methods and compute the pseudo-inverse of A
(M,K)
num .

Singular value decomposition (SVD) methods are based on the theorem that any quadratic

matrix, which in particular includes any 2M × 2M matrix A
(M,K)
num , whose number of rows, in our

case 2M , is equal to its number of columns, can be written as the product of an 2M×2M column-
orthogonal matrix U, an 2M×2M diagonal matrix W with positive or zero elements (the singular

values), and the transpose of an 2M × 2M orthogonal matrix V [56], i.e., A
(M,K)
num = U ·W ·VT.

A proof of this theorem by induction can be found in [57].

The matrices U and V are orthogonal in the sense that their columns are orthonormal,

2M∑

i=1

UikUin = δkn, for 1 ≤ k ≤ 2M, 1 ≤ n ≤ 2M, (4.33)
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Figure 4.3: Scheme of the 8 × 8-matrix A(4,2),{1,2},{3,4} showing the position of A({1,2},2)(2,2)eff

(black) and A({3,4},2)(2,2)eff (blue). A(4,2),{1,2},{3,4} is the matrix of the (M, K) = (4, 2)-system
which decomposes into the two subsets V1 with the states m = 1, 2 and V2 with m = 3, 4 as shown
in fig. 4.2. A({1,2},2)(2,2)eff is the effective (M, K) = (2, 2)-matrix belonging to the states m = 1, 2,

and A({3,4},2)(2,2)eff the effective (M, K) = (2, 2)-matrix belonging to m = 3, 4. The white squares
in this scheme of matrix elements refer to elements which are either zero or proportional to other
elements, compare appendix A.5.

2M∑

j=1

VjkVjn = δkn, for 1 ≤ k ≤ 2M, 1 ≤ n ≤ 2M. (4.34)

V is square and therefore also row-orthonormal.
The decomposition is unique up to making the same permutation of the columns of U, elements

of W, and columns of V, or forming linear combinations of any columns of U and V whose
corresponding elements of W happen to be exactly equal.

As the matrix A
(M,K)
num is square, U, V, and W are square matrices of the same size. The

inverses of U and V are equal to their transposes, because U and V are orthogonal. The inverse
of W is the diagonal matrix whose elements are the reciprocals of the elements wj . So the pseudo-

inverse of A
(M,K)
num is given by

(
A(M,K)

num

)−1

= V · [diag (1/wj)] ·U
T. (4.35)

In this construction it is possible that one or more than one of the wj ’s are zero or numerically so
small that their values are dominated by roundoff error.

The condition number of a matrix is defined as the ratio of the largest in magnitude of the
wj ’s to the smallest of the wj ’s. A matrix is singular if its condition number is infinite, and it is
ill-conditioned if its condition number is too large, i.e., if its reciprocal approaches the machine’s
floating-point precision.

If the matrix A
(M,K)
num is nonsingular, then its range will be, for A

(M,K)
num ·x = b, all of the vector

space b, so its rank is 2M . If A
(M,K)
num is singular, then the rank will be less than 2M according to

“rank plus nullity equals 2M”.
SVD explicitly constructs orthonormal bases for the nullspace and range of a matrix. The

columns of U whose same-numbered elements wj are non-zero are an orthonormal set of basis
vectors that span the range. The columns of V whose same-numbered elements wj are zero are
an orthonormal basis for the nullspace.
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Figure 4.4: Two (2, 2)-ratchet systems with coupling parameter ε. The perspective view illustrates
that in this system there are two identical conformations m = 1 and two states m = 2. The rates
connecting m = 1 and m = 2 are given by r.

Application: (M, K) = (2, 2) as limiting case of (M, K) = (3, 2)

Now, we consider an example where we use SVD. The general outline is that of the single de-
coupled state in 4.1.2, i.e., we take a look at the case (M, K) = (3, 2). We assume F = 0 and
imply the additional restriction that we only allow vertical transition rates which directly con-
nect the first two states, i.e., we have the set of vertical rates established by ω12 (x1), ω21 (x1),

ω12 (x2) and ω21 (x2). A
(3,2),{1,2},{3}
num is singular and a numerical matrix. The pseudo-inverse(

A
(3,2),{1,2},{3}
num

)−1

can be calculated with the help of SVD, which in turn can be used in order

to calculate the total current Jtot. We choose fixed values for the four vertical rates ω12 (x1),
ω21 (x1), ω12 (x2) and ω21 (x2), respectively and the remaining parameters of the system. From

the pseudo-inverse
(
A

(3,2),{1,2},{3}
num

)−1

we calculate the total current Jtot.

As we have F = 0, the current in the third state is zero. So for comparison we calculate the

inverse
(
A

(2,2)
num

)−1

for a genuine system with two states. The calculation of the total current yields

approximately the same value for Jtot again. The difference between the both exact results is in
the range of a numerical error and very small compared to Jtot.

So if we have a numerical matrix A
(M,K)
num , we can use SVD and do not have to bother about

the details of decoupling discussed in 4.1.2. In our general models, however, the parameters are
usually not known in detail.

4.1.4 Coupling parameter and bifurcations

Now, we consider two identical subsystems with a coupling between them. It is imaginable that
for certain values of the coupling parameter one and the same “macroscopic” value of the total
current is created by different“microscopic”situations. The introduction of the decoupling of states
supplies us with a method to discuss such kinds of bifurcations in specially defined networks.

Here, we take into consideration a situation similar to that illustrated by fig. 4.2, but with
the essential difference that now we have a variable coupling of strength ε instead of no coupling,
compare fig. 4.4. In addition, the states one and three and two and four are assumed to be pairwise
identical, so that we have two states m = 1 and two states m = 2. The pairwise identical states
can be explained as belonging to identical conformations of the motor protein. The model of
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Figure 4.5: Parabola of a saddle-node bifurcation with system parameters as pointed out in the
text. The first quadrant I refers to non-negative transition rates and therefore includes the physical
solutions.

fig. 4.4 contains four vertical transition rates apart from the coupling parameter ε. The value of
those four vertical rates is considered to be r. The system for Jtot = 0 then has the two solutions

r1 =
[
(−1 + a) · b − a · c + a2 · c −

(
(b + a · c)

(
(−1 + a)2

(b + a · c) − 4 · ε · a · b · c · `Ω))
1/2
]
/ (2 · a · b · c · `Ω) ,

r2 =
[
(−1 + a) · b − a · c + a2 · c +

(
(b + a · c)

(
(−1 + a)

2

(b + a · c) − 4 · ε · a · b · c · `Ω))1/2
]
/ (2 · a · b · c · `Ω) (4.36)

with the corresponding system parameters a := e2 (x1, x2), b := E2 (x1, x2), and c := E2 (x2, x1 + `),
which depend on the effective force potentials as introduced in chapter 2. In order to examine the
stability of the solutions r1 and r2, we calculate the Jacobian. In the following we choose numerical
values for the parameters. As a result, we find a saddle-node bifurcation, see fig. 4.5 [58, 59]. The
parameters are a = 2 and b = c = `Ω = 1 and assumed to be dimensionless. r2, which belongs to
the upper branch, yields stable nodes as solutions, r1 unstable saddle points. The model system
of fig. 4.4 can adopt two different stationary states for identical values of the coupling ε. When
we look at the case of zero external force, the trivial solution for Jtot = 0 is obtained if r = 0 and
ε = 0. This is the case of complete decoupling of all four states and free diffusion in every single
one of these states, which does not lead to a net current without an external force. The bifurcation
ceases to exist independently of the value of the coupling ε if b = −ac or if 4εabc`Ω = 0. This is the
case for zero external force and free diffusion in state two. For a = 1, the vertex of the parabola
is shifted to (ε, r) = (0, 0). As dynamic variables and control parameters are real, this means that
either b or c have to be negative in this case to ensure the real values. In general, r and ε will be
non-negative as transition rates, and we will only take into account the first quadrant of fig. 4.5.

4.2 Distorted networks

Up to now, our networks have been constrained in so far as the horizontal rates have to implicitly
fulfill the conditions of detailed balance, which means that the transport in the horizontal direction
is not actively hindered or promoted. Such an active transport can be integrated into our systems
via distortion of the underlying networks. An alternative approach will be discussed in 4.3 and
4.4.
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Figure 4.6: Left-hand side: detail of a large network with vertices i = 1, ..., 9. The network extends
further in vertical (indicated by the dots) and horizontal direction. Right-hand side: the same
detail, but now the network has been distorted by transferring vertex 2 to the former location of
vertex 4 and vice versa; broken di-edges correspond to mappings of vertical transition rates. These
rates can be unbalanced. The numbers at two of the horizontal edges denote the numbers of the
terminal vertices of the corresponding edges.

4.2.1 Concepts of distortion and unbalanced transitions in x-direction

Our networks are defined completely by their graphs, i.e., by their respective sets of vertices and
edges. In graph theory, isomorphic graphs are usually not distinguished [60], and one just talks
about different representations of the same graph. In the case of our networks this means that
they might be distorted and obtain different shapes, in particular, if several transition rates are
set equal to zero. In order to guarantee the periodic boundary conditions, we apply the distortions
to larger networks. It is possible to distort the networks in such a way that the resulting networks
contain active elements given by unbalanced transition rates whose direction is no longer vertical.

4.2.2 Application and rules

The left-hand side of fig. 4.6 shows a detail of a network with the vertices i = 1, ..., 9 , which might
be a part of a large-scale network. The right-hand side shows the mapping of this network onto
a distorted network which originates from transferring vertex 2 to the former location of vertex
4 and vice versa. Broken di-edges correspond to mappings of vertical transition rates. In the
distorted network it is possible to have an unbalanced transition between the vertices 1 and 4,
which are now connected in the horizontal x-direction. Here, we concentrate on distortions which
are generated by effectively swapping the locations of pairs of vertices. The transition rates are
denoted by ωmn (xk , xl), where m, n are the apparent states, and xk and xl are the new locations,
i.e. we assume that the past of the rates is unknown and their labelling is determined by their
present occurrence. The labelling of the states and locations follows the scheme used in fig. 4.7.
At first, we concentrate on one pair of possibly unbalanced transitions in x-direction, ω11 (x1, x2)
and ω11 (x2, x1). The other horizontal and diagonal transition rates which might be unbalanced
are set to zero. The resulting network is shown on the left-hand side of fig. 4.7. Now, the total
current contains combinations of possibly unbalanced rates as displayed on the right-hand side of
fig. 4.7. Here, we have an active displacement from location xm to xn in state m.

For F = 0, each term of the numerator polynomial of the total current in a distorted network
can be mapped onto a generalized s-cycle of the network. A generalized s-cycle is a closed path of
the type

ωmn (xk , xk) ωno (xl, xl) ωrr (xo, xp) ωpm (xq , xq) . (4.37)

The horizontal rate ωrr (xo, xp) is connected to the preceding vertical rate via the destination
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Figure 4.7: Left-hand side: detail of a network resulting from the distorted network as shown in
fig. 4.6. Diagonal rates and the horizontal rates between the vertices 2 and 5 have been set to zero,
so that we have a single pair of unbalanced transitions in x-direction. Transitions which have to
be balanced are not shown for simplicity. The letters denote the respective states and locations.
Right-hand side: combination of possibly unbalanced rates in a term of the numerator polynomial
of the corresponding total current.
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Figure 4.8: Detail of a larger network. For the three states and four locations of this distorted
part we consider two possibly unbalanced horizontal transition rates.

index o of the first location, the second location xp provides the starting state of the succeeding
vertical rate. If we have more than one active or unbalanced horizontal transition in our network,
the generalized s-cycles might contain more than one horizontal rate, too.

There can also be diagonal rates, e.g.ωom (xm, xn) in fig. 4.6. These diagonal rates enter the
generalized s-cycles via these two of their four indices which do not occur twice. For example, the
rate ωom (xm, xn) comprises the four indices o, m, m and n. The index m occurs twice, so o and n
are the relevant indices for the generalized s-cycle. The rate might be preceded by a vertical rate
leading into state o, while a succeeding vertical rate might originate from state n. Of course, this
index rule holds for mere horizontal or vertical rates, too.

Fig. 4.8 shows a detail of a larger network which contains two possibly unbalanced horizontal
transition rates resulting from the exchange of the positions of the vertices 3 and 6. In general,
we can introduce an arbitrary number of unbalanced horizontal transitions into our networks by
swapping the positions of vertices. If we are starting from a situation where we only know the
present shape of the network, which includes possibly unbalanced horizontal transitions, but not
the original network, we are still able to list the terms of the total current by taking into account
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generalized s-cycles.

4.3 Master equation and horizontal rates

In this section we introduce a discrete Master-equation approach to our system. This approach
explicitly comprises the horizontal forward and backward rates. With the help of these horizontal
rates we are able to determine uniquely complete s-cycles, which contribute to the total current in
our network, rather than only contributions by vertical rates. In this way it becomes clear whether
a combination of rates belongs to the motor taking a forward or a backward step. Furthermore,
with this additional piece of information we can determine for sure which conformation can be
associated with the motor entering the network from the left, or, in the case of a backward step,
with the motor entering it from the right. In the Master-equation approach it is possible to abstain
from the original definition of the horizontal rates, so that we can break the conditions of detailed
balance for these rates, too, and have active horizontal elements. Besides, we derive extensions
to the rules in 3.2.2, since now the polynomials depend on the vertical and also on the horizontal
rates. The Master equation has been introduced in [43], but this is the first time that this approach
is used to perform calculations for general model systems.

4.3.1 General outline

At first, we introduce several changes in our notation as compared to chapter 2.
Now, the probabilities of finding the motor in the discrete states (m, k) are denoted by

P (m, k) ≡ Pm (xk) `Ω (4.38)

We introduce the forward transition rate

W (m, k |m, k + 1) ≡
em (xk, xk+1)

Em (xk, xk+1) `Ω
, (4.39)

which belongs to the motor moving from location xk in state m to location xk+1 in the same state.
The rate for a backward move in level m from position xk+1 to xk is accordingly denoted as

W (m, k + 1 |m, k ) ≡
1

Em (xk, xk+1) `Ω
. (4.40)

Here, the horizontal rates show a pairwise dependence,

W (m, k |m, k + 1) =
em (xk, xk+1)

Em (xk, xk+1) `Ω

= em (xk , xk+1) W (m, k + 1 |m, k ) , (4.41)

and accordingly fulfill the conditions of detailed balance. As em (xk, xk+1) 6= 0 for every choice of
m and k, a horizontal forward rate can never vanish equal to zero. The same is true for backward
rates, W (m, k + 1 |m, k ) ≡ 1/Em (xk, xk+1) `Ω, as their numerators are constant and equal to one.
Nevertheless, the horizontal rates might attain small values and approach zero, if the corresponding
Em (xk, xk+1) are large. The interlevel current Jmn (xk) as given by (2.25) is rewritten in the form

Jmn (xk) ≡ P (m, k)W (m, k |n, k ) , (4.42)

where we have adapted the notation for the vertical transition rates to

W (m, k |n, k ) ≡ ωmn (xk) . (4.43)

Now, equation (2.41) reads

P (m, k + 1) = −J (m, k |m, k + 1)
1

W (m, k + 1 |m, k )
+ P (m, k)

W (m, k |m, k + 1)

W (m, k + 1 |m, k )
(4.44)
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Figure 4.9: Complete spanning cycles in the directed graph of a network with four states and
three locations. The s-cycles are indicated by sequences of bold arrows. Left: forward or positive
s-cycle containing the three vertical rates W (2, 1 |4, 1), W (4, 2 |3, 2) and W (3, 3 |2, 3). Right:
negative s-cycle with the two vertical rates W (2, 2 |3, 2) and W (3, 1 |2, 1). Note that beyond the
s-cycles the representation of the vertical rates is restricted to rates connecting adjacent states for
simplicity. Because at least one state of the network is not included in these s-cycles, there will

be additional vertical rates in the respective terms of Pol
(4,3)

1 or otherwise the network will be
decoupled and the rates joining these states will vanish.

with the outgoing local lateral currents from xk to xk+1 as introduced in (2.29).
The relations (4.42) and (4.44) (after conversion) are inserted into the local conservation law

(2.30), which yields

0 =
∑

n,n6=m

[−P (m, k)W (m, k |n, k ) + P (n, k) W (n, k |m, k )]

−P (m, k) W (m, k |m, k + 1) + P (m, k + 1)W (m, k + 1 |m, k )

−P (m, k) W (m, k |m, k − 1) + P (m, k − 1)W (m, k − 1 |m, k ) .

(4.45)

The parts which enter with a minus sign are the transition currents flowing out of the vertex (m, k),
those with a plus sign are the ones flowing into this vertex. In (4.45) we see that the stationary
solutions of the stochastic ratchets considered here are identical to the stationary solutions of the
Master equation

∂P (m, k)

∂t
=

∑

n,n6=m

[−P (m, k)W (m, k |n, k ) + P (n, k) W (n, k |m, k )]

−P (m, k) W (m, k |m, k − 1) + P (m, k + 1)W (m, k + 1 |m, k )

−P (m, k) W (m, k |m, k − 1) + P (m, k − 1)W (m, k − 1 |m, k ) ,

(4.46)

which describes the temporal change of the probability of finding the motor in a state associated
with the vertex (m, k) in terms of the various transition currents. The effective force potentials
are no longer contained explicitly. Starting from the Master equation (4.46) and not considering
its derivation, there is no need for the horizontal rates to fulfill the conditions of detailed balance.

The local lateral current between location k and k + 1 in state m is given by

J (m, k |m, k + 1) = P (m, k) W (m, k |m, k + 1) − P (m, k + 1) W (m, k + 1 |m, k ) . (4.47)
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By transforming (4.47), we obtain the probability at location k + 1,

P (m, k + 1) = −J (m, k |m, k + 1)
1

W (m, k + 1 |m, k )
+ P (m, k)

W (m, k |m, k + 1)

W (m, k + 1 |m, k )
. (4.48)

We introduce the diagonal matrices D
JP

and D
PP

with matrix elements

D
JP

nm (k, k + 1) ≡ −δnm
1

W (m, k + 1 |m, k )
(4.49)

and

D
PP

nm (k, k + 1) ≡ δnm
W (m, k |m, k + 1)

W (m, k + 1 |m, k )
. (4.50)

The bar above the symbols refers to the Master-equation approach which is used here in contrast
to chapter 2. Besides, we define the additional transfer matrices

T
JP

≡ T
JJ

D
JP

(4.51)

and
T

PP
≡ T

PJ
D

JP
+ D

PP
(4.52)

where T
JJ

is equal to the unit matrix and T
PJ

(k) is given by

T
PJ

nm (k) ≡ −δnm

∑

p6=m

W (m, k |p, k ) + (1 − δnm) W (n, k |m, k ) . (4.53)

With the help of these additional matrices we obtain

P (m, k + 1) = J (k, k + 1)D
JP

(k, k + 1) + P (k)D
PP

(k, k + 1)

= J (k − 1, k)T
JP

(k, k + 1) + P (k)T
PP

(k, k + 1) . (4.54)

This relation and (4.47) can be combined into the recursion relation

(J (k, k + 1) , P (k + 1)) = (J (k − 1, k) , P (k))T (k, k + 1) . (4.55)

We proceed by analogy to the procedure described in section 2.2 and take into account that the
normalization for the discrete probability distribution is now given by

∑

k

∑

m

P (m, k) ≡ 1. (4.56)

Doing so, we obtain new matrices A
(M,K)

which explicitly contain all the horizontal and vertical
rates of the system.

4.3.2 Complete s-cycles and horizontal rates

Spanning cycles or s-cycles have already been introduced in 2.2.3 and examined later in chapter
3. We remember that an s-cycle starts at vertex (k = 1, m), spans the whole network parallel to
the x-direction, and then ends at vertex (k = K, m), i.e., in the same state m it started in. An
s-cycle has to contain vertical rates. In the preceding chapters, we have identified these s-cycles
via their vertical rates. Because of the Master-equation approach, we now have the possibility of
determining complete paths of vertical and horizontal rates. Note, that here we do not refer to the
generalized s-cycles of 4.2.2 for distorted networks, but to complete s-cycles explicitly containing
all their horizontal and vertical rates. Furthermore, we extend the original definition provided
in 2.2.3 in such a way that we distinguish between positive spanning-cycles or positive s-cycles,
which traverse the network in positive x-direction, in fig. 4.9 to the right, and negative s-cycles
traversing it in negative x-direction. Accordingly, positive spanning-cycles are associated with a
forward stepping of the motor, negative ones with a backward stepping. Usually, there is a main
direction of movement for a certain motor protein. Conventional kinesin, for example, most of the
time steps in the direction of the plus end of its microtubule. We define this main direction to be
the positive x-direction with respect to a special motor protein.
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Networks with two states

Two locations

Here, we discuss complete s-cycles in the context of different two-state networks. At first, we
consider a general (M, K) = (2, 2)-network with the maximal number of four vertical rates and
eight horizontal rates. Four of these eight horizontal rates directly connect the two locations x1

and x2, the remaining warrant the periodic boundary conditions. We calculate the total current

J
(2,2)

tot using the new matrix A
(2,2)

,




W (1,2|2,2 )
W (1,2|1,1 )

− 1
W (1,2|1,1 )

− 1
W (1,2|1,K+1)

0 − 1
W (1,2|1,1)

−W (2,2|1,2 )
W (2,2|2,1 ) 0

− 1
W (2,2|2,1 )

− 1
W (2,2|2,K+1)

− 1
W (2,2|2,1 )

−W (1, 1 |2, 1) − W (1, 2 |2, 2)

·
[

W (1,1|2,1 )
W (1,2|1,1 ) + W (1,1|1,2 )

W (1,2|1,1 )

]

−W (1,1|2,1 )W (2,2|1,2 )
W (2,2|2,1 )

W (1,1|2,1 )
W (1,2|1,1 )

+W (1,1|1,2 )
W (1,2|1,1 )

−W (1,K+1|1,2 )
W (1,2|1,K+1)

−W (1,1|2,1 )
W (2,2|2,1 )

W (1,1|2,1 )
W (1,2|1,1 )

+W (1,1|1,2 )
W (1,2|1,1 )

−W (1,1|2,1 )
W (2,2|2,1 )

W (2, 1 |1, 1) + W (2, 2 |1, 2)

·
[

W (2,1|1,1 )
W (2,2|2,1 ) + W (2,1|2,2 )

W (2,2|2,1 )

]

+W (1,2|2,2 )W (2,1|1,1 )
W (1,2|1,1 )

−W (2,1|1,1 )
W (1,2|1,1 )

W (2,1|1,1 )
W (2,2|2,1 )

+W (2,1|2,2 )
W (2,2|2,1 )

−W (2,K+1|2,2 )
W (2,2|2,K+1)

−W (2,1|1,1 )
W (1,2|1,1 )

+W (2,1|1,1 )
W (2,2|2,1 )

+W (2,1|2,2 )
W (2,2|2,1 )




,

(4.57)

and view the numerator polynomial Pol
(2,2)

1 . The terms of Pol
(2,2)

1 contain only vertical or hor-

izontal rates. Altogether, there are two positive and two negative complete s-cycles in Pol
(2,2)

1 ,

which contribute to J
(2,2)

tot . The existence of two positive and of two negative s-cycles has already
been assumed in the context of equation (3.6) because of the signs of the terms, but now the

complete paths with vertical and horizontal rates are given explicitly in Pol
(2,2)

1 . We obtain one
positive combination with W (1, 1 |2, 1), W (2, 1 |2, 2), W (2, 2 |1, 2) and W (1, 2 |1, K + 1), and
a second one with the rates W (2, 1 |1, 1), W (1, 1 |1, 2), W (1, 2 |2, 2) and W (2, 2 |2, K + 1), see
fig. 4.10, both of which are complete s-cycles of horizontal and vertical rates, but in the first case
the motor is in conformation m = 1 on entering the network from the left, in the second case
in conformation m = 2. Usually one of these paths can be assumed to carry a by far larger
current across the network than the other one. The rates in one of the s-cycles will be quite low,
if its sequence of conformations and locations hinders enzymatic activity. Without the specifi-
cation of the horizontal rates, the direction of the s-cycles is ambiguous. The left-hand positive
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k=1 k=2

m=1

m=2

k=1 k=2

Figure 4.10: The two forward or positive complete s-cycles in Pol
(2,2)

1 for (M, K) = (2, 2). On the
left, the starting conformation of the motor is m = 1, on the right it is m = 2. Usually, one of the
two cycles will be strongly favoured and carry a large current across the network.

k=1 k=2

m=1

m=2

k=1 k=2
Figure 4.11: The two backward or negative complete s-cycles in the first polynomial for (M, K) =
(2, 2). On the left, the starting conformation of the motor is m = 2, on the right it is m = 1.

s-cycle in fig. 4.10, for example, could have been mistaken for the backward cycle with the rates
W (2, K + 1 |2, 2), W (2, 2 |1, 2), W (1, 2 |1, 1) and W (1, 1 |2, 1), if only the vertical rates had been
taken into consideration.

The above listed backward cycle is one of the two backward cycles which are possible in a
(2, 2)-model. The second negative s-cycle is described by the rate combination W (1, K + 1 |1, 2),
W (1, 2 |2, 2), W (2, 2 |2, 1) and W (2, 1 |1, 1). In this case the motor is in conformation m = 1 on
entering the network from the right. Fig. 4.11 displays the two negative s-cycles. If the system’s
rates fulfill the conditions of detailed balance, the left-hand side complete backward s-cycle cancels
with the right-hand side combination in fig. 4.10.

If we now forget about the definition of the forward horizontal rates as given in (4.39), we can
consider arbitrary forward rates, whose values might be equal to zero, too. This is justified as our
approach here uses the Master equation as its starting point. In the context of (4.39) the forward
rates have been non-zero as the numerator in the definition is a special exponential function. If we
now have W (1, 1 |1, 2) = 0 the number of forward s-cycles reduces to one, as the combination on
the right in fig. 4.10 vanishes. The zero horizontal rate can be thought of to represent an obstacle
in the positive x-direction of the filament which cannot be overcome by the motor while it is in
conformation m = 1. Meanwhile, the backward s-cycles are unchanged.

The backward horizontal rates cannot be set to zero, as they appear as divisors in the calcula-
tion. In the same way the forward rates W (m, K |m, K + 1), which realize the periodic boundary
conditions, cannot vanish. In summary, horizontal rates equal to zero in the context of this changed
transfer matrix formalism are restricted to horizontal forward rates at inner locations.
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k=1 k=2

m=2

m=1

k=3 k=4
Figure 4.12: Complete forward s-cycle with four vertical transition rates in Pol

(2,4)

1 in a limited
(2, 4)-system containing only the four vertical rates occurring here.

k=1 k=2

m=2

m=1

k=3 k=4
Figure 4.13: Complete backward s-cycle in Pol

(2,4)

1 in a system with the same four vertical transition
rates as in fig. 4.12.

Four locations

In the case of (M, K) = (2, 4) we consider the restricted case of four vertical transition rates,
namely W (1, 1 |2, 1), W (2, 2 |1, 2), W (1, 3 |2, 3) and W (2, 4 |1, 4). The other four vertical transi-
tion rates of the general system vanish equal to zero. As the number of vertical rates is restricted to
four, there is a single combination with four vertical transition rates in the numerator polynomial

Pol
(2,4)

1 . This combination occurs twice in Pol
(2,4)

1 , once in a term corresponding to a forward
s-cycle, and a second time in a negative s-cycle belonging to a backward term. The complete
forward combination is shown in fig. 4.12, the backward combination in fig. 4.13. As the forward
and backward cycle belong to different internal states or conformations at the boundaries of our
system box, we can predict whether the motor is about to take a forward or a backward step if
we catch it in a certain conformation in this region.

Now, we have a look at fig. 4.14. It shows all six combinations in Pol
(2,4)

1 which contain exactly
the two vertical transition rates W (1, 1 |2, 1) and W (2, 2 |1, 2). If the bottom right combination
was the only one in a model system, the rates W (1, 3 |1, 2) and W (1, 4 |1, K + 1) would empty the
vertices (1, 3) and (1, 4) which would then lead to P (1, 3) = 0 and P (1, 4) = 0 in the stationary
state, i.e., there would be no actual current flowing from the vertices (1, 3) and (1, 4) in the
stationary state.

As in the example with two vertical rates the number of vertical rates has decreased by two
compared to the previous combinations with four rates, the number of horizontal rates has been
raised by two on the other hand. The total number of vertical and horizontal rates is constant
and equal to MK = 8. Note that in the figures for clarity the horizontal rates belonging to the
periodic boundary conditions for s-cycles are depicted twice, once on entering and once on leaving
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k=1 k=2

m=2

m=1

k=3 k=4 k=1 k=2

m=2

m=1

k=3 k=4

k=1 k=2

m=2

m=1

k=3 k=4 k=1 k=2

m=2

m=1
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m=1

k=3 k=4

Figure 4.14: The six different combinations in Pol
(2,4)

1 which contain exactly the two vertical
transition rates W (1, 1 |2, 1) and W (2, 2 |1, 2). The first three combinations belong to the same
complete positive s-cycle, the next three combinations describe the same complete negative s-cycle.
Combinations with the same positive or negative s-cycle differ in the additional horizontal rates.
The horizontal rates for the boundary conditions in the cycle are drawn twice.

the network, nevertheless they have to be counted as one rate each.

Network with three states and two locations

Fig. 4.15 shows terms of Pol
(3,2)

1 , which include positive s-cycles. Horizontal backward rates do not
occur in these combinations. Again we observe an emptying of single vertices under the assumption
that these combinations are on their own. In general there will be additional combinations of rates
emptying other vertices or states and balancing the effect in this way.

The total number of rates is the same in all the terms in Pol
(M,K)

1 in a certain (M, K)-system.
In the (3, 2)-system this number is 6. So in a combination with 3 vertical rates there are 3
horizontal rates, and in a combination with 4 vertical rates there are 2 horizontal rates.

4.3.3 Rules: dependence of the total current on vertical and horizontal

rates

From our calculations for several specific systems we derive rules as in 3.2.2 which now relate the

polynomials Pol
(M,K)

1 and Pol
(M,K)

2 to the vertical and horizontal transition rates.

Rule 0 : The dependence of the total current J
(M,K)

tot on the system’s transition rates Wr has
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k=1 k=2 k=1 k=2

m=2

m=1

m=3

Figure 4.15: Examples of complete combinations of vertical and horizontal rates in Pol
(3,2)

1 which
include forward s-cycles. The horizontal rates maintaining the periodic boundary conditions are
drawn twice.

the form

J
(M,K)

tot =
Pol

(M,K)

1 (W1, W2, . . . , WN )

Pol
(M,K)

2 (W1, W2, . . . , WN )
(4.58)

with two polynomials Pol
(M,K)

1 and Pol
(M,K)

2 .
Rule 1: Both polynomials are multilinear in all the rates W (m, k |m, k + 1), W (m, k + 1 |m, k ),

W (m, k |n, k ) and W (n, k |m, k ) with m 6= n, i.e., they are multilinear in all the vertical and hor-

izontal transition rates. Each term T of both Pol
(M,K)

1 and Pol
(M,K)

2 reads as

T ∼ W z1

1 W z2

2 ...W zN

N with zr = 0, 1, (4.59)

i.e., it cannot contain powers W z
i with z ≥ 2. The index i indicates an arbitrary numbering of the

rates.
Rule 2 : Each polynomial term T in Pol

(M,K)

1 contains at least K factors W (m, k |m, l ) of
horizontal rates and M − 1 factors W (m, k |n, k ) of vertical rates, i.e.,

∑

r,hor.

zr ≥ K for each T (4.60)

and ∑

r,ver.

zr ≥ M − 1 for each T . (4.61)

The upper limit of vertical transition rates per term is given by

∑

r,ver.

zr ≤ K (M − 1) for each T , (4.62)

and for horizontal transition rates by

∑

r,hor.

zr ≤ M (K − 1) + 1 for each T . (4.63)
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Here, the sum over r is the sum over all the rates of the same alignment, either vertical or
horizontal.

The total number of vertical and horizontal rates in Pol
(M,K)

1 is MK.

Rule 3 : No term T contains a product of the form W (m, j |n, k )W (m, j |o, l ), or, in words,
there is no product of two rates with the same starting vertex. As there are MK vertices in a
general network, this limits the total number of rates per term to MK as stated in rule 2.

Rule 4 : No term T contains a product of the form W (m, k |n, k )W (n, k |m, k ) for vertical
or W (m, k |m, l )W (m, l |m, k ) for horizontal rates or any other l-cycles. Horizontal l-cycles are
localized with respect to the state.

Rule 5 : The combination of vertical rates in each term T contains vertices of every single

internal state m, the one of horizontal rates vertices of every single location k. In Pol
(M,K)

1 the
horizontal rates irrespective of their states connect the locations 1 and 2, the locations 2 and 3
and so on until K and the first location are connected again. Because here the periodic boundary
conditions have to be included, this explains the minimal number of K (instead of K−1) horizontal

rates per term in Pol
(M,K)

1 .

Rule 6: For F = 0 and the horizontal rates fulfilling the conditions of detailed balance, each

term T of Pol
(M,K)

1 can be mapped onto a complete s-cycle of the network, which contains vertical
and horizontal rates. In general, this mapping is not one-to-one and several terms will be mapped
onto the same s-cycle.

Rule 7: If all the transition rates satisfy detailed balance with Wi = W db
i , one has

J
(M,K)

tot ∼ Pol
(M,K)

1

(
W db

1 , W db
2 , ...

)
= 0 for F = 0. (4.64)

In fact, each term of Pol
(M,K)

1 corresponding to a certain complete s-cycle is cancelled by another
term corresponding to the opposite complete s-cycle.

In summary, we have shown that the Master-equation approach leads to a comprehensive

understanding of the many terms of Pol
(M,K)

1 concerning their associated paths. This is only
possible with explicit horizontal rates.

4.4 Time evolution of initial probability distributions

In this section we view the time evolution of several networks on their way to their respective
stationary states and its dependence on the initial probability distribution. At first, we integrate
the Master equation as given by (4.46). In this way we obtain results which can be checked by
means of a Markov-chain approach. We consider systems with a larger number of locations where
we have remarkable hindrances at locations or special transport properties of certain states. From
that we can judge the importance of such changes. Apart from a detailed stepping scheme, an
application for systems with a large number of locations is to describe genetic defects in filaments
occurring with a period larger than the pseudorepeat or the stepping distance of a motor.

4.4.1 Integration of the Master equation

The discrete master equation as given by (4.46) can be integrated by numerical methods. In
this way we obtain information about the dynamics of the systems. Using a numerical approach,
we can view larger systems than before. Here, we examine systems with up to 16 locations.
Now, arbitrary rates can be zero, in particular horizontal backward rates, as we do not refer to the
original derivation of the Master equation. Such arbitrary horizontal are related to active elements
in horizontal direction as discussed recently in the context of molecular motors [61, 62], compare
the sections 4.2 and 4.3. Clearly, the active elements are not restricted to the horizontal or vertical
direction, as our networks are uniquely determined by their vertices and the di-edges connecting
them. The actual direction of an edge can be quite different from the zero or ninety degree angle
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Figure 4.16: Network with two states and locations and two vertical and eight horizontal transition
rates connecting its vertices. The Wi refer to the values of the transition rates.

with respect to the filament direction. In spite of this we still continue to use the terms vertical
and horizontal for simplicity.

Different initial probability distributions are examined in order to determine the time evolutions
of the system until the stationary state is reached. We determine the current carried through the
network and the changes of the probability distributions.

Limited (2, 2)-network

The starting point for our examination of the time evolution is a model network of two states and
two locations with two vertical and eight horizontal transition rates, compare fig. 4.16, where the
values of the transition rates are referred to as Wi with i = 1, ..., 10. In this numerical approach
the horizontal rates W (m, k |m, k + 1) and W (m, k + 1 |m, k ) can be chosen arbitrarily. This will
be done in the following. To start with we choose an example where the rates take on the values
W1 = W4 = 0.5, W2 = W5 = W8 = W10 = 1.0 and W3 = W6 = W7 = W9 = 0.25 which is the
first example in table 4.1. In the following, the rates will be defined by dimensionless values for
simplicity.

Fig. 4.17 and 4.18 show the time evolution of the system for two different initial probability
distributions. The probabilities P (m, k, t0) of finding the motor in the state (m, k) at time t0 are
given by P (m, k, t0) = 0.25 for m = 1, 2 and k = 1, 2 in fig. 4.17 and by P (m, k, t0) = 1.0 for
m = 1 and k = 1 and P (m, k, t0) = 0.0 for the remaining states for the development shown in
fig. 4.18. In this second case the motor is localized in vertex (1, 1) at the beginning. The solid lines
in the figures correspond to P (m, k) = 0.25, which is the uniform distribution for four vertices.

Of course, the stationary states which are reached in these two examples are identical, as
any vertex of the system is connected to every other vertex either directly or via other vertices.
The probabilities in the stationary state are P (1, 1) = P (2, 2) = 1/3 and P (1, 2) = P (2, 1) =
1/6 which is clear from the preceding choice of the rates. With the uniform initial probability
distribution, there are only minor changes in the probability distribution after 100 timesteps,
compare fig. 4.17, although the final stationary state is reached only after almost 400 timesteps. In
the case of the localized a priory probability distribution, the system is still far from the stationary
state after 100 timesteps. After 400 timesteps the configuration is similar to the stationary one,
but still it takes about 1500 timesteps until the stationary state of the system is finally reached.

Usually, the initial probability distribution is localized in one vertex, if the period of the system
corresponds to one or more steps of the motor and there are few locations and ample different
conformations. In situations with many locations and a number of similar conformations, however,
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Figure 4.17: Time development of P (m, k) for a uniform a priori probability distribution in a
system of two states and two locations. The rates are chosen as in the first example in table 4.1.
The black circles indicate the position of the vertices. The solid lines refer to the plane belonging
to P (m, k) = 0.25. We see snapshots taken after 1, 10 and 100 timesteps.
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Figure 4.18: Time-dependent behaviour of P (m, k) for an initial probability distribution which
is localized in vertex (1, 1). The system has two states and two locations and its rates are listed
in the first example in table 4.1. The plane P (m, k) = 0.25 is marked by solid lines again. The
snapshots are taken after 1, 10, 100 and 400 timesteps.
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Figure 4.19: Time evolution of the total current Jtot for the initially (1, 1)-localized probability
distribution in the (2, 2)-system. The examples are specified in table 4.1. The left-hand side
displays the curve corresponding to example 1, the right-hand side shows all five curves for the
examples 1 to 5. The curves for the examples 2 and 3 show a very similar course. The stationary
states are not yet reached. The stationary currents are given in the text.

example\rates W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

1 0.5 1.0 0.25 0.5 1.0 0.25 0.25 1.0 0.25 1.0
2 0.2 1.0 0.25 0.8 1.0 0.25 0.25 1.0 0.25 1.0
3 0.2 0.8 0.2 0.8 1.0 0.25 0.25 1.0 0.2 0.8
4 0.2 0.8 0.2 0.8 1.0 0.25 0.25 1.0 0.25 1.0
5 0.2 1.0 0.25 0.8 1.0 0.25 0.2 0.8 0.25 1.0

Table 4.1: Values of the rates Wi as defined in fig. 4.16 for the examples 1 to 5.

it can be difficult to localize the motor “frozen” in one vertex, and it makes sense to assume a
different initial probability distribution.

The time evolution of the total current Jtot in the case of the (1, 1)-localized a priori probability
distribution for the first example in table 4.1 is shown for up to 500 timesteps on the left-hand
side of fig. 4.19. In this region, we observe an exponential decay of the total current according to
Jtot (t) ≈ exp (−0.01t− 1.4). The current is zero in the stationary state.

The right-hand side of fig. 4.19 shows this curve again and also four other curves of different
examples 2 to 5 for initially (1, 1)-localized probability distributions. Table 4.1 specifies these new
examples. The faster decrease for the examples 2 to 4 is mainly caused by the new choice of
the vertical transition rates. The changed vertical rates result in a stationary distribution where
the probability for vertex (1, 1) is still high. In example 5 the current is lower at the beginning
compared to the other curves, because of a small current in the first state. This is due to W7 rising
from the vertex (1, 1), where the initial probability is localized, hindering a redistribution.

The stationary states in these examples are reached after between 1000 and 1500 timesteps.
The stationary currents are J1 stat

tot = J2 stat
tot = J3 stat

tot = 0 for the examples 1, 2 and 3 and
J4 stat

tot = −J5 stat
tot ≈ −6 · 10−3 in the remaining examples. The network as shown in fig. 4.16

comprises the forward path given by the rates W5, W1, W2, and W4 as well as the backward path
with W10, W4, W8 and W1. Pairs of horizontal rates connecting vertices in opposite directions
result in effective horizontal rates. Although in a strict sense the detailed balance condition is
broken for the vertical rates in all of these examples, as one of the vertical rates connecting a pair
of vertices in opposite direction is set to zero, while on the other hand the exponential factor of
the detailed-balance relation is different from zero, the total current J stat

tot in the stationary state
vanishes for the first three examples. Of course, this does not violate our previous rule 7 in 3.2.2,
because there we only state that Jstat

tot = 0 without an external force if the vertical and horizontal
rates fulfill detailed balance. Obviously, we can also have J stat

tot = 0 if the conditions of detailed
balance are broken. In our examples 1, 2 and 3 the total current vanishes, as the above mentioned
forward and backward paths contribute partial currents to the states whose absolute values are
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Figure 4.20: Probability distributions at t = 10 and t = 500 of the examples 2-5 with two states
and two locations. The numbers preceding the colons are the numbers of the examples introduced
in table 4.1. The plane P (m, k) = 0.5 is set off by solid lines.

equal, but which differ in their direction. In example 4, the total current is directed in the negative
x-direction, since the forward contribution is reduced by the effective horizontal contribution of
the rates W2 and W3. The combination of W7 and W8 in example 5 however leads to a resulting
positive current.

The corresponding probability distributions at times t = 10 and t = 500 are shown in fig. 4.20
for the examples 2 to 5 . The stationary distributions are similar. The values we find for the
stationary state for example 5 are P 5 stat (1, 1) ≈ .56, P 5 stat (1, 2) ≈ .20, P 5 stat (2, 1) ≈ .09 and
P 5 stat (2, 2) ≈ .14.

The general (2, 2)-network

The stationary probability distributions for the general (2, 2)-system, i.e., the network of two
states and two locations with four vertical and eight horizontal rates as shown in fig.D.1, are
given in appendix D. The solution of the homogeneous system of equations is given in such a way
that three of the stationary probability distributions P stat (m, k) depend on the remaining fourth.
Taking into consideration the normalization condition for the probability distribution, the solution
is unique and unambiguous for a non-specified choice of the rates Wi numbered as indicated in
fig.D.1.

If, however, all the vertical rates W1, W4, W11 and W12 vanish equal to zero, there is an
infinite set of solutions, as there is no exchange between the two states, once the initial probability
distribution has been specified. In this case we have

P stat (1, 1) = P stat (1, 2) (W5 + W8) / (W6 + W7) ,

P stat (2, 1) = P stat (2, 2) (W3 + W9) / (W10 + W2)

for W1 = W4 = W11 = W12 = 0. (4.65)

Note that in (4.65) we still have to take into account the normalization condition for the probabil-
ities. Here, we tacitly extend the discussion of decoupled states compared to section 4.1.2, as the
explicit initial probability distributions in this approach replace the somewhat artificial probability
weights we have used before.
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Figure 4.21: Part of a large system with three states and sixteen locations at which the motor
might undergo conformational changes. Since the period of this system includes a considerably
larger number of locations for vertical transitions, the motor might take several steps within this
spatial interval. The choice of the number of the locations is arbitrary.

Time evolution in larger systems

The numerical integration provides us with a tool for dealing with larger model systems than
the ones examined in chapter 3. Here, we concentrate on systems with more than the previous
maximal number of four locations for transitions into other conformations. The period of such
a large system might comprise more than one step of the motor. The motor’s track might show
periodic irregularities on a larger scale than just one step. There can be defects or obstacles as
other bound molecules attached to the filament, which occur on average after a given number of
steps of the motor. Therefore we have a look at the behaviour of systems with a larger number
of locations and imagine that within the given spatial interval the motor bridges a distance of a
hundred nm or more. Then we watch the localized initial probability distribution spread along
the horizontal direction under a variety of different circumstances.

Three states

Our example is a system of three states with a total number of sixteen locations for conformational
changes, compare fig. 4.21. The number of sixteen is chosen arbitrarily. Fig. 4.22 shows the time
evolution of the total current Jtot for the case of an initial probability distribution which is localized
in vertex (1, 1). In this example we have inserted all the 192 vertical and horizontal rates as
indicated by the detail in fig. 4.21. The curve on the left-hand side shows a system where we have
assumed that all rates have equal absolute values. Due to this choice of rates we have J stat

tot = 0 in
the stationary state. The right-hand side curves show the time evolution of Jtot if the horizontal
rates between the sites in state three are gradually decreased from a value of 0.5 to 0.00001. As
we still do not have directed transport, the total current is zero in the stationary state for all these
examples. In the low-time regime small horizontal rates in state three lead to a faster decrease of
the total current after the influence of the starting position of the motor in state one has weakened.
The transport of the motor along its track is effectively slowed down while the stationary state is
still in the distant future. Such a choice of state three as presented above might describe a situation
where the motor from time to time attains a conformation in which it is weakly bound or even
unbound from its filament or which from a steric point of view is unfavourable with respect to its
horizontal transport, so that its arriving at a neighbouring site is seriously impeded. The regime of
increased times shows a different situation. Our system more and more approaches its stationary
state. Due to the previously higher current the stationary distribution is nearly reached in the
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Figure 4.22: Time evolution of Jtot for the initially (1, 1)-localized probability distribution in the
(3, 16)-system for cases which have different horizontal rates in the third state. Top left: all rates
are equal. Top right: horizontal rates in state 3 are gradually decreased. Bottom: details of the
top right curve for different time ranges. There is no directed transport in the systems, so there
are no net currents in the stationary states.

case of high horizontal rates in all three states, whereas the low horizontal rates in state three still
induce a remarkable current, because there the rearranging of the probabilities is not yet finished.
It takes longer to reach the stationary state if the horizontal rates in one state are extraordinarily
low. In all of these examples, the above given choice of the rates leads to a vanishing current in
the stationary states, Jstat

tot = 0, since we have no directed transport.

Hindrances

In the next step we consider a situation with a built-in hindrance or defect at one location. We
choose location nine and decrease the horizontal rates leading into the corresponding vertices
(m, 9). For the motor particle reaching this location is difficult, maybe because another molecule
is bound there and blocks the stepping of the motor irregardless of its conformation.

Here we have a directed transport and the total current J stat
tot in the stationary state is different

from zero. As shown on the right in fig. 4.23, the hindrance at location nine noticeably reduces
the stationary current, and with that the speed of the motor. The left side of fig. 4.23 shows the
total probability, which is the sum of all single-state probabilities, for the case of a large obstacle.
The total probability at location is almost zero. The resulting net current in the stationary state
in our example is positive. The obstacle at location nine hinders the transport in the forward as
well as in the backward direction so that the contributions by forward and backward paths will be
reduced by a similar amount. The net current still has the same orientation, but its absolute value
is lower. But the reduction of the current is not linear in the size or amount of the hindrance, as for
a large obstacle the effects of the breaking of the detailed balance conditions slacken. Accordingly,
the difference in Jstat

tot between a smaller and a greater hindrance on the right-hand side of fig. 4.23
is small compared to the difference between no hindrance and a small hindrance.
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Figure 4.23: Left: the total probability Ptot at time t = 2000 for a (3, 16)-system with directed
transport and a hindrance at location nine. Right: the stationary current J stat

tot of the system for
different degrees of the built-in hindrance at location nine.
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Figure 4.24: Probability distribution P1 for state 1 in a system of two states and sixteen locations
at different times from t = 300 to t = 5000. Transport in the positive x-direction is favoured.

Two states again

Now, we reduce the system by one state, but keep the number of sixteen locations. Fig. 4.24
shows the time evolution of the probability P1 in state 1 at the sixteen different locations k for a
case where transport in the positive horizontal direction is favoured. Because the horizontal rates
do not have to fulfill the conditions of detailed balance any longer, there can be active processes
driving the horizontal transport.

The horizontal rates are chosen in such a way that small and large rates alternate for one state,
and this sequence is shifted in the second state, so that a switching between the conformations
is favoured. The choice of the locations is arbitrary, in particular it is not necessary to choose
equidistant k. If the horizontal rate W (m, k |m, k + 1) between location k and k + 1 is large, it
corresponds to a favoured movement of the motor. Difficult transitions against hindrances on the
other hand correspond to low rates.

In the beginning, the probability distribution is localized in vertex (1, 1). The value of P1 at
location 1 is still larger than 0.5 after 300 timesteps. With ongoing time the probability distribution
wanders to the right and flattens more and more as can be seen in fig. 4.24. The zigzag form with
local maxima and minima of the curves occurs due to the underlying sequence of small and large
rates in one state.

The left-hand side of fig. 4.25 displays a comparison of P1 and P2 at the same time t = 5000.
The local minima of the probability distributions correspond to locations with large effective rates
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Figure 4.25: Left-hand side: the probabilities distributions P1 for the first state and P2 for the
second state at time t = 5000. Right-hand side: the total probability Ptot at time t = 5000. The
probability distributions belong to a (2, 16)-system with directed transport.

leading out of these locations, the local maxima occur at locations which are difficult to leave. If
the motor is at such a location, it stays there with a high probability. The rate for conformational
changes, however, is not changed. Because of the shifted sequences of the horizontal rates in the
two states, the behaviour of the two probability distributions concerning the alternation of the
minima and maxima is opposed. On the right-hand side in fig. 4.25 the total probability for the
states one and two after the same number of timesteps is displayed. It shows the expected smooth
behaviour, as the effects of the shifted minima and maxima level.

Up to now, the vertical rates in the (2, 16)-system have had equal values. Now, the vertical
rates will be adapted to the idea of a directed transport, too. On the left-hand side of fig. 4.26 the
probability distributions P1 are compared for the cases that all the vertical rates have the same
value (case a) or that the vertical rates for leaving the state are smaller if transport in positive
x-direction is favoured in the present state. In this way directed transport in this direction is
actively supported by the vertical rates. Accordingly we see that the probability distribution in
case (b) has advanced further within the same interval of time. Its maximum value is attained at
location 11, while for (a) the maximum is at location 9.

The right-hand side of fig. 4.26 demonstrates the effects of varying the large vertical transition
rates. If their values are increased, this leads to probability distributions which have advanced
further in the positive x-direction. We can imagine that to every favoured horizontal rate there is
an underlying active process supporting this transition.

There is a certain value of the large transition rate which minimizes the fluctuations in the
single-state probability distributions arising from the sequence of small and large horizontal rates.
This effect reproduces itself in the stationary probability distributions. The case of minimum
fluctuations occurs when the effective landscape arising from the rates is flat.

Adding different third states

We take the above system and add a third state again. The horizontal rates in the states 1 and 2
are chosen in such a way that transport in the positive x-direction is favoured, again the vertical
rates leading out of the state have a small values if transport in positive x-direction is favoured
in the present state and a large value otherwise. As far as the involvement and the transport
properties of state 3 are concerned, we make a distinction between five different cases (3a)-(3e) as
listed in table 4.2. The number 3 in the naming refers to the total number of states. In the cases
(3a), (3b), (3d) and (3e), there are transitions into state 3 which are realized by the four rates
W (1, 1 |3, 1), W (1, 5 |3, 5), W (1, 9 |3, 9) and W (1, 13 |3, 13). These four rates are assumed to be
equal. Case (3a) might describe a situation where the motor particle has a possibility of “losing”
its track or strictly speaking its sense of direction at certain equidistant locations. Then it attains
conformation 3 without a directed transport in x-direction. Forward or backward movement are
equally likely with a certain probability until the motor finally reaches state 1 or 2 again and its
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Figure 4.26: Left-hand side: Probability P1 after the same number of timesteps in a system with
two states (a) if all vertical rates have equal values, and (b) if the vertical rates leading into the
other states have a small value if in the present state transport in positive x-direction is favoured.
The other vertical rates have the same value for the cases (a) and (b).
Right-hand side: P1 at the same time for three cases with small and large vertical rates as in (b)
of the left figure. The values of the large vertical rates are increased.

(3a) state 3: horizontal rates left/right identical
(3b) state 3: horizontal rates right large, left small
(3c) as in b, but no (vertical) transitions into state 3
(3d) as in a, but no transitions from state 3 into the states 1 and 2
(3e) as in b, but no transitions from state 3 into the states 1 and 2

Table 4.2: Differences between the cases (3a)-(3e) in a system with three states and sixteen
locations. The system of the states one and two remains unchanged. The number 3 in the naming
of the cases refers to the total number of states and is chosen in order to avoid confusion with the
two-state systems.
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Figure 4.27: Left: the probability distribution P1 at time t = 2000 of a system of two states and
of a system of three states without transitions into the third state as in case (3c). As the rates
belonging to the states 1 and 2 are identical in both cases, the probability distributions for the
first state are identical, too. Right: the probability distributions P3 at time t = 1500 for the cases
(3a) and (3b) as given in table 4.2.
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Figure 4.28: Left: the probability distributions P3 at time t = 1500 for the cases (3a) and (3d) as
explained in table 4.2. Right: P3 at time t = 1500 for the cases (3b) and (3e). The systems have
three states and sixteen locations.

directed transport can be restarted.

In case (3b) the transport in state 3 is directed in the positive x-direction. State 3 provides an
alternative and fast way of transport. This fast active transport might require a certain confor-
mation of the motor protein which is not reached easily due to energetic or steric restrictions.

Case (3c) describes a system where an existing state 3 can never be reached. The motor can
be imagined to be a mutation or “faulty” compared to other motors of its family or subfamily. A
possible lack of fuel can also prevent the motor from reaching the conformation 3.

(3d) and (3e) are variants of (3a) and (3b) where the conformation belonging to state 3 does
not offer a way back into the states 1 or 2. This can happen because the motor is unable to “find”
its track again or because its conformational change is irreversible, as it is damaged or just due to
the underlying reaction kinetics.

As we start with a probability distribution which is localized in (m, k) = (1, 1), case (3c) is
equivalent to a system of two states, as the probability in state 3 remains zero. Accordingly,
the probability distribution P1 for the first state at time t = 2000 is identical to the one of
the corresponding system of two states, see the left-hand side of fig. 4.27. The total probability
distribution for (3c) advances faster in the positive x-direction than for case (3a), where the equal
horizontal rates in state 3 hinder directed transport, but slower than for (3b), where state 3 plays
the role of a fast track.

The right-hand side of fig. 4.27 shows the probability distributions P3 of state 3 after the same
number of timesteps for the cases (3a) and (3b). As for (3b) the transport in state 3 is directed
into the positive x-direction, there is hardly a non-zero probability left at the first locations 1 to
4. The probability at the locations > 5 on the other hand is larger compared to case (3a).

The left side of fig. 4.28 shows how the probability in state 3 for case (3d) has already started
accumulating at time t = 1500 compared to case (3a), as there are no rates leading from state 3
back into the states 1 or 2 again. We remember that the transitions into conformation 3 occur
at the locations 1, 5, 9 and 13. The maximum of the probability distributions of the states 1
and 2 is located between the locations 5 and 9 at t = 1500. This explains why the maxima in
fig. 4.28 occur at the second transition location 5. For (3a) there is also a distinct second maximum
at location 9, which is superimposed by the ground-level probability for (3d). This ground-level
probability is caused by the already widely spread probability density which came into state 3
with the first transition at location 1. The accumulation in state 3 is also obvious if we compare
P3 at t = 1500 for (3e) to (3b), see the right side of fig. 4.28. Here, the transport in state 3 is
directed which increases the overall velocity of the motor. The influence of the last transition
location 13 shows up in a small local maximum for (3b). The peaks are asymmetric because of
the directed transport which causes the global maximum at location 14 for (3e). Fig. 4.29 shows
the evolution in time of the total current Jtot for the cases (3a), (3b) and (3c) on the left and (3d)
and (3e) on the right. The total currents Jtot undergo weakening fluctuations before approaching
the stationary value. The curve for case (3b) reaches the maxima and minima at earlier times due
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Figure 4.29: Left: time evolution of the total current Jtot for (3a), (3b) and (3c). Right: evolution
of Jtot for (3d) and (3e). These three-state examples are listed in table 4.2.

to the influence of the fast directed transport in state 3. The stationary value of Jtot is larger in
this case than for (3a) or (3c) for the same reason. The stationary value in case (3a) is the lowest
of the three, because the transport in state three is not directed. In the cases (3d) and (3e) the
probabilities accumulate in state 3 and the stationary current is reached fast. It is zero for the
undirected transport in (3d) and high for the directed transport in state 3 which underlies (3e).
The oscillations of Jtot are caused by the interplay of noticeably directed horizontal transport
in several states which transiently creates unfavourable probability distributions. This results in
high redistribution currents. There are also transient distributions nearer to the stationary one
resulting in low currents. For (3d) directed horizontal transport is only effective in the states 1
and 2 whose influence weakens soon, so that we find one small maximum. When this maximum is
reached the curve for (3e) has almost reached its third maximum because of the fast-lane transport
in state 3.

4.4.2 Markov chains in continuous time

An alternative way of looking at our systems provides their description as Markov chains. Here
we show how the time evolution of a Markov chain in continuous time can be calculated and
compare the results of this approach to the results obtained in 4.4.1 where we have used discrete
timesteps because of the numerical integration. In the Markov approach the initial probability
distribution is localized in single states, and the resulting probability matrices of the transition
functions display the time evolution for any possible vertex of the system as the vertex in which
the initial probability is localized. Because of this we can directly compare how a different starting
vertex of the motor in a special system influences its probable positions at present time.

Markov property and steady state distribution

In general, the states of our systems can change at arbitrary points of time. If we know the present
state of the system, the future development is independent of the past of the process. Therefore,
the underlying stochastic process X (t) fulfills the Markov property

P (X (tn) = (mn, kn) |X (t1) = (m1, k1) , ..., X (tn−1) = (mn−1, kn−1) ) =

P (X (tn) = (mn, kn) |X (tn−1) = (mn−1, kn−1) ) , (4.66)

where P denotes the conditional probability that the motor is in state (mn, kn) at time tn if it
has been in state (mn−1, kn−1) at time tn−1 [63, 64, 65]. The distribution of the residence times
is the exponential distribution, a continuous distribution fulfilling the Markov property.

The transition functions p (m, k |m′, k′ ) (t) are defined as

p (m, k |m′, k′ ) (t) = P (X (t) = (m′, k′) |X (0) = (m, k)) . (4.67)
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The infinitesimal generator Q(M,K) is a matrix whose elements are infinitesimal transition rates
q (m, k |m′, k′ ). The q (m, k |m′, k′ ) denote the average number of transitions from state (m, k)
to state (m′, k′) per unit of time. The residence times of the single states follow an exponential
distribution so that the average residence time is 1/q (m, k). The average number of jumps from
state (m, k) per unit of time is q (m, k). If the residence time in state (m, k) is expired, there is a
jump to another state (m′, k′) which is different from (m, k). The infinitesimal probability of this
jump leading into state (m′, k′) is

p (m, k |m′, k′ ) =
q (m, k |m′, k′ )

q (m, k)
(4.68)

with (m′, k′) 6= (m, k). The q (m, k |m′, k′ ) are the elements of the secondary diagonal of Q(M,K).
Summing up the q (m, k |m′, k′ ) leads to

∑

(m′,k′)6=(m,k)

q (m, k |m′, k′ ) = q (m, k)
∑

(m′,k′)6=(m,k)

P (m, k |m′, k′ ) = q (m, k) , (4.69)

because
∑

(m′,k′)6=(m,k) P (m, k |m′, k′ ) = 1. The elements of the primary diagonal of Q(M,K) are

given by −q (m, k). The elements of a single row of Q(M,K) sum up to 0.
The first derivative of the transition functions measures the change of the transition functions.

The differential equation of Kolmogorov reads

p′ (t) = p (t)Q(M,K). (4.70)

p (t) is the row vector of the unconditional probabilities,

p (t) = (p (1, 1) (t) , p (1, 2) (t) , ...) , (4.71)

with p (m, k) (t) = P (X (t) = (m, k)) and p′ (t) = (p′ (1, 1) (t) , p′ (1, 2) (t) , ...). The quadratical
matrix P(M,K) (t) contains the transition functions,

P(M,K) (t) = (p (m, k |m′, k′ ) (t)) , (4.72)

and is called the transition matrix of the process X (t). Using this matrix we obtain

P′ (M,K) (t) = P(M,K) (t)Q(M,K) (4.73)

with the initial condition
P(M,K) (0) = I (4.74)

where I is the identity matrix. The solution of (4.73) is found with the help of the ansatz

P(M,K) (t) = exp
(
Q(M,K)t

)
. (4.75)

The exponential matrix function is defined by its Taylor series

exp
(
Q(M,K)t

)
= I + Q(M,K) t

1!
+
(
Q(M,K)

)2 t2

2!
+
(
Q(M,K)

)3 t3

3!
+ ... (4.76)

The Markov process Xt has a steady state distribution only if it is irreducible and if all of
its states are positive recurrent. T (m′, k′ |m′, k′ ) is the recurrence time from (m′, k′) to (m′, k′).
If E (T (m′, k′ |m′, k′ )) < ∞, the state or vertex (m′, k′) is positive recurrent. The steady state
distribution is given by the left-hand-side eigenvector p belonging to the eigenvalue 0,

0 = pQ(M,K). (4.77)

p satisfies the normalization condition
pe = 1. (4.78)

e is a vector with one column all of whose elements are equal to one.
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Application to model systems and time evolution

We consider a situation with M = 4 states and transitions which take place at a single location
x1. The infinitesimal generator Q(4,1) reads

Q(4,1) =




−q (1, 1) q (1, 1 |2, 1) q (1, 1 |3, 1) q (1, 1 |4, 1)
q (2, 1 |1, 1) −q (2, 1) q (2, 1 |3, 1) q (2, 1 |4, 1)
q (3, 1 |1, 1) q (3, 1 |2, 1) −q (3, 1) q (3, 1 |4, 1)
q (4, 1 |1, 1) q (4, 1 |2, 1) q (4, 1 |3, 1) −q (4, 1)


 . (4.79)

The situation displayed in fig. 4.31 is described by

Q
(4,1)
example =




−q (1, 1 |2, 1) q (1, 1 |2, 1) 0 0
q (2, 1 |1, 1) −q (2, 1 |1, 1) 0 0

0 0 0 0
0 q (4, 1 |2, 1) = ε q (4, 1 |3, 1) −ε − q (4, 1 |3, 1)


 (4.80)

where ε is taken to be small. The infinitesimal transition rate ε couples state (4, 1) to the states
(2, 1) and (1, 1).

Time evolution without coupling

First, we have a look at a situation where state (4, 1) is not coupled to (2, 1) and therefore not to
(1, 1), too. For q (1, 1 |2, 1) = 0.5, q (2, 1 |1, 1) = 0.5, q (4, 1 |3, 1) = 0 and q (4, 1 |2, 1) = ε = 0, the
time evolution of the probability matrix P(4,1) (t) contains

P
(4,1)
uncoupled (1) =




0.68394 0.31606 0 0
0.31606 0.68394 0 0

0 0 1 0
0 0 0 1


 , (4.81)

P
(4,1)
uncoupled (2) =




0.567668 0.432332 0 0
0.432332 0.567668 0 0

0 0 1 0
0 0 0 1


 (4.82)

and

P
(4,1)
uncoupled (10) =




0.500023 0.499977 0 0
0.499977 0.500023 0 0

0 0 1 0
0 0 0 1


 . (4.83)

If the particle is momentarily in state (1, 1) or (2, 1), it will still or again be in this state after
t = 10 with a probability of 0.500023, it will be in state (2, 1) (if it was in (1, 1) at t = 0) or in
(1, 1) (if it was in (2, 1) at t = 0), respectively, with probability 0.499977. If the particle is in state
(3, 1) or (4, 1), it stays there with probability 1.

Master equation versus Markov approach

To make a comparison between the Master-equation and the Markov approach, we compute the
time evolution of this same example with a particle which in its initial configuration is localized
in state (1, 1) via the method of the integration of the master equation as explained in 4.4.1.
We use timesteps of length ∆t = 0.01 in the integration and compare the time evolution of
the probabilities. The results are shown in table 4.3. If n is the number of the timesteps, the
actual time in the integration of the master equation is t = n∆t. In this way we see that the
correspondence between the two approaches is very good.
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probability matrix timesteps

P
(4,1)
1,i (1) 99

P
(4,1)
1,i (2) 198

P
(4,1)
1,i (3) 298

P
(4,1)
1,i (4) 397

P
(4,1)
1,i (5) 496

P
(4,1)
1,i (6) 596

P
(4,1)
1,i (7) 696

Table 4.3: This table shows how many timesteps are needed for a (1, 1)-localized particle in the
integration of the master equation as explained in 4.4.1 in order to reach a conformation which is
approximately equal to the one given by the i elements in the first row of the transition matrix
P(4,1) (t).

3

1 2

4

probability matrix timesteps

P
(2,2)
1,i (1) 99

P
(2,2)
1,i (2) 198

P
(2,2)
1,i (3) 298

P
(2,2)
1,i (4) 398

P
(2,2)
1,i (5) 499

P
(2,2)
1,i (6) 599

P
(2,2)
1,i (7) 698

Figure 4.30: Example of a (2, 2)-system with four rates. The table lists the number of timesteps
needed for a (1, 1)-localized particle in the integration of the master equation as explained in 4.4
in order to reach a conformation which is nearly equal to the one given by the i elements in the
first row of the transition matrix P(2,2) (t)

As a second example we have a look at a (2, 2)-system with four rates as shown in fig. 4.30. In
our example the values of the rates are not equal. The agreement is again very good. In those
cases where two conformations arising from the Master-equation approach are very close to the
respective row matrix, we have chosen the first conformation with the lower number of timesteps.
This explains why the number of timesteps tends to be slightly lower than expected.

Time evolution with coupling

We go back to the (4, 1)-system. With the choice q (1, 1 |2, 1) = 0.5, q (2, 1 |1, 1) = 0.5, q (4, 1 |3, 1) =
0.1 and ε = 0.01, we obtain the time evolution

P (4,1) (1) =




0.68394 0.31606 0 0
0.31606 0.68394 0 0

0 0 1 0
0.00176877 0.00770085 0.0946962 0.895834


 , (4.84)
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k=1

m=2

m=1

m=3

m=4

ε

Figure 4.31: Example of a system with four states and a coupling ε between the states 4 and 2.
The system contains two rates rising from the same vertex (4, 1) and the rates connecting the
vertices (2, 1) and (1, 1) in opposite directions.

P (4,1) (2) =




0.567668 0.432332 0 0
0.432332 0.567668 0 0

0 0 1 0
0.0052282 0.0127246 0.179528 0.802519


 (4.85)

and

P (4,1) (10) =




0.500023 0.499977 0 0
0.499977 0.500023 0 0

0 0 1 0
0.0284542 0.0321938 0.606481 0.332871


 . (4.86)

The probability that a particle in state (4, 1) remains there, decreases as time goes on. State (4, 1)
is emptied and therefore not positive recurrent.

Steady state behaviour for the (4, 1)-example

For arbitrary values of ε and the q (m, k |m′, k′ ), the corresponding eigenvector p
(4,1)
(1) in (4.77)

describing the possible steady state behaviour is given by

p
(4,1)
(1) =

(
q (2, 1 |1, 1)

q (1, 1 |2, 1)
p2, p2, 1 −

q (1, 1 |2, 1) + q (2, 1 |1, 1)

q (1, 1 |2, 1)
p2, 0

)
. (4.87)

In the case of ε = 0 and q43 = 0, there is a second solution,

p
(4,1)
(2) =

(
q21

q12
p2, p2, p3, 1−

q12 + q21

q12
p2 − p3

)
. (4.88)

Both cases are “pathological” as state (4, 1) is not positive recurrent. The choice of p2 = 0.4 leads

to p
(4,1)
(1) = (0.4, 0.4, 0.2, 0). The second solution with p2 = 0.4 and p3 = 0.1 leads to p

(4,1)
(2) =

(0.4, 0.4, 0.1, 0.1). The solution p
(4,1)
(2) isolates state (3, 1) and state (4, 1) from the remaining

system. There is no unique steady state.
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In the context of the systems of chapter 3 the calculation of
(
A(M,K)

)−1
for this example after

adding the periodic boundary conditions would have been impossible as in the (4, 1)-case there
the minimal number of vertical rates in the polynomials is 3, which here is impossible due to the
problem of creating l-cycles or having to vertices rising from the same vertex.

The Markov approach is helpful for estimating the influences of differently localized initial
probability distributions. The time evolution is obtained for the initial probability localized in any
of the system’s vertices. The results here confirm the results obtained in 4.4.1. For larger systems
the calculations for Markov chains are resource- and time-consuming, though.

4.5 Maximum flow and shortest paths

In general, there are many paths across a certain network. Molecular motors are enzymes, and in
the field of enzyme kinetics, one usually distinguishes one special cycle of chemical reactions which
is then called the main pathway of the enzyme. In the context of our networks, the main pathway
can be imagined to be a positive s-cycle carrying a maximum current across the network. Here,
we use the concept of a main pathway and search for paths with s-cycles in flow networks which
carry large flows. We focus on the question of what is the maximum flow which can be gained
from a set of possible pathways. This is the question of an optimal utilization of a given network
with limited capacities. It is sensible to assume upper boundaries for the capacities, as in cells
there are chemical and physical limitations to transport processes, e.g. given by the concentration
of ATP. If the flow is fixed in our networks, we look for the path with the lowest costs or fees.
Here, costs can refer to energetic considerations, for example.

4.5.1 The main pathway in unspecified networks

As stated in rule 1 in 3.2.2, the total current along a model network is the quotient of two polyno-
mials Poli (ω1, ω2, . . . , ωN ) which depend on the vertical transition rates ωi. The contribution a
certain path along the network gives to the total current is judged by its occurrence in Pol1. The
assignment of a path to a term with a combination of vertical rates can be achieved for complete
paths of vertical and horizontal rates as outlined in section 4.3. The different paths, which con-
tribute to the total current in our systems, actually do have a right to exist. Recent simulations
have shown that chemical reactions do not necessarily follow the minimum energy pathway, if
vibrational and kinetic energy effects of finite temperature are taken into account [66]. In other
words, the stochasticity in our models is not artificial, but on the contrary a characteristic of
chemical reactions.

In a first step we assume a very simple criterion in judging the value of the contribution of
a path. The small-scale diffusion coefficients Dm are taken to be the small parameters of the
system as we are in an over-damped regime. Then the directed walk of the motor is “diffusion-
limited” according to the basic idea of diffusion-based transport in the horizontal direction, which
is of course not a necessary prerequisite as we have pointed out before. The Em (xk , xk+1) are
proportional to D−1

m . A term T containing n vertical transition rates implies the factor D−n
m .

According to this reasoning the path carrying the maximum flow across the network will contain
K (M − 1) vertical rates. If the external force F is negligibly small, the contribution of certain
paths with s-cycles will be more important as they in general contain horizontal forward rates
belonging to different states and with shifted locations. This can result in a number of considerable
factors if the interplay of state and location fits the respective shift of the molecular interaction
potentials. For example, we have a look at fig. 4.10 again, where the two forward s-cycles in
a general (2, 2)-network are depicted. In a situation where the molecular interaction potential
in state 1 impedes the motor particle reaching vertex (m, k) = (1, 2) if it presently is in vertex
(1, 1), whereas the potential of state 2 favours a transition from (2, 1) to (2, 2), the left-hand
forward s-cycle is the main pathway. But of course this can only be true if the effect is supported
by the corresponding vertical rates W (1, 1 |2, 1) and W (2, 2 |1, 2), since if we, for example, had
W (1, 1 |2, 1) = 0, the path would not contribute to the current at all.
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4.5.2 Maximum flow and cut-sets

Now, we consider a graph G = (V (G) , E (G)), which is directed and connected. A graph is
connected if there is a path between any two distinct vertices of graph, see appendix C. A
directed graph or digraph is strongly connected if there is at least one directed path from every
vertex to every other vertex, and weakly connected if the underlying undirected graph is connected.
By removing several edges, a connected graph might split up into distinct parts. A set of edges
is said to be a cut-set if its removal splits a weakly connected directed graph into two separate
parts, Gs and Gt. We define a flow network with a source and a destination node in which Gs

and Gt contain the source and destination nodes, respectively. The subset of edges in the cut-set
that are incident from the vertices in Gs to vertices in Gt define a cut [67]. The directed edge
(vi, vj) that is incident on vertex vj from vertex vi has a capacity cij which can be associated
with a corresponding maximum rate Wmax (m, k |m′, k′ ) if i = (m, k) and j = (m′, k′). Of course,
capacities are not identical to rates, as they define an upper limit to the flow between two vertices.
The capacity implies a constraint on the flow along edge (vi, vj) in such a way that its value has
to be non-negative and either less than or equal to cij . The source and terminal vertices are
labelled as v1 = s and v|V | = t, respectively, where |V | is the cardinality of the set of vertices.
We distinguish between the set A (vi), which denotes the set of those vertices vj ∈ V for which a
directed edge (vi, vj) exists in G, and the set A−1 (vi) of those vertices vk ∈ V for which a directed
edge (vk, vi) exists in G. A set of numbers qij sets up a valid flow when satisfying the conditions

∑

vjεA(vi)

qij −
∑

vkεA−1(vi)

qki =





jtot if vi = s
−jtot if vi = t
0 if vi 6= s, t

, (4.89)

where jtot units are the total flow from source s to the sink t. We say that a cut-set Gs → Gt has
a value, which is given by the sum

∑
i,j cij for (vi, vj) ∈ Gs → Gt of the capacities of all edges of

the associated cut. The minimum cut-set is the one with the smallest value.
According to the maximum-flow minimum-cut theorem the value of the maximum flow from the

source vertex s to the terminal vertex t equals the minimum value over all the cut-sets separating
s from t.

The proof is given as follows: The maximum flow from s to t cannot become larger than the
value of the minimum cut-set, because each edge, directed from Gs toward Gt in the cut which is
associated with this cut-set, connects the two separate parts Gs, containing s, and Gt, containing
t, and the flow along such an edge cannot be negative.

4.5.3 Flow carried along motor networks

Now, we concentrate on our motor networks again and introduce a source vertex s and a terminal
vertex t which do not belong to a labelled location. The source and terminal vertices emulate the
periodic boundary conditions via their edges whose respective second endpoints are vertices at
location 1, (m, 1), and location K, (m, K). The boundary conditions are preserved by the choices
cs(m,1) = c(m,K)t. By defining the source and terminal vertices, we define a direction of possible
paths, as the source vertex cannot be the endpoint of an edge, whereas the terminal vertex cannot
be the starting point of an edge. This direction is positive if the locations of the source and
terminal vertices fulfill ls < 1 and lt > K. The rest of the vertices are denoted by vi = (m, k) with
v1 = (1, 1), v2 = (2, 1),..., vM ·K = (M, K). Fig. 4.32 displays this new situation for the general
network with (M, K) = (3, 3).

4.5.4 Search for paths

At first, we want to gain information about the maximum flow which can be carried across a model
network if we have a look at the sum of various flows along different paths. A general network
for (M, K) = (2, 2) with the corresponding capacities is shown in fig. 4.33. We start at the source
vertex and check the vertices which are endpoints of edges originating from the source, where the
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Figure 4.32: Complete flow network for (M, K) = (3, 3) with source vertex s and terminal vertex
t. The vertices vi are numbered as explained in the text. The di-edges refer to the capacities cij

between vi and vj .
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Figure 4.33: General network for (M, K) = (2, 2) with capacities cij .

sequence of the vertices vi is determined by increasing indices i. Before an edge is chosen as a
part of a path, it is examined with respect to leading to a dead end, which of course can happen
in the case of a weakly connected graph. As mentioned in section 4.4, the horizontal rates in the
original general networks cannot be zero, which of course prevents dead ends. Here, we permit
the leaving out of horizontal capacities in order to introduce a guidance of paths. The numbering
of the vertices as explained above is chosen in such a way that a vertical connection is preferred
against a horizontal forward connection in the decision about the next edge in a path. This is
even sensible if we have an in the vertical direction “reaction-limited” case as we still need at least
a couple of vertical contributions to cause the motor to walk without an external force and active
horizontal elements. In general, it will not be favourable to have backward substeps in a forward
step, so backward capacities can be set to zero. We are looking for paths, i.e. for walks in which
no vertex occurs twice. Therefore we exclude inner cycles, which means that we exclude l-cycles
if we are in a case where we do not have backward capacities. By this we fulfill the rules 1, 3 and
4 as listed in 3.2.2 for the paths in our flow networks. Of course, by doing so we do not exclude
s-cycles, as s-cycles in a flow network start at the source vertex s, end at the terminal vertex t and
are in this way different from inner cycles. In contrast to the calculations that led to the rules in
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horizontal cs1 cs2 cs3 c14 c25 c36 c47 c58 c69 c7t c8t c9t

vertical c12 c23 c13 c12 c45 c54 c56 c79 c87 c98
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Figure 4.34: Three paths realizing maximum flow in a (3, 3)-network with the above listed capac-
ities. The paths are marked by edge trains of different colours. Path 2 (blue) and 3 (magenta)
refer to an effective two-state network.

3.2.2, the paths considered here do not have to span the network in vertical direction, but might
belong to effective subnetworks so that the maximal number of vertical contributions is reduced
accordingly.

To provide an example, we take a (2, 2)-network as in fig. 4.33 and specify the capacities cs1,
cs2, c12, c21, c13, c24, c34, c43, c3t and c4t in such a way that from the considerations in 4.5.1 we
expect a path with a sequence of edges corresponding to the sequence of rates in the left-hand
side in fig. 4.10 to form the main pathway. This expectation is confirmed if cs2, c13 and c4t = cs2

are small compared to cs1, c24 and c3t = cs1 , and c12 and c43 are bigger than c21 and c34. Paths
which do not contain horizontal contributions contradict rule 2 for rates in 3.2.2 and do not carry
flow along the network in the absence of an external force. Therefore they are rejected. So the
only paths to be listed finally correspond to the two in fig. 4.10 for rates, and the maximum flow
across the network is the sum of the flows of these two paths.

Fig. 4.34 shows the result realizing maximum flow for a (3, 3)-network where we have intro-
duced 22 non-zero capacities in such a way that the vertical capacities are small compared to the
horizontal capacities which are taken to be identical in this example. Here, the maximum flow
through the network is three units. Each of the three paths contributes one unit of flow. Paths
without vertical contributions are neglected as they do not occur in our original models. In this
simple example with identical values for horizontal and vertical capacities, respectively, the choice
of the three paths is not unique. The main pathway carries the maximum flow along the network.
In general, it cannot be found by listing flow-augmenting paths as every occurrence of an edge
reduces its actual capacity in following paths. So if we want to obtain the main pathway instead
of the paths realizing maximum flow, the flow of one path is calculated, then all the flows are
set to zero again and the next path is looked for. The numbering of the vertices causes the main
pathway to be found as one of the first paths if the general considerations as explained above hold.
Usually, the paths realizing maximum flow will be important paths carrying large flows because
of the rules used for their determination. So it is probable that at least for the first conformation
a “local” main pathway with respect to the conformation will be found.
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horizontal low fs1 f25 f69

horizontal high fs2 fs3 f14 f36 f47 f58 f8t f9t

vertical low f12 f23 f45 f54 f56 f65 f98 f87

vertical high f13 f79

state 1 s v1 v2 v5 v6 v9 v8 v7 t
state 2 s v2 v5 v6 v9 v8 t

state 3 - hor. s v3 v6 v9 t
state 3 - s-cyc. s v3 v6 v5 v4 v7 v9 t

Table 4.4: Top: list of costs or fees fij for edges in a (3, 3)-network and resulting shortest paths.
For each of the two classes of edges (horizontal or vertical) we make a differentiation between low
and high costs. Bottom: resulting low-cost paths grouped according to their starting states. The
path for state 1 realizes the absolute path of lowest costs for the network. The relative low-cost
path for state 3 does not contain vertical contributions, so the second lowest is listed, too.

4.5.5 Paths with minimal costs

In a way very similar to the one presented above for the capacities cij , we can associate costs or
fees fij to the edges of our networks. These costs among other points imply losses or gains of
physical or chemical energy or even a reduction of the lifetime of the protein or an increase in
stability. For simplicity the single costs are taken to be non-negative.

Algorithms which minimize the costs of transport along a network are usually called shortest-
path algorithms and named after Dijkstra. Since the name is misleading, we want to stress that
the shortest path along a network is not, as one might imagine, the path with the minimum
number of edges or vertices, but the one with the lowest costs. In our variant of the algorithm,
we make a distinction between shortest paths for various starting conformations of the motor,
i.e., depending on the state the particle is in when it enters the network on the left-hand side,
we search for respective shortest paths starting and ending in this state. If there are distinct
differences in the costs of horizontal transport vertical transitions between the states are favoured
as in the case of the idea of shifted potential barriers associated with the different levels. The
shortest-path algorithm of Dijkstra is a labelling algorithm which includes backtracking in order
to actually list the shortest path afterwards. A description is given in appendix E. Of course,
l-cycles do not occur, as they always increase the costs. Tab. 4.4 shows a list of costs and resulting
paths for a (3, 3)-network with 22 edges. Here we come across a situation where the lowest-cost
path starting with conformation 3 does not contain vertical contributions. This can happen in a
situation where the motor in this conformation experiences an effective potential which drives it in
the positive direction, whereas a change of conformation is sumptuous in contrast to our general
assumptions. In this way we can describe an situation which can occur in experiments, where a
motor gets caught in a certain conformation, it is practically “frozen” in its state, and then it is
pulled along its track.

When we determine the shortest pathway carrying a given fixed flow, we can call this a main
pathway in an alternative definition based on energetic considerations. The lowest-cost pathway
for a given fixed flow is favourable since walking along this way is possible without using up too
many resources, so it will be used with a high probability and, as a result, possibly carry a large
total current across the network. Of course, this simple dependence holds only as long as the
capacities for this lowest-cost path are large enough. If this is not the case and the lowest-cost
path is reached only from a rare starting conformation, it can be of little importance in spite of
its low costs.



Chapter 5

ATP-concentration and transport

properties

In this chapter we at first examine the dependence of the motor’s velocity on the ATP concentra-
tion. The energy for the movement of the molecular motor is released in the hydrolysis of ATP,
which is an enzymatic reaction. When the motor shows enzymatic activity, we have unbalanced
rates in our system describing the deviation from equilibrium and detailed balance. In order to re-
late the unbalanced rates to the concentration of ATP, we discuss the underlying reaction kinetics,
compare section 5.1. The dependence of the velocity of the motor on the ATP-concentration varies
with the number of centres of enzymatic activity and the type of the assumed reaction kinetics.

In section 5.2 we have a look at an alternative stochastic two-state model. This model has a
continuous x-direction and uses finite vertical transition widths, which we change gradually. We
determine transport coefficients and consider different explicit molecular interaction potentials.
The numerical solution provides us with a time evolution of the probabilities. This last section is
based on [73].

5.1 Reaction kinetics

In section 3.3 we have shown that the enzymatic activity of the motor proteins enters our (M, K)-
systems via breaking the conditions of detailed balance. If there is enzymatic activity for the motor
taking on a certain conformation at a specified location, the corresponding transition rate has an
unbalanced part. Without a loss of generality, we assume that the unbalanced rates are vertical
rates leading to conformational changes. Nevertheless, it is not clear yet how the unbalanced rates
are connected to the chemical reaction, the hydrolysis of ATP. This connection is established by
including the underlying reaction kinetics into our systems, which determine the dependence of
the unbalanced transition rates on the fuel or ATP concentration.

5.1.1 Michaelis-Menten equation

Just as many other intra- and extracellular proteins, molecular motors are enzymes [68]. They
are biological catalysts, which raise the speed of chemical reactions by influencing the energy of
activation. Enzymes have active sites which are crucial for their catalytic activity and their specific
reaction. Besides, they need specific binding bags in which they bind their substrates.

The enzyme reaction in the case of linear molecular motors is the hydrolysis of ATP, so ATP
is the motors’ substrate. The chemical equilibrium in the simplified reaction scheme

ATP ⇀↽ ADP + Pi. (5.1)

would be reached if
κ1ΓATP = κ2ΓADP ΓP (5.2)
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with the reaction rate constants κ1 and κ2 and the respective concentrations Γ of ATP, ADP and
phosphate P [43].

In actual experiments where the motor runs processively along its filament and produces a
net movement, the chemical equilibrium is broken, as will be explained later. In the following, we
consider the motor’s deviation from the equilibrium state, which here is described by the deviation
of the vertical transition rates from the conditions of detailed balance.

If the motor is in state (o, k) before, and in state (p, k) after the hydrolysis, the corresponding
unbalanced transition rates connecting the two vertices are

∆op (xk) = exp (Vo (xk)) κ1 (F ) ΓATP ≡ κ̂1 (F ) ΓATP (5.3)

and
∆po (xk) = exp (Vp (xk)) κ2 (F ) ΓADP ΓP ≡ κ̂2 (F ) ΓADP ΓP . (5.4)

Because in experimental situations the concentration of ATP will usually be high in the beginning,
and the concentration of ADP very low at the same time, the state of the system is far from
chemical equilibrium for small concentrations of motors within the time scale of the experiment.
There is almost no ADP, ΓADP is low so that ∆po (xk) ≈ 0. In this case we need a single unbalanced
vertical rate to describe the movement of a motor with one hydrolysis step in its motor cycle.

Strictly speaking, the hydrolysis of motor proteins as kinesin (K), which we have summarized
in (5.1), comprises several substeps. Kinesin binds to a microtubule (M), until ATP arrives and
binds to the kinesin molecule. Then the actual hydrolysis follows, in the course of which K/ADP
unbinds and phosphate is released,

M/K + ATP → M/K/ATP → M/K/ADP/Pi → M + K/ADP + Pi. (5.5)

The common way of describing the reaction kinetics in this sequence is to assume the simplest
case of an enzymatic catalyzed reaction, namely a reaction using a single molecule of the substrate
at a time. The unbalanced transition rate ∆op (xk) is then given by the Michaelis-Menten equation

∆op (xk) =
κ̃2 (F ) ΓATP

κ̃2 (F ) /κ̃1 (F ) + ΓATP
, (5.6)

with reaction rate constants κ̃1 and κ̃2 [69].

5.1.2 Allosteric effects

The Michaelis-Menten equation as stated in 5.1.1 is valid for simple systems. In the case of
molecular motors however, there might be allosteric centres which bind regulatory molecules so
that the dependence of the unbalanced rates ∆op (xk) on the ATP-concentration ΓATP is changed.
This discussion is new compared to [43].

Concept

If an effector, a ligand which influences the binding characteristics, binds to a regulatory binding
domain, which is in this case not identical with that of the substrate, there will be a conformational
change of the enzyme influencing the enzymatic activity. In such a situation the unbalanced parts
of the transition rates can show a sigmoidal dependence on ΓATP . In the simplest case the ∆op

obey

∆sigm.
op (xk) =

µ̃2 (F ) nΓn
ATP

µ̃2 (F ) /µ̃1 (F ) + Γn
ATP

(5.7)

with constants µ̃1 (F ), µ̃2 (F ) and a number n, which denotes the number of identical units of
the allosteric enzyme. The number n will be called the Hill coefficient in the following. The
abbreviation “sigm.” refers to “sigmoidal”.

Equation (5.7) is derived from the Hill equation which describes the binding of n molecules
of the substrate to the enzyme. Schnitzer and Block have suggested a Hill coefficient of one for
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Figure 5.1: Unbalanced part ∆op of the vertical transition rate as given by (5.6) for a Michaelis-
Menten dependence on ΓATP and by (5.7) for a Hill dependence with n = 2. The reaction constants
are chosen in such a way that the resulting curves are in a similar range. For small ΓATP , the
Michaelis-Menten curve increases linearly, whereas the Hill curve shows a sigmoidal behaviour.

kinesin [10], which means that one molecule of ATP is used per step of the motor. In the case
of myosin people usually assume one to be the right coefficient, too, though there has been a
controversial discussion [70, 71]. Although we do not rule out a binding of more than one molecule
of the substrate, we want to focus on allosteric effects as the reason for a sigmoidal dependence
on ΓATP in the following.

Fig. 5.1 shows the dependence of the unbalanced part ∆op of the vertical transition rate on
ΓATP for a Michaelis-Menten case and for a Hill case with n = 2. We keep in mind that the
dependence of the unbalanced part ∆op on ΓATP is determined by the underlying enzymatic
reaction and does not yet imply any statement about the dependence of the motor velocity on
ΓATP . The velocity of the motor protein will be calculated later on.

A further stage is the development of a sequential model where the binding sites of the macro-
molecule are used one after the other. Binding of a ligand induces a conformational change and
the transition takes place step after step in a sequential manner. G. S. Adair has developed an
equation which takes into account these single steps of binding. The constants of the partial steps
are assumed to be different, so that we effectively look at a more detailed version of (5.7). The
unbalanced rates are now assumed to be given by

∆det.
op (xk) =

ΓAT P

ρ̃1

+
2Γ2

AT P

ρ̃1ρ̃2

+ ... +
nΓn

AT P

ρ̃1ρ̃2...ρ̃n

1 + ΓAT P

ρ̃1

+
Γ2

AT P

ρ̃1ρ̃2

+ ... +
Γn

AT P

ρ̃1ρ̃2...ρ̃n

. (5.8)

The short form “det.” refers to “detailed”, and the ρ̃i are reaction constants again.

Application: Example of a Ratchet

Now, we study the influence a change in the assumed reaction kinetics has on the velocity of the
motor molecule in our models. We consider the case (M, K) = (3, 3) with one single unbalanced
transition rate ∆1 = ∆13 (x1) (fig. 5.2).

If the sequence (5.5) follows Michaelis-Menten kinetics the unbalanced vertical transition rate
is given by

∆−1
1 = (κ̃1 (F ) ΓATP )

−1
+ (κ̃2 (F ))

−1
(5.9)

with rate constants κ̃1 and κ̃2 which may depend on the external force F. The velocity of the
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Figure 5.2: Example of an (M, K) = (3, 3)-ratchet with one unbalanced transition ∆1 = ∆13 (x1).

molecular motor then results as

v (ΓATP ) =
g0 (F ) + g1 (F ) ΓATP

h0 (F ) + h1 (F ) ΓATP
(5.10)

with force-dependent coefficients gi and hi. (5.10) yields a Michaelis-Menten-type relation between
velocity v and ΓATP as suggested by [15, 10], compare (1.1). There is a linear increase in v for
small values of ΓATP and a saturation regime for large values of ΓATP .

In the general case, the use of Michaelis-Menten kinetics for several unbalanced transition rates
leads to the motor velocity

v (ΓATP ) =

∑Q
l=0 g̃l (F ) Γl

ATP∑Q
l=0 h̃l (F ) Γl

ATP

(5.11)

where Q ≤ K (M − 1) is the number of unbalanced rates, and g̃l and h̃l are coefficients which
depend on the external force F [43]. This relationship can simplify again for symmetry reasons,
e.g., for a motor with two identical heads.

If the motor contains allosteric domains binding regulatory molecules, the vertical transition
rate ∆1 exhibits a sigmoidal dependence on ΓATP as in (5.7).

We insert the sigmoidal dependence (5.7) into the expression for the motor velocity in our
model system. Then, the motor velocity is found to be

v (ΓATP ) =
p0 (F ) + p1 (F ) Γn

ATP + p2 (F ) nΓn
ATP

q0 (F ) + q1 (F ) Γn
ATP + q2 (F ) nΓn

ATP

(5.12)

with coefficients pi and qi, which depend on the external force again and the Hill coefficient n.
The general case for arbitrary Q is calculated as

v (ΓATP ) =

∑Q
l=0 p̃l (F, n) Γln

ATP∑Q
l=0 q̃n (F, n) Γln

ATP

(5.13)

with coefficients p̃l and q̃n which depend on F and n.
The left-hand side of fig. 5.3 shows plots of velocities where the single unbalanced rate is treated

according to Michaelis-Menten kinetics or otherwise fulfills the sigmoidal dependence as in (5.7).
The coefficients are g1 = h0 = h1 = 1, g0 = 0.1 and p1 = p2 = q0 = q1 = q2 = 1, p0 = 0.1 and
n = 2. The sigmoidal dependence of the unbalanced rate on the ATP-concentration ΓATP results
in a sigmoidal dependence of the velocity v on ΓATP on the other hand.

Now, we consider a restricted case of (5.8) with terms up to quadratic order in ΓATP and insert

∆det.
op (xk) =

ρ̂2ΓATP + 2εΓ2
ATP

ρ̂1ρ̂2 + ρ̂2ΓATP + Γ2
ATP

(5.14)
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Figure 5.3: Left-hand side: the velocity as a function of ΓATP in the Michaelis-Menten and
the sigmoidal case. Right-hand side: comparison between a Michaelis-Menten dependence and a
modified detailed case as in (5.14). These are qualitative curves, as we have inserted trial values
for the reaction constants; the absolute values are not expressive.

with a small parameter ε < 0.5 and constants ρ̂1 and ρ̂2. The resulting motor velocity is now
given by

v (ΓATP ) =
s0 (F ) + s1 (F ) ΓATP + s2 (F ) εΓ2

ATP + s3 (F ) Γ2
ATP

t0 (F ) + t1 (F ) ΓATP + t2 (F ) εΓ2
ATP + t3 (F ) Γ2

ATP

(5.15)

with coefficients si and ti. A general case with Q unbalanced transition rates will then result in

v (ΓATP ) =

∑Q
l=0

∑n
m=0 s̃l (F, n) Γlm

ATP∑Q
l=0

∑n
m=0 t̃l (F, n) Γlm

ATP

. (5.16)

As there are more terms contributing to t2 (F ) in the denominator than to s3 (F ) in the numerator
of (5.15), we can normally make the approximation that t2 (F ) > js3 (F ) where j is an integer
number larger than one. In this case the velocity has a maximum and decreases after reaching
this maximum. We might also assume that s3 (F ) equals zero so that the numerator does not
contain terms in Γ2

ATP without the small parameter ε, whereas t2 (F ) will still be different from
zero in general. The right-hand side of fig. 5.3 shows a comparison between a Michaelis-Menten
dependence and this limited detailed sigmoidal case. The coefficients are g1 = h0 = h1 = 1,
g0 = 0.1 and s1 = s2 = t0 = t1 = t2 = t3 = 1, s0 = 0.1 and s3 = 0 and ε = 0.1. The
corresponding curve in the limited detailed sigmoidal case has a maximum instead of showing a
saturation behaviour.

This curve resembles curves which have been measured in experiments for the velocity of kinesin
as a function of the concentration of various cofactors [72]. In this case one also has a maximum,
not a saturation regime.

Concerning the dependence of the velocity v on the ATP-concentration, experimental groups
fit Michaelis-Menten curves [72, 15, 10]. Nevertheless, the number of data points, especially in the
saturation regime, is usually not very large, and within the error bars it is in any way possible
that there is a sigmoidal behaviour or a maximum of the velocity in these curves. If the reaction
kinetics differ from the simple Michaelis-Menten case in the above discussed ways, our systems
yield such deviations of the velocity.

Even if we use Michaelis-Menten kinetics, the Michaelis-Menten-type behaviour for the velocity
is just the simplest relationship of a whole family of relationships as given by (5.16). It applies to
motors with a single forward pathway involving one hydrolysis process. In general, it is sensible
to assume several pathways, more than one process of hydrolysis of ATP and backward steps, too.
Then the more general relationships should apply.
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5.2 Potentials and transport coefficients

Up to now, the details of the molecular interaction potentials Um (x) have not been specified. In
this chapter, we examine different explicit examples of molecular interaction potentials Um (x) in
the context of a two-state model. The starting point here is a Fokker-Planck equation for each of
the states [40], so that the x-coordinate is taken to be continuous again, and active processes are
limited to vertical transitions. Using a numerical integration (T. Harms [73]), we study the effects
changing the width of the transition interval between the states has on the transport coefficients.
We also vary the molecular interaction potentials Um (x) with respect to the shape and the height
of the barrier and consider snapshots of the probabilities in the time evolution of the system.

5.2.1 Fokker-Planck equation and integration

We consider a system with two states m = 1, 2. As before, the stochastic motion of the motor in
each of the two states is taken to be described by the Fokker-Planck equation

∂

∂t
Pm = Dm

∂

∂x

(
∂Vm (x)

∂x
+

∂

∂x

)
Pm + Im (x, t) , (5.17)

where Pm (x, t) again denotes the probability that the motor is in state m at location x at time t.
The transition current densities Im depend on the transition rate functions Ωmn (x) as in (2.18).
In contrast to section 2.1, the transition rate functions are not parameterized in terms of delta
functions now, but are given by Ωmn (x) = ωmn (x). The transition rates ωmn (x) are piecewise
constant and placed around the minima of the corresponding potential with a finite width, see
(5.19).

The numerical solution of the above set of two partial differential equations is obtained with the
use of a finite differencing method . The Pm (x, t) are represented by their values at the discrete
set of points

xj = x0 + j∆, j = 0, 1, ..., J,

tn = t0 + n∆, n = 0, 1, ..., N. (5.18)

A combination of an implicit and an explicit FTCS (Forward Time Centered Space) scheme is
used in order to combine the stability of an implicit method with the second-order accuracy in
space and time [56]. In an explicit scheme, P n+1

j can be calculated explicitly from known values

for each j. The implicit scheme requires the solution of implicit equations which couple the P n+1
j

for different j.

5.2.2 Localizing transitions

As the transition rates ωmn (x) are piecewise constant and localized around the minima xm of the
corresponding molecular interaction potential, they are chosen as

ωmn (x) = ωm for xm − ε ≤ x ≤ xm + ε,

= 0 otherwise. (5.19)

The molecular interaction potentials of the two states are of type (c) as displayed on the right
in fig. 5.6, but the position of the maximum is shifted to lower values of x then in the figure.
The potential in the second state is shifted for half a period compared to the first one. As one
result of the integration, we obtain the effective transport coefficients velocity and diffusion, for
details compare [73]. Fig. 5.4 shows the dependence of the effective velocity veff and the diffusion
coefficient Deff on the transition rate ω, where we have chosen ω := ω1 = ω2. The curves refer to
transition widths of 0.2 and smaller. Here and in the following our parameters are dimensionless,
as we concentrate on qualitative results. Decreasing the transition width by decreasing ε shifts the
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Figure 5.4: Effective transport coefficients veff and Deff for different transition widths depending
on the rate ω.

location of the maxima to larger and larger values of ω. The slope in the linear regime decreases
with decreasing ε. A completely localized transition is the limiting case of the crossover from a
resonant to a saturation regime as favoured by the Michaelis-Menten type velocity curves.

If the transition rates are low, the stationary distribution of each state in the effective medium
approximation is a Boltzmann distribution [73]. The transition rates of the states determine the
weight of the respective state. For small values of ω12 and ω21, the leading term of the drift
velocity is

veff ≈ `

(
2

`

∫

I1

ω12 (x) dx

∫

I2

ω21 (x) dx

)
/

∫

I1,2

(ω12 (x) + ω21 (x)) dx

·

∫ `

0

1

`

(
exp (U1 (x) /T )

〈exp (U1/T )〉
−

exp (U2 (x) /T )

〈exp (U2/T )〉

)
dx

·

∫ x

0

1

`

(
exp (−U1 (y) /T )

〈exp (−U1/T )〉
−

exp (−U2 (y) /T )

〈exp (−U2/T )〉

)
dy (5.20)

with 〈f〉 =
∫ `

0
dxf (x) /`. I1, I2 and I1,2 denote the splitting up of the interval I = [0, `] into

regions where the respective integrands are steady. If we insert ω1 = ω2 = ω, the weight of the
states results as 2εω/`. The ` is the period of our potentials.

For the choice ε = `/2, this pre-factor is given by ω again. In this way we confirm the linear
dependence of veff on ω, which has been calculated for the case of transition rates which do
not depend on the spatial coordinate x [73]. The slope of the linear regime as given by 2εω/`
decreases for decreasing ε as indicated by the numerical results on the left-hand side of fig. 5.4.
The left of fig. 5.5 shows the curves for the widths 0.02 and 0.002 in the region of small ω as well
as the straight lines given by εωc, where ε is the width and c a constant arising from (5.20). The
correspondence between the numerically obtained curves and the straight lines is very good and
also holds in the case of smaller transition widths. For ε = 0.2, however, the actual slope is about
four times smaller than the one suggested by the straight line, because the width is now in the
range of the potential period ` where the influence of the actual form of the potentials gains in
importance compared to the transition width.

The diffusion coefficient is given by

Deff ≈
T

D1

2

`

∫

I1

ω12 (x) dx/

∫

I1,2

(ω12 (x) + ω21 (x)) dx
1

〈exp (U1/T )〉 〈exp (−U1/T )〉

+
T

D2

2

`

∫

I2

ω21 (x) dx/

∫

I1,2

(ω12 (x) + ω21 (x)) dx
1

〈exp (U2/T )〉 〈exp (−U2/T )〉
,

(5.21)

which is the average of the diffusion coefficients of the single states weighted by the transition
rates. As ω1 = ω2 = ω, the dependence on ω as well as on ε drops out, so that the diffusion
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coefficient starts with a constant and in general non-zero value for small ω. However, this is a very
rough estimate, as for larger values of ω a regime of linear increase in ω is reached soon [73].

If the transition rates are large, the switching between the states is much faster than the
transport in a single state. The particle experiences one effective potential Ueff , and veff becomes

veff ≈
T

D1 + D2
Deff

2

`

(∫

I1

ω12 (x) dx

∫

I2

ω21 (x) dx

)
/

∫

I1,2

(ω12 (x) + ω21 (x))
3
dx

·

∫ L

0

1

`

(
dU1/T

dx
−

dU2/T

dx

)2
dUeff/T

dx
dx (5.22)

with

Ueff ≈
2

`

(∫

I1

ω12 (x) dxU1 +

∫

I2

ω21 (x) dxU2

)
/

(∫

I1,2

(ω12 (x) + ω21 (x)) dx

)
. (5.23)

The weight factor concerning the transition rates is

2

`

(∫

I1

ω12 (x) dx

∫

I2

ω21 (x) dx

)
/

∫

I1,2

(
ω3

12 (x) + ... + ω3
21 (x)

)
dx

=
2

`

(
4ε2ω2

)
/
(
2εω3 + ... + 2εω3

)
= O (ε/ω) . (5.24)

The relationship in O (ε/ω) shows that, for large values of ω, veff decreases with ε. If ε is very
small, the effect of variations in ω minimizes for comparable large values of ω, so that we observe
a saturation-like behaviour as indicated by the numerical results on the left-hand side of fig. 5.4.
For ω1 = ω2 = ω, the diffusion coefficient in the regime of large transition rates is accordingly
given by

Deff ≈
T

D1 + D2

1

〈exp (Ueff/T )〉 〈exp (−Ueff/T )〉
, (5.25)

which leads to a constant again, as the dependence on ω drops out.

5.2.3 Molecular interaction potentials

In the following, we compare the transport coefficients we obtain for different molecular interaction
potentials. Fig. 5.6 shows the three different types of potentials where U is given by U ≡ U1 (x/`).
(c) shows a standard sawtooth potential, whereas the steep barriers of the potentials (a) and (b)
reflect the limited extensibility of the molecule [40]. The underlying idea is that we consider a
two-headed motor protein, e.g. kinesin. Besides, we imagine a situation where one tries to displace
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Figure 5.6: Periodic molecular interaction potentials of types (a), (b) and (c).
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Figure 5.7: Velocities of the motor particle as a function of the unbalanced vertical rate for the
model potentials (a), (b) and (c) as shown in fig. 5.6. The calculation has been done using the
results obtained in 3.1.2.

the unbound head. If it is displaced for about 16 nm this corresponds to a displacement of the
motor protein’s centre of mass of about 8 nm. A displacement in this range is possible because of
the flexibility of the neck region of the protein. If one causes an even further displacement, this
will result in an over-stretching or a considerable distortion.

The ramp in the models of fig. 5.6 represents those values of displacements of the motor protein
which can be reached under “normal” circumstances. The barrier on the other hand belongs to
the forbidden region of displacements. The total area over one period of the geometric shapes in
the cases (a) and (c) is equal.

Fig. 5.7 shows the velocities of the motor particles as a function of a single unbalanced vertical
rate in the case of the three different model molecular interaction potentials. The calculation has
been done by inserting the potential shapes into the results as obtained in 3.1.2 for a system with
two states and here with localized transitions again. The potentials in the two states are shifted
by half a potential period, 0.5`. The unbalanced transition is ω12 (x1) =: ω located at x1 = 0.
There is no external force, but a passive relaxation back into the first state with rate ω21 (x2) at
x2 = 0.5`. The resulting curve for the velocity for model potential (a) lies above curve (b), which
again shows a higher saturation value than in the case of model (c). Example (a) with its single
ramp leads to the highest velocities within the complete range of values of ω. The single ramp
together with the high barrier prevent the motor from stepping back. Backward steps are most
likely in the potential landscape (c), accordingly the velocity is lowest for case (c).

In the next step, we have a look at the transport coefficients in dependence on the different
values of the external force F . We use the numerical approach as in 5.2.1 and 5.2.2, which in
particular means that the transition rates have finite widths again. The transport coefficients are
displayed in fig. 5.8.

In the case of a steep barrier as given by (b), the velocity is positive for large values of the
external force and approaches zero as F is reduced further and further. There is no change in sign
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Figure 5.9: Potential U1 (x) inserted in 5.2.4.

for the velocity. Correspondingly, the diffusion coefficient decreases and its curve can be fitted by
a straight line.

Molecular interaction potentials of the simple sawtooth type as (c) lead to a change of the sign
of the velocity if the external force F decreases beyond a certain value. Over the whole range of
values of F , the velocity increases monotonically with the external force. The change of sign in the
velocity is coupled to a minimum of the diffusion. As the transition rates have finite widths, the
advantage of the steep barrier in preventing backward movement is partly lost, and the velocities
in the cases (b) and (c) are comparable.

5.2.4 Free diffusion

The molecular interaction potentials can be different in each state. Now, we compare the case
U2 (x) = U1 (x − `/2) to U2 (x) = 0. In the second example we have free diffusion in state two.
The potentials U1 (x) are inserted as depicted in fig. 5.9.

Fig. 5.10 shows how free diffusion in the second state influences the transport coefficients by
reducing the velocity and raising diffusion as expected, i.e., directed transport is hindered.

Snapshots of the local distribution of the total probability Ptot = P1 + P2 show that the
maximal values of Ptot are higher in the case of free diffusion in state 2 compared to the case of
two shifted potentials. At the same time the fluctuations are larger, too, compare fig. 5.11. This
is easily explained as the particles tend to stay near the minima of the respective potentials. The
minima and maxima are lacking in the case of U2 (x) = 0, so that the local probability in state
2 does not attain any sharp peaks, which, in the case of shifted potentials, are opposed to the
peaks of state 1. For shifted potentials we compare an extinction of the minima and maxima of
the probabilities similar to fig. 4.25.

If the frequency ω of switching between the two states is increased, this leads to a probability
distribution which is advanced further in the x-direction compared to a distribution with a lower
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Figure 5.10: Left-hand side: the velocity reduces remarkably in the case of free diffusion in the
second state. Right-hand side: diffusion for shifted potentials (solid curve) compared to free
diffusion (dotted curve) in state two.
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Figure 5.11: Left: The total probability Ptot depending on the x- coordinate for shifted potentials
versus no potential in state 2 for ω = 500 at t = 10. Right: The total probability for shifted
potentials for ω = 100 and ω = 500 at t = 10.

value of ω at the same time, as in this regime of ω larger values promote the directed transport.
The fluctuations in the probability distribution are smaller for larger ω. Comparing this result to
the result from the discrete Master-equation computation displayed in fig. 4.26, we conclude that
we find a comparable behaviour with an ”optimal” value of the rates in order to minimize the
effects of the potential maxima and minima here.

The examples show that the approach with a continuous x-direction and finite transitions
widths on the one hand and the discrete Master-equation approach presented in 4.4 on the other
hand lead to qualitatively similar results. This is a good confirmation for the network-based
approach.
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Chapter 6

Conclusions And Outlook

Linear molecular motors use the energy released in the hydrolysis of ATP to move other molecules,
their cargoes, along filamental tracks. Coupled to the hydrolysis of ATP is a cycle of conformational
changes of the motor protein. Such a motor cycle leads to a single step along the filament.

Here, we have examined stochastic models for these motor cycles, which determine the trans-
port properties for the directed walks of the motor along its filament. In the short time regime of
conformational changes and motor cycles, the motor performs single steps in the range of about
10 nm, and the corresponding stepping times are of the order of 10 ms, if there is a sufficient
amount of ATP around. This short time regime determines the regime of directed walks where
the motor takes up to several hundred steps along its track.

The main ingredients of our stochastic models as introduced in chapter 2 are a spatial co-
ordinate x describing the displacement of the motor along the filament, a set of M states or
conformations the motor particle can attain as well as a set of K locations at which transitions
between these different states take place.

The ratchet models can be solved analytically using a transfer matrix formalism as described
in chapter 2. Besides, we have shown that they can be mapped onto stochastic networks with
MK discrete states or vertices. Finally, we obtain a general solution scheme by which the total
current can be calculated.

In chapter 3 we have calculated explicit solutions for stochastic systems with up to four states
or conformations and with one to four locations for transitions between the states. The total
current which is carried along such a network is the quotient of two polynomials which depend on
the transitions between the states via the corresponding vertical transition rates. The current is
proportional to the motor’ s velocity. From the explicit solutions and from the general properties
of the matrices used for the computations, we derive a number of universal rules which impose
restrictions on the dependence of the velocity on the vertical transition rates connecting the states.
The terms in the numerator polynomial of the total current are shown to be connected to paths
through the networks if corresponding implicit horizontal rates are added. If we do not apply an
external force, every such term of the first polynomial can be mapped onto an s-cycle spanning
the network in horizontal direction.

If a given motor follows a stepping scheme with a known number of different conformations
and locations, the above-mentioned rules enable us to derive combinations of vertical rates which
contribute to its velocity via certain paths entering the numerator polynomial. Furthermore, we
are able to exclude those combinations which do not contribute, even if we have not explicitly
calculated the solution of this special model.

In principle, our models are not limited as far as the number of their states or locations is
concerned. In this way, quite a variety of different stepping mechanisms for different motors can
be described and new findings about how a specific motor walks can be integrated. As more and
more experiments are performed, people frequently identify new substeps in the stepping schemes
of motors. These substeps can easily be modelled in our approach.

In the first section of chapter 4 we have shown how decoupled states or subsystems can be
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handled. Although for decoupled states a straightforward calculation as used for the model systems
in the preceding chapter fails due to the singularity of the underlying matrices, the subsystems
are inherent in these matrices. States or subsystems without a direct or indirect connection to the
remaining system play a role if the motor can, with a certain probability, attain conformations
which exclude transitions into certain other conformations, which might be the case if there is,
for example, no possibility of the motor binding ATP. Likewise, in a system with decoupling
we can include additional states which are needed for the description of certain mutants of the
motor or faulty motor proteins. In addition to the “normal” or “healthy” stepping, we then have
alternative paths if such a special situation occurs. The introduction of a control parameter
coupling two identical subsystems reveals bifurcations with different branches for the internal rates
of the subsystems, while the total current in the stationary state is fixed, so that the“macroscopic”
appearance corresponds to different “microscopic” configurations.

In the sections 4.2 and 4.3 we introduce active elements or unbalanced rates in other than the
vertical and, in particular, in the horizontal direction. One way of achieving this is by distortion
of the networks as done in 4.2. The new approach in 4.3 is based on a discrete Master equation.
This no longer requires horizontal transition rates fulfilling the conditions of detailed balance,
but allows us to view arbitrary horizontal rates, if we start from the Master equation without
considering its former derivation. The unbalanced rates drive the transport in horizontal direction
or any other direction obtained by distorting the underlying networks.

Now, the total current obtained from the Master-equation calculations explicitly depends on
the vertical and also on the horizontal rates of the systems. Its numerator polynomial contains
terms with complete paths of vertical and horizontal rates along the network. From calculations in
model systems we derive universal rules for the dependence of the total current on all the transition
rates of the system. The results of the model systems relate one and the same combination of
vertical rates to several forward and backward paths with possible additional horizontal rates
fulfilling rules analogous to the ones derived before for vertical rates.

By integrating the discrete Master equation numerically, it is possible to take into account
larger systems where the spatial periodicity comprises a number of steps as shown in section 4.4.
Beginning with a certain probability distribution, we look at how the stationary state is reached
with ongoing time. Doing so, we examine the hindrance of the transport by a defect or obstacle
on its track reducing the total current. The dependence of the motor’s transport on a single
conformation, which is attained in the course of a multi-state stepping process, can be significant,
if this conformation allows for fast directed transport or otherwise for no directed transport at all
and if there are few possibilities of leaving this conformation again. Several results concerning the
time evolution of the systems are confirmed in a Markov-chain approach.

In the field of enzyme kinetics, one usually distinguishes one special cycle of chemical processes
which is then called the main pathway of the enzyme. In our system this is the positive s-cycle
carrying the largest current along the network.

In section 4.5 we have discussed how possible “candidates” for this main pathway can be iden-
tified in a special system. If we have maximum rates given in a system, these rates correspond
to an upper limit of transport. The systems are then associated with flow networks with certain
capacities for the edges. A number of paths realizing maximum flow along the network is deter-
mined. If the flow is fixed, a preferred pathway will be one with low costs. From our models
we suggest that the main pathway irregardless of its importance is not the only pathway through
the network. Furthermore, there are other pathways whose contributions might be smaller, but
still existent. This view is already accepted for a number of chemical reactions, and it can be
interesting to examine such alternative pathways for molecular motors, too.

The network-oriented approach to the movements of molecular motors has turned out to offer a
simple picture for the motor cycles which nevertheless comprises many details of motor transport.
This can be an impulse to further models.

The underlying reaction kinetics of the hydrolysis of ATP or other chemical processes enters
our models via the dependence of the unbalanced rates on the respective concentrations, here the
concentration of ATP. We have shown in section 5.1 that if we assume different reaction kinetics
for the dependence on the concentration of ATP, this leads to velocities whose dependence on the
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ATP-concentration can differ from the usually assumed Michaelis-Menten type behaviour. Apart
from the Michaelis-Menten curves for the simple case of Michaelis-Menten kinetics and a single
unbalanced rate, we obtain curves with sigmoidal courses or maxima. These differences can occur
due to allosteric effects when the motor binds regulatory molecules. The tolerances and the low
number of data points in the present experimental results still offer possibilities for such deviating
dependences which might be determined in future experiments.

In section 5.2 we have looked at the influences different choices of the molecular interaction
potentials have on the transport properties in systems without active horizontal transport. Besides,
we have examined the effects of localized vertical transitions as used in our networks compared
to other models with finite transition widths, where the horizontal direction is continuous again.
If the widths are small, the maxima of the transport coefficients are shifted to large rates and we
approach the crossover to a saturation regime. Some of the qualitative results obtained from our
network models as, for example, for the time evolution of the probabilities, are comparable to the
results of these alternative models. In this way we have been able to elucidate the characteristics
of our models as well as the results when inserting experimental data.

Our stochastic models can be mapped onto networks, which simplifies the calculations and offers
possibilities for approaches from the field of graph theory. The models are meant to qualitatively
describe a variety of different features of motor transport rather than to fit data for the stepping
process of a certain motor construct. In the context of our models we can handle backward steps
and substeps, transient conformations, faulty motors and mutants, periodic defects of the filament,
active elements in vertical, horizontal or any distorted direction as well as the idea of a main and
a couple of minor pathways. The future challenge will be the building in of newly discovered
properties and characteristics of the motors and their tracks.
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Appendix A

Matrices A(M,K)

In the following sections A.1-A.3 we list the matrix elements A
(M,K)
ij , where i indicates the corre-

sponding row and j the column, for the general model systems (M, K) = (2, 3), (M, K) = (2, 4)
and (M, K) = (3, 2).

The sections A.4 and A.5 show the derivation of matrices describing subsystems of an (M, K) =
(3, 2) and an (M, K) = (2, 4)-system, respectively.

A.1 Matrix A(2,3)

Here, we list the matrix elements of A(2,3). The notation is as given in chapter 2.

A
(2,3)
11 = E1 (x1, x2) ω12 (x2) − (−E1 (x2, x3) − E1 (x1, x2) (e1 (x2, x3) + E1 (x2, x3)

`Ωω12 (x2))) ω12 (x3) + E1 (x1, x2) E2 (x2, x3) `Ωω12 (x2) ω21 (x3)

A
(2,3)
12 = −E1 (x2, x3) − E1 (x3, x1 + `) /e1 (x3, x1 + `) − E1 (x1, x2)

(e1 (x2, x3) + E1 (x2, x3)) `Ωω12 (x2)

A
(2,3)
13 = E1 (x1, x2) E2 (x2, x3) `Ωω12 (x2)

A
(2,3)
14 = −E1 (x1) − E1 (x1, x2)

(
E1 (x2) − E1 (x3)

)
`Ωω12 (x2)

+E1 (x1, x2)
(
E2 (x2) − E2 (x3)

)
`Ωω21 (x2)

A
(2,3)
21 = − (E2 (x1, x2) ω21 (x2)) − E1 (x2, x3) E2 (x1, x2) `Ωω12 (x3) ω21 (x2)

+ (−E2 (x2, x3) E2 (x1, x2) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3)

A
(2,3)
22 = E1 (x2, x3) E2 (x1, x2) `Ωω21 (x2)

A
(2,3)
23 = −E2 (x2, x3) − E2 (x3, x1 + `) /e2 (x3, x1 + `) − E2 (x1, x2)

(e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))

A
(2,3)
24 = −E2 (x1) + E2 (x1, x2)

(
E1 (x2) − E1 (x3)

)
`Ωω21 (x2)

−E2 (x1, x2)
(
E2 (x2) − E2 (x3)

)
`Ωω21 (x2)

A
(2,3)
31 = −ω12 (x1) − (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2)

−E2 (x1, x2) `Ωω12 (x1) ω21 (x2) − ω12 (x3) (E1 (x2, x3) `Ωω12 (x1)

+ (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))

+E1 (x2, x3) E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

)
+ (− (E2 (x2, x3) `Ωω12 (x1))

−E2 (x2, x3) `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2)

−E2 (x1, x2) `Ωω12 (x1) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3)

A
(2,3)
32 = −1/e1 (x3, x4) + E1 (x2, x3) `Ωω12 (x1)

I
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+ (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))

+E1 (x2, x3) E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

A
(2,3)
33 = − (E2 (x2, x3) `Ωω12 (x1)) − E2 (x2, x3) `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1))

ω12 (x2) − E2 (x1, x2) `Ωω12 (x1) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))

A
(2,3)
34 = e1 +

(
E1 (x1) − E1 (x3)

)
`Ωω12 (x1) −

(
E2 (x1) − E2 (x3)

)
`Ωω12 (x1)

−
(
E1 (x2) − E1 (x3)

)
`Ω (− ((e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2))

−E2 (x1, x2) `Ωω12 (x1) ω21 (x2)) −
(
E2 (x2) − E2 (x3)

)
`Ω

((e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x2)) ω12 (x1) + E2 (x1, x2) `Ωω12 (x1) ω21 (x2))

A
(2,3)
41 = ω21 (x1) + E1 (x1, x2) `Ωω12 (x2) ω21 (x1) + (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1))

ω21 (x2) − ω12 (x3) (− (E1 (x2, x3) `Ωω21 (x1)) − E1 (x1, x2) `Ω

(e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)) ω21 (x1) − E1 (x2, x3) `Ω

(e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2)) +(
E2 (x2, x3) `Ωω21 (x1) + E1 (x1, x2) E2 (x2, x3) `2

Ωω12 (x2) ω21 (x1)

+ (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) + (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2)))

ω21 (x3)

A
(2,3)
42 = −E1 (x2, x3) `Ωω21 (x1) − E1 (x1, x2) `Ω (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))

ω21 (x1) − E1 (x2, x3) `Ω (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2)

A
(2,3)
43 = −1/e2 (x3, x4) + E2 (x2, x3) `Ωω21 (x1)

+E1 (x1, x2) E2 (x2, x3) `2
Ωω12 (x2) ω21 (x1) + (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1))

(e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))

A
(2,3)
44 = e2 −

(
E1 (x1) − E1 (x3)

)
`Ωω21 (x1) +

(
E2 (x1) − E2 (x3)

)
`Ωω21 (x1)

−
(
E2 (x2) − E2 (x3)

)
`Ω (− (E1 (x1, x2) `Ωω12 (x2) ω21 (x1))

− (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2))

−
(
E1 (x2) − E1 (x3)

)
`Ω (E1 (x1, x2) `Ωω12 (x2) ω21 (x1)

+ (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2) (A.1)

A.2 Matrix A(2,4)

In the following the elements of the 4× 4-matrix A(2,4) as used for calculations in 3.1.2 are listed.

A
(2,4)
11 = E1 (x1, x2) ω12 (x2) − (−E1 (x2, x3) − E1 (x1, x2) (e1 (x2, x3)

+E1 (x2, x3) `Ωω12 (x2))) ω12 (x3) + E1 (x1, x2) E2 (x2, x3) `Ω

ω12 (x2) ω21 (x3) − ω12 (x4) (− (E1 (x3, x4) (1 + E1 (x1, x2) `Ωω12 (x2)))

+ (−E1 (x2, x3) − E1 (x1, x2) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)))

(e1 (x3, x4) + E1 (x3, x4)Ω ω12 (x3)) − E1 (x1, x2) E1 (x3, x4) E2 (x2, x3)

`2
Ωω12 (x2) ω21 (x3)

)
+ (E1 (x1, x2) E2 (x3, x4) `Ωω12 (x2) − E2 (x3, x4) `Ω

(−E1 (x2, x3) − E1 (x1, x2) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)))

ω12 (x3) + E1 (x1, x2) E2 (x2, x3) `Ωω12 (x2) (e2 (x3, x4)

+E2 (x1, x3) `Ωω21 (x3))) ω21 (x4)

A
(2,4)
12 = −E1 (x4, x1 + `) /e1 (x4, x1 + `) − E1 (x3, x4) (1 + E1 (x1, x2) `Ωω12 (x2))

+ (−E1 (x2, x3) − E1 (x1, x2) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)))

(e1 (x3, x4) + E1 (x3, x4) `Ωω12 (x3)) − E1 (x1, x2) E1 (x3, x4) E2 (x2, x3)
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`2
Ωω12 (x2) ω21 (x3)

A
(2,4)
13 = E1 (x1, x2) E2 (x3, x4) `Ωω12 (x2) − E2 (x3, x4) `Ω (−E1 (x2, x3) − E1 (x1, x2)

(e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))) ω12 (x3) + E1 (x1, x2) E2 (x2, x3)

`Ωω12 (x2) (e2 (x3, x4) + E2 (x3, x4) `Ωω21 (x3))

A
(2,4)
14 = −E1 (x1) − E1 (x1, x2)

(
E1 (x2) − E1 (x4)

)
`Ωω12 (x2) + E1 (x1, x2)(

E2 (x2) − E2 (x4)
)
`Ωω12 (x2) −

(
E2 (x3) − E2 (x4)

)
`Ω

((−E1 (x2, x3) − E1 (x1, x2) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))) ω12 (x3)

−E1 (x1, x2) E2 (x2, x3) `Ωω12 (x2) ω21 (x3)) −
(
E1 (x3) − E1 (x4)

)
`Ω

(− ((−E1 (x2, x3) − E1 (x1, x2) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))) ω12 (x3))

E1 (x1, x2) E2 (x2, x3) `Ωω12 (x2) ω21 (x3))

A
(2,4)
21 = −E2 (x1, x2) ω21 (x2) − E1 (x2, x3) E2 (x1, x2) `Ωω12 (x3) ω21 (x2)

+ (−E2 (x2, x3) − E2 (x1, x2) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3)

−ω12 (x4) (E1 (x3, x4) E2 (x1, x2) `Ωω21 (x2) + E1 (x2, x3) E2 (x1, x2) `Ω

(e1 (x3, x4) + E1 (x3, x4) `Ωω12 (x3)) ω21 (x2) − E1 (x3, x4) `Ω (−E2 (x2, x3)

−E2 (x1, x2) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3))

+
((
−E1 (x2, x3) E2 (x1, x2) E2 (x3, x4) `2

Ωω12 (x3) ω21 (x2)
)
− E2 (x3, x4)

(1 + E2 (x1, x2) `Ωω21 (x2)) + (−E2 (x2, x3) − E2 (x1, x2)

(e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) (e2 (x3, x4) + E2 (x3, x4) `Ωω21 (x3)))

ω21 (x4)

A
(2,4)
22 = E1 (x3, x4) E2 (x1, x2) `Ωω21 (x2) + E1 (x2, x3) E2 (x1, x2) `Ω (e1 (x3, x4)

+E1 (x3, x4) `Ωω12 (x3)) ω21 (x2) − E1 (x3, x4) `Ω (−E2 (x2, x3) − E2 (x1, x2)

(e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3)

A
(2,4)
23 = −E2 (x4, x1 + `) /e2 (x4, x1 + `) − E1 (x2, x3) E2 (x1, x2) E2 (x3, x4) `2

Ωω12 (x3)

ω21 (x2) − E2 (x3, x4) (1 + E2 (x1, x2) `Ωω21 (x2)) + (−E2 (x2, x3) − E2 (x1, x2)

(e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) (e2 (x3, x4) + E2 (x3, x4) `Ωω21 (x3))

A
(2,4)
24 = −E2 (x1) + E2 (x1, x2)

(
E1 (x2) − E1 (x4)

)
`Ωω21 (x2) − E2 (x1, x2)(

E2 (x2) − E2 (x4)
)
`Ωω21 (x2) −

(
E2 (x3) − E2 (x4)

)
`Ω

(E1 (x2, x3) E2 (x1, x2) `Ωω12 (x3) ω21 (x2) − (E2 (x2, x3) − E2 (x1, x2) (e2 (x2, x3)

+E2 (x2, x3) `Ωω21 (x2))) ω21 (x3)) −
(
E1 (x3) − E1 (x4)

)
`Ω

(− (E1 (x2, x3) E2 (x1, x2) `Ωω12 (x3) ω21 (x2)) + (−E2 (x2, x3) − E2 (x1, x2)

(e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3))

A
(2,4)
31 = −ω12 (x1) − (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2) − E2 (x1, x2) `Ωω12 (x1)

ω21 (x2) − ω12 (x3) (E1 (x2, x3) `Ωω12 (x1) + (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1))

(e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)) + E1 (x2, x3) E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

)

+ (− (E2 (x2, x3) `Ωω12 (x1)) − E2 (x2, x3) `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1))

ω12 (x2) − E2 (x1, x2) `Ωω12 (x1) (E2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3)

−ω12 (x4) (− (E1 (x3, x4) (− (`Ωω12 (x1)) − `Ω (e1 (x1, x2) + E1 (x1, x2) `Ω)

ω12 (x2) − E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

))
+ (e1 (x3, x4) + E1 (x3, x4) `Ωω12 (x3))

(E1 (x2, x3) `Ωω12 (x1) + (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) (e1 (x2, x3)

+E1 (x2, x3) `Ωω12 (x2)) + E1 (x2, x3) E2 (x1, x2) `2
Ω ω12 (x1) ω21 (x2)) − E1 (x3, x4)

`Ω (− (E2 (x2, x3) `Ωω12 (x1)) − E2 (x2, x3) `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1))

ω12 (x2) − E2 (x1, x2) `Ωω12 (x1) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3))
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+ (− (E2 (x3, x4) (`Ωω12 (x1) + `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2)

+E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

))
− E2 (x3, x4) `Ωω12 (x3) (E1 (x2, x3) `Ωω12 (x1)

+ (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))

+E1 (x2, x3) E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

)
+ (− (E2 (x2, x3) `Ωω12 (x1))

−E2 (x2, x3) `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2) − E2 (x1, x2)

`Ωω12 (x1) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) (e2 (x3, x4)

+E2 (x3, x4) `Ωω21 (x3))) ω21 (x4)

A
(2,4)
32 = −1/e1 (x4, x1 + `) − E1 (x3, x4) (− (`Ωω12 (x1)) − `Ω (e1 (x1, x2)

+E1 (x1, x2) `Ωω12 (x1)) ω12 (x2) − E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

)

+ (e1 (x3, x4) + E1 (x3, x4) `Ωω12 (x3)) (E1 (x2, x3) `Ωω12 (x1) + (e1 (x1, x2)

+E1 (x1, x2) `Ωω12 (x1)) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)) + E1 (x2, x3)

E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

)
− E1 (x3, x4) `Ω (− (E2 (x2, x3) `Ωω12 (x1))

−E2 (x2, x3) `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2) − E2 (x1, x2)

`Ωω12 (x1) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3)

A
(2,4)
33 = − (E2 (x3, x4) (`Ωω12 (x1) + `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2)

+E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

))
− E2 (x3, x4) `Ωω12 (x3) (E1 (x2, x3) `Ω

ω12 (x1) + (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))

+E1 (x2, x3) E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

)
+ (− (E2 (x2, x3) `Ωω12 (x1))

−E2 (x2, x3) `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2) − E2 (x1, x2) `Ω

ω12 (x1) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) (e2 (x3, x4) + E2 (x3, x4) `Ωω21 (x3))

A
(2,4)
34 = e1 +

(
E1 (x1) − E1 (x4)

)
`Ωω12 (x1) −

(
E2 (x1) − E2 (x4)

)
`Ωω12 (x1)

−
(
E1 (x2) − E1 (x4)

)
`Ω (− ((e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2))

−E2 (x1, x2) `Ωω12 (x1) ω21 (x2)) −
(
E2 (x2) − E2 (x4)

)
`Ω ((e1 (x1, x2)

+E1 (x1, x2) `Ωω12 (x1)) ω12 (x2) + E2 (x1, x2) `Ωω12 (x1) ω21 (x2))

−
(
E2 (x3) − E2 (x4)

)
`Ω (ω12 (x3) (E1 (x2, x3) `Ωω12 (x1)

+ (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))

+E1 (x2, x3) E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

)
− (− (E2 (x2, x3) `Ωω12 (x1))

−E2 (x2, x3) `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2) − E2 (x1, x2) `Ω

ω12 (x1) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3))

−
(
E1 (x3) − E1 (x4)

)
`Ω (− (ω12 (x3) (E1 (x2, x3) `Ωω12 (x1) + (e1 (x1, x2)

+E1 (x1, x2) `Ωω12 (x1)) (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))

+E1 (x2, x3) E2 (x1, x2) `2
Ωω12 (x1) ω21 (x2)

))
+ (− (E2 (x2, x3) `Ωω12 (x1))

−E2 (x2, x3) `Ω (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1)) ω12 (x2) − E2 (x1, x2)

`Ωω12 (x1) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2)) ω21 (x3))

A
(2,4)
41 = ω21 (x1) + E1 (x1, x2) `Ωω12 (x2) ω21 (x1) + (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1))

ω21 (x2) − ω12 (x3) (− (E1 (x2, x3) `Ωω21 (x1)) − E1 (x1, x2) `Ω (e1 (x2, x3)

+E1 (x2, x3) `Ωω12 (x2)) ω21 (x1) − E1 (x2, x3) `Ω (e2 (x1, x2) + E2 (x1, x2)

`Ωω21 (x1)) ω21 (x2)) + (E2 (x2, x3) `Ωω21 (x1) + E1 (x1, x2) E2 (x2, x3)

`2
Ωω12 (x2) ω21 (x1) + (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) (e2 (x2, x3)

)

+E2 (x2, x3) `Ωω21 (x2)) ω21 (x3) − ω12 (x4) (− (E1 (x3, x4) (`Ωω21 (x1)

+E1 (x1, x2) `2
Ωω12 (x2) ω21 (x1) + `Ω (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1))

ω21 (x2))) + (e1 (x3, x4) + E1 (x3, x4) `Ωω12 (x3)) (− (E1 (x2, x3) `Ωω21 (x1))



A.2. MATRIX A(2,4) V

−E1 (x1, x2) `Ω (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)) ω21 (x1) − E1 (x2, x3)

`Ω (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2)) − E1 (x3, x4) `Ω

(E2 (x2, x3) `Ωω21 (x1) + E1 (x1, x2) E2 (x2, x3) `2
Ωω12 (x2) ω21 (x1)

+ (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2)) ω21 (x3))

+
(
−
(
E2 (x3, x4)

(
−`Ωω21 (x1) − E1 (x1, x2) `2

Ωω12 (x2) ω21 (x1)

−`Ω (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2)))

−E2 (x3, x4) `Ωω12 (x3) (−E1 (x2, x3) `Ωω21 (x1) − E1 (x1, x2) `Ω

(e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)) ω21 (x1) − E1 (x2, x3) `Ω (e2 (x1, x2)

+E2 (x1, x2) `Ωω21 (x1)) ω21 (x2)) + (E2 (x2, x3) `Ωω21 (x1) + E1 (x1, x2)

E2 (x2, x3) `2
Ωω12 (x2) ω21 (x1) + (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1))

(e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) (e2 (x3, x4) + E2 (x3, x4) `Ωω21 (x3))) ω21 (x4)

A
(2,4)
42 = −

(
E1 (x3, x4)

(
`Ωω21 (x1) + E1 (x1, x2) `2

Ωω12 (x2) ω21 (x1) + `Ω (e2 (x1, x2)

+E2 (x1, x2) `Ωω21 (x1)) ω21 (x2))) + (e1 (x3, x4) + E1 (x3, x4) `Ωω12 (x3))

(−E1 (x2, x3) `Ωω21 (x1)) − E1 (x1, x2) `Ω (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))

ω21 (x1) − E1 (x2, x3) `Ω (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2))

−E1 (x3, x4) `Ω

(
E2 (x2, x3) `Ωω21 (x1) + E1 (x1, x2) E2 (x2, x3) `2

Ωω12 (x2) ω21 (x1)

+ (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3)

A
(2,4)
43 = −1/e2 (x4, x1 + `) − E2 (x3, x4)

(
−`Ωω21 (x1) − E1 (x1, x2) `2

Ωω12 (x2) ω21 (x1)

−`Ω (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2)) − E2 (x3, x4) `Ωω12 (x3)

(− (E1 (x2, x3) `Ωω21 (x1)) − E1 (x1, x2) `Ω (e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2))

ω21 (x1) − E1 (x2, x3) `Ω (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2))

+
(
E2 (x2, x3) `Ωω21 (x1) + E1 (x1, x2) E2 (x2, x3) `2

Ωω12 (x2) ω21 (x1)

+ (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) (e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2)))

(e2 (x3, x4) + E2 (x3, x4) `Ωω21 (x3))

A
(2,4)
44 = e2 −

(
E1 (x1) − E1 (x4)

)
`Ωω21 (x1) +

(
E2 (x1) − E2 (x4)

)
`Ωω21 (x1)

−
(
E2 (x2) − E2 (x4)

)
`Ω (− (E1 (x1, x2) `Ωω12 (x2) ω21 (x1)) − (e2 (x1, x2)

+E2 (x1, x2) `Ωω21 (x1)) ω21 (x2)) −
(
E1 (x2) − E1 (x4)

)
`Ω

(E1 (x1, x2) `Ωω12 (x2) ω21 (x1) + (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2))

−
(
E2 (x3) − E2 (x4)

)
`Ω (ω12 (x3) (− (E1 (x2, x3) `Ωω21 (x1)) − E1 (x1, x2) `Ω

(e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)) ω21 (x1) − E1 (x2, x3) `Ω

(e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2)) − (E2 (x2, x3) `Ωω21 (x1) + E1 (x1, x2)

E2 (x2, x3) `2
Ωω12 (x2) ω21 (x1) + (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1))

(e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3) −
(
E1 (x3) − E1 (x4)

)

`Ω (− (ω12 (x3) (−E1 (x2, x3) `Ωω21 (x1) − E1 (x1, x2) `Ω

(e1 (x2, x3) + E1 (x2, x3) `Ωω12 (x2)) ω21 (x1) − E1 (x2, x3) `Ω

(e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) ω21 (x2))) + (E2 (x2, x3) `Ωω21 (x1)

+E1 (x1, x2) E2 (x2, x3) `2
Ωω12 (x2) ω21 (x1) + (e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1))

(e2 (x2, x3) + E2 (x2, x3) `Ωω21 (x2))) ω21 (x3)) (A.2)
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A.3 Matrix A(3,2)

The matrix A(3,2) as used for computations in 3.1.3 is a 6 × 6-matrix.

A
(3,2)
11 = E1 (x1, x2) ω12 (x2) + E1 (x1, x2) ω13 (x2) ,

A
(3,2)
12 = −E1 (x1, x2) ω12 (x2) ,

A
(3,2)
13 = −E1 (x1, x2) − E1 (x2, x1 + `) /e1 (x2, x1 + `) ,

A
(3,2)
14 = 0,

A
(3,2)
15 = 0,

A
(3,2)
16 = −E1 (x1) ,

A
(3,2)
21 = −E2 (x1, x2) ω21 (x2) ,

A
(3,2)
22 = E2 (x1, x2) ω21 (x2) + E2 (x1, x2) ω23 (x2) ,

A
(3,2)
23 = 0,

A
(3,2)
24 = −E2 (x1, x2) − E2 (x2, x1 + `) /e2 (x2, x1 + `) ,

A
(3,2)
25 = 0,

A
(3,2)
26 = −E2 (x1) ,

A
(3,2)
31 = −E3 (x1, x2) ω31 (x2) ,

A
(3,2)
32 = −E3 (x1, x2) ω32 (x2) ,

A
(3,2)
33 = 0,

A
(3,2)
34 = 0,

A
(3,2)
35 = −E3 (x1, x2) − E3 (x2, x1 + `) /e3 (x2, x1 + `) ,

A
(3,2)
36 = −E3 (x1) ,

A
(3,2)
41 = −ω12 (x1) − ω13 (x1) − ω12 (x1) ω12 (x2) `ΩE1 (x1, x2) − ω13 (x1) ω12 (x2) `ΩE1 (x1, x2)

−ω12 (x2) e1 (x1, x2) − ω12 (x1) ω21 (x2) `ΩE2 (x1, x2) − ω12 (x1) ω13 (x2) `ΩE1 (x1, x2)

−ω13 (x1) ω13 (x2) `ΩE1 (x1, x2) − ω13 (x2) e1 (x1, x2) − ω13 (x1) ω31 (x2) `ΩE3 (x1, x2) ,

A
(3,2)
42 = ω12 (x1) + ω12 (x1) ω21 (x2) `ΩE2 (x1, x2) + ω12 (x1) ω12 (x2) `ΩE1 (x1, x2)

+ω13 (x1) ω12 (x2) `ΩE1 (x1, x2) + ω12 (x2) e1 (x1, x2) + ω12 (x1) ω23 (x2) `ΩE2 (x1, x2)

−ω13 (x1) ω32 (x2) `ΩE3 (x1, x2) ,

A
(3,2)
43 = ω12 (x1) `ΩE1 (x1, x2) + ω13 (x1) `ΩE1 (x1, x2) + e1 (x1, x2) − 1/e1 (x2, x1 + `) ,

A
(3,2)
44 = −ω12 (x1) `ΩE2 (x1, x2) ,

A
(3,2)
45 = −ω13 (x1) `ΩE3 (x1, x2) ,

A
(3,2)
46 = e1 + ω12 (x1)

(
E1 (x1) − E1 (x2)

)
`Ω + ω13 (x1)

(
E1 (x1) − E1 (x2)

)
`Ω

−ω12 (x1)
(
E2 (x1) − E2 (x2)

)
`Ω − ω13 (x1)

(
E3 (x1) − E3 (x2)

)
`Ω,

A
(3,2)
51 = ω21 (x1) + ω21 (x1) ω12 (x2) `ΩE1 (x1, x2) + ω21 (x1) ω21 (x2) `ΩE2 (x1, x2)

+ω23 (x1) ω21 (x2) `ΩE2 (x1, x2) + ω21 (x2) e2 (x1, x2) + ω21 (x1) ω13 (x2) `ΩE1 (x1, x2)

−ω23 (x1) ω31 (x2) `ΩE3 (x1, x2) ,

A
(3,2)
52 = −ω21 (x1) − ω23 (x1) − ω21 (x1) ω21 (x2) `ΩE2 (x1, x2) − ω23 (x1) ω21 (x2) `ΩE2 (x1, x2)

−ω21 (x2) e2 (x1, x2) − ω21 (x1) ω12 (x2) `ΩE1 (x1, x2) − ω21 (x1) ω23 (x2) `ΩE2 (x1, x2)

−ω23 (x1) ω23 (x2) `ΩE2 (x1, x2) − ω23 (x2) e2 (x1, x2) − ω23 (x1) ω32 (x2) `ΩE3 (x1, x2) ,

A
(3,2)
53 = −ω21 (x1) `ΩE1 (x1, x2) ,
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A
(3,2)
54 = ω21 (x1) `ΩE2 (x1, x2) + ω23 (x1) `ΩE2 (x1, x2) + e2 (x1, x2) − 1/e2 (x2, x1 + `) ,

A
(3,2)
55 = −ω23 (x1) `ΩE3 (x1, x2) ,

A
(3,2)
56 = e2 − ω21 (x1)

(
E1 (x1) − E1 (x2)

)
`Ω + ω21 (x1)

(
E2 (x1) − E2 (x2)

)
`Ω

+ω23 (x1)
(
E2 (x1) − E2 (x2)

)
`Ω − ω23 (x1)

(
E3 (x1) − E3 (x2)

)
`Ω,

A
(3,2)
61 = ω31 (x1) + ω31 (x1) ω12 (x2) `ΩE1 (x1, x2) − ω32 (x1) ω21 (x2) `ΩE2 (x1, x2)

+ω31 (x1) ω13 (x2) `ΩE1 (x1, x2) + ω31 (x1) ω31 (x2) `ΩE3 (x1, x2)

+ω32 (x1) ω31 (x2) `ΩE3 (x1, x2) + ω31 (x2) e3 (x1, x2) ,

A
(3,2)
62 = ω32 (x1) + ω32 (x1) ω21 (x2) `ΩE2 (x1, x2) − ω31 (x1) ω12 (x2) `ΩE1 (x1, x2)

+ω32 (x1) ω23 (x2) `ΩE2 (x1, x2) + ω31 (x1) ω32 (x2) `ΩE3 (x1, x2)

+ω32 (x1) ω32 (x2) `ΩE3 (x1, x2) + ω32 (x2) e3 (x1, x2) ,

A
(3,2)
63 = −ω31 (x1) `ΩE1 (x1, x2) ,

A
(3,2)
64 = −ω32 (x1) `ΩE2 (x1, x2) ,

A
(3,2)
65 = ω31 (x1) `ΩE3 (x1, x2) + ω32 (x1) `ΩE3 (x1, x2) + e3 (x1, x2)

−1/e3 (x2, x1 + `) ,

A
(3,2)
66 = e3 − ω31 (x1)

(
E1 (x1) − E1 (x2)

)
`Ω − ω32 (x1)

(
E2 (x1) − E2 (x2)

)
`Ω

+ω31 (x1)
(
E3 (x1) − E3 (x2)

)
`Ω + ω32 (x1)

(
E3 (x1) − E3 (x2)

)
`Ω. (A.3)

A.4 The elements of A(2,2) derived from a (3, 2)-matrix

A(3,2),{1,2},{3} denotes the matrix, which is obtained from A(3,2) by neglecting the vertical rates
between state M and other states. Its elements are compared to the elements of A(2,2).

A
(3,2),{1,2},{3}
11 = E1 (x1, x2) ω12 (x2) = A

(2,2)
11 ,

A
(3,2),{1,2},{3}
12 = −E1 (x1, x2) ω12 (x2) ,

A
(3,2),{1,2},{3}
13 = −E1 (x1, x2) − E1 (x2, x1 + `) /e1 (x2, x1 + `) = A

(2,2)
12 ,

A
(3,2),{1,2},{3}
14 = 0 = A

(2,2)
13 ,

A
(3,2),{1,2},{3}
15 = 0,

A
(3,2),{1,2},{3}
16 = −E1 (x1) = A

(2,2)
14 ,

A
(3,2),{1,2},{3}
21 = −E2 (x1, x2) ω21 (x2) = A

(2,2)
21 ,

A
(3,2),{1,2},{3}
22 = E2 (x1, x2) ω21 (x2) ,

A
(3,2),{1,2},{3}
23 = 0 = A

(2,2)
22 ,

A
(3,2),{1,2},{3}
24 = −E2 (x1, x2) − E2 (x2, x1 + `) /e2 (x2, x1 + `) = A

(2,2)
23 ,

A
(3,2),{1,2},{3}
25 = 0,

A
(3,2),{1,2},{3}
26 = −E2 (x1) = A

(2,2)
24 ,

A
(3,2),{1,2},{3}
31 = 0,

A
(3,2),{1,2},{3}
32 = 0,

A
(3,2),{1,2},{3}
33 = 0,

A
(3,2),{1,2},{3}
34 = 0,

A
(3,2),{1,2},{3}
35 = −E3 (x1, x2) − E3 (x2, x1 + `) /e3 (x2, x1 + `) ,

A
(3,2),{1,2},{3}
36 = −E3 (x1) ,
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A
(3,2),{1,2},{3}
41 = −ω12 (x1) − ω12 (x1) ω12 (x2) `ΩE1 (x1, x2)

−ω12 (x2) e1 (x1, x2) − ω12 (x1) ω21 (x2) `ΩE2 (x1, x2) = A
(2,2)
31 ,

A
(3,2),{1,2},{3}
42 = ω12 (x1) + ω12 (x1) ω21 (x2) `ΩE2 (x1, x2) + ω12 (x1) ω12 (x2)

`ΩE1 (x1, x2) + ω12 (x2) e1 (x1, x2) ,

A
(3,2),{1,2},{3}
43 = ω12 (x1) `ΩE1 (x1, x2) + e1 (x1, x2) − 1/e1 (x2, x1 + `) = A

(2,2)
32 ,

A
(3,2),{1,2},{3}
44 = −ω12 (x1) `ΩE2 (x1, x2) = A

(2,2)
33 ,

A
(3,2),{1,2},{3}
45 = 0,

A
(3,2),{1,2},{3}
46 = e1 + ω12 (x1)

(
E1 (x1) − E1 (x2)

)
`Ω

−ω12 (x1)
(
E2 (x1) − E2 (x2)

)
`Ω = A

(2,2)
34 ,

A
(3,2),{1,2},{3}
51 = ω21 (x1) + ω21 (x1) ω12 (x2) `ΩE1 (x1, x2) + ω21 (x1) ω21 (x2)

`ΩE2 (x1, x2) + ω21 (x2) e2 (x1, x2) = A
(2,2)
41 ,

A
(3,2),{1,2},{3}
52 = −ω21 (x1) − ω21 (x1) ω21 (x2) `ΩE2 (x1, x2)

−ω21 (x2) e2 (x1, x2) − ω21 (x1) ω12 (x2) `ΩE1 (x1, x2) ,

A
(3,2),{1,2},{3}
53 = −ω21 (x1) `ΩE1 (x1, x2) = A

(2,2)
42 ,

A
(3,2),{1,2},{3}
54 = ω21 (x1) `ΩE2 (x1, x2) + e2 (x1, x2) − 1/e2 (x2, x1 + `) = A

(2,2)
43 ,

A
(3,2),{1,2},{3}
55 = 0,

A
(3,2),{1,2},{3}
56 = e2 − ω21 (x1)

(
E1 (x1) − E1 (x2)

)
`Ω + ω21 (x1)

(
E2 (x1) − E2 (x2)

)
`Ω = A

(2,2)
44 ,

A
(3,2),{1,2},{3}
61 = 0,

A
(3,2),{1,2},{3}
62 = 0,

A
(3,2),{1,2},{3}
63 = 0,

A
(3,2),{1,2},{3}
64 = 0,

A
(3,2),{1,2},{3}
65 = e3 (x1, x2) − 1/e3 (x2, x1 + `) ,

A
(3,2),{1,2},{3}
66 = e3. (A.4)

A.5 Decoupling of a (4, 2)-network into two (2, 2)-networks

As explained in 4.1.2, the (M, K)-networks can be decoupled into subnetworks by limiting the
number of vertical rates so that the corresponding graph is disconnected. Here, we show how the
A(2,2)-matrices A({1,2},2)(2,2)eff and A({3,4},2)(2,2)eff , which describe the subnetworks with the
states m = 1, 2 and m = 3, 4, respectively, are obtained from the matrix A(4,2),{1,2},{3,4}, i.e., the
matrix A(4,2) without the vertical rates connecting the two subsets of vertices.

A
(4,2),{1,2},{3,4}
11 = E1 (x1, x2) ω12 (x2) = A

({1,2},2)(2,2)eff

11 ,

A
(4,2),{1,2},{3,4}
12 = −E1 (x1, x2) ω12 (x2) ,

A
(4,2),{1,2},{3,4}
13 = 0,

A
(4,2),{1,2},{3,4}
14 = −E1 (x1, x2) − E1 (x2, x1 + `) /e1 (x2, x1 + `) = A

({1,2},2)(2,2)eff

12 ,

A
(4,2),{1,2},{3,4}
15 = 0 = A

({1,2},2)(2,2)eff

13 ,

A
(4,2),{1,2},{3,4}
16 = 0,

A
(4,2),{1,2},{3,4}
17 = 0,
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A
(4,2),{1,2},{3,4}
18 = −E1 (x1) = A

({1,2},2)(2,2)eff

14 ,

A
(4,2),{1,2},{3,4}
21 = −E2 (x1, x2) ω21 (x2) = A

({1,2},2)(2,2)eff

21 ,

A
(4,2),{1,2},{3,4}
22 = E2 (x1, x2) ω21 (x2) ,

A
(4,2),{1,2},{3,4}
23 = 0,

A
(4,2),{1,2},{3,4}
24 = 0 = A

({1,2},2)(2,2)eff

22 ,

A
(4,2),{1,2},{3,4}
25 = −E2 (x1, x2) − E2 (x2, x1 + `) /e2 (x2, x1 + `) = A

({1,2},2)(2,2)eff

23 ,

A
(4,2),{1,2},{3,4}
26 = 0,

A
(4,2),{1,2},{3,4}
27 = 0,

A
(4,2),{1,2},{3,4}
28 = −E2 (x1) = A

({1,2},2)(2,2)eff

24 ,

A
(4,2),{1,2},{3,4}
31 = 0,

A
(4,2),{1,2},{3,4}
32 = 0,

A
(4,2),{1,2},{3,4}
33 = E3 (x1, x2) ω34 (x2) = A

({3,4},2)(2,2)eff

11

A
(4,2),{1,2},{3,4}
34 = 0

A
(4,2),{1,2},{3,4}
35 = 0

A
(4,2),{1,2},{3,4}
36 = −E3 (x1, x2) − E3 (x2, x1 + `) /e3 (x2, x1 + `) = A

({3,4},2)(2,2)eff

12

A
(4,2),{1,2},{3,4}
37 = 0 = A

({3,4},2)(2,2)eff

13

A
(4,2),{1,2},{3,4}
38 = −E3 (x1) = A

({3,4},2)(2,2)eff

14

A
(4,2),{1,2},{3,4}
41 = 0

A
(4,2),{1,2},{3,4}
42 = 0

A
(4,2),{1,2},{3,4}
43 = −E4 (x1, x2) ω43 (x2) = A

({3,4},2)(2,2)eff

21

A
(4,2),{1,2},{3,4}
44 = 0

A
(4,2),{1,2},{3,4}
45 = 0

A
(4,2),{1,2},{3,4}
46 = 0 = A

({3,4},2)(2,2)eff

22

A
(4,2),{1,2},{3,4}
47 = −E4 (x1, x2) − E4 (x2, x1 + `) /e4 (x2, x1 + `) = A

({3,4},2)(2,2)eff

23

A
(4,2),{1,2},{3,4}
48 = −E4 (x1) = A

({3,4},2)(2,2)eff

24

A
(4,2),{1,2},{3,4}
51 = −ω12 (x1) − ω12 (x2) (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1))

−E2 (x1, x2) `Ωω12 (x1) ω21 (x2) = A
({1,2},2)(2,2)eff

31

A
(4,2),{1,2},{3,4}
52 = ω12 (x1) + ω12 (x2) (e1 (x1, x2) + E1 (x1, x2) `Ωω12 (x1))

+E2 (x1, x2) `Ωω12 (x1) ω21 (x2)

A
(4,2),{1,2},{3,4}
53 = 0

A
(4,2),{1,2},{3,4}
54 = e1 (x1, x2) − 1/e1 (x2, x3) + E1 (x1, x2) `Ωω12 (x1)

= A
({1,2},2)(2,2)eff

32

A
(4,2),{1,2},{3,4}
55 = −E2 (x1, x2) `Ωω12 (x1) = A

({1,2},2)(2,2)eff

33

A
(4,2),{1,2},{3,4}
56 = 0

A
(4,2),{1,2},{3,4}
57 = 0

A
(4,2),{1,2},{3,4}
58 = e1 +

(
E1 (x1) − E1 (x2)

)
`Ωω12 (x1) −

(
E2 (x1) − E2 (x2)

)
`Ωω12 (x1)
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= A
({1,2},2)(2,2)eff

34

A
(4,2),{1,2},{3,4}
61 = ω21 (x1) + E1 (x1, x2) `Ωω12 (x2) ω21 (x1) + ω21 (x2)

(e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1)) = A
({1,2},2)(2,2)eff

41

A
(4,2),{1,2},{3,4}
62 = −ω21 (x1) − E1 (x1, x2) `Ωω12 (x2) ω21 (x1) − ω21 (x2)

(e2 (x1, x2) + E2 (x1, x2) `Ωω21 (x1))

A
(4,2),{1,2},{3,4}
63 = 0

A
(4,2),{1,2},{3,4}
64 = −E1 (x1, x2) `Ωω21 (x1) = A

({1,2},2)(2,2)eff

42

A
(4,2),{1,2},{3,4}
65 = e2 (x1, x2) − 1/e2 (x2, x3) + E2 (x1, x2) `Ωω21 (x1)

= A
({1,2},2)(2,2)eff

43

A
(4,2),{1,2},{3,4}
66 = 0

A
(4,2),{1,2},{3,4}
67 = 0

A
(4,2),{1,2},{3,4}
68 = e2 −

(
E1 (x1) − E1 (x2)

)
`Ωω21 (x1) +

(
E2 (x1) − E2 (x2)

)
`Ωω21 (x1)

= A
({1,2},2)(2,2)eff

44

A
(4,2),{1,2},{3,4}
71 = 0

A
(4,2),{1,2},{3,4}
72 = 0

A
(4,2),{1,2},{3,4}
73 = −ω34 (x1) − (e3 (x1, x2) + E3 (x1, x2) `Ωω34 (x1)) ω34 (x2)

−E4 (x1, x2) `Ωω34 (x1) ω43 (x2) = A
({3,4},2)(2,2)eff

31

A
(4,2),{1,2},{3,4}
74 = 0

A
(4,2),{1,2},{3,4}
75 = 0

A
(4,2),{1,2},{3,4}
76 = e3 (x1, x2) − 1/e3 (x2, x3) + E3 (x1, x2) `Ωω34 (x1)

= A
({3,4},2)(2,2)eff

32

A
(4,2),{1,2},{3,4}
77 = −E4 (x1, x2) `Ωω34 (x1) = A

({3,4},2)(2,2)eff

33

A
(4,2),{1,2},{3,4}
78 = e3 −

(
E3 (x1) − E3 (x2)

)
`Ωω34 (x1) −

(
E4 (x1) − E4 (x2)

)

`Ωω34 (x1) = A
({3,4},2)(2,2)eff

34

A
(4,2),{1,2},{3,4}
81 = 0

A
(4,2),{1,2},{3,4}
82 = 0

A
(4,2),{1,2},{3,4}
83 = ω43 (x1) + E3 (x1, x2) `Ωω34 (x2) ω43 (x1) + ω43 (x2)

(e4 (x1, x2) + E4 (x1, x2) `Ωω43 (x1)) = A
({3,4},2)(2,2)eff

41

A
(4,2),{1,2},{3,4}
84 = 0

A
(4,2),{1,2},{3,4}
85 = 0

A
(4,2),{1,2},{3,4}
86 = −E3 (x1, x2) `Ωω43 (x1) = A

({3,4},2)(2,2)eff

42

A
(4,2),{1,2},{3,4}
87 = e4 (x1, x2) − 1/e4 (x2, x3) + E4 (x1, x2) `Ωω43 (x1)

= A
({3,4},2)(2,2)eff

43

A
(4,2),{1,2},{3,4}
88 = e4 −

(
E3 (x1) − E3 (x2)

)
`Ωω43 (x1) +

(
E4 (x1) − E4 (x2)

)
`Ωω43 (x1)

= A
({3,4},2)(2,2)eff

44 (A.5)



Appendix B

Polynomials and vertices of every

state

Rule 5 in 3.2.2 states that the combination of vertical rates in each term T of Pol
(M,K)
1 or

Pol
(M,K)
2 contains vertices of every single internal state m as starting or final vertices of vertical

rates.
For K = 1 the derivation of this rule is trivial, as there is no way of choosing the minimal

number of M − 1 (compare rule 2 ) vertical rates at one location and not reaching vertices of
every single state without at the same time violating at least one of the other rules about forming
an l-cycle (rule 4 ) or having two vertical rates starting from the same vertex (rule 3 ).

For K > 1 we have to take into account the explicit structure of the matrix A(M,K) as shown
in table B.1. An entry 12..K in a certain field of the table means that each term of the respective
element of A(M,K) is proportional to at least one vertical rate ω1m (x2), ω1m (x3), ..., ω1m (xK)
where m is a non-specified other state, so that each term contains at least one rate starting from
state 1, and this rate is located at x2, x3, ..., or xK . The capital number in the table entries
denotes the starting state, the indices refer to the possible locations of the rate.

If we now calculate the determinants and subdeterminants of A(M,K) which enter the numer-
ator or denominator polynomials Pol

(M,K)
1 or Pol

(M,K)
2 of the total current, the structure of the

matrix as shown in table B.1 enforces the occurrence of every state in every term contributing to
these determinants. No matter how we start developing the determinants in our calculation, it is
unavoidable to find factors of every state in every resulting term.

row\col. 1 ... M − 1 M M + 1 M + 2 ... 2M

1 12..K 12..K 12..K / 12..K−1 12..K−1 12..K−1 /
2 22..K 22..K 22..K 22..K−1 / 22..K−1 22..K−1 /
3 32..K 32..K 32..K 32..K−1 32..K−1 / 32..K−1 /
... ... ... ... ... ... ... ... ...
M M2..K−1 M2..K−1 M2..K−1 M2..K−1 M2..K−1 M2..K−1 / /

M + 1 12..K−1 12..K−1 12..K−1 / 12..K−1 12..K−1 12..K−1 /
M + 2 22..K−1 22..K−1 22..K−1 22..K−1 / 22..K−1 22..K−1 /
M + 3 32..K−1 32..K−1 32..K−1 32..K−1 32..K−1 / 32..K−1 /

... ... ... ... ... ... ... ... ...
2M M2..K−1 M2..K−1 M2..K−1 M2..K−1 M2..K−1 M2..K−1 / /

Table B.1: The entries m2..K−1of the table indicate that every term of the corresponding element
of the matrix A(M,K) is proportional to at least one vertical rate ωmn (xi) starting from state m
at one of the locations xi with i = 2, 3, ..., K − 1.

XI
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Appendix C

Terminology and basics on graph

theory

In this appendix we summarize important terms and relationships from the field of graph theory.
For a detailed overview see [53, 67].

A graph G is an ordered 2-tuple, (V (G) , E (G)), which consists of a set V (G) of vertices and
a set E (G) of edges.

A vertex can be imagined as a point, node or 0-simplex.
An edge can be referred to as a line, an arc or a 1-simplex.
A directed graph is a graph whose edges have an orientation.
If V (G) and E (G) are finite sets, the graph is said to be finite.
The degree of a vertex is given by the number of edges having that vertex for one of their

endpoints.
A graph in which every vertex is of even degree belongs to the class of Euler graphs.
An edge sequence is a graph or subgraph whose edges can be ordered in such a way that each

edge with the exclusion of the initial edge and the final edge has a vertex in common with the
preceding edge in the ordered sequence and the other vertex in common with the succeeding edge.

The multiplicity of an edge in an edge sequence is the number of times an edge appears in an
edge sequence.

If the multiplicity of each edge in an edge sequence is one, the edge sequence is called an edge
train or walk.

The terminal vertices of the edge sequence are the initial and final vertices.
In the case of coinciding terminal vertices the edge train is a closed edge train.
An edge train is a path if the degree of each nonterminal vertex is two and the degree of each

terminal vertex is one.
In a connected graph there is a path between any two distinct vertices of the graph.
A digraph is strongly connected if there is at least one directed path from every vertex to every

other vertex.
A digraph is weakly connected if the underlying undirected graph is connected.
A graph without self-loops and parallel edges is a simple graph.
Self-loops are edges with identical endpoints.
A cut set is a set of edges whose removal splits a weakly connected directed graph into two

separate parts.
An edge train that contains more than one edge, is closed and only has vertices of degree two

is a loop, circuit or cycle.
A spanning-cycle or short s-cycle starts at vertex (m, k = 1), spans the whole network parallel

to the x-direction, ends at vertex (m, k = K) and can be supplemented with the di-edge between
(m, k = K) and (m, k = 1) to form a cycle, see fig. 2.1. If the horizontal di-edges are not known
explicitly the s-cycle shows as an edge train of vertical rates starting and ending in state m where

XIII
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each edge with the exclusion of the initial edge and the final edge has a state in common with the
preceding edge and the other state in common with the succeeding edge.

A localized or l-cycle is a cycle of vertical di-edges at a single location.
A self-loop is a closed edge train with only one edge.
A subgraph H of a graph G consists of subsets of vertices and edges of G such that the endpoints

of every edge in H are in H , too.
A spanning tree is any connected subgraph of a graph over the same set of nodes which does

not comprise loops.



Appendix D

Stationary probabilities for

general (2, 2)-networks

In the following we list the stationary values of the probabilities P stat (1, 1), P stat (1, 2) and
P stat (2, 1) depending on the probability P stat (2, 2) in state 2 at location 2. This solution is
true for a general (2, 2)-network with rates as depicted in fig.D.1. The non-negativity and the
normalization of the probabilities determine the value of P stat (2, 2).

P stat (1, 1) = −
(
P stat (2, 2) ((W3 + W9) /W1 − ((−W10 − W11 − W2)

(− (W1 (−W12 − W5 − W8) (−W3 − W4 − W9))

+W12 (W1W4 − (W6 + W7) (W3 + W9)))) /

(W1 (− (W12 (−W10 − W11 − W2) (W6 + W7))

−W1 (W10 + W2) (−W12 − W5 − W8))))) ,

P stat (1, 2) = −
(
P stat (2, 2) ((−W3 − W4 − W9) /W12

− ((W10 + W2) (− (W1 (−W12 − W5 − W8) (−W3 − W4 − W9))

+W12 (W1W4 − (W6 + W7) (W3 + W9)))) /

(W12 (− (W12 (−W10 − W11 − W2) (W6 + W7))

−W1 (W10 + W2) (−W12 − W5 − W8))))) ,

P stat (2, 1) = −
((

P stat (2, 2) (− (W1 (−W12 − W5 − W8) (−W3 − W4 − W9))

+W12 (W1W4 − (W6 + W7) (W3 + W9)))) /

(− (W12 (−W10 − W11 − W2) (W6 + W7))

−W1 (W10 + W2) (−W12 − W5 − W8))) (D.1)

m=1 . . . . .

m=2 . . . . .

k=1 k=2
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WW

11
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12

Figure D.1: Naming of vertical and horizontal rates Wi in the general (2, 2)-network as used in
4.4.1.
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Appendix E

Algorithms for path problems

E.1 Maximum-flow problem

Every edge connecting a pair of vertices vi and vj has a certain capacity cij . Before starting a
new cycle of the algorithm with the starting vertex vs = s, the actual flow qij for each edge is
updated. In the beginning, all the edge flows are zero. Then a label is attached to a vertex in a
possible flow-augmenting path which is the minimum of the label of the preceding vertex and the
difference between edge capacity and momentary flow. This process of labelling is continued until
either no additional labels can be placed and the algorithm stops or the terminal vertex becomes
the new starting vertex and the path is completed. Backtracking is necessary in order to update
the actual flows, before the next flow-augmenting path is looked for.

E.2 Shortest-path problem

Every edge between a pair of vertices vi and vj has a certain cost or fee fij associated with it.
We start in state 1. The source vertex receives the label 0 which is set permanent. The other

vertices are labelled with ∞ or, in an actual implementation with a number which is very large
compared to the system costs. The temporary labels lab (vj) of the vertices which are terminal
vertices of edges originating from the starting vertex vs are updated according to lab (vj) =
min (lab (vj) , lab (vs) + fsj). The minimum label of the vertices with temporary labels is then
marked as permanent. The choice is not necessarily unambiguous. The vertex with the new
permanent label is the new starting vertex vs. The updating is repeated until the terminal vertex
is set the starting vertex. Its label gives the costs for the shortest path. The corresponding path
is found by backtracking from the terminal vertices as the difference of the labels between the
current vertex and the preceding vertex of the path equals the cost of the respective edge. If the
shortest path does not include horizontal edges, we search for an alternative path whose costs are
higher, but which forms a proper s-cycle.

Then the operation is continued with the search for the shortest path of the next state. The
procedure is repeated until the shortest path for the last level M is found.
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List of symbols

• A(M,K) is a 2M × 2M matrix describing a system of M states and K locations

• A(M,K),{m1,n1,...},{m2,n2,...} is the matrix of the (M, K)-system which decomposes into the
two subsets V1 with the states m1, n1,... and V2 with m2, n2,...

• A({m1,n1,...},K)(M1,K)eff the effective (M1, K) matrix where M1 is the number of states com-
prised in the first subset of vertices V1 belonging to the states m1, n1,...; describes the
subnetwork belonging to V1

• cij capacity of directed edge (vi, vj)

• Dm diffusion coefficient in lateral currents Jm

• ∆mn (xk) unbalanced parts of transition rates

• em (y, z) exponential functions given by exp (Vm (y) − Vm (z))

• ε coupling parameter, in 5.2 transition width

• Em (x, y) integral defined by 1
Dm

∫ y

x dzem (z, y)

• fij costs or fees for edges

• F applied (tangential) force; a load force corresponds to F < 0

• G = (V (G) , E (G)) directed connected graph with corresponding set of vertices V (G) and
set of edges E (G)

• Γ concentration of fuel molecules such as ATP

• Γ∗ characteristic intermediate concentration

• Im transition current density for internal state m

• Jm lateral current for internal state m

• Jm average currents

• J
(M,K)
tot total lateral current in an (M, K)-system

• J
(M,K)

tot total current in the Master-equation approach

• ∆Jm current discontinuities

• K number of locations for transitions between internal states

• ` period of molecular force potentials

• `Ω molecular “localization” length for transition rates
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XX LIST OF SYMBOLS

• M total number of internal motor states

• M−1
i probability weight of state i

• Ωmn spatially dependent transition rate from state m to state n

• ωmn transition rate from state m to state n

• ωdb
mn part of transition rate fulfilling detailed balance

• p (m, k |m′, k′ ) (t) time-dependent transition functions

• Pm probability density for internal state m

• Pol
(M,K)
i polynomial in the numerator (i = 1) or denominator (i = 2) of the expression for

J
(M,K)
tot

• Pol
(M,K)

i polynomials in the Master-equation approach

• Ptot total probability density

• P(M,K) (t) quadratical matrix of the transition functions

• q (m, k |m′, k′ ) infinitesimal transition rates

• Q number of unbalanced transition rates

• Q(M,K) infinitesimal generator

• s source vertex

• t time, in 4.5 terminal vertex

• T temperature in energy units

• T term of polynomial Pol
(M,K)
i

• Um molecular interaction potential for internal state m

• Vi subsets of vertices

• Vm effective force potential

• v motor velocity

• vi with vi = (m, k) vertex of the network in state m at location k

• W (m, k |m′, k′ ) transition rate from state (m, k) into state (m′, k′)

• x spatial coordinate for motor position

• xk position at which motor undergoes localized transition

• X (t) stochastic process
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[58] K.Meyberg and P. Vachenauer, Höhere Mathematik, 2. Auflage (Springer-Verlag Berlin, 1997).

[59] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics, Second Edition
(Springer-Verlag New York, Inc., 1992).

[60] R.Diestel, Graph Theory, Second Edition (Springer-Verlag New York, Inc., 2000).
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