
B U S I N E S S P R O C E S S A R C H I T E C T U R E S

C O N C E P T S , F O R M A L I S M , A N D A N A LY S I S

rami-habib eid-sabbagh

business process technology group

hasso plattner institute , university of potsdam

potsdam , germany

dissertation

zur erlangung des grades eines

doktors der naturwissenschaften

– dr . rer . nat. –

March 2015

This work is licensed under a Creative Commons License:
Attribution 4.0 International
To view a copy of this license visit
http://creativecommons.org/licenses/by/4.0/

Rami-Habib Eid-Sabbagh. Business Process Architectures : Concepts,
Formalism, and Analysis, Dissertation zur Erlangung des Grades eines
Doktors der Naturwissenschaften – dr. rer. nat. – March 2015

Published online at the
Institutional Repository of the University of Potsdam:
URN urn:nbn:de:kobv:517-opus4-79719
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79719

A B S T R A C T

Business Process Management has become an integral part of modern
organizations in the private and public sector for improving their op-
erations. In the course of Business Process Management efforts, com-
panies and organizations assemble large process model repositories
with many hundreds and thousands of business process models bear-
ing a large amount of information. With the advent of large business
process model collections, new challenges arise as structuring and
managing a large amount of process models, their maintenance, and
their quality assurance.

This is covered by business process architectures that have been in-
troduced for organizing and structuring business process model col-
lections. A variety of business process architecture approaches have
been proposed that align business processes along aspects of inter-
est, e. g., goals, functions, or objects. They provide a high level cate-
gorization of single processes ignoring their interdependencies, thus
hiding valuable information. The production of goods or the delivery
of services are often realized by a complex system of interdependent
business processes. Hence, taking a holistic view at business proces-
ses interdependencies becomes a major necessity to organize, analyze,
and assess the impact of their re-/design. Visualizing business proces-
ses interdependencies reveals hidden and implicit information from
a process model collection.

In this thesis, we present a novel Business Process Architecture
approach for representing and analyzing business process interde-
pendencies on an abstract level. We propose a formal definition of
our Business Process Architecture approach, design correctness crite-
ria, and develop analysis techniques for assessing their quality. We
describe a methodology for applying our Business Process Architec-
ture approach top-down and bottom-up. This includes techniques for
Business Process Architecture extraction from, and decomposition to
process models while considering consistency issues between busi-
ness process architecture and process model level. Using our extrac-
tion algorithm, we present a novel technique to identify and visualize
data interdependencies in Business Process Data Architectures. Our
Business Process Architecture approach provides business process ex-
perts, managers, and other users of a process model collection with
an overview that allows reasoning about a large set of process models,
understanding, and analyzing their interdependencies in a facilitated
way. In this regard we evaluated our Business Process Architecture
approach in an experiment and provide implementations of selected
techniques.

iii

Z U S A M M E N FA S S U N G

Geschäftsprozessmanagement nimmt heutzutage eine zentrale Rol-
le zur Verbesserung von Geschäftsabläufen in Organisationen des
öffentlichen und privaten Sektors ein. Im Laufe von Geschäftspro-
zessmanagementprojekten entstehen große Prozessmodellsammlun-
gen mit hunderten und tausenden Prozessmodellen, die vielfältige
Informationen enthalten. Mit der Entstehung großer Prozessmodell-
sammlungen, entstehen neue Herausforderungen. Diese beinhalten
die Strukturierung und Organisation vieler Prozessmodelle, ihre Pfle-
ge und Aktualisierung, sowie ihre Qualitätssicherung.

Mit diesen Herausforderungen befassen sich Geschäftsprozessar-
chitekturen. Viele der aktuellen Geschäftsprozessarchitekturen ord-
nen Geschäftsprozesse nach bestimmen Aspekten von Interesse, zum
Beispiel, nach Zielen, Funktionen, oder Geschäftsobjekten. Diese Her-
angehensweisen bieten eine sehr abstrakte Kategorisierung von ein-
zelnen Geschäftsprozessen, wobei sie wichtige Abhängigkeiten zwi-
schen Prozessen ignorieren und so wertvolle Informationen verber-
gen. Die Produktion von Waren und das Anbieten von Dienstleis-
tungen bilden ein komplexes System untereinander abhängiger Ge-
schäftsprozesse. Diesbezüglich ist es unabdingbar eine ganzheitliche
Sicht auf Geschäftsprozesse und ihre Abhängigkeiten zu schaffen, um
die Geschäftsprozesse zu organisieren, zu analysieren und zu opti-
mieren. Die Darstellung von Geschäftsprozessabhängigkeiten zeigt
versteckte und implizite Informationen auf, die bisher in Geschäftspro-
zesssammlungen verborgen blieben.

In dieser Arbeit stellen wir eine Geschäftsprozessarchitekturme-
thodik vor, die es erlaubt Geschäftsprozessabhänigigkeiten auf einer
abstrakten Ebene darzustellen und zu analysieren. Wir führen eine
formale Definition unserer Geschäftsprozessarchitektur und entspre-
chende Korrektheitskriterien ein. Darauf aufbauend stellen wir Ana-
lysetechniken für unsere Geschäftsprozessarchitektur vor. In einem
Anwendungsrahmenwerk eläutern wir die top-down und bottom-
up Anwendung unserer Geschäftsprozessarchitekturmethodik. Dies
beinhaltet die Beschreibung von Algorithmen zur Extraktion von Ge-
schäftsprozessarchitekturen und zur Generierung von Prozessmodel-
len aus Geschäftsprozessarchitekturen, die die Konsistenz zwischen
den Elementen auf Prozessmodellebene und Geschäftsprozessarchi-
tekturebene gewährleisten. Aufbauend auf dem Extraktionsalgorith-
mus, stellen wir eine neue Technik zur Identifizierung, Extraktion,
und Visualisierung von versteckten Datenabhängigkeiten zwischen
Prozessmodellen in Geschäftsprozessdatenarchitekturen vor.

Unsere Arbeit stellt Geschäftsprozessexperten, Manager, und Nut-
zern einer Geschäftsprozessmodellsammlung eine Methodik zur Ver-

iv

fügung, die es ihnen ermöglicht und vereinfacht, eine Übersicht über
Prozesse und ihren Abhängigkeiten zu erstellen, diese zu verstehen
und zu analysieren. Diesbezüglich haben wir unsere Geschäftspro-
zessarchitekturmethodik in einem empirischen Experiment auf ihre
Anwendbarkeit und Effektivität untersucht und zur weiteren Evalu-
ierung ausgewählte Algorithmen implementiert.

v

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following
publications:

• Rami-Habib Eid-Sabbagh, Marcin Hewelt, Andreas Meyer, and
Mathias Weske. Deriving Business Process Data Architectures
from Process Model Collections. In ICSOC 2013. Springer Berlin
Heidelberg, 2013.

• Rami-Habib Eid-Sabbagh and Mathias Weske. From Process
Models to Business Process Architectures: Connecting the Lay-
ers. In 9th. International Workshop on Engineering Service-Oriented
Applications (WESOA 13), pages 4–15, 2013.

• Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske.
A Tool for Business Process Architecture Analysis. In ICSOC
Demos 2013, Berlin, Germany, December 2-5, 2013. Springer Berlin
Heidelberg, 2013.

• Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske.
Business Process Architectures with Multiplicities: Transformat-
ion and Correctness. In BPM, volume 8094 of LNCS, pages 227–
234. Springer, 2013.

• Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske.
Business Process Architectures with Multiplicities : Transfor-
mation and Correctness - Technical Report. Technical report,
Hasso Plattner Institute, University of Potsdam, Potsdam, 2013.

• Rami-Habib Eid-Sabbagh and Mathias Weske. Analyzing Busi-
ness Process Architectures. In Advanced Information Systems En-
gineering, volume 7908, pages 208–223. Springer Berlin Heidel-
berg, 2013.

• Rami-Habib Eid-Sabbagh, Matthias Kunze, Andreas Meyer, and
Mathias Weske. A Platform for Research on Process Model Col-
lections. In BPMN2012 Workshop proceedings, 2012.

• Rami-Habib Eid-Sabbagh, Remco M. Dijkman, and Mathias We-
ske. Business Process Architecture: Use and Correctness. In
BPM, volume 7481 of LNCS, pages 65–81. Springer, 2012.

• Rami-Habib Eid-Sabbagh, Matthias Kunze, and Mathias Weske.
An Open Process Model Library. In Business Process Manage-
ment Workshops (PMC2011), volume 100 of LNBIP, pages 26–38,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

vii

The process of creation of the new depends essentially on the transgression
of categorization.

—- Roald Hoffmann

A C K N O W L E D G M E N T S

Writing a PhD is a journey with hills, flats, ups and downs, and in the
end we reach the destination. Enjoy the journey, was a phrase that I
often heard, and I did as I learned every day and I was accompanied
by many wonderful and supportive people.

First of all, I am very grateful to my supervisor Mathias Weske
for supporting me throughout my whole journey with guidance and
encouragement, for his generosity, the freedom and all the opportuni-
ties that we enjoy at the Business Process Technology Group. He kept
me on track and focused when I was about to take detours.

I am grateful to my reviewers Jan Mendling and Remco Dijkman. I
have learned a lot from the research collaboration with Remco Dijk-
man who watered my young business process architecture research
plant. I also enjoyed the research collaboration with Henrik Leopold
and Jan Mendling in which I learned a lot about natural language
processing.

My journey would have not been as wonderful without my fellow
travelers and colleagues from the BPT group. My deepest thanks to
the whole BPT group who created a great research atmosphere with
challenging discussions, super companionship and mutual support.
Thank you Ahmed, Alex, Andy, Andreas, Anne, Kimon, Katya, Luise,
Matthias K., Matthias W., Marcin, Oleh, Thomas and Tiku. I loved the
fruitful, intensive, and constructive discussions and exchange of ideas
with you as well as the fun tabletop football matches and motoric skill
training at lunch and think breaks. I very much enjoyed the research
collaboration with my colleagues Marcin Hewelt, Matthias Kunze,
Andreas Meyer, and Kimon Batoulis. Thank you Marcin, Matthias,
Thomas, Andy, and Kimon for proofreading my thesis. As music has
been my second motor every day of my work, I would like to thank
all musicians that I listened to at work.

Finally, I am very thankful to my love Johanna and Mr. Karl, my
parents Anneliese and Alfred, my sister Yasmine and my brother
Karim, who all supported me throughout the whole time of my PhD
research with inspiration and encouragement. Thank you Johanna for
accompanying me and caring for me during this long travel with love,
patience, and humor.

ix

C O N T E N T S

i introduction & background 1

1 introduction 3

1.1 Business Process Management 4

1.2 Business Process Architectures 6

1.2.1 Motivational Use Cases 7

1.3 Problem Statement 11

1.4 Research Objective 12

1.5 Scientific Contribution 13

1.6 Outline of Thesis 14

2 preliminaries 17

2.1 Business Process Orchestrations 17

2.1.1 Process Model 18

2.1.2 Data Aspects in Process Models 18

2.1.3 Decomposition of Process Models 20

2.2 Business Process Choreographies 22

2.3 Business Process Model and Notation 23

2.3.1 Business Process Diagrams 24

2.3.2 Choreograhpy Diagrams 25

2.3.3 Conversation Diagrams 26

2.4 Event Driven Process Chains 27

2.5 Petri nets 28

2.5.1 Workflow nets 31

2.5.2 Open nets 32

2.5.3 Workflow modules 35

2.6 Formal Analysis 36

2.7 Summary 38

3 related work 39

3.1 Process Model Repositories 39

3.2 Business Process Architecture Approaches 41

3.3 Choreography Approaches on Model Level 50

3.4 Business Process Model Abstraction 57

3.5 Evaluation of Existing Approaches 59

3.5.1 Hierarchical PA Classification Approaches Con-
sidering Single Processes 61

3.5.2 Single Process Model Level Approaches for Vi-
sualization, Navigation, and Configuration 62

3.5.3 Horizontal PA Approaches Considering Multi-
ple Processes 62

3.5.4 Detailed Process model Choreography (Multi-
Process) Approaches with Formalism 63

3.5.5 Observed Gaps 64

xi

xii contents

3.6 Summary 66

ii conceptual design 67

4 business process architecture 69

4.1 Motivation 69

4.2 Requirements for Business Process Architectures 70

4.3 Assumptions 73

4.4 Conceptual Definition 74

4.5 Business Process Architecture Semantics 80

4.5.1 Event Occurrence 81

4.5.2 BPA Process Instantiation 82

4.5.3 BPA Process Termination 83

4.5.4 BPA Instantiation 84

4.5.5 BPA Termination 85

4.5.6 BPA Run 85

4.5.7 Initialization of a BPA Run 86

4.5.8 Termination of a BPA Run 86

4.6 BPA Properties 87

4.6.1 Structural BPA Properties 87

4.6.2 Behavioral BPA Properties 88

4.7 BPA Correctness Criteria 90

4.8 Summary 91

5 business process architecture behavior 93

5.1 BPA Multiplicity Concepts 94

5.2 Transforming Business Process Architectures 97

5.3 Composition of nets 104

5.4 Summary 110

6 business process architecture analysis 113

6.1 Structural BPA Analysis 113

6.1.1 Basic Patterns 114

6.1.2 Composite Patterns 114

6.1.3 Multi-Instance Patterns 116

6.1.4 Basic Anti-Patterns 117

6.1.5 Composite Anti-Patterns 118

6.1.6 Application of Pattern and Anti-Patterns Anal-
ysis 119

6.2 Behavioral BPA Analysis 122

6.2.1 General Analysis Procedure 122

6.2.2 Analysis of Patterns and Anti-Patterns 124

6.3 Analysis with Multiplicities 129

6.4 Summary 132

iii extended concepts and application 133

7 business process architecture methodology 135

7.1 Business Process Architecture Methodology 135

7.1.1 Business Process Architecture Top-Down Approach 136

contents xiii

7.1.2 Business Process Architecture Bottom-Up Ap-
proach 138

7.1.3 Maintenance of a Process Model Collection and
Business Process Architectures 139

7.2 BPA Extraction Algorithm 140

7.2.1 Process Interdependencies in Process Model Col-
lections 140

7.2.2 BPMN 2.0 Model Collections 142

7.2.3 EPC Model Collections 145

7.2.4 Basic BPA Extraction Algorithm 147

7.2.5 Complex Extractions 152

7.2.6 Extended Extraction Approach 164

7.3 From BPA to Business Process Models 165

7.4 Summary 169

8 data aspects in business process architectures 171

8.1 Data Scenario 172

8.2 Annotating the Object Life Cycle 173

8.3 Deriving the Process Data Relation Matrix 174

8.3.1 Deriving Direct Data Interdependencis from the
Data Object Life Cycle 175

8.3.2 Process Data Relations 176

8.3.3 Aggregation of Multiple Data Object Relations
in a Process Data Relation Matrix 178

8.4 Extracting the Data BPA 179

8.4.1 From Object Life Cycles and Data Interdepen-
dencies to Control Flow 180

8.4.2 From Activities to Events. 182

8.5 Summary 185

iv evaluation and conclusion 187

9 business process architecture evaluation 189

9.1 Conceptual Evaluation 189

9.2 Implementation of a Business Process Architecture Tool 202

9.2.1 A Platform for Research on Process Model Col-
lections 202

9.2.2 Business Process Architecture Analysis Module 212

10 conclusions 217

10.1 Summary of Results 218

10.2 Limitations and Discussion 221

10.3 Future Research 225

a appendix 227

Glossary 235

bibliography 239

L I S T O F F I G U R E S

Figure 1 BPM lifecycle 6

Figure 2 Business process repository layers 7

Figure 3 EPC business process models depicting three
public services 9

Figure 4 Process models of a credit card application 10

Figure 5 Thesis structure 14

Figure 6 Exemplary data object life cycle 19

Figure 7 Use of data objects in a process model 19

Figure 8 BPMN business process elements [109] 24

Figure 9 Collaboration diagram 25

Figure 10 Choreography diagram example 26

Figure 11 Conversation diagram 27

Figure 12 EPC elements 27

Figure 13 EPC example process 28

Figure 14 BPA use cases 72

Figure 15 BPA symbols and legend 75

Figure 16 BPA repository structure 79

Figure 17 BPA compendium with BPA subsets 79

Figure 18 Example of a reporting BPA 85

Figure 19 BPA for a construction permit application 93

Figure 20 BPA multiplicity concepts 96

Figure 21 BPA process to ON transformation 98

Figure 22 Simple intermediary net 99

Figure 23 ON intermediary nets for representing the send-
ing resp. receiving multiple information flows
or triggers 100

Figure 24 Optional multireceive net 101

Figure 25 Open net constructs for multiple receivers re-
spectively senders 102

Figure 26 Open net constructs for receive-conflict and send-
conflict net 103

Figure 27 Basic composition rules with simple interme-
diary net 105

Figure 28 Multi-communication composition rules with
events of trivial multiplicity 106

Figure 29 Multi-communication composition rules of sev-
eral intermediary nets 107

Figure 30 Basic patterns 115

Figure 31 BPA Anti-patterns 119

Figure 32 Part of the SAP reference model process archi-
tecture. 121

xiv

List of Figures xv

Figure 33 Representative BPA patterns mapped to ONs 125

Figure 34 Business restaurant permit application 130

Figure 35 Extended ON BPA transformation 131

Figure 36 BPA framework 136

Figure 37 Selected BPMN elements 142

Figure 38 Exemplary patterns found in BPMN process
models 144

Figure 39 EPC elements 146

Figure 40 Simple construction permit application 148

Figure 41 Extraction of BPA process 149

Figure 42 Extracted BPA construction permit application 150

Figure 43 Business process model decomposed into RPSTPM
fragments 154

Figure 44 RPSTPM of original business process model 154

Figure 45 RPSTPM of business process model with elim-
inated nodes 155

Figure 46 Business process model showing eliminated nodes
and RPSTPM fragments 155

Figure 47 Abstracted process model and its RPSTPM 156

Figure 48 Exemplary process model fragments to BPA
transformation 157

Figure 49 Exemplary XOR- and AND-bond aggregation
and BPA transformation 159

Figure 50 Examples of not covered BPA transformations 160

Figure 51 BPA process to process model transformation 167

Figure 52 Customer identity verification and invoice han-
dling process models 172

Figure 53 Annotated credit card object life cycle 174

Figure 54 Annotated application object life cycle 174

Figure 55 Data write access to control flow transformat-
ion 181

Figure 56 Data read access to control flow transformat-
ion 182

Figure 57 Resulting data BPA 184

Figure 58 Results of questions 1-4 as stacked barplots 195

Figure 59 Boxplots for results of questions 5-8 196

Figure 60 Bar plots showing assessment of usefulness of
different PA approaches in regard to applica-
tion areas 200

Figure 61 Assessment of BPA use in different application
areas 201

Figure 62 System architecture of the platform 206

Figure 63 Process model data schema 206

Figure 64 Example filter chain that extracts labels from a
BPMN process models 208

Figure 65 Showcase unit chain and analysis modules 210

Figure 66 BPA tool architecture 213

Figure 67 Open-net visualizer 214

Figure 68 BPA analysis tool screenshot 215

L I S T O F TA B L E S

Table 1 Patterns in SAP-Reference model 121

Table 2 Properties of correct BPA patterns 126

Table 3 Dead BPA patterns and their properties 127

Table 4 Properties of deadlock BPA patterns 128

Table 5 Aggregated data object process relations for
processes p1 to p5 179

Table 6 Mean ranks of assessment of PA approaches
according to Kruskal-Wallis test 199

Table 7 Classification of Related Work 233

L I S T I N G S

Listing 1 Pseudo code complex extraction algorithm 162

Listing 2 Pseudo code handle component 163

Listing 3 Pseudo code aggregate polygon 164

Listing 4 Code excerpt for filter chain for extracting BPAs 211

A C R O N Y M S

BPA Our Business Process Architecture

BPM Business Process Management

BPMA Business Process Model Abstraction

BPMN Business Process Model and Notation

DBPA Business Process Data Architecture

EPC Event Driven Process Chain

OLC Object Life Cycle

xvi

acronyms xvii

ON Open net

PA General Business Process Architecture

PMC Process Model Collection

PN Petri net

RPST Refined Process Structure Tree

WF net Workflow net

Part I

I N T R O D U C T I O N & B A C K G R O U N D

1
I N T R O D U C T I O N

This chapter introduces our general motivation for developing a novel business
process architecture approach and situates business process architecture research in
the current Business Process Management research stream. It present motivational
settings from the public and private sector to illustrate our research with examples.
This chapter lists the problems tackled by our work, our research objectives, and the

scientific contribution of this thesis. It concludes with providing an outline of the
thesis.

The innovation in the IT-sector drives companies to adapt, act, and
react to the changing needs and requirements of customers and new
emerging markets. For a company to be able to adapt and adjust to
the changing environment, a clear overview over its operations and
their interdependencies is necessary.

Business Process Management (BPM) is a means to portray and im-
prove a company’s operations. Each production of a good or delivery
of service can be reflected in one or several process models. BPM has
gained attention in the private and public sector for improving an
organization’s operations by increasing the efficiency and reducing
costs of its processes [114, 165].

In the course of BPM efforts, companies and organizations build up
large process model repositories with many hundreds and thousands
of processes bearing large amounts of information. With the advent
of large business process model collections, new challenges arise as
the need for structuring and managing the business process models,
their maintenance, and their quality assurance, among others [34, 62].

In such large collections, it is difficult to get an overview of the
processes of a company and how those processes relate to each other.
Many large BPM projects fail as they miss coordination, quality as-
surance measures, or an encompassing methodology for the model-
ing of business processes. This leads to process model collections of
poor quality [119, 101]. Business process architectures (PA) support
the management of process models within a process model reposi-
tory by defining the relations between business processes and provid-
ing guidelines for organizing them [35]. Many PA approaches clas-
sify the business processes within a process model repository along
functions, business objects, or other aspects considering one process
model at a time. Although providing a structure and overview on the
process models within the process model repository such classifica-
tion approaches keep valuable information of process models hidden.
In many cases the current approaches lack a clear underlying model

3

4 introduction

and formalism for structuring and analyzing business processes and
their interrelations.

Hence, novel PA approaches for organizing and structuring busi-
ness process models in process model repositories are required to
complement existing hierarchical PA approaches, visualizing the hid-
den process information and increase the return on investment of
BPM projects.

In this thesis we propose a novel PA approach that considers hori-
zontal interdependencies between process models providing a holis-
tic view on process model collections. Considering all process inter-
dependencies leads to an end-to-end assessment of a larger scenario,
e. g., a business foundation with all its preparatory processes for ac-
quiring the necessary regulatory documents and its succeeding pro-
cesses like tax payment registration.

This is the foundation for visualizing, connecting, and analyzing
additional process models and their meta data under consideration
of their interdependencies. The visualization of business process in-
terdependencies on an abstract level shall provide a better overview
for coordinating business processes and business process modeling
projects. Hence, it shall improve the quality of the process model col-
lection as the required output and input of processes is better cap-
tured and harmonized.

This chapter gives a brief introduction into Business Process Man-
agement and the role of PAs within Business Process Management
in Section 1.1 and in Section 1.2. At the same time, we present PA use
cases from the public and private domain that we will use to motivate
and exemplify our research results. Section 1.3 presents the problems
in PA research that we address with our work. Section 1.4 introduces
our research objective and Section 1.5 summarizes our scientific con-
tribution to research on PAs. Section 1.6 outlines the structure of this
thesis.

1.1 business process management

Business process management has many facets and consists of meth-
ods and techniques for the design, management, implementation, ex-
ecution, and analysis of business processes [165]. At its core is the
improvement of a company’s operations by explicitly representing ac-
tivities and their control flow in business processes, and aligning and
structuring the organization along those business processes [165, 36].

A business process consists of a set of coordinated activities that
contribute to a specific business goal and is enacted by single organi-
zations [165]. A business process can also interact with external busi-
ness processes from other organizations in a business process chore-
ography or with other internal business processes.

1.1 business process management 5

BPM projects may start from pressing needs such as budget cuts
in the public administration, demographic changes (older employees
retire), i. e., the need for increased efficiency with less employees, or
as a general strategy set from the top management to stay atop of cur-
rent developments, foster continuous improvement, and stay flexible
to adapt to ever changing market requirements.

The development of business processes and their implementation
in a software system is described by the BPM lifecycle [165]. The BPM
lifecycle consist of four phases; Design and Analysis, Configuration,
Enactment, and Evaluation. Figure 1 shows the BPM lifecycle and the
involved roles during each phase.

The BPM lifecycle is entered in the Design and Analysis phase. Dur-
ing this phase business processes are identified, modeled, analyzed,
validated and simulated. Usually (project) managers, process owners,
business process experts, and domain experts are involved in this
phase depending on the size of the BPM project. Ideally, modeling
guidelines, a business process modeling notation, and a method to
elicit and organize the business process models are also defined in
this phase. The result of this phase are validated process models.

The second phase of the BPM lifecycle, the Configuration phase,
encompasses the implementation of the business process in an IT-
system by procedures and regulations or a combination thereof [165].
For the implementation of a business process model in an IT-system,
the according platform and technology is chosen. During its imple-
mentation, the business process model is enriched with IT-specific
aspects and technical details that they can be run on a process engine
or chosen platform [165].

In the Enactment phase process instances are executed either by the
help of an IT-system or just by the person assigned. This phase con-
sists of the monitoring of the running process instances either by the
monitoring component provided by the IT-system or other monitor-
ing techniques in case of manual execution of process instances. In the
monitoring component the state of the process instances and other in-
formation are visualized for tracking the status of each instance [165].

The Evaluation phase includes the evaluation of the process per-
formance, analysis of compliance issues and other evaluation topics
based on business process execution logs. For the evaluation, often
advanced process mining techniques are used [165].

The main application area of PAs is the Re-/Design and Anal-
ysis phase which is highlighted in Figure 1. We extended the De-
sign and Analysis phase of the BPM lifecycle from Weske [165] with
required characteristics that a PA approach should provide in this
phase. Rosemann [124] names lack of coordination and organization
in large modeling projects as one major pitfall. Agreeing with this fact,
Recker [120], Dijkman et al.[34, 31, 35], and Houy et al. [62] highlight
the need for novel techniques for organizational modeling, managing

6 introduction

��������	
����
�
�
��������
���

��������
	
���

���
��������
���

��	�
���
�
����	
���

����
�����

�	��
��	���

�������
���������������������
����	
����

	�����������

��	�
����
 	���	
���!�����	
���!

 ������	
���

�"	��	
����
��������������

�����������
�"�

�����
�����

�
�
��
#
�
�
�
�

�
��
�
�
�
�
��
$
�
�
��

�
�
�
	
��
�%
�
�
��

&�
��
'�
�

()��

	
�
	
�
�
��

�
�
��
#
�
�
�

�

�
��
�
�
�
�
��
$
�
�
��

�
�
�
	
��
�%
�
�
��

&�
��
'�
�

(
)�
�
	
�
	
�
�
��

����#���
�

����#���
�

����#���
�

���(��$�

��

��(%�

�
���
����	����	�	��

*�	��

+,

������
���

������
����

��

�����-�

.��������

,,,

Figure 1: BPM lifecycle

and structuring large process model collections, and new methods
for process model decomposition and abstraction that support this
project phase.

PAs support the identification, the structuring and managing of
process models, and the coordination of the business process elicita-
tion phase. Depending on the PA approach, PAs may also support
the analysis of process models. To some extent PAs support the enact-
ment phase, e. g., the monitoring and maintenance of process models
within a process repository. The structure of the business process mo-
del collection can be used for visualizing and aggregating process
instance information. In Figure 1 we highlighted the Analysis and
Design phase as the primary application area of PAs and to a lesser
extent the enactment phase.

1.2 business process architectures

Introducing BPM in a company and starting modeling business pro-
cesses requires a set of methodological and preparatory actions, the
definition of a modeling goal, specification of modeling guidelines,
and system for classifying the process models, which are stored in a
process model repository.

Business process architectures define the structure of a process mo-
del repository and interrelation between business process models for
organizing the business process models within the process model col-
lection [35]. They are a graphical visualization of the business proces-
ses of an organization and their relations with each other [31].

The terms business process landscapes, business process maps, value
chains are used synonymously for business process architecture. In

1.2 business process architectures 7

���������	
���

�

����

����

��
��

�

��	
�

��
��

�����

�

��	
�

��������

���	
�

Figure 2: Business process repository layers

some cases a PA consists of several such views, e. g., value chain and
process maps on different process model repository layers. Figure 2

shows a general structure of a business process model repository. The
top layer defines the business model, i. e., the main services or prod-
ucts that generate value and are sought after by the customers. This
layer is very abstract and provides a business perspective on the com-
pany. The business layer does not always exist in a process model
repository. In such cases the PA layer is the top layer of the process
model repository.

The PA visualizes the process model collection along aspects de-
fined by the PA approach in use, e. g., business functions that are
decomposed down to the process model layers. In this regard a PA ap-
proach defines the structure of the process model collection by struc-
turing this overview layer and defining the connection to the lower
layers of the process model repository and their elements. Many busi-
ness process repository platforms provide value chains, process land-
scapes, or process maps on PA layer for structuring the process model
collection.

The lower layers of a business process repository focus on process
models and provide detailed descriptions of the business processes
and their sub-processes. Figure 2 shows only a general structure of a
business process repository whereas in reality the number of reposi-
tory layers varies according to complexity and desired granularity.

1.2.1 Motivational Use Cases

To exemplify our business process architecture approach we consider
use cases from the public and from the private sector.

8 introduction

PA use case in public sector The public sector consists of
legally autonomous organizations with shared goals and a common
budget. A public organization is divided into different departments
that deliver public services to citizens, businesses, or other public
organizations. Each department is responsible for a particular topic,
e. g., finance, construction, or social welfare. In most cases, each de-
partment considers its public services as one business process and
represents it in their common process model repository as one busi-
ness process model1 [42].

Examining the preconditions of the public services, we notice that
many public services depend on each other as the output of one pub-
lic service is the input to another at the beginning or during carrying
out public services. The current PA approaches do not reflect such
interdependencies. Process maps, landscapes and similar PA approa-
ches do not provide sufficient information in this field. The different
departments in the public sector know that they cooperate with other
departments in regard to their public services, but hardly know when,
why, and how. Taking a holistic view at the interdependencies of busi-
ness processes is a major necessity to assure correct business process
collaboration [56, 91, 10].

In this thesis, we will look at different such examples where a cus-
tomer’s need is served by the delivery of several processes that de-
pend on each other. This can be an entrepreneur’s desire to open a
business for example. The founding of a new enterprise encompasses
different public services, of which a selection is depicted as Event-
Driven Process Chains models in Figure 3. Each public service for it-
self results in a desired outcome. It is not obvious that they depend on
each other as it has been highlighted by the dashed boxes in Figure 3.
From this perspective, we cannot say anything about how they relate
to each other or about the correctness of their interaction, e. g., the suc-
cessful founding of a new enterprise. To apply for a trade agent per-
mit, an entrepreneur has supply a freedom of movement certificate.
At the same time, the entrepreneur is required to provide evidence of
a job employment when applying for a freedom of movement certifi-
cate. However, the document certifying his self employment can only
be issued after the entrepreneur was registered as trade agent, so that
he cannot apply for the freedom of movement certificate in the first
place. The requirements and regulations of the public services contra-
dict, although all by themselves are correct.

This example from the public sector shows the importance of con-
sidering, visualizing, and analyzing business process interdependen-
cies and serves as part of our motivation. An overview of the interde-
pendent processes has advantages for different user groups. Process
owners can assess the impact of change for other involved proces-

1 EU Services Directive Realization in Berlin – https://www.ea.berlin.de/web/

guest/home

https://www.ea.berlin.de/web/guest/home
https://www.ea.berlin.de/web/guest/home

1.2 business process architectures 9

Registration

certificate

presented

Ask for

registration of

trade certificate

Registration of

trade certificate

received

Issue freedom

of movement

certification

 Freedom of

movement

certification

issued

Estate agent

permit

presented

Issue

registration of

trade certificate

Registration of

trade certificate

issued

Inform all

administrative

offices

Administrative

offices informed

Credibility

checked

Ask for CRTI

offences

extract

CRTI offences

extract received

Ask for freedom

of movement

confirmation

 Freedom of

movement

confirmation

received

Ask for

clearance

certificate

Clearance

certificate

received

Ask for debt

free

confirmation

Debt free

confirmation

received

Check documents

and issue estate

agent permit

Debt free

confirmation

received

2

2

1 1

Figure 3: EPC business process models depicting three public services

ses, how their processes are influenced by other departments, and
manage risks according to identified interdependencies for example.
Employees can grasp the overall context of their work and identify in-
terfaces to other processes and departments. Customers, if provided
with such an overview, get the full picture and realize that their
project requires the application to several public services and may
save time by preparing and submitting all necessary input at once.

PA use case in private sector Our second use case derives
from an online financial service provider from the private sector. Their
main advantage in the market is a very efficient service delivery
in contrast to financial service providers with face-to-face customer
contact who rather build on the personal relation between service
provider and customers.

The delivery of financial services like a credit card application in-
ternally encompasses many business processes. In a simplified way,
the credit card application includes four business processes: customer
identification, credit card application handling, invoicing process, and
archiving; all of which are run by different departments. The exem-
plary business processes are depicted in Figure 4.

First the identity of the customer who applies for the credit cards
needs to be verified, which is done by the “Customer identity verifica-
tion” process in Figure 4c. If the provided documents are correct, the
customer is verified, else the application gets rejected. If the customer
is verified, the credit card application can be handled by the “Credit

10 introduction

P2-order-advance-payment

Cr
ed

it
Ca

rd
 S

er
vi

ce
s

Credit Card Services

Check blank
card stock

Reject
application

Pack card Ship card

Review
application

(a) Credit card application handling

P3-archive-order

Ar
ch

iv
in

g
Se

rv
ic

es

Archive
application

(b) Archivingp4-customer-identity-verification

Cu
st

om
er

 S
er

vi
ce

s
Verify

customer
identity

Reject
application

ve
ri

fie
d

not
verified

(c) Customer identity verification

P5-invoice-handling

In
vo

ic
in

g
Se

rv
ic

es

Send invoice Receive
payment

(d) Invoice handling

Figure 4: Process models of a credit card application

card application handling” process, depicted in Figure 4a. The credit
card is either issued or the application is rejected due to a low cus-
tomer score for example. At a certain point of time the credit card
fees have to be paid which is handled by the invoice handling process
in Figure 4d. At last, the application should be archived for which an
archiving process exists, shown in Figure 4b. For the external cus-
tomer the credit card application may appear as one process. How-
ever, from these process models it is not obvious how these business
process models are related to each other. The identification of their in-
terdependencies allows understanding the complete picture. Extend-
ing this scenario with data objects, we will describe a technique to
identify the interdependencies between these processes in Chapter 8.
Only the close adjustment of all internal processes leads to efficient
service provisioning.

In the private sector, risk management is a major use case for the as-
sessment of end-to-end processes. Companies that provide financial
services are obliged to fulfill strict federal regulations and explicitly
document their processes. These regulations are set by the federal
financial supervisory authority (BaFin). Each business process must
be verified regularly. For a consistent risk management, all business
processes need to be verified that (in-)directly influence the process
under consideration. Such a tasks can only be performed by looking
at the big picture and analyzing all involved processes and their re-
lations to each other. Risk management is one of many use cases in
the financial sector where a holistic view on the business processes,
their interdependencies, and their impact and influence is of utmost
importance.

Our motivation, exemplified by the use cases from the public and
private sector, is to improve the current state of research and to pro-
vide a PA approach that supports managers, chief information offi-
cers, auditors, and other stakeholders in understanding the complex
system of their interdependent processes and support their operative
and strategic planning and analysis. According to the Forbes article

1.3 problem statement 11

from 2012 “The Top 10 Strategic CIO Issues For 2013”2, the compre-
hension of end-to-end process aspects is one of the strategic issues
that will provide a significant advantage for companies and organiza-
tions [83].

1.3 problem statement

Companies develop collections of hundreds or thousands of business
process models that represent the complex system of cooperating en-
tities that form an organization. Designing and analyzing the struc-
ture of this system of business processes emerges as a new challenge,
which is addressed by the field of business process architectures.

The research on PA, i. e., on the structuring and organization of pro-
cess models within a process model collection, has produced initial
ideas, especially in the area of hierarchical classification of process
models. A range of valuable approaches have been proposed so far
that are commonly used in process model repositories. However, we
identified the following issues that should be overcome for improve-
ment:

• Loss of process orientation on PA level in most approaches

• Lack of holistic end-to-end process view

• Lack of formal framework and desired properties for PA

• Lack of analysis techniques

• Hiding of valuable process information

Common PA approaches classify process models along different
aspects of interest on a very high level of abstraction. By classifying
processes, the process orientation on PA level is lost, and important
information for the design, optimization, and analysis of business
processes stays hidden. Much attention has been paid to approaches
focusing on single processes, but the larger context of process models
in regard to their interdependencies has been neglected so far.

The larger context depicted by all interdependent process models
is important for reasoning on the impact of changes, identifying key
processes, and determining resource requirements as well as evaluat-
ing process cost and other aspects of interest.

An approach focusing on multiple business processes to study the
complex system of interdependent processes within an organization
and their influence on each other does not exist. Existing PA approa-
ches miss measures and properties for the assessment of the process

2 Accessed: 25th April 2014 - http://www.forbes.com/sites/oracle/2012/09/28/

the-top-10-strategic-cio-issues-for-2013/

http://www.forbes.com/sites/oracle/2012/09/28/the-top-10-strategic-cio-issues-for-2013/
http://www.forbes.com/sites/oracle/2012/09/28/the-top-10-strategic-cio-issues-for-2013/

12 introduction

interdependencies and the quality of coordination of the business pro-
cess models within a process model collection.

While simple forms of relationships have been presented, real-world
scenarios show that complex relationships between business proces-
ses are rather the rule than the exception. So far, the actual PA approa-
ches do not provide a framework to capture, visualize and analyze
those relationships.

The treasure of information depicted in process models is hidden
on higher level by common PA approaches. Considering process in-
terdependencies, this information can be combined and aggregated
creating additional value.

1.4 research objective

Our research explores the complex system of business processes that
represent an organization. In the relevant PA research like for exam-
ple [35, 70, 54], we noted that there are only few PA approaches that
establish a holistic view and provide larger context on business pro-
cesses and their interdependencies. Even less PA approaches provide
a formal underpinning that allows for the definition of quality prop-
erties and analysis of PAs.

We present a novel PA approach that has a formal foundation, al-
lows for defining and specifying the interrelations between business
processes within a process model collection, visualizing and analyz-
ing them. On top of the foundational concepts, we define initial qual-
ity properties for our BPA approach that allow for a better adjustment
of interdependent processes.

Our research consist of the following steps:

1. The collection and definition of requirements

2. The formal definition of the basic concepts of our BPA approach

3. The definition of desired properties and analysis concepts

4. The application and evaluation of our BPA methodology

As we expect our BPA approach also to be used by non-BPM-ex-
perts as managers and project leaders, among others, the main con-
cepts shall be simple, easily comprehensible, and facilitate the under-
standing and visualization of a complex system of interdependent
business processes and their influence on each other.

In the following, we refer to our approach as Business Process Ar-
chitecture (capitalized) and abbreviated as BPA whereas we refer to
the general field of business process architectures as business process
architecture (lower case) and abbreviated as PA for better reading and
differentiation of those two terms.

1.5 scientific contribution 13

1.5 scientific contribution

This work contributes a novel and simple approach to the PA research
field. The approach is complementary to most existing approaches
and provides a novel holistic overview on business processes. Consid-
ering horizontal business process interdependencies is especially im-
portant for coordinating required and expected process inputs/out-
puts, and message exchanges, and examining the impact of restruc-
turing and optimizing business processes.

The scientific contribution of this thesis consists of the following
parts.

• The formal description of the elements and the relationships
forms the heart of our BPA approach. The formal concept al-
lows for the development of BPA correctness criteria and their
analysis (see Chapter 4 and Chapter 5).

• The definition of structural and behavioral correctness criteria
for BPAs. So far none of the existing PA approaches describe de-
sired and undesired properties when organizing business pro-
cess models within a business process repository (see Chap-
ter 4).

• Unique Business Process Architecture analysis techniques that
allow analyzing created BPAs for their correctness and support
the quality improvement of business process model collections
(see Chapter 6). Because of lacking PA properties in current
approaches no analysis techniques exist. Few surveys exist that
provide questions for evaluating PA approaches but not PAs
themselves.

• An overall methodology for the application of our BPA con-
cept. The methodology describes the use of our BPA approach
bottom-up and top-down (see Chapter 7). This includes tech-
niques for the bottom-up BPA extraction from a process model
collection (see Section 7.2) and top-down decomposition from
BPA to process models (see Section 7.3).

• An extraction technique considering data objects that allows for
extracting data BPA based on data interdependencies found in
business process models (see Chapter 8).

Our work adds to the existing PA research and fills some gaps in
the area of multi-process focused PAs with formal foundations and
analysis techniques of which none exist yet. The work is a starting
point for providing more expressive and informational PAs and ac-
cording overviews. It lays the formal foundations for a novel BPA
concept and a set of analysis and application techniques.

14 introduction

���������	�
 ���
������

�������������������
����

����������
������������

������������
����
���� ������������
�

�
��

�	

�!
���"

�#

��

�$
�%

�

�!

�#
�� �#

�"�%

�$
�$ ��

��
� �!

��
�� �#

�"
�%

�%
�$

�!

�"
�	 ��&

��

��������������������'��

���������������

(������)

���������
�

����

�
�
�
�
��
��
%
�

�
��

�'

��
�
��
�
� �

�
�
�
��
��"

��
�*
�

�
��
�
�+

�
��

��������#�,�$��

������������������������

�������� �,�!����������
�)�-�

�.�������������/���'��������

���������&�
 ����
�����

Figure 5: Thesis structure

1.6 outline of thesis

This work consists of four major parts, introduction and background,
conceptual design, extended concepts and application; and evalua-
tion and conclusion. The structure and the overall picture of our the-
sis is depicted in Figure 5.

The first part captures preliminaries (Chapter 2) and related work
(Chapter 3) and introduces existing concepts and techniques that we
use or refer to in this work. In the related work chapter, we present a
broad range of approaches that relate to the field of PAs and the PA
approach that we present in the following chapters. We discuss cur-
rent trends and identify gaps in PA research, as well as requirements
on which we build our BPA approach. It serves as background on
existing approaches and for situating our work in the PA and BPM
research field. These chapters and the conclusion chapter in Chap-
ter 10 form the frame of our work.

The second part presents the conceptual design of our BPA ap-
proach, its elements, the semantics of the relationships depicted (Chap-
ter 4), and defines their behavior and properties (Chapter 5) and anal-
ysis techniques (Chapter 6). It describes the core techniques of our
BPA approach.

The third part provides insight into extended concepts and ap-
plication of our BPA approach. We describe the overall bottom-up
and top-down application of our BPA approach in a methodology,
introduce the necessary BPA extraction and BPA to process model de-

1.6 outline of thesis 15

composition techniques (Chapter 7), and provide techniques to iden-
tify and extract data interdependencies between business processes
(Chapter 8).

In the last part, we present a two-folded evaluation of our BPA
approach (Chapter 9). First, we describe an experiment in which we
evaluated our approach with practitioners for its applicability, ease
of use, and usefulness. Second, we provide insights on prototypical
implementations of our BPA approach, BPA correctness analysis, and
the extraction of BPAs from existing process models. Subsequently,
we discuss the contributions of our BPA approach, their limitations
and open issues, and provide an outlook on future research (Chap-
ter 10).

2
P R E L I M I N A R I E S

This chapter provides the foundations for our work. We present Business Process
Management and workflow concepts that are used and referred to in later parts of

this work.

This chapter introduces BPM concepts, notations, and formalisms
as foundation and for the description of the context of our busi-
ness process architecture approach. We first introduce business pro-
cess orchestrations and business process choreographies as PAs re-
late to those concepts. In this regard, we focus on the Business Pro-
cess Model and Notation (BPMN) with its different concepts and
diagram types and Event-Driven Process Chains (EPC) as they are
quasi-standards in the industry for modeling business processes. We
introduce Petri nets and some of its sub-classes, i. e., Workflow nets,
Workflow modules, and Open nets and elaborate on formal analysis
concepts for workflow notations.

2.1 business process orchestrations

A business process orchestration defines the internal/private behav-
ior of a business process. In literature, business process orchestrations
are also referred to as business process, workflow, BPM process, or
orchestration of services [112]. A business process orchestration de-
scribes the internal control flow structure and provides details on the
execution constraints of activities and the occurrence of events of a
process [165]. Resource and data information can also be depicted in
business process orchestrations. Common control flow structures of
processes have been described in an extensive list of control flow pat-
terns in Aalst et al. [153] that can be used to assess the expressiveness
of a process modeling notation [153].

Many formal and graphical process modeling notations have been
proposed. The most prominent are Business Process Model and Nota-
tion (BPMN 2.0), Event-Driven Process Chains (EPC), workflow nets,
Yet Another Workflow Language (YAWL), Business Process Execution
Language (BPEL), and Petri nets that are commonly used to provide
formal semantics for some of the aforementioned business process
modeling notations [80].

17

18 preliminaries

2.1.1 Process Model

Business process orchestrations are depicted in process models. To be
able to refer to a process model in a general but formal way we intro-
duce the definition of a process model in the following. It consists of
nodes that are events, activities, gateways; data objects, and sequence
flows and data flows [165].

Definition 1 (Process Model) A process model PM is a tuple (N , D ,
CF , DF , type) in which:

• N = A∪G∪E is the set of nodes being activities A, gateways G, and
events E where A,G,E are pairwise disjoint

• CF ⊆ N ×N is the sequence flow relation, such that (N,CF) is a
connected graph

• D is a finite, non-empty set of data objects, with N∩D = ∅

• DF ⊆ (D × (A ∪E)) ∪ ((A ∪E) ×D) describes the data flow relation,
by depicting a node’s reading from respectively writing to data objects

• ●n,n● describe the preset, respectively postset, of a node n that con-
tains the predecessor, respectively successor nodes of n, such that
●n = {x∣(x,n) ∈ CF} and n● = {y∣(n,y) ∈ CF}

• type ∶ G→ {xor, and} assigns a type to each gateway. ◇

2.1.2 Data Aspects in Process Models

Data in process models is usually represented by data objects and
their states. A data object is an entity processed during process exe-
cution that is characterized by its states and state transitions. In the
following we define data objects and data states as follows.

Definition 2 (Data Object and Data State) A data object D is an en-
tity or any piece of information or physical item being processed, manipu-
lated, or worked with during business process execution. Each data object
is in exactly one data state at one point in time. Data states represent the
results of processing a data object in the process context. Thereby, each data
state describes a specific situation of interest to the organization from the
data object’s point of view. ◇

The states of data objects and the transitions from one state of the
data object to the other can be expressed by object life cycles (OLC).
In this work, we consider only acyclic OLCs. Thus, all paths, i. e., se-
quences of states and transitions from the initial to the final states are
of finite length. Different paths reflect different possibilities to operate
on the data object [43]. An exemplary OLC is depicted in Figure 6.

2.1 business process orchestrations 19

i

in stock

not in stock manufactured

packed shipped

Figure 6: Exemplary data object life cycle

example-prelim
Cr

ed
it

Ca
rd

 S
er

vi
ce

s

Print blank
cards with logo

Stock-up cards

Card
[not in stock]

Card
[manu-

factured]

Figure 7: Use of data objects in a process model

Definition 3 (Object Life Cycle) An object life cycle is a tuple OLC =
(S, i,SF, TD,Σ,η) that consists of:

• S a finite set of data states

• i ∈ S, an initial data state

• SF ⊆ S a non-empty set of final data states

• TD ⊆ S× S a finite, acyclic relation of data state transitions

• Σ a finite set of actions representing the manipulations allowed on the
corresponding data object

• η ∶ TD → Σ is a function that assigns an action to each data state
transition ◇

We consider data objects act as pre- and postconditions of activi-
ties. An activity is enabled and can subsequently be executed, only if
all its input data objects (pre-condition) are in the specified state. At
proper termination, the activity sets its output data objects into the
specified state, the postcondition of the activity, as depicted in Fig-
ure 7. However, when one activity has the same data object D several
times as precondition, each time in a different state, then D can be in
any of these states to enable the activity. Similarly, if an activity has
the same data object in different states as output, the activity sets the
data object in one of the specified state at proper termination.

When dealing with data in process models, we assume that each
data state transition is realized by at least one activity from a process
model and that all data accesses of activities are modeled and that no

20 preliminaries

activity writes a data object it has not read before. Data objects in the
postcondition must also occur in the precondition.

The above introduced definitions will be used for the extraction of
data BPAs in Chapter 8.

2.1.3 Decomposition of Process Models

A large body of research deals with the decomposition of process
models into fragments for analysis, abstraction or transformation. Dif-
ferent techniques have been proposed, e. g., process structure trees or
refined process structure trees [159, 160]. In this thesis we will rely
on refined process structure tree (RPST), a technique for hierarchically
decomposing process models into fine grained single entry/ single exit
(SESE) fragments. The RPST technique has several advantages, first
the resulting fragments can be structurally isolated as sub processes
and second two fragments either contain each other or do not in-
tersect [136] . An RPST provides an efficient way to parse process
models and produce a hierarchical tree of SESE fragments. A SESE
fragment is defined by two boundary nodes, that if removed, discon-
nect the fragment from the process model [115, 136]. All fragments
on one level of the RPST are disjoint. A SESE fragment, however, con-
tains all its child fragments on the lower level. Hence, the root node
of the RPST contains all SESE fragments of the process model. These
fragments are fine grained, modular, and canonical [160, 136].

To define the RPST we first need to introduce the concept of frag-
ments, boundary nodes, components and canonical components. We
adapt the definition of Smirnov [136] to also consider events in a pro-
cess model. As this technique can only be applied to block structured
process models with a single start and a single end node we introduce
a normalized process model definition by defining a single start and a
single end node as well as restrictions to gateway nodes. In Chapter 8

we show how to include data associations for the abstraction of pro-
cess models in regard to data interdependencies by mapping them to
according control flow structures and hence implicitly consider in the
decomposition of process models.

Definition 4 (Normalized Process Model) Let nPM = (N,CF, type,
s, f) be a process model with a single start node s and a single end node e,
where s, f ∈ A∪E.

• s ∈ N∖G with ●s = ∅ denotes the only start node of a process model,
i. e.∀n ∈N ∶ ●n = ∅⇔ n = s

• f ∈ N ∖G with f● = ∅ denotes the only end node of a process model,
i. e.∀n ∈N ∶ n● = ∅⇔ n = e

• ∀n ∈N∖G ∶ ∣●n∣ ≤ 1∧ ∣n●∣ ≤ 1

2.1 business process orchestrations 21

• ∀g ∈ G ∶ (∣●g∣ = 1∧ ∣g●∣ > 1) ∨ (∣●g∣ > 1∧ ∣g●∣ = 1) ◇

The process model notion for decomposing process models does not
allow events and activities with postsets or presets larger one, i. e.,
multiple incoming or outgoing edges. Only gateways are allowed to
have either one predecessor node and several successor nodes or vice
versa, i. e., either one incoming and several outgoing edges or several
incoming and one outgoing edge respectively. To be able to use the
research on business process model abstraction of Smirnov [136, 135]
that maps process models to graphs we introduce graphs in the fol-
lowing.

Definition 5 (Directed Graph) A graph is a tuple G = (N ,E) with N
being a non-empty set of nodes and E = N ×N being a is a set of edges,
connecting ordered pairs of elements of N . ◇

The set of incoming edges in(n) of a node n ∈ N of the directed
graph G = (N ,E) is defined as in(n) = {(n ′,n)∣n ′ ∈ ●n} and the set
of outgoing edges of node n as out(n) = {(n,n ′)∣n ′ ∈ n●} [136].

Definition 6 (Process Model Fragment [136]) Let nPM = (N,CF, type
, s, f) be a normalized process model. The tuple PMF = (Nf,CFf, typef)
denotes a fragment of process model nPM, where (Nf,CFf) is a connected
subgraph of the graph (N,CF) and the function typef is the restriction of
type of PM to set Gf. ◇

We define a boundary node according to [136] as follows.

Definition 7 (Boundary Node [136]) Let nPM = (N,CF, type, s, f)with
PMF = (Nf,CFf, typef) be a process model with a process model fragment.

• A node n ∈Nf is a boundary node of PMF if ∃f ∈ in(n)∪out(n) ∶
f ∉ CFf

• A node n is an entry of PMF, if it is a boundary node and in(n) ∩
CFf = ∅

• A node n is an exit of PMF, if it is a boundary node and out(n) ∩
CFf = ∅ ◇

Definition 8 (Component [136]) Let nPM = (N , CF , type , s , f)
be a process model with a process model fragment PMF = (Nf,CFf, typef).
The fragment PMF is a component if it has exactly two boundary nodes;
one entry and one exit node. By F we denote the set of all components in a
nPM [136]. ◇

Definition 9 (Canonical Component [136]) We call a component PMF =
(Nf,CFf, typef) canonical if ∀PMF ′ ∈ F ∶ PMF ≠ PMF ′ ⇒ ((CFf ∩
CFf ′ = ∅) ∨ (CFf ⊂ CFf ′) ∨ (CFf ′ ⊂ CFf)). ∆ denotes the set of all canoni-
cal components of a process model nPM. ◇

22 preliminaries

According to [160, 136], each of the canonical components can be
classified into four types, trivial, polygon, bond, and rigid. A single
edge depicts a component of trivial type TR. A polygon PO depicts a
sequence of nodes or a sequence of components. A bond BO consists
of components that share common boundary nodes. A component
that does not classify for one of the above is called a rigid RI. The
function component-type ct assigns a type to each component, such
that ct ∶ PMF → {TR,PO,BO,RI} Bonds that are bound by AND or
XOR gateways are referred to as XOR respectively AND bonds [160,
136]. The RPST is defined as follows.

Definition 10 (Refined Process Structure Tree (RPST) [136]) Let
nPM = (N,CF, type, s, f) be a process model. An arborescence RPSTPM =
(∆, r,ξ) is the refined process structure tree of a process model nPM, such
that

• ∆ is the set of all canonical components of nPM

• r denotes a component that is the root of a tree

• ξ ⊆ ∆ ×∆ depicts the parent child relation between a component and
one of its children ◇

The construction of an RPST for a process model takes time linear in
regard to the number of nodes in the process model [136]. In Chap-
ter 7 the technique of RPST will be used to describe characteristics
of process models that can be extracted to BPAs, to describe the BPA
extraction algorithm, as well as the generation of process model skele-
tons from BPAs.

2.2 business process choreographies

A business process choreography defines the inter-organizational com-
munication interaction between two or more business processes. It
can be viewed as business contract that specifies the public behavior
that two or more collaborating entities agreed to. The internal or pri-
vate processes are hidden as companies regard them as a valuable
asset that they keep secret.

Process choreographies can be modeled with different process mo-
del diagram types. BPMN offers business process diagrams and chore-
ography diagrams to model such an interaction. Choreography dia-
grams abstract completely from the internal behavior of processes
and only depict the message interaction behavior between the proces-
ses that are represented as participants.

Business process diagrams allow modeling the internal business
process, as well as the message flows between two collaborating pro-
cesses. Section 2.3 will elaborate further on BPMN2.0 and its different
diagram types. Beside BPMN, rather formal notations such as Open

2.3 business process model and notation 23

nets, interaction Petri nets, and Workflow modules, allow the model-
ing of message exchange between processes.

When two business processes collaborate their structure and behav-
ior needs to be compatible to each other to ensure correct interplay.
If two processes are either structurally or behaviorally incompatible
they cannot collaborate with each other, hence produce a malformed
process choreography with erroneous behavior. Structural compati-
bility considers the structure of interaction. A process choreography
is structurally compatible if for each message that is sent there is a
participant that can receive it, and for each message that is received
there is a participant that can send it. A choreography with such a
property is called strong structurally compatible. The weak structural
compatibility notion also allows that not all messages that could ever
be received need to be sent. However, all messages that can be sent
need to be received by other participants [165].

Behavioral compatibility looks at the behavior derived from the
interaction of processes in a process choreography. Behavioral com-
patibility is analyzed with formal analysis techniques and needs a
representation with unambiguous semantics like Petri nets or sub-
classes of Petri nets like Workflow modules or Open nets. The idea
is to assure that the sending and receiving of messages in a process
choreography is aligned to the internal processes such that all partici-
pating processes in a process choreography will not block each other
or deadlock due to their interaction.

2.3 business process model and notation

The Business Process Model and Notation has been released in its
current version BPMN2.0 in January 2011 [112]. The Business Pro-
cess Model and Notation intents to support business process mod-
eling on a wide range of abstraction levels, from the business pro-
cess level to the more detailed technical implementation level [112].
BPMN has become a de facto standard for Business Process Manage-
ment [32]. It aims at providing an easy to use graphical modeling
notation that is able to express complex business process semantics
for both technical and business experts. BPMN consists of different
diagram types for modeling both process orchestrations and process
choreographies [165]. Each of the diagram types have their particular
use case highlighting specific aspect of interest of business processes.

Business process diagrams focus on single process orchestrations
whereas collaboration diagrams allow modeling interactions between
different process orchestrations. Conversation diagrams portray the
interrelation between process orchestrations in a simplified way by
reducing them to their core links. They are an informal description
of collaboration diagrams and show links between the interacting
partners [112]. Choreographies, in contrast to process orchestrations,

24 preliminaries

Figure 8: BPMN business process elements [109]

have no central controlling entity. Choreographies can be modeled
with collaboration diagrams as well as with process choreography
diagrams.

2.3.1 Business Process Diagrams

The business process diagram (BPD) is the most commonly used dia-
gram type of the BPMN specification. Business process diagrams are
used to describe single business processes as well as business process
collaborations. BPDs consist of four main element categories, flow ob-
jects, artifacts, connecting objects, and swimlanes [165]. Each category
contains different elements which can each have different types. The
basic elements are shown in Figure 8 taken from [109].

The flow objects category consists of activities, gateways, and events.
Activities depict work that is performed during process execution. Ac-
tivities can be further specified into tasks, sub-process, or call activity
and refined with markers and task types. A task is an atomic activ-
ity that cannot be decomposed further. Receive tasks and send tasks
represent a communication with a participant [165, 112].

Gateways are used to introduce branching logic into the control
flow. Events describe the occurrence of an incident of interest that
happens during the execution of a process. An event can be caused
by the process itself or can be caused by an external source. In this
case the event impacts the business process and needs to be pro-
cessed [112]. BPMN categorizes events into start, intermediate, and
end events. Most of them can be further divided into throwing (out-
going) and catching (incoming) events.

Artifacts represent data objects, i. e., paper forms, electronic infor-
mation, or physical artifacts, that are manipulated during process ex-
ecution. These can also be specified as input or output or both of a
process activity.

Swimlanes consists of the elements pool and lane. They depict par-
ticipants, role, and organizational information of a business process.
Lanes and sub lanes represent which department or role performs a
particular task or activity. Each pool in a process diagram represents
a single business process [165, 112].

2.3 business process model and notation 25

collaboration_example

A
rc

h
it

ec
t

Architect

Job
received

Apply for
construct ion

permit

Applicat ion
sent

Decision
received

Plan
next step

Job
planned

Bu
ild

in
g

 A
u

th
o

ri
ty

Building Authority

Applicat ion
received

Examine
documents

Evaluate
complete

applicat ion

Notify
applicant

about result
Examinat ion
decision sent

Collect
expert
report

Order expert
report

Applicat ion
documents

Formal
decision

Figure 9: Collaboration diagram

Connecting objects consist of sequence flow and message flow, as
well as associations. The sequence flow, often also referred to as con-
trol flow, connects flow objects with each other. Message flows can
only connect events and activity nodes, as well as pools. A message
flow is only used to depict the communication between two commu-
nicating processes/pools and not to depict process internal commu-
nication [165, 112].

In BPMN2.0 a process collaboration consists of at least two process
pools that are interlinked by at least one message flow. Figure 9 shows
such a collaboration between the building authority’s process and the
architect’s process. The architect sends his construction permit appli-
cation to the building authority that evaluates the application and
replies with its decision for that case. On a very abstract level, such
a collaboration can be expressed by two collapsed pools, however, in
this case, no clear statement can be made about the order of the actual
execution of the message exchange.

2.3.2 Choreograhpy Diagrams

Choreography diagrams were developed to model and represent the
behavior between two or more collaborating business processes and
depict the message exchange between the different participants [165].
It is an extended type of collaboration diagram [112].

Choreography diagram flow objects are choreography tasks, gate-
ways, and events. A choreography task describes an atomic and syn-
chronous message exchange between two or more participants. A
choreography task consists of three parts, the initiator of the mes-
sage exchange, the task name, and the receiver, respectively receivers
of the message. Initiator and receivers are also referred to as partici-
pants. A choreography task has always only one initiator [165].

A choreography task can represent only one uni-directional mes-
sage exchange or a bi-directional request reply message interaction.
The connector objects consist only of sequence flows as the choreog-

26 preliminaries
scenario-choreography-example

Send application
douments

Building Authority

Architect

Order expert report

Building Authority

Expert

Provide expert
report

Building Authority

Expert

Notify about
decision

Building Authority

Architect

Construction
project
type?

Order
construction

control

Building Authority

Building Control

Oder surveillance
of harmonized

material

Building Authority

Building Control

Figure 10: Choreography diagram example

raphy task already describes the message exchange of collaborating
process orchestrations. A subset of the start, intermediate, and end
events specified for process orchestrations is used in process choreog-
raphy diagrams. In a choreography diagram exclusive, event-based,
inclusive, parallel, and complex gateways are allowed. There are no
data artifacts in process choreography diagrams [112]. A choreogra-
phy diagram can have one or several start events as well as one or
several end events [36]. BPMN choreography diagrams need to com-
ply with the enforceability criterion [112]. I. e., the initiator of a task
must have participated in the preceding choreography task, else it
cannot determine the termination of the preceding task. A choreog-
raphy that does not comply to this criterion is called non-enforce-
able [165, 36] Figure 10 shows a choreography diagram depicting
message interaction between several actors of a construction permit.
First a sequence of choreography tasks are executed that present the
message exchange between architect, building authority, and expert.
Depending on the kind of construction permit orders for the control
of the construction project are transmitted to the building control de-
partment.

2.3.3 Conversation Diagrams

Conversation diagrams focus rather on highlighting the communi-
cation participants of a process collaboration than their behavioral
interaction. They provide an aggregation of the messages exchanged
between participants in a process choreography [165]. Conversation
diagrams consist of conversation elements, participants represented

2.4 event driven process chains 27

construction-permit-conversation

Building Authority ExpertArchitect

Figure 11: Conversation diagram

by pools, and conversation links that link the participants to a con-
versation. At least two participants participate in a conversation. Fig-
ure 11 shows the elements of a conversation diagram.

2.4 event driven process chains

Event-Driven Process Chains (EPC) are a rather informal and sim-
ple business process modeling notation. They are one of the most
prevalent process modeling languages for business process manage-
ment, beside BPMN. The focus of EPCs lies on the capturing of busi-
ness processes and their domain aspects. EPCs cover the modeling
of the business process domain in a larger modeling framework, the
Architecture of Integrated Information Systems (ARIS) developed by
August-Wilhelm Scheer [165, 127].

The EPC modeling notation has only few main modeling elements.
The main building blocks are events, functions, connectors, and con-
trol flow edges. Additional elements are organization/role, and a
group of symbols representing data objects and resources. Figure 12

gives an overview of the EPC elements and their graphical symbols.epc symbols all

Event

Funct ion

Process
Interface

Data Object

Text Note

Form

@

EmailLetter

Organizat ion

Posit ion/ Role

IT- System

Entity

Resource

Phone Fax

Flow objects Data Art ifacts Resource
Art ifacts

Organizat ion/
Role Elements

Communicat ion
Elements

Connect ing
Objects

Figure 12: EPC elements

EPC function elements are the
equivalent to BPMN tasks and
represent a unit of work. Con-
nectors are used to depict
the process logic, e. g., decision
points or the parallel execu-
tion of several functions. Events
are passive elements and depict
the occurrence of relevant situa-
tions [165] .

An EPC must have at least
one start and one end event
which have only one outgoing
and one incoming edge respec-
tively. EPCs are largely bipartite,
i. e., functions and events alter-
nate in the process flow. Each function is preceded and succeeded
by one event. This usually leads to very large process models [165].

In contrast to BPMN, EPCs do not specify swimlanes and do sup-
port modeling choreographies. Roles are attached to function ele-
ments representing the execution of the according function by the

28 preliminaries

epc-example

Construction
Permit

application form
downloaded

Gather necessary
documents

Fill in application
form

Necessary
documents

gathered
Application

form filled in

Submit
application

Application
submitted

Wait for reply

Application
decision
received

Plan next steps

Next steps
planned

Figure 13: EPC example process

assigned role. Interaction with other processes is difficult to express.
In EPCs, there is no specific message flow symbol, hence in many
cases the interaction between processes can only be detected by data
objects, events, labels of activities, or the process interface symbol.
Communication with other processes can be filtered out by analyzing
event labels, e. g., when labeled “documents received"’. The process
interface elements can be considered special event that instantiates
other processes and in this way also expresses an interdependency
between processes.

EPCs in general are underspecified and lack well defined syntax
and semantics [148]. A construction permit application process mod-
eled in the EPC notation is shown in Figure 13.

2.5 petri nets

Petri nets are a mathematical and graphical modeling formalism de-
veloped by Carl Adam Petri. They are used to model dynamic dis-
tributed, non-deterministic, concurrent, asynchronous, or stochastic
information systems with static structure [110]. Nowadays, Petri nets
are widely used in different fields of computer science. In Business
Process Management they provide the formal basis for many pro-
cess modeling languages as they have clear unambiguous seman-
tics [110, 148, 32, 80]. Many powerful workflow analysis techniques
were developed on the mathematical foundation of Petri nets.

Petri nets are bipartite directed graphs that consist of transition,
places, and directed arcs that connect transitions and places [110, 165].

2.5 petri nets 29

Definition 11 (Petri net) A Petri net PN is a tuple (P, T ,F), in which:

• P is a finite set of places

• T is a finite non-empty set of transitions

• P ∩ T = ∅ and P ∪ T ≠ ∅

• F ⊆ (P × T) ∪ (T ×P) is a finite set of arcs depicting a flow relation

• M ∶ P → N denotes the marking of a Petri net (P, T ,F) mapping the
set of places onto natural numbers including 0

• Ms denotes the initial marking of the Petri net ◇

A Petri net PN with a designated initial marking Ms is referred to
as Petri net system (PN,Ms). For X = P ∪ T we denote the preset of a
node x ∈ X as ●x = {x ′ ∈ X∣(x ′,x) ∈ F} and the postset of a node x ∈ X
as x● = {x ′ ∈ X∣(x,x ′) ∈ F}.

The static structure of a system is defined by the connected transi-
tions and places. The places that are contained in the preset/postset
of a transition t are called input places, respectively output places,
of a transition t. A transition t is enabled if all its input places are
marked with a token. If an enabled transition fires, it consumes a to-
ken from each of its input places and produces a token on each of
its output places. I. e., the markings of the corresponding places are
changed. In the following we define the firing of a Petri net according
to [165].

Definition 12 (Firing of a Petri net) Let PN = (P, T ,F) be a Petri net
and M a marking. The firing of a transition is expressed as state change of
the Petri net.

• M
t−→M ′ describes the state change of the Petri net from M to M ′ by

firing transition t

• M → M ′ specifies that there is a transition that changes the state of

the Petri net, such that M
t−→M ′

• M1
∗−→Mn specifies that there is a firing sequence t1, t2, ..., tn−1 such

that Mi
ti−→Mi+1, for 1 ≤ i < n

• A state M ′ is reachable from state M if and only if M
∗−→M ′ holds. ◇

Transitions without any incoming places are called source transi-
tions, transitions without any outgoing places, sink transitions, re-
spectively. Source transitions are able to unconditionally produce new
tokes, whereas sink transitions consume tokens without producing
new tokens [110]. The dynamic behavior of a Petri net is described by
its token play, i. e., its firing sequence. Places can hold several tokens
at a time.

30 preliminaries

Different Petri net classes have been established, e. g., Workflow
nets, Place/Transition nets, or Open nets. Place transition nets ex-
tend Petri nets by assigning weights to arcs. This allows for example
modeling the consumption or production of several resources at once.
Graphically this is represented by arcs labeled with natural numbers.

A transition can only fire if its input place is marked by at least
the amount of tokens that is assigned as weight to its incoming arc.
Similarly, a transition produces the same amount of tokens on its
output place that is assigned as weight to the transition’s outgoing
arc. In the following we introduce the place transition net definition
by [110, 165].

Definition 13 (Place transition net) A place transition net, (P, T ,F,ω),
is a Petri net with a weighting function ω ∶ F →N that assigns a weight (a
natural number) to an arc. Its dynamic behavior is defined as follows:

• A transition t is enabled if each input place p of t is marked with at
least the amount of tokens assigned by ω((p, t)), such that M(p) ≥
ω((p, t)).

• A firing of a transition t removes from each of input place p of t,
ω((p, t)) tokens and produces on each output place p ′ of t,ω((t,p ′))
tokens.

• The firing of a transition t in a state M results in state M ′ where
(∀p ∈ ●t)M ′(p) = M(p) −ω((p, t)) ∧ (∀p ∈ t●)M ′(p) = M(p) +
ω((t,p)). ◇

In the following, properties of Petri nets are introduced, follow-
ing [155, 148, 165].

Definition 14 (Free-choice) A Petri net (P, T ,F) is a free-choice Petri net
if and only if for every two transitions t1, t2 ∈ T , either ●t1 = ●t2 or ●t1 ∩
●t2 = ∅. ◇

Definition 15 (Boundedness) A Petri net system (PN,Ms) is bounded,
if there exist an upper bound n ∈ N, i. e., for every reachable state M ′ and
every place p the number of tokens in p is bounded, such that M(p) ≤ n. ◇

Definition 16 (Liveness) A Petri net system (PN,Ms) is live iff, for ev-
ery reachable state M ′ and every transition t there is a state M

′′

reachable
from M ′ which enables t. ◇

Definition 17 (Livelock) A Petri net system (PN,Ms) is in a livelock, iff
for every reachable state M ′ and a transition t, there is a state M

′′

reachable

from M ′ which enables t, such that ∃M ′,M
′′ ∶M ′ t−→M ′′ ◇

2.5 petri nets 31

2.5.1 Workflow nets

Workflow nets (WF net) are a special class of Petri nets that were
designed to represent and analyze workflows with specific structural
properties. They pose structural restrictions on Petri nets and the busi-
ness processes that they represent. The formal semantics of Petri nets
allow analyzing the properties of business processes [147, 149].

Structurally, WF nets are restricted by several conditions. A WF net
has exactly one initial place that has no incoming flow and exactly
one final place that has no outgoing flow. Each transition of a WF
net must be on a path from the initial place to the final place. If
these conditions hold, the WF net is called structurally sound. In the
following we present the definition of WF nets following [165]. It is
the basis for the definition of behavioral properties of WF nets.

Definition 18 (Workflow net) A Petri net PN = (P, T ,F) is called a Work-
flow net if the following conditions hold

• There is exactly one initial place pi ∈ P that has no incoming flow,
such that ●pi = ∅.

• There is exactly one final place po ∈ P that has no outgoing flow, such
that po● = ∅.

• Each transition t ∈ T and every place p ∈ P of PN is on a path from
pi to po ◇

A Petri net system where PN is a WF net is called a workflow
system. The initial marking of a WF net marks only the initial place
with a token, all other places are unmarked. In this context the token
represents an instance of the WF net that is started with the start
of the token play. In the final marking only the final place of the
WF net is marked, and all other places are unmarked. Based on this
formalism a range of structural and behavioral properties for WF net
have been defined [165].

The behavioral property soundness describes the ability of a WF
net to always reach its final place and not deadlock on any possible
path. Furthermore none of its transitions is dead, i. e., each transition
will be fired on at least one execution path. From any state M reach-
able from the initial state, the final state MΩ is reachable where only
the final place is marked and any other place of the net is unmarked.
This means that every process instance of the represented process ter-
minates in a proper way [147, 149, 165]. The soundness criterion is
summarized in the following definition according to [165].

Definition 19 (Workflow net states) Let PN = (P, T ,F) be a workflow
net, pi ∈ P be its initial place, po ∈ P its final place, and M,M ′ markings.

• Ms is the start state in which only pi ∈ P carries a token and all other
places are unmarked

32 preliminaries

• MΩ is the final state in which po ∈ P, the final place, is marked with
exactly one token and every other place is unmarked

• M ≥M ′ if and only if M(p) ≥M ′(p),∀p ∈ P

• M >M ′ if and only if M ≥M ′ ∧∃p ∈ P ∶M(p) >M ′(p)

Definition 20 (Soundness) A workflow system (PN,Ms) with a WF net
PN = (P, T ,F) is sound if and only if,

• for every state M reachable from the initial state Ms there is a firing
sequence, leading fromM to the final stateMΩ, such that ∀M(Ms

∗−→
M) ⇒ (M ∗−→MΩ)

• MΩ is the only state reachable from Ms with at least one token in
place po, so that ∀M(Ms

∗−→M∧M ≥MΩ) ⇒ (M =MΩ)

• there are no dead transitions in the workflow net in state Ms, so that

(∀t ∈ T)∃M,M ′ ∶Ms
∗−→M t−→M ′ ◇

The notion of soundness is strict in regard to behavioral and struc-
tural properties of business processes. In the real-world only few of
the business processes will comply to this property. In this regard a
less strict and weaker notion of soundness, relaxed soundness, has
been introduced in [30]. Relaxed soundness allows for deadlocks or
improper termination in some execution paths, however each transi-
tion must be on a sound execution paths. This means that each tran-
sition is on at least one firing sequence reached from the initial state
Ms from which it can reach the final state MΩ [30, 156, 165].

To define relaxed soundness we introduce the notion of a sound
firing sequence according to [165].

Definition 21 (Sound firing sequence) Let (PN,Ms) be a workflow sys-
tem. Let δ,δ ′ be firing sequences and let M,M ′ be states. δ is a sound firing
sequence if it leads to a state from which the final state MΩ can be reached:

Ms
δ−→M and ∃δ ′ such that M

δ ′−→MΩ

Definition 22 (Relaxed soundness) A workflow system (PN,Ms) is cal-
led relaxed sound, if and only if, each transition of PN = (P, T ,F) is an
element of some sound firing sequence, i. e., reaches the final state MΩ

• ∀t ∈ T ∃M,M ′ ∶ (Ms
∗−→M t−→M ′ ∗−→MΩ) ◇

2.5.2 Open nets

Open nets [92, 94] were developed to model and analyze the compat-
ibility and interaction of interorganizational workflows and collabo-
rating concurrent systems, web services or processes, e. g., in Service
Oriented Architectures (SOA). They extend Petri nets with interface

2.5 petri nets 33

places and a set of final markings. The set of places is divided in dis-
joint sets of internal, incoming, and outgoing places. Incoming and
outgoing places are interface places that depict their interface to the
external environment, systems, or in our case other business proces-
ses [92, 94]. Through their interface the communication and interac-
tion with external partners takes place. Each Open net has an initial
marking that defines the initial state of the Open net as well as a final
marking that defines the termination of an Open net [92, 94]. In the
initial marking the interface places are not allowed to be marked. The
firing rules of Petri nets are equally valid for Open nets.

For a set Z we denote with MS ∶ Z →N the multiset over Z, where
each element of Z can occur multiple times (i. e., z ∈ Z occurs MS(z)
times). We write multisets as a formal sum of their elements, e. g.,
2 ⋅p1 +p2 for the multiset containing two exemplars of p1 and one of
p2. The empty multiset is denoted as 0.

Workflow modules are a restricted form of Open nets that are pre-
sented in Section 2.5.3 particularly tailored to the BPM domain. Fol-
lowing [95, 92] we define Open nets as follows.

Definition 23 (Open net [95, 92].) An Open net is a tuple O = (P , T ,
F , Ms , Ω), in which:

• P is a finite set of places that is partitioned into pairwise disjoint sets
of internal places PN, input places PI, and output places PO

• PIO = PI ∪PO denotes the set of interface places

• T is a finite set of transitions, disjoint with P

• F ∶ (P × T) ∪ (T × P) → N is the flow relation assigning weights to
arcs

• A marking M ∶ P → N is a multiset over P, i. e., it assigns to each
place the number of tokens on this place, M0 denotes the initial mark-
ing of the net, Ω the set of final markings

• ●t is called the preset, t● the postset of a transition t ∈ T . Both are
multisets over Pand denote the amount of token consumed from, re-
spectively, put on a place.

• t ∈ T is activated in a marking M, denoted by M
t−→ if ∀p ∈ P ∶

M(p) ≥ ●t(p), i. e., if there are enough token on p for t to consume

• Firing an activated transition t leads to a follower markingM ′ defined
by M ′ =M− ●t+ t● ◇

The introduction of desired final markings allows for a clear defini-
tion of deadlocks.

34 preliminaries

Definition 24 (Deadlock) A Petri net system (PN,Ms) is in a deadlock if
it is in a state M ′ with a marking from which no other marking is reachable,
and M ′ is not the final marking, i. e., M ′ ∉Ω ◇

Two Open nets O1,O2 have shared interface places if their interface
places match. An interface place that is not shared between two Open
nets is called free. The formal definition is as follows according to [92].

Definition 25 (Shared, free interface place [92].) A interface place p ∈
PIO1 ∪ PIO2 of two Open nets O1,O2 is shared between O1 and O2 if p ∈
PIO1 ∩PIO2 . If this condition does not hold, p is free between O1,O2. ◇

Two Open nets O1,O2 can be composed if they are interface com-
patible. This is the case, if a place p is shared between two Open nets
O1 and O2, then p is either an output interface of O1 and an input
interface of O2, or vice versa [92]. The formal definition of interface
compatibility according to [92] is given in the following.

Definition 26 (Interface compatibility [92].) Two Open netsO1 andO2
are called interface compatible if each shared interface place is an input
place of one Open net and an output place of the other net, i. e.,

• (PIO1 ∩PIO2) = (PI1 ∩PO2) ∪ (PI2 ∩PO1) ◇

The composition of two Open nets O1,O2 is realized by fusing the
matching input and output places of both netsO1 andO2, and results
in a new composed net O. Fused interface places become internal
places in the composed net [95, 92].

Definition 27 (Composition of Open nets [92].) The composition of two
interface compatible Open nets O1,O2 results into a composed net O1 ⊕
O2 = (P, T ,F,Ms,Ω) with

• PI = (PI1 ∖PO2) ∪ (PI2 ∖PO1)

• PO = (PO1 ∖PI2) ∪ (PO2 ∖PI1)

• PN = PN1 ∪PN2 ∪ (PI1 ∩PO2) ∪ (PI2 ∩PO1)

• T = T1 ∪ T2

• Ms =Ms,1 +Ms,2

• Ω = {M1 +M2 ∣M1 ∈Ω1 ∧M2 ∈Ω2}

• F1 ∪ F2 ◇

2.5 petri nets 35

2.5.3 Workflow modules

Workflow modules were proposed to model inter-organizational busi-
ness process interaction and assess their interoperability [90]. A work-
flow module is an extended Workflow net and a special class of Open
nets. It has special communication places (input places, output places)
that allow for composition with other workflow modules represent-
ing their interaction. Each workflow module represents a business
process.

The composition of workflow modules is analogous to the composi-
tion of Open nets described in Section 2.5.2. Two workflow modules
can be composed if their output and input communication places
match and their internal transition and internal places are disjoint.
This means that each output or input place of one workflow mod-
ule needs to match the according input or output place of the other
workflow module. If this is the case, they are called syntactically com-
patible. When composed, the communication places become internal
places. The new composed net is converted into a structurally sound
Workflow net by adding a global initial and a global final place and
two transitions that connect them to the according initial and final
places of the composed workflow modules. The composed Workflow
net can then be checked for soundness. The notion of soundness ap-
peared too restrictive for composed web services, so that Martens [90]
introduced the notion of weak soundness for process choreographies.

Definition 28 (Weak Soundness [165, 90]) Let (PN,Ms) be a workflow
system with initial state Ms. A workflow system is weak sound, if and only
if, the following holds:

• For every state M reachable from the initial state Ms, there is a firing
sequence from M that reaches the final state MΩ, i. e., ∀M(Ms

∗−→
M) ⇒ (M ∗−→MΩ)

• MΩ is the only state reachable from state Ms with at least one token
in place po, i. e., ∀M(Ms

∗−→M∧M ≥MΩ) ⇒ (M =MΩ) ◇

Weak soundness allows for dead transitions in the composed Work-
flow net, however the final place must be reachable from all reachable
states M in the net. A weak sound Workflow net is free from dead-
locks and will terminate properly.

The notion of usability of a workflow module describes that the
composition with another workflow module results in a weak sound
composed system and that there exists at least one such workflow
module. A composed system that is weak sound assures the absence
of serious errors [90, 91] Based on the usability notion, Martens de-
fines the notion of semantic compatibility for two workflow mod-
ules. Two workflow modules are semantically compatible if their com-
posed system is usable [90, 91].

36 preliminaries

2.6 formal analysis

Formal analysis is a means for the verification of information systems.
Information systems are modeled and analyzed with mathematical
concepts, e. g., Petri nets. For this, properties of the system under
examination are defined in a formal way. Based on the underlying
mathematics these systems are verified for their correctness according
to the defined properties.

The idea is to be able to make a statement of the characteristics of
systems without the need to verify the real-world system, which in
most cases is not even possible. Baier and Katoen [6] state that formal
verification is “applied mathematics for modeling and analyzing ICT
systems”. The aim of formal analysis is to create correct information
systems.

In the BPM domain, especially in regard to business processes, busi-
ness process choreographies, and business process interdependencies,
the formal properties of interest are of structural and behavioral na-
ture. Structural properties refer to the composition of the model, e. g.,
which elements, types are used, and how they are connected. Many
business process modeling languages define syntactical properties
that specify containment or connection relations between elements.
Based on the specification process models can the be verified for their
compliance to these syntactical properties. E. g., Workflow nets have
exactly one initial and exactly one final place. A net with two ini-
tial places would not meet the required structural property and not
qualify as a Workflow net.

In regard to business processes the behavior of a business process
is depicted by all its execution paths that are defined by the process
model. Correct behavior is defined by desired behavioral properties,
e. g., soundness, which assures proper termination of all process in-
stances of a process model. Such formal properties allow for their
verification with a model checker.

The most common approach for analysis of business processes is
to use a mapping to Petri nets and their subclasses [80]. Petri nets
have clear execution semantics and provide strong mathematical the-
ory for process analysis. Structural properties of Petri nets are struc-
tural soundness for Workflow nets, and interface compatibility for
Open nets and workflow modules. Behavioral properties for different
classes of Petri nets are deadlock freedom, livelock freedom, bound-
edness, freedom of dead transitions, soundness, relaxed soundness,
and weak soundness.

A correct structure of a process models is often largely assured by
business process modeling tools. Although it is assumed that a pro-
cess model should be free of deadlocks and livelocks [36], only few
business process modeling tools allow for the verification of behav-
ioral properties such as deadlocks or livelocks.

2.6 formal analysis 37

Behavioral properties can be expressed as a reachability problem,
in which it is to decide whether a desired state can be reached. Such
a state is described by a particular marking of the Petri net system.

Due to their complexity some verification problems expressing de-
sired properties cannot be checked with Petri nets. The behavioral
analysis of large Petri nets may run into computational problems due
to state space explosion [50, 145]. Due to the state space explosion
problem, it is often necessary to abstract from irrelevant details when
modeling the system of interest. E. g., the restrictions of Workflow
nets create a formalism that allows for behavioral analysis also for
larger process models, even though the state space explosion prob-
lem still exists [145, 49].

The reachability graph functions as the starting point for the analy-
sis of a Petri net, given that there is only a finite amount of states. In
general a reachability graph can be infinitely large. To overcome the
problem of infinite states the concept of coverability graphs was in-
troduced. A coverability graph is finite and approximates the accord-
ing reachability graph. Some of the reachability problems for Petri
nets with infinite states are decidable with the help of the coverabil-
ity graph. The coverability graph is used to determine boundedness
of a Petri net and its places, to find dead transitions or analyze differ-
ent kinds of soundness [65, 131, 168, 156].

All of the aforementioned verification tasks of behavioral proper-
ties can be considered model checking problems. Model checking
problems are specified in temporal logic to find out how a system
evolves over time [19]. The desired behavioral problems are expressed
in mathematical models, in most cases state predicates, Linear Tem-
poral Logic (LTL) or Computation Tree Logic (CTL) formulae, that
map them to a reachability or coverability problem. This allows find-
ing incorrect or inconsistent behavior of the systems under exami-
nation. Temporal logic problems are classified by the underlying as-
sumptions that time has a linear (LTL) or branching structure (CTL)
respectively [19].

The complexity of model checking is polynomial in size of the
model determined and in lengths of its specification in temporal
logic [19]. Optimizations of the computation resulted into a linear
complexity in regard to the product of the length of the formula
that describes the desired state and the size of the state transition
graph [19]. As large Petri nets easily suffer from state space explo-
sion, the usability of model checking is restricted to smaller Petri net
models. The complexity of solving LTL problems is PSPACE-com-
plete. Although it is exponential in length of the formulas, it was
found that it is linear in the size of the global state space. Hence it is
only applicable for short formulas [19].

The tool LoLA (A Low Level Petri Net Analyser), a well-estab-
lished Petri net verification tool, allows solving problems that have

38 preliminaries

practical relevance due to its many optimized state space reduction
techniques [132, 167]. According to Wolf [167] and Lohmann [78] pre-
senting different use cases, LoLA can tackle model checking problems
with a state space of about ten million states.

2.7 summary

This chapter introduced the formal foundations and concepts for the
specification and description of our Business Process Architecture ap-
proach. The concepts of business process orchestrations and chore-
ographies in Section 2.1 and Section 2.2 as well as the introduction of
different business process modeling notations in Section 2.3 and Sec-
tion 2.4 described the elements that are structured by PAs. These con-
cepts and the presented process model decomposition techniques are
used in Chapter 7. Section 2.5 and Section 2.6 introduced Petri nets
and the formal foundation for the composition, analysis and verifica-
tion of workflows. We rely on these concepts in Chapter 5 and Chap-
ter 6 for providing clear semantics of our Business Process Architec-
ture approach and its analysis.

3
R E L AT E D W O R K

This chapter is based on the published research papers [42, 40, 38, 45, 43, 39]. This
chapter describes the state of the art of PA research and other related research field.
It puts our research into the overall BPM context. We present research on process
model repositories and enterprise architecture as larger setting of PAs. Beside the
current research in the PA field, we introduce and examine research on business

model abstraction and business process choreographies. The evaluation of the
related work will result into an overview of existing research and research gaps.

The identified research gaps will serve as foundation, motivation, and basis of
requirements for our PA approach, which will be introduced in succeeding

Chapters.

Business process architectures have received new interest in BPM
research. This topic cannot be solely attributed to one BPM research
area. As PAs are used for structuring and managing process models
in process model repositories. research on process model reposito-
ries specifies the coarse environment of PA research. Depending on
the business process architecture approaches chosen, PAs describe
hierarchical and horizontal interdependencies between processes. In
regard to horizontal interdependencies, they relate in particular ar-
eas to research on process choreographies. PAs provide an abstract
view on process models. Consequently, our work touches the work
on process model abstraction. In this chapter we introduce those dif-
ferent research fields and elaborate on existing approaches and tech-
niques. As a result, we gather the main characteristics of the different
approaches and summarize them in an evaluation in Section 3.5. We
highlight gaps in current research that we aim to fill with our BPA
approach.

3.1 process model repositories

With the dispersion of BPM in companies and organizations, these or-
ganizations collect hundreds or thousands of process models [125, 1].
In this regard the need for the effective management of large pro-
cess model collections in process model repositories arose. Bernstein
states, a repository is a “shared data base of information . . . artifacts
used by an enterprise” [13] and is considered to be the centerpiece
to integrate tools that leverage the stored information. Process model
repositories provide structured access to stored process models and
support process specific tasks, e. g., life cycle management, [171]. A
lot of research on process model repositories deals with development

39

40 related work

of functionality used for effective process model management. As PA
approaches are part of process model management, process model
repositories provide the context and environment for PA research.

Process model repositories address a variety of users that range
from various kinds of process model experts to employees of a com-
pany that only study process models for learning work procedures
and follow internal or external regulations. Domain and process mod-
eling experts create, reuse, and manage process models in large col-
lections [125, 1], or business analysts examine process performance.

A large body of research discusses specific aspects of process model
repositories, e. g., structured query search [4, 12], a unifying process
meta model for stored processes [75], and automatic support for the
business process lifecycle [82]. Shahzad et al. [134] and Yan et al. [170]
conducted surveys and derived requirements of general process mo-
del repositories. In particular, Yan and Grefen [169] define a frame-
work that captures aspects of a business process model repository,
i. e., process data, process functions, and process management.

While many repositories are specific to one certain process for-
mat [170], other repositories like Apromore1 can deal with several
process modeling notations [75]. During analysis of process model
repositories, we encountered many different process modeling lan-
guages, common ones, e. g., EPC [66] or BPMN [112], but also propri-
etary and rather informal notations, e. g., PICTURE [11] and FAMOS2.
Hence, a PA approach should be modeling notation independent.

Although different notations, their meta data, or the process mo-
del themselves provide raw information on their interdependencies,
this information is not used for generating additional information. A
large share of information is contained in the inscription of modeling
elements but not put into a larger picture or overview. Dijkman et
al. [34] introduce current challenges for managing large process mo-
del collections. Among others, they highlight the need for organizing
process models in a process model collection and provide overviews
of their interdependencies.

A large part of users of a process repository has problems of find-
ing process models of interest due to cluttered lists, overviews, and
limited process model access possibilities. Referring to modeling no-
tations, Patig et al. [114] emphasize the need for human centered lan-
guages and tools. This also includes the need to reduce complexity
by providing overviews and easy access to the process models in a
process model collection.

These challenges are dealt with by a relatively young topic of pro-
cess model management, business process architectures, that aims at
structuring and organizing process models within a process model

1 Advanced Process Model Repository – http://apromore.org

2 FAMOS Modeling Handbook - Accessed: 6th June 2014 http://www.d-nrw.

de/fileadmin/user_upload/d-NRW_Dateien/KDV/modellierungshandbuch_2_

2011-03-17.pdf

http://apromore.org
http://www.d-nrw.de/fileadmin/user_upload/d-NRW_Dateien/KDV/modellierungshandbuch_2_2011-03-17.pdf
http://www.d-nrw.de/fileadmin/user_upload/d-NRW_Dateien/KDV/modellierungshandbuch_2_2011-03-17.pdf
http://www.d-nrw.de/fileadmin/user_upload/d-NRW_Dateien/KDV/modellierungshandbuch_2_2011-03-17.pdf

3.2 business process architecture approaches 41

collection [34]. The structure given by a PA is the basis for provid-
ing navigation structures for a process model repository which is one
of the main approaches to access, use, and reuse process models in
a business process model repository, apart from meaningful search
capabilities. In this regard, our work adds to the field of process
model management in process repositories by providing a new PA
methodology that can be applied to large process model collections.
Recent research on PAs aims at providing new perspectives on pro-
cess models that serve particular purposes; also addressing automatic
techniques to derive such structures [37].

Most of the known process model collections in research contain
PAs omitting process interdependencies. One of the most commonly
used collections is the SAP reference model [21], published in 1997,
that comprises 604 EPC process diagrams that describe the SAP R/3

system. The process models in the process collection are grouped
along functional lines in a hierarchy up to three directory layers.

IBM released a collection of 735 business process models from
the Websphere process modeler available as BPMN process models,
which cover various industrial domains, e. g., finance and telecommu-
nications, [52]. The process models in the IBM model collection are
categorized according to their domains.

In the course of the BPM academic initiative3 (BPM AI), a set of
29825 process models (August 2012) created by students in various
process modeling languages has been made available to the research
community [71]. The BPM AI does neither contain business process
architectures nor any kind of categorization of its process models as
the process models originate from student tasks.

From quantitative analysis of many process models, one can draw
conclusions that influence the way experts are using process models.
Related work [107, 71] showed that the majority of models uses only
few distinct modeling constructs and is of low complexity, which can
guide in reducing the spectrum of modeling languages and hence,
ease and accelerate process model design. Guidelines towards pro-
cess modeling [97, 101] and labeling [100] show how to reduce er-
ror proneness and increase model understanding. These aspects high-
light the need to reduce the complexity of process models and their
interdependencies for users and facilitate the better understanding of
process context.

3.2 business process architecture approaches

Recently, empirical studies [35, 84, 85, 33] on the use of PAs in practice
have been undertaken that show that there are many challenges in re-
gard to defining, applying, and evaluating PAs. Several works deal
with frameworks for classifying [3, 54, 56, 53, 86] and evaluating PA

3 http://bpmai.org

http://bpmai.org

42 related work

approaches, e. g., [54, 56, 53]. In few papers guidelines for construct-
ing PAs are clearly outlined, e. g., [31, 106, 57, 55]. In the following
we will present the different topics of PA research and outline PA
approaches.

enterprise architecture approaches . Enterprise architec-
ture frameworks describe the relations between the IT-system model,
the business model, the business process model, and other parts of
the enterprise architecture. Business process architectures are often
mentioned as part of enterprise architectures methodologies but in
most cases without clear description of the underlying PA concept.

Incorporated into a larger organizational enterprise architecture fra-
mework different business process architecture methodologies have
been proposed earlier, e. g., in Zachmann [174] or in Scheer et al. [128].

In one of his early works, Zachman [174] designed an informa-
tion systems architecture for organizations. According to him there
are several views necessary for modeling an organization. His rather
informal enterprise architecture framework encompasses several do-
mains, among others he also looks at structuring business processes
along functional lines.

The ARIS architecture and reference models for business process
management is a widely used framework [128, 127, 129, 22]. It is
a multi-layer enterprise architecture framework that consists of four
different levels; process engineering, process planning and control,
workflow control, and application systems. There are means to inter-
connect elements from different layers, however, the framework does
not provide concrete guidelines on how to model such interconnec-
tions nor a formal underpinning that allows defining clear relations.
In [129] Scheer et al. present a reference model based PA approach
that groups processes along business functions. On process model
level they use EPCs that by design have a single process model fo-
cus. The interrelations to other process models are symbolized by a
process interface and process call element.

Davis [22] provides a practical guide on the advanced use of the
ARIS design platform. ARIS envisages a hierarchical overview of a
process model that is based on its functions and the tasks of their
sub-processes. In regard to structuring a whole process collection
Davis [22] proposes a five level based process hierarchy similar to
Scheer et al. [128, 127, 129]. On first level, he situates the enterprise
map consisting of value chain diagrams. The creation of value chains
is not described and appears to be a rather creative task or a standard
scheme from the manufacturing area which does not suit modern
company structures [59, 14]. On second level, he puts process area
maps, on third level key process models, that are decomposed into
more detailed process models on level four, and on level five he de-
picts activity models. The elements of the different layers can be ref-

3.2 business process architecture approaches 43

erenced with “consists of” or “relates to” concepts that hierarchically
or horizontally link elements together but do not provide information
on the influence of those relations.

frameworks and surveys . A large set of PA literature are sur-
veys on PA approaches and frameworks to classify and evaluate those
approaches. The surveys by Dijkman et al. [35, 33] and Fettke et
al. [54, 53] examine mainly PA approaches developed in research
whereas the surveys by Malinova and Mendling [84] and Malinova
et al. [85] evaluate and examine the use of PAs in practice.

Malinova et al.[85] performed an empirical study on the use of PAs
in companies and propose a classification for PA types based on their
findings. All approaches evaluated by Malinova et al. are based on
the classification of single processes. They identified four PA types:
hierarchical, pipeline, divisional, and service-oriented. Most of the
organizations had a business process architecture of three levels. They
note that the design of PAs is rather complex and context dependent.
PAs were used in the re-/design and analysis, and evaluation phase
of the BPM lifecycle. Depending on the structure of the project PAs
were used top-down or bottom-up.

Malinova and Mendling [84] provide an overview on process map
approaches and their effects on the success of business process man-
agement projects. For this they surveyed 15 process maps from prac-
tice. The term process maps refers to one of the top layers of a busi-
ness process architecture but it is also often used as synonym for
PA. According to Malinova and Mendling current PA/Process map
approaches lack informational power and do not provide any bene-
ficial effect on process management success as they are difficult to
interpret and not directly connected to goals or processes. They state
that in many cases there is no consistency between the different layers
of a process model collection, e. g., business process and process map
layer. Only few PA or process maps show interdependencies between
processes and give a good overview on the process model collection
and its informational treasure [84]. These findings coincide with the
type of examined PAs from practice in [85].

Green and Ould [56] and Fettke and Loos [53] present frameworks
for evaluating and classifying PA approaches. Green and Ould [56]
highlight that most PA approaches are used for organizing the elici-
tation of process models top-down. As a first step of a process model
elicitation project a PA is designed and then the subsequent busi-
ness process models. Their framework is based on a questionnaire
covering several dimensions for evaluating PAs. The dimensions are
form view, content view, purpose view, and lifecycle view. These di-
mensions represent a range of requirements posed on PA approaches.
The form view dimension refers to well-defined PA and process mod-
els in regard to syntax and semantics. The content view dimension

44 related work

examines if there exists an underlying theoretical framework for the
PA, a clear specification of relationship types between processes, or
comprehensibility of the PA to experts and non-experts among other
questions. Aspects like the identification of processes, facilitation of
communication, and overall utility are covered by the purpose view
dimension. The lifecycle view deals with the ease of use of the PA
approach, ease of maintenance, effectiveness and efficiency, among
others. Green and Ould [56] criticize that in many cases process mod-
eling is performed only piece by piece without a complete overview
which is error-prone. They highlight the necessity for a coherent mod-
eling of business process and for visualizing interdependencies be-
tween processes. This supports the analysis of process interdepen-
dencies and in the same time helps to assure completeness and avoid
errors due to missing processes

Fettke and Loos [53] develop a classification system and classify 26

reference information model approaches including business proces-
ses. They present four general types of classification; basic classifica-
tion, hierarchical classification, faceted classification, and characteristic-
based classification. Basic classification allows each classification ob-
ject to be a member of one class only. Hierarchical classification orders
classes hierarchically. One class can encompass several sub-classes.

Faceted and characteristic-based classification are multi-dimensio-
nal classifications [53]. Faceted classification classifies objects accord-
ing to a set of attributes, the facets. A classification object is classified
with multiple attributes that allows for retrieving it from different
paths. Characteristic-based classification classifies each classification
object according to several attributes. Facets are mutually exclusive
whereas characteristics are not.

The classification system types are also often found in PA approa-
ches whereas the classification attributes differ according to the meth-
odology chosen, e. g., goal-oriented or departmental [35, 33]. Process
models are grouped along one or several characteristics. Fettke and
Loos evaluate the classifications of information models, however, do
not provide a method to design PAs [53].

In a subsequent work, Fettke and Loos [54] examined 30 differ-
ent reference models approaches. Their understanding of a reference
model refers to a complete information model or process model col-
lection like the SAP reference model or the structure of a process
model collection like the APQC [3]. Their evaluation framework con-
sists of three main categories: general characterization, construction,
and application. The relevant categories relating to PA aspects are
construction and application. The construction category consists of
aspects like existence of a modeling framework, construction method,
or evaluation methods among other aspects like number of process
models and modeling language. Use cases, reuse, and customization
as well as application method examine the concrete application area

3.2 business process architecture approaches 45

of the reference model. Their categories show that a clear construction
method with well-defined syntax and semantics as well as applicabil-
ity are desired aspects for PA approaches. According to Fettke and
Loos [54] only few approaches describe how to create an own model.

Koliadis et al. [70] raise a set of 22 questions to evaluate functional
aspects of ten different business model and enterprise architecture
approaches. Their evaluation includes approaches on the strategic or-
ganizational level like value chains (VC), strategy maps (SM), busi-
ness motivation model (BMM), the I*-framework, e3-Value (e3) or the
ARIS House of Business Engineering (HOBE). Their evaluation cri-
teria encompasses questions on enterprise structure, enterprise moti-
vation, enterprise capability, enterprise relationships, and enterprise
risk. They examine the structure of goals and their relation to busi-
ness processes, the actors performing operations, their processes in
the company and the relationships between actors. Especially, the
enterprise relationship category is used to evaluate the type of re-
lationship between actors and how strong the dependency between
actors is. The risk category focuses on critical and vulnerable actors,
processes, and relationships. These questions show the relevance of
processes, actors, and involved resources like data for PAs.

Most approaches showed deficiencies in meeting the requirements
for PAs specified by the evaluation questions, especially in regard to
the interdependencies between enterprise actors and processes. Many
of the evaluated frameworks are strong in identifying key enterprise
actors, the enterprise goals, defining performance objective and relat-
ing actors to processes. The actor focus suggests that many of those
frameworks group processes along organizational lines.

Different kinds of PAs have been examined in regard to their useful-
ness and use in an extensive survey with 39 practitioners by Dijkman
et. al [33, 35] who identify five types of PA approaches: goal-based,
action-based, reference-based, function-based, and object-based. They
noted that most practitioners prefer to use a reference model-based
and function-based PA approach. Practitioners also relied on a com-
bination of approaches rather than choosing a single one. In regard
to identify popular combinations of PA approaches they studied four
use cases from practice. In three out of four of those use cases object-
and function-based approaches were used in combination. The most
common relations observed were decomposition and ordering. Dijk-
man et al. assume that ordering relations referring to temporal rela-
tions appear to play an important role although not being present in
literature [35]. Based on their findings they propose a PA framework
based on multifaceted classification. It organizes processes along the
hierarchical decomposition of business functions and the classifica-
tion along permanent business objects [35]. The PA use cases they
examined also contained sequence ordering relations but the visual-

46 related work

ization of end-to-end processes or a clear process execution order is
not part of the approaches examined in [35].

Maddern et al. [83] examine current end-to-end process model-
ing approaches to assess the current state of research in this field.
End-to-end process modeling identifies process chains that serve the
customer from the moment of contact to delivery of a service or a
product. The idea shared by end-to-end process modeling approa-
ches consists of providing a customer centered and holistic overview
on the processes involved into the delivery of a service or produc-
tion of a product. Maddern et al. [83] state that the end-to-end term
is not clearly specified in research and practice. End-to-end model-
ing comes with many challenges, e. g., defining the scope of an end-
to-end process. The main challenges include providing a holistic ap-
proach over a set of processes, the difficulty of setting boundaries
of an end-to-end process, and the management of end-to-end pro-
cesses across department boundaries. They call especially for a shift
from linear functional approaches to a holistic approach considering
interdependencies based on input/output flows between all proces-
ses and their resources [83]. Having a holistic scope, with end-to-end
view and all involved internal business processes, our BPA approach
will help to close this gap.

business process architectures based on classification.
Business process architecture approaches that rely on classification
systems along functional [130, 31, 84], organizational, object, goal [2,
58], or activity lines [106] are most commonly found in BPM liter-
ature. Many employ a hierarchical ordering and classify single pro-
cess models ignoring process interdependencies. A large body of
work [16, 60, 86, 17, 64, 57, 67, 8, 106, 85, 31, 96] falls into that cat-
egory.

Functional and hierarchical PA approaches from practice are de-
scribed in [58, 59, 22, 85, 3]. Harmon [59] describes the urge of com-
panies to create PAs in combination with defining metrics to measure
process success. For this, processes are related to process goals and
balanced scorecards. Balanced scorecards require PAs based on goals
and functions [58].

The American Productivity & Quality Center (APQC) and its mem-
bers developed the APQC’s process classification framework, a taxon-
omy of cross-functional business processes [3]. The APQC classifies
business processes on top level into operating processes, and man-
agement and support services. In total there are 12 enterprise level
categories, 5 categories in the main category operating processes and
7 categories in the category management processes and support ser-
vices. The process classification is structured hierarchically into five
levels; 1. category, 2. process group, 3. process, 4. activity, and 5. task.
It was developed as an open standard to support process manage-

3.2 business process architecture approaches 47

ment and improvement as well as benchmarking processes within
and among organizations regardless of industry and size [3].

In a similar attempt Malone et al. [86] created the MIT Process
handbook that classifies a range of processes along the two dimen-
sions part of business process and type of business process. The pro-
cesses and their activities are hierarchically classified using part of,
specialization, generalization, and uses relationships. It covers several
business model domains ranging from manufacturer, wholesaler to
HR broker or financial trader among others.

The Supply Chain Council Inc. (SCC), a global non-profit orga-
nization, developed the Supply Chain Operations Reference model
(SCOR) [133]. The SCOR model shows the consortium’s view on sup-
ply chain management and consists of six primary management pro-
cesses: plan, source, make, deliver, return, and enable. The SCOR mo-
del has a hierarchy of four levels; process types (scope) on top level,
process categories (configuration) on second level, process elements
(steps) on third level, and activities (implementation) on the fourth
level. The framework encompasses metrics, and best practices to mea-
sure and improve business processes. Similar to APQC the SCOR mo-
del intends to provide a framework to evaluate and compare supply
chain activities and performance [133].

As one of the few approaches, Dijkman [31] proposes concrete PA
guidelines to create PAs. He provides guidelines to identify and hier-
archically decompose business processes based on business functions
and case type.

product based PA. Moreira and Fillies [105] classify a public
organization’s products and services according to a product classi-
fication framework, the ICT class model of the public sector that
provides ten classes in three categories; information, communication,
and transaction. Their classification is part of a business process mo-
del analysis architecture. They look at interfaces by considering the
information flows between activities that represent the interchange.

Castellanos and Correal [18] consider PAs as part of an enterprise
architecture. Their aim is to align the information system architecture
elements with business process elements from the business process
architecture. To align their business processes with data objects from
the information system architecture they use an ontology to map both
architecture elements. Processes that use the same data object are clas-
sified in the same category. The interdependencies between business
processes based on data objects are not considered in their mapping.

reference based PA. PA approaches in [127, 53, 129, 67, 54, 63,
2] use a reference model to classify their process models.

Klein and Petti [67] present a method to use the MIT process hand-
book to model and redesign value chains based on building blocks.

48 related work

Their idea is to recombine building blocks to create new process mod-
els. Their classification system refers to a classification by name. For
the redesign of processes they use the hierarchy, inheritance, and spe-
cialization concepts of the process handbook to find alternatives for
modeling the “to-be” process model. The main focus of their work is
the re-design of process models and not the structuring of a process
model collection.

Anderson et al. [2] aim at finding a good matching reference mo-
del from best practice for re-engineering processes under evaluation.
Their approach requires process models to be organized along goals.
For determining a best fit between the process to re-engineer and the
best practice reference model they rely on the associated goals.

horizontal interdependencies and multi-process busi-
ness process architecture approaches . Only few approa-
ches [76, 55, 56, 57, 63, 126] consider horizontal process interdepen-
dencies in their methodology and consider them when constructing
a PA.

Designed by Green and Ould, the RIVA approach is presented and
evaluated in [55, 56, 57]. The RIVA methodology is based on business
entities (essential and designed) and creates a business process archi-
tecture based on interdependencies between processes but also con-
siders organizational interaction. It specifies the relationships encap-
sulates, interacts with, and activates between processes. Relationships
between roles and organizations can be defined as well. Looking at
different kinds of interdependencies between processes there is no
formal syntax or defined semantics for their concepts. By visualizing
the interdependencies between processes they can be analyzed man-
ually.

Jacobs et al. [63] present an enterprise architecture approach based
on a transfer of a data warehouse techniques to the enterprise archi-
tecture model domain. They aim at providing different views on a
company’s operations and IT-systems by mining different reference
models. In this way they create a PA that allows slicing and dicing
process models and creating different views from it. They state that
the visualization of scenarios, i. e., a specific path through a set of
business process models in the collection, is one of the key require-
ments of business process repository users.

Rulle and Siegeris [126] propose a state centric business process
architecture based on our BPA approach. They use trigger relations
to depict interrelations between processes that initialize a change of
state of data objects. For their analysis they adapt our BPA correct-
ness criteria in Section 4.7 with rules for their state centric PA and
employ our BPA-patterns and anti-patterns of Section 6.1. The aim of
their approach is to find a model that assures correct state transitions

3.2 business process architecture approaches 49

in business process interactions, similar to our data BPA approach
presented in Chapter 8.

Lind and Goldkuhl [76] propose a framework for describing busi-
ness process interaction. Their framework consists of interdependent
layers and is derived from a language/action-oriented approach for
business modeling. Lind and Goldkuhl describe business transactions
and exchange between different actors based on a speech act which
defines a request, the fulfillment, and confirmation of a transaction.
The interaction between business processes is described with generic
patterns that are structured in five layers aiming at highlighting the
essentials of businesses.

navigation and visualization. Research in [96, 142, 60, 104]
deals with navigation in process model collections and visualization
of PAs.

Melcher and Seese [96] structure process model collections by clus-
tering process models along their process metrics. They use a hierar-
chical clustering algorithm and visualize their clusters in a heatmap.
This provides navigation structures for the process model collection.
In a similar way, Srivastava and Mukherjee [142] cluster process mod-
els and their documentation for organizing the information found in
the process models. This method results in process model repository
structure in which similar process models are found in the same clus-
ter, i. e., process category. It is a multi-faceted classification approach
(see page 44).

Hipp et al. [60] propose a concept for navigating in process model
collections with a zoom functionality and filters similar to Google
Earth for geographic maps. Their navigation concept is based on four
hierarchical levels, being the process world on top level, the process
area on second level, the process itself on third level, and the process
step on the fourth level. It allows zooming in and out of a process,
e. g., from process model to process map when zooming out. Hipp et
al. do not elaborate on the structure of the process model collection
and the underlying model that connects the different layers of the
process model collection. Their approach requires a clear structure,
e. g., defined in a PA.

In his master thesis, Milde [104] elaborates on the requirements
for visualizing PAs, i. e., the structure of a process model repository.
He identified five use cases for visualizing the structure of a process
model repository: visualizing and understanding process interdepen-
dencies, PA quality analysis, comparing new and old PAs, navigat-
ing in the process model collection, and business process re-/design.
Depending on the underlying PA methodology, visualizing business
process architectures facilitates the understanding and restructuring
of process model repositories as information on the impact of changes

50 related work

can be gathered. However, only very few process modeling tools al-
low the visualization of PAs.

Providing an overview, summarizing and visualizing process infor-
mation are highly relevant requirements for PAs. According to Baeza-
Yates and Ribeiro-Neto [5] providing browsing capabilities leverages
information about the information collection by putting information
into context with its environment. In contrast to Baeza-Yates and
Ribeiro-Neto statement, most PA approaches provide single model
classification but ignore contextual information from process interde-
pendencies.

business process modeling tool capabilities . Luebbe and
Schnaegelberger [81] present an overview of 22 business process mod-
eling software tools. They examine the functional and non-functional
features and capabilities of business process modeling tools as well as
their cost factors. The examination is based on a functional and non-
functional requirements consisting of about 200 criteria of the con-
sulting company BPM&O. From the information given about each
tool and the features announced, most of the tools offer only one di-
mensional classifications in folder structures and allow for creating
process landscapes or value chains only manually. The survey gives
an insight on the capabilities of modeling tools in practice.

3.3 choreography approaches on model level

In surveys and PA approaches presented above, the need for depict-
ing relationships and interdependencies for clearer specification, or
PA analysis was stated. In this section, we examine the capabilities
of process and service modeling approaches on process model level
to identify further requirements that should be propagated to the PA
level.

In the last decade, the focus of BPM research on process model
level extended from modeling, analyzing, verifying, or aligning sin-
gle business processes to the interaction between two or several pro-
cesses or services. Several approaches were developed that focus on
modeling and describing the behavior of interacting services and
processes [155, 10, 9, 144], processs choreographies [26, 24, 28, 23],
proclets [152, 151], approaches with execution focus like BPEL for
Choreographies (BPEL4Chor) [29] and formal approaches that also
allow for the verification of structural and behavioral properties like
workflow modules [91, 158], interaction Petri nets [27, 28] and Open
nets [94, 95, 92, 164, 78].

p2p approach . In one of the early works on inter-organizational
collaboration, Aalst and Weske [150] highlight the need for coordi-
nating inter-organizational workflows. They provide a top-down ap-

3.3 choreography approaches on model level 51

proach in which all collaborating partners agree on a public workflow,
specified in a workflow net that describes their interaction and only
the tasks that are of interest to all parties. According to the domains
involved in the public workflow, the workflow is grouped and the
different public parts are related to each other resulting in an inter-
organizational workflow net. In the third step the public part of each
workflow is decomposed into a private part under the condition that
it is a sub-class of the public workflow under projection inheritance.
By following these steps all private parts that are created are correct
by design and it is assured that the overall interaction is correct as
well.

service interaction patterns . The research from Barros et
al. [10] and van der Aalst et al. [155] introduces the foundational con-
cepts of service interaction. They describe commonly found service
interaction patterns and examine service properties mainly in regard
to inter-organizational service composition and service compatibility.
Among their 13 basic service interaction patterns Barros et al. [10] in-
troduce also three multi-transmission patterns and three one-to-many
receive or send patterns. Aalst et al. [155] extend the collection of ser-
vice interaction patterns and propose 23 service interaction patterns
including anti-patterns. They also look at multi-instance correlation
patterns in regard to one-to-one service correspondences and mainly
deal with service refinement, replacement, and integration. Besides
service patterns, Aalst et al. [155] provide means for verification of
inter-organizational service interaction compatibility (deadlock free-
dom) and single services for controllability. Controllability is the abil-
ity of a service to be composed with another service without running
into a deadlock. Both approaches look at the inter-organizational ser-
vice composition between two processes in regard to their message
exchange.

workflow modules . Workflow modules are used in research
for modeling inter-organizational business process and service inter-
action. The distribution of work in inter-organizational processes, in
this case workflow modules, poses the question of initialization, ter-
mination, and compatibility.

Glabbeek and Storck [158] analyze workflow module interaction in
regard to proper global termination and examine the invocation rela-
tions between processes. To model the request-reply-interdependency
between process and sub-process they extend the workflow module
formalism with IO ports and query ports. A query port consists of
two transitions and two places that portray the state of the query.
Transition connect to the IO port of the according sub process and
invoke their sub-routine. After having processed the request the sub-
process sends back its result to the waiting process through its output

52 related work

place that is part of its IO port. To differentiate between cases that are
handled by the cross organizational workflow net they introduce case
IDs and guards that ensure that transitions only fire with correlating
tokens. By determining whether all participating workflow modules
can locally terminate, they verify if the combined large cross organi-
zational workflow net has terminated.

Based on the defined properties, Glabeek and Storck [158] intro-
duce query nets as properly terminating workflow modules. If all
workflow modules in an process interaction are query nets, then the
interaction of all workflow modules can properly terminate [158].

Using workflow modules Martens [90, 91] investigates the compo-
sition and replacement of cross organizational web services and their
interaction in regard to their usability, compatibility, and equivalence.
The general idea is to compose workflow modules such that the com-
position results into a workflow net that is at least weak sound.

To replace one web service with another, their behavior needs to be
similar, which is expressed by the notion of simulation/equivalence.
Martens [91] introduces communication and usability graphs to eval-
uate the behavior of the composite workflow modules. A workflow
module’s communication graph describes its external behavior and
its usability graph describes its modules usable behavior. The equiva-
lence of two workflow modules’ behavior is verified by a simulation
relation between their communication graphs.

Workflow modules support the modeling and analysis of two or
more interacting web services. In [158] the need for modeling invoca-
tion relations is highlighted whereas Martens [90, 91] focuses at the
message exchange between services. To examine the quality of inter-
action between web services and processes according properties were
defined. The intention to realize particular processes by the composi-
tion of different web services and the ability to replace one web ser-
vice with another are the main drivers for using workflow modules
which allow describing and examining such settings. This method
focuses on one-to-one message exchanges. It does not directly sup-
port one-to-many communication, multi-instance communication, or
broadcasting information to several interaction partners.

interaction petri nets . Interaction Petri nets are an exten-
sion of Petri nets. They were developed to provide a formal model
for describing and verifying global interaction models between sev-
eral cooperating business partners [27, 24, 28]. Interaction Petri nets
are labeled Petri nets that represent process choreographies, i. e., the
sequences of message exchanges between two or more actors. The
actors (sender and receiver role) involved in the message exchange
and the message type are referenced by the label of the transition. A
message exchange is represented by the firing of a transition, i. e., the
sending and receiving of a message is one atomic step [24, 28].

3.3 choreography approaches on model level 53

Based on this formalism Decker and Weske [27] define the proper-
ties local enforceability and realizability for interaction models. Local
enforceability for interaction models assures that the initiator of a
message exchange must have participated in the previous message
exchange as sender or receiver. Realizability describes the possibil-
ity of representing a choreography through the sequence of behavior
models under specific constraints, i. e., message exchanges performed
by defined roles. A choreography that is realizable is always locally
enforceable, i. e., the set of realizable choreographies is a subset of
choreograhies that are locally enforceable [27, 24, 28].

Interaction Petri nets provide a powerful formalism to examine
inter-organizational interaction [27, 24, 28]. The approach takes an
actor based view and considers one-to-one interaction between coop-
erating entities. As one of the few approaches it also provides means
to reference message types but does not consider data aspects any
further.

open nets : operating guidelines . A large body of work on
service composition is based on the Open net (ON) approach [93, 79,
155, 92]. ONs are used to describe and analyze inter-organizational
service composition and inter-organizational process behavior. For in-
stance, Baldan et al. [7] define ONs to model inter-organizational pro-
cess behavior and describe the composition of two interacting ONs
along their common sub-nets.

Dealing with correct service composition and behavior of collabo-
rating services Massuthe [94, 93, 92], Lohmann et al. [79], and Loh-
mann [78] use ONs and establish operating guidelines as a formal
description of requirements for service composition. Operating guide-
lines were introduced to specify the behavior of the set of compatible
services without the need to reveal the internal structure of a service
and hide irrelevant information [92, 78, 155]. An operating guideline
for a service s is a Boolean annotated service automaton that defines
the properties of the set of compatible services to s. It is an efficient
representation of the compatible set of services of a service s that are
behaviorally compatible with s, i. e., their composition with service s
is deadlock free. In this regard also the notions of strategy and con-
trollability of services are introduced in [92]. A service s ′ is called a
strategy for a service s if the composition of both services is compati-
ble. If such a compatible service s ′ exists for a service s, then service
s is controllable. Weinberg [164] presents a technique to efficiently an-
alyze the controllability of WS-BPEL processes by transforming them
to ONs and calculating their operating guidelines.

Operating guidelines specify the paths in the state space that reach
the desired final marking as Boolean annotated service automaton.
Massuthe uses operating guidelines for supporting the discovery and
deciding the suitability of services [92]. An operating guideline can

54 related work

be used as information to be published in a service repository while
hiding internal structure of the published service [94, 92, 78].

Lohmann [78] elaborates on service composition by providing tech-
niques for supporting the design phase of service composition and
automatically verifying correctness of service compositions as well as
completing partially specified compositions and fixing incorrect com-
positions. Additionally he introduces a technique to deduce correct
local service descriptions from globally defined choreographies [78].
He employs operating guidelines to characterize the set of all com-
patible partners of a service and in his correction algorithms.

Aalst et al. [155] use ONs to describe and analyze the previously
mentioned service interacting patterns. They establish a formalization
of strategy, controllability, and accordance for exposing services, to
refine and replace, as well as to create adapters. Accordance allows
a service s to be replaced by another service s ′ if the replacement
service s ′ is compatible with all services that service s is compatible
with.

proclets . Proclets are lightweight processes, process fragments,
that were developed to support the modeling and implementation of
complex processes. By dividing complex processes into smaller sim-
pler processes, proclets, the complexity of the processes is reduced.
In the same time stronger emphasis is laid on the modeling of in-
teraction between those lightweight processes [89]. The focus on the
interaction between proclets allows for more flexible process combi-
nations, such that many cases do not need to be squeezed into one
large process definition which is too restrictive according to Aalst et
al. [151, 152] and Mans et al. [89]. This is especially helpful in the en-
vironment of hospitals where cases have a high variability in regard
to the diagnoses [151, 152, 154, 89]. The most recent research on pro-
clets deals with specifying the interaction between process on process
instance level and the implementation in Workflow Management Sys-
tems [154, 89, 87]. Especially the interaction between proclet instances
and their relationships are in the focus of research.

The communication between proclets is defined on instance level.
Proclets allow modeling the sending of a message from one sending
instance to many receiver instances [154, 89, 87]. The representation
of a one-to-many relationship in regard to different partner proclets
is specified by defining several one-to-one message exchanges. This
work emphasizes the need to focus on the interaction between inter-
nal processes. Although their approach rather focuses on dividing
single complex processes into smaller ones and recombining those
proclet instances in a flexible way, the requirement of depicting the
interaction between processes, one-to-many, and many-to-many in-
teraction, as well as looking at resources and data should be trans-
ferred to large process model collections and their inherent process

3.3 choreography approaches on model level 55

interdependencies. The proclet approach can be situated on the pro-
cess model and implementation level due to its very detailed descrip-
tion of process steps and its detailed specification of content and in-
stance interaction. Recent research by Aalst et al. [154] and Mans et
al. [89, 87, 88] include implementations of the proclet approach for
Workflow Management Systems.

bpel4chor . Decker et al. [29] introduce BPEL4Chor, an extension
of BPEL, to represent business process choreographies in BPEL. They
also provide a transformation of BPMN to BPEL4Chor to join the
visual representation of BPMN with the technical expressiveness of
BPEL. This approach focuses on the implementation of the interaction
between cooperating organizations.

bpmn choreography diagrams . In Section 2.3.2 BPMN chore-
ography diagrams were introduced. They were derived from work on
process choreographies and interaction Petri nets [27, 24, 28]. Chore-
ography diagrams are used to model the interaction between cooper-
ating organizations. They provide an actor view and depict the mes-
sage exchange between the different partners [165]. It allows to model
broadcasting messages from one sender to several partners, however,
the receiving of several messages from different partners cannot be
modeled with one choreography task. The private processes that re-
alize the message exchanges in each company are hidden in this dia-
gram type. In this regard, one cannot determine how many processes
are internally involved in a choreography.

data in process choreographies . So far we have looked at
the choreography approaches that focus on the control flow of inter-
acting processes and composed services, or proclets. In recent years
new approaches that also look at data aspects in choreographies and
process interaction have been developed. So far the work on data
dealt with consistency between data model and control flow of sin-
gle processes [48, 77] or the synchronization of several object live-
cycles (OLCs) of different data objects in one single process [103].
The primary aim of most approaches is to generate models with
consistent and correct data and control flow perspectives. Research
on data aspects in process models can be grouped along two main
streams, activity centric and object centric process modeling. For in-
stance, Nigam and Caswell [111] and Cohn and Hull [20] introduced
business artifacts, an object-centric approach, that Yongchareon et
al. [173] refined by providing a formal framework for process spec-
ification utilizing synchronized OLCs. Each involved data object with
a corresponding OLC correlates to one process and transitions of dif-
ferent OLCs required to be executed together define the synchroniza-

56 related work

tion. This is done for business artifacts by defining synchronization
edges [173].

PHILharmonic Flows [73] and COREPRO (COnfiguration based
RElease PROcesses) [108] are object-centric process modeling approa-
ches. PHILharmonic Flows [73] focuses on describing processes with
OLCs. The interdependencies between different data objects are pre-
sented in terms of a hierarchical data model. COREPRO [108] as-
sumes one high level system process model that depicts hierarchical
relations. Processes and their sub-processes are represented as OLCs.
To maintain them and provide consistency among the hierarchical
levels of process and sub-processes and their data objects, interde-
pendencies are defined between the OLCs of the data objects. The
approach provides support for the maintenance of data objects, flexi-
bility, and re-use on process model and instance level. Both method-
ologies, PHILharmonic Flows and COREPRO, use hierarchical struc-
tures to define the interdependencies between the data objects and
show the necessity of hierarchical relations for a better and easier
maintenance.

Considering the data perspective similarly to object-centric approa-
ches, activity centric models can be enhanced with data objects and
their states. Approaches by Eshuis and van Gorp [48] and Liu et
al. [77] propose extracting OLCs from activity-centric process mod-
els for each used data object and assess them for consistency. Meyer
and Weske [102] introduce the data correctness notion of weak confor-
mance and develop a technique to analyze if an activity in a process
model is able to access the required data objects in the expected state.
They also provide a verification algorithm that combines the checking
of data conformance and control flow soundness.

These research endeavors on data aspects show the importance of
data in business processes. Presented examples of object-centric and
activity centric approaches focus only on single process models. How-
ever, the exchange of messages between several processes is based
on data objects and information exchanged, so that data interdepen-
dencies exist between processes. Data interdependencies and the ex-
change of data between processes become more important but have
not yet gained major research attention.

Knuplesch et al. [69, 68] introduced a data layer into process chore-
ography diagrams. They propose data aware choreographies in which
virtual data objects define the message exchange between processes.
The information specified in the data objects is used to determine the
routing of the control flow. For the analysis of the object flow they
propose Data-Aware Interaction Nets (DAI) and provide a transfor-
mation between Data-Aware choreographies and DAIs. This allows
them to analyze choreographies for realizability and termination con-
sidering data aspects during message exchanges [69, 68].

3.4 business process model abstraction 57

Bridging the gap between activity-centric and object-centric process
approaches Fahland et al. [51] use proclets to model artifacts. They
provide a technique to check conformance by decomposing artifact-
centric processes and mapping them to an interaction conformance
problem. This approach is based on execution logs and aims at con-
formance checking between process execution level and model level.
Meyer et al. [103] provide means to model and enact complex data
dependencies in activity-centric process models by providing a global
data model known from object-centric approaches.

Data interdependencies depict important information, e. g., on the
status of an order or the production of a good, and need to be re-
flected in business process architectures. Consistency, conformance,
and correctness between data and control flow perspective should
also be examined in regard to process interactions for avoiding er-
roneous behavior. In Chapter 8, we introduce a technique to extract
data interdependencies between business processes and depict them
on PA level.

3.4 business process model abstraction

Business process model abstraction is a technique to provide an ov-
erview of the most important aspects of a process model and reduce
the complexity by either eliminating unimportant aspects or aggre-
gating aspects of interest, i. e., the generalization of detailed process
models [136]. Business process abstraction is a bottom-up approach
of providing simplified process models.

PAs could be considered a high level abstraction of process models
as many PA approaches group and aggregate process models by their
business objects or functions for example. Several process models are
then represented by the function or the business objects they share.

Within the scope of the process model level, different algorithms
have been proposed and refined for abstracting process models in [135,
115, 116, 139, 137, 138, 140, 141]. Smirnov et al. [138] highlight the
need for a fast overview of a process’s main characteristics based on
an empirical survey of health insurance workers and validated by
BPM consultants. Business process architectures have similar aims,
e. g., offering information and an overview of the main characteristics
of processes in a particular category. In [141] Smirnov et al. elaborate
on the use of process model abstraction and present a classification
of process model abstraction use cases. Similar to PAs the aim of ab-
straction is to highlight important aspects of a process model, hiding
the unimportant parts, and hence reducing complexity.

Polyvyanyy et al. [116, 115, 117] improve the technical algorithms
of Vanhatalo et al. [159, 160] for process model abstraction using ei-
ther Process Structure Trees (PST) or Refined Process Structure Trees

58 related work

(RPST), techniques for decomposing process models into smaller frag-
ments that can in a later step be consolidated and abstracted.

A large part of research on business process model abstraction was
developed by Smirnov et al. [135, 139, 137, 138, 140]. They present
different formal techniques for process model abstraction that allow
firstly decomposing complex process models into fine grained compo-
nents and secondly abstracting those components into a generalized
abstracted view of a process model in regard to structural, behavioral,
and semantic aspects [139, 138, 140, 137].

In a similar context, Reijers et al. [122] discuss modularization of
process models in regard to better comprehension of process mod-
els. They conducted an experiment to examine if modularization of
process models, i. e., using sub-processes, fosters understanding of
process model. The results of the experiment indicate that modular-
ization has a positive effect on process model comprehension by hid-
ing information in sub-processes. This was expecially apparent when
sub-processes were used extensively. Based on their findings, they
investigated measures to identify process model fragments that are
suitable for being captured in a sub-process. For this, the process mo-
del metric connectedness appeared to be the most promising. In this
context connectedness of a sub-process describes that the nodes of
the according process model fragment (sub-process) are stronger con-
nected with each other (e. g., by number of arcs) than to the nodes
outside of this fragment (the other parts of the process model).

In a different approach, Reijers et al. [123] present a one-to-many
process model aggregation algorithm for easier maintainability and
management of process models in a process repository They intro-
duce aggregated EPCs (aEPC), an extension of EPCs, that describe
a set of process models by their product hierarchy, along general-
ization/specialization relationships between node and leaves in the
product tree. By visualizing context information of the original mod-
els and deriving matching product hierarchy trees they improve end
user comprehensibility of the aggregated models.

Eshuis et al. [47] and Reichert et al. [121] present two methodolo-
gies to provide customizable process views on large business proces-
ses. Eshuis et al.’s [47] scope are inter-organizational process collab-
orations for which a company needs to publish their public process
that hides secret and unrelated business process information, simi-
lar to the private/public approach mentioned earlier [150]. Their ap-
proach consists of two steps; first creating a non-customized view
on the internal process by aggregating internal activities, and second
customizing the resulting process by omitting and highlighting activ-
ities that are not requested by the collaboration partner [47]. Deriving
the customized view requires input from the consumer who decides
which activities are important to him. The process is then tailored to
the consumer’s needs by omitting the irrelevant activities. Eshuis et

3.5 evaluation of existing approaches 59

al. [47] provide a formal definition of the aggregation and customiza-
tion algorithms.

Reichert et al. [121] present the Proviado view mechanism to create
personalized views on large and complex business processes by using
graph reduction and aggregation techniques. Similar to [47, 135], they
hide or aggregate information in a respective business process model
to emphasize the required information for the user. In the forefront of
the framework is the visualization of complex process models down
to the implementation on instance level to achieve personalized views
on a business process based on parameterizable operations, e. g., that
shows a user only the activities the user has to perform. Their pa-
rameterizable operations allow users to configure their view and the
properties that the personalized view should comply with. For in-
stance, for the personalized view they define three different node de-
pendency properties: dependency erasing, generating, and preserv-
ing. Reduction operations are always dependency erasing whereas
aggregation operations can be of any of the three types [121]. Both
approaches use abstraction algorithms to provide customized busi-
ness process views. Their scope lies on single business processes and
do not take business process interdependencies into account.

3.5 evaluation of existing approaches

In this section, we discuss and evaluate the presented approaches. We
highlight aims, requirements, and gaps, especially from the initially
presented surveys [53, 54, 56, 83, 85, 84, 35].

The main aspects identified in the PA surveys and PA evaluation
frameworks are: aim of methodology, framework characteristics, scope
of the approach, type of relationship and interdependencies depicted
in the framework, and the elements involved. Especially horizon-
tal interdependencies, consistency between layers, visualization and
overviews as well as formal specification of relationships were men-
tioned as gaps in PA research and are also reflected in the aspects that
will be used for classifying related work. Table 7 in Appendix A sum-
marizes related work and list the according characteristics of each
approach.

• Aim of methodology: visualization, definition of relationships, ov-
erview, analysis, classification [56, 70, 83, 84, 35]

• Framework characteristics: ease of maintenance, consistency, com-
prehensibility, and clear specification of relationships (in-/for-
mal) [56, 54, 70]

• Scope of methodology and application: single models or several
models, applied bottom-up or top-down, intra-or inter-organi-
zational

60 related work

• Type of relationship between elements: hierarchical or horizontal,
e. g., sequence order, activation, message flow, input and out-
put [56, 70, 83, 84, 35]

• Relationship elements: the elements that take part in the relation,
e. g., activities, objects, process, input, output, etc. [56, 70, 83, 84,
35]

The aim of methodology describes the main use cases that are sup-
ported by the research approach, e. g., classifying processes and pro-
viding an overview on a process model repository. The framework cha-
racteristics describes the framework in more detail, e. g., if there is a
formal specification of relationships and elements, if it provides sup-
port for maintenance, or if its describes mechanism to assure consis-
tency between different layers of a PA.

Scope tells us if the approach focuses on only single process mod-
els or on several process models at once and if it is intra- or inter-
organizational. Approaches that focus only on single processes do
not take interdependencies between processes into account whereas
approaches that consider several processes usually depict a relation-
ship and interdependency between processes. For instance, a PA ap-
proach that classifies process models each one by one into categories
is considered to have a single process model scope as the classifica-
tion process always looks at only one process at a time.

The category type of relationship between elements describes relation-
ship types that the approach under examination specifies, e. g., in
which way processes are connected to their category group(s) (hierar-
chical) or other processes (horizontal).

Relationship elements describe the elements involved for defining the
relationships. A function based classification relates processes to busi-
ness functions so that the element of focus would be the business
function that may group several processes into one category. The pro-
cess is in a part-of relation to the business function for example.

From the presented research approaches we derive four groups:

1. Hierarchical PA classification approaches considering single pro-
cesses

2. Single process model approaches for visualization, navigation,
and configuration

3. Horizontal PA approaches considering multiple processes

4. Detailed process model choreography (multi-process) approa-
ches with formalism

3.5 evaluation of existing approaches 61

3.5.1 Hierarchical PA Classification Approaches Considering Single Pro-
cesses

Nearly all the EA and PA approaches presented are based on a classi-
fication of single business processes along different aspects (business
object, action, function, reference, goals). Most of the approaches em-
ploy a functional classification of the process models but also busi-
ness objects are often used for classification purposes as has been
also found by Dijkman et al. [35]. A third of the PA approaches use
reference models to classify their approaches which were also func-
tional based in many cases. Although regarded as very popular and
easy to use by practitioners, the guidelines of reference model based
approaches, were rather considered not useful according to [35] . Our
observations of related work coincide with Dijkman et al.’s findings.

Less than a quarter of approaches classify their business processes
according to business objects, e. g., the product produced or impor-
tant data objects. Only few classify the processes according to goals
or actors like departments or specific roles. The majority of these
approaches provide some sort of informal hierarchical aggregation
and decomposition as relationship type between the process model
and its category, e. g., specialization, generalization, aggregation or
decomposition.

Srivastava and Mukherjee [142] and Melcher and Seese [96] employ
clustering algorithms to provide an automated classification of the
process models for easier navigation and visualization. Automated
extraction of such navigation systems is an advantage on the one
hand as it saves time and effort; as a result the maintenance of the
process collection may be simplified. On the other hand the resulting
clusters in most cases change when the input set of the clustering
algorithm changes, i. e., when process models are added or removed
from the process model collection. This would result into constantly
changing navigation structures which would confuse the users of the
process model repository. These two clustering approaches are the
sole classification approaches with a formal specification in form of a
similarity function.

The common aim of the approaches in this group is to provide a
means to structure and manage process models within process model
repositories and support the re-/design phase of process modeling
projects. In many cases the classification of the process model is also
used for navigating in the process model repository and to provide
an overview of the existing process models.

62 related work

3.5.2 Single Process Model Level Approaches for Visualization, Naviga-
tion, and Configuration

This group encompasses process model visualization, process model
(repository) navigation and all business process model abstraction
approaches that focus on single process models. Their common aim
is to reduce complexity and enhance comprehensibility in regard to
process model understanding (filtering unnecessary information) by
providing aggregated, customized, or filtered views on a process mo-
del. This is similar to the aims of most PA approaches but situated
on the lower process model level. All of the visualization approaches
are bottom-up as they build on existing process models and their
metadata. The process navigation work by Hipp et al. [60] describes a
navigation architecture with different views. The research on business
process model abstraction [116, 115, 117, 135, 139, 137, 138, 140], as
well as business process customization and configuration [121, 47, 8]
is clearly specified in formalisms. Most visualization techniques build
on the underlying specified classification scheme.

3.5.3 Horizontal PA Approaches Considering Multiple Processes

All PA approaches that consider several processes and describe hor-
izontal interdependencies between processes or their categories fall
into this category. Less than a quarter of PA approaches examined
consider horizontal interdependencies between the elements of inter-
est. The lack of approaches depicting interdependencies between pro-
cesses was also identified by some of the research papers as main
gaps in PA research which coincides with our findings here.

The horizontal interdependencies described by these approaches
are manifold. They focus on relations between actors, data objects, or
processes and their activities. The survey by Maddern et al. [83] is also
grouped under this category but does not describe any concrete PA
approach. On PA level Lind and Goldkuhl [76] present one of the few
approaches that describes business transaction and exchange between
different actors based on a speech act which defines the request, the
fulfillment, and confirmation of a transaction. Jacobs et al. [63] define
horizontal relationships between processes of different reference pro-
cess models in order to create and populate an enterprise repository.

Rulle and Siegeris [126] use our BPA pattern and anti-pattern anal-
ysis technique for assuring correct interdependencies in their config-
urable PA. The RIVA approach by Green and Ould [55, 57] provides
similar horizontal relationships like activates and interacts with be-
tween processes.

Apart from Rulle and Siegeris [126], Jacobs et al. [63], and Green
and Ould [55], only Moreira et al. [105], Schmelzer and Sesselmann
[130], and Scheer [127] name horizontal relations but do not spec-

3.5 evaluation of existing approaches 63

ify them and their application in detail. Therefore those approaches
were considered having a single model focus. Except from Rulle and
Siegeris [126], all other multiple model scope approaches are infor-
mal. Three of them focus on the analysis of the interdependencies
described.

Except from Milde [104], none of the examined visualization approa-
ches considers process interdependencies and their visualization.

3.5.4 Detailed Process model Choreography (Multi-Process) Approaches
with Formalism

A large group of examined approaches provide means to portray hor-
izontal process interdependencies between processes or actors. These
approaches provide strong formalisms for the composition and analy-
sis of inter-organizational business process or service interaction. The
approaches in this group are situated on process model level and
provide a detailed description of external flows. In most cases the re-
lations defined are one-to-one message exchanges and composition of
two services or processes. The works by Decker et al. [24, 28] also al-
low for the specification of one-to-many message exchanges between
several actors. Here the one-to-many exchange refers to the sending
of one message to several receivers.

The Proclet approach developed for specifying the execution of
complex process models, also allows for modeling the interaction
between process fragments in such a way that one proclet instance
can communicate with many instances of another proclet. Here the
one-to-many relation means the sending of one message to several
instances of the partner process [152, 88, 89]. The sending of one mes-
sage to several partners can only be modeled by adding a relation
for each pair of sender and receiver and assigning the same message
object to the channel.

The choreography approaches examined mainly focus on smaller
scenarios. The need for modeling choreographies originates from the
requirement of specifying the interaction with an external customer
or service provider. This reduces the scope of these approaches to
defining a single process from each participant that fulfills the be-
havioral contract specified in the choreography. It is assumed that
the internal processes work correctly and that the partner process is
ready to receive the information sent. A choreography ends with the
fulfillment of the agreed interaction contract and it is not of interest
which processes are triggered internally in an organization.

In this group we find also choreography approaches that specify
and consider data objects in the process interaction. A fairly new re-
search area is the integration of data aspects in choreography mod-
eling which shows the increasing importance of data aspects and re-
source modeling while looking at process interdependencies.

64 related work

Most of the approaches in this group define message exchanges
between processes, services, or actors. The explicit modeling of acti-
vation or triggering is not considered. Only proclets allow indirectly
modeling the activation of a process fragment.

The business process model abstraction methods and the config-
urable process views lay a strong focus on reducing complexity of
the process models by eliminating irrelevant information and aggre-
gating relevant aspects of interest. The overview and visualization of
parts of the process model are especially important.

3.5.5 Observed Gaps

In the past ten years, we could observe a strong focus of research
on the examination of single process models. The field of PA research
deals with structuring, managing, and visualizing many process mod-
els in an overview within a process model repository. The majority
of approaches provide a classification of the process models along
different aspects, e. g., business object, function, department, or goal.
Rarely a holistic view has been taken as each process model is classi-
fied individually. While choreography approaches are very detailed
and cover the inter-organizational interaction, the internal interdepen-
dencies between processes have not been examined in detail. For man-
agers, IT-, and business experts, it is valuable to get an overview on
how a case is routed through their organization and which proces-
ses interact with each other to realize a public service or the pro-
duction for a good. Similar to business choreographies that look at
external inter-organizational interaction, internal process interdepen-
dencies and their interactions have to be identified, visualized and
examined. PA approaches that reduce the complexity and detail of
process models, but still depict the context in which they operate, i. e.,
their interdependencies in terms of input/output, message exchange,
or resources for example have not been proposed yet.

We could deduce from the presented business process choreogra-
phy approaches the importance of depicting the composition and an-
alyzing the behavior of the composed processes. Some of the chore-
ography approaches highlighted the need to depict multi-communi-
cation, i. e., broadcasting and multi-casting of messages to several in-
stances of a partner process or several partner processes [89]. In pro-
cess model repositories information on interdependencies and multi-
communication between business processes is available to an extent
that goes beyond the scope of choreography approaches. So far, this
information is not leveraged on the PA level.

Often the detailed process model layer and the abstract PA layer
are not connected and modeled independently from each other. Com-
mon PAs do not have a formal foundation or a clear specification
to depict the hierarchical and horizontal relations. So far, hierarchi-

3.5 evaluation of existing approaches 65

cal and loose horizontal relations have been captured in an informal
way. The strength of an underlying formalism is obvious from the for-
mal approaches on service composition and design, and choreogra-
phies [94, 79, 95, 155, 28]. Most of the choreography approaches are
based on a strong formalism and a range of correctness criteria has
been presented as well as techniques for verification. Similar correct-
ness properties as we find on process model level do not exist for
PAs. In rare cases, manual analysis was proposed as in [70, 55, 126].
This is due to the lack of formal foundations, correctness and consis-
tency criteria, as well as clear specification of relationships between
elements of a PA. On PA level analysis often refers to the evaluation
of assigned key performance indicators.

Except from the concrete guidelines given by Dijkman et al. [35]
and zur Muehlen et al. [106], most of the PA approaches describe
only their informal methodology on the relations and structure of the
process model collection but do not specify a concrete technique how
to get from process models to the PA level and vice versa. Consis-
tency criteria between PA and process model level do not exist and
means or guidelines for ensuring consistency between the layers are
not found in PA literature.

Many PA approaches create a break in their decomposition from
business functions to process models and their process activities. The
starting point are business functions that are then decomposed until
they reach the granularity of process activities, and cannot further be
decomposed. Such a decomposition, however, contradicts the aim of
companies of becoming more process-oriented and being structured
along processes. The process oriented focus of the lower process mo-
del repository levels and the inherent rich information is not propa-
gated to the PA level of process model collections where we mostly
find classification along different aspects.

The process model abstraction approaches show that it is possible
to reduce complexity while preserving aspects of interest and hiding,
aggregating, or eliminating unnecessary information. PA approaches
hide process information in their classification scheme in such a way
that the abstracted information, i. e., the representation of processes
on PA level, is so abstract that all information is lost and not useful
except for navigation purposes. Some interdependency concepts are
realized by the RIVA methodology by Green and Ould that includes
a mix of actor and process view on high level but it does not define
the influence of such relations on processes and actors. Business pro-
cess model abstraction approaches focus only on the abstraction of
single processes. A PA approach that provides an abstract represen-
tation of processes and preserves and clearly defines their horizontal
interdependencies does not exist.

One-size-fits-all approaches like business process landscapes, value
chains, the categorization into departments or the classification into

66 related work

main, supporting, and management processes, do not highlight any
company specific aspects or important company characteristics due
to their generality. Neither process characteristics are found on PA
level nor any interdependencies that could be extracted from the pro-
cess models.

Easy maintenance and comprehensibility are reported as important
factors when creating PAs but how this can be achieved has rarely
been discussed in proposed PA approaches. Automated creation or
extraction of PAs has not been proposed yet, except from the cluster-
ing approaches by [96, 142] and the process to enterprise architecture
alignment approach by [63].

Valuable and far reaching approaches have been presented in PA
research. Intrinsic classification techniques for organizing, structuring
and managing large process collection have been proposed. However,
PA research in comparison to existing research and approaches on
process model level, is still in its infancy.

In summary, the research gaps encompass the weak preservation of
processes and their characteristics on PA level, the informal specifica-
tion of horizontal and hierarchical relations, rather single process mo-
del focused approaches than holistic approaches, non-existent quality
criteria for PAs and analysis techniques, weak linking of PA and pro-
cess model level without clear consistency criteria, and the lack of
automation and support for maintenance and analysis.

3.6 summary

In this chapter we introduced a broad range of valuable research on
PAs, enterprise architectures, business process model abstraction and
configuration, and business process choreographies. These topics that
all partly touch the field of PAs. We provided some background on
existing techniques and approaches on PA and process model level.
We identified different requirements for PAs and gaps in PA research.
Some of which will be the foundation for the PA approach that we
will present in the following chapters.

Part II

C O N C E P T U A L D E S I G N

4
B U S I N E S S P R O C E S S A R C H I T E C T U R E

This chapter is based on the published papers [40, 38, 45, 43]. In this chapter, we
present the core concepts of our BPA approach. After an description of our

motivation, requirements, and assumptions, we introduce the main elements and
relationships of our BPA approach and the rational behind it. Together with the

next chapter it provides the foundation of our BPA approach.

4.1 motivation

BPM aims at improving an organization’s operations and processes,
increasing efficiency and reducing costs [114, 165]. With the advent of
BPM in the private and public sector, large process model collections
have been established in many companies and public organizations.
We have noted that already many hierarchical PA approaches exist
which focus on the classification of single process models and pro-
vide a structure for process model repositories. However, looking at
all the process models one by one in large process model collections
does not reveal all their valuable information. We identified that only
few PA approaches consider horizontal interdependencies between
processes. So far, the visualization and analysis of internal process in-
terdependencies throughout the whole organization (end-to-end) has
not been examined in detail. Business process owners are confronted
with questions like:

• Which processes influence the execution of my business proces-
ses and how can I streamline them?

• How does the re-design/improvement of my process affect other
related business processes?

• While I know my individual processes to be sound, are my pro-
cesses also sound in their relations with each other?

• How does the customer journey through the administration of-
fices look like as a whole, when, for example, that customer
wants to open a new enterprise?

• Where should one business process start and another begin and
how does this affect assignment of responsibility?

• What are required resources or expected costs for the execution
of a group of interrelated business process?

69

70 business process architecture

• What is the risk of failure of my business process in regard to
its interdependent processes?

These questions cannot be answered with traditional PA approa-
ches. We take a different view with our novel BPA approach by study-
ing the interrelationships between the business process models of an
organization. Only by taking a holistic view on a process model collec-
tion, and its inherent process models, our BPA approach shows and
highlights inter-process dependencies, and hence extends and lever-
ages the stored information. This maximizes the value of the effort
put into the business process elicitation process. Taking a holistic view
is especially important for the optimization, analysis, or re-design of a
company’s process landscape. Such an approach has a larger impact
than single process optimization efforts as the interaction between
processes is harmonized avoiding a negative performance impact on
each other. In the following, we elaborate on the requirements and in-
troduce the foundations of our novel BPA approach. As noted before,
we refer to our approach as Business Process Architecture (capital-
ized) and abbreviated as BPA whereas we refer to common business
process architectures and the general research field as business pro-
cess architecture (lower case) and abbreviated as PA for better reading
and differentiation.

4.2 requirements for business process architectures

Based on our evaluation of related work, we introduce the require-
ments for our BPA approach. We envision three user types to use
our BPA approach; managers/business process owners, business pro-
cess experts, and the business process users/employees. Managers
and business process owners need a high level view on their busi-
ness processes. For them it is important to easily grasp information
on their processes and use this information to support their strategic
planning, calculate costs or resources, and improve the operations of
the organization. They are responsible for their business processes,
take a managerial perspective on the business process lifecycle and
ensure that their business processes are up to date. For this they may
interact with other process owners to harmonize and discuss the in-
teraction of their processes on high level. Business process owners
and managers are not necessarily highly knowledgeable in BPM and
may only be BPM novices.

The main user of our BPA approach is the business process expert
that leads the BPM initiative. Business process experts are responsible
for the overall methodology applied in the business process elicitation
project and design process modeling guidelines. Usually, the business
expert reports to the business process owner. They design, analyze,
and improve business processes. The third user is the common em-

4.2 requirements for business process architectures 71

ployee who uses the process model collection as job instruction and
information source.

Figure 14 shows a UML use case diagram that outlines the use cases
our BPA approach shall cover and the users involved. We identified
four use cases from PA research. The use cases structure and manage
process models which includes the use of a design methodology, and get
overview over the process models describe the general requirements
to a PA approach. The use case analysis in general is only covered by
very few approaches like Green and Ould [55, 56, 57] or Rulle and
Siegeris [126]. The use case analyze interdependent processes extend the
analysis to a larger context than only single process models. The four
main use cases are extended by a range of refined use cases that our
BPA approach shall cover.

The use case structure and manage business process models is extended
by the use cases re-/design process models, update and maintain,
and navigate. The ordering system defined by a PA is used to navi-
gate in the business process collections. The structuring and manag-
ing of process models in a process model repository requires the use
of a design methodology. To provide a clear specification we regard a
formal description of our BPA approach as essential. As the focus of
our BPA approach lies on interdependencies, our BPA formalism is re-
quired to provide means to define those business processes and their
interdependencies. Business processes can have many different type
of interdependencies, e. g., message interdependencies, data interde-
pendencies, or originating relations. The BPA methodology shall rep-
resent process interdependencies and retain the process oriented view
and characteristics of business processes. The classification/ ordering
system of our BPA shall base on those interdependencies. During our
research we encountered many different process modeling notations.
Hence, a our PA approach should be modeling notation independent.

In contrast to current PA approaches our approach shall be appli-
cable top-down and bottom-up while in both cases the consistency
between PA and process model layer has to be assured. The elicita-
tion and maintenance of a process collection is a strenuous manual
task that is time consuming and costly. For collections of hundreds or
several thousand process models, e. g., SAP Reference Model, Dutch
administration, or China CNR Corporation Limited [74], this is not
efficient. Our BPA approach shall facilitate and support the mainte-
nance of the process model collection along all different layers while
considering consistency issues.

We have observed that hardly any PA approach allows for the anal-
ysis of business process architectures. Hence, we envision that busi-
ness process architectures modeled with our BPA approach can be an-
alyzed. This is captured by the use case analyze interdependent processes
and its extensions in Figure 14. In this regard our BPA approach shall
provide a technique to analyze a PA, its inherent business proces-

72 business process architecture

User

Re-/Design

Process Models

Improve Quality of

Process Models

Visualize

Interdependencies

Extract Inter-

dependencies

Reduce Complexity

of Process Models

Provide Bottom-up

Application

Identify Input/ Output/

Interdependencies

Identify Data

Interdependencies

Structure and Manage

Process Models

Connect PM and

BPA Layers

Provide Formalism

Navigate in

Process Models

Get overview

Determine Impact

of Changes

Propagate Process

Model Information

BP Owner/

Manager

BP Expert

Analyze Inter-

dependent Processes

Maintain and

Update Models

extend

extend

Use Design

Methodology

extend

extend

extend

include

extend

include

include

include

include

Provide Top-Down

Application
extend

include

extend

extend

include

Identify

Message Inter-

dependencies

include

extend

include

Aggregate Process

Model Information
extend

extend

include

include

Process Model

Collection

include

Define

Interdependencies

include

extend

Figure 14: BPA use cases

ses and their additional information while considering their business
process interdependencies. Here the analysis of the impact of change
and the influence of business processes on each other are particularly
important. The analysis of interconnected processes shall improve the
overall quality of the business process collection as their interaction
is better harmonized and adapted to each other. In this way, business
processes can be streamlined considering their interdependencies.

The main idea of PAs is to provide an overview of a process mo-
del collection and present its business processes. Our BPA approach
shall help to reduce the complexity of business process models and
visualize the most important characteristics of process models in a
simple way so that also non-BPM experts, like a new employee, are
able to grasp their process universe and the information provided.
The extracted characteristics and context information provide access
and further entry points to a process model collection and its content.

4.3 assumptions 73

The application area of our BPA approach in the BPM lifecycle is
the design and analysis phase in which business processes are identi-
fied and elicited, as well as verified. In this phase, it shall support the
structuring of a process model collection, the identification of main
processes, as well as the coordination of the process interaction in
regard to their behavioral and data interdependencies. The analysis
functionality shall help to examine the BPA and its inherent proces-
ses and hence contribute to improve the process model quality. In
a re-design phase BPAs shall help to understand the interdependen-
cies between processes and to examine the impact of changes of the
business process to other involved business processes as the perfor-
mance of business process impacts or is influenced by other proces-
ses. A holistic view is here of utmost importance to maximize the
re-organisation efforts and harmonize interaction between processes
avoiding a negative performance impact on each other.

4.3 assumptions

Business process architectures define a structure and overview of
a business process model collection. The structure, e. g., a classifi-
cation system, can be created before modeling business processes
(top-down) or it builds on an already existing process model collec-
tion (bottom-up). When following a top-down approach, our BPA ap-
proach does not imply specific assumptions on the process model col-
lection as the PA is built before the business processes of the process
model collection. In a top-down procedure, our BPA approach de-
mands that the about to be elicited business process models meet the
structural and behavioral aspects specified on PA level. For bottom-
up approaches, we assume that the process model collections con-
tain information on interdependencies that can be extracted through
parsing and analyzing the business processes and their attributes. As
BPAs build on this information we assume it to be available and eas-
ily accessible for all processes. Chapter 7 presents more details on our
BPA methodology and elaborates on the problems and required pro-
cess information for extracting business process interdependencies
from process model collections.

In the following, we elaborate on our initial assumptions in regard
to business process models that are stored in a process model repos-
itory. All business processes are unique and a process model collec-
tion does not contain duplicate business process. A business process
may appear in several process model diagrams, however, this infor-
mation can be detected. In general, we assume that process model
collections consist of business process models depicting single busi-
ness processes. We assume that the business processes in the process
model collection are sound.

74 business process architecture

Companies that consist of several departments, and/or are situ-
ated in several locations, share the same process model repository.
This means that the internal/private workflow of a business process
is accessible for designing PAs. In general we assume that all pro-
cesses in the process model collection can be accessed, also process
models that depict operations of collaborating companies. For cases
of inter-organizational collaborations we assume companies to share
at least their public process, if not their private processes, for the sake
of streamlining the overall interaction between the companies. This
means that these processes are included in a process model collection.
E. g., many companies outsource part of their operations but have ac-
cess to the private business processes of their supplier company. This
in a way contradicts the assumptions of choreography modeling ap-
proach from [150, 28] where only external behavior is specified and
the internal processes are considered private.

Our BPA approach does not differentiate between the common
structure of support, management and core processes. However, tak-
ing this classification into account, it covers all processes but mainly
focuses on the core processes.

4.4 conceptual definition

Most of the business process architecture design styles presented
in Chapter 3 depict hierarchical and to a lesser extent horizontal re-
lations between business processes. In total, we identify four types
different types of relations:

• composition - one business process is composed of a number of
other business processes, also called sub-processes

• specialization - one business process specializes another

• trigger - one business process causes another business process
to instantiate and start

• information flow - one business process sends information or
other objects to another business process

Composition and specialization are hierarchical relations between
process models in which composition defines a 1:n relation and spe-
cialization a 1:1 relation between two process models. Trigger and
information flow relations are horizontal relations between process
models. They depict the concrete requirement of information exchange
between two or more business processes.

Information Flows and triggers are the most basic interrelations be-
tween business processes. Triggers depict that one processes instan-
tiates and starts another process. This means that the process that
is triggered cannot start by itself. It is inactive before it receives the

4.4 conceptual definition 75

�������

�������

��	��
�����

��
�����

���������	��

�	������
�����

������������

�������

������������

������	����
����

�����������

�������

�����������

������	����
����

��
��

��

��

��

��
��

���

��
��� ���

� � � �

�

���������	��

�������
�����

� !�������
���	����

" � #����$������

�

��
��%���

��
��&���

"'�

"'�
"'�

"'�

��

�%

�&

�(

��"

���

Figure 15: BPA symbols and legend

trigger that activates it. In this case it is always dependent on one
preceding process that triggers it.

Information flows depict that one business process produces some
information that is needed by another process. E. g., this could be
a message sent from one process to another. In contrast to triggers,
information flows occur only while a process is active, i. e., in the
middle of a process execution. Without the expected information flow
the receiving process cannnot continue its execution.

With the design of our BPA approach we aim at providing a new PA
concept that leverages this information from the detailed process mo-
del level to a higher, more abstract level. Our BPA approach provides
a formalism to depict horizontal interdependencies between business
processes that show the internal journeys through the business pro-
cess of an organization regarding a specific issue like an order or the
delivery of a public service like a construction permit.

For this, we need to define a formal representation of the processes
and their elements that our BPA approach shall depict on PA level. In
process models the sending and receiving of information objects, i. e.,
triggers or information flows, is depicted by sending and catching
nodes. Those usually are throwing/catching events, and sending/re-
ceiving activities. Depending on the process modeling notation other
types of modeling elements may be in included. In many cases, the
sending and receiving of information objects, i. e., the interaction be-
tween processes, is depicted by events, that describe that something
of importance just occurred, e. g., an order was received, a credit
card delivered, or a sending task has been performed. Also, in many
business process modeling notation the instantiation and the termi-
nation of a process are represented by events, e. g., in BPMN2.0 or
EPC [112, 128]. Trigger and Information flow, as well as the involved
sending and receiving nodes, can be considered as and mapped to
events. Hence, in our BPA approach a process model is represented
by a set of events. Each BPA process is a sequence that consists of

76 business process architecture

one start and one end event, and any number of intermediate events.
We differentiate between catching and throwing intermediate events.
Start events and intermediate catching events are receiving events.
End events and intermediate throwing events are sending events.

A relation between two BPA processes is defined by the relation
between their events whereas a sending event of one process is re-
lated to a receiving event of the partner process. Depending on the
receiving event, the relation between two events of two different pro-
cesses is either considered a trigger relation if the receiving event is
a start event, or an information flow relation, if the receiving event
is an intermediate catching event. An event can be in relation with
many other events of other processes. The information flow and trig-
ger relation define a tuple of two events that consists of a sending
and a receiving event. We define a BPA as follows.

Definition 29 (Business Process Architecture [40, 38, 45]) A Business
Process Architecture is a tuple (E,V ,L, I,χ,µ,±), in which:

• E is a set of events, partitioned in start events, ES, end events EE,
intermediate throwing events ET , and intermediate catching events
EC

• V is a partition of E representing a set of business processes

• v ∈ V is a business process, consisting of a sequence of events, v =
⟨e1, ...,en⟩ such that e1 ∈ ES is a start event, en ∈ EE an end event,
and ei ∈ EC ∪ET for 1 < i < n are intermediate events

• L ⊆ (ET ∪ EE) × EC is an information flow relation, partitioned into
synchronous flows LS and asynchronous flows LA.

• I ⊆ (ET ∪EE) ×ES is a trigger relation, partitioned into synchronous
triggers IS and asynchronous triggers IA.

• χ ⊆ (E × E) × (E × E) is a conflict relation, indicating flows that are
mutually exclusive where (e,e1), (e,e2) ∈ {L∪ I} or (e1,e), (e2,e) ∈
{L∪ I}

• µ ∶ E→ P (N0) denotes the multiplicity set of an event.

• ± ⊆ (ET × EC) ∪ (EC × ET) is the correspondence relation between
events of the same process, demanding they send respectively receive
the same number of messages ◇

Figure 15 shows an exemplary BPA, the “BPA construction per-
mit” that we use to explain different concepts of our BPA definition.
The BPA consists of five processes p1, ...,p5. p1 depicts the “construc-
tion permit application” process by an architect, the “construction
permit examination” process p2, executed by the building authority,
the “create expert report” process p3 by experts, and the different

4.4 conceptual definition 77

surveillance processes p4 and p5 performed by the engineers from
the building control department. In this scenario, an architect applies
for a building construction permit that is examined by the building
authority. Depending on the type of construction, it requires several
expert reports. In between, the building authority may require fur-
ther information on the construction project from the architect. After
receipt of the expert reports, it informs the architect and orders the
according type of control of the construction project depicted by the
conflict relation symbol.

The conflict relation χ relates different flows from one event e
which exclude each other. Assume sending event e has three flows
(e,e1), (e,e2) ∈ L, (e,e3) ∈ I and (e,e1)χ (e,e2). Then it sends a trig-
ger signal to e3 and a message to either e1 or e2. Similarly, we can
describe that the flows leading to the same receiving event are in
conflict. Assume the start event es has two incoming triggers from
(e1,es), (e2,es) ∈ I then the process can be triggered by two differ-
ent processes but always only one process triggers it. We visualize
the conflict relation χ similar to a round XOR shape as known from
EPCs.

The multiplicity set µ contains all valid numbers of messages or
trigger signals an event can send or receive. µ(e) = {1} is called trivial
and is omitted in graphical representation.

In some case, we would like to express that one event receives the
same number of information flows that another event has produced.
This can be expressed with the correspondence relation ±. The cor-
respondence relation ± relates sending and receiving intermediate
events of the same process to each other. It requires that the receiving
event receives the same amount of messages as the related sending
event, or vice versa, that it sends as many replies as it has received
messages before. For instance, in the “BPA construction permit” sce-
nario in Figure 15, the building authority, process p2, orders three ex-
pert reports from external experts, process p3, which it expects to re-
ceive for making a decision on the building construction application.
It can only continue when it has received all three expert reports and
the intermediate sending and receiving events of the permit examina-
tion process would be in correspondence relation. In other cases the
building authority may require only two of three reports in which the
correspondence relation would not be used.

For every event we can define the preset ●e = {e ′ ∈ EE ∪ET ∣ (e ′,e) ∈
I∪ L} of e contains the events with an outgoing relation to e ∈ E. The
set e● = {e ′ ∈ ES ∪EC ∣ (e,e ′) ∈ I∪ L}, called postset of e, consists of the
events with an incoming relation from e ∈ E.

Figure 15 shows an exemplary BPA. Business processes are graphi-
cally depicted as rectangular shapes with rounded corners. All events
are of triangular shape. Receiving events point into the process, send-
ing events point outwards. Start events consist of only a blank triangu-

78 business process architecture

lar shape. End events are depicted by a triangular shape completely
filled with black. Catching intermediate events are represented with
two blank layered triangles. Throwing intermediate events use the
same symbol like catching intermediate events, except that the inner
triangle is filled with black. The graphical representation of business
processes is read from left to right, it indicates a time order. An event
of a process that has a neighboring event on its right side occurs be-
fore that event. Start events are always located on the left side of the
process shape and end events on the right side of the process shape.
Catching intermediate and throwing intermediate events are located
on the top and lower sides of the business process shape indicating
that they occur during process execution.

Trigger relations always end in a start event and begin with any
sending event. They are represented with black continuous arrows. In-
formation flow relations always end in a catching intermediate event
and begin with any sending event. In the graphical representation
they are represented as dotted arrows. Synchronous flows are de-
picted with blank arrow heads, and asynchronous with black filled
arrow heads respectively. The χ relation is depicted as round symbol
with an x inside. The source event points to the χ symbol that points
to the events that are exclusive to each other as depicted in Figure 15.
It is inspired by the XOR-gateway in BPMN or EPC. The ± relation is
not depicted in the graphical representation

The BPA depicted in Figure 15 consists of five business processes
p1, p2, p3, p4, and p5 ∈ V . E. g., business process p1 = {e1,e2, . . . ,e8}
consists of eight events. In total the BPA depicted has start events
e1, e7,e13,e15,e17 ∈ ES, end events e6,e12,e16,e18 ∈ EE, and interme-
diate events e2,. . .,e5,e8 . . . e11 ∈ ET ∪ EC. For instance, intermediate
events e8, and e11 have a multiplicity set of m(e) = {2,3,4,5} that
represents the sending and receiving of several information objects.
The architecture depicts four information flows and four triggers con-
necting the sending and receiving events of the different processes.
The semantics of the Business Process Architecture depicted in Fig-
ure 15 is described in Section 4.5.

bpa compendium and bpa subsets In the previous section, we
defined a general BPA that describes all processes of an organization
and their interdependencies. However, this concept does not yet pro-
vide a structure for a process model collection. To provide a simple
hierarchical structure for process model repositories and its inherent
process models we introduce three repository layers for our BPA ap-
proach, depicted in Figure 16. On the top-layer of a business process
repository we situate the BPA compendium, on the middle layer we lo-
cate BPA subsets, and the lowest layer consists of the detailed business
process models. The concepts of BPA subset and BPA compendium will
be explained in the following.

4.4 conceptual definition 79

����������	
������

����

�����

�����������

�����

����

�
����
���

Figure 16: BPA repository structure

In an organization not all pro-
cesses are interconnected with
each other. Only a subset of
an organization’s processes is in-
volved in handling a specific ex-
ternal request. Such subset of
interconnected processes is re-
sponsible for a group of related
external requests and internally
realizes the delivery of a service
or the assembly of a product of
an organization. For example, the scenario of applying for a construc-
tion permit is handled by the interplay of five processes depicted
in Figure 15. We address this issue with the concept of BPA subsets.
A BPA subset is a non-disjoint subset of processes responsible for
handling a business scenario. In regard to the repository structure,
the BPA subsets are the first grouping level. On a lower level, process
models describe the control flow of business processes in a detailed
and explicit way. A BPA subset can be considered a BPA itself. A BPA
subsets however cannot have any further subsets and all processes of
the subset must be somehow interconnected.

Hence, the overall BPA of an organization or company is the set of
all BPA subsets whereas all BPA subsets are disjoint. We call the over-
all BPA, the BPA Compendium of an organization. Figure 17 shows
an exemplary BPA compendium of a public organization. It resem-
bles a process map except from the fact that all processes in the BPA
subset are truly interconnected. It provides the top-layer of our BPA
structure.

Public services or the production of a product are sometimes just re-
alized by a single process. In this case, the according business process
is independent from all other processes in the process model collec-

��
��

��

��
����

�	

��

�

��

��

��

�	
�� �	

����

�

�
 ��

��
�� ��

��
�� �	

��
��

��
�

��

��
�� ���

��

����������������������

��������������

��������

������� !�

� ��

Figure 17: BPA compendium with BPA subsets

80 business process architecture

tion. A process that is not in a trigger or information flow relation
to any other process in the process model collection, i. e., the process
is independent, is called a minimal BPA, and in this case also consid-
ered a BPA subset. Business processes of one BPA subset cannot be
in a trigger or information flow relation with business processes of
any other subset. If a process has an interdependency with another
process then they must reside in the same BPA subset.

Definition 30 (Business Process Architecture Compendium) A busi-
ness process architecture BPA consists of BPA subsets BPA1, . . . ,BPAn,
such that

• BPA ⊆ ⋃ni=1BPAi is the BPA compendium

• BPA1, . . . ,BPAn are a parts of the partition of BPA representing each
a BPA subset.

• BPA1, . . . ,BPAn are pairwise disjoint, i. e., that each process only
belongs to one subset.

• ∄(ei,ej) ∈ L∪ I,ei ∈ BPAi,ej ∈ BPAj, there is no trigger or informa-
tion flow relation between elements of different subsets. ◇

Figure 17 shows a complete BPA with its different BPA subsets. The
BPA subsets are visually framed with a dotted line and include the
name of the BPA subset, e. g., “BPA construction permit”, the descrip-
tion of the final result of the process interaction or the scenario that
the BPA realizes. Subsets can differ in number of business processes,
from a minimal BPA with only one independent business processes
to larger BPA subsets that consists of many interdependent business
processes. In the following, we will refer to the overall BPA as BPA
compendium, to BPA subsets as BPA.

4.5 business process architecture semantics

In research so far, business processes have been examined one by one
and their instantiation and termination have been specified on pro-
cess model level, e. g., in regard to EPCs in Decker and Mendling [25]
or in a specification like BPMN 2.0 [112]. The instantiation of BPAs,
representing a whole system of interacting business processes mod-
els, raises questions on when such a system starts and terminates,
and how the desired behavior of such system looks like.

In Section 4.4 we introduced the main concepts of BPA by defining
the BPA elements, and their relations. This section presents the seman-
tics of each BPA element and of BPAs as a system of interdependent
processes. The semantics of a BPA define the cooperation between the
business processes and the context in which they interact. They deter-
mine when a business process can be instantiated, when it completes,

4.5 business process architecture semantics 81

at what time which events can throw or catch, and which process
depends on which other processes. For this we take a closer look at
the occurrence of events, trigger and information flow relations be-
tween business processes, and the instantiation and termination of
BPAs and their inherent processes. This will serve as base for defin-
ing properties and correctness criteria for BPAs

4.5.1 Event Occurrence

Events are the basic elements of BPA processes. Their occurrence de-
scribes the behavior of a process. An event of a process is either in
a trigger or information flow relation or unrelated to other events.
This impacts their ability to occur. Start events are ready to occur
at any time. Upon occurrence they activate a process instance. Inter-
mediate events are ready to occur for active BPA process instances.
An end event is ready to occur for an active instance and terminates
that process instance upon occurrence. This implies that all specified
intermediate events for that process instance have occurred.

A trigger relation from an end event ee ∈ EE or a throwing interme-
diate event et ∈ ET of process p1 to a start event es ∈ ES of another
process p2 defines that the event ee triggers es, i. e., start event es
occurs and instantiates process p2. If the triggering relation is syn-
chronous, ee and es occur at the same time; if the relation is asyn-
chronous, the event ee is buffered and can trigger es at a later time.
The information flow relation from an end event ee ∈ EE or throwing
intermediate event et ∈ ET of one process p1 to a catching intermedi-
ate event ec ∈ EC of another process p2 expresses that a message is
sent from process p1 to the process p2. Hence, the information flow
relation represents that upon the occurrence of event e information is
passed to event e ′, causing it to occur as well. In both relations the
emitting event either portrays the final output of a process (end event)
or an intermediary result (throwing intermediate event).

If a sending event takes part in several information flow or trig-
ger relations then it triggers or messages its according partners at
the same time. This depicts that one process is started by the send-
ing event e and the other process only requires the same information
during process execution. We refer to such communication structure
as one form of multi-communication, in this case broadcasting. For
example, the occurrence of the event “order ready” signifies that the
order is ready for all parties involved, such that the occurrence of one
“order ready” event is sufficient to trigger all others. Note, however,
that the message that the event has occurred may take some time to
convey. In other cases, information flows are buffered and only read
upon activation of a process. This depicted, motivates the introduc-
tion of asynchronous triggers in Business Process Architectures. In

82 business process architecture

special cases, if the conflict relation is applied, the information that
an event occurred is routed only to one of the specified partners.

In contrast to other approaches, BPAs provide means to model
multiplicities, a term subsuming the sending and receiving of vari-
ably many messages to and from multiple process instances of sev-
eral processes. In the model this is expressed by assigning to each
event of the BPA a multiplicity set µ, which indicates how many in-
formation flows or triggers the according event sends upon occur-
rence or requires to occur. For instance, a sending event e ∈ EE ∪ ET
with µ(e) = {1,2} expresses that it sends 1 or 2 triggers/information
flows. If event e is part of a trigger relation, it sends 1 or 2 triggers
to the start event of the receiver process. If the receiving start event
has a trivial multiplicity, the process is instantiated either 1 or 2 times
respectively.

A receiving event with a multiplicity set of µ(e) = {2} needs to re-
ceive two triggers (start event) or two information flows (intermediate
catching event) to occur. Events that have zero as one of the elements
in their multiplicity set occur optionally. In this regard, start and end
events form a special case, further explained in Section 4.5.2.

4.5.2 BPA Process Instantiation

A BPA consists of several processes. Before being able to make a state-
ment on the instantiation of a BPA, the instantiation of its processes
needs to be defined. The concept of BPA process instantiation partly
relies on instantiation concepts of the process model notation. Those,
however, are not always clear as stated by Decker and Mendling
in [25] for the example of EPCs. In process model collections espe-
cially the triggering of other processes is not clearly depicted as the
modeling procedures followed, often focus only on single models. In
these cases, our BPA approach fills this gap by defining clear trigger
relations between processes.

A BPA process can be instantiated by either external stimuli or by
receiving a trigger from another process in the BPA. A process which
start event does not take part in a trigger relation is triggered by an
external stimulus or time, e. g., an order received or an job applica-
tion submitted or the 15th of the month as start of a regular reporting
process. External stimuli describe phenomena that are out of control
of the companies operation but are expected events on which a re-
action, the business process, is defined. Processes that are triggered
by external stimuli do not depend on other processes in the process
model collection in regard to their instantiation.

If the BPA process’s start event is in a trigger relation with another
process’s intermediate throwing or end event, then the process is in-
stantiated when it receives a trigger from the other process. In case
a BPA process’s start event is in trigger relation with several other

4.5 business process architecture semantics 83

events then the process is instantiated when it receives one trigger
from any of the other processes, unless the event’s multiplicity set re-
quires more triggers for instantiation. A start event’s multiplicity set
specifies the valid options of required triggers. E. g., if a start event
has a multiplicity set of {2,5,7}, its process is instantiated once when
the start event has received either 2,5 or 7 triggers. For processes with
start events with trivial multiplicities each received trigger causes the
instantiation of one process instance.

A start event can only be assigned a zero to its multiplicity set if
it takes part in a trigger or information flow relation. In this case,
the zero multiplicity acts similar to the conflict relation, i. e., a start
event either needs to receive a trigger to occur or it occurs due to an
external stimulus depicted by the zero multiplicity.

4.5.3 BPA Process Termination

A BPA process terminates when its end event has occurred. This im-
plies that its start event and all its mandatory intermediate events
have occurred. Catching intermediate events that are signaled after
termination are not considered by that process instance anymore.
Analogous to the start event, end events can only be assigned a zero
to its multiplicity set if it takes part in a trigger or information flow
relation. In this case the end event optionally sends a trigger or in-
formation flow upon its occurence and termination of the process
instance.

The BPA process instantiation and termination semantics consid-
ering the trigger and information flow relations allow to depict the
instantiation semantics of different process modeling notations up to
multi-instance concepts.

In the following we summarize the general semantics of BPA pro-
cesses.

Definition 31 (Semantics of a BPA process and their events [40])
Processes in a business process architecture BPA = (E,V ,L, I,µ,χ,±) must
observe the following behavioral contract.

• An instance of process v ∈ V must become active when a start event
es ∈ ES ∩ v occurs.

• A start event es ∈ ES is always ready to occur. An intermediate event
e ∈ ET ∪ EC is ready to occur for active instances of v ∈ V for which
e ∈ v. An end event ee ∈ EE is ready to occur for active instances
of v ∈ V for which ee ∈ v. This implies that each intermediate event
e ∈ v∩ (ET ∪EC) has occurred, i. e., it has received the numbers of in-
formation flows (catching intermediate event), or emitted information
flows and triggers (throwing intermediate event) specified by µ(e) for
that instance.

84 business process architecture

• If e ∈ E∧ ●e = ∅ holds, event e can occur for an instance, if it is ready
to occur for that instance.

• If e ∈ E∧ ●e ≠ ∅ holds, event e must occur for an instance if and only
if: (i) it is ready to occur for that instance; and (ii) it gets a trigger or
information flow.

• An instance of process v ∈ V ceases to be active if an end event e ∈
EE ∩ v occurs.

• For a synchronous relation (e1,e2) ∈ IS ∪ LS, if e1 occurs, e2 must
get a trigger or information flow at the same time.

• For an asynchronous relation (e1,e2) ∈ IA ∪ LA, if e1 occurs, e2
must get trigger or information flow at some time in the future. ◇

4.5.4 BPA Instantiation

The instantiation of a BPA considers the initial start of the system
that a BPA represents. A BPA is instantiated if one of its processes is
started by an external stimulus, e. g., the desire of a citizen to build
a house or a customer’s order of a product. I. e., a BPA must have at
least one process with a start event that is triggered by an external
stimuli or that has a start event containing a zero in its multiplicity
set.

In reality, business operations define a range of possible combina-
tions of business processes instantiating a BPA. In this regard, one or
several processes may be instantiated by external stimuli. Assume the
following BPA scenario of the yearly reporting at a financial service
provider, depicted in Figure 18. The yearly reporting is started at the
end of the year, but requires quarterly reports that are provided by
the quarterly reporting process and half yearly reports that are per-
formed by the half year reporting process. The quarterly process is
instantiated on the 15th of each last months of the quarter. The half
year processes is instantiated on the 1st of June and 1st of Decem-
ber. Each of these processes is started on different dates but flow into
the yearly reporting process. The half-yearly process is dependent on
the quarterly reports as it integrates them among other information
into the half-yearly report. Similarly, the yearly reporting can only
terminate if it has received two half-yearly reports and four quarterly
reports. This BPA is instantiated by instantiation of the first quarterly
reporting process but eventually all other processes are started as
well.

In other scenarios only two of three possible processes need to be
instantiated such that the BPA can terminate successfully. For a more
specific description of instantiation and termination of a BPA we in-
troduce the concept of BPA runs. The instantiation semantics for a
BPA run are derived by the BPA scenario and its requirements. To

4.5 business process architecture semantics 85

������������������	
�

����������
���

������� ����
��	
�

�����
���

���������������	��

���	
������
���

�

�

�

Figure 18: Example of a reporting BPA

specify such complex instantiation semantics the input of a domain
expert is required. For this work we assume that we know the dif-
ferent instantiation semantics of a BPA scenario, i. e., which combina-
tion of business processes is instantiated by external stimuli. If several
processes in a BPA need to be triggered by external stimuli, this may
happen in parallel so that all processes are triggered at the same time
or eventually so that the processes are triggered one by another even-
tually. In some scenarios the external stimuli are not synchronized
and reach the according processes only one after another as for the
example of the yearly reporting BPA scenario.

4.5.5 BPA Termination

A BPA instance terminates if all its active process instances have been
terminated and no process instances can be activated any further. This
means that there needs to be at least one process in the BPA that has
an end event with an empty postset or 0 ∈ µ. If a BPA has terminated
no triggers or information flows should be sent between any of the
business processes.

4.5.6 BPA Run

The execution of a BPA is described by a BPA run that portrays the in-
stantiation and termination of BPA processes, the occurrence of their
events, and the sending of trigger and information flow from the in-
stantiation of a BPA until its termination.

The notion of BPA run is defined on instance level. A run of a BPA
describes an execution trace of the instantiation, interaction and termi-
nation of BPA processes and their inherent events. It also determines
how many instances of each process are instantiated during that BPA
run. In a BPA run several processes and their according instances may
run in parallel or sequentially.

86 business process architecture

4.5.7 Initialization of a BPA Run

A BPA run is initialized with the instantiation of one or several proces-
ses that are triggered by external stimuli. All the business processes
that are not triggered within the BPA are activated, i. e., all start events
that are not part of a trigger relation occur. The external stimuli, for
instance, could be the desire of a citizen to build a house as process
p1 in the example in Figure 15. All other start events occur and instan-
tiate their process when they receive the amount of assigned triggers
from another process within the same BPA run.

A BPA run determines the multiplicity of each event in the BPA by
assigning to each event one element from its multiplicity set. Hence,
it is clear for each BPA run how many information flows or triggers
each event sends or needs to receive. Depending on the implemen-
tation, the multiplicities for one BPA run are either assigned at the
creation of a BPA run or at run time. The assignment of multiplicity
elements to events in a BPA run, must conform to the correspondence
specification ±which is also determined at the creation of the BPA run
or at run time.

Events other than start events occur after their preceding events
occurred, whereas catching events additionally require to receive the
amount of information flows assigned to them by this run. Similarly,
end and throwing intermediate events emit the number of triggers or
information flows assigned to them by that BPA run.

Not all instances of all BPA processes need to be instantiated in
each BPA run. Some BPA runs may exclude processes to be instanti-
ated.

4.5.8 Termination of a BPA Run

Each BPA represents the delivery of a service or the production of
a good. Its result is the complete fulfillment of a scenario that may
have one or several outputs. This is represented by processes which
end events do not take part in a trigger or information flow relation
or have a zero assigned to their multiplicity set. A BPA run termi-
nates if all active process instances that are part of the BPA run have
terminated.

After a BPA run has been initialized, all process instances that were
instantiated during the BPA run must terminate, i. e., all their interme-
diate throwing and catching events, and their end events occurred. In
some cases, a BPA may observe lost or remaining information flows
and triggers that are not required by any process instance to termi-
nate its execution. A BPA may have many different terminating runs.

A BPA run does not need to instantiate all business processes of
the BPA, however, if it does the run is called covering. If a process is
instantiated by all terminating runs, it is called essential.

4.6 bpa properties 87

Building on the concept of BPA runs we introduce BPA proper-
ties, namely correctness criteria. The transformation of BPAs into the
Open net formalism in Section 5.2 comes with two advantages, the de-
scription of clear behavioral BPA semantics as well as the possibility
to use well-established analysis techniques.

4.6 bpa properties

We define BPA properties to be able to make statements on the struc-
tural and behavioral quality of a BPA with focus on the process inter-
dependencies depicted. The BPA properties are grouped into struc-
tural properties and behavioral properties similar to properties on
process model level like the structural property structural soundness,
or the behavioral property Workflow net soundness [165, 146].

Even though, BPAs consist of many interdependent processes, we
cannot directly apply the properties for process models at BPA level.
Realizability or enforceability (see page 52), properties for process
choreographies could be applied but aim at a different use case and
hence do not match the scenario of BPAs. Especially enforceability is
a rather strict criterion that demands that the initiator of a message ex-
change must have participated in the previous message exchange as
sender or receiver. This is necessary for inter-organizational process
interaction but not for intra-organizational process interdependencies
where control is within the organization. BPAs have a larger scope
than single process models or process choreographies and processes
interact in an interleaving way. In this regard, the existing properties
for process models are too restrictive to be applied for BPAs. Adapted
and new properties for characterizing a BPA’s quality are needed.

Based on the BPA properties we design BPA structural and behav-
ioral correctness criteria in Section 4.7 that BPAs should comply to.
Section 6.1 and Section 6.2 describe techniques for analyzing BPAs in
regard to their structural and behavioral properties.

4.6.1 Structural BPA Properties

Structurally, a BPA should always consist of at least one process with
independent start event or zero multiplicity and of at least one pro-
cess with independent end event or zero multiplicity. If there exist
no process in a BPA with an independent start event the BPA could
never be initialized as no internal or external stimuli could trigger it.

Similarly, a BPA that does not contain a process with independent
end event would never result into a final product as the outputs of
the processes would be always an input to another process. In this
regard, the production chain would never be finished. In some cases
this appears to be useful on first sight, e. g., for re-occurring processes.

88 business process architecture

However, also the output of re-occurring processes should be a well-
defined product and not be re-processed forever.

All intermediate events of processes in a BPA should be in a in-
formation flow or trigger relation. Intermediate events that take not
part in a information flow or trigger relation would either have unde-
fined recipients in case of throwing intermediate events or undefined
sources in case of intermediate catching events. Unconnected inter-
mediate catching events would never occur. The emitted information
from unconnected intermediate throwing event would get lost as it
does not have any receiver. Note, that we assume that the public
processes of external partners are available in the process model col-
lection, such that aforementioned scenario should not occur without
causing an error.

By definition events are not reflexive, i. e., they should not be put
in relation with themselves. Also events of the same type in regard to
sending and receiving should not be in relation with each other.

Definition 32 (Well-formed Business Process Architecture) A BPA
is well-formed if it exposes the following structural properties:

• ∃ v ∈ BPA with e ∈ ES ∧ (x,e) ∉ (I) ∨ ∃v ∈ BPA with e ∈ ES ∧
(x,e) ∈ (I) ∧ 0 ∈ µ(e), i. e., there exists at least one process with an
independent start event.

• ∃ v ∈ BPA with e ∈ EE ∧ (e,x) ∉ (I ∪ L) ∨ ∃v ∈ BPA with e ∈ EE ∧
(e,x) ∈ (I ∪ L) ∧ 0 ∈ µ(e), i. e., there exists at least one process with
an independent end event.

• ∀e ∈ ET∃e ′ ∈ ES ∪EC, so that (e,e ′) ∈ (I ∪ L), i. e., there are no un-
connected throwing intermediate events so that all intermediate throw-
ing events of all processes are in a trigger or information flow relation.

• ∀e ∈ EC∃e ′ ∈ ET ∪ EE, so that (e ′,e) ∈ L, i. e., there are no uncon-
nected intermediate catching events so that all intermediate catching
events of all processes are in a information flow relation.

A BPA is well-formed if and only if all above properties hold. ◇

4.6.2 Behavioral BPA Properties

For describing the behavioral characteristics and the quality of a BPA
we introduce the notion of lost trigger, lost flow, dead events, dead-
lock, livelock, dead processes, terminating processes, and (lazy) ter-
minating runs.

dead event. A dead event is an event that can never occur in any
BPA run, i. e., the event is never activated by a trigger or information
flow from another event. A start event or intermediate catching event
is dead, if it is in a trigger relation but can never occur because their

4.6 bpa properties 89

partner process never passes on the trigger. An intermediate throw-
ing event is dead, if the process is never instantiated or the process
deadlocks before the occurrence of the intermediate throwing event.
An end event is dead if it can never occur, i. e., that the process is
never instantiated or never terminates.

lost trigger/information flow. A lost trigger or informa-
tion flow describes the losing of a trigger or information flow in
synchronous and asynchronous environments. The trigger or infor-
mation flow is lost either when it gets emitted in a synchronous en-
vironment at a moment at which the target event is not ready, or it
gets emitted in an asynchronous environment to an event that may
never become ready. We consider unconnected throwing intermedi-
ate events causing lost trigger or information flows as they do not
have any receiver specified for their information object.

dead process . A dead process is a process that never gets instan-
tiated in any BPA run. E. g., a process never gets instantiated as it
requires two triggers to be instantiated but in all possible BPA runs it
receives only one trigger.

process deadlock . A process instance is in a deadlock, if it is
active, has one or more end events, and none of its end events can
occur at any moment in the future. E. g., a process deadlocks if it
has a catching intermediate event that never gets served by another
process due to the partner process being dead.

process livelock . A process is in a livelock if it triggers itself, so
that it creates continuously new process instances without being able
to stop triggering itself. This means that the end event does not have
a zero multiplicity, is not part of a conflict relation, and only in trigger
relation with its own start event. We adapted the usual definition of
livelocks from the process model level where a livelock constitutes a
state M ′ from which a particular state M

′′

can be reached at any time
in the future again.

BPA run livelock . A BPA run is in a livelock, if it is in a state,
from which it is not possible to reach a state in which all its processes
cannot become active anymore. A livelock may be caused by looping
behavior where different processes re-instantiate each other without
being able to leave that re-instantiation loop. Such a loop may stretch
over several processes. A BPA run in a livelock does never terminate
due to business processes triggering each other in a cyclic fashion. If
all BPA runs contain a livelock, then the BPA is livelocked.

90 business process architecture

BPA run deadlock . A BPA run is in a deadlock, if it is in a
state, where there are still active process instances, but no further
communication between the process instances is possible, and the
BPA run has not terminated yet. This describes a state, from which
it is not possible to reach a state in which all process instances that
have been instantiated, terminate. In other words the BPA fails to
terminate, if for a process of a BPA one or more occurrences of its
start event are observed in a BPA run but the process’s end event is
not. Such a BPA run is in a deadlock. If all BPA runs deadlock, the BPA
is called deadlocked.

4.7 bpa correctness criteria

As Business Process Architectures depict the interplay and interde-
pendencies of several processes, we cannot apply correctness criteria
used on individual processes. E. g., the notion of soundness that was
introduced for single processes, is too restrictive, as it requires a par-
ticular process structure and a very strict control flow behavior. Simi-
larly, although less restrictive, the notion of weak soundness for work-
flow modules [91], cannot be applied for BPAs as it requires a single
start and single end place and does not cover multi-communication
and multi-instance concepts found in BPAs. Following the general
idea of these properties, we define the following BPA correctness cri-
teria to decide whether a given BPA is correct.

terminating run. A BPA run is called terminating if it guaran-
tees for all processes, that the end event of a process occurs eventually
once its start event has occurred. Hence, in a terminating run all pro-
cesses that are instantiated also terminate.

lazy terminating run. The weaker notion of lazy termination
allows BPA runs with pending messages or left-behind process in-
stances, if at least one instance of every process, which was instan-
tiated by a run, terminates. This allows for deadlocked process in-
stances as long as the overall BPA can terminate. This property is
comparable to the Workflow net properties relaxed soundness and lazy
soundness [118, 156]. Relaxed soundness was introduced to match
more real world scenarios of business processes and allows for dead-
locks in some process instances as long each transition participates
in a sound firing sequence. The overall correctness of a BPA is deter-
mined by examining all BPA runs.

Definition 33 (Correctness Criteria for BPAs (BPA subsets)) A BPA
is correct if it complies to the following rules:

• The BPA has at least one (lazy) terminating run

• The BPA is free from dead processes

4.8 summary 91

• The BPA is not deadlocked

• The BPA is not livelocked

• The BPA is well formed

A BPA compendium is correct if all its BPAs (BPA subsets) are correct. ◇

A BPA with at least one terminating run is called terminating. If all
runs are terminating we call the BPA complete terminating.

A BPA with at least one lazy terminating run, is called lazy termi-
nating. If all BPA run are lazy terminating, the BPA is called complete
lazy terminating.

4.8 summary

This chapter introduced the basic foundations of our BPA approach. It
is characterized by its focus on information flow and trigger relations
between business processes. The core idea is to provide a framework
to depict the journey through an organization’s business processes
defined by their interdependencies. For instance, by that departmen-
tal barriers are crossed and an end-to-end process view is created.
This leverages the information on process interdependencies on a
more abstract level and hence is easier to grasp for users of a pro-
cess model repository. This holistic perspective can be enriched with
additional process meta-data for reasoning on overall cost, time, or
resources for example. In contrast to our approach, most of the cur-
rent PA approaches classify single processes based on their functions,
goals, or objects and ignore their interdependencies (see Section 3.2).
This in return only allows reasoning on one single process at a time.

In many cases business processes are only modeled in isolation
and do not directly visualize any interdependency with other process
models on model level. Only by taking a holistic view with our BPA
approach, interdependencies between processes can be discovered
and visualized. This view is taken to some extent by choreography
and service composition approaches in regard to inter-organizational
process interaction and service composition on process model level.
For instance, the research by Decker et al. [24, 28] predominately
deals with process choreographies that allow the specification of mes-
sage exchanges between several actors (participants in a choreogra-
phy) but hide the involved processes. Barros et al. [10] and Aalst et
al. [155] provide an extensive description and analysis on service in-
teraction in cross-organizational workflows based on Petri nets. Their
main focus lies on the service composition and refinement with the
aim to find matching and compatible services as noted in Chapter 3.
These approaches provide a high level of detail. In contrast, our BPA
approach portrays process interdependencies on an abstract level, al-

92 business process architecture

lows specifying multi-communication, and provides a holistic busi-
ness process end-to-end view.

The formal definition of our BPA approach provides the basis for
the development of transformation methods and the design of BPA
analysis techniques in the following chapters. Our BPA approach is
the first PA approach that is based on a formal definition. It implies
three repository layers, the BPA compendium layer, the BPA subset
layer, and the process model layer. Chapter 5 defines clear behavioral
semantics of BPAs by their transformation to Open nets. The ON
transformation and a pattern/ anti-pattern approach are used for the
analysis of BPAs regarding their behavioral and structural properties
in Chapter 6. Based on our BPA formalism, we design a bottom-up
extraction and top-down decomposition algorithm, and consistency
criteria between process model level and BPA level in Chapter 7.
In Chapter 8 the formalism is used to develop a technique to extract
and depict data dependencies between business processes.

5
B U S I N E S S P R O C E S S A R C H I T E C T U R E B E H AV I O R

This chapter is based on the published papers [40, 38, 45, 44]. It introduces a
transformation of BPA to Open nets. The ON representation of a BPA describes its

behavioral semantic in a clear unambiguous way. The chapter provides a central
part of our BPA concept. It is the basis for the behavioral analysis of BPAs. For the
definition of ONs and their composition we refer to Section 2.5.2. The definition of

BPAs was introduced in Definition 29.

The presented BPA framework leaves room for interpretation in re-
gard to their behavioral semantics. Based on the current definition, a
strong analysis in regard to presented BPA properties is difficult. To
avoid ambiguities in interpretations and facilitate analysis, we trans-
form BPAs to Open nets (ON), a subclass of Petri nets that have clear
semantics [110, 148, 32, 80, 165]. Beside providing clear semantics,
this transformation allows for analyzing BPAs with known Petri net
analysis techniques for their structural and behavioral properties.

Construction Permit
Application

e1 e4

e3e2

Application
Examinatione5

e8

e6

2...5

Expert Report
Creation
|||e9

e10

e7

2...5

Figure 19: BPA for a construction
permit application

For the transformation from
BPAs to Open nets we use the
BPA definition from Definition 29.
We consider BPA business proces-
ses to be sequences that have one
start, one end event, and any num-
ber of intermediate events in re-
gard to their structural composi-
tion. In regard to behavioral as-
pects, this means that a start event
always occurs before all interme-
diate events of a process, and the
end event after all intermediates
events have occurred, respectively.
Events of one process cannot oc-
cur in parallel. For the transfor-

mation the multiplicity of events of BPA process play an important
role. They are used to depict the repeated execution of processes
as well as multi-communication. The term multi-communication cap-
tures interaction between multiple instances of several processes in-
stead of one-to-one correspondence between instances.

To illustrate our BPA to Open net transformation algorithm and
how we deal with multi-communication, we resort to a simplified
version of our example from the public administration that depicts
an application for a construction permit as BPA, presented in Fig-

93

94 business process architecture behavior

ure 19. The delivery of public services often involves the interplay of
multiple interacting process instances. E. g., an architect sends a con-
struction permit application to the building authority. This message
triggers the “construction permit examination” process. Depending
on the type of construction, the application is forwarded to between
two and five experts instantiating an appropriate number of “create
expert report” processes. On termination each instance returns a mes-
sage to the “construction permit examination” instance, that waits
for the according number of messages, then terminates and returns
the decision of the building authority to the applicant. In this exam-
ple multiple instances of the “create expert report” process are trig-
gered and the “construction permit examination” process sends and
receives multiple messages.

Such behavior so far was considered only in few other approaches,
if at all. However, it is desirable to show the exact behavior of the mul-
tiplicities and the depicted multi-communication, and analyze it ac-
cording to the correctness criteria established. For a BPA that involves
multiple instances of processes to work, adjustment of the amount of
process instances participating in a run is needed. With the use of
multiplicities the required resources in terms of process instances or
information sent can be considered and analyzed as well. This forms
an asset for the planning of resources, e. g., human resources needed
when running multiple instances of a process in a BPA.

Business process modeling approaches that allow to express these
types of multiplicity do not offer formal analysis. Formal methods ba-
sed on Petri nets have been successfully applied to model and analyze
workflows (Workflow nets [147, 161]), services and their composition
(service or open nets e.g. [94]) as well as process choreographies (pub-
lic to private approach [150, 157]). However, those elaborated analysis
methods do not explicitly deal with multiple instances of processes.

By providing a transformation into ONs [95], which have been suc-
cessfully applied to study the composition of services and its correct-
ness, we fill this gap and provide a technique to analyze BPAs with
multiplicities.

We introduce intermediary nets to represent and analyze multiple
instances and multi-communication in the ON formalism. In this way,
our technique may also be applied to other use cases than BPAs that
involve the modeling and the analysis of multi-communication and
multiple instances in ONs.

5.1 bpa multiplicity concepts

Business Process Architectures exhibit two kinds of multiplicity: a)
multiple instances of a business process and b) sending and receiving
multiple messages or trigger signals to and from several other process
instances.

5.1 bpa multiplicity concepts 95

multiple process instances . In a BPA the processes that can
be instantiated several times are visually indicated by three vertical
bars referring to the similar symbol in BPMN. Generally the instantia-
tion of a process depends on the multiplicity set of its start event, the
number of different events that are in trigger relation with the start
event, and their multiplicity sets. Multiple instances of a process are
instantiated if the partner event’s multiplicity set contains elements
that are a multiple of elements of the multiplicity set of the process’s
start event, e. g., in Figure 19 the process of the building authority
“construction permit examination” can send two to five triggers to
the “create expert report” process, instantiating it two to five times.
In this example the start event of the “create expert report” process
has a trivial multiplicity, and there exists only one event that trig-
gers it. The intermediate throwing event has a multiplicity set with
the elements two to five. The concrete number of times a process is
instantiated can vary between BPA runs in this case.

The number of process instances instantiated depends on the num-
ber of triggers its start event receives, compared to the multiplicity of
its start event, as assigned by this particular run. For start events with
trivial multiplicity set, each received trigger corresponds to one pro-
cess instantiation. However, if the multiplicity set of a start event is
non-trivial, then the process is only instantiated, if the sum of triggers
received from its partners is equal or greater than the multiplicity el-
ement assigned to it in the according BPA run. Each trigger from
one of the predecessors counts toward the total number of required
triggers.

sending and receiving multiple messages . Multi-commu-
nication encompasses two cases and combinations thereof: the send-
ing or receiving of information flows or triggers to respectively from
different partners, and the sending or receiving of multiple informa-
tion flows or triggers by one event defined by its multiplicity set.

Throwing events can send messages to multiple receiving proces-
ses, while catching events can receive messages from multiple send-
ing processes according to the multiplicity assigned to them. In the
first case the same amount of messages is delivered to each receiver,
while in the second case messages from various senders are collected
before being consumed according to the multiplicity specification.

Zero is a valid value in the multiplicity set of a throwing or catch-
ing intermediate event, meaning that an information flow or trigger
is not sent at all or not required to proceed respectively. The zero in
a multiplicity set depicts the optional sending or receiving of an in-
formation flow or trigger. The zero as a multiplicity element in the
multiplicity sets of start or end events depicts a special case and only
appears for start events in a trigger or end events in a trigger or infor-
mation flow relation. This depicts the special situation that a process

96 business process architecture behavior

�

���

�����

�

�

�

���

	�

	

�
 �� ��

��

	� 	�

� � �� � ��

�� �

����

�����

�

���

Figure 20: BPA multiplicity concepts

may be started by an external stimulus (depicted by the zero in its
multiplicity set) or by another process of the BPA. The zero in a mul-
tiplicity set of an end event means that the result of the process is not
passed on.

The BPA in Figure 20 illustrates the multi-communication and mul-
tiple instances concepts. The example consists of four processes O, P,
Q and R. The triggering of multiple instances of several processes is
depicted by the triggering relation of O with Q and R respectively
where end event e1 of process O has the multiplicity two. In this way,
two instances of each Q and R are instantiated. The receiving of mul-
tiple messages is illustrated by the multiplicity of q (µ(q) = {2,4})
which means that each instance of Q (of which there are two) waits
for either two or four messages to proceed. The concept of optional
sending is represented by event r ′ of process R having the multiplic-
ity (0 . . . 1). Either it sends the message or not. Collecting of messages
takes place in catching event p whose preset contains both q ′ and
r ′. p has a multiplicity set of 2 . . . 4 and expects between 2 to 4 mes-
sages in total from (all instances of) Q and R. Q and R are instantiated
each two times and hence deliver the expected amount of information
flows for p.

relating event multiplicity specifications . The number
of messages a process sends is often closely related to the number
it expects to receive, e. g., in Figure 19, if three expert reports are
requested, also three results are expected back. This relation between
two events is captured in the ±-relation, to which all BPA runs need to
conform. The ±-relation reduces the amount of possible BPA runs. A
single BPA run assigns to each event an element from its multiplicity
set, so that each combination of assignments defines a possible run.
Runs contradicting the ±-relation are considered invalid and can be
omitted in the state space of a BPA, i. e., the set of all its runs. If the
±-relation is not used, all possible runs are valid and the complete
state space has to be explored during analysis.

5.2 transforming business process architectures 97

5.2 transforming business process architectures

Due to the definition of ON composition (see Definition 27) we cannot
directly express the triggering of varying amount of instances respec-
tively sending or receiving of a varying amount of triggers or informa-
tion flows with ONs. The case that one event is in trigger or message
flow relation with several other events is not directly covered, either.
To overcome this we create and insert modular intermediary nets for
normal and multi-communication.

The transformation is conducted in a modular fashion: Each BPA
process is first independently transformed into an ON. In a second
step intermediary ONs are created that capture the trigger and in-
formation flow relations and reflect the multiplicity of the partici-
pating events. In the last step the processes’ ONs and intermediary
ONs are composed into one large Open net. The resulting net depicts
the behavior of the BPA with inherent multiplicities and can then be
analyzed in regard to its properties with model checking tools like
LoLA [132].

transforming business processes . We first describe the trans-
formation of a single BPA business process into an ON. It is important
to note, that all events are unique and only part of one partition.

Definition 34 (BPA Process to ON Transformation) Given a BPA, let
⟨e1e2 . . . en⟩ be the sequence of events belonging to the business process
v ∈ V then the process’s ON is defined as Ov = (Pv, Tv,Fv,M0v ,Ωv), where

• Tv = {tei ∣ei ∈ v}

• PNv = {p ′ei ∣ei ∈ v∧ 1 ≤ i < n} ∪ {pe1 ∣ ●e1 = ∅}∪ {pen ∣en● = ∅}

• POv = {pei ∣ei ∈ (EE ∪ET) ∩ v} ∖ {pen ∣en● = ∅}

• PIv = {pei ∣ei ∈ (ES ∪EC) ∩ v} ∖ {pe1 ∣ ●e1 = ∅}

• Pv = PNv ∪POv ∪PIv

• F = {(tei ,p ′ei), (p
′
ei

, tei+1) ∣ tei ∈ Tv ∧ p ′ei ∈ P
N
v } ∪{(tei ,pei) ∣ tei ∈

Tv ∧pei ∈ POv } ∪{(pei , tei) ∣ tei ∈ T ∧pei ∈ PIv}

• M0v = ∅ if there exists (t,e1) ∈ I and {pe1} otherwise.

• Ωv = {} if there exists (en, t) ∈ I∪ L and {pen} otherwise. ◇

The example in Figure 21 clarifies this rather technical definition. We
distinguish between three different types of places: internal places PNv ,
input interface places PIv, and output interface places POv . Each event
e yields an internal place p ′e, except from the end event. Additionally,
each event e produces an interface place p ′e and one transition te. For
intermediate throwing events this place becomes an input interface
place, while for intermediate throwing interface places it becomes

98 business process architecture behavior

��� ���

�� �� �� ��

���	
��
�����
�������

�����
�������

������

����
�������

����
���

�
��

�� ��

��

������ ������
���� ���� ������� ���

��� ���

��� ���

Figure 21: BPA process to ON transformation

an output interface place. For start and end events the situation is
different. Depending on the pre- respectively postset the place pe1
(for the start event) respectively pen (for the end event) can be either
an internal place (e ∈ PN) or interface place (e ∈ PI) respectively
(e ∈ PO).

The event’s transition te is connected to its internal place p ′e, which
further connects to the transition of the next event in the sequence.
Depending on the event type either the transition exposes an outgo-
ing flow to the event’s interface place pe, or an incoming flow from
pe. The direction of the flow depends on the event type. If the event
is a start or catching event (light gray in Figure 21) the flow points
from place to transition, if it is an end or throwing event (dark gray)
it points in the opposite direction. Only if the start event’s preset is
non-empty ●e1 ≠ ∅, the place pe1 is an input place, otherwise it is an
initially marked internal place as is the case in Figure 21. In this case
the place pe1 is part of the set of internal places PN. Equivalently pen
is an output place only if en has a non-empty postset, i. e., it is part
of a trigger or information flow relation, otherwise pen is an internal
place and part of the final marking. In Figure 21 there is an arc leav-
ing e4 indicating a relation, hence pen is an output place and not part
of the final marking.

The resulting ON of the BPA process provides a clear behavioral
semantics. It is obvious that at first transition te1 fires, followed by
transition te2 . Transition te3 can only fire if it also gets input from
another process. If transition te3 gets an input it can fire, else the ON
is in a deadlock. After te3 has fired, transition te4 is enabled and can
fire ending the process.

representing multiple instances . There are two ways in
ONs to represent the BPA concept of multiple instances. Either each
instance is represented by a copy of the process’s ON, or each in-
stance is represented by a token (colored or black) in the process’s
ON. Representing each instance by its own open net is problematic
when it comes to triggering, as it either requires the creation of nets
at runtime or the management of a pool of untriggered nets. Another

5.2 transforming business process architectures 99

challenge would be the naming of interface places for each instance
net.

Indicating the number of instances as black tokens in one ON eases
the composition. In this way, the resulting net has less transitions
and places than using one net per instance. Hence we decided to use
the multiple black token representation for instances. It is also more
compact. Colored tokens would allow to distinguish between cases.
However, in the moment we assume one overall correlated case per
BPA run, i. e., all processes and instances that participate in BPA run
process the same overall case.

Introducing correlation into the BPA concept is an open issue that
needs to be examined in the future.

simple intermediary net. The simple intermediary net is used
for trigger or information flow relations in which both events have a
trivial multiplicity. In this case a simple intermediary net is created

��

�� ��

Figure 22: Simple intermediary net

with one input interface place,
one transition, and one output in-
terface place. The simple interme-
diary net is the basic net for all
other intermediary nets. It is de-
picted in Figure 22.

Depending on the type and
multiplicity of the events, the net
structure is changed to depict
multi-communication or conflict

constructs accordingly. The simple intermediary net is defined as fol-
lows.

Definition 35 (Simple intermediary net) Given a BPA, the simple in-
termediary net for a trigger or information flow (s, r) ∈ I ∪ L with µ(s) =
µ(r) = {1} is defined as Os,r = (Ps,r, Ts,r,Fs,r,0,{0}) where

• Ps,r = PNs,r ∪PIs,r ∪POs,r and PIs,r = {ps}, POs,r = {pr},PN = ∅

• Ts,r = {s1}

• Fs,r(ps, s1) = 1, Fs,r(s1,pr) = 1. ◇

multicast and multireceive net. Depending on the multi-
plicity of a throwing event it emits a different number of messages
or trigger signals. To capture this in the ON formalism, we introduce
an intermediary ON called multicast net. It is a net schema, because
each multiplicity specification entails a different multicast net, consist-
ing of one input interface place, one output interface place, and one
transition for each element in the multiplicity set of the event. Note,
that the same construct is used for triggering multiple instances of a
process as well as sending multiple information flows.

100 business process architecture behavior

��

��

��

��

�

�

�

�

�� ��

(a) Multicast net

��

��

��

�

�

�

�� ��

(b) Multireceive net

Figure 23: ON intermediary nets for representing the sending resp. receiv-
ing multiple information flows or triggers

Definition 36 (Multicast net) Given a BPA, the multicast net for a trig-
ger or information flow (s, r) ∈ I∪ L is defined as Os,r = (Ps,r, Ts,r,Fs,r,
0,{0}) where

• Ps,r = PNs,r ∪PIs,r ∪POs,r and PIs,r = {ps}, POs,r = {pr},PN = ∅

• Ts,r = {si ∣ i ∈ µ(s)}

• Fs,r(ps, si) = 1, Fs,r(si,pr) = i where i ∈ µ(s).

The multicast net has the empty multiset as initial and as the only final
marking. ◇

E. g., let s ∈ ET be a throwing event, r ∈ EC a catching event and
(s, r) ∈ L be connected by an information flow. Let further µ(s) =
{2,3,4,5} be the multiplicity set of s and µ(r) = {1} be r’s set. Then
the corresponding multicast net is depicted in Figure 23a, with the
input interface place ps, the output interface place pr, the four transi-
tions s2, s3, s4, s5 and the following arcs: ps is connected to all si with
arc weight 1 and all si are connected to pr with arc weight i where
i ∈ µ(s) are the elements of the multiplicity set of s. As a result the
multicast net produces between two and five tokens on its output in-
terface place, thus representing the sending of between two and five
information flows.

We introduce the multireceive net, a slightly adapted version of the
multicast net, to express that a process instance waits for a certain
number of information flows or triggers before it can continue or
that a process is instantiated only after receiving a certain number of
trigger signals. The only difference is that arcs from the input place to
the transitions now carry the variable weights, while the arc weights
between transitions and output place have the value 1.

5.2 transforming business process architectures 101

Definition 37 (Multireceive net) Given a BPA the multireceive net for a
trigger or information flow (s, r) ∈ I∪ L is defined as Os,r = (Ps,r, Ts,r,
Fs,r,0,{0}) where

• Ps,r = PNs,r ∪PIs,r ∪POs,r and PIs,r = {ps}, POs,r = {pr}

• PN = ∅ for 0 ∉ µ(r) and PN = p0 for 0 ∈ µ(r)

• Ts,r = {si ∣ i ∈ µ(r)}

• Fs,r(ps, si) = i∧ i ≠ 0, Fs,r(si,pr) = 1 where i ∈ µ(s)

The multireceive net has the empty multiset as initial and as the only final
marking. ◇

The resulting intermediary multireceive net construct is depicted
in Figure 23b.

The special case of an intermediate receiving event or start event
having a zero in their multiplicity set creates an intermediary net with

��

��

��

�

�

�� ��

Figure 24: Optional multireceive net

an additional internal place p0.
This place may fire optionally, if
marked by a BPA run, so that a
process may start or continue its
execution without receiving a trig-
ger or information flow from a an-
other process.

The resulting net schema, illus-
trated in Figure 24, resembles the
standard option of the multire-
ceive net, except from the addi-
tional place that depicts the op-
tional occurrence of the receiving
event. The number of process in-
stances that are executed without

the occurrence of the receiving event is restricted by the amount of
tokens put on the internal place p0 by the BPA run configuration.

splitter and collector net. Processes can not only trigger
multiple instances of one process, but also instances of multiple pro-
cesses. The same is true for sending and receiving information flows.

We illustrated the different concepts in Figure 20. E. g., process
P sends messages to both processes Q and R. Formally we have
p● = {q, r} two events in the postset of throwing event p. The op-
posite situation, one process receiving information flows or triggers
from several other processes can also be found in Figure 20 where the
catching event p ′ has the preset {q ′, r ′}. It only matters that the pre-
set respectively postset of an event is non-singleton and not in which
relation those events are.

102 business process architecture behavior

��

��

��

��

(a) Splitter net for event p

���

���

���

���

���

(b) Collector net for event p ′

Figure 25: Open net constructs for multiple receivers respectively senders

While the splitter net in Figure 25a takes a token from one source
and produces one token for each target, the collector net in Figure 25b
collects all tokens from several sources in one place. The collector net
depicts that a process can be triggered or can get an information flow
from different sources. Each information flow or trigger would result
in the occurrence of the receiving event, unless the event has a mul-
tiplicity larger than 1. The collector net and the receive-conflict net
do exhibit the same structure. Depending on the composition of in-
termediary nets the net schema takes either the role of a collector net
or receive-conflict net. Splitter and collector net are also net schemata.
Principally, the splitter net has one input place, one transition, and
one output place for each start or catching event b ∈ ES ∪ EC that is
in trigger or information flow relation with a given end or throwing
event t ∈ EE ∪ ET . The collector net has one place and one transition
for each event e ∈ ●e ′ for the receiving event e ′ ∈ ES ∪ EC. All arcs
have the weight 1.

Definition 38 (Splitter net) Given a BPA and a sending event e ∈ ET ∪
EE, the ON Oe = (Pe, Te,Fe,0,{0}) is called the splitter net for e, where

• Pe = PNe ∪PIe ∪POe , PNe = ∅, PIe = {pe}, P0e = {pb ∣b ∈ e●}
• Te = {te}
• Fe(p, te) = Fe(te,p) = 1 ∀p ∈ Pe

The initial marking is the empty multiset, which is also the only final mark-
ing. ◇

Definition 39 (Collector net) Given a BPA and a receiving event e ′ ∈
ES ∪EC. Then the ON Oe = (Pe, Te,Fe,0,{0}) is called the collector net
for e ′, where

• PIe ′ = {pe ∣e ∈ ●e ′}, POe ′ = {pe ′} and Te ′ = {te ∣e ∈ ●e ′}.
• Fe(p, te) = Fe(te,p) = 1 ∀p ∈ Pe

The initial marking is the empty multiset, which is also the only final mark-
ing. ◇

5.2 transforming business process architectures 103

���

���

���

���

���

(a) Receive-conflict net

���

��

��

��

���

(b) Send-conflict net

Figure 26: Open net constructs for receive-conflict and send-conflict net

receive-conflict and send-conflict net. Processes do not
always send their intermediary or final outputs to all processes they
are in relation with. This is the case, if the result is of interest to only
one of the partner processes, e. g., due to a data object being in a
particular state.

Although structurally identical to the collector net, the receive-con-
flict net differs in the fact that the receiving event is part of several
trigger or information flow relation that are in conflict with each other.
For each event that is in conflict with another event in the preset of
the receiving event an input interface place and a transition is cre-
ated. One output interface place is created for the receiving event in
the receive-conflict intermediary net. Depending on the position in
the composition of intermediary nets the net schema takes either the
role of a collector net or receive-conflict net. We explain the composi-
tion of intermediary nets in Section 5.3. Both the receive-conflict and
send-conflict net are depicted in Figure 26a and Figure 26b.

Definition 40 (Receive-Conflict net) We denote the incoming conflict set
of an event e ′ as #e ′ ∶= {e∣ ∃ec ∈ ●e ′ ∶ (e,e ′), (ec,e ′) ∈ χ}. Given
a BPA, a receiving event e ′ ∈ ES ∪ EC, with #e ′ ≠ ∅, the ON Oe ′ =
(P ′e, T ′e,F ′e,0,{0}) is called the conflict net for e ′, where

• PIe ′ = {pe ∣e ∈ ●e ′ ∧ e ∈ #e ′}, POe ′ = {pe ′}

• Te ′ = {te ∣e ∈ ●e ′ ∧ e ∈ #e ′}

• Fe(p, te) = Fe(te,p) = 1 ∀p ∈ Pe
The initial marking is the empty multiset, which is also the only final mark-
ing. ◇

In a similar way we create the Send-Conflict net. In this case the
sending event is part of several trigger or information flows that are
in conflict with each other depicted by the relation χ. For each event
in the postset of the sending event a transition and interface output
place is created whereas only one input interface place is created for
the sending event. The send-conflict net is defined as follows.

104 business process architecture behavior

Definition 41 (Send-Conflict net) We denote the outgoing conflict set of
an event e as e# ∶= {e ′∣ ∃ec ∈ e● ∶ (e,e ′), (e,ec) ∈ χ}. Given a BPA, a send-
ing event e ∈ EE ∪ET and e ′ ∈ e#. Then the ON Oe = (Pe, Te,Fe,0,{0}) is
called the conflict net for e, where

• PIe = {pe}POe = {p ′e ∣e ′ ∈ e● ∧ e ′ ∈ e#}

• Te = {t ′e ∣e ′ ∈ e● ∧ e ′ ∈ e#}

• Fe(p, t ′e) = Fe(t ′e,p) = 1 ∀p ∈ Pe

The initial marking is the empty multiset, which is also the only final mark-
ing. ◇

5.3 composition of nets

The presented net constructs enable us to represent BPAs and their
different multi-communication constructs as Open nets, clarify their
behavior, and analyze them. After the transformation of BPA proces-
ses, event multiplicities, and flow relations the resulting ONs and in-
termediary ONs have to be composed according to Definition 27. The
composition relies on matching interface places. Because each event
is unique in a BPA and each event is represented by at most one in-
terface place, those interface places are unique too. For each pair of
events in a trigger or information flow relation at least one intermedi-
ary net is created to connect the according ONs. Those are defined to
provide the complementary interface places and make the nets com-
posable. Without the intermediary nets, the composition would yield
unconnected nets leaving all places unfused.

The set of four basic composition rules describes the composition
of ONs by introducing simple intermediary nets for events with triv-
ial multiplicity that are part of only one trigger or information flow
relation. Composition rules 5-8 depict the composition of ONs for
conflict and multi-communication constructs. The complex composi-
tion rules describe the composition of ONs by introducing a com-
bination of multi-communication intermediary and conflict nets for
events with non-trivial multiplicity and events that are part of many
trigger or information flow relations.

Figure 27 shows the transformation of the basic trigger and infor-
mation flow relations between two BPA processes.

Composition rule 1 maps the trigger relation (e1, s2) ∈ I from an
end event of process p to a start event of another process q. According
to Definition 34 and Definition 35 the transformed ONs of process
p and process q are composed via a simple intermediary net that
connects the end place of ONp to the start place of ONq. The initial
place of ONp is marked with a token as its origin event s1 has an
empty preset whereas the former initial place of ONq remains empty.

5.3 composition of nets 105

�

�
��

��

�
� �
�

�
� �
�

��

��

��

�
� �
�

�
� �
�

�

�
��

��

�

�

��

��

�

�

��

��

����

��
�
� �
�

�
� �
	

�
� �
�

�
� �
�

�
� �
�

��

����

��

��

�
� �
�

�
� �
	

�
� �
�

�
� �
�

�
� �
	

�
� �
�

��

�
� �
�

�
� �
	

�
� �
�

�
� �
�

�
� �
�

��

��

��

��

� 	

�

Figure 27: Basic composition rules with simple intermediary net

The token will be passed on by ONp when it triggers ONq. We notice
this kind of relation from end to start event results in a structurally
and behaviorally sound ON.

Composition rule 2 describes trigger relation (t1, s2) ∈ I. Process p
triggers process r through its intermediate event t1. To represent this
trigger relation both processes are connected via a simple intermedi-
ary net that connects the output interface place of transition pte2 of
ONp to the initial input interface place of ONq. The resulting ON has
one marked initial place and two end places.

Composition rules 3 and 4 describe the information flow relation
by sending and catching an information flow through intermediate
events in rule 3 as well as by passing an information flow through an
end event to an intermediate event in rule 4, respectively. In rule 3 the
information flow relation (t1, c2) ∈ L is presented by the connection
of the output interface place of transition pte2 via a simple interme-
diary net to the input interface place of transition qte2 of ONq. The
composed ON has two initial and two end places. Composition rule
4 is similar, except from the source of the composition being the end
place of ONp. The resulting ON has two initial places and only one
end place. Note, that transitions pte1 and qte1 in rule 3, 4, and 6 are
not synchronized and can fire independently.

Composition rules five to eight, shown in Figure 28, depict multi-
communication and conflict relations between several processes. The
events involved have trivial multiplicity. The composition are exam-
ples for all different kinds of combinations of information flow and
trigger relations between processes.

Composition rule 5 defines the triggering or messaging of several
processes by one process, i. e., an event takes part as source in several
trigger or information flow relations. Depicted in Figure 28, process
p triggers process q as well as process r. The end event e1 of pro-
cess p takes part in two trigger relation pairs (e1, s2) and (e1, s3). In

106 business process architecture behavior

�

�
������

��

�
��

��

�
	 �
�

�
	 �
�

	 �
�

�
	 �
�

�
	 �
�

�	
�
�

�	
�
�

�

�
��

����

��
�

��

��

�
	 �
�

�
	 �
�

�
	 �
�

�
	 �
�

	 �
�
�

	 �
�
�

�	
�
�

�	
�
�

�

�

�
��

����

��

�
��

��

�
	 �
�

�
	 �
�

�
	 �
�

�
	 �
�

�	
�
�

�	
�
�

�

	 �
�
�

	 �
�
�

�

�

�
��

����

��
�

��

��

�
	 �
�

�
	 �
�

�
	 �
�

�
	 �
�

	 �
�
�

	 �
�
�

�	
�
�

�	
�
�

�

�

Figure 28: Multi-communication composition rules with events of trivial
multiplicity

this case, ONp is connected to ONq and ONr through an intermedi-
ary splitter net. When transition te2 fires, it passes on tokens to two
concurrent branches, former ONq and ONr.

Composition rule 6 describes the receiving of several triggers or
information flows, i. e., an event takes part as destination event in
several trigger or information flow relations. In Figure 28, event s3
takes part in (e1, s3) ∈ I and (e2, s3) ∈ I. The three ONs are con-
nected through an intermediary collector net. The intermediary col-
lector nets input interface places are connected to the output places
of ONp and ONq. The output interface place is connected to the in-
terface input place of ONr resulting in one composed ON. ONr can
be triggered by ONp and ONq or by both, one after the other.

Composition rule 7 describes the one option of the conflict rela-
tion between several flows, i. e., an event is part of several trigger or
information flow relations that are in conflict. The rule depicted here
shows that the event e1 is part of two triggers that are in conflict with
each other, so that ((e1, s2), (e1, s3)) ∈ χ. If two flows are in a conflict
a transition for each relation in χ is created and connected. Instead
of connecting all processes via an intermediary splitter net, we in-
troduce an intermediary send-conflict net that represents the conflict
((e1, s2), (e1, s3)) ∈ χ between those flows. Rule 7 is a refinement of
composition rule 5.

Composition rule 8 depicts the same structural intermediary net
as the collector net. For events with trivial multiplicities there is no

5.3 composition of nets 107

structural difference. It depicts the receive-conflict relation between
two flows in a BPA. s3 is part of two triggers that are in conflict with
each other, so that ((e1, s3), (e2, s3)) ∈ χ.

complex combinations of intermediary nets . In complex
cases additional care has to be taken to avoid wrong composition.
This is required for events that have both a non-trivial multiplicity
set ∣µ(e)∣ > 1 and a non-singleton postset ∣e●∣ > 1. The combination
of intermediary nets needs to follow a particular order which we
describe in composition rules nine to eleven.

�

�

�� ��

��

�

��

��

	

�

�
��

�
�

��

�
��

��

�

���

�
�

 �
�
�

 �
�
�

 �
�

 �

 �
�

�

�

 �
�

 �
�
�

�

�

 �
�
�

�

�

 �
�

�

 �

�

 �
�

�

 �

�

 �

�

 �
�

�

�

�

�
�

��

�����

 �

� �

������
����
���

��������

�����

����������
�����

�������
������������

�

�

�
�

��
�

��

��

�

�

��� ���

�

 �
�

�

 �

�

 �

�

 �
�

 �

 �
�

�

�

 �
�

 �
�
�

�

�

��

 �
�
�

 �
�
�

�

 �
�

 �
�
�

�

�

��

������
����
���

��������
������������

��������
������������

�������������������
���

�

�

�

�
�

���

�

��

�

 �
�

�

 �

 �
�

 �
�
�

 �

 �
�

�

�

��

 �

 �
�

�

�

��

�

 �

�

 �
�

 �
�

 �
�
�

�

�

�

�

�

�
�

������ ��������
���

��������
����
���

��������
����
���

�������
������������

	

�

��

Figure 29: Multi-communication composition rules of several intermediary
nets

108 business process architecture behavior

Composition rule 9 exemplifies that the multireceive and multicast
nets are always directly connected to the according input respectively
output interface place of the according ONs, unless their original
events are part of a conflict relation. Additional splitter and collec-
tor nets are then connected to the intermediary multicast respectively
multireceive net. The insertion of up to four intermediary nets may be
required to connect two processes’ ONs. An ON of processes emitting
triggers or information flows is first connected to an intermediary
multicast net (1) that subsequently is connected to the intermediary
splitter net (2) as depicted in Figure 29. The semantics become appar-
ent immediately, both processes receive the same amount of triggers
, e. g., two or four as depicted in the multicast net in Figure 29. A
similar situation is depicted for processes with receiving events. The
multireceive net (4) is directly connected to the input interface place
of the according ON which is subsequently composed with a collec-
tor net (3). This depicts that the receiving process needs a specific
amount of triggers or information flows as input but it does not mat-
ter from which process it receives them. The insertion of intermediary
nets between sending and receiving processes follows the rule multi-
cast net (1) before splitter net (2), collector-net (3) before multireceive
net (4) as illustrated in Figure 29.

Composition rule 10 and 11 describe the composition rules for events
that have a non-trivial multiplicity set, a non-singleton postset, and
additionally are part of flows that are in conflict. The conflict rela-
tion forms a special case and requires the re-ordering of intermediary
nets. If information flows or triggers are in conflict with each other
the composition of intermediary nets is the other way round than
in composition rule nine. The send-conflict net and the receive-conflict
net are fused directly to the output respectively input interface place
of the according ONs. The multireceive and the multicast nets are
then copied and fused to each flow option represented in the send-
conflict net or the receive-conflict net representing an exclusive multi-
communication behavior.

Composition rule 10 shows two sending processes that are in con-
flict. e1 and s3 have a non-trivial multiplicity requiring the insertion
of intermediary multicast and multireceive nets. As ((e1, s3), (e2, s3))
∈ χ we need to assert that always only one of the two processes, p or
q, triggers one instance of r. This is done by connecting the receive-
conflict net directly to the input interface place of the receiving ON
and attaching the copies of the multireceive net in between the sender
and the receiver ON. E. g., in Figure 29, taking the point of view of the
receiving process, the intermediary receive-conflict net (3) is directly
connected to the receiving ONr. Two copies of the multireceive net
(2a, 2b) which depict the receiving events non trivial multiplicity are
composed with the multicast net (1) and the output interface place of
ONq. The receive-conflict compositions follows the rule multicast net

5.3 composition of nets 109

(1) and multireceive net (2a, 2b) before receive conflict net between
sending and receiving process. This composition order assures that
always only one of the emitting processes triggers or messages a pro-
cess and that their triggers or information flows do not get mixed
up.

Composition rule 11 describes the order of intermediary nets for
triggers or information flows where the receiving processes are in
conflict. This means that only one should receive the triggers or infor-
mation flows defined by the multiplicity of the emitting event. This
is assured by attaching the intermediary send-conflict net directly to
the output place of the emitting ON and afterwards connecting it
to copies of the multicast net. The intermediary send-conflict net de-
picts the choice that determines which process receives the trigger or
information flow. The multicast net produces the amount of tokens
specified by the multiplicity of the according event as for example
depicted in Figure 29. The send-conflict follows the rule (splitter net),
send-conflict net, multicast net, multireceive net. The splitter net is
only inserted if there is a trigger to a third process, that is always
triggered no matter of the choice of the send-conflict net.

In cases of complex composition multiple intermediary nets are
necessary, which per default would have interface places with iden-
tical names, thus making the nets non-composable. But since such
situations can be derived from the relations, the problem can be cir-
cumvented by renaming those places as follows.

Definition 42 (Place renaming for intermediary nets)
a) Multicast net for (e,e ′) ∈ L∪ I

PI = {pe} PO =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{pe ′} if e● = {e ′} ∧ ●e ′ = {e} ∧µ(e ′) = {1}

{pe,e ′} if e● = {e ′} ∧ ●e ′ = {e} ∧µ(e ′) ≠ {1}

{p ′′e} if ∣e●∣ > 1 ∨ ∣●e ′∣ > 1 for e ′ ∈ e●

b) Multireceive net for (e,e ′) ∈ L∪ I

PI =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{pe} if e● = {e ′} ∧ ●e ′ = {e} ∧µ(e) = {1}

{pe,e ′} if e● = {e ′} ∧ ●e ′ = {e} ∧µ(e) ≠ {1}

{p ′′e ′} if ∣●e ′∣ > 1 ∨ ∣e●∣ > 1 for e ∈ ●e ′
PO = {pe ′}

c) Splitter net for e (Let e ′ ∈ e●)

PO ={pe ′ ∣ ∣●e ′∣ = 1∧µ(e ′) = {1}}
∪ {p ′′e ′ ∣ ∣●e ′∣ = 1∧µ(e ′) ≠ {1}}
∪ {p ′′e,e ′ ∣ ∣●e ′∣ > 1}

PI =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{pe} if µ(e) = {1}

{p ′′e} otherwise

110 business process architecture behavior

d) Collector net for e ′ (Let e ∈ ●e ′)

PI ={pe ∣ ∣e●∣ = 1∧µ(e) = {1}}
∪ {p ′′e ∣ ∣e●∣ = 1∧µ(e) ≠ {1}}
∪ {p ′′e,e ′ ∣ ∣e●∣ > 1}

PO =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{pe ′} if µ(e ′) = {1}

{p ′′e ′} otherwise

e) Receive-conflict net for e ′ (Let e ∈ ●e ′)

PI ={pe ∣ ∣e●∣ = 1∧µ(e) = {1}}
∪ {p ′′e ∣ ∣e●∣ = 1∧µ(e) ≠ {1}}
∪ {p ′′e,e ′ ∣ ∣e●∣ > 1}

PO =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{pe ′} if µ(e ′) = {1}

{p ′′e ′} otherwise

f) Send-conflict net for e (Let e ′ ∈ e●)

PO ={pe ′ ∣ ∣●e ′∣ = 1∧µ(e ′) = {1}}
∪ {p ′′e ′ ∣ ∣●e ′∣ = 1∧µ(e ′) ≠ {1}}
∪ {p ′′e,e ′ ∣ ∣●e ′∣ > 1}

PI = {pe}

◇

Multicast and multireceive nets as well as splitter (send-conflict) and
collector (receive-conflict) nets are mirror images of each other, with
the roles of pre- and postset, input and output switched. Consider the
naming of multicast (multireceive) nets for (e,e ′) ∈ L ∪ I. The name
of the only output (input) place depends on whether e (e ′) has a non-
singleton postset (preset) and thus requires a splitter (collector) net
[case a3 above] and whether e ′ (e) has a trivial [case a1] or non-trivial
[case a2] multiplicity set.

Splitter (collector) nets have several output (input) places, whose
names again depend on the multiplicity of the preset (postset) of
the related events. Essentially we distinguish three cases when cre-
ating splitter (collector) nets corresponding to the three subsets of
the union in the definition of PO (PI): 1) no multireceive (multicast)
net present, 2) multireceive (multicast) exists and 3) collector (splitter)
net present. For the names of input (output) places we need only to
differentiate whether a multicast (multireceive) net is present or not.
The application of this naming algorithm is illustrated in the use case
in Figure 35.

5.4 summary

A transformation into a Petri net formalism is a common way to pro-
vide clear semantics for process modeling languages [80]. Lohmann et
al. [80] investigate the transformation of process modeling languages
into Petri nets. Those transformations are mainly used for the formal-
ization of the behavioral semantics and the structural and behavioral
verification of the source languages [80]. [148, 113, 32, 80] formal-
ize EPCs, BPMN, and other workflow notations with Petri nets and

5.4 summary 111

provide them with clear behavioral semantics that can be analyzed.
[148, 32, 80, 98] show the effectiveness of formalizing business pro-
cess models in Petri nets. For instance, Dijkman et al. [32] provide a
BPMN to Petri net transformation to clarify ambiguities in the BPMN
specification finding a number of deficiencies of the source language.

Similarly, we introduced a transformation of BPAs into ONs to pro-
vide clear behavioral semantics of BPAs and enable the analysis of
our BPAs (see Chapter 6). Using ONs has many advantages as abun-
dant Petri net verification techniques exist [147]. Our transformation
depicts not only information flows but also highlights the trigger rela-
tions prevalent in BPAs. While multi-communication has not been the
focus of current approaches, our BPA approach allows modeling the
sending (receiving) of messages or triggers to many receivers (from
many senders) and the sending (receiving) of everal messages or trig-
gers to one receiver (from one sender). As ONs provide no direct
means to depict multi-communication, we presented different inter-
mediary net schema that replicate such complex behavior in ONs by
combining them accordingly.

After having introduced the transformation of BPAs into ONs in
this chapter, we present techniques for their structural and behav-
ioral analysis in Chapter 6. The behavioral analysis builds on the ON
transformation of BPAs.

6
B U S I N E S S P R O C E S S A R C H I T E C T U R E A N A LY S I S

This chapter is based on the published papers [40, 38, 45, 44]. It introduces
behavioral and structural BPA analysis techniques. The analysis of BPAs plays an

important role for the re-/design of process models and the quality of process model
collection. This chapter refers to the BPA properties in Section 4.6 and the BPA to

Open net transformation presented in Chapter 5. It contributes analysis techniques
to our overall BPA methodology that we introduce in Chapter 7.

Considering the complex interdependencies between processes in
organizations depicted in BPAs it is important to find faults and prob-
lems to improve and harmonize operations within a company. These
unwanted aspects can be of structural and behavioral nature. We in-
troduce different techniques for analyzing the interdependencies of
business processes in a BPA in regard to their structural composition
and behavioral properties. This in particular is important to detect
undesired structural and behavioral aspects in a BPA and to improve
them in a second step.

In Section 6.1, we present normal BPA and BPA anti-patterns to
examine BPAs for undesired structural interdependencies and detect
incorrect behavior. However, those patterns are restricted to only ex-
amine the direct interdependencies between only two processes at a
time. To overcome such limitations and extend our analysis capabili-
ties, we introduce techniques for the examination of behavioral prop-
erties based on an ON transformation of BPAs in Section 6.2. This
allows for thorough analysis of BPAs in regard to the interplay of the
interdependent processes and BPA correctness criteria.

6.1 structural bpa analysis

The structural patterns in the following sections describe information
flows and trigger relations between processes in synchronous and
asynchronous environments. The patterns consist of basic constructs,
composite constructs, and constructs of multiple instances.

Normal patterns that depict desired interdependencies between
processes are patterns 1-14 depicted in Figure 30 whereas patterns
15-27 are anti-patterns illustrated in Figure 31 that show interdepen-
dencies between processes that lead to faulty behavior. The main at-
tention will be given to anti-patterns as they expose erroneous inter-
dependencies.

We differentiate between asynchronous and synchronous environ-
ments for those patterns and anti-patterns. Asynchronous environ-

113

114 business process architecture analysis

ments in which message can be buffered or do not have to be in-
stantly processed are more common in BPM practice. In synchronous
environments timeliness and availability matters. Synchronous envi-
ronments have stronger restrictions on the availability of processes
during communication as we assume processes to be able to receive
information flows only when being instantiated. In case a process is
not instantiated the information will get lost as the receiver does not
exist yet and hence is not ready to receive the according information.
In asynchronous environments information flows are buffered and
are available when required by the process.

The patterns and anti-patterns are depicted in Figure 30 and in Fig-
ure 31 in which process p generally is the starting point of reading
the patterns. The reading direction of the patterns is from left to right
and from top to bottom.

6.1.1 Basic Patterns

The very basic interaction patterns with only one relation between
two processes are trigger patterns and information flow patterns. One
process is linked to another process by a relation between a sending
(end, intermediate throwing) and a receiving event (start, intermedi-
ate catching). In trigger patterns one process instantiates another pro-
cess. Information flow patterns depict an information flow that can
be observed between two processes after they have been instantiated.
These basic patterns are shown in patterns 1-4 in Figure 30.

Trigger Patterns Pattern 1 depicts a process p that triggers process
r. Process p finishes with end event e1 and process r starts with start
event s1. Similarly, pattern 2 shows process p triggering process r but
through its intermediate throwing event t1. Both patterns hold for
asynchronous and synchronous environments.

Information Flow Pattern Patterns 3-4 show an information flow
from process p to process r that is emitted by a throwing intermediate
event or an end event respectively and received by an intermediate
catching event. In both patterns process r must be instantiated for the
information exchange to occur in synchronous environments. Else the
information flow will be lost. In asynchronous environments, r does
not need to be instantiated at the moment when process p passes the
information flow. The message will be read after instantiation when
the process execution reaches the according state of the process where
the input is required.

6.1.2 Composite Patterns

Patterns 5-8 in Figure 30 show regular composite patterns that display
a combination of trigger and information flow relations between two
processes p and r.

6.1 structural bpa analysis 115

p

r
s2

e1

p

r
s2

t1
p

r

t1

c2

p

r

e1

p

r
s2

t1 c1

t2

p

r
s2

e1

t1

c2

p

r
s2

t1 c1

e2

p

r

t1 c1

c2 t2

4

8765

2 3

1211109

1

c2

e1

p

r

|||

t1

c2

1...n

p

r

|||

t1 c1

c2 t2

1...n 1...n

p

r

|||

c1

e2

1...n

p

r

|||s2

t1
1...n

13 14s2

s3

p

q

rp

q

r

e1

e2

s3

1...n

Figure 30: Basic patterns

Information Flow Feedback Patterns Patterns 5 and 7 describe the
feedback of information from process r to process p after having been
triggered and instantiated by process p. In pattern 5 and 7 process r
is triggered by a throwing intermediate event. During its execution
process r sends an information flow to process p through a throwing
intermediate event in pattern 5 and through an end event in pattern
7. These pattern are similar to general request-reply patterns. Pattern
7 can be used to identify and represent sub-processes.

Unidirectional Interaction Patterns In contrast to patterns 5 and
7, pattern 6 displays only unidirectional interaction from process p
to process r. Process p instantiates process r and sends a message to
process r when it finishes. In synchronous and asynchronous envi-
ronments process r has to wait for process p to finish before process
r can continue its execution.

Send-Receive Pattern In pattern 8, process p passes an informa-
tion flow to process r through an intermediate throwing event and
vice versa. Both processes need to be active in synchronous and asyn-
chronous environments. However, process r could be instantiated at
later time in asynchronous environments so that process p has to wait
for its response and vice versa.

Broadcast In pattern 13 a broadcast of the end event of process p to
processes q and r can be observed. Both processes will be triggered
and instantiated. This pattern describes one type of multi-communi-
cation.

116 business process architecture analysis

Collector In pattern 14 process r can either be triggered by the end
event of process p or by the end event of process q or by both. If
both processes send a trigger then process r is instantiated two times.
Patterns 13 and 14 include the according conflict relations.

6.1.3 Multi-Instance Patterns

To describe multi-instantiation patterns we introduced multiplicities
in Definition 29 that define the number of triggers and information
flows sent or received in a relation between two processes. The three
vertical lines depicted in process r in patterns 9-12 of Figure 30 rep-
resent the possible parallel execution of multiple instances of process
r. Note, for the multi-instance pattern, the multiplicity of the events
have a different interpretation if the communication between many
instances is considered. E. g., in pattern 9 the multiplicity of the in-
termediate throwing event distributes information flows to each in-
stance of process r. Each instance of process r receives one informa-
tion flow and not one instance receives all information flows sent
from p. This is represented by the vertical bars on the process icon. If
also the receiving event has different multiplicities then each process
instance can receive a different amount of information flows as spec-
ified its event’s multiplicity set for that run. Multi-instance patterns
depict resource patterns that are important to consider, e. g., when
assigning roles to employees and processes.

One-to-many-Broadcast Pattern 9 displays a one-to-many broad-
cast pattern where process p sends information flows to many in-
stances of process r. In synchronous environments as many instances
of r need to be active as information objects are sent by p. In asyn-
chronous environments the instances could also become active in se-
quential order.

Information Sink Pattern 10 displays an information sink. It ex-
tends pattern 4 with multiplicities. Process p collects many informa-
tion objects from several instances of process r that run in parallel. In
synchronous environments all process instances need to be active. In
asynchronous environments p can become active at a later stage to
receive all information objects from process r.

Trigger Fleet Pattern 11 depicts similar behavior like pattern 2.
However, process p triggers many instances of process r. In syn-
chronous environments all process instances of process r become ac-
tive at the same time. In asynchronous environment, the instances of
r could become active at different points in time.

Pattern 12 is a combination of pattern 9 and 10 whereas the process
instances of process r also send many information objects to process
p. Process p collects as many replies as needed and can then continue
with its execution.

6.1 structural bpa analysis 117

6.1.4 Basic Anti-Patterns

There are four basic process anti-patterns that demonstrate self-reflex-
ive/looping behavior and expose incorrect structures of a BPA. They
are depicted in patterns 15-18 of Figure 31. Anti-patterns that are con-
sidered regular patterns in asynchronous environments are marked
with an asterisk “*” in Figure 31 and in the heading of the pattern
description.

Loop Patterns 15 and 16 describe looping behavior in which a pro-
cess p triggers itself either through its own throwing intermediate
event or through its own end event. In pattern 15 process p trig-
gers itself upon finishing. This relation should not occur in a BPA
as such process could never be instantiated, unless zero is an element
of the start event’s multiplicity set. Also if instantiated once, process p
would trigger itself infinite many times as there is neither another end
event, nor is there a zero in the end event’s multiplicity set, nor an-
other trigger or information flow that is in a conflict relation with the
self trigger relation. Similarly in pattern 16, process p triggers itself
with its throwing intermediate event t1. It can never become active as
it waits for its own throwing intermediate event to trigger itself. Also
if instantiated once, infinite many instances of process p would be
created. The end event in pattern 15 and the intermediate throwing
event in pattern 16 respectively do not appear in another information
flow or trigger relation that is in conflict with the self trigger flow.
Such a conflict or the inclusion of zero in the end event’s multiplicity
set would provide a way out of the dead process or livelock observed.
Such looping behavior that shows dead processes or leads to livelocks
is undesired in synchronous as well as asynchronous environments.

Dead Event Pattern 17 of Figure 31 depicts a dead event. When
process p is active it waits for an information flow from its own end
event. t1 will never occur so that process p will never end. c1 is a
dead event as it never occurs. Dead events hint at dead processes and
are an indicator for violating BPA correctness criteria.

Self Messaging Pattern 18 does not formally depict undesired be-
havior. However, a process p that passes an information object to
itself, displays an improper structure and improper behavior. The
throwing intermediate event t1 sends an information object to its
catching intermediate event c1.

If the receiving event was supposed to happen before the sending
event, i. e., both intermediate events were switched around, this self
messaging would lead to a deadlock. In this case the receiving event
would be dead and the following sending event as well. In both syn-
chronous and asynchronous environments this could lead to process
p not finishing as the information flow to itself does not start.

118 business process architecture analysis

6.1.5 Composite Anti-Patterns

The anti-patterns in this group consist of lost information flow pat-
terns, inhibiting information flows or triggers, and looping behavior.

Trigger Loop Deriving from patterns 15 and 16, patterns 19, 20,
and 25 depict looping behavior involving two processes.

In pattern 19 and 20 process p triggers process r through a throw-
ing intermediate event t1. Process r in return triggers process p so
that the combination of both interdependencies resolves in a dead
structure. This symmetric behavior describes a loop spanning over
two processes in which neither process can be instantiated as they de-
pend on being triggered by each other. Also, if once active, multiple
instances of process p could exist in both patterns at the same time. In
pattern 19 multiple instances of r could possibly run in parallel. The
pattern structure could never terminate as the processes instantiate a
process instance of each other over and over again. Pattern 25 also de-
picts looping behavior, except that process p when finishing triggers
process r. Either pattern cannot be instantiated as both processes are
triggered by each other.

Inhibitor and Lost Information Flows Patterns 21-24 in Figure 31

show different constructs in which information flows never happen,
inhibit process execution, or would be lost in synchronous environ-
ments. In pattern 21, process p is triggered by process r and is sup-
posed to send an information flow to r. Process r is inhibited by the
throwing event t1 of process pwhich cannot occur as process p is trig-
gered by the intermediate event t2 of process r. This leads to process
p inhibiting the execution of process r.

An information flow gets lost when the receiver process cannot be
active while the information flow is sent. In patterns 22 and 24 pro-
cess p triggers process r when it finishes. However, process p cannot
terminate and deadlocks as it waits for the information flow of pro-
cess r. The catching intermediate event and the end event of process
p are dead. Consequently, process r is dead and will never send an
information flow to process p. If process p would receive an informa-
tion flow from another process, the information flow sent by process
r would still be lost as structurally process p finishes before process
r starts. These patterns do not only depict lost flows but also dead
events and consequently deadlocks and dead processes.

Unidirectional Information Flow Loss Pattern 23*, 26*-27* describe
a unidirectional relation information flow loss in synchronous envi-
ronments. Process p is active and wants to send an information flow
to process r. However, process r is not instantiated yet, as it is trig-
gered by either the sending intermediate event (anti-pattern 23*, 26*)
or the end event (anti-pattern 27*) of process p. Hence the information
flow will be lost in synchronous environments as process r cannot be
instantiated and receive an information flow through its catching in-

6.1 structural bpa analysis 119

ps1

e1

p
s1

t1

p
e1

c1

p
t1 c1

16

15
p

r

s1

s2

t1

t2

p

r

s1

s2

t1

t2
e2

1817

p

r

s1

t1

c2 t2

p

r
s2

e1

c1

t2

2221
p

r
s2

e1

t1

c2

p

r
s2

e1

c1

e2

24

23*

p

r

s1

s2

e1

e2

25
p

r

s1

s2

t1

c2

p

r
s2

e1

c2

27*26*

19

20

Figure 31: BPA Anti-patterns

termediate event at the same time. In asynchronous environments
patterns 23, 26, and 27 describe regular behavior as the message ob-
ject will be buffered until the according process will be active and
able to process it.

6.1.6 Application of Pattern and Anti-Patterns Analysis

We evaluate our pattern based analysis technique by applying it to a
subset of business process models from the SAP Reference Model col-
lection [21]. For this we examined the SAP Reference Model collection
for interdependencies between business processes and constructed
BPAs according to the interdependencies found.

Constructing a business process architecture for the SAP reference
model is complicated by three factors. First, the SAP Reference Model,
has a control flow semantics that is difficult to interpret automatically,
because it is known to contain errors in the control flow and EPCs, the
used modeling notation in particular, lacks clear semantics [99, 148].
The extraction algorithms proposed in Section 7.2 cannot be applied
to the SAP Reference model because most of the underlying process
models in the SAP Reference Model are not structurally sound and
not block structured. Hence, the manual construction of BPAs from
the SAP Reference model and a manual investigation of the collection
was inevitable. [25] shed light to the difficult instantiation semantics
of EPCs looking at process models in the SAP reference model with
many start events. Many process models of the SAP process collection
have several start events that are connected with XOR, OR, or/and
AND gateways. On the process model level it is not always fully clear
how to interpret such complex semantics due to under-specification

120 business process architecture analysis

of EPCs for example. Abstracting from such highly complex seman-
tics to BPA level is difficult and restricted by the quality of the process
model semantics on process model level which becomes obvious on
BPA level. As most of the process models in the SAP Reference Mo-
del have several start and end events we loosened the restriction of
our BPA definition in Definition 29, such that a BPA process can have
several start and several end events. This allows us constructing BPAs
from highly complex process models and process model interdepen-
dencies but impacts the interpretation of the BPA semantics and the
pattern based analysis as well.

Second, the SAP Reference Model does not explicitly distinguish
between start, end and intermediate events, while a BPA distinguishes
between them. To identify the events, we used the following defini-
tions. A start event is an event that is meant to occur before any activ-
ity. An end event is an event that is meant to occur after all activities
have occurred. An intermediate event is an event that is meant to oc-
cur after an activity has already occurred and before all activities have
occurred. Of course, these assumptions leave room for interpretations
but are an appropriate solution to the problem posed by lack of se-
mantics of the modeling notation. To determine whether an event is
expected to occur at all for a single instance of a process, we assume
that the processes are meant to be one-safe in a token-based execu-
tion semantics. For example, if a process has two start events A and
B that are followed by an XOR-join, then we assume that either A or
B should occur in a single process instance, but not both.

Third, the SAP Reference Model also does not distinguish explic-
itly between trigger and information flow relations or between syn-
chronous and asynchronous relations. Instead, it distinguishes be-
tween conditions that can become true. We interpret each of these
conditions as a synchronous trigger relation, as a condition that be-
comes true, becomes true at all places in the architecture at the same
time.

Using these assumptions, we constructed BPAs for the various bran-
ches, like the one shown in Figure 32, and subsequently we identified
the architectural patterns that are shown in Table 1. We investigated
7 branches of the model with a total of 12 subbranches. These bran-
ches contain 95 of the total collection of 604 models. The interaction
observed between process models remained within their branches.
However, interaction across subbranches could be observed quite fre-
quently. Figure 32 shows a process architecture for one of the smaller
branches of the SAP Reference Model, consisting of only leaf proces-
ses. The architecture provides some interesting insights. For example,
it is visible that process c can be executed multiple times and process
b collects the results of the various instances of process c as process
b monitors process c. Process d appears to be highly relevant as it
has many relations. It can be triggered by four different processes.

6.1 structural bpa analysis 121

�

� �

�

� �

�

�

	

�

	

�

	

�

	

�

	

�

	

�

	

�

	

� 	

�

	

�

	

�

	

�

	

�

	

�

	

�

	

�
	

�

	

�

	

� 	

�

	

�

Figure 32: Part of the SAP reference model process architecture.

We can observe multi-communication pattern 13 two times; process
h triggering processes g and d, and process c triggering process d
and sending an information flow to process b.

The BPA shown in Figure 32 is not well-formed due to processes
h,g, f having unconnected catching intermediate events. Processes h
and g deadlock and cannot terminate as the source of their required
information flow is not specified. Similarly, processes d and f may
deadlock but their information flow input is optional, such that there
can be terminating runs. The BPA contains two loops (anti-pattern 25)
spanning over up to two processes that indicate possible livelocks and
a possible violation of our BPA correctness criteria. As these processes
have also other end events, we cannot make a clear statement except
from indicating problem areas in the BPA. It exhibits one loop along
three processes that cannot be detected by our anti-pattern approach
as we analyze only direct relations between two processes.

During our examination of 95 business processes of the SAP Ref-
erence Model we mainly found normal patterns that derive from
patterns 1-4. In general we found more trigger relations than infor-
mation flow relations. Trigger relations with end events triggering a
start event occurred more often than trigger relations that were initi-
ated by intermediate throwing events. We observed more information
flow relations between to intermediate events than information flow
relations between end events and catching intermediate events. Two
of the analyzed branches showed a correct structure as they did not
expose any anti-patterns.

Table 1: Patterns in SAP-Reference model

Pattern Counts Pattern Counts

Trigger (Pattern 1 and 2) 95 Self-Messaging 2

Flow (Pattern 3 and 4) 13 Anti-Pattern 25 3

Broadcast 10 Anti-Pattern 20 3

Loop
(Anti-Pattern 15 and 16)

5 Anti-Pattern 23 2

122 business process architecture analysis

In the other five branches 13 occurrences of anti-patterns could be
observed. Anti-pattern 23 was found two times and loop anti-patterns
15 and 16 in total five times. However, one occurrence of the loop anti-
pattern and the two counts of anti-pattern 23 could be considered reg-
ular behavior when taking their hidden workflows into consideration
as each process exposes several start and end events. Anti-pattern 20

could be observed three times in derivative form and anti-pattern 25

three times.
This evaluation shows that we can apply our pattern based tech-

nique to large and complex sets of process models. It indicates struc-
tural errors and hence supports the improvement of the quality of a
process model collection in regard to consistent process model inter-
dependencies. Despite that, our pattern based analysis technique is
limited to the analysis of the direct relations between two processes
only. Erroneous behavior that is caused by indirect interdependencies
cannot be detected. An ON based analysis technique presented in the
next sections overcomes this limitation and supports the analysis of
BPA correctness.

6.2 behavioral bpa analysis

In Chapter 5, we introduced a BPA transformation to ONs to provide
clear semantics for the behavior of BPAs and clarify the behavior of
BPAs with multiplicities and multi-communication. Besides provid-
ing clear behavioral semantics, Petri net based formalisms are com-
monly used for modeling and analyzing distributed, concurrent, and
asynchronous systems [147, 148, 113, 32, 80, 98]. We will use the ON
transformation approach for examining our patterns for their behav-
ioral properties. Besides the analysis for BPA correctness criteria de-
fined in Definition 32 and Definition 33, we also examine the pattern
and anti-patterns for known behavioral workflow properties and BPA
correctness criteria. In a later step, we highlight the analysis of multi-
communication by examining BPAs with multiplicities in regard to
the BPA correctness criteria defined in a larger use case.

6.2.1 General Analysis Procedure

To analyze the correctness of BPAs (BPA subsets) we transform and
compose them into one ON according to the transformation algo-
rithm presented in Section 5.2. At the same time we create CTL-for-
mulae and state predicates that express the BPA correctness criteria
for the resulting composed ON. For each ON representation of a BPA
the CTL-formulae and state predicates that express the correctness
criteria are created individually. For each criterion of the BPA cor-
rectness criteria a verification task for the model checker is created.
Both results of the transformation, the ON and the BPA correctness

6.2 behavioral bpa analysis 123

criteria in form of CTL-formulae and state predicates are used for
model checking to determine if the BPA correctness properties can
be satisfied by the composed ON representation of the BPA. If the
transformed ON successfully passes all the verification tasks the BPA
is correct.

A terminating BPA run is characterized by the final place or places
of the net being marked with one or more tokens and any other place
in the net being unmarked. If such a state is reachable in the state
space, the BPA has a terminating run and thus is correct.

Lazy termination of a BPA run can be concluded if there is a path in
the state space leading to a final marking, such that each process ter-
minates at least once, if it is instantiated at all in that run. In lazy
terminating BPA runs not terminated instances and pending mes-
sages are allowed, as long as for each instantiated process at least
one instance terminates and the final marking is reached. This prop-
erty has similarities with relaxed soundness of workflow nets and
weak soundness in the context of process choreographies.

A lazy terminating BPA run in most cases contains lost triggers
or information flows. A lost trigger or information flow gets emitted
to an event that may never become ready or may not become ready
again. This is depicted in the state space when the final marking is
reached but there are still remaining tokens in the ON. E. g., a tran-
sition representing a catching intermediate event has a token on its
interface input place but the according process is not instantiated so
that the transition cannot fire. Lost trigger and information flow also
often appear with multi-communication if the amount of instances
and information flow sent or multiplicities of catching and throwing
event do not match.

If a final marking is not reachable, the BPA contains only dead-
locks and infinite BPA runs (livelocks). Those can automatically be
detected by LoLA1 [132]. Dead processes are found by searching the
state space for all those initial places, that are never marked. Similarly,
we identify dead events by searching the state space for all those in-
put places of transitions that represent BPA events that are always
unmarked.

To examine whether a process terminates, the state space is searched
for a path on which the initial place of a process representing its start
event has been marked once and eventually the end places of the
process representing its end event has been marked once as well. Ad-
ditionally, the final marking of the BPA must be reachable on this
path for a BPA to be correct. Else the process can terminate but does
not participate in a (lazy) terminating run.

In our implementation of the BPA analysis, we used the LoLA built-
in verification tasks for model checking and applied them to the com-

1 Low Level Petri net Analyzer, http://service-technology.org/lola

http://service-technology.org/lola

124 business process architecture analysis

posed ON. The implementation of our BPA analysis tool is described
in Section 9.2.

6.2.2 Analysis of Patterns and Anti-Patterns

In previous section we proposed 27 BPA patterns and anti-patterns
to identify desired and undesired structural and behavioral proper-
ties. These patterns provide a first means to detect errors between
two processes in a BPA. However, for large BPAs their application
becomes complex. In order to assess their properties we examine the
BPA patterns by applying our BPA to ON transformation and catego-
rize them.

In total we examine all 27 patterns, of which 14 are considered
regular patterns and 13 anti-patterns respectively. We analyze those
patterns in regard to the BPA correctness criteria defined in Defini-
tion 32. We use common workflow correctness criteria like sound-
ness where applicable to support our analysis. As BPAs do not nec-
essarily comply to the workflow net or workflow module structure
and encompass a larger context, workflow net and workflow module
correctness criteria cannot be applied in all cases. Due to that, BPA
properties in Chapter 5 were designed. In cases where the common
workflow net properties are applicable they support the analysis.

A representative set of BPA patterns, depicted in Figure 33, will
serve as example to illustrate this approach. Figure 33 shows solely
the resulting fused ONs from the transformation of the patterns and
anti-patterns. The usual dotted demarcation lines for ONs are not
visualized in Figure 33 for clarity reasons. The patterns shown in Fig-
ure 33 were selected as they cover most of the structural aspects and
show the various behavioral properties observed in BPA patterns.

Our course of action consisted of three steps, firstly the transfor-
mation of BPA patterns to ONs, secondly the analysis of the resulting
ONs for their structural and behavioral properties with LoLA, and
thirdly the categorization of transformed BPA patterns. The transfor-
mation of BPA processes and their trigger and information flow rela-
tions results in ONs with different number of start and end places.

The initial approach presented in [38] included a transformation
into WF nets for structural unsound nets which we do not apply here.
Using ONs for the analysis does not require this step anymore and
allows for direct analysis of the resulting ON.

The examination of the BPA patterns shows interesting results. The
results can be grouped into three categories depicted in Table 2, Ta-
ble 3, and Table 4. The patterns in the tables were sorted along their
structural properties, i. e., the number of start and end places, and
the resulting behavioral properties, e. g., if they are correct, dead or
live. After the first step of our analysis, the transformation of BPA pat-
terns into ONs, most of the BPA patterns are structurally not sound.

6.2 behavioral bpa analysis 125

tt2,c1tt1,c2

8

p

q

t1 c1

c2 t2

e1

e2

s1

s2

t t2 t e
2

t s
2

t c
2

t c
1

t e
1

t s
1

t t1

p

q

s1

s2

t1

t2

19

e1

e2

tt2,s1

tt1,s2

t t2 t e
2

t s
2

t e
1

t s
1

t t1

p

q
s2

e1

c1

t2

22

tt2,c1

t t2 t e
2

t s
2

t e
1

t s
1

t c
1

p

q
s2

e1

c1

e2

24

te2,c1

t e
2

t s
2

t e
1

t s
1

t c
1

t e
1

,s
2

p

q

s1

s2

e1

e2

25

t e
2

t s
2

t e
1

t s
1

t e
1

,s
2

e2

s1
t e

1
,s

2

t e
2

,s
1

p

q
s2

t1

c2

27*

tt1,c2

tt1,s2

t c
2

t e
2

t s
2

t e
1

t s
1

t t1

s1

e1

e2

s1

Figure 33: Representative BPA patterns mapped to ONs

Either they have several or no start, and several or no end places, or
a combination of both.

The Correct ONs category includes structurally, behaviorally sound,
and bounded ONs. These are the ONs that depict the regular patterns
1, 6, 7, 18, 23, 26, and 27. Patterns 23, 26 and 27 are considered anti-
patterns in environments of synchronous communication which does
not apply for the asynchronous ON environment. The BPA patterns
2, 3, 4, 5, 8, 9, 13 and 14 have several start and end places but are
bounded as well. Those patterns meet all BPA correctness criteria
and are complete terminating. The multi-instance patterns 10, 11, 12

are only terminating as some of their runs have not matching mul-
tiplicities so that some runs may be only lazy terminating and some
runs may even deadlock. However, all multi-instance patterns are well-
formed and have at least one terminating run. The analysis results of
the anti-patterns that become correct patterns are shown in Table 2.
Using only WF net criteria pattern 26 would be considered incorrect.

The Dead Net category consists of all patterns that are dead. Dead
nets are ONs that can never fire for lacking an initial place, e. g., pat-
tern 19 in Figure 33. They are structurally not sound. The anti-pat-
terns 15, 16, 19, 20, and 25 are grouped into this category. None of
these patterns depict a well-formed BPA as they do not have any in-
dependent start event (µ(es) ≠ ∅∧ 0 ∉ µ(es)). If those patterns would
be started by a second trigger relation or a zero in their multiplicity
set they would result in livelocked BPAs but their processes could
start and terminate. The revived nets would not have terminating
runs either. We call these dead nets that get activated by conceptually

126 business process architecture analysis

Table 2: Properties of correct BPA patterns

Properties Patterns

18 23 27 26

Start Place 1 1 1 1

End Place 1 1 1 2

Struct. Sound yes yes yes no

WF net Sound yes yes yes no

Weak Sound yes yes yes no

Relaxed Sound yes yes yes no

Bounded yes yes yes yes

Live no no no no

Dead Event 0 0 0 0

Deadlock run no no no no

Livelock run no no no no

Well-formed BPA yes yes yes yes

Dead processes 0 0 0 0

Terminating processes 1 2 2 2

Lazy terminating no no no no

BPA terminating yes yes yes yes

Correct BPA yes yes yes yes

Dead BPA no no no no

Deadlocked BPA no no no no

inserting an external trigger, revived nets. In the ON presentation
the revived dead nets would produce an unlimited amount of tokens.
The properties of those patterns are presented in Table 3.

The Deadlocked BPA category consists of patterns of which all
runs deadlock. Anti-patterns 17, 21, 22, and 24 form this category.
All of the patterns however are bounded. Pattern 17 and 24 are not
well-formed. All patterns depict incorrect BPAs as they have dead
events and either one or both processes do not terminate. Three of
the patterns also have dead processes that cannot be instantiated in
any run. Only pattern 22 is structurally sound but also deadlocks.
Table 4 shows the properties of those patterns.

As all regular patterns have the same properties they are consid-
ered part of the correct pattern group but not listed in the table. The
analysis showed that most of the BPA patterns and anti-patterns are
structurally unsound. Eight anti-patterns are not well-formed, those
include all patterns from the dead net pattern category and dead-

6.2 behavioral bpa analysis 127

Table 3: Dead BPA patterns and their properties

Properties Patterns

15 25 16 20 19

Start Place 0 0 0 0 0

End Place 0 0 1 1 2

Struct. Sound no no no no no

WF net Sound no no no no no

Weak Sound no no no no no

Relaxed Sound no no no no no

Bounded yes yes no no no

Live no no no no no

Dead Event 2 4 3 5 6

Deadlock run no no no no no

Livelock run no no no no no

Well-formed BPA no no no no no

Dead processes 1 2 1 2 2

Terminating processes 0 0 0 0 0

Lazy terminating no no no no no

BPA terminating no no no no no

Revived terminating processes 1 2 1 2 2

Revived Livelocked run yes yes yes yes yes

Revived BPA terminating no no no no no

Revived BPA lazy terminating no no no no no

Correct BPA no no no no no

Dead BPA yes yes yes yes yes

Deadlocked BPA no no no no no

Revived Livelocked BPA yes yes yes yes yes

lock BPA patterns. This shows that structural malformedness is an
indicator for behavioral malfunctioning. Structural well-formed BPA
patterns, however, do not necessarily lead to correct behavior as seen
for patterns 21 and 22.

The regular BPA patterns represent desired behavior and result in
correct BPAs. Patterns 1, 6, and 7 are sound and result in correct BPAs.
The BPAs are complete terminating as all runs terminate. Soundness
is a sufficient but not a necessary criteria to show BPA correctness.

128 business process architecture analysis

Table 4: Properties of deadlock BPA patterns

Properties Patterns

22 17 24 21

Start Place 1 1 1 1

End Place 1 0 0 2

Struct. Sound yes no no no

WF net Sound no no no no

Weak Sound no no no no

Relaxed Sound no no no no

Bounded yes yes yes yes

Live no no no no

Dead Event 5 2 4 6

Deadlock run yes yes yes yes

Livelock run no no no no

Well-formed BPA yes no no yes

Dead processes 1 0 1 1

Terminating processes 0 0 0 0

Lazy terminating no no no no

BPA terminating no no no no

Correct BPA no no no no

Dead BPA no no no no

Deadlocked BPA yes yes yes yes

In many cases the soundness criteria cannot be applied as connect-
ing many processes along their interdependencies results in struc-
turally unsound nets as we can see with patterns 3, 8, or 14 for ex-
ample. Those patterns depict correct BPAs that are well-formed and
terminating. These examples show that a BPA does not have to be
sound nor structurally sound to be correct as well as the limitations
of the soundness criteria for BPA scenarios that involve several pro-
cesses.

In asynchronous communication environments anti-patterns 23, 26,
and 27 depict correct BPAs as the messages and triggers sent can be
buffered and do not get lost. Hence, the BPA have terminating runs.

Reviving dead nets by adding another trigger relation from another
process or adding zero to the multiplicity set of one start event, results
in livelocked BPAs, e. g., pattern 15, 16, 19, 20 or 25. Those patterns al-
ready show by their structure that they are dead and not well-formed

6.3 analysis with multiplicities 129

for not having an independent start or end event. Hence, they must
be changed structurally.

Business Process Architectures dead net or livelock patterns could
possibly result into correct behavior if their events took part in fur-
ther information flow or trigger relations which would be in conflict
with each other. In this case, the processes would exhibit loops which
could be interrupted. Looking at the structure of the resulting ONs
we see that the different soundness criteria are not suitable for BPAs
that involve many processes due to their structural restrictions. There
are many patterns that show correct BPAs but are structurally un-
sound. This will become even more clear when looking at multiplici-
ties and multi-communication depicted in BPAs. Our analysis of the
patterns shows their validity to indicate behavioral problems in BPAs
due to their structural composition. However, the pattern analysis is
limited to a scope of two processes only.

6.3 analysis with multiplicities

To emphasize the analysis of multiplicities and evaluate our approach
on BPA subsets larger than the BPA patterns analyzed in previous
section, we consider the use case of applying for a restaurant busi-
ness permit combined with a construction permit. An entrepreneur
would like to enlarge the facilities chosen for her restaurant, as well
as make changes to existing building structures. Figure 34 shows the
BPA consisting of seven business processes and their interrelations.
E. g., business process p1, the restaurant business permit application,
triggers three business processes p2, p3, p4; the applications for the
restaurant permit, the construction permit, as well as the building
conversion permit. It is common in the public sector that some of
the public administration processes are executed several times by dif-
ferent roles. The construction permit application process p4, triggers
multiple instances of the expert’s report process, as depicted by the
multiplicity of its throwing event. Another peculiarity is the catching
event of the final construction permit evaluation process, which re-
quires between four and six messages from process p6. This process
is responsible for checking formal requirements of the expert reports.
Only then the final decision on the construction permit can be taken.

On first sight the BPA model seems to comply to the BPA correct-
ness criteria, except for the disparity between the numbers of created
instances of process p5 and the expected messages in process p7.

Figure 35 shows the transformation of the BPA with multiplicities
into an ON which is then used to verify correctness. Structurally the
BPA is well-formed. It has an independent start and an independent
end event, and all other events are part of a trigger or information
flow relation. The analysis with LoLA [132] showed that the resulting
Open net is structurally sound. However, the ON exhibits no firing

130 business process architecture analysis

P6 - Formal

completeness

verifcation

P1 - Restaurant business application

 P4 - Construction

permit application

 P5 - Expert’s report

|||

3..5

 P3 - Building

conversion application P7 - Construction permit

examination

4...6

 P2 – Restaurant permit

application

b1

b2

b3

b4

b5 b6

b7

e1

e2

e3

e4

e5 e6

e7

s4
r6

r7

s1 r1

Figure 34: Business restaurant permit application

sequence that would mark the place pe1 which corresponds to the
end event of the application process and is the desired final marking.
This means that all possible BPA runs are neither terminating nor lazy
terminating. Instead all runs deadlock, i. e., the ON reaches markings
in which no transitions are activated.

All those deadlocks have tokens on p ′b7 but do not activate tr7 be-
cause no tokens are on pr6 Therefore the catching event r6 in process
p6 fires only once and is dead afterwards. As a consequence process
p7 is blocked after being initiated twice as not enough incoming mes-
sage are sent by process p6. The intermediate catching event r7, r1
and the end event e1,e7 of process p1 and process p7 are dead.

All business processes are instantiated, however neither process p7
nor process p1 can terminate and only one instance of process p6 ter-
minates. Consequently the BPA of our use case is not correct in regard
to the BPA correctness criteria. Without considering multiplicities the
transformed BPA would have a lazy terminating BPA run as all pro-
cesses except from one instance of p7 could terminate. A strong con-
trast to the problems found considering multiplicities. Considering
and analyzing multiplicities in process interaction reveals important
aspects for ensuring correct BPAs. Current approaches on process mo-
del level like workflow modules [91] or service choreographies [28]
do not directly allow the modeling and analysis of process multi-
communication, i. e., the examination of the sending and receiving
of multiple triggers and information flows as well as the interaction
of multiple process instances. As the fist approach on PA level, our
BPA approach provides a structural and behavioral analysis that also
includes multi-communication constructs.

The BPA analysis based on the ON transformation extends the pat-
tern and anti-pattern based approach with a powerful formal analysis
of BPAs. Despite that, it can only be applied for asynchronous com-
munication exchanges in which information flows and triggers are
buffered until the process is ready to read them. The use of ONs for

6.3 analysis with multiplicities 131

� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

� �
	

�

�

	

� �
	

� �

 � �
�

� �
�

� �
�

� �

�
	

�

� �

� �

� �
�

�
�

� �
�

� �
�

� ��

�
�

�
�

�
�

�
�

�
�

� �
�

� �
�

� �
�

� �
�

�
�

�

�
�

�
�

�
�

�
	

�

� �
	

� �
�

� �

� ��

� �

�
�

��

�
	

�
�

�

��
�
�

��
�
�

�� �
�

��
�
�
��

��
�
�
��

��
�
�
�	

�� �
�

��
�
	

�� �
�
��
�� �
�
�	

�� �
�
��

��
�

�
�
��
��

�
�
�
��

�
�
�

�

���
��
��

�
�
�

�
�
��
��

��
�
�
��
�
�

�
�
�

�
�
���
�
��
��

�
�
� �
��

��
�

��
��
��
�
�

�
��

��
�

��
��
��
�
��
��

��
�

��
��
��
�
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
	

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

�
��
�
�
�
�
��
�

Figure 35: Extended ON BPA transformation

132 business process architecture analysis

the analysis of BPAs has many advantages as different analysis tools
exist. The transformation to ONs and its analysis bears the common
disadvantages of state space explosion for BPAs with many business
processes, or frequent use of large multiplicity sets and multi-commu-
nication. The analysis on BPA level provides means to examine pro-
cess interdependencies in an early stage of the design phase. When
process models already exist, abstracting from a large part of the busi-
ness process model reduces the state space significantly in contrast of
checking interconnected business process models on process model
level.

6.4 summary

In this chapter we introduced structural and behavioral analysis tech-
niques for BPAs. On PA level no comparable techniques exist that
allow for the analysis of PAs. Initial attempts on PA analysis are de-
scribed by Kolliadis et al. [70] and Green and Ould [56] that rather
suggest manual analysis based on their approaches. We introduced a
pattern based analysis technique and demonstrated it can be used to
detect incorrect behavior in BPAs. However, we cannot claim that this
approach can be used to uncover all problems related in regard to the
BPA correctness criteria stated, e. g., deadlocks or livelocks. Problems
that are not captured as an anti-pattern will not be detected. Indi-
cating structural errors and supporting improvement of BPAs, this
approach is limited to direct interdependencies between processes.

In regard to the analysis of BPAs, the analysis of multiplicities and
multi-communication is of importance which has not been looked at
in detail by current approaches. Although ONs have been applied to
various use cases on inter-organizational service compatibility, com-
position and refinement [158, 92, 79, 78], they do not provide direct
means to model and analyze multi-communication. We introduced a
novel approach that allows to analyze BPAs, i. e., subsets of interde-
pendent processes with their inherent multiplicities and multi-com-
munication. As noted in Section 5.2 we assume one overall case per
BPA run, hence we did not consider correlation issues. The introduc-
tion of correlation would require the adaption of our ON transfor-
mation and analysis approach with a correlation mechanism, e. g., a
token identifier and special input and output conditions for transi-
tions. Zhao et al. [175] present correlation Petri nets (CorPn) which
may be suited for such purposes. This should be examined in future
work. The presented analysis of BPAs is incorporated in our BPA
methodology in Chapter 7 which describes the application of our BPA
approach top-down and bottom-up.

Part III

E X T E N D E D C O N C E P T S A N D A P P L I C AT I O N

7
B U S I N E S S P R O C E S S A R C H I T E C T U R E
M E T H O D O L O G Y

Parts of this chapter are based on the published paper “From Process Models to
Business Process Architectures: Connecting the Layers” [39]. Having introduced

the main concepts of BPAs this chapter focuses on the application of BPAs. It
presents our BPA methodology and provides some insight on how to use our BPA

approach bottom-up and top-down. In this regard it describes a BPA extraction and
a BPA to process model decomposition technique.

After having discussed the core concepts of BPAs, their semantics,
and behavior, we describe the concrete application of BPAs in an over-
all methodology. In general there are two ways to apply PAs, top-
down or bottom-up. Both come with different preconditions. In the
following we discuss the application of our BPA approach in both
cases and describe our overall application methodology. Both appli-
cation ways lack one view, the top-down approach misses business
process models in the beginning, whereas the bottom-up approach
misses an overarching structure and overview. At first we introduce
our BPA methodology in Section 7.1 and the according extraction and
decomposition techniques in subsequent sections.

7.1 business process architecture methodology

Our BPA approach envisions three conceptual layers for a process mo-
del collection repository, the process model level, the level of BPA sub-
sets, and the BPA compendium, a general overview of all BPA subsets.
The heart of our framework is our BPA formalism. It allows to define
business processes on a very abstract level and their interdependen-
cies to other processes. It can be used to visualize business processes
and their interdependencies as well as additional meta information
of process models like cost, resources, or risks, and to reason about
this information and its context. In Section 6.1 and Section 6.2 we
provided two analysis techniques on BPA level that allow for early
analysis of interdependencies between business processes.

Based on the BPA foundations, our Business Process Architecture
application methodology describes the use of our BPA concept and
combines it with additional techniques for extraction of BPAs from
process models as well as the generation of process models from
BPAs. Our BPA methodology’s aim is to improve consistency between
the different layers of the process model repository and keep mainte-
nance of the different layers at its minimum. Depending on the type

135

136 business process architecture methodology

��������

�����

���	
��

�	
����
�
���
������
�

��
�	���

�	
����
�
����

�
	���

���	����

������

��
��

��

��
����

��

��

��
��

��

��

��
�� ��

����

��
�� ��

��
�� ��

��
�� ��

��
��

��
��

��

��
�� ���

��

��������
�	
����
�	��������	�

!"�����!

���

���	����
�
��	!��

���
#���	"	���

$
�����%

���
�
����

 �	�

�

�����
��

Figure 36: BPA framework

of BPM project our BPA can be used top-down or bottom up. Fig-
ure 36 shows our methodology and its different elements. The main
element is our BPA approach, represented by the BPA compendium
with its BPA subset. It is the start of the top-down use of our BPA ap-
proach and the target of the bottom-up use of our BPA approach. The
top-down use of our BPA approach consists of four steps, (1) defin-
ing the BPA compendium and its BPA subsets, (2) examining them
for correctness, (3) decomposing the BPA subsets to process model
skeletons, and (4) enriching the process model skeletons into detailed
process models. The bottom-up use of our BPA approach consists
of the extraction of BPA subsets and hence the BPA compendium.
Each element in Figure 36 shows the result of the according step per-
formed, e. g., the decomposition of BPA subset results into several
process model skeletons.

7.1.1 Business Process Architecture Top-Down Approach

Top-down approaches are often applied in just established companies,
or already existing companies that do not have any elicited processes.
The aim of the initial phase of the elicitation phase of PA approaches
is to generate an ordering structure that can be used for grouping
the business processes. The result in many cases are folders with lists
of business process names or similar categories that incorporate some
categorization logic. The processes are then elicited according to some
selection mechanism, or cost function, that ranks and prioritizes them
for elicitation.

7.1 business process architecture methodology 137

After the prioritization process, the elicitation of the business pro-
cesses is performed, one after another until all processes (or only the
ones in scope of the project) of the organization have been modeled.
The relation between the business process architecture level and the
business process model level is a “part of” or “is-in” relation and
generally only a mapping from process name to process category.

When applying our Business Process Architecture approach top-
down, our BPA approach is used to structure the business process
model collection and its inherent processes into groups of intercon-
nected processes. In the elicitation phase the users first define sce-
narios (BPA subsets). This step results in a BPA compendium that
provides an overview of all scenarios (BPA subsets) as depicted in Fig-
ure 36. For each scenario the users identify the business processes that
are required for the realization of the scenario. As a second step, the
interdependencies between processes in a scenario are identified by
defining output and input relations or data relations. Following this,
the trigger and information flow relations between events of proces-
ses are modeled depicting the interaction, input/ouput or data rela-
tions between the interdependent business processes. One of the aims
of applying our BPA concept top-down is to depict and examine inter-
dependencies between business processes early in the design phase.
In this way the process errors and problems are detected as early
as possible and the process interdependencies are harmonized. Not
detected errors deriving from bad process interdependencies cause
cost and efforts to correct, especially when many process models are
affected.

The formal underpinning of our BPA concept and its analysis tech-
niques allow examining the correctness of the BPA design at a very
early stage. Problems found can be improved and subsequently the
BPAs can be re-examined for correctness until a correct BPA design
has been established. Chapter 6 has presented the different analysis
techniques for BPAs. Only if the BPA is correct, the concrete model-
ing of the operative business processes and their interaction should
be performed.

To support the user with the modeling of harmonized business
processes under consideration of their interdependencies we present
a BPA to process model transformation in Section 7.3. The design of
a BPA spans an overarching frame over the underlying business pro-
cesses. This structure depicted by the BPA is used to reduce model-
ing efforts by our transformation technique. The transformation gen-
erates a process model skeleton for each process in a BPA subset.
The process model skeleton exposes the interdependencies defined
on BPA level, such that the interaction between processes is harmo-
nized. Based on the process model skeleton the users can now enrich
the process model to the desired granularity under the condition that
the predefined interaction structure is not violated. To assure this,

138 business process architecture methodology

users are only allowed inserting new nodes or process model compo-
nents that do not take part in a message flow or depict other process
interdependencies. These components can be inserted between the
process model skeleton nodes. The result of this course of action are
consistent process model, BPA subset, and BPA compendium layers
and fully developed process models. The top-down application of our
BPA approach guides the users in the process elicitation process and
provides support through the BPA to process model skeleton trans-
formation.

7.1.2 Business Process Architecture Bottom-Up Approach

The elicitation of business processes in a company is not always plan-
ned top-down. Often the need for business process management arises
in one department because of pressing issues like budget cuts, de-
mographic change, or bigger market competition. Other departments
notice these undertakings and slowly a BPM community develops
before BPM is adopted by the company’s managers as long term
strategy for the optimization of their company’s operations. In such
rather unstructured BPM approaches, business process models are
rather grouped along departmental lines or not having any ordering
systems.

In situations where a business process collection already exists, an
overarching ordering system for managing and structuring them has
to be created ex post. In Section 7.2 we describe a BPA extraction
technique that generates BPAs from a business process collection. For
this the process models are scanned for elements that take part in
message flows or form another type of interdependency. The process
is divided into two steps: first, the transformation of each business
process model into a BPA process; second, the mapping of message
flows, data dependencies, and other concepts that depict an informa-
tion flow between two or several business processes to BPA trigger
and information flow relations. The extraction of a BPA from a pro-
cess model collection depicts the bottom-up application of our ap-
proach.

The extraction algorithm and the bottom-up consistency criteria
provide the foundation to generate a topical overview of the interde-
pendencies between processes found on process model level on BPA
level. The combination of both top-down and bottom-up approaches
and our analysis techniques form our overall BPA framework. Both
approaches support the maintenance of the process model collection.

7.1 business process architecture methodology 139

7.1.3 Maintenance of a Process Model Collection and Business Process
Architectures

The maintenance of a process model collection with hundreds or
thousands of business processes is a tiresome and time consuming
task. In regular intervals process owners evaluate if the process mod-
els in their process repository still reflect the actual operations of the
company.

To support the maintenance of process models and the inherent
maintenance of the BPA both the top-down and bottom-up approach
can be applied. Both approaches complement each other if proces-
ses in the process model collection need to be changed as depicted
in Figure 36.

When already both process models and BPAs exist, keeping the
process models and BPA up to date is a major difficulty. Both the
bottom-up and top-down approach that we present in the next sec-
tions provide consistency criteria that the transformations and the
resulting views, BPAs and the process model skeletons, must comply
to. These consistency criteria can be used for the maintenance of the
process models and the BPA structure of the process model collection.

Changes, improvements, and updates of process models are de-
cided either on BPA level or on process model level. For instance,
in the course of a process re-engineering project or some business
process optimization project, a process architect changes the interde-
pendency between processes by inserting new processes to the BPA,
adding, removing, and changing trigger or information flow relations.
Those changes require changes on the process model level, i. e., new
process model skeletons need to be generated, and the changed re-
lations need to be transferred to the already existing processes. The
top-down consistency criteria provide pointers to the process mod-
els that reveal inconsistent structures, e. g., message flows that do not
map to any information flow or trigger relation on BPA level. These
can then be removed or changed until the process model layer and
the BPA layer are consistent again.

In other situations, the change, improvement, and update is directly
performed on process model level, e. g., when a process owner up-
dates his process models due to operational changes. In general there
are many process owners that perform such steps so that keeping
the BPA topical is rather difficult. The changes made on process mo-
del level might need to be propagated to the BPA level in case they
cause a change in an interdependency between business processes. To
keep the BPA updated, it has to be extracted from the process mod-
els again which can be done with the bottom-up extraction described
in Section 7.2. In this way old and new BPA can be compared or
changes highlighted visually. The newly extracted BPA shows a top-

140 business process architecture methodology

ical picture of the interdependencies between the business processes
within the process model collection.

The middle part of Figure 36 shows how the presented techniques
and methodology support the maintenance of a process model collec-
tion. Depending from where the change in the process model collec-
tion is triggered, the according steps are performed while consistency
between both the process model and BPA layer is considered. In the
following we present an overview of elements that describe business
process interdependencies in process models and the techniques for
BPA extraction and process model skeleton generation.

7.2 bpa extraction algorithm

In this section we present the different elements of process models
that are involved in the interaction between process models and show
their interdependency. These are required to extract BPAs from pro-
cess models.

7.2.1 Process Interdependencies in Process Model Collections

Process model collections often contain hundreds or thousands of
process models that describe the operations of a company [165]. The
production of goods or the delivery of services often is the result of
a collaboration between several processes that are loosely connected
through message flows or data interdependencies.

Interdependencies between process models can derive from sev-
eral elements in a process model. Some interdependencies are ex-
plicitly modeled such as message flows, other may be hidden, e. g.,
data dependencies. For this we especially look at the two most com-
monly used process modeling notations Event-Driven Process Chains
(EPC) and Business Process Model and Notation 2.0 (BPMN 2.0) and
present common structures and their mappings.

In the following we introduce different process modeling language
independent aspects that depict trigger and information flow inter-
dependencies and then provide notation specific elements and con-
structs that form those interdependencies in Section 7.2.2 and Sec-
tion 7.2.3.

The most obvious interdependency between processes is the ex-
change of information between two processes, e. g., a message flow
that has a source, the sending element, and a sink, the receiving
element. Here, one process sends information that another process
requires for further execution. The sending and receiving of informa-
tion can be depicted in different ways in process modeling languages.
First of all, different node types can be involved, e. g., activities, func-
tions or events. The message flow may be visualized or only depicted
by interfaces or labels that match.

7.2 bpa extraction algorithm 141

Trigger and information flow relation can be reduced to a simple
interdependency between a sending element and a receiving element
whereas both elements are part of different processes. On the very
basis we need to identify process model elements that depict the pro-
visioning of information, and others that show the consumption of
information.

To differentiate between information flow and trigger, the position
of the receiving element in a process is important. In trigger relations
this is the element that starts a process. In this regard all elements that
depict the reception of information in the beginning of a process are
of interest. In an information flow relation the receiving element has
to be located somewhere between process start and process end, i. e.,
the elements that show the reception of information during process
execution are of importance.

In general we have to identify all kinds of elements that can con-
sume or provide information in a process model. These can be inter-
faces, inputs like forms or data objects, active elements like activities
or functions, or descriptive elements like events or links to other pro-
cesses. The start of a process is often depicted by a particular event
that instantiates the process upon its occurrence. Similarly, the termi-
nation of a process is often described by an event, e. g., something has
been produced or a particular result has been achieved. Of course the
start and termination of a process is described in each process model-
ing notation differently. This may even involve a particular node type
for the start or the end of a process.

Besides message flows, data objects play are particular role. An
interdependency between two processes may derive from the use of
the same data objects where one process induces a particular data
object state that is the input to another process. We will enlighten the
specific characteristics of data interdependencies in Chapter 8.

Roles or organization elements are often involved in different pro-
cesses, however, they do not qualify for extracting process interde-
pendencies as they do not provide any detail when the information
is sent. Despite that, roles could rather be used for providing another
view on process groups that involve the same role or to extract the
interaction between roles as done by choreography diagrams. Hence,
we focus only on sending and receiving elements, and data interde-
pendencies in our examination.

Interdependencies between processes in a process modeling col-
lection can be grouped for each process modeling notation into two
different categories, explicit interdependencies and implicit (hidden)
interdependencies. Explicit interdependencies are visualized in a pro-
cess model explicitly, e. g., by an association or message flow arc. Im-
plicit interdependencies are not visualized and are only found when
analyzing the process models in a process model collection for shared
elements or other commonalities, e. g., the use of the same data object

142 business process architecture methodology

or matching element labels. Explicit and implicit interdependencies
hence differ for each modeling notation depending on the capabili-
ties and focus of the process modeling notation.

7.2.2 BPMN 2.0 Model Collections

BPMN 2.0 has become a de facto standard for BPM. It eases the mod-
eling of complex business operations with a variety of elements [32].
BPMN collaboration diagrams explicitly specify sending and receiv-
ing elements, i. e., tasks, events, and pools. Here pools refer to a pro-
cess that encompasses tasks and events and depict the outer shell of
a process. For the BPA extraction we focus on the inner ingredients
of a process; tasks and events. Collapsed pools cannot be used for
the extraction of PAs as the order of occurrence of those elements is
hidden and cannot be extracted.

In BPMN 2.0 the interaction between processes is often depicted by
events, e. g., “document received”, or by activities, e. g., “send docu-
ments” that are connected by a message flow, a dotted arc. More hid-
den, but also commonly found, the data access of processes depicts an
interaction between processes in regard to writing and later reading
of the same data object. Finding those hidden data interdependencies,
however, is rather complex. Chapter 8 elaborates on extracting data
BPAs based on found data interdependencies.

Figure 37 shows BPMN collaboration diagram elements that are
involved in forming process interdependencies. It depicts various
BPMN start, intermediate, and end events, data objects, and differ-
ent task types, as well as the different flow arcs that are used in a
BPMN diagram to differentiate between sequence, message, and data
flow.

Our BPA concept can be used with process models that use mes-
sage or signal events, as well as send and receive tasks for depict-
ing interaction between processes without the need of any specific
mapping. Other event types could also be mapped to our BPA con-
cept but need further analysis for the development of an extraction
handler. This is content of future work. Especially the handling of er-
ror or escalation events that lead to the interruption or abortion of a
process need thorough examination. For the moment our extractionBPMn Elements (Copy)

Start
Events

Catching
Intermediate

Events

Throwing
Intermediate

Events

End
Events

Task

Loop
TaskMessage

Data
Object

Send
Task

Receive
Task

Po
o

l

Collapsed Pool

Mult i
Instance
Parallel

Mult i
Instance

Sequential

Sequence Flow

Message Flow

Associat ion

Associat ion

Figure 37: Selected BPMN elements

7.2 bpa extraction algorithm 143

algorithm excludes escalation, error, compensation, link, conditional,
(parallel) multiple, and timer events. It handles normal, message, and
signal events, which represent a set of events that are commonly used.

Start and catching intermediate events can be grouped as receiving
events, that receive a trigger (start event) or some information (in-
termediate catching event) from an external source, i. e., another pro-
cess. Throwing intermediate events and end events can be regarded
as sending events that send information to other processes. In Fig-
ure 37 only message and signal events were depicted as a proxy of
the various sending and receiving event types of BPMN 2.0. In each
case the events are either source (sending events) of a message flow
or the sink/target (receiving events) of a message flow. BPMN inter-
mediate events usually are only in 1:1 relations with other events, i. e.,
a sending event only sends a message to one receiving event. Signal
events broadcast their signal to all catching signal events that are in-
terested in that signal. Message end events can have several outgoing
message flows, i. e., several targets. Message start events can have sev-
eral incoming flows, each depicting upon reception the instantiation
of the process [112].

BPMN 2.0 defines specific sending and receiving task types that
explicitly show that the according task sends, respectively receives,
an information from another process. However, in many cases nor-
mal tasks with a message flow are used to depict the sending and
receiving of information, e. g., labeled with “send documents”. For
the extraction it is important to either detect an incoming or outgoing
message flow or the according task type, or both. As there are several
modeling styles, this is rather a matter of configuration. Send and
receive task, in contrast to message events, can be in a 1:n relation
with communication partners. A receiving task can receive informa-
tion from different sending nodes according to the BPMN2.0 specifi-
cation [112]. However, if a receive task has several incoming message
flows only one flow is applied to one instance of the task. Several mes-
sage flows could only be handled if also several instances of the tasks
are instantiated by the incoming sequence flow of the receiving task.
In contrast to the receive task, a send task that has several outgoing
message flows sends a message to all its receiving nodes

BPMN differentiates between sequence flow (the internal control
flow) and the message flow that depicts the interaction with other
processes. The association flow is used to define the relation between
activities and data objects. Chapter 8 discusses the extraction of data
dependencies from BPMN2.0 process models.

We present a few exemplary interaction structures that are the basis
for extracting BPAs from a BPMN process model collection. Figure 38

shows common process structures in BPMN models that reflect inter-
dependencies between processes. Of course, process interdependen-

144 business process architecture methodologyBPMN Patterns (Copy)

Pr
o

ce
ss

 P
1

Task B

A

Pr
o

ce
ss

 P
2

Task X Task Y Task Z

Pr
o

ce
ss

 P
3

A

Task R

B

Task S

Pr
o

ce
ss

 P
4

A

Task L

B

Task M

Figure 38: Exemplary patterns found in BPMN process models

cies are not restricted to those structures and can result from further
process interaction structures or data interdependencies.

In Figure 38 we see four process models p1,p2,p3, and p4. Pro-
cesses p1 and p2 depict different ways of message exchanges. First,
process p1 sends a message to process p2 via an intermediate throw-
ing event. Process p2, receiving it via its start event, is instantiated by
this message. Hence, p2 can only start after p1 has started and has
sent the first message to p2. The information exchange between both
processes continues by a combination of sending and receiving tasks,
and sending and receiving events. After p2 has started, sending task
x sends a message to p1 which is received by the receiving task b. The
other information exchanges show a combination of an untyped task
with a message flow either receiving or sending some information
from or to an event of process p2.

The BPMN specification does not demand for send and receive
tasks, or message events, that their incoming, respectively outgoing
message flow is displayed. Hence, a message event or send or receive
task without message flow must specify their communication partner
in a different way, e. g., in the meta data of the process elements. We
assume that this information is available for extracting BPAs.

The situation is similar for signal events. E. g., looking at the signal
end event of process p1 one can hardly notice from the process model
that it is connected to the start signal events of processes p3 and p4.
This is only possible by matching their labels. In Figure 38 process
p1 broadcasts a signal and instantiates both processes p3 and p4. We
consider such relations as a special kind of message flow, although
they are hidden in the visual representation. For the BPA extraction
we assume them to be given either in their labels or in the definition
of the signal events.

All tasks and events that partake in a message flow can be regarded
either as sending or receiving node for the BPA extraction. Hence,
each of the BPMN process models has to be examined for those nodes
associated with message flows, displayed visually or defined in the
node definition.

7.2 bpa extraction algorithm 145

7.2.3 EPC Model Collections

The Event-Driven Process Chains process modeling notation has less
symbols and in this regard appears to be more simple than BPMN.
It is rather underspecified and lacks well defined syntax and seman-
tics [148]. The lack of clear semantics poses difficulties for the extrac-
tion of BPAs from EPC models. The focus of EPC is the display of the
dynamic sequence of activities and events [129].

Figure 39 presents the main symbols of the EPC notation. The EPC
elements are events, functions, roles, and a group of symbols repre-
senting data objects. In general, the focus of EPCs is to model rather
single processes than process collaborations. Because of that, EPCs
have only few symbols for expressing process interaction. In EPCs
there is no specific message flow symbol, hence in many cases the
interaction between processes can only be detected by the data ob-
jects, events, labels of activities, or the process interface symbol. The
process interface element can be considered as a special event that
instantiates other processes and in this way also expresses an inter-
dependency between processes. It is the only element providing a
mean to directly express the interaction between two processes. In-
terdependencies between EPC process models are rather hidden in
labels or data objects. The control flow is depicted by arcs connecting
functions to events and vice versa. Each function and each event is al-
lowed to have only one incoming and/or one outgoing edge. Neither
two functions nor two events may follow each other on a control flow.
Function and event must be alternating on a control flow path [129].

For detecting interdependencies events and functions play a major
role. Events describe the occurrence of a significant incidence or the
change of a condition. They characterize the ending and result of an
activity that may again be the characterization of the start of the next
activity [129]. A complete EPC process describes the creation of an
output which can then be again the input of another process. These re-
lations between output and input of processes are described by their
events. Each EPC process model generally starts with an event node
describing the condition or the event that instantiates the process [25].
The end of a process is described by an event as well. However, events
can be also compound to more complex structures. Decker at al.[25]
elaborate on the complex instantiation structures of EPC. Their com-
plexity was visualized during the application of our pattern and anti-
pattern analysis of the SAP reference model in Section 6.1.

EPC do not provide an inherent mean to identify intermediate
sending and receiving events. This in return makes the BPA extrac-
tion without any assumptions difficult. Events with only one outgo-
ing flow and no incoming flow that are meant to occur before any
activity are considered start events. Events with one incoming and
one outgoing flow that occur after an activity has already occurred

146 business process architecture methodology

and before all activities have occurred are considered intermediate
events. However, as EPC are bipartite and a function can only have
one incoming event flow, additional intermediary events cannot be
attached that would express the sending or receiving of information.
Using gateways for creating compound events does not fully solve
this problem as the additional events attached in the middle of the
process would rather be considered start events as well. Especially, if
the compound event is attached by an XOR gateway. We disregard
this possibility as we assume EPC process models to have only one
start and one end event. Compound events that are connected to a
function by an AND gateway from which one event is an interme-
diary event will be considered intermediate events for the extraction
of BPAs. This is a hardly satisfying solution as it bears further com-
plexity for analyzing those compound events. OR gateways are disre-
garded as they cover both possibilities. An end event is an event that
has only one incoming flow and that can only occur after all activities
of the process have occurred.

We assume that intermediary events (not compound) that are con-
nected to two functions by an incoming and one outgoing flow send
or receive information if they match labels with an event of another
process model. In this case, we assume that there is an interdepen-
dency. The difficulty is to determine the direction of the information
exchange as both could be initiator of the information exchange. We
assume that the direction of exchange can be identified and the send-
ing and receiving event determined, for example by analyzing the
labels for sending or receiving vocabulary with a specified glossary
or by analyzing attached data object states. EPC function elements

epc symbols

Event

Funct ion

Process
Interface

Data Object

Text Note

Form

@

Email Letter

Rami Eid-Sabbagh 1 of 1 08.09.2013

Figure 39: EPC elements

are the equivalent to BPMN activi-
ties. They are active elements and
show that an activity is performed
in the process. Like events, they can
be used to depict external communi-
cation by their label, e. g., when la-
beled “receive documents” or “send
order”. But also here sending and
receiving of information can only be
determined by the analysis of labels
as EPC do not provide explicit mes-
sage flows. Similar to BPMN, data

objects in EPC are another source for detecting interdependencies be-
tween processes. Figure 39 shows different symbols representing data
in the EPC modeling notation. These are the elements “Form”, “Data
Object”, “Email”, “Letter”, and “Text Note” on the right hand side
of Figure 39. Nonetheless, the association of data objects to function
is undirected in EPC, so that determining if a data object is input or
output of a function is not possible from only looking at the associa-

7.2 bpa extraction algorithm 147

tion. The analysis of the data and function labels could give insight
for determining the function of the data object. Such information may
also be provided in the according meta data of the process element.
For the BPA extraction from EPC models we do not consider data ob-
jects as the handling of data objects would require advanced natural
language processing algorithms.

Hence, events and process interfaces depict the main source for de-
tecting interdependencies between processes in an EPC process mo-
del collection. Functions only provide information on interdependen-
cies through their label but do not provide any structural information
for interdependency detection. We assume that functions that send to
or receive information from another process can be identified and this
information is given for the extraction of BPAs. Matching start events
(input), end events (output), and particular structural constructs of in-
termediary events depict an information exchange between processes.
We regard them as message flow and assume them to be available as
well when extracting BPAs from EPCs.

7.2.4 Basic BPA Extraction Algorithm

The extraction of BPAs from a process model collection is performed
in two steps. First, the process models are transformed to BPA pro-
cesses. Second, after detecting the various elements that partake in
interdependencies and interactions between the processes on process
model level, the detected interdependencies are mapped to trigger
and information flow relations and inserted into the BPA. The re-
sult is a BPA showing the content of the process model collection
in an abstract way and highlighting the complex interdependencies,
e. g., for process optimization and restructuring efforts. The extrac-
tion algorithm shall retain the interdependencies found between pro-
cess models in regard to their initialization and show the strength of
interdependence (the number of interactions). We will illustrate the
extraction algorithm on our simplified construction permit scenario
from the public administration that is shown as BPMN 2.0 processes
in Figure 40.

In the following we introduce the definition of a process model col-
lection, that we denote as PMC, and the message flow relations that
depict the interdependencies between processes in a process model
collection.

Definition 43 (Process Model Collection) Let PM = (PM1, ...,PMn)
be a set of process models. The tuple PMC = (PM,K, F) consists of a set of
process models describing a process model collection in which

• PMi with 1 ≤ i ≤ n, depicts each process model in PMC, the process
model collection.

148 business process architecture methodology
Scenario-BPM2013-III-big-letters-resized

A
rc

h
it

ec
t

Architect

Job
received

Apply for
construct ion

permit
Applicat ion

sent
Decision
received

Plan
next step

Job
planned

Bu
ild

in
g

 A
u

th
o

ri
ty

Building Authority

Applicat ion
received

Examine
documents

Evaluate
complete

applicat ion

Notify
applicant

about result
Examinat ion
decision sent

2 to 5 t imes
executed

2 to 5 t imes
executed

Collect expert
reports

Order expert
report

Applicat ion
documents

Formal
decision

Construct ion
information

Ex
p

er
t

Request for
expert
report

received

Examine
documents

Write expert
report

Expert
report
sent

Expert
report

Rami Eid-Sabbagh 1 of 1 25.08.2013

Figure 40: Simple construction permit application

• Ki ⊆ Ai ∪ Ei is a subset of nodes consisting of only activities and
events that take part in the interaction between two or more processes.

• F ⊆ CF∪MF is the overall set of flows in the process model collection
where CF and MF are disjoint.

• MFi,j ⊆ Ki ×Kj, i ≠ j describes the message flow relation between two
process models where (k1,k2) ∈MF with k1 ∈ PM1 and k2 ∈ PM2,
i. e., the nodes belong to two different process models. ◇

Based on the definition of a process model collection, we first de-
scribe a simple extraction algorithm that assumes sequential process
models in the following section. After that, we show a more complex
extraction algorithm that allows for the extraction of BPAs from more
complex block structured process models in Section 7.2.5.

The BPA extraction algorithm is based on the formal normalized
process model definition presented in Definition 4. It considers ac-
tivities and events of a process model for extracting BPAs. The basic
algorithm applies to process models that are sequences.

The abstraction concept of the basic algorithm can be categorized
by abstraction by elimination according to [136] as we eliminate in-
significant elements and keep only the ones of interest. The extrac-
tion algorithm starts with the extraction of significant elements of a
process model.

extraction of BPA processes from process models . For
the extraction we need to detect the elements in a process model that
interact with other processes that were introduced in Section 7.2.1,
Section 7.2.2, and in Section 7.2.3. These can be subsumed in nodes be-
ing activities and events that take part in a message flow. A message
flow shows the exchange of information between two processes and
subsumes various ways of interactions between different elements
discussed in previous sections.

7.2 bpa extraction algorithm 149

Structurally, each process model has one start and one end node
that can be an activity or an event. Those nodes do not have a pre-
set or postset respectively in regard to their control flow. The first
node of a process model being an event or activity maps to the start
event of the BPA process. Similarly, the end node of a process model
maps to the end event of the BPA process. Figure 41 shows the ex-
emplary extraction of a BPA process from a process model. All nodes
that are not start or end nodes and do not take part in a message
flow are eliminated from the process model. Of all the intermediary
nodes of the process model only those nodes that take part in a mes-
sage flow will be mapped to an according BPA process event. The
intermediary nodes can be detected by analyzing their pre- and post-
sets and if they are the source or the target of a message flow. E. g.,
in Figure 41a the intermediate throwing event “Application sent” of
the process is mapped to the intermediate throwing event e2 in the
BPA process. The intermediate nodes, i. e., the task “Apply for con-
struction permit” and the task “Plan next step”, are not considered
and hence not extracted to the BPA process. In general all interme-
diate sending nodes (events, activities) will be mapped to an inter-
mediate throwing event of a BPA process. In a similar way, receiv-
ing elements are mapped to intermediate catching events of the BPA
process, e. g., the catching intermediate event “Decision received” is
mapped to the intermediate catching event e3 of the BPA process.

Scenario-BPM2013-III-big-letters-resized-apllicant-ii

A
rc

h
it

ec
t

Job
received

Apply for
construct ion

permit
Applicat ion

sent
Decision
received

Plan
next step

Job
planned

Bu
ild

in
g

 A
u

th
o

ri
ty

Building Authority

Applicat ion
received

Examine
documents

Evaluate
complete

applicat ion

Notify
applicant

about result
Examinat ion
decision sent

2 to 5 t imes
executed

2 to 5 t imes
executed

Collect expert
reports

Order expert
report

Construct ion
information

Ex
p

er
t

Request for
expert
report

received

Examine
documents

Write expert
report

Expert
report
sent

Expert
report

Rami Eid-Sabbagh 1 of 1 09.09.2013

(a) BPMN Process

Construction Permit
Application

e1 e4

e3e2

Application
Examinatione5

e8

e6

Expert Report
Creation
|||e9

e10

e7

(b) Extracted BPA Process

Figure 41: Extraction of BPA process

All other nodes that are neither
a start nor an end node, nor an in-
termediary node taking part in a
message flow, are ignored and not
represented in the BPA process
as only elements that depict in-
teraction are of interest. We refer
to nodes of interest as significant
nodes [136]. As the basic extrac-
tion algorithm is only applied to
process models that are sequences
and no loops are allowed, each

node in a process is only executed once. Hence, we assign a trivial
multiplicity to the event in the BPA process, unless the original source
node has multi-instance or looping attributes, e. g., BPMN multi-in-
stance task or loop task. Then the multiplicity set of the according
event in the BPA process is set to the possible execution times speci-
fied in the attributes of the original process model node. The trivial
multiplicity is not visually depicted in a BPA process diagram.

Each extracted BPA process is understood as a sequence of events
that are interconnected by information flow and trigger, depicting
their process interaction. The interaction found on process model

150 business process architecture methodology

level needs to be mapped to two concepts on BPA level, trigger and
information flow.

extracting interdependencies between process models .
After having described the extraction of processes in the process mo-
del collection we need to add triggers and information flows to con-
nect the extracted BPA processes on BPA level. The interdependen-
cies between processes can be attributed to the relations between
specified elements in the process models introduced in previous sec-
tions. These interdependencies are mapped to message flows on pro-
cess model level. In BPMN those interdependencies mainly derive
from message flows that connect combinations of activity and event
nodes of the interacting process models. We consider matching sig-
nal events in BPMN, and matching events and process interfaces in
EPC as message flows in our extraction formalism that we present in
the next paragraph. All message flows between process models that
have a start node as receiving partner are mapped to a BPA trigger.
All message flows between process models that have an intermediate
node as receiving partner are mapped to a BPA information flow.

Construction Permit
Application

e1 e4

e3e2

Application
Examinatione5

e8

e6

2...5

Expert Report
Creation
|||e9

e10

e7

2...5

Figure 42: Extracted BPA construc-
tion permit application

For each message flow pair
found in the process model col-
lection we introduce the accord-
ing trigger or information flow in
the BPA by connecting the accord-
ing sending and receiving events
of the BPA processes. Figure 42

shows the extracted BPA, our run-
ning example, from our general
simplified scenario in Figure 40.
Each process model was trans-
formed to a BPA process that only
consists of the elements that inter-
act with other processes. The start
node and end node are always ex-

tracted to a BPA process as they show the instantiation and termina-
tion of a process. All other nodes, e. g., tasks that are only performed
internally are eliminated and not extracted to the BPA level, e. g., the
“Examine documents” task of the building authority process was not
transferred to BPA level as it concerns no other process. All inter-
dependencies in form of message flows were transformed to either
triggers or information flows on BPA level. E. g., the sending activity
“Order expert report” that targets the message start event of the “Ex-
pert report” process was transformed into a trigger in the BPA. The
multiplicity annotation of process two was reflected in the multiplic-
ity set of the according events.

7.2 bpa extraction algorithm 151

The following definition describes the extraction of BPA processes
from process models in a formal way.

Definition 44 (Process Model to BPA Process Transformation) Let
nPM = (N,CF, type, s, f) be a sequential process model of a process collec-
tion PMC. Let nPM ′ = (N,CF, type, s, f) be a second process model that
nPM interacts with. Let v =< e1,e2, ...,em > be a BPA process that maps
to the process model nPM. The transformation from a process model into a
BPA process is defined as follows:

• v = {e1 ∈ ES∣n = s∧n ∈N∖G∧ ●n = ∅}∪
{ei ∈ ET ∣n ∈N∖G∧n●, ●n ≠ ∅∧ (n,n ′) ∈MF,n ′ ∈ nPM ′}∪
{ei ∈ EC∣n ∈N∖G∧n●, ●n ≠ ∅∧ (n ′,n) ∈MF,n ′ ∈ nPM ′}
{em ∈ EE∣n = f∧n ∈N∖G∧n● = ∅}

• mult(n) = µ(e) denotes that the multiplicity of a BPA event is equal
to the execution times of the process model’s node. ◇

Definition 45 (Process Model Interdependency to BPA Mapping)
Let PM = (nPM1, ...,nPMn) be a set of process models and let PMC =
(PM,MF) be a process model collection. Let BPA = (E,V ,L, I,χ,µ,±) be
the according process architecture. The function ret ∶ N → E retrieves for
a node in a process model the matching event in the BPA. The function
mapflow ∶MF→ L∪ I maps the message interaction of process model level
to trigger and information flow on BPA level, such thatmapflow((n,n ′)) =
(ret(n), ret(n ′)) ∈ I∪ L. ◇

In the following we describe the consistency criteria between BPA
and process model layer of a process model collection in a formal
way. In summary, the formalism requires that each BPA element of
a process collection’s BPA must have a partner element on the lower
more detailed process model layer.

Definition 46 (Consistency Criteria) Let PM = (nPM1, ...,nPMn) be
a set of process models. Let PMC = (PM,MF) be a process model collec-
tion. LetA = ⋃nPMi∈PM

Ai, E = ⋃nPMi∈PM
Ei. The according BPA =

(E,V ,L, I,χ,µ,±) needs to comply to the following consistency criteria.

• ES = {n ∈ (Ai ∪Ei) ∶ ●n = ∅∧n● ≠ ∅}

• ET = {n ∈ (Ai ∪Ei) ∶ ●n,n● ≠ ∅∧∃b ∈ Aj ∪Ej, i ≠ j ∶ (n,b) ∈MF}

• EC = {n ∈ (Ai ∪Ei) ∶ ●n,n● ≠ ∅∧∃b ∈ Aj ∪Ej, i ≠ j ∶ (b,n) ∈MF}

• EE = {n ∈ (Ai ∪Ei) ∶ ●n ≠ ∅∧n● = ∅}

• I = {(n1,n2) ∈MF ∶ ∄n3 ∈N ∶ (n3,n2) ∈ CF}

• L = {(n1,n2) ∈MF ∶ ∃n3,n4 ∈ N ∶ (n3,n2) ∈ CF∧ (n2,n4) ∈ CF}
◇

152 business process architecture methodology

The setting of the conflict relation χ between flows of several proces-
ses and the setting of the correspondence relation requires additional
information captured in more complex process model structures like
XOR-bonds or data objects. The complex extraction and data BPA ex-
traction algorithms presented in Section 7.2.5 and in Chapter 8 make
use of the χ relation to reflect those constructs on BPA level.

For the extraction the BPMN 2.0 collaboration diagrams and EPC
process models need to be mapped to the formal and more abstract
process model definition in Definition 4. Tasks in BPMN and func-
tions in EPC are mapped to activity nodes of the process model.
Events of both BPMN and EPC are mapped to event nodes of the
process model, gateways to gateway nodes which are typed by the ac-
cording gateway type. The control flow of the BPMN and EPC models
is transferred as is to the formal process model definition. Depending
on the definition of message flows the according elements must be
identified and message flows associated to the according elements in
the normalized process model.

Before transforming a BPA from a process model collection the tar-
get domain needs to be defined, i. e., whether the BPA represents
interactions in a synchronous or asynchronous environment. Accord-
ing to these characteristics only the basis algorithm or the complex
extraction algorithm is applied. Synchronous environments require
order preserving extraction which is provided by the basic extrac-
tion algorithm. The basic algorithm results into BPA processes that
are trace equivalent with their source process models in regard to
their external behavior. I. e., we observe the same order of incoming
and outgoing message flows of a process model on process model
and BPA level. The complex extraction algorithm is not internal flow
order preserving. Hence it can only be applied for asynchronous in-
teraction environments. The characteristics of the target environment
cannot be determined by examining the process models and need in-
put from a business process expert. The basic extraction algorithm
allows applying our BPA analysis techniques without restrictions.

7.2.5 Complex Extractions

Section 7.2.4 introduced a basic algorithm that generates BPAs from
process models that represent a sequence. Based on that, we intro-
duce an extension of the extraction algorithm for dealing with more
complex process models. We assume our process models to be block
structured, free of rigids, and structurally sound, i. e., they have ex-
actly one start and exactly one end node, and all nodes are on a
path from the start node to the end node. Our extraction algorithm
resorts to research on process model abstraction based on RPSTPM
by Smirnov et al. [135, 136, 141] and Vanhatalo [159, 160]. Smirnov
et al. [135, 136, 141] focus on single processes and consider activities

7.2 bpa extraction algorithm 153

of process models in their extraction algorithms. We take a broader
view to extract interdependencies between several processes and we
consider activities and events for the extraction of BPAs from process
models as they are our main source for detecting interdependencies.
The basic techniques and formalism for decomposing process models
into an RPSTPM (see Definition 10) were introduced in Section 2.1.1.
The decomposition of a process model based on RPSTPM results into
a hierarchical tree of RPSTPM components. The RPSTPM components
on the first level of the RPSTPM are direct children of the RPSTPM
root node. The RPSTPM components on the first level of the RPSTPM
form a sequence on which we can apply our basic extraction algo-
rithm. The idea of our algorithm is to aggregate all other RPSTPM
components (direct and indirect children of the first level nodes) into
sequences of events on the first level of the RPSTPM. In contrast to our
basic BPA extraction algorithm, the complex algorithm uses concepts
from abstraction by elimination as well as abstraction by aggregation.
In this regard, the complex extraction algorithm, shall also retain the
causal interdependencies found between process models in regard to
their initialization relation and show the strength of interdependence
(the number of interactions). Hence, we allow that the exact order of
sending and receiving nodes that belong to one component on pro-
cess model level may differ on BPA level, i. e., the BPA representation
is not trace equivalent to the external behavior of the process model.

In the first step, we eliminate all nodes that do not take part in an
interdependency, i. e., all nodes that are not part of a message flow
on process model level. However, start and end nodes that are not
part of an interdependency are preserved. This leaves us only with
significant nodes that, if required, are aggregated. We call the nodes
that are part of an interdependency significant [136]. Aggregation is a
many-to-one mapping where several elements are aggregated to one
element that represents them all. Using this concept we aggregate
several significant process model nodes and map them to one event
in a BPA process. Our extraction algorithm consists of four steps:

1. The creation of an RPSTPM

2. The elimination of insignificant nodes

3. The aggregation of components up to the first level components
of the RPSTPM

4. The transformation of aggregated components (direct children
of the root node) and definition of flows and multiplicities

creating an RPSTPM . The decomposition of a block structured
process model into an RPSTPM provides us on the root level (level
0) with one block, a polygon (PO), that contains all process model
fragments. On the first level of the RPSTPM we receive a sequence of

154 business process architecture methodology

canonical components that either are trivial components (TR), poly-
gons (PO), bonds (BO), or rigids (RI). Polygons are sequences of
nodes or sequences of components.

B
u

ild
in

g
 A

u
th

o
ri

ty

Examine
documents

Check application
form

Check personal
information

Check additional
documents

Order expert
report

Collect expert
report

Evaluate
application

according to
special procedure

Prepare formal
decision for

sending

Evaluate
application

according to
normal procedure

PMF0

PMF A

PMF 4PMF 1

PMF B PMF C

PMF 3

PMF 2
PMF 5

PMF 6

Figure 43: Business process model decomposed into RPSTPM fragments

�����

�����

��

�����

	��
���

�����

��
�����

��

����	

��

�����

	��
���

�����

��

�����

��

�����

��

��

��

��

Figure 44: RPSTPM of original business
process model

Bonds are formed by a set
of components that share the
same boundary nodes, i. e.,
entry and exit nodes. Rigids
(RI) are components that can-
not be classified into any of
the other categories. We as-
sume that rigids do not con-
tain nodes that depict inter-
dependencies.

Figure 43 presents an exemplary process model that is decomposed
into process fragments defined by its RPSTPM decomposition. The
process model fragments containing significant nodes are named with
letters, e. g., PMFA or PMFB. The according RPSTPM is depicted
in Figure 44. We do not list trivial components in the RPSTPM. The
components in the RPSTPM that contain significant nodes are high-
lighted in grey. The nodes of the RPSTPM are labeled according to
the process model fragments shown in Figure 43 and their type. On
the first level of the RPSTPM there are three polygons with significant
nodes and two bonds (one AND-bond, one XOR-bond) that contain
only insignificant nodes. The RPSTPM is the basis for the elimination
of insignificant nodes and the aggregation of significant nodes.

elimination and aggregation. We eliminate all insignificant
nodes of the process model, i. e., nodes (events and activities) that are
not source or target of a message flow. The elimination of nodes is per-
formed by removing an insignificant node reconnecting predecessor
and successor nodes of the removed node. If all nodes of a process mo-
del fragment are insignificant, we remove the complete component in
the RPSTPM. For instance, we remove the entire AND-bond PMF1
in Figure 44 as it does not contain any significant node for extraction.
Figure 46 shows the elimination of insignificant nodes and compo-
nents, e. g., the activity of PMFA and the whole AND-bond compo-

7.2 bpa extraction algorithm 155

nent depicted by PMF1 are removed. Figure 45 shows the according
RPSTPM that highlights the removed components by dashed lines.
The result of this step, a reduced process model and the according re-
duced RPSTPM, are depicted in Figure 47a and in Figure 47b. Concep-
tually, we receive an RPSTPM with only significant nodes for the BPA
extraction. The process model has become a sequence of significant
nodes which can be extracted with the basic BPA extraction algorithm.

�����

�����

��

�����

	��
���

�����

��
�����

��

����	

��

�����

	��
���

�����

��

�����

��

�����

��

��

��

��

Figure 45: RPSTPM of business process
model with eliminated nodes

It is obvious that process
models can be of any com-
plexity as long as the signifi-
cant nodes are situated only
in polygons that are direct
children of the RPSTPM root
node. In such cases, some
components of the process
model that contain only in-
significant nodes could also
be rigids. In general, how-

ever, we assume that the process models are free of rigids.

B
u

ild
in

g
 A

u
th

o
ri

ty

Order expert
report

Collect expert
report

PMF0

PMF A

PMF 1

PMF B PMF C

PMF 4

Figure 46: Business process model showing eliminated nodes and RPSTPM
fragments

In many cases we find XOR-bond and AND-bond components on
the first level of the RPSTPM that contain significant nodes. In these
cases, the elimination of insignificant nodes and components is not
sufficient for the aggregation and extraction of BPAs. The significant
nodes in those bonds need to be aggregated to a sequential represen-
tation up to the first level of the RPSTPM.

To determine the sequential representation of a component we make
use of the containment relation of RPSTPM components, e. g., the
branches of an XOR-split and XOR-join in a process model are de-
picted by the direct children of an XOR-bond component. Before we
can determine a sequential representation for such a bond compo-
nent, we need to determine a sequential representation for each of its
children. This may be done recursively depending on the depth of the
RPSTPM. Omitting trivial components, the leaves of a RPSTPM are
polygons, e. g., as depicted in Figure 44. The aggregation of polygons

156 business process architecture methodology

consisting of only trivial components is the basis for determining a
sequential representation of a bond component.

B
u

ild
in

g
 A

u
th

o
ri

ty

Order expert
report

Collect expert
report

PMF0

PMF A

(a) BPMN Process

�����

��

�����

��

��

�	

(b) RPSTPM

Figure 47: Abstracted process model and its RPSTPM

aggregation of polygons . The aggregation of polygons with
only trivial components is performed by parsing each node in the
component and determining their type (sending or receiving). Neigh-
boring nodes of the same type are aggregated but their references to
their partner nodes of the message flow are kept. When aggregating
two nodes their message flow preset respectively postsets are added.
Depending on their parent component, additional information like
their number of occurrences or if they are in conflict are stored in
the aggregated node as well. This information is used for the later
transformation to BPA events and processes. In the best case, if all
nodes in a polygon are of the same type, the result of the aggregation
step is one node that has references to many other nodes of other
processes. Figure 48 shows different exemplary transformations of
process model fragments to BPA constructs. The two transformations
of example 1a and 1b in Figure 48 depict an aggregation of node
sequences that have the same type. The start and end nodes of a pro-
cess model are not considered in an aggregation step. We determine
the start and end node by employing behavioral profiles. If accord-
ing to the behavioral profile a node is minimal, it is the start node in
the process model; if it is maximal, it is the end node of the process
model [163, 162]. In the RPSTPM the start node is the leftmost ele-
ment and the end node the rightmost element. For the aggregation of
bond-components several aspects are important:

• the type of an RPSTPM bond component

• the number of interaction partners of one RPSTPM bond com-
ponent

• the number of nodes on each branch of an RPSTPM bond com-
ponent

• the existence of one or several types of nodes (sending, receiv-
ing, or sending and receiving) in an RPSTPM bond component

7.2 bpa extraction algorithm 157

������

������

��	�
����

��	�
����

�

��

��

�

�� ��

������

������

�
 ��
�

��

��	�
����

��	�
����

�

�

������

��	�
����

�

�����	

������

��	�
���� ��	�
���	

��

��

�

�� ��

�

�

������ ������

�

�

�

��	�
���� ��	�
����

�

�

�
�

�

�

�

�

�

Figure 48: Exemplary process model fragments to BPA transformation

In the following we describe how we deal with each bond component
type as different strategies are employed for each bond type.

aggregation of and-bonds . To determine a representation of
an AND-bond component its children are compared for their charac-
teristics. The direct children of a bond component that are polygons
each depict a branch of the AND block of the process model. Before
we compare the branches, we aggregate each branch (polygons) ac-
cording to the aggregation technique for polygons. The comparison
can result in different situations. If all polygons contain the same type
of node, all nodes are aggregated to one node of that type. Figure 48

shows the aggregation and the transformation into BPA events of
such cases in example 2 and 3. Example 2 depicts excerpts of three
processes. The excerpt of process p1 shows an AND-bond that has
one sending task on each branch that each sends a message to a dif-

158 business process architecture methodology

ferent process. The excerpts of processes p2 and p3 depict a simple
sequence of a receiving task. The AND-bond of process p1 is trans-
formed into one intermediate throwing event of BPA process p1, and
the receiving events of the other processes each into one intermedi-
ate throwing event of their according processes. The sending of two
messages on process model level is depicted by the information flow
relation between the throwing event of process p1 with the intermedi-
ate catching events of processes p2 and p3. Example 3 shows a similar
situation between only two processes except that the excerpt of pro-
cess p2 shows an AND-bond with a receiving event on each branch.
In this case, both aggregations result into one event with multiplicity
µ(e) = {2} in each BPA process that are related via an information
flow. AND-bonds consisting of nodes of only one type are treated
like neighboring nodes on a sequence and can be aggregated. Both
examples represent the sending of two messages in different forms.

Example 4 shows an excerpt of a process p1 that consists of an
AND-bond with two branches that have different type of nodes. One
branch has a sending node, the other branch has a receiving node. In
this case, we cannot aggregate the nodes to one node. The mapping
chosen for the AND-bond is a sequence of nodes where the sending
node occurs before the receiving node. This is due to the fact that
all branches of an AND-bond are activated. A branch that contains
a polygon of only sending events will always be executed as the ex-
ecution is in the control of the process, so that they are independent
from other processes. The completion of the whole AND-bond de-
pends only on the receiving events. If a branch contains only receiv-
ing events and the other branches only sending events, the whole
AND-bond completion depends on the branch with the receiving
event as they come from an external source. If the message is not re-
ceived, the AND-bond exit will not be performed, also if all sending
nodes on the other branches have already been executed. To reflect
this interdependency in the later BPA mapping we always put the
sending nodes that reflect the sending branch before the receiving
nodes that reflect the receiving branch of an AND-bond. The node(s)
representing such a receiving branch are always put to the end of
the sequence. This is depicted in the transformation of process p1 in
example 4 of Figure 48. This means the mapped intermediate throw-
ing events in the later BPA always occur before the receiving events
if they are on two different branches. In this case, our mapping is
not trace equivalent anymore, but the trace that our BPA produces is
contained in the traces that the process model level produces regard-
ing the significant nodes. The interdependency between the process
is retained in regard to initiator and strength of interdependency.

Example 2 in Figure 49 shows another example of an AND-bond
aggregation. The later transformation of the AND-bond with in total
five nodes results in a sequence of two events with multiplicities. The

7.2 bpa extraction algorithm 159

���������

�	

���������

�	

��������

�	

��	

�	

��

������

���������

�����
 ������

���������

�	

�

�	

	� 	

Figure 49: Exemplary XOR- and AND-bond aggregation and BPA transfor-
mation

receiving nodes occur after the sending nodes have occurred. In exam-
ple 2 we see two different BPA transformations results of the process
model construct in regard to flows and multiplicities assigned to the
BPA events. If one or the other is chosen depends on the arrange-
ment of nodes of the partner process(es). If there is only one partner
process and all receiving nodes can be aggregated as well, the ag-
gregation results in one sending event and one receiving event with
µ(e) = {3} as also depicted in example 3 of Figure 48. If the receiving
nodes cannot be aggregated or belong to different partners, the send-
ing of messages is represented by the same amount of flows as also
depicted in example 2 in Figure 48.

An AND-bond can also be mapped to an according node sequence
if at the utmost one of the branches consists of mixed nodes (sending,
receiving). In this case, the aggregation of the nodes of the sending
branch are put first, then the aggregation of the mixed branch, and at
last the aggregation of nodes of the receiving branch.

The AND-bond aggregation into node sequences becomes difficult
if the polygons on more than one branch contain nodes of different
types, i. e., sending and receiving nodes. In this case, the AND-bond
cannot be mapped to an according satisfying sequence in the later
BPA process without adding restrictions to the BPA that do not exist
on process model level, e. g., introducing deadlocks in the worst case.
AND-bonds with several branches with mixed node types cannot be
extracted and are excluded from our extraction algorithm as depicted
in Figure 50.

aggregation of xor-bonds . Similar to the aggregation of AND-
bonds, each branch of an XOR-bond component is aggregated , ana-
lyzed, and compared to the other branches. The comparison results
in different situations. The aggregation of XOR-bonds is restricted by
the fact that the whole bond has to be aggregated to only one node.
The aggregation of an XOR-bond to a sequence of nodes would in-

160 business process architecture methodology

������

����	
���

����	
���

������

�

������

������

����	
���

����	
���

�

 �

Figure 50: Examples of not covered BPA transformations

troduce more behavior into the later BPA as the behavior of several
BPA events in a sequence that are part of conflicting flows is depicted
by all possible combinations of event occurrences. Our BPA concept
provides no mechanism to depict a sequence of conflicting flows in
one element. In this regard our extraction algorithm is limited. In fu-
ture work, BPAs could be extended by new complex elements that
allow for such representation. In the simplest situation each branch
of an XOR-bond contains of one node of the same node type and only
the partner processes of each branch differ. In this case the nodes of
the XOR-bond are aggregated to one node. The information that both
nodes are in conflict is stored as well and kept for the later transfor-
mation into BPA constructs. This situation is depicted by process p3
in example 4 in Figure 48. The XOR-bond is mapped to one sending
BPA event and the conflict relation is inserted into the BPA connect-
ing the different recipients with the sender. The BPA conflict relation
allows disembodying the exclusive behavior in a process model to
inter process behavior.

Figure 49 shows examples of XOR-bond aggregations in which one
branch has no node and the other either one or two nodes. Here, the
nodes can be aggregated to one node as they are neighboring. The
information that the sending or receiving is optional, depicted by the
empty branch, is defined by the according elements in the multiplicity
set of the BPA event. For instance, in our example 1a and 1b in Fig-
ure 49 the multiplicity of the BPA receiving event representing the
XOR-bond of the according process model is set to µ(e) = {0,1}, re-
spectively µ(e) = {0,2}.

Although, the BPA conflict relation allows to depict exclusive be-
havior of process models on BPA level, our algorithm is limited in
such situations. Sequences larger than one node on an XOR bond
branch lead to difficulties for the aggregation and later extraction to
BPA events. If the nodes of each branch have the same partner pro-
cess and are of the same type, we can aggregate them to one event as
they depict the same sequence and have the same partner as depicted
in examples 1a and 1b of Figure 49. However, XOR-bonds with only
one partner per branch, the same number of nodes, and the same type
of nodes for the whole XOR-bond are only aggregated if all partner
nodes can be aggregated to one node as well.

The number of partners per branch cannot exceed 1 for the aggre-
gation of XOR-bonds as such structure could not be extracted to an

7.2 bpa extraction algorithm 161

according BPA structure. XOR-bonds with mixed type of nodes can-
not be aggregated and extracted with the current configuration of
our algorithm, either. Such a component with a sending node on one
branch and a receiving node on the other is shown in Figure 50.

Conceptually, it is possible to extract more complex XOR-bonds.
There are different solutions that all come with drawbacks in clarity
of the resulting BPA. For instance, the above mentioned XOR-bond
could be mapped to a sequence of sending and receiving events with
optional multiplicity. Each of these events would also be part of a con-
flict relation on BPA level. However, inserting them in a BPA process
with the according conflict relations would add additional behavior
and relations on BPA level. Hence, we refrain from such aggregations.

The Loop-bond is a special type of XOR-bond with two branches
that either both contain a node or only one of them, similar to the
examples in Figure 49. Both branches must be compared and if both
branches contain the same type of nodes the Loop-bond is aggregated
to one node. The information on the possible amount of iterations is
described by the condition of the Loop-bond structure and is kept for
defining the multiplicity set of the BPA event.

from aggregated nodes to BPA events and flows . The
elimination and aggregation of significant nodes up to the first level
of the RPSTPM results into a polygon of aggregated nodes. If desired,
this polygon can be aggregated once more by aggregating neighbor-
ing nodes of same type. For the transformation of aggregated nodes
to BPA events the polygon is traversed and for each node an accord-
ing mapping to BPA events is determined. The leftmost element in
the polygon is the start node and the rightmost is the end node. For
those nodes the according start and end events are created in the
BPA process. All other significant nodes are mapped to intermediary
throwing or catching events in the BPA process.

In many cases the aggregated nodes will have postsets or presets
with several entries. To determine their transformation to one or sev-
eral BPA events, we consider the aggregated nodes of their partner
processes. Depending on the different partners and the number of re-
lations to each partner (entries in the post or preset), either one event
with the according multiplicity elements, several flows, or several
events are created for the according BPA processes. For instance, in
example 2 of Figure 48 the aggregated node that represents the AND-
bond is transformed into one BPA event with two flows whereas in
example 3, the same AND-bond is transformed into one event with
µ(e) = {2}. This is because both message flows have the same partner
process and point to the same aggregated node of the partner process.

If the number of flows between all partner processes differ, the
transformation of an aggregated node may require the creation of
several BPA events with different multiplicities that reflect the gath-

162 business process architecture methodology

ered interdependencies. If the stored information says that particular
entries in the pre- or postset were in conflict, then the conflict relation
is defined for the according flows of the BPA. Such a transformation
can be seen in example 4 in Figure 48.

Our aggregation and extraction algorithm has two advantages, on
the one hand it provides the ability to extract BPAs from process
models of higher complexity covering a larger set of process models.
On the other hand it provides a possibility to generate compact BPAs
that are reduced to only core interdependencies. Depending on the
magnitude of aggregation desired, the algorithm could be configured
to generate compact or more fine granular BPAs.

Our ON analysis technique can be applied after extracting BPA
according to the complex extraction algorithm, however only with
restrictions. The complex BPA extraction algorithm is not trace equiv-
alent but retains the causal interdependency between processes, i. e.,
that the trace depicted on BPA level may be restricted to particular
execution traces but does not create problems that do not exist on
process model level.

The only in-specificity is caused by the aggregation of several re-
ceiving nodes on one branch that have different partners. In these
cases, the execution of several instances of one process could induce
the occurrence of the receiving event although the messages sent orig-
inated from the same partner instead from both as depicted in the
process model. Except of these cases described above, the analysis
can be applied to BPAs extracted with the complex algorithm. This
problem can be overcome by extending the verification formulae with
additional information, e. g., checking if the according sending events
of each process have occurred.

Listing 1, Listing 2, and Listing 3 show parts of the algorithm for
elimination and aggregation in simplified form as pseudo code. It re-
cursively traverses the tree. The elimination and aggregation of nodes
is performed in the same traversal of the tree. It deletes insignifi-
cant nodes and collects the significant nodes that are then aggregated.
Each component is analyzed, resolved, and an aggregation is deter-
mined. The strategy for resolving each component is determined by
its type, being a polygon, XOR-bond or AND-bond. The transformat-
ion of the aggregated nodes to BPA events and processes is omitted.

Listing 1: Pseudo code complex extraction algorithm

Input: Set of interdependent Process Models

Output: BPA

Function Main(List<ProcessModel> pms){

BPA bpa = new BPA();

bpa = createBPA(pms);

}

7.2 bpa extraction algorithm 163

BPA createBPA(List<ProcessModel> pms){

for(pm in pms){

RPST rpst = constructRPST(pm);

List<ComplexList<events>> bpaseq = parseTree(rpst

.getRoot());

bpa.addProcess(createBPAProcess(bpaseq));

}

bpa.drawRelation;

return bpa;

}

List<ComplexList<events>> parseTree(Node rootnode){

List<Node> children = rootnode.getChildren();

List<ComplexList<events>> seq = new List<ComplexList<

events>>;

for(node in children){

if(node.equals(‘‘Leaf ’ ’) && node.

isSignificant()){

seq.add(node);

} else{

seq.add(parseTree(node));

}

}

switch(rootnode.getType)(){

case XOR-Bond : handleComponent(‘‘XOR ’ ’,
seq);

break;

case Loop-Bond : handleComponent(‘‘Loop ’ ’
,seq);

break;

case AND-Bond : handleComponent(‘‘AND ’ ’,
seq);

break;

case Polygon :

handleComponent(‘‘Polygon ’ ’,seq);
break;

}

return seq;

} �
Listing 2: Pseudo code handle component

List<ComplexList<events>> handleComponent(String nodetype, List<

ComplexList<events>> sequence){

If(nodetype.equals(‘‘XOR ’ ’ || ‘‘AND ’ ’ || ‘‘Loop ’ ’)){

determineAggregation(sequence,

nodetype);

} else if(nodetype.equals(‘‘Polygon ’ ’)){
sequence = aggregatePolygon(sequence);

}

164 business process architecture methodology

return sequence;

} �
Listing 3: Pseudo code aggregate polygon

List<ComplexList<events>> aggregatePolygon(List<ComplexList<

events>> sequence){

for(sequence.iterator; iterator.hasNext){

if(element.getType() == sequence.next().

getType){

element.addPartners(

sequence.next().

getPartners());

sequence.next().delete;

}

}

return sequence;

} �
7.2.6 Extended Extraction Approach

Based on our initial basic extraction approach described in [39] and
in [43] another extended BPA extraction approach was taken by Bre-
ske in his master thesis [15]. He extended our BPA concept with an
arbitrary split and an arbitrary join event structure to be able to ex-
tract BPAs from process models of higher complexity than described
in Section 7.2. The behavior of the arbitrary split can be described
as a combination of our multicast net and a send-conflict net, such
that the multicast net first produces the amount of tokens specified
by the event’s multiplicity set and then distributes them arbitrarily to
the processes connected through the conflict net. The behavior of the
arbitrary join is similar to our collector net and allows a process to be
instantiated by a subset of incoming triggers specified by the event’s
multiplicity. In this way, any kind of firing sequence can be produced.

To classify the behavior encountered in the RPSTPM fragments, Bre-
ske defined behavioral categories. All complex behavior that could
not be described in a simple way, was mapped to the complex cate-
gory. Those categories were again mapped to the according sequence
of events on BPA level and the observation of complex behavior was
mapped to the arbitrary split or arbitrary join structure. In this regard,
he accepted to loose specificity of BPAs but enabled the extraction of
mixed sequences in AND- and XOR-bonds by mapping them to so
called complex blocks that define more behavior of the process in-
teraction than depicted on the process model level. His dictum is to
allow more behavior in BPAs but never less behavior than defined on
process model level.

7.3 from bpa to business process models 165

In his work he also provided an implementation of the extraction
algorithm based on the jBPT1 format and integrated it into the Prom-
niCAT platform2, a tool developed under our supervision to perform
analysis on large process model collections [41]. jBPT is a Java-library
that leverages graph structures to support a canonical process rep-
resentation providing descendants for each supported modeling lan-
guage. The implementation of his BPA extraction tool is described as
example use of the PromniCAT platform in Section 9.2.1.7.

7.3 from bpa to business process models

The transformation from BPA to process models is used when us-
ing our BPA approach top-down. Using the newly modeled BPA as
input, the transformation algorithm generates a process model skele-
ton on process model level for each business process depicted in the
BPA. For each event of the BPA process the according event is cre-
ated on process model level, e. g., for a BPA start event a plain BPMN
start event is created in the process pool. If that event takes part in
a trigger or information flow relation, then the event is typed into
an according receiving or sending event, e. g., a BPMN start message
event. Alternatively, if the event is an intermediate event on BPA level,
the event could also be transformed into a sending or receiving task
on process model level. In general we resort to the transformation
from BPA events to process model level events. The transformation
begins with the start event of a BPA process and then continues the
sequence of intermediate events until it reaches the end event. Busi-
ness Process Architectures processes are sequences. Hence, the order
of the events of BPA processes is reproduced on the process model
level by connecting the events with a sequence flow.

After all BPA processes have been transformed into process model
skeletons on process model level, the trigger and information flow
relations need to be transferred to process model level. This step
depends on the underlying process modeling notation and process
modeling tool and has to be implemented accordingly. In BPMN one
can transfer these relations into message flow relations depicted by
a dotted arc. Each relation on BPA level is translated by connecting
the according events on process model level. For instance a trigger
relation is transformed in such a way that the message end event of
the triggering process is connected by a message flow with the mes-
sage start event of the triggered process. Such message flow may be
attached to a collapsed pool that acts as proxy for the partner process.
The exact information of trigger and information flow relations may
be hidden in the attributes of the events in the process modeling tool,
e. g., as URI of the target or source event. The concrete transformation

1 http://code.google.com/p/jbpt/

2 http://code.google.com/p/promnicat

http://code.google.com/p/jbpt/
http://code.google.com/p/promnicat

166 business process architecture methodology

depends on the capabilities of the process modeling tool and the un-
derlying modeling guidelines a company has adopted to comply to.
Figure 51 shows an exemplary transformation from BPA process (Fig-
ure 51a) to a process model skeleton (Figure 51b) and subsequently
to an enriched and more detailed process model (Figure 51c).

We define the transformation from BPA to process models in two
steps. First we transform all BPA business processes into process mo-
del skeletons on process model level. In a second step we add the
information flow and trigger relations. To assure consistency between
both levels we define consistency criteria that the process models on
process model level need to comply to. The transformation from BPA
processes to business process model skeleton is defined as follows.

Definition 47 (BPA Process to PM Skeleton Transformation) Let
BPA = (E,V ,L, I,µ,χ,±) be a business process architecture. Let PMC =
(PM,MF) be the according process model collection with PM being a set
of process model skeletons. Let v = ⟨e1,e2, . . . ,ek⟩ be a BPA process. Let
PMS = (N,CF, type, s, f) ∈ PM be a process model skeleton. N ⊆ A ∪ E ∪
G depicts the set of nodes with A being the set of activities, E the set of
Events, and G the set of gateways of the process model skeleton PMS. There
is a bijective mapping between v ∈ BPA and PMS ∈ PM, i. e., for every
process in the BPA there exists exactly one process model in the PMC. The
transformation from a BPA process to a process model skeleton is defined as
follows:

• N = {ni∣ei ∈ v}

• ∀1 ≤ i ≤ k(ei,ei+1) ∈ v⇔ (ni,ni+1) ∈ CF

• s = n1,e = nk depict the start and end node of the process model
skeleton

• CF ⊆N×N, such that ∀(x,y) ∈ CF ∶ ∃ei,ei+1 ∈ V ,1 ≤ i < n,∧x = ei
∧y = ei+1 and ∀n ∈N∖ {s, f} ∶ ∣●n∣ = ∣n●∣ = 1∧ (n,n) ≠ CF

• mult(n) = µ(e) denotes that the multiplicity of process node is equal
to the execution times according to the BPA’s event ◇

The result of the first transformation step is a set of process model
skeletons that contains the same amount of processes as depicted in
the BPA. To finish the complete transformation the according infor-
mation flow and trigger relation of the BPA have to be mapped to the
process model skeletons. This is done by representing them in accord-
ing message flows that connect sending nodes from one process mo-
del to the receiving nodes of another process model. For each event
pair in an information flow or trigger relation the according nodes in
the process models are connected by a message flow. The first mem-
ber of the event pair maps to the source node and the second member
of the event pair maps to the target node. The transformation of the
information flow and trigger relations is defined as follows.

7.3 from bpa to business process models 167

Definition 48 (BPA Relation to Message Flow Transformation) Let
BPA = (E,V ,L, I,µ,χ,±) be a business process architecture. Let PMC =
(PM,MF) be the according process model collection with PM being a
set of process model skeletons. Let PMS = (N,CF, type, s, f) and PMS ′ =
(N,CF, type, s, f) be a pair of process model skeletons in PM. The trans-
formation from BPA information flow and trigger relations to process model
message flows is defined as follows, such that for every pair PMS,PMS ′

holds:

• MF = {(ni,nj) ∈ (N×N ′) ∪ (N ′ ×N)∣(ei,ej) ∈ I∧ ●nj = ∅}∪
{(ni,nj) ∈ (N×N ′) ∪ (N ′ ×N)∣(ei,ej) ∈ L∧ ●nj ≠ ∅∧nj● ≠ ∅} ◇

The generated process model skeletons can be enriched by adding
activities, events, and other workflow elements. While elaborating the
business process model skeleton to a complete process model, the
basic skeleton structure provided by the BPA transformation has to
be kept. This means that only new control flow elements that do not
interact with another process can be inserted between the skeleton
elements. For instance, the insertion of new sending and receiving
nodes would result into a breach of the sequence provided by the
BPA process.

Construction permit

application

e1 e4

e3

e2

(a) BPA process

A
rc

h
it
e
c
t

Job

received

Job

planned

Application

sent

Application

decision

received

(b) Process model skeleton

A
rc

h
it
e
c
t

Job

 received

Apply for

construction

permit
Job

planned

Plan next step

Application

 sent

Application

decision

received

Fill in forms

Design house

Gather

documents

Find contractor

Create floor

plans

(c) Enrich process model

Figure 51: BPA process to process model transformation

Considering the techniques for process model decomposition the
resulting process model skeletons depict one polygon with trivial
components. The process model skeletons can be enriched with very
complex control flow structures by inserting bond components of dif-
ferent depth between two trivial components under the precondition
that they do not contain any sending or receiving node. Figure 51

shows the transformation of the “construction permit application”
process into a process model skeleton and its further enrichment to
a detailed process model. The events of the BPA process are trans-
formed to BPMN events. The start and end event are transformed

168 business process architecture methodology

into blank events as they do not take part in a trigger or information
flow relation. Figure 51b and Figure 51c illustrate the refinement step
from process model skeleton to an enriched process model, e. g., an
AND-bond component and a polygon were inserted between start
and throwing intermediate event. A simple task was added between
intermediate throwing and intermediate catching as well as between
the intermediate catching and the end event. The nodes on process
model level that represent events of the according BPA process will
occur during each process execution on process model level. Using
the concepts from Section 7.2 on BPA extraction, the sending and re-
ceiving nodes generated by the process model skeleton transformat-
ion could also be replaced by bond components that reflect the same
behavior.

Consistency between both levels of abstraction is of utmost impor-
tance. Section 7.2 defined consistency criteria for a bottom-up BPA
extraction approach. Similarly, we define consistency criteria for the
top-down approach to assure consistency between the BPA and the
process model level.

Definition 49 (Top-down Transformation Consistency Criteria) The
generation of process models from BPAs must comply to the following con-
sistency criteria:

• For each BPA process a process model on process model level must
exist

• The process model must retain the order of events depicted by the BPA
process

• For each event in a BPA process exists a matching process model com-
ponent in the according process model

• For each trigger and information flow of the BPA a matching message
flow on process model level exists ◇

The consistency criteria demands that for all business processes
contained in the BPA there exists one process model in the process
model collection. For each sending and receiving event in a BPA pro-
cess, there is one sending node, respectively receiving node, in the
according process on process model level. The order provided by the
events on BPA level must be retained by the matching sending and
receiving nodes in the process model. We assure this by allowing
only the insertion of process model components between two skele-
ton nodes that do not contain any sending or receiving event. With
the help of these consistency criteria, the transformation from BPA to
process model level and the further elaboration of the process models
stays consistent.

7.4 summary 169

7.4 summary

This chapter introduced a novel application methodology for our BPA
approach that describes its use top-down and bottom-up, i. e., the
steps to perform to create a consistent process model collection struc-
ture beginning from different starting situations. PA approaches pre-
sented in Section 3.2 can be applied either top-down or bottom-up.
Only very few approaches describe concrete guidelines to create a
PA, e. g., Dijkman et al. [31, 35] and zur Muehlen [106]. In this regard,
we contributed a novel approach that provides concrete techniques
and steps for the creation of PAs.

The methodology encompasses algorithms that specify the BPA ex-
traction from process models as well as the process model generation
from BPA processes. The BPA extraction from process models uses
and extends existing business process model abstraction algorithms
based on the RPSTPM [136, 117, 160] by including business process in-
terdependencies in the abstraction process. Considering business pro-
cess interdependencies complicates the abstraction of process models
as the granularity of extracted elements depends on the characteris-
tics of the partner processes. Existing business process model abstrac-
tion approaches focus on the abstraction of single process models
only (see Section 3.4). They introduce a range of techniques to aggre-
gate, eliminate, and hide nodes or elements of a business process, e. g.,
Eshuis et al. [47] and Reichert et al. [121] provide customized views
by hiding not relevant nodes and highlighting elements of interests
like activities to be performed by a user or activities that are relevant
for a customer. Reijers et al. [122] take a step back and empirically
investigate the effects of modularization in process models by using
sub-processes for the process model understanding. Their findings
show that using sub-processes has positive influence on the process
model understanding. Our approach reduces processes to only few
elements and highlights the interdependencies between processes in
form of trigger and information flow relations. It goes beyond pro-
cess model borders and connects them to large scenarios of interde-
pendent processes showing only important elements in this context.
This is the starting point for analyzing processes in their context, e. g.,
by enriching them with additional meta-data.

The top-down decomposition of BPAs to process models is simi-
lar to the public-to-private (p2p) approach described by Aalst and
Weske [150]. Both approaches aim at the construction of correct pro-
cess interaction respectively interdependencies by design. The p2p
approach demands the structural properties of a Workflow net for
the description of the inter-organizational interaction. The top down
use of our BPA approach and the p2p approach differ in terms of
granularity level and scope. Whereas the p2p approach describes the
inter-organizational message exchange in detail on process model

170 business process architecture methodology

level, our BPA approach provides a high level end-to-end abstraction
of processes within an organization. Business process choreography
diagrams as well, focus on the message interaction between proces-
ses but resort to an actor view, such that the involved processes are
hidden, and only the interaction between actors of different organiza-
tions is described.

Our BPA methodology is the first that encompasses BPA analysis,
BPA extraction, and process model generation techniques that sup-
port the consistent modeling of business processes and their inter-
dependencies throughout different levels of a process model repos-
itory. It facilitates the maintenance and improvement of the quality
of process model collections by harmonizing the process relations
and achieving consistency between process presentations on differ-
ent levels. Chapter 8 extends our BPA approach to also incorporate
data aspects in the extraction of BPAs and allows visualizing data in-
terdependencies between process models in a Business Process Data
Architecture.

8
D ATA A S P E C T S I N B U S I N E S S P R O C E S S
A R C H I T E C T U R E S

This chapter is based on the published papers “Deriving Business Process Data
Architectures from Process Model Collections” [43] and “From Process Models to

Business Process Architectures: Connecting the Layers” [39]. It deals with data
aspects in process models for creating Business Process Data Architectures and
shows how to identify process interdependencies based on data modifications of

activities. It extends the BPA extraction algorithm with data aspects.

Data aspects have gained importance in business process model-
ing. Most work in this field has been carried out in regard to model-
ing data aspects, examine consistency issues between the data model
and control flow, or synchronizing different OLCs of a process mo-
del along the research streams of activity centric and object centric
process modeling [48, 77, 103].

As more and more process models depict the use of data objects,
their interdependencies need to be considered and examined when
creating BPAs. In the previous chapter we introduced a BPA extrac-
tion algorithm that creates a BPA from a given process model collec-
tion. In this chapter we focus on the extraction of data interdepen-
dencies between business processes which has not been discussed
in Section 7.2. In many cases the data interdependencies prevailing
between business processes are hidden as the exchange of data ob-
jects is not modeled explicitly and rather happens indirect through
access to shared information systems.

Nevertheless, process interrelations can be deduced by looking at
the data objects and how processes manipulate them. For example,
two processes have to be carried out in sequence, if one process pro-
duces a certain data object that another process consumes.

In the following, we introduce an exemplary scenario, describe dif-
ferent types of data interdependencies that can be observed between
business processes, show how to create a process data dependency ma-
trix (PDM) and describe an extraction algorithm to construct a Busi-
ness Process Data Architecture (data BPA), which reveals and depicts
hidden data-related interdependencies and thus eases the manage-
ment of process model collections. The resulting data BPA can be
verified with the method presented in Chapter 6 unveiling erroneous
process interaction due to data.

For the extraction of data interdependencies we refer to the process
model definition from Definition 1, the definition of data objects and
states from Definition 2, and the OLC definition from Definition 3.

171

172 data aspects in business process architectures

P1-Order-credit-card-data

Cr
ed

it
Ca

rd
 S

er
vi

ce
s

Credit Card Services

Review
application

(a1)

Check blank
card stock

(a2)

Purchase
blank cards

(a3)

Choose layout
and design

(a4)

Print blank
cards with logo

(a5)
Stock-up cards

(a6)

Configure and
ship card

(a7)
Send invoice

(a8)
Receive

payment
(a9)

Application
[verified]

Application
[confirmed]

Card
[in stock]

Card
[not in stock]

Card
[not in stock]

Card
[manu-

factured]
Card

[in stock]

Card
[in stock]

Application
[confirmed]

Card
[shipped]

Application
[shipped on

acc.]
Application

[billed on acc.]
Application

[paid on acc.]

(a) Process p1: Credit card application process
P2-order-advance-payment-data

Cr
ed

it
Ca

rd
 S

er
vi

ce
s

Credit Card Services

Check blank
card stock

(b2)

Reject
application

(b5)

Pack card
(b3)

Ship card
(b4)

Review
application

(b1)

Application
[confirmed]

Application
[unconfirmed]

Application
[verified]

Application
[rejected]

Card
[in stock]

Application
[paid in adv.]

Card
[packed]

Card
[shipped]

Application
[shipped in

adv.]

(b) Process p2: Credit card application
process (adv. payment)

P5-invoice-handling-data

In
vo

ic
in

g
Se

rv
ic

es

Send invoice
(e1)

Receive
payment

(e2)

Application
[confirmed]

Application
[billed in adv.]

Application
[paid in adv.]

(c) Process p5: Invoice handling

p4-customer-identity-verification-data

Cu
st

om
er

 S
er

vi
ce

s

Verify
customer
identity

(d1)

Reject
application

(d2)

Application
[verified]

Application
[received]

Application
[unverified]

Application
[rejected]

ve
ri

fie
d

not
verified

(d) Process p4: Customer identity verifi-
cation

P3-archive-order-data

Ar
ch

iv
in

g
Se

rv
ic

es

Archive
application

(c1)

Application
[paid on

acc.]

Application
[shipped in

adv.]

Application
[rejected]

Application
[archived]

(e) Process p3: Archiving

Figure 52: Customer identity verification and invoice handling process mod-
els

We assume that the underlying process models are structurally sound
and block structured. Furthermore, we assume that all process mod-
els satisfy the notion of weak conformance [102] with respect to the
utilized data objects, i. e., process models and OLCs do not contra-
dict. We assume that all activities’ data object accesses are modeled
and that no activity writes a data object it has not read before and
that each data state transition is realized by at least one activity from
a process model. In regard to OLCs, we consider only acyclic OLCs
and that there exists one shared object life cycle for all business pro-
cesses using the same data objects.

8.1 data scenario

We use the scenario from the processing of credit card applications
at a financial service provider introduced in Section 1.2.1. We extend
it to five processes and add data annotations. The scenario consist of
the credit card application process in Figure 52a, a second alternative
of the credit card application process with advance payment in Fig-

8.2 annotating the object life cycle 173

ure 52b, the customer identification process in Figure 52e, the invoic-
ing process in Figure 52d, and the archiving process in Figure 52c.

Each credit card application that is received is handled by the cus-
tomer verification process in Figure 52d. If the customer provided
all required information, the credit card application can be handled,
otherwise the application is rejected.

Process p1 in Figure 52a describes the standard procedure for credit
card applications. If a verified application arrives, an employee re-
views the application and then checks if there are still blank cards
in stock for issuing the credit card. If they are still in stock then the
credit card is configured, the invoice is sent, and the payment is re-
ceived. If the stock is empty the employee orders new blank cards and
chooses a layout and design, and the stock of blank card is refilled.
Process p2 Figure 52b describes the credit card application process
where a first initial deposit is required. It also allows to reject a credit
card application after the reviewing of the application, e. g., when the
employees re-classifies the customer as blacklisted in regard to the
data provided.

The service of providing a credit card needs to be paid by the cus-
tomers which is handled by the invoice handling process depicted
in Figure 52c. At last, all credit card applications are archived by the
archiving process in Figure 52e.

These five processes share the two data objects “application” and
“credit card”. Each data object has an OLC that describes the state
transformation allowed on the data object. The data object life cycles
are depicted in Figure 53 and Figure 54 in Section 8.2.

8.2 annotating the object life cycle

The first step to determine data interdependencies between the busi-
ness processes is to annotate the OLCs of the data objects “applica-
tion” and “credit card” with the activities that induce state transitions
in the OLC. Activities in process models can either have reading or
modifying data access. Read access is depicted by a dashed arc from
the data object to an activity in a process and the modifying access by
a dashed arc from the activity to the data object. A modifying access
changes the state of the data object corresponding to a state transition
in the OLC. As the data objects are shared and hence state transitions
can be induced by activities from different processes, we label the
state transitions with pairs of process and activity. For this step we
define the relation map ⊆ (S×PM×A×S), where PM and A are sets
of process models and activities. The map relation is visualized as arc
inscriptions in the OLC, e. g., the modifying access is reflected by the
inscription p2[b3] on the arc between states “in stock” and “packed”
in Figure 53. A reading access of an activity without transforming a
data object is visualized as a dashed arc pointing away from the state

174 data aspects in business process architectures

that is read. E. g., the reading of data object state “not in stock” of the
data object “credit card” by activity “purchase blank cards (a3)” of
process p1 is depicted as inscription p1[a3] in Figure 53. In the anno-
tated OLC this is reflected by map(S,S) = (p,a), where S is the data
state to be read, a is the activity, which performs the reading access,
and p is the process of a. In the following we refer to the activities
by the abbreviations in parenthesis written in the label, e. g., activity
“a3” refers to the activity “purchase blank cards (a3)” of process p1.

i

in stockP1[a2]

P2[b2]

not in stock manufactured

packed shippedP2[b3]

P1[a5]

P1[a6]

P1[a2]

P1[a3]

P1[a4]

P2[b4]

P1[a7]

Figure 53: Annotated credit card object life cycle

Activities can perform modifications that induce multiple state tran-
sitions in the OLC along a path in the OLC and are not limited to di-
rectly succeeding states. Such a transition is depicted by an additional
dashed arc leading from the originating state to the source state in the
OLC, e. g., in Figure 53 the states “in stock” and “shipped” are con-
nected by a dashed arc. In this case activity p1[a7] induces a state
transition from “in stock” and “shipped” omitting the state “packed”
in the OLC.

8.3 deriving the process data relation matrix

To determine the type of data interdependencies between processes,
we first identify data interdependencies between their activities, and
aggregate all found data interdependencies for a pair of processes
in a data relation type. The data relations for all processes are then
summarized in a process data dependency matrix.

received

confirmed

shipped on acc billed on acc paid on acc

archivedrejected

P1[a1]

P2[b1]
P1[a7]

P1[a8] P1[a9]

P3[c1]
P2[b1]

P3[c1]

billed in adv paid in adv shipped in advP5[e1]
P5[e2] P2[b4]

P3[c1]

unconfirmed P2[b5]

P1[a2]

P2[b2]

verified

unverified

P4[d1]

P4[d1] P4[d2]

P2[b3]

Figure 54: Annotated application object life cycle

8.3 deriving the process data relation matrix 175

8.3.1 Deriving Direct Data Interdependencis from the Data Object Life
Cycle

Using the annotated life cycle we can derive direct data interdepen-
dencies between activities and consequently data interdependencies
between business processes. Two succeeding state transitions in the
OLC that are induced by activities from different processes describe
an interdependency between these processes.

Depending on the amount of preceding and succeeding states in
the OLC and the origin of activities inducing state transitions differ-
ent relations between the processes can be derived from the OLC. In
the following we describe the different relation types and how to de-
termine them from the OLC.

Two activities from two different processes are dependent (p[ai] Ð→∎
p ′[aj]) if one activity p ′[aj] reads or modifies a data object that an-
other activity p[ai] has modified before. For example the transition
“unverified” p4[d2]−−−−→ “rejected” of data object “application” is followed
by the transition “rejected” p3[c1]−−−−→ “archived”. Because c1 modifies
a state written by d2 it can only occur afterwards. The relation Ð→∎
denotes direct data dependency between two activities and their pro-
cesses.

A data object state transition can be induced by only one activity
at a time. If several activities from different processes can perform a
data state transition, they are in conflict with each other. This conflict
needs to be considered when extracting data dependencies between
processes.

In the OLC these conflicts are determined by traversing the OLC
and checking for each state its successor and predecessor relations.
Conflicts derive from two different situations observed in the OLC.

The first situation is observed when two different activities induce
the same state transition. In the OLC this is visualized by an arc with
two inscriptions, e. g., the state transition from the state “verified” to
“confirmed” in the OLC of data object “application” can be induced
by p1[a1] and by p2[b1] as depicted in Figure 54. In this conflict
relation the state transition originates from the same state and has
the same target state but can be realized by two different activities.

The second situation is observed if a state in the OLC has several
preceding or succeeding states, and the state transitions leading to
the state or leaving the state respectively are induced by activities
of different processes, e. g., in the OLC of “application” both p5[e1]
and p1[a7] originate in state “conflict” but induce the states “billed
in adv.” and “shipped on acc.” respectively, and hence are in conflict.
Similarly, the state “rejected” of data object “application” has two
predecessor states “unconfirmed” and “unverified” and either p2[b5]
or p4[d2] induce the state transition to the state “rejected” as shown
in Figure 54.

176 data aspects in business process architectures

As we are interested in interdependencies between processes we
only consider those conflicts in which activities of different processes
are involved. We differentiate between these conflicts as they require
different handling when creating data BPAs. For this we refer to the
first conflict situation described as same state conflict and to the sec-
ond conflict situation as different state conflict.

To express these conflicts we define the conflict relation ⊗. Two
annotated state transitions are in conflict, when they originate in the
same source state or lead to the same target state and are induced
by activities of different processes. We assume that conflicts in which
only activities of one process are involved are taken care of by the
control flow of the processes, i. e., we assume that there are no data
related deadlocks in the process models.

To determine the relation between two processes the base relations
Ð→∎ and ⊗ on activity level are combined and lifted to process level.
To achieve this, all direct relations between the activities of two pro-
cesses need to be considered along all paths of the OLC of a shared
data object as different paths might show contradicting relations. The
aggregation of relations to process level will be discussed in detail in
the next section.

8.3.2 Process Data Relations

To determine the relation type between a pair of processes the OLC
is traversed along each OLC paths and every base data relation is
collected. Depending on the sequences of the different base relations
observed for each path in the OLC the overall relation for the process
pair is determined.

sequential data dependency. Process p ′ sequentially depends
on process p in regard to particular data objectD (written as p→D p ′),
if all data accesses of process p happen before process p ′ accesses D
for the first time on any path of the corresponding OLC. Additionally,
there must exist at least one direct data dependency p[x] Ð→∎ p ′[y].
For example process p3 sequentially depends on process p4 in regard
to the data object “application” as all data accesses of p4 happen
before the first data access of p3 and there is a direct data dependency
p4[d2] Ð→∎ p3[c1] as shown in Figure 53.

We define two more variants of the sequential relation. Two proces-
ses p and p ′ are sequentially overlapping (Ð→↑) if p → p ′ and p addi-
tionally reads the last state it has modified in parallel with process p ′

on handover. Usually, this happens when a process hands over some
work to another process but still uses the last data object state as input
to continue its own work on another data object. E. g., in Figure 54,
the relation p1 Ð→↑ p5 is depicted on state “confirmed” where p1[a2]
reads the state that is also input to process p5 that induces the next

8.3 deriving the process data relation matrix 177

state transition to “billed in adv.” with p5[e1]. Hence p1 and p5 are
sequentially overlapping.

A process p ′ follows (Ð→↑ ↑↑) a process p, if p ′ only reads the modi-
fications performed on a data object by process p, i. e., if there are
activities x1, . . . ,xk of p and y1, . . . ,yl of p ′ such that p[xi] Ð→∎ p ′[yj]
for some 1 ≤ i ≤ k,1 ≤ j ≤ l and each yj has only reading access, e. g.,
the tracking of a delivery would result into such a relation.

exclusive data dependency. A process pair is exclusive if we
observe one conflict relation between their activities in the accord-
ing OLC. For example in Figure 54 we observe a conflict relation
p1[a1] ⊗ p2[b1] as both activities originate in the same state and in-
duce the state transition from “verified” to “confirmed” of data object
“application”. The exclusive relation is dominant, in the sense that it
overrules other relations in ambiguous situations. E. g., on one path
of the OLC for a data object D we observe a sequential data relation
and on another path of the OLC we observe an exclusive relation for
a pair of processes, then we classify both processes as being exclusive
to each other.

Two processes p and p ′ are called completely exclusive (p[#]p ′) if we
observe a conflict relation between their activities on all paths of the
corresponding OLC, i. e.,∃p[xi] ⊗p ′[yj] for all paths of the OLC.

interacting processes . Two processes p,p ′ are interacting (Ð→Ð→∨∨)
if we observe on some path of the OLC direct data dependencies be-
tween activities of p and p ′ and vice versa, i. e., p[xi] Ð→∎ p ′[yj] and
p ′[yk] Ð→∎ p[xl] for some activities xi,xl of p and yj,yk of p ′. Ad-
ditionally xi < xl and yj ≤ yk have to hold regarding the behavioral
profiles of p and p ′. Because process p induces the first data depen-
dency on the path, it is the initiator of the interaction. If the condition
for interacting processes holds on different paths of an OLC the initia-
tor has to be the same process on each path. Otherwise the processes
are considered contradicting (�). Generally, interacting means that two
processes take turns operating on a data object.

In the OLC of data object “application”, we find direct data de-
pendencies p2[b1] Ð→∎ p5[e1] and p5[e2] Ð→∎ p2[b3] (on the top
path “verified”–“confirmed”–“billed in advance”–“paid in advance”–
“shipped in advance”), and b1 < b3 as well as e1 < e2 hold. Therefore
we can deduce that p2 Ð→Ð→∨∨ p5.

contradicting processes . Two processes are considered con-
tradicting (�), if the relation between the two processes p and p ′ ap-
pears to be interacting, however both processes are initiators of the
interaction on different paths of the OLC. For example, in one path
we observe p[xi] Ð→∎ p ′[yn] and p ′[ym] Ð→∎ p[xj] and on another
path we observe p ′[yi] Ð→∎ p[xn] and p[xm] Ð→∎ p ′[yj].

178 data aspects in business process architectures

These relations are the building blocks for creating a PDM for data
interdependent processes.

8.3.3 Aggregation of Multiple Data Object Relations in a Process Data
Relation Matrix

Business processes usually use more than one data object during pro-
cess execution. Consequently, we need to consider the data relations
found in all used data objects to determine the relation between a
pair of processes. If we observe the same relation type between two
processes on all shared data objects, then their overall relation type is
defined by that type. However, the relations found in the OLC of the
data objects may differ. For this case we define a dominance hierarchy
between the relation types that can be applied if a link between two
data objects can be established. Two data objects are linked if they
are used by the same activities else they may be shared on different
execution paths of both processes. In such ambiguous cases, process
traces need to be considered which will be part of future work. If
the data objects are dependent, i. e., are used by the same activities,
we can resolve the ambiguity. Then the more dominant relation type
determines the overall relation between the two processes.

If, on the one hand, the sequential relations for two processes p and
p ′ agree in regard to all data objects they both access, the processes
are said to be sequentially dependent (→), so that for each data object
p → p ′ holds. Similarly, this applies for sequentially overlapping and
following relations.

If, on the other hand, the sequential relations differ for data objects
D and D ′, e. g., p →D p ′ and p ′ →D ′ p, then processes p,p ′ are in-
teracting, except when their data accesses contradict. This is the case
if each of the processes needs the other data object as input before
inducing the state transition required by their partner process. Such a
deadlock occurs, if p[a] Ð→∎ p ′[b1] in the OLC of D, p ′[b2] Ð→∎ p[a]
in the OLC of D ′ and b1 < b2 in the behavioral profile of p ′ all hold.

Two processes p and p ′ are exclusive, p#p ′, if at least one relation
on a data object between these processes is considered exclusive and
the other relations on further data objects are considered sequential,
interacting, or following.

We define the relation of two processes as contradicting, if we ob-
serve that they are contradicting for at least one data object. A PDM
with contradicting processes will fail to terminate when turned into a
data BPA because the contradiction would lead to deadlocks during
execution. However, processes we identified as contradicting might
succeed for some process traces if activities causing the contradiction
are not executed in this trace. The identification of contradicting rela-
tions between processes indicates malformed data dependencies.

8.4 extracting the data bpa 179

After having classified each process pair with a relation type the
process relations are summarized in the process data dependency
matrix. Table 5 shows the aggregated process relations for our “credit
card application” scenario in the PDM and sets the coarse structure of
the according data BPA. The later extracted data BPA must conform
to the identified relations in the PDM.

Processes p1 p2 p3 p4 p5

p1 – # → ← #

p2 # – → ← Ð→Ð→∨∨
p3 ← ← – ← –

p4 → → → – –

p5 # ←Ð←Ð∨∨ – – –

(a) Process Data Relation Matrix (PDM)

Relation type Symbol

sequential ← →
sequ.

overlapping
←Ð↑ Ð→↑

following ←Ð↑↑↑ Ð→↑ ↑↑

interacting Ð→Ð→∨∨ ←Ð←Ð∨∨
contradicting �

exclusive #

complete
exclusive

[#]

no relation –

(b) Relation type symbols

Table 5: Aggregated data object pro-
cess relations for processes p1

to p5

As processes p3, p4, and p5
only access the data object “ap-
plication”, their relations are de-
termined by this data object. For
example, process p3 is sequen-
tially dependent from process
p1, i. e., p1 → p3 because of
p1[a9] Ð→∎ p3[c1] and no other
relations exist.

Processes p1,p2 and p3 se-
quentially depend on process p4,
process p3 additionally is se-
quentially dependent on both p1
and p2.

Processes p2 and p5 interact
with each other on data object
“application” in the most upper
path of the OLC. The interaction
is initiated by process p2 such
that p2 Ð→Ð→∨∨ p5 holds as depicted
in Table 5.

Processes p1 and p5 share
only one data object. As we
can observe an exclusive re-
lation from the OLC of the
data object “application” be-
cause of p1[a7]⊗p5[e1], we clas-
sify them as exclusive, such that
p1#p3 on process level as well.

Processes p1 and p2 use both
data objects, but because their relation is exclusive for both, we can
unambiguously identify their overall relation as exclusive in the PDM
as well. The remaining relations are determined accordingly; none is
contradicting.

8.4 extracting the data bpa

After having presented a technique to identify data dependencies be-
tween processes, we describe the extraction of a data BPA that pro-
vides an overview of the detected data interrelations. For the extrac-

180 data aspects in business process architectures

tion of Business Process Data Architectures we require the process
models, the annotated OLCs of the shared data objects, and the pro-
cess relations that we observed for each data object.

We build on the extraction algorithm presented in Section 7.2. For
the algorithm to be used with data objects in the process model, we
map the data dependency observations made in the OLC to pro-
cess model elements and complex control flow structures. The PDM
(see Table 5) is used to determine the extraction strategy. It describes
the overall structure of the data BPA, e. g., process precedence, or ex-
clusivity.

8.4.1 From Object Life Cycles and Data Interdependencies to Control Flow

We introduce mappings from data dependency observations made
in the OLC to known control flow structures that we then use for
extracting a data BPA.

sequential dependency. If we observe a direct data depen-
dency between an activity p[ai] Ð→∎ p ′[aj] in the OLC of a data
object and the relation type between process p and p ′ is sequential,
interacting, or following, we consider this direct data dependency a
message flow from activity p[ai] to p ′[aj]. To depict the sending of
information we insert a sending activity after the activity that induces
the state transition in the source process model. In the target process
model we insert a receiving activity before the activity that reads the
data object.

exclusive and same state conflict. If we observe a same
state conflict relation between two activities in an OLC, such that
p[ai] ⊗p ′[aj], we flag those activities insignificant for extraction and
ignore these activities in the data BPA extraction process. Processes
p and p ′ are in conflict as only either one can induce the state transi-
tion. In the PDM process p and p ′ are typed exclusive. Of course, the
activities still need to be considered for extraction if they are in direct
data dependency with activities of other processes.

exclusive and different state conflict. If we observe a
different state conflict relation between two activities in an OLC, we
consider this an XOR-bond in the process model with an activity on
each path that has a message flow to the according partner. E. g.,
we observe a different state conflict relation with p[ai] Ð→∎ p ′[aj],
p[ai] Ð→∎ p ′′[ak], and p ′[aj] ⊗ p ′′[ak], then we treat those observa-
tions as XOR-bond with two paths where one path has an activity
p[ai1] exhibiting a message flow to p ′[aj], and the other path has
an activity p[ai2] exhibiting a message flow to p ′′[ak]. In the PDM
process p ′ and p ′′ are typed exclusive. To represent the sending of

8.4 extracting the data bpa 181transformation data send

Verify
customer
identity

(d1)

Application
[verified]

Application
[unverified]

Send verified
customer
identity

to P1

Send
verified

customer
identity

to P2

Verify
customer
identity

(d1)

Figure 55: Data write access to control flow transformation

information to one or the other partner the XOR-bond component is
inserted after the activity. To represent the receiving of information
from different partners the XOR-bond component is inserted before
the according activity.

Figure 55 illustrates the complexity that is hidden in data objects
of process models in regard to process interdependencies. Activity
p4[d1] induces either the state “verified” or “unverified” of data ob-
ject “application”. Hence, we introduce an XOR-bond component that
represents this choice. To depict the choices we analyze the direct
data dependencies of the data object for each state. Data object “ap-
plication” in state “verified” can be read by either activity p1[a1] of
process p1 or activity p2[b1] of process p2. Both processes are in con-
flict as only one activity can read the data object at a time. Hence,
we introduce another XOR-bond as child component of the first XOR-
bond in the process model with a sending task on each branch that
either sends the message to the activity of process p1 or the activity
of process p2. As the state “unverified” is read by an activity of the
same process no sending task is introduced on the lower branch. The
empty branch of the firstly introduced XOR-branch depicts that the
sending of data object “application” in state “verified” is optional.

Figure 56 shows the receiving of information from different pro-
cesses depicted by an input data object with different possible input
states. Each data state is depicted by one branch with a receiving task
in the XOR-bond. As the receiving of information is illustrated by the
receiving tasks the XOR-bond is inserted before the activity.

Direct data dependencies between two processes that are typed ex-
clusive in the PDM are ignored and will not be transformed into a
trigger or information flow during BPA extraction.

contradicting . Processes being in a contradicting relation can-
not be treated by our extraction algorithm and hence will not be con-
sidered. In many cases the contradicting relation hints at problems in
the OLC and control flow of the process models as data or control
flow deadlocks.

182 data aspects in business process architecturesreceive data

Archive
application

(c1)

Application
[paid on

acc.]

Application
[shipped in

adv.]

Application
[rejected]

Receive
application
paid on acc.

Receive
application

rejected

Receive
application

shipped in adv.

Archive
application

(c1)

Figure 56: Data read access to control flow transformation

multiple data objects . An activity might have several data ob-
jects as its precondition/postcondition, e. g., activity p1[a]with object
D1 in state s1 and data object E1 in state t1. For example, in our sce-
nario we find such a situation with activity p2[b4] that has data object
“application” in state “shipped in adv.” and data object “card” in state
“shipped” as postcondition.

If additionally we observe direct data dependencies in the OLC
of these data objects with p2[b1] inducing the state transition of D1
into state s2 and p3[c2] inducing the state transition of data object
E1 into state t2, and p2 and p3 are not exclusive, such that a Ð→∎ b

and a Ð→∎ c, we transform such data construct into an AND-bond
component in the process models with as many paths as partners ob-
served for that activity. On each partner path we put the number of
sending activities that equals the number of data objects the partner
receives (for which there is a direct data dependency in the OLCs). In
our example, we introduce an AND-bond component with two bran-
ches for activity p1[a]. On one branch an activity p1[a1] relates to
p2[b1] with message flow and on the other the activity p1[a2] relates
to p3[c2] with a message flow. The BPA extraction algorithm trans-
forms this construct into one sending event with two flows (trigger
or information flow) to one receiving event of each partner process,
illustrated in example 2 of the BPA extraction algorithm in Figure 48.
If instead there is only one partner process and the receiving activi-
ties are in the same AND-bond component or neighboring in a poly-
gon, the BPA extraction algorithm transform this construct into one
sending event with multiplicity equals to the number of data objects,
i. e., number of activities in the AND-block as depicted in example 3

of Figure 48.

8.4.2 From Activities to Events.

In Section 7.2 we presented a BPA extraction algorithm. As first step
an RPSTPM of each process is created. All nodes that do not take part
in a message flow relation are eliminated. In regard to data objects,
this means that all activities that are not part of a direct data depen-
dency or different state conflict relation are eliminated. The remain-

8.4 extracting the data bpa 183

ing significant nodes are analyzed for their data dependency. Based
on the data relation the according non-data control flow structures de-
scribed in previous section are inserted into the process model. This
step leaves us with a reduced RPSTPM with only significant nodes,
i. e., process nodes participating in a message flow (representing the
data interdependencies).

We configure our BPA extraction algorithm to the data specific set-
tings where we only consider activities. In this regard we fuse the
start and end events with their neighboring activities. Hence, the left-
most (minimal) activity node in the direct children components of
the root node of the RPSTPM of the original model depicts the start
node of the process and the rightmost (maximal) activity node the
end node of the process. The first activity of the process model is
mapped to a start event and the last activity to an end event in the
BPA process. The BPA extraction algorithm consults the PDM when
transforming the process model activities to BPA events. It ignores
all connections between processes that are exclusive according to the
PDM.

With this configuration we can traverse the RPSTPM and identify a
mapping to BPA processes and events according to the complex BPA
extraction algorithm presented in Section 7.2.5. Depending on the
data relation type, the RPSTPM component type, the location of the
activity, and number of partner processes, the extraction algorithm de-
fines the according transformation to BPA event type and introduces
the required amount of triggers and information flows into the result-
ing BPA. The BPA extraction algorithm places the mapped events in
the according BPA process analog to their position in the RPSTPM.
The order of events in the BPA process is determined by the position
of the activity node in the RPSTPM. The result is a data BPA reveal-
ing the data interdependencies between business processes. There is
a many-to-one mapping between activities and events because inter-
nal activities were removed and significant activities were aggregated
to one event in the BPA.

Figure 57 depicts the resulting data BPA for our scenario. It consists
of the five processes presented and their data dependencies. Figure 57

demonstrates how the conflict relation affects the creation of the data
BPA. It is handled like an XOR-bond in a process model without any
data objects. In Figure 54, activities p1[a1] and p2[b1] both transform
data object “application” from state “verified” to “confirmed” and
both are in direct data dependency with p4[d1] because of p4[d1] Ð→∎
p1[a1] and p4[d1] Ð→∎ p2[b1]. Hence, those activities are conflicting
and the data BPA must prevent the processes, to which β(a1) and
β(b1) belong, to be instantiated at the same time.

For the data BPA, this means that these trigger flows are in con-
flict, i. e., (β(d1),β(a1)), (β(d1),β(b1)) ∈ χ which is visualized by
the XOR gateway in Figure 57. Activity p4[d1] optionally triggers pro-

184 data aspects in business process architectures

P1

P2

P3P4

P5

X

0,1

0,1

X

0,10,1

Figure 57: Resulting data BPA

cess p1 or process p2 which is depicted by the intermediate sending
event with a multiplicity set of {0,1}. This due to activity p4[d1] that
has different data object states as postcondition. One of the states is
in direct dependency with two different processes and the other state
only refers to an internal activity.

Process p4 optionally triggers process p3 as the original model
contains an XOR-bond that consists of a branch with a data inter-
dependency and one empty branch. Consequently, the data interde-
pendency only exists, if the according branch is taken in the source
process model. This optionality is depicted in the BPA process by an
end event with a multiplicity set of {0,1}.

Our data BPA process shows all behavior depicted in the process
model although the data conditions restrict the process model exe-
cution to specific paths, e. g., a path were both events send a trigger
cannot be executed on process model level due to the data object
states.

Activity p2[b1] modifies the state from “verified” to “confirmed”,
a state which is read by activity p5[e1]. Processes p2 and p5 have
further data dependencies p2[b1] Ð→∎ p5[e1], p5[e2] Ð→∎ p2[b3] and
p5[e2] Ð→∎ p2[b4], which each turn into a pair of a sending and a re-
ceiving event. For the sending intermediate and receiving intermedi-
ate events of process p2 the correspondence relation is defined, such
that both events have the same multiplicity set as depicted in Fig-
ure 57 and assures for a BPA run that they are equal.

Activity p2[b4] is furthermore in data dependency with p3[c1],
meaning that β(b4) and β(c1) are in relation. As p1[a9],p2[b5] and
p4[d2] are in conflict, they must be in conflict in the data BPA as well.
Hence, the conflict relation symbol is introduced and connected to
the start event of p3 in the data BPA.

The extraction of a data BPA visualizes hidden data interdependen-
cies between processes and enables analysis over several processes.
Despite the complex data setting, the BPA extraction algorithm was
adapted to handle data objects in process models. This was done by
mapping the data modification patterns to known control flow struc-

8.5 summary 185

tures reflecting their behavior. The easy integration of data aspects
into our BPA concept demonstrated the flexibility of our BPA to be
adapted to new domains. The examination of data interdependencies
between business processes regarding contradicting relations of mul-
tiple data objects requires future research to determine the types and
source of such contradictions and resolve them.

8.5 summary

In this chapter we introduced a novel technique to identify data in-
terdependencies between processes based on data objects and their
OLCs and extract them to Business Process Data Architectures. It
maps the data interdependencies to common control flow constructs
to resort to the BPA extraction algorithm from Section 7.2. Our re-
search on data interdependencies between processes can be integrated
into research on data aspects in process models and process chore-
ographies (see also Section 3.3). Research on data in activity-centric
process models deals with assuring consistency between the data and
control flow perspectives [48, 77], e. g., by synchronization of several
object livecycles (OLCs) of different data objects for one process mo-
del [103].

However, only few approaches exist that examine data aspects in re-
gard to process interaction, e. g., Knuplesch et al. [69, 68] and Fahland
et al. [51]. Knuplesch et al. [69, 68] enrich BPMN choreography dia-
grams with a data layer that assigns virtual data objects to message
exchanges between participants of a collaboration. In this approach
the data objects are used to determine the routing through the chore-
ography control flow. Taking a different focus, Fahland et al. [51] in-
troduce a technique based on proclets to check conformance between
execution logs and artifact-centric processes.

Being aware of the importance of data aspects, our approach sup-
ports the detection, visualization and analysis of hidden data inter-
dependencies not only in regard to message exchanges but also in
regard to their trigger semantics. On PA level, data aspects have been
mostly ignored except from the use of business objects as grouping
elements for business processes.

Part IV

E VA L U AT I O N A N D C O N C L U S I O N

9
B U S I N E S S P R O C E S S A R C H I T E C T U R E E VA L U AT I O N

Parts of this chapter are based on the published papers [41, 46]. After we
introduced our BPA approach and its different techniques, this chapter presents an
evaluation of our BPA approach to validate its usefulness and applicability, also in

comparison with other PA approaches.

9.1 conceptual evaluation

To evaluate and assess the usefulness and applicability of our busi-
ness process architecture concept we designed an experiment and
invited BPM experts from industry and research to participate. In the
experiment the participants were asked to examine process model
interdependencies and other process model information in different
process model collections with the help of different business process
architectures approaches. The aim was to compare our approach to
other common business process architecture approaches on the one
hand and on the other hand to validate if our approach fulfills the
intended purpose for which it was designed. Furthermore, our in-
tent was to gain more insights into the positioning of our approach
but also other approaches in regard to the BPM lifecycle proposed by
Weske [165].

evaluation strategy : experiment. To evaluate our approach
and compare it to other approaches, we choose the research strategy
of an experiment. Experiments are used to perform explanatory or
causal enquiries, and compare different treatments to each other [166,
172]. The aim of an experiment is to find and explain an effect of a
treatment in comparison with other treatments. Focusing on exper-
imentation in the area of software engineering, Wohlin et al. [166]
consider experiments as comparative research strategy suitable, e. g.,
for comparing the use of different methods to each other. Yin [172]
suggests to use experiments if the focus of the study is a contem-
porary event, the research question focuses on the how or why, and
the study requires control of behavioral events. Following Yin [172]
and Wohlin et al. [166] we choose the form of an experiment as a
comparative research strategy and used elements from user interface
design for getting an insight of the usability of our approach, also
in comparison to other approaches [143, 166]. Wohlin et al. [166] list
high execution and measurement control, and ease of replication as
advantages of experiments whereas the investigation costs are high.

189

190 business process architecture evaluation

The high control of an experiment over participants, objects, and in-
strumentation allows for easier generalization of the outcomes. How-
ever, there are certain threats to the validity of experiments that can
be group into conclusion, internal, construct, and external validity
according to Cook and Campbell in [166]. Despite that, Wohlin et
al. [166] state that by following a clear experiment process including,
scoping, planning, experiment operation, analysis and interpretation,
and reporting these concerns can be overcome. The aim of our ex-
periment is to measure the performance of our BPA approach and
compare it to other approaches. Our experiment followed the steps
of the experiment design process described by Wohlin et al. [166]. The
research process consists of scoping, planning, experiment operation,
analysis & interpretation, and reporting.

scope of experiment. With the experiment we intend to eval-
uate if our BPA approach provides a fast and useful overview for a
process model collection, allows visualizing and easily grasping com-
plex process interdependencies, and in this regard performs better in
leveraging information from process model level to the more abstract
business process architecture level than common business process ar-
chitectures approaches.

In terms of the goal template from Basili and Rombach cited in [166]
we want to analyze our BPA approach, classification/landscape ap-
proach, and collapsed pools for the purpose of evaluation with re-
spect to efficiency and usefulness from the perspective of the researcher
in the context of BPM experts applying a PA approach.

The null hypothesis states there is no difference in performance
in regard to correctly answered questions in a particular time frame
among all PA approaches used in our experiment. Our alternative
hypothesis for this experiment is that using our BPA approach leads
to better results.

planning and experiment design. For our experiment we
choose a standard experiment form of one factor with several treat-
ments [166]. Experiments have a clear structure and terminology. They
consist of independent variables, dependent variables, objects, and
subjects. Independent variables are controlled by the experiment. The
effect of changing one or more independent variables is studied on
dependent variables. Independent variables that are changed during
the experiment are called factors. The different instances of one fac-
tor are called treatments. Treatments are applied to objects, e. g., a
document or code, and subjects (participants).

We divided our experiment into two parts. The first part consisted
of three BPMN process model scenarios. Each scenario represented a
small BPMN process model collection with seven process models. We
designed nine questions that were posed in each scenario.

9.1 conceptual evaluation 191

The second part of the experiment consisted of seven questions on
general aspects of business process architectures and BPAs especially,
e. g., application areas along the BPM lifecycle as well as rankings of
different approaches, and an assessment of the scenarios regarding
their complexity. The second part did not follow the form of an exper-
iment and was intended to provide some context to the experiment
results and assessment of our BPA approach. For the design of the
questionnaire methods for usability and user experience measuring
according to Tullis and Albert [143] were used. These help to spec-
ify questions that allow evaluating the applicability and usefulness of
BPAs and the other PA approaches.

We designed three simplified process model scenarios from real
world examples that each represent a small process model collection.
We chose real world examples to achieve more meaningful insights
from the experiment. These three scenarios represent the object of our
experiment on which treatments are applied. The factor of our exper-
iment is the general PA approach and the treatments the concrete PA
approaches used for each scenario. For comparison to our BPA ap-
proach we only used folder structures/process landscapes, and col-
lapsed pools which appear to be the most common approaches for
structuring process model repositories, but are not limited to them.

Business process architecture classification methods are often repli-
cated in an according folder structure depicted on high level as pro-
cess landscapes. The folder structures/process landscapes were used
as representation of PA methods based on process model classifica-
tion. Collapsed pools were used as they are part of the BPMN meth-
odology and provide an abstraction of process models and in some
sense resemble our BPA approach. PA approaches based on classifica-
tion (here folder structures), process landscapes, and collapsed pools
are commonly used in BPM tools [81]. In research more PA approa-
ches are proposed as presented in Dijkman et al. [33] but could not
be considered in our experiment.

The first scenario depicted the organization of a sports club. A sce-
nario that most people can relate to easily. The second scenario was
an extended version of our general use case, a construction permit
application. The third scenario described the planning and execution
of a logistic transport. For each scenario the participants were also
provided with different business process architectures approaches. In
the first scenario the participants had a process landscape as addi-
tional overview to the process models and a list of processes created
with a PA classification method. In the second scenario we provided
a view with all seven process models and their message flows as col-
lapsed pools as well as the list of processes as in the first scenario.
The overview for the third scenario consisted only of our BPA for the
process model collection.

192 business process architecture evaluation

The scenarios were of different complexity. The first scenario was
designed to be the most easy, the second slightly more difficult. The
third scenario was supposed to be the most complex scenario. The
reason for having an increased complexity in the scenarios was to
counter bias due to the participants’ learning process during the an-
swering of the questions of earlier scenarios. This was also a reason
to choose different scenarios for each PA approach.

The process models in the scenarios were structurally sound, block
structured, and most of the processes in the scenarios depicted only
sequences. Only few of the models contained AND or XOR blocks.
The sending and receiving of messages was depicted by throwing
and catching message events, as well as by sending and receiving ac-
tivities. Data interdependencies or other hidden implicit interdepen-
dencies were not included in the process models. The first scenario
consisted of 13 interdependencies, the second of 12 interdependen-
cies, and the third of 27 interdependencies.

In total 20 BPM experts from research and industry participated
in our experiment. These experts are the subjects of our experiment.
Seven participants were experts from industry and covered the bank-
ing, telecommunication and insurance sector as well as a large online
retailer, and a software development and consulting company. Most
of them were in charge of BPM activities in their organization and
responsible for the management and maintenance of the company’s
process model repositories. 13 participants were BPM experts from
the research sector.

The process models were printed on paper so that the participants
could easily flip through the models, make notes, write on them, and
arrange them if necessary. The participants were given ten minutes
to answer nine questions for each scenario. The questions for each
scenario were the same and dealt with determining the amount of
processes in a collection, independent processes, important processes,
and finding interdependencies between the process models. In the
following the nine questions are listed:

1. Q1: How may processes exist in the process collection?

2. Q2: How many independent (receive no trigger/messages) pro-
cesses exist in the process collection?

3. Q3: Which processes are independent (receive no triggers/mes-
sages)?

4. Q4: How many processes are interdependent from more than
one other process (are triggered or receive messages)?

5. Q5: Which processes are related to each other (trigger/mes-
sages)?

6. Q6: Which processes trigger which other processes?

9.1 conceptual evaluation 193

7. Q7: To which processes do process P1 and P5 send messages
(no triggers)?

8. Q8: Sort the processes in regard to their importance in regard
to their number of interactions (trigger/messages) and partner
processes!

9. Q9: For each PA approach assess on a scale from 1 to 5 if the fol-
lowing statement applies. This presentation provides the most
information on the processes of the process collection?

As these nine questions repeated for each scenario the third sce-
nario was designed to be more complex to counter the possible learn-
ing curve and avoid skewness of our experiment. We used survey
monkey1 to collect the answer for each question. We decided not to
change the order of the scenarios or the provisioning of PA approach
per scenario for avoiding skewedness and because of technical rea-
sons. We were afraid to change the order of the scenarios and the
given business process architectures as presenting our BPA in the be-
ginning would have given the participants a structured way to assess
the succeeding scenarios and hence skew the answers. Technically,
survey monkey, the data collection tool we used, does not directly
provide means for randomizing the order of the set of questions for
each scenario. A manual implementation would have been an effort
that could not be compensated by the expected benefit. The ninth
question asking for a preference on the different PA approaches pro-
vided was introduced to measure the existence of learning effects as
proposed by Tullis and Albert [143]. The dependent variable of our ex-
periment is the score that a participant (subject) achieves per scenario
(object) with a specific PA approach (treatment).

The time limit of ten minutes per scenario was determined by sev-
eral test runs of the experiment. We stopped the time a BPM expert
needed to get a good overview of the interdependencies and to an-
swer the questions. In the course of our test runs we rephrased some
questions and removed ambiguities. In a test run that we performed
ourselves as experienced user, we only needed 2 minutes to construct
an according BPA and needed about approximately five minutes per
scenario to answer all questions, i. e., in total 7 minutes. Our initial
test participants needed approximately six to seven minutes to an-
swer the questions for one scenario with our BPA overview. Hence,
we considered approximately forty to sixty percent more time for sce-
narios with probably less insightful PA approaches as sensible. As
business process architectures should give a fast and compact over-
view on a process model collection, a time limit of ten minutes was
considered reasonable for such a task.

1 Survey Monkey - An online survey platform for creating surveys and collecting data
- www.surveymonkey.com

www.surveymonkey.com

194 business process architecture evaluation

For the second part of the experiment we estimated a time frame
of 15 min to answer all thirteen questions.

experiment operation. In the beginning of each run of the
experiment the participant(s) were given a brief explanation on the
structure of the experiment. We briefly introduced our BPA approach
as it was not known to most of the participants. The introduction of
BPA took usually only one or two minutes to explain the main con-
cepts. If other business process architecture approaches like process
landscapes or collapsed pools were not known, we also explained
those methodologies in the beginning of the experiment. Then, the
participants were asked to open the survey monkey link for the ex-
periment and given the first scenario, i. e., the process models on pa-
per plus an overview created with one of the PA approaches. At the
end of the 10 min time-span for each scenario, we provided the par-
ticipants with additional overviews for the current scenario created
with the other PA approaches for polling their preference (question
9 of the experiment). After 10 minutes the participants were asked
to proceed to the next scenario until they had answered all questions
of all three scenarios. Participants were allowed to go back to previ-
ous questions only within their current scenario. Once a scenario was
accomplished, the participants were not allowed to return to change
answers in previous scenarios. The second part of the experiment did
not have any time limits but most of the participants were able to
finish it within another ten minutes. On average one experiment run
took 45 min.

During the execution of the experiment we were available for ques-
tions for clarifying the understanding of the experiment or questions
posed. We took notes on the questions asked and remarks of the par-
ticipants for possible later usage and better reasoning about the ex-
periment results.

analysis & interpretation, and reporting . To find out if
a particular business process architecture performs well in regard to
giving an overview on process model collections and its inherent pro-
cess interdependencies our measure was the accuracy of answers in
relation to a particular time span given. The measurement was based
on the amount of correctly answered questions by scenario during a
fixed time span. The more correct answers given by the participant
the better the performance of the according business process archi-
tecture approach. For assessments on usability and usefulness of the
PA application in different stages of the BPM lifecycle we used Likert
scales from 1 to 7 where the value 1 represented the worst rating and
seven the best rating.

The first four questions that were asked for each scenario consisted
of three single choice and one multiple choice questions. They dealt

9.1 conceptual evaluation 195

S
ce

n.
 1

 −
 Q

1

S
ce

n.
 2

 −
 Q

1

S
ce

n.
 3

 −
 Q

1

S
ce

n.
 1

 −
 Q

2

S
ce

n.
 2

 −
 Q

2

S
ce

n.
 3

 −
 Q

2

S
ce

n.
 1

 −
 Q

3

S
ce

n.
 2

 −
 Q

3

S
ce

n.
 3

 −
 Q

3

S
ce

n.
 1

 −
 Q

4

S
ce

n.
 2

 −
 Q

4

S
ce

n.
 3

 −
 Q

4

False
Correct

P
ar

tic
ip

an
ts

0

5

10

15

20

Figure 58: Results of questions 1-4 as stacked barplots

with the amount of processes in the scenario, the amount of indepen-
dent process models in a given process model collection (scenario)
and the identification of independent processes. These questions were
meant to familiarize the participants with the process model collec-
tion at hand and provide an easy introduction into the topic before
dealing with more difficult tasks.

Figure 58 shows the results represented in a stacked barplot. For
each of the four questions the results for the three scenarios were
grouped together. The first bar of each group shows the results for
the first scenario in which the participants were given a PA classifi-
cation overview and a process landscape, the second bar shows the
results for the second scenario with provided collapsed pools over-
view and the third bar shows the results for the third scenario where
participants were given only an overview created with our BPA ap-
proach.

Not surprisingly, for the first question each PA approach performs
equally well with a slight decrease of the landscape approach in the
first scenario.

The results of the second and third question show much better
results for the use of our BPA approach where almost all participants
were able to tell how many processes in the process model collection
were independent and were able to identify them. For question 2 the
process landscape approach surprisingly performed better than the
collapsed pools.

In all three scenarios for the fourth question less than half of the
participants were able to correctly answer the questions. While per-
forming well on the first three question, our BPA approach performed
worse on the fourth question where the collapsed pool approach
performed best. If considering answers that missed the correct an-
swer by one process for all three scenarios, i. e., participants iden-

196 business process architecture evaluation

S
ce

n.
 1

 −
 Q

5

S
ce

n.
 2

 −
 Q

5

S
ce

n.
 3

 −
 Q

5

S
ce

n.
 1

 −
 Q

6

S
ce

n.
 2

 −
 Q

6

S
ce

n.
 3

 −
 Q

6

S
ce

n.
 1

 −
 Q

7

S
ce

n.
 2

 −
 Q

7

S
ce

n.
 3

 −
 Q

7

S
ce

n.
 1

 −
 Q

8

S
ce

n.
 2

 −
 Q

8

S
ce

n.
 3

 −
 Q

8

0.0

0.2

0.4

0.6

0.8

1.0

Figure 59: Boxplots for results of questions 5-8

tified one more or less independent process, the process landscape
approach would perform worse and the other two approaches nearly
equally well with the collapsed pool approach being slightly better.
All approaches would result in half of the participants or more than
half of the participants being able to correctly answer this question.

The answering of questions 5-7 required more in depth understand-
ing of the process model collection and examine how well each PA
propagates such information on higher level. The participants were
given an empty 7 by 7 matrix for answering questions 5 and 6, and a
2 by 7 matrix for answering question 7 as it focuses only on the inter-
dependencies of two processes to the other processes of the process
model collection. The participants were given a point for each correct
relation they identified. Question 8 asked the participants to rank the
processes according to their importance considering their number of
partners and interdependencies. Again, the participants were given a
point for each process they put in the right order. Figure 59 summa-
rizes the results of questions 5 to 8. We grouped the results of each
question type so that the results can be compared more easily. In this
regard, we also put the results into relation by mapping the scores to
values between 0 and 1. The highest possible score for a question was
mapped to 1 (100%) and the other scores to fractions of 1 which can
be expressed in percent.

From the boxplot, it can be seen that by far the best results were
achieved by the participants when using our BPA approach. The box-
plots for question 5 and 6 show that fifty percent of participants
reached the highest possible score with the BPA approach. The lower
limit of the third quartile of the boxplots of the questions 5 and 6

9.1 conceptual evaluation 197

of the third scenario depict that seventy-five percent were able to
identify approximately eighty percent of all relations existing in the
third scenario. Few outliers exist and indicate that some participants
had problems with answering this question when using our BPA ap-
proach.

The PA approaches used in the first and second scenario performed
worse with the increased specificity of the question posed in regard to
question 5-7. The boxplot of question 5 in scenario 1, illustrates that
the use of the process landscape approach resulted in the lowest val-
ues as the answer values spread widely and none of the participants
reached the highest score. The results indicate that process landscapes
appear not to be useful for answering these type of questions. The low
results of process landscapes and collapsed pools in question 6 and
7 may be a result of lack of time as participants may have proceeded
without or only partly answering these questions. None of the par-
ticipants that were able to answer these questions has reached the
highest possible score.

The result sets of the third scenario show that 17 or more partici-
pants were able to answer question 5 to 7 with the use of our BPA
approach.

For question 8 as well, the box plots indicate that most of the partic-
ipants were able to identify the correct ranking of processes or parts
of the correct ranking with the help of our BPA approach. The box
plot shows that about fifty percent of the participants were able to
identify seventy percent or more of the correct ranking whereas for
collapsed pools the maximum points where not reached and fifty per-
cent of participants reached scores of sixty to eighty percent.

We notice that despite a specific time frame eighty percent of par-
ticipants were able to answer those questions with reasonable success
when using our BPA approach. Considering the complexity of the sce-
narios, the third scenario being assessed as the most complex by the
participants in the second part of the experiment, the results support
that our BPA approach meets its intended purposes and provides a
good overview on the interdependencies of processes. Process land-
scape being used in the scenario perceived the less complex, appear
not to provide useful information on the process models and their
interdependencies.

The comparison of total scores of each scenario showed that also
participants with low performance in the first scenario, performed
well in the third scenario, similarly when comparing the overall per-
formance of participants in the second and third scenario.

Wilcoxon signed rank tests were used to analyze the relationship
between the total scores of the participants in the first scenario and
second scenario with the total scores of the participants in the third
scenario. We chose the Wilcoxon signed rank test as the data sets of
the total scores are ordinal and do not follow normal distribution

198 business process architecture evaluation

required for the equivalent parametric matched pair t-test [166]. The
Wilcoxon signed rank test requires data being paired and from the
same population, random and independent selection of pairs, and
does not require any particular distribution of data. In both cases,
the comparison of third and first, and third and second scenario, we
could reject the null hypothesis in the Wilcoxon signed rank test with
a confidence interval of 99%. The alternative hypothesis is true in
both cases, i. e., a significant difference between the median values of
the data sets was detected. The Wilcoxon signed rank test of scenarios
3 and 2 resulted in a p-value p < 0.01 and for scenario 3 and 1 in a
p-value p < 0.01.

The median value of the total correct answers for scenario three is
0,82 (82%), for scenario two 0,42 (42%) and for scenario one 0,23 (23%),
i. e., the performance of the participants using our BPA approach re-
sulted in better scores. These results illustrate that our BPA approach
to a large extent supports the users in reasoning on a process mo-
del collection. A possible reason for the less good performance of
collapsed pools as overview, may be the high abstraction when col-
lapsing pools, however we could not find any proof in the results.

Question 9 asked for the assessment which PA approach provides
the most information on the process model collection of the scenario
at hand. Besides the three PA approaches that were used in the ex-
periment, we listed folder structures and the detailed process models
at hand for evaluation in question 9 as well. To find out which PA
approach provides the most information on the process model collec-
tion according to the perception of the participants and to measure
the degree of consent we used the Kruskal-Wallis test that is suited
for the analysis of multi-treatment experiments and also provides the
mean ranks for each of the provided evaluation items. Table 6 depicts
the results of this calculation. We observe that the BPA approach was
ranked best among all PA approaches. The detailed process models
were ranked second best as they provide a lot of detail on the process
execution but provide less information on the overall picture of pro-
cess interdependencies. Collapsed pools were ranked third, process
landscapes fourth, and folder structures as representation of classifi-
cation approaches were ranked on fifth position. The Kruskal-Wallis
test rejected the null hypothesis that the result are equal with a confi-
dence level of 95%. A significant difference between the assessments
of the treatments was detected which is also depicted in the mean
ranks in Table 6. The alternative hypothesis that BPA perform better
was confirmed.

The results from the second part of our experiment support our
findings in regard to the applicability and usefulness of our BPA ap-
proach. In the second part of the experiment the participants were
asked to assess the complexity of the scenarios, rate the usefulness

9.1 conceptual evaluation 199

Table 6: Mean ranks of assessment of PA approaches according to Kruskal-
Wallis test

PA Approach Mean Rank

Our BPA 217,49

Detailed Processs 174,33

Collapsed Pools 148,32

Process Landscapes 121,11

List/ Folder Structures 53,75

and application areas of the different PA approaches used in the sce-
narios.

We will summarize and highlight the most interesting results in re-
gard to our BPA approach. Asking for the PA approach that provides
the user with the most information on a process collection, our BPA
approach was perceived best by eighty percent of the participants.
This result affirms the trend that we could observe from the answers
of question 9 where the majority of the participants perceived BPA
as the approach that offers the most information on the process mo-
del collection. These results coincide with the perception of level of
detail of our BPA approach by the participants. They perceived our
approach having more detail than process landscapes and classifica-
tion of processes in folder structures but a similar level of detail with
collapsed pools.

A large part of the second part of the experiment was dominated
by the following assessments areas:

• the assessment of degree of usefulness of the PA approaches in
regard to particular application areas

• the assessment of well-suitedness of PA approaches for particu-
lar application area?

Figure 60 reports the results of the assessment of the degree of use-
fulness of each PA approach used in the experiment for restructuring
processes, the identification of important processes, as starting point
for analysis, and as meaningful presentation for the content of a pro-
cess model collection. The x-axis depicts the values of a Likert scale
from 1-5. The items in the Likert scale stand for strongly disagree (1),
disagree (2), neutral (3), agree (4), and strongly agree (5). BPAs reach
a score between 4.2 and 4.7 for all listed application areas where the
other approaches only reach scores between 1.8 and 3.5. These results
support that BPAs approach support the use cases laid out in the be-
ginning of the thesis, i. e., structure and manage process models, analyze
interdependent processes, use of a design methodology, and get overview.

200 business process architecture evaluation

Senseful
 Presentation

Starting Point
 for Analysis

Identification of
 Processes

Restructuring
 Processes

Folder Structure
Collapsed Pools
Process Landscapes
BPA

0 1 2 3 4 5

Figure 60: Bar plots showing assessment of usefulness of different PA
approaches in regard to application areas

Figure 61 highlights the participants’ perception of well-suited ap-
plication areas for BPAs. The application and sub-domains are taken
from the BPM lifecycle [165]. Each bar shows the number of partici-
pants that considered BPA well-suited for the according application
area. The bar plot is divided into two parts by a larger gap, the upper
part that shows the application areas that got more than fifty percent
of votes of all twenty participants, and the lower part with less than
fifty percent of votes.

Seventy-five up to ninety-five percent of the participants consid-
ered the presentation of the as-is-situation, analysis, the visualization
of process interdependencies, providing an overview of a PMC, and
documentation as top five and well-suited application areas for BPAs.

To a lower extent, but still sixty to seventy percent of participants
perceived BPAs well-suited for the application areas process re-/de-
sign, process evaluation, process optimization, and process organiza-
tion and process structuring. Monitoring and configuration received
fifty-five to fifty percent of votes.

Except from the process evaluation and process configuration, the
application areas that received fifty or more votes can be regarded
as aspects of either the design and analysis phase or the enactment
phase of the BPM lifecycle that we identified as our primary phases of
our BPA approach in Section 1.1. The top six ranked application areas
cover the BPA use cases and requirements described in Section 4.2.

The findings of degree of usefulness and findings from the assess-
ment of well-suited application areas coincide. The top five applica-
tion areas for BPAs identified by the participants can be subsumed in
the four categories for which BPAs were considered very useful.

BPAs were not perceived well-suited by the participants for depict-
ing process hierarchies, for maintenance purposes, organizational re-
structuring, identification of process categories, enactment, and im-
plementation. The perception of BPAs being not suited for mainte-
nance is surprising as BPAs should support the maintenance of busi-
ness processes by showing the impact of changes on other processes.

9.1 conceptual evaluation 201

Implementation

Enactment

Identification of
 Process Categories

Maintenance

Organizational Structure
 Reorganisation

Process Hierarchies

Configuration

Monitoring

Process Organization/
 Structuring

Optimisation Efforts

Evaluation

Re−/Design

Documentation

Overview

Visualization of
 Interdependencies

Analysis

Presentation as Is

Number of participants

0 5 10 15 20

Figure 61: Assessment of BPA use in different application areas

In summary, these results show that BPAs can be used as tool pro-
viding an overview on process models, and for analyzing and visu-
alizing their interdependencies on an abstract level. Although, only
a brief introduction to BPAs was given, the participants were able to
apply our BPA approach and reach good results. This indicates that
our BPAs approach is easily understandable and straightforward to
learn and apply.

limitations of experiment. Our experiment is limited by a
rather small set of participants. Despite the difficulty to find BPM
experts from industry, we were able to gain a good share of BPM ex-
perts from the private sector. The length of the experiment and the
need for personal assistance during the experiment limited the scale
of our experiment. We intended and managed to create a heteroge-
neous sample of experts. Independent from the domain, knowledge
experts and researchers were able to easily use BPAs and reach good
results. The results obtained indicate that BPAs facilitate the under-
standing of complex business process interdependencies and support
their analysis.

The results allowed us to find first indications on the performance
of our approach and positioned them in regard to process landscapes,
collapsed pools, and classification approaches. However, the results
need to be treated as initial results and first indications and bear lim-
ited statistical significance. The scope of the questions covered only
a limited area of PA aspects and focused mainly on the interdepen-

202 business process architecture evaluation

dency aspect of processes. In other focus areas, the other PA approa-
ches may perform better. The size of the process model collection of
each scenario was limited to seven process models but already with
such a small set the difference in performance of the different PA
approaches became evident. In process model collections from prac-
tice the number of interdependent processes is likely to be larger and
hence the need for BPAs as well.

Despite the low sample size (number of participants), the results
show a clear trend and BPAs performed well in supporting the par-
ticipants in answering the questions. In all questions the participants
performed better when using BPAs than when using the other pro-
vided PA approaches. The application of the Wilcoxon signed rank
supported this finding and showed that there is a significant differ-
ence between the results of the BPA scenario and the other scenarios.
The overall results of the experiment show that BPA fulfill the require-
ments we posed and realize the intended purpose they were designed
for.

9.2 implementation of a business process architecture

tool

To be able to demonstrate parts of our presented BPA concepts we
implemented a tool for modeling and analyzing BPAs according to
their correctness criteria. The tool is part of a platform that was de-
signed for research on process model collections. The platform serves
as the basis for developing and validating algorithms on several pro-
cess model collections. In the following we introduce the platform for
research on process model collections. With the implementation of a
modified version of our BPA extraction algorithm, we validate our
extraction algorithm and the use of the platform. Then we present
the architecture and implementation of our BPA analysis tool mod-
ule that uses functionalities of the research platform as well.

9.2.1 A Platform for Research on Process Model Collections

Many approaches and algorithms towards empirical research in the
field of BPM have been proposed along with several process model
collections that have been made available by companies [21, 52], pub-
lic bodies [42, 171], and research [71, 72]. While these collections have
been subject to validate research results, it is difficult for researchers
to apply their work to different collections—a main obstacle that hin-
ders empirical evaluation. This is due to the heterogeneity of the struc-
ture of these collections, their format, and modeling language, which
yield a considerable overhead to explore, transform, and extract rele-
vant information.

9.2 implementation of a business process architecture tool 203

To reduce work and foster empirical research in the context of pro-
cess model collections, we developed an analysis platform that aims
at allowing researchers to focus on their actual research questions,
rather than spending time and effort pre-processing data from het-
erogeneous sources.

The platform provides uniform access to a large variety of process
model collections, by means of import functionality that allows cap-
turing any kind of information related to a process model. Utilities
facilitate iterating over process models, filtering them, segmentation
and extraction of information, as well as transformation into a generic
representation, jBPT2, that covers common concepts of process mod-
eling languages. In our case, the platform allows us to apply our BPA
concept to several process model collections. As the platform is an
open source project3, maintained by a scientific community, it is ac-
cessible to everyone and open for extensions.

The platform is not a process repository to actively manage pro-
cess model collections, but an analysis platform, which provides the
fundamental infrastructure (including a uniform access to different
process model collections) for analysis. Since the development of the
platform in 2012 the amount of analysis modules has grown due to
contributions of students and other researchers. A substantial amount
of analysis modules is provided, for instance, process metrics calcula-
tion [97] as well as process collection clustering capabilities. With the
increase of shared analysis modules and process collection importers,
implementation work for the individual researcher dealing with a
particular interest decreases as existing modules can easily be reused.
In the development of our BPA tool we utilized some of the existing
platform utilities. Building on our BPA tool, Breske [15] integrated
his BPA extraction algorithm into the platform as well. We elaborate
on the requirements and architecture of the platform although it fo-
cuses not directly on BPAs but provides fundamental functionality
and data to test and validate our BPA approach.

9.2.1.1 Requirements for the Process Model Collection Analysis Platform

To provide a platform for research on process model collections bears
several challenges and particular requirements to the software archi-
tecture of the system. The requirements derive from the various pro-
cess collections that differ in structure, process model representation,
and content on the one hand, as well as current research questions on
the other hand. The main requirements for a platform are the manage-
ment of heterogeneous process model collections, the filtering, seg-
mentation, storage, and modular analysis, as well as the support for
reuse and repeatability.

2 http://code.google.com/p/jbpt/

3 http://bpmai.org/BPMAcademicInitiative/BpmTools

http://code.google.com/p/jbpt/
http://bpmai.org/BPMAcademicInitiative/BpmTools

204 business process architecture evaluation

management of heterogeneous process model collect-
ions . To date, there are few process model collection available for
research. One of the most commonly used collections is the SAP ref-
erence model [21], published in 1999, that comprises 604 EPC, pro-
cess diagrams that describe the SAP R/3 system. Some time ago,
IBM released4 a collection of 735 business process models from the
Websphere process modeler available as BPMN [112] process models,
which cover various industrial domains, e. g., finance and telecommu-
nications [52]. In the course of the BPM academic initiative5 (BPM AI),
a set of 22651 process models in the time of writing (2014) created by
students in various process modeling languages has been made avail-
able to the research community [71].

These process collections have been created with different inten-
tions depending on the organizational domain and on the modelers’
level of BPM expertise. As a consequence, process collections differ,
among others, in process modeling languages, e. g., BPMN, EPC, and
Petri nets, file format, and accompanying metadata. For instance, all
models from the SAP reference model are stored in one large EPML
file; each model from the BPM AI, in contrast, is represented by a
JSON file that captures the model graph and an SVG file that con-
tains a visual representation of the model. In the national process
library [42] many process models have no graphical representation
at all, but they are classified by a set of structured metadata and de-
scribed in prose. As one process model can appear in different forms,
e.g., as in the case of BPM AI with JSON and SVG representations, the
platform shall be able to store several representations of one process
model and always keep the original sources.

Versioning engineered artifacts is good practice in order to track
changes and revert mistakes; this also holds true for process models
and is supported by several BPM tools. Hence, it is compulsory for
our platform to preserve version information, too.

filtering , segmentation, storage , and modular analy-
sis . Above characterization of the heterogeneity of process model
collections requires a modular approach to discover relevant aspects
of process models in a large collection for analysis. Therefore, it is
desirable to filter the set of process models of one or several process
collections, transform them into a uniform representation, and extract
particular features (segmentation) for consideration. This allows, for
instance, obtaining only event and activity labels for discovering pro-
cess model interdependencies and later extraction of BPAs.

Analysis of process models and collections should be modular in
order to facilitate reuse of certain functionality across different ex-
periments and allow researchers to benefit from each other more ef-

4 http://www.zurich.ibm.com/csc/bit/downloads.html

5 http://bpmai.org

http://www.zurich.ibm.com/csc/bit/downloads.html
http://bpmai.org

9.2 implementation of a business process architecture tool 205

fectively. By this, more complex analysis can be constructed by as-
sembling several atomic analysis modules and execute them over a
filtered and segmented set of process model data.

Researchers, who work on large data sets and computation inten-
sive tasks, may run experiments over several hours or days. The plat-
form needs capabilities to store analysis results relating them to par-
ticular process models and providing means to efficiently obtain this
data again.

support reuse and repeatability. Research typically builds
on former research results, refers to it, extends it, and improves it. In
a similar way, the platform shall allow easy (re-)use of analysis func-
tionality and help researchers to cooperate with each other. Modular
analysis modules are one step into this direction.

Methods or innovations derived from analyzing one process mo-
del collection are only valid for the context of that collection, i. e.,
they may not be valid in other cases. Hence, validation beyond a sin-
gle collection requires application of the same procedures to other
collections. A uniform representation of graph-based process mod-
els provides a solid basis for analysis. This enhances the platform
to use one format to iterate over different process languages on the
one hand. On the other hand, analysis modules can be re-used in an
easy way and do not need to be re-implemented for different process
representations. Thus, a structure is required that is flexible enough
to map different process modeling notations but not too generic to
reduce them to meaningless blocks.

9.2.1.2 Platform Architecture

According to above requirements, we identify three main functional
areas in the conceptual architecture of our platform, illustrated in Fig-
ure 62: Import, analysis, and index management. We briefly describe
each feature in the context of the architecture.

The import module extracts distinct process models from the orig-
inal collection and imports them into the platform, mapping them
to a flexible data schema to capture all information provided. Filter
management contains compact units of functionality to iterate over im-
ported process model collections, filter, segment, and transform pro-
cess models and supply the extracted information into the analysis
modules provided by the respective researcher. Finally, index manage-
ment allows storing analysis results related to process models in a
key-value store and obtaining stored data by means of querying that
data.

In addition to the core functionality, the platform relies on a pro-
cess model repository to store the process models and analysis results.
The actual repository interface is wrapped by the persistence API that
maps interfaces offered by the repository to interfaces required by

206 business process architecture evaluation

�
��
�
�
��
�
	

��
���

��
���

�����

��
���	

��������������

�����������������

����������������

��������

��������

�

�

�

�

� ��

�

��������

� ��

��������
�������

�

Figure 62: System architecture of the platform

title
origin
importedId

Model

revisionNumber
latestRevision
metadata
author

Revision

format
notation
dataContent
originalFilePath
language

Representation

1 1..* 1 *

Figure 63: Process model data schema

the platform’s modules. In the present case, we resorted to a graph-
document database management system, that is, OrientDB6.

9.2.1.3 Data Schema and Import

The data schema provided by the persistence API is presented in Fig-
ure 63. Here, a model stores all information that is related with one
logical process model from the collection. Each model can have sev-
eral revisions, based on our observation that each process model can
be changed over time and that these changes may be relevant to re-
search. Each revision, in turn, can have any number of representations.
If models are not version-controlled in the collection, a model will
be linked to exactly one revision in our data model. Each revision
is identified by a revision number, its author, and a flag (latestRevision)
that identifies the most recent revision.

For each process model, its title, origin, and an identifier (importedId)
are stored. The origin indicates the process model collection from
where a model has been imported. The importedId is used to correlate
imported models with models from the collection.

6 http:\www.orienttechnologies.com

http:\www.orienttechnologies.com

9.2 implementation of a business process architecture tool 207

As introduced in Section 9.2.1.1, we do not restrict the type of data
to be analyzed. Hence, our platform allows importing almost any
kind of process descriptions independently from their format, struc-
ture, properties, and the capability to be mapped to a generic process
representation. This is achieved by relating a process model with one
or many representations, i. e., process descriptions in their original
format, see Figure 63. Since we do not restrict the data to be stored,
the original process representation imported from the collection is
stored as byte array in our model repository in dataContent.

As various process collections are structured differently, a separate
import module is required for every kind of process collection to be
imported. Currently, the platform provides importers for the differ-
ent process collections presented in Section 9.2.1.1, i. e., an EPML im-
porter (for the SAP reference model), an importer for BPMN models
in the standard XML representation (for IBM BIT models), and an
importer for models from the Signavio process modeler that has been
used to create models of the BPM AI.

Importers also support update functionality to synchronize an al-
ready imported process model collection with a more recent version
of this collection. An update would then only add new models, new
revisions, and additional representations, rather than changing stored
representations to avoid invalidating existing analysis results. How-
ever, it is also possible to import a previously imported collection
again by giving it a new origin.

9.2.1.4 Model Analysis

The central purpose of our platform is to provide a basis for model
analysis, realized by the interaction of filter management and analysis,
illustrated in Figure 62. Technically, the analysis module is rather a
collection of several units that offer particular algorithms to examine
models, sets of models, or aspects thereof. These analysis units are
to be developed by researchers with regard to their research question
and requirements. Nevertheless, we already provide some analysis
units, e. g., a subset of the metrics that measure process complexity
presented in [97]. To release researchers from the burden to choose
models from a collection, extract relevant information, and transform
it into a format applicable for the respective analysis units, the plat-
form provides so-called filter chains, following the pipes and filter
integration pattern [61]. Here, filters serve as utilities to load and
handle process models from the repository and can be categorized by
their function to filter, transform, or extract information.

A schematic example for filter chains is given in Figure 64. Access
to the repository is always provided by a DatabaseFilter that allows set-
ting filter criteria on the data model presented in Figure 63. For each
model, the database filter provides its database id and the loaded mo-
del representation. Attached to the DatabaseFilter follow Filter Units

208 business process architecture evaluation

JSON2jBPT

Filter

JSON2jBPT

Filter

configuration

Database Filter

[configuration]

Filter Unit 1

m
o

d
e

l

re
p

o
s
it
o

ry dbID: long

content: byte[]
FilterUnit1Data

implements IUnitData

Element FilterElement Filter

[configuration]

Filter Unit N

FilterUnitMData
implements IUnitData

FilterUnitNData
implements IUnitData

CollectorUnit

Collection

<IUnitData>

.........
.........

Figure 64: Example filter chain that extracts labels from a BPMN process
models

that accept the output data from the previous filter as their input,
select, transform, or extract content, and provide their result to the
subsequent filter. Input and output data of a filter represent infor-
mation extracted from one model, and must implement the interface
IUnitData. Only filters that match in their input and output data type
can be connected. For each model, this chain is separately executed,
and several chains can be executed in parallel to increase processing
performance on multi-CPU computers. Finally, the collector consoli-
dates the results of every chain and provides them to the analysis
module.

The platform already provides a set of filter units readily usable by
researchers, for instance, the aforementioned database filter. Further
units provide functionality to segment process models into particular
concepts, e. g., extract all activities of a process model.

As we encourage reuse of implemented functionality within the
platform, we envision analysis modules to be implemented as generic
as possible. By that, analysis can easily be applied to different pro-
cess model collections to repeat previous experiments and compare
results. That is, whenever possible, analysis modules should be built
on a generic process representation.

Therefore, our platform provides a filter unit that parses process
models to a representation in the jBPT format. jBPT is a Java-library7

that leverages graph structures to support a canonical process rep-
resentation providing descendants for each supported modeling lan-
guage. Besides, this library offers a comprehensive set of techniques
to transform, verify, and analyze process models, e. g., provide trans-
formation of process models to Petri nets, soundness checking, net
unfoldings, or workflow graph decomposition into process structure
trees. Algorithms that work on the canonical representation can also
be applied to descendants. For every type of representation that shall
be imported, a corresponding parser is required that transforms the
model into the jBPT graph format. Currently, transformations for EPC
and BPMN process models from the SAP reference model, IBM BIT,
and BPM AI model collections are available.

7 http://code.google.com/p/jbpt/

http://code.google.com/p/jbpt/

9.2 implementation of a business process architecture tool 209

9.2.1.5 Indexes.

Analysis results need to be stored within the platform by simple
means. On the one hand, this frees researchers from the need to main-
tain their own persistence mechanism to store results; on the other
hand, it allows referring to stored process models while maintaining
consistency of linked models.

As the platform addresses analysis of process model collections, we
envision analysis results also to be collections of data, likely catego-
rized along certain dimensions. Therefore, we opted for a key-value
store that allows relating any kind of Java data to a key that is either a
string or a number. Due to the character of this m:n mapping, where
one key may relate several data entities and one data entity may be
identified via several keys, we refer to the storage as an index. The
querying module provides means to select a subset of stored data by
querying over keys.

9.2.1.6 Platform Extension BPA Extractor Module

We validate our extraction algorithm and showcase the use of the
process model collection research platform with the implementation
of a BPA extraction module. The BPA extraction module was imple-
mented as part of our research platform by Breske, a master student
under our supervision [15], whose work was briefly sketched in Sec-
tion 7.2.6. The BPA extraction module implements a modified version
of our BPA extraction algorithm described in Section 7.2.

For this, Breske integrated the BPA concept into the jBPT class hi-
erarchy. To adapt our BPA concept of many interacting models to
the jBPT process model description a BPA model is considered a jBPT
process model, and a BPA process is considered a NonFlowNode. The
different BPA event types are considered FlowNodes. The concept dif-
ferentiates between InterFlow and ExternalFlow for being able to map
information flow and trigger as well as the sequential internal control
flow of BPA processes. The mapping of our BPA concept to the jBPT
process model facilitates the extraction and transformation of process
models to BPA processes. The mapping allows using the research plat-
form’s utility units and applying different jBPT analysis functionality
to BPAs. Being provided with parsers and process model filter units,
the BPA Extractor module concentrates on the implementation of the
BPA extraction algorithm.

The BPA extraction module consists of the main classes BpaEx-
tractor, BpaDependencyAnalyzer, RpstNodeAnalyzer, and ModelInterde-
pendencyAbstractor. The BpaExtractor is the main module responsible
for the extraction of BPAs from a set of process models [15]. It ex-
ecutes the extraction algorithm by performing the according three
steps; process model abstraction, creation of BPA elements, and inter-
dependency association. The process model abstraction step removes

210 business process architecture evaluation

insignificant elements, i. e., nodes that do not take part in a process
interdependency. After analyzing the process models with the help
of the according RPSTPM, the algorithm creates BPA processes and
events. It then connects the events of the created BPA processes by
inserting triggers or information flows according to the interdepen-
dencies found. The BpaExtractor uses the classes ChainBuilder, RPST,
RpstNodeStructure, RpstNodeType, and the interface IUnit provided by
the research platform and jBPT.

9.2.1.7 Showcase: The BPA Extractor Unit Chain

We showcase the use of the research platform’s utility units with the
newly developed analysis module, i. e., the realization of the BPA ex-
tractor module. Utilizing this approach, we focus on the support the
platform provides to access and extract desired elements from pro-
cess collections rather than the BPA extraction algorithm itself.

The algorithm consists of three steps, interdependency detection,
process model abstraction, and the process model extraction. Inter-
dependencies between processes are determined by label matching.
Hence, all nodes that do not have a matching label with a partner
node of another process are removed from the process models. The
abstracted models can then be analyzed, their RPSTPMs created, and
the according BPA process generated.

���������	�
���������	�
��
	�������

����������

���	�

����������

	
�
��
����

������	����	�

����������

���	�

����������

	
�
��
����

������	����	�

���
����������

�������������

����
�������

��	���
�����	�

���������
��

���	

����
��������

���	

�
�

�
�

��
!

�
"

��
�

�� ���	��#$

���������������

���	��#$

���������	�
��
�

���������	�
���������	�

������""����� �

�
 !�

"�	�
#

$����$��!�#

��
	
�!	
���	

���������	�
���������	�

�%!"��� ��&�

�
!!����

���������	
#

%
��	

���	��#$

���������

��'�����""

(� ����)*
��

��
 �"�"����+ �"

��������$��!�#

�������

���	��#$

���������

,�"�-�
!!���".

���	��#$

���������
��'����

�����""�"

%�"+ �

���������

)� ������

-��"��
�������.

///

/////////

///

///

���	��#$

���������

)� ������

-��"��
�������.

01��
���������

������

% ���!	
���	

Figure 65: Showcase unit chain and analysis modules

To perform the extraction of BPAs from process models we need to
set up a utility chain that provides us with the abstracted models. This
is done with the CorrectionUnitChainBuilder. The CorrectionUnitChain-
Builder repairs process models that may not correctly be modeled or
have small flaws and assures the quality of the process models that
are fed to succeeding utility and analysis units. Figure 65 shows the
utility chain.

9.2 implementation of a business process architecture tool 211

All utility units implement the IUnitData interface. Not all of the fil-
ter utility units can be put in direct sequence, because each consumes
specific input and produces specific output data.

First, we need to create and configure the database filter. This is
done by creating a new DbFilterConfig and adding origin, format, and
notation to it. As we are interested in BPMN process models from the
BPM AI collection, we set BPMAI as origin value, BPMAI_JSON as
format value, and BPMN as notation value accordingly.

Then, the database filter is added to the CorrectionUnitChainBuilder.
In the next step, the process models must be mapped into the generic
jBPT format to enable the detection of nodes of significance and the
removing of insignificant nodes. Therefore, we register the BpmaiJson-
ToDiagramUnit followed by the DiagramToJbptUnit. The sequence of
those two units performs the transformation from the BPMAI-JSON
process model representation to the jBPT representation of the pro-
cess model.

So far we only utilized existing functionality provided by the plat-
form. The ProcessInterdependencyAbstractorUnit was newly developed
to detect the nodes that interact with nodes of other processes and
remove all other from the process models. It handles data objects and
events. Gateways are kept for reasoning on the control flow that im-
pacts the later aggregation of nodes, the generation of BPA events,
and the mapping between the aggregated nodes and BPA events. The
output of this unit are abstracted process models.

Finally, a SimpleCollectorUnit, provided by the platform, is added to
the unit chain to collect and consolidate the result of the utilized unit
chain. In each step of the unit chain, the reference to the original pro-
cess model is preserved. Listing 4 shows the code required to set up
above filter chain and demonstrates that only little effort is required
to access the desired aspects of process model collections for analysis.

Listing 4: Code excerpt for filter chain for extracting BPAs

Collection<UnitData<Object>> abstractedModels;

CorrectionUnitChainBuilder chainBuilder = new

CorrectionUnitChainBuilder("configuration .
properties ", Constants.DATABASE_TYPES.

ORIENT_DB, UnitDataJbpt.class);

// build db filter

DbFilterConfig dbFilter = new DbFilterConfig();

dbFilter.addOrigin(Constants.ORIGINS.BPMAI);

dbFilter.addFormat(Constants.FORMATS.BPMAI_JSON);

dbFilter.setLatestRevisionsOnly(true);

dbFilter.addNotation(Constants.NOTATION_BPMN2_0);

chainBuilder.addDbFilterConfig(dbFilter);

// transform to jbpt units

212 business process architecture evaluation

chainBuilder.register(new BpmaiJsonToDiagramUnit

());

chainBuilder.register(new DiagramToJbptUnit(TRUE)

);

// abstract model unit

chainBuilder.register(new

ProcessInterdependencyAbstractorUnit());

// result collector unit

chainBuilder.createSimpleCollectorUnit();

// run chain

abstractedModels = (Collection<UnitData<Object>>)

chainBuilder.getChain().execute(); �
Having extracted and processed the process models necessary for

the extraction of BPAs, the models are analyzed and the remaining
nodes in the process model aggregated and mapped to BPA processes,
their events, and their interdependencies. To achieve this, RPSTPM
are generated and analyzed by the RPSTPMAnalyzer, depicted in Fig-
ure 65. The RPSTPM blocks are used to map their nodes to speci-
fied behavior classes. Using this information the BPAElementsCtreator
module creates the BPA processes with the according amount and se-
quence of events specified by the behavior classes. In the last step the
BPADependencyAnalzer maps the found interdependencies to trigger
and information flow on BPA level based on the abstracted RPSTPM
blocks to BPA event mapping.

9.2.2 Business Process Architecture Analysis Module

Modeling guidelines were introduced to improve and harmonize the
quality of process models created by different process modelers in
an organisation [97, 101]. For single processes several tool-supported
approaches exist which allow to check structural, behavioral, and lin-
guistic properties. Lately, these were also incorporated into modeling
tools, e. g., the Signavio BPM tool8. Similar approaches, taking a holis-
tic view for assuring quality on a higher abstraction level do not yet
exist. Business Process Architectures (BPA) and their correctness cri-
teria present a novel approach to organize business processes in a
PMC and analyze them as introduced in Chapter 6. To model BPAs
and to decide the correctness of process model interdependencies is
not supported by business process modeling tools.

In the following, we present a novel and innovative tool to visually
model BPAs and analyze them for correctness. The tool consists of a
BPA core module that integrates existing applications that it builds on
and extends it for our purpose of BPA analysis. The analysis of BPAs

8 http://signavio.com

http://signavio.com

9.2 implementation of a business process architecture tool 213

provides a first step for assuring further correctness and consistency
properties on a more detailed process layer.

Our BPA tool extends and composes functionality of existing tools
as depicted in Figure 66. The user interface for modeling BPAs and
visualizing found errors is provided by an extension to the Signavio
Core Components (SCC)9. They are the open source components of
the Signavio editor, a web based business process modeling tool wi-
dely used for teaching in academia10 (BPM Academic Initiative) and
as commercial BPM tool11. The Signavio Core Components were se-

BPA Analysis Tool

Business Process Architecture Core Signavio Core
Componets

BPA
Stencilset

Renew

BPA
ToPNML

Transformer

BPA Analyzer

JsonToBPA
Transformer

BPA Creator

BPA Modeler

Petri Net
Analyzer

LoLA

Petri Net
Visualizer

R

.net, PNML, .task .task, .PNML,BPA Data,.XML .XML

Figure 66: BPA tool architecture

lected because they provide an open source web-based editor, that is
easy to extend and allows to export BPA diagrams as XML files. The
Signavio Core Components can be easily extended with new model-
ing notations by defining stencil sets. A stencil set describes the syn-
tactical structure of a modeling notation by defining the elements of
the notation, and the containment and connection relations between
the elements. Our extension introduced a new stencil set for BPAs,
which contains visual shapes and connections rules to draw BPA di-
agrams. The editor provides a plugin mechanism to add extra func-
tionality for a modeling notation. The BPA analysis functionality is
called through such a plugin.

The main program logic is implemented as a module for our PMC
research platform12, presented in Section 9.2. This BPA module con-
sists of a BPA data model, the BPA Analyzer, and two transformation
modules, the JSONToBPA Transformer and BPAToNet Transformer. The
data model defines the structure of a BPA, its processes, events, and
the trigger and flow relations between the events. The JSONToBPA
Transformer imports the .XML file output by Signavio Core Compo-
nents, extracts the JSON code, and creates the BPA data structure
as modeled in the diagram which is then provided to the BPA Ana-

9 http://code.google.com/p/signavio-core-components

10 http://bpmai.org

11 http://signavio.com

12 http://code.google.com/p/promnicat

http://code.google.com/p/signavio-core-components
http://bpmai.org
http://signavio.com
http://code.google.com/p/promnicat

214 business process architecture evaluation

Figure 67: Open-net visualizer

lyzer. The BPA Analyzer requests the transformation of the BPA data
structure into .net format from the BPAToNet Transformer. Taking the
data structure as input the BPAToNet Transformer transforms the BPA
into a set of open nets according to the approach presented in Sec-
tion 5.2. Afterwards, the nets are composed and the resulting net is
serialized using the .net standard that LoLA13 requires as input. The
BPAToNet Transformer also generates a set of CTL formulae which ex-
press the correctness criteria for the given BPA and are to be checked
by LoLA. The transformation of the CTL formulae is performed dur-
ing the transformation and composition of the open nets. The CTL
formulae are derived by examining the pre- and postsets of all events
in the BPA, e. g., if an end event has an empty postset, the event is con-
sidered part of the final marking of the overall net. According to the
CTL formulae LoLA will check for different correctness properties,
e. g., if a given BPA deadlocks, is terminating or lazy terminating.

In addition we use the Petri net simulator Renew
14. The Renew

module provides a built-in LoLA integration for the analysis and al-
lows for the visualization of the transformed open nets. The BPA An-
alyzer calls LoLA with the open net and the CTL formulae specified
for the correctness analysis. An example of the visualized open net is
shown in Figure 67.

The result of the model checker is finally interpreted and visualized
in the Signavio web editor module. If all formulae yield a positive re-
sult, we know, that the BPA is correct and the according message
is displayed in the upper left part of the screen. Otherwise, errors
found are visually displayed as red cross on the BPA diagram in the
web interface. A text explaining the errors found can be displayed by
hovering over the visualized errors. The errors found are visualized

13 Low Level Petri net Analyzer, http://service-technology.org/lola
14 renew.de

http://service-technology.org/lola
renew.de

9.2 implementation of a business process architecture tool 215

Figure 68: BPA analysis tool screenshot

with a red X on the screen. A summary of the analysis and errors is
also shown on the upper left part of the screen. Figure 68 shows a
screenshot of the implementation and the summary of the BPA anal-
ysis. We modeled and analyzed the use case on enterprise founding
application with construction permit from Section 6.3.

10
C O N C L U S I O N S

This chapter provides a summary of the main contributions of our thesis and
concludes this work. First we will summarize the results, i. e., a short description

of the formal BPA concept, its structural and behavioral properties, analysis
techniques, and our overall BPA methodology including its BPA extraction and

decomposition algorithms. We discuss each contribution and present limitations of
our work and techniques developed. In this regard, we also highlight opportunities

for future work on BPAs.

Business Process Management (BPM) has become a commodity for
organizing and improving an organization’s operations in the public
and private sector increasing the efficiency of their business processes.
In the course of BPM projects in companies and organizations large
process model collections have emerged and with their existence new
challenges in regard to their organization and structuring. Business
process architectures are a tool to organize and structure business
process models within a process model collection and define their
relationships with each other.

Common PA approaches have mainly focused on the classifica-
tion of business process models along functional, action-based, goal-
oriented, business object-based, and similar aspects. This resulted
in hierarchical classification visualized in folder directories or other
navigation layers. Hence, the interdependencies found in those PA
approaches were mainly of hierarchical nature, e. g., generalization, spe-
cialization, or consists of relations.

Only very few PA approaches allow specifying horizontal relations
between processes although those are necessary for providing a holis-
tic overview on the business processes and their influence on each
other, e. g., for adjusting their interaction and interfaces. The larger
context depicted by all interdependent process models is important
for reasoning on the impact of changes, identifying important pro-
cesses, and estimating resource requirements as well as evaluation
process cost and other aspects of interest.

In this thesis we introduced a novel PA approach that specifies and
visualizes horizontal interdependencies between business processes.
This is the basis for reasoning about a large group of interdependent
business processes. Our approach complements existing PA research
and supports the design and analysis as well as to some extent the
enactment phase of the BPM lifecycle.

In the remainder of this chapter we will summarize the main con-
tributions in Section 10.1 and discuss them in Section 10.2. In Sec-

217

218 conclusions

tion 10.3 we introduce areas of future work based on the limitations
presented.

10.1 summary of results

We observed gaps in PA research in Chapter 3 that concern speci-
fying and visualizing horizontal process interdependencies, missing
formalisms and analysis techniques, and a general narrow focus on
the classification of single process models. In this regard, we con-
tributed a PA approach that is formal and allows specifying, visual-
izing, analyzing horizontal relations (trigger, message, data) between
processes. Our BPA approach encompasses extraction and decompo-
sition algorithms and can be applied top-down and bottom-up. For
the extraction and decomposition we designed consistency criteria be-
tween process model level and PA level which many of the current
PA approaches lack. Those aspects form the main contributions of
our research:

• A formal foundation of our BPA approach, i. e., a clear specifi-
cation of the elements, their relationships, and semantics (Chap-
ter 4, Chapter 5).

• The definition of structural and behavioral correctness criteria
for our Business Process Architecture approach (Chapter 4).

• Unique Business Process Architecture analysis techniques that
allow analyzing BPAs for their correctness and enable quality
improvement of business process model collections (Chapter 6).

• An overall top-down and bottom-up BPA methodology includ-
ing BPA extraction and process model decomposition algorithms
(Chapter 7).

• A Business Process Data Architecture extraction algorithm con-
sidering data objects for identifying process interdependencies
between business processes (Chapter 8).

basic BPA concept. In contrast to many other PA approaches
that focus on the classification of single processes our PA approach
addresses horizontal relations and expands the scope to multiple pro-
cesses putting each process model in the context to its interdependent
processes. This allows assessing, examining, and optimizing the im-
pact of the re-design of business processes in such a network, and vi-
sualizing and reasoning about inherent process model metadata like
required resources or costs along many processes.

Our BPA concept defines the elements of a PA, business processes,
their interdependencies, and their semantics. A business process of
our BPA is a set of events. Process interdependencies are reduced to

10.1 summary of results 219

two relation types, trigger and information flow relations, that are
defined between the events of different processes. Trigger and infor-
mation flow relations portray the triggering of processes, respectively,
the message exchange during process execution. Those encompass
horizontal relational concepts found in other PA approaches as “uses”
or “activates” [86].

We chose events as they express the exchange of triggers or in-
formation flows in many business process modeling notations. Gen-
erally, any other element that expresses an interdependency with an-
other process can be mapped to events. Events are placeholders for el-
ements that express interdependencies, e. g., sending activities in Sec-
tion 7.2.1 or data dependencies introduced in Chapter 8.

Our BPA approach provides a simple and basic but formal tool to
connect business processes and model their complex process interde-
pendencies, such as multi-communication, on an abstract level that
can easily be applied and understood by practitioners. The formal
description is the foundation on which the other contributions of this
thesis build.

definition of structural and behavioral BPA proper-
ties . The formal foundation of our BPA approach allows specify-
ing concrete structural and behavioral properties. Other approaches
do not specify any properties in regard to their structuring and orga-
nization system. None of the reviewed PA approaches state concrete
quality characteristics for designed PAs. The surveys [84, 85, 35, 54,
56, 53] name required properties and characteristics for the evaluation
of PA approaches but they do not specify clear characteristics for the
actual implemented PA of a process model collection. We introduced
the notion of well-formed BPAs, a structural property, and a notion
of BPA correctness that encompasses behavioral BPA properties like
BPA termination, deadlock freedom, or freedom of dead process. On
PA level, our BPA approach is the first to specify desired properties
for a complex system of interdependent processes that represent an
organization or a company.

On process model level, we find similar behavioral notions like
local enforceability, realizability, weak soundness or global termina-
tion for choreography approaches [27, 23, 90]. Although serving as
example, those choreography approaches focus on the inter-organi-
zational interaction between actors and service composition and re-
finement. They do not directly allow modeling mult-communication,
broadcasting, or multi-instance triggers. The structural restrictions on
the involved process models and on the sequence of interaction, e. g.,
local enforceability, are too strict for the realm of BPAs where busi-
ness processes within a company can be loosely coupled and act more
independently. In contrast to choreographies a strict public contract
between two cooperating entities is not necessary as the processes be-

220 conclusions

long to the same organization. Based on the definition of BPA prop-
erties the quality of a BPA can be assessed.

BPA analysis . For improving the quality of a process model col-
lection and harmonizing interdependent business processes, we intro-
duced two analysis techniques. The first technique provides a range
of regular patterns and anti-patterns presenting desired and unde-
sired interdependencies in a BPA. This approach is especially useful
for the analysis of process interdependencies in synchronous envi-
ronments. This analysis technique is limited by its scope to direct
interdependencies between two processes at a time.

The second analysis techniques is based on the well-known Open
net (ON) formalism. We introduced a transformation from BPAs to
ON. For this, each BPA process, and all trigger and information flow
relations are transformed into ONs. At the same time the correctness
criteria for the according BPA are transformed into CTL formulae and
state predicates. Both the ON and the CTL formulae are then used to
verify the BPA with current model checking tools like LoLA.

The analysis of BPAs allows finding problems early in the design
phase caused by insufficiently adjusted process interdependencies. In
this way, time and costs can be saved by adjusting the process inter-
action on high level before having to re-model a range of business
processes on the process model level.

BPA methodology. The BPA methodology describes the con-
crete application of our BPA approach on a process model collection
top-down, e. g., at the beginning of a BPM project, or bottom-up, e. g.,
when a process model collection already exists. To provide a clear
link between process model level and BPA level we introduced con-
sistency criteria between the BPA and business process model level.

The top-down approach includes a decomposition algorithm that
creates process model skeletons from the BPA model. The skeletons
can be further refined until the desired granularity is met. The refine-
ment must comply with the BPA model on top level in regard to its
interdependencies. This is reflected in provided consistency criteria.

The top-down approach envisions to model and analyze the in-
terdependencies between business processes as early as possible to
avoid costly re-adjustment at a later stage. The process models on
process model level are only generated and refined after the modeled
BPA is correct.

The bottom-up approach relies on an existing process model collec-
tion. It defines an BPA extraction algorithm that parses the business
process models, identifies their interdependencies and multiplicities,
and generates a BPA for the process model collection. In this way an
overview that visualizes the interdependencies is created automati-
cally. The extraction algorithm supports the maintenance of the BPA

10.2 limitations and discussion 221

as every change made on process model level can be propagated onto
BPA level and the BPA is automatically updated. Changes could be vi-
sualized by highlighting new elements or removed elements as often
found in process modeling tools, for example.

10.2 limitations and discussion

BPA foundations and properties . The BPA specification is
reduced to few basic elements and relationships. We concentrate on
the horizontal relations trigger and information flow. The hierarchi-
cal relations between the process models on process model level and
the according business process representation on BPA level are not
explicitly stated in the formal BPA definition in Definition 29. They
are described in the basic and complex extraction algorithms, which
relate one process model on process model level to one business pro-
cess on BPA level. The BPA process is a generalization of the business
process represented on the process model level.

In contrast to the common single process model classification approa-
ches, our BPA approach considers multiple processes that groups
them according to their interdependencies in BPA subsets that depict
a concrete scenario. The application of our BPA approach to a pro-
cess model collection without any interdependent business processes
would result in a set of minimal BPA subsets that each contain only
one process model. In cases that a process model collection does not
contain any or only few process interdependencies, the current hier-
archical classification approaches yield a better structure for a process
model collection. Our BPA approach is complementary to current hi-
erarchical PA approaches and extends them with a horizontal view
across their hierarchical structures. Each PA approach provides a dif-
ferent entry point into a business process model collection and view
on its valuable information.

We hide the complex inner logic of business processes and straight-
jacket it into sequential BPA processes to create a simple overview
on the complicated interdependencies between business processes.
This simplification creates implications on the process models and
the extraction and decomposition algorithms. In order to leverage the
influence and strengths of the interdependencies, we limited our ap-
proach and algorithms to a set of block-structured process models
with clearly specified conditions regarding the position of their inter-
dependent nodes.

The assumption that each business process only exists in one BPA
subset may be too strict in practice. A supporting business process
may be related to many core business processes of a company, e. g.,
the inbox handling process, that handles all incoming request of ser-
vices and orders and distributes them to the according core processes.
Applying our BPA in such cases without treating support processes

222 conclusions

differently would result into a very large BPA subset. This BPA sub-
set, starting from the inbox handling process, would branch out into
all core processes that require the inbox handling process as input.
Such a scenario illustrates the advantages and disadvantages of our
approach. On the one hand one can see the importance of that inbox
handling process. If it fails all other processes will halt. On the other
hand, it results into a complex overview on all interdependent proces-
ses. In this case, a two stage approach would be favorable where such
supporting processes can be replicated in each BPA subset and an ag-
gregation of those subsets along the supporting process is provided
as well.

In Chapter 5 we introduced structural and behavioral properties
for BPAs. Those properties cover basic aspects of a BPA structure and
the characteristics of the inherent business processes. The behavioral
properties aim at finding out if the BPA under examination has errors
and if there exist BPA runs that reach the desired final state. It would
be desirable to identify desired paths through the BPA. In many cases
there are different paths to reach the desired final state. A terminating
BPA run may describe a process execution chain which contains the
participation of undesired processes for a particular case. To identify
the desired terminating BPA runs domain knowledge is necessary as
our approach assumes all terminating runs of a BPA to be favorable.
It cannot automatically identify if the terminating runs include the
desired paths and desired processes without input of an expert with
domain knowledge.

Part of the presented issue could be resolved by introducing corre-
lation techniques. So far, our BPA approach does not provide correla-
tion techniques to route cases through a BPA. Hence we cannot distin-
guish several cases in one BPA run and assume one BPA run depicts
one overall case of a scenario. However, in reality one process may
collect information from several cases and then process them. Similar,
one process may distribute several cases to different processes that
interact with each other and result in a terminating BPA run which
under consideration of correlation would result into a deadlock.

Nonetheless, our approach is the first to introduce structural and
behavioral properties on BPA level. We provide a solid foundation
that can be extended by further structural and behavioral properties
if required.

BPA analysis . The pattern based analysis technique presented in
Section 6.1 is applicable to examine the direct relationship of two pro-
cesses. Indirect relationships between processes are not considered.
Hence, a BPA that does not contain any anti-pattern may still have a
deadlock or livelock, or a blocking situation caused by indirect inter-
dependencies. Despite its limitation the presented technique provides
a first step for analysis and improving the quality of a BPA. The pat-

10.2 limitations and discussion 223

tern approach can be applied to synchronous and asynchronous envi-
ronments. Many use cases assume asynchronous environments and
hence many techniques only focus on asynchronous communication
as the techniques on process model level described in [156, 78, 92, 28].
Synchronous communication has not been looked at in many approa-
ches. Decker and Weske [28] assume that the message exchange be-
tween two process happens synchronously. In this case both processes
that exchange a message are both ready when the message exchange
is performed according to the modeled choreography.

The pattern and anti-pattern approach highlights the possibility
that in some cases this assumption may not hold if the receiving pro-
cess has not been started before the message is sent. Then it is not
ready for receiving the message. The anti-pattern analysis relies on a
causal relation showing that there is no possibility that the processes
will be active at the time of sending, e. g., the sender both triggers and
sends a message to the partner process at the same time. The assump-
tion of a synchronous communication environment mainly applies
to real-time processes where communication cannot be buffered. The
message is hence either read or lost as it looses its value instantly.

The BPA analysis based on an ON transformation provides more
powerful analysis of BPAs and extends the pattern and anti-pattern
based approach. Despite that, it can only be applied for asynchronous
communication exchanges in which information flows and triggers
are buffered until the process is ready to read them. The use of ONs
for the analysis of BPAs has many advantages as different analysis
tools exist. However, it is accompanied by the known disadvantages
of state space explosion and undecidability of specific model checking
problems. This is the case for BPAs with high use of large multiplicity
sets or BPAs with many business processes. Nonetheless, the scope of
a BPA scenario and the fact that BPAs contain only abstract models
reduces the state space for the analysis. In general, we expect a BPA
subset to consist of a manageable set of business processes. From
our experience with partners from the financial and public sector we
observed BPA subsets containing 15-25 business processes. However,
this varies in regard to organization, domain, and modeling guide-
lines followed. The average size of BPAs would need to be examined
by a larger empirical survey.

Currently each terminating BPA run by default is considered to
represent a desired path. In this regard our analysis technique cannot
verify if all participating processes in the BPA run are supposed to
participate in that BPA run. However, our ON based analysis tech-
nique provides the foundation for the development of such a func-
tionality. A user, the domain expert, could select a range of processes
from the BPA through a graphical interface. Based on the selection the
analysis could be extended to check if the terminating runs involve
the desired paths and processes by extending the according CTL for-

224 conclusions

mulae. Similarly, this could be solved by introducing a correlation
mechanism but also here domain knowledge is necessary to specify
which processes should partake in one run and how they should in-
teract. Our BPA approach is the first to introduce analysis techniques
on the BPA level in regard to structural and behavioral aspects. Those
serve as foundation for analysis and can be extended, if required. For
instance, enriching BPA runs with additional process meta-data like
costs, (wait) time, or human resources required leverages process in-
formation to an end-to-end process examination.

BPA methodology. Our BPA methodology describes the appli-
cation of our BPA approach and its additional techniques in a BPM
project. It describes a bottom-up BPA extraction and a top-down de-
composition algorithm that support ensuring consistency between
BPA level and process model level.

The BPA extraction algorithm covers structural sound block-struc-
tured process models. However, the extraction algorithm is limited in
the extraction of XOR-bonds. XOR-bonds that contain events of dif-
ferent types (i. e., sending and receiving events) cannot be extracted
with the current configuration. Despite that, the evaluation of process
model language constructs used in BPMN and EPC process models of
the BPMAI model collection by Kunze et al. [71] indicates a good cov-
erage of the presented extraction algorithms. Kunze et al. [71] assume
that most models describe sequential behavior as only about 50% of
the process models use XOR-gateways and about 40% use AND-gate-
way. An extensive evaluation of several process model collections to
indicate the exact characteristics and the position of sending and re-
ceiving nodes in process models is necessary to extend and adapt our
extraction algorithm in future work.

The extraction algorithm could be configured to address extraction
of XOR-bonds containing mixed node types with the consequence of
loosing information and inferring more behavior on BPA level, i. e.,
the BPA looses accuracy, as depicted by the modified extraction algo-
rithm of Breske [15] in Section 7.2.6. Another option is an extension
of the current BPA constructs with complex events, e. g., that depict
bi-directional message exchange in one symbol, i. e., in one BPA run
process p1 sends a message to process p2 and in another run p2 sends
a message to p1. By introducing new event types, our BPA approach
would be applicable to an even larger set of process models.

Our BPA methodology supports the creation of a BPA bottom-up
and developing process models top-down. While not specifying busi-
ness process identification guidelines and guidelines on how to cut
business processes, the provided overview, visualization, and analy-
sis of business process interdependencies support that process. A BPA
shows the overall picture of the process interdependencies. It allows
reflecting on those interdependencies and supports the (re-)design a

10.3 future research 225

process model collection. For example, the observations made on BPA
level may lead to the fusion of two or more processes or the division
of a process into smaller ones.

10.3 future research

In this thesis we presented the design of a novel BPA approach that
allows specifying and analyzing horizontal interdependencies and
multi-communication between processes. We have developed a novel
BPA approach with a set of analysis and extraction techniques that
support the re-/design and maintenance of process models in a pro-
cess model repository by addressing quality issues like correctness,
consistency, and harmonized process interdependencies. While our
BPA approach provides a complete tool set for structuring, managing,
and analyzing business processes within a process model collection,
this thesis is just a starting point for future research on PAs.

The automatic identification and visualization of relevant and ir-
relevant BPA runs from the various possibilities that a BPA offers,
would provide great usability to the end user. So far a BPA may pro-
duce a variety of terminating runs of which not all may be relevant.
We sketched an initial idea based on input from domain experts but
ideally such information would be automatically extracted from the
business process models or a related business model. The implemen-
tation of a correlation mechanism should be investigated in this re-
gard in the future. For instance, cases with specific characteristics
must take a particular path through the BPA defined by a correlation
technique.

Strategic planning and orientation in companies is rather based on
business models that are independent from the process model infor-
mation despite the fact that business processes convey the business
operations and execution logs provide valuable information. Business
model, PA level, and process model level are not connected. So far we
proposed a technique to provide consistency between BPA level and
process model level in our BPA methodology. We did not consider
the linkage to the business model level. This area requires further re-
search in regard to which information should be provided in process
models, in BPA subsets, and in a BPA compendium to derive a busi-
ness model and vice versa. In this way the use of business process
information for the strategic planning could be facilitated for busi-
ness managers. As first step in this direction, it would be desirable to
provide a BPA extraction that only shows the core interdependencies
between business processes to reduce the complexity of interdepen-
dencies to one type of relation between two processes. The data rela-
tions defined for the aggregation of data dependencies in Chapter 8

could serve as starting point for the identification and development
of complex relation types and interdependency patterns.

226 conclusions

By straightjacking processes into a sequential processes on BPA
level we create simple overview on complex interdependencies but
in the same time restrict the complexity of process models that our
BPA extraction algorithm covers. The extensions of our BPA approach
with elements that allow depicting the complex interdependency pat-
terns in a simple way is an evident next step. Consequently, highly
aggregated BPA overviews could be generated and the BPA approach
could be extended covering an even larger set of process models. This
requires empirical research which examines the use of our BPA ap-
proach in more detail and the identification of interdependency pat-
terns used in process models in the future.

A
A P P E N D I X

The following table summarizes related work and categorizes it in
three major research areas as presented in Chapter 3. These three re-
search areas are business process architecture approaches, choreogra-
phy approaches on model level, and business process model abstrac-
tion. The table is based on the major characteristics used for evaluat-
ing and classifying PA approaches that we identified in PA surveys
and PA evaluation frameworks. These aspects are: aim of method-
ology, framework characteristics, scope of the approach, type of rela-
tionship and interdependencies depicted in the framework, and the
elements involved. The different aspects used in Table 7 are described
in more detail in Section 3.5.

227

228 appendix

R
es

ea
rc

h
A

re
a

So
ur

ce
A

im
Fr

am
ew

or
k

C
ha

ra
ct

er
is

ti
cs

Sc
op

e
R

el
at

io
ns

hi
p

ty
pe

El
em

en
ts

of
Fo

cu
s

H
ie

ra
rc

hi
ca

l
H

or
iz

on
ta

l

Enterprise
Architectures

Z
ac

hm
an

[1
7
4
]

O
ve

rv
ie

w
,

V
is

ua
liz

at
io

n,
C

la
ss

ifi
ca

ti
on

In
fo

rm
al

,
To

p-
D

ow
n,

R
el

a-
ti

on
sh

ip
be

tw
ee

n
D

om
ai

ns
Si

ng
le

M
ul

ti
-f

ac
et

ed
In

pu
t/

O
ut

pu
t

Pr
oc

es
s,

Bu
si

ne
ss

O
b-

je
ct

(D
at

a)
,A

ct
or

s

Sc
he

er
[1

2
8
]

O
ve

rv
ie

w
,

V
is

ua
liz

at
io

n,
C

la
ss

ifi
ca

ti
on

In
fo

rm
al

,
To

p-
D

ow
n,

Bo
tt

om
-U

p,
R

el
at

io
ns

hi
p

be
tw

ee
n

La
ye

rs

Si
ng

le
C

on
si

st
s

of
/

R
e-

la
te

s
to

(R
el

at
es

to
)

Fu
nc

ti
on

,R
ef

er
en

ce

BusinessProcessArchitectures

Sc
he

er
et

al
.

[1
2
9
,

1
2
7
,2

2
]

O
ve

rv
ie

w
,

V
is

ua
liz

at
io

n,
C

la
ss

ifi
ca

ti
on

In
fo

rm
al

,
To

p-
D

ow
n,

Bo
tt

om
-U

p,
R

el
at

io
ns

hi
p

be
tw

ee
n

La
ye

rs

Si
ng

le
C

on
si

st
s

of
/

R
e-

la
te

s
to

(R
el

at
es

to
)

Fu
nc

ti
on

,R
ef

er
en

ce

K
ol

ia
di

s
et

al
.[

7
0
]

A
na

ly
si

s,
Ev

al
ua

ti
on

Fr
am

e-
w

or
k

Fo
rm

al
,

To
p-

D
ow

n,
C

ap
ab

il-
it

y
M

od
el

R
el

at
io

ns
hi

p
w

it
h

Pr
oc

es
s

M
od

el
,

ba
se

d
on

I*
an

d
TR

O
PO

S

Si
ng

le
Pr

oc
es

s
re

al
-

iz
es

Se
rv

ic
e

O
ut

co
m

e
or

C
ap

ab
ili

ty

-
G

oa
l,

A
ct

or
,

Pr
oc

es
s,

C
ap

ab
ili

ty
(d

ir
ec

ti
on

EA
)

D
ijk

m
an

et
al

.[
3
5
,

3
1
]

O
ve

rv
ie

w
,

C
la

ss
ifi

ca
ti

on
,

St
ru

ct
ur

e
an

d
M

an
ag

e,
Id

en
ti

fic
at

io
n,

D
es

ig
n

In
fo

rm
al

,T
op

-D
ow

n,
Se

ve
ra

l
V

ie
w

s,
G

ui
de

lin
e

Su
pp

or
t

Si
ng

le
M

ul
ti

-f
ac

et
ed

,
A

gg
re

ga
ti

on
,

Sp
ec

ia
liz

at
io

n

-
Fu

nc
ti

on
,

Bu
si

ne
ss

O
bj

ec
ts

Sc
hm

el
ze

r
an

d
Se

ss
el

m
an

n
[1

3
0
]

St
ru

ct
ur

e
an

d
M

an
ag

e,
O

ve
r-

vi
ew

,C
la

ss
ifi

ca
ti

on
In

fo
rm

al
,

Bo
tt

om
-U

p,
To

p-
D

ow
n

Si
ng

le
,

(M
ul

ti
pl

e
(o

n
La

nd
-

sc
ap

e
Le

ve
l)

D
ec

om
po

si
ti

on
R

eq
ui

re
m

en
t,

Se
rv

ic
e

D
el

iv
-

er
y

Fu
nc

ti
on

,
Pr

oc
es

s
(o

n
La

nd
sc

ap
e

Le
ve

l)

A
nd

er
ss

on
et

al
.[

2
]

R
e-

/D
es

ig
n,

C
la

ss
ifi

ca
ti

on
In

fo
rm

al
,T

op
-D

ow
n

Si
ng

le
-

-
G

oa
l,

R
ef

er
en

ce
,

Pa
t-

te
rn

s

H
ar

m
on

[5
8
,5

9
]

C
la

ss
ifi

ca
ti

on
,

M
ea

su
re

m
en

t,
D

ec
is

io
n

M
ak

in
g

Su
pp

or
t

In
fo

rm
al

,
To

p-
D

ow
n,

Pr
ac

-
ti

ce
Si

ng
le

A
gg

re
ga

ti
on

-
Fu

nc
ti

on
,G

oa
ls

M
ue

hl
en

et
al

.[
1
0
6
]

C
la

ss
ifi

ca
ti

on
,

St
ru

ct
ur

e
an

d
M

an
ag

e,
R

e-
/D

es
ig

n,
O

pt
i-

m
iz

at
io

n,
R

ed
uc

ti
on

of
C

om
-

pl
ex

it
y

In
fo

rm
al

,f
ou

r
Le

ve
ls

,G
ui

de
-

lin
es

Si
ng

le
A

gg
re

ga
ti

on
,

D
ec

om
po

si
ti

on
Pr

ed
ec

es
so

r/
Su

cc
es

so
r

(V
al

ue
C

ha
in

s,
En

d-
to

-E
nd

)

Fu
nc

ti
on

,
D

ep
ar

tm
en

t
(A

ct
or

)

vo
m

Br
oc

ke
an

d
R

os
e-

m
an

n
[1

6
,1

7
]

C
la

ss
ifi

ca
ti

on
,

St
ru

ct
ur

e
an

d
M

an
ag

e
In

fo
rm

al
,T

op
-D

ow
n

Si
ng

le
A

gg
re

ga
ti

on
,

D
ec

om
po

si
ti

on
-

Fu
nc

ti
on

,
A

ct
io

n,
R

ef
-

er
en

ce

appendix 229

R
es

ea
rc

h
A

re
a

So
ur

ce
A

im
Fr

am
ew

or
k

C
ha

ra
ct

er
is

ti
cs

Sc
op

e
R

el
at

io
ns

hi
p

ty
pe

El
em

en
ts

of
Fo

cu
s

H
ie

ra
rc

hi
ca

l
H

or
iz

on
ta

l

M
al

on
e

et
al

.[
8

6
]

C
la

ss
ifi

ca
ti

on
,S

tr
uc

tu
re

In
fo

rm
al

,
To

p-
D

ow
n,

R
e-

U
se

,K
no

w
le

dg
e-

ba
se

Si
ng

le
Pa

rt
s

of
,

U
se

s,
Sp

ec
ai

liz
at

io
n,

G
en

er
al

iz
at

io
n

-
Fu

nc
ti

on
,R

ef
er

en
ce

Ju
ng

et
al

.[
6

4
]

C
la

ss
ifi

ca
ti

on
,

O
ve

rv
ie

w
,

St
ru

ct
ur

e
an

d
M

an
ag

e
Fo

rm
al

(C
lu

st
er

A
lg

or
it

hm
),

Bo
tt

om
-U

p,
A

ut
om

at
io

n
Si

ng
le

H
ie

ra
rc

hi
ca

l,
Si

m
ila

ri
ty

-
A

ct
io

n

A
PQ

C
[3

]
C

la
ss

ifi
ca

ti
on

,
St

an
da

rd
iz

a-
ti

on
In

fo
rm

al
,

To
p-

D
ow

n,
D

o-
m

ai
n

Sp
ec

ifi
c

Si
ng

le
H

ie
ra

rc
hi

ca
l

-
Fu

nc
ti

on
,

Bu
si

ne
ss

O
bj

ec
ts

,R
ef

er
en

ce

SC
O

R
[1

3
3

]
C

la
ss

ifi
ca

ti
on

,
St

an
da

rd
iz

a-
ti

on
,

R
e-

/D
es

ig
n,

O
pt

im
iz

a-
ti

on

In
fo

rm
al

,
To

p-
D

ow
n,

R
ef

er
-

en
ce

M
od

el
Si

ng
le

H
ie

ra
rc

hi
ca

l
-

Fu
nc

ti
on

,
G

oa
l,

R
ef

er
-

en
ce

C
as

te
lla

no
s

an
d

C
or

re
al

[1
8

]
C

la
ss

ifi
ca

ti
on

,
A

lig
nm

en
t

w
it

h
EA

In
fo

rm
al

Si
ng

le
A

lig
nm

en
t

w
it

h
In

fo
rm

at
io

n
Sy

st
em

s

-
Bu

si
ne

ss
O

bj
ec

t(
D

at
a)

K
le

in
an

d
Pe

tt
i[

6
7

]
R

e-
/D

es
ig

n,
Pr

oc
es

s
M

od
el

G
en

er
at

io
n

In
fo

rm
al

,
Ef

fic
ie

nt
re

-
/d

es
ig

n
Si

ng
le

H
ie

ra
rc

hi
ca

l
-

La
be

ls

M
or

ei
ra

et
al

.[1
0

5
]

C
la

ss
ifi

ca
ti

on
In

fo
rm

al
Si

ng
le

,
(M

ul
ti

-
pl

e)

Pa
rt

of
M

es
sa

ge
Ex

-
ch

an
ge

Bu
si

ne
ss

O
bj

ec
ts

(P
ro

du
ct

)

Ja
co

bs
et

al
.[

6
3

]
R

e-
/D

es
ig

n,
O

ve
rv

ie
w

of
di

f-
fe

re
nt

as
pe

ct
s,

V
is

ua
liz

at
io

n
In

fo
rm

al
,A

ut
om

at
io

n,
R

ef
er

-
en

ce
M

ul
ti

pl
e

C
on

si
st

s
of

,
en

-
ab

le
d

by
n.

d.
R

ef
er

en
ce

M
od

el
s,

Fu
nc

ti
on

,A
ct

iv
it

y

M
ad

de
rn

et
al

.[
8

3
]

O
ve

rv
ie

w
,R

e-
/D

es
ig

n
Su

rv
ey

M
ul

ti
pl

e
Pr

ed
ec

es
so

r/
Su

cc
es

so
r

(e
nd

-
to

-e
nd

)

Pr
oc

es
s

R
ul

le
an

d
Si

eg
er

is
[1

2
6

]
Ex

ec
ut

io
n,

C
on

fig
ur

at
io

n
Fo

rm
al

,
A

pp
lic

at
io

n
of

ou
r

Pa
tt

er
n

an
d

A
nt

i-
pa

tt
er

n
A

p-
pr

oa
ch

M
ul

ti
pl

e
-

Tr
ig

ge
r,

M
es

-
sa

ge
Ex

ch
an

ge
Bu

si
ne

ss
O

bj
ec

ts
(D

at
a,

St
at

e
ce

nt
ri

c)

230 appendix

R
es

ea
rc

h
A

re
a

So
ur

ce
A

im
Fr

am
ew

or
k

C
ha

ra
ct

er
is

ti
cs

Sc
op

e
R

el
at

io
ns

hi
p

ty
pe

El
em

en
ts

of
Fo

cu
s

H
ie

ra
rc

hi
ca

l
H

or
iz

on
ta

l

Li
nd

an
d

G
ol

d-
ku

hl
[7

6
]

Bu
si

ne
ss

M
od

el
in

g
In

fo
rm

al
,

Pa
t-

te
rn

s,
C

on
si

st
en

cy
,

To
p-

D
ow

n

Si
ng

le
,

M
ul

ti
pl

e
H

ie
ra

rc
hi

ca
l

Bu
si

ne
ss

A
ct

,
A

ct
io

n
Pa

ir,
Ex

ch
an

ge
,

Bu
si

ne
ss

Tr
an

s-
ac

ti
on

,
Tr

an
sa

c-
ti

on
gr

ou
p

A
ct

io
n,

A
ct

or

G
re

en
et

al
.

[5
7
,

5
6
,5

5
]

R
e-

U
se

,O
ve

rv
ie

w
,V

is
ua

liz
a-

ti
on

In
fo

rm
al

,T
op

-D
ow

n
Si

ng
le

,
M

ul
ti

pl
e

En
ca

ps
ul

at
es

A
ct

iv
at

es
/

In
te

ra
ct

s
w

it
h

D
ep

ar
tm

en
ta

nd
R

ol
es

(A
ct

or
s)

,P
ro

ce
ss

Navigationand
Visualization(BPA)

Sr
iv

as
ta

va
an

d
M

uk
he

rj
ee

[1
4
2
]

C
la

ss
ifi

ca
ti

on
Fo

rm
al

,
Bo

tt
om

-U
p,

A
u-

to
m

at
io

n
Si

ng
le

Si
m

ila
ri

ty
-

Bu
si

ne
ss

O
bj

ec
t,

D
at

a,
Pr

oc
es

s
El

em
en

ts

M
el

ch
er

an
d

Se
es

e
[9

6
]

C
la

ss
ifi

ca
ti

on
,

V
is

ua
liz

at
io

n,
N

av
ig

at
io

n
Fo

rm
al

,
Bo

tt
om

-U
p,

A
u-

to
m

at
io

n
Si

ng
le

Si
m

ila
ri

ty
,

K
-

M
ea

ns
C

lu
st

er
-

Pr
oc

es
s

M
et

ri
cs

,
Pr

o-
ce

ss

H
ip

p
et

al
.[

6
0
]

V
is

ua
liz

at
io

n,
N

av
ig

at
io

n,
R

ed
uc

ti
on

of
C

om
pl

ex
it

y
In

fo
rm

al
Si

ng
le

H
ie

ra
ch

ic
al

Pr
oc

es
s

M
ild

e
[1

0
4
]

V
is

ua
liz

at
io

n,
N

av
ig

at
io

n,
R

e-
/D

es
ig

n
In

fo
rm

al
Si

ng
le

Pr
oc

es
s

Lu
eb

be
an

d
Sc

hn
ae

ge
lb

er
-

ge
r

[8
1
]

C
la

ss
ifi

ca
ti

on
In

fo
rm

al
,S

ur
ve

y,
Pr

ac
ti

ce
Si

ng
le

H
ie

ra
rc

hi
ca

l
Fu

nc
ti

on
,

O
bj

ec
t,

R
ef

-
er

en
ce

,
G

oa
l,

D
ep

ar
t-

m
en

t

BPMAandProcessModel
Configuration/Customization

Po
ly

vy
an

yy
et

al
.[

1
1
6
,1

1
5
,1

1
7
]

A
bs

tr
ac

ti
on

,
R

ed
uc

ti
on

of
C

om
pl

ex
it

y,
O

ve
rv

ie
w

Fo
rm

al
,

Bo
tt

om
-U

p,
C

om
-

pr
eh

en
si

bi
lit

y
Si

ng
le

A
gg

re
ga

ti
on

/
D

ec
om

po
si

ti
on

-
A

ct
iv

it
ie

s

Sm
ir

no
v

et
al

.
[1

3
5
,

1
4
0
,

1
3
7
,

1
3
8
,1

3
6
,1

4
1
]

A
bs

tr
ac

ti
on

,
R

ed
uc

ti
on

of
C

om
pl

ex
it

y,
O

ve
rv

ie
w

,
V

is
u-

al
iz

at
io

n

Fo
rm

al
,

Bo
tt

om
-U

p,
C

om
-

pr
eh

en
si

bi
lit

y
Si

ng
le

A
gg

re
ga

ti
on

/
D

ec
om

po
si

ti
on

-
A

ct
iv

it
ie

s

R
ei

je
rs

et
al

.[
1
2
2
]

R
ed

uc
ti

on
of

C
om

pl
ex

it
y,

O
ve

rv
ie

w
Fo

rm
al

,C
om

pr
eh

en
si

bi
lit

y
Si

ng
le

A
gg

re
ga

ti
on

,
H

ie
ra

rc
hi

ca
l

-
(S

ub
-)

Pr
oc

es
se

s

R
ei

je
rs

et
al

.[
1
2
3
]

C
la

ss
ifi

ca
ti

on
,

V
is

ua
liz

at
io

n,
M

an
ag

em
en

t,
M

ai
nt

en
an

ce
In

fo
rm

al
,C

om
pr

eh
en

si
bi

lit
y

Si
ng

le
A

gg
re

ga
ti

on
,

G
en

er
al

iz
at

io
n/

Sp
ec

ia
liz

at
io

n

-
Bu

si
ne

ss
O

bj
ec

t
(P

ro
d-

uc
t)

appendix 231

R
es

ea
rc

h
A

re
a

So
ur

ce
A

im
Fr

am
ew

or
k

C
ha

ra
ct

er
is

ti
cs

Sc
op

e
R

el
at

io
ns

hi
p

ty
pe

El
em

en
ts

of
Fo

cu
s

H
ie

ra
rc

hi
ca

l
H

or
iz

on
ta

l

Es
hu

is
an

d
G

re
fe

n
[4

7
]

A
gg

re
ga

ti
on

,
R

ed
uc

ti
on

of
C

om
pl

ex
it

y,
O

ve
rv

ie
w

,
V

is
u-

al
iz

at
io

n

Fo
rm

al
,B

ot
to

m
-U

p
Si

ng
le

H
ie

ra
rc

hi
ca

l
-

A
ct

iv
it

ie
s

R
ei

ch
er

t
et

al
.[

1
2

1
]

A
gg

re
ga

ti
on

,
R

ed
uc

ti
on

of
C

om
pl

ex
it

y,
O

ve
rv

ie
w

,
V

is
u-

al
iz

at
io

n
(p

er
so

na
liz

ed
)

Fo
rm

al
,

Bo
tt

om
-U

p,
C

on
si

s-
te

nc
y

Si
ng

le
A

gg
re

ga
ti

on
,

C
hi

ld
/P

ar
en

t
-

A
ct

iv
it

ie
s

Ba
ra

n
et

al
.[

8
]

C
la

ss
ifi

ca
ti

on
,C

on
fig

ur
at

io
n,

R
e-

/U
se

,R
ed

uc
ti

on
of

C
om

-
pl

ex
it

y,
A

bs
tr

ac
ti

on

Fo
rm

al
Si

ng
le

En
ca

ps
ul

at
es

-
Pr

oc
es

s,
Su

b-
pr

oc
es

se
s

BusinessProcessChoreographies

Ba
rr

os
et

al
.[

1
0

]
M

od
el

In
te

r-
O

rg
an

iz
at

io
na

l
In

te
ra

ct
io

n,
Is

su
es

an
d

So
lu

-
ti

on
s

fo
r

M
od

el
in

g
In

te
ra

c-
ti

on

In
fo

rm
al

,
In

te
ra

ct
io

n
Pa

t-
te

rn
s

M
ul

ti
pl

e
-

M
es

sa
ge

Ex
-

ch
an

ge
(o

ne
-t

o-
m

an
y)

M
es

sa
ge

,A
ct

iv
it

ie
s

A
al

st
et

al
.[

1
5

5
]

M
od

el
In

te
r-

O
rg

an
iz

at
io

na
l

In
te

ra
ct

io
n,

A
na

ly
si

s,
C

om
-

po
si

ti
on

an
d

R
ep

la
ce

m
en

t
of

Se
rv

ic
es

Fo
rm

al
,

C
om

po
si

ti
on

Pr
op

-
er

ti
es

(
st

ra
te

gy
,

co
nt

ro
lla

bi
l-

it
y,

an
d

ac
co

rd
an

ce
,

co
nt

ro
l-

la
bi

lit
y)

,
Pa

tt
er

n
an

d
A

nt
i-

Pa
tt

er
ns

M
ul

ti
pl

e
-

M
es

sa
ge

Ex
-

ch
an

ge
(o

ne
-t

o-
m

an
y)

M
es

sa
ge

,A
ct

iv
it

ie
s

va
n

G
la

bb
ee

k
an

d
St

or
k

[1
5

8
]

M
od

el
In

te
r-

O
rg

an
iz

at
io

na
l

In
te

ra
ct

io
n,

A
na

ly
si

s
Fo

rm
al

,
C

om
po

si
ti

on
,

G
lo

ba
l

Te
rm

in
at

io
n,

Q
ue

ry
ne

ts

M
ul

ti
pl

e
Pr

oc
es

s
an

d
su

b-
pr

oc
es

s
Pr

oc
ed

ur
e

C
al

l,
M

es
sa

ge
Ex

ch
an

ge
(o

ne
-

to
-o

ne
)

Pr
oc

es
s,

A
ct

iv
it

ie
s

M
ar

te
ns

[9
0

,9
1
]

M
od

el
In

te
r-

O
rg

an
iz

at
io

na
l

In
te

ra
ct

io
n,

A
na

ly
si

s,
C

om
-

po
si

ti
on

an
d

R
ep

la
ce

m
en

t
of

Se
rv

ic
es

Fo
rm

al
,

C
om

po
si

ti
on

Pr
op

-
er

ti
es

(u
sa

bi
lit

y,
co

m
pa

ti
bi

l-
it

y,
eq

ui
va

le
nc

e)
,C

or
re

ct
ne

ss
pr

op
er

ti
es

(a
bs

en
ce

of
de

ad
-

lo
ck

s,
so

un
dn

es
s)

M
ul

ti
pl

e
-

M
es

sa
ge

Ex
-

ch
an

ge
(o

ne
-t

o-
on

e)

Pr
oc

es
s,

A
ct

iv
it

ie
s

D
ec

ke
r

[2
4
],

D
ec

ke
r

an
d

W
es

ke
[2

7
,2

8
]

M
od

el
In

te
r-

O
rg

an
iz

at
io

na
l

In
te

ra
ct

io
n,

A
na

ly
si

s
Fo

rm
al

,
In

te
ra

ct
io

n
Pr

op
er

-
ti

es
(l

oc
al

en
fo

rc
ea

bi
lit

y,
re

al
-

iz
ab

ili
ty

)

M
ul

ti
pl

e
-

M
es

sa
ge

Ex
-

ch
an

ge
R

ol
e,

A
ct

or
,A

ct
iv

it
ie

s

232 appendix

R
es

ea
rc

h
A

re
a

So
ur

ce
A

im
Fr

am
ew

or
k

C
ha

ra
ct

er
is

ti
cs

Sc
op

e
R

el
at

io
ns

hi
p

ty
pe

El
em

en
ts

of
Fo

cu
s

H
ie

ra
rc

hi
ca

l
H

or
iz

on
ta

l

M
as

su
th

e
[9

2
],

M
as

su
th

e
an

d
Sc

hm
id

t
[9

3
],

Lo
hm

an
n

et
al

.[
7
9
]

C
om

po
si

ti
on

of
Se

rv
ic

es
,

A
na

ly
si

s,
In

te
r-

O
rg

an
iz

a-
ti

on
al

In
te

ra
ct

io
n

Fo
rm

al
,

C
om

po
si

ti
on

,
In

te
r-

ac
ti

on
Pr

op
er

ti
es

(c
on

tr
ol

la
-

bi
lit

y,
st

ra
te

gy
)

M
ul

ti
pl

e
-

M
es

sa
ge

Ex
-

ch
an

ge
Se

rv
ic

e,
Pr

oc
es

s,
A

c-
ti

vi
ti

es

Ba
ld

an
et

al
.[

7
]

M
od

el
In

te
r-

O
rg

an
iz

at
io

na
l

In
te

ra
ct

io
n,

C
om

po
si

ti
on

Fo
rm

al
,C

om
po

si
ti

on
M

ul
ti

pl
e

-
M

es
sa

ge
Ex

-
ch

an
ge

Se
rv

ic
e,

Pr
oc

es
s,

A
c-

ti
vi

ti
es

Lo
hm

an
n

[7
8
]

C
om

po
si

ti
on

of
Se

rv
ic

es
,

A
na

ly
si

s,
In

te
r-

O
rg

an
iz

a-
ti

on
al

In
te

ra
ct

io
n

Fo
rm

al
,

C
om

po
si

ti
on

,
In

te
r-

ac
ti

on
Pr

op
er

ti
es

(c
on

tr
ol

la
-

bi
lit

y,
st

ra
te

gy
),

C
or

re
ct

ne
ss

M
ul

ti
pl

e
-

M
es

sa
ge

Ex
-

ch
an

ge
Se

rv
ic

e,
Pr

oc
es

s,
A

c-
ti

vi
ti

es

A
al

st
et

al
.

[1
5
1
,

1
5
2
,

1
5
4
],

M
an

s
an

d
R

us
se

l[
8
7
],

M
an

s
et

al
.

[8
9
]

,
M

an
s

[8
8
]

Ex
ec

ut
io

n,
R

ed
uc

ti
on

of
C

om
pl

ex
it

y,
M

od
el

In
te

ra
c-

ti
on

on
In

st
an

ce
Le

ve
l

Fo
rm

al
,

Fl
ex

ib
ili

ty
,

In
st

an
ce

Le
ve

l
Si

ng
le

,
(M

ul
ti

-
pl

e)

-
M

es
sa

ge
Ex

-
ch

an
ge

(o
ne

-t
o-

m
an

y,
m

an
y-

to
-

m
an

y)

A
ct

iv
it

ie
s,

Pr
oc

es
s

DatainBusinessProcessChoreographies

M
ue

lle
r

et
al

.[
1
0
8
]

Fl
ex

ib
ili

ty
,

R
e-

/D
es

ig
n,

M
ai

nt
en

an
ce

of
da

ta
ob

je
ct

s,
C

on
si

st
en

cy
be

tw
ee

n
D

at
a

an
d

C
on

tr
ol

Fl
ow

M
od

el
,

R
e-

U
se

on
Pr

oc
es

s
M

od
el

an
d

In
st

an
ce

le
ve

l

Fo
rm

al
,T

op
-D

ow
n

Si
ng

le
H

ie
ra

rc
hi

ca
l

-
Bu

si
ne

ss
O

bj
ec

ts

K
ue

nz
le

an
d

R
e-

ic
he

rt
[7

3
]

Fl
ex

ib
ili

ty
,

R
e-

/D
es

ig
n,

M
ai

nt
en

an
ce

of
da

ta
ob

je
ct

s,
C

on
si

st
en

cy
be

tw
ee

n
D

at
a

an
d

C
on

tr
ol

Fl
ow

M
od

el
,

R
e-

U
se

of
Pr

oc
es

s
M

od
el

an
d

In
st

an
ce

le
ve

l

In
fo

rm
al

,
To

p-
D

ow
n,

tw
o

G
ra

nu
la

ri
ty

Le
ve

ls
Si

ng
le

H
ie

ra
rc

hi
ca

l
(d

at
a)

-
Bu

si
ne

s
O

bj
ec

ts
,F

un
c-

ti
on

,P
ro

ce
ss

M
ey

er
an

d
W

e-
sk

e
[1

0
2
]

C
on

si
st

en
cy

be
tw

ee
n

D
at

a
O

LC
an

d
Pr

oc
es

s
M

od
el

Fo
rm

al
,C

on
si

st
en

cy
,C

on
fo

r-
m

an
ce

,O
LC

Si
ng

le
-

R
ea

d/
W

ri
te

A
c-

ce
ss

A
ct

iv
it

es
,

Bu
si

ne
ss

O
bj

ec
t

(D
at

a)

appendix 233

R
es

ea
rc

h
A

re
a

So
ur

ce
A

im
Fr

am
ew

or
k

C
ha

ra
ct

er
is

ti
cs

Sc
op

e
R

el
at

io
ns

hi
p

ty
pe

El
em

en
ts

of
Fo

cu
s

H
ie

ra
rc

hi
ca

l
H

or
iz

on
ta

l

K
nu

pl
es

ch
et

al
.[6

9
,6

8
]

A
na

ly
si

s,
Sp

ec
ifi

ca
ti

on
of

In
te

r-
O

rg
an

iz
at

io
na

l
D

at
a

Ex
ch

an
ge

Fo
rm

al
,

C
or

re
ct

ne
ss

(t
er

m
i-

na
ti

on
an

d
re

al
iz

ab
ili

ty
)

-
M

ul
ti

pl
e

M
es

sa
ge

Ex
-

ch
an

ge
D

at
a,

M
es

sa
ge

Ta
sk

s,
A

ct
or

Fa
hl

an
d

et
al

.[
5

1
]

A
na

ly
si

s
Fo

rm
al

,
Pr

oc
le

ts
,

Pr
oc

es
s

In
-

st
an

ce
Le

ve
la

nd
Pr

oc
es

s
M

o-
de

lL
ev

el
,C

on
fo

rm
an

ce

M
ul

ti
pl

e
D

ec
om

po
si

ti
on

Pr
oc

le
t

In
te

r-
ac

ti
on

(o
ne

-t
o-

m
an

y,
m

an
y-

to
-

m
an

y)

D
at

a,
Pr

oc
es

se
s

(A
ct

iv
-

it
y)

M
ey

er
et

al
.[

1
0

3
]

Sy
nc

hr
on

iz
at

io
n

of
O

LC
s

fo
r

on
e

Pr
oc

es
s

M
od

el
,

Ex
ec

u-
ti

on

Fo
rm

al
,A

ut
om

at
io

n,
C

on
fo

r-
m

an
ce

M
ul

ti
pl

e
-

M
es

sa
ge

Ex
-

ch
an

ge
Bu

si
ne

ss
O

bj
ec

t
(D

at
a)

,A
ct

iv
it

ie
s

Ta
bl

e
7

:C
la

ss
ifi

ca
ti

on
of

R
el

at
ed

W
or

k

G L O S S A RY

PM Process model, see Definition 1, page 18

N The set of nodes of a process model, consisting of activities,
gateways, events. See Definition 1, page 18

A The set of activities of a process model, see Definition 1, page 18

E The set of events of a process model, see Definition 1, page 18

G The set of gateways of a process model, see Definition 1, page 18

D The set of data nodes of a process model Definition 1, page 18

CF The control flow of a process model, see Definition 1, page 18

DF The data flow between two nodes being either activity or event,
see Definition 1, page 18

type A function that assigns a type to a gateway, see Definition 1,
page 18

OLC The object life cycle of a data object, see Definition 3, page 19

S The set of data object states, see Definition 3, page 19

i The initial state of a data object in the OLC, see Definition 3,
page 19

SF The set of final states of a data object in the OLC, see Defini-
tion 3, page 19

TD An acyclic relation of data state transitions, see Definition 3,
page 19

Σ A finite set of actions for manipulating the corresponding data
object, see Definition 3, page 19

SESE Single entry/ single exit fragment of a process model, see page
20, page 20

nPM A normalized process model with a single start and a single
end node, see Definition 4, page 20

s The only start node of a process model, see Definition 4, page 20

f The only end node of a process model, see Definition 4, page 20

G A graph, see Definition 5, page 21

E The set of edges of a graph, see Definition 5, page 21

235

236 appendix

N The set of nodes of a graph, see Definition 5, page 21

PMF A process model fragment, see Definition 6, page 21

∆ The set of all canonical components of a process model, see
Definition 8, page 21

RPSTPM The refined process structure tree of a process model PM,
see Definition 10, page 22

r The root node of an RPSTPM tree of a process model, see Def-
inition 10, page 22

ξ Hierarchical parent child relation between component and its
child in a process model, see Definition 10, page 22

TR A trivial component of a process model, see page 22, page 22

PO Polygon, depicts a sequence of nodes or a sequence of compo-
nents, see page 22, page 22

BO A bond consists of components that share common boundary
nodes, see page 22, page 22

RI Rigid, a component of a process model that cannot be classi-
fied into trivial, polygon, or bond, see page 22, page 22

ct The function component type assigns a type (trivial, polygon,
bond, or rigid) to a component of a process model, see Defini-
tion 9, page 22

PN Petri net, a state transition system, see Definition 11, page 29

P The set of places of a Petri net, see Definition 11, page 29

T The set of transitions of a Petri net, see Definition 11, page 29

F The flow relation of a Petri net, see Definition 11, page 29

M The marking of a Petri net, see Definition 11, page 29

Ms The initial marking of a Petri net, see Definition 11, page 29

PNS A Petri net system, depicted by a Petri net with designated
initial marking, see Definition 11, page 29

ω Weighting function that assigns a weight to an arc, see Defini-
tion 13, page 30

WFnet Workflow net, a subclass of Petri nets with structural restric-
tions, see Definition 18, page 31

MΩ The final marking of a Workflow net, see Definition 19, page 31

pi The initial place of a Workflow net, see Definition 18, page 31

appendix 237

po The final place of a Workflow net, see Definition 18, page 31

O Open net, a subclass of Petri nets with designated interface
places and final markings, see Definition 23, page 33

Ω The final marking of an Open net, see Definition 23, page 33

E The set of events of a business process architecture, see Defini-
tion 29, page 76

e An event of a process in a business process architecture, see
Definition 29, page 76

V The set of processes of a business process architecture, see Def-
inition 29, page 76

v A process of a business process architecture, see Definition 29,
page 76

L The message flow relation between two events in a business
process architecture, see Definition 29, page 76

I The trigger relation between two events in a business process
architecture, see Definition 29, page 76

BPA A Business Process Architecture, see Definition 29, page 76

χ The conflict relation between flows of a BPA, indicating flows
that are mutually exclusive, see Definition 29, page 76

µ Denotes the multiplicity set of an event, see Definition 29,
page 76

± The correspondence relation between two events of the same
process, demanding that they send, respectively receive, the
same number of messages, see Definition 29, page 76

PMC A process model collection that consists of a set of process
models and their message flows, see Definition 43, page 147

MF The message flow relation between two process models in a
process model collection, see Definition 43, page 147

K A subset of nodes being events and activities that take part in
an interaction between two process models, see Definition 43,
page 147

F Overall set of flows of a process model collection, see Defini-
tion 43, page 147

mapflow A function that maps message flows to BPA information
flow and trigger, see Definition 45, page 151

238 appendix

ret A function retrieves for a node the matching event in a BPA,
see Definition 45, page 151

PMS A process model skeleton depicts the nodes that are part of a
message flow, see Definition 47, page 166

B I B L I O G R A P H Y

[1] Rama Akkiraju and Anca Ivan. Discovering Business Process
Similarities: An Empirical Study with SAP Best Practice Busi-
ness Processes. In Service-Oriented Computing - ICSOC 2010, vol-
ume 6470 of LNCS, pages 515–526. Springer, 2010.

[2] Birger Andersson, Ilia Bider, Paul Johannesson, and Erik Per-
jons. Towards a formal definition of goal-oriented business pro-
cess patterns. Business Process Management Journal, 11(6):650–
662, 2005. ISSN 1463-7154. doi: 10.1108/14637150510630846.

[3] APQC. APQC - Process Classification Framework, 2014. URL
http://www.apqc.org/knowledge-base/download/313690/

K05162_PCF_Ver_61_1.pdf.

[4] Ahmed Awad. BPMN-Q: A Language to Query Business Pro-
cesses. In EMISA, pages 115–128, 2007.

[5] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison Wesley, 1999. ISBN 020139829X.

[6] Christel Baier and Joost-Pieter Katoen. Principles of model check-
ing, volume 26202649. MIT press Cambridge, 2008.

[7] Paolo Baldan, Andrea Corradini, Hartmut Ehrig, and R Heckel.
Compositional Modeling of Reactive Systems Using Open Nets.
In KimG. Larsen and Mogens Nielsen, editors, CONCUR 2001
- Concurrency Theory, volume 2154 of LNCS, pages 502–518.
Springer Berlin Heidelberg, 2001. ISBN 978-3-540-42497-0. doi:
10.1007/3-540-44685-0_34.

[8] M Baran, K Kluza, G J Nalepa, and A Ligeza. A hierarchical ap-
proach for configuring business processes. In Computer Science
and Information Systems (FedCSIS), 2013 Federated Conference on,
pages 915–921, September 2013.

[9] Alistair Barros, Egon Börger, Kung-Kiu Lau, and Richard Ba-
nach. A Compositional Framework for Service Interaction Pat-
terns and Interaction Flows. Formal Methods and Software Engi-
neering, 3785:5–35, 2005. doi: 10.1007/11576280.

[10] Alistair Barros, Marlon Dumas, Arthur ter Hofstede, W. M. P.
van der Aalst, Boualem Benatallah, Fabio Casati, and Fran-
cisco Curbera. Service Interaction Patterns. In Wil M. P. Aalst,

239

http://www.apqc.org/knowledge-base/download/313690/K05162_PCF_Ver_6 1_1.pdf
http://www.apqc.org/knowledge-base/download/313690/K05162_PCF_Ver_6 1_1.pdf

240 bibliography

Boualem Benatallah, Fabio Casati, and Francisco Curbera, edi-
tors, BPM, volume 3649 of LNCS, pages 302–318, Berlin, Heidel-
berg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-28238-9.
doi: 10.1007/11538394.

[11] Jörg Becker, Lars Algermissen, T Falk, and Inc Ebrary.
Prozessorientierte Verwaltungsmodernisierung: Prozessmanagement
im Zeitalter von E-Government und New Public Management.
Springer, 2007.

[12] Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo.
Querying Business Processes. In VLDB ’06: Proceedings of the
32nd international conference on Very large data bases, pages 343–
354. VLDB Endowment, 2006.

[13] Philip A Bernstein and Umeshwar Dayal. An Overview of
Repository Technology. In VLDB ’94: Proceedings of the 20th In-
ternational Conference on Very Large Data Bases, pages 705–713,
San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers
Inc. ISBN 1-55860-153-8.

[14] David Bovet and Joseph Martha. Value nets: reinventing the
rusty supply chain for competitive advantage. Strategy & Lead-
ership, 28(4):21–26, 2000. doi: 10.1108/10878570010378654.

[15] Robert Breske. Business Process Architecture Extraction with re-
gard to Inter-Processs Dependencies (Master Thesis). Master thesis,
University of Potsdam, 2014.

[16] Jan Vom Brocke and Michael Rosemann. Handbook on Business
Process Management 1. Springer Berlin Heidelberg, 2010. ISBN
ISBN 978-3-642-45099-0.

[17] Jan Vom Brocke and Michael Rosemann. Handbook on Business
Process Management 2. Springer Heidelberg, 2010.

[18] Camilo Castellanos and Dario Correal. KALCAS: A Frame-
worK for Semi-automatic ALignment of Data and Business Pro-
Cesses ArchitectureS. In Tadeusz Morzy, Theo Härder, and
Robert Wrembel, editors, Advances in Databases and Informa-
tion Systems, volume 7503 of LNCS, pages 111–124. Springer
Berlin Heidelberg, 2012. ISBN 978-3-642-33073-5. doi: 10.1007/
978-3-642-33074-2_9.

[19] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model
Checking. MIT Press Cambridge, 1999. ISBN 9780262032704.

[20] David Cohn and Richard Hull. Business Artifacts: A Data-
centric Approach to Modeling Business Operations and Proces-
ses. IEEE Data Engineering Bulletin, 32(3):3–9, 2009.

bibliography 241

[21] T A Curran and G Keller. SAP R/3 Business Blueprint - Busi-
ness Engineering mit den R/3-Referenzprozessen. Addison-Wesley,
Bonn, Germany, 1999.

[22] Rob Davis. ARIS Design Platform: Advanced Process Modelling
and Administration. Springer Berlin Heidelberg, 2008. ISBN
9781848001114.

[23] Gero Decker. Realizability of interaction models. In ZEUS,
pages 55–60. Citeseer, 2009.

[24] Gero Decker. Design and analysis of process choreographies. PhD
thesis, University of Potsdam, 2009. URL http://opus.kobv.

de/ubp/volltexte/2010/4076/.

[25] Gero Decker and Jan Mendling. Process instantiation. Data
& Knowledge Engineering, 68(9):777–792, 2009. ISSN 0169-023X.
doi: 10.1016/j.datak.2009.02.013.

[26] Gero Decker and Mathias Weske. Behavioral consistency for
B2B process integration. In Proceedings of the 19th international
conference on Advanced information systems engineering, CAiSE’07,
pages 81–95, Berlin, Heidelberg, June 2007. Springer-Verlag.
ISBN 978-3-540-72987-7.

[27] Gero Decker and Mathias Weske. Local Enforceability in Inter-
action Petri Nets. Business Process Management, pages 305–319,
2007.

[28] Gero Decker and Mathias Weske. Interaction-centric modeling
of process choreographies. Information Systems, 36(2):292–312,
2011. ISSN 0306-4379. doi: http://dx.doi.org/10.1016/j.is.2010.
06.005.

[29] Gero Decker, Oliver Kopp, and Frank Leymann. Modeling ser-
vice choreographies using BPMN and BPEL4Chor. In Advanced
Information Systems Engineering, volume 5074 of LNCS, pages
79–93. Springer Berlin Heidelberg, 2008.

[30] Juliane Dehnert and Peter Rittgen. Relaxed Soundness of Busi-
ness Processes. In KlausR. Dittrich, Andreas Geppert, and
MoiraC. Norrie, editors, Advanced Information Systems Engineer-
ing, volume 2068 of LNCS, pages 157–170. Springer Berlin
Heidelberg, 2001. ISBN 978-3-540-42215-0. doi: 10.1007/
3-540-45341-5_11.

[31] Remco M. Dijkman. Designing a Process Architecture - A Con-
crete Approach. Technical report, TU Eindhoven.

[32] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Se-
mantics and analysis of business process models in BPMN. Inf.

http://opus.kobv.de/ubp/volltexte/2010/4076/
http://opus.kobv.de/ubp/volltexte/2010/4076/

242 bibliography

Softw. Technol., 50(12):1281–1294, November 2008. ISSN 0950-
5849. doi: 10.1016/j.infsof.2008.02.006.

[33] Remco M. Dijkman, I. Vanderfeesten, and Hajo A. Reijers.
The Road to a Business Process Architecture: An Overview of
Approaches and their Use. 2011. URL http://cms.ieis.tue.

nl/Beta/Files/WorkingPapers/wp_350.pdf.

[34] Remco M. Dijkman, Marcello La Rosa, Hajo A. Reijers, and Mar-
cello La Rosa. Managing large collections of business process
models - Current techniques and challenges. Computers in In-
dustry, 63(2):91–97, 2012.

[35] Remco M. Dijkman, Irene Vanderfeesten, and Hajo A Reijers.
Business process architectures: overview, comparison and fra-
mework. Enterprise Information Systems, pages 1–30, 2014. doi:
10.1080/17517575.2014.928951.

[36] Marlon Dumas, Marcello La Rosa, Jan Mendling, and Hajo A.
Reijers. Fundamentals of Business Process Management. Springer
Berlin Heidelberg, 2013. ISBN 978-3-642-33142-8. doi: 10.1007/
978-3-642-33143-5.

[37] Rami-Habib Eid-Sabbagh. Towards Automatic Generation of
Process Architectures for Process Collections. In 4th Central-
European Workshop on Services and their Composition (ZEUS 2012)
On-site Proceedings, pages 88–95, 2012.

[38] Rami-Habib Eid-Sabbagh and Mathias Weske. Analyzing Busi-
ness Process Architectures. In Camille Salinesi, MoiraC. Norrie,
and Óscar Pastor, editors, Advanced Information Systems Engi-
neering, volume 7908, pages 208–223. Springer Berlin Heidel-
berg, 2013. doi: 10.1007/978-3-642-38709-8_14.

[39] Rami-Habib Eid-Sabbagh and Mathias Weske. From Process
Models to Business Process Architectures: Connecting the Lay-
ers. In 9th. International Workshop on Engineering Service-Oriented
Applications (WESOA 13), pages 4–15, 2013.

[40] Rami-Habib Eid-Sabbagh, Remco M. Dijkman, and Mathias We-
ske. Business Process Architecture: Use and Correctness. In Al-
istair P Barros, Avigdor Gal, and Ekkart Kindler, editors, BPM,
volume 7481 of LNCS, pages 65–81. Springer, 2012. ISBN 978-3-
642-32884-8.

[41] Rami-Habib Eid-Sabbagh, Matthias Kunze, Andreas Meyer,
and Mathias Weske. A Platform for Research on Process Model
Collections. In BPMN2012 Workshop proceedings, 2012.

[42] Rami-Habib Eid-Sabbagh, Matthias Kunze, and Mathias We-
ske. An Open Process Model Library. In Florian Daniel, Kamel

http://cms.ieis.tue.nl/Beta/Files/WorkingPapers/wp_350.pdf
http://cms.ieis.tue.nl/Beta/Files/WorkingPapers/wp_350.pdf

bibliography 243

Barkaoui, and Schahram Dustdar, editors, Business Process Man-
agement Workshops (PMC2011), volume 100 of LNBIP, pages 26–
38, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN
978-3-642-28114-3. doi: 10.1007/978-3-642-28115-0.

[43] Rami-Habib Eid-Sabbagh, Marcin Hewelt, Andreas Meyer, and
Mathias Weske. Deriving Business Process Data Architectures
from Process Model Collections. In Samik Basu, Cesare Pau-
tasso, Liang Zhang, and Xiang Fu, editors, 11th International
Conference on Service-Oriented Computing. Springer Berlin Hei-
delberg, 2013.

[44] Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske.
Business Process Architectures with Multiplicities : Transfor-
mation and Correctness - Technical Report. Technical report,
Hasso Plattner Institute, University of Potsdam, Potsdam, 2013.

[45] Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias We-
ske. Business Process Architectures with Multiplicities: Trans-
formation and Correctness. In BPM, volume 8094 of LNCS,
pages 227–234. Springer, 2013. ISBN 978-3-642-40175-6. doi:
10.1007/978-3-642-40176-3_19.

[46] Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske.
A Tool for Business Process Architecture Analysis. In Samik
Basu, Cesare Pautasso, Liang Zhang, and Xiang Fu, editors,
Service-Oriented Computing - 11th International Conference, ICSOC
2013, Berlin, Germany, December 2-5, 2013. Springer Berlin Hei-
delberg, 2013. doi: 10.1007/978-3-642-45005-1_61.

[47] Rik Eshuis and Paul Grefen. Constructing customized process
views. Data & Knowledge Engineering, 64(2):419–438, February
2008. ISSN 0169023X. doi: 10.1016/j.datak.2007.07.003.

[48] Rik Eshuis and Peter van Gorp. Synthesizing Object Life Cycles
from Business Process Models. In Conceptual Modeling, pages
307–320. Springer, 2012.

[49] Javier Esparza. Decidability and Complexity of Petri Net Prob-
lems. Petri Nets: Fundamental Models, Verification and Applications,
pages 87–122, 1998. doi: 10.1002/9780470611647.ch4.

[50] Javier Esparza and Mogens Nielsen. Decidability Issues for
Petri nets. Bulletin of the EATCS, 52(May):244–262, 1994. doi:
10.1.1.16.5995.

[51] Dirk Fahland, Massimiliano De Leoni, Boudewijn F. Van Don-
gen, and Wil M. P. van der Aalst. Conformance Checking
of Interacting Processes with Overlapping Instances. In Pro-
ceedings of the 9th International Conference on Business Process

244 bibliography

Management, BPM’11, pages 345–361, Berlin, Heidelberg, 2011.
Springer-Verlag. ISBN 978-3-642-23058-5.

[52] Dirk Fahland, Cedric Favre, and Jana Koehler. Analysis on de-
mand: Instantaneous soundness checking of industrial business
process models. Data & Knowledge Engineering, 70(5):448–466,
2011.

[53] Peter Fettke and Peter Loos. Classification of reference models:
a methodology and its application. Information Systems and e-
Business Management, 1(1):35–53, January 2003. ISSN 1617-9846.
doi: 10.1007/BF02683509.

[54] Peter Fettke, Peter Loos, and Jörg Zwicker. Business Process
Reference Models: Survey and Classification. In ChristophJ.
Bussler and Armin Haller, editors, Business Process Manage-
ment Workshops, volume 3812 of LNCS, pages 469–483. Springer
Berlin Heidelberg, 2006. ISBN 978-3-540-32595-6. doi: 10.1007/
11678564_44.

[55] Stewart Green and Martyn Ould. The Primacy of Process Ar-
chitecture. In CAiSE Workshops (2), pages 154–159, 2004.

[56] Stewart Green and Martyn Ould. A framework for classify-
ing and evaluating process architecture methods. Software Pro-
cess: Improvement and Practice, 10(4):415–425, October 2005. ISSN
1077-4866. doi: 10.1002/spip.244.

[57] Stewart Green, Ian Beeson, and Richard Kamm. Process Archi-
tectures and Process Models : Opportunities for Reuse. In 8th
Workshop on Business Process Modeling, Development, and Support,
2007.

[58] Paul Harmon. Using Balanced Scorecard to Support a Business
Process Architecture. BPTrends, 5(17):3, 2007.

[59] Paul Harmon. Business process change: A guide for business man-
agers and BPM and Six Sigma professionals. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2nd edition, 2007.
ISBN 9780123741523.

[60] Markus Hipp, Bela Mutschler, and Manfred Reichert. Nav-
igating in Process Model Collections: A New Approach In-
spired by Google Earth. In Florian Daniel, Kamel Barkaoui,
and Schahram Dustdar, editors, Business Process Management
Workshops, volume 100 of LNBIP, pages 87–98. Springer Berlin
Heidelberg, 2012. ISBN 978-3-642-28114-3. doi: 10.1007/
978-3-642-28115-0_9.

bibliography 245

[61] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns –
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
ISBN 0321200683.

[62] Constantin Houy, Peter Fettke, Peter Loos, W. M. P. van der
Aalst, and John Krogstie. BPM-in-the-Large - Towards a Higher
Level of Abstraction in Business Process Management. In Mar-
ijn Janssen, Winfried Lamersdorf, Jan Pries-Heje, and Michael
Rosemann, editors, E-Government, E-Services and Global Proces-
ses, volume 334 of IFIP Advances in Information and Communica-
tion Technology, pages 233–244. Springer Berlin Heidelberg, 2010.
ISBN 978-3-642-15345-7. doi: 10.1007/978-3-642-15346-4_19.

[63] Dina Jacobs, Paula Kotzé, and Alta Van Der Merwe. Towards an
enterprise repository framework. In 1st International Workshop
on Advanced Enterprise Repositories, pages 77–89, 2009.

[64] Jae-yoon Jung, Joonsoo Bae, and Ling Liu. Hierarchical Busi-
ness Process Clustering. 2008 IEEE International Conference on
Services Computing, 2:613–616, 2008. doi: 10.1109/SCC.2008.69.

[65] Richard M. Karp and Raymond E. Miller. Parallel program
schemata. Journal of Computer and System Sciences, 3(2):147–195,
May 1969. ISSN 00220000. doi: 10.1016/S0022-0000(69)80011-5.

[66] G Keller, M Nüttgens, and A.-W. Scheer. Semantische Prozess-
modellierung auf der Grundlage “Ereignisgesteuerter Prozess-
ketten (EPK)”, 1992.

[67] Mark Klein and Claudio Petti. A handbook-based method-
ology for redesigning business processes. Knowledge and Pro-
cess Management, 13(2):108–119, 2006. ISSN 1099-1441. doi:
10.1002/kpm.248.

[68] David Knuplesch, Rüdiger Pryss, and Manfred Reichert. A
Formal Framework for Data-Aware Process Interaction Models.
Technical Report UIB-2012-06, University of Ulm, Ulm, 2012.
URL http://dbis.eprints.uni-ulm.de/860/.

[69] David Knuplesch, Rüdiger Pryss, and Manfred Reichert. Data-
aware interaction in distributed and collaborative workflows:
Modeling, semantics, correctness. In Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), 2012
8th International Conference on, pages 223–232, 2012.

[70] George Koliadis, Aditya K Ghose, and Srinivas Padmanab-
huni. Towards an Enterprise Business Process Architecture
Standard. Services, IEEE Congress on, 0:239–246, 2008. doi: http:
//doi.ieeecomputersociety.org/10.1109/SERVICES-1.2008.60.

http://dbis.eprints.uni-ulm.de/860/

246 bibliography

[71] Matthias Kunze, Alexander Luebbe, Matthias Weidlich, and
Mathias Weske. Towards Understanding Process Modeling -
The Case of the BPM Academic Initiative. In Remco M Dijkman,
Jörg Hofstetter, and Jana Koehler, editors, BPMN, volume 95 of
LNBIP, pages 44–58. Springer, 2011. ISBN 978-3-642-25159-7.

[72] Matthias Kunze, Philipp Berger, and Mathias Weske. BPM Aca-
demic Initiative – Fostering Empirical Research. In Demo Ses-
sions of the 10th International Conference on Business Process Man-
agement, 2012.

[73] Vera Künzle and Manfred Reichert. PHILharmonicFlows: to-
wards a framework for object-aware process management. Jour-
nal of Software Maintenance and Evolution: Research and Practice,
23(4):205–244, 2011. ISSN 1532-0618. doi: 10.1002/smr.524.

[74] Marcello La Rosa, H M Arthur, Lijie Efficient, Tao Jin, Jianmin
Wang, La Rosa, and Marcello La. Efficient and Accurate Re-
trieval of Business Process Models through Indexing. Computers
in Industry, 2010.

[75] Marcello La Rosa, Hajo A. Reijers, W. M. P. van der Aalst,
Remco M. Dijkman, Jan Mendling, Marlon Dumas, and Lu-
ciano García-Bañuelos. APROMORE: An advanced process mo-
del repository. Expert Systems with Applications, 38(6):7029–7040,
June 2011. ISSN 09574174. doi: 10.1016/j.eswa.2010.12.012.

[76] Mikael Lind and Göran Goldkuhl. Generic Layered Patterns
for Business Modelling. In Proceedings of the Sixth International
Workshop on the Language-Action Perspective on Communication
Modelling, 2001.

[77] Rong Liu, Frederick Y Wu, and Santhosh Kumaran. Transform-
ing Activity-Centric Business Process Models into Information-
Centric Models for SOA Solutions. J. Database Manag., 21(4):
14–34, 2010.

[78] Niels Lohmann. Correctness of Services and their Composition.
PhD thesis, TU Eindhoven, 2010.

[79] Niels Lohmann, Peter Massuthe, and Karsten Wolf. Operating
Guidelines for Finite-State Services. In Jetty Kleijn and Alex
Yakovlev, editors, Petri Nets and Other Models of Concurrency
- ICATPN 2007, volume 4546 of LNCS, pages 321–341, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-
73093-4. doi: 10.1007/978-3-540-73094-1_20.

[80] Niels Lohmann, H. M. W. Verbeek, and Remco M. Dijkman.
Petri Net Transformations for Business Processes — A Survey.
In Kurt Jensen and Wil M Aalst, editors, Transactions on Petri

bibliography 247

Nets and Other Models of Concurrency II, pages 46–63. Springer,
Berlin, Heidelberg, 2009. ISBN 978-3-642-00898-6. doi: http:
//dx.doi.org/10.1007/978-3-642-00899-3_3.

[81] Alexander Lübbe and Sven Schnägelberger. BPM & O Tool-
marktmonitor 2014 - Marktübersicht zu BPM Software für De-
sign & Analyse von Geschäftsprozessen. Technical report, BPM
& O, 2014.

[82] Zhilei Ma, Branimir Wetzstein, Darko Anicic, and Stijn Hey-
mans. Semantic Business Process Repository. In Workshop on
Semantic Business Process and Product Lifecycle Management SBPM
2007, 2007.

[83] Harry Maddern, Philip Andrew Smart, Roger S Maull, and
Stephen Childe. End-to-end process management: implications
for theory and practice. Production Planning & Control, 0(0):1–19,
2013. doi: 10.1080/09537287.2013.832821.

[84] Monika Malinova and Jan Mendling. The Effect Of Process
Map Design Quality On Process Management Success. ECIS
2013 Completed Research, 2013.

[85] Monika Malinova, Henrik Leopold, and Jan Mendling. An Em-
pirical Investigation on the Design of Process Architectures. In
Wirtschaftsinformatik Proceedings, pages 1197–1211, 2013.

[86] Thomas W Malone, Kevin Crowston, and George A Herman.
Organizing Business Knowledge: The MIT Process Handbook, vol-
ume 22 of MIT Press Books. The MIT Press, 2003. ISBN
0262134292. doi: 10.1111/j.0737-6782.2005.116_4.x.

[87] Ronny Mans and N C Russell. Supporting Healthcare Processes
with YAWL4Healthcare. BPM Demos, 2011. URL http://wwwis.

win.tue.nl/\simwvdaalst/publications/p654.pdf.

[88] Ronny S. Mans. Workflow Support for the Healthcare Domain. PhD
thesis, TU Eindhoven, eindhoven, 2011.

[89] Ronny S. Mans, Nick C. Russel, and Wil M. P. van der Aalst.
Inter-workflow support. 2010. URL http://bpmcenter.org/

wp-content/uploads/reports/2010/BPM-10-10.pdf.

[90] Axel Martens. On compatibility of web services. 10th. Workshop
on Algorithms and Tools for Petri Nets (AWPN 2003), 65(12-20):100,
2003.

[91] Axel Martens. Analyzing web service based business proces-
ses. Fundamental Approaches to Software Engineering, pages 19–33,
2005.

http://wwwis.win.tue.nl/$\sim $wvdaalst/publications/p654.pdf
http://wwwis.win.tue.nl/$\sim $wvdaalst/publications/p654.pdf
http://bpmcenter.org/wp-content/uploads/reports/2010/BPM-10-10.pdf
http://bpmcenter.org/wp-content/uploads/reports/2010/BPM-10-10.pdf

248 bibliography

[92] Peter Massuthe. Operating Guidelines for Services. PhD thesis,
Humboldt University, Berlin, 2009.

[93] Peter Massuthe and K Schmidt. Operating guidelines - an
automata-theoretic foundation for the service-oriented archi-
tecture. In Quality Software, 2005. (QSIC 2005). Fifth Inter-
national Conference on, pages 452–457, September 2005. doi:
10.1109/QSIC.2005.47.

[94] Peter Massuthe, Wolfgang Reisig, and Karsten Schmidt. An Op-
erating Guideline Approach to the SOA. ANNALS OF MATHE-
MATICS, COMPUTING & TELEINFORMATICS, 1:35–43, 2005.

[95] Peter Massuthe, Alexander Serebrenik, Natalia Sidorova, and
Karsten Wolf. Can I find a partner? Undecidability of part-
ner existence for open nets. Inf. Process. Lett., 108(6):374–378,
November 2008. ISSN 0020-0190. doi: 10.1016/j.ipl.2008.07.006.

[96] Joachim Melcher and Detlef Seese. Visualization and Clustering
of Business Process Collections Based on Process Metric Values.
In 2008 10th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing, pages 572–575. IEEE, Septem-
ber 2008. ISBN 978-0-7695-3523-4. doi: 10.1109/SYNASC.2008.
37.

[97] Jan Mendling. Metrics for Process Models: Empirical Foundations
of Verification, Error Prediction, and Guidelines for Correctness, vol-
ume 6 of LNBIP. Springer, 2008. ISBN 978-3-540-89223-6.

[98] Jan Mendling. Empirical Studies in Process Model Verification.
In Kurt Jensen and Wil M Aalst, editors, Transactions on Petri
Nets and Other Models of Concurrency II, chapter Empirical, pages
208–224. Springer-Verlag, Berlin, Heidelberg, 2009. ISBN 978-3-
642-00898-6. doi: 10.1007/978-3-642-00899-3_12.

[99] Jan Mendling, W. M. P. van der Aalst, Boudewijn F Van Dongen,
and H. M. W. Verbeek. Errors in the SAP Reference Model.
BPTrends, 4(6):1–5, 2006.

[100] Jan Mendling, Hajo A Reijers, and Jan Recker. Activity Labeling
in Process Modeling: Empirical Insights and Recommendations.
Inf. Syst., 35(4):467–482, 2010.

[101] Jan Mendling, Hajo A. Reijers, and W. M. P. van der Aalst.
Seven Process Modeling Guidelines (7PMG). Information and
Software Technology, 52(2):127–136, 2010. ISSN 0950-5849. doi:
10.1016/j.infsof.2009.08.004.

[102] Andreas Meyer and Mathias Weske. Weak Conformance be-
tween Process Models and Synchronized Object Life Cycles.

bibliography 249

In Xavier Franch, AdityaK. Ghose, GraceA. Lewis, and Sami
Bhiri, editors, Service-Oriented Computing, volume 8831 of LNCS,
pages 359–367. Springer Berlin Heidelberg, 2014. ISBN 978-3-
662-45390-2. doi: 10.1007/978-3-662-45391-9_25.

[103] Andreas Meyer, Luise Pufahl, Dirk Fahland, and Mathias We-
ske. Modeling and Enacting Complex Data Dependencies in
Business Processes. Technical Report 74, Hasso Plattner Insti-
tute at the University of Potsdam, 2013.

[104] Thomas Milde. Visualization of Business Process Architectures by.
PhD thesis, TU Eindhoven, 2013.

[105] Edgardo Moreira, Christian Fillies, Knowlogy Solutions Ag,
and Semtation Gmbh. A Business Process Analysis and Mod-
eling Architecture for E-Government. Technical report, AAAI,
2006.

[106] M Zur Muehlen, DE Wisnosky, and James Kindrick. Primi-
tives: design guidelines and architecture for BPMN models. In
Australasian Conference on Information Systems (ACIS), Brisbane,
2010.

[107] Michael Zur Muehlen and Jan Recker. How Much Language Is
Enough? Theoretical and Practical Use of the Business Process
Modeling Notation. In Proceedings of the 20th international con-
ference on Advanced Information Systems Engineering, CAiSE ’08,
pages 465–479, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
978-3-540-69533-2. doi: 10.1007/978-3-540-69534-9_35.

[108] Dominic Müller, Manfred Reichert, and Joachim Herbst. Data-
driven Modeling and Coordination of Large Process Structures.
In OTM 2007, volume 4803 of LNCS, pages 131–149. Springer,
November 2007.

[109] Richard Müller and Andreas Rogge-Solti. BPMN for Healthcare
Processes. In Daniel Eichhorn, Agnes Koschmider, and Huayu
Zhang, editors, Proceedings of the 3rd Central-European Workshop
on Services and their Composition, ZEUS 2011, Karlsruhe, Germany,
February 21–22, 2011, volume 705 of CEUR Workshop Proceedings,
pages 65–72. CEUR-WS.org, 2011.

[110] Tadao Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, April 1989. ISSN 00189219.
doi: 10.1109/5.24143.

[111] A Nigam and N S Caswell. Business artifacts: An approach
to operational specification. IBM Systems Journal, 42(3):428–445,
2003.

250 bibliography

[112] Object Management Group (OMG). Business Process Model
and Notation (BPMN) V.2.0. Technical report, OMG, 2011.

[113] Victor Pankratius and Wolffried Stucky. A formal foundation
for workflow composition, workflow view definition, and work-
flow normalization based on petri nets. In Proceedings of the
2nd Asia-Pacific conference on Conceptual modelling - Volume 43,
APCCM ’05, pages 79–88, Darlinghurst, Australia, Australia,
2005. Australian Computer Society, Inc. ISBN 1-920-68225-2.

[114] Susanne Patig, Vanessa Casanova-Brito, and Barbara Vögeli. IT
Requirements of Business Process Management in Practice – An
Empirical Study. In Richard Hull, Jan Mendling, and Stefan
Tai, editors, Business Process Management, volume 6336 of LNCS,
pages 13–28. Springer Berlin / Heidelberg, 2010.

[115] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. The
Triconnected Abstraction of Process Models. In Umeshwar
Dayal, Johann Eder, Jana Koehler, and HajoA. Reijers, editors,
Business Process Management, volume 5701 of LNCS, pages 229–
244. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-03847-1.
doi: 10.1007/978-3-642-03848-8_16.

[116] Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske. On
Application of Structural Decomposition for Process Model Ab-
straction. In International Conference on Business Process and Ser-
vices Computing, pages 110–122, 2009.

[117] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Sim-
plified Computation and Generalization of the Refined Process
Structure Tree. In Mario Bravetti and Tevfik Bultan, editors, Web
Services and Formal Methods, volume 6551 of LNCS, pages 25–41.
Springer Berlin Heidelberg, 2011. ISBN 978-3-642-19588-4. doi:
10.1007/978-3-642-19589-1_2.

[118] Frank Puhlmann and Mathias Weske. Interaction Soundness
for Service Orchestrations. In Asit Dan and Winfried Lamers-
dorf, editors, Service-Oriented Computing - ICSOC 2006, volume
4294 of LNCS, pages 302–313. Springer Berlin Heidelberg, 2006.
ISBN 978-3-540-68147-2. doi: 10.1007/11948148_25.

[119] Corina Raduescu, Hui Min Tan, Malini Jayaganesh, Wasana
Bandara, Michael zur Muehlen, and Sonia Lippe. A framework
of issues in large process modeling projects. In Jan Ljungberg
and Magnus Andersson, editors, Proceedings of the Fourteenth
European Conference on Information Systems, ECIS 2006, Göteborg,
Sweden, 2006, pages 1594–1605, 2006.

bibliography 251

[120] Jan Recker. Opportunities and constraints: the current struggle
with BPMN. Business Process Management Journal, 16(1):181–201,
2010. ISSN 1463-7154. doi: 10.1108/14637151011018001.

[121] Manfred Reichert, Jens Kolb, Ralph Bobrik, and Thomas Bauer.
Enabling Personalized Visualization of Large Business Proces-
ses through Parameterizable Views. In 27th ACM Symposium
On Applied Computing (SAC’12), 9th Enterprise Engineering Track
(EE’12), pages 1653–1660. ACM Press, March 2012.

[122] H. a. Reijers, J. Mendling, and R. M. Dijkman. Human and
automatic modularizations of process models to enhance their
comprehension. Information Systems, 36:881–897, 2011. ISSN
03064379. doi: 10.1016/j.is.2011.03.003.

[123] Hajo A. Reijers, Ronny S. Mans, and Robert A. van der Toorn.
Improved model management with aggregated business pro-
cess models. Data & Knowledge Engineering, 68(2):221–243, 2009.
ISSN 0169-023X. doi: http://dx.doi.org/10.1016/j.datak.2008.
09.004.

[124] Michael Rosemann. Potential pitfalls of process modeling: part
A. Business Process Management Journal, 12(2):249–254, March
2006. ISSN 1463-7154. doi: 10.1108/14637150610657567.

[125] Michael Rosemann. Potential pitfalls of process modeling: part
B. Business Process Management Journal, 12(3):377–384, 2006.
ISSN 1463-7154. doi: 10.1108/14637150610668024.

[126] Andreas Rulle and Juliane Siegeris. From a Family of State-
Centric PAIS to a Configurable and Parameterized Business Pro-
cess Architecture. In Shazia Sadiq, Pnina Soffer, and Hagen
Völzer, editors, Business Process Management, volume 8659 of
LNCS, pages 333–348. Springer International Publishing, 2014.
ISBN 978-3-319-10171-2. doi: 10.1007/978-3-319-10172-9_21.

[127] August-Wilhelm Scheer. ARIS - Business Process Modeling: Busi-
ness Process Modeling. Springer, 3rd edition, 2000. ISBN 978-3-
540-65835-1.

[128] August-Wilhelm Scheer, Markus Nüttgens, W. M. P. van der
Aalst, Jörg Desel, and Andreas Oberweis. ARIS Architecture
and Reference Models for Business Process Management. In
Wil Aalst, Jörg Desel, and Andreas Oberweis, editors, Busi-
ness Process Management, volume 1806 of LNCS, pages 376–
389, Berlin, Heidelberg, March 2000. Springer Berlin Heidelberg.
ISBN 978-3-540-67454-2. doi: 10.1007/3-540-45594-9.

[129] August-Wilhelm Scheer, Oliver Thomas, and Otmar Adam. Pro-
cess Modeling Using Event-Driven Process Chains. In Process

252 bibliography

Aware Information Systems: Bridging People and Software Through
Process Technology., pages 119–146. Wiley Publishing, 2005. ISBN
9780471663065.

[130] Hermann J. Schmelzer and Wolfgang Sesselmann. Business
Process Management in Praxis (Geschäftsprozessmanagement in der
Praxis). Hanser Fachbuch, 3rd edition, 2003. ISBN 978-
3446222984.

[131] Karsten Schmidt. Model-Checking with Coverability Graphs.
Formal Methods in System Design, 15(3):239–254, 1999. ISSN 0925-
9856. doi: 10.1023/A:1008753219837.

[132] Karsten Schmidt. LoLA: A Low Level Analyser. In ICATPN
2000, International Conference on Theory and Application of Petri
nets, pages 465–474, 2000.

[133] SCOR. Supply Chain Operations Reference Model (SCOR 11.0).
APICS Supply Chain Council, Inc., 2012. ISBN 0615202594. URL
https://supply-chain.org/scor/11.

[134] Khurram Shahzad, Birger Andersson, Maria Bergholtz, Ananda
Edirisuriya, Tharaka Ilayperuma, Prasad Jayaweera, and Paul
Johannesson. Elicitation of Requirements for a Business Pro-
cess Model Repository. In Danilo Ardagna, Massimo Mecella,
and Jian Yang, editors, Business Process Management Workshops,
volume 17 of LNBIP, pages 44–55. Springer Berlin Heidelberg,
2009. ISBN 978-3-642-00327-1. doi: 10.1007/978-3-642-00328-8_
5.

[135] Sergey Smirnov. Structural Aspects of Business Process Dia-
gram Abstraction. In Commerce and Enterprise Computing, 2009.
CEC ’09. IEEE Conference on, pages 375–382, July 2009. doi:
10.1109/CEC.2009.18.

[136] Sergey Smirnov. Business Process Model Abstraction. PhD thesis,
University of Potsdam, Potsdam, 2011.

[137] Sergey Smirnov, Remco M. Dijkman, Jan Mendling, Mathias
Weske, Jeffrey Parsons, Motoshi Saeki, Peretz Shoval, Carson
Woo, and Yair Wand. Meronymy-Based Aggregation of Ac-
tivities in Business Process Models. In Jeffrey Parsons, Moto-
shi Saeki, Peretz Shoval, Carson Woo, and Yair Wand, editors,
Conceptual Modeling, volume 6412 of LNCS, pages 1–14, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-
16372-2. doi: 10.1007/978-3-642-16373-9.

[138] Sergey Smirnov, Hajo A. Reijers, Thijs Nugteren, and Mathias
Weske. Business process model abstraction: theory and prac-
tice. Technical report, Hasso Plattner Institute, University of
Potsdam, 2010.

https://supply-chain.org/scor/11

bibliography 253

[139] Sergey Smirnov, Matthias Weidlich, and Jan Mendling. Busi-
ness Process Model Abstraction Based on Behavioral Profiles.
In Paul P Maglio, Mathias Weske, Jian Yang, and Marcelo Fanti-
nato, editors, Service-Oriented Computing, volume 6470 of LNCS,
pages 1–16. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-
17357-8. doi: 10.1007/978-3-642-17358-5_1.

[140] Sergey Smirnov, Hajo A. Reijers, and Mathias Weske. A se-
mantic approach for business process model abstraction. In Ad-
vanced Information Systems Engineering, pages 497–511. Springer,
2011.

[141] Sergey Smirnov, HajoA. A. Reijers, Mathias Weske, and Thijs
Nugteren. Business process model abstraction: a definition, cat-
alog, and survey. Distributed and Parallel Databases, 30(1):63–99,
2012. ISSN 0926-8782. doi: 10.1007/s10619-011-7088-5.

[142] Biplav Srivastava and Debdoot Mukherjee. Organizing Doc-
umented Processes. Services Computing, IEEE International
Conference on, 0:25–32, September 2009. doi: http://doi.
ieeecomputersociety.org/10.1109/SCC.2009.32.

[143] Thomas Tullis and William Albert. Measuring the User Experi-
ence. Collecting, Analyzing, and Presenting Usability Metric. Mor-
gan Kaufmann, 2008.

[144] Moe Tut, David Edmond, Christoph Bussler, Richard Hull,
Sheila McIlraith, Maria Orlowska, Barbara Pernici, and Jian
Yang. The Use of Patterns in Service Composition. In
Christoph Bussler, Richard Hull, Sheila McIlraith, Maria E.
Orlowska, Barbara Pernici, and Jian Yang, editors, WES, vol-
ume 2512 of LNCS, pages 28–40, Berlin, Heidelberg, December
2002. Springer Berlin Heidelberg. ISBN 978-3-540-00198-0. doi:
10.1007/3-540-36189-8.

[145] Antti Valmari. The State Explosion Problem. In Lectures on
Petri Nets I: Basic Models, Advances in Petri Nets, volume 1491 of
LNCS, pages 429–528, London, UK, UK, 1998. Springer. ISBN
3-540-65306-6.

[146] W. M. P. van der Aalst. Verification of workflow nets. In Pierre
Azéma and Gianfranco Balbo, editors, Application and Theory of
Petri Nets 1997, volume 1248 of LNCS, pages 407–426. Springer
Berlin Heidelberg, 1997. ISBN 978-3-540-63139-2. doi: 10.1007/
3-540-63139-9_48.

[147] W. M. P. van der Aalst. The Application of Petri Nets to Work-
flow Management. Journal of Circuits, Systems and Computers, 08

(01):21–66, 1998. doi: 10.1142/S0218126698000043.

254 bibliography

[148] W. M. P. van der Aalst. Formalization and verification of event-
driven process chains. Information and Software Technology, 41

(10):639–650, 1999. ISSN 0950-5849. doi: 10.1016/S0950-5849(99)
00016-6.

[149] W. M. P. van der Aalst and Kees Max van Hee. Workflow man-
agement: models, methods, and systems. The MIT press, 2004.

[150] W. M. P. van der Aalst and Mathias Weske. The P2P ap-
proach to Interorganizational Workflows. In K. Dittrich, A. Gep-
pert, and M. Norrie, editors, LNCS: Proceedings of the 13th In-
ternational Conference on Advanced Information Systems Engineer-
ing (CAiSE’01), volume 2068, pages 140–156. Springer-Verlag,
Berlin, 2001.

[151] W. M. P. van der Aalst, P Barthelmess, C. A. Ellis, and J. Wainer.
Workflow modeling using proclets. Cooperative Information Sys-
tems, pages 198–209, 2000.

[152] W. M. P. van der Aalst, P Barthelmess, C. A. Ellis, and J. Wainer.
Proclets: A Framework for Lightweight Interacting Workflow
Processes. International Journal of Cooperative Information Systems,
10(04):443–481, 2001. doi: 10.1142/S0218843001000412.

[153] W. M. P. van der Aalst, A H M ter Hofstede, B Kiepuszewski,
and A P Barros. Workflow Patterns. Distributed and Parallel
Databases, 14(1):5–51, 2003. ISSN 0926-8782. doi: 10.1023/A:
1022883727209.

[154] W. M. P. van der Aalst, Ronny Mans, and N C Russell. Work-
flow Support Using Proclets : Divide , Interact , and Conquer
Limitations of Monolithic Workflows. Bulletin of the IEEE Com-
puter Society Technical Committee on Data Engineering, pages 1–7,
2009.

[155] W. M. P. van der Aalst, Arjan Mooij, Christian Stahl, Karsten
Wolf, Marco Bernardo, Luca Padovani, and Gianluigi Zavat-
taro. Service Interaction: Patterns, Formalization, and Anal-
ysis. Formal Methods for Web Services, 5569:42–88, 2009. doi:
10.1007/978-3-642-01918-0.

[156] W. M. P. van der Aalst, K. M. Hee, a. H. M. Hofstede, Natalia
Sidorova, H. M. W. Verbeek, M. Voorhoeve, and M. T. Wynn.
Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects of Computing, 23(3):333–363, August
2010. ISSN 0934-5043. doi: 10.1007/s00165-010-0161-4.

[157] W. M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Chris-
tian Stahl, and Karsten Wolf. Multiparty Contracts: Agree-
ing and Implementing Interorganizational Processes. The Com-

bibliography 255

puter Journal, 53(1):90–106, January 2010. doi: 10.1093/comjnl/
bxn064.

[158] Rob J. van Glabbeek and David G. Stork. Query Nets: Inter-
acting Workflow Modules That Ensure Global Termination. In
W.M.P. van der Aalst, editor, Business Process Management, vol-
ume 2678 of LNCS, pages 184–199. Springer Berlin / Heidel-
berg, 2003. ISBN 978-3-540-40318-0.

[159] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster
and More Focused Control-Flow Analysis for Business Pro-
cess Models Through SESE Decomposition. In BerndJ. Krämer,
Kwei-Jay Lin, and Priya Narasimhan, editors, Service-Oriented
Computing - ICSOC 2007, volume 4749 of LNCS, pages 43–55.
Springer Berlin Heidelberg, 2007. ISBN 978-3-540-74973-8. doi:
10.1007/978-3-540-74974-5_4.

[160] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The refined
process structure tree. Data & Knowledge EngineeringKnowledge
Engineering, 68(9):793–818, 2009. ISSN 0169-023X. doi: http://
dx.doi.org/10.1016/j.datak.2009.02.015.

[161] H. M. W. Verbeek, T. Basten, and W M P van der Aalst. Di-
agnosing Workflow Processes using Woflan. The Computer
Journal, 44(4):246–279, 2001. ISSN 0010-4620, 1460-2067. doi:
10.1093/comjnl/44.4.246.

[162] Matthias Weidlich, Artem Polyvyanyy, Nirmit Desai, and Jan
Mendling. Process compliance measurement based on be-
havioural profiles. In Proceedings of the 22nd international con-
ference on Advanced information systems engineering, CAiSE’10,
pages 499–514, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN
3-642-13093-3, 978-3-642-13093-9.

[163] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient
consistency measurement based on behavioral profiles of pro-
cess models. IEEE Trans. Software Eng., 37(3):410–429, 2011.

[164] Daniela Weinberg. Efficient Controllability Analysis of Open
Nets. In Roberto Bruni and Karsten Wolf, editors, Web Ser-
vices and Formal Methods, volume 5387 of LNCS, pages 224–239.
Springer Berlin Heidelberg, 2009. ISBN 978-3-642-01363-8. doi:
10.1007/978-3-642-01364-5_14.

[165] Mathias Weske. Business Process Management: Concepts, Lan-
guages, Architectures. Springer, 2nd edition, 2012. ISBN
3540735216.

[166] Claes Wohlin, Per Runeson, Martin Hst, Magnus C Ohlsson,
Bjrn Regnell, and Anders Wessln. Experimentation in Software

256 bibliography

Engineering. Springer Berlin Heidelberg, 2012. ISBN 3642290434,
9783642290435.

[167] Karsten Wolf. Generating Petri net state spaces. Proceedings
Petri Nets ’07, pages 29–42, 2007. ISSN 03029743.

[168] Wolfang Reisig. Petrinetze: Modellierungstechnik, Analysemetho-
den, Fallstudien. Leitfäden der Informatik. Vieweg+Teubner, 1

edition, 2010.

[169] Zhiqiang Yan and Paul Grefen. A Framework for Business Pro-
cess Model Repositories. In Michael zur Muehlen and Jianwen
Su, editors, Business Process Management Workshops, volume 66

of LNBIP, pages 559–570. Springer, 2011. ISBN 978-3-642-20510-
1. doi: 10.1007/978-3-642-20511-8_51.

[170] Zhiqiang Yan, Remco M. Dijkman, and Paul Grefen. Business
Process Model Repositories - Framework and Survey. cms.

ieis.tue.nl/Beta/Files/WorkingPapers/Beta_wp292.pdf,
2009. URL cms.ieis.tue.nl/Beta/Files/WorkingPapers/

Beta_wp292.pdf.

[171] Zhiqiang Yan, Remco M. Dijkman, and Paul Grefen. Busi-
ness process model repositories - Framework and sur-
vey. Information and Software Technology, 54(4):380–395,
April 2012. ISSN 09505849. doi: 10.1016/j.infsof.2011.11.
005. URL http://www.sciencedirect.com/science/article/

pii/S0950584911002291.

[172] Robert K. Yin. Case study research: Design and methods, volume 5.
Sage Publications, Inc., 5th. edition, 2014.

[173] Sira Yongchareon, Chengfei Liu, and Xiaohui Zhao. A Frame-
work for Behavior-Consistent Specialization of Artifact-Centric
Business Processes. In BPM, pages 285–301. Springer, 2012.

[174] John A Zachman. A Framework for Information Systems Ar-
chitecture. IBM Syst. J., 26(3):276–292, September 1987. ISSN
0018-8670. doi: 10.1147/sj.263.0276.

[175] Xiaohui Zhao, Chengfei Liu, Yun Yang, and Wasim Sadiq.
CorPN: managing instance correspondence in collaborative
business processes. Distributed and Parallel Databases, 29

(4):309–332, March 2011. ISSN 0926-8782. doi: 10.1007/
s10619-011-7080-0.

cms.ieis.tue.nl/Beta/Files/WorkingPapers/Beta_wp292.pdf
cms.ieis.tue.nl/Beta/Files/WorkingPapers/Beta_wp292.pdf
cms.ieis.tue.nl/Beta/Files/WorkingPapers/Beta_wp292.pdf
cms.ieis.tue.nl/Beta/Files/WorkingPapers/Beta_wp292.pdf
http://www.sciencedirect.com/science/article/pii/S0950584911002291
http://www.sciencedirect.com/science/article/pii/S0950584911002291

	Title
	Imprint

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction & Background
	1 Introduction
	1.1 Business Process Management
	1.2 Business Process Architectures
	1.2.1 Motivational Use Cases

	1.3 Problem Statement
	1.4 Research Objective
	1.5 Scientific Contribution
	1.6 Outline of Thesis

	2 Preliminaries
	2.1 Business Process Orchestrations
	2.1.1 Process Model
	2.1.2 Data Aspects in Process Models
	2.1.3 Decomposition of Process Models

	2.2 Business Process Choreographies
	2.3 Business Process Model and Notation
	2.3.1 Business Process Diagrams
	2.3.2 Choreograhpy Diagrams
	2.3.3 Conversation Diagrams

	2.4 Event Driven Process Chains
	2.5 Petri nets
	2.5.1 Workflow nets
	2.5.2 Open nets
	2.5.3 Workflow modules

	2.6 Formal Analysis
	2.7 Summary

	3 Related Work
	3.1 Process Model Repositories
	3.2 Business Process Architecture Approaches
	3.3 Choreography Approaches on Model Level
	3.4 Business Process Model Abstraction
	3.5 Evaluation of Existing Approaches
	3.5.1 Hierarchical PA Classification Approaches Considering Single Processes
	3.5.2 Single Process Model Level Approaches for Visualization, Navigation, and Configuration
	3.5.3 Horizontal PA Approaches Considering Multiple Processes
	3.5.4 Detailed Process model Choreography (Multi-Process) Approaches with Formalism
	3.5.5 Observed Gaps

	3.6 Summary

	Conceptual Design
	4 Business Process Architecture
	4.1 Motivation
	4.2 Requirements for Business Process Architectures
	4.3 Assumptions
	4.4 Conceptual Definition
	4.5 Business Process Architecture Semantics
	4.5.1 Event Occurrence
	4.5.2 BPA Process Instantiation
	4.5.3 BPA Process Termination
	4.5.4 BPA Instantiation
	4.5.5 BPA Termination
	4.5.6 BPA Run
	4.5.7 Initialization of a BPA Run
	4.5.8 Termination of a BPA Run

	4.6 BPA Properties
	4.6.1 Structural BPA Properties
	4.6.2 Behavioral BPA Properties

	4.7 BPA Correctness Criteria
	4.8 Summary

	5 Business Process Architecture Behavior
	5.1 BPA Multiplicity Concepts
	5.2 Transforming Business Process Architectures
	5.3 Composition of nets
	5.4 Summary

	6 Business Process Architecture Analysis
	6.1 Structural BPA Analysis
	6.1.1 Basic Patterns
	6.1.2 Composite Patterns
	6.1.3 Multi-Instance Patterns
	6.1.4 Basic Anti-Patterns
	6.1.5 Composite Anti-Patterns
	6.1.6 Application of Pattern and Anti-Patterns Analysis

	6.2 Behavioral BPA Analysis
	6.2.1 General Analysis Procedure
	6.2.2 Analysis of Patterns and Anti-Patterns

	6.3 Analysis with Multiplicities
	6.4 Summary

	Extended Concepts and Application
	7 Business Process Architecture Methodology
	7.1 Business Process Architecture Methodology
	7.1.1 Business Process Architecture Top-Down Approach
	7.1.2 Business Process Architecture Bottom-Up Approach
	7.1.3 Maintenance of a Process Model Collection and Business Process Architectures

	7.2 BPA Extraction Algorithm
	7.2.1 Process Interdependencies in Process Model Collections
	7.2.2 BPMN 2.0 Model Collections
	7.2.3 EPC Model Collections
	7.2.4 Basic BPA Extraction Algorithm
	7.2.5 Complex Extractions
	7.2.6 Extended Extraction Approach

	7.3 From BPA to Business Process Models
	7.4 Summary

	8 Data Aspects in Business Process Architectures
	8.1 Data Scenario
	8.2 Annotating the Object Life Cycle
	8.3 Deriving the Process Data Relation Matrix
	8.3.1 Deriving Direct Data Interdependencis from the Data Object Life Cycle
	8.3.2 Process Data Relations
	8.3.3 Aggregation of Multiple Data Object Relations in a Process Data Relation Matrix

	8.4 Extracting the Data BPA
	8.4.1 From Object Life Cycles and Data Interdependencies to Control Flow
	8.4.2 From Activities to Events.

	8.5 Summary

	Evaluation and Conclusion
	9 Business Process Architecture Evaluation
	9.1 Conceptual Evaluation
	9.2 Implementation of a Business Process Architecture Tool
	9.2.1 A Platform for Research on Process Model Collections
	9.2.2 Business Process Architecture Analysis Module

	10 Conclusions
	10.1 Summary of Results
	10.2 Limitations and Discussion
	10.3 Future Research

	A Appendix
	Glossary
	Bibliography

