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Abbreviations often Used in this Thesis

ACF Auto correlation function
AIR All India Rainfall Index
CWT Continuous Wavelet Transformation
CDP Curvature defined phase
DFA Detrended Fluctuation Analysis
DWT Discrete Wavelet Transform
ENSO El Niño/Southern Oscillation
HPA Hilbert phase analysis
ISM Indian summer monsoon
MODWT Maximum Overlap Discrete Wavelet Transformation
NAO North Atlantic Oscillation
SST Sea surface temperature
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Notation

a Scale (in wavelet domain), a = 1/f
A(t) Amplitude of an oscillation
A(.) Averaging operator
b Time (in wavelet domain)
C(s), C(r) Autocorrelation function
COH 2(b, a) Squared wavelet coherency
CS (b, a) Wavelet cross spectrum
Cov Covariance
f Frequency
f(ω) Fourier multiplier
g(t) Wavelet
h(t) Reconstruction wavelet
H(.) Hilbert transformation
H Hurst exponent
H Positive halfplane
I Identity
m(a, b) Wavelet multiplier
Mh Inverse continuous wavelet transformation with reconstruction wavelet h
PX(λ) Probability distribution
P Probability
ρX(x) Probability density function of the random variable X
s(t) Time series
s Scale (in fluctuation analysis)
SE, SP Sensitivity, specificity
SNR Signal to noise ratio
S(b, a) Wavelet spectrum
Var Variance
Wg Continuous wavelet transformation with wavelet g
x(t), xi Time series
γ Scaling exponent of the autocorrelation function
η noise
Φ(t) Phase of an oscillation
τD Characteristic time scale
ω Frequency, ω = 2πf
ω0 Eigen-frequency of an oscillator, parameter of the Morlet wavelet
.̄ Complex conjugate
.̂ Estimator, Fourier transformation (depending on context)
〈.〉 Expectation value
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Introduction

Those among us who are unwilling to expose their ideas
to the hazard of refutation do not take part in the scientific game.

Sir Karl Popper (1902-1994)

Since early human history mankind has been eager to understand weather and climate. The
ancient civilizations along the great rivers Euphrates and Tigris, Nile or Indus, in Mesoamer-
ica or in the Andes heavily relied on the annual rainfall and floods. Long lasting dry periods
arguably caused the decline of the Maya civilization in the 9th century [38] and the collapse
of the old kingdom of Egypt around 4200 years ago [115], a story that is told of in the bible.
Being at the mercy of seemingly unpredictable forces, humans worshiped the gods of rain or
rivers, agriculture and fertility as Varuna in India, Chaac in the Maya kingdom or Hapi in
ancient Egypt.

The observational field of meteorology was first defined by Aristotle 350 years BC. Nev-
ertheless, a modern scientific investigation did not emerge before the time of Renaissance,
when Galileo Galilei invented the first thermometer. Parallel to the stunning development of
physics, researchers formulated the principles of the atmospheric and the ocean sciences.

However, even though meteorology and climatology - as other geosciences - are based on
physical and chemical theories, fundamental differences to the classical scientific disciplines
do exist. Popper [88] defined the key standards for a scientific theory and experimental
testing by the terms of refutability or falsifiability and reproducibility: Since the truth of a
theoretical concept can never be inferred empirically, progress in science arises from testing
and either falsifying or corroborating competing hypotheses. A theory that is not falsifiable
is tautological and unscientific. Hence, experiments have to be designed to test and possibly
refute a theoretical framework. As any experiment might be subject to measurement errors,
inherent stochasticity or deviations in the initial conditions, the essential statements to be
drawn have to be reproducible. In geosciences, one often cannot design experiments at all.
Although laboratory research might investigate certain material parameters, small scale be-
havior or basic principles, one will never be able to experimentally scan the whole parameter
space of, for instance, the El Niño/Southern oscillation (ENSO) system. In general, clima-
tologists are restricted to observing a single realization of a phenomenon. If a scientist has
access to several realizations they often differ strongly in the initial and boundary conditions
and are not easily comparable. Another typical limit of geosciences is the shortage of ob-
servational data in relation to the complexity of the processes. The development of modern
computers partly provides a way out: Numerical models allow for the design of simulated
experiments to test and falsify hypotheses. However, a self-consistent model will never falsify

xi



xii Introduction

itself. Thus, without a connection to the real world, model experiments are rather a useful
meta science. The desired connection to observations finally leads to the concept of time
series analysis to corroborate the numerical models and to propose new hypotheses reaching
beyond the established theory.

Time series analysis aims to infer characteristic properties of an underlying process, for
instance its parameters or even the process structure itself, from observational data. This
approach constitutes an inverse problem [76]. Corresponding to the complexity and often
stochastic nature of the observed systems, testing and falsification are limited to statistical
statements characterized by confidence intervals and significance testing. In fact, the concept
of falsification is turned upside down in the concept of significance testing: An observation
is attributed being statistically significant, when it with high probability is not compatible
with a trivial null hypothesis. Thus, one does not try to falsify the hypothesis itself but
the null hypothesis. However, for a sufficient amount of data every null hypothesis will
be rejected. Furthermore, a researcher has to accurately understand the null hypothesis to
reliably interpret the meaning of its rejection. Beside these well known inherent problems
of significance testing, one has to consider sensitivity and specificity: On the one hand, a
test has to be capable of extracting the interesting statements - this demand is characterized
by the sensitivity of the test. On the other hand, the null hypothesis should be rejected in
case of a real deviation only - this demand is characterized by the specificity of the test.
In the statistical context, the corroboration of a hypothesis by trying to falsify it requires a
significance test of high specificity.
The above discussion sets the stage for the work at hand: My thesis mainly aims to contribute
to methodological aspects of time series analysis, but also to provide applications to important
climatological problems. In the framework of the collaborative research center SFB 555 of
the German research council (DFG), I exemplarily study, enhance and apply three statistical
methods of interest for climatology. Here I focus on the inverse problem perspective, i.e. a
reliable and unambiguous inference by means of significance testing. In this context, the
discussion of sensitivity and specificity takes up a central role.

The first chapter provides a brief overview of the basic concepts of random numbers,
stochastic processes, parameter estimation and significance testing. It contains no new results
and is rather dedicated to readers not too familiar with these concepts.

In the second chapter, I present work done in collaboration with Prof. Dr. Jens Timmer
and Henning Rust. We contribute to a recent discussion about the autocorrelation structure
of temperature time series. Prominent publications suggest a universal law of long memory
that is not accounted for in state-of-the-art climate models. The authors conclude that global
warming derived from trend estimates and model runs has been exaggerated. However, we
studied the method used for the inference in terms of sensitivity and specificity and showed
that the mentioned conclusions cannot be drawn from the given amount of data. This work
has been published in [70].

In chapter three, I study a very popular method for time/scale resolved analysis. Con-
tinuous wavelet spectral analysis is widely used in climatology. However, I realized that the
suggested methodology is far away from being a reliable and closed concept. After initial
studies [67] and a draft of an areawise significance test in mind, I started to collaborate
with Prof. Dr. Matthias Holschneider, who had the idea to define stochastic processes in the
wavelet domain. Hereupon we developed a framework of nonstationary Gaussian processes in
wavelet domain. Starting from this concept, I formulated estimators for wavelet spectra and
developed a new significance test with a considerably improved specificity [71]. These works
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provide a theory for the continuous wavelet spectral analysis. Together with Dr. Bettina
Schaefli I applied the method to a set of hydrological problems from the Swiss Alps [69].

Chapter four deals with a time series analysis method originating from nonlinear dynam-
ics. To study the coupling between ENSO and the Indian summer monsoon (ISM) rainfall,
I estimated the oscillating phases of the underlying processes and studied their time depen-
dent difference. To account for the typical variability of climate phenomena, I combined
the phase reconstruction by means of Hilbert transformation with a recent approach of a
geometry based filter. In order to study the performance of the method, I constructed a
simple toy model and estimated the bias and variance of the phase reconstruction. For the
teleconnection between ENSO and monsoon, I inferred two epochs of phase coherence that
reproduce earlier findings with improved accuracy. To corroborate these results, I developed
a significance test of high specificity. Furthermore, I detect intervals of coupling invisible
to linear methods. These findings mark a considerable contribution to the ongoing discus-
sion, whether the coupling is weakening due to global warming. Finally, I outline a possible
volcanic influence on the ENSO monsoon coupling. This work has been published in [68].

In the last chapter, I summarize and discuss the results and achievements from a climato-
logical and data analysis point of view and discuss limits and challenges for future research.
In order to give consideration to the collaborative character of parts of the publications un-
derlying this thesis, I decided to present the main part in plural form. Finally I would like
to mention further work I have done with Prof. Dr. Stefan Rahmstorf and others [95, 96],
Prof. Dr. Crowley [15] and Jan Saynisch [110], which has not entered this thesis.
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Chapter 1

General Concepts

This first chapter aims to provide the conceptual background for the studies in the thesis at
hand. Time series analysis investigates observational data to infer characteristic properties of
the underlying processes. The underlying process is either assumed to be purely stochastic,
a deterministic process driven by noise or a deterministic process, superimposed by measure-
ment noise, the latter being again modeled as a (often white) stochastic process. Interesting
characteristics can, for instance, be the correlation structure of the stochastic process, its
marginal distribution, or the parameters of the underlying dynamical system. In this the-
sis, we will study the following properties: In chapter 2, we will investigate the correlation
structure of the Prague daily temperature dynamics. Chapter 3 deals with the analysis of
time dependent correlation structures, and in chapter 4, we infer the time dependent phase
relation between ENSO and the Indian monsoon.

Stochastic processes are time dependent random variables with a certain dependency
structure. In this context, inference means to construct an estimator, that maps the data
onto an estimation of a particular process property. Because of a limited amount of data, the
estimation is always subject to random variability. Thus, the quality of the estimate has to
be quantified, either by means of confidence intervals or significance testing. The approach
of inferring characteristic properties of an underlying process constitutes an inverse problem.

In the first section, we present the concept of random variables and their probability
density distributions. Sec. 1.2 extends this concept to stochastic processes. The estimation
of the properties of random variables is presented in Sec. 1.3, followed by an introduction to
significance testing. In the last section, the concept of inverse problems and its relevance for
time series analysis are outlined.

1.1 Random Variables

1.1.1 Random Variables

A discrete random variable X defined on the probability space (Ω,P) is a function that maps
a space of events Ω to the real axis X : Ω → R by ω → X(ω), where ω ∈ Ω is a particular
elementary event. The probabilities PX(ω) map each ω to values between zero and one.
A realization of X yields a particular element ω with a probability PX(ω). Repeating a
realization N times one obtains the relative frequency P̂ = N(ω)/N as the ratio between
realizations of ω and the total number of realizations N .

A continuous random variable X is defined on a continuous space R with a corresponding

1
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probability density function ρX(x) with x ∈ R. The integrated probability density function
is called probability distribution:

PX(λ) =

∫ λ

−∞
dx ρX(x) (1.1)

A realization of X yields a value x < λ with probability P{x|x < λ} according to the
probability distribution:

P{x|x < λ} = Px(λ), (1.2)

For a general introduction to random numbers and probability and more rigid definitions,
please refer to [e.g. 41, 80].

A typical example for a continuous random number is one exhibiting a Gaussian distri-
bution with density function

ρX(x) = N (µ, σ2) =
1√
2πσ

e−
(x−µ)2

2σ2 . (1.3)

1.1.2 Multivariate Random Variables

A multivariate random variable is a vector X of n random variablesXi with i = 1...n. The cor-
responding joint probability distribution is then a function defined on Rn, ρX ≡ ρX(x1, ..., xn)
exhibiting values between zero and one. As ρX is a probability density,

∫
dnx ρX(x1, ..., xn) =

1.

Marginal Distribution

The probability density for a subset of variables in the vector irrespective of the values of
the other variables is called marginal distribution and can be calculated by integrating the
joint probability distribution over the other variables. The marginal distribution of X1, e.g.,
is given as

ρX1(x1) =

∫
dx2...dxn ρX(x1, ..., xn). (1.4)

Conditional Probabilities

Given a two-dimensional random vector X = (X1,X2), then the conditional probability den-
sity function for X1 given x2 is written as ρ(x1|x2). It is related to the joint probability
density function by

ρX(x1, x2) = ρ(x1|x2)ρX2(x2). (1.5)

If ρ(x1|x2) = ρX1(x1), i.e. ρX(x1, x2) = ρX1(x1)ρX2(x2), two random variables X1 and X2

are called independent.

1.1.3 Moments

The expectation value of a function H(X) of the random variable X is given as

〈H(X)〉 =

∫
dxH(x) ρ(x) (1.6)
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Of particular interest is the expectation value of X itself:

µ = 〈X〉 =

∫
dxx ρ(x). (1.7)

In general, one can define the m-th moment of X as

〈Xm〉 =

∫
dxxm ρ(x), (1.8)

with µ being the first moment of X. An important measure is the variance, being a combi-
nation of the first and second moment:

Var(X) = 〈(X − 〈X〉)2〉 = 〈X2〉 − 〈X〉2. (1.9)

For a Gaussian distribution Eq. (1.3), mean and variance are given by µ and σ2, respectively.
It is defined by the first and second moment only.

All these measures can also be extended to multivariate random variables X defined in
Rn. In particular, one can define the covariance matrix:

Cov(Xi,Xj) ≡ σ2
ij ≡ 〈(Xi − µi)(Xj − µj)〉 (1.10)

1.1.4 Quantiles

Given a random variable X with probability density function p(x), the α-quantile is defined
as the value xα for which

P (xα) =

∫ xα

−∞
dx ρ(x) = α. (1.11)

For a Gaussian distribution Eq. (1.3), the quantiles defining 95% of the mass symmetric
around the mean µ are given by ≈ µ± 1.96σ.

1.2 Stochastic Processes

A stochastic process X(t) is a time dependent random variable. If time is discrete, then Xi is
an indexed random variable with i = 1... representing times t1.... The process is defined by
the joint probability density function ρ(x1, ...). The linear interrelations between two points
in time t1 and t2 are captured by the autocovariance function

Cov(t1, t2) = 〈(X1 − 〈X1〉)(X2 − 〈X2〉)〉 (1.12)

A Markov process of order p is defined as a (discrete) stochastic process fulfilling

ρn(xn|x1, ..., xn−1) = ρp(xn|xn−p, ..., xn−1), (1.13)

i.e. the conditional probability density distribution of Xn given all previous values x1, ..., xn−1

depends on the last p values only. A first order Markov process is often simply referred to
as Markov process. A Markov process is called homogeneous if the conditional probability
density depends on time differences only, but not on absolute times.
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1.2.1 Properties of Stochastic Processes

Stationarity

A stochastic process is strictly stationary if for any ti, tj , ..., the joint probability distribution
ρ(xi, xj , ...) stays invariant under time shifts k, i.e. ρ(xi, xj , ...) = ρ(xi+k, xj+k, ...). Since the
inference of such a property from real data is in principle impossible, one introduces the notion
of weak stationarity, which refers to the moments of the process distribution. A process is first
order stationary, if it exhibits a time independent mean. If a process additionally exhibits
a time independent variance and if its covariance function is a function of time differences
only, the process is called second order stationary or weakly stationary:

i. 〈Xi〉 ≡ µ = const .

ii. Var(Xi) ≡ σ2 = const .

iii. Cov(ti, tj) is a function of (tj − ti) only.

(1.14)

Autocovariance Function and Spectrum

As stated in the previous section, a stationary process exhibits an autocovariance function of
the form

Cov(k) = 〈(Xi+k − 〈X〉)(Xi − 〈X〉)〉 (1.15)

Normalized to the variance (i.e. the autocovariance function at lag k = 0) one gets the
autocorrelation function:

C(k) =
Cov(k)

Cov(0)
(1.16)

As the frequency domain counterpart of the autocovariance function of a stationary process,
one can define the spectrum as

S(ω) = Ĉov(k), (1.17)

where the hat denotes the Fourier transformation.

Ergodicity

Ergodicity is a notion from statistical physics and dynamical systems theory. Loosely speak-
ing, in time series analysis one calls a process ergodic, if the estimation of the mean and
auto covariance function based on the time average converges to the estimation based on the
ensemble average1 for N → ∞. As one often has access to only one realization of a process,
this property is important for the estimation.

1.2.2 Gaussian Processes

A time discrete stationary process Xt is called Gaussian if the joint probability distribution
of {Xt1 , ...,XtN } for any n and any t1, ..., tn is multivariate Gaussian [90]. This is equivalent
to the condition that Xt can be modeled as Gaussian white noise ǫt, ǫt ∼ N (0, σ), filtered by
a time independent linear filter L(.) [91]:

Xt =

∞∑

−∞

Liǫi (1.18)

1Ensemble refers to a set of realizations of the process.
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Gaussian processes are completely defined by their autocovariance function or equivalently
by their spectrum.

ARMA processes

An important class of stationary Gaussian processes are causal autoregressive moving average
process of order [p,q] (ARMA[p,q]-process) [9, 90],

Xt = ǫt +

p∑

i=1

aiXt−i +

q∑

j=1

bjǫt−j, (1.19)

with AR coefficients ai and MA coefficients bj. With bj = 0 for all j, the process is called
AR[p] process, with ai = 0 for all i it is called MA[p] process. Any Gaussian process Eq. (1.18)
can in principle2 be represented by an ARMA[p,q] process.

The ACF of general ARMA[p,q] models can be calculated using the Yule-Walker equations
[9, 90] and decays exponentially for large time lags. For an AR[1] process Xt = ǫt + aXt−1

with |a| < 1, the ACF reads

C(r) = a|r|, r = 0,±1,±2, ... (1.20)

The spectrum of an ARMA[p,q] process is given as

|fX(ω)|2 =
σ2

2π

|β(e−iω)|2
|α(e−iω)|2 with ω ∈ [−π, π], (1.21)

where α(z) and β(z) are the autoregressive and moving average polynomials defined as α(z) =
1 − a1z − ...− apz

p and β(z) = 1 + b1z + ...+ bqz
q [9, 90].

Fractal Processes

A special class of Gaussian processes are fractal processes. These cannot be modeled by
ARMA[p,q] processes of finite order. Fractional Brownian motion (FBM) is defined by the
following autocovariance function:

Cov(t1, t2) ≡ 〈X(t1)X(t2)〉 =
σ2

2

(
|t1|2H + |t2|2H − |t2 − t1|2H

)
(1.22)

The exponent H is called Hurst parameter. For H = 1/2, one gets the classical (non-fractal)
Brownian motion. FBM is called self similar, because a scaling of the time axis can be
compensated by a scaling of the amplitude. The process defined by the increments of FBM

Y (t) = X(t+ 1) −X(t) (1.23)

is called fractional Gaussian noise (FGN). It is a stationary Gaussian process with an alge-
braically decaying ACF

Cov(r) ≡ 〈X(t)X(t+r)〉 =
σ2

2

(
|r + 1|2H + |j − 1|2H − 2|j|2H

)
, r = 0,±1,±2, ... (1.24)

2in general of possibly infinite order
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The power spectrum of FGN reads

S(ω) =
(2π)ασ2

2|ω|α (1.25)

with α = 2H + 1. More general linear processes consist of ARMA components, which
are additionally integrated (ARIMA) with a possibly fractional integration (FARIMA or
ARFIMA) [5].

Realizations of Gaussian Processes

Realizations of ARMA[p,q] processes can be simulated in time domain by applying Eq. (1.19)
to a realization of a white noise time series ǫt. This procedure, however, does not apply
to e.g. fractal processes, where no straight forward model in the time domain exists. An
alternative solution applicable to any Gaussian process makes use of the spectrum: One
might transform the white noise time series ǫt to the Fourier domain, multiply it with the
desired spectrum and transform it back to the time domain [e.g. 119].

1.3 Estimators

Given a random variable X, one can utilize a number N of realizations of X to reconstruct the
parameters θ defining the underlying probability density function ρX(x) such as the moments
or even the density itself. This procedure is referred to as estimation. The estimator of
the parameter θ is denoted by a hat, Θ̂, and is a function of the N copies of the random
variable Θ̂ ≡ Θ̂(X1, ...XN ). Hence, the estimator is a random variable itself with a particular
realization θ̂(x1, ..., xN ) [41].

1.3.1 Bias

The bias of an estimator Θ̂ is defined as the difference between the expectation value of the
estimator and the underlying parameter,

Bias(Θ̂) = 〈Θ̂〉 − θ. (1.26)

An estimator is said to be unbiased, if Bias(Θ̂) = 0.

1.3.2 Variance

According to Eq. (1.9), the variance of an estimator Θ̂ is given as

Var(Θ̂) = 〈(Θ̂ − 〈Θ̂〉)2〉 = 〈Θ̂2〉 − 〈Θ̂〉2. (1.27)

1.3.3 Consistency

An estimator is said to be consistent if the probability that the difference between a realization
θ̂(x1, ..., xN ) and the underlying true value θ is larger than an ǫ tends to zero for large N :

P
(
|θ̂(x1, ..., xN ) − θ)| > ǫ

)
→ 0 for N → ∞. (1.28)

This requires asymptotically vanishing bias and variance for N → ∞.
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1.4 Significance Testing

Given an observation x, one is often interested if the measured value (or more general, the
measured sample) is compatible with some trivial assumption or if it shows some interesting
behavior. Translated to statistics, the question is if x is a realization of a (trivial) random
variable X with a specific distribution or if it differs. If the support of X ranges from −∞ to
∞ (e.g. if X is Gaussian distributed), any x can be a realization of X and it is in principle
impossible to answer this question. However, one can ask how likely it is that x is a realization
of X. This approach leads to the concept of significance testing.

One assumes a certain (trivial) null hypothesis H0 about X (e.g. X is Gaussian) and
defines a significance level α, usually3 0.1, 0.05 or 0.01. If x exceeds the 1−α quantile of the
distribution under the Null hypothesis4, one considers the random variable underlying x as
being significantly different from the Null hypothesis on the α-level.

1.4.1 Statistical Errors and Power of the Test

Even if the null hypothesis H0 is right, one observes on average α percent rejections of H0.
This result is called false positive or an α-error. This error is in principle not evitable and
occurs by construction. On the other hand, a significance test might fail to reject H0, even
if it was wrong. This result is called false negative or a β-error. The probability, that a test
rejects H0 if it is wrong, i.e. the probability not to produce a β-error is called power of the
test.

1.4.2 Sensitivity vs. Specificity

Accounting for its purpose, every significance test has to be designed individually: A medical
test should always warn the patient in case of a severe disease; on the other hand, establishing
a result by means of statistics, a test should preferably reject false positive results. These
antithetic demands are represented by the terms of sensitivity SE and specificity SP :

SE = P(H0 rejected |H0 wrong)

SP = P(H0 accepted |H0 right)
(1.29)

A sensitive test rejects H0 in preferably every case it is wrong (low β-error), whereas a specific
test preferably only rejects H0 when it is definitely wrong (low α-error). For finite data, no
test can be perfectly sensitive and specific simultaneously.

Assume a population N , where a null hypothesis H0 is right in NR cases and wrong in
NW = N −NR cases. Applying a significance test for H0 to measurements of every element,
the numbers of true negative and false positive results are denoted as NTN and NFP , with
NTN +NFP = NR. The numbers of false negative and true positive results are given as NFN

and NTP , with NFN +NTP = NW . Then one can estimate sensitivity and specificity as

ŜE =
NTP

NW
=

NTP

NTP +NFN
,

ŜP =
NTN

NR
=

NTN

NFP +NTN
.

(1.30)

3In geosciences, one often calls 1 − α the significance level, e.g. the 90%, 95% or 99% level.
4In case of a two sided test, one considers the α/2 and the 1 − α/2 quantiles.
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The sensitivity relates the number NTP of true rejections of H0 to the total number of wrong
H0, NW . On the other hand, the specificity measures the number NTN of true acceptances of
H0 in relation to the total number of right H0, NR. The notions of sensitivity and specificity
are often used more general without referring to a quantitative analysis.

1.4.3 Multiple Testing

Assume a test being independently repeated on the α level. Even if H0 is true, it will by
definition be rejected in on average α percent of the realizations. The probability, thatH0 will
at least once be falsely rejected after N realizations is 1 − (1 − α)N , which is essentially one
for large N . This effect is called multiple testing and is inherent to every repeatedly realized
statistical test. A conservative approach to handle this problem is the Bonferroni-correction:
One divides the desired over all significance level α̃ by the number of realized tests N to get
a corrected significance level αB = 1− (1− α̃)1/N ≈ α̃/N for the single tests. A very pointed
example that illustrates multiple testing and also its consequences for scientific progress is
the problem of publication bias: Assume 100 researchers performing the same experiment
with the same test without knowing of each other. Hence, even if H0 were right, on average
α-percent of these researchers will obtain a false positive result. These results - but probably
not the 95 others - might be published causing a bias of scientific discovery [e.g. 20].

1.5 Inverse Problems

Given a model M with a set of parameters P (including possible input, boundary conditions
and initial values), the generation of data D from this model is called direct problem [76]:

M(P ) =⇒ D (1.31)

Examples are any numerical simulations, e.g. using a simple dynamical system as the Lorenz
equations, a model for a biochemical reaction or a general ocean atmosphere circulation
model, or experiments where the underlying dynamics and the parameters are well known.

However, in many scientific problems, one faces the opposite problem: One measures a
set of data and aims to infer the parameters of the underlying model or even the model itself.
This task is referred to as an inverse problem[41, 76]:

M(P ) ⇐= D (1.32)

The task of inferring the parameters, given the model, is called inverse problem of first kind.
The inference of a model, given a set of parameters, is called inverse problem of second kind.
An inverse problem is called well posed [35] if the solution

• exists,

• is unique,

• depends continuously on the data.

Usually, inverse problems are ill-posed and need to be regularized by additional constraints.
Examples for inverse problems of first kind are inverse linear transformations, determination
of physical constants by a chosen experimental setting, or tomography [76]. Inverse problems
of second kind are e.g. the inference of a physical law from observations, significance testing
and directly related, the verification and falsification of hypothesis [76]. In this respect, all
the time series analyses presented in this thesis constitute inverse problems.



Chapter 2

Tempting Long Memory

2.1 Introduction

Understanding the variability of the climate system on scales from days to decades or even
longer is a fundamental issue of climatology. In 1976, Hasselmann [37] introduced the concept
of stochastic climate models and showed that climate variability in principle can be modeled
by rather simple AR-processes. The time dependency of linear stochastic processes is com-
pletely captured by the autocorrelation function C(s), describing the average linear relation
of two points in time with lag s. The sum of C(s) over all lags s is often called memory or
persistence of the process [124]. Typical properties of AR-processes are an exponential decay
of the autocorrelation function for large s and thus a finite memory which is equal to the
existence of a characteristic time scale. Processes with these attributes are called short-range
correlated or short-memory processes.

Later, Pelletier and Turcotte [81] as well as Koscielny-Bunde et al. [55] reported long-
range correlations in temperature data. This process property is characterized by infinite
memory and the absence of a typical time scale. For large time lags r, the autocorrelation
function of such long-memory processes decays according to a power-law and hence exhibits
scaling with a characteristic exponent γ.

Govindan et al. [31] reported, that widely used general coupled climate models do not
exhibit the behavior found by Koscielny-Bunde et al. [55] and raised the question whether
estimates of the warming-trend in global mean temperature based on these models could be
exaggerated. However, Fraedrich and Blender [22] extended the analysis to various stations
around the globe and showed that state-of-the-art climate models are able to reproduce the
empirical findings.

Except for Pelletier and Turcotte [81], the authors applied Detrended Fluctuation Analysis
(DFA, Peng et al. [82]) which investigates the average variability on a scale1 s. For long-
memory processes in the limit of large scales, this fluctuation function F (s) can directly
be linked to the autocorrelation function. However, in all works known to the authors the
properties of DFA have only been studied for certain long-memory processes. The behavior
for other linear processes has not been investigated and it is not clear if the results can be
easily transferred.

In this chapter we interpret the inference of long-memory from empirical data as an inverse
problem. Following Popper [88], we test competing hypothesis, long memory but also short

1scale refers to the length of a time interval

9
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memory, and try to falsify them. The main insight is, that power-law scaling of the fluctuation
function and thus long-memory may not be assumed a priori but have to be established.
We argue that this requires the investigation of the local slopes of the fluctuation function.
Furthermore one has to account for the variability characteristic for stochastic processes.
Associated with the inference of long-range correlations, we investigate the sensitivity and
specificity of DFA: When long-memory is present, does DFA detect it? When no long-memory
is present, does DFA reject it? We illustrate our discussion by comparing a long-memory with
a short-memory model. Finally, we review the results of Koscielny-Bunde et al. [55] for the
Prague temperature data set and show that their conclusions are not unambiguous.

In Sect. 2.2, we introduce the processes considered and discuss the inference of long-range
correlations. The method of DFA is explained in Sect. 2.3. In Sect. 2.4, we interprete the
inference of long-range correlations from empirical data as an inverse problem. To exemplify
the discussion, we present two competing models. Establishing power-law scaling of the
fluctuation function is discussed with respect to local slopes and natural variability. Section
2.5 gives an overview over typical pitfalls for the case that the unknown underlying process
is short range correlated. As a consequence of the foregoing discussions, we review the DFA
results of the Prague daily temperature record in the last section.

2.2 Autocorrelation Function of Stochastic Processes

Many processes in nature are of such a high complexity that a description by deterministic
models is difficult or not desirable. However, their characteristic behavior often is effec-
tively captured by stochastic processes. In 1976, Hasselmann [37] introduced the concept of
stochastic climate models and showed that the variability of the climate system in principle
can be modeled by rather simple and linear AR-processes (For an overview over Gaussian
and ARMA processes refer to Sec. 1.2.2). The time dependent structure of stationary linear
stochastic processes is captured by the autocorrelation function C(s) of two points in time
with lag s or equivalently by the spectrum S(ω). The integral of C(s) over all lags s is often
called memory or persistence [124]. Different classes of autocorrelation structures can be
distinguished with respect to the form of their decay for large time lags s:

2.2.1 Short Range Correlations

Many stochastic processes in nature exhibit short-range correlations, which decay exponen-
tially:

C(s) ∝ e−s/τ , for s→ ∞. (2.1)

These processes exhibit a typical time scale τ . This decay is fast enough to let the sum∑
C(s) converge resulting in a finite decorrelation time [128], e.g. for C(s) = e−s/τ

τD = 1 + 2

∞∑

s=1

C(s) = 1 + 2

∞∑

s=1

e−s/τ

≈ 2τ for τ ≫ 1. (2.2)

We employ the decorrelation time as a measure for the memory or persistence of a process.
Correlations on scales large compared to the decorrelation time are negligible due to the fast
exponential decay. Thus, one also refers to these processes as having short-range or finite
memory. Typical examples are AR-processes (see Sec. 1.2.2).
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2.2.2 Long Range Correlations

A second class are long-range correlated processes characterized by algebraically decaying
correlations:

C(s) ∝ s−γ , for s→ ∞, with 0 < γ < 1. (2.3)

A characteristic time scale as defined above does not exist. The calculation of the decorrela-
tion time, e.g. for C(s) = s−γ for s > 0, C(0) = 1

τD = 1 + 2

∞∑

s=1

C(s) = 1 + 2

∞∑

s=1

s−γ = ∞ (2.4)

results in infinite memory.
A physical example for such a process can be found in Kolmogorov’s theory of turbulence

[23]. A mathematical model exhibiting long-range correlation is e.g. fractional Gaussian noise
(FGN) [66] (see Sec. 1.2). For this process the asymptotic relation Eq. 2.3 is already well
satisfied for finite sample sizes because it is the increment of the self-similar process frac-
tional Brownian motion. A more flexible long-range correlated process is given by fractional
ARIMA[p, d, q] (FARIMA) that contains additional short range correlated ARMA compo-
nents [5, 32, 43]. However, for non-trivial autoregressive (AR) or moving average (MA)
components (p+ q > 0) it is possible that the asymptotic relation Eq. 2.3 is not satisfied for
a finite sample.

The concept of long-memory refers to non-periodic processes. Thus, the recurrence due
to periodicities like the Milankovic-cycles in the climate system are not to be considered as
long-range correlations, even if their (deterministic) behavior causes correlations for infinite
time lags.

2.2.3 Discrimination between Short and Long Memory

An important question to characterize a given non-periodic process is now to investigate, if
its autocorrelation decays exponentially or according to a power law. However, for observa-
tional data, one cannot investigate the decay of the autocorrelation function on arbitrarily
large scales. Measurement limitations always restrict the analysis and interpretation to a
range between two time scales independent of the nature of the process: First, the sampling
interval ∆t defines a minimum time scale. Second, the finite length of the record T defines
a maximum time scale. Intuitively, one might easily be tempted to refer to records with
characteristic time scales close to ∆t as short-range and close to T as long-range correlated.
This, however, ignores the fundamental difference of short-range and long-range correlated
processes concerning the form of the decay of their autocorrelation as given in Eqs. (2.1) and
(2.3). This difference is essential e.g. for estimation of the variance of the mean, prediction
[5], trend assessment [51, 29] and extreme value statistics [21].

2.3 Detrended Fluctuation Analysis (DFA)

Estimating the autocorrelation function C(s) from empirical data is limited to rather small
time lags s and is affected by observational noise and instationarities like trends. The same
restrictions hold for the sample spectrum at low frequencies. Peng et al. [83] suggested
Detrended Fluctuation Analysis (DFA) to indirectly gain information about the correlation
structure imposed on a time series.
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2.3.1 The Algorithm

The method works as follows: Given a realization2 x(i) of length N of a stochastic process,
one calculates the aggregated time series or profile y(j):

y(j) =

j∑

i=1

[x(i) − x̄], with x̄ =
1

N

N∑

i=1

x(i) (2.5)

The profile y(i) is divided into M non-overlapping segments of length s. For DFAn, in each
segment m a best fit polynomial trend pn

s,m of order n is subtracted from the profile:

Ys,m(i) = y(i) − pn
s,m(i) (2.6)

For each segment m the squared fluctuation is calculated:

F 2
m(s) =

1

s

ms∑

i=(m−1)s+1

Ys,m(i)2 (2.7)

The squared fluctuation function of the process is estimated by averaging over all segments:

F 2(s) =
1

M

M∑

m=1

F 2
m(s) (2.8)

This procedure is repeated for several s. The minimum scale is given by the sampling interval
∆t and the order n of DFA, a reasonable choice for the maximum scale is about 1/10 of the
total record length, due to natural variability as will be discussed in Sect. 2.4.2. For a more
comprehensive description of the algorithm and the influence of trends refer to Kantelhardt
et al. [52].

For an uncorrelated series x(i) we get a squared fluctuation function F 2(s) ∝ s (i.e. F (s) ∝
s0.5) which reflects the linear increase of the variance of the profile. For time series x(i) with
algebraically decaying autocorrelations (Eq. (2.3)), it can be shown that in the limit of large
s the fluctuation function increases according to a power law [117]

F (s) ∝ sα , α = 1 − γ/2 , with 0.5 < α < 1 . (2.9)

Thus, analyzing the fluctuation function of long-range correlated processes for large s reveals
the decay exponent of the corresponding correlation function for large s.

2.3.2 Estimating the Strength of Long Range Correlations

For FGN, one can estimate the scaling exponent α of the fluctuation function by fitting a
straight line to the result in a double logarithmic plot (for FARIMA processes, the fit has to be
restricted to large scales where short memory components can be neglected). Then, according
to Eq. (2.9), one can easily derive the power-law decay of the autocorrelation function with
exponent γ or equivalently the Hurst coefficient H (see Sec. 1.2.2) with γ = 2 − 2H. Taqqu
et al. [117] have shown that this procedure is an effective estimator of the scaling exponent.
The ability of DFA to estimate α from realizations of long-memory processes corrupted by
different instationarities like trends, spikes, harmonics and gaps has been studied by Hu et al.
[44], Chen et al. [13] and Kantelhardt et al. [52].

2For clarity reasons during the following calculations, here we write the discrete time index in brackets,
not as subscript.
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2.4 Inference of Long Memory

The straight line fit discussed in the previous section was often used to estimate scaling
exponents from observational data [e.g. 31, 55, 22]. However, this procedure is valid only in
the case, that a scaling parameter exists at all, i.e. only when the underlying process in fact
is long range correlated. But in general, the correlation structure of a complex real world
process is not known a priori and first has to be identified. Thus, one faces an inverse problem
as introduced in Sec. 1.5.

Given the set of all possible correlation structures, the inference of long-range correlations
means

1. showing the compatibility of the given data set with a realization of a long-memory
process,

2. excluding other possible correlation structures.

These two conditions - the necessary and the sufficient - are often discussed with respect to
the terms of sensitivity and specificity (see Sec. 1.4): In this case, a procedure, that with
a high probability detects compatibility with long-range correlations, whensoever they are
present, would be sensitive. An algorithm that with a high probability rejects long-range
correlations, when they are not present, were specific. The optimal algorithm would be
sensitive and specific. A sensitive but unspecific algorithm, however, would frequently detect
long-range correlations. This algorithm would not be suitable for a reliable inference. On
the other hand, an un-sensitive but specific algorithm would be very conservative and would
often reject the existence of long-range correlations.

To our knowledge it has not been studied, if DFA can be used to infer long-memory
from realizations of a process when it is not a priori clear, if this process is long-range
correlated. I.e. it is still an open question, how sensitive and specific DFA behaves when
investigating processes of unknown correlation structure for long memory. Closely connected
to this discussion is the question, how DFA behaves analyzing short memory processes.

To summarize, for the inference of long memory we mainly address the following questions:

1. How to conclude scaling from the DFA fluctuation function?

2. Does scaling necessarily imply long-range correlations?

2.4.1 Two Example Processes

To illustrate our line of argumentation and to investigate the questions listed above, we
consider a short-memory as well as a long-memory process and apply DFA to both. The
choice of the model parameters is motivated by the example of the Prague temperature
record studied in Sect. 2.6 and will become clear during the discussion. As an example for a
long-range correlated process we simulate fractional Gaussian noise according to the method
given in Timmer and König [119] with α = 0.6 (see also Sec. 1.2.2 for an outline of the
method). This process shows power-law scaling in the autocorrelation function for a wide
range of scales. For the short-range correlated process we choose a superposition of three
AR[1]-processes,

x(i) =
3∑

j=1

Ajyj(i) , yj(i) = ajyj(i− 1) + ηj(i) , (2.10)
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Figure 2.1: Fluctuation functions calculated for an artificial long-range correlated process
with exponent α = 0.6 (× DFA1, ⋄ DFA2) and a superposition of three AR-processes (+
DFA1, △ DFA2) as defined in Sect. 2.4.1. For each order of magnitude, approx. 50 values
are calculated. To enhance clarity, only every third value is plotted.

with ηj(i) being Gaussian white noise of zero mean and variance 1 − a2
j . The latter insures

var(yj) = 1. We choose A1 = 0.913, A2 = 0.396, A3 = 0.098, a1 = 0.717, a2 = 0.953
and a3 = 0.998. Using aj = e−1/τj we find the following characteristic time scales for the
individual AR[1] processes: τ1 = 3d, τ2 = 21d and τ3 ≈ 1.5 yrs.

2.4.2 Establish Scaling of the Fluctuation Function

Figure 2.1 shows the fluctuation functions for a realization of each of the two example pro-
cesses defined in the previous section with N = 70, 492 and ∆t = 1. For each order of
magnitude 50 values of equal distance in logarithmic scale are calculated. For clarity reasons,
we plotted only every third value.

The Straight Line Fit

Investigating only the double logarithmic plot of the fluctuation function, one is tempted to
rashly conclude for long-range correlations. Due to properties of the logarithm, fluctuations
are suppressed in a log-log plot and the deviation from a straight line is not easily visible
[125]. Also, restricting the analysis to a straight line in the log-log plot forces F (s) in the
procrustean bed of power-laws. It will always yield some value for the slope but the suitability
of the linear description is not evaluated. For the inference of long-range correlations, this
procedure would be sensitive but not specific in the sense, that long range correlations would
be attributed to all processes with α 6= 0.5 for the largest scale observed. Such a result would
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trivialize the concept of long-range correlations and provide no insight into the process. Even
if scaling is present, it is difficult to determine the beginning and ending of the scaling region
in the log-log plot. However, the resulting value for α derived from a straight line fit strongly
depends on the fit boundaries if the realization does not stem from a scale free process.

Estimating Local Slopes

Thus, to reliably infer a power-law, a straight line in the log-log plot may not be assumed a
priori but has to be established. Since a straight line is tantamount to a constant slope, the
local slopes α(s) of log10 F (s) vs log10 s have to be evaluated for constancy in a sufficient range
[53, 125, 120]. The extend of a sufficient range is still a matter of debate (see e.g. Avnir et al.
[3] and references therein). This concept has been introduced in the context of estimating
correlation dimensions [11, 125] and, in a different setting, has also been suggested for DFA
[82].

For a finite amount of data the estimation of the local slopes brings along a certain
variability and even for a long-memory process like FGN, the local slopes of the empirical
fluctuation function show variations around a constant α. This has two consequences for
the calculation and interpretation of the local slopes: First, estimating the local slopes by
finite differences results in a large variability. This can be reduced fitting a straight line to
log(F (s)) vs. log(s) within a small window. The window is then shifted successively over all
calculated scales s. Figure 2.2 shows the local slopes of a realization of the short-memory
model for different window sizes. Choosing the optimal window size, one has to trade bias for
variance: For small windows, the bias is small, but the variability renders the interpretation
difficult, whereas for large windows, the variance is reduced at the cost of a biased estimate of
α. Thus, the extreme case of a single straight line fit to the whole range of scales considered
is maximally biased. Since only one value of α is calculated, this does not allow to evaluate
constancy.

As a second consequence of the finite amount of data, one has to quantify the variability
for a given length of the record. Since vicinal local slopes are not independent, confidence
regions cannot be estimated easily from the procedure described in Sect. 2.4.2 [18]. Instead,
we perform Monte Carlo simulations: For the two example processes, we simulate 1,000
realizations to estimate mean and standard deviation of α for the scales considered. For a fixed
scale s, the distribution of α(s) is approximately gaussian. Thus, we employ ᾱ(s)± 1.96σ(s)
as estimates of the 95% confidence bands.

Figure 2.3 displays the local slopes of the DFA1 (a) and DFA2 (b) fluctuation functions,
estimated from one realization of each of the example models using a window of 21 points.
Additionally, the corresponding 1.96σ intervals around the mean of each model are plotted.
The realization of the long-memory process shows fluctuations around a constant α within the
corresponding 1.96σ interval, increasing like σ ∝ √

s [82]. The local slope α(s) of the short-
memory realization, however, decreases constantly in the beginning and basically follows the
local slope of the long-memory realization for scales larger than log10 s ≈ 2.5. Thus, for a
certain choice of parameters, a short-range correlated model can mimic scaling in a finite
range. Due to the principle of variance superposition for DFA [44], a suitable superposition
of three AR[1] processes produces this effect in the fluctuation function analogously to the
same effect in the spectral domain described in Hausdorff and Peng [39].

Analyzing the long-memory properties one studies primarily the behavior on large scales
s assuming that influences from short-range components are negligible and do not bias the
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Figure 2.2: Local slopes of a realization of the short-memory model for different window
sizes. For F(s), approx. 50 points per order of magnitude are calculated. For small windows,
the bias is very low, but the variability renders the interpretation difficult, whereas for large
windows, the variance is reduced at the cost of a biased estimate of α.

estimation of the long-range dependence parameter. In our example, the 1.96σ-cones are
virtually indistinguishable in this range. Thus, based on the given record length and only
considering large s, one cannot distinguish the realizations of the two models by means of
DFA. For longer time series, the cones would shrink and the region of overlapping would
become smaller.

At this point, a general dilemma related to the inference of long-memory emerges: For
a finite time series, one will always find a short-range correlated model to describe the data
[5]. Thus, the inference of long memory from finite data is in principle impossible, or in
other words: Considering the inference of long range correlations, DFA is sensitive but not
specific. The capability of short-memory models to reproduce findings which are associated
with long-memory has also been considered with respect to the Hurst phenomenon [73, 74].

However, it is not always meaningful to model finite data with a short-memory model: the
longer the scaling region of a short-range model shall be, the more parameters and tuning are
required. It may be advantageous to describe a data set exhibiting several orders of magnitude
of power-law scaling with a long-range correlated model with few parameters rather than with
a short-range correlated model with a large number of parameters. To decide which model
to prefer with respect to parameter parsimony, one could e.g. employ a likelihood approach
combined with an Akaike-type model selection criterion [6]. A framework for this model
based approach is under development [107].
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Figure 2.3: Local slopes of the (a) DFA1 and (b) DFA2 fluctuation function calculated for
an artificial long-range correlated process with exponent α = 0.6 (×) and a superposition of
three AR-processes (+) as defined in Sect. 2.4.1. The dashed and the dotted lines border the
shadowed 1.96σ intervals obtained from 1,000 realizations of the two processes, respectively.
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Figure 2.4: Empirical fluctuation function of the short-memory model Eq. (2.10), estimated
from 200 realizations of length N=1,000,000 (solid line). A region of approximatively constant
slope occurs between log10 s ≈ 2.8 (s ≈ 600) and log10 s ≈ 3.8 (s ≈ 6, 000, ≃ 16 years). On
larger scales, the slope reduces to α = 0.5 characterizing the short-memory nature of the
model.

2.5 Inference of Short Memory

To circumvent the principle problem outlined in the previous section, one can alternatively
investigate if the underlying process is short-range correlated. Transferring the discussion
from above, this requires:

1. To show compatibility with a short-range correlated model.

2. To exclude possible long-range correlated models.

The first condition is always fulfilled, since one will always find a short-range correlated
model to describe a finite data set. Thus, for the inference of short-memory, DFA is sensitive.
The second condition is not fulfilled for the given example, because the record length is not
sufficient to detect the short-memory character α = 0.5 for large s of the AR-model by means
of DFA. For longer time series as shown in Fig. 2.4, when a plateau of α = 0.5 is identifiable,
long-memory can be excluded and the specificity of DFA to infer short-range correlations
increases.

However, setting aside the realizations of the two example models being two short for
the discrimination between long and short memory, one might investigate the performance
of DFA with respect to analyzing short memory processes in a more general context.
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Figure 2.5: Local Slopes of the empirical fluctuation function of an AR[1]-process (τ = 500)
estimated from one realization of length N=10,000,000. Solid line: DFA1, dashed line: DFA2.
The horizontal dotted line marks α = 0.5, the vertical dotted line marks τ = 500. For low
scales, α exhibits values larger than one. Only for scales approx. 1.8 orders of magnitude
larger than τ , α decrease to 0.5.

2.5.1 The Fluctuation Function of AR[1]-Processes

According to Sect. 2.2, the autocorrelations of short memory processes decay exponentially
for large s and are negligible on scales large compared to the decorrelation time τD (Eq. (2.2)).
Consequently, for large scales, the slope of the fluctuation function of such a process converges
to α = 0.5. Figure 2.5 shows the local slopes of the empirical fluctuation function calculated
with DFA1 (solid line) and DFA2 (dashed line) for a realization (N=10,000,000) of an AR[1]
process with τ = 500.

The expected convergence to α = 0.5 occurs only for log s ≈ 4.5, i.e. s ≈ 32, 000, which is
about 1.8 orders of magnitude larger than τ . Consequently, one might be tempted to conclude
a much longer characteristic time scale of a short memory process when investigating DFA
fluctuation functions.

2.5.2 Finite Scaling of Short-Memory Processes

As stated in the previous section, one expects the slope of the fluctuation function of a short
memory process to converge to α = 0.5 for scales large enough. However, for a finite set of
data one cannot be a priori sure that the series is long enough to observe this. For a record
of the short-memory model defined in Sect. 2.4.1 of length 70,492 points the local slopes of
the fluctuation function of the largest observed scales is compatible with power-law scaling.
A plateau with α = 0.5 is not observed (Fig. 2.3). Thus, one might be tempted to conclude
long-memory. However, analyzing a much longer record (1,000,000 points) of the same model
yields a plateau with α = 0.5 for large s as can be seen from Fig. 2.4. Therefore, for a
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Figure 2.6: Analytical autocorrelation function of the short-memory model Eq. (2.10) (dashed
dotted line). The dashed lines depict the autocorrelation functions of the single AR[1] pro-
cesses with shortest and longest time constant respectively. In a scale range from log10 s ≈ 0
(s ≈ 1) to maximally log10 s ≈ 3 (s ≈ 1, 000) the autocorrelation function approximately
follows the power law with γ = 0.8 (solid line). For larger scales, it turns into an exponential
decay determined by the AR[1] process with the largest time constant τ ≈ 1.5years.

process with unknown correlation structure it is misleading to use α > 0.5 as evidence for
long-memory. It might very well be that the record is too short to observe a plateau with
α = 0.5.

2.5.3 Shift of the finite scaling region

As shown in Sect. 2.4.2, under certain conditions also short-memory processes can exhibit
a finite “scaling” region. Thus, the question arises, if such a scaling region derived from
the fluctuation function corresponds to the same region in the auto correlation function. To
address this question, we relate the fluctuation function shown in Fig. 2.4 to the analytical
autocorrelation function as shown in Fig. 2.6. The dashed lines depict the autocorrelation
functions of the single AR[1] processes with the largest and the smallest time scale, the
autocorrelation function of the superposition of the three AR[1] processes is given by the
dashed-dotted line. The solid line represents a power-law with exponent γ = 0.8 as expected,
when applying Eq. (2.9) to the exponent α = 0.6 as derived from the fluctuation function.
We find that the region of almost constant slope of the autocorrelation function is located on
smaller scales between s ≈ 1 and maximally s ≈ 1, 000 (≃ 3 years). Thus, based on a finite
scaling region found in the fluctuation function of a short-memory process, it is not valid to
conclude that an equal scaling region exists also for the autocorrelation function, as assumed
by Koscielny-Bunde et al. [55].
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Figure 2.7: DFA1 (+) and DFA2 (△) fluctuation function of Prague daily air temperature
data calculated for approximately 50 points per order of magnitude. Only every 4th point
is shown to enhanced clarity. The shadows mark the 1.96σ confidence regions derived from
1,000 runs of the AR model.

2.6 Memory of Temperature Records

As a consequence of the previous discussion, we review a prominent DFA result. It has been
stated by Koscielny-Bunde et al. [55], that temperature records follow a universal scaling
law. This behavior was said to be found in numerous data sets. For a discussion of the
existence of universal scaling exponents see [126]. Here, we want to check these findings
exemplarily in the daily air temperature dataset of Prague starting from 01/01/1800 up to
12/31/1992 (N = 70, 492). To test, whether the underlying process is long-range or short-
range correlated, we adjusted the long-range correlated model and the AR-model given in
Sect. 2.4.1 to the data set.

We apply DFA1 and DFA2 to the temperature anomalies ∆Ti = Ti − T̄i giving the
deviation of a days temperature from the average over several years for this day of the year.
An investigation of higher orders of DFA does not significantly affect the discussion presented
while for DFA1 the effect of a trend might be suspected. F (s) is calculated for approximately
50 points per order of magnitude upto smax = N/4 and is shown in double logarithmic
representation in Fig. 2.7 for DFA1 and DFA2.

The behavior is qualitatively different from white noise. However, following the discussion
in Sect. 2.4.2, we have to estimate the local slopes to investigate for power-law scaling. From
the fluctuation function, we estimate the local slopes using a straight line fit in a small window
of 21 points.

According to Sect. 2.4.2, DFA is not specific when investigating for long-memory. How-
ever, we alternatively study if long-memory can be excluded. Figures 2.8 (a) and (b) show the
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Figure 2.8: Local slopes of the fluctuation functions plotted in Fig. 2.7 for (a) DFA1 and (b)
DFA 2 of the Prague daily temperature data. The dotted lines border the 1.96σ confidence
regions of the short-range correlated model Eq. (2.10) (dark shadow), the dashed lines those
of the long-memory model with α = 0.6 (light shadow).



2.7. SUMMARY AND CONCLUSIONS 23

local slopes for DFA1 and DFA2 of the Prague daily temperature record and additionally the
1.96σ confidence intervals derived from the two models. For both orders of DFA the result
for the empirical data is almost completely within the 1.96σ interval of the short-memory
process. In the range of large s with high variability, we find the local slopes also within the
1.96σ interval corresponding to the long-memory process. Thus, from the given data, one
cannot decide whether the Prague temperature time series is a realization of a short-memory
or a long-memory process. However, considering all scales observed, the short- memory model
describes the data better than the long-memory model with respect to DFA. If the underly-
ing process was short-range correlated, data sets of sufficient length would provide estimates
of sufficient accuracy to identify the short-memory character. According to Sect. 2.5.2, we
expect such a time series to be much longer as the recorded ones.

2.7 Summary and Conclusions

In this chapter we studied the inference of long-range correlations by means of DFA with
respect to the notions of sensitivity and specificity. In the sense of falsification, we argue that
the inference of a long-range correlated process underlying a given time series requires not
only to show compatibility of the data with a long-range correlated process. Furthermore,
other possible correlation structures, especially short-range correlations, have to be excluded.

Power-law scaling of the DFA fluctuation function is frequently taken as evidence for
long-range correlations. To reliably infer power-law scaling, it must not be assumed but has
to be established. Thus, fitting a straight line to the log-log representation of the fluctuation
function is not sufficient. In fact, scaling can be established by estimating local slopes and
investigating them for constancy in a sufficient range. However, finite datasets bring along
natural variability. To decide, if a fluctuating estimation of the slope has to be considered
as being constant, we calculated empirical confidence intervals for a long-range and a simple
short-range correlated model.

As a main insight, the inference of long-range correlations from a finite amount of data
turned out to be not specific by means of DFA. Alternatively, one can investigate, if short-
range correlations can be inferred for the underlying process. For this setting, the specificity
increases with the length of the data record. In terms of falsifiability, these findings have to
be interpreted as follows: First, to even attempt to falsify the long memory hypothesis, one
has to test it and compare it with alternative hypothesis, in this case short memory. It turned
out, that for the given amount of data, both hypothesis are not refutable. For longer time
series, the long memory hypothesis becomes in principle falsifiable. This, however, requires
much longer time series.

Discussing typical difficulties of interpreting DFA results from short memory processes,
we remark that the characteristic time scale of a short memory process cannot be directly
inferred from the fluctuation function by means of DFA. Additionally, we show that a local
slope larger than α = 0.5 for large scales does not necessarily imply long-memory. If the
length of the time series is not sufficiently large compared to the time scales involved, also
for short-memory processes α = 0.5 may not be reached. Finally, we demonstrated, that
it is not valid to conclude from a finite scaling region of the fluctuation function to an
equivalent scaling region of the autocorrelation function. In fact, a finite scaling region of the
autocorrelation function is shifted to much longer time scales in the fluctuation function, so
that a much longer memory is mimicked.
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Keeping these findings in mind, we reviewed the DFA results for the Prague daily air
temperature record and compare them to a long-range and a short-range correlated model
constructed using AR[1]-processes. Considering only large scales, for the given data set, one
cannot reject the one or the other model. For the short-range correlated model, a much longer
series would be necessary to identify a local slope of α = 0.5. The short-range correlated
model we used involves time scales up to ≈ 1.5 years. This might be regarded as long
compared to the sampling time of one day but it is considerably small compared to the
decades of persistence which are proposed in e.g. [55] and [31].

However, it is not our intention to advocate for AR-processes being suitable to model
temperature variation. Following the idea of Occam’s razor, for a certain range of scales a
power-law model can be formally suitable to describe characteristics of even short-memory
processes. This, however, does not give evidence for long-memory. In this context, we suggest
to forbear from applying the nonparametric DFA-procedure3 to investigate the correlation
structure of stochastic processes in favor of a parametric analysis by means of FARIMA
models. In this context, one can fit FARIMA models of different complexity, including or
excluding long memory, to the data and compare the results employing certain information
criteria. This approach is currently under development by Rust [107].

3The straight line fit in fact represents the simplest possible model, namely fractional gaussian noise, which
is definitely too simple to describe the majority of real world processes.



Chapter 3

Continuous Wavelet Spectral
Analysis

3.1 Introduction

In climatology, observational data often represent a superposition of different underlying
processes with variability on a wide range of scales. For directly observed instrumental data,
the processes of interest range from local atmospheric weather phenomena with scales of
days up to the interdecadal variability of the oceans. Paleoclimatic proxy data from ice cores
eventually show variability from centuries up to tens of thousands of years imprinted by the
Milancovic-cycles.

The method of choice to analyze processes with a wide frequency band is Fourier analysis
[e.g. 9, 90]. However, geophysical processes are furthermore often nonstationary. For instance,
the statistical properties of the ENSO system are not constant in time but change considerably
from decade to decade because of internal changes and varying boundary conditions as, e.g., a
changing global climate. To handle such a class of processes, Gabor [24] proposed a windowed
Fourier transformation that assumes local stationarity in a time window shifted over the data
set. The time resolution is given by the window and is constant for all frequencies. This,
however, is a drawback since for high frequencies one desires a higher time resolution as
for low frequencies. In this regard, the optimal method is continuous wavelet analysis as it
intrinsically adjusts the time resolution to the analyzed scale [e.g. 12, 16, 40].

The continuous wavelet spectra of paradigmatic processes as Gaussian white noise [40] or
fractional Gaussian noise [65] have been studied. Continuous wavelet spectral analysis has
been applied to real world problems in physics, climatology [e.g. 34], life sciences [e.g. 33] and
other fields of research. Hudgins et al. [46] defined the wavelet cross spectrum to investigate
scale and time dependent linear relations between different processes. This measure has been
applied in the analysis of atmospheric turbulence [46], time varying relations between El
Niño/Southern Oscillation (ENSO) and the Indian monsoon [122], as well as interrelations
of business cycles from different national economies [15].

Except for analytically derived wavelet spectra of simple processes as, for instance, white
noise or stationary increment processes, the wavelet spectrum hitherto has been defined as
the expectation value of the wavelet scalogram of a given time series [65, 67]. However,
this concept brings along certain difficulties: These process measures depend on realizations
and the wavelets chosen for the analysis, but not on a priori defined spectra in the wavelet

25
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domain. Consequently, one can neither simulate data with a given nonstationary wavelet
spectrum, i.e. solve the direct problem, nor evaluate the quality of the estimator in terms of
bias, i.e. study the inverse problem.

A second question concerns the significance testing of wavelet spectra. Torrence and
Compo [121] formulated pointwise significance tests against reasonable background spectra.
However, Maraun and Kurths [67] pointed out a serious deficiency of pointwise significance
testing: Given a realization of white noise, large patches of spurious significance are detected,
making it - without further insight - impossible to judge which features of an estimated
wavelet spectrum differ from background noise and which are just artefacts of multiple testing.
Under these conditions, a reliable corroboration of a given hypothesis is impossible. This
demonstrates the necessity to study the significance testing of continuous wavelet spectra in
terms of sensitivity and specificity.

A third problem is the interpretation and significance testing of cross wavelet measures.
Huang et al. [45] suggested to test the wavelet cross spectrum against red noise. They applied
this method to study the interrelation between ENSO and the North Atlantic oscillation
(NAO) and found an instantaneous influence of strong El Niños on North Atlantic climate.
However, we argue that the results might be an artefact of the wavelet cross spectrum [67].

In this chapter we suggest a framework of nonstationary Gaussian processes defined in
the wavelet domain. These processes are characterized by their time dependent spectral
properties. They can be used to simulate data with a specific nonstationary wavelet spectrum
and to investigate the behavior of wavelet spectral estimators. To overcome the problems
arising from pointwise significance testing, we develop an areawise significance test, taking
advantage of basic properties of the continuous wavelet transformation. We evaluate this test
in terms of sensitivity and specificity within the framework suggested.

In Sec. 3.2 we present an overview of the mathematical background of continuous wavelet
transformation to introduce all properties being important for the following study. In Sec. 3.3,
we intensively discuss the problems regarding continuous wavelet spectral analysis and for-
mulate a set of questions as a reference for the subsequent investigations. The framework of
nonstationary Gaussian processes in wavelet domain is formulated and studied in Sec. 3.4.
The next Sec. 3.5 addresses the estimation of wavelet spectra, followed by the study and de-
velopment of significance tests in Sec. 3.6. This section also discusses the significance testing
and interpretation of cross wavelet measures. We close the chapter about wavelet spectral
analysis with a set of climatological applications in Sec. 3.7 and summarizing conclusions in
Sec. 3.8. To improve the legibility, most derivations have been moved to App. B.

3.2 Mathematical Background

This section is intended to provide the required basics of continuous wavelet transformation
that have been extensively studied. For a detailed presentation, please refer to the many
standard text books [e.g. 12, 16, 40].

3.2.1 From Fourier to Wavelet Transformation

The calculation of the Fourier transformation f(ω) of a time series s(t) often reveals valuable
information about the underlying process:

f(ω) =

∫ ∞

−∞
dt s(t)eiωt, (3.1)
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where ω denotes frequency. The Fourier periodogram |f(ω)|2 estimates the spectrum of the
underlying process at frequency ω. However, real world processes are often nonstationary,
i.e. their statistical properties change over time. Thus a time independent description of the
spectrum might be no longer suitable. A possible solution is the application of the Gabor
transformation [24]: The Fourier transformation is calculated locally around the desired point
in time b by multiplying the time series with an envelope function g(t) centered around b to
damp distant contributions,

G(b, ω) =

∫ ∞

−∞
dt s(t)e−iωtg(t− b), (3.2)

where the localizing function g(t) might be chosen as a Gaussian, g(t) = exp(−t2/(2σ2)).
This method assumes local stationarity and provides a slowly changing Fourier spectrum
with a time resolution given by the width of the Gaussian σ.

As a drawback of this idea, the time resolution is fixed for every frequency ω. On the
one hand, if one chooses a narrow window width σ to obtain a good time resolution for
high frequencies, the window width will be short compared to the oscillation length on low
frequencies. Consequently, the frequency resolution for low frequencies will be very poor. On
the other hand, if one chooses a wide window to obtain a good frequency resolution for low
frequencies, the window width will be very wide compared to oscillations on high frequencies.
Consequently, the time resolution for high frequencies will be unnecessarily poor.

Thus one might want to adjust the time resolution, i.e. the width of the Gaussian function
σ to the frequency analyzed, σ = ω0/ω. The parameter ω0 determines the relative width
of the Gaussian, i.e. the localization. Considering scales instead of frequencies a = 2π/ω
(i.e. σ = aω0/(2π)), one gets

M(b, a) =

∫ ∞

−∞
dt s(t)e−2πit/ae

− 1
2

“

t−b
aω0/(2π)

”2

. (3.3)

Except for a (rather arbitrary) phase factor exp(iω0b/a), this is exactly the wavelet trans-
formation of s(t) using the Morlet wavelet m(θ) = exp(iω0θ) exp(−θ2/2), with θ = (t− b)/a
and ω0 = 2π:

Wm(b, a) =

∫ ∞

−∞
dt m̄

(
t− b

a

)
s(t). (3.4)

Varying ω0 changes the width of the envelope and thus adjusts the time/scale resolution.
The better the scale resolution, the poorer the time resolution and vice versa. The choice
of a Gaussian envelope is rather arbitrary; also not only complex exponentials might be
considered as basis functions for the frequency decomposition. Thus, one can choose a more
general function g(t) instead of the Morlet wavelet m(t).

3.2.2 Wavelets

A wavelet g(t) is a function fulfilling the following conditions:

∫ ∞

−∞
dt g(t) = 0

∫ ∞

−∞
dt |g(t)|2 = 1

(3.5)
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The first condition implies a vanishing zero frequency component, ĝ(0) = 0, and is called
the admissibility condition. The second ensures a sufficient localization of the wavelet in the
time domain. A wavelet is called progressive, if it contains only positive frequencies [40]:

g(t) =
1

2π

∫ ∞

0
dωĝ(ω)eiωt (3.6)

For details refer to [e.g. 16, 50, 40].

3.2.3 Continuous Wavelet Transformation

Given a time series s(t), its continuous wavelet transformation (CWT) Wgs(t)[b, a] at time b
and scale a with respect to the chosen wavelet g(t) is given as

Wgs(t)[b, a] =

∫
dt

1√
a
ḡ

(
t− b

a

)
s(t). (3.7)

The wavelet transformation along one fixed scale, a = const ., is called voice. The normaliza-
tion of the transformation can in principle be chosen arbitrarily. However, for the definition
of our estimators (Sec. 3.5.1), the L2-normalization 1/

√
a turns out to be the naturally

consistent choice. The CWT from one dimension to two dimensions does not produce any
new information, hence any wavelet transformation contains a great quantity of redundant
information that will be discussed in Sec. 3.2.5.

Being important for the further discussion, the covariances of CWT are recalled in
App. B.1.1. For a detailed discussion of CWT basics please refer to the comprehensive
literature [e.g. 12, 16, 40].

3.2.4 Inverse Continuous Wavelet Transformation

For every wavelet g(t) in a strict sense, i.e. fulfilling Eq. (3.5), a reconstruction wavelet h(t)
can be found [40]. For a progressive wavelet g(t), the reconstruction wavelet g(t) is defined
by the equation

cg,h =

∫ ∞

0

dω

ω
¯̂g(ω)ĥ(ω), 0 < |cg,h| <∞. (3.8)

Using the reconstruction wavelet, one can define an inverse transformation of a function
r(b, a) from the positive half plane H to the real axis, i.e. the time domain.

Mhr(b, a)[t] =

∫

H

db da

a2
r(b, a)

1√
a
h

(
t− b

a

)
(3.9)

This operation from two dimensions to one dimension is not the unique possible inverse
transformation.

Successively applying the wavelet transformation and its inverse to a time series s(t) will
reconstruct s(t): s(t) ≡MhWgs(t). However, because of the redundancies characterizing any
wavelet transformation not every function on the positive half-plane is a wavelet transforma-
tion. Thus the successive transformation of an arbitrary function r(b, a) in time and scale to
the time domain and back to the time/scale domain in general does not reconstruct r(b, a),
i.e. in general r(b, a) 6= WgMhr(b, a). In fact, this operation projects r(b, a) onto the subspace
of all wavelet transformations (App. B.1.2).
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3.2.5 Reproducing Kernel

The redundancies of CWT (and any time-frequency resolved analysis) are reflected in inherent
correlations of any wavelet transformation r(b, a). For Gaussian white noise η(t), these corre-
lations are given exactly by the reproducing kernel Kg,h((b− b′)/a′, a/a′) = Wgh((b− b′)/a′)
(For details refer to App. B.1.3 or [e.g. 12, 40, 67]):

C(b, a; b′, a′) = 〈Wgη[t](b, a),Wgη[t](b
′, a′)〉

∼ Kg,h

(
b− b′

a′
,
a

a′

)
. (3.10)

As an example, the reproducing kernel of the Morlet wavelet is given in App. B.1.5. These
inherent correlations constitute a fundamental difference of any time-frequency (or scale)
resolved analysis to time independent Fourier analysis, where neighboring frequencies are
asymptotically uncorrelated. The reproducing kernel can also be interpreted as a time-scale
uncertainty as e.g. the time/energy uncertainty relation in quantum mechanics.

3.2.6 Choice of the Wavelet

A special set of progressive wavelets are those exhibiting a real valued Fourier transform.
Their representation in time domain is complex and thus they are capable of detecting mod-
ulus and phase of the analyzed time series. This property makes them especially useful for
the spectral analysis of real oscillations: The analysis of a sine function with a real (in time
domain) wavelet would yield a real oscillating function in the wavelet domain. The analysis
with a complex (in time domain) wavelet, however, yields a constant modulus and a time
varying phase which is exactly what is desired. Also, as one is interested in decomposing a
signal with respect to time and scale, one should utilize wavelets which are well localized in
the time/scale domain. For some illustrative examples, please refer to the appendices B.1.4
and B.1.5.

3.2.7 Discrete Wavelet Transformation

Parallel to CWT, one can define a discrete wavelet transformation (DWT). This transforma-
tion decomposes a signal into contributions on dyadic scales si ∼ 2i. The time resolution is
down-sampled, i.e. bisected for every scale. Without down-sampling, this transformation is
called maximum overlap discrete wavelet transformation (MODWT). The latter transforma-
tion is the CWT applied to a subset of voices only. These techniques reduce the redundancies
given by the reproducing kernel and decrease the computational cost compared to CWT. How-
ever, oscillations on scales not captured by the choice given above are either redistributed
to neighboring scales or possibly totally overseen if the reproducing kernel is too localized in
scale. These transformations open another wide field of research which is not the subject of
this work. For details about DWT and MODWT, please refer to Percival and Walden [84].

3.3 Motivation - The State of the Art

Although the mathematical properties of CWT are well studied, the formulation of continuous
wavelet spectral analysis has got a rather tentative character. This section sketches the status
quo and introduces the problems concerning the current formulation of spectral measures
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in the wavelet domain and the significance testing of wavelet spectra. This discussion is
intended to motivate the further developments and studies. As a guideline, we formulate a
set of questions in the end of the section.

3.3.1 Conventional Definitions of Wavelet Spectral Measures

For Gaussian white noise and self similar stationary increment processes, the continuous
wavelet spectrum has been calculated analytically [40, 65]. For nonstationary processes,
continuous wavelet spectral measures have been defined as the expectation value of the cor-
responding estimator [65, 67]: Given a process with a realization s(t), a wavelet spectrum
denoting the variance at a certain scale a and time b might be defined as

WSPg(b, a) = 〈|Wgs(t)|2〉. (3.11)

Given two processes with realizations s1(t) and s2(t), a wavelet cross spectrum expressing
the time scale resolved covariance might be defined as

WCS g(b, a) = 〈Wgs1(t)W̄gs2(t)〉 (3.12)

Normalizing the modulus of the cross spectrum to the single spectra, one obtains the squared
coherence

WCO2
g(b, a) =

|WCS g|2
WSPg,1WSPg,2

, (3.13)

reflecting the scale resolved linear correlation. These measures will be discussed later in
Sec. 3.4.3. Here, we just aim to point out several problems:

• In general, the given expectation values 〈.〉 denote ensemble averages. However, as
one in practice often observes only one realization of a particular process, one has no
access to the expectation value as an ensemble average. In time independent Fourier
analysis, one assumes ergodic processes (see Sec. 1.2) and replaces the ensemble expec-
tation value by the time expectation value. Then a consistent spectral estimate can be
obtained in the limit of N → ∞ by averaging in the Fourier domain with a smoothing
window growing slower than the frequency resolution [9, 90]. For the local analysis of
nonstationary processes, the time expectation value does not exist and the replacement
is not valid. Thus, averaging in time (as well as in scale) direction produces a bias and
prevents a consistent estimate.

• These measures depend on the wavelet chosen for the analysis, i.e. the definition of the
underlying process depends on the technique chosen for its analysis.

• These definitions are based on given realizations s(t). Thus, the underlying process
has no a priori mathematical definition. Consequently, it is impossible to study the
direct problem of defining a desired wavelet spectrum and producing corresponding
time series. However, this also means that it is impossible to investigate the inverse
problem: Without a well defined wavelet spectrum, it is impossible to even formulate
properties as the bias of a certain estimate (compare Sec. 1.1). Also the relation of a
stationary wavelet spectrum to the Fourier spectrum is not clear.
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3.3.2 Conventional Smoothing and Global Wavelet Spectrum

Torrence and Compo [121] suggested to smooth the wavelet sample spectrum to reduce the
variance. In scale direction, they have chosen a window width being constant in the typical
logarithmic scale axis of the discrete wavelet spectral matrix (see App. B.1.6). In time
direction, they suggested a window width constant for all scales; extending the width over
the length of the whole time series yields the global wavelet spectrum. The idea of a constant
time window, however, contradicts the essence of wavelet analysis: The motivation to define a
wavelet transformation instead of using the Gabor transformation was just to provide a scale
dependent time resolution. This advantage is foiled by applying a constant time window for
smoothing. The global wavelet spectrum has been reported to be a consistent estimator for
the Fourier Spectrum [121]. However, because of the reproducing kernel, the estimate should
in general be biased.

3.3.3 Conventional Pointwise Significance Testing

To our knowledge, Torrence and Compo [121] were the first to define a significance test for
continuous wavelet spectral and cross spectral analysis. Given a wavelet sample spectrum,
they assumed reasonable background spectra. Separately for every point in time and scale
(i.e. pointwise), they checked whether the particular spectral coefficient exceeded a certain
critical value corresponding to the chosen significance level.

For testing wavelet spectra, they used the spectrum of a red noise process fitted to the time
series as background spectrum. In case of testing wavelet cross spectra and wavelet coherence,
they have estimated the background spectrum from a pair of two red noise processes fitted
to the corresponding two time series. The method of pointwise significance testing will be
explained in detail in Sec. 3.6. Here, we just want to point out some important problems
arising from the presented concept of significance testing.

Wavelet Spectrum

Figure 3.1(a) shows the wavelet sample spectrum of the NINO3 index (for a description of
the data set, see App. A). The black contour lines depict patches significant on the 0.05%
level after applying the pointwise significance test against a red noise spectrum as outlined
above. Many of these patches coincide with major El Niños and reveal additional frequency
information of the particular event. Also patches on lower scales (i.e. higher frequencies) show
up suggesting further superimposed dynamics. However, taking into account Fig. 3.1(b) casts
doubt onto these presumptions. The lower panel shows the wavelet sample spectrum of a
Gaussian white noise realization. As white noise is a special case of red noise, this sample
spectrum contains by construction no significant patches, hence all the observed patches have
to be false positive results. Some of these patches are remarkably long compared to the scale
they are to be found on (e.g. the patch in Fig. 3.1(b) marked (A)). Also complex structures
(e.g. that one marked (B)) seem to appear randomly. The reason for these spurious results
is the effect of multiple testing (see Sec. 1.4): Testing every point separately by definition
leads to false positive results (see Sec. 1.4). However, without further insight it is impossible
to distinguish a real deviation from red noise (as given by the El Niño events) from spurious
patches.
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Figure 3.1: Wavelet sample spectra calculated with a Morlet wavelet, ω0 = 6, without smooth-
ing, including a pointwise significance test against red noise on the α = 0.05-level. (a) NINO3
index, (b) a realization of Gaussian white noise.

Wavelet Cross Spectrum

Figure 3.2(a) depicts the wavelet sample cross spectrum of the NINO3 index vs. the NAO
index (see App. A). This plot was first published by Huang et al. [45] including the significance
test against two red noise spectra as introduced above. Many prominent peaks appear, most
of them coinciding with major El Niño events. From these results, the authors concluded
that every strong El Niño exhibits a significant influence on North Atlantic climate. Figure
3.2(b), however, shows the wavelet sample cross spectrum between a Gaussian white noise
realization and a sine function. Both “processes” are by construction independent of each
other. Nevertheless, large patches positioned in the local extrema of the sine wave appear.
This finding demonstrates that the wavelet sample cross spectrum produces spurious results
and raises the question, whether the findings of Huang et al. [45] could be mere artefacts.

3.3.4 Questions arising

In the previous paragraphs we presented an overview of the state of the art of continuous
wavelet spectral analysis. During this discussion, we pointed out shortcomings of the un-
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Figure 3.2: Wavelet sample cross spectra calculated with a Morlet wavelet, ω0 = 6, without
averaging. (a) NINO3 index vs. NAO index (b) realization of Gaussian white noise vs. sine
function with f = 1/4.

derlying theory and illustrated several pitfalls. Based on these problems, one might raise
the following questions regarding the direct problem of simulating nonstationary Gaussian
processes and the inverse problem of wavelet analysis:

• How can the true underlying wavelet spectrum of a nonstationary gaussian process
be defined? How far does this spectrum depend on the chosen wavelet? How can
one formulate the direct problem of simulating realizations of processes with given
continuous wavelet spectrum? How are the wavelet spectrum and the Fourier spectrum
related?

• What are bias and variance of a wavelet sample spectrum and their dependence of the
wavelet chosen?

• How does one have to smooth wavelet sample spectra in order to keep the advantage
of a scale adjusted time resolution? What is the relation between the global wavelet
spectrum and the Fourier spectrum?

• How can multiple testing effects in significance testing of wavelet spectra be taken into
account?

• How can one test for covarying oscillations of two processes?
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It turned out that continuous wavelet analysis is far away from being a closed theory
providing reliable and unambiguous results for the application in time series analysis. The
following sections mainly deal with the development of a framework to study and answer the
listed questions.

3.4 Stochastic Processes defined in Wavelet Domain

To solve the direct problem of simulating arbitrary nonstationary Gaussian processes, one
needs to formulate a mathematical framework to represent the corresponding processes.
Given a concept for the direct problem, one can furthermore investigate the inverse problem
of estimating the underlying nonstationary Gaussian process from an observed time series.
Percival and Walden [84] developed a framework to model stochastic processes in wavelet
domain based on MODWT. Another concept also confined to dyadic scales is the approach
of Nason and von Sachs [77], that is outlined in App. B.2. Here, we present a concept using
CWT that allows for the analysis of arbitrary scales.

3.4.1 Stationary Gaussian Processes in Fourier Domain

Stationary Gaussian processes are completely defined by their ACF or equivalently by their
spectrum (see Sec. 1.2.2). Realizations of Gaussian processes with a spectrum |f(ω)|2 can
be simulated in the following way: One simulates a white noise time series ǫt, transforms it
to the Fourier domain, multiplies it with the desired spectrum and transforms it back to the
time domain (see Sec. 1.2.2). The desired spectrum |f(ω)|2 can either be interpreted para-
metrically, e.g. as the spectrum of an ARMA[p,q] process, or non-parametrically, e.g. when it
is estimated from a given time series. In this generalized context, the function f(ω) is called a
Fourier multiplier. We extend this concept to define nonstationary Gaussian processes using
wavelet multipliers m(b, a) as a function of time and scale.

3.4.2 Definitions

We define an equivalence class of nonstationary Gaussian processes in the wavelet domain
by the wavelet multipliers m(b, a) as a function of time b and scale a. The multipliers can be
given as a parametric function or nonparametrically, e.g. estimated from data. Realizations
s(t) are given as

s(t) = Mhm(b, a)Wgη(τ), (3.14)

i.e. a driving Gaussian white noise η(t) ∼ N (0, 1) with 〈η(t1)η(t2)〉 = δ(t1−t2) is transformed
to the wavelet domain, multiplied with m(b, a) and transformed back to the time domain.

We assume the following natural behavior for the wavelet multipliers m(b, a):

∂am(b, a) < O(1/a)

∂bm(b, a) < O(1/a)
(3.15)

These relations reflect the covariances of wavelet transformation (see App. B.1.1) and thus
prevent structures small compared to the reproducing kernel (see App. B.1.3) that are in
principle undetectable.
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Dependency of the Realization on the Wavelet and Asymptotic Behavior

Because every wavelet transformation is subject to redundancies, the realization m(b, a)Wgη(τ)
in the wavelet domain1 is in general not a wavelet transformation (see App. B.1.2). Thus,
realizations s(t) in the time domain depend (usually weakly, see Sec. 3.2.6 and App. B.3.1,
Fig. B.4) on the chosen wavelet g(t) and the reconstruction wavelet h(t) respectively. Hence,
the individual process is completely defined by m(b, a), g(t) and h(t).

To ensure at least asymptotic independence of the wavelet g(t) and the reconstruction
wavelet h(t), one has to demand a certain asymptotic behavior of the process m(b, a). As
wavelet analysis is a local analysis, the behavior for long time series is not relevant. Alterna-
tively, one has to consider one of the following two cases: Either the limit of small scales or
the limit of stationary white noise processes.

Considering the first case, the process m(b, a) gets asymptotically independent of the
wavelet, if for small scales the following relation holds:

∂am(b, a) < O(a−1+ǫ)

∂bm(b, a) < O(a−1+ǫ),
(3.16)

with ǫ > 0. Looking with a microscope into finer and finer scales, the derivatives of m(b, a)
grow slower and slower such that the process looks more and more stationary and white.

For the second case, we consider a class of processes mλ(b, a) = m(λb, aλ) being a function
of a parameter λ. Here, the process mλ(b, a) gets asymptotically independent of the wavelet,
if mλ(b, a) gets stationary and white in the limit of λ → ∞: Using Eq. (3.15), one gets
immediately

∂amλ(b, a) = λaλ−1∂am(λb, aλ)
(3.15)
< O(

λ

a
)

∂bmλ(b, a) = λ∂bm(λb, aλ)
(3.15)
< O(

λ

aλ
)

(3.17)

The asymptotic dependencies on the wavelet for the two cases are derived in App. B.3.1.
Both cases are equivalent in the sense that in both limits, more and more reproducing kernels
fit into local structures of the process2 (see App. B.3.1).

Relation to the Fourier Spectrum

m(b, a) ≡ m(a) defines a stationary Gaussian process in wavelet domain. In this special case,
the stationary Fourier spectrum |f(ω)|2 exists:

f(ω) ≈ m

(
2π

ω

)
C1 +

2π

ω
m′

(
2π

ω

)
C2, (3.18)

with a = 2π/ω and C1 and C2 being constants depending on the localization of the used
wavelets. This equation is derived in App. B.3.2. As expected, the Fourier spectrum is
given by the wavelet spectrum plus a correction term. The latter depends on the slope of the
wavelet spectrum m′(b, a) (Details are explained in App. B.3.2). For the asymptotic behavior
defined in Eqs. 3.16 and 3.17, the correction term vanishes for high frequencies.

1which is a wavelet transformation multiplied with an arbitrary function m(b, a)
2Note that stationarity alone is not sufficient, as the reproducing kernel is extended not only in time

direction, but also in scale direction, compare Sec. 3.4.2.
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3.4.3 Spectral Measures

As stated in Sec. 3.3.1, continuous wavelet spectral measures have been defined as the ex-
pectation value of the corresponding estimator. This definition turned out to have several
drawbacks as mentioned in Sec. 3.3.1. Using wavelet multipliers one can define time de-
pendent spectral measures that elegantly overcome these difficulties. Following Sec. 3.4.2,
the wavelet dependent measures defined in Sec. 3.3.1 converge to these wavelet independent
measures in the limit of small scales or stationary and white processes.

Spectrum

Given wavelet multipliers m(b, a), one can define a wavelet independent3 spectrum

S(b, a) = |m(b, a)|2 (3.19)

The spectrum denotes the variance of the process at a certain time b and scale a. With
the chosen normalization of the wavelet transformation Eq. (3.7), white noise is given by
S(b, a) = |m(b, a)|2 = const .

Cross Spectrum

Consider two interacting processes m1c(b, a) and m2c(b, a), i.e. both are driven by the same
noise realization: s1(t) = Mhm1c[b, a]Wgηc(t) and s2c(t) = Mhm2[b, a]Wgηc(t) respectively.
Then the cross spectrum reads

CS (b, a) = m1c(b, a)m̄2c(b, a) (3.20)

In general, this is a complex function and may be decomposed into amplitude and phase:

CS (b, a) = |CS (b, a)| exp(iΦ(b, a)) (3.21)

The cross spectrum denotes the covarying power of two processes, i.e. the predictive infor-
mation between each other. Possibly superimposed independent noise only appears in the
single spectra but not in the cross spectra; this also implies that the cross spectrum vanishes
for two independent processes.

Coherence

The coherence is defined as the modulus of the cross spectrum, normalized to the single spec-
tra. Exhibiting values between zero and one, it denotes the linear relationship between two
processes. In general, one rarely finds perfect linear dependence; the single processes m1(b, a)
and m2(b, a) rather consist of covarying parts m1c(b, a) and m2c(b, a) and superimposed inde-
pendent contributions m1i and m2i: s1(t) = Mhm1c[b, a]Wgηc(t) + Mhm1i[b, a]Wgη1i(t) and
s2(t) = Mhm2c[b, a]Wgηc(t) + Mhm2i[b, a]Wgη2i(t). Then the squared coherence reads

COH 2(b, a) = |CS(b,a)|2

S1(b,a)S2(b,a) =

|m1c(b,a)m̄2c(b,a)|2

|m1(b,a)|2 |m2(b,a)|2
. (3.22)

with m1(b, a) = m1c(b, a) +m1i(b, a) and m2(b, a) = m2c(b, a) +m2i(b, a).

3Note that the individual process and its realizations depend on the wavelet chosen for the construction.
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Figure 3.3: Stochastic chirp with ǫ = 0.3. (a) The spectrum |m(b, a)|2. (b) A typical
realization in the time domain, calculated with a Morlet Wavelet, ω0 = 6.

3.4.4 Example

To illustrate the concept, we define a linear stochastic chirp given by

m(b, a) = exp

(
−(b− b0(a))

2

2σ2(a)

)
(3.23)

with b0(a) = β0 + c log(a) and σ(a) = σ0a
1−ǫ, i.e. every voice is given by a Gaussian with

time position and width varying with scale. The center of the Gaussian at time a is given
by b0(a), the width as σ(a), determined by the constants β0, c and σ0. The power of 1 − ǫ
ensures the process exhibiting the desired asymptotical behavior Eq. (3.16). Figures 3.3(a)
and (b) show the spectrum S(b, a) = |m(b, a)|2 and a typical realization in the time domain,
respectively.

3.5 Estimating Wavelet Spectra

Given a time series, inferring the wavelet spectrum of the underlying process is an estimation
problem, i.e. one has to formulate estimators for the spectral measures presented in the
previous section. We study these estimators with respect to variance and bias, especially in
the presence of averaging.
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3.5.1 Spectral Estimators

Wavelet Sample Spectrum

Given a realization s(t) of a nonstationary process defined by the wavelet multipliers m(b, a)
and the wavelet pair g(t),h(t), one can estimate its spectrum (i.e. calculate the wavelet sample
spectrum) using a wavelet g(t) by

Ŝg(b, a) = A(|Wgs(t)|2), (3.24)

where A(.) denotes an averaging operator defined later in Sec. 3.5.2. Following the termi-
nology of Fourier analysis, the wavelet sample spectrum without averaging is either called
scalogram or wavelet periodogram.

Wavelet Sample Cross Spectrum

Given realizations s1(t) and s2(t) of two processes, the cross spectrum can be estimated as

ĈS g(b, a) = A(Wgs1(t)W gs2(t)), (3.25)

or decomposed into amplitude and phase,

ĈS g(b, a) = |ĈS g(b, a)| exp(i arg(ĈS g(b, a))). (3.26)

Wavelet Sample Coherence

The squared coherence is estimated as

ĈOH
2

g(b, a) =
|ĈS g(b, a)|2

Ŝg,1(b, a)Ŝg,2(b, a)
. (3.27)

For the sample coherence, averaging is essential. Already in Fourier coherency, when con-
sidering only one frequency bin the statistical concept of coherency breaks down: Two pure
harmonic oscillations of identical frequency are always perfectly coherent. For wavelet co-
herency, the problem is even more obvious: Investigating power in a single point in time
and scale prevents any information about the oscillation and thus covariance. Consequently,
nominator and denominator become equal and one obtains a trivial value of one for any two
processes.

Global Wavelet Spectrum and Fourier Spectrum

Given a time series s(t) of a stationary process with a Fourier periodogram |f(ω)|2 = |ŝ(ω)|2,
the wavelet transformation of s(t) in the Fourier domain reads [40]:

Wg(b, a) =

√
a

2π

∫ ∞

−∞

¯̂g(aω)eibωf(ω)dω (3.28)

Here, .̂ denotes the Fourier transform. The essential message of this equation is the following:
A (sample) spectrum |f(ω)|2 with a well localized peak (e.g. the spectrum of a sine function)
always gets smeared out to the width of the wavelet ¯̂g(aω) in Fourier domain. The better
the wavelet is localized in the frequency domain, the lower is the broadening effect.
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The global wavelet sample spectrum Ĝg(a) of a signal s(t) with respect to the wavelet g(t)

is defined as the integral of the wavelet sample spectrum Ŝg(b, a) over time

Ĝg(a) =

∫ ∞

−∞
Ŝg(b, a)db (3.29)

Following Eq. (3.28), the global wavelet spectrum always smears out peaks to the width of
the wavelet in frequency domain on the particular scale, ĝ(aω). Thus, contradicting earlier
propositions [121], the global wavelet spectrum is in general not an unbiased estimator of the
Fourier spectrum.

3.5.2 Distribution, Variance and Bias of the Estimator

Qiu and Er [92] have studied the variance and bias of wavelet spectral estimates for deter-
ministic periodic oscillations corrupted by white noise. For practical applications, however,
these investigations are of rather theoretical interest: Many real world systems are barely
represented by periodic but rather mixing or stochastic processes.

Distribution of the Wavelet Sample Spectrum

The Fourier periodogram |f(ω)|2 and also the Fourier cross periodogram f1(ω)f̄2(ω) asymp-
totically obey a χ2-distribution with two degrees of freedom4; the variance equals two times
the corresponding mean, VarS = 2 < |f(ω)|2 > [9, 90]. These relations also hold (at least
approximately) for the localized wavelet analysis: The wavelet transformation of a Gaussian
process sums up Gaussian random numbers. Hence, the wavelet scalogram |Wgs(t)|2 and
cross scalogram Wgs1(t)W̄gs2(t) approximately follow a χ2-distribution with two degrees of
freedom5, with variance VarS = 2 < |Wgs(t)|2 >.

Since the Fourier periodogram is asymptotically uncorrelated, averaging neighboring fre-
quencies results in a χ2 distribution with a number of degrees of freedom determined by the
length of the averaging window. This simple relation is e.g. important for the straight forward
analytical calculation of a significance test for the Fourier coherency [9, 90]. However, for
the localized wavelet analysis, this result does not hold: As neighboring wavelet coefficients
are correlated due to the reproducing kernel (see Sec. 3.2.5), reducing the variance by kernel
averaging with the operator A(.) destroys the simple χ2-distribution [67] (see App. B.3.3).
This drawback of wavelet analysis is the reason, why all quantiles for significance testing will
have to be estimated by Monte Carlo simulations.

Asymptotic Variance of the Wavelet Sample Spectrum

The variance VarA(a) of the averaged wavelet sample spectrum scales with the number of
effective data points Neff (a) that are averaged on a scale a:

VarA(a) ∼ 1

Neff (a)
. (3.30)

4This holds for f(ω) being complex. For f ∈ R, the periodogram would obey a χ2-distribution with one
degree of freedom.

5Here, analyzing a real s(t) with a real wavelet would lead to a χ2-distribution with one degree of freedom.
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Figure 3.4: Asymptotic behavior of the variance of the averaged wavelet sample spectrum
of Gaussian white noise. Solid line: estimation based on 1,000 realizations, dashed line:
theoretically expected behavior ∼ a1−0.75.

The number of effective data points in turn is determined by the width of the averaging
window w(a) relative to the effective width of the reproducing kernel wRK(a),

Neff (a) ∼ w(a)

wRK(a)
. (3.31)

The width of the reproducing kernel is given by the wavelet covariances (see App. B.1.1),
i.e. wRK(a) ∼ a. If, firstly, the length of the scaling window is chosen to decrease slower than
the width of the reproducing kernel, the variance vanishes for small scales, as more and more
reproducing kernels (and thus effective data points) are averaged. If, secondly, the length of
the scaling window additionally decreases faster than local structures of the process (∼ a−1+ǫ

according to Eq. (3.16)), the section of the process covered by the averaging window becomes
more and more stationary and white, i.e. no bias is produced. Hence, if the width of the
averaging window is chosen as w(a) ∼ aα with an exponent α with 1 > α > 1 − ǫ, then the
variance of the averaged wavelet sample spectrum decreases as

VarA(a) ∼ a1−α (3.32)

for small scales. Figure 3.4 shows the variance of the averaged wavelet sample spectrum of
white noise (α = 0.75): The solid line depicts the variance at one point in time estimated from
an ensemble of 1,000 Gaussian white noise time series, the theoretically expected behavior
is plotted as a dashed line. A similar picture would emerge when plotting the variance as a
function of λ for the limit of stationary white noise according to Eq. (3.16).

Averaging in Practical Applications

The prior discussion appears to be rather academic: In general, one does not know, a priori,
the asymptotical behavior for small scales of an observed process. Also, finite sampling
restrains the investigation of small scales. Finally, one is often interested in nonstationary
behavior on scales large compared to the sampling time. For practical applications, retaining
a scale independent variance appears to be a reasonable choice. This might be accomplished
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Figure 3.5: Smoothing according to the reproducing kernel to provide a constant variance
for all scales. (a) In scale direction, the length of the smoothing window stays constant (for
a logarithmic scale axis), wa = const . (b) In time direction, the length of the smoothing
window increases linearly with scale, wb · a.

by averaging the same amount of independent information on every scale, i.e. by choosing
the length of the averaging kernel according to the reproducing kernel. Following App. B.1.1
and Sec. 3.2.5 this means [67]:

• Averaging in scale direction should be done with a window exhibiting constant length
on logarithmic scales (see App. B.1.6) as shown in Fig. 3.5(a). Here, wa denotes the
half window length in the same units as Nvoice .

• Averaging in time direction should be done with a window exhibiting a length propor-
tional to scale as shown in Fig. 3.5(b). Here, wb · a denotes the half window length in
units of time.

The (scale independent) variance of the wavelet sample spectrum of a Gaussian white
noise realization as a function of the width of a rectangular averaging window is shown in
Fig. 3.6. The graphs for averaging in scale as well as in time direction resemble the shape
of the reproducing kernel. An averaging window short compared to the effective width of
the reproducing kernel includes only a minor part of independent information and thus fails
to notably reduce the variance. Figure 3.6 provides guidance for the choice of the averaging
window length.

Bias of the Estimator

Given realizations of a Gaussian process defined by m(b, a) and constructed with the wavelet
pair g(t) and h(t), one can estimate the wavelet sample spectrum using a wavelet k(t) and
an averaging operator A(.). The bias at scale a and time b of the wavelet sample spectrum
then reads

Bias(Ŝg(b, a)) = 〈A( |WkMh︸ ︷︷ ︸
Ph→k

m(b, a)Wgη(t) |2 ) 〉 − |m(b, a)|2. (3.33)

Ph→k denotes the projector defined in App. B.1.2. The bias consists of two contributions:
The averaging with the operator A(.) produces an averaging bias of the smoothed wavelet
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Figure 3.6: Scale independent variance of the wavelet sample spectrum of a Gaussian white
noise realization as a function of the lengths of an rectangular averaging window. (a) Aver-
aging in scale direction with half window length wa. (b) Averaging in time direction with
half window length wb · a. The graphs resemble the shape of the reproducing kernel.

sample spectrum in comparison to the wavelet periodogram. Furthermore, not even the
wavelet periodogram is an unbiased estimator: The projection property App. B.1.2 results in
an inherent bias of the wavelet periodogram in relation to the underlying spectrum m(b, a)6.
For processes following Eqs. 3.16 or 3.17, the bias vanishes for small scales (See App. B.3.4);
for averaging on finite scales, one has to consider the trade off between bias and variance.
Both, the averaging bias and the inherent bias cause that the wavelet sample spectrum is no
consistent estimator even in the limit of an infinite number of realizations. An alternative
notion of consistency is only fulfilled in the rather theoretical asymptotic behavior given by
Eqs. 3.16 or 3.17 in the limit of small scales or stationary white noise, respectively.

3.5.3 Example

We recall the example from Sec. 3.4.4. Figure 3.7(a) depicts the wavelet scalogram of the
realization shown in Fig. 3.3(b). It is easy to see that a single realization without averaging

6Note, that this bias also emerges when the same wavelet g(t) is used for the construction of s(t) and the
estimation
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Figure 3.7: Estimation of the stochastic chirp based on the realization in Fig. 3.3(b). (a)
the wavelet scalogram, i.e. the sample spectrum without averaging. (b) Averaged sample
spectrum with wa/Nvoice = 0.5. (c) Averaged sample spectrum with wa/Nvoice = 0.5 and
wb = 3. (d) the spectrum estimated as the mean of 1,000 realizations without averaging.

yields a rather insufficient estimation of the real spectrum. Averaging, shown in (b) and (c),
reduces the variance but produces a bias. The estimation based on 1,000 realizations without
averaging (d) yields a pretty accurate result of the underlying process only subject to the
inherent bias that decreases for small scales.

3.6 Significance Testing

Given a wavelet sample spectrum, one is often interested, if the estimate is compatible with
some trivial background noise, or if it significantly deviates and thus represents some inter-
esting features. This desire leads to the concept of statistical significance testing. In this
section, we present the state-of-the-art significance tests for wavelet spectra. Based upon
this test, we develop an areawise significance test that accounts for multiple testing effects.
Both tests are compared in terms of sensitivity and specificity. Finally, we discuss the special
problems coming along with significance testing of cross wavelet analysis.

3.6.1 Pointwise Testing of the Wavelet Spectrum

To our knowledge, Torrence and Compo [121] were the first to establish significance tests
for wavelet spectral measures. They assumed a reasonable background spectrum for the
null hypothesis and tested for every point in the time/scale plane separately (i.e. pointwise)
whether the power exceeded a certain critical value corresponding to the chosen significance
level (see Sec. 3.3.3). Since the critical values of the background model are difficult to be
accessed analytically [67], they need to be estimated based on a parametric bootstrap:

• Choose a significance level α.

• Choose a reasonable model (e.g. an AR[1] process in case of climate data following
Hasselmann [37]) as null hypothesis H0 and fit it to the data.



44 CHAPTER 3. CONTINUOUS WAVELET SPECTRAL ANALYSIS

• Estimate the (1 − α)-quantile Scrit (i.e. the critical value) of the corresponding back-
ground spectrum by Monte Carlo simulations. Depending on the chosen background
model and the chosen normalization of the spectral estimator, the critical value in
general depends on scale.

• Check for every point in the wavelet domain, whether the estimated spectrum exceeds
the corresponding critical value. The set of all pointwise significant wavelet spectral
coefficients is given as

Ppw = { (b, a) | Ŝg(b, a) > Scrit } (3.34)

3.6.2 Areawise Testing of the Wavelet Spectrum

Multiple Testing, Inherent Correlations and Spurious Significance

The concept of pointwise significance testing always leads to the problem of multiple testing:
Given a significance level α, a repetition of the test for N wavelet spectral coefficients leads to,
on an average, αN false positive results (see Sec. 1.4). For any time/scale resolved analysis, a
second problem comes into play: According to the reproducing kernel Eq. (3.10), neighboring
times and scales of a wavelet transformation are correlated. Correspondingly, false positive
results always occur as contiguous patches. These spurious patches reflect local spurious
oscillations, which are randomly stable7 for a short time.

For the inverse problem of interpreting data from a process with unknown spectrum, these
effects mark an important problem: Which of the patches detected in a pointwise manner
remain significant when considering multiple testing effects and the inherent correlations of
the wavelet transformation? Referring back to Fig. 3.1(b) from Sec. 3.3 illustrates that a
mere visual judgment based on a sample spectrum will presumably be misleading: Even
in the case of white noise, the test described in Sec. 3.6.1 yields a large number of - by
construction spuriously - significant patches.

Measuring Areawise Significance

We develop an areawise test, which utilizes information about the size and geometry of a
detected patch to decide whether it is significant or not. The main idea is simple: If the
inherent correlations are given by the reproducing kernel (Sec. 3.2.5), then also the typical
patch area for random fluctuations is given by the reproducing kernel. Following the dilation
covariance Eq. (B.2) and as illustrated in Fig. B.3, the typical patch width in time and scale
direction grows linearly with scale.

However, investigating the wavelet spectral matrices Fig. 3.1(b) reveals that many spu-
rious patches are not formed “typical” but rather arbitrary and complex. Patches might
exhibit a large extend in one direction, but be very localized in the other direction (Patch
A in Fig. 3.1(b)). Other patches might consist of rather small patches connected by thin
“bridges” (Patch B in Fig. 3.1(b)). These patches are spurious even though their area might
be large compared to the corresponding reproducing kernel. Thus, not only the area but also
the geometry has to be taken into account.

Given the set of all patches with pointwise significant values, Ppw (see Eq. (3.34)), we
define areawise significant patches in the following way: For every (a, b), we choose a critical

7As physicists, we would rather say coherent. We prefer to use the term stable to avoid confusion with the
term coherence, which here refers to the interrelation between two processes
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area Pcrit(b, a). It is given as the subset of the time/scale domain, where the reproducing
kernel, dilated and translated to (b, a), exceeds the threshold of a certain critical level Kcrit :

Pcrit(b, a) = { (b′, a′) | (K(b, a; b′, a′) > Kcrit } (3.35)

Then the subset of additionally areawise significant wavelet spectral coefficients is given as
the union of all critical areas that completely lie inside the patches of pointwise significant
values:

Paw =
⋃

Pcrit (b,a)⊂Ppw

Pcrit(b, a). (3.36)

In other words: Given a patch of pointwise significant values, a point inside this patch is
areawise significant, if any reproducing kernel (dilated according to the investigated scale)
containing this point totally fits into the patch. Consequently, small as well as long but thin
patches or bridges are sorted out as being insignificant.

Areawise Significance Level

The larger the critical area, the larger a patch needs to be to be detected by the test, i.e. the
critical area is related to the significance level αaw of the areawise test. We defined the latter
one as follows: The characteristic functions of the pointwise and areawise patches, Ppw and
Paw read

χPpw(a, b) =

{
1 if (a, b) ∈ Ppw,

0 otherwise

χPaw
(a, b) =

{
1 if (a, b) ∈ Paw ,

0 otherwise

(3.37)

Then the corresponding areas Apw and Aaw result as

Apw =

∫

(a,b)

db da

a2
χPpw(a, b)

Aaw =

∫

(a,b)

db da

a2
χPaw

(a, b)

(3.38)

Note, that on every scale a, the area is related to the corresponding measure a2. We now
define the significance level of the areawise test as

αaw = 〈Aaw

Apw
〉, (3.39)

i.e. one minus the average ratio between the areas of areawise significant patches and pointwise
significant patches.

The relation between the desired areawise significance level αaw and the critical area Pcrit

of the reproducing kernel is rather non-trivial. As a matter of fact, we had to estimate the
corresponding critical area Pcrit as a function of a desired significance level αaw by a root
finding algorithm individually for every triplet (ω0, wa, wb). The idea of this algorithm is
outlined in App. B.4.1.
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AR[1] parameter 0 0.1 0.2 0.5 0.9

Pcrit 6.17 ± 0.36 7.01 ± 0.06 7.21 ± 0.36 6.94 ± 0.31 7.00 ± 0.14

Table 3.1: Critical area Pcrit at scale a = 1 for different AR[1] processes for the wavelet
scalogram with αpw = 0.05 and αaw = 0.1.

We investigated the dependency of the critical area Pcrit on the process under investiga-
tion. Therefore, we applied the estimation procedure outlined above to different AR[1]-models
representing different correlation times. The result for the wavelet scalogram with αpw = 0.05
and αaw = 0.1 is shown in Tab. 3.1. Due to its inherent stochasticity, the algorithm con-
verges slowly to the global minimum and the estimates have got a large variance. However,
no monotonous relation emerges, suggesting a negligible influence of the correlation length
on the critical area.

Testing for Significant Areas

The actual areawise test is performed as follows:

• Perform the pointwise test according to Sec. 3.6.1 on the α level.

• Stretch the reproducing kernel for every scale according to Eq. (B.2), choose a signif-
icance level αaw for the areawise test and the corresponding critical area Pcrit (b, a) of
the reproducing kernel.

• Slide the critical area Pcrit(b, a) (for every scale the corresponding dilated version) over
the wavelet matrix. Every point inside a patch is defined as areawise significant, if the
critical area containing this point totally lays within the patch.

Figure 3.8 illustrates the areawise test based on the result of the pointwise test for the NINO3
index and the Gaussian white noise realization initially shown in Fig. 3.1. With αaw = 0.1,
the areawise test is capable of sorting out about 90% of the spuriously significant area from
the pointwise test. In case of the NINO3 data, remarkable structures remain, representing
the major El Niño events. Some tempting patterns turn out to be indistinguishable from
background noise. Finally, all the small patches have been sorted out. In case of the white
noise realization, only a few of the numerous spurious patches are not rejected by the areawise
test. Taking these two panels together, the areawise test obviously is capable of sorting out
most false positive results and simultaneously detecting physical structures.

3.6.3 Sensitivity and Specificity of the Areawise Test

Real world processes, in particular of geophysical or physiological nature, often exhibit power
on a wide range of scales, where only a narrow band of time localized oscillations might be
of interest. The question arises, how strong the localization in time and scale might be in
relation to the background noise to be in principle identifiable. This question addresses the
sensitivity of the test. On the other hand, it is relevant to know, how many false positive
results appear, when no significant structure is present. This question addresses the specificity
of the test.
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Figure 3.8: Areawise significance test performed on the examples from Fig. 3.1. (a) NINO3
index, (b) a realization of Gaussian white noise. Thin contour: pointwise significant patches,
thick contour: areawise significant patches. Most of the by construction spurious patches are
sorted out.

Definitions

To investigate these questions, we defined Gaussian bumps

m(b, a) = exp

(
−(b− b0)

2

2σ2
b

)

· exp

(
−(c log(a) − c log(a0))

2

2σ2
a

)
, (3.40)

where b0 and a0 denote the center in time and scale respectively, whereas σb and σa define the
width in time and scale direction. The logarithm of the scale provides a Gaussian bump in
the typical logarithmic scale axis wavelet matrix. Realizations were calculated according to
Eq. (3.14) with driving Gaussian white noise η(t). The resulting time series was superimposed
by independent background noise. As a simple model we chose Gaussian white noise ξ(t) ∼
N (0, σ2) with zero mean and variance σ2

ξ . Figure 3.9 displays an example. The amplitude of
the driving noise was chosen as ση = 1. However, the variance of the resulting bump is much
lower (at the peak around 0.2ση), as the bump is confined to a small spectral band. Thus,
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Figure 3.9: Gaussian bump with b0 = 50, a0 = 4, σb = 16 and σa = 0.5 superimposed by
white noise. The variance of the driving noise was ση = 1, that of the background noise
σξ = 0.1. For details see text. (a) m(a,b), the contour-line marks 1/e2. (b) A realization
in time domain using a Morlet wavelet with ω0 = 6. (c) The corresponding wavelet sample
spectrum calculated using the same wavelet. Thin and thick lines surround pointwise and
areawise significant patches, respectively.
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Figure 3.10: Pointwise test of a Gaussian bump with b0 = 50, a0 = 4, σb = 16 and σa = 0.5
superimposed by white noise. The variance of the driving noise was ση = 1, that of the
background noise σξ = 0.2. black: true positive (PTP ), white: true negative (PTN ), dark
grey: false positive (PFP ), light grey: false negative (PFN ) patches.

the superimposed noise with σξ = 0.1 represents a 50% noise-level in relation to the bump
itself. Therefore, we define the signal to noise ratio at the peak as SNRpeak = 0.2ση/σξ. For
σξ = 0.2, SNRpeak = 1. We performed the following study:

• We simulated Gaussian bumps of different widths σb and fixed σa = 0.5, superimposed
by background noise with different variances σξ. For each set of values (σb, σξ), we
simulated N = 10, 000 realizations.

• To every realization, we applied the pointwise (αpw = 0.05) and subsequently the
areawise test (αaw = 0.1). As null hypothesis we chose red noise fitted to the individual
realization.

Based on this experiment, we compared the sensitivity and specificity of the areawise signif-
icance test to those of the pointwise test. We define the area of the bump PB (i.e. the set of
points where we assume H0 as being wrong) and its complement PNB as

PB = {(a, b) |m(a, b) > 1/e2},
PNB = {(a, b) |m(a, b) ≤ 1/e2}.

(3.41)

The outcomes of the test we denote in the following way:

• True positive patches: PTP = P ∩ PB (black in Fig. 3.10),

• true negative patches: PTN = P̄ ∩ PNB (white),

• false positive patches: PFP = P ∩ PNB (dark grey),

• false negative patches: PFN = P̄ ∩ PB (light grey),

where P stands for either Ppw or Paw and P̄ denotes the complement. Using characteristic
functions as in Eq. (3.37), we calculate the corresponding areas AB , ANB , ATP , ATN , AFP
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and AFN as in Eq. (3.38). Then we can define the estimators

ŜE =
ATP

AB
and

ŜP =
ATN

ANB
.

(3.42)

Sensitivity

The sensitivity of the pointwise test is higher than that of the areawise test (see Tab. 3.2(a)),
as the latter one sorts out small patches in the area of the bump. The sensitivity depends
strongly on the signal to noise ratio.

For low background noise, σξ ≪ ση, both tests perform very well (Tab. 3.2(a)), although
the part of the bump area not detected by the areawise test is around twice as large than
that not detected by the pointwise test (because the areawise test sorts out small patches,
Tab. 3.2(b))). As the noise-level increases to the order of the bump’s driving noise, σξ ∼ ση,
the sensitivity decreases rapidly. For a zero signal to noise ratio, σξ ≫ ση (not shown), the
sensitivity of both tests converges to the rate of purely randomly positive results, i.e. the
sensitivity of the pointwise test converges to αpw = 0.05, that of the areawise test to αpw ·
αaw = 0.005. However, the ratio between the parts of the area not detected by the two tests
(Tab. 3.2(b)) converges to (1 − αpw)/(1 − αpw · αaw ) ≈ 1 − αpw = 0.95. In other words, for
a very low signal to noise ratio, the performance of the pointwise test is not really better. It
just detects patches that occur spuriously because of the dominant noise.

Trivially, small bumps nearly free from background noise are detected almost totally.
This occurs because the small bumps are shorter than the reproducing kernel and thus get
enlarged by the estimation. For large bumps, the sensitivity is in general lower. However, the
decrease of the sensitivity with noise is much larger for small bumps than for large bumps.
That means that small patches get rather invisible as they get superimposed by strong noise.

Specificity

The specificity of the areawise test is higher than that of the pointwise test (see Tab. 3.2(c)),
as the latter one detects many more false positive patches outside the area of the bump.
Whereas the specificity of the areawise test appears to be - almost independently of the
signal to noise ratio - close to one, that of the pointwise test decreases for high background
noise, as more and more spurious patches appear. For a zero signal to noise ratio, σξ ≫ ση

(not shown), the specificity is determined by purely randomly positive results only, i.e. for
the pointwise test it converges to 1−αpw = 0.95, for the areawise test to 1−αpw ·αaw = 0.995.

At first sight, the difference between the two tests seems to be rather marginal, but taking
into account the numbers of false positive results, an obvious difference arises: The ratio
AFP (pw)/AFP (aw) between the two tests for a high signal to noise ratio is ∼ 1, as almost
no false positive results appear in both cases. However, for a vanishing signal to noise ratio
the ratio AFP (pw)/AFP (aw) converges to 1/αaw = 10. (Because of the small denominator,
the estimated values are corrupted by a high uncertainty; the order of the values rather
than the values itself is interesting). The specificity is - trivially - almost independent of the
bump-width as it considers the area off the bump.
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SNRpeak

(a) ∞ 20 10 2 1
pw aw pw aw pw aw pw aw pw aw

2 0.95 0.89 0.83 0.66 0.92 0.84 0.58 0.30 0.26 0.06
4 0.95 0.91 0.69 0.54 0.73 0.59 0.64 0.47 0.40 0.19

σb 8 0.76 0.66 0.65 0.53 0.61 0.47 0.59 0.44 0.35 0.19
12 0.79 0.71 0.56 0.47 0.53 0.41 0.52 0.38 0.43 0.27
16 0.71 0.62 0.58 0.46 0.31 0.20 0.45 0.31 0.39 0.23

(b) SNRpeak

∞ 20 10 2 1

2 0.5 0.5 0.5 0.6 0.8
4 0.5 0.7 0.6 0.7 0.7

σb 8 0.7 0.7 0.7 0.7 0.8
12 0.7 0.8 0.8 0.8 0.8
16 0.8 0.8 0.9 0.8 0.8

SNRpeak

(c) ∞ 20 10 2 1
pw aw pw aw pw aw pw aw pw aw

2 0.98 0.98 0.99 0.99 0.98 0.99 0.93 0.99 0.94 0.99
4 0.97 0.98 1.00 1.00 1.00 1.00 0.96 0.99 0.94 1.00

σb 8 0.99 0.99 1.00 1.00 1.00 1.00 0.97 1.00 0.95 1.00
12 0.98 0.99 1.00 1.00 1.00 1.00 0.99 1.00 0.94 0.99
16 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.94 0.99

(d) SNRpeak

∞ 20 10 2 1

2 1.2 1.4 1.4 8.3 10.5
4 1.2 1.6 1.5 7.9 11.2

σb 8 1.6 2.0 2.5 13.9 13.2
12 1.5 2.3 3.6 16.6 9.8
16 1.7 2.0 11.0 21.7 9.8

Table 3.2: (a) Sensitivity of the pointwise (pw) and the areawise (aw) test, (b) ratio of false
negative results from pointwise test to areawise test AFN (pw)/AFN (aw), (c) Specificity of the
pointwise (pw) and the areawise (aw) test, (d) ratio of false positive results from pointwise
test to areawise test AFP (pw)/AFP (aw). The signal to noise ratio SNRpeak is given as the
ratio between the signal level in the peak 0.2ση and the noise level σξ (see also Fig. 3.9). All
values are estimated based on 1,000 realizations of the corresponding bump.



52 CHAPTER 3. CONTINUOUS WAVELET SPECTRAL ANALYSIS

Consequences

For data sets exhibiting a broad spectrum (i.e. a low signal to noise ratio), this study brings
along important consequences: Many of the patches resulting from the pointwise patches are
likely to be spurious. Applying the areawise test drastically increases the reliability of the
interpretation.

Accounting for Distinct Localized Peaks

The areawise patch does not take into account the spectral value at a point (b, a); only
information of the critical value contour-line is utilized to define the patch. Thus, a strongly
localized patch formed by a high peak might be sorted out. This disadvantage is the cost for
practically accounting for areal information. However, in principle there is a way to handle
this problem by repeating the test for different pointwise significance levels α. The higher
the level, the more localized patches might be identified.

3.6.4 Testing of Covarying Power

The Wavelet Cross Spectrum

Compared to testing the single wavelet spectrum, the inference of covarying power is rather
non-trivial. Such as for the stationary Fourier cross spectrum and the covariance (its time
domain counterpart), no significance test for the wavelet cross spectrum exists. Assume two
processes exhibiting independent power at overlapping time and scale intervals. This power
does not covary, i.e. information about one of the processes is not capable of predicting the
other one. Hence, the real wavelet cross spectrum is zero. By contrast, the estimated wavelet
cross spectrum always differs from zero. As it is not a normalized measure, it is impossible
to decide whether a cross spectral coefficient is large because the one or the other process
exhibits strong power or if actually covarying power does exist. Maraun and Kurths [67]
illustrated this discussion and analyzed a prominent example. To overcome this problem,
one normalizes the cross spectrum and tests against zero coherence.

Pointwise Testing of Wavelet Coherence

The structure of the test is similar to that developed for the wavelet spectrum, although
two main differences exist. As the coherence is normalized to the single wavelet spectra, the
critical value becomes independent of the scale as long as the smoothing is done properly
according to Sec. 3.5.2, i.e. when the geometry of the reproducing kernel is accounted for.

In the case of Fourier analysis, the coherence critical value is independent of the processes
to be compared, if they sufficiently well follow a linear description [9, 90]. This independency,
however, holds exactly only in the limit of long time series. As wavelet analysis is a localized
measure, this condition is not fulfilled. Using the Monte Carlo simulation based procedure
as described in App. B.4.1, we investigated the process dependency of the critical values.
Table 3.3 shows the estimated critical values for examples of different AR[1]-processes. The
dependency on the smoothing parameters wa and wb can be seen comparing (a) and (b).
The dependency on the process parameter a, however, is rather marginal; the difference of
the critical values between the white noise case (a = 0) and the strongly correlated process
(a = 0.9) is always less than 2%.
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(a) a 0 0.1 0.5 0.9

10%-level 0.861 0.862 0.868 0.880
5%-level 0.900 0.902 0.906 0.916
1%-level 0.949 0.951 0.952 0.959

(b) a 0 0.1 0.5 0.9

10%-level 0.775 0.780 0.787 0.808
5%-level 0.827 0.832 0.838 0.856
1%-level 0.898 0.901 0.907 0.919

Table 3.3: Critical values of the squared wavelet coherence COH 2
crit , between two AR[1]-

processes with identical parameters a, xi = axi−1 + ηi, for different significance levels and
different a. Estimated for a Morlet wavelet, ω0 = 6 with (a) wa = 0.5 octaves, wb = 0 and
(b) wa = 0.5 octaves, wb = 1.

Areawise Testing of Wavelet Coherence

Also here, an areawise test can be performed to sort out false positive patches being artefacts
from time/frequency resolved analysis. The procedure is exactly the same as for the wavelet
spectrum, only the critical patch-size Pcrit (b, a) has to be re-estimated. Areawise significant
patches denote significant common oscillations of two processes. Here, common means that
two processes exhibit a rather stable phase relation on a certain scale for a certain time
interval.

However, this does not necessarily imply coherence in a strict sense. Processes oscillat-
ing on similar frequencies trivially exhibit patches indicating an intermittently similar phase
evolution. The lengths of the patches are given by the decorrelation times of the single
processes and the similarity of the concerned frequencies. Figure 3.11 illustrates this dis-
cussion. we simulated realizations of two AR[2] processes with slightly different parameters:
xi = a1xi−1 + a2xi−2 + ηi, with a1 = 1.95012, a2 = −0.967216 for the first and a1 = 1.95303,
a2 = −0.967216 for the second process. With a sampling time dt = 1/12, this gives a common
relaxation time of τ = 5 and mean periods of t1 = 4 and t2 = 4.4, respectively. Even though
the driving noise is independent, randomly common oscillations with a length related to the
relaxation time and the difference in period occur.

If one is not only interested in deriving significant common oscillations, but also signif-
icant coherence in the sense of coupling between the processes, the areawise test has to be
succeeded by another step: It has to be tested, if the time interval of the common oscilla-
tions is significantly long compared to typical randomly common oscillations of independent
processes. In this study, we would like to restrain the discussion to outlining the basic idea:
One has to construct a bootstrap ensemble representing the length distribution of randomly
common oscillations of the two processes under the null hypothesis (i.e. independence). On
the one hand, this can be realized by a parametric bootstrap, i.e. by fitting two sufficiently
complex models to the data and then performing Monte Carlo simulations. Alternatively,
one can apply a non-parametric bootstrap by constructing surrogate data of the two time
series. A patch with a length exceeding a certain quantile of the length distribution then
signifies coherence in a strict sense. For an overview about surrogate time series, see [112],
for bootstrapping in general, see [17].
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Figure 3.11: Areawise significance test for the coherence of two independent AR[2]-processes.
(a) Time series, (b) wavelet coherence. Thin lines: pointwise test. Thick lines: Areawise test.
On the main frequency of 1/4, randomly common oscillations produce a large false positive
patch.

3.7 Applications

3.7.1 Wavelet Analysis of ENSO and NAO

In Sec. 3.3.3, we presented the wavelet cross spectral analysis between the NINO3 and the
NAO index as performed by Huang et al. [45] and raised doubt about the reliability of the
results. The related logical impossibility of performing a significance test against a zero
non-normalized cross spectrum was discussed in detail in Sec. 3.6.4. In fact, nothing of the
spurious structure visible in the cross spectral analysis (Fig. 3.2) is left after calculating
the wavelet coherence instead and applying the areawise test, see Fig. 3.12. Apparently, the
findings of Huang et al. [45] are a mere artefact of the non-normalized wavelet cross spectrum.
Hence, an instantaneous influence from ENSO on NAO during strong El Niño events cannot
be unambiguously concluded from continuous wavelet analysis.

However, even though wavelet coherency reveals no areawise significant result, we would
like to comment on one of the pointwise significant patches. Between the mid-1930s and the
mid-1940s a peak on the 4 years scale emerges. Because this patch is not areawise significant,
it is not distinguishable from background noise. However, during this period other studies
investigating spatio-temporal data find a significant coherent oscillation of ENSO and North
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Figure 3.12: Squared wavelet sample coherency between the NINO3 index and the NAO
index, calculated with a Morlet wavelet, ω0 = 6, wb = 0, wa = 0.5/octave, including the
pointwise significance test (thin contour line). No patches appear to be areawise significant.

Atlantic climate [100]. This result exemplifies the limits of the areawise test: As confirmed
by other researchers, a significant coupling between ENSO and NAO exists. The pointwise
significance test is sensitive to detect the influence, but the areawise test shows that this
patch is too small to be distinguished from noise. This decreased sensitivity is the cost for
the capability of a reliable corroboration of a hypothesis by means of wavelet spectral analysis.

3.7.2 Wavelet Analysis in Hydrology

In hydrology, continuous wavelet transform became popular in different types of applications:
In river regime characterization CWT is used to detect how discharge is related to climate
variability indices [e.g. 62, 63] or to qualitatively analyze how certain features of the meteoro-
logical input time series are transferred to the hydrological system output [e.g. 27, 64]. This
approach is also applied for the analysis of the hydrological functioning of karstic systems
[e.g. 61]. Smith et al. [114] applied CWT to answer the question to which degree a catchment
smoothes out the spatial variability of rainfall. Si and Zeleke [113] used wavelet coherency
analysis to detect spatial scale and location dependent relationships between physical and
hydraulic soil properties. The following applications exemplify the benefits gained by wavelet
spectral analysis in hydrological studies [69].

Relation between Grand St. Bernard Temperature and Drance de Bagnes River

Run-Off

Figure 3.13 displays the result for the relation between the monthly mean temperature at
Grand St. Bernard and the monthly mean run-off of the closeby Drance de Bagnes river.
Both time series are deseasonalized (for details, see App. A). After applying the areawise
significance test, some interesting features remain: First, coherent deviations from the mean
annual cycle are reflected in areawise significant patches at the one year scale, with a promi-
nent occurrence in the mid-eighties. Furthermore a large significant peak shows up at the
two year scale during the 1960’s.
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Figure 3.13: Squared wavelet sample coherency of the temperature at Grand St. Bernard
vs. runoff at Drance de Bagnes river, calculated with a Morlet wavelet, ω0 = 6, wb = 1.5,
wa = 0.5/octave, including the pointwise significance test (thin contour line) and the areawise
significance test (thick contour line).

During the mid-eighties, snow accumulation in the Alps was above average during several
winters [4], resulting in important snowpacks at the end of the accumulation season even
at relatively low altitudes (some Alpine glaciers experienced visible surface increase during
this period, [e.g. 36]). During the melt periods in the following summers, these seasonal
snowpacks led to above average discharge, visible in the coherence peak in the annual cycle.
In parallel, the snowmelt resulted in exceptional catchment saturation that in turn led to
regular high flow events during important summer/autumn rainfall events. Accordingly, the
same analysis applied to the maximum instead of mean monthly discharge (not shown here)
shows the same significant peak at the same scale and location.

The peak at the two years scale in the 1960’s results from a different mechanism: Several
years during and preceding the peak were exceptionally cold, causing an above average snow
accumulation [e.g. 4]. This can result in an increase of the elapsed time between the moment
when water enters the hydrological system in form of snow and the moment when it leaves
it as discharge: The seasonal snow storage property of the catchment extends on a longer
temporal scale and a bi-annual cycle becomes temporarily superimposed on the normally
strong annual discharge cycle.

Influence of NAO on Bourg St. Pierre Precipitation

The application of the areawise test to the wavelet sample spectrum of the precipitation at
Bourg St. Pierre sorts out many false positive results (see Fig. 3.14); the result is barely
distinguishable from the red noise background spectrum. However, a broad peak around the
year 1940 at a scale of 4 years is identified as being significant. Additionally, some deviation
from the annual cycle is discovered.

The significant peak in the monthly maximum precipitation at Bourg St. Pierre at the 4
year scale in the beginning of the 1940’s also emerges in the coherence analysis between the
same data and the NAO index (see Fig. 3.15). In general, high NAO values effect higher winter
temperatures in Europe. Westerly storm tracks are deflected to the north causing higher than
normal precipitation in Northern Europe and lower than normal precipitation in Southern
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Figure 3.14: Wavelet sample spectra of the precipitation at the station Bourg St. Pierre cal-
culated with a Morlet wavelet, ω0 = 6, without averaging, including the pointwise significance
test (thin contour line) and the areawise significance test (thick contour line).

Europe [e.g. 47, 72, 127, 129]. In the years 1938/1939, the NAO exhibited relatively high
values, leading to warm winters in Europe. The precipitation in Bourg St. Pierre during these
years was relatively low. During the following two years, 1941 and 1942, NAO decreased to a
distinct minimum, accompanied by severely cold European winters and high precipitation in
Bourg St. Pierre. Afterwards, the phenomenon reversed again. This interannual oscillation
exhibits a period of 4 years and might explain the significant peak in the wavelet sample
spectrum of the precipitation at Bourg St. Pierre as well as that in the coherence analysis
between the precipitation data and the NAO index.

3.8 Summary and Conclusions

Continuous wavelet transformation is a powerful and well studied mathematical instrument.
However, the formulation of continuous wavelet spectral analysis so far had a rather tentative
character. Open questions concerned the definition of nonstationary spectra in the wavelet
domain by means of process realizations. Based on the previous measures, it was impossible
to generate realizations of a particular nonstationary Gaussian process. The bias and variance
of the wavelet sample spectrum had not been studied. Further problems were the effect of
multiple testing in the conventional pointwise significance tests and the interpretation of cross
wavelet analysis.

To meet these shortcomings, we presented a framework to define nonstationary Gaussian
processes in wavelet domain: A driving Gaussian noise is transformed to the wavelet domain,
multiplied with wavelet multipliers defining the desired nonstationary spectrum and finally
transformed back to the time domain with a suitable reconstruction wavelet. These processes
are completely defined by its wavelet multipliers and the wavelets used for the construction.
We defined the process behavior in such a way that the dependency on the wavelets vanishes
for small scales. This concept elegantly allows to define wavelet spectra and wavelet cross
spectra. For the stationary case, these spectra are closely related to Fourier spectra.

Based on this framework, we investigated the variance and bias of continuous wavelet
spectral estimation and developed an areawise significance test to overcome multiple testing
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Figure 3.15: Squared wavelet sample coherency of the precipitation at Bourg St. Pierre
vs. NAO-index calculated with a Morlet wavelet, ω0 = 6, wb = 1.5, wa = 0.5/octave, including
the pointwise significance test (thin contour line) and the areawise significance test (thick
contour line).

effects occurring in pointwise testing. Here, the existence of an extended reproducing kernel
turned out to be an important property of time and frequency resolved analysis in general
and wavelet spectral analysis in particular: It represents inherent correlations of any wavelet
transformation and defines a minimum size of time and scale resolved structures. Its area
scales quadratically with the investigated scale.

For kernel averaging to reduce the variance of a wavelet sample spectrum, the extension of
the averaging kernel has to be chosen corresponding to the reproducing kernel on every scale.
Otherwise, the variance and bias will change with scale. The reproducing kernel also gives
a reasonable minimum length of the averaging kernel for effectively reducing the variance.
In this context, we showed that the global wavelet spectrum is in general not an unbiased
estimator of the Fourier spectrum.

Due to multiple testing effects and the reproducing kernel, significance testing has to be
performed in two steps: A pointwise test investigates for every wavelet coefficient separately,
if it exceeds a certain critical value. However, pointwise significant patches might be an
artefact resulting from a combination of multiple testing and the inherent correlations given
by the reproducing kernel; even wavelet spectra of white noise show typical spurious patches.
Thus, a subsequent areawise significance test has to assess whether a patch exceeds a critical
size given by the reproducing kernel. Smaller patches are in principle indistinguishable from
noise.

We studied the areawise significance test in comparison to the conventional pointwise
significance test in terms of sensitivity and specificity. As it sorts out patches small in
relation to the reproducing kernel, the areawise test is less sensitive but more specific. Given
observations with a broad spectrum, e.g. from geophysics or physiology, the conventional test
mimics a misleading structure that is successfully uncovered by the areawise test. This two
level significance test provides a reliable measure to corroborate a proposed hypothesis.

For the testing of coherency, even a third step needs to be developed: Patches “sur-
viving” the areawise test signify a common oscillation on a certain scale for a certain time
interval. However, common does not mean coherent in the sense of coupling. Processes ex-
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hibiting oscillations on similar frequencies trivially show patches of a certain length given by
the decorrelation times of the single processes. Thus, to infer coherence in a strict sense, it
needs to be tested, whether the patch is long in relation to typical random in-phase oscil-
lations. Significance testing of the non-normalized wavelet cross spectrum turned out to be
not feasible.

Contributions to climatological discussions illustrate the benefits and limits of wavelet
spectral analysis: We repeated the analysis of Huang et al. [45] for the relation between ENSO
and NAO. We could show that the proposed instantaneous influence from ENSO on NAO is
a mere artefact of the non-normalized cross spectrum. However, this analysis also illustrates
the limits of wavelet spectral analysis: A known correlation during a certain period is visible
in the wavelet coherency, but not distinguishable from background noise. The analyses of
hydrological time series from the Swiss Alps are typical for applications of wavelet spectral and
cross spectral analysis in hydrology and related areas. Current hydrological wavelet studies
(e.g. [63, 113]), however, still result in rather qualitative conclusions. The application of the
areawise significance test to the real-world time series showed the benefit that hydrological
time series analysis can gain from such methods. Quantitative spectral analysis could become
a valuable instrument for data selection in model calibration or for the intercomparison of
discharge regimes. Another interesting field of application is the assessment of the quality
of hydrological model outputs: The areawise significance test enables to test whether the
simulated spectrum is significantly different from the observed.

The presented framework opens a wide field of possible extensions and applications. The
areawise test might be extended by a voicewise test: In some cases, where stationary variance
exists on a certain scale (e.g. the annual cycle), the resulting wavelet sample spectrum exhibits
a chain of short patches. Some of these patches will likely be too short to be areawise
significant. Here, a test might investigate if the whole voice8 on average exhibits significant
power.

The definition of nonstationary Gaussian processes by means of wavelet multipliers is pro-
totypically suitable for nonparametric bootstrapping in wavelet domain. Given a particular
realization of a process, one can estimate its underlying wavelet spectrum that in turn can
be used as wavelet multipliers to generate nonstationary surrogate data with almost identical
spectral properties. This approach, however, needs further investigation. As shown in the
example in Sec. 3.5.3, a single wavelet periodogram exhibits a huge variability and provides a
very poor estimate of the underlying spectrum. Consequently, one has to average the result.
Here, the trade-off between bias and variance has to be studied in detail.

Aside from the construction of nonstationary surrogate data, this approach allows to per-
form significance testing with a more complex nonstationary background spectrum. Often,
the variance of the underlying process is superimposed by a trend. Testing against a station-
ary background spectrum would cause many false positive results in regions of high variance
and many false negative results in regions with low variance. This problem can be solved by
constructing a nonstationary background spectrum by means of wavelet multipliers.

Since wavelet coherence provides time and scale resolved information about the phase
difference between two processes, one can formulate measures for phase coherence in the
wavelet domain. In principle, it is also possible to investigate for n : m phase synchronization
(see the concepts section of the next chapter) by comparing different scales.

Many real world processes exhibit distributions far away from being Gaussian. Applying

8i.e. a stripe of constant scale
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the significance test with a Gaussian background spectrum might not be suitable in this case
and produce a lot of false positive results. Thus, an extension of the presented framework to
non-Gaussian processes is required.



Chapter 4

Phase Coherence between ENSO
and the Indian Summer Monsoon

4.1 Introduction

El Niño/Southern Oscillation (ENSO) and the Indian summer monsoon (ISM, below also
referred to as monsoon) are the predominant climate phenomena in the Asian/Pacific region
exhibiting oscillations on inter-annual scale with a large social and economical impact. While
ENSO exhibits self-sustained oscillations of the tropical Pacific coupled ocean-atmosphere
system, the monsoon performs oscillations driven by the annual cycle of the land vs. sea
surface temperature gradient. For detailed reviews of ENSO and ISM refer to [86] or [10] and
[132] or [25], respectively.

ENSO and the ISM have been known to be correlated on inter-annual time scales since
the pioneering work of Walker at the beginning of the last century [e.g. 129]. He found a
relationship of weak (strong) monsoons following low (high) values of the Southern Oscil-
lation index, i.e. monsoon failure coinciding with El Niños and strong monsoons with La
Niñas, respectively. This coupling faded during the second decade of the 19th century, only
strengthening again in the 1960s. Since then, intensive studies have investigated the time
dependency of the coupling between the two processes [e.g. 131, 123]. Recent work finds a
weakening relation since the 1980s [60, 108]. Much attention has been concentrated on un-
derstanding the coupling mechanisms such as Pacific SST and Walker circulation anomalies
as well as Eurasian snow-cover [e.g. 57, 102, 135].

The previous results are all based on linear time series analysis, either sliding correlations
or wavelet coherence as discussed in the previous chapter. In the context of phase synchro-
nization [104], the method of Hilbert phase analysis has been widely used to analyze coupling
between self sustained oscillators. This method decomposes oscillation dynamics into time
dependent amplitude and phase, making it possible to investigate the time resolved phase
difference of the oscillators, irrespective of their amplitudes. Because the approach provides
no frequency resolved information1, the time resolution is optimized.

This chapter deals with the application of the Hilbert phase analysis to the ENSO mon-
soon coupling. By investigating for phase coherence, we aim to get a deeper insight than
possible with linear methods and hence to contribute to current climatological discussions,
for instance to the question, if the recent weakening of the coupling is without precedent.

1By calculating the phase derivative, only the instantaneous frequency is given
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Furthermore, we intend to improve the accuracy of earlier findings and to provide ideas for
the coupling mechanism. To account for typical interdecadal variability of the tropical ocean
atmosphere system, we combine this method with a recently proposed geometrically moti-
vated filter [79]. Before applying the method to the real data, we evaluate it with a simple
toy model and study its behavior in terms of bias and variance. The results reproduce the
findings of Torrence and Webster [123]. However, it turns out that Hilbert phase analysis
provides a better time resolution and detects additional intervals of coupling invisible to lin-
ear methods. To corroborate the existence of two epochs of phase coherence, we develop
a significance test of high specificity that considers the length distribution of intervals of
random phase coherence. Finally, we discuss the possibility of a volcanic influence on the
coupling.

In Sec. 4.2, we briefly review the physics of ENSO and monsoon and their coupling. In
the subsequent section, we raise a set of questions we aim to discuss in the following study.
Section 4.4 introduces the data. In Sec. 4.5, we present and evaluate the methodology we
use to analyze the data. The analysis itself is presented in Sec. 4.6, the results are given in
Sec. 4.7. The climatological relevance of our findings is discussed in Sec. 4.8, followed by a
summary and conclusions.

4.2 Sketching the Physics of ENSO and Monsoon

In this study, the coupling between ENSO and monsoon takes center stage and the physics of
the single processes are rather relegated to black boxes. However, to get an idea of possible
interactions, it is nevertheless necessary to sketch the basic processes underlying ENSO and
monsoon.

4.2.1 ENSO

ENSO is a self-sustained oscillator comprising the coupled tropical ocean atmosphere system.
Bjerknes [8] described the basic mechanism almost 40 years ago: A sea surface temperature
(SST) gradient between the western Pacific warm pool east of Indonesia and the eastern
Pacific cold tongue off the Peruvian coast induces the easterly winds of the Walker circula-
tion. These winds in turn stabilize the temperature gradient by driving surface water masses
westwards and upwelling of cold deep water close to South America. Perturbations, induced
by the annual cycle and noise, excite so-called Kelvin and Rossby waves. They propagate
westward and eastward, respectively, and produce variability on interannual timescales. Ev-
ery two to seven years, the Walker circulation exceptionally relaxes and the temperature
gradient between east and west Pacific almost vanishes. This phenomenon sets on in early
summer and usually peaks during winter time, giving it the name El Niño (Spanish: Christ
child). Such events are accompanied by devastating rainfall in Peru and Ecuador, having a
severe socio-economic impact. El Niño events are usually followed by a stronger than normal
Walker circulation and temperature gradient, called La Niña.

Zebiak and Cane [134] developed the first idealized coupled ocean atmosphere model
that was at least in principle capable of reproducing the tropical Pacific interannual vari-
ability. This model has been reduced to several conceptual models, following either the
delay-oscillator [116] or the recharge oscillator paradigm [48] (for an overview please refer to
the book of Dijkstra [19]). The equations of a noise driven delay oscillator we have studied in
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Rainfall Total El Niño La Niña

Below average 53 24 2
Above average 71 4 19

Deficient 22 11 2
Heavy 18 0 7

Table 4.1: Relation between ISM and ENSO. Given are the total numbers of monsoon years of
a particular strength, and those falling into an El Niño or La Niña year (taken from Webster
et al. [132])

another context [110] are listed in App. C.1. Philander [85] gives a comprehensive description
of the ENSO phenomenon.

4.2.2 Indian Summer Monsoon

The annual monsoon winds are the large scale equivalent of the daily on- and off shore winds.
The phenomenon arises from the different heat capacities of land and ocean. During winter,
the land surface cools faster than the ocean surface, causing a pressure high on the Indian
subcontinent and a pressure low on the Indian ocean. This gradient causes oceanward winds.
During summer, however, the situation reverses: The land heatens up faster than the ocean,
inducing a pressure low over India and a pressure high over the sea. Now the winds blow
towards the Indian subcontinent, taking up moisture from the water surface that condensates
over land and causes the important ISM rains. This system is a simple relaxator, forced by
the annual cycle and characterized by a set of boundary conditions defining the amplitude
of the monsoon. The most important are the position of the inter-tropical convergence zone
(ITCZ), i.e. Indian ocean SST, the land surface temperature, which is influenced by the
Tibetan snow cover, and the strength of the trade winds. The Indian agriculture heavily
relies on the ISM rainfall. For a detailed review, please refer to Webster et al. [132] or Gadgil
[25].

4.2.3 Coupling between ENSO and Indian Summer Monsoon

Since the pioneering works of Walker and Bliss [129], it is known that the Walker circulation
and the Indian summer monsoon are correlated. Almost every El Niño event was preceded by
a severe drought in India during summer2, whereas many La Niña events were accompanied
by strong Indian summer rainfall [132]. However, Tab. 4.1 shows that this teleconnection is
not a one to one coupling, but rather a statistical relation influenced by other effects: On
the one hand no heavy ISM rainfall and only four above average ISM rainfall events occurred
during El Niño years. On the other hand, not all weak and deficient ISM coincide with El
Niño. A similar relation holds for La Niña years. Hence the amplitude relation between the
two processes is rather unstable.

As the strength and onset of the Indian summer monsoon is of great importance for
Indian agriculture, several works investigate the predictability of the monsoon. Most of the
monsoon predictors are manifestations of ENSO [59]. For a review of the ENSO monsoon
teleconnection, please refer to [59, 131, 132]

2The lead of monsoon does not indicate a coupling direction from the monsoon towards ENSO, as the
development of an El Niño event already starts in the preceeding summer and only culminates in winter.



64 CHAPTER 4. PHASE COHERENCE BETWEEN ENSO AND MONSOON

Variability of the coupling

The link between ENSO and monsoon seems to be subject to variability on long time scales.
This effect was first noticed by Walker and Bliss [130], who’s forecast scheme happened
to fail since the 1920s. Rasmusson and Carpenter [98] found an interdecadal variability
of the coupling. The wavelet coherency analysis by Torrence and Webster [123] revealed
a weakening of the relationship in the 1920s, then a strengthening in the 1960s, followed
by a newly decrease in the 1980s. The significance of these and similar results based on
correlation analysis is still under debate. Gershunov et al. [28] argues that a stable (true)
correlation between two processes produces realizations that exhibit a time varying and partly
insignificant sample correlation. Recent studies employing correlation analysis show evidence
that the connection between ENSO and monsoon is weakening since the 1980s, arguably
because of global warming [58, 60, 108].

Mechanisms

The mechanism that links ENSO to the Indian summer monsoon is still not fully understood.
Several studies investigated the possible influence of ENSO on the ISM boundary conditions.
One possible link is an ENSO induced shift of the ITCZ in the tropical Indian ocean, influ-
encing directly the surface pressure gradient between the ocean and the Indian subcontinent
[132]. Further on, Goswami [30] suggests a mechanism by influencing the tropical wind cir-
culation cells: positive ENSO and thus Walker circulation anomalies close to the equator
effect the monsoon Hadley circulation and lead to an increased ISM. Another mechanism
links ENSO to the monsoon via the Tibetan snow cover: ENSO positively influences the
snow accumulation on the Tibetan plateau. This in turn exhibits a direct influence onto
the ISM, since a higher snow cover increases the albedo and thus decreases the absorption
of solar radiation. Additionally, more heat is used to melt the snow during summer. These
two effects lead to a smaller surface temperature rise, i.e. they weaken the land sea thermal
contrast and thus the strength of the monsoon circulation [e.g. 133, 60, 135]. There is fur-
thermore evidence, that the monsoon Hadley circulation (i.e. the north/south components of
the winds) and the Walker circulation are subject to interdecadal variability, changing the
influence of ENSO on the monsoon [56, 57].

4.3 Questions

From a climatological point of view, the following questions arise from the previous discussion:

• Is the interdecadal variability of the ENSO/monsoon coupling significant?

• What is the timing of this variability?

• What is the mechanism causing this variability?

• Is the relation weakening?

• If so, is the weakening without precedent or a rather typical behavior?

On the other hand, the problem of ENSO monsoon coupling is also of particular interest from
a data analysis point of view. The question is, if there exists a method suitable to analyze
the rather complicated coupling better than a simple year to year comparison or correlation
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Figure 4.1: Section of the NINO3 (upper graph) and AIR anomalies (lower graph) time series.
The dotted lines depict the raw data, the solid lines show the low-pass filtered data used for
the further analysis.

analysis, possibly with a better time resolution than the wavelet coherency analysis. In
Sec. 4.2.3, we showed that the amplitude relation between ENSO and monsoon is rather
unstable: High rainfall might occur during non-La Niña events, deficient rainfall during non-
El Niño years. This effect leads to a decrease in correlation or wavelet coherency, even though
a clear influence exists. Thus, the question arises, if there is a method accounting for this
problem.

4.4 Data

We used the NINO3 index (see App. A) as a measure for ENSO variability. The monsoon
was represented by the monthly anomalies of the All India Rainfall (AIR) index (see App. A).
We analyze the data in the period from Jan 1st 1871 to Dec 31st 2003. We want to emphasize
that for a phase analysis, it is irrelevant whether the amplitudes of the physical processes are
well represented by these simple indices, provided the phases of the dynamics are sufficiently
well reproduced. Since our work focuses on the inference of phase relations of inter-annual
oscillations, we low-pass filtered the data in the spectral domain by multiplying the Fourier
transformation of the data with a hyperbolic tangent, i.e. high frequency variability with
frequencies higher than 0.7 cycles per year is damped. Fig. 4.1 shows a section of the time
series of the ENSO and monsoon data, clearly emphasizing the inter-annual oscillations of
ENSO and the biennial oscillation of the monsoon [99].
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4.5 Concepts and Methods

In the context of phase synchronization, the method of Hilbert phase analysis has been widely
used to analyze coupling between self sustained oscillators. We aim to utilize this method
for the investigation of the coupling between ENSO and monsoon. In this section, we sketch
the phenomenon of phase synchronization and discuss Hilbert phase analysis. We extend the
method by a curvature defined phase to account for long scale variability superimposed to
the interesting dynamics. The resulting phase estimator is investigated in terms of bias and
variance.

4.5.1 Phase Synchronization

Consider two (or more) self-sustained oscillators, i.e. two autonomous dissipative systems with
energy supply oscillating on a limit cycle, torus or chaotic attractor in phase space. In many
cases, the trajectory can be projected onto a two dimensional plane and then be described by
a time varying amplitude A(t) and phase Φ(t). If the considered oscillators exhibit slightly
different eigen-frequencies ω0, their phases will evolve independently and the phase difference
will diverge. However, if the systems are brought into contact, one observes in general the
following phenomena: If the weak coupling exceeds a certain threshold depending on the
frequency mismatch ∆ω, the frequencies start to adjust, such that the phases get locked:

|nΦ1(t) −mΦ2(t)| < ǫ, (4.1)

with n,m ∈ N. This phenomenon is called (n : m) phase synchronization [104, 87]. For
stronger coupling, complete synchronization might arise, i.e. the amplitudes might also adjust.
For a comprehensive introduction and overview over synchronization phenomena in science,
please refer to Pikovsky et al. [87].

4.5.2 Measures of Synchronization

For noisy systems, the condition Eq. (4.1) is in general not fulfilled: noise broadens the
distribution of φn,m(t) = nΦ1(t)−mΦ2(t) and may even induce phase slips [118]. These effects
and additional measurement noise require a statistical interpretation of synchronization. In
fact, inferring synchronization from observed data is an estimation problem. Among others,
the following statistical measures for the strength of synchronization have been suggested.
Given a histogram pk, k = 1...N of measured phase differences φn,m(t), one can define a
Shannon entropy based index [118]:

ρ =
Smax − S

Smax
, (4.2)

where S = −∑N
k=1 pk ln pk is the entropy of the histogram and Smax = lnN . A second index

might be defined based on directional statistics. Given a time series of phase differences
φn,m(tk) ∈ [0, 2π], k = 1...N , then

R = | 1

N

N∑

k=1

eiφn,m(tk)| (4.3)

yields a value between 0 and 1, signifying vanishing and perfect synchronization, respectively
[2]. For both measures, different significance tests have been suggested [2, 118].
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4.5.3 Inference of Coupling Direction

Phase synchronization is caused by a mutual influence of the phases onto each other. This
influence might be asymmetric. E.g. in the case of radio controlled clocks, the coupling is
unidirectional. If the synchronization is perfect, the phases become indistinguishable and
the coupling direction cannot be detected. However, in the presence of a perturbed phase
relation, one can in principle study the strength and direction of the coupling. One ansatz
is to estimate the mutual predictability [111]. Rosenblum and Pikovsky [103] suggested to
study whether the phase dynamics of one oscillator are influenced by the phase of the other.
This approach has successfully been applied to physiology [105] and neurology [14].

4.5.4 Hilbert Phase Estimation

Estimating the Phase from Univariate Data

To investigate for coherent phase relations, one has to derive the oscillation phases of the
involved systems. The reconstruction of the phase Φ(t) of the oscillating process from a
measured time series constitutes an inverse problem and one has to construct a suitable
estimator Φ̂(t) for the underlying phase (see sections 1.1 and 1.5). If one observes only
a one dimensional time series x(t) of each system, initially one has to find a suitable two
dimensional embedding. For a comparison of different techniques, please refer to [93]. One
common approach is to extend the time series into the complex plane, i.e. to construct a two
dimensional analytical signal

ζ(t) = x(t) + iy(t) (4.4)

by use of the Hilbert transformation [24]

y(t) = H(x(t)) =
1

π
P.V.

∫ ∞

−∞

x(τ)

t− τ
dτ. (4.5)

P.V. denotes the Cauchy principal value (for details refer to [104]). An estimator for the
phase Φ(t) can then be defined as

Φ̂(t) = arctan
y(t)

x(t)
. (4.6)

Observed data from e.g. biological or geophysical systems are in general corrupted by noise.
To estimate the underlying phase, the data hence have to be preprocessed. Rossberg et al.
[106] developed a nice data driven filter to obtain an optimal phase estimation. We restrained
ourselves to a simple static filter in the Fourier domain (see App. 4.4). We call the algorithm
of estimating a phase based on Hilbert transformation Hilbert phase analysis (HPA).

A Curvature Defined Phase to Eliminate Low Frequency Variability

The approach described above is meaningful only if the embedded signal rotates around a
fixed center. For geophysical signals exhibiting variations on a wide range of frequencies,
especially on long time scales, this requirement is rarely fulfilled. Thus, suitable filtering is
required to eliminate the low frequency variations of the center.

In a related setting, Osipov et al. [79] suggested the following approach: They aimed to
analyze the phase of the funnel Roessler attractor, which exhibits a trajectory not always
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cycling around the unstable fixpoint (0, 0) in the projection onto the (x, y)-plane (for the equa-
tions, see App. C.2). They defined a phase not based on the coordinates itself, but rather on
the curvature of the trajectory. If the curvature is always positive, one can define a monoton-
ically growing phase by considering the time derivative of the signal, Φ(t) = arctan ẏ(t)

ẋ(t) . As

long as the curvature is positive, the transformed trajectory (ẋ(t), ẏ(t)) always circles around
a fixed origin.

This approach using a curvature defined phase (CDP) can be interpreted as a sophisticated
filter3 that eliminates slow variations. Hence, it might be suitable for the definition of a phase
estimator

Φ̂(t) = arctan
ẏ(t)

ẋ(t)
(4.7)

for the analysis of data superimposed by variability on long time scales.

Evaluating the Method

To study the performance of the estimator Eq. (4.7) for our individual application in terms
of bias and variance, we constructed a simple toy model with a well known phase, resembling
a typical geophysical oscillator. We designed the toy-model as follows:

• The oscillator was represented by the well known Roessler system (for the equations,
see App. C.2):

• The weather noise was modeled by Gaussian white noise η(t) ∼ N (0, σ2
H) with

〈η(t1)η(t2)〉 = δ(t1 − t2).

• Low frequency variability has been represented by a simple AR[2] process (see Sec. 1.2.2)
with an overall variance σ2

L and a mean period TL.

We simulated different time series of length N = 24, 000 (with sampling time dt = 1/12,
i.e. T = 2, 000) with different parameters σH ∈ [0, 1], σL ∈ [0, 2] and TL ∈ [5, 50]. Figure
4.2 shows an example with noise amplitude σH = 0.2 and low frequency variability (ampli-
tude σL = 1, mean period TL = 20). This parameter setting well resembles the setting of
reconstructing the ENSO phase from the NINO3-data. To the set of simulated time series
we applied the following steps:

1. Low-pass filter the data in the spectral domain. A smooth function (arcus tangens)
damping frequencies > 0.7 is chosen.

2. In case of CDP, estimate derivatives by second order difference scheme and running
mean with window width 2l + 1 = 13 data points.

3. Embed by Hilbert transformation with phase defined according to Eq. (4.7).

4. Unwrap the phases (add 2π after each oscillation).

5. To estimate the phase velocity, another derivative is required.

We compared various filtering parameters and different approaches to estimate the derivatives
and found the results being robust.

3in the Fourier domain, the derivative corresponds to a multiplication with iω
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Figure 4.2: Black: First component of the Roessler oscillator (mean frequency 0.163248,
normalized to unit variance), superimposed by Gaussian white noise (relative amplitude
σH = 0.2) and low frequency variability (relative amplitude σL = 1, mean period TL = 20).
Grey: The reference first component of the Roessler oscillator (Section of the whole time
series only).

Figure 4.3(a) displays the phase, estimated from the time series shown in Fig. 4.2 minus
the underlying phase of the undisturbed Roessler oscillator. The black line depicts the esti-
mation with the CDP Eq. (4.7); the standard estimation Eq. (4.6) is given by the grey line.
Whereas the latter one over long intervals propagates with a too low phase velocity (i.e. fre-
quency), because it only “sees” the strong oscillations of the superimposed low frequency
variability, the former one stays within the same period as the true phase. These charac-
teristics result in a strongly biased and almost unbiased frequency estimate, respectively, as
shown in Fig. 4.3(b): The true frequency distribution of the underlying Roessler oscillator is
plotted as a dotted line. The grey line displays the frequency distribution estimated with the
standard phase definition. Because of the noise and the stochastic low frequency variability,
the distribution is very much broadened in comparison to the true one. Additionally, the low
frequency variability strongly shifts the estimation towards lower frequencies. The frequency
distribution estimated with the CDP (black line) is also broadened in comparison to the
underlying distribution. However, the bias towards lower frequencies is much smaller here.

Figure 4.4 presents a systematic study of the bias (left column) and variance (right col-
umn) of the two estimators for different parameter settings of the toy model. The first row
shows the dependency on the white noise level in absence of low frequency variability. In
this case, the conventional definition (grey line) appears to be the superior estimator: The
bias is indistinguishable from zero and the variance is systematically smaller than that of the
CDP (black line). For the latter definition, a bias appears for high noise levels exceeding a
threshold of around 60%.
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Figure 4.3: (a) Phase propagation of the example shown in Fig. 4.2 minus true phase prop-
agation of reference Roessler oscillator. (b) Corresponding estimated frequency distribution.
Grey: standard phase definition. Black: phase definition according to Osipov et al. [79].
Dotted: reference Roessler oscillator (only bottom panel, density divided by 10).
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Figure 4.4: Bias and variance of frequency estimation for standard phase definition (grey) and
curvature defined phase (CDP) according to Osipov et al. [79] (black). Left column: estimated
frequency, the dotted line marks the true frequency of the Roessler oscillator. Right column:
standard deviation of estimation, normalized to the true frequency. Top row: as function of
noise level, no low frequency variability. Middle row: as function of low frequency variability
level; each line represents a different mean period of low frequency variability. Bottom row:
as function of low frequency mean period; each line represents a different level of intensity.
Dotted line: true mean period of Roessler oscillator.
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The second row shows the dependency on the level of the low frequency variability for
a fixed white noise level σH = 0.2 and different mean periods TL of the low frequency
components. For TL = 5, the low frequency variability exhibits almost the same mean period
as the Roessler (TR ≈ 6.1). Thus, for large σL, a separation of both time scales is almost
impossible for both methods and the estimate is biased towards higher frequencies (the two
upper lines), although the bias for the curvature defined phase is lower than that of the
standard phase estimation. In this case, the variance of the estimator is relatively high for
both methods. For longer periods TL (the lower lines), one observes a much stronger bias
towards lower frequencies for the conventional phase estimator as for the curvature defined
one. The variance of the latter estimator is much lower than that of the former one.

The third row shows the dependency on the period of the low frequency variability for a
fixed white noise level σH = 0.2 and different levels of the low frequency components. The
bias of the standard phase definition is always higher than that of the CDP and increases with
the period depending also on the strength of the low frequency variability. The curvature
defined estimator performs better: For low periods TL, the scale separation is rather difficult,
hence the bias towards the frequency 1/TL is quite strong for high values of σL. For large
TL, however, the separation operates almost perfectly, resulting in a vanishing bias indepen-
dent of σL. A similar picture arises for the variance: For the standard estimator, it simply
increases with TL and σL. For the curvature defined estimator instead, the variance exhibits
a maximum for low periods TL and decreases for higher TL to a common value determined
by the high frequency noise level σH .

Summarizing these observations, the standard phase estimator is the method of choice
for noisy data not superimposed by low frequency variability. For typical geophysical data
exhibiting large fluctuations on long time scales, however, the CDP estimator performs much
better in terms of bias and variance. Not surprisingly, the quality of the estimation gets better,
the longer the period of the corrupting components, as this results in local stationarity and
vanishing derivatives of the low frequency trends.

4.6 Phase of ENSO and Indian Monsoon

We apply the HPA with a CDP to analyze the coupling between ENSO and ISM. As the
monsoon does not perform self-sustained oscillations (see Sec. 4.2.2), no phase synchroniza-
tion can arise. In this special case, the coupling reflects a different physical principle: As
described in Sec. 4.2.3, ENSO influences the boundary conditions of the monsoon system.
Thus (disregarding the possible influence of the monsoon on ENSO), we are concerned with
modulation rather than with synchronization in a strict sense. Nevertheless, the method pre-
sented above might reveal additional valuable information about the coupling: A simple linear
analysis does not decompose amplitude and phase. Even methods as wavelet analysis, which
can investigate a time dependent phase, are only capable of deriving a 1:1 phase relation.
In the case of the ENSO/ISM coupling, this property might mask a possible interrelation:
As shown in Tab. 4.1 in Sec. 4.2.3, not all ISM deficiencies occur during El Niño events,
and not all heavy ISM rainfall years coincide with La Niña years. As discussed in Sec. 4.3,
this unstable amplitude relation leads to a decrease in correlation. The phase analysis, by
contrast, completely disregards the amplitude. The method only investigates, whether there
is an influence of ENSO on the phasing of monsoon, regardless of the particular strength.

To estimate the phases of ENSO and monsoon, we applied the steps listed in Sec. 4.5.4.
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Figure 4.5: (a) Embedding of low-pass filtered NINO3 time series by Hilbert transformation.
Many oscillations are not centered around a common center. (b) The same, but for the time
derivative of the NINO3 time series. All pronounced oscillations circle around the origin.

Fig. 4.5(a) shows the embedding (x(t), y(t)) for the (low-pass filtered) NINO3 time series.
Many oscillations do not cycle around a common center, such that the phase propagation
will be underestimated. This observation justifies the application of the curvature motivated
estimator Eq. (4.7) discussed above. Fig. 4.5(b) shows that the latter approach eliminates
most of the slow variations, such that at least all large and pronounced oscillations are
centered around a common origin and a meaningful phase can be defined. The derivative
ẋ(t) and its Hilbert transform ẏ(t) are plotted in Fig. 4.6. The dotted line represents the
envelope A(t) = (ẋ(t)2 + ẏ(t)2)1/2, i.e. the amplitude of the oscillation. Finally, we calculated
the phases according to Eq. (4.7) and unwrapped them by adding 2π after each oscillation.
Additionally, we choose the envelope A(t) as a measure to select regions of well defined phases:
For time derivatives ẋ(t) normalized to unit variance, A(t) > 0.8 appeared to be a reasonable
choice to exclude spurious oscillations.

The results for the unwrapped phases are presented in Fig. 4.7. During the same time, the
AIR performs more cycles than the NINO3 time series, resulting from the quite stable biennial
oscillation. However, during some epochs, the phases seem to evolve similarly, suggesting to
investigate for phase coherence.

4.7 Results

4.7.1 Phase Relation

To study the occurrence of phase coherence in more detail, we calculated the difference of the
phases (Fig. 4.8(a)). Distinct epochs become visible: The plateaus from 1886 to 1908 and from
1964 to 1980 indicate phase coherence during these intervals (marked I). In the years 1908-
1921, 1935-1943 and 1981-1991, the monsoon oscillates faster than ENSO, failing when ENSO
peaks on inter-annual scales as during the phase coherent intervals, but with an additional
peak in between (marked II). Here two times the phase of ENSO minus the monsoon phase
yields a plateau4 (see Fig. 4.8(b)). During the epochs discussed above, the phases of ENSO
and monsoon are predominantly well defined (grey shading) and both systems exhibit distinct
oscillations, which are also visible in the NINO3 time series itself (Fig. 4.8) or its wavelet

4Even though this might be no dynamic feature, we call this 2:1 coherence, as it produces a phase difference
similar to that of 2:1 phase synchronization
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Figure 4.6: Smoothed Derivative of the normalized and low-pass filtered NINO3 time series
(solid line, section), the corresponding Hilbert transformation (dashed line). The dotted line
represents the amplitude A (for details see text). For A > 0.8 (solid horizontal lines), we
consider the phase to be well defined.
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Figure 4.7: Phase propagation of NINO3 (solid) and monsoon (dashed). On average, the
latter one oscillates faster. However, during some periods the phases propagate similarly,
suggesting to investigate for phase synchronization.
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Figure 4.8: (a)Phase difference of ENSO and monsoon (black). Grey shading marks intervals
of jointly well defined phases. 1886-1908 and 1964-1980 (I): plateaus indicate phase coherence.
1908-1921, 1935-1943 and 1981-1991 (II): monsoon oscillates with twice the phase velocity of
ENSO (see also panel (b)). During these intervals, both systems exhibit distinct oscillations
(NINO3 time series, upper graph). 1921-1935 and 1943-1963: phases are badly defined, both
processes exhibit irregular oscillations of low variance (upper graph). Lower graph shows
volcanic radiative forcing index (VRF). (b) Difference of two times the ENSO phase and
monsoon phase.
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Figure 4.9: Histogram of phase differences for the two phase coherent intervals (a) 1886-
1908, (b) 1964-1980. Both diagrams show peaks between π/2 and π, reflecting that ENSO
and monsoon are anti-correlated.

spectrum [34]. During other times, especially 1921-1935 and 1943-1963, the phases are rather
badly defined and both processes exhibit irregular oscillations of low variance. Fig. 4.9 shows
the histogram of phase differences of the two intervals of phase coherence. Both diagrams
show distributions far away from being uniform, with peaks between π/2 and π, reflecting
that ENSO and monsoon are anti-correlated. The indeces defined in Sec. 4.5.2 for the two
plateaus result as ρ ≈ 0.23, R ≈ 0.76 for the interval 1886-1908 and ρ ≈ 0.26, R ≈ 0.86 for the
interval 1964-1980. Fig. 4.10 shows the histogram of differences between two times the ENSO
phase and the monsoon phase for the three corresponding intervals. The diagrams show a
distribution different from being uniform. In case of the epochs 1908-1921 and 1935-1943,
also peaks are clearly visible; however, for the 1981-1991 interval, the distribution is rather
flat. These findings are reflected in rather low indeces: ρ ≈ 0.19, R ≈ 0.32 for the interval
1908-1921, ρ ≈ 0.21, R ≈ 0.22 for the interval 1935-1943 and ρ ≈ 0.19, R ≈ 0.35 for the
interval 1981-1991. As these histogram represent rather short intervals and keeping in mind
the low indeces, one should interpret these results carefully.

4.7.2 Significance Testing

To evaluate the significance of the results presented in the previous section, one could test, if
the indeces ρ and R significantly deviate from zero. Such a test, however, is rather unspecific.
The problem one encounters is the same as discussed in Sec. 3.6.4 of chapter 3: Processes
oscillating with similar frequencies trivially exhibit intervals of bounded phase differences,
i.e. realizations will show plateaus of random phase “locking” with a characteristic length
distribution depending on the frequency mismatch and the decorrelation times of the pro-
cesses. Thus we developed a significance test that tests the lengths of the plateaus against
the length distribution under the null hypothesis of mutually independent processes with
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Figure 4.10: Histogram of differences between two times the ENSO phase and the monsoon
phase, for the intervals (a) 1921, (b) 1935-1943 and (c) 1981-1991.

Period 2 years 3 years 4 years 5 years 6 years 7 years

ENSO 15/42 15/42 8/42 1/42 0 3/42
ISM 26/50 18/50 4/50 2/50 0 0

Table 4.2: Period distribution of ENSO and ISM estimated from the NINO3 index and the
AIR index, respectively.

corresponding spectral properties.

We estimated the length distribution for two independent processes based on nonpara-
metric bootstrapping. Actually, we have taken advantage of the fact that both processes
are phase locked to the annual cycle, such that we could reduce the problem of constructing
surrogate data to simulating annually resolved random time series with oscillations lasting for
an integer number of years. These oscillations reflect the time between two El Niño events or
between two monsoon failures, respectively. From the used data, we estimated the spectrum
as follows: The distribution of times between two ENSO peaks and two monsoon failures is
shown in Tab. 4.2. We simulated 1,000,000 pairs of annually resolved 150 years long symbolic
time series, each containing integer values from 2 to 7 according to these probability distri-
butions (e.g. 4 consecutive values of “4” mark one cycle of period 4 years and occur with a
probability of 8/42 in case of ENSO). Fig. 4.11 shows the estimated probabilities for plateaus
of a certain number (not years) of common oscillations to occur. The lengths of the observed
plateaus correspond to 8 oscillations in the interval 1886-1908 and 6 oscillations in the in-
terval 1964-1980. The probability that 8 successive oscillations appear in both time series at
the same time with pairwise identical periods resulted as p8 ≈ 0.0017, the probability for a
plateau of 8 randomly common oscillations resulted as p6 ≈ 0.014. Hence, the first plateau is
significant on the 1%-level, the second on the 5% level. However, the probability that both
plateaus occur randomly within 150 years is p1p2 ≈ 2.3 · 10−5, i.e. the result is significant at
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Figure 4.11: Probability of occurrences of phase coherent oscillations for a 150 year time
series as a function of the number of coherent oscillations. The black dotted lines depict the
0.1, 0.05 and 0.01 levels, respectively.

least at the 1% level. As the intervals of 2:1 phase relation cover rather short intervals and
furthermore only give low values for the synchronization indeces, we forbear from applying a
significance test on these epochs.

4.7.3 Coupling Direction

Theoretically, our approach allows to investigate for the direction of coupling (see Sec. 4.5.3),
i.e. whether the modulating influence of ENSO on monsoon is dominating or if a possible
reverse influence has to be taken into account. However, as the coupling appears to be time
dependent with stable periods of only around 200 correlated data points, we expect that the
dynamical noise is too high to obtain any reliable results.

4.8 Climatological Discussion

4.8.1 Interdecadal Variability

We could identify distinct epochs, especially two intervals of phase coherence from 1886 to
1908 and from 1964 to 1980. Interestingly, these epochs show high variability and distinct
oscillations of ENSO as well as monsoon, unlike the intervals 1921-1935 and 1943-1963, where
both processes show low variability and no coherence. These results corroborate earlier
findings of Torrence and Webster [123]: The intervals of phase coherence coincide with regions
of high wavelet coherence. In contrast to previous correlation and coherence analysis, we
could identify the following additional epochs of coupling by use of HPA: During the years
1908-1921, 1935-1943 and 1981-1991, the monsoon oscillates twice as fast as ENSO. During
ENSO years, the monsoon rainfall also weakens. However, it additionally fails half an ENSO
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cycle later. Also unlike sliding correlation and wavelet analyses, which intrinsically have to
average (here roughly two decades), we estimate an almost instantaneous phase of only the
dominant oscillation and hence are able to estimate the onset of phase coherence with an
accuracy of around one ENSO cycle.

The two main epochs of coupling appeared to be highly significant. However, the criticism
of Gershunov et al. [28] that changes in correlation strength between ENSO and monsoon
could be spurious due to stochastic fluctuations, also holds for these results: Also our method
is not able to decide whether the temporary weakening of the coupling, i.e. the interdecadal
variability, is significant. It might be that the periods without a stable phase relation, i.e. the
intervals before 1886, from 1921 to 1935, from 1943 to 1963 and after 1991 in fact represent
epochs of coupling that are only masked by noise. This question can only be addressed
by employing a model of both ENSO and monsoon, representing the coupling and typical
stochastic variability.

4.8.2 Temporarily Weakening Relationship with Precedents

As mentioned in Sec. 4.2.3, Kumar et al. [60] found that 21 year sliding correlations between
ENSO and monsoon were high from 1856 to the early 1980’s, but decreased to insignificant
values afterwards. They suggest that global warming may cause the decoupling. Since
our approach decomposes signals into phase and amplitude, we gain a more detailed insight:
After 1981, the monsoon was still coupled to the ENSO cycle until 1990. During this time the
monsoon still fails after strong El Niños but peaks additionally shortly after (see Sec. 4.8.1).
This behavior is invisible to correlation analysis, leading to the insignificant correlations
observed in [60]. Only after 1990, also our method does not find any stable relation between
the two processes. However, this behavior appears to be typical rather than a feature without
precedent: A similar 2:1 coherence occurred in the periods 1908-1921 and 1935-1943, and a
behavior resembling that after 1991 appeared also from 1921 to 1935 and before 1886. Thus,
it is unlikely that the observed decrease in correlation really represents a distinct trend of a
weakening relationship between ENSO and monsoon.

4.8.3 Possible Volcanic Forcing

The high time resolution allows us to precisely determine the onset of phase coherent in-
tervals and thus to suggest a mechanism that might cause the coupling. The lower graph
in Fig. 4.8 displays the volcanic radiative forcing index [109]. Interestingly both intervals
of phase coherence coincide with periods of strong volcanic radiative forcing and start with
two major eruptions, of Krakatau (1883, Sunda strait) and Mount Agung (1963, Bali), both
located in southern Indonesia and exhibiting large climatic forcing [101].

We now introduce an idea, which might help to understand the recent findings of Adams
et al. [1]: Volcanic forcing might not cause single ENSO events, but rather either increase
the coupling between ENSO and monsoon, causing more regular oscillations of the total
system, or cause more regular oscillations of one of the systems (probably ENSO), increasing
the coupling between them. The climatic impact of volcanoes is based on radiative forcing
mainly by sulphate aerosols. Blocking of short-wave radiation causes summer cooling (and
winter warming) and overall global cooling lasting for 1-3 years. Multiple eruptions have
caused cooling even on decadal scales, e.g. in the period from 1883 to 1912 and from 1963 on
[e.g. 7]. This cooling effect could reduce the land/sea temperature gradient and thus make
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the monsoon more sensitive to ENSO influence [e.g. 60]. For a detailed review of possible
mechanisms, refer to [101].

However, this idea needs further evaluation: A spatiotemporal analysis is required to
corroborate the influence of volcanic cooling onto the boundary conditions of the ENSO
monsoon system, especially on the Tibetan snow cover. This could be achieved by producing
composites of temperature fields and possibly temperature gradient fields for the different
intervals. Furthermore, numerical simulations could help to identify the proposed link in a
model experiment.

4.9 Summary and Conclusions

To analyze the coupling between ENSO and the Indian summer monsoon, we applied Hilbert
phase analysis, a method used in nonlinear time series analysis to study the relationship of
two oscillating systems with respect to their phases but independently of their amplitudes.
To account for interdecadal variability of the tropical ocean atmosphere system, we combined
this method with a recently proposed curvature defined phase that represents a high pass
filter. We tested the performance of this method in terms of bias and variance by applying
it to a simple toymodel resembling the ENSO variability.

We identified distinct epochs of different phase relations. Two intervals of phase coherence
from 1886 to 1908 and from 1964 to 1980 confirm earlier findings of Torrence and Webster
[123]. These findings are corroborated by a significance test of high specificity accounting
for typical random phase coherent intervals. In contrast to sliding correlation and wavelet
analyses, we estimate an almost instantaneous phase of only the dominant oscillation and
hence obtain a much higher time resolution. In fact, we are able to estimate the onset of
phase coherence with an accuracy of around one ENSO cycle.

Kumar et al. [60] found a weakening relation between ENSO and monsoon since the early
1980’s. Using the Hilbert phase analysis method that decomposes amplitude and phase, we
get a more detailed insight: After 1981, the Monsoon still fails after strong El Niños but peaks
additionally shortly after. This additional peak reduces the linear correlation, even though
coupling is present. Only after 1991, no distinct relation between the phases of ENSO and
monsoon exists. Both epochs, however, are typical for the system as similar intervals have
occurred before. Thus, our findings indicate that the weakening of the relationship between
ENSO and monsoon is not without precedent and might be only temporal.

The high time resolution allows us to precisely determine the onset of phase coherent
intervals and thus to suggest a mechanism of volcanic forcing that might amplify the cou-
pling. Volcanic radiative cooling might increase the Tibetan snow cover that in turn reduces
the land sea temperature contrast and thus makes the monsoon more sensitive to ENSO
influences. This idea needs further evaluation by means of detailed time series analysis and
model simulations.



Chapter 5

Discussion, Conclusions and
Outlook

5.1 Discussion and Conclusions

Understanding the climate system requires an interplay of theoretical studies, model exper-
iments and time series analysis. The thesis at hand mainly aimed to contribute to method-
ological questions of the latter field. A second aspect was to apply the investigated methods
to recent climatological problems. A main focus of my work was to study the reliable infer-
ence of particular process properties from an inverse problem point of view. This required
methods of high specificity.

Together with Prof. Dr. Jens Timmer and Henning Rust, I studied the inference of long-
range correlations by means of Detrended Fluctuation Analysis (DFA). Identifying this task
as an inverse problem, we argued that power-law scaling of the fluctuation function and
thus long-memory may not be assumed a priori but have to be established. This requires to
investigate the local slopes of the fluctuation function. In fact, it is not sufficient to conclude
scaling from a straight line fit to the fluctuation function in a log-log representation, as done
in many publications. We accounted for the variability characteristic for stochastic processes
by calculating empirical confidence regions. The comparison of a long-memory with a short-
memory model showed that the inference of long-range correlations from a finite amount of
data by means of DFA is not specific. Instead, we rather suggest to attempt to falsify long
memory and hence to infer short range correlations. In this respect, we showed that a local
slope larger than α = 0.5 for large scales does not necessarily imply long-memory. We also
demonstrated, that a finite scaling of the autocorrelation function is shifted to larger scales
in the fluctuation function. Thus, it is not valid to directly transfer a typical time scale from
a DFA result to an equivalent time scale in the autocorrelation function, as done in other
publications. Based on these studies, we reviewed the DFA results for the Prague temperature
data set and showed that long-range correlations cannot be concluded unambiguously.

In the second part of the thesis, I presented the results from a collaboration with Prof. Dr.
Holschneider. This work was mainly motivated by the realization that, although the mathe-
matical properties of CWT were well studied, the formulation of continuous wavelet spectral
analysis had a rather tentative character. Open questions concerned the definition of non-
stationary spectra in the wavelet domain and the bias and variance of the wavelet sample
spectrum. Further problems were the effect of multiple testing in the conventional pointwise
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significance tests and the interpretation of cross wavelet measures. To meet these shortcom-
ings, we proposed an equivalence class of nonstationary Gaussian stochastic processes defined
in the wavelet domain. These processes are characterized by means of wavelet multipliers
and exhibit well defined time dependent spectral properties; they allow one to generate re-
alizations of any nonstationary Gaussian process. Based on this framework, we studied the
dependency of the realizations of such processes on the wavelets used for the generation. We
calculated bias and variance of the wavelet sample spectrum and investigated their behavior
for certain asymptotic cases and in presence of averaging. Furthermore we showed that the
global wavelet spectrum in general is not an unbiased estimator for the Fourier spectrum. To
overcome the difficulties of multiple testing, we developed an areawise significance test that
utilizes basic properties of continuous wavelet transform to decide whether a pointwise signifi-
cant result is larger than a certain critical area and thus distinguishable from typical stochastic
fluctuations. Using the framework of nonstationary Gaussian processes in wavelet domain,
we compared the areawise test and the conventional pointwise test in terms of sensitivity and
specificity. For the rather hypothetical case of a high signal to noise ratio, the pointwise test
showed a higher sensitivity and a comparable specificity. However, for typical geophysical
data exhibiting a low signal to noise ratio the sensitivity was slightly reduced in favor of an
considerably improved specificity such that the areawise test remarkably increases the relia-
bility of wavelet spectral analysis. We estimated the wavelet coherence between ENSO and
NAO and could show that earlier findings proposing an instantaneous influence of strong El
Niños on North Atlantic climate were a mere artefact. Finally, we presented applications to
Hydrological questions, work that has been done together with Dr. Bettina Schaefli.

In the last part I studied the coupling between El Niño/Southern Oscillation (ENSO)
and the Indian Monsoon on inter-annual time scales. I estimated the oscillating phases of
both systems by means of Hilbert transformation, an approach that originates from phase
synchronization analysis. This method allows one to investigate the relation of two oscillating
systems with respect to their phases, independently of their amplitudes. To account for
typical interdecadal variability, I combined the method with a recently introduced curvature
defined phase. To evaluate the performance of the resulting technique, I constructed a simple
toy model resembling the ENSO variability and studied the phase estimator in terms of bias
and variance for different signal to noise ratios. I identified distinct epochs, especially two
intervals of phase coherence, 1886-1908 and 1964-1980, confirming earlier findings from a
new point of view. A significance test of high specificity corroborated these results. I also
detected so far unknown periods of coupling which are invisible to linear methods. These
findings contradict earlier propositions of an unprecedented weakening relationship between
ENSO and the monsoon. Instead, they suggest that the decreasing correlation during the last
decades has happened before and might be partly inherent to the ENSO/Monsoon system.
Finally, I outlined a possible interpretation of how volcanic radiative forcing could cause the
coupling.

These three studies investigate different aspects of time series analysis with a focus on
climatological questions. However, a guiding idea was the study of the sensitivity and es-
pecially specificity of the methods applied. In the case of DFA, earlier research has almost
completely disregarded this question. Instead of trying to corroborate or falsify the findings
of long memory, the unspecific methodology forced every correlation structure into the pro-
crustean bed of power laws. This thesis showed that a reliable inference of long memory for
a typical amount of data is impossible by means of DFA. Also in case of wavelet spectral
analysis, conventional tests were highly unspecific and produced many spurious results. The
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presented areawise test overcomes this disadvantage. Finally, the specific test I developed for
the significance testing of phase coherence rejects typical random coherent oscillations and
thus provides robust results.

In this context, it is important to point out the limits of time series analysis, especially in
geosciences: Climate is a vast system consisting of a variety of interacting subsystems. This
complexity is faced by limited observations. However, a sufficient amount of data is crucial for
a reliable time series analysis. In case of DFA, it is not possible to discriminate between long
memory and short memory based on the available time series. In wavelet analysis, the amount
of data is also important for a high signal to noise ratio. However, since the analysis is local
in time, the relevant limits are of different nature: To infer the frequency of a local oscillation,
one has to observe this oscillation for a certain time. If a high time resolution is required,
the frequency resolution is decreased and vice versa. Thus, also for a densely sampled time
series, oscillations shorter than a critical length are in principle not distinguishable from
noise. For the inference of coherence between two processes, one additionally has to exclude
typical random coherent oscillations. Hence, even though wavelet analysis allows a time
resolved investigation, the identification of localized properties is confined by fundamental
limits. These arguments also hold for the inference of phase coherence by means of Hilbert
phase analysis: To infer a constant phase relation, one has to establish constancy over a
sufficiently long interval that exceeds typical randomly coherent intervals.

The previous discussion illustrates the benefits and limits of time series analysis. For a
reliable inference, a researcher has to be aware of the sensitivity and specificity of the method-
ology he applies. Investigating complex and stochastic systems, a specific test takes the place
of corroboration by the attempt of falsification. However, the results one obtains with either
of the methods presented in this thesis are limited by the amount of data and fundamental
methodological constraints and, eventually, they are of a merely statistical nature. As for any
statistical result, it is up to the researcher to provide a reasonable interpretation. A statistical
analysis in principle can barely be an end in itself but rather a part of the interplay between
theoretical reasoning, model experiments and time series analysis to gain a deeper scientific
understanding.

5.2 Outlook

The studies in this thesis raised a lot of outreaching questions. Some of them concern the
limits of the particular method discussed above and require a reorientation. Others emerge
from ideas and concepts proposed in this work and initiate a new field of research.

DFA previously had been shown to be a reliable estimator of the Hurst exponent of frac-
tional Brownian motion. However, the inference of long memory by means of DFA appeared
to be not feasible. Instead, the nonparametric DFA-procedure should be superseded by a
parametric modeling approach. In the sense of Occam’s razor, one fits different FARIMA
models to the data and utilizes a particular information criterion (e.g. Bayes, Akaike) to se-
lect the optimal model. This model might contain short as well as long memory components.
Such an approach is currently under development by Rust [107].

The definition of nonstationary Gaussian processes by means of wavelet multipliers is
prototypically suitable for the generation of nonstationary surrogate data of an estimated
wavelet spectrum. However, because averaging is needed to obtain an estimate of the under-
lying spectrum with a reasonably low variance, this approach needs to be further investigated
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in terms of variance and bias. A possible application is the significance testing with a non-
stationary background spectrum. This idea might overcome the problems one faces when the
variance of the observed process exhibits a trend. Cross wavelet analysis might be used to
define measures for scale and time resolved phase coherence. Finally, the Gaussian processes
in wavelet domain are easily extended to non-Gaussian noise. This extension might be useful
for the analysis of processes showing non-Gaussian marginal distributions.

The phase coherence estimation by means of Hilbert transformation addresses a similar
problem as the estimation of wavelet coherence. The latter one provides a time and scale
resolved phase relation at the cost of an inherent uncertainty relation: A higher time res-
olution decreases the scale resolution and vice versa. Hilbert phase analysis abandons any
scale resolved information in favor of an optimal time resolution. In this sense, it marks the
opposite of stationary Fourier analysis. However, this advantage requires a signal with a pro-
nounced main oscillation. A further study should systematically compare both approaches
and identify which one is preferable in which setting.

Based on the phase coherence analysis of ENSO and the Indian summer monsoon, we
suggested a possible influence of volcanic radiative forcing on the coupling between the two
processes. However, this idea needs further evaluation: A spatiotemporal analysis is required
to corroborate the influence of volcanic cooling onto the Tibetan snow cover, which is one
possible link for the ENSO influence on the monsoon. Also, model simulations could help to
identify the proposed link.

Beyond these tasks closely connected to my thesis, general climatological challenges await
to be faced by future research. Climate models need to be further improved. Already included
processes can be represented even more realistically and further important processes have to
be captured. On the one hand, this trivially depends on computational power. On the
other hand, processes on scales too small to be resolved by the models need to be better
parameterized. This in turn necessitates reliable theoretical simplifications, but also the
collection of sufficient data describing the individual processes. Eventually, to corroborate and
improve the models, a dense network of observations of the relevant climatological variables
is required. If one is interested in the climate’s behavior on scales up to decades, this need
might be met by direct observations. To understand processes on longer scales, however,
further proxy data reaching back into the earth’s history have to be systematically collected.



Appendix A

Data Sets

A.1 Large Scale Climate Indeces

A.1.1 El Niño/Southern Oscillation

To represent the ENSO phenomenon, I choose the common extended NINO3-index defined
by Kaplan et al. [54] as the monthly SST anomalies with respect to the climatological mean
from 1961 to 1990, integrated over the eastern tropical Pacific in the range of 150W to 90W
and from 5N to 5S respectively. The resulting time series ranges from Jan 1st 1856 to Dec
31st 2003, see Fig. A.1(a).

A.1.2 North Atlantic Oscillation

A widely used NAO index was defined by Jones et al. [49] as the surface level pressure
difference between Iceland and Gibraltar. The measurements were available from Jan 1st
1825 to Dec 31st 2003, see Fig. A.1(b).

A.1.3 Indian Monsoon

The Indian monsoon is represented by the deseasonalized monthly anomalies of the All India
Rainfall (AIR) index defined by Mooley and Parthasarathy [75]. The data set covers the
period from Jan 1st 1871 to Dec 31st 2003, see Fig. A.1(c).

A.1.4 Volcanic Radiative Forcing Index

The volcanic radiative forcing index has been defined by Sato et al. [109] and represents the
optical depth of the atmosphere at λ = 0.55µm, normalized to the eruption of Krakatau in
1883. It provides a measure of the aerosols emitted by volcanic eruptions into the upper
troposphere. See Fig. A.1(d).

A.2 Regional Climate data from the Swiss Alps

A.2.1 Precipitation at Bourg St. Pierre

Deseasonalized monthly maximum precipitation measured at Bourg St. Pierre, located in the
south-western part of the Swiss Alps close to the pass of Grand St. Bernard, see Fig. A.2(a).
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Figure A.1: (a) NINO3-index (SST anomaly in 150W to 90W and from 5N to 5S), (b)
NAO-index (pressure gradient between Iceland and Gibraltar), (c) deseasonalized AIR-index
(normalized all Indian rainfall anomalies), (d) Volcanic radiative Forcing index (optical depth
at λ = 55µm normalized to Krakatau eruption).
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Figure A.2: (a) Monthly maximum deseasonalized precipitation at Bourg St. Pierre, (b)
monthly mean deseasonalized temperature at Grand St. Bernard, (c) monthly mean desea-
sonalized run-off at Drance de Bagnes river
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Deseasonalization has been carried out on the daily time series, i.e. every date has been
normalized by subtracting the interannual mean value of this date and by dividing by the
interannual variance. The data have been provided by the Swiss Meteorological Institute.

A.2.2 Temperature at Grand St. Bernard

Deseasonalized monthly mean temperature at Grand St. Bernard, see Fig. A.2(b). The
deseasonalization has been performed as in the case of the precipitation data. These data
have also been provided by the Swiss Meteorological Institute.

A.2.3 Run-Off of River Drance de Bagnes

Deseasonalized monthly mean run-off at the closeby Drance de Bagnes river that has a mean
catchment altitude of 2630 m a.s.l. (catchment size 254 km2) and a discharge regime strongly
influenced by snow- and ice melt (see [42]), see Fig. A.2(c). For the deseasonalization, see the
precipitation data. The construction of a dam in 1956 has been accounted for by calculating
separate mean values for the intervals before and after the construction. The data have been
provided by the Swiss Federal Office for the Environment (Hydrological Section).
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Continuous Wavelet Spectral
Analysis

B.1 Properties of the Transformation

B.1.1 Covariances

The covariances of the wavelet transformation Wgs of a signal s(t) with respect to the wavelet
g(t) corresponding to a translation t− b′ and dilation t/a′ are given as follows:

Wgs[t− b′](b, a) = Wgs[t](b− b′, a) (B.1)

Wgs[t/a
′](b, a) = Wgs[t](b/a

′, a/a′) (B.2)

Here, the brackets [.] denote dependencies of a variable, whereas (.) denote dependencies
of the resulting transformation. The invariant sets of the wavelet transformation are thus
stripes of constant scale for translation and cones with edge in the origin for dilation. These
properties constitute the affine group [40, 12].

B.1.2 Projection Property

On the one hand, applying the inverse transformation Mh to a wavelet transformation Wgs(t)
recovers the original signal, MhWgs(t) = s(t), i.e. MhWg = I. On the other hand, the CWT
from 1-D to 2-D does not produce any new information, i.e. a continuous wavelet trans-
form is neither orthogonal nor uncorrelated. Hence, not every function on the positive half-
plane is a wavelet transformation. Taking an arbitrary function f(b, a), the transformation
Pg→hf(b, a) = WhMgf(b, a) to the time domain and back to the wavelet domain thus is a
projector onto the space of all wavelet transformations[40]:

P 2
g→hf(b, a) = Pg→hf(b, a)

B.1.3 Reproducing Kernel

As a consequence of the projection property, App. B.1.2, r(b, a) is a wavelet transformation,
if and only if

r(b, a) =

∞∫

0

da′

a′

∞∫

0

db′
1

a′
Kg,h

(
b− b′

a′
,
a

a′

)
r(b′, a′). (B.3)
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Figure B.1: Haar wavelet. (a) Representation in time domain for a = 128, (b) reproducing
kernel for a = 128.

For details see [40]. The function Kg,h((b− b′)/a′, a/a′) is given as

Kg,h

(
(b− b′)/a′, a/a′

)
= Wgh((b− b′)/a′) (B.4)

and is called the reproducing kernel [40]. As an example, the reproducing kernel of the Morlet
wavelet is given in App. B.1.5.

B.1.4 Example Wavelets

The Haar Wavelet

The Haar wavelet is a real wavelet defined as [40]:

g(t) =





−1 for − 1/2 ≤ t < 0
1 for 0 ≤ t < 1/2
0 otherwise

ĝ(ω) = 2i
1 − cosω

ω
(B.5)

Because it is very localized in the time domain (see Fig. B.1(a)), it exhibits a poor frequency
localization ĝ(ω). This is also reflected in the reproducing kernel (see Fig. B.1(b)), that ranges
over the whole scale axis. Thus, the Haar wavelet is suitable to detect very time localized
structures like jumps inside a time series, but it is not suitable for a time scale analysis.
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Figure B.2: Morlet wavelet in time domain for ω0 = 6 at scale a = 1. Solid line: real part,
dashed line: imaginary part.

B.1.5 The Morlet Wavelet

The Morlet wavelet is defined as a complex exponential localized with a Gaussian envelope
[40]:

g(t) = eiω0te−t2/2, ĝ(ω) =
√

2πe−(ω−ω0)2/2, (B.6)

where ω0 adjusts the time/scale resolution, see Fig. B.2. Strictly speaking, the Morlet wavelet
is not progressive, as it has contributions on negative frequencies. Since its mean does not
vanish, the Morlet wavelet is not even a wavelet. However, for sufficiently large ω0, the
negative frequency components and the mean almost vanish. For small ω0 instead, one might
observe artefacts. Using Eq. (B.4), the reproducing kernel of the Morlet wavelet results as

C(s1, s2, t1, t2) =

√
2s1s2
s21 + s22

exp

{
iω0

s1 + s2
s21 + s22

(t2 − t1)

}
exp

{
−1

2

(t2 − t1)
2 + ω2

0(s2 − s1)
2

s21 + s22

}

(B.7)
(for the calculation, see Maraun and Kurths [67]) and is plotted in Fig. B.3.

B.1.6 Wavelet Transformation of Discrete Sampled Data

When estimating any continuous wavelet spectral measure from a discretely sampled time
series, one is in principle able to calculate an infinite number of scales starting from the
lowest one corresponding to the Nyquist frequency and ending at the length of the time
series. However, the amount of independent scale information is limited by the reproducing
kernel (see App. B.1.3). Thus, a reasonable choice of scales is the following:

aj = a02
i−1

Nvoice (B.8)

with i = 1...Nvoice ·Noctave + 1, amin = a0 and amax = a02
Noctave . Here, a0 corresponds to a

frequency lower than or equal to the Nyquist frequency, Noctave denotes the number of octaves
(i.e. powers of two), and Nvoice the number of voices (i.e. calculated scales) per octave. Too
high values of Nvoice give no new information but only increase computational cost. We call
the matrix given by all calculated wavelet spectral coefficients in the time/scale-plane wavelet
spectral matrix.
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Figure B.3: Reproducing kernel of the Morlet wavelet for three different scales: (a) a = 8,
(b) a = 32 and (c) a = 128. The width in time and in scale direction increases linearly with
scale (i.e. in scale direction it appears constant on a logarithmic scale axis)

B.1.7 Cone of Influence

When calculating the wavelet transformation in the beginning or end of a finite data set, the
analyzing wavelet is cut off1. Close to the boundaries this effect causes a strong bias of the
estimation. To account for this boundary effect, one evaluates after which time a wavelet
envelope has decayed to 1/e2 and uses this range to define the so-called cone of influence.
Outside this cone with a distance from the boundaries proportional to scale, usually marked
by a black line, wavelet coefficients have to be interpreted carefully.

1To avoid computational errors, one applies zero-padding, i.e. extends the time series with zeros to the left
and to the right.



B.2. LOCALLY STATIONARY WAVELET PROCESSES 93

time
20 30 40 50 60

−
0.

5
0.

5

Figure B.4: Gaussian chirp, calculated from the same white noise realization but filtered with
Morlet wavelets with different parameters ω0 = 12 (black) and ω0 = 6 (grey).

B.2 Locally Stationary Wavelet Processes

The idea presented in Chap. 3 is different from the approach of Nason and von Sachs [77],
Nason et al. [78], who define stochastic processes by superimposing weighted wavelet “atoms”,

Xt =

−1∑

j=−J

∑

k∈Z

ωj,kψj,k(t)ξjk, for t = 0, ..., T − 1, (B.9)

where ξjk denote random variables, the ψj,k(t) are discrete non-decimated wavelets with
amplitudes ωj,k. These wavelets are time continuous but confined to dyadic scales.

B.3 Properties of Gaussian Processes in Wavelet Domain

B.3.1 The Dependency on the Wavelet

Given a realization of white noise η(t), the difference between the realizations sg(t) and sh(t)
for a certain m(b, a) but different wavelets g and h reads

∆g,h(t) = MgmWgη(t) −MhmWhη(t)

= MhWh︸ ︷︷ ︸
I

MgmWgη(t) −MhmWhMgWg︸ ︷︷ ︸
I

η(t)

= Mh [WhMgm − mWhMg]Wgη(t)

= Mh [Pg→h ∗,m · ]Wgη(t),

with Pg→h = WhMg. Figure B.4 shows an example of a Gaussian chirp, calculated from
the same white noise realization but filtered with Morlet wavelets with different parameters
ω0 = 12 (black) and ω0 = 6 (grey).

The commutator in the previous equation is given by the integral kernel

[m(b′, a′) − m(b, a)]Pg→h

(
b− b′

a′
,
a

a′

)
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Developing m(b′, a′) into a Taylor series around (b, a) gives

=
[
m(b, a) + (b− b′)∂bm(b, a) + (a′ − a)∂am(b, a) +O((a− a′)2 + (b− b′)2)

−m(b, a)
]
Pg→h

(
b− b′

a′
,
a

a′

)

For Pg→h

(
b−b′

a′ ,
a
a′

)
sufficiently localized around (b, a), this reads

≈ (b− b′) ∂bm(b, a)Pg→h

(
b− b′

a′
,
a

a′

)
+ (a′ − a) ∂am(b, a)Pg→h

(
b− b′

a′
,
a

a′

)

With P ′
g→h(b, a) = 1

abPg→h(b, a) and P ′′
g→h(b, a) =

(
1
a − 1

)
Pg→h(b, a) we finally get

= a ∂bm(b, a)P ′
g→h

(
b− b′

a′
,
a

a′

)
+ a ∂am(b, a)P ′′

g→h

(
b− b′

a′
,
a

a′

)
(B.10)

To ensure asymptotic independence of the chosen wavelet, it is necessary that ∆g,h(t) vanishes
for small scales. This is ensured in the following way:

• P ′
g→h

(
b−b′

a′ ,
a
a′

)
and P ′′

g→h

(
b−b′

a′ ,
a
a′

)
, given by the wavelets g and h, have to be suffi-

ciently localized.

• a ∂bm(b, a) and a ∂am(b, a) have to vanish for small scales. This is fulfilled for processes
exhibiting the asymptotic behavior given by Eqn. 3.16 and 3.17.

Both asymptotic cases Eqn. 3.16 and 3.17 are equivalent in the sense that more and more
reproducing kernels fit into local structures of the process; if the number of reproducing
kernels in a local structure in time b or scale a direction is given as

Nb,a ∼ 1

a∂b,am(b, a)
,

then the following equations for the behavior defined in Eqn. 3.16 and 3.17 hold:

I. Nb,a ∼ 1

aǫ
→ ∞ for a→ 0,

II. Nb,a ∼ 2λ → ∞ for λ→ ∞.
(B.11)

B.3.2 The Relation to Fourier Spectra

For stationary processes, i.e. m(b, a) ≡ m(a), Eq. (3.14) in the Fourier domain reads

ŝ(ω) =

∞∫

0

da

a

1√
a
ĥ(aω)m(a)ĝ(aω)η̂(ω)

=




∞∫

0

da

a

1√
a
G(aω)m(a)




︸ ︷︷ ︸
f(ω)

η̂(ω)
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Here, we abbreviate G(aω) = ĥ(aω)ĝ(aω). In this context, (̂.) refers to the Fourier transfor-
mation. The term f(ω) denotes Fourier multipliers representing the Fourier spectrum of the
process m(a).
Developing m(a) into a Taylor series around 2π/ω, m(a) = m(2π/ω)+(a−2π/ω)m′(2π/ω)+
O((a− 2π/ω)2) leads to

f(ω) ≈ m

(
2π

ω

)


∞∫

0

da

a

1√
a
G(aω)


 +m′

(
2π

ω

)


∞∫

0

da

a

1√
a
G(aω)

(
a− 2π

ω

)


We factor out 2π/ω in the second integral. If G(aω) is well localized, the integrals might be
considered as being constant. Finally we obtain

f(ω) ≈ m

(
2π

ω

)
C1 +

2π

ω
m′

(
2π

ω

)
C2

As expected, the Fourier spectrum is given by the wavelet spectrum plus a correction term.
The latter depends on the localization of the used wavelets and on the slope of the wavelet
spectrum. For high frequencies the difference vanishes, if m′(2π/ω) < O(ω) and if the process
behaves as defined by Eq. (3.16). In case of a process behaving as defined by Eq. (3.17), the
difference vanishes for λ→ ∞.

B.3.3 Distribution of the Wavelet Sample Spectrum

The Fourier (cross) periodogram asymptotically exhibits a χ2 distribution with two degrees
of freedom [9]. For the localized wavelet transformation, this property holds in a good
approximation. Because the Fourier periodogram is asymptotically uncorrelated, smoothing
over neighboring frequencies preserves a χ2 distribution with the number of degrees of freedom
depending on the length of the smoothing window. As wavelet coefficients are correlated due
to the reproducing kernel, this result does no longer trivially hold for the wavelet sample
spectrum.

The theorem of Ogasawara & Takahashi [97] states, when a sum of squares of correlated
Gaussian distributed random variables is χ2 distributed. Given a vector Y of Gaussian
random variables

Y ∼ Nn(0,Σ) (B.12)

with a covariance matrix Σ, the product YTAY is χ2 distributed, when

ΣAΣAΣ = ΣAΣ (B.13)

holds.
In the case of smoothing neighboring values of the wavelet periodogram, we are interested in
the sum of squares (in this example smoothing over three neighboring scales is considered.
Generalization follows straight forward)

YTAY = W1(s1)W1(s1)
∗ +W1(s2)W1(s2)

∗ +W1(s3)W1(s3)
∗. (B.14)
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This relation is obtained by defining

Y =




W1(s1)
W1(s1)

∗

W1(s2)
W1(s2)

∗

W1(s3)
W1(s3)

∗




and A =




0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0



. (B.15)

The covariance matrix then reads

Σ =




σ 0 σ12 0 σ13 0
0 σ 0 σ12 0 σ13

σ12 0 σ 0 σ23 0
0 σ12 0 σ 0 σ23

σ13 0 σ23 0 σ 0
0 σ13 0 σ23 0 σ




(B.16)

where the single entries can be calculated according to Eq. (3.10).
For these conditions, Eq. (B.13) reads




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




=




0 s1213 0 s121323 0 s131223
0 0 0 0 0 0
0 s121323 0 s1223 0 s231213
0 0 0 0 0 0
0 s131223 0 s231213 0 s1323
0 0 0 0 0 0




(B.17)

with sijkl = σ2 + σ2
ij + σ2

kl and sijklmn = 2σσij + σklσmn and is never fulfilled. Thus the

smoothed wavelet sample spectrum is not χ2 distributed, but rather follows a generalized
χ2-distribution.

B.3.4 Bias of the Spectral Estimator

The bias of the wavelet scalogram reads

Bias(Ŝg(b, a)) = 〈 |WkMhm(b, a)Wgη(t) |2 〉 − |m(b, a)|2

= WkMh W̄kM̄hm(b1, a1)m̄(b2, a2)WgW̄g 〈η(t1)η(t2)〉 − |m(b, a)|2.
With 〈η(t1)η(t2)〉 = δ(t1 − t2), ση = 1 and Wgg((t2 − b2)/a2) = K((b1 − b2)/a2, a1/a2) we get

= WkMh W̄kM̄hm(b1, a1)m̄(b2, a2)K

(
b1 − b2
a2

,
a1

a2

)
− |m(b, a)|2.

Developing m(b1,2, a1,2) into a Taylor series around (a,b), i.e.
m(b1,2, a1,2) ≈ m(a, b) + (b1,2 − b) ∂bm(b1,2, a1,2) + (a1,2 − a) ∂am(b1,2, a1,2), and writing
(b1,2 − b) ∂bm(b1,2, a1,2) + (a1,2 − a) ∂am(b1,2, a1,2) = f1,2,
WkMhW̄kM̄hK((b1 − b2)/a2, a1/a2) = C, this leads to

Bias(Ŝg(b, a)) ≈ (C − 1) |m(b, a)|2

− WkMh W̄kM̄h

[
m(b1, a1)f2 +m(b2, a2)f1 + f1f2

]
K

(
b1 − b2
a2

,
a1

a2

)

If the wavelets are properly normalized, such that C = 1, the bias reduces to the second
term. Following the same reasoning as in App. B.3.1, the bias vanishes for a→ 0 or λ→ ∞.
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B.4 Estimating the Patch-size

B.4.1 Stochastic Root Finding

The significance level αaw of the areawise test is a function of the critical area Pcrit . Un-
fortunately, this function is not accessible analytically, such that it is impossible to choose a
desired significance level αaw and then straightforwardly calculate the corresponding critical
area. In fact, one has to employ a root finding algorithm that solves the equation

f(Pcrit) − αaw = 0

The estimation for f(Pcrit) results from Monte Carlo simulations and thus is stochastic itself
- conventional root finding algorithms fail to solve this problem. Thus we developed an ad
hoc iterative procedure:

1. Choose three reasonable initial guesses for Pcrit and estimate αaw based on Monte Carlo
simulations.

2. Assume a locally linear behavior of f(.) around the root and fit a straight line to the
three outcomes.

3. As next guess, choose the root of the straight line and estimate an improved αaw based
on Monte Carlo simulations.

4. Go back to 2., fit the straight line to all previous iterates (past iterates might be given
a lower weight).

5. Choose a termination criterion, e.g. a desired accuracy or a maximum number of iter-
ations.
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Appendix C

Phase Coherence

C.1 A Stochastically Perturbed ENSO Delay Oscillator

Galanti and Tziperman [26] suggested a delayed oscillator exhibiting phase locking to the
annual cycle as a conceptual model for ENSO. In another context, we modified this model
slightly to account for stochastic wind perturbations [110]. The thermocline depth anomaly
is modeled as

h(t) = e−ǫm(τ1+τ2)rwreheE(t− τ1 − τ2)

− e−ǫm(τ2+
τ1
2

)rw
1

βρ
τW τ1 ·A∗{µ(t− τ2 −

τ1
2

)b0T (t− τ2 −
τ1
2

) +AWn(t− τ2 −
τ1
2

)}

+ e−ǫm
τ2
2
τW τ2
ρCo

{µ(t− τ2
2

)b0T (t− τ2
2

) +AWe(t−
τ2
2

)}. (C.1)

The parameters of the model are listed in Tab. C.1. Representing seasonal coupling, µ varies
according to a sine function. The SST at the eastern boundary is given by the differential
equation

∂tT = −ǫTT − γ
ω̄

H1
(T − Tsub(h)). (C.2)

Modeling the temperature of the upwelling water as a hyperbolic tangent introduces the main
nonlinearity in the model. Equations C.1 and C.2 constitute a delay differential equation.

C.2 The Roessler Oscillator

Equations of the Roessler oscillator:

ẋ = −y − z

ẏ = x+ ay

ż = b+ (x− c)z

For the toy model, we choose the chaotic regime with parameters a = 0.1, b = 0.1 and
c = 14. For b = 1 and c = 8.5, the Roessler attractor is funnel for a below a critical threshold
ac ≈ 0.19.
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Parameter Description

a, b scaling parameters of additional noise drive
AWe equatorial additional noise drive
AWn northern additional noise drive
A∗ relates non-equatorial windstress to equatorial SST
b0 mean ocean atmosphere coupling strength
Co Kelvin wave propagation speed
dt wind affected fraction of basin crossing time
ε strength of seasonal variation
ǫm damping coefficient of the ocean
ǫT thermal damping coefficient
h thermocline depth anomaly
H1 upwelling layer depth
µ seasonal varying coupling
ρ density of ocean water
re/w coastal boundary wave reflection coefficients

τ1,2 basin crossing time (1 Rossby, 2 Kelvin)
T temperature anomaly at eastern boundary
Tsub temperature anomaly at depth H1

ω̄ mean upwelling

Table C.1: Parameters of the conceptual ENSO delay oscillator.



Appendix D

Software

D.1 Wavelet Analysis

For the wavelet spectral analysis we developed the package bivar, written for the open source
statistical environment R [94]. The software is based on routines written by Carmona et al.
[12], included in their package Rwave. The package consists of object oriented functions to
perform areawise significance tests for wavelet spectra and wavelet coherence and may be
downloaded from the webpage

www.agnld.uni-potsdam.de/∼maraun/wavelets

It is planned to publish this package in the Comprehensive R Archive Network (CRAN).

D.2 DFA and Phase Analysis

The Routines for estimating the detrended fluctuation and the phase differences are written
in C using the numerical recipes [89] and the implementation of the Hilbert transformation
by Michael Rosenblum. We have collected these algorithms together with other data analysis
software in the program nola (available on inquiry).
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