
Technische Berichte Nr. 99

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Efficient and
Scalable Graph View
Maintenance for
Deductive Graph
Databases based
on Generalized
Discrimination Networks
Thomas Beyhl, Holger Giese

ISBN 978-3-86956-339-8
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 99

Thomas Beyhl | Holger Giese

Efficient and Scalable Graph View Maintenance for
Deductive Graph Databases based on

 Generalized Discrimination Networks

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2015
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.
Druck: docupoint GmbH Magdeburg

ISBN 978-3-86956-339-8

Zugleich online veröffentlicht auf dem Publikationsserver der Universität Potsdam:
URN urn:nbn:de:kobv:517-opus4-79535
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79535

mailto:verlag@uni-potsdam.de

Graph databases provide a natural way of storing and querying graph data.
In contrast to relational databases, queries over graph databases enable to refer
directly to the graph structure of such graph data. For example, graph pattern
matching can be employed to formulate queries over graph data.

However, as for relational databases running complex queries can be very time-
consuming and ruin the interactivity with the database. One possible approach
to deal with this performance issue is to employ database views that consist of
pre-computed answers to common and often stated queries. But to ensure that
database views yield consistent query results in comparison with the data from
which they are derived, these database views must be updated before queries
make use of these database views. Such a maintenance of database views must be
performed efficiently, otherwise the effort to create and maintain views may not
pay off in comparison to processing the queries directly on the data from which
the database views are derived.

At the time of writing, graph databases do not support database views and are
limited to graph indexes that index nodes and edges of the graph data for fast
query evaluation, but do not enable to maintain pre-computed answers of complex
queries over graph data. Moreover, the maintenance of database views in graph
databases becomes even more challenging when negation and recursion have to be
supported as in deductive relational databases.

In this technical report, we present an approach for the efficient and scalable
incremental graph view maintenance for deductive graph databases. The main
concept of our approach is a generalized discrimination network that enables
to model nested graph conditions including negative application conditions and
recursion, which specify the content of graph views derived from graph data stored
by graph databases. The discrimination network enables to automatically derive
generic maintenance rules using graph transformations for maintaining graph
views in case the graph data from which the graph views are derived change. We
evaluate our approach in terms of a case study using multiple data sets derived
from open source projects.

5

Contents

1. Introduction 9
1.1. State of the Art . 10

1.2. Prerequisites . 11

1.3. Running Example . 14

1.4. Outline . 16

2. Needs and Requirements 17
2.1. Needs . 17

2.2. Requirements . 18

3. Overview 20
3.1. Graph Database . 21

3.2. View Definition . 22

3.3. View Maintenance Engine . 24

3.4. Query Engine . 26

4. View Definition Approach 27
4.1. View Reference Graph . 27

4.2. View Modules . 29

4.3. View Models . 30

4.4. View Query Language . 32

4.5. View Graphs . 34

4.6. Mapping Nested Conditions to View Models 35

4.7. Discussion . 41

5. Efficient and Scalable View Graph Maintenance 43
5.1. Traversing View Models . 44

5.2. Naive Batch Maintenance . 45

5.3. Batch Maintenance with Preservation 46

5.4. Incremental Black Box Maintenance 50

5.5. Incremental White Box Maintenance 55

5.6. Discussion . 57

7

Contents

6. Evaluation 58
6.1. Evaluation Setup . 58

6.2. Evaluation Results . 60

6.3. Evaluation Discussion . 67

6.4. Threats to Validity . 68

7. Related Work 69
7.1. Discrimination Networks . 69

7.2. Database View Maintenance . 74

7.3. Graph Indexing . 82

7.4. Graph Querying . 86

7.5. Incremental Model-Driven Engineering 88

7.6. Summary . 91

8. Conclusion and Future Work 93

References 94

A. Metamodel 104

B. View Graph Maintenance Algorithms 108
B.1. Naive Batch Maintenance . 108

B.2. Batch Maintenance with Preservation 110

B.3. Incremental Maintenance . 112

C. View Modules for Design Pattern Recovery 121

8

1. Introduction

Nowadays, graph data is ubiquitous and browsing these graph data is an elemen-
tary task to work with graph data. For example, users in social networks and their
relationships constitute a graph and a query that answers the cause of friendship
for two companioned users is an interesting and also complex query. Another
example is the domain of software engineering where abstract syntax graphs of
source code and models are queried for, e.g., employed software design patterns as
defined by Gamma et al. [23] to investigate software architectures or recommend
refactorings as proposed by Fowler [22] to improve the source code. Also queries
between graph data with different schemes are stated in practice. For example,
searching for chains of traceability links between graphs that represent require-
ment documents (e.g., SysML requirement models [65]), abstract syntax graphs of
models (e.g., UML class models [64]), and source code (e.g., Java source code).

In practice, graph databases provide a natural way of storing and querying
graph data. One advantage of this fact is that queries that process graph data can
refer directly to this graph structure. For example, graph pattern matching can be
employed to formulate queries over graph data. However, graph pattern matching
can be very time-consuming when the size of the graph data increases to a large
number of nodes and edges. For example, subgraph isomorphism testing used for
graph pattern matching is known to be NP-complete [18].

Furthermore, as for relational databases running complex queries always from
scratch although only few nodes and edges of the data graphs in the graph database
changed can be very inefficient. One possible approach to deal with this perfor-
mance issue is to employ database views that consist of pre-computed answers to
common and often stated queries. According to Gupta et al. [32] "a view [...] defines
a function from a set of base tables to a derived table" for relational databases. But, to
ensure that database views yield consistent query results in comparison with the
data from which they are derived database views must be updated before queries
make use of these database views. Gupta et al. [32] refer to "the process of updating
[...] views in response to changes to the underlying data [as] view maintenance". Such a
maintenance of views must be performed efficiently, otherwise the effort to create
and maintain such database views may not pay off in comparison to processing
the queries directly on the data from which database views are derived. Therefore,

9

1. Introduction

often incremental view maintenance is employed that "computes changes to a view in
response to changes to the base relations" [32] in case of relational databases.

Database views and view maintenance would be also beneficial for graph data-
bases. However, current graph databases do not support database views and are
limited to graph indexes that index nodes and edges of the graph data for fast
query evaluation, but do not enable to maintain pre-computed answers of complex
queries over graph data. Moreover, when views for graph databases have to be sup-
ported, several questions arise. What exactly is a view in graph databases (cf. [82])?
Which nodes and edges are included in views? Is a view in graph databases a
copy of subgraphs similar to copies of relations in relational databases? How are
dependencies between nodes in separate views of graph databases represented?

In this technical report, we present an approach for the efficient and scalable
incremental graph view maintenance for deductive graph databases. Our contribu-
tion is twofold. First, we present a view definition approach that enables to specify
views for graph databases in terms of discrimination networks using graph pat-
terns including positive application conditions, negative application conditions and
recursion. Second, we describe batch and incremental maintenance procedures that
maintain the content of derived views by (partially) re-executing the discrimination
network. The advantage of our approach is that the discrimination network enables
to automatically derive generic maintenance rules for maintaining graph views in
case the graph data from which the graph views are derived changed. We evaluate
our approach in terms of a case study using multiple data sets derived from open
source projects.

1.1. State of the Art

View maintenance has been employed for relational databases, e.g. snapshot [14],
deferred [13], and immediate [33] view maintenance. However, current graph
databases such as Neo4J1, AllegroGraph2, and InfiniteGraph3 do not provide a
concept for view definition and maintenance. In the best case, they support graph
indexes, which enable a fast query evaluation of nodes and edges that consist of
certain properties such as types or attribute values, but do not enable to define and
maintain views that keep ready answers for complex queries.

1http://neo4j.com (last access: April 28th
2015).

2http://franz.com/agraph/allegrograph/ (last access: April 28th
2015).

3http://www.infinitegraph.com (last access: April 28th
2015).

10

http://neo4j.com
http://franz.com/agraph/allegrograph/
http://www.infinitegraph.com

1.2. Prerequisites

For view maintenance of relational databases, discrimination networks such
as RETE [21], TREAT [61], and Gator [37] have been used to enable incremental
view maintenance. However, to the best of our knowledge no approach exists that
employs discrimination networks for the incremental view maintenance of graph
databases.

Graph query approaches such as model search approaches (e.g. Moogle [56])
create search indexes. However, they do not consider the maintenance of the search
index when the indexed models change and do not enable arbitrary views.

Other approaches such as VIATRA 2 [6] and EMF-IncQuery [5] enable incre-
mental graph pattern matching by mapping graph patterns to relational tuples
for making use of RETE [21]. However, Hanson et al. [37] have shown that RETE
networks are not optimal in all cases and generalized discrimination networks such
as Gator networks [37] can perform better.

We give a detailed discussion of related work in Sec. 7.

1.2. Prerequisites

In this section, we introduce the terminology used in the remainder of this technical
report. We adapt the terminology from related work about relational and graph
databases.

According to Barcelo et al. [4] a graph database is a graph. However, for this
technical report we extend this simple definition and refer to the term graph database
as set of multiple (possibly independent) data graphs. Data graphs are complex
structures that consist of nodes, edges between nodes, and attributes that belong
to nodes and consist of certain attribute values. In our technical report, we adapt
to the definition of Fan et al. [19].

Definition 1. A data graph is a directed graph G = (N, E, fA), where N is a finite
set of nodes, E ✓ N ⇥ N is a finite set of edges, in which (n, n

0
) denotes an edge

from node n to n
0 , and fA(n) is a function such that for each node n 2 N fA(n) is

a tuple (A1 = a1, ..., Am = am), where ai is an attribute value, and Ai is referred to
as an attribute of n, written as n.Ai = ai.

We extend the definition of Fan et al. [19] and adapt a definition of Jouault et al. [44],
who define that nodes and edges in the data graph consist of a type that are defined
by a reference graph.

Definition 2. A data graph G = (N, E, fA) is associated with a reference graph
Gw = (Nw, Ew, µ). The function µ : N [E ! Nw associates nodes and edges of G
to nodes Nw of Gw.

11

1. Introduction

Jouault et al. [44] also call the data graph a model and the reference graph a
metamodel. Furthermore, a model must conform to its metamodel. In summary, we
define graph databases as graph data that consist of multiple possibly independent
data graphs with possibly different reference graphs.

Definition 3. A graph database is a set GDB = {G1, ..., Gn} of possibly independent
data graphs Gi with possibly different reference graphs Gwi .

We distinguish data graphs stored by graph databases into two categories named
database base graphs and database view graphs. A database base graph (base graph
for short) (cf. [14]) is a data graph that conforms to a base reference graph and
represents atomic data stored by graph databases. Base graphs are not derived from
other data graphs.

Definition 4. A base graph is a data graph B = (NB, EB, fA) that conforms to a base
reference graph Bw = (NwB , EwB , µ) with function µ associating nodes NB and
edges EB of B to nodes NwB of Bw.

A database view graph (view graph for short) is a data graph that conforms to
a view reference graph and is derived from base graphs and/or view graphs of a
graph database (cf. [14]) with the help of a database view definition.

Definition 5. A view graph is a data graph V = (NV , EV , fA) that conforms to a
view reference graph Vw = (NwV , EwV , µ) with function µ associating nodes NV

and edges EV of V to nodes NwV of Vw. A view reference graph extends a base
reference graph by additional nodes NwB ✓ NwV and edges EwB ✓ EwV . Therefore,
view graphs can consist of nodes and edges that do not conform to a node in the
base reference graph.

A database view definition (view definition for short) describes how to derive
graph data from other data graphs. Therefore, a view definition is also considered
as graph query over a set of base graphs and/or view graphs for deriving new
view graphs. Such view definitions often describe sub-queries that are required for
common, complex and often stated queries by users of the graph database, later
on. Note that a view definition can exploit at once multiple base and/or already
derived view graphs specified by other view definitions.

Definition 6. A view definition d employs a graph query Q over a set of base graphs
and/or view graphs BV = {B1, . . . , Bn, V1, . . . , Vm} to derive a new view graph

Vm+1. We write d : BV
Q! Vm+1.

According to Barcelo et al. [4] "graph patterns can naturally be viewed as [graph]
queries" for searching graph databases. Thus, graph patterns are employed to for-
mulate graph queries, in practice. According to Fan et al. [19] graph patterns are

12

1.2. Prerequisites

graphs that define which kinds of nodes and edges belong to the subgraphs that
database users wants to find in data graphs. We adapt the graph pattern definition
of Fan et al. [19].

Definition 7. A graph pattern P = (NP, EP, pN) consists of a finite set of nodes
NP and finite set of edges EP as defined for data graphs. The function pN defines
that for each node n in NP pN(n) is a predicate of n. This predicate is defined as
conjunction of atomic formulas A op a with A denoting an attribute, a denoting an
attribute value, and op referring to a comparison operator. The graph pattern P is
associated with a reference graph Pw = (Nw, Ew, µ). The function µ : NP [EP !
Nw associates nodes NP and edges EP of P to nodes Nw of Pw.

Typically graph queries employ a graph pattern and return a set of subgraphs
that match the employed graph pattern as query result. In practice, graph pat-
tern matching is employed to answer graph queries in terms of graph patterns.
Fan et al. [19] state that graph pattern matching "is typically defined in terms of
subgraph isomorphism". In case of graph databases "it is to find all subgraphs [in the
data graphs] that are isomorphic to the graph pattern" [19].

Definition 8. A graph query Q employs a graph pattern P and returns all subgraphs
that match graph pattern P as query result Q(P) = {M1, ..., Mn}. We call Mi a
match for graph pattern P over the set of base graphs and view graphs BV in the
graph database.

Graph query results in terms of matches for graph patterns can be either persisted
as view graphs or computed on demand when a database user refers to this view
graph when stating a graph query. We refer to the term materialized view graph
when view graphs are persisted (cf. [32]) and use the term virtual view graph when
the view graph is computed on demand, because the view graph is not persisted
(cf. [14]). For that purpose, each view definition defines whether its query result is
materialized or not.

Definition 9. A view definition d 2 D consists of a function mat : D ! {0, 1}
that describes whether its derived view graph is either materialized mat(d) = 1 or
virtual mat(d) = 0.

Materialized view graphs are consistent with the base graphs from which they
are derived when every graph query yields the same result when executed on the
view graph and base graph (cf. [14]). Virtual view graphs are always consistent
with the base graphs from which they are derived, because virtual view graphs are
computed when the database user states a graph query that refers to this virtual
view graph.

13

1. Introduction

Definition 10. A view graph V is consistent with a base graph B from which view
graph V is derived by a view definition that performs graph query Q, if and only
if, each graph query Q over the derived view graph V yields the same query result
as graph query Q over base graph B from which V is derived.

1.3. Running Example

An appropriate running example should provide large-scale graphs that enable
multiple dependent and complex view definitions. Furthermore, along with large-
scale graphs a real history of changes should be provided. Therefore, our running
example deals with abstract syntax graphs derived from source code of open
source projects and employs queries for software design pattern recovery. We use
the version control history of the source code to derive real changes of the abstract
syntax graphs. We have chosen abstract syntax graphs of source code, because
these graphs are complex, consist of many kinds of nodes and edges, and can
be easily derived from source code. We have chosen to employ the recovery of
software design patterns as queries and views, respectively. As Gamma et al. [23]
conveys certain software design patterns are suited for different software design
challenges. The recovery of such software design patterns is a difficult task due
to the number of different software design patterns, differences in programming
languages and since even different implementation variants exist. Therefore, main-
taining occurrences of such software design patterns in abstract syntax graphs in
terms of view graphs can be beneficial when querying software design patterns
in abstract syntax graphs. These view graphs are derived from base graphs (i.e.
abstract syntax graphs of source code) with the help of view definitions.

In our running example, we setup a graph database that consists of abstract
syntax graphs derived from source code as well as view graphs that contain graph
pattern matches that describe the occurrences of software design patterns within
these abstract syntax graphs. The right hand side of Fig. 1.1 depicts dependencies
between different view definitions. The ellipses in Fig. 1.1 denote view definitions
and the edges describe the dependencies between them. Each of these view defini-
tions derives a view graph that contains markers for graph pattern matches, which
can be reused by multiple dependent view definitions.

The left hand side of Fig. 1.1 shows that the Composite software design pat-
tern is characterized by two structural properties. First, the Composite class is a
specialization of the Component class. And second, the Composite class owns a
to-many association with the Component class as target. Both structural properties
are required pre-conditions for the recovery of Composite software design pat-

14

1.3. Running Example

terns. Thus, view definitions are required that describe how to derive view graphs
about Generalizations and One-To-N-Associations. These view definitions are
reused by the view definition that derives a view graph about the occurrences
of Composite design patterns. Furthermore, view definitions that pre-compute
knowledge about different kinds of software design patterns can be aggregated
by a superior view definition that derives a view graph about the occurrences of
SoftwareDesignPatterns in general. Afterwards, the derived view graphs keep
ready answers for queries about employed software design patterns without time-
consuming on-demand look-ups in the base graph.

<<abstract>>
Component *

children

Composite

Operation()

Operation()

Leaf

Operation()

foreach child in children:
child.Operation()

Composite

Generalization OneToN-
Association

<<depends>>

<<depends>>

Software Design
Pattern

. . .

<<depends>>

AddTo
Reference

Observer

RemoveFrom
Reference

<<depends>>

<<depends>>
<<depends>>

<<depends>>
<<depends>>

<<depends>>

Figure 1.1.: Left: UML class model specification of the Composite pattern (cf. [23])
Right: Dependency graph about involved view definitions

However, the derived view graphs must be maintained before queries are an-
swered to be consistent with their base graphs. For example, when a new inheri-
tance relationship between two classes is added, the Generalization view graph
must be updated by adding the new generalization, because the new inheritance
relationship causes a new generalization between both classes. Analogously, when
an inheritance relationship between two classes is removed, the Generalization
view graph must be updated by removing the previously detected generalization,
because the generalization does not exist anymore in the base graphs of this view
graph. Furthermore, the inheritance relationship between both classes can change.
In such cases, the view graph for generalizations need to be revised by checking
whether the stored generalizations are still consistent due to the modification of
the inheritance relationship in the abstract syntax graph and must be updated
accordingly by preserving or deleting previously detected generalizations.

Note that changes to base graphs cause updates to view graphs that cause
required updates to dependent view graphs as well. According to our running
example, updates of the Generalization view graph may cause required updates

15

1. Introduction

to the Composite view graph. For example, generalizations that are added to the
Generalization view graph may cause additions of Composite design patterns to
the Composite view graph, while generalizations that are removed from the Gener-
alization view graph may cause deletions of Composite design patterns from the
Composite view graph. Furthermore, revised generalizations in Generalization
view graphs as well as revised one-to-N associations in One-to-N Association
view graphs need to trigger the revision of the Composite view graph, because
stored Composite design patterns may become invalid due to changed generaliza-
tions or one-to-N associations.

We give a detailed description of the employed view maintenance algorithms
including negative application conditions and recursion in Sec. 5.

1.4. Outline

The remainder of this technical report is organized as follows. In Chapter 2, we de-
scribe the needs of database users towards view maintenance for graph databases
and derive requirements towards graph databases that enable such view main-
tenance. In Chapter 3, we introduce our approach and show how the derived
requirements are addressed by our approach. In Chapter 4, we describe how view
definitions can be created with our approach. In Chapter 5, we show how these
view definitions enable to efficiently maintain derived view graphs. In Chapter
6, we present a case study to evaluate our approach. In Chapter 7, we compare
our approach with related work and discuss the commonalities and differences. In
Chapter 8, we conclude our presented approach and outline future work.

16

2. Needs and Requirements

In this chapter, we discuss the needs and requirements towards view maintenance
for graph databases. We describe the needs of database user towards view main-
tenance for graph databases (Sec. 2.1). Afterwards, we derive requirements from
these needs concerning graph databases that support view maintenance (Sec. 2.2).

2.1. Needs

In this section, we describe the needs database users have towards view main-
tenance for graph databases. We distinguish needs of database users into two
categories. The first category deals with the expressiveness of the view definition
language database users use to create views over base graphs and/or view graphs.
The second category deals with the expectations database users have towards
efficient view maintenance for graph databases.

2.1.1. Needs towards Expressiveness of View Definitions

When creating view definitions the database user wants to refer directly to the
graph structure of the data. Therefore, view definitions should enable to formulate
queries in terms of graph patterns (N1). Furthermore, view definitions may consist
of sub-queries that are also required by dependent view definitions. Therefore,
dependent view definitions should be able to reuse view definitions (N2). View
definitions and dependencies between view definitions should enable to express
nested graph conditions (N3) to enable database user to create appropriate view
definitions of reasonable complexity. These nested graph conditions should include
positive application conditions, negative application conditions and recursion to
enable view graphs for deductive graph databases.

17

2. Needs and Requirements

2.1.2. Needs towards Efficient View Maintenance

Database users should be capable of querying the database interactively using
view graphs (N4). Furthermore, database users must retrieve the same query re-
sults when executing the query on base graphs and view graphs (N5). This means
base graphs and view graphs must be consistent at the point in time when the
query is stated. For that purpose, changes to base graphs must be propagated auto-
matically to view graphs before queries are executed (N6). Note that also changes
to view graphs as result of base graph changes, must be recursively propagated to
dependent view graphs. However, the propagation of view graph changes to base
graphs from which they were initially derived is not in the scope of this technical
report. The propagation of base graph changes according to need N6 should be
possible without requiring database users to explicitly specify how to propagate
changes from base graphs (resp. view graphs) to derived view graphs (N7).

2.2. Requirements

We distinguish requirements into two categories. The first category deals with
requirements that address needs concerning the expressiveness of view definitions
(see Sec. 2.2.1). The second category deals with requirements that address needs
concerning the maintenance of view graphs (see Sec. 2.2.2).

2.2.1. Requirements on Expressiveness of View Definitions

Graph pattern matching is a natural way of querying graph data (cf. N1) and we
assume for this technical report that queries over graph data are formulated in
terms of graph patterns. Therefore, view definitions should enable to specify view
definitions using graph patterns (R1).

View definitions should enable to create view graphs without copying and stor-
ing redundant information, which are also stored in base graphs, in view graphs.
Thus, a lightweight mechanism is required to mark matches of graph patterns in
base graphs (R1a).

Furthermore, queries stated in view definitions should be reusable by multiple
dependent view definitions (cf. N2). Thus, a set of dependent view definitions
should be definable (R1b) and dependent view definitions should be able to access
nodes that play a certain role (i.e. have a certain semantic in the graph pattern
match) in dependency view definitions efficiently without requiring to re-match
these nodes (R1c). Moreover, to enable a reasonable complexity of queries formu-

18

2.2. Requirements

lated in terms of view definitions (cf. N3), interrelated view definitions should
enable to formulate queries as nested graph conditions (R2) including positive and
negative application conditions as well as recursion.

2.2.2. Requirements on Maintenance of View Graphs

The base graph and derived view graphs must be consistent when the user runs
a query over view graphs (cf. N5). Therefore, the graph database must ensure the
consistency of view graphs with their base graphs before queries are answered
(R3). This consistency preservation can be either performed immediately when
changes to base graphs occur (R3a) or can be deferred to the point in time when a
query is stated that requires view graphs derived from changed base graphs (R3b).
Snapshot view graphs (cf. [14]) are not in the scope of this technical report.

In general, required execution time and memory footprint introduced due to
view maintenance should be minimal (R4). The time required to propagate changes
from base graphs to view graphs should be independent of the sizes of base graphs
(R4a) and, therefore, should scale with increasing sizes of base graphs (R4b) to
enable interactive query session for database user (N4) also for large base graphs.
This is especially important when deferred view graph maintenance (cf. R3b)
is employed and the view graphs are updated when the database user states a
query. Additional memory footprint required for materialized views should be
proportional to the size of the view graphs (R4c).

The view definition must be sufficient to derive maintenance steps (R5) for
propagating changes from base graphs to view graphs to preserve consistency
between base graphs and view graphs (cf. R3). These maintenance steps should
be optimal (R5a) in a sense that not more maintenance steps are performed than
really required to keep base graphs and view graphs consistent. Especially, these
maintenance steps should be independent of employed graph pattern matching
technologies and, therefore, a generic algorithm of maintenance steps is required
(R5b). Furthermore, these derived maintenance steps should support the complete
expressiveness of view definitions (R5c).

19

3. Overview

In this chapter, we present the big picture of our approach. Fig. 3.1 depicts the
components of our approach. Our approach consists of four main components: a
graph database (see A in Fig. 3.1, Sec. 3.1), a view definition model (see B in Fig.
3.1, Sec. 3.2), a view maintenance engine (see C in Fig. 3.1, Sec. 3.3), and query
engine (see D in Fig. 3.1, Sec. 3.4). In the following sections, we describe the role of
each component by mapping the derived requirements to these components.

Graph Database

View Graph
Storage

Base Graph
Storage

<<maintains>>

:T2 :T3

:T4
Derived

View Graphs

Base Graphs

Role

<<reuse>>

View
Reference

Graph

T1

T2 T3
T4

Type
Type

Type

Role

Query Engine
View

Maintenance
Engine

<<read>>

database
user

<<
qu

er
y>

>

<<
an

sw
er

>> view model
creator A B F

C

ED

<<compose>>

View Definition Model

<<triggers>>

view module
creator

<<implement>>
View Specification Modules

<<execute>>

<<instantiate>>

<<instantiate>>
<<query>>

<<result>>

<<describe>>

A

B

CD

A1

A2

A3

Figure 3.1.: Overview of view graph maintenance for graph databases

20

3.1. Graph Database

3.1. Graph Database

Our notion of a graph database consists of three parts: a base graph storage (see A1

in Fig. 3.1), a view graph storage (see A2 in Fig. 3.1), and view reference graph
(see A3 in Fig. 3.1). According to definition 3 a graph database is a set of graphs
that are distinguished into base graphs (see definition 4) and view graphs (see
definition 5). Base graphs are stored by the base graph storage, while view graphs
derived from these base graphs and other view graphs are stored by the view graph
storage. View graphs consist of annotations that mark matches of graph patterns
in base graphs and view graphs (cf. R1a) without copying subgraphs that match a
graph pattern to view graphs. Furthermore, base graphs and view graphs consist
of a reference graph (see definition 4 and 5). We neglect the reference graph of base
graphs in Fig. 3.1. For example, the reference graph of source code describes that
the abstract syntax graph consists of classes, attributes, references, methods, etc.
The reference graph of view graphs is depicted as view reference graph on top of the
graph database. The view reference graph describes which kinds of nodes and edges
are part of derived view graphs.

Container
: Class

Component
: Class

children
: Field

Container
: CompilationUnit

Component
: CompilationUnit

list : OneToN-
Assocation

generalization :
Generalization

composite :
Composite

: OneToNAssociation

: Field
: Classifier

: SuperClass: SubClass

: Generalization

: Composite
: Component

namespace
: Namespace

reference
: Classifier

argument
: TypeArgument

type
: QualifiedType

Figure 3.2.: View graph about Composite design patterns according to our running
example

According to our running example, the view reference graph describes that view
graphs about software design patterns consists of nodes that, e.g., describe the
occurrences of Composite design patterns, and consists of edges that, e.g., describe

21

3. Overview

which nodes represent the Container respectively Component class within the
Composite software design pattern. Fig. 3.2 shows a view graph about Composite
software design patterns. Solid rectangles and lines denote an excerpt of the base
graph. Dashed rectangles and lines denote an excerpt of the derived view graph
and depict annotations that mark matches of graph patterns in base graphs and/or
view graphs. Fig. 3.2 depicts a detected Composite software design pattern in Java
AWT. The Composite annotation (dashed rounded rectangle) denotes the detected
Composite design pattern and depends on the Generalization annotation and
OneToN-Association annotation referenced by roles (dashed lines). The General-
ization annotation describes a specialization of the Component class as Container
class. The OneToN-Association annotation describes that the children field is a
to-many association with the Component class as target type.

3.2. View Definition

View graphs are derived with the help of a view definition model that consists of
view definition modules. A view definition module (Sec. 3.2.1) specifies the graph
patterns used to derive view graphs. A view definition model (Sec. 3.2.2) describes the
interplay of multiple dependent view definition modules, i.e., how dependent view
definition modules reuse view graphs derived by other view definition modules.

3.2.1. View Definition Module

A view definition module (view module for short) implements a graph query by
enabling the view module creator to specify graph patterns (cf. R1). View modules
employ graph pattern matching to find all matches of the specified graph pattern.
As result, for each match of the graph pattern the view definition module creates
an annotation that marks the match in base graphs and view graphs instead of
copying matched subgraphs to view graphs (cf. R4c). The annotation references
all nodes that participate in a certain match. Therefore, annotations are considered
as markers for graph pattern matches. Thus, a view graph consists of a set of
annotations.

According to our running example as depicted by Fig. 3.3, view modules exist
that create view graphs about generalizations, multi-level generalizations, one-to-N
associations, and Composite design patterns. For that purpose, the Generaliza-
tion view module describes that it uses Class and TypeReference nodes in base
graphs to create a view graph about generalizations. The MultiLevelGeneraliza-
tion view module describes that it uses view graphs about generalizations as well

22

3.2. View Definition

as multi-level generalizations to derive view graphs about multi-level generaliza-
tions. Moreover, the OnetoN-Association module defines that it uses Field and
TypeReference nodes to create a view graph about one-to-N associations. The Com-
posite view module defines that it uses view graphs about Generalizations and
OnetoN-Associations to create a view graph about Composite software design
patterns.

GeneralizationGeneralization OneToNAssociation

: OneToNAssocation

CompositeComposite

: Generalization

: OneToNAssocation: Generalization

: Composite

: MultiLevel
Generalization

MultiLevelGeneralization

: Generalization

Base
Graphs
Base

Graphs
Base

Graphs

Base
Graphs
Base

Graphs
View

Graphs

: Class : Field : TypeReference: TypeReference

Figure 3.3.: Simplified view definition model according to our running example

3.2.2. View Definition Model

The view definition model (view model for short) describes the interplay of view
modules, e.g., which view module uses which information derived by dependency
view module (cf. R1b, R1c, and R2). Therefore, a view model is a directed cyclic

23

3. Overview

graph of dependent view modules that is created by view model creators. Note
that cyclic dependencies are permitted to support recursion.

According to our running example as depicted by Fig. 3.3, the view model de-
scribes that the Composite view module uses the view graphs created by the Gener-
alization, MultiLevelGeneralization view module and OneToN-Association
module. Note that a view module can reuse multiple view graphs of the same
kind. For example, the Composite view module can use view graphs about gen-
eralizations and multi-level generalizations, because Composite software design
patterns that use multi-level generalization are an implementation variant of the
Composite design pattern as defined by Gamma et al. [23]. In our running example
depicted by Fig. 3.3, single-level generalizations and multi-level generalizations
are derived from base graphs by two separate modules. Note that derived multi-
level generalizations are exploited recursively denoted by the dependency from the
MultiLevelGeneralization module to the MultiLevelGeneralization module.
In doing so, the MultiLevelGeneralization module is able to derive additional
multi-level generalizations that are composed of other multi-level generalizations.

3.3. View Maintenance Engine

The view maintenance engine (view engine for short) is responsible to keep view
graphs consistent with their base graphs (cf. R3). Initially, the view engine derives
the view graphs from the base graphs and other view graphs from scratch. Af-
terwards, the view engine employs maintenance procedures to keep derived view
graphs up-to-date with respect to their base graphs. For that purpose, the view
engine takes the base graphs, already existing view graphs, and the view model
with its view modules as input and adds, deletes, or updates annotations within
view graphs. We distinguish three basic kinds of view maintenance procedures. All
three maintenance procedures support the expressiveness of view models in terms
of nested graph conditions and recursion (cf. R2 and R5c).

In the following sections, we only outline the supported maintenance modes and
give a complete description in Sec. 5. We distinguish naive batch mode (Sec. 3.3.1),
batch mode with preservation (Sec. 3.3.2), and incremental mode (Sec. 3.3.3).

3.3.1. Naive Batch Maintenance

The naive batch maintenance procedure deletes all view graphs and creates them
from scratch. This procedure perform a full recomputation of view graphs, but can
be beneficial when the changes made to base graphs are large and, therefore, the

24

3.3. View Maintenance Engine

additional overhead of the other maintenance procedures may not pay off. Note
that annotations, which mark matches of graph patterns, change their identity
when they are created from scratch and, thus complicate a post-processing of
these annotations. Therefore, graph database users do not desire this naive batch
maintenance.

3.3.2. Batch Maintenance with Preservation

The batch maintenance procedure with preservation processes all view graphs
completely, but deletes annotations only when necessary. Thus, this maintenance
procedure preserves annotations in view graphs that are still consistent with base
graphs. The required maintenance steps are derived from the view modules (cf. R5).
The maintenance procedure is independent of the employed graph pattern match-
ing technology (cf. R5b), because the required maintenance steps are derived from
the view module specification as shown by Fig. 3.3. In Sec. 5, we describe the
concrete maintenance steps in detail.

3.3.3. Incremental Maintenance

The incremental maintenance procedure processes view graphs only partially.
Which parts of the view graphs must be re-processed is derived from the mod-
ification information of base graphs. In general, only a small part of the view
graphs needs to be re-processed, because heuristically the modified parts of base
graphs are often much smaller than the complete base graphs. Thus, the incremen-
tal maintenance is in general much more efficient than batch maintenance (cf. R4).
Therefore, less time is required to keep view graphs consistent with their base
graphs (cf. R4a) in contrast to naive batch maintenance and batch maintenance
with preservation. The required maintenance steps are derived from the view mod-
ule specifications (cf. R5) and modification information of base graphs to avoid
unnecessary maintenance steps (cf. R5a). The modification information of base
graphs determine which view modules need to be re-executed to make impacted
view graphs consistent with their base graphs. Similar to batch maintenance with
preservation, the maintenance procedure is independent of the employed graph
pattern matching technology (cf. R5b).

We distinguish two incremental modes to compute the input for view modules
when maintaining view graphs. Both modes take the modification information of
base graphs into account to derive artifacts and annotations that are required as
input by view modules to make derived view graphs consistent with changed base
graphs. In incremental black box mode, the artifacts and annotations required by

25

3. Overview

a view module for maintenance are derived from the view module specification
without taking the graph pattern specified within a view module into account.
In incremental white box mode, the artifacts and annotations required by a view
module for maintenance are derived from the graph pattern specified within the
view module. When taking the concrete graph pattern into account the number
of artifacts and annotations required as input for view modules can be decreased
to reduce the effort of the view module to maintain the derived view graph. The
number of required artifacts and annotations can be reduced, because edges be-
tween nodes in the graph pattern can be considered to compute relevant artifacts
and annotations by only considering artifacts and annotations as relevant when
they are reachable via edges that are part of the graph pattern specified within the
view module, in contrast to incremental black box mode.

3.4. Query Engine

The query engine enables to query base graphs and view graphs, e.g., using a graph
pattern matching language. The concrete query language is not in the scope of
this technical report. The query engine is capable of triggering the view mainte-
nance when deferred view maintenance (cf. R3b) is employed to make the view
graphs required for answering certain queries consistent with their base graphs.
In case immediate view maintenance (cf. R3a) is employed, the view maintenance
engine immediately propagates the changes from base graphs to view graphs by
(partially) re-executing the view model. Then, the query engine can answer queries
without triggering view maintenance, because all changes to base graphs have been
propagated to view graphs immediately.

26

4. View Definition Approach

In this section, we present our view definition approach that consists of a) a view
reference graph that describes the kinds of interrelationships between nodes in
base graphs and view graphs (Sec. 4.1), b) dependent view modules (Sec. 4.2) that
compute matches for graph queries (Sec. 4.3), and c) a graph pattern language that
enables to refer effectively to nodes that are already part of other view graphs (Sec.
4.4). Furthermore, we describe the syntax of derived view graphs (Sec. 4.5) and
how nested conditions can be mapped to view models (Sec. 4.6). Finally, we discuss
the fulfillment of the requirements that we describe in Sec. 2.2.

4.1. View Reference Graph

When creating view graphs over base graphs one must be aware of which kinds
of nodes in base graphs and view graphs are processed to derive view graphs
and which kind of information is represented within these view graphs. For that
purpose, our approach enables to model a view reference graph (see definition 5)
that describes which kinds of nodes in base graphs and view graphs are considered
by view graphs that represent a certain kind of information (cf. R1a). Note that the
view reference graph does not specify the graph query that defines the content of
view graphs.

The left side of Fig. 4.1 shows our view reference graph metamodel, which
defines the concepts of ArtifactTypes, AnnotationTypes, and RoleTypes, which
can be used to describe view reference graphs.

An ArtifactType describes the type of a node in a base graph and consists of
a name. We refer to a node in a base graph as artifact of a certain artifact type.
Furthermore, a hierarchy of ArtifactTypes exists denoted by the subTypes (resp.
superType) reference.

An AnnotationType describes the type of a node in a view graph and consists
of a name. We refer to nodes in view graphs as annotations of a certain Anno-
tationType. Annotations mark graph pattern matches within base graphs and

27

4. View Definition Approach

view graphs. Therefore, an annotation type describes which kind of information is
represented by an annotation.

A RoleType describes which kind of artifact in a base graph or annotation in a
view graph participates in an annotation. A RoleType describes in which role (resp.
semantic) an artifact or annotation acts when marked by an annotation of a certain
annotation type. Therefore, each RoleType references either an ArtifactType or
AnnotationType to describe the type of the artifact or annotation that is annotated
(cf. AnnotatedType in Fig. 4.1).

Note that subTypes (resp. superTypes) of AnnotationTypes exist and that Ro-
leTypes are inherited to annotation sub types. Furthermore, annotation sub types
can consist of additional role types.

<<AnnotationType>>
Generalization

<<AnnotationType>>
OneToNAssociation

<<AnnotationType>>
ArrayField

<<AnnotationType>>
ListField

<<AnnotationType>>
Composite

<<ArtifactType>>
Class

<<ArtifactType>>
Field

<<AnnotationType>>
DesignPattern

AnnotatedType

NamedElement

String name

ArtifactType

AnnotationType

RoleType

annotationType

roleTypes*

*1

*

annotatedType

roleTypes

superType

subTypes

1
*

<<RoleType>>
SuperClass

<<RoleType>>
SubClass

<<RoleType>>
Generalization

<<RoleType>>
Association

<<RoleType>>
Classifier

<<RoleType>>
Field

View Reference Graph Meta-Model View Reference Graph in Concrete Syntax

<<RoleType>>
Component

<<RoleType>>
Composite

superType

subTypes *
1

<<ArtifactType>>
ConcreteClassifier

<<ArtifactType>>
Member

Figure 4.1.: View reference graph metamodel (left) and view reference graph in
concrete syntax according to our running example (right)

The right side of Fig. 4.1 shows our running example in concrete syntax. As
concrete syntax we use Unified Modeling Language (UML) class models with
stereotypes. Artifact types, annotation types, and roles types are labeled with the
stereotypes «ArtifactType», «AnnotationType», and «RoleType». According to
our running example, abstract syntax graphs of source code contain among others
ConcreteClassifiers such as Classes. Furthermore, such abstract syntax graphs
contain Members of Classes such as Fields. The Composite annotation type con-
sists of the role types Component and Composite, which reference the artifact
type Class to express that a Composite annotation references one class that acts
as component class and one class that acts as composite class. Furthermore, the
Composite annotation type consists of the role types Generalization and Associ-
ation, which reference the Generalization and OneToNAssociation annotation
type to express that Composite annotations base on annotations about general-

28

4.2. View Modules

izations and one-to-N associations. The Generalization annotation type consists
of the role types SuperClass and SubClass, which describe that generalization
annotations reference one super class and one sub class. The OneToNAssociation
annotation type consists of the role types Field and Classifier that describe which
field acts as one-to-N association and which type this field has. The ListField
and ArrayField annotation types are specializations of the OneToNAssociation
annotation type and denote whether an association is implemented using a list or
array data structure. The Field role type is inherited from the OneToNAssociation
annotation type to the ListField and ArrayField annotation type.

4.2. View Modules

Our approach consists of view modules, which instantiate the view reference graph.
View modules (modules for short) execute graph queries and store the query results
in terms of annotations in view graphs. According to definition 8, graph queries are
implemented as graph patterns. We do not make restrictions which graph pattern
matching approach is employed within these modules.

The left side of Fig. 4.2 shows the view module metamodel. Each Module consists
of at least two Connectors, i.e. one input connector and one output connector. We
distinguish Connectors into AnnotationConnectors and ArtifactConnectors.
ArtifactConnectors are input connectors, which consume artifacts of a certain
ArtifactType from base graphs. Note that multiple ArtifactConnectors of dif-
ferent modules can consume artifacts of the same ArtifactType. Annotation-
Connectors either consume or provide annotations of a certain AnnotationType.
Therefore, we distinguish AnnotationConnectors into AnnotationInputConnec-
tors and AnnotationOutputConnectors. AnnotationInputConnectors are input
connectors and consume annotations. AnnotationOutputConnectors are output
connectors and provide annotations. Note that multiple AnnotationConnectors of
different modules can consume and provide annotations of the same Annotation-
Type. Furthermore, AnnotationInputConnectors can be negative (cf. isNegative
attribute of AnnotationInputConnector class). A negative AnnotationInputCon-
nector states that annotations of the annotation type as specified by the annotation
input connector are used in negative manner within the view module.

The right side of Fig. 4.2 shows our running example in concrete syntax. Mod-
ules are depicted as rounded rectangles with the module name in the middle of
the rectangle. Connectors are depicted as small rectangles and consist of a name
and artifact type or annotation type separated by a colon. ArtifactConnectors
are depicted as rectangles with a filled black rectangle in the middle. Annota-

29

4. View Definition Approach

Connector

NamedElement

String name

connectors

2...*
Module

Annotation-
InputConnector

Annotation-
OutputConnector

AnnotationType
1

*

type

connectors

CompositeComposite
associations :

OneToNAssociation
generalizations :
Generalization

composites :
Composite

annotation
output connector

annotation type

connector name

inference module

annotation
input connector

inference
module name

View Module Meta-Model View Modules in Concrete Syntax

ArtifactConnector

GeneralizationGeneralization

generalizations :
Generalization

classes :
Class

typeReferences :
TypeReference

ArtifactType
type

connectors*

1

artifact connector

annotation
output connector

AnnotationConnector

boolean isNegative

Figure 4.2.: View module metamodel (left) and view modules in concrete syntax
according to our running example (right)

tionConnectors are depicted as rectangles with a filled triangle in the middle.
AnnotationInputConnectors consist of a triangle that points to the module, while
AnnotationOutputConnectors consist of a triangle that points away from the mod-
ule.

The bottom right of Fig. 4.2 shows the Generalization module. The Generali-
zation module consumes artifacts of the artifact types Class and TypeReference
via the artifact connectors classes and typeReferences to produce annotations of
the annotation type Generalization that are provided via the annotation output
connector generalizations, afterwards. The top right of Fig. 4.2 shows the Com-
posite module. The Composite module consumes annotations of annotation type
Generalization and OneToNAssociation via the annotation input connectors
generalizations and associations to produce annotations of annotation type
Composite that are provided via the annotation output connector composites.

4.3. View Models

In our approach, view modules and dependencies between view modules constitute
a directed cyclic graph and exchange results of graph queries in terms of anno-
tations. The left side of Fig. 4.3 shows the view model metamodel. A ViewModel
contains Modules (see Fig. 4.2), which are connected by ModuleDependencies.
A ModuleDependency connects AnnotationOutputConnectors with Annotation-
InputConnectors and, therefore, ModuleDependencies denote the exchange of

30

4.3. View Models

annotations. Furthermore, a ViewModel consists of ModelOutputConnectors. A
ModelOutputConnector provides the overall view graph computed by the View-
Model. For that purpose, ModelDependencies connect AnnotationOutputConnec-
tors with ModelOutputConnectors.

Connector

connectors
*

Module

InputConnector OutputConnector

AnnotationType
1

*

type

connectors

CompositeComposite

ViewModel

ModuleDependency
sourcetarget

ModelOutput
Connector

modules
*

connectors

*

Model
Dependency

target

source GeneralizationGeneralization

generalizations :
Generalization

ListField

listFields :
ListField

composites : Composite

generalizations :
Generalization

associations :
OneToNAssociation

inference
model

model output connector

designPatterns :
DesignPattern

model
dependency

connector name
annotation type

View Model Meta-Model View Model in Concrete Syntax

classes :
Class

typeReferences :
TypeReference

fields :
Field

typeReferences :
TypeReference

qualifiedTypeArguments :
QualifiedTypeArguments

module
dependencyAnnotationConnector

classifiers :
Classifiers*

dependencies

1 1

1

1

Figure 4.3.: View model metamodel (left) and view model in concrete syntax ac-
cording to our running example (right)

The right side of Fig. 4.3 shows our running example in concrete syntax. View-
Models are depicted as rounded rectangles, which embed Modules. Similar to
AnnotationOutputConnectors of Modules, each ModelOutputConnector is de-
picted as rectangle with a filled triangle pointing away from the ViewModel and is
labeled with a name and annotation type separated by a colon. ModelDependencies
and ModuleDependencies are depicted as solid lines from AnnotationOutput-
Connectors to ModelOutputConnectors and ModuleOutputConnectors, respec-
tively. The arrow end denotes the dependent connector (resp. module). ModuleDe-
pendencies must connect AnnotationOutputConnectors and AnnotationInput-
Connectors of equal annotation (super) types. Well-formedness considerations of
view models are not in the scope of this technical report.

31

4. View Definition Approach

4.4. View Query Language

Our approach provides a default graph pattern language to enable an easy imple-
mentation of graph queries in terms of graph patterns within modules. We refer
to this graph pattern language as view query language. Note that also other graph
pattern languages can be used.

Module

String description

RuleObject

String name

RuleLink
EStructuralFeature
feature

ruleObjects ruleLinks

*

RuleElement

RuleModifier modifier

source targets

target sources *

*

1

1

AnnotationType

String name

artifactType

1

AnnotationRuleObject AnnotationRoleLink
1

annotationType
RoleType

ArtifactType

EClassifier classifier

*

1

roleType

View Query Language Meta-Model

RuleConstraint

ConstraintLanguage language
String expression

constraints

*

RuleModifier

EXIST
CREATE
NEGATIVE

Figure 4.4.: View query metamodel

Fig. 4.4 shows the metamodel of our view query language. Our view query lan-
guage consists of RuleObjects denoted as solid rectangles and AnnotationRuleOb-
jects denoted as dashed rounded rectangles. RuleObjects match Artifacts in
base graphs, while AnnotationRuleObjects match Annotations in view graphs.
The label of RuleObjects and AnnotationRuleObjects consists of a unique name
(omitted in Fig. 4.5) and ArtifactType or AnnotationType separated by a colon.
Solid edges between RuleObjects depict RuleLinks and dashed lines between An-
notationRuleObjects and RuleObjects (resp. AnnotationRuleObjects) depict
AnnotationRoleLinks. The label of RuleLinks denotes the name of an EStruc-
turalFeature (reference), while the label of AnnotationRoleLinks consists of a
unique name (omitted in Fig. 4.5) and role type name separated by a colon. RuleOb-
jects, AnnotationRuleObjects and AnnotationRoleLinks consist of a RuleMod-
ifier that describes whether an Artifact, Annotation, or Role must already exist,
must not exist, or will be created. Annotations and Roles that will be created
are labeled by ’++’ (Create modifier). Artifacts, Annotations, and Roles that

32

4.4. View Query Language

must not exist are crossed out (Negative modifier). Artifacts, Annotations, and
Roles that must exist are not labeled (Exists modifier).

ListField

f : Field : ListField
++

listClassifier.instanceOf('java.util.List')

: QualifiedType
Argument

: ConcreteClassifier
++

associations : OneToNAssociation

Composite

generalizations : Generalization

: Class: Class : Composite
++

++

: Field

members++
++

: Association

: Component : Composite
: Generalization

++

: Field : Classifier++

: Generalization : SubRole

: OneToNAssociation

listFields : ListField

composites : CompositeGeneralization

: Class

: Class

: NamespaceClassifier
Reference : Generalization

++

++
: SuperRole

: SubRole

++

generalizations
: Generalization

target

extends

: ClassifierReference

classifierReferences

: SuperRole

: Field

: ArrayDimension

: NamespaceClassifier
Reference

: ClassifierReference : ConcreteClassifier

: ArrayList: Field

typeReference

classifierReference
target

: Classifier

++

++

++dimensions

lists
: ArrayListArrayList

classes : Class references : TypeReferences

classes
: Class

dimensions
: ArrayDimension

classifiers
: Classifiers

fields
: Field

: NamespaceClassifier
Reference

: ClassifierReference

: ClassifierReference

: NamespaceClassifier
Reference

typeReference

classifierReferences

typeArguments
typeReference

classifier
References

target

fields
: Field

classifiers
: Classifiers

references
: TypeReferences

arguments
: QualifiedTypeArgument

: Classifier

listClassifier
: ConcreteClassifiertarget

View Query Language in Concrete Syntax

Figure 4.5.: Module implementations for our running example (simplified)

Fig. 4.5 shows (simplified) module implementations according to our running
example using our view query language. According to our running example, the
module Generalization on top left of Fig. 4.5 specifies the pattern graph that iden-
tifies an inheritance between two classes in an abstract syntax graph (ASG). A chain
of NamespaceClassifierReference and ClassifierReference that references the
super class of a class defines an inheritance between two classes. Namespace-
ClassifierReferences and ClassifierReferences are subtypes of TypeReferen-
ces. Therefore, the module connectors specify that Classes and TypeReferences
are required to identify inheritances in the data graph. When the generalization
pattern matches, a Generalization annotation is created that references the sub-
ordinate class via the role of type SubRole and the superordinate class via the
role of type SuperRole. The RuleObject of type NamespaceClassiferReference
and ClassifierReference are not explicitly referenced by the generalization

33

4. View Definition Approach

annotation via a role, because they do not act in a role with a certain semantic.
However, implicit (invisible) roles between the matched artifacts of type Namespace-
ClassiferReference and ClassifierReference are created, because these arti-
facts are also part of the annotation and must trigger a revision of the general-
ization annotation when they are modified or deleted. As rule of thumb, each
RuleObject and AnnotationRuleObject with Exists modifier that is not explic-
itly referenced by a role is implicitly referenced by an invisible role that belongs to
the AnnotationRuleObject with Create modifier.

The modules ArrayField and ListField implement the graph patterns for iden-
tifying 1:N references. Both modules create annotations that reference the fields
that act as 1:N references and the classifiers that act as the target classifiers of
the reference. Both modules implement different graph patterns, but both identify
OneToNAssociations that is the super type of the ArrayField and ListField
annotation types (see Fig. 4.1). The Composite module specifies how to combine
Generalization and OneToNAssociation annotations to detect Composite soft-
ware design patterns in an ASG. The Composite module uses Generalization
and OneToNAssociation annotations as context. The super class must be the target
type of an 1:N reference and this 1:N reference must be a member of the sub class
of this super class. Then, the super class acts in a Component role and the sub class
acts in a Composite role. Furthermore, the Generalization annotation and OneT-
oNAssociation are explicitly referenced via roles, since they are pre-conditions to
identify Composite design patterns and one may want to access these annotations
in dependent modules effectively by traversing these role.

Note that due to the view reference graph dependent modules do not need to
know the concrete graph pattern implemented by dependency modules and, thus,
modules can be considered as black boxes.

4.5. View Graphs

The annotations computed by modules and the dependencies between annotations
via roles constitute a directed acyclic graph. The left side of Fig. 4.6 shows the view
graph metamodel. The view graph metamodel depicts that Annotations have a
certain AnnotationType. Annotations mark matches of graph patterns. Since An-
notationTypes consist of RoleTypes (see Fig. 4.1), each Annotation must consist
of Roles of certain RoleTypes. Each Role annotates an Artifact or Annotation
of the corresponding ArtifactType or AnnotationType as described by the Role-
Type in the view reference graph (see Fig. 4.1). Note that each Module knows which

34

4.6. Mapping Nested Conditions to View Models

annotations it has created and that each annotation knows by which module it
has been created.

View Graph Meta-Model

ArtifactType

annotation

roles

1

*

RoleType AnnotationType

AnnotatedElementArtifact

Role

Annotation

roles
element1

*

111 type typetype

*
** instances instances

NamedElement

String name

View Graph in Concrete Syntax (detected Composite pattern in Java AWT)

Container : Class Component : Class

children : Field

Container.xmi
: CompilationUnit

Component.xmi
: CompilationUnit

awt : Package

list : ListField

generalization:
Generalization

composite :
Composite

: 1ToNAssociation

: Field : Classifier

: SuperClass: SubClass

: Generalization

: Composite : Component

instances

Module

*
1

annotations
module

Figure 4.6.: View graph metamodel (left) and view graph in concrete syntax ac-
cording to our running example (right)

The right side of Fig. 4.6 depicts the concrete syntax of annotations, roles, and
artifacts according to our running example. Annotations are depicted as dashed
rounded rectangles with the annotation name and annotation type in the middle of
the rectangle separated by a colon. Roles are shown as dashed lines with the name
of its RoleType attached. The arrow end of Roles denotes the annotated Artifact
or Annotation. Solid rectangles depict Artifacts with the name and artifact type
separated by a colon in the middle of the rectangle. Solid lines between Artifacts
denote a containment hierarchy of Artifacts. The arrow denotes the child Arti-
fact, while the rhombus denotes the parent Artifact. We neglect other references
between Artifacts in base graphs, if they are not important for illustrating our
running examples.

4.6. Mapping Nested Conditions to View Models

Graph conditions are graph patterns that, if satisfied, let the graph condition
become true. We distinguish graph conditions into positive graph conditions and
negative graph conditions. A positive graph condition becomes true if the graph
pattern is satisfied. A negative graph condition becomes true if the graph pattern
is not satisfied.

35

4. View Definition Approach

A nested graph condition is a boolean formula that consists of graph conditions.
If c is a graph condition, then also ¬c is a graph condition. Furthermore, if ci
is a graph condition, then _ci and ^ci with index set i 2 I are (nested) graph
conditions.

In the following sections, we describe how nested graph conditions can be
mapped to view models. We describe the mapping of overlapping graph conditions
(Sec. 4.6.1), conjunctions (Sec. 4.6.2), disjunctions (Sec. 4.6.3), positive and negative
graph conditions (Sec. 4.6.4) as well as recursion (Sec. 4.6.5) to view models.

4.6.1. Mapping Overlapping Graph Conditions

Graph conditions are specified within view modules. A graph condition can be
part of multiple more complex graph conditions. Therefore, graph conditions can
overlap. The overlapping parts of graph conditions should be mapped to a single
view module, because shared graph conditions should be matched only by one
view module. Then, dependent view modules can reuse matches of these graph
conditions to avoid unnecessary additional computations of matches for the same
graph pattern. The reuse of matches for graph patterns is mapped to multiple
outgoing module dependencies with different view modules as target.

Fig. 4.7 shows graph condition C(x, y) with x 2 X and y 2 Y. The graph
condition C(x, y) is specified as directed edge toY between artifacts of type X
and Y. The graph condition C(x, y) is reused by graph condition A(C(x, y), z) ⌘
C(x, y) ^ A 0(y, z) with z 2 Z and B(C(x, y), w) ⌘ C(x, y) ^ B 0(y, w) with w 2 W.
The graph condition A 0(y, z) is specified as directed edge toZ between artifacts
of type Y and Z. The graph condition B 0(y, w) is specified as directed edge toW
between artifacts of type Y and W.

4.6.2. Mapping Conjunctions

When at least two graph conditions are combined in terms of a conjunction, three
general options exist to express this conjunction in view models. Fig. 4.8 shows
three alternatives for encoding the graph condition AB(x, y, z) ⌘ A(x, y) ^ B(y, z)
with x 2 X, y 2 Y, and z 2 Z. The graph condition A(x, y) is specified as an
edge toY between artifacts of type X and Y, while graph condition B(y, z) is
specified as an edge toZ between artifacts of type Y and Z. Either the conjunction
is specified within one single view module AB (see Fig. 4.8 top left), is split up
into two sequential view modules A and AB 0 (see Fig. 4.8 top right), or is split
up into three view modules A, B, and AB 00 (see Fig. 4.8 bottom). The single view
module approach specifies the graph condition AB(x, y, z) as one complete graph

36

4.6. Mapping Nested Conditions to View Models

A

: A
++

: A

: C: Z

: Y : Z

: ZRole

: YRole

++ ++

toZ

B

: B

++
: CRole

: B

: C : W

: Y : W

: WRole

: YRole

++ ++

toW: C

: CRole

: C

C

: X

: C

++: XRole

: C

: X : Y

: Y

: YRole++

++

toY

Figure 4.7.: Overlapping conditions: The graph conditions specified by view mod-
ule A and B overlap in graph condition C

pattern. The sequential view module approach specifies the graph condition A(x, y)
and graph condition AB 0(A(x, y), z) ⌘ AB in two separate modules. The actual
conjunction of graph condition A(x, y) and B(y, z) is specified in the view module
AB 0. Note that this alternative could search for the graph condition B(y, z) first
and a view module BA could specify the conjunction of both graph conditions
BA(x, B(y, z)) ⌘ AB, afterwards. The alternative with the three view modules A,
B and AB 00 specifies the graph conditions A(x, y) and B(y, z) separately and the
actual conjunction AB 00(A(x, y), B(y, z)) ⌘ AB is specified by the view module
AB 00.

4.6.3. Mapping Disjunctions

When at least two graph conditions are combined in terms of a disjunction, one
single mapping exists to express this disjunction in view models. Fig. 4.9 shows the
mapping for the graph condition AB(w, z) ⌘ A(w, z) _ B(w, z) with w 2 W and
z 2 Z. The graph condition A(w, z) is specified as an edge toZ between artifacts of
type X ✓ W and Z, while the graph condition B(w, z) is specified as an edge toZ
between artifacts of type Y ✓ W and Z. Thus, graph condition AB describes that

37

4. View Definition Approach

AB

: X

: AB

++
: XRole

: AB

: X : Y : Z

: Y : Z

: ZRole

: YRole

++

++

++

toZtoY

A

: X

: A

++: XRole
: A

: X

: Y
: Y

: YRole++

++

toY

AB'

: A : AB

: Z

: A
: Y

: YRole

: ZtoZ

: AB++
++

++
: ARole

: ZRole

A

: X

: A

++: XRole
: A

: X

: Y
: Y

: YRole++

++

toY

B

: Y

: B

++: YRole
: B

: Y

: Z
: Z

: ZRole++

++

toZ

: B

: A

: Y

: A

: B

: AB

: YRole

: YRole

: ARole

: BRole

++

++

++

AB''

: AB

Figure 4.8.: Conjunction mapping: Single view module AB (top left), two split view
modules A and AB 0 (top right), and three split view modules A, B and AB 00

(bottom)

an artifact of type Z is reachable via a directed edge toZ from artifacts of type X or
Y. Note that the artifact type W is the artifact super type of artifact type X and Y.

The view module A specifies graph condition A(w, z), while the view module
B specifies graph condition B(w, z). The view module A (resp. B) provides annota-
tions of type A (resp. B) that state that graph condition A (resp. B) is satisfied. Note
that the annotation types A and B are annotation subtypes of annotation type C.
The view module AB specifies the graph condition AB by describing that artifacts
of type Z must consist of an annotation of type C, i.e. annotation type A or B.

4.6.4. Mapping Negative Graph Conditions

In this section, we describe how simple negative graph conditions and complex
negative graph conditions are mapped to view models. We refer to the term simple
NAC as graph condition that consists of one single RuleObject with negative
modifier that must be connected to a PAC. We refer to the term complex NAC as
graph condition that consists of more than one RuleObject with negative modifier
that must be connected to a PAC. Note that complex NACs must be encoded as
negated AnnotationRuleObject in our approach.

38

4.6. Mapping Nested Conditions to View Models

A

: X

: A

++: XRole
: A

: X

: Z
:Z

: ZRole++

++

toZ

B

: Y

: B

++: YRole
: B

: Y

: Z
: Z

: ZRole++

++

toZ

: C

: Z

: C

: AB

: ZRole
: ABRole

++

AB

: AB
++

: CRole

Figure 4.9.: Disjunction mapping: View modules AB encodes disjunction of graph
condition A and B

Simple Negative Graph Conditions
Fig. 4.10 shows the graph condition A(x, y) with x 2 X and y 2 Y. Graph condition
A(x, y) specifies that an artifact of type X must not be connected to an artifact of
type Y via edge toY. The annotation describes that an artifact of type X is not
connected to an artifact of type Y via edge toY.

A

: X: A
++

: XRole

: A

: X : Y

: Y++ toY

Figure 4.10.: Mapping of simple NACs: negation of artifact

Complex Negative Graph Conditions
Fig. 4.11 shows the graph condition B(x) ⌘ 9x¬9y, z : A(x, y, z) with a complex
NAC denoted by the crossed out artifacts of type Y and Z and the edge toZ in
between. The graph condition B specifies that artifacts of type X must not be
connected to artifacts of type Y that are connected to artifacts of type Z via an edge
toZ.

First, in our approach all negations are removed from the complex NAC and
the resulting PAC is maintained within view graphs. In our example, the graph

39

4. View Definition Approach

A

: X

: A

++
: XRole

: A

: X : Y : Z

: Y : Z

: ZRole

: YRole

++
++

++

toZtoY

B

: X

: B

: BRole

: B

: X

++

: A

: A

: XRole

: X

: Y : Z
toZ

toY

: X

: Y : Z
toZ

toY

Graph condition B

Graph condition A

Figure 4.11.: Mapping of complex NACs: negation of graph condition

condition A(x, y, z) with x 2 X, y 2 Y, and z 2 Z is maintained by view module
A. Graph condition A describes that artifacts of type X are connected to artifacts
of type Y via edge toY and that these artifacts of type Y are connected to artifacts
of type Z via edge toZ. Afterwards, the AnnotationRuleObject that represents
matches for this PAC is negated to describe that the PAC must not be fulfilled
for certain artifacts in base graphs or annotations in view graphs. Note that the
dependent view module B specifies in terms of a negated annotation input con-
nector (denoted by inverted color scheme) that it uses annotations of type A in
negative manner. In our running example, view module B specifies that artifacts
of type X must not be part of annotations of type A denoted by the negated An-
notationRuleObject named A and negated AnnotationRoleLink named XRole.
Thus, artifacts of type X are not part of matches as specified by view module A and,
therefore, are not connected to artifacts of type Y via edge toY that are connected
to artifacts of type Z via edge toZ.

4.6.5. Recursion

Recursive graph conditions are mapped to rule dependencies that constitute cycles
in view models. Furthermore, an annotation sub type is required that describes
recursion steps.

Fig. 4.12 shows the mapping of the graph condition A(A(. . . A(B(x, x), x) . . .), x)
with x 2 X. The graph condition matches every path of artifacts of type X that
are connected by a direct edge toX. The view module B defines the start of the

40

4.7. Discussion

recursion by matching the graph condition B(x, x) that is specified as direct edge
toX between artifacts of type X. The view module A defines the recursion step by
matching graph condition A(A(. . . , x), x), i.e. for every path of artifacts of type
X that are connected by a direct edge toX the graph condition matches if there
is an additional edge toX targeting an artifact of type X. Note that annotation
type B is the annotation super type of annotation type A as depicted by Fig. 4.12.
Therefore, view module A consumes annotations of type B and its sub types such
as annotation type A. Moreover, annotations of type A consist of a role of type
BRole that enables to reference annotations of type B as part of the match.

B

: X

: B
++

: X1Role

: B

: X

: X

: X2Role

++

++

toX

A

: X

: A

++

: BRole

: A

: X

: X

: X2Role

++

++

toX

: B

: B
: X2Role

++
: X1Role

<<AnnotationType>>
B

<<ArtifactType>>
X

<<AnnotationType>>
A

<<RoleType>>
X1Role

<<RoleType>>
X2Role<<RoleType>>

BRole

Figure 4.12.: Mapping of recursion: creation of annotations that may lead to the
creation of annotations of the same type

4.7. Discussion

In this section, we discuss which concepts of our view definition approach fulfill
which requirements. Our view query language (see Sec. 4.4) enables to specify
graph queries in terms of graph patterns (cf. R1). The view module connectors and
dependencies (see Sec. 4.2 and Sec. 4.3) enable the reuse of already derived view
graphs (cf. R1b) and the nesting of positive and negative graph patterns including
recursion (cf. R2). Furthermore, role types (see Sec. 4.1) enable to refer to artifacts
and annotations referenced by annotations stored by other view graphs (cf. R1c).

41

4. View Definition Approach

It is up to the view module and model creators to find an appropriate decompo-
sition of graph patterns into view modules. For example, it is a good view model
design when shared sub-graph patterns are outsourced to single view modules
that are reused by multiple dependent view modules, because then re-matching
the same graph sub-patterns is avoided, reuse of matches is enabled (cf. R1b) and,
therefore, also leads to a maintenance performance improvement. However, this
may increase the memory footprint, because an additional view graph is required
to maintain annotations that represent matches for these graph sub-patterns. Find-
ing an optimal view model concerning memory footprint and query response time
is not in the scope of this paper.

42

5. Efficient and Scalable View Graph
Maintenance

In this chapter, we describe the view graph maintenance procedures in detail. We
aim at maintaining graph query results, i.e. graph pattern matches, in terms of
annotations efficiently and scalable. We refer to the maintenance of annotations as
creation of missing annotations, revision of suspicious annotations, and deletion
of obsolete annotations when base graphs change. This maintenance must be
performed efficiently (cf. R4a), i.e. only impacted annotations should be revised
instead of all annotations. Furthermore, this maintenance of annotations must scale
(cf. R4b), i.e. the time required to perform the maintenance should not depend on
the size of base graphs.

We distinguish between different maintenance modes. In batch mode the com-
plete base graph is processed. We distinguish the batch mode into naive batch
mode and batch mode with preservation. In naive batch mode (Sec. 5.2), when
base graphs change all annotations stored in view graphs are deleted and created
from scratch again without maintaining already existing annotations. In contrast
to naive batch mode, in batch mode with preservation (Sec. 5.3) all annotations
stored in view graphs are revised before the complete base graph is processed from
scratch again. This revision of annotations preserves the identity of annotations in
contrast to naive batch mode. The incremental mode exploits change information
of base graphs for creating missing annotations, revising suspicious annotations,
and deleting obsolete annotations. We distinguish the incremental mode into in-
cremental black box mode (Sec. 5.4) and incremental white box mode (Sec. 5.5).
Both incremental modes differ in the manner how they compute which artifacts
and annotations are provided to view modules when base graphs and view graphs
change. While the incremental black box mode only considers the types of arti-
fact and annotation connectors, the incremental white box mode considers the
graph pattern specified within view modules to provide a narrowed set of relevant
artifacts and annotations to view modules for view graph maintenance.

The following sections are organized as follows. We describe how view models
are traversed (Sec. 5.1). Afterwards, we describe the naive batch mode (Sec. 5.2),
batch mode with preservation (Sec. 5.3), incremental black box mode (Sec. 5.4), and

43

5. Efficient and Scalable View Graph Maintenance

incremental white box mode (Sec. 5.5). For each maintenance mode, we consider
positive application conditions (PACs), negative application conditions (NACs),
and recursion individually.

5.1. Traversing View Models

In all maintenance modes, the view model is traversed bottom-up with respect to
cycles of modules. In general, a view module can be executed when its dependency
modules except for dependency view modules that are part of a recursion cycle
have been executed before. When iterating over the set of view modules, view mod-
ules without annotation input connectors and view modules whose dependency
view modules except for dependency view modules that are part of a recursion
cycle have been executed already can be executed.

A

: T1

B

: T2

: T1

C

: T3

: T2

D

: T4

: T3

E

: T5

: T4

fix point module
for recursion
cycle (B, C)

fix point module
for recursion
cycle (C, D)

Figure 5.1.: Example of recursion cycles and fixpoint modules

If a view module is a fixpoint view module that created, deleted or revised annota-
tions, an additional iteration of the recursion cycle must be performed. A fixpoint
view module is a view module that is part of a certain recursion cycle and has

44

5.2. Naive Batch Maintenance

dependent view modules that are not part of this recursion cycle. For example,
Fig. 5.1 shows the recursion cycles C-D and B-C. Annotation type T2 is the super
annotation type of annotation type T4. Annotation type T1 is the super annotation
type of annotation type T3. The module C is a fixpoint module, because it is part
of the recursion cycle B-C and has module D as dependent module that is not
part of the recursion cycle B-C. Furthermore, the module D is a fixpoint mod-
ule, because it is part of the recursion cycle C-D and has module E as dependent
module that is not part of the recursion cycle C-D. If a fixpoint module did not
create, delete, or update annotations, the next dependent module that is not part of
the recursion cycle is executed. When a fixpoint module did not create, delete, or
update annotations the fixpoint of the recursion cycle is reached. When a fixpoint
module created, deleted, or updated annotations, the fixpoint is not reached and
the modules in the recursion cycle are executed again, because created, deleted,
and updated annotations require an additional revision of existing view graphs.
Note that the execution of a recursion cycle can trigger the execution of embedded
recursion cycles. For example, when the recursion cycle with module C and D
is executed also the recursion cycle with the module B and C is executed when
module C creates, deletes or updates annotations.

5.2. Naive Batch Maintenance

The naive batch mode processes complete base graphs and does not preserve
already created and still valid annotations, because always all already created
annotations are deleted from view graphs before the view model is executed
again to create view graphs from scratch again (see Fig. 5.2). A description of the
algorithm for naive batch maintenance in terms of pseudocode can be found in Sec.
B.1.

CreateDelete
all

annotations

all artifacts of base graphs and
annotations created by dependency modules

empty set of
annotations

Figure 5.2.: Activity diagram about maintenance steps in naive batch mode

45

5. Efficient and Scalable View Graph Maintenance

Positive Application Conditions First, the naive batch mode deletes all already
existing annotations from all view graphs. Afterwards, the naive batch mode exe-
cutes all view modules as described in Sec. 5.1 to ensure that all annotations are
available when required by dependent view modules. For executing a view module,
i.e. running a graph query, the naive batch mode determines which artifacts and
annotations have to be passed to the view module by taking the artifact and annota-
tion input connectors into account. All artifacts of the artifact types (and subtypes)
as specified by artifact connectors of the module are passed to the module. This
requires an efficient lookup of artifacts of a certain artifact type in base graphs
that can be performed efficiently in our approach by traversing the instances
reference between ArtifactType and Artifact (see Fig. 4.6). Furthermore, all an-
notations created by dependency view modules are passed via annotation input
connectors to the view module. Annotations created by a certain view module can
be looked up efficiently by traversing the annotations reference between Module
and Annotation (see Fig. 4.6).

Negative Application Conditions Since the naive batch mode deletes all annota-
tions stored in view graphs and creates all annotations from scratch, also NACs are
evaluated from scratch. Therefore, the naive batch mode supports graph patterns
with simple and complex NACs, intuitively.

Recursion The naive batch maintenance mode supports recursion, because ac-
cording to our description how view models are executed (see Sec. 5.1), cycles
of view modules are executed until the fixpoint view module reaches a fixpoint.
However, the naive batch maintenance mode does not consider the deletion of
single annotations and, thus, no recursion cycles are supported that need to delete
annotations created during a previous iteration of the recursion cycle.

5.3. Batch Maintenance with Preservation

The batch mode with preservation is an extension of the naive batch mode. The
batch mode with preservation employs additional maintenance steps to revise all
already existing annotations stored in view graphs and to delete only obsolete
annotations from view graphs. Fig. 5.3 shows the general maintenance procedure.
The batch mode with preservation employs the maintenance step order: Update,
Delete, and Create. A description of the algorithm for batch maintenance with
preservation in terms of pseudocode can be found in Sec. B.2.

46

5.3. Batch Maintenance with Preservation

An annotation is obsolete, if at least one role of the annotation does not reference
an artifact or annotation anymore. An annotation becomes obsolete when either
an artifact or annotation is removed from the roles of the annotation or is set
obsolete by the Update step, because the graph pattern match represented by the
annotation does not exist anymore. The Delete step deletes obsolete annotations.
Afterwards, the complete base graph is processed from scratch again to create
missing annotations during the Create step. Missing annotations are annotations
in view graphs that must exist due to changes of base graphs that lead to additional
graph pattern matches. Thus, these additional graph pattern matches must be
represented in terms of annotations in view graphs to keep derived view graphs
consistent with these base graphs.

Update Delete Create

[new created
annotations > 0]

[new created
annotations = 0]

handles complex NACs that
are satisfied due to deleted

annotations

handles complex NACs that are
dissatisfied due to created

annotations

all annotations
all

annotations
all

annotations

all annotations

all artifacts of
base graphs and

annotations created by
dependency modules

Figure 5.3.: Activity diagram about maintenance steps in batch mode with preser-
vation

Positive Application Conditions The Update step revises all already existing
annotations by checking whether the matches for the graph pattern marked by these
annotations still exist . For that purpose, the same module that initially created the
annotation is responsible to perform the Update step, because only this module
is aware of the graph pattern that led to this match in terms of an annotation. If
this match still exists, the annotation is preserved. Otherwise, the annotation is set
obsolete by removing all annotated elements, i.e. artifacts and annotations, from
the roles of the annotation. The Delete step deletes all obsolete annotations by
checking whether at least one role of an annotation does not reference an artifact
or annotation. An annotation becomes obsolete when an artifact or annotation that
is part of an annotation is deleted or the Update step sets an annotation obsolete.
The module that initially created the annotation is responsible for its maintenance
and, therefore, deletes the annotation. Analogously to the naive batch maintenance

47

5. Efficient and Scalable View Graph Maintenance

mode, the Create step processes the complete base graph and creates all missing
annotations.

The maintenance order Update, Delete, and Create guarantees that view
graphs are consistent with its base graphs, because the Update step may set
annotations obsolete before the Delete step is executed and the Create step
does not create annotations that rely on not revised or obsolete annotations. This
maintenance order leads to annotations that keep their identity and, therefore,
changes in view graphs can be recognized easily.

Negative Application Conditions We distinguish the consideration of simple
NACs and complex NACs. A simple NAC only consists of a single RuleObject
with negative modifier and must be connected to a PAC. A complex NAC can
consist of more than one connected RuleObject with negative modifier and must
be connected to a PAC as well. Note that complex NACs must be specified as
negated AnnotationRuleObjects, i.e. a view module must create annotations for
matches of the non-negated graph pattern and dependent modules must use the
created annotations in negated manner according to our graph condition mapping
presented in Sec. 4.6.

A simple NAC can become true, when an artifact in the base graph is deleted. A
simple NAC can become false, when an artifact is added to the base graph.

The Update step of batch mode with preservation considers simple NACs for
the case an artifact was added to base graphs, because it checks all matches that
led to annotations again and, therefore, detects simple NACs that are not fulfilled
anymore due to the added artifact and sets the corresponding annotation obsolete.
Thus, the subsequent Delete step deletes obsolete annotations.

The Create step of batch mode with preservation considers simple NACs for the
case an artifact was removed from base graphs, because it searches for all matches
by processing the complete base graphs. Therefore, the Create step also finds
matches for graph patterns when simple NACs become true due to deleted artifacts.

A complex NAC can become true, when a PAC (possibly with NACs) becomes
false represented by an annotation that is deleted from a view graph. A complex
NAC can become false, when a PAC (possibly with NACs) becomes true repre-
sented by an annotation that is added to a view graph.

In batch mode with preservation, the Delete step removes annotations that
are obsolete. Thus, the subsequent Create step can match negated Annotation-
RuleObjects, i.e. complex NACs, which become true due to annotations that were
removed during the previous Delete step. Therefore, the batch mode with preser-
vation supports the case that a complex NAC becomes true, when a PAC (possibly
with NACs) becomes false.

48

5.3. Batch Maintenance with Preservation

The case that a complex NAC becomes false, when a PAC (possibly with NACs)
becomes true is handled by an additional Update-Delete-Create cycle (UDC
cycle for short), because created annotations may lead to the case that complex
NACs are not fulfilled anymore. Therefore, after the Create step an additional
Update step is performed that checks for all annotations in the view graphs
whether an created annotation dissatisfies a complex NAC encoded as negated
AnnotationRuleObject. When this Update step sets annotations obsolete, the
subsequent Delete step removes these obsolete annotations afterwards. Since the
Delete step removes annotations, complex NACs may become satisfied. Therefore,
the subsequent Create step may create additional annotations again. The UDC
cycle is executed as long as the Create step creates new annotations.

Note, that this additional UDC cycle is only required when dependent view mod-
ules use annotations in negated manner (i.e., implement complex NACs), because
only in this case created annotations may let become NACs false what requires
an additional Update step to detect annotations that become obsolete. Therefore,
in terms of an optimization input connectors should specify whether they use
annotations in positive or negative manner (see Sec. 4.2). Then, unnecessary UDC-
cycles can be avoided when dependent view modules do not use annotations in
negated manner, because created annotations cannot invalidate already existing
annotations when no NACs are employed within the graph pattern of dependent
view modules.

Recursion The batch maintenance mode with preservation supports recursion
concerning missing annotations similar to the naive batch maintenance mode. In
contrast to naive batch maintenance mode, recursion cycles are supported that
need to delete annotations created during a previous iteration of the recursion cy-
cle, because the batch maintenance mode with preservation supports the deletion of
single annotations. The batch maintenance mode with preservation supports recur-
sion for obsolete annotations, because the continuous execution of view modules
in the recursion cycle until a fixpoint is reached (i.e., no annotations are deleted
anymore by the fixpoint module) ensures that also annotations are deleted that
become obsolete due to annotations deleted during the previous execution of the
recursion cycle. The batch maintenance mode with preservation supports recur-
sion also for annotations that are revised during Update steps, because as long
as the execution of the fixpoint module returns revised annotations an additional
recursion cycle is performed that revises annotations that depend on the previously
revised annotations.

49

5. Efficient and Scalable View Graph Maintenance

5.4. Incremental Black Box Maintenance

In contrast to batch mode, the incremental mode uses change information of base
graphs to partially reprocess the base graphs and view graphs. Analogous to batch
mode with preservation, the incremental mode employs the maintenance step
order: Update, Delete, and Create. Fig. 5.4 shows the general maintenance
procedure. A description of the algorithm for incremental maintenance in terms of
pseudocode can be found in Sec. B.3.

Created, modified, and deleted artifacts can lead to suspicious, obsolete, and
missing annotations. We describe each case separately for positive and negative
application conditions as well as recursion in the following sections.

Update Delete Create

handles complex NACs that are
satisfied due to deleted

annotations

handles complex NACs that are
dissatisfied due to created

annotations
new created annotations

suspicious
annotations derived from

modifications in base graphs

annotations set
obselete by
Update step

possibly missing
annotations derived

from deleted
annotations

[new created
annotations > 0]

[new created
annotations = 0]

obsolete
annotations derived from
deletions in base graphs

artifacts required to detect
missing annotations derived

from additions and modifications
in base graphs

Figure 5.4.: Activity diagram about maintenance steps in incremental mode

5.4.1. Suspicious Annotations

Suspicious annotations are annotations that reference modified artifacts or other
suspicious annotations via roles.

Positive Application Conditions Annotations are suspicious, because the mod-
ification of artifacts may lead to the fact that matches that led to annotations in
view graphs do not exist anymore. An artifact is considered as modified, when
attribute values of this artifact changed, when another artifact was added to or
removed from a reference that is owned by this artifact, or this artifact is added
to or removed from a reference owned by another artifact. Suspicious annotations
that need to be revised are determined using captured modification events of base
graphs. Suspicious annotations can be determined by traversing all roles in which
a modified artifact acts (see roles reference between AnnotatedElement and Role
in Fig. 4.6) to the annotation that owns the role (see annotation reference between

50

5.4. Incremental Black Box Maintenance

Role and Annotation in Fig. 4.6). In contrast to batch mode with preservation,
the Update step only revises suspicious annotations in view graphs. The view
module that initially created the annotation is determined. For that purpose, each
annotation knows by which module it was created (see module reference between
Annotation and Module in Fig. 4.6). Afterwards, the module checks whether the
match of the graph pattern represented by the annotation still exists. If the match
still exists, the annotation is preserved. Furthermore, all dependent annotations
must be recursively revised as well, because dependent modules may define addi-
tional constraints for attribute values of artifacts matched by dependency modules.
If the match does not exist anymore, the annotation is set obsolete by removing all
artifacts and annotations from the roles of the annotation. Obsolete annotations are
deleted during the Delete step as described in Sec. 5.4.2.

Negative Application Conditions The Update step considers simple NACs,
because when an artifact is added to or removed from a reference, then the artifact
that owns this reference as well as the artifact that is added to or removed from the
reference are considered as modified and attached annotations are considered as
suspicious and will be revised. The Update step for simple NACs is the same as
for batch mode with preservation, but in contrast to batch mode with preservation
only suspicious annotations are revised. Thus, annotations that are attached to the
modified artifact are revised. Annotations that are not attached to modified artifacts
do not have to be revised, because the graph pattern match represented by these
annotations is not impacted by the modification.

Similar to the Update step of the batch mode with preservation, annotations
that represent matches with complex NACs may become false due to created
annotations that represent matches for PACs (possibly with NACs). Therefore,
also created annotations can make annotations suspicious. But in contrast to the
batch mode with preservation, created annotations that represent the matches of
graph patterns with PACs (possibly with NACs) trigger the revision of suspicious
annotations and, if necessary, the deletion of annotations that may let become other
complex NACs true. Thus, when the Create step creates new annotations an
additional UDC-cycle is performed to revise annotations that became suspicious
due to these created annotations (see Sec. 5.4.3). Complex NACs that become true
due to deleted annotations are detected by the subsequent Create step (see Sec.
5.4.3).

Recursion The incremental maintenance mode supports recursion for suspicious
annotations, because the dependencies between annotations are used to revise
dependent suspicious annotations recursively as well.

51

5. Efficient and Scalable View Graph Maintenance

5.4.2. Obsolete Annotations

Obsolete annotations are annotations with at least one role that does not reference
an artifact or annotation. Annotations are obsolete when the artifacts or dependency
annotations that led to these annotations in view graphs do not exist anymore or
annotations have been set obsolete by the previous Update step, because the
graph pattern matches represented by these annotations do not exist anymore.
Therefore, obsolete annotations must be deleted.

Positive Application Conditions For PACs, all annotations are determined that
are obsolete using the captured modification events. Obsolete annotations can be
determined by traversing via roles in which deleted artifacts acted to annotations
that are obsolete. For that purpose, the roles reference between AnnotatedEle-
ment and Role and the annotation reference between Role and Annotation is
used (see Fig. 4.6). The Delete step deletes all obsolete annotations derived from
modification events of base graphs. The module that initially created the annotation
is also responsible for deleting this annotation. Then, all dependent annotations of
the deleted annotation become obsolete as well. Thus, all dependent annotations
are recursively deleted as well by the responsible modules that initially created
these annotations.

Negative Application Conditions The Delete step considers simple NACs, be-
cause annotations that represent matches of graph patterns with simple NACs that
are not fulfilled anymore are set obsolete by the previous Update step and, thus,
deleted during the Delete step. Simple NACs that become true are handled by
the subsequent Create step.

The deletion of obsolete annotations may let complex NACs become true. Com-
plex NACs that become true due to the deletion of obsolete annotations that repre-
sented the matches of PACs (possibly with NACs) are detected by the subsequent
Create step.

Recursion The incremental maintenance mode supports recursion for obsolete
annotations, because the dependencies between annotations are used to delete
dependent annotations recursively as well.

52

5.4. Incremental Black Box Maintenance

5.4.3. Missing Annotations

Artifacts that were created, deleted or modified can lead to missing annotations
that need to be created. Missing annotations are annotations that must exist due to
changes of base graphs to keep derived view graphs consistent.

Positive Application Conditions The Create step creates all annotations that
must exist due to created, modified, or deleted artifacts. The captured modification
events of base graphs are used to determine all created and modified artifacts. Note
that it is sufficient to only consider created and modified artifacts here when only
supporting simple NACs, because the creation and deletion of an artifact always
implies that at least one artifact will be considered as modified when the created
or deleted artifact is added to or removed from a reference. Then, the artifact that
owns the reference as well as the artifact that is added to or removed from the
reference are considered as modified. The Create step executes the modules as
described in Sec. 5.1. Each module requires a set of relevant artifacts and annota-
tions that need to be processed to create all missing annotations. We refer to this set
of relevant artifacts and annotations as scope. To compute the scope for a module
we assume that the graph pattern matched by the module is a connected graph, i.e.
there is a path between every pair of nodes in the graph pattern. The scope for a
module is a transitive closure, which consists of the artifacts and annotations that
are a) reachable from created and modified artifacts and annotations and b) have
an artifact type or annotation type as specified by the artifact and annotation input
connectors. The artifact types referenced by annotation types must be considered
as well as the annotation types and artifact types referenced via role types of an-
notation types (nested annotation types). For modules without annotation input
connector the computation starts with the created and modified artifacts. For mod-
ules with annotation input connectors the computation starts with the created and
modified artifacts as well as annotations created or revised by dependency modules
during the current maintenance cycle. Note that only the module connectors are
used for scope computation to ensure the black box property of modules.

According to our running example, the Generalization module requires arti-
facts of type Class and TypeReference (see Fig. 4.5). When we assume that a class
B was added as subclass to class A in the abstract syntax graph, then a creation
event for class B exists (see Fig. 5.5). The scope computation starts with class B and
checks whether an artifact of type Class or TypeReference is directly reachable
via a reference of class B. We assume that uni-directional references are traversable
bi-directional and we consider this issue as an implementation detail that is not
in the scope of this technical report. In our case a node of type NamespaceClas-
sifierReference (subtype of TypeReference) exists and is added to the scope.

53

5. Efficient and Scalable View Graph Maintenance

Furthermore, the node of type NamespaceClassifierReference references a node
of type ClassifierReference (subtype of TypeReference) that is added to the
scope as well. From the node of type ClassifierReference a class A of type Class
is reachable and, therefore, is added to the scope. This procedure continues until
the set of nodes in the scope does not change anymore. Thus, the scope consists
of the classes A and B, and the namespace classifier reference and classifier refer-
ence that constitute the generalization between both classes. The other classes C
and D cannot be part of a match with class B, because they are not reachable via
nodes of type Class, NamespaceClassifierReference, and ClassifierReference.
Therefore, the classes C and D are not included in the scope that is passed to the
view module.

For modules with annotation input connectors also annotations are added to
the scope when they are attached to relevant artifacts and consist of a relevant
annotation type as specified by the annotation input connector.

<<created>>
B : Class A: Class: Namespace-

ClassifierReference
: Classifier-
Reference C: Class D: Class

transitive closure (scope of relevant artifacts) not relevant artifacts

Figure 5.5.: Scope of relevant artifacts (dashed rectangle denotes scope of added
class B for Generalization module)

Negative Application Conditions The deletion of an artifact may let become a
simple NAC true. Thus, an annotation may be missing in view graphs. To keep
view graphs with their base graphs consistent, this missing annotation must be
created. The deletion of an artifact from a reference leads to a modified artifact that
owns this reference and the removed artifact is considered as modified as well. The
algorithm for scope computation introduced for PACs above considers modified
artifacts as input. Therefore, simple NACs are supported by the Create step.

The creation of an annotation in view graphs may let become complex NACs
encoded as negated AnnotationRuleObject false. Similar to batch mode with
preservation, an additional UDC cycle is employed to detect annotations that
must not exist anymore in view graphs due to created annotations that dissatisfy
complex NACs. The Update step sets annotations that must not exist anymore
obsolete and during the subsequent Delete step the responsible modules delete
these obsolete annotations.

54

5.5. Incremental White Box Maintenance

To perform also the additional UDC cycle efficiently, the scope for the additional
Update step is computed as follows. The newly created annotations from the
previous Create step are used to determine the suspicious annotations for the sub-
sequent additional Update step. A newly created annotation references artifacts
and annotations that are considered as input for the scope computation. Beginning
at these start artifacts and annotations, all references and roles are traversed to find
artifacts and annotations that have a type as specified by input connectors and also
the output connector of the dependent module in contrast to the PAC case. When
an annotation with a type as specified by the output connector of the dependent
module is traversed, the annotation is added to the set of suspicious annotations.
This annotation is suspicious, because it is reachable from the annotation that was
created in the previous Create step and, thus, may dissatisfy a complex NAC
implemented by dependent view modules.

Recursion The incremental maintenance procedure supports recursion for miss-
ing annotations similar to the batch maintenance mode with preservation.

5.5. Incremental White Box Maintenance

In general, the incremental white box maintenance works the same way as the
incremental black box mode (Sec. 5.4). However, the main difference between the
incremental black box mode and incremental white box mode is the manner how
the scope is computed during the Create maintenance step. While the incremental
black box mode only considers the types of artifact and annotation connectors, the
incremental white box takes the graph pattern specified within view modules into
account. When taking the specified graph pattern into account, only artifacts and
annotations are added to the scope that are reachable via a reference or role that is
used within the graph pattern.

According to our running example, the Generalization module (see Fig. 4.5)
requires artifacts of type Class and TypeReference. The artifact type TypeRefer-
ence is the artifact super type of NamespaceClassifierReference and Classifier-
Reference. Fig. 5.6 shows a base graph in terms of an abstract syntax graph that
represents a generalization and interface implementation. The extends reference
represents the generalization of class A by class B and the implements reference
represents the implementation of interface I by class A. The top part of Fig. 5.6
shows the computed scope when incremental black box mode is employed. The
bottom part of Fig. 5.6 shows the computed scope when incremental white box
mode is employed.

55

5. Efficient and Scalable View Graph Maintenance

<<created>>
B : Class A : ClassN1 : Namespace-

ClassifierReference
C1 : Classifier-

Reference

transitive closure (scope of relevant artifacts)
extends reference classifier

I : Interface

N2 : Namespace-
ClassifierReference

C2 : Classifier-
Reference

implements

classifier

reference

<<created>>
B : Class A : ClassN1 : Namespace-

ClassifierReference
C1 : Classifier-

Reference

transitive closure (scope of relevant artifacts)
extends reference classifier

I : Interface N2 : Namespace-
ClassifierReference

C2 : Classifier-
Reference

implements

classifier reference

incremental
black box mode

incremental
white box mode

Figure 5.6.: Comparison of computed scope for incremental black box mode (top)
and incremental white box mode (bottom)

According to our running example, we consider the Generalization view mod-
ule as depicted by Fig. 4.5. The graph pattern specified by the Generalization
module shows that the crucial property to detect an inheritance relationship be-
tween two classes is the extends reference owned by a sub class. Note that the
implements reference owned by the class that implements an interface is not rele-
vant to detect an inheritance between two classes.

When employing the scope computation of the incremental black box mode, also
the implements reference is traversed to collect all reachable artifacts that are of
artifact (sub) type Class and TypeReference, because the incremental black mode
only takes the types of artifacts and annotation connectors into account.

When employing the scope computation of the incremental white box mode,
the implements reference is not traversed, because the scope computation takes
the actual graph pattern into account and determines that all artifacts that are
only reachable via implements references cannot be part of graph pattern matches
that represent inheritances between classes. Thus, the incremental white box mode
narrows the scope of artifacts and annotations that can be part of graph pattern
matches due to modifications of base graphs. Note that the support of recursion
and negative application conditions is not impacted by the narrowing of the scope.

56

5.6. Discussion

5.6. Discussion

The batch mode with and without preservation does not consider change informa-
tion of base graphs. Thus, they are inefficient when annotations need to be revised
in case base graphs change. For naive batch mode all nodes in the base graph
(#N) are processed (O(#N)). For batch mode with preservation all already existing
annotations (#A) are revised and all nodes in the base graph (#N) are processed
afterwards. This revision of annotations preserves the identity of annotations in
contrast to the naive batch mode, but requires slightly more effort (O(#N + #A)). In
contrast to the batch mode, the incremental mode is efficient, because only modified
parts of base graphs are reprocessed. Therefore, the time required to perform the
incremental mode mainly depends on the number of nodes referenced by captured
modification events (#DN). In general, the number of nodes referenced by captured
modification events (#DN << N) is heuristically much smaller than the number
of all nodes in base graphs. Thus, in general the effort required for incremental
mode (O(#DN)) is much smaller than the effort required for batch mode (O(#N)
or O(#N + #A), respectively). But, the actual time required for incremental mode
also depends on the modules that are re-executed, because modules may have
different computational complexities. The incremental mode preserves the identity
of annotations as well.

The scope computed during the Create step is not optimal for incremental
black box mode, because modules are considered as black boxes and, therefore,
the implemented pattern graph is unknown. Thus, one cannot know whether the
artifacts and annotations contained by the computed scope will lead to a match
and are worth to be processed or not. The incremental white box mode narrows the
computed scope, but is also not optimal, because additional attribute constraints
are not considered. But, from a theoretical perspective the computed closure for
incremental white box mode (#scopewhite(DN)) is in general smaller than the closure
computed by the incremental black box mode (#scopewhite(DN) < #scopeblack(DN)).

57

6. Evaluation

In this chapter, we evaluate the performance of our maintenance modes by mea-
suring the time required to perform the maintenance in comparison to our other
maintenance modes. A memory footprint comparison is not required, because all
view maintenance strategies create the same view graphs of equal size. However,
a measurement of the view graph memory footprint is required to evaluate the
additional memory required by view graphs. The view graph size is independent
from the view maintenance strategies. We describe our evaluation setup (Sec. 6.1),
present the evaluation results (Sec. 6.2), discuss the evaluation results (Sec. 6.3),
and comment on the validity of our evaluation (Sec. 6.4).

6.1. Evaluation Setup

In the scope of our evaluation is the comparison of our different view maintenance
modes for graph databases. For that purpose, we require large-scale base graphs,
arbitrary modifications of these base graphs, and several (dependent) view modules
that derive view graphs from these base graphs.

We selected to use abstract syntax graphs (ASGs) of Java source code as large-
scale graph data, because arbitrary open source Java project exists that consist of
a source code version control repository that contain a history of real changes.
Furthermore, these abstract syntax graphs embody information about employed
software design pattern as described by Gamma et al. [23] as well as information
about where in the source code refactorings should be employed as described by
Fowler et al. [22].

In the following sections, we report on how we derived large-scale base graphs
and use the change history of open source projects to modify these base graphs
(Sec. 6.1.1). Furthermore, we sketch the employed view model (Sec. 6.1.2).

58

6.1. Evaluation Setup

6.1.1. Graph Data and Graph Changes

For our evaluation, we used graph data examples derived from open source Java
projects. For that purpose, we parsed Java source code into Java models using
Jamopp1 (Jamopp models for short). These Jamopp models represent the abstract
syntax graph of Java source code in an UML model-like manner.

Since parsing Java source code for deriving Jamopp models is a time-consuming
task, we pre-processed the Java source code to derive Jamopp models beforehand.
We stored the Jamopp models as XMI models with resolved cross references be-
tween different Jamopp models. Note, that some cross-references might not be
resolved due to missing Java libraries required by the parsed Java source code
during the transformation process. Furthermore, we only consider the main devel-
opment branch. We consider the trunk directory as main development branch in
Subversion repositories.

Furthermore, we require modification deltas of artifacts (i.e. Jamopp models) to
evaluate our incremental maintenance modes. For that, we exploited the version
history of open source projects and pre-processed the Java source code to derive
Jamopp models for each version control revision. When processing the modification
delta of Jamopp models, an explicit adaptation of Jamopp models within the base
graph storage is performed by employing difference and merge algorithms. We
used EMFCompare to apply modification deltas to Jamopp models stored in the
base graph storage. The technical realization is not in the scope of this technical
report. For each selected open source project, we processed the first 100 revisions.
Note that not all revisions include changes to the main development branch and,
therefore, some revisions are skipped in our measurements. When all changes
of one revision are applied to the base graphs, we immediately maintained the
materialized view graphs using one of our maintenance modes.

Table 6.1 gives an overview of the open source projects used for evaluation. The
table shows the number of artifacts for revision 1 and revision 100 per data set as
well as the average modification size in terms of atomic change events2.

Apache Ant "Apache Ant is a Java library and command-line tool whose mission is to
drive processes described in build files as targets and extension points dependent upon each
other."3

1http://www.jamopp.org (last access: 15

th June 2015).
2An atomic change event is a change event that cannot be decomposed further.
3http://ant.apache.org (last access: 13

th May 2015).

59

http://www.jamopp.org
http://ant.apache.org

6. Evaluation

Table 6.1.: Overview of employed graph data sets

Projects Artifacts Avg. Modification Size Annotations Index Size (MB)
Apache. . . Rev.1 Rev. 100 Rev. 1 Rev. 100 Rev. 1 Rev. 100

Ant 12442 22071 492 (2,23% - 3,95%) 1725 2927 1,2 2,1
Commons IO 59423 65487 1567 (2,39% - 2,64%) 4229 4963 2,6 3,1
Xerces 133858 191246 1577 (0,85% - 1,21%) 20050 25636 13,3 16,7

Apache Commons IO "Commons IO is a library of utilities to assist with developing
IO functionality."4

Apache Xerces "Xerces2 Java is a library for parsing, validating and manipulating
XML documents."5

6.1.2. Software Design Pattern View Model

For our evaluation, we composed a view model with view modules that derive view
graphs, which consists of information about employed software design patterns.
Fig. 6.1 shows the complexity of the view model. The view model consists of 49

view modules. The concrete implementation of the view modules is not in scope of
this technical report, but can be found in the appendix C. 15 of 49 view modules are
high-level inference modules, i.e. modules that recover software design patterns. 16

of 49 inference modules are low-level inference modules, i.e. modules that do not
depend on other inference modules. 18 of 49 inference modules are intermediate
inference modules, i.e. modules that depend on other inference modules, but
recover only software design sub-patterns required for recovering software design
patterns.

6.2. Evaluation Results

Table 6.2 gives an overview about the total execution times required to process
the changes of the first hundred revisions for each open source project in different
maintenance modes. The speedup of the incremental modes in comparison to batch
mode with preservation is given in brackets.

4http://commons.apache.org/proper/commons-io/ (last access: 13

th May 2015).
5http://xerces.apache.org (last access: 13

th May 2015).

60

http://commons.apache.org/proper/commons-io/
http://xerces.apache.org

6.2. Evaluation Results

Figure 6.1.: Sketched view model used for evaluation

61

6. Evaluation

Table 6.2.: Overview of execution times for subsequent application of changes
from revision 1 to 100 (speedup in brackets in comparison to batch mode with
preservation)

Open Source Project Batch Naive Batch Preserve Incremental Black Incremental White

Apache Ant 0 h 7 min 28 s 0 h 9 min 14 s 0 min 21 s (26,52) 0 min 22 s (24,92)
Apache Commons IO 0 h 23 min 19 s 0 h 28 min 48 s 1 min 23 s (20,95) 1 min 22 s (21,18)
Apache Xerces 14 h 27 min 3 s 15 h 33 min 44 s 17 min 42 s (52,74) 16 min 13 s (57,57)

In general, the evaluation results show that the batch maintenance mode with
preservation is slower than the naive batch maintenance mode due to the fact that
the preservation of annotations requires more effort as discussed in Sec. 5.6. For
example, the naive batch mode required 7 minutes 28 seconds and the batch mode
with preservation required 9 minutes and 14 seconds for the open source project
Apache Ant.

Furthermore, the evaluation results show that the incremental maintenance mode
is significantly faster than the naive batch maintenance mode and batch mode with
preservation due to the fact that the incremental maintenance mode only processes
changed parts of base graphs as discussed in Sec. 5.6. For example, the incremental
maintenance mode last 21 seconds when incremental black box mode is employed
and 22 seconds when incremental white box mode is employed for the open
source project Apache Ant. In comparison with the batch maintenance mode with
preservation, the incremental maintenance modes have a speedup of approx. 25 for
the open source project Apache Ant. For larger base graphs as for the open source
project Apache Xerces, a speedup of approx. 55 for the incremental modes can
be observed. We use the batch maintenance mode with preservation as reference
measurement, because only the batch maintenance mode with preservation and
the incremental maintenance modes preserve annotations.

Fig. 6.2 shows the required execution time per revision and maintenance mode
graphically. The solid line denotes the number of artifacts in the base graphs. The
dashed line denotes the execution time required by naive batch maintenance mode.
The dotted line denotes the execution time required by batch maintenance mode
with preservation. The dash-dotted line denotes the execution time required by the
incremental black box maintenance mode. We neglect to plot the execution times
for incremental white box maintenance mode, because the plots are very similar to
the plots of the incremental black box maintenance mode.

Table 6.3 shows the computed average scope size, i.e. the number of artifacts
and annotations in the scope, and the average time required to compute the scope.
Note that the depicted values consider the sum over all view modules. For example

62

6.2. Evaluation Results

0 20 40 60 80 100

0
50

00
10

00
0

15
00

0
20

00
0

Apache Ant

Revisions

Ti
m

e
in

 m
se

c

artifacts (count)
incremental blackbox (msec)
batch preserve (msec)
batch naive (msec)

(a) Apache Ant

0 20 40 60 80 100

0
20

00
0

40
00

0
60

00
0

80
00

0

Apache Commons IO

Revisions

Ti
m

e
in

 m
se

c

artifacts (count)
incremental blackbox (msec)
batch preserve (msec)
batch naive (msec)

(b) Apache Commons IO

0 20 40 60 80 1000e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5

Apache Xerces

Revisions

Ti
m

e
in

 m
se

c

artifacts (count)
incremental blackbox (msec)
batch preserve (msec)
batch naive (msec)

(c) Apache Xerces
Figure 6.2.: Execution time in msec for revision 1 to 100

63

6. Evaluation

Table 6.3.: Overview of scope size and computation time (in brackets percentage
share in comparison to batch mode with preservation)

Open Source Project Avg. Scope Size (count) Avg. Scope Computation Time

Preserve Inc Black Inc White Preserve Inc Black Inc White
Apache Ant 85179 8823 (10,36%) 7344 (8,62%) 43 ms 30 ms 73 ms
Apache Commons IO 297950 32734 (10,99%) 24831 (8,33%) 190 ms 128 ms 216 ms
Apache Xerces 801026 44968 (5,61%) 39620 (4,95%) 1971 ms 157 ms 405 ms

for the Apache Ant project, the number of artifacts and annotations that are part
of the scope (cf. avg. scope size) is approx. only 10 % for incremental black box
mode and approx. 9 % for incremental white box mode in comparison to batch
mode with preservation. Furthermore, the computation of the narrowed scope in
incremental white box mode takes in general approx. two times longer than the
scope computation in incremental black box mode.

Fig. 6.3 depicts the time required for view graph maintenance related to the
number of modifications. The plots show that the time required for incremental view
maintenance correlates with the number of modification events in a linear manner.
The time required for incremental view maintenance increases when the number of
modification events increases. Note that the gray dashed and dotted lines depict
the arithmetic mean of the time required for batch view maintenance in terms of a
reference line, because no correlation between the number of modification events
and the time required for view maintenance exists.

Fig. 6.4 depicts the memory footprint required for storing annotations (i.e., mark-
ing matches in base graphs and view graphs). For measuring the memory footprint
we used the open source tool Java Agent for Memory Measurements6 (JAMM).
JAMM uses Java’s instrumentation API to compute an approximation of object
sizes. We counted the object size of annotations, roles owned by annotations as
well as artifacts that reference objects in base graphs. We did not count the objects
in base graphs that are referenced by annotations, because these objects belong to
the base graph and are not part of view graphs.

Table 6.4 shows the index sizes for revision 1 and 100. For the open source
project Apache Ant, approx. 3000 annotations exists for revision 100. These anno-
tations lead to an index size of approx. 2,1 mega bytes (MB) required for storing
annotations, their roles, and artifacts that reference the object in base graphs.

6https://github.com/jbellis/jamm (last access: 10th July 2015).

64

https://github.com/jbellis/jamm

6.2. Evaluation Results

0 2000 4000 6000 8000 10000

0
50

00
10

00
0

15
00

0
20

00
0

Apache Ant

Number of Modification Events

Ti
m

e
in

 m
se

c

●

incremental whitebox (msec)
incremental blackbox (msec)
batch preserve (msec)
batch naive (msec)

●●●●●●●●●●●●
●
●●●●●●●●●●●

●
●●●
●●

●

●●●●●●●
●●●

●
●

●●
●●●●

●
●
●●

● ●●
●

●

●
●

●

●

(a) Apache Ant

0 2000 4000 6000 8000 10000

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

Apache Commons IO

Number of Modification Events

Ti
m

e
in

 m
se

c

●

incremental whitebox (msec)
incremental blackbox (msec)
batch preserve (msec)
batch naive (msec)

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●● ● ● ●● ●● ●●

●

●●●●●
●

● ●
●

●●

●

(b) Apache Commons IO

0 2000 4000 6000 8000 100000e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5
1e

+0
6

Apache Xerces

Number of Modification Events

Ti
m

e
in

 m
se

c

●

incremental whitebox (msec)
incremental blackbox (msec)
batch preserve (msec)
batch naive (msec)

●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●●● ●●●

● ●
●●● ●

●
●

●
● ●

● ● ●

(c) Apache Xerces
Figure 6.3.: Correlation between number of modifications and execution time

65

6. Evaluation

0 20 40 60 80 100

0
50

0
10

00
15

00
20

00
25

00
30

00

Apache Ant

Revisions

Si
ze

 in
 K

B

Memory Footprint (KB)
Annotations (count)

(a) Apache Ant

0 20 40 60 80 100

0
10

00
20

00
30

00
40

00
50

00
60

00

Apache Commons IO

Revisions

Si
ze

 in
 K

B

Memory Footprint (KB)
Annotations (count)

(b) Apache Commons IO

0 20 40 60 80 100

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Apache Xerces

Revisions

Si
ze

 in
 K

B

Memory Footprint (KB)
Annotations (count)

(c) Apache Xerces
Figure 6.4.: Number of annotations and size of memory footprint in kilo bytes

66

6.3. Evaluation Discussion

Table 6.4.: Overview of index sizes per data set

Open Source Project Annotations Index Size (MB)
Rev. 1 Rev. 100 Rev. 1 Rev. 100

Apache Ant 1725 2927 1,2 2,1
Apache Commons IO 4229 4963 2,6 3,1
Apache Xerces 20050 25636 13,3 16,7

6.3. Evaluation Discussion

The actual speedup of the incremental maintenance mode in comparison with
the batch maintenance mode with preservation depends on the actual base graph
modifications as well as employed view model. The performance of the incremental
maintenance mode bases on the heuristic that the number of modified artifacts in
base graphs is low between two consecutive revisions. Table 6.2 shows the average
modification size of base graphs for used open source projects. Table 6.2 shows
that the heuristic works especially well for large-scale base graphs such as Apache
Xerces, because in general the average modification size decreases when the size
of base graphs increases. This fact is underlined by the observed speedup increase
with growing base graph sizes.

Furthermore, the concrete artifacts included by the modification delta a) have
an impact which concrete modules have to be re-executed and b) have an impact
on the size of the scope that is passed to the modules that must be re-executed.
Note that view modules have different complexities and, therefore, the concrete
modules that have to be re-executed per UDC cycle impact the performance of the
maintenance.

The evaluation results show that the number of artifacts and annotations com-
puted by the incremental white box mode is smaller than for incremental black box
mode. Furthermore, the evaluation results show that the time required by incre-
mental white box mode to compute the scope is greater than for incremental black
box mode. Due to this observation, the additional time required by incremental
white box mode may not pay off in comparison to incremental black box mode,
because it is more expensive to narrow the scope before passing the scope to view
modules than passing an approximated scope that is less expensive to compute as
in incremental black box mode.

67

6. Evaluation

6.4. Threats to Validity

We performed each execution time measurement only once, because the differences
of the execution times are large and significant enough that additional measure-
ments will not change the overall observation. Moreover, additional measurements
would increase the overall time required to perform the evaluation. This is practi-
cally infeasible, especially for large-scale base graphs. However, unexpected Java
garbage collections may impact the overall execution times negatively. To avoid
that the garbage collection is triggered unnecessarily, we increased the Java heap
space to 256 GB of main memory.

We pre-processed the Java source code to derive abstract syntax graphs in terms
of Jamopp models, because parsing large-scale Java source code on demand is
an expensive operation that may exceed the overall time required for the actual
maintenance of view graphs. However, due to our pre-processing some parts of the
abstract syntax graphs are skipped, e.g. cross references to third-party libraries.

Therefore, fewer annotations and, therefore, smaller view graphs are created and
maintained. Thus, less maintenance effort is required, because less annotations are
contained by view graphs. But, note that we do not aim at improving the precision
and recall of annotations that describe employed software design patterns.

Furthermore, all view graphs created and maintained by our different mainte-
nance modes contain equal annotations. The implementation of our maintenance
modes leads to equal view graphs.

68

7. Related Work

In this chapter, we describe related work and finally discuss this related work
by comparing it with our approach. We identified several research areas that are
related to our approach. We describe the related work for each research area sepa-
rately. First, we describe existing approaches for discrimination networks (Sec. 7.1).
Afterwards, we describe how discrimination networks among other things are used
for view maintenance (Sec. 7.2) of relational databases (Sec. 7.2.1), object-oriented
databases (Sec. 7.2.2), and graph databases (Sec. 7.2.3). Furthermore, we describe
which graph indexing approaches (Sec. 7.3) and graph querying approaches (Sec.
7.4) exist that are independent from graph databases and are related to our ap-
proach. Moreover, we describe incremental processing approaches from the re-
search area of Model-Driven Engineering (Sec. 7.5).

7.1. Discrimination Networks

In recent related work, discrimination networks are used for condition testing.
For example, this condition testing is employed in production systems [21], active
database management systems [35], and view maintenance [37]. Different kinds of
discrimination networks exist that are presented in detail in the following sections.
We introduce the different kinds of discrimination networks in historical order.
We describe Rete networks (Sec. 7.1.1), TREAT networks (Sec. 7.1.2), and Gator
networks (Sec. 7.1.3).

7.1.1. Rete Network

Forgy [21] introduced the Rete Match Algorithm (Rete algorithm for short) to find
all objects that match each pattern from a large collection of patterns. Originally,
the algorithm was developed for executing production rules with the help of
production systems interpreters. A production rule consists of a left and right
hand side. The left hand side specifies conditions that must be fulfilled by working
memory elements to perform the sequence of actions on the right hand side of

69

7. Related Work

the production rule. Since the set of working memory elements changes over
time, e.g. due to the actions performed by a production rule or working elements
that are added, removed, or modified by users of the production system, the
conditions on the left hand side of production rules must be tested efficiently to
enable a high execution speed for production systems. Efficient testing means that
the condition testing is only performed when the working memory changes can
impact the satisfaction of the left hand side of production rules. The Rete algorithm
addresses this performance issue by introducing Rete networks that avoid iterating
over working memory between cycles of working memory changes.

In general, the Rete algorithm executes an indexing function that "is represented as
a network of simple feature recognizers" [21], i.e. single condition tests. The results of
condition tests can be combined to more complex conditions tested by subsequent
condition tests. Furthermore, each condition test stores which working memory
elements pass the condition test. Note that a single condition test can combine at
most two results of antecedent condition tests. When working memory elements
are added to (resp. removed from) working memory the Rete algorithm finds
all conditions satisfied (resp. dissatisfied) by the added (resp. removed) working
memory elements and updates the list of working memory elements associated
with each condition in the Rete network by adding (resp. removing) the working
element to (resp. from) the list of working memory elements that pass the condition
test.

Rete networks consist of four kinds of nodes: root nodes, terminal nodes, one-
input nodes, and two-input nodes. The root node distributes tokens. Tokens are
descriptions of working memory element changes and consist of a tag and a
list of working memory elements. The tag describes whether a working memory
element has been added (positive token) to or removed (negative token) from
the working memory. When a working memory element has been modified, two
tokens are distributed via the root node to the Rete network, which denote that
a working memory element has been removed and subsequently added to the
working memory. One-input nodes follow the root node and perform a single
condition test over working memory elements as defined on the left hand side
of production rules. If the working memory element passes the condition test, a
positive token is passed to subsequent nodes in the Rete network. If the working
memory element does not pass the condition, a negative token is passed to the
subsequent nodes. Two-input nodes follow one-input/two-inputs nodes and join
the incoming working memory elements that passed the two antecedent condition
tests. For that purpose, two-input nodes store the working memory elements that
are passed from the antecedent left and right Rete (sub-)network in their internal
memory. When a positive token arrives at a two-input node, the token is added
to the left or right internal memory. When a negative token arrives at a two-input

70

7.1. Discrimination Networks

node, the token is removed from the left or right internal memory. When a left
(resp. right) incoming token is positive, the two-input node checks whether the
token can be joined with tokens stored in the internal right (resp. left) memory and,
if yes, pass a positive token to subsequent nodes. When a left (resp. right) incoming
token is negative, the joins do not exist anymore and a negative token is passed to
subsequent nodes. Terminal nodes follow one-input/two-inputs nodes and store all
working memory elements that satisfy the left hand side of production rules. The
working memory element associated with a positive incoming token is added as
instantiation to the so called conflict set. The working memory element associated
with a negative incoming token is removed from the conflict set. Afterwards, the
production system interpreter selects a production rule whose left hand side is
satisfied by an instantiation from the conflict set and executes the sequence of
actions from the right hand side of the production rule. These actions can lead to
working memory changes that lead to new tokens processed by the Rete network as
described above. The original network interpreter is implemented in a Pascal-like
language. For implementation details, we refer to [21].

Schor et al. [70] present several improvements to the Rete Matching Algorithm.
The most crucial improvement by Schor et al. concerning efficiency is an efficient
support of modified working memory elements. Instead of mapping modifications
of working elements to subsequent positive and negative tokens that "causes an
excessive retriggering of rules" [70], the improvements by Schor et al. [70] avoid such
re-triggerings if existing instantiations continue to exist and only performs such
re-triggerings in terms of subsequent positive and negative tokens if the previous
test result of a modified working memory element differs from the current test
result.

Bunke et al. [9] transferred the concepts of the Rete Matching Algorithm to the
efficient implementation of graph grammars. The Rete network is derived from
the left hand sides of graph grammar rules, i.e. productions, and consists of five
different types of network nodes. These network nodes are distinguished into root
nodes, node checkers, edge checkers, subgraph checkers and production nodes.
The root node is connected to node checkers and edge checkers and distributes
incoming nodes and egdes of the underlying graph (i.e. graph nodes and graph
edges) to these checkers. Graph nodes are sent to node-checkers, while graph edges
are sent to edge-checkers. Node checkers and edge checkers conform one-input
nodes of original Rete networks. Node checkers check whether the passed graph
node has a certain label. A graph node that successfully passes the node checker is
transmitted to a subsequent production node. Production nodes conform terminal
nodes in original Rete networks. Edge checkers check whether the source and target
graph nodes of the passed graph edge have certain labels and that the graph edge
itself has a certain label. A graph edge that successfully passes the edge checker is

71

7. Related Work

transmitted to (multiple) subsequent subgraph checkers and possibly a production
node if the checked subgraph corresponds to a left hand side of graph grammar
rule. A subgraph checker has two incoming edges and conforms two-input nodes
in original Rete networks. "Any graph [...] that results from the combination of [left and
right incoming subgraphs] is sent to all direct successors of the [...] subgraph checker" [9].

In general, Rete networks are either left-associative or right-associative concern-
ing their two-input nodes, but not both at a time. "In an ordinary Rete [network] [...]
a join node never has another join node as its right-hand side [(resp. left-hand side)] input"
[54]. However, when generalizing Rete networks by removing the restrictions on
the associativities of join nodes, i.e. mixing left-associative and right-associative
join nodes in terms of reconvergent join nodes, the original Rete algorithm pro-
duces duplicated or missing matches. Lee et al. [54] provide counter examples.
The reason for this flaw is that the original Rete algorithm employs a depth-first
processing in all cases. But, Lee et al. [54] employ a topological sorting of nodes in
the Rete network and, furthermore, distinguish between right and left distribution
of tokens to ensure that the results of all intermediate join nodes are available
when required. Furthermore, Lee et al. [54] introduce stop and resume nodes as
extension of ordinary Rete networks to delay match processing to a later point in
time (possibly on demand).

7.1.2. TREAT Network

TREAT is an alternative discrimination network approach for Rete networks. TREAT
was originally introduced by Miranker et al. [59, 61] to overcome the primary disad-
vantages of Rete networks. These disadvantages are high memory footprint due to
two-input nodes (i.e., join nodes) that store intermediate states, similar sequences
of required network maintenance steps when a working memory element is re-
moved that are as expensive as when adding a working memory element, and
shared network parts make parallel computation difficult.

In comparison to Rete networks, TREAT networks only employ one-input nodes
that perform condition testing for working memory elements. The working mem-
ory elements that pass the condition test are stored in subsequent alpha-memories.
A TREAT network does not consist of two-input nodes and beta-memories that
store join results of two-input nodes. Instead, TREAT networks compute join re-
sults on demand based on change information about working memory elements
called constrained search for instantiations. For that purpose, an alpha-memory
is partitioned into old memory (already processed working memory elements),
new-delete memory (new deleted working memory elements), and new-add mem-
ory (new added working memory elements). The search for instantiations takes

72

7.1. Discrimination Networks

place between the old memories and new memories. Since TREAT networks do not
consist of two-input nodes no join results are stored in TREAT networks. Therefore,
TREAT networks do not have to recompute join results when working memory
elements are deleted in contrast to Rete networks and, thus, outperforms Rete
networks during deletions. But, TREAT networks require additional effort when
working memory elements are added to compute join results in contrast to Rete.
The evaluation presented by Miranker [59] shows that the extra number of compar-
isons required by TREAT networks for added working memory elements does not
exceed the number of comparisons required by Rete networks for deleted working
memory elements in some cases.

Miranker et al. [60] extend the TREAT approach by a lazy matching procedure
for production systems (e.g., RETE and TREAT). Their approach employs a best-
first (meaning recency-first) search for instantiations by suspending searches for
instantiations and proceeding with the search for instantiations that may exist due
to added, removed or modified working memory elements as result of previous rule
firing due to found instantiations. A stack is employed to keep track of previous
instantiations for resuming the search for instantiations.

Hanson [34] enhanced TREAT called Ariel TREAT (A-TREAT for short) in terms
of speed up and storage reduction. Note that the following improvements can be
transferred to Rete networks as well. A-TREAT employs an "interval binary search
tree to efficiently test conditions that specify closed intervals [...], open intervals [...], or
points [...]" [34] to speed up rule processing. Ordinary alpha-memories store work-
ing memory elements that passed the antecedent selection condition test performed
by one-input nodes. This leads to duplicated data that is already stored in the un-
derlying data corpus. The situation becomes even more problematic when the
selectivity of the condition test is low, because a lot of working memory elements
pass the condition test and will be duplicated. For this purpose, Hanson proposes
the concept of virtual alpha-memory, "which contains a predicate describing the con-
tents of the node rather than the qualifying data itself" [34]. Virtual alpha-memories
consist of a predicate and an identifier of the relation on which the predicate is
defined. Virtual alpha-memories enable to reduce the required storage, but require
additional effort when the selection condition test has to be performed, e.g. when
joining working memory elements.

7.1.3. Gator Network

Hanson et al. proposed the discrimination network called Gator network for rule
condition testing and view maintenance of relational databases in a series of techni-
cal reports [39, 38, 36] that are summarized in [37]. Gator networks are generalized

73

7. Related Work

Rete and TREAT networks. In contrast to Rete and TREAT networks, Gator net-
works enable an arbitrary network structure. Especially, Gator networks allow join
nodes (resp. two-input nodes in Rete) with more than two inputs. Therefore, Rete
and TREAT networks are considered as the extremes of Gator network structures.
Input nodes with more than two inputs employ an internal join order plan to join
incoming tuples in a fixed manner, because the join order plan is determined when
the network is initially created.

Hanson et al. [37] state that the performance of Gator networks relies on the
network structure. For that purpose, the authors present a cost model for Gator
networks that is used to predict the performance of a certain network structure.
Their "cost functions estimate the expense to propagate tokens through a Gator network,
assuming a frequency of token arrivals at different nodes determined by the frequency statis-
tics, relation cardinality, attribute cardinality, selection and join predicate selectivity" [37].
With this cost prediction generated Gator networks are optimized by employing a
combination of state-space search techniques. The authors show in their evaluation
that optimized Gator networks can outperform Rete and TREAT networks.

7.2. Database View Maintenance

In the literature, different approaches exist for view maintenance of databases. In
general, we distinguish between view maintenance for relational databases (Sec.
7.2.1), object-oriented databases (7.2.2), and graph databases (Sec. 7.2.3). In the
following sections, we focus on the maintenance of materialized views, i.e. views
that are stored in the database. Furthermore, we only consider changes to base
tables/graphs that must be propagated to view tables/graphs to keep derived
views consistent with their base tables/graphs. We do not consider changes to
view tables/graphs that are propagated back to base views/graphs.

7.2.1. View Maintenance for Relational Databases

Shmueli et al. [73] present an approach for immediate view maintenance of rela-
tional databases. The approach of Shmueli et al. [73] bases on a good-bad marking
scheme. This good-bad marking scheme enables to determine whether an inserted
or deleted tuple has an impact to views. Views are considered as joins of two re-
lations (and relations resulting from joins) in the database. Good tuples are tuples
that have an impact on the view (i.e., join result), while bad tuples have no impact
on views. The approach works for acylic databases, but can be transferred to cyclic
databases by transforming the cyclic schema into a tree [28]. Tuples in leaf relations

74

7.2. Database View Maintenance

are always good. When tuples are inserted to or deleted from intermediate nodes
it must be checked whether they are good or bad. A tuple is good if the tuple can
be joined with at least one tuple in every child relation. Otherwise, the tuple is bad.
Good tuples must be checked for "compatibility above" [28], i.e., whether currently
bad tuples on the path to the root node become good. Shmueli also describes an
optimization of this approach that employs good-counters and up-pointers that
enable a more efficient look up of relevant tuples during maintenance [73].

Blakeley et al. [7] present an approach for efficient and immediate updates of
materialized views of relational databases to keep materialized views consistent
with their base tables. The basic idea of their approach is to determine whether a
certain change to a base table is relevant or irrelevant for derived view tables, i.e.
whether this change has an impact on the consistency between derived view tables
and their base tables. For that purpose, their approach determines whether selection
conditions become satisfiable or unsatisfiable concerning the current database state
and employ a differential update that determines which tuples must be inserted
and deleted to keep view tables consistent with base tables. The authors discuss
differential update algorithms in relational algebra for select views, project views,
and join views. Finally, they combine these algorithms in a common select-project-
join view algorithm in relational algebra.

Ceri et al. [11] present an incremental view maintenance approach for materi-
alized views of relational databases. Their main concept is to derive maintenance
rules from view definitions for materialized views in terms of production rules
that are applied when certain changes to base tables occur. These production rules
propagate changes from base tables to view tables. Their approach consists of two
basic steps: view analysis and rule generation. During view analysis the view def-
initions are analyzed to determine whether an efficient incremental maintenance
can be employed. If yes, for each view definition maintenance rules are generated
for insertion and deletion of tuples to base tables. Updates of tuples are mapped to
insert and delete maintenance rules. Since view definitions can make use of several
operators, the authors discuss how these operators require different maintenance
rules. We refer to [11] for a detailed discussion. For example, comparison operators
are supported as well set operators such as union and intersection. Furthermore,
nested positive and negative subqueries are support, but only for a single nesting
level. The authors do not give a performance evaluation.

Qian et al. [66] present an approach for deriving incremental relational expres-
sions from ordinary relational expressions that are ordinarily used for view defi-
nitions. With the help of these incremental relational expressions changes to base
tables can be propagated incrementally to derived view tables. The authors present
an algorithm that derives incremental relational expressions from ordinary rela-
tional expressions with the help of equivalence-preserving transformation rules.

75

7. Related Work

The algorithm applies these transformation "to factor out the incremental changes in
relations from the relational expressions" [66] taking as input the ordinary relational
expressions and incremental changes to base tables. The algorithm result is an
incremental relational expression that is used together with incremental changes
to base relations to compute the tuples that must be added to or removed from
derived view tables to keep them conform with their base tables. Griffin et al. [29]
extend the algorithm of Qian et al. [66] to guarantee minimality, i.e. no unnecessary
tuples are generated in the change sets.

Harrison et al. [40] present an approach for incremental view maintenance of
relational deductive databases that supports negation and recursion. The authors
contribute the Propagation Filtration algorithm (PF algorithm for short). The algo-
rithm consists of two phases: propagation phase and filtration phase. During the
propagation phase, candidate rules are determined and executed in a constrained
manner to determine an approximation of tuples that may impact derived view
tables. Candidate rules (i.e., view definitions) are rules that depend directly or
indirectly on base relations. When executing the candidate rule, the rule is "con-
strained using the bindings contained within the set of updates for the relation" [40]. For
that purpose, the candidate rule body (i.e., the actual query) must be known. The
execution result of all candidate rules is considered as approximation of potentially
affected tuples in view tables. During the filtration phase, for each tuple in the
set of approximated tuples is checked whether the tuple is a relevant or irrelevant
update to the view. For this purpose, for added tuples is checked whether they are
provable on the old database state (incl. views) and for removed tuples is checked
whether they are provable on the new database state. Tuples in the approximation
that are not provable are actual tuples that must be propagated to views. Note that
the PF algorithm supports recursion and negation.

Gupta et al. [33] present two approaches for incremental view maintenance of
relational databases. Their approach aims at supporting duplicates efficiently. Du-
plicates are considered as tuples that can be derived multiple times from base tables.
Their "counting" algorithm maintains the number of alternative derivations for each
derived tuple. If the number of alternative derivations drops to zero, the derived
tuple is deleted, since no alternative derivation exists. Otherwise, the derived tuple
is preserved. They also present the DRed algorithm that overestimates the set of
derived tuples that must be deleted due to changes of base tables. Afterwards, the
DRed algorithm searches for alternative derivations and creates new tuples in view
tables, if these alternative derivations exist. Note that for both algorithms delta
rules are derived from view definitions to apply these procedures.

Gupta et al. [31] present also another approach about using only partial infor-
mation to update materialized views. They motivate their research with the fact
that in certain scenarios materialized views and base relations reside on different

76

7.2. Database View Maintenance

computing nodes. But, it should be still possible to update materialized views
when, e.g. base relations are not available and instead only the view definition, the
current state of the materialized view and the update delta is available. The authors
consider different scenarios to demonstrate their approach. The basic contribution
of their approach is how to infer whether a certain update delta can contribute to
the current state of the materialized view based on boolean expressions that are
derived from information available in certain scenarios. Furthermore, with their
approach it can be inferred whether a certain tuple must be added or removed
from the materialized view without accessing base relations. Their approach works
for select-project-join (SPJ for short) views.

Ross et al. [69] present an approach for incremental view maintenance and
integrity constraint checking for relational databases. They aim at cost reduction
for maintaining materialized views incrementally. The basic idea of their approach
is to maintain additional views that support the incremental maintenance of a
specific view (resp. constraint) defined by database users. The authors argue that
although maintaining such additional views the effort for incremental maintenance
of a specific view (resp. constraint) can be reduced. For this purpose, the authors
introduce the notion of update tracks. An update track is a set of nodes and edges
between these nodes that are affected by transactions of a certain type. Multiple
equivalent update tracks can exist that lead to the same evaluation result. The
authors contribute an algorithm that finds the cheapest update track in a directed
acyclic graph (DAG) of expression nodes that are derived from expression trees (i.e.
view definitions) with help of equivalence rules. Expression nodes have expressions
as children that evaluate to the same result. However, the presented algorithm is
expensive. Therefore, the authors outline three heuristics to find an optimal update
track. They propose to a) use a single expression tree instead of an expression DAG,
b) materialize results of expression nodes that would be expensive to compute
incrementally if not materialized, and c) employ a Greedy algorithm to find an
optimal update track.

Colby et al. [13] present an approach for deferred incremental view maintenance
for relational databases. The authors aim at minimizing view downtime (due to
maintenance) while obtaining the per-transaction overhead also low. The authors
reach this goal by decoupling base logs that record changes to base tables from
differential tables that store changes that must be applied to derived view tables
to keep base tables and view tables consistent. Changes stored in base logs are
propagated to differential tables every k time units, while view updates are prop-
agated from differential tables to view tables every m > k time units. Since only
the base logs must be updated by each transaction the per-transaction overhead
is minimized, while the view maintenance downtime is also minimized, because
required incremental changes to view tables are derived periodically from base

77

7. Related Work

logs and stored in differential tables and can be directly applied with low overhead
when consistent view tables are required. However, a performance evaluation is
not given by the authors.

Colby et al. [14] extend their former approach [13] by enabling the support of
multiple view maintenance policies at once. Their research is motivated by the fact
that previous research focused on single view maintenance approaches in isolation.
However, combining multiple view maintenance policies in a graph of dependent
materialized views can be beneficial in practice. But, supporting multiple view
maintenance policies at the same time yields consistency issues that have to be
considered when maintaining view tables to keep them consistent with their base
tables. For this purpose, the authors introduce the notion of view groups and view
dependency graphs. Furthermore, they specify properties (e.g., "A query on a view
in a viewgroup can be answered without querying any other view group" [14]) and rules
(e.g., "An immediate view cannot have a deferred view or a snapshot view as a parent."
[14]) for view groups to define which combinations of view maintenance policies
are meaningful and valid. The authors consider a) update to base tables, b) queries
over deferred views and c) explicit/periodic refresh of a viewgroup containing
snapshot views. Note that the addition and deletion of views is not considered.
The authors provide update operation for these three cases. In case a), the update
operation updates all immediate views and auxiliary tables required by dependent
views. In case b), deferred views are recursively refreshed, if required at all. In case
c), all snapshot views in a viewgroup are updated and all dependent views are
updated in a breadth-first manner.

Mistry et al. [62] present an approach for optimizing view maintenance of re-
lational databases when multiple views are involved. The authors exploit query
expressions common to different view definitions to reduce maintenance costs.
Their approach consists of a query expression DAG as used in query execution
optimization that is enhanced with additional equivalence nodes that correspond
to differentials, i.e. changes made to relations. This enhanced query expression
DAG is used to compute the maintenance costs of possible execution paths in the
DAG. The maintenance cost is used by a greedy algorithm for computing how to
integrate additional materialized views with best plans for view maintenance by
selecting views with best benefit.

The research about active relational databases and production rule triggering is
related to view maintenance, because the tuples associated with each node in a
Rete network [21], TREAT network [61], and Gator network [37] can be considered
as intermediate views. Especially, the tuples associated with production nodes can
be considered as equivalent to view tables. Alternatively, the actions (resp. right-
hand side) of production rules can be used to trigger modification of base tables
when certain events in base tables occur as, e.g., described by Ceri et al. [11]. For

78

7.2. Database View Maintenance

example, Hanson et al. [37] states that discrimination networks can be used for
incremental view maintenance of relational databases. In case of Hanson et al. [37]
Gator networks are employed, but also Rete networks [21] and TREAT networks
[61] can be employed instead, because they are extremes of Gator networks (see
Sec. 7.1). Note that discrimination networks have been only used in the context of
relational databases for incremental view maintenance.

7.2.2. View Maintenance for Object Databases

Gluche et al. [25] present an approach for incremental maintenance of views in
object-oriented databases using Object Query Language (OQL). They propose a
"framework in which view definitions and updates are understood as mappings between
algebraic domains that represent collection type constructors such as sets, bags, and lists"
[25]. The algebraic properties of these mappings are used to generate incremen-
tal update plans. The authors show that OQL is appropriate as view definition
language for object-oriented databases, because a large subset of OQL may be
translated to such mappings.

Kuno et al. [53] present an incremental maintenance approach for material-
ized object views called MultiView. In contrast to view maintenance in relational
databases, the approach presented by Kuno et al. [53] make use of object-oriented
concepts that enable to incrementally maintain views called virtual classes derived
from base classes. Virtual classes are defined with the help of object algebra op-
erators. In general, the maintenance procedures consider two basic dependencies
called membership-dependency and value-dependency. For computing mainte-
nance steps concerning membership-dependencies the generalization hierarchy of
base and virtual classes is taken into account. For computing maintenance steps
concerning value-dependencies a register service is provided that enables virtual
classes to register for change notifications of certain class properties as used in
view definitions. Note that additional virtual classes can extend virtual classes (i.e.,
views) and updates to base and virtual classes are propagated through the chain
of virtual classes.

Liu et al. [55] present a view maintenance approach for object-relational databases
using Object Relational SQL (QR-SQL), i.e. objects are mapped to tables. In contrast
to relational databases, object inheritance and object references must be considered
when maintaining views in object-relational databases, because changes to tables
that are not explicitly specified in view definitions can occur. The employed main-
tenance procedure applies a step-wise query rewriting by, e.g., making referenced
tables explicit in view definitions and considering inherited and inheriting tables
in terms of triggers for view maintenance.

79

7. Related Work

Akhtar et al. [1] present an approach for the incremental maintenance of materi-
aliazed views in object-oriented databases for view definitions specified in Object
Query Language (OQL). The basic idea of their approach is to analyze the view
definitions at an algebraic level to derive information which kinds of modification
events can render the materialized view inconsistent to the base relations from
which the view has been derived. These kinds of events are used to derive incre-
mental maintenance plans that are applied to keep derived materialized views
up-to-date. Which actions are performed by an incremental maintenance plan is
discussed by the authors in detail and depends on the concrete view definition
and modification events. To keep track which objects in base relations contribute
to which derived views, auxiliary views are derived and maintained that contain
the object identifiers of objects that contribute to derived views.

7.2.3. View Maintenance for Graph Databases

Kiesel et al. [50, 51] introduce GRAS as a graph-oriented software engineering
database system. GRAS is a graph storage that uses the graph rewriting language
PROGRES [71] as query language. The data model of GRAS consists of an explicit
type layer for nodes and edges. Graphs in GRAS are attributed graphs. The authors
state that a graph database system "should support the incremental computation of
derived data" [51]. Unfortunately, no explicit definition of the term derived data is
given and we assume that derived data are computed attribute values, because
GRAS consists of an explicit index storage for supporting the indexing of attribute
values. However, we found no hint that GRAS support views over graph data and,
therefore, does not provide concepts for maintaining view graphs.

Zhuge et al. [82] introduce the notion of graph-structured databases along with
the notion of virtual and materialized views for graph structured databases. Their
graph data model consists of atomic types and set types. Atomic types are leaf of
the graph (e.g. integer or string values), while set types are intermediate nodes that
consist of children. Materialized views employ delegates that reference the object in
base graphs and other materialized views, respectively. Note that edges are not con-
tained by materialized views and are retrieved from base graphs. View definition
queries specify views in terms of selection paths and selection conditions. When
updates to base graphs occur, the materialized view is immediately maintained.
The maintenance procedure determines for the inserted, deleted, or modified nodes
in the base graph whether it must be added to or removed from the derived views
by re-evaluating the selection path and condition for the given nodes. Note that
materialized views are considered itself as graph structured databases and, thus,
can be handled the same way. However, the authors do not comment on this is-

80

7.2. Database View Maintenance

sue concerning change propagation from base graphs to other views graphs with
multiple view graphs in between. Furthermore, the authors limit their algorithm
to tree structured databases and selection paths and conditions, instead of graph
structured databases and selection path expressions with wild cards. Moreover,
their approach requires the view definition specification. Arbitrary graph patterns
for defining views are not considered.

Balsters [3] proposes to use Object Constraint Language (OCL) as view definition
language for UML classes to define derived classes. However, Balsters argues that
OCL is not relational complete as relational algebra due to the missing natural
join operator in OCL. Thus, he proposes a natural join operation for OCL. The
maintenance of derived classes is not considered by the author.

Angles [2] presents a comparison of graph database models by focusing on
current graph database implementations used in practice such as Neo4J1, Allegro-
Graph2, InfiniteGraph3 and others (see [2]). In summary, most graph databases are
based on simple and attributed graphs and rather provide an application program-
ming interface (API) for current programming languages for interaction with the
graph database than providing a standard query language. From the perspective
of view maintenance, current graph databases support only indexes. These indexes
are rather simple indexes "over a property for all nodes that have a given label" [75] as
in Neo4j than complex graph queries specified by view definitions as known from
relational databases. Maintenance of materialized views based on view definitions
are not considered by Angles’ comparison [2]. We examined the manuals of the
graph database implementations mentioned above and conclude that materialized
views based on view definitions are not supported by current graph database
implementations.

Srinivasa et al. [74] propose the graph database system GRACE that enables
search for similar graphs and substructures. GRACE employs three kinds of in-
dexes for querying: an attribute value index, a graph location index, and a label
walk index. The label walk index is a path-based indexing approach that enables
to search for similar graphs and substructures. However, the authors do not com-
ment on how the index is maintained in case the graphs in the graph database
are modified. GRACE employs a new invented language called Safari for graph
retrieval.

Jouili et al. [47] present a graph database benchmark that they use afterwards for
a performance comparison of current graph databases. However, it remains also an

1http://neo4j.com (last access: April 28th
2015).

2http://franz.com/agraph/allegrograph/ (last access: April 28th
2015).

3http://www.infinitegraph.com (last access: April 28th
2015).

81

http://neo4j.com
http://franz.com/agraph/allegrograph/
http://www.infinitegraph.com

7. Related Work

open question which impact indexes have on the performance and whether there
are differences between index performances of different graph databases. Graph
views are not considered.

Khurana et al. [49] present a system for snapshot retrieval of historical graph
data. Snapshots are one kind of database views that, in contrast to materialized
views and virtual views, are copies of a certain database state. Since naive copies
are very inefficient concerning storage consumption, because of redundant stored
partitions, the authors present how to use delta information between snapshots
derived from modification events to reduce storage consumption. Moreover, their
system enables to define auxiliary indexes that are captured along with snapshots.
These auxiliary indexes store user-defined index information. It seems to be the re-
sponsibility of the user to specify the actual indexing function, differential function,
and functions that exploit delta information during retrieval, because the paper
lacks a detailed description of this issue. The authors present this idea using the
example of subgraph pattern matching over a set of historical graph data snapshots.

7.3. Graph Indexing

Goldman et al. [26] propose DataGuides. A DataGuide enables to derive a dynamic
schema for semi-structured and graph-structured databases. Furthermore, this
dynamic schema is maintained when edges are added to or removed from the
database. DataGuides are graphs that summarize the structure of semi-structured
databases. A node in a DataGuide represents nodes that are reachable via the
same path starting at the root node in the database. Edges between nodes in a
DataGuide represent edges between nodes with the same label in a database. Thus,
DataGuides can be considered as path index and, therefore, besides serving as
dynamic structure to facilitate the formulation of queries over semi-structured data,
DataGuides are also used to accelerate query evaluation. Note, that path queries
with wildcards are not supported. Also note that DataGuides are no views, because
path query results are not materialized as it is the case for database views.

Messmer et al. [57] present a graph indexing approach that enables to retrieve
apriori known graphs stored in graph databases based on graph and subgraph
isomorphism more efficient than scanning the database sequentially on demand.
Their approach bases on a decision tree that indexes permutations of adjacency
matrices in terms of the row-column elements of these permutations. These per-
mutations represent mappings between two graphs and, therefore, the problem of
finding graph and subgraph isomorphisms is mapped to finding these permuta-
tions. Since the decision tree consists of redundant subtrees when realized naively,

82

7.3. Graph Indexing

the concept of redirecting branches is introduced to aggregate redundant subtrees
to one common subtree in the decision tree. However, the graphs that need to
be indexed must be known apriori and a maintenance of the decision tree when
graphs are added to, deleted from, or modified within the graph database is not
considered.

Milo et al. [58] present an index structure called T-Index for graph-structured data.
T-Index aims at supporting the evaluation of path expressions without scanning the
graph data sequentially. T-Indexes are indexes that support the evaluation of path
expressions that conform to a certain path expression template. The main concept of
T-Index is that nodes in the graph data are grouped together in terms of equivalence
classes in the index structure in a manner that nodes in the same equivalence class
are reachable via the same path in the graph data. For that purpose, T-Index
constructs a non-deterministic automaton whose states are equivalence classes and
edges are transitions between objects in these equivalence classes. Note that the
maintenance of the index is not in the scope of their paper. Furthermore, the T-
index cannot be considered as view, because the index facilitates to evaluate path
expressions that conform to a certain template faster, but these results are not
materialized as for database views.

Cooper et al. [15] propose a path-based indexing approach called Fabric for
semi-structured data such as XML documents. Their approach bases on Patricia
Tries that are organized in layers for efficient lookup of queries. For indexing and
querying the semi-structured data, queries are translated into prefix strings that
are indexed with the help of Patricia Tries. The authors distinguish two kinds of
queries: raw paths and refined paths. Raw paths are paths from the root element
to leafs in terms of prefixed strings, while refined paths are special paths that are
added to the index manually and reference directly the answer for certain queries.
Thus, refined paths can be considered as a simple kind of a view. However, how
the index and especially refined paths are maintained when the semi-structured
data changes is not in the scope of the presented approach.

Chung et al. [12] propose the adaptive indexing approach APEX for graph-
structured documents such as XML documents. APEX is a path-based indexing
approach that enables to adapt the employed index structure concerning often
stated queries. For that purpose, APEX employs index structures that complement
each other. A graph-structured index summarizes the structural information of
the indexed graph data, e.g. which node is referenced by other nodes. A hash
tree enables fast access to nodes in the graph-structured index that contribute to
the answers of stated queries. This hash tree is adapted when the query workload
changes and other queries become frequent. Frequent queries are detected by a data
mining approach for frequent label paths. Note that the adaption is triggered by

83

7. Related Work

changing query workloads and that the index is not maintained when the indexed
graph data changes.

Kaushik et al. [48] propose to exploit local similarity of nodes in graph-structured
data to reduce index sizes. They present the path-based indexing approach A(k)-
Index as generalization of the 1-Index [58]. The main idea of their approach is
to group index elements representing similar nodes (resp. node structures) of
the graph-structured data together in the index in contrast to other indexing ap-
proaches. The main concept of their approach is the notion of bisimilarity and
k-bisimilarity. The authors state, "if two nodes u and v are k-bisimilar, then the set of
[paths of length k] into these [data] nodes is identical" [48]. Thus, these nodes can be
grouped together in the index to reduce the index size. Subsequently, the retrieved
candidate sets are validated to remove false positives especially for short paths.
Note that the maintenance of the index is left for future work by the authors.

Yan et al. [78, 79] present a graph indexing graph called gIndex that uses frequent
graph structures contained by graphs in the graph database as indexing feature.
Thus, in contrast to other graph indexing approaches, gIndex does not employ a
path-based indexing approach. The authors propose to use discriminative graph
fragments for indexing, since these frequents reduce the search space better than
other fragments and are in general stable what enables an incremental maintenance
of the index. Their approach consists of an index construction and query processing
step. The index enumerates graph structures and each indexed graph structure
consists of a list of graphs in the graph database that contain the indexed graph
structure. The query step computes a set of candidate graphs for a given query
and, afterwards, checks whether the query is a real isomorphic subgraph of the
candidate graph. To compute the most useful graph structure for indexing, a
discrimination ratio is computed to decide whether a given graph structure is more
discriminative than other graph structures. The authors consider the insertion
and deletion of graphs to (resp. from) the graph database. However, they do not
consider the modification of graphs already contained by the graph database.
For the insertion and deletion of graphs, the discriminative graph fragments are
identified within the graph and added (resp. removed) from the list of associated
graphs for the discriminative feature in the index.

Srinivasa et al. [74] propose the label walk index that is a path-based indexing
approach in the graph database system GRACE. The label walk index is a prefix
tree that indexes sequences of node labels, i.e. walks (also called paths). Each index
element consists of a list of identifiers of graphs that contain the substructure
associated with the indexed path and the number of occurrences in these graphs.
However, the authors do not address how the index is maintained in case indexed
graphs change.

84

7.3. Graph Indexing

Yan et al. [80] present the graph indexing approach Grafil that aims at retrieving
graphs stored in a graph database that are similar to the stated query graph. Their
approach consists of two matrices called feature-graph matrix and edge-graph
matrix. The feature-graph matrix stores the number of occurrences of features (i.e.,
subgraphs) per graph contained by the graph database. The feature-graph matrix
is created during index construction and maintained when graphs are added to or
removed from the graph database by adding or removing columns that represent
these graphs from the matrix. The edge-feature matrix stores which features contain
which edges. The edge-feature matrix is computed when the query is stated and is
used to select features that contain the edges of relaxed query graphs. Query graphs
are relaxed by removing edges. The resulting set of features is used to lookup
graphs that contain these features. The resulting graph candidate set is verified
by existing feature similarity measures and, if required, potential candidates are
removed from the set of graphs that contain substructures similar to the stated
query graph.

He et al. [41] present a graph indexing approach called Closure-Tree (C-tree for
short). The main concept of their approach is an index tree that consists of nodes
that represent graph closures. Graph closures "capture the structural information
of each graph" [41] represented by child nodes in the tree, i.e. graph closures are
bounding containers for a certain set of graphs. Leaf nodes in the index tree are
graphs in the database. When querying for graphs in the graph database, the
C-tree is traversed based on pseudo subgraph isomorphism as approximation of
subgraph isomorphism to prune candidate graphs and derive a candidate answer
set. Afterwards, subgraph isomorphism tests are performed on the remaining
graphs in the candidate answer set. The index is maintained when graphs are
inserted to and deleted from the graph database. However, the modification of
graphs already contained by the graph database is not considered. Note that only
subgraph queries and similarity queries are supported for efficient look up of
graphs in the graph database that are subgraph isomorphic or similar to the query
graph.

Williams et al. [77] present an approach for indexing graphs to improve the
performance of subgraph isomorphism tests and similarity queries for graphs. The
basic idea of their approach is to use graph decomposition graphs that enumerate
all connected and induced subgraphs of a given graph. Each node (resp. induced
subgraph) in the graph decomposition is hashed using the canonical code of the
graph and the hash value is added to an index. The graph decomposition graphs
of all graphs in the graph database are merged to one single graph database
decomposition graph. A lookup function is used to look up nodes (resp. induced
subgraphs) in the graph database decomposition graph. The lookup procedure
consists of two steps. The first step computes the hash value of the query (graph)

85

7. Related Work

using its canonical code. The result of the first step is a set of candidate matches
with their canonical codes for the query. In the second step the candidate matches
are verified by comparing the canonical codes of candidates with the canonical
code of the query. If the canonical code is exactly the same, then the candidate is
a isomorphic match for the query. Note that the second step is required, because
the hash function does not guarantee uniqueness and the index size is limited to
a certain size that is set a priori. However, the index is constructed once and the
authors do not comment on how the index is maintained when the graph database
content changes.

Zhang et al. [81] present the graph indexing approach TreePi that uses frequent
trees as index features instead of frequent subgraphs. During index construction
frequent trees in graphs of a graph database are mined that are indexed using
their canonical form. During query processing the query (graph) is partitioned into
trees. These trees are used to retrieve all graphs in terms of a candidate set that
contain these trees. This candidate set is pruned by selecting those trees, which
fulfill a center distance constraint that is implied by the query. Afterwards, the
remaining trees are used to reconstruct the query, if possible, to verify the result.
This verification step replaces the expensive subgraph isomorphism test of other
indexing approaches. Note that the described optimizations can only be employed,
because subtrees are used instead of subgraphs and, therefore, the center of trees
can be determined easily in contrast to graphs.

7.4. Graph Querying

In this section, we present existing graph querying approaches. We distinguish
between model search (Sec. 7.4.1) and graph search (Sec. 7.4.2). While model search
deals with the retrieval of models expressed in certain modeling languages (e.g., in
Model-Driven Software Engineering), graph search deals with the retrieval of graph
structures in a broader sense independently from certain modeling languages and
the domain of software engineering.

7.4.1. Model Search

In this section, we present the state of the art in model search. In practice, a model
repository "provides storage facilities for models" [45] in terms of an artifact storage.
On top of such a model repository current model search engines create a search
index by employing one single monolithic approach that is dedicated to the search
task that needs to be supported. A query engine browses this search index, when

86

7.4. Graph Querying

a query is stated. Afterwards, the artifacts referenced by the retrieved search index
results are delivered as query result. Queries can be expressed in terms of keywords,
OCL expressions or patterns (query-by-example).

The approach of Gomes et al. [27] enables the case-based retrieval of UML mod-
els that are similar to a currently developed target design by means of similarity
metrics. Their approach exploits synonyms of words (e.g. class names) and se-
mantic relations between words to create the search index. Their approach focus
on supporting UML packages, classes and interfaces and does not support other
modeling languages.

MoScript [52] is a domain-specific language for querying and manipulating model
repositories. MoScript employs OCL expressions to retrieve logical models from
a mega-model, which capture physical models and their relationships [43]. These
logical models need to be dereferenced to obtain the corresponding physical models.
Thereby, the mega-model itself acts in terms of a search index. MoScript focuses on
querying models with the help of OCL expressions, but MoScript does not consider
views for the retrieval of models that fulfill certain properties.

The approach of Bozzon et al. [8] enables to search for models about applications
developed by employing Model-Driven Engineering (MDE) practices. Their ap-
proach exploits the inner structure of models and distinguishes between a content
processing flow to create a search index and a query processing flow to answer
queries. The content processing flow extracts meaningful information to create
the search index by extracting global meta data, splitting projects into smaller
units, mining information to generate the search index, and performing a linguis-
tic normalization. The query flow enables a keyword-based and context-based
(query-by-example) search for models using the search index created by the con-
tent processing flow. However, their approach does not provide means to model
the content processing flow, i.e. the generation of the search index individually, e.g.
in terms of views.

Moogle [56] is a model search engine, which exploits meta-models of models.
Therefore, Moogle enables to search for meta-information, since it is aware of the
internal structure of models. In Moogle model search is mapped to text search
using the full-text search engine Apache SOLR4. Therefore, Moogle creates model
descriptors that conform to the schema of Apache SOLR. Thus, these model de-
scriptors constitute the search index. However, also Moogle’s procedure to create
the search index is immutable and does not support different kinds of indexes in
term of views.

4https://lucene.apache.org/solr/ (last access: August 13th
2015).

87

https://lucene.apache.org/solr/

7. Related Work

7.4.2. Graph Search

Fan et al. [18] investigated incremental algorithms for graph pattern matching
using graph simulation, bounded simulation, and subgraph isomorphism. They
present several algorithms for incremental graph pattern matching. However, the
algorithms of Fan et al. [18] require the concrete pattern graphs as input and do
not assume black boxes.

Fan et al. [20] discuss how graph pattern queries can be answered using views
without accessing base graphs. The authors provide algorithms that enable to a)
determine whether a query can be answered with a given set of views without
accessing the base graph, b) compute answers for a query efficiently given a set of
views, and c) determine a minimal set of views which should be used for answering
a query. The authors describe algorithms for the challenges described above using
graph simulation and bounded graph simulation. The authors do not consider
view maintenance.

7.5. Incremental Model-Driven Engineering

In the following sections, we summarize related work from the model-driven
engineering domain that use incremental processing approaches for incremental
graph pattern matching (Sec. 7.5.1), incremental model transformation (Sec. 7.5.2),
and incremental model constraint evaluation (Sec. 7.5.3).

7.5.1. Incremental Graph Pattern Matching

Bergmann et al. [6] present an incremental graph pattern matching approach for
the Viatra2 framework. The authors adapted the concept of RETE networks
[21] to pre-compute all matches for graph patterns with the result that matches
are available in constant time (on condition that the RETE network processed
all changes to models) when required to perform graph transformations. Their
approach maps (partial) graph patterns to nodes in the RETE network and each
node in the RETE network "stores the set of tuples that conform to the pattern" [6]. Thus,
tuples are associated with matches for graph patterns. Note that their approach is
limited to the topology of RETE networks and does not enable topologies of Gator
networks [37].

The approach of Bergmann et al. [6] has been adapted in several other contexts.
For example, EMF-IncQuery [5] uses the incremental graph pattern matching pro-

88

7.5. Incremental Model-Driven Engineering

vided by the Viatra2 framework to answer model queries over EMF models
instantly after all matches have been updated by the RETE network.

The performance of incremental pattern matchers that base on RETE networks de-
pends on the topology of the employed RETE network as stated by Varró et al. [76]
and Hanson et al. [37]. For this purpose, Varró et al. [76] present an approach for
RETE network construction for incremental graph pattern matching. The approach
employs a state-space search by taking the distance to the final topology (called
unification point) and cost of a (partial) network topology into account. The benefit
of their approach is that the cost function is customizable.

Furthermore, EMF-IncQuery has been used by Ráth et al. [68] to incrementally
compute derived features in EMF models. Derived features are attributes and
references whose values are non-persistent and, therefore, are computed from
persistent features or other derived features. Model queries are used to compute
values of derived features. They integrated EMF-IncQuery into the model code
generated by EMF.

Giese et al. [24] present an approach for incremental model synchronization
based on Triple Graph Grammars (TGG). Their algorithm enables incremental
model synchronization due to explicit dependencies between correspondence
nodes that reflect the execution order of TGG rules. When modification infor-
mation of the synchronized models are available the synchronization starts at the
correspondence node that is connected to modified model elements and traverses
the DAG of correspondence nodes in a breadth-first search. Their algorithm re-
verts transformation steps when model elements have been deleted and applies
transformation steps when model elements have been added. In case only attribute
values have been changed, these attribute values are propagated between the syn-
chronized models. Negative application conditions are not considered by their
approach.

7.5.2. Model Transformation

Hearnden et al. [42] aim at incremental model transformation (also called live
transformations) using SLD resolution trees as used for the execution of logic
programs that represent the trace of a transformation execution that is used for
change propagation between source and target models. Changes to the source
model of the transformation leads to an update of the resolution tree and, therefore,
these changes can be mapped to changes in the target model.

The approach of Ráth et al. [67] uses the RETE-based matcher of the Viatra2

framework (see Sec. 7.5.1) to enable live transformations by determining the match
set that is impacted by a change.

89

7. Related Work

Debreceni et al. [16] present how EMF-IncQuery and its RETE-based incremental
graph pattern matcher is used for deriving view models from source models and
incrementally synchronizing these view models upon source model changes. Their
approach bases on a) annotated model queries that enable to specify that view
models can dependent on other view models, b) traceability links that enable to
lookup previously derived model elements in view models, and c) a notification
mechanism that provides match set deltas for view synchronization when source
models change.

Jouault et al. [46] present an incremental execution algorithm for live transfor-
mations in ATL. They propagate creations and deletions of source model elements
to the target model by executing only those parts of the transformation that are im-
pacted by the change. For that purpose, they employ a change tracking for models
to keep track of modified model elements.

7.5.3. Model Constraint Evaluation

Egyed [17] presents an approach for incremental re-evaluation of model constraints
based on model changes. His approach employs a model profiler that keeps track of
model elements that have been traversed for evaluating a model constraint. Thus,
changed model elements can be traced back to model constraints that must be
re-evaluated due to these changes to model elements without requiring manual
annotations of model constraints.

The approach of Groher et al. [30] extends the approach of Egyed [17] by focusing
on changeable model constraints that trigger the incremental re-evaluation of these
constraints.

The approach of Cabot et al. [10] rewrites OCL constraints based on model
changes to lower computational complexity of the constraints for re-evaluation. For
that purpose, their approach must be aware of the concrete OCL constraints and
does not assume black box constraints.

In our former work, Seibel et al. [72] present a context-aware and modification-
aware incremental approach for the maintenance of traceability links by employing
maintenance steps in terms of creation and deletion rules. These rules can be
considered as constraints between models of the same and different kinds. The
approach bases on a traceability link reference model that defines traceability link
types, which are instantiated and maintained by traceability maintenance rules
in terms of creation and deletion rules. However, their approach is limited to the
domain of traceability link maintenance.

Niere et al. [63] present a incremental processing approach for software design
pattern recovery that focuses on detecting the first (and subsequent) software

90

7.6. Summary

design patterns as fast as possible. Their approach returns matching results in
incremental parts comparable with an iterator, but does not support the incremental
re-evaluation of detected software design pattern in case the abstract syntax graph
of Java source code changes.

7.6. Summary

In this section, we summarize the presented related work and discuss differences to
the view maintenance approach presented in this technical report. Discrimination
networks have been used for production systems and active relational database
systems for rule condition testing and constraint checking. Several kinds of dis-
crimination networks have been investigated and it turned out that neither RETE
networks [21] nor TREAT networks [61] are best in general. Instead, Gator networks
[37] with an arbitrary network topology are optimal in general, when the network
topology is optimized for often stated queries. However, a) discrimination networks
found application in relational databases only [21, 61, 37], b) non-relational prob-
lems are mapped to the relational case [6], and c) solely RETE networks have been
employed for graph grammars by Bunke et al. [9]. During our intensive literature
research, we found no approach that employed the concept of Gator networks [37]
to graph grammars or view maintenance for graph databases.

Moreover, the discrimination networks RETE and TREAT found application in
relational databases [21, 61], but we know no approach that employs these kinds
of discrimination networks for view maintenance of graph databases. Furthermore,
view maintenance for graph databases seems to be rarely discussed in literature at
all although there are several challenges as discussed in this technical report and
as also stated by Zhuge et al. [82].

Instead of view maintenance for graph databases, graph indexes have been
studied extensively such as path-based indexes (e.g., DataGuides [26], T-Index
[58], Fabric [15], A(k)-Index [48]) and indexes that base on frequent substructures
(e.g., gIndex [79], Grafil [80], Closure-Tree [41]). However, these approaches mainly
focus on index construction and query retrieval, but do not aim at an efficient
maintenance of the index. The maintenance task is often mapped to the deletion and
re-insertion of complete graphs into the graph database, when graphs are modified.
But first and foremost, graph indexes aim at accelerating query evaluation and do
not maintain answers of pre-computed queries as it is the case for view graphs.
Thus, in general graph indexes are scanned (sequentially) to answer queries, while
view graphs return query answers in constant time, when the view graph is up-to-
date, i.e. maintained immediately when changes to base graphs occur.

91

7. Related Work

Graph query approaches such as model search approaches either employ a
general-purpose search index (e.g., MoScript [52], Moogle [56]) or a purpose-
specific search index (e.g., Gomes et al. [27], Bozzon et al. [27]). Furthermore,
especially model search approaches with purpose-specific search indexes are lim-
ited to certain modeling languages such as Unified Modeling Language (UML).
Note that both kinds of model search approaches do not pre-compute answers in
terms of materialized views as it is also the case for graph indexing approaches.

The presented approaches have been adapted to enable incremental graph pat-
tern matching (e.g., Viatra 2 [6], EMF IncQuery [5]), incremental model constraint
checking (e.g., Egyed et al. [17], Groher et al. [17], Cabot et al. [17]), and incremental
model transformations (e.g., Hearnden et al. [42], Ráth et al. [67], Jouault et al. [46])
in Model-Driven Engineering. However, only Rete networks [21] have been adapted
for graph grammars [9, 6] by mapping graph patterns to tuples. To the best of our
knowledge, no approach exists that adapted Gator networks for the use with graph
grammars or view graph maintenance for graph databases as presented in this
technical report.

92

8. Conclusion and Future Work

In this technical report, we presented a view maintenance approach for graph
databases. The contribution of our approach is twofold: a) we described a view
definition language for graph databases (Sec. 4) and b) we described batch and
incremental algorithm for maintaining view graphs when base graphs change (Sec.
5). The view definition language bases on a view reference graph that describes the
content of view graphs on type level (Sec. 4.1), view modules (Sec. 4.2) that embody
view definitions in terms of graph patterns (Sec. 4.4), and view models (Sec. 4.3)
that describe dependencies between view modules. The view graph maintenance
procedures either process the complete base graph in batch mode (Sec. 5.2 and 5.3)
or exploit modification information of base graphs (Sec. 5.4 and 5.5).

Our evaluation (Sec. 6) shows that the incremental maintenance procedures
outperform the batch maintenance procedure. While the execution time required
by the batch maintenance procedure depends on the base graph sizes, the execution
time required by the incremental maintenance procedure depends only on the
number of modifications made to base graphs. Thus, in contrast to the batch
maintenance procedure, the incremental maintenance procedure scales concerning
the size of base graphs, because the effort required to perform an incremental
maintenance is independent of the sizes of base graphs.

In our related work discussion, we emphasized that view maintenance for graph
databases has been neglected by the research community and is not supported by
current graph database implementations. Furthermore, we emphasized that the
most generalized form of discrimination networks, i.e. Gator networks, have not
been adapted to graph databases for view maintenance although Gator networks
can outperform RETE and TREAT networks as has been shown by Hanson et al. [37]
for the relational case. To the best of our knowledge, we presented the first ap-
proach that mapped Gator networks from relational databases to graph databases.
Moreover, discrimination networks do not consider recursion as we do.

In our future work, we plan to proceed with the parallel execution of view
modules that can be executed independently from each other. Furthermore, we are
going to investigate how to organize the structure of view models to reduce the
view maintenance costs. For that purpose, we plan to take runtime information

93

8. Conclusion and Future Work

into account to adaptively change the structure of view modules, in contrast to
existing approaches that create discrimination networks at compile time.

94

References

[1] M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton. MOVIE:
An incremental maintenance system for materialized object views. Data &
Knowledge Engineering, 47(2):131–166, 2003.

[2] Renzo Angles. A Comparison of Current Graph Database Models. In Pro-
ceedings of the 28th International Conference on Data Engineering, pages 171–177.
IEEE, April 2012.

[3] Hermann Balsters. Modelling Database Views with Derived Classes in the
UML/OCL-framework. In Perdita Stevens, Jon Whittle, and Grady Booch,
editors, UML 2003 – The Unified Modeling Language. Modeling Languages and
Applications, volume 2863 of Lecture Notes in Computer Science, pages 295–309.
Springer, 2003.

[4] Pablo Barceló, Leonid Libkin, and Juan L. Reutter. Querying Graph Patterns.
In Proceedings of the 30th Symposium on Principles of Database Systems, PODS ’11,
pages 199–210. ACM, 2011.

[5] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh,
Zoltán Balogh, and András Ökrös. Incremental Evaluation of Model Queries
over EMF Models. In Dorina C. Petriu, Nicolas Rouquette, and Øystein Hau-
gen, editors, Model Driven Engineering Languages and Systems, volume 6394 of
Lecture Notes in Computer Science, pages 76–90. Springer, 2010.

[6] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely Varró.
Incremental Pattern Matching in the Viatra Model Transformation System. In
Proceedings of the 3rd International Workshop on Graph and Model Transformations,
GRaMoT ’08, pages 25–32. ACM, 2008.

[7] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently Updating
Materialized Views. In Proceedings of the International Conference on Management
of Data, SIGMOD ’86, pages 61–71. ACM, 1986.

[8] Alessandro Bozzon, Marco Brambilla, and Piero Fraternali. Searching Reposi-
tories of Web Application Models. In Web Engineering. Springer, 2010.

95

References

[9] H. Bunke, T. Glauser, and T.-H. Tran. An efficient implementation of graph
grammars based on the RETE matching algorithm. In Hartmut Ehrig, Hans-
Jörg Kreowski, and Grzegorz Rozenberg, editors, Graph Grammars and Their
Application to Computer Science, volume 532 of Lecture Notes in Computer Science,
pages 174–189. Springer, 1991.

[10] Jordi Cabot and Ernest Teniente. Incremental Evaluation of OCL Constraints.
In Advanced Information Systems Engineering, pages 81–95. Springer, 2006.

[11] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incremental
View Maintenance. In Proceedings of the 17th International Conference on Very
Large Data Bases, VLDB ’91, pages 577–589. Morgan Kaufmann Publishers Inc.,
1991.

[12] Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. APEX: An Adaptive Path
Index for XML Data. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’02, pages 121–132. ACM, 2002.

[13] Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal Singh Mumick, and
Howard Trickey. Algorithms for Deferred View Maintenance. In Proceedings of
the International Conference on Management of Data, pages 469–480. ACM, 1996.

[14] Latha S. Colby, Akira Kawaguchi, Daniel F. Lieuwen, Inderpal Singh Mumick,
and Kenneth A. Ross. Supporting Multiple View Maintenance Policies. In
Proceedings of the 1997 International Conference on Management of Data, SIGMOD
’97, pages 405–416. ACM, 1997.

[15] Brian Cooper, Neal Sample, Michael J. Franklin, Gísli R. Hjaltason, and Moshe
Shadmon. A Fast Index for Semistructured Data. In Proceedings of the 27th

International Conference on Very Large Data Bases, VLDB ’01, pages 341–350.
Morgan Kaufmann Publishers Inc., 2001.

[16] Csaba Debreceni, Ákos Horváth, Ábel Hegedüs, Zoltán Ujhelyi, István Ráth,
and Dániel Varró. Query-driven Incremental Synchronization of View Models.
In Proceedings of the 2nd Workshop on View-Based, Aspect-Oriented and Ortho-
graphic Software Modelling, VAO ’14, pages 31–38. ACM, 2014.

[17] Alexander Egyed. Instant Consistency Checking for the UML. In Proceedings
of the 28th International Conference on Software Engineering, pages 381–390. ACM,
2006.

[18] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Wang, and Yinghui Wu.
Incremental Graph Pattern Matching. In International Conference on Management
of Data 2011, pages 925–936. ACM, 2011.

96

References

[19] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yunpeng
Wu. Graph Pattern Matching: From Intractable to Polynomial Time. Proc.
VLDB Endow., 3(1):264–275, Sep 2010.

[20] Wenfei Fan, Xin Wang, and Yinghui Wu. Answering Graph Pattern Queries
Using Views. In Proceedings of 30th International Conference on Data Engineering,
pages 184–195. IEEE, March 2014.

[21] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many object
Pattern Match Problem. Artificial Intelligence, 19(1):17–37, 1982.

[22] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Object Technology Series. Addison-Wesley, 1999.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[24] Holger Giese and Robert Wagner. Incremental Model Synchronization with
Triple Graph Grammars. In Oscar Nierstrasz, John Whittle, David Harel, and
Gianna Reggio, editors, Proceedings of the 9th International Conference on Model
Driven Engineering Languages and Systems, volume 4199 of Lecture Notes in
Computer Science (LNCS), pages 543–557. Springer, Oct 2006.

[25] Dieter Gluche, Torsten Grust, Christof Mainberger, and Marc H. Scholl. In-
cremental Updates for Materialized OQL Views. In François Bry, Raghu
Ramakrishnan, and Kotagiri Ramamohanarao, editors, Deductive and Object-
Oriented Databases, volume 1341 of Lecture Notes in Computer Science, pages
52–66. Springer, 1997.

[26] Roy Goldman and Jennifer Widom. DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. In Proceedings of the 23rd

International Conference on Very Large Data Bases, VLDB ’97, pages 436–445.
Morgan Kaufmann Publishers Inc., 1997.

[27] Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro,
José L. Ferreira, and Carlos Bento. Using WordNet for Case-based Retrieval
of UML Models. AI Communications, 17(1):13–23, Jan 2004.

[28] Nathan Goodman and Oded Shmueli. Transforming Cyclic Schemas into Trees.
In Proceedings of the 1st Symposium on Principles of Database Systems, PODS ’82,
pages 49–54. ACM, 1982.

97

References

[29] Timothy Griffin, Leonid Libkin, and Howard Trickey. An Improved Algo-
rithm for the Incremental Recomputation of Active Relational Expressions.
Transactions on Knowledge and Data Engineering, 9(3):508–511, May 1997.

[30] Iris Groher, Alexander Reder, and Alexander Egyed. Incremental Consistency
Checking of Dynamic Constraints. In Fundamental Approaches to Software Engi-
neering, pages 203–217. Springer, 2010.

[31] Ashish Gupta and José A. Blakeley. Using Partial Information to Update
Materialized Views. Information Systems, 20(8):641–662, 1995.

[32] Ashish Gupta and Inderpal Singh Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. Data Engineering, 18(2):3–18,
1995.

[33] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining
Views Incrementally. In Proceedings of the International Conference on Manage-
ment of Data, SIGMOD ’93, pages 157–166. ACM, 1993.

[34] Eric N. Hanson. Rule Condition Testing and Action Execution in Ariel. In
Proceedings of the International Conference on Management of Data, SIGMOD ’92,
pages 49–58. ACM, 1992.

[35] Eric N. Hanson. The Design and Implementation of the Ariel Active Database
Rule System. Transactions on Knowledge and Data Engineering, 8(1):157–172,
1996.

[36] Eric N. Hanson, Sreenath Bodagala, and Ullas Chadaga. Optimized Trigger
Condition Testing in Ariel using Gator Networks. Technical Report TR-97-021,
University of Florida, November 1997.

[37] Eric N. Hanson, Sreenath Bodagala, and Ullas Chadaga. Trigger Condition
Testing and View Maintenance Using Optimized Discrimination Networks.
Transactions on Knowledge and Data Engineering, 14(2):261–280, Mar 2002.

[38] Eric N. Hanson, Sreenath Bodagala, Mohammed Hasan, Goutam Kulkarni,
and Jayashree Rangarajan. Optimized Rule Condition Testing in Ariel using
Gator Networks. Technical Report TR-95-027, University of Florida, October
1995.

[39] Eric N. Hanson and Mohammed Hasan. Gator: An Optimized Discrimination
Network for Active Database Rule Condition Testing. Technical Report TR-93-
036, University of Florida, December 1993.

98

References

[40] John V. Harrison and Suzanne W. Dietrich. Maintenance of Materialized Views
in a Deductive Database: An Update Propagation Approach. In Workshop on
Deductive Databases, JICSLP, pages 56–65. Unknown Psublisher, 1992.

[41] Huahai He and Ambuj K. Singh. Closure-Tree: An Index Structure for Graph
Queries. In Proceedings of the 22nd International Conference on Data Engineering,
ICDE ’06, pages 38–50. IEEE, 2006.

[42] David Hearnden, Michael Lawley, and Kerry Raymond. Incremental Model
Transformation for the Evolution of Model-Driven Systems. In Proceedings
of the 9th International Conference on Model Driven Engineering Languages and
Systems, pages 321–335. Springer, 2006.

[43] Regina Hebig, Andreas Seibel, and Holger Giese. On the Unification of Meg-
amodels. In Proceedings of the 4th International Workshop on Multi-Paradigm
Modeling, 2011.

[44] Frédéric Jouault and Jean Bézivin. KM3: A DSL for Metamodel Specification.
In Roberto Gorrieri and Heike Wehrheim, editors, Proceedings of the 8th Inter-
national Conference on Formal Methods for Open Object-Based Distributed Systems,
volume 4037 of FMOODS’06, pages 171–185. Springer, 2006.

[45] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Satellite
Events at the MoDELS 2005 Conference, pages 128–138. Springer, 2006.

[46] Frédéric Jouault and Massimo Tisi. Towards Incremental Execution of ATL
Transformations. In Proceedings of the Third International Conference on Theory
and Practice of Model Transformations, ICMT’10, pages 123–137. Springer, 2010.

[47] Salim Jouili and Valentin Vansteenberghe. An Empirical Comparison of Graph
Databases. In Proceedings of the International Conference on Social Computing 2013,
pages 708–715. IEEE, Sep 2013.

[48] Raghav Kaushik, Pradeep Shenoy, Philip Bohannon, and Ehud Gudes. Ex-
ploiting Local Similarity for Indexing Paths in Graph-Structured Data. In
Proceedings of the 18th International Conference on Data Engineering, pages 129–
140. IEEE, Mar 2002.

[49] U. Khurana and A. Deshpande. Efficient Snapshot Retrieval over Historical
Graph Data. In Proceedings of the 29th International Conference on Data Engineer-
ing, pages 997–1008. IEEE, April 2013.

[50] Norbert Kiesel, Andy Schürr, and Bernhard Westfechtel. GRAS, a graph-
oriented database system for (software) engineering applications. In Proceeding

99

References

of the Sixth International Workshop on Computer-Aided Software Engineering, pages
272–286. IEEE, Jul 1993.

[51] Norbert Kiesel, Andy Schürr, and Bernhard Westfechtel. GRAS, a Graph Ori-
ented (Software) Engineering Database System. Information Systems, 20(1):21–
51, Mar 1995.

[52] Wolfgang Kling, Frederic Jouault, Dennis Wagelaar, Marco Brambilla, and
Jordi Cabot. MoScript: A DSL for Querying and Manipulating Model Repos-
itories. In Proceedings of the 4th International Conference on Software Language
Engineering, pages 180–200. Springer, 2012.

[53] Harumi A. Kuno and Elke A. Rundensteiner. Incremental Maintenance of
Materialized Object-Oriented Views in MultiView: Strategies and Performance
Evaluation. Transactions on Knowledge and Data Engineering, 10(5):768–792, Sep
1998.

[54] Ho Soo Lee and Marshall I. Schor. Match Algorithms for Generalized Rete
Networks. Artificial Intelligence, 54(2):249–274, 1992.

[55] Jixue Liu, Millist Vincent, and Mukesh Mohania. Maintaining Views in Object-
Relational Databases. In Proceedings of the Ninth International Conference on
Information and Knowledge Management, CIKM ’00, pages 102–109. ACM, 2000.

[56] Daniel Lucrédio, Renata Fortes, and Jon Whittle. MOOGLE: a metamodel-
based model search engine. Software & Systems Modeling, 11(2):183–208, 2010.

[57] B. T. Messmer and H. Bunke. A decision tree approach to graph and subgraph
isomorphism detection. Pattern Recognition, 32(12):1979–1998, 1999.

[58] Tova Milo and Dan Suciu. Index Structures for Path Expressions. In Proceedings
of the 7th International Conference on Database Theory, ICDT ’99, pages 277–295.
Springer, 1999.

[59] Daniel P. Miranker. TREAT: A Better Match Algorithm for AI Production
Systems. In Proceedings of the 6th National Conference on Artificial Intelligence,
volume 1, pages 42–47. AAAI Press, 1987.

[60] Daniel P. Miranker, David A. Brant, Bernie Lofaso, and David Gadbois. On
the Performance of Lazy Matching in Production Systems. In Proceedings of
the 8th National Conference on Artificial Intelligence, volume 1 of AAAI’90, pages
685–692. AAAI Press, 1990.

100

References

[61] Daniel P. Miranker and Bernie J. Lofaso. The Organization and Performance
of a TREAT-Based Production System Compiler. Transactions on Knowledge and
Data Engineering, 3(1):3–10, March 1991.

[62] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. Materi-
alized View Selection and Maintenance Using Multi-query Optimization. In
Proceedings of the International Conference on Management of Data, SIGMOD ’01,
pages 307–318. ACM, 2001.

[63] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim
Welsh. Towards Pattern-based Design Recovery. In Proceedings of the 24th

International Conference on Software Engineering, ICSE ’02, pages 338–348. ACM,
2002.

[64] Object Management Group (OMG). OMG Unified Modeling Language (Ver-
sion 2.3), May 2010. Specification at http://www.omg.org/spec/UML/2.3/
Superstructure/PDF/ (last access: September 10th

2015).

[65] Object Management Group (OMG). OMG Systems Modeling Language (Ver-
sion 1.3), Jun 2012. Specification at http://www.omg.org/spec/SysML/1.3/
PDF (last access: September 10th

2015).

[66] Xiaolei Qian and Gio Wiederhold. Incremental Recomputation of Active Rela-
tional Expressions. Transactions on Knowledge and Data Engineering, 3(3):337–341,
Sep 1991.

[67] István Ráth, Gábor Bergmann, András Ökrös, and Dániel Varró. Live Model
Transformations Driven by Incremental Pattern Matching. In Proceedings of
the 6th International Conference on Theory and Practice of Model Transformations,
pages 107–121. Springer, 2008.

[68] István Ráth, Ábel Hegedüs, and Dániel Varró. Derived Features for EMF
by Integrating Advanced Model Queries. In Proceedings of the 8th European
Conference on Modelling Foundations and Applications, ECMFA’12, pages 102–117.
Springer, 2012.

[69] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Materialized View
Maintenance and Integrity Constraint Checking: Trading Space for Time. In
Proceedings of the International Conference on Management of Data, SIGMOD ’96,
pages 447–458. ACM, 1996.

[70] Marshall I. Schor, Timothy P. Daly, Ho Soo Lee, and Beth R. Tibbitts. Advances
in Rete Pattern Matching. In Proceedings of 5th National Conference on Artificial
Intelligence, pages 226–232. AAAI Press, 1986.

101

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/SysML/1.3/PDF
http://www.omg.org/spec/SysML/1.3/PDF

References

[71] Andy Schürr. Progress: A VHL-language based on graph grammars. In
Hartmut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes
in Computer Science, pages 641–659. Springer, 1991.

[72] Andreas Seibel, Stefan Neumann, and Holger Giese. Dynamic hierarchical
mega models: comprehensive traceability and its efficient maintenance. Soft-
ware & Systems Modeling, 9(4):493–528, 2010.

[73] Oded Shmueli and Alon Itai. Maintenance of Views. In Proceedings of the
International Conference on Management of Data, SIGMOD ’84, pages 240–255.
ACM, 1984.

[74] Srinath Srinivasa and Martin Maier. LWI and Safari: A New Index Structure
and Query Model for Graph Databases. In Proceedings of the 11th International
Conference on Management of Data. Computer Society of India, Dec 2005.

[75] The Neo4j Team. The Neo4j Manual v2.2.1. Specification at http://neo4j.
com/docs/ (last access: September 10th2015).

[76] Gergely Varró and Frederik Deckwerth. A Rete Network Construction Algo-
rithm for Incremental Pattern Matching. In Keith Duddy and Gerti Kappel,
editors, Theory and Practice of Model Transformations, volume 7909 of Lecture
Notes in Computer Science, pages 125–140. Springer, 2013.

[77] D.W. Williams, Jun Huan, and Wei Wang. Graph Database Indexing Using
Structured Graph Decomposition. In Proceedings of the 23rd International Con-
ference on Data Engineering, pages 976–985. IEEE, April 2007.

[78] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph Indexing: A Frequent
Structure-based Approach. In Proceedings of the International Conference on
Management of Data, SIGMOD ’04, pages 335–346. ACM, 2004.

[79] Xifeng Yan, Philip S. Yu, and Jiawei Han. Graph Indexing Based on Dis-
criminative Frequent Structure Analysis. Transactions on Database Systems,
30(4):960–993, Dec 2005.

[80] Xifeng Yan, Philip S. Yu, and Jiawei Han. Substructure Similarity Search in
Graph Databases. In Proceedings of the International Conference on Management
of Data, SIGMOD ’05, pages 766–777. ACM, 2005.

[81] Shijie Zhang, Meng Hu, and Jiong Yang. TreePi: A Novel Graph Indexing
Method. In Proceedings of the 23rd International Conference on Data Engineering,
pages 966–975. IEEE, April 2007.

102

http://neo4j.com/docs/
http://neo4j.com/docs/

References

[82] Yue Zhuge and H. Garcia-Molina. Graph Structured Views and Their Incre-
mental Maintenance. In Proceedings of the 14th International Conference on Data
Engineering, pages 116–125. IEEE, Feb 1998.

103

A. Metamodel

Fig. A.1 depicts our comprehensive meta-model that describes the view model,
view modules and view definition language. We summarize the purpose of each
metamodel element in terms of Table A.1.

Module

String description

ViewModel

ModelOutputConnector

AnnotationConnector

String name

InputConnector

Bool negative

OutputConnector

ModuleDependency

connectorsmodules

inputConnectors

outputConnectors

dependencies

dependent
dependencies

dependents
dependency

* *

*

*

*

RuleConstraint

ConstraintLanguage language
String expression

constraints*

RuleObject

String name

RuleLink
EStructuralFeature
feature

ruleObjects

ruleLinks

*

*

RuleElement

RuleModifier modifier

1
*

*
1

source

targets

target

sources * *

1 1

ArtifactConnector

String name

artifactConnectors *

ArtifactType

EClassifier classifier

AnnotationType

String name

type1
type1

AnnotatedType

superType

subTypes

superType

subTypes
11

* *

artifactType

1

AnnotationRuleObject

AnnotationRoleLink

1
annotationType

RoleType

Bool optional

type

1
roleType

1

RuleModifier

EXIST
CREATE
NEGATIVE

ConstraintLanguage

OCL
InferenceOCL

AnnotateableElement

Artifact

String name

Annotation

String name

type
11

type

EObject
eObject

AbstractRole

String name

Role Scope

roles*type

1

element

1

Attribute

String name
Object value

attributes

*

ModelDependency

dependent

dependencies

1

*

dependency

1

dependents*

annotations*

module
1

instancesinstances * *

Figure A.1.: Meta model of view definition and annotation language

104

A. Metamodel

Table A.1.: Description of metamodel elements

Metamodel Element Description
ViewModel A ViewModel contains Modules and describes the interplay

of these Modules to derive an overall view graph.
Module A Module is a container that contains the view definition

in terms of a graph pattern. Modules describe in terms of
connectors which kinds of artifacts and annotations are
processed and which kinds of annotations are created when
deriving a view graph.

AnnotationConnector The AnnotationConnector class is the super class of con-
crete connectors such as InputConnectors, OutputConnec-
tors, and ModelOutputConnectors and consists of a name
attribute. Furthermore, each AnnotationConnector refer-
ences an AnnotationType to describe which kinds of anno-
tations are processed or created by the AnnotationConnec-
tor.

ArtifactConnector An ArtifactConnector describes which kinds of artifacts
are processed by a Module. For that purpose, each Arti-
factConnector references an ArtifactType.

InputConnector An InputConnector describes which kinds of annotations
are processed by a Module. For that purpose, each Input-
Connector references an AnnotationType.

OutputConnector An OutputConnector describes which kinds of annotations
are produced by a Module. For that purpose, each Output-
Connector references an AnnotationType.

ModelOutputConnector An ModelOutputConnector describes which annotations
are created by the overall ViewModel and, therefore, refer-
ences an AnnotationType.

ModuleDependency A ModuleDependency describes the flow of created annota-
tions between Modules.

ModelDependency A ModelDependency describes which annotations are for-
warded to ModelOutputConnectors of the ViewModel.
Therefore, a ModelDependency describes which annota-
tions are made visible outside the ViewModel.

RuleElement The RuleElement class is the super class of graph pattern
elements that define the graph query used as view defini-
tion. Each RuleElement consists of a RuleModifier.

105

A. Metamodel

RuleModifier A RuleModifier describes whether a RuleElement belongs
to the positive part of the graph pattern (cf. EXIST modifier),
belongs to the negative part of the graph pattern (cf. NEG-
ATIVE modifier), or will be created if the graph pattern
matches (cf. CREATE modifier).

RuleObject A RuleObject represents Artifacts (nodes) in base
graphs that are part of a graph pattern.

AnnotationRuleObject An AnnotationRuleObject represents Annotations in
view graphs that are part of a graph pattern.

RuleLink A RuleLink between RuleObjects represents references
(cf. EStructuralFeature attribute) between Artifacts
(nodes) in base graphs that are part of a graph pattern.

AnnotationRoleLink An AnnotationRoleLink between AnnotationRuleOb-
jects and RuleObjects describes the Role that must exist
as part of the graph pattern or will be created between both
an Artifact/Annotation and Annotation if the graph
pattern matches.

RuleConstraint Additionally, a graph pattern can consist of additional rule
constraints in terms of OCL or InferenceOCL expressions.
For that purpose, a RuleConstraint defines the language
used to formulate an expression statement.

ConstraintLanguage We distinguish two constraint languages: OCL and Infer-
enceOCL. InferenceOCL is an extension of OCL and pro-
vides additional procedures that are free from side-effects,
e.g. a procedure to match regular expressions.

AnnotatedType The class AnnotatedType is the super class for Artifact-
Type and AnnotationType.

ArtifactType An ArtifactType describes the type of nodes in base
graphs. For that purpose, an ArtifactType has an EClas-
sifier attribute that references the classifier. Note that a
single inheritance hierarchy of ArtifactTypes exists.

AnnotationType An AnnotationType describes the type of annotations in
view graphs. For that purpose, each AnnotationType has a
name attribute and references RoleTypes to describe which
kinds of Artifacts and Annotations are annotated by an-
notations of a certain AnnotationType. Note that a single
inheritance hierarchy of AnnotationTypes exists.

106

A. Metamodel

RoleType A RoleType describes the kind of a role in which an Arti-
fact or Annotation participates in a certain Annotation.
A RoleType defines which kinds of Artifacts or Annota-
tions are annotated by a Role of a certain RoleType.

AnnotateableElement The class AnnotateableElement is the super class for all
classes that describe nodes in base graphs and views graphs
that can be annotated.

Artifact An Artifact represents a node of a certain ArtifactType
in base graphs and can be annotated by annotations.

Annotation An Annotation of a certain AnnotationType marks a
match of a graph pattern. Annotations themself can be an-
notated by other Annotations. Note that the Annotation
class has a reference (cf. module reference) to the Module
class to keep track of which Module created a certain Anno-
tation.

AbstractRole The AbstractRole is the super class for two different kinds
of roles and consists of a name to be able to distinguish
multiple roles of the same RoleType.

Role A Role describes in which kind of role (i.e. RoleType) a
certain Artifact or Annotation participates in an Annota-
tion.

Scope A Scope is a role that does not consists of a RoleType.
Instead, Scopes are used to keep track of Artifacts or
Annotations that lead to graph pattern matches without
specifying their Role of a certain RoleType in view defini-
tions.

Attribute Attributes can be part of Annotations to store additional
key-value pairs.

EObject An EObject is the base class in the Eclipse Modeling Frame-
work. An instance of the EObject class is a node in base
graphs represented by Artifacts (cf. eObject reference).

107

B. View Graph Maintenance Algorithms

In the following sections, we present our maintenance algorithms in pseudocode.
We distinguish between pseudocode for naive batch maintenance (Sec. B.1), batch
maintenance with preservation (Sec. B.2), and incremental maintenance (Sec. B.3)
in black box and white box mode.

B.1. Naive Batch Maintenance

Algorithm 1 shows the overall maintenance procedure for naive batch maintenance.
All annotations are deleted (l. 2) and created from scratch again (l. 3).

Algorithm 1.: Naive batch maintenance

1: procedure BatchNaiveMaintenance(viewmodel)
2: remove all annotations from all view graphs
3: BatchCreate(viewmodel)

Algorithm 2 shows the Create step of the batch maintenance procedure in more
detail. The view model is iterated considering recursion cycles in view models (l. 5).
For each iterated view module relevant artifacts (l. 8) (cf. algorithm 3) and annota-
tions (l. 11) (cf. 4) are collected. Relevant artifacts and annotations are artifacts and
annotations that consist of a (sub) type as specified by module input connectors.
Afterwards, these artifacts and annotations are passed to the view module, which
searches for matches of the graph pattern specified within the module (l. 13). If the
module is a fixpoint module and created new annotations, all view modules in the
corresponding recursion cycle are executed again (l. 5).

Algorithm 3 describes that the type of each artifact input connector (l. 3) is
determined to look up all artifacts with a certain (sub) type (l. 5). Note that the
lookup of artifacts with a certain artifact type can be performed efficiently due

108

B.1. Naive Batch Maintenance

Algorithm 2.: Batch maintenance Create step

1: procedure BatchCreate(viewmodel)
2: iterator := getModelIterator(viewmodel)
3: createdAnnotations := false
4: created := false
5: while iterator.hasNext(created) do
6: module := iterator.next(created)
7: //Get all artifacts with artifact types (incl. subtypes) as specified by artifact connectors of the module.
8: artifacts := ArtifactsByType(module)
9: //Get all annotations that have an annotation type (incl. subtypes) as specified by annotation input
10: //connectors of the module and were created by dependency modules.
11: annotations := AnnotationsCreatedByDependencyModules(module)
12: //Search for graph pattern matches for passed artifacts and annotations.
13: created := module.create(artifacts,annotations)
14: createdAnnotations |= created
15: return createdAnnotations

to the instances reference between the ArtifactType and Artifact class in the
metamodel (Fig. A.1).

Algorithm 3.: Get all artifacts that are relevant for module

1: procedure ArtifactsByType(module)
2: artifacts := empty
3: foreach artifact input connector of module do
4: artifactType := connector.type
5: artifacts.add(artifactType.instances) //incl. instances of sub types (simplified)
6: return artifacts

Algorithm 4 describes that all annotations created by all dependency modules
(l. 3) are collected. Note that the lookup of annotations created by a certain module
can be performed efficiently due to the annotations reference between the Module
and Annotation class in the metamodel (Fig. A.1).

Algorithm 4.: Get all annotations that are relevant for module

1: procedure AnnotationsCreatedByDependencyModules(module)
2: annotations := empty
3: foreach annotation input connector of module do
4: foreach dependencyModule connected to input connector do
5: annotations.add(dependencyModule.annotations)
6: return annotations

109

B. View Graph Maintenance Algorithms

B.2. Batch Maintenance with Preservation

Algorithm 5 shows the overall maintenance procedure for batch maintenance with
preservation. The algorithm executes an UDC cycle (l. 4 - 6) until no additional
annotations are created during the Create step. If the Create maintenance step
creates new annotations (l. 6), an additional UDC cycle is required (l. 3) to support
complex NACs.

Algorithm 5.: Batch maintenance with preservation

1: procedure BatchPreserve(viewmodel)
2: recheckRequired := true
3: while recheckRequired do
4: BatchUpdate(viewmodel)
5: BatchDelete(viewmodel)
6: recheckRequired := BatchCreate(viewmodel) //cf. l. 15 in algorithm 2

Algorithm 6 shows the Update maintenance procedure for batch maintenance
mode with preservation in more detail. While iterating the view model (l. 4) an-
notations previously created by the current view module are collected (l. 7) (cf. al-
gorithm 8) and passed to this view module for checking whether the matches
that are marked by these annotations still exist (l. 10). If the match marked by an
annotation does not exist anymore, the module sets the annotation obsolete by
removing all artifacts and annotations from the roles of the annotation. Otherwise,
the annotation is preserved. Recursion cycles are repeated until fixpoint modules
do not update annotations anymore (l. 4 and l. 10).

Algorithm 6.: Batch maintenance Update step

1: procedure BatchUpdate(viewmodel)
2: iterator := getModelIterator(viewmodel)
3: updated := false
4: while iterator.hasNext(updated) do
5: module := iterator.next(updated)
6: //Returns all annotations that were created by passed module.
7: annotations := AnnotationsCreatedByModule(module)
8: //Checks whether the graph pattern matches marked by annotations still exist.
9: //If yes, the annotation is preserved. Otherwise, the annotation is set obsolete.
10: updated := module.update(annotations)

110

B.2. Batch Maintenance with Preservation

Algorithm 7 shows the Delete maintenance procedure for batch maintenance
mode with preservation in more detail. While iterating the view model (l. 4) anno-
tations previously created by the current view module are collected (l. 7) (cf. algo-
rithm 8) and passed to this view module for checking whether the matches that are
marked by these annotations do not exist anymore and, thus, the annotations are
obsolete and must be deleted. If an annotation is obsolete, the module deletes the
annotation from the view graph (l. 10). Recursion cycles are repeated until fixpoint
modules do not delete annotations anymore (l. 4 and l. 10).

Algorithm 7.: Batch maintenance Delete step

1: procedure BatchDelete(viewmodel)
2: iterator := getModelIterator(viewmodel)
3: deleted := false
4: while iterator.hasNext(deleted) do
5: module := iterator.next(deleted)
6: //Returns all annotations that were created by passed module.
7: annotations := AnnotationsCreatedByModule(module)
8: //Check whether the graph pattern matches marked by annotations are obsolete.
9: //If yes, the annotation is deleted. Otherwise, the annotation is preserved.
10: deleted := module.delete(annotations)

Algorithm 8 shows that annotations that were created by a certain view module
can be retrieved by traversing the annotations reference owned by Modules (cf.
Fig. A.1).

Algorithm 8.: Determine annotations created by module (cf. metamodel depicted
by Fig. A.1)

1: procedure AnnotationsCreatedByModule(module)
2: //cf. annotations reference between Module and Annotation class in metamodel
3: return module.annotations

Algorithm 9 shows that the module that created a certain annotation can be
retrieved by traversing the module reference owned by Annotations (cf. Fig. A.1).

111

B. View Graph Maintenance Algorithms

Algorithm 9.: Determine module that is responsible for maintaining a certain
annotation (cf. metamodel depicted by Fig. A.1)

1: procedure GetResponsibleModule(annotation)
2: //cf. module reference between Annotation and Module class in metamodel
3: return annotation.module

B.3. Incremental Maintenance

Algorithm 10 shows the overall algorithm for incremental maintenance in more
detail. The incremental maintenance requires the view model, information about
the modification of base graphs (added, deleted, and modified nodes), and whether
the view modules are considered as black boxes or white boxes. When white box
semantic is employed, the graph pattern specified within the view modules is taken
into account, in contrast to black box semantic.

First, suspicious annotations are derived from the provide modification events
of base graphs (l. 3) and passed to the incremental Update procedure (l. 4).
Afterwards, obsolete annotations are derived from the provided modification events
of base graphs (l. 6) and passed to the incremental Delete procedure (l. 7). Finally,
the incremental Create procedure is triggered to check whether new matches
exist (l. 8).

Algorithm 10.: Incremental maintenance

1: procedure IncrementalMaintenance(viewmodel,modificationEvents,mode)
2: //Suspicious annotations are annotations that reference modified artifacts.
3: suspiciousAnnotations := DetermineSuspiciousAnnotations(modificationEvents)
4: IncrementalUpdate(suspiciousAnnotations)
5: //Obsolete annotations are annotations with at least one role that does not reference an artifact or anno-

tation anymore.
6: obsoleteAnnotations := DetermineObsoleteAnnotations(modificationEvents)
7: IncrementalDelete(obsoleteAnnotations)
8: IncrementalCreate(viewmodel,modificationEvents,mode)

Algorithm 11 describes how suspicious annotations are determined. While it-
erating captured modification events of base graphs (l. 3), the algorithm checks
whether the event reports the modification of an artifact in base graphs (l. 4). If yes,
all annotations attached to this artifact are considered as suspicious (l. 6), because
the modification of the artifact may lead to the case that matches marked by these
annotations do not exist anymore. Thus, a rechecking of all matches described

112

B.3. Incremental Maintenance

by annotations in which the modified artifact is involved is required to ensure
that base graphs and view graphs remain consistent. An artifact is considered as
modified when a) attributes of the artifact are modified, or b) another artifact is
added to or removed from references owned by the artifact, or c) the artifact is
added to or removed from a reference owned by another artifact.

Algorithm 11.: Determine suspicious annotations

1: procedure DetermineSuspiciousAnnotations(modificationEvents)
2: annotations := empty
3: foreach event in modificationEvents do
4: if event type = MODIFIEDARTIFACT then
5: artifact := artifact considered by event
6: foreach annotation attached via roles to artifact do
7: annotations.add(annotation)
8: return annotations

Algorithm 12 describes how obsolete annotations are determined. While iterating
captured modification events of base graphs (l. 3), the algorithm checks whether the
event reports the deletion of an artifact in base graphs (l. 4). If yes, all annotations
attached to this artifact are considered as obsolete (l. 6), because the deletion of
the artifact leads to the case that the matches marked by these annotations do not
exist anymore and the annotations must be deleted to ensure that base graphs and
view graphs remain consistent. Artifacts are considered as deleted when they are
removed from base graphs, i.e. they are not reachable via edges within base graphs
anymore.

Algorithm 12.: Determine obsolote annotations

1: procedure DetermineObsoleteAnnotations(modificationEvents)
2: annotations := empty
3: foreach event in modificationEvents do
4: if event type = DELETEDARTIFACT then
5: artifact := artifact considered by event
6: foreach annotation attached via roles to artifact before deletion do
7: annotations.add(annotation)
8: return annotations

Algorithm 13 describes the Update step of the incremental maintenance pro-
cedure. The algorithm determines the module that originally created the suspi-
cious annotation (l. 3) (cf. algorithm 9). Afterwards, the responsible module checks

113

B. View Graph Maintenance Algorithms

whether the match marked by the suspicious annotation still exists (l. 6). If the
annotation becomes obsolete, the incremental Delete step is triggered for this
annotation (l. 8). Otherwise, all dependent annotations are checked whether they
became obsolete by calling the incremental Update procedure for all dependent
annotations (l. 11), because dependent modules are allowed to define additional
conditions over artifacts that are part of matches retrieved from dependency mod-
ules.

Algorithm 13.: Incremental maintenance Update step

1: procedure IncrementalUpdate(suspiciousAnnotations)
2: foreach suspiciousAnnotation in suspiciousAnnotations do
3: module := GetResponsibleModule(suspiciousAnnotation)
4: //Checks whether the graph pattern match marked by the suspicious annotation still exists.
5: //If yes, annotation is preserved. Otherwise, the annotation is set obsolete.
6: module.update(suspiciousAnnotation)
7: if suspiciousAnnotation became obsolete then
8: IncrementalDelete(suspiciousAnnotation)
9: else
10: foreach dependentAnnotation of suspiciousAnnotation do
11: IncrementalUpdate(dependentAnnotation)

Algorithm 14 shows the Delete step of the incremental maintenance procedure.
The algorithm determines the module that originally created the annotation (l. 3).
Afterwards, the module deletes the annotation, if the annotation is obsolete (l. 6). If
the annotation was deleted (l. 7), all dependent annotations become obsolete as well
and are deleted by calling the incremental Delete procedure for all dependent
annotations (l. 9).

Algorithm 14.: Incremental maintenance Delete step

1: procedure IncrementalDelete(obsoleteAnnotations)
2: foreach obsoleteAnnotation in obsoleteAnnotations do
3: module := GetResponsibleModule(obsoleteAnnotation)
4: //Checks whether the annotation is obsolete.
5: //If yes, annotation is deleted. Otherwise, the annotation is preserved.
6: module.delete(obsoleteAnnotation)
7: if obsoleteAnnotation was deleted then
8: foreach dependentAnnotation of obsoleteAnnotation do
9: IncrementalDelete(dependentAnnotation)

114

B.3. Incremental Maintenance

Algorithm 15 shows the Create step of the incremental maintenance procedure.
While iterating the view model considering recursion cycles (l. 4), for each module
the initial scope is derived from captured modification events of base graphs
(l. 6) that is required to compute all artifacts and annotations that must to be
checked for new matches. Depending on whether black box mode (l. 8) or white
box mode (l. 10) is employed different scope computation procedures are employed
that differ in the issue whether the graph pattern specified within the module is
taken into account or not to compute the scope that is passed to the module for
incrementally searching for new matches. Afterwards, the artifacts and annotations
in the computed scope are passed to the Create procedure of the module to search
for new matches of graph patterns (l. 13). If the module consists of dependent
modules and these dependent modules use annotations created by the current
module in negative manner (l. 15), suspicious annotations are determined (l. 16)
and passed to the update procedure of dependent modules (l. 17), because created
annotations mark matches that may dissatisfy matches of dependent modules due
to NACs that are not fulfilled anymore.

Algorithm 15.: Incremental maintenance Create step

1: procedure IncrementalCreate(viewmodel,modificationEvents,mode)
2: iterator := getModelIterator(viewmodel)
3: created := false
4: while iterator.hasNext(created) do
5: module := iterator.next(created)
6: startScope := DetermineStartScope(modificationEvents,module)
7: if mode = BLACKBOX then
8: scope := DetermineBlackBoxScope(startScope)
9: else if mode = WHITEBOX then
10: scope := DetermineWhiteBoxScope(startScope)
11: artifacts := artifacts contained by scope
12: annotations := annotations contained by scope
13: created := module.create(artifacts,annotations)
14: foreach dependentModule of module do
15: if dependentModule uses annotations created by module in negative manner then
16: suspiciousAnnotations := SuspiciousAnnotationsDueToCreatedAnnota-

tions(module, annotations currently created by module)
17: dependentModule.update(suspiciousAnnotations)

Algorithm 16 shows how the start scope is derived from modification events of
base graphs. While iterating captured modification events, created and modified
artifacts are added to the scope, if the artifact has an artifact (sub) type as specified
by input connectors of the module (l. 6), because added and modified artifacts can
lead to new matches when PACs are considered. Furthermore, each annotation

115

B. View Graph Maintenance Algorithms

created by dependency modules during the current maintenance cycle is added
to the scope, because they may lead to new matches of dependent modules (l. 9).
Finally, all artifacts and annotations that were referenced by annotations that have
been deleted by dependency modules are added to the scope (l. 13), because these
artifacts and annotations may belong to matches that require the satisfaction of
a NAC. This NAC may become true due to annotations deleted by dependency
modules.

Algorithm 16.: Determine start scope from modification events and annotations
created and deleted by dependency modules

1: procedure DetermineStartScope(modificationEvents,module)
2: scope := empty
3: foreach event in modificationEvents do
4: if event.type = CREATEDARTIFACT or event.type = MODIFIEDARTIFACT then
5: artifact := artifact considered by event
6: if artifact type is considered by module then
7: scope.add(artifact)
8: //Add graph pattern matched by dependency modules to scope (PAC case).
9: foreach annotation created by dependency modules during current maintenance cycle do
10: scope.add(annotation)
11: //Add artifacts and annotations that were part of a graph pattern matched by dependency modules
12: //to scope (NAC case).
13: foreach annotation deleted by dependency modules during current maintenance cycle do
14: foreach element referenced by annotation before deletion do
15: scope.add(element) //element is artifact or annotation
16: return scope

Algorithm 17 shows the algorithm to determine the scope consisting of artifacts
and annotations that are required to incrementally compute new matches due to
changes of base graphs in black box mode. For each element in the start scope
(cf. algorithm 16) is checked whether it is an artifact or annotation (l. 4 and l. 21).

If the element is an artifact (l. 4) it is checked whether other artifacts are directly
reachable via references owned by the artifact (l. 7). Note that we assume that all
references are traversable bidirectional. If such artifacts exist and are not already
contained by the scope, it is checked whether the artifact has an artifact (sub) type
as specified by the artifact connectors of the module. If yes, the artifact is added to
the scope and the scope is considered as changed.

Moreover, if the element is an artifact (l. 4) it is checked which annotations
are attached to this artifact (l. 15). If an attached annotation has an annotation
type as specified by annotation input connectors of the module and is not already

116

B.3. Incremental Maintenance

contained by the scope, the annotation is added to scope and the scope is considered
as changed.

If the element is an annotation (l. 21), all roles owned by this annotation are
checked whether they reference an artifact or annotation that has an artifact (sub)
type or annotation (sub) type as specified by artifact or annotation input connectors
of the module (l. 24). If yes and these artifacts or annotations are not already
contained by the scope, they are added to the scope and the scope is considered as
changed.

Algorithm 18 shows the algorithm to determine the scope consisting of artifacts
and annotations to incrementally computed new matches due to changes of base
graphs in white box mode. The algorithm is similar to the algorithm described
for black box mode (cf. algorithm 17). In contrast to black box mode, the white
box mode considers the graph pattern specified within modules. By doing so, the
algorithm can narrow the scope, because it only adds artifacts and annotations to
the scope when they are reachable via references or roles that are part of the graph
pattern. The differences in contrast to black box mode are highlighted grey (l. 9, 18,
28, and 34).

Algorithm 19 describes how suspicious annotations are determined when anno-
tations were created by dependency modules. The algorithm is very similar to the
algorithm for computing the scope in black box mode (cf. algorithm 17). Artifacts
and annotations referenced by annotations that have been created by dependency
modules are considered as start scope. The major difference is that annotations,
which have an equal (sub) type as specified by the annotation output connector of
the module (l. 24 and l. 41), are considered as suspicious annotations, because these
annotations are reachable from the artifacts and annotations contained by the start
scope and the matches marked by these annotations may not exist anymore since
annotations created by dependency modules may dissatisfy a NAC. Note that a
similar algorithm can be employed when white box semantic of modules is used.
For that purpose, the algorithm has to check whether artifacts and annotations are
reachable via references or roles that are part of the graph pattern specified within
the module.

117

B. View Graph Maintenance Algorithms

Algorithm 17.: Determine scope in black box mode

1: procedure DetermineBlackBoxScope(scope)
2: scopeChanged := false
3: foreach element in scope do
4: if element is artifact then
5: artifact := element
6: //Check for neighbour artifacts with relevant type.
7: foreach reference owned by artifact do
8: targets := target objects of reference
9: foreach target in targets do
10: //Relevant (super) types are specified by artifact input connectors.
11: if target is not contained by scope and artifact type of target is relevant for module then
12: scope.add(target)
13: scopeChanged := true
14: //Check which annotations with relevant annotation type are attached to artifacts.
15: foreach role in which artifact acts do
16: annotation := annotation that owns role
17: //Relevant (super) types are specified by annotation input connectors.
18: if annotation is not in scope and type of annotation is relevant for module then
19: scope.add(annotation)
20: scopeChanged := true
21: else if element is annotation then
22: annotation := element
23: //Check if annotation references elements with relevant artifact type or annotation type.
24: foreach role owned by annotation do
25: target := element referenced by role
26: //Relevant (super) types are specified by artifact and annotation input connectors.
27: if target is not in scope and type of target is relevant for module then
28: scope.add(target)
29: scopeChanged := true
30: foreach role in which annotation acts do
31: dependentAnnotation := annotation that owns role
32: //Relevant (super) types are specified annotation input connectors.
33: if dependentAnnotation is not in scope and annotation type is relevant for module then
34: scope.add(dependentAnnotation)
35: scopeChanged := true
36: //Perform recursive call, if additional elements were added to scope.
37: if scopeChanged then
38: DetermineBlackBoxScope(scope)
39: return scope

118

B.3. Incremental Maintenance

Algorithm 18.: Determine scope in white box mode

1: procedure DetermineWhiteBoxScope(module,scope)
2: scopeChanged := false
3: foreach element in scope do
4: if element is artifact then
5: artifact := element
6: //Check for neighbour artifacts with relevant type.
7: //Relevant (super) types are specified by artifact input connectors.
8: foreach reference of element do
9: if reference is part of the graph pattern specified by module then
10: targets := target objects of reference
11: foreach target in targets do
12: if target is not contained by scope and type of target is relevant for module then
13: scope.add(target)
14: scopeChanged := true
15: //Check which annotations with relevant type are attached to artifacts.
16: //Relevant (super) types are specified by annotation input connectors.
17: foreach role in which element acts do
18: if role is part of the graph pattern specified by module then
19: annotation := annotation that owns role
20: if annotation is not in scope and type of annotation is relevant for module then
21: scope.add(annotation)
22: scopeChanged := true
23: else if element is annotation then
24: annotation := element
25: //Check if annotation references elements with relevant artifact type or annotation type.
26: //Relevant (super) types are specified by artifact and annotation input connectors.
27: foreach role owned by annotation do
28: if role is part of the graph pattern specified by module then
29: target := element referenced by role
30: if target is not in scope and type of target is relevant for module then
31: scope.add(target)
32: scopeChanged := true
33: foreach role in which annotation acts do
34: if role is part of the graph pattern specified by module then
35: dependentAnnotation := annotation that owns role
36: //Relevant (super) types are specified annotation input connectors.
37: if dependentAnnotation is not in scope and type of annotation is relevant for module then
38: scope.add(dependentAnnotation)
39: scopeChanged := true
40: //Perform recursive call, if additional elements were added to scope.
41: if scopeChanged then
42: DetermineWhiteBoxScope(scope)
43: return scope

119

B. View Graph Maintenance Algorithms

Algorithm 19.: Determine scope in black box mode when annotations were created

1: procedure SuspiciousAnnotationsDueToCreatedAnnotations(module,createdAnnotations)
2: suspiciousAnnotations := empty
3: foreach annnotaton in createdAnnotations do
4: scope := artifacts and annotations referenced by annotation
5: scopeChanged := true
6: while scopeChanged do
7: scopeChanged := false
8: foreach element in scope do
9: if element is artifact then
10: artifact := element
11: //Check for neighbour artifacts with relevant type.
12: foreach neighbour of artifact do
13: //Relevant (super) types are specified by artifact input connectors.
14: if scope does not contain neigbour and neighbour has relevant type for module then
15: scope.add(neighbour)
16: scopeChanged := true
17: //Check which annotations with relevant type are attached to artifacts.
18: foreach role in which artifact acts do
19: annotation := annotation that owns role
20: //Relevant (super) types are specified by annotation input connectors.
21: if scope does not contain annotation and type of annotation is relevant for module then
22: scope.add(annotation)
23: scopeChanged := true
24: if annotation has an equal (sub) type as specified by module output connector then
25: suspiciousAnnotations.add(annotation)
26: else if element is annotation then
27: annotation := element
28: //Check if annotation references elements with relevant artifact type or annotation type.
29: foreach role owned by annotation do
30: target := element referenced by role
31: //Relevant (super) types are specified by artifact and annotation input connectors.
32: if scope does not contain target and type of target is relevant for module then
33: scope.add(target)
34: scopeChanged := true
35: foreach role in which annotation acts do
36: dependentAnnotation := annotation that owns role
37: //Relevant (super) types are specified annotation input connectors.
38: if dependentAnnotation is not in scope and type of annotation is relevant for module

then
39: scope.add(dependentAnnotation)
40: scopeChanged := true
41: if annotation has an equal (sub) type as specified by module output connector then
42: suspiciousAnnotations.add(annotation)
43: return suspiciousAnnotations

120

C. View Modules for Design Pattern
Recovery

The following figures show the employed view modules. Note that some view mod-
ules approximate design patterns, especially when non-structural design patterns
are recovered. We do not aim at improving the precision and recall of recovered
software design patterns.

�����������������

�������� � ����� ���������� � �������������� � ��������������������������� � ���������������������������

�� �������������� � ��������������

��������������� � ��������������

������� � ����� �������������� � �������������

�������

�� ����� � ���������

������������������� ������

�� ��� � �������

Figure C.1.: Generalization module – A generalization between two classes exists,
if the sub class points via a namespace classifier and classifier reference to its
super class.

121

C. View Modules for Design Pattern Recovery

���������������������������

������������������� � �������������� ������������������� � ��������������

���������������� � �����

�� ������������������������ � ������������������������

���������� � ����� ���������� � �����

��������������� � ��������������

������������������������� � ������������������������

�� �������� � �������������������

�� ����� � �������

���������� � ���������

�� ����� � ���������

�������� � �������

�� ������ � �����������������

��� � ������� ����� � ���������

Figure C.2.: MultiLevelGeneralization module – A multi-level generalization
between two classes exists, if the super class of a generalization is the sub class
of another generalization.

������������������

���������� � �����

���������� � �����

�� ��������������� � ���������������

������������ � ���������������

������� � �����

�������

�� ����� � ����������

�� ����� � ����������

(a) InterOuterClass module – A class is
an inner class, if it is a member of another
class.

���������������������

����������� � �����������

������� � �������

�� ������������������ � ������������������

������������������� � ������������������

������������ � ������������������� � �������

����������������������

�� ����������� � �����������

(b) PrivateConstructor module – A con-
structor is a private constructor, if the
constructor consists of a private modifier.

Figure C.3.: InterOuterClass module and PrivateConstructor module

122

C. View Modules for Design Pattern Recovery

������������������

��� ���

������������������ � ������������������ ���� � �����

�� ����������������� � �����������������

������������������ � �����������������

������������������� � ������������������ ����� � �����

�� ������������� � ��������������

�� ���� � �����

������

(a) FieldReference module (without self
reference) – An own field reference is a
reference to a field in the same class, e.g.
without using the keyword "this".

������������������

��� ��

������������������ � ������������������ ���� � �����

�� ����������������� � �����������������

������������� � �������������

������������������ � �����������������

���������� � �������������� � �����

����

�� ������������� � ��������������

�� ���� � �����

������

(b) FieldReference module (with self ref-
erence) – An field reference is a reference
to a field in the same class, e.g. with us-
ing the keyword "this".

Figure C.4.: FieldReference modules with and without self reference

�������������������

����������������� � �����������������

������������������ � ������������������ ���������� � ����������

�� ������������������ � ������������������

�������������� � �����������������

������������������� � ������������������

����������� � ����������

����

�� ���������� � ����������������������� � ��������������

�� ������������� � ��������������

Figure C.5.: FieldMethodCall module (without self reference) – A field method
call exists, if a method is called on a field of the same class, e.g. without "this"
keyword.

123

C. View Modules for Design Pattern Recovery

�������������������

����������������� � �����������������

������������������ � ������������������ ���������� � ����������

�� ������������������ � ������������������

������������� � �������������

�������������� � �����������������

������������������� � ������������������

����������� � ���������� ������������������� � ������������������

�� ���������� � ����������

������������� � ��������������

����

����

�� ������������� � ��������������

Figure C.6.: FieldMethodCall module (with self reference) – A field method call
exists, if a method is called on a field of the same class, e.g. with "this" keyword.

����������������

������������ � ������������

������������� � �������������

�� ������������ � ������������

����������������������� � ������������

������������� � ����������������� � �������������

�������������

�� ������������ � ������������

�� ���� � ����

Figure C.7.: TypedElement module (with primitive type) – A typed element can
consists of a primitive type.

124

C. View Modules for Design Pattern Recovery

����������������

������������ � ������������

��������� � �����������������

�� ������������ � ������������������������������ � ���������������������������

������������������ � ������������������

����������������������� � ������������

������������� � ������������ ������������������ � ������������������������������� � �������������

������

������������������� �� ���� � ����

�������������

�� ������������ � ������������

�� ���������������� � ����������������

Figure C.8.: TypedElement module (with complex type) – A typed element can
consists of a concrete classifiers.

�����������������

�������������������������������
���
��� � �������� ��

��������� � ����������������������� � ����������������� ������������ � �����������������

����������� � ������ ��������� � �������� �������������� � ��������������

����������� � ���������

��������������� � ��������������

������� � ������

����� � ���������

�� ��������� � ���������

�������
�������

��� � �������

�� ��������� � ���������

�� ����������� � �����������

Figure C.9.: MethodOverride module – A method in a sub class overrides the
method of its super class, if a generalization between both classes exists, the
methods have the same name, the same number of parameters and the same
parameter types.

125

C. View Modules for Design Pattern Recovery

�����������������

��������� � �����������������

���� � ����� �������� � ����

�������������� � �����

������������ � ������������

�� �������������� � ��������������

��������������� � ������������������ � ������������

��������������� � ��������������

���������� � �����������������

���� � �����

�������� � ����

�� �������������� � ���������������

�� ��������� � �����

�� ������������� � ����

�������

������������ � ������������

�� ��������� � ���������

�� �������������� � ����������������������

Figure C.10.: ClassAttribute module – A field is a class attribute, if the field is
contained by a concrete classifier and has a primitive type or complex type.

126

C. View Modules for Design Pattern Recovery

����������������������

���� � ����� ������������� � ������

������������� � ������
���� � ������������������

��������� � ��������������������������� ��������� � ������������������

����� � �����

�� ���������������� � �������������������

�������������������� � �������������������

����� � ������������� � ����������������������� � ������������������ �������������� � �������������������� � �����

����������������������

�������������

����������������������

������

�������������������

�� ���������� � ������

�������

������������

Figure C.11.: PublicInstanceField module – A field is a public instance field, if
the field has a static and public modifier and the initial value of the field is an
instance of the class that contains the field as a member. The initial value of the
field is obtained from the call of the constructor of the class that owns the field,
e.g. public instance field or public instance method.

127

C. View Modules for Design Pattern Recovery

�����������������������

������ � �����������

������������� � ������

����� � �����

�� ����������������� � ��������������������

����������� � ������������

���������������� � ������������

������������� � ������������

��������������������� � ��������������������

�������������� � ������ ������������� � ������������

����������������������

���������� � ����

�������

�� ����������� � ������

�� ��������������������� � ����������������������

����������� � ������������

������������ � ������

�� ���������������� � ������������

Figure C.12.: PublicInstanceMethod module – A method is a public instance
method, if the method consists of a static and public modifier and the method
returns an instance of the class that owns the method.

������������

����� � �����

������������������ � ������������������ �������������������� � ��������������������

����������� � ����������� ������ � ������

�� ��������� � ���������

������������������� � ��������������������������������������� � ��������������������

���������� � ���������

������� � �����

�������

�� ��������������� � ������������������

����������� � �����������

�� ����� � �����

�� ���������� � ��������������

�������

������ � ������

Figure C.13.: Singleton module – A class is a Singleton design pattern, if the class
consists of a private constructor and a member that stores or returns an instance
of the class.

128

C. View Modules for Design Pattern Recovery

�������������

���� � �����

����� � ��������������

�� ���������� � ����������

��������� � ����������������� �������������� � ��������������

��������������� � ��������������

����������� � ����������

���������� � ��������������

��������� � ������� ��������� � ���������

�� ���� � �����

���������������������

������������� � ����

�� �������������� � ��������������

Figure C.14.: ArrayField module – A field is an array field, if the field is an
attribute of a class and consists of an array dimension.

������������

���� � �����

�������������� � ���������������� ���� � ��������������������

�� ��������� � ���������

��������������� � ����������������� ��������������� � �����������������

�������������� � �������������� ���������� � ������������
��������������� � ������������

��������������� � �������������� ������������� � ������������

���������� � ���������

��������������������� � ��������������������

�� ���� � �����

�������������

�������� � ����

�� ������������������������ � ��������������
��������� � �����

���� � ����

�� ��������� � ���������

�� ��������������������� � ����������������������

���������������������� � ����������������������

������������ � �������������������������� � ����������������

Figure C.15.: ListField module – A field is a list field, if the field is a class attribute
and defines the type of the elements contained by the list.

129

C. View Modules for Design Pattern Recovery

������������

����������� � �����������������

���� � �����

�������������� � ��������������

�������� � �����

���������� � �����

�� ��������� � ���������

������������ � ����������������� ��������������� � ��������������

���������� � ���������

�� ��������� � ���������

�������������� � �����

�� �������������� � ��������������

�� ����������� � �����������

�� ��������� � ���������
��� � �������

����� � ���������

�������

��������� � ���������

Figure C.16.: Composite module – Two classes constitute a Composite design
pattern, if a generalization (incl. multi-level generalization) between both classes
exists and the sub class owns a to-many reference that has the super class as
target classifier.

������������

��������� � ���������

�������������� � ����� �������������� � �������������� ���������������������� � �����

���������� � ����������� ��������������� � �����������

�� ���������� � ���������

�������������� � ��������������

���������� � ���������

��������������� � ������������������������ � ��������� ������������ � �����������

����� � ��������� ��� � �������

���������������� � ��������� �������

���������� � �����������
��������� � ���������

�� ��������������� � ���������������
�� ������������������� � �������������������

��������� � ����������������

�� �������������� � ��������������

Figure C.17.: Decorator module – A Decorator design pattern exists, if a Com-
posite design pattern exists and the sub class in the Composite design pattern
overrides a method of the super class with additional functionality.

130

C. View Modules for Design Pattern Recovery

����������������

������������ � ������������

���� � ���������� � ����������� � �����������

��������������� � ������

�� ������������� � �������������

��������� � ���������

������������ � ������������

������������� � �����������������

������������� � ������������ ������������� � ������������ ������������������ � �����������������

�������������� � �������������

������� � ������������������ � ��������������������� � ������

����������

������� ��������������� � �����

���� � �����

�� ������������� � ��������������

�����������

�� ������ � ����������������

�� �������� � ���������������

������������� � ��������������

�������

������ � ������

Figure C.18.: ReadOperation module – A read operation (getter method) of a class
is a public method that returns the value of a private field owned by this class.

�����������������

�������������� � ���������������

������������ � ������������ ��������������� � ����� ��������������� � ������������������

���������� � ��������������������

���������� � �������������������

������ � �����������

��������� � �����������������

�� �������������� � ��������������

���������������������� � ������������

��������������� � ���������������������������� � ������������

��������������� � ��������������

����������� � ������������������� ������������ � ��������������������� � ��������������������������� � ������������������

�� ������ � ����������������

����������

�� �������������� � ���������������

����������

������ � ������

�����

����������

������

���������� � ����������

���� � �����

��������������� � ���������������

Figure C.19.: WriteOperation module – A write operation (setter method) of a
class is a public method with at least one parameter. The value of the parameter
must be assigned to a private field owned by this class.

131

C. View Modules for Design Pattern Recovery

�����������������

�������������������� � �����

��������� � ���������

���������� � �������������������� � �����

������������ � �����������

��������� � �����������������

������������������� � ������������������� ������������������ � ���������

���������� � ����������

��������������������������� � ������������������

�� ��������� � �������������� ��������������� � ���������������

������������� � �����������������

�������������� � ������������������

���������� � ����������������������� � �������������������������������� � ������������������

��������������� � ��������������

���������� � ������������������� ������������������� � ������������������

����������� � ����������

���������� � �����������������

������� � �����

������� � ������

������������� � ��������������

����������

������

����������

����������������

�������� � �����

���������� � ����������
�� ����������� � �����������

������������������ � ��������������

�������

����������

�� ������ � ������ �� �������������� � ���������������

���� � �����

������

Figure C.20.: AddToReference module – A public method adds the value of a
method parameter to a list attribute of a class, if the attribute is a list, a method
called "add" is called on this list, and the argument passed to this method is the
argument passed via the containing method.

����������������������

�������������������� � ��������

��������� � ������������������� � �������������������� � �����

������������ � �����������

��������� � �����������������

������������������� � �������������������

������������������ � ��������� ���������� � ����������

��������������������������� � ������������������

�� ��������� � �������������������

��������������� � ���������������

������������� � �����������������

�������������� � ������������������

���������� � ��������� �������������� � �������������������������������� � ������������������

�������������������� � �������������������

���������� � ������������������� ������������������� � ������������������

����������� � ����������

���������� � �����������������

������� � �����

������� � ������

����������

������������������ � ��������������

�� ������ � ������

��������������� � �����

�� ����������� � ������������������

���������

������

�� �������������� � ���������������

����������

����������

�������

������

���������� � ����������
������������� � ��������������

���� � �����

Figure C.21.: RemoveFromReference module – A public method removes the value
of a method parameter from a list attribute of a class, if the attribute is a list, a
method called "remove" is called on this list, and the argument passed to this
method is the argument passed via the containing method.

132

C. View Modules for Design Pattern Recovery

�����������

���������������� � �������������������

������������ � ������

��������������� � �����

������������� � ��������������

��������� � ������

���� � �����

������������ � �����������

����������� � �����������

������������� � �����������������

����� � ������������������������ � �������������������

������������������ � ������������������

���������� � ����������

�� �������� � ��������

������������������ � ���������
��������� � ���������

������������ � �����������

������������� � �����

������������� � �����������������

�������������� � �������������� ����������������� � ��������������������������������� � �����������������

��������� � ��������

������� � �����

������������ � �����������

������ � �����

�������������������� � �������������������

������������ � ����������

������������������ � �����������������

������������ � �����������

������������������� � ������������������

�������

���������

������� � �����������

������

����������

������������� � ��������������

���� � �����

�� ���������� � ����������

�������

���������� � �����������

��������� � ������

�������

����������

����

������

�� ���������������� � ���������������

������������ � ������

����������

�� ������������ � ��������������

�� �������� � ��������

�������

����������

�������

����

��������������� � �����

�� ���������������� � �����������

�� ������������������� � ��������������

Figure C.22.: Observer module – An Observer design pattern exists, if two classes
exists that represent the observers and observables. The observable class must
implement a method that iterates over a list field that contains all observers of
the observable and calls a method of each observer to notify the observer about
changes of observables. Furthermore, the observeable class must provide two
methods that enable to add and remove observers from the list of observers.

133

C. View Modules for Design Pattern Recovery

�����������

������ � ��������������

���� � ������������

����������������� � �����

������ � �����������

���������� � �������������������

������������������ � ��������� ��������� � ���������������������������

������������������ � ������������������

����������������� � ���������

�� �������� � ��������

�������������� � ���������������

������������� � �����������������

�������������� � ������������������

������� � ���������������������������� � �������������������������������� � ������������������

���������� � ��������

�������������� � �������������

������������ � �����������

���������� � �������������������

���������� � ���������

�� ������ � ������

�� �������������� � ���������������

���������������������� � ��������������

��������������� � �����

������������ � ���������������

���������� � ���������������

������������������ � �������������� �������������

����������

������

������������� � �����

�� ���� � ������������ �� ��������� � ���������

�� ��������� � ���������

�������������������

����������

Figure C.23.: Strategy module – A Strategy design pattern exists, if a write oper-
ation (setter method) exists that enables to set the strategy that has to be used
and a method exists that executes the set strategy.

134

C. View Modules for Design Pattern Recovery

���������������

���� � �����

�������������� � �������

�� ������������ � ������������

������������� � ������������

����� � ����� �������� � �������

����������������������

�� ���� � �����

(a) PrivateField module
– A field is a privat field,
if it consists of a private
modifier.

��������������

���� � �����

������������� � ������

�� ����������� � �����������

������������ � �����������

������� � ����������� � �����

�� ���� � �����

����������������������

(b) PublicField module –
A field is a public field,
if it consists of a public
modifier.

�����������������

���� � �����

���������������� � ���������

�� �������������� � ��������������

��������������� � ��������������

����� � ����� ���������� � ���������

����������������������

�� ���� � �����

(c) ProtectedField mod-
ule – A field is a pro-
tected field, if it consists
of a protected modifier.

Figure C.24.: PrivateField module, PublicField module, and ProtectedField
module

������������������

�������� � �����

���� � �����

�������������������� � ��������������������

�� �������������� � ���������������

������������� � ���������

���������� � ���������� ����� � �����

������������� � �����������������

����� � ����� �������������� � �����������������

��������������� � ���������������

����������� � �������������������� ����������� � ����������������� � �����

������������� � ��������������

�� ���������� � ����������

������������������

��������������� � �����

�������

�� �������� � ���������������

�� ������������� � �������������� ���� � �����

�����

Figure C.25.: FieldAssignment module – A field assignment is present, if a field
of a class is referenced in an expression that consists of an assignment.

135

C. View Modules for Design Pattern Recovery

��������������������������

����� � �����

������������������ � ���������������������������

������������������ � ������������������ ��������� � ���������

�� ����������������������� � �����������������������

������������������������ � �����������������������

���������� � ������������������������������� � �������������

������

�������������������

�� ��������� � ���������

�� ������� � �������

����������

Figure C.26.: InterfaceImplementation module – An interface implementation
between two classifiers exists, if the class that implements the interface points
via a namespace classifier and classifier reference to its interface.

��

�������������� � �������������� �������������� � �����������������������

�������� � ����� ���������� � ����� ��������� � ���������

�� ����������������������� � ���

��������������� � �������������� ������������������������� � �����������������������

�� � ���

�� ����� � ���������

�������������� � ���������

�� ������������������� � ��������������
�� ���������������������������� � �����������������������

�������� � ������� �������������� � ����������������� � ���������

�� ��� � �������

Figure C.27.: InterfaceImplementationWithGeneralization module – A class
implements an interface, if one super class of this class implements the interface.

136

C. View Modules for Design Pattern Recovery

����������������

����������������� �� �����������������
�� ��� ���� �� � � ���� ���� �����

������������ � �����

������ � ����������� ������������ � �����

�� ������������� � �������������

�������������� � �����������������

����������� � ������������

�������������� � ��������������

����������� � ������

������������� � ������������

�������������� � �������������

������������ � �������������������������� � �������������������������������� � �����������������

�� ���������� � ������

����������� � ������������

�������

���������� � ����

�� ������������������ � ����������������������

����������� � �����������

�� ������� � ��������������

���������������� � ���������

�� �������������� � �����

�� �������������� � ��������������

�������

Figure C.28.: FactoryMethod module – A method is a factory method, if the class
that contains the method is a sub class or implements an interface and returns as
product an instance of a classifier that is different from the super class/interface.
Furthermore, if the sub class extends a super class the super class must be
abstract.

137

C. View Modules for Design Pattern Recovery

����������

������������� � ��������������������������� � ��������������

����������� � �����������
������ � ��������������������������������� � ������������

������������ � �����

�� ������� � �������

�������������� � ���������������������������� � ��������������

�������� � �������

������� � �����

�������

������������ � ������

�� ������������� � ������

�� ������� � �����

�������

�� ������������� � �������������

������ � ���������������� ����������� � ������

Figure C.29.: Builder module – A class represents a Builder design pattern, if
the class consists of a Factory Method design pattern and consists of a write
operation to set properties used during the creation of objects.

����������������

����������� � ����������� �������� � ������������

������ � �����������

�� ��������� � �������������

���������� � �������������

������������ � �������������������� � ������������������������ � �����������

���������

�������

�� �������� � ��������

�� ����� � �����������

Figure C.30.: EnumSingleton module – An enumeration with a method and a
constant can be considered as Singleton design pattern.

138

C. View Modules for Design Pattern Recovery

������������������������

��� ��������������������

�������������� � ��������������

��������� � ����� ��������� � �����

�� ��������������������� � ���������������������

���������� � ������������

��������������� � ��������������������������� � ������������

����������������������� � ���������������������

����� � �����

������������ � ������������

���� � ����

�� �������������� � ��������������

����� � ���������

�� �������������� � ��������������

�� �������������������� � ����������������������

�������

�� ��������� � �����

Figure C.31.: ChainOfResponsibility module – A Chain of Responsibility design
pattern exists, if a non-static class field has the same type as the class. Further-
more, the class has to be a super class.

139

C. View Modules for Design Pattern Recovery

�����������

����������������������� � �����������������������

������������������������ � ��������������

������������������������ � ��������������

��������� � �����

������������������ � �����

������������������ � �����
����������������� � ���������

�������� � �����������������

���������������� � �����

�� ������������������ � ��������

�������������� � ��������������

�������������� � ��������������

������������� � ��������������

����������� � ������������������������ � ��������������

��������� � ��������

���� � �������

�� ������������� � ��������������

�� �������������� � ��������������

�� ������ � ������

����������������������� � ���������

������������������ � ����

������ � ���������

������������������ � ����

����������������������� � ���������

���� � �������

�� ������������� � ��������������

������ � ���������

�� ������������������������ � ��������������

����������������� � ���������

������������� � ���������

������������ � ����

����������� � �������

�� ����������������� � ���������

�� �������� � ��������

�� �������������� � �������������������

Figure C.32.: Mediator module – A class represents a Mediator design pattern, if
the class consists of sub classes that implement concrete mediators that consist
of references to colleague classes and each colleague class knows its mediator
class.

140

C. View Modules for Design Pattern Recovery

����������

������ � �����

���������������� � ��������������� � ����������������� ������� � �����

������������ � �����

������������� � ����������������� ������� � �����������������

�� ����������������� � �������

����������� � ��������������
���������������� � ��������������

������������������ � ���������������������������� � ��������� ��������������� � ��������������

�������� � �������

�� ����������� � ��������������

�� ���������������� � ��������� ������� � ���������

�� ������������� � ��������������

���������������� � ����

�� ������� � �������

����� � ���������

�� ���������������� � ��������������

��������������� � ��������� ���� � �����

��� � �������

���������� � ����

�� ������ � ������

������������ � �����

Figure C.33.: Adapter module – An Adapter design pattern exists, if a hierar-
chy (e.g., interface implementation, generalization) between two classes exists
and the sub class consists a field that has the type of the class that is adapted.
Furthermore, the field has to be used within the adapter class.

141

C. View Modules for Design Pattern Recovery

���������������������

����������� � �����������

��������� � �����������������

�� ������������������ � ������������������

������������������� � ������������������

������������ � ��������������������� � �����������������

����������

�� ������� � �����������

Figure C.34.: DefaultConstructor module – A default constructor is a constructor
that does not consist of parameters.

���������������

������ � ������

������ � ������

�� ������������ � ������������

������������� � ������������

������� � ������ ������� � ������

����������������������

�� ������ � ������

(a) PublicMethod module –
A method is public, if it
consists of a public mod-
ifier.

����������������

������ � ������

������� � �������

�� ������������� � �������������

�������������� � �������������

������� � �������������� � �������

�� ������� � ������

����������������������

(b) PrivateMethod mod-
ule – A method is pri-
vate, if it consists of a pri-
vate modifier.

������������������

��������� � ���������

������ � ������

�� ��������������� � ���������������

���������������� � ���������������

���������� � ��������� ������� � ������

����������������������

�� ��������� � ������

(c) ProtectedMethod mod-
ule – A method is pro-
tected, if it consists of a
protected modifier.

Figure C.35.: PublicMethod module, PrivateMethod module, and Protected-
Method module

142

C. View Modules for Design Pattern Recovery

����������������������

����� � �����

����������� � �����������

������������� � ������

������������� � ������

������������ � �����

�� ������������� � �������������������

����������� � ������������

������������� � ������������

�������������� � �������������������

�������� � �������������� � �����

�������

����������������������

����������� � ������������

�� ��������������������� � ����������������������

���� � ����

�� ������������ � �����

����������������������

Figure C.36.: SimpleFactoryMethod module – A class implements a simple factory
method, if it implements a method that consists of static and public modifiers
and returns an instance of another class.

143

C. View Modules for Design Pattern Recovery

�����������������

������������� � �����

��������� � ���������

�������������� � ���������������

������������������� � �����������

�������������������� � �����������

���������� � ����������

��������� � �������������������

��������� � �������������

�� �������������� � ��������������

�������������������� � ��������������

��������������� � ��������������

��������������� � ��������������

����������� � ���������� ������������ � ����������� ���������� � ������������������� ���������� � �������������

����������

�������

����������� � �����������

��������� � ���������

����

����� � ���������

�������

�� �������������� � ��������������

����������

��������� � ���������

�� �������������� � ��������������

�� �������������� � ��������������

�� �������������� � ��������������������

������

Figure C.37.: TemplateMethod module – A class implements a Template Method
design pattern, if the class consists of a method that calls other methods of the
same class and these other methods are overriden in sub classes to refine the
algorithm implemented by the template method.

144

C. View Modules for Design Pattern Recovery

��������

������������������� � ��������������

������������������ � ��������������

����������� � ������

����������� � ������

���������� � ������

����� � �����������������

����������� � �����������������

������� � ����������������������� � ���������

������������ � �����������������

�� ��������������� � �����

��������������� � ��������������

�������� � ���������������������� � ��������������

������� � �����

��������������� � ��������������

�������

�������� � ����

�� ������� � �������

��������������� � �����������

�������������� � ���������

������������� � ���������

�� ������������������� � �������������������

�� ������������������ � ������������������

���������������� � �����������

���������� � ���������

�� ������������������ � ��������������

����������� � �������

�������

��� � �������
���������������� � ���������

�������
����� � ���������

Figure C.38.: Proxy module – A Proxy design pattern exists, if the super class of
the adaptee has another sub class that overrides the same method of the super
class as the adaptee.

145

C. View Modules for Design Pattern Recovery

����������

��������������������� � ��������������

�������������������� � �����������

���������������� � ���������

��������������� � �����������������

��������������������� � �����������������

������������������ � ���������������������������

������������������ � ������������������

������� � ���������������������������� � ������

�������������������� � �����������������

����������������������� � ��������������������������� ����������������������� � ������������������

������������������������� � ������������������

��������������� � ���������� ������������� � �������������

�� ����������������� � �������

������������������� � �������������������

��������������� � ��������������

�������� � �������

���������� � ���������

������������������ � �����������������

�������������������� � �������������������

������� � ������

������������������ � �����������������

�������������� � ������������������������ � ����������

����������

�������

�������������

�������������������

�������������������� � ���������

������

������

����

��������������� � �������

�������������������

�� ������� � �������

����������

�� ����������� � �����������

������

����������

����������

���������������� � ���������

�������������

�� ��������������������� � ��������������

���������

������

Figure C.39.: Visitor module – A Visitor design pattern exists, if the sub classes
of a class override the accept method and call the visit method of the visitor
that is passed as parameter to the overridden accept methods. Furthermore, the
parameter type of the visit method(s) is a class that overrides the accept method.

146

C. View Modules for Design Pattern Recovery

������������

������������������������

������������ � ������������ ����������� � ������

��������� � ���������

�� ��������� � ���������

������������� � ������������

���������� � ���������

���������� � ���������

����������

�� ���������������� � ����������������

������������ � ������

�� ������ � ������

Figure C.40.: Prototype module – A Prototype design pattern exists, if a public
method with name ’clone’ exists and does not consist of parameters.

147

C. View Modules for Design Pattern Recovery

���������������������������

������������������������������

���� � �����

����������������� � �����������������

��������� � ���������

�� ����������������������� � ������������������������

������ � ������

��������� � �����

������������������ � �����������������

�������������� � ������������������������

������� � ����� ������� � ������

�������

����������������������

������������� � ��������������

�� ����������������� � �����

�� ������������� � �����

�� ��������� � ��������������

���� � �����

Figure C.41.: EffectivelyNonFinalField module – A field of a class is effectively
non final, if it does not consists of a static modifier and is only modified within
static or constructor code.

���������

������������������� �� ������ ��� ������������������� �� ��������

����������������������� � ������������������������

�������������� � �����

���� � �����

�� ������ � ������

�������������� � ������������������������ ����� � �����

������� � ������

������� � �����

�������

����������������� � �����

�� ���� � �����������

�� ����� � �����

Figure C.42.: Facade module – A class implements the Facade design pattern, if it
does not consist of effectively non final fields.

148

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

98 978-3-86956-333-6 Inductive invariant checking
with partial negative application
conditions

Johannes Dyck, Holger Giese

97 978-3-86956-334-3 Without a whole? : the current
state of Design Thinking
practice in organizations

Jan Schmiedgen, Holger
Rhinow, Eva Köppen,
Christoph Meinel

96 978-3-86956-324-4 Modeling collaborations in self-
adaptive systems of systems :
terms, characteristics,
requirements and scenarios

Sebastian Wätzoldt, Holger
Giese

95 978-3-86956-324-4 Proceedings of the 8th Ph.D.
retreat of the HPI research
school on service-oriented
systems engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch

94 978-3-86956-319-0 Proceedings of the Second HPI
Cloud Symposium "Operating
the Cloud" 2014

Sascha Bosse, Esam Mohamed,
Frank Feinbube, Hendrik
Müller (Hrsg.)

93 978-3-86956-318-3 ecoControl : Entwurf und
Implementierung einer Software
zur Optimierung heterogener
Energiesysteme in
Mehrfamilienhäusern

Eva‐Maria Herbst, Fabian
Maschler, Fabio Niephaus,
Max Reimann, Julia Steier,
Tim Felgentreff, Jens Lincke,
Marcel Taeumel, Carsten Witt,
Robert Hirschfeld

92 978-3-86956-317-6 Development of AUTOSAR
standard documents at Carmeq
GmbH

Regina Hebig, Holger Giese,
Kimon Batoulis, Philipp
Langer, Armin Zamani
Farahani, Gary Yao, Mychajlo
Wolowyk

91 978-3-86956-303-9 Weak conformance between
process models and
synchronized object life cycles

Andreas Meyer, Mathias
Weske

90 978-3-86956-296-4 Embedded Operating System
Projects

Uwe Hentschel, Daniel
Richter, Andreas Polze

89 978-3-86956-291-9 openHPI: 哈索•普拉特纳研究院的
MOOC（大规模公开在线课）计划

Christoph Meinel, Christian
Willems

88 978-3-86956-282-7 HPI Future SOC Lab :
Proceedings 2013

Christoph Meinel, Andreas
Polze, Gerhard Oswald, Rolf
Strotmann, Ulrich Seibold,
Bernhard Schulzki (Hrsg.)

87 978-3-86956-281-0

Cloud Security Mechanisms Christian Neuhaus, Andreas

Polze (Hrsg.)

86 978-3-86956-280-3

Batch Regions Luise Pufahl, Andreas Meyer,
Mathias Weske

Technische Berichte Nr. 99

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Efficient and
Scalable Graph View
Maintenance for
Deductive Graph
Databases based
on Generalized
Discrimination Networks
Thomas Beyhl, Holger Giese

ISBN 978-3-86956-339-8
ISSN 1613-5652

	1 Introduction
	1.1 State of the Art
	1.2 Prerequisites
	1.3 Running Example
	1.4 Outline

	2 Needs and Requirements
	2.1 Needs
	2.1.1. Needs towards Expressiveness of View Definitions
	2.1.2. Needs towards Efficient View Maintenance

	2.2 Requirements
	2.2.1. Requirements on Expressiveness of View Definitions
	2.2.2. Requirements on Maintenance of View Graphs

	3 Overview
	3.1 Graph Database
	3.2 View Definition
	3.2.1. View Definition Module
	3.2.2. View Definition Model

	3.3 View Maintenance Engine
	3.3.1. Naive Batch Maintenance
	3.3.2. Batch Maintenance with Preservation
	3.3.3. Incremental Maintenance

	3.4 Query Engine

	4 View Definition Approach
	4.1 View Reference Graph
	4.2 View Modules
	4.3 View Models
	4.4 View Query Language
	4.5 View Graphs
	4.6 Mapping Nested Conditions to View Models
	4.6.1. Mapping Overlapping Graph Conditions
	4.6.2. Mapping Conjunctions
	4.6.3. Mapping Disjunctions
	4.6.4. Mapping Negative Graph Conditions
	4.6.5. Recursion

	4.7 Discussion

	5 Efficient and Scalable View Graph Maintenance
	5.1 Traversing View Models
	5.2 Naive Batch Maintenance
	5.3 Batch Maintenance with Preservation
	5.4 Incremental Black Box Maintenance
	5.4.1. Suspicious Annotations
	5.4.2. Obsolete Annotations
	5.4.3. Missing Annotations

	5.5 Incremental White Box Maintenance
	5.6 Discussion

	6 Evaluation
	6.1 Evaluation Setup
	6.1.1. Graph Data and Graph Changes
	6.1.2. Software Design Pattern View Model

	6.2 Evaluation Results
	6.3 Evaluation Discussion
	6.4 Threats to Validity

	7 Related Work
	7.1 Discrimination Networks
	7.1.1. Rete Network
	7.1.2. TREAT Network
	7.1.3. Gator Network

	7.2 Database View Maintenance
	7.2.1. View Maintenance for Relational Databases
	7.2.2. View Maintenance for Object Databases
	7.2.3. View Maintenance for Graph Databases

	7.3 Graph Indexing
	7.4 Graph Querying
	7.4.1. Model Search
	7.4.2. Graph Search

	7.5 Incremental Model-Driven Engineering
	7.5.1. Incremental Graph Pattern Matching
	7.5.2. Model Transformation
	7.5.3. Model Constraint Evaluation

	7.6 Summary

	8 Conclusion and Future Work
	References
	A Metamodel
	B View Graph Maintenance Algorithms
	B.1 Naive Batch Maintenance
	B.2 Batch Maintenance with Preservation
	B.3 Incremental Maintenance

	C View Modules for Design Pattern Recovery
	Aktuelle Technische Berichtedes Hasso-Plattner-Instituts

