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Preface

The general topic of this lecture course is the ergodic behavior of Markov processes.
Calling a Markov process ergodic one usually means that this process has a unique in-
variant probability measure. For an ergodic Markov process it is very typical that its
transition probabilities converge to the invariant probability measure when the time vari-
able tends to +∞. This feature is commonly called the stochastic stability, and the rate of
such a convergence is called the ergodic rate for the Markov process under consideration.
Explicit ergodic rates is a point of a major interest, since such rates typically may serve
as a basis for a wide range of further applications.

This lecture course pursues two major goals. The first one is a detailed introduction
to general methods for proving explicit upper bounds for ergodic rates. This topic is
quite diverse: depending on an actual long-time behavior of a Markov process, different
notions and tools appear to be most natural for the description of the respective ergodic
rate. We explain the genealogy of these ideas and methods, starting from a comparatively
simple and classical case of a Markov process which possesses uniform ergodic rates
in total variation distance, and ending up with much less studied weak ergodic rates,
which appear to be very efficient for Markov processes with a complicated local structure.
Our second aim is to discuss one particularly important field where the ergodic rates for
Markov processes find their natural application: the limit theorems for functionals of
Markov processes. The two principal parts of the lecture course are closely connected;
in particular, the form in which we give the ergodic rates is strongly motivated by their
further applications.

The history of the topic is extremely rich, and it would be impossible to give in a short
lecture course a detailed exposition of the whole diverse set of the methods and settings
developed in the field so far. Thus we design this course in order to give a reader complete
view of one possible route across this extremely interesting field, and to give hints which
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would help to understand better the diversity of notions, methods, and ideas used within
the field. For a more extended reading we refer to [12], Chapters V,VI, [45], [28], [43],
[22]; this list is definitely far from being complete.

The lecture course is mainly oriented on graduate and post-graduate students, special-
ized in Probability and Statistics, and on specialists in other fields where Markov models
are typically applied. Its minimal pre-requisites are standard courses of Probability and
Measure Theory, but a basic knowledge in Stochastic Processes, Stochastic Calculus, and
SDE’s are helpful for a better understanding of the particular examples, which we discuss
in details because they strongly motivate the choice of the form in which we present the
theory.

This lecture course has its origin in two minicourses, given by the author at the Uni-
versity of Potsdam, TU Berlin and Humboldt University of Berlin (March 2013), and in
Ritsumeikan University (August 2013). It has been prepared partially during the authors
stay at TU Dresden (January 2014), Ritsumeikan University (January 2015), and Insti-
tute Henri Poincaré (July 2014, “Research in Paris” programme). The author is glad to
express his gratitude to all these institutions. Specially, the author would like to thank
Dr. Prof. Sylvie Roelly for her encouragement to compose these lecture notes and for a
persistent support during their preparation. Many thanks also to Max Schneider for his
help in the English formulation of a part of this text and to Dr. Mathias Rafler for his
TEXpertise, which considerably improved the presentation.
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Preliminaries

In what follows, (X,X ) is a Borel measurable space; that is, a measurable space which
admits a bijection to

(
[0,1],B

(
[0,1]

))
, measurable together with its inverse. A typical

case here would be a Polish space X with the Borel σ -algebra X .

The main object of our interest is a time-homogeneous Markov process X with the
state space X. Mainly we consider the case with the discrete time set T = Z+; that is,
in other words X = {Xn, n≥ 0} is a Markov chain with a general state space. The main
constructions in the discrete time setting are more transparent and easier to explain. We
address the case of the continuous time set T = R+ as well, mainly to give examples,
explain motivation, and expose some particular methods for the continuous-time setting.

In the discrete time setting, we denote by Pn(x,dx′), n ≥ 1, the transition probability
kernels for X , and by P(x,dx′) = P1(x,dx′) its one-step transition probability kernel. If we
need to emphasize that P(x,dx′) relates to a chain X , we write PX (x,dx′) instead. Given
P(x,dx′) and an initial distribution µ on X, the law of the whole sequence {Xn,n≥ 0} in
(X∞,X ⊗∞) is completely defined; we denote this law by Pµ and respective expectation
by Eµ . If µ is concentrated in a point x, we write Px, Ex instead of Pδx , Eδx .

In what follows, we denote by P(X) the set of all probability measures on X. A
measure µ ∈P(X) is called an invariant probability measure (IPM) for X , if

µ(A) =
∫
X

P(x,A)µ(dx), A ∈X .

Observe that µ ∈P(X) is an IPM for X if, and only if, the law of every Xn, n≥ 1, under
Pµ equals µ; in that case, X = {Xn, n≥ 0} is a strictly stationary random sequence.

In the continuous time case the transition probability kernels are denoted by Pt(x,dx′),
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2 Preliminaries

t ≥ 0, and µ ∈P(X) is an IPM for X if

µ(A) =
∫
X

Pt(x,A)µ(dx), A ∈X , t > 0.

The semigroup, generated by X in the Banach space B(X) of bounded measurable real-
valued functions on X with the sup-norm, is defined by

Tt f (x) =
∫
X

f (y)Pt(x,dy) = Ex f (Xt), f ∈B(X), t ≥ 0.



Chapter 1

Ergodic Rates in Total
Variation Distance

This chapter is devoted to the part of the theory which studies the ergodic rates w.r.t.
the total variation distance in P(X). For the reader’s convenience, at first we briefly re-
call the definition of total variation distance and the properties of this distance crucial for
the subsequent analysis of ergodic rates (Section 1.1). Uniform and non-uniform ergodic
rates first will be developed separately for discrete-time Markov processes (Section 1.2
and Section 1.3), and then will be extended for continuous-time processes (Section 1.4).
In Section 1.5 we discuss separately the various forms of the principal irreducibility as-
sumption used in the theory; in Section 1.6 applications to particularly important classes
of diffusions and solutions to Lévy driven SDE’s are given.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1.1 Total variation distance and the Coupling Lemma

For two probability measures µ and ν on X, the total variation distance ‖µ−ν‖TV is
just the total variation of the signed measure µ −ν . If λ is a σ -finite measure such that
µ � λ and ν � λ , then

‖µ−ν‖TV =
∫
X

∣∣∣∣dµ

dλ
− dν

dλ

∣∣∣∣dλ .

3



4 1 Ergodic Rates in Total Variation Distance

Observe that for any µ,ν ∈P(X) there exists a σ -finite (and even a probability) measure
λ such that µ � λ and ν � λ .

Exercise 1.1 Construct such a measure λ ∈P(X).

In other words, the total variation distance between µ , ν is just the L1(X,λ )-distance
between their Radon-Nikodym derivatives w.r.t. a measure λ , where λ should be chosen
in such a way that respective Radon-Nikodym derivatives exist.

An interesting and useful fact is that the total variation distance, defined in an “ana-
lytical” way, admits another characterisation in “probabilistic” terms. Consider any pair
of X-valued random variables ξ and η , defined on the same probability space, such that
ξ ∼ µ , η ∼ ν . Let X= A+∪A− be the Hahn decomposition for µ−ν , then

‖µ−ν‖TV =
(
µ(A+)−ν(A+)

)
−
(
µ(A−)−ν(A−)

)
=
(
2µ(A+)−1

)
−
(
2ν(A+)−1

)
= 2
(
µ(A+)−ν(A+)

)
.

Because ξ ∼ µ and η ∼ ν , we then have

‖µ−ν‖TV = 2
(
µ(A+)−ν(A+)

)
= 2E(1Iξ∈A+

−1Iη∈A+)

≤ 2P(ξ ∈ A+,η 6∈ A+)≤ 2P(ξ 6= η).
(1.1)

The above inequality offers a convenient probabilistic tool to bound the total variation
distance ‖µ −ν‖TV: one should construct properly a “couple of representatives” (ξ ,η)

for the measures µ , ν and then use the bound (1.1).

An important observation is that the above procedure is exact, in the sense that a proper
choice of (ξ ,η) turns inequality (1.1) into an identity. To formulate this result, frequently
called “the Coupling Lemma” in the literature, we denote by C (µ,ν) the set of pairs of
random variables (ξ ,η), defined on the same probability space such that ξ ∼ µ and
η ∼ ν . In what follows, we call any representative from C (µ,ν) a coupling for the
measures µ , ν .

Theorem 1.2
‖µ−ν‖TV = 2 min

(ξ ,η)∈C (µ,ν)
P(ξ 6= η). (1.2)

Proof. We construct explicitly the joint law κ of (ξ ,η) ∈ C (µ,ν), which turns inequal-
ity (1.1) into an equality. Consider a probability measure λ such that µ � λ and ν � λ
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and put

f =
dµ

dλ
, g =

dν

dλ
, h = f ∧g.

If p =
∫

h dλ = 1, then µ = ν and we put κ(A1×A2) = µ(A1 ∩A2); that is, we set the
components ξ , η equal to one another, with the law µ = ν . Otherwise, we decompose

µ = pθ +(1− p)σ1, ν = pθ +(1− p)σ2, dθ =
1
p

hdλ , (1.3)

with the convention that θ = λ if p = 0. We note that

κ(A1×A2) = pθ(A1∩A2)+(1− p)σ1(A1)σ2(A2)

and observe that κ is the distribution of some (ξ ,η) ∈ C (µ,ν) and

κ
(
{(x,y) : x 6= y}

)
≤ 1− p.

To explain the above inequality, recall that in the above construction of κ , we first rep-
resent µ and ν as mixtures (1.3) with the same first part. Then we toss a coin with
probability of success p, and in the case of a success, we take both components equal
to the law θ ; otherwise the components are chosen independently with the laws σ1, σ2.
Clearly, under such a construction the probability for the components to be different does
not exceed 1− p. Hence

2κ
(
{(x,y) : x 6= y}

)
≤ 2(1− p) = 2

∫
(1−h) dλ

=
∫ (

f +g−2( f ∧g)
)

dλ =
∫
| f −g| dλ .

Let us mention some commonly used terminology related to the above proof; as a
reference, see e.g. [55, Section 1.4]. Representation of a probability law µ in the form
µ = pθ +(1− p)σ is called the splitting representation; any coupling which gives the
minimum in (1.2) is called a maximal coupling. Note also that the law of a pair (ξ ,η) ∈
C (µ,ν) is frequently called a “coupling” rather than the pair itself.
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• • • • • • • • • • • • • • •

1.2 Uniform ergodic rate

In this section, we establish a bound for the rate of convergence of transition proba-
bilities Pn(x,dx′) to a (unique) IPM π in total variation distance. This bound is called
uniform because it holds true uniformly for all x ∈ X.

Theorem 1.3 Let there be a ρ < 1 such that

‖P1(x1, ·)−P1(x2, ·)‖TV ≤ 2ρ, x1, x2 ∈ X. (1.4)

Then
‖Pn(x1, ·)−Pn(x2, ·)‖TV ≤ 2ρ

n, n≥ 1, x1, x2 ∈ X. (1.5)

In addition, there exists a unique IPM π for X , and

‖Pn(x, ·)−π‖TV ≤ 2ρ
n, n≥ 1, x ∈ X. (1.6)

Here we give a “probabilistic” proof, based on a coupling approach. An alternative
“analytical” argument will be discussed later.

Proof. For every y = (x1,x2) ∈ X×X, denote by Q(y, ·) the measure κ from the above
proof of the Coupling Lemma, which corresponds to the pair µ = P(x1, ·), ν = P(x2, ·).
Then, by its construction, {Q(y,B), y ∈ X×X, B ∈X ⊗X } is a transition probability;
that is, Q(y, ·) is a probability measure for any y and Q( · ,B) is a measurable function for
any B.

Exercise 1.4 Verify the fact that the function y 7→ Q(y,B) is measurable.

By the construction of Q, we have

Q
(
(x1,x2),A×X

)
= P(x1,A), Q

(
(x1,x2),X×A

)
= P(x2,A).

Then, if we consider a two-component Markov process Y =
(
Y 1,Y 2

)
with the transition

kernel Q, we have that both its components Y 1, Y 2 are Markov processes with the same
one-step transition probability, which equals the initial transition probability P(x,A). To
show this, say, for Y 1, we denote FY

n = σ(Yk,k≤ n) and FY 1
n = σ(Y 1

k ,k≤ n), n≥ 0 and
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write

P
(
Y 1

n+1 ∈ A
∣∣FY

n
)
= P

(
Yn+1 ∈ A×X

∣∣FY
n
)
= Q(Yn,A×X) = P(Y 1

n ,A).

Because the latter expression is clearly FY 1
n -measurable, we get the required Markov

property of Y 1:
P
(
Y 1

n+1 ∈ A
∣∣FY 1

n
)
= P(Y 1

n ,A), A ∈X .

In other words, if we consider the Markov process Y with the transition kernel Q and
starting point Y0 = (x1,x2), we get a two-component process, such that its components
have prescribed distributions Px1 and Px2 , respectively. In particular,

Y 1
n ∼ Pn(x1, ·), Y 2

n ∼ Pn(x2, ·),

and therefore by (1.1)

‖Pn(x1, ·)−Pn(x2, ·)‖TV ≤ 2P
(
Y 1

n 6= Y 2
n
)
. (1.7)

Denote by D = {(x,y) : x = y} the “diagonal” in X×X, and set q(y) = Q(y,D), y ∈
X×X. Then q(Yn) equals the conditional probability w.r.t. FY

n = σ(Yk, k ≤ n) of the
event {Yn+1 ∈ D}. By the construction of the kernel Q, we have

q(y) = 1− 1
2
‖P(x1, ·)−P(x2, ·)‖TV, y = (x1,x2).

Hence

q(y)

= 1, y ∈ D

≥ 1−ρ, otherwise
.

In other words, the value Yn+1:

1) stays on the diagonal if Yn is on the diagonal;

2) has a conditional probability≥ 1−ρ to hit the diagonal if Yn is not on the diagonal.

From 1) and 2) it follows that
P
(
Y 1

n 6= Y 2
n
)
≤ ρ

n, (1.8)
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which completes the proof of the first part of the theorem.

Exercise 1.5 Please give a formal proof of Equation (1.8).

The first part of the theorem implies, that for any given x ∈ X, and any m < n

‖Pn(x, ·)−Pm(x, ·)‖TV =

∥∥∥∥∫X(Pm(x′, ·)−Pm(x, ·)
)

Pn−m(x,dx′)
∥∥∥∥

TV

≤
∫
X

∥∥Pm(x′, ·)−Pm(x, ·)
∥∥

TV Pn−m(x,dx′)≤ 2ρ
m.

That is, the sequence Pn(x, ·) is Cauchy w.r.t. the total variation distance, and therefore
has a limit π in total variation distance. It is easy to check that π is an IPM for X .

Exercise 1.6 Please verify this statement.

Similar calculations lead to the required ergodic rate:

‖Pn(x, ·)−π‖TV =

∥∥∥∥∫X(Pn(x, ·)−Pn(x′, ·)
)

π(dx′)
∥∥∥∥

TV

≤
∫
X

∥∥Pn(x, ·)−Pn(x′, ·)
∥∥

TV π(dx′)≤ 2ρ
n.

For a better understanding of the condition of Theorem 1.3, let us consider its particular
version in the classical case of a finite state space X. Now any µ ∈P(X) is represented
by a vector {µi}i∈X and the total variation distance between µ,ν ∈P(X) simply equals

‖µ−ν‖TV = ∑
i∈X
|µi−νi|.

Transition probabilities of X are now represented by matrices{
pn

i j = Pn
(
i,{ j}

)}
i, j∈X

, n≥ 1.

Denote by pi j = p1
i j, i, j ∈X, the respective one-step transition probabilities. The follow-

ing statement is now a direct consequence of Theorem 1.3 above.

Theorem 1.7 Assume that cardX< ∞ and

∑
j
|pi j− pi′ j|< 2, i, i′ ∈ X. (1.9)



1.2 Uniform ergodic rate 9

Then there exists a unique IPM π for X and

∑
j∈X
|pn

i j−π j| ≤ 2ρ
n, n≥ 1, i ∈ X (1.10)

for some ρ < 1.

This statement definitely deserves a separate discussion. First, observe that the follow-
ing simpler condition is sufficient for (1.9):

there exists j∗ ∈ X such that pi j∗ > 0, i ∈ X. (1.11)

This is actually the condition used by A.A. Markov in his seminal paper [40] in order to
prove both the “stabilization of the law” property and the law of large numbers for a time-
homogeneous Markov chain (in the modern terminology) with a finite state space. To
better understand the sense of this condition, let us consider its following N-step version:

there exist j∗ ∈ X, N ≥ 1 such that pN
i j∗ > 0, i ∈ X. (1.12)

Clearly, (1.12) is necessary for (1.10) (and hence for (1.9)) to hold true; moreover, one
can verify that (1.12) is necessary and sufficient for the following slightly weaker version
of (1.10):

there exist C > 1, ρ ∈ (0,1) : ∑
j∈X
|pn

i j−π j| ≤Cρ
n, n≥ 1, i ∈ X (1.13)

Exercise 1.8 Please verify this statement and give an example showing that (1.12) does
not necessarily imply (1.10).

Condition (1.12) admits the following transparent re-arrangement in terms of the clas-
sical “classification of states” terminology. Namely, (1.12) fails if, and only if, there exist
in the state space X at least two (or more) non-connected classes of states (please verify
this!). That is why conditions like (1.9), (1.11) and (1.12) have a natural interpretation as
irreducibility conditions on the chain X .

Coming back to our Theorem 1.3, where the structure of the state space is not specified,
we emphasize that now the “classification of states” becomes much more cumbersome
and non-transparent. Hence it is very practical that condition (1.4), which of course
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still has an interpretation as an irreducibility condition, is formulated straightforwardly
in terms of the initial transition probability. The “probabilistic” method of proof, based
on the coupling construction, goes back to pioneering works by W. Döblin at the end
of 1930s [10, 11], although it should be mentioned that Döblin used different forms of
the irreducibility condition. The statement close to the one we give in Theorem 1.3 was
proved by R. Dobrushin in 1956 [9], hence in the sequel we call (1.4) the Dobrushin

condition. Note that some authors use the name Markov-Dobrushin condition instead,
e.g. [18].

Note that Dobrushin’s original proof in [9] was completely different from the “cou-
pling” proof we gave before: it was based mainly on analytical ideas similar e.g. to those
used already by Markov in [40]. Below we give a sketch of this “analytical” proof, which
is both simple and instructive.

Another proof of Theorem 1.3. Denote by M (X) the family of finite signed measures
on X. It is well known that M (X) is a Banach space w.r.t. the total variation norm
‖µ‖= µ+(X)+µ−(X) (where µ = µ+−µ− is the Hahn decomposition for µ). Clearly,
P(X)⊂M (X) and ‖s · ‖ coincides with ‖ · ‖TV on P(X). The Banach space M (X) is
the dual one to the Banach space B(X) of bounded measurable real-valued functions on
X with the sup-norm:

‖ f‖= sup
‖µ‖=1

|〈 f ,µ〉|, ‖µ‖= sup
‖ f‖=1

|〈 f ,µ〉|;

here and below, we denote
〈 f ,µ〉=

∫
X

f (x)µ(dx).

Define the linear operator P : B(X)→B(X) by

P f (x) =
∫
X

f (x′)P(x,dx′);

then the adjoint operator P∗ : M (X)→M (X) is given by

P∗µ(A) =
∫
X

P(x,A)µ(dx), A ∈X .

In particular, the n-step transition probability Pn(x, ·) for X is just the image of the delta
measure δx under (P∗)n.
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The key idea of the proof is to show that for any µ,ν ∈P(X)

‖P∗µ−P∗ν‖ ≤ ρ‖µ−ν‖. (1.14)

This would immediately imply that (1.5) holds true, because then

‖Pn(x1, ·)−Pn(x2, ·)‖ ≤ ρ
n‖δx1 −δx2‖=

2ρn, x1 6= x2

0, x1 = x2

.

The rest of the proof then will be the same as in the proof of Theorem 1.3. In other
words, the aim is to prove that P∗ is a contraction and then one can use essentially the
Banach fixed point theorem. Note that P∗ is not a contraction when considered on the
entire M (X).

Exercise 1.9 Give an example of two measures µ,ν ∈M (X) such that (1.14) for them
fails.

The latter observation gives a hint that, while proving (1.14), we need to use the ad-
ditional property of µ and ν being probability measures

(
in fact, we will need only that

µ(X) = ν(X)
)
.

We have
〈 f ,P∗µ〉=

∫
X

∫
X

f (x′)P(x,dx′)µ(dx) = 〈P f ,µ〉,

hence
‖P∗µ−P∗ν‖= sup

‖ f‖=1

∣∣〈P f ,µ−ν〉
∣∣.

For g ∈ B(X), denote gs(x) = g(x)− s, x ∈ X, s ∈ R, and observe that

〈g,µ−ν〉= 〈gs,µ−ν〉, s ∈ R,

and therefore
|〈g,µ−ν〉| ≤ ‖µ−ν‖ inf

s∈R
‖gs‖.

Observe that
inf
s∈R
‖gs‖=

1
2

sup
x1,x2∈X

|g(x1)−g(x2)|.

Exercise 1.10 Prove this identity.
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Summarizing the above relations, we get

‖P∗µ−P∗ν‖= 1
2
‖µ−ν‖ sup

‖ f‖=1
sup

x1,x2∈X

∣∣P f (x1)−P f (x2)
∣∣.

But by the condition (1.4)

∣∣P f (x1)−P f (x2)
∣∣= ∣∣〈 f ,P(x1, ·)−P(x2, ·)〉

∣∣≤ ‖ f‖
∥∥P(x1, ·)−P(x2, ·)

∥∥≤ 2ρ‖ f‖,

which completes the proof of (1.14).

• • • • • • • • • • • • • • • • • •

1.3 Non-uniform ergodic rates

The theory exposed in the previous section is very simple and self-contained but it is
not applicable for many particular cases of interest. The reason is that, for a Markov
process X with a non-compact state space (like R, Rm, etc.), it is non-typical to have a
uniform bound similar to (1.6). To explain this, let us consider a typical example.

Example 1.11 Let Xt , t ≥ 0, be an Ornstein-Uhlenbeck process, i.e. the solution to the
linear SDE

dXt =−aXt dt +dWt .

It is a Markov process and its transition probabilities are given explicitly as

Pt(x, ·)∼N
(

e−atx, 1
2a

(
1− e−2at

))
.

The latter formula follows from the explicit expression for the solution

Xt = e−atX0 +
∫ t

0
e−at+as dWs, t ≥ 0

(please use the Itô formula to verify the latter identity). Then it is an explicit calculation
to show that for a given t

∥∥Pt(x, ·)−Pt(0, ·)
∥∥

TV→ 2, x→ ∞,
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hence
sup
x1,x2

∥∥Pt(x1, ·)−Pt(x2, ·)
∥∥

TV ≡ 2. (1.15)

Relation (1.15) is quite typical and corresponds to a situation which can informally be
explained in the following way: for “very distant” starting points of X , it should take a
large time for the process to come back “close to the origin”; hence any bound for the
total variation distance between the transition probabilities, which is uniform w.r.t. the
initial value, is necessarily trivial and non-informative. This is the reason why for pro-
cesses valued in non-compact state spaces, it is not typical to satisfy uniform irreducibility
conditions, e.g. (1.4). This is the main motivation for the following definition.

Definition 1.12 A Markov chain X satisfies the (local) Dobrushin condition on the set

K, if

ρ(K) = sup
x1,x2∈K

(
1
2

∥∥P(x1, ·)−P(x2, ·)
∥∥

TV

)
< 1.

Our goal in this section is to explain how a local irreducibility condition, combined
with a recurrence condition (which will be discussed later on), produce a non-uniform
ergodic rate bound of the form

∥∥Pn(x1, ·)−Pn(x2, ·)
∥∥

TV ≤ rn
(
V (x1)+V (x2)

)
, x1, x2 ∈ X, n≥ 1. (1.16)

Here rn, n≥ 1, corresponds to the rate of convergence, and V has a natural interpretation
as a “penalty”, which should be large for “distant” starting points.

Before formulating exact statements, let us explain the main idea on which the whole
approach is based. The “probabilistic” proof of Theorem 1.3 above was based on the
relation (1.7), which follows from the Coupling Lemma and holds true for any two-
component process Y =

(
Y 1,Y 2

)
such that its components have prescribed distributions

Px1 and Px2 , respectively. Such a process is typically called “a coupling process” or sim-
ply “a coupling” for the initial Markov process X . The key question in this approach is
how to construct a coupling process Y which would admit explicit bounds for the proba-
bility that Yn hits the diagonal (i.e., for the components Y 1

n , Y 2
n to be “coupled”).

In Theorem 1.3, the coupling process Y was built in such a way that, in every step,
a “coupling attempt” is performed with the conditional probability of success ≥ 1− ρ .
Now this can be done with the conditional probability of a success ≥ 1−ρ(K) only if at
the given time, both components of the process Y belong to K. So instead of (1.8), we
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will have a bound involving the (random) time spent by the coupling process Y at the set
K and one will need to control the “recurrence” properties of the coupling process Y , e.g.,
the distribution of the time required for Y to hit K×K.

A strategy to combine local irreducibility with recurrence conditions dates back to T.
Harris [24] and gives rise to a wide range of theorems, frequently called Harris-type the-

orems. Below we give several statements of that kind. In order to explain the arguments
more transparently, we separate the exposition into two parts. The first part contains a
general Harris-type theorem with the recurrence condition imposed on an auxiliary two-
component Markov chain Z. In the second part, we show how this condition can easily
be verified in terms of the initial Markov process X .

Denote by Λ the class of continuous monotone functions λ : [1,∞) → [1,∞) with
λ (1) = 1 and λ (∞) = ∞ which are sub-multiplicative in the sense that

λ (t + s)≤ λ (t)λ (s), s, t ∈ [1,∞).

Next, for a given Markov chain X , we call a Markov coupling for X any time-
homogeneous Markov chain Z on X×X, such that for a corresponding transition prob-
ability PZ

(
(x1,x2), ·

)
the marginal distributions equal PX (x1, ·) and PX (x2, ·), respec-

tively. For any such Z, we denote by PZ
(x1,x2)

the distribution of Z with Z0 = (x1,x2), by
EZ
(x1,x2)

the respective expectation and by τZ
C = inf{n ≥ 0 : Zn ∈C} the hitting time by Z

of a measurable set C ⊂ X×X.

Theorem 1.13 Let a set K ∈X and functions V : X→ [1,∞), λ ∈ Λ, be such that the
following conditions hold true.

I. X satisfies the Dobrushin condition on the set K.

R.1. There exists a Markov coupling Z for X such that

EZ
(x1,x2)

λ
(
τ

Z
K×K

)
≤V (x1)+V (x2), x1, x2 ∈ X.

R.2. Q(K) ..= sup
x∈K

ExV (X1)< ∞.

Then for every p > 1 there exist γ ∈ (0,1] and C such that (1.16) holds true with

rn =
C

λ
1/p(γn)

.
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Consequently, there exists a unique IPM π for X . This measure satisfies∫
X

V dπ < ∞, (1.17)

and ∥∥Pn(x, ·)−π
∥∥

TV ≤ rn

(
V (x)+

∫
X

V dπ

)
, x ∈ X, n≥ 1. (1.18)

Before proceeding with the proof, let us explain the assumptions of the theorem. Con-
dition I is just the local irreducibility condition we have discussed above. The idea behind
the recurrence conditions R.1, R.2 becomes visible when we recall that we need to con-
trol the total time spent in K×K up to the time instant n by the coupling process Y (which
is yet to be constructed). The main recurrence condition R.1 controls the λ -moment of
the length of a waiting period of the process Y (that is, the time spent outside of K×K)
in terms of the penalty function V . Because we need to iterate the waiting period in case
where the preceding coupling attempt was unsuccessful, we need to control the expec-
tation of the penalty V at the end of the coupling period; this is made by means of the
auxiliary recurrence condition R.2.

Proof. Let Q be the transition kernel constructed in the proof of Theorem 1.3. Consider
a Markov process Y on X×X with the transition kernel

PY ((x1,x2), ·
)
=

Q
(
(x1,x2), ·

)
, (x1,x2) ∈ K×K or x1 = x2;

PZ
(
(x1,x2), ·

)
, otherwise.

Denote by Sk, k ≥ 1, the time moment of the k-th visit of Y to K×K and by Rk = Sk +1
the time moment when the k-th “coupling attempt” is finished. Denote

L = min{Rk : Y 1(Rk) = Y 2(Rk)},

i.e. the “coupling time” for the process Y . Once the components are coupled, they are
evolving together, hence

P
(
Y 1

n 6= Y 2
n
)
≤ P(L > n)≤ λ

−1/p(γn)Eλ
1/p(γL),

and we need to estimate Eλ
1/p(γL). It follows from the bounds (1.21) and (1.22) below
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that
P(L > Rk)→ 0, k→ ∞.

Recall that Rk = Sk + 1 ≥ Rk−1 + 1 provided Rk−1 < ∞, and therefore Rk → ∞. Hence
P(L = ∞) = 0 because, by the construction above and conditions R.1 and R.2, there will
be an arbitrarily large number of finite time moments Sk, Rk (i.e. of coupling attempts)
before the coupling time L. Consequently, we have

Eλ
1/p(γL) =

∞

∑
k=1

Eλ
1/p(γL)1IL=Rk . (1.19)

Consider one term in the above sum:

Eλ
1/p(γL)1IL=Rk = Eλ

1/p(γL)1IL=Rk 1IL>Rk−1 ≤ E1IL>Rk−1λ
1/p(γRk),

where we denote R0 = 0. Then by the identity Rk = Sk +1 and the sub-multiplicativity of
λ , we have

E1IL>Rk−1 λ
1/p(γRk)≤ λ

1/p(γ)E
[
1IL>Rk−1λ

1/p(γRk−1)

×
(
ERk−1λ

1/p
(
γ(Sk−Rk−1)

))]
. (1.20)

Here by ERk−1 we denote the conditional expectation w.r.t. FRk−1 , where {Ft , t ≥ 0} is
the natural filtration of the process Y . Let us study the term

ERk−1λ
1/p
(
γ(Sk−Rk−1)

)
in more detail. On the time interval [Rk−1,Sk], the process Y behaves as the process
Z =

(
Z1,Z2

)
with independent components, which starts from the point Y (Rk−1). Then

by the condition R.1,

ERk−1λ (Sk−Rk−1)≤V
(
Y 1(Rk−1)

)
+V

(
Y 2(Rk−1)

)
=.. Ak−1.

Because γ ≤ 1 and λ is monotone, then using the above bound, the Hölder inequality, and
the Chebyshev inequality, we can write for any p1 ∈ (1, p)
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ERk−1λ
1/p
(
γ(Sk−Rk−1)

)
≤
(
ERk−1λ

p1/p
(
γ(Sk−Rk−1)

))1/p1

≤
(

λ
p1/p
(

γ
1/2
)
+ERk−1

(
λ

p1/p(Sk−Rk−1)1ISk−Rk−1>γ−1/2

))1/p1

≤
(

λ
p1/p
(

γ
1/2
)
+λ

−1+p1/p(γ−1/2)Ak−1

)1/p1

=.. Bk−1

Coming back to the bound (1.20), we can now write for k > 1

E1IL>Rk−1λ
1/p(γRk)≤ λ

1/p(γ)E

(
1IL>Rk−1λ

1/p(γRk−1)Bk−1

)
= λ

1/p(γ)E

(
1IL>Rk−2λ

1/p(γRk−1)ESk−1

(
1IL>Rk−1Bk−1

))
.

Here we have used that Rk−1 = Sk−1 + 1 is FSk−1 -measurable. A coupling attempt is
made on the time interval [Sk−1,Rk−1] and because Y (Sk−1) ∈ K×K, we have on the set
{L > Rk−2}= {L > Sk−1}

ESk−11IL>Rk−1 ≤ ρ(K).

On the other hand, recalling the formulae for Bk−1 and Ak−1 and using the elementary
inequality (a+b)p1 ≤ 2p1−1(ap1 +bp1), we get

ESk−1Bp1
k−1 ≤ λ

p:11/p
(

γ
1/2
)
+λ

−1+p1/p
(

γ
−1/2
)

×ESk−1

(
V
(
Y 1(Sk−1 +1)

)
+V

(
Y 2(Sk−1 +1)

))
≤ λ

p1/p
(

γ
1/2
)
+λ

−1+p1/p
(

γ
−1/2
)(

2Q(K)
)
.

In the last inequality we have used condition R.1 and the fact that, by construction, the
conditional distributions of Y 1,2(Sk−1 +1) w.r.t. FSk−1 equal P

(
Y 1,2(Sk−1), ·

)
.

Then by the Hölder inequality

ESk−1

(
1IL>Rk−1Bk−1

)
≤ ρ

1−1/p1(K)
(

λ
p1/p
(

γ
1/2
)
+λ

−1+p1/p
(

γ
−1/2
)(

2Q(T,K)
))1/p1

,

and therefore, for every k > 1,

E1IL>Rk−1λ
1/p(γRk)≤ θ(γ)E1IL>Rk−2λ

1/p(γRk−1)≤ . . .≤ θ
k−1(γ)Eλ

1/p(γR1) (1.21)
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with

θ(γ) = λ
1/p(γ)

(
λ

p11/p
(

γ
1/2
)
+λ

−1+p1/p
(

γ
−1/2
)(

2Q(K)
))1/p1

ρ
1−1/p1(K).

For k = 1, we have simply

Eλ
1/p(γR1)≤ λ

1/p(γ)Eλ
1/p(γS1)≤ λ

1/p(γ)
(
V (x1)+V (x2)

)1/p (1.22)

by the condition R.1.
Now, we proceed in the following way. Fix p1 ∈ (1, p); for instance, p1 =

√
p. Because

ρ(K)< 1 and

λ
1/p(γ)

(
λ

p1/p
(
γ

1/2
)
+λ

−1+p1/p
(
γ
−1/2
)(

2Q(K)
))1/p1 → 1, γ → 0,

there exists γ ∈ (0,1] such that

θ(γ)< ρ
1/2−1/2p1(K).

Using (1.19) – (1.22), we deduce the required bound (1.16) with rn given in the statement
of the theorem, γ chosen above and

C =
λ

1/p(γ)

1−ρ
1/2−1/2p1(K)

.

We can now finalize the proof. Fix a point x0 ∈ K and denote πn(dx) = Pn(x0,dx),
n≥ 1. Then by (1.16) and condition R.2 we have, for any n≥ m,

‖πn−πm‖TV =

∥∥∥∥∫X(Pm(x, ·)−Pm(x0, ·)
)

Pn−m(x0,dx)
∥∥∥∥

TV

≤
∫
X

∥∥Pm(x, ·)−Pm(x0, ·)
∥∥

TV Pn−m(x0,dx)

≤Cρ
m
∫
X

(
V (x)+V (x0)

)
Pn−m(x0,dx)≤C

(
Q(K)+V (x0)

)
ρm.

Hence the sequence {πn} is Cauchy in the total variation distance, and therefore there
exists a limit π = limn→∞ πn. The following properties are then easy to verify:

� π is an IPM for X ;
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� π is the unique IPM for X ;

� π satisfies (1.17).

Exercise 1.14 Prove the above properties.

Then, using (1.16) once more, we get (1.18).

Theorem 1.13 is very general, but usually it would be more convenient to have a suffi-
cient condition for (1.16) in a simpler form, which would only involve the distribution of
the process X . One very practical way to do this is exposed in the following theorem. The
principal assumption (1.23) therein is very close, both in form and spirit, to the classical
Lyapunov condition in the theory of stability of ordinary differential equations; hence, it
is usually called a Lyapunov-type condition.

Theorem 1.15 Assume that, for a given Markov chain X , functions V : X→ [1,+∞) and
φ : [1,+∞)→ (0,∞) satisfy the following:

1) there exists some C > 0 such that

ExV (X1)−V (x)≤−φ(V (x))+C, x ∈ X; (1.23)

2) φ admits a non-negative, increasing and concave extension to [0,+∞);

3) V is bounded on K, and

φ

(
1+ inf

x 6∈K
V (x)

)
> 2C (1.24)

with C which comes from (1.23).

Then any Markov coupling Z for the chain X satisfies condition R.1 of Theorem 1.13
with

λ (t) = Φ
−1(αt),

where
α = 1− 2C

φ
(
1+ infx 6∈K V (x)

) ,
and Φ−1 denotes the inverse function to

Φ(v) =
∫ v

1

1
φ(w)

dw, v ∈ [1,∞). (1.25)
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In addition, the function λ belongs to the class Λ, and the chain X satisfies condition R.2
of Theorem 1.13.

Proof. Denote
H(t,v) = Φ

−1(t +Φ(v)
)
, t ≥ 0, v≥ 1. (1.26)

It would be a key point in the proof of R.1 to show that, for every n≥ 1,

EZ
(x1,x2)

[
H
(

αn,V (Z1
n)+V (Z2

n)
)∣∣∣F Z

n−1

]
≤ H

(
α(n−1),V

(
Z1

n−1
)
+V

(
Z2

n−1
))

(1.27)

a.s. on the set {Zn−1 6∈ K×K}, where {Fn} denotes the natural filtration of Z. Once we
manage to do this, we would have

EZ
(x1,x2)

H
(

α(τ ∧n),V
(
Z1

τ∧n
)
+V

(
Z2

τ∧n
))
≤V (x1)+V (x2), n≥ 0 (1.28)

with τ = τZ
K×K .

Exercise 1.16 Prove (1.28) using (1.27).

Because
H(αt,v)≥Φ

−1(αt) = λ (t),

this would imply by the Fatou’s lemma the required bound

EZ
(x1,x2)

λ (τ)≤V (x1)+V (x2).

Observe the following properties of the function H(t,v):

� H ′t (t,v) = φ
(
H(t,v)

)
;

� H ′v(t,v) = φ

(
H(t,v)

)
/φ(v);

� H(t,v) is concave w.r.t. the variable v.

The first two properties are verified straightforwardly. To prove the third one, if φ is
additionally assumed to be smooth, we write

H ′′vv(t,v) =
φ ′
(
H(t,v)

)
φ
(
H(t,v)

)
−φ
(
H(t,v)

)
φ ′(v)

φ 2(v)
≤ 0,
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because H(t,v) ≥ v and φ ′ is decreasing. For non-smooth φ we can approximate it by a
sequence of smooth φn; this shows us that H(t,v) is concave w.r.t. the variable v as the
pointwise limit of a sequence of concave functions.

Then we have

H(t2,v)−H(t1,v)≤ (t2− t1)φ
(
H(t2,v)

)
, t1 ≤ t2, (1.29)

and

H(t,v2)−H(t,v1)≤
φ
(
H(t,v1)

)
φ(v1)

(v2− v1), v1, v2 ≥ 1. (1.30)

Now we can proceed with the proof of (1.27) on the set {Zn−1 6∈ K×K}. Write

H
(

αn,V
(
Z1

n
)
+V

(
Z2

n
))
−H

(
α(n−1),V

(
Z1

n−1
)
+V

(
Z2

n−1
))

=
[
H
(

αn,V
(
Z1

n−1
)
+V

(
Z2

n−1
))
−H

(
α(n−1),V

(
Z1

n−1
)
+V

(
Z2

n−1
))]

+
[
H
(

αn,V
(
Z1

n
)
+V

(
Z2

n
))
−H

(
αn,V

(
Z1

n−1
)
+V

(
Z2

n−1
))]

=.. ∆1 +∆2.

By (1.29), we have

∆1 ≤ αφ

(
H
(

αn,V
(
Z1

n−1
)
+V

(
Z2

n−1
)))

,

which is F Z
n−1-measurable. By (1.30), we have

∆2 ≤
φ

(
H
(

αn,V
(
Z1

n−1
)
+V

(
Z2

n−1
)))

φ

(
V
(
Z1

n−1

)
+V

(
Z2

n−1

)) (
V
(
Z1

n
)
+V

(
Z2

n
)
−V

(
Z1

n−1
)
−V

(
Z2

n−1
))

.

Because Z is a Markov coupling for X , we have

EZ
(x1,x2)

[
V
(
Zi

n
)
−V

(
Zi

n−1
)∣∣∣F Z

n−1

]
=
(
EX

x V (X1)−V (x)
)∣∣∣

x=Zi
n−1

, i = 1,2,

and therefore by the Lyapunov-type condition (1.23)

EZ
(x1,x2)

[
∆2

∣∣∣F Z
n−1

]
≤

φ

(
H
(

αn,V
(
Z1

n−1
)
+V

(
Z2

n−1
)))

φ

(
V
(
Z1

n−1

)
+V

(
Z2

n−1

)) ×
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×
(

2C−φ

(
V
(
Z1

n−1
))
−φ

(
V
(
Z2

n−1
)))

.

Hence we have

EZ
(x1,x2)

[
∆1 +∆2

∣∣∣F Z
n−1

]
≤ φ

(
H
(

αn,V
(
Z1

n−1
)
+V

(
Z2

n−1
)))

×

α +
2C

φ

(
V
(
Z1

n−1

)
+V

(
Z2

n−1

)) − φ

(
V
(
Z1

n−1
))

+φ

(
V
(
Z2

n−1
))

φ

(
V
(
Z1

n−1

)
+V

(
Z2

n−1

))
 .

On the set {Zn−1 6∈ K×K} at least one term in the sum V
(
Z1

n−1
)
+V

(
Z2

n−1
)

is not less
than infx 6∈K V (x), while the other term is not less than 1. Hence we have

2C

φ

(
V
(
Z1

n−1

)
+V

(
Z2

n−1

)) ≤ 2C
φ
(
1+ infx 6∈K V (x)

) = 1−α.

Finally, observe that because φ admits a concave non-negative extension φ̃ to [0,∞), we
have

φ(v1 + v2)−φ(v1)≤ φ(v2)− φ̃(0)≤ φ(v2), v1, v2 ≥ 1;

hence
φ(v1)+φ(v2)

φ(v1 + v2)
≥ 1, v1, v2 ≥ 1.

Summarizing the above inequalities, we obtain

EZ
(x1,x2)

[
∆1 +∆2

∣∣F Z
n−1
]
≤ 0,

which completes the proof of (1.27).
To verify that λ belongs to Λ, observe the following.

� Φ(1) = 0, hence λ (0) = 1.

� Since φ is concave, φ possesses a linear growth bound; and therefore, Φ(∞) = ∞.

This implies that λ (∞) = ∞.

� To prove the sub-multiplicativity property of λ , it is sufficient to verify that for
every fixed s≥ 0

d
dt

(
λ (t + s)

λ (s)

)
≤ 0. (1.31)
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Because φ has a non-negative convex extension to [0,∞), one has

φ(b)a≤ φ(a)b, b≥ a. (1.32)

Calculating the derivatives straightforwardly and using (1.32), one can easily ver-
ify (1.31).

Exercise 1.17 Prove (1.32) and verify (1.31).

Finally, condition R.2 follows trivially from (1.23) because V is assumed to be bounded
on K.

Let us finish this section by several particularly important corollaries of Theorem 1.13
and Theorem 1.15, which give respectively exponential, polynomial and sub-exponential

ergodic rates for a Markov process X . The form in which we formulate these corollaries
is motivated by the following observation: if X satisfies (1.23) with φ(∞) =∞, then (1.24)
would hold true when one chooses K equal to a level set {x : V (x)≤ c} of the function V

with sufficiently large c.

Theorem 1.18 (On exponential ergodic rate) Let there exist, for a given Markov chain
X , a function V :X→ [1,+∞) such that X satisfies the Dobrushin condition on every level
set {x : V (x)≤ c} of the function V , and for some a,C > 0

ExV (X1)−V (x)≤−aV (x)+C, x ∈ X. (1.33)

Then there exist c1,c2 > 0 such that

∥∥Pn(x1, ·)−Pn(x2, ·)
∥∥

TV ≤ c1e−c2n(V (x1)+V (x2)
)
, x1, x2 ∈ X, n≥ 1. (1.34)

In addition, there exists a unique IPM π for X which satisfies (1.17), and

∥∥Pn(x, ·)−π
∥∥

TV ≤ c1e−c2n
(

V (x)+
∫
X

V dπ

)
, x ∈ X, n≥ 1. (1.35)

Proof. The required statements follow directly from Theorem 1.13 and Theorem 1.15,
applied to φ(v) = av and K = {x : V (x) ≤ c} with sufficiently large c. Now φ(v) = av,
v ≥ 0 is a concave increasing function with φ(0) = 0 and φ(∞) = ∞. Straightforward
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calculations show that

Φ(v) =
1
a

logv, λ (t) = Φ
−1(αt) = eaαt ,

where α depends on the choice of the level c in the definition of the set K. Consequently,
the term λ−1/p(γn), which appears in the expression for the ergodic rate in Theorem 1.13,
now equals

λ
−1/p(γn) = e−c2n, c2

..= aαγ/p.

Theorem 1.19 (On polynomial ergodic rate) For a given Markov chain X , let there
exist a function V : X→ [1,+∞) such that X satisfies the Dobrushin condition on every
level set {x : V (x)≤ c} of the function V , and for some a,C > 0 and σ ∈ (0,1)

ExV (X1)−V (x)≤−aV σ (x)+C, x ∈ X. (1.36)

Then for all η < 1/(1−σ), there exist c1, c2 > 0 such that

∥∥Pn(x1, ·)−Pn(x2, ·)
∥∥

TV ≤ c1(1+ c2n)−η
(
V (x1)+V (x2)

)
, x1, x2 ∈ X, n≥ 1.

(1.37)
In addition, there exists a unique IPM π for X which satisfies (1.17), and

∥∥Pn(x, ·)−π
∥∥

TV ≤ c1(1+ c2n)−η

(
V (x)+

∫
X

V dπ

)
, x ∈ X, n≥ 1. (1.38)

Proof. Again, we apply Theorem 1.13 and Theorem 1.15 with φ(v) = avσ and K = {x :
V (x) ≤ c} with sufficiently large c. Again, φ(x) = avσ , v ≥ 0 is a concave increasing
function with φ(0) = 0, φ(∞) = ∞. Now we have

Φ(v) =
1

a(1−σ)

(
v1−σ −1

)
, λ (t) = Φ

−1(αt) =
(
1+a(1−σ)αt

) 1
1−σ .

Consequently, the term λ−1/p(γn) now equals

λ
−1/p(γn) = (1+ c2)n−

1/p(1−σ), c2
..= a(1−σ)αγ,

and, choosing p close enough to 1, one can make 1/p(1−σ) > η .
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Theorem 1.20 (On sub-exponential ergodic rate) For a given Markov chain X , let there
exist a function V : X→ [1,+∞) such that X satisfies the Dobrushin condition on every
level set {x : V (x)≤ c} of the function V , and, for some a,b,σ ,C > 0,

ExV (X1)−V (x)≤−aV (x) log−σ
(
V (x)+b

)
+C, x ∈ X. (1.39)

Then there exist c1, c2 > 0 such that

∥∥Pn(x1, ·)−Pn(x2, ·)
∥∥

TV ≤ c1e−c2n1/(1+σ)(
V (x1)+V (x2)

)
, x1, x2 ∈ X, n≥ 1.

(1.40)
In addition, there exists a unique IPM π for X which satisfies (1.17), and

∥∥Pn(x, ·)−π
∥∥

TV ≤ c1e−c2n1/(1+σ)
(

V (x)+
∫
X

V dπ

)
, x ∈ X, n≥ 1. (1.41)

Proof. Now the proof is slightly more cumbersome because the function v 7→ av log−σ (v+

b), although well-defined on [1,∞), may fail to have a non-negative concave increasing
extension to [0,∞) (e.g. when b > 0 is small). Hence we can not apply Theorem 1.13 and
Theorem 1.15 straightforwardly; instead, we tune up the relation (1.39) first.

We can check straightforwardly that, for a given σ , there exists bσ > 1 such that
the function v 7→ v log−σ v is concave and increasing on [bσ ,∞). Hence rather than us-
ing (1.39) with Theorems 1.13 and 1.15 we can apply a (weaker) inequality (1.23) with

φ(v) = ã(v+bσ ) log−σ (v+bσ ),

where

ã = a inf
v≥1

v log−σ (v+b)
(v+bσ ) log−σ (v+bσ )

> 0.

Then we have

Φ(v) =
1

ã(1+σ)

(
log1+σ (v+bσ )− log1+σ (1+bσ )

)
,

λ (t) = Φ
−1(αt) = exp

{(
log1+σ (1+bσ )+ ã(1+σ)αt

)1/1+σ
}
−bσ

≥C(λ )exp
{(

ã(1+σ)αt
)1/1+σ

}
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with

C(λ ) = inf
t≥0

[
λ (t)exp

{
−
(

ã(1+σ)αt
)1/(1+σ)

}]
> 0.

Consequently, the term λ−1/p(γn) now possesses the bound

λ
−1/p(γn)≤

(
C(λ )

)−1/pe−c2n1/(1+σ)
, c2

..=
(

ã(1+σ)αγ

)1/(1+σ)

/p.

• • • • • • • • • • • • • • • • • • • • • • •

1.4 Continuous-time Markov processes

Frequently, one is interested in statements similar to those given in Section 1.3, but for
a continuous-time Markov process Xt , t ≥ 0 rather than for a Markov chain Xn, n ∈ Z+.
One straightforward way to design such a statement is to consider the initial process at
the discrete set of time moments nh, n ∈ Z+, with a given h > 0; that is, to consider a so
called “skeleton chain” Xh = {Xnh, n ∈ Z+}. Because of the inequality

∥∥Ps+nh(x, ·)−Ps+nh(y, ·)
∥∥

TV ≤
∥∥Pnh(x, ·)−Pnh(y, ·)

∥∥
TV,

a bound as in (1.16) for the skeleton chain would yield a similar bound for the initial
process:

∥∥Pt(x1, ·)−Pt(x2, ·)
∥∥

TV ≤ r̃t
(
V (x1)+V (x2)

)
, x1, x2 ∈ X, t ≥ 0 (1.42)

with
r̃t = rh[t/h].

However, to prove the bound (1.16) for a skeleton chain, one still should verify the
irreducibility and recurrence assumptions. It would be convenient to do this in terms of
the process X itself rather than the auxiliary chain Xh. Below, we explain one practical
way to do this for the recurrence assumption.

Let us begin from the key calculation, which would then make clear Definition 1.21
below. Take some function V from the domain of the generator A of the semigroup
{Tt , t ≥ 0} ⊂ B(X) corresponding to X . Then, by the Dynkin formula (e.g. [15], Chapter
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5 §1), the process

V (Xt)−
∫ t

0
AV (Xs) ds

is a martingale w.r.t. any law Px, x ∈ X, and hence

ExV (Xt) =V (x)+
∫ t

0
ExAV (Xs) ds.

Let us assume for now that there exist a,C > 0 such that

AV ≤−aV +C. (1.43)

Then for the function v(t) = ExV (Xt) one has the inequality

v(t2)− v(t1)≤
∫ t2

t1

(
−av(s)+C

)
ds. (1.44)

Applying Gronwall’s Lemma yields

v(t)≤ v(0)e−at +C
1− eat

a
, t ≥ 0.

This gives finally
ExV (Xh

1 )−V (x)≤−ãV (x)+C̃ (1.45)

with

ã = 1− e−ah, C̃ =C
1− eah

a
.

This simple calculation shows that we can verify a linear Lyapunov-type condition for the
skeleton chain in terms of the linear Lyapunov-type condition (1.43) formulated from the
generator of the initial process. However, the above argument is an outline of the main
idea rather than a ready-made tool for proving the general bound (1.42), because there
are two weak points hidden in this argument. First, recall that our aim is to generalize
Lyapunov-type conditions from linear ones (and hence generalize convergence rates from
the exponential). If, e.g., we assume

AV ≤−φ(V )+C

with concave φ , we would not be able to derive, for instance, such an inequality similar
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to (1.44)

v(t2)− v(t1)≤
∫ t2

t1

(
−φ
(
v(s)

)
+C
)

ds.

To do that, we would need inequality −Exφ
(
V (Xs)

)
≥ −φ

(
ExV (Xs)

)
, which is just the

Jensen inequality, valid for convex φ . This explains that the linear function φ(v) = av,
which is both concave and convex, is a special case, and in a general setting, the argument
needs to be modified.

This first difficulty is technical and in the proof of Theorem 1.23 below we show one
possible way to avoid it. The second difficulty is more deep: a close inspection of the
Lyapunov-type relation (1.45) for the skeleton chain shows that it is hardly applicable
as a recurrence type condition. Recall that non-uniform ergodic rates (1.16) or (1.42)
appear naturally in the case where the irreducibility assumption is only locally verified.
However, if V is taken from the domain of the generator of the B(X)-semigroup of X , then
V is bounded; therefore, the claim that “on every level set for V the Dobrushin condition
holds,” used e.g. in Theorems 1.18–1.20, just means that the Dobrushin condition holds
true on the entire X and in this case no recurrence condition is required.

To keep the whole argument operational, we have to extend the domain of the generator
in order to include some unbounded functions V therein. One very natural way to do this
is to remove from the definition of the extended generator all technicalities except the
main feature required above; that is, the Dynkin formula. Denote by FX the natural
filtration of the process X .

Definition 1.21 A measurable function f : X→R belongs to the domain of the extended

generator A of the Markov process X if there exists a measurable function g : X→ R
such that the process

f (Xt)−
∫ t

0
g(Xs) ds, t ∈ R+ (1.46)

is well-defined and is an FX -martingale w.r.t. every measure Px, x ∈X. For any such pair
( f ,g), we write f ∈ Dom(A ) and A f = g.

Remark 1.22 This definition, both very convenient and very useful, apparently dates back
to H. Kunita [38]. It is regarded as mathematical “common knowledge,” used widely in
research papers with various technical modifications, though somehow it is missing from
the classical textbooks (with the important exception of [51, Chapter VII.1]).

Now we can finally formulate the main result of this section, which gives a sufficient



1.4 Continuous-time Markov processes 29

condition for the Lyapunov-type condition for the skeleton chain in terms of the extended
generator of the initial process. For a given φ : [1,+∞)→ (0,∞), denote by Φ and H the
corresponding functions defined by (1.25) and (1.26).

Theorem 1.23 Assume that for a given Markov process X there exist a function V : X→
[1,+∞) from the domain of the extended generator, a function φ : [1,+∞)→ (0,∞) which
admits a concave, non-negative extension to [0,∞) and a constant C ≥ 0 such that

A V ≤−φ(V )+C. (1.47)

Assume also that the process V (Xt), t ≥ 0, is continuous in probability and for any T > 0
the family of the random variables(

H
(
t2,V (Xt1)

))2
, 0≤ t1 ≤ t2 ≤ T, (1.48)

where the function H is given by (1.26), is uniformly integrable w.r.t. every Px, x ∈ X.
Then for any h > 0

ExV h(Xh
1
)
−V h(x)≤−φ

h(V h(x)
)
+Ch (1.49)

with

V h(x) = Φ
−1
(

h+Φ
(
V (x)

))
−Φ

−1(h)+1, x ∈ X, (1.50)

φ
h(v) = v−1+Φ

−1(h)−Φ
−1
(
−h+Φ

(
v−1+Φ

−1(h)
))

, v≥ 1, (1.51)

Ch =C h sup
v≥1

H(h,v)
v

. (1.52)

The function φ h : [1,∞)→ (0,∞) is increasing and admits a concave, non-negative exten-
sion to [0,∞).

Proof. First we prove that

ExH
(
t,V (Xt)

)
≤V (x)+C sup

v≥1

H(t,v)
v

. (1.53)

We use essentially the same argument as in the proof of Theorem 1.15. By inequali-
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ties (1.29) and (1.30) we have, for any t1 ≤ t2,

H
(
t2,V (Xt2)

)
−H

(
t1,V (Xt1)

)
≤ (t2− t1)φ

(
H
(
t2,V (Xt2)

))
+

φ

(
H
(
t2,V (Xt1)

))
φ
(
V (Xt1)

) [
V (Xt2)−V (Xt1)

]
.

Because
V (Xt)−

∫ t

0
A V (Xs) ds

is a martingale and (1.47) is assumed, we have

ExH
(
t2,V (Xt2)

)
−ExH

(
t1,V (Xt1)

)
≤ (t2− t1)Exφ

(
H
(
t2,V (Xt2)

))
+Ex

φ

(
H
(
t2,V (Xt1)

))
φ
(
V (Xt1)

) ∫ t2

t1

(
−φ
(
V (Xs)

)
+C
)

ds.

Then for every partition 0 = t0 < t1 < .. . < tn = t of a segment [0, t], we get

ExH
(
t,V (Xt)

)
−V (x)

≤
n

∑
k=1

Ex

∫ tk

tk−1

φ

(
H
(
tk,V (Xtk)

))
−

φ

(
H
(
tk,V (Xtk−1)

))
φ
(
V (Xtk−1)

) φ
(
V (Xs)

) ds

+C
n

∑
k=1

Ex

∫ tk

tk−1

φ

(
H
(
tk,V (Xtk−1)

))
φ
(
V (Xtk−1)

) ds.

The functions φ , H are continuous, φ(v) ≥ φ(1) > 0 and the process V (Xs), s ≥ 0, is
continuous in probability. From this, using the auxiliary uniform integrability condition
for the family (1.48), it is easy to deduce that when we consider a sequence of partitions
the size of which tends to 0, the above inequality turns into

ExH
(
t,V (Xt)

)
−V (x)≤CEx

∫ t

0

φ

(
H
(
s,V (Xs)

))
φ
(
V (Xs)

) ds. (1.54)



1.4 Continuous-time Markov processes 31

Applying (1.32) with a =V (Xs) and b = H
(
s,V (Xs)

)
we get

ExH
(
t,V (Xt)

)
−V (x)≤CEx

∫ t

0

H
(
s,V (Xs)

)
V (Xs)

ds,

which finally yields (1.53).

Relation (1.53) with t = h has the form

ExH
(
h,V (Xh)

)
≤V (x)+Ch, (1.55)

which after a proper change of notation would give the required Lyapunov-type condi-
tion (1.49) for the skeleton chain. Note that the domains where the functions Φ, Φ−1 and
H are well-defined can be naturally extended. Namely, Φ is well-defined on (0,∞) and
takes values in (κ,∞) with

κ =
∫ 0

1

1
φ(v)

dv ∈ [−∞,0).

Hence Φ−1 is well-defined on (κ,∞). Finally, H is well-defined on the set of the pairs
(t,v) such that t +Φ(v)> κ .

Denote Ṽ h(x) = H
(
h,V (x)

)
. Then V (x) = H

(
−h,Ṽ h(x)

)
and (1.55) can be written in

the form
ExṼ h(Xh)−Ṽ h(x)≤−φ̃

h(Ṽ (x)
)
+Ch

with
φ̃

h(v) = v−H(−h,v).

The function Ṽ h(x) takes its values in [H(h,1),∞), and H(h,1) = Φ−1
(
h + Φ(1)

)
=

Φ−1(h). Then the function

V h(x) = Ṽ h(x)−Φ
−1(h)+1

takes its values in [1,∞) and (1.49) is just (1.55) written in terms of V h. Note that

φ
h(v) = φ̃

h(v−1+Φ
−1(h)

)
.

To finalize the proof, we need to prove the required properties for φ h. Observe that
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the function H(−h, ·) is convex on its natural domain {v : h+Φ(v)> κ}; the proof here
is the same used for the concavity of H(t, ·) in the proof of Theorem 1.15. Hence φ̃ h is
concave on its natural domain. Because

H ′v(−h,v) = φ

(
H(−h,v)

)
/φ(v)≤ 1,

φ̃ h is non-decreasing. Since φ h is just φ̃ h with a shift in argument, φ h is also convex and
non-decreasing on its natural domain.

Finally, recall that φ is well-defined and increasing [0,∞). Hence, because Φ−1(h)> 1,

−h+Φ
(
−1+Φ

−1(h)
)
=−Φ

(
Φ
−1(h)

)
+Φ

(
−1+Φ

−1(h)
)

=−
∫

Φ−1(h)

1

dw
φ(w)

+
∫ −1+Φ−1(h)

1

dw
φ(w)

=−
∫

Φ−1(h)

−1+Φ−1(h)

dw
φ(w)

>−
∫ 1

0

dw
φ(w)

= κ.

Therefore the natural domain for φ h contains [0,∞). Clearly, one has

φ
h(0) =−1+Φ

−1(h)−Φ
−1
(
−h+Φ

(
−1+Φ

−1(h)
))

>−1+Φ
−1(h)−Φ

−1
(

Φ
(
−1+Φ

−1(h)
))

= 0,

and therefore φ h is positive, convex and non-decreasing on [0,∞).

Exercise 1.24 Calculate φ h when

� φ(v) = av,

� φ(v) = avσ with σ ∈ (0,1),

� φ(v) = a(v+b) log−σ (v+b) with σ ∈ (0,1) and sufficiently large b,

and verify that in any of these cases V h ≤ cV with some c and φ h(v)≥ φ̃(v), where φ̃(v)

has the same form as φ with possibly different constants a and b (the constant σ remains
the same).

Typically, it is practical to verify Lyapunov-type condition (1.47) for particular classes
of processes X by means of standard stochastic calculus tools, such as the Itô formula.
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We give some examples of such a calculation in Section 1.6. Observe that Theorem 1.23
above allows various modifications, which may in some cases relax the assumptions and
simplify the whole proof. For instance, one can avoid the auxiliary assumption of the
uniform integrability of the family (1.48), by using the standard stochastic calculus tools
to verify directly the inequality (1.54).

Another natural and much more substantial modification of the above argument is that,
instead of using the time discretization and a skeleton chain, one can prove a version of
Theorem 1.13 in the continuous time setting, and then use (1.47) directly to verify the ana-
logue of the recurrence assumption therein in the continuous time setting. In general, this
way might be practical because then one avoids cumbersome calculations, e.g., similar to
those which arise in Exercise 1.24. One should then take care of continuous-time techni-
calities, such as trajectory-wise properties of X (in order to guarantee that a hitting time is
a stopping time), the strong Markov property of X (which one would require to justify the
argument from the proof of Theorem 1.13 in the continuous time setting), and so on. In
order not to over-burden the exposition, we do not discuss this possibility here, referring
the reader to [35, Theorem 2.2], for a continuous-time analogue of Theorem 1.13 in the
particular case of an exponential ergodic rate.

• • • • • • • • • • • • • • • • • • • • • • • • • • • •

1.5 Various forms of the irreducibility assumption

The choice of a particular form of the irreducibility condition for a Markov chain is far
from trivial and may depend both on the structure of the particular chain and the goals of
the analysis. A variety of forms of the irreducibility assumption other than the Dobrushin
condition used above are available in the literature. In this section, we briefly discuss
several such assumptions.

The chain X is said to satisfy the minorization condition if there exist a probability
measure λ and ρ ∈ (0,1) such that

P(x,dy)≥ ρ λ (dy).

Clearly, the minorization condition implies the Dobrushin condition with the same ρ . The
inverse implication, in general, is not true.

Exercise 1.25 Give a corresponding example.
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The Harris irreducibility condition requires that there exist a measure λ and a positive
function f ∈ B(X) such that

P(x,dy)≥ f (x)λ (dy).

In a sense, the Harris irreducibility condition is a relaxed minorization condition, perfectly
adapted to the duality structure between the spaces of measures M (X) and functions
B(X).

The Döblin condition requires that there exist a probability measure λ and ε > 0 such
that

P(x,A)≤ 1− ε if λ (A)< ε.

In the case of X being a compact metric space, this condition can be verified in the terms
of the Doob condition which claims that X is strong Feller; that is, for every bounded and
measurable f : X→ R, the mapping x 7→ Ex f (X1) =

∫
X f (y)P(x,dy) is continuous.

All the conditions listed above can also be relaxed by imposing them on some N-step
transition probability PN(x,dy) instead of P(x,dy) or, more generally, on a “mixed” (or
“sampled”, cf. [43]) kernel

PQ(x,dy) =
∞

∑
n=1

Q(n)Pn(x,dy)

for some weight sequence {Q(n), n ≥ 1} ⊂ (0,∞) with ∑n Q(n) < ∞. This typically
makes it possible to give conditions for the ergodicity which are sufficient and close to
necessary. For instance, the Dobrushin condition for an N-step transition probability
PN(x,dy) yields that the “N-step skeleton chain” possesses a uniform exponential ergodic
rate (1.5). As we have explained at the beginning of Section 1.4, this would yield a
similar rate (with other constants) for the chain X itself. On the other hand, if X possesses
a uniform ergodic bound

sup
x1,x2∈X

∥∥Pn(x1, ·)−Pn(x2, ·)‖TV→ 0, n→ ∞ (1.56)

with arbitrary rate, then for some N, the Dobrushin condition for an N-step transition
probability PN(x,dy) holds.

This simple argument reveals the general feature that, on the level of uniform ergodic
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rates, the only rate which actually occurs is an exponential one. In addition, the N-step
version of the Dobrushin condition appears to be necessary and sufficient for X to possess
a uniform exponential ergodic rate. This property is not exclusive to the Dobrushin con-
dition: the N-step versions of the Harris irreducibility condition and the Döblin condition
are necessary and sufficient, as well. The necessity of the N-step version of the Döblin
condition is simple.

Exercise 1.26 Prove that (1.56) yields the N-step version of the Döblin condition.
Hint. Deduce from (1.56) the uniform convergence of Pn(x,dy) to the (unique) IPM µ for
X in the total variation distance and then take λ = µ in the Döblin condition.

The proof of the necessity of the Harris irreducibility condition is much more involved;
see [45, Chapter 3].

All the conditions listed above are also available in local versions, i.e. on a set K ∈
X , and together with proper recurrence conditions typically would lead to non-uniform
ergodic rates. In the terminology explained above, the central notions of a small set and
a petite set from the Meyn-Tweedie approach [43], widely used in the literature, can
be formulated as follows: a set K ∈X is small if X verifies the N-step version of the
minorization condition, and K ∈X is petite if a “mixed” (or “sampled”) chain verifies
the minorization condition.

Note that, although all the irreducibilty conditions discussed above are genuinely
equivalent at least in their global versions, there are still good reasons to use them sep-
arately for various purposes and classes of Markov models. The Döblin condition (or
the strong Feller property) is the mildest one and hence is easiest to verify, but it is then
rather difficult to get ergodic bounds with explicit constants. The minorization condition
leads to much more explicit ergodic bounds, but it is too restrictive for models which
have transition probabilities with a complicated local behavior. A good example here is
given by a Markov process solution to an SDE with a Lévy noise; see Section 1.6. The
Dobrushin condition is more balanced in the sense that it leads to explicit ergodic bounds
but it is more flexible and might be less restrictive than the minorization condition. This
was the reason for us to ground our exposition mainly on the Dobrushin condition.
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• • • • • • • • • • • • • • • • • • • • •

1.6 Diffusions and Lévy driven SDEs

Below we give two examples where the general methods developed above are well ap-
plicable. The Markov models from these examples have considerable interest themselves
but also illustrate clearly some natural methods to verify the general assumptions from
Section 1.3 and Section 1.4.

1. A diffusion process. Let Xt , t ≥ 0, be a diffusion in Rm; that is, a Markov
process solution to an SDE

dXt = a(Xt) dt +b(Xt) dWt (1.57)

driven by a k-dimensional Wiener process Wt , t ≥ 0. Let the coefficients a : Rm → Rm

and b : Rm→ Rm×k satisfy usual conditions for a (weak) solution to exist uniquely (e.g.
[26]); then this solution X is a time-homogeneous Markov process in Rm.

Below we give explicit conditions in terms of the coefficients of the equation which
are sufficient for (1.47) to hold for a particular φ . Denote for f ∈C2(Rm)

L f =
m

∑
i=1

ai ∂xi f +
1
2

m

∑
i, j=1

Bi j ∂
2
xix j

f (1.58)

with B = bb∗. By the Itô formula (e.g. [26, Chapter II.5]), the process

M f
t = f (Xt)−

∫ t

0
L f (Xs) ds

is a local martingale w.r.t. every Px, x ∈ Rm. A natural way to get (1.47) with some φ is
the following:

� construct V ∈C2(Rm) such that

LV ≤−φ(V )+C; (1.59)

� verify that the respective process MV is not just a local martingale, but a martin-
gale.

Let us begin with the second technical step.



1.6 Diffusions and Lévy driven SDEs 37

Proposition 1.27 Let (1.59) hold true with some φ which possesses a linear bound; that
is, for some c1,c2 > 0

|φ(v)| ≤ c1|v|+ c2.

Assume that there exists a positive function G ∈ C2(R) such that G(v)/|v|→ ∞, |v| → ∞

and that for the function U = G(V ), there exist constants c3,c4 > 0 such that

LU ≤ c3U + c4.

Then the process MV is a martingale w.r.t. every Px, x ∈ Rm.

Proof. Let x ∈Rm be fixed. Both MV and MU are Px-local martingales; thus, there exists
an increasing sequence of stopping times {τn} such that τn→ ∞ Px-a.s. and for every n

the stopped processes
MV (τn∧ ·), MU (τn∧ ·)

are Px-martingales. Hence for every fixed n≥ 1 we have

ExU(Xτn∧t) =U(x)+Ex

∫
τn∧t

0
LU(Xs) ds≤U(x)+Ex

∫
τn∧t

0

(
c1U(Xs)+ c2

)
ds

≤U(x)+
∫ t

0
Ex
(
c1U(Xτn∧s)+ c2

)
ds.

Hence, by the Gronwall inequality one has

ExU(Xτn∧t)≤ ec1t(U(x)+ c2t
)
.

Recall that U = G(V ) and the growth of G at ∞ is faster than linear. Hence the above
bound yields that the family

V (Xτn∧s), s ∈ [0, t], n≥ 1

is uniformly integrable w.r.t. Px. By (1.59) and the linear bound on φ , the family

LV (Xτn∧s), s ∈ [0, t], n≥ 1

is uniformly integrable as well. Because for every t ≥ 0 and s ∈ [0, t], we have that

V (Xτn∧t)→V (Xt), LV (Xs)1s≤τn →LV (Xs), n→ ∞
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Px-a.s., this implies the convergence in L1(Px) of

MV
τn∧t =V (Xτn∧t)−

∫ t

0
LV (Xs)1s≤τn ds→MV

t , n→ ∞

for every t. Since every MV (τn∧ ·) is a martingale, their L1-limit MV is a martingale as
well.

Now, let us proceed with the relation (1.59). Both the choice of respective Lyapunov-
type function V and the function φ which arise therein would depend on the properties of
the coefficients a and b. To simplify the exposition, we reduce the variety of possibilities
and assume the coefficient b to be bounded. The coefficient a is assumed to be locally
bounded and to satisfy

limsup
|x|→∞

(
a(x),

x
|x|κ+1

)
=−Aκ ∈ [−∞,0) (1.60)

for some κ ∈ R.
The drift condition (1.60) is quite transparent: it requires that the radial part of the drift

is negative far from the origin; that is, the drift pushes the diffusive point towards to the
origin when this point is located far from the origin. The index κ controls the growth rate
of the absolute value of the radial part at ∞ (actually its decay rate, if κ < 0), and hence
indicates how powerful the drift is towards the origin.

Proposition 1.28 Let the drift condition (1.60) hold true, coefficient a be locally
bounded, and coefficient b be bounded. Denote

|||B|||= sup
x∈Rm, l∈Rm\{0}

|l|−2∣∣(B(x)l, l)∣∣;
recall that B = bb∗. Then the following holds:

1) If κ ≥ 0, then (1.59) holds true for φ(v) = cv with some c,C > 0 and V ∈C2(Rm)

such that
V (x) = eα|x|, |x| ≥ 1.

The above constant α > 0 should satisfy

α <
2A0

|||B|||
;
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note that if κ > 0 then A0 = ∞.

2) If κ ∈ (−1,0), then (1.59) holds true for φ(v) = cv log−σ v with some c,C > 0,

σ =− 2κ

1+κ
> 0

and V ∈C2(Rm) such that V > 1 and

V (x) = eα|x|1+κ

, |x| ≥ 1

with the constant
α <

2Aκ

(1+κ)|||B|||
.

3) If κ =−1 and in addition

2A−1 > sup
x

(
TraceB(x)

)
,

then (1.59) holds true for φ(v) = cv1−2/p with some c,C > 0 and V ∈C2(Rm) such
that

V (x) = |x|p, |x| ≥ 1,

where p > 2 is such that

2A−1 > sup
x

(
TraceB(x)+(p−2)‖B(x)‖

)
.

Proof. Because both a and B are locally bounded and V ∈C2(Rm), the function L (V ) is
locally bounded. Hence we only have to verify (1.59) outside a large ball in Rm.

Case 1) (κ ≥ 0). Let κ = 0 (the case κ > 0 is similar and simpler). Then for V (x) = eα|x|

we have, on the set {|x| ≥ 1},

∂xiV (x) = αeα|x| xi

|x|
,

∂
2
xix j

V (x) = α
2eα|x| xix j

|x|2
+αeα|x|

(
δi j

|x|
−

xix j

|x|3

)
, (1.61)
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where δi j = 1i= j is the Kroenecker symbol. Then

LV (x) = eα|x|
[

α

(
a(x),

x
|x|

)
+

α

2

d

∑
i, j=1

Bi j(x)
(

α
xix j

|x|2
+

δi j

|x|
−

xix j

|x|3

)]
≤ eα|x|

[
α

(
a(x),

x
|x|

)
+

α

2

(
α +

d
|x|

)
|||B|||

]
;

here we have used the bound ∣∣∣∣∣∑i, j Bi jCi j

∣∣∣∣∣≤ d‖B‖‖C‖,

valid for symmetric d × d, matrices, and the fact that the norms of the matrices
{(xix j/|x|2)},{δi j− (xix j/|x|2)} equal 1.

By the drift condition and assumption on α , we have then that

LV (x)≤−ceα|x| =−cV (x)

outside some large ball.

Case 2) (κ ∈ (−1,0)). The argument here is completely the same, so we just give the
short calculation. For V (x) = eα|x|1+κ

we have

∂xiV (x) = α(1+κ)|x|κV (x)
xi

|x|
,

∂
2
xix j

V (x) = α
2(1+κ)2|x|2κV (x)

xix j

|x|2
+α(1+κ)κ|x|κ−1V (x)

xix j

|x|2

+α(1+κ)|x|κV (x)
(

δi j

|x|
−

xix j

|x|3

)
= α

2(1+κ)2|x|2κV (x)
xix j

|x|2
+α(1+κ)|x|κ−1V (x)

(
δi j +(−1+κ)

xix j

|x|2

)
.

Then

LV (x)≤V (x)
[

α(1+κ)|x|2κ

(
a(x),

x
|x|κ+1

)
+

α(1+κ)

2
|x|2κ

(
α(1+κ)+

d
|x|1+κ

)
|||B|||

]
,
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and therefore
LV (x)≤−c̃V (x)|x|2κ

outside some large ball with some c̃ > 0. Because

|x|=
(

1
α

logV (x)
)1/(1+κ)

,

this gives
LV (x)≤−cV (x) log−σ V (x)

outside some large ball.

Case 3) (κ =−1). Again, we only give the short calculation. For V (x) = |x|p we have

∂xiV (x) = p|x|p−1 xi

|x|
,

∂
2
xix j

V (x) = p(p−1)|x|p−2 xix j

|x|2
+ p|x|p−1

(
δi j

|x|
−

xix j

|x|3

)
= p|x|p−2

(
δi j +(p−2)

xix j

|x|2

)
.

Then

LV (x) = p|x|p−2
[
(a(x),x)+

1
2

(
TraceB(x)+(p−2)

(
B(x)

x
|x|

,
x
|x|

))]
≤ p|x|p−2

[
(a(x),x)

(
TraceB(x)+(p−2)‖B(x)‖

)]
,

and hence
LV (x)≤−c|x|p−2 =−cV (x)1−2/p

outside some large ball.

Observe that in all the cases 1)–3) of Proposition 1.28 above, the assertion would
still hold true if we changed V to V 1+ε with a properly chosen small ε > 0. Hence by
Proposition 1.27 we deduce that in each of these cases the Lyapunov-type condition (1.47)
(in terms of the extended generator) holds true for corresponding V and φ . Then by
Theorem 1.23, in each of cases 1)–3) of Proposition 1.28, the Lyapunov-type condition
for a skeleton chain Xh holds true with the pair V h, φ h which may only differ from the
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above V , φ by some constants; see Exercise 1.24. This completes the verification of the
recurrence properties required in Theorem 1.13.

Remark 1.29 The careful reader should notice that we have not yet verified an auxiliary
uniform integrability assumption from Theorem 1.23. One easy way to justify this as-
sumption is to apply Proposition 1.27 to V 2+ε with a properly chosen small ε > 0. This
however would lead to unnecessary extra limitations on α in cases 1) and 2) or on p in
case 3). A more precise way, which we have actually already mentioned in the discus-
sion after Theorem 1.23, is to use the Itô’s formula directly to verify the super-martingale
property of the process H

(
t,V (Xt)

)
, which would not bring unnecessary extra conditions

on α and p. We do not expose the proof here, leaving these details for an interested
reader.

The irreducibility properties are now easily understandable, e.g. by means of the an-
alytical approach which dates back to Kolmogorov, and treats the transition probability
density pt(x,y) of a diffusion process as the fundamental solution to the parabolic second
order PDE

∂t −L = 0.

Assume, for instance, that a and B are Hölder continuous and B is uniformly elliptic, i.e.

inf
x∈Rm, l∈Rm\{0}

|l|−2∣∣(B(x)l, l)∣∣> 0.

Then it follows from classical PDE results, e.g. [17], that pt(x,y) is a continuous function
on (0,∞)×Rm×Rm. The Stroock-Varadhan support theorem (e.g. [26, Chapter VI.8])
combined with the Markov property of X then implies that for a fixed h > 0, the function
ph( · , ·) is separated from zero on every compact set in Rm×Rm. This immediately yields
the minorization condition for the skeleton chain with the measure λ equal to the uniform
distribution on a fixed ball.

Summarizing all the above and applying Theorems 1.18–1.20 in various cases of
Proposition 1.28, we get the following.

Theorem 1.30 Let X be a diffusion process with Hölder continuous coefficients a and
b. The drift coefficient a is assumed to verify the drift condition (1.60) and the diffusion
matrix B = bb∗ is assumed to be bounded and uniformly elliptic.
Then the following assertions hold true, depending on the value of the index κ involved
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in the drift condition.

Case 1. (κ ≥ 0) For any positive α < 2A0/|||B||| (α > 0 is arbitrary in the case κ > 0),
there exist c1,c2 > 0 such that, for any x1,x2 ∈ Rm,

∥∥Pt(x1, ·)−Pt(x2, ·)
∥∥

TV ≤ c1e−c2t
(

eα|x1|+ eα|x2|
)
, t ≥ 0. (1.62)

In addition, there exists a unique IPM π for X which satisfies∫
Rm

eα|y|
π(dy)< ∞,

and, for every x ∈ Rm,

∥∥Pt(x, ·)−π
∥∥

TV ≤ c1e−c2t
(

eα|x1|+
∫
Rm

eα|y|
π(dy)

)
, t ≥ 0. (1.63)

Case 2. (κ ∈ (−1,0)) For any positive α < 2Aκ/(1+κ)|||B|||, there exist c1, c2 > 0 such
that, for any x1, x2 ∈ Rm,

∥∥Pt(x1, ·)−Pt(x2, ·)‖TV ≤ c1e−c2t(1+κ)/(1−κ)
(

eα|x1|1+κ

+ eα|x2|1+κ
)
, t ≥ 0.

(1.64)
In addition, there exists a unique IPM π for X which satisfies∫

Rm
eα|y|1+κ

π(dy)< ∞,

and, for every x ∈ Rm,

∥∥Pt(x, ·)−π
∥∥

TV ≤ c1e−c2t(1+κ)/(1−κ)
(

eα|x|1+κ

+
∫
Rm

eα|y|1+κ

π(dy)
)
, t ≥ 0.

(1.65)

Case 3. (κ =−1) Under the additional assumption

2A−1 > sup
x

(
TraceB(x)

)
,

for any

η ∈
(

1,
1

2|||B|||

(
2A−1− sup

x

(
TraceB(x)

)))
,
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there exist c1, c2 > 0 such that, for any x1, x2 ∈ Rm,

∥∥Pt(x1, ·)−Pt(x2, ·)
∥∥

TV ≤ c1(1+c2t)−η
(
1+ |x1|2η + |x2|2η

)
, t ≥ 0. (1.66)

In addition, there exists a unique IPM π for X which satisfies∫
Rm
|y|2η

π(dy)< ∞,

and, for every x ∈ Rm,

∥∥Pt(x, ·)−π
∥∥

TV ≤ c1(1+ c2t)−η

(
1+ |x|2η +

∫
Rm
|y|2η

π(dy)
)
, t ≥ 0.

(1.67)

Exponential, sub-exponential and polynomial ergodic rates for a diffusion process in
terms of the drift condition were established by A. Veretennikov in the series of pa-
pers [56, 29, 57]. In our framework, the same set of results is deduced in a unified way
from the Theorem 1.13, Theorem 1.15 and Theorem 1.23 where the particular form of
the function φ in the Lyapunov-type condition is not specified.

We remark that in the design of Theorem 1.15 and Theorem 1.23 we have been strongly
motivated by the paper [13], devoted to sub-exponential ergodic rates corresponding to
the general Lyapunov-type condition, although both our main assumptions and the strat-
egy of proofs have some substantial differences from [13]. One of the important points is
that we avoid using the minorization condition, e.g. in the “small set” or “petite set” forms
and use the Dobrushin condition instead. The second example we consider in this section
contains the family of Markov models, in which the difference between the Dobrushin
condition and the minorization condition becomes really substantial.

2. A Lévy driven SDE. Consider the following analogue of the SDE (1.57) in Rm:

dXt = a(Xt) dt +b(Xt−) dZt (1.68)

where Z is now a Lévy process in Rm which has the Itô-Lévy decomposition

Zt =
∫ t

0

∫
|u|≤1

u ν̃(ds,du)+
∫ t

0

∫
|u|>1

uν(ds,du).
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This is a particular case of a Lévy driven SDE where, in general, instead of the term
b(Xt−) dZt , an expression of the form

σ(Xt−) dWt +
∫
|u|≤1

c(Xt−,u) ν̃(dt,du)+
∫
|u|>1

c(Xt−,u)ν(dt,du)

should appear. In order to make comparison with the diffusive case more transparent,
we restrict our consideration. We assume that Z does not contain a diffusive term and
the jump coefficient c(x,u) is linear w.r.t. the variable u, which corresponds to a jump
amplitude; that is, c(x,u) = b(x)u. The coefficients a and b are assumed to be locally
Lipschitz and to satisfy the linear growth condition, hence (1.68) has a unique (strong)
solution X , which defines a Markov process in Rm with càdlàg trajectories.

To verify the recurrence condition for the solution to (1.68), one can essentially fol-
low the same line developed above in the diffusive case, although some technical issues
deserve separate attention and discussion. Now the role of the second order differential
operator (1.58) is played by the integro-differential operator

L Levy f (x) =
d

∑
i=1

ai(x)∂xi f (x)

+
∫
Rm

[
f
(
x+b(x)u

)
− f (x)−1|u|≤1

d

∑
i=1

bi(x)∂xi f (x)

]
µ(du), (1.69)

where µ is the Lévy measure of the process; note that the choice of the operators L

and L Levy is motivated by the particular form of the Itô formula for respective processes
(e.g. [26, Chapter II.5]).

Let us explain in detail the calculations which would lead to an analogue of assertion
1) in Proposition 1.28. Just as we did in Proposition 1.28, we assume that the coefficient
b is bounded and the coefficient a is locally bounded.

Observe that the operator L Levy is not local; that is, the value of L Levy f at some
point x involves the values of f in all other points. Thus, we need to choose carefully the
candidate for the Lyapunov function V ; see the more detailed discussion below, where
the term L Levy

3 V is considered. In what follows, we deal with V ∈ C2(Rm) such that
V (x) = eα|x| for |x| ≥ 1 and V (x) ≤ eα|x| for |x| ≤ 1; the latter assertion is motivated by
the non-locality of L Levy.
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We write

L LevyV (x) =
d

∑
i=1

ai(x)∂xiV (x)+
∫
|u|≤1

[
V
(
x+b(x)u

)
−V (x)−

d

∑
i=1

bi(x)∂xiV (x)

]
µ(du)

+
∫
Rm

[
V
(
x+b(x)u

)
−V (x)

]
µ(du)

= L Levy
1 V (x)+L Levy

2 V (x)+L Levy
3 V (x)

and analyse these three terms separately. Just as in Proposition 1.28, we have

L Levy
1 V (x) = αeα|x|

(
a(x),

x
|x|

)
, |x| ≥ 1.

Under the drift condition (1.60) with κ = 0, for every A < A0 there exists a large enough
R such that

L Levy
1 V (x)≤−αAV (x), |x| ≥ R.

Next, we write

V
(
x+b(x)u

)
−V (x)−

d

∑
i=1

bi(x)∂xiV (x) =
∫ 1

0
(1− s)

(
V ′′
(
x+ sb(x)u

)
b(x)u,b(x)u

)
ds.

The matrix V ′′ outside the unit ball is given by (1.61), and a straightforward calculation
shows that its matrix norm possesses the bound

‖V ′′(x)‖ ≤ αeα|x|
(

α +
1
|x|

)
, |x| ≥ 1.

For any u with |u| ≤ 1, we have

|x|− s|||b||| ≤ |x+ sb(x)u| ≤ |x|+ s|||b|||, s ∈ [0,1],

where
|||b|||= sup

x
‖b(x)‖.

Then for |x| ≥ |||b|||+1, any point x+ sb(x)u with s ∈ [0,1], |u| ≤ 1, is located outside the
unit ball. Then, for any ε > 0, there exists an R1 large enough such that for |x| ≥ R1 and
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|u| ≤ 1∣∣∣∣∣V(x+b(x)u
)
−V (x)−

d

∑
i=1

bi(x)∂xiV (x)

∣∣∣∣∣≤ |||b|||2|u|2
(∫ 1

0
α

2eα|x|+sα|||b||| ds+ ε

)
.

Consequently,

L Levy
2 V (x)≤ αV (x)

(
|||b|||

(
eα|||b|||−1

)∫
|u|≤1
|u|2 µ(du)+

ε|||b|||
α

)
, |x| ≥ R1.

When |u| > 1, we can not specify the location of x+ b(x)u in general in terms of the
position of x: this is exactly the point where the non-locality of L Levy is most evident. In
any case, we have by convention that

V
(
x+b(x)u

)
≤ eα|x+b(x)u| ≤ eα|x|eα|||b||||u|.

Hence for any point x with |x| ≥ 1, where V (x) = eα|x| by convention, one has

L Levy
3 V (x)≤V (x)

∫
|u|≥1

(
eα|||b||||u|−1

)
µ(du).

Summarizing the above calculations we get the following: if α > 0 is such that

−A0 + |||b|||
(

eα|||b|||−1
)∫
|u|≤1
|u|2 µ(du)+

∫
|u|≥1

(
eα|||b||||u|−1

α

)
µ(du)< 0, (1.70)

then, outside some large ball, the inequality

L LevyV ≤−cV

holds true with some positive constant c.

Clearly, for (1.70) to hold true for some α > 0, it is necessary that the “tails” of µ are
exponentially integrable; that is,

∃β > 0 :
∫
|u|>1

eβ |u|
µ(du)< ∞. (1.71)

On the other hand, for (1.70) to hold true for some α > 0, it is sufficient that µ satis-
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fies (1.71) and
A0 > |||b|||

∫
|u|>1
|u|µ(du). (1.72)

Exercise 1.31 Please prove this.

Finally, if µ satisfies (1.71) and α ∈ (0,β ), then it is straightforward to verify that, for
the function V chosen above, the function L LevyV is locally bounded. This completes
the proof of the following analogue of assertion 1) from Proposition 1.28.

Proposition 1.32 Let the drift condition (1.60) with κ ≥ 0 hold true, coefficient a be
locally bounded and coefficient b be bounded. Also assume measure µ to satisfy (1.71)
and inequality (1.72) to hold true. Then there exists a positive α such that (1.70) holds,
and for which (1.59) holds true for φ(v) = cv with some c,C > 0 where V ∈C2(Rm) such
that

V (x)

= eα|x|, |x| ≥ 1,

≤ eα|x|, |x|< 1.

In the current setting, a straightforward analogue of Proposition 1.27 is available as
well, with the natural change that L therein should be replaced by L Levy: this is caused
by the particular form of the Itô formula for Lévy driven semimartingales. Thus, in fact,
we have proved the Lyapunov-type condition (1.47) with linear φ(v) = cv and henceforth
the required recurrence properties for X are established.

As seen previously in the diffusive case, irreducibility properties of X are closely re-
lated to local properties of the transition probabilities, i.e. existence and regularity of the
transition probability density pt(x,y). For a solution to a Lévy driven SDE, these prop-
erties are in general more delicate than in the diffusive case; below we briefly outline
several methods applicable in that concern.

Following an analytical approach, similar to the one we used for a diffusion before, one
should consider pt(x,y) as the fundamental solution to the pseudo-differential operator

∂t −L Levy.

Within this approach, one requires an analogue of the classical parametrix method [17]
to be developed in a Lévy noise setting. Such an analogue typically requires non-trivial
“structural” assumptions on the noise; a commonly studied model here concerns the case
of a Lévy process being a mixture of α-stable processes. For an overview of the topic,
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details and further bibliography, we refer a reader to the monograph [19].

As an alternative to the analytical approach, a variety of “stochastic calculus of vari-
ations” methods are available, cf. [3, 49] or, for a more recent exposition [1, 27]; these
are just a few references from an extensively developing field, which we can not discuss
in detail here. These methods are based either on the integration by parts formula (in
the Malliavin calculus case) or the duality formula (in the Picard approach) and typically
provide existence and continuity (or, moreover, smoothness) of the transition probability
density pt(x,y). The cost is that relatively strong assumptions on the Lévy measure of
the noise should be required; a typical requirement here is that for some α ∈ (0,2) and
c1,c2 > 0,

c1ε
2−α |l|2 ≤

∫
|u|≤ε

(u, l)2
µ(du)≤ c2ε

2−α |l|2, l ∈ Rm. (1.73)

Condition (1.73) is a kind of a frequency regularity assumption on the Lévy measure
and heuristically means that the intensity of small jumps is comparable with that for an
α-stable noise. When this assumption fails, genuinely new effects may appear, which
is illustrated by the following simple example, cf. [5, Example 2]. Consider an equa-
tion (1.68) with d = m = 1, a(x) = cx with c 6= 0, b(x)≡ 1 and the process Z of the form
Zt = ∑

∞
k=1 1/k!Nk

t , where {Nk} are independent copies of a Poisson process. Then the so-
lution to (1.68) possesses the transition probability density pt(x,y), but for every t and x

the function pt(x, ·)∈ L1(R) does not belong to any Lp,loc(R) and therefore is not contin-
uous. Hence, when the intensity of small jumps is low, it may happen that the transition
probability density pt(x,y) exists, but is highly irregular. In this framework another kind
of stochastic calculus of variations is highly appropriate, based on the Davydov’s strati-
fication method, cf. [36] for a version of this method specially designed for Lévy driven
SDEs with minimal requirements for the Lévy measure of the noise. The crucial point
is that this method is well designed to give continuity of the function x 7→ pt(x, ·) in the
integral form; that is, as a mapping Rm→ L1(Rm). But this continuity is exactly the key
ingredient for the proof of the local Dobrushin condition for the process X . Following
this general line, it is possible to obtain the following sufficient condition (we necessarily
omit the numerous technical details, referring the reader to [34], Theorem 1.3 and Section
4).

Proposition 1.33 Let coefficients a and b in (1.68) belong to C1(Rm) and C1(Rd×d)
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respectively, the Lévy measure µ satisfy
∫
|u|≤1 |u|µ(du) < ∞, and at some point x∗ the

matrix
∇a(x∗)b(x∗)−∇b(x∗)a(x∗)

is non-degenerate. Assume also that for the measure µ the following cone condition
holds: for every l ∈ Rm \{0} and ε > 0, there exists a cone

Vl,ρ = {u : (u, l)≥ ρ|u||l|}, ρ ∈ (0,1),

such that
µ
(
Vl,ρ ∩{|u| ≤ ε}

)
> 0.

Then the Markov process solution to (1.68) X satisfies the local Dobrushin condition on
every compact set in Rm.

Observe that if one intends to verify the irreducibility in the form of the minoriza-
tion condition, this would require assumptions on the Lévy measure of the noise similar
to (1.73), which is much more restrictive than the cone condition used in Proposition 1.33.
This well-illustrates the above-mentioned point that in Markov models with compara-
tively complicated local structure, the Dobrushin condition is more practical than the
minorization one.

Let us summarize what has been obtained so far.

Theorem 1.34 Let the assumptions of Proposition 1.33 hold true. Assume also that the
drift condition (1.60) with κ ≥ 0 holds true, coefficient b is bounded, the measure µ

satisfies (1.71) and inequality (1.72) holds true.
Then there exists a positive α such that (1.70) holds true, and for this α , there exist

c1,c2 > 0 such that, for any x1,x2 ∈ Rm,

∥∥Pt(x1, ·)−Pt(x2, ·)
∥∥

TV ≤ c1e−c2t
(

eα|x1|+ eα|x2|
)
, t ≥ 0. (1.74)

In addition, there exists a unique IPM π for X which satisfies∫
Rm

eα|y|
π(dy)< ∞,

and, for every x ∈ Rm,

∥∥Pt(x, ·)−π
∥∥

TV ≤ c1e−c2t
(

eα|x1|+
∫
Rm

eα|y|
π(dy)

)
, t ≥ 0. (1.75)



Chapter 2

Weak Ergodic Rates

In many cases of interest, the theory developed in the previous chapter is not applica-
ble because of a lack of the irreducibility property of the process. However, it may be
that the process is still ergodic, i.e. it possesses a unique IPM, and in addition its tran-
sition probabilities converge as t → ∞ to this IPM, but in a sense, weaker than w.r.t. the
total variation distance. This chapter is devoted to the study of such a “weak ergodicity”
property. In Section 2.1, we start with motivating examples; in Section 2.2 we briefly re-
call the construction and basic properties of coupling (or minimal) probability distances,
which will be our main tool for measuring the rates of weak convergence. In Section 2.3
exponential weak ergodic rates are established for dissipative Markov chains; in Section
2.4 a Harris-type theorem for weakly ergodic Markov chains is developed.

• • • • • • • • • • • • • • • • • • • • • • • •

2.1 Markov models with intrinsic memory

Example 2.1 Let X =
(
X1,X2

)
be a process in R2 which is the solution to the system of

SDEs {
dX1

t =−aX1
t dt +dWt

dX2
t =−aX2

t dt +dWt

51
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where a > 0, the components X1, X2 have different initial values x1, x2 and the Wiener
process W is the same for both components. The process X can be given explicitly:(

X1
t

X2
t

)
= e−at

(
x1

x2

)
+

(∫ t

0
e−at+as dWs

)(
1
1

)
.

From this formula, one can easily derive two principal properties of the system. First, if
we take two initial points x = (x1,x2), y = (y1,y2) with

x1− x2 6= y1− y2,

then, for every t > 0, the respective transition probabilities Pt(x, ·), Pt(y, ·) are supported
by the following disjoint sets of R2

{
z =

(
z1,z2) : z1− z2 = e−at(x1− x2)}, {

z =
(
z1,z2) : z1− z2 = e−at(y1− y2)},

respectively. Hence, the total variation distance between them remains equal to 2. Next,
because e−at → 0, t→ ∞, for any x = (x1,x2) we have(

X1
t

X2
t

)
⇒
(∫

∞

0
e−as dWs

)(
1
1

)
.

This means that for every x ∈ R2, transition probabilities Pt(x, ·) converge weakly as
t→ ∞ to the (unique) IPM, which is concentrated on the diagonal in R2.

Exercise 2.2 Specify the IPM, verify its uniqueness and prove the above convergence.

Note that if x1 6= x2, the above argument shows that Pt(x, ·) and the IPM are mutually
singular; hence, the convergence does not hold true in the sense of the total variation
norm.

One can consider the SDE for X =
(
X1,X2

)
as a particular case of the SDE (1.57).

Then

a(x) =−a

(
1
1

)
, b(x) =

(
1
1

)
,

and the “technical” explanation of the lack of ergodicity in the total variation norm is now
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that the system is not irreducible because of the degeneracy of the diffusion matrix

B(x) =

(
1 1
1 1

)
.

Heuristically, because of this degeneracy the system contains some partial “intrinsic
memory”: no matter how much time has passed in period t, the value Xt keeps the par-
tial information about the initial point x; namely, the difference x1− x2 can be recovered
completely given the value Xt :

x1− x2 = eat(X1
t −X2

t
)
.

The above simple example gives a natural insight to understand ergodic properties
in more general and sophisticated Markov models. The process X , in fact, represents
the 2-point motion for the stochastic flow which naturally corresponds to the Ornstein-
Uhlenbeck process

dUt =−aUt dt +dWt ;

e.g. [39]. Hence one can naturally expect that the ergodic properties observed in the above
example should also be present for stochastic flows generated by SDEs; in particular, be-
cause of the degeneracy of SDEs for N-point motions, the whole system typically would
contain some partial intrinsic memory.

Example 2.3 This beautiful example comes from [52], see also the introduction to [23].
Consider the following real-valued stochastic differential delay equation (SDDE):

dXt =−aXt dt +b(Xt−r) dWt (2.1)

with a fixed r > 0. We will not go into the basics of the theory of SDDEs, referring
the reader to [44]. We just mention that, in order to determine the values Xt , t ≥ 0, one
should initially specify the values Xs, s ∈ [−h,0], since otherwise the term b(Xt−r) is
not well-defined for small positive t. Assuming b to be e.g. Lipschitz continuous, one
has that for every function h ∈ C(−r,0), there exists a unique (strong) solution to (2.1)
with Xs = hs, s ∈ [−r,0], which has continuous trajectories. In general, the process Xt ,
t ≥ 0, unlike the diffusion process solution to (1.57), is not Markov; instead, the segment
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process X = {X(t), t ≥ 0}

X(t) =
{

Xt+s,s ∈ [−r,0]
}
∈C(−r,0), t ≥ 0

possesses the Markov property.

Denote by F=t the completion of σ
(
X(t)

)
. Any random variable measurable w.r.t.

F=t a.s. equals a Borel measurable functional on C(−r,0) applied to X(t). We fix t > 0
and apply to the segment Xt+s, s ∈ [−r,0] the well known statistical procedure, which
makes it possible to consistently derive the variance part from the observation of an Itô
type process. Namely, we put

Vt,n(s) =
[2n(−s/r)]

∑
k=1

(
Xt−k2−nr−Xt−(k−1)2−nr

)2
, s ∈ [−r,0],

and obtain that, with probability 1,

Vt,n(s)→Vt(s) =
∫ t

t+s
b2(Xv−r) dv, s ∈ [−r,0].

Exercise 2.4 Prove this convergence.

Consequently, for every s ∈ [−r,0],

b2(Xt+s−r) = lim
ε→0

Vt,n(s+ ε)−Vt,n(s)
ε

belongs to F=t . If we assume that b is positive and strictly monotone, then the above
argument shows that every value Xt+s−r, s ∈ [−r,0], of the segment X(t − r) is F=t -
measurable. This means that X(t − r) can be recovered uniquely given the value X(t).
Repeating this argument, we obtain that the initial value X(0) of the segment process can
be recovered uniquely given the value X(t); hence, any two transition probabilities for
the segment process X with different initial values are mutually singular. This means that
the Markov system described by X contains the full “intrinsic memory,” which clearly
prohibits this system from converging to an invariant distribution in the total variation
norm.

An ergodicity for X in a weaker sense is still possible; we discuss some methods of
proving such a weak ergodicity in the subsequent sections. Here we just mention that the
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presence of an “intrinsic memory” is a typical feature for Markov systems with “com-
plicated” state spaces, like X = C(−r,0) in the above example. The same effect can be
observed for stochastic partial differential equations (SPDEs), SDEs driven by fractional
noises, etc. Example 2.1 above indicates one possible heuristic reason for such an effect:
for systems with “complicated” state spaces, there are many possibilities for the noise to
degenerate, in a sense, and therefore for the whole system to not be irreducible.

• • • • • • • • • • • • • • • • • • • • • • • • • • •

2.2 Coupling distances for probability measures

Our main aim in this chapter is to develop tools both for proving that a given Markov
process is weakly ergodic and to control the rate of such an ergodicity. The first natural
step for this aim would be to quantify the weak convergence, i.e. to specify a distance
on the set P(X) of probability measures on X adjusted with the weak convergence in
P(X). Respective theory of probability metrics is well-developed, and we do not pre-
tend to expose its constructions and ideas here, referring a reader to [14, Chapter 11],
or [59, Chapter 1]. However, the part of this theory related to coupling (or minimal) prob-
ability metrics would be crucial for our subsequent constructions; hence, in this section
we outline this topic.

We call a distance-like function any measurable function d : X×X→ [0,∞), which is
symmetric and satisfies

d(x,y) = 0 ⇐⇒ x = y.

Denote by the same letter d the respective coupling distance on the class P(X), defined
by

d(µ,ν) = inf
(ξ ,η)∈C (µ,ν)

Ed(ξ ,η), µ,ν ∈P(X). (2.2)

We use the term “coupling distance” instead of “coupling metric” because, in general,
d : P(X)×P(X) → [0,∞] may fail to satisfy the triangle inequality. However, the
following statement shows that the coupling distance may inherit the triangle inequality
property from the initial distance-like function.

Proposition 2.5 Assume that the distance-like function d possesses the following exten-
sion of the triangle inequality: there exists a c≥ 1 such that

d(x,z)≤ c
(
d(x,y)+d(y,z)

)
, x, y, z ∈ X.
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Then the same property holds true for the respective coupling distance d:

d(µ,λ )≤ c
(
d(µ,ν)+d(ν ,λ )

)
, µ, ν , λ ∈P(X).

Proof. Fix ε > 0 and choose (ξε ,ηε) ∈ C (µ,ν), (ξ ′ε ,η
′
ε) ∈ C (ν ,λ ) such that

Ed(ξε ,ηε)≤ d(µ,ν)+ ε, Ed(ξ ′ε ,η
′
ε)≤ d(ν ,λ )+ ε.

The following useful fact is well known (e.g. [14, Problem 11.8.8]); for the reader’s
convenience, we sketch its proof after completing the proof of the proposition.

Lemma 2.6 Let (ξ ,η) and (ξ ′,η ′) be two pairs of random elements valued in a Borel
measurable space (X,X ) such that η and ξ ′ have the same distribution. Then on a
proper probability space, there exist three random elements ζ1, ζ2, ζ3 such that the law
of (ζ1,ζ2) in (X×X,X ⊗X ) coincides with the law of (ξ ,η) and the law of (ζ2,ζ3)

coincides with the law of (ξ ′,η ′).

Applying this fact, we get a triple ζ1, ζ2, ζ3, defined on the same probability space,
such that

Ed(ζ1,ζ2)≤ d(µ,ν)+ ε, Ed(ζ2,ζ3)≤ d(ν ,λ )+ ε.

In addition, the laws of ζ1, ζ3 are equal to µ , λ , respectively. Hence

d(µ,λ ) = inf
(ξ ,η)∈C (µ,λ )

Ed(ξ ,η)≤ Ed(ζ1,ζ3)≤ c
(

d(µ,ν)+d(ν ,λ )+2ε

)
.

Because ε > 0 is arbitrary, this gives the required inequality.

Proof of Lemma 2.6. We construct the joint law of the triple (ζ1,ζ2,ζ3) using the repre-
sentation of the laws of the pairs based on the disintegration formula. Since X is assumed
to have a measurable bijection to [0,1] with a measurable inverse, we can consider the
case X = R, only. For any pair of random variables ξ ,η there exists a regular version

of the conditional probability Pη |ξ (x,dy) (e.g. [14, Chapter 10.2]), which is measurable
w.r.t. x, is a probability measure w.r.t. dy, and satisfies

P(ξ ∈ A,η ∈ B) =
∫

A
Pη |ξ (x,B)µ(dx), A,B ∈X ,

where µ denotes the law of ξ . Now, let us define the joint law κ for the triple (ζ1,ζ2,ζ3)
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by

κ(A1×A2×A3) =
∫

A2

Pξ |η(x,A1)Pη ′|ξ ′(x,A3)µ(dx), A1, A2, A3 ∈X ,

where µ now denotes the same distribution for η and ξ ′. This corresponds to the choice
of the conditional probability P(ζ1,ζ3)|ζ2

equal to the product measure

Pξ |η ⊗Pη ′|ξ ′ .

It is straightforward to verify that such a triple (ζ1,ζ2,ζ3) satisfies the required properties.

The definition of the coupling distance is strongly related to the classical Monge-
Kantorovich mass transportation problem (e.g. [50]). Namely, given two mass distri-
butions µ , ν and the transportation cost d : X×X :→ R+, the coupling distance d(µ,ν)

introduced above represents exactly the minimal cost to transport µ to ν . An important
fact is that the “optimal transportation plan” in this problem exists under some natural
topological assumptions on the model. In terms of couplings (which is just another name
for transportation plans) and coupling distances, this fact can be formulated as follows.

Proposition 2.7 Let X be a Polish space and the distance-like function d be lower semi-
continuous w.r.t. this metric; that is, for any sequences xn→ x, yn→ y

d(x,y)≤ liminf
n

d(xn,yn).

Then for any µ,ν ∈P(X), there exists a coupling (ξ∗,η∗) ∈ C (µ,ν) such that

d(µ,ν) = Ed(ξ∗,η∗). (2.3)

In other words, “inf” in (2.2) in fact can be replaced by “min.” We call any pair
(ξ∗,η∗) ∈ C (µ,ν) which satisfies (2.3) an optimal coupling and denote the class of opti-
mal couplings Cd,opt(µ,ν). The same terminology and notation is also used when we deal
with laws on X×X instead of pairs of random elements. By C (µ,ν), we will denote the
class of measures on X×X such that their projections on the first and second coordinates
equal µ and ν respectively and by Cd,opt(µ,ν) the subclass of measures κ ∈C (µ,ν) such
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that
d(µ,ν) =

∫
X×X

d(x,y)κ(dx,dy).

Proof of Proposition 2.7. Observe that the family of measures C (µ,ν) is tight (e.g. [4]):
to construct a compact set K ⊂ X×X such that, for a given ε ,

κ(K)≥ 1− ε,

one can simply choose two compact sets K1, K2 ⊂ X such that

µ(K1)≥ 1− ε

2
, ν(K2)≥ 1− ε

2

and then set K = K1×K2.

Consider a sequence of pairs {(ξn,ηn)} ⊂ C (µ,ν) such that

Ed(ξn,ηn)≤ d(µ,ν)+
1
n
.

Then by the Prokhorov theorem, there exists a subsequence {(ξnk ,ηnk)} which converges
in law to some pair (ξ∗,η∗). Then both sequences of components {ξnk}, {ηnk} also con-
verge in law to ξ∗,η∗ respectively, and hence (ξ∗,η∗) ∈ C (µ,ν). Next, by Skorokhod’s
“common probability space” principle (e.g. [14, Theorem 11.7.2]), there exists a sequence
{(ξ̃k, η̃k)} and a pair (ξ̃∗, η̃∗), defined on the same probability space, such that the laws
of respective pairs (ξnk ,ηnk) and (ξ̃k, η̃k) coincide and

(
ξ̃k, η̃k

)
→
(
ξ̃∗, η̃∗

)
with probability 1. Then by the lower semi-continuity of d, one has

d
(
ξ̃∗, η̃∗

)
≤ liminf

k
d
(
ξ̃k, η̃k

)
,

and hence the Fatou lemma gives

Ed
(
ξ̃∗, η̃∗

)
≤ liminf

k
Ed
(
ξ̃k, η̃k

)
= liminf

k
Ed(ξnk ,ηnk) = d(µ,ν).

Because
(
ξ̃∗, η̃∗

)
has the same law as (ξ∗,η∗) ∈ C (µ,ν), this completes the proof.
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Let us give several typical examples. In what follows, X is a Polish space with the
metric ρ .

Example 2.8 Let d(x,y) = ρ(x,y); we denote the respective coupling distance with Wρ,1

and discuss its properties. First, since ρ satisfies the triangle inequality, so does Wρ,1.
Next, Wρ,1 is symmetric and non-negative. Finally, it possesses the identification prop-
erty:

Wρ,1(µ,ν) = 0 ⇐⇒ µ = ν .

The part “⇐” of this statement is trivial; to prove the “⇒” part we just notice that there
exists an optimal coupling (ξ∗,η∗) for µ,ν : because d is continuous, we can apply Propo-
sition 2.7. For this coupling, we have

Ed(ξ∗,η∗) =Wρ,1(µ,ν) = 0,

and because d has the identification property this means that in fact, ξ∗ = η∗ a.s. Hence
their laws coincide.

We have just seen that for the coupling distance Wρ,1 all the axioms of a metric hold
true; the one detail which may indeed cause Wρ,1 to not be a metric is that Wρ,1, in general,
may take value ∞. If ρ is bounded, this does not happen, and Wρ,1 is a metric on P(X).

Example 2.9 Let p > 1 and d(x,y) = ρ p(x,y); we denote the respective coupling dis-
tance W p

ρ,p (this notation and related terminology will be discussed at the end of this
section). Similarly to the case d = 1, this coupling distance is symmetric, non-negative
and possesses the identification property. In this case, the triangle inequality does not
hold in general. Instead, we have the following weaker version

W p
ρ,p(µ,λ )≤ 2p−1(W p

ρ,p(µ,ν)+W p
ρ,p(ν ,λ )

)
,

which by Proposition 2.5 is an easy consequence of the triangle inequality for ρ and the
elementary inequality (a+b)p ≤ 2p−1(ap +bp), a,b≥ 0.

Example 2.10 Let d(x,y) = 1x 6=y be the discrete metric on X. Then, by the Coupling
Lemma,

d(µ,ν) =
1
2
‖µ−ν‖TV.

Hence the total variation distance is a particular representative of the class of coupling
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distances. Note that the function d(x,y) = 1x 6=y is lower semi-continuous; thus, Proposi-
tion 2.7 gives an alternative way to obtain the statement of the Coupling Lemma.

The last example makes it easier to explain the origins of the “measurable optimal
selection” problem discussed below. In the “coupling” proofs of the ergodic rates given
in Sections 1.2 and 1.3, it was essential to have for a given transition probability P(x,dx′)

a probability kernel Q on X×X such that for any x1, x2 the measure Q
(
(x1,x2), ·

)
gives

a maximal coupling for the pair P(x1, ·), P(x2, ·). In the subsequent sections we will
extend this approach to a wider class of coupling distances, but in that concern we have
to return to the same question: given a transition probability P(x,dx′) and a distance-like
function, is it possible to choose a probability kernel Q on X×X in such a way that for
any x1, x2

Q
(
(x1,x2), ·

)
∈ Cd,opt

(
P(x1, ·),P(x2, ·)

)
?

Clearly, we will assume d to be lower semi-continuous in order for an optimal coupling
to exist for any pair µ,ν ∈P(X). However, the proof of such an existence in Propo-
sition 2.7 is more implicit than the proof of the Coupling Lemma in Section 1.1, and
therefore it is not easy to adapt it directly for measurability purposes, as done in Sec-
tion 1.1 (cf. Exercise 1.4). Hence we consider this problem separately.

Consider the spaces S= P(X)×P(X), S′ = P(X×X) and the set-valued mapping
ψ : S 3 s 7→ ψ(s)⊂ S′,

ψ
(
(µ,ν)

)
= Cd,opt(µ,ν). (2.4)

Our aim is to choose a selector φ for this mapping, i.e. a function φ : S→ S′ such that

φ(s) ∈ ψ(s), s ∈ S,

which is also measurable.

In general, the measurable selection problem just outlined is quite complicated, and
in some cases it may fail to have a solution. We refer to [16, Appendix 3] for a compact
but very informative exposition of the measurable selection topic and to §3 therein for
a counterexample where the measurable selection does not exist. We also refer a reader
deeply interested in the general measurable selection topic to an excellent survey paper
[58].

Fortunately, the particular spaces S, S′ and the set-valued mapping ψ we have in-
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troduced above possess fine topological properties, which make it possible to solve the
required measurable selection problem. In what follows we evaluate these properties; our
goal is to apply the following theorem.

Theorem 2.11 ([54, Theorem 12.1.10, Lemma 12.1.8]) Let S be a metric space, S′ be a
Polish space, and a set-valued mapping ψ have the following properties:

� for every s ∈ S the set ψ(s)⊂ S′ is compact;

� the mapping ψ is semi-continuous in the following sense: as soon as sn→ s in S
and s′n ∈ ψ(sn), n≥ 1, the sequence {s′n} has a limit point s′ ∈ ψ(s).

Then there exists a measurable map φ : S→ S′ such that φ(s) ∈ ψ(s),s ∈ S.

Remark 2.12 [54, Theorem 12.1.10] is a weaker version of the Kuratovskii and Ryll-
Nardzevski theorem, also called the Fundamental Measurable Selection Theorem; see
[58].

Evaluation of the required topological properties of the particular spaces S, S′ and the
set-valued mapping ψ is both rather simple and informative. Hence we propose them for
the reader in the following series of questions; for the first three of them, see also [14,
Chapter 11].

In what follows we assume that the metric ρ on X is bounded: if this fails, we replace
it by an equivalent metric ρ̃ = ρ∧1. We denote now by the same symbol ρ the respective
coupling distance Wρ,1 on P(X). By Example 2.8, ρ is a metric on P(X).

Exercise 2.13 Prove that convergence w.r.t. ρ is equivalent to weak convergence in
P(X).
Hint: If µn⇒ µ then the “common probability space” principle and the Lebesgue domi-
nated convergence theorem provide ρ(µn,µ)→ 0. If ρ(µn,µ)→ 0, then for any Lipschitz
continuous function f : X→ R∣∣∣∣∫ f dµn−

∫
f dµ

∣∣∣∣≤ ‖ f‖Lip ρ(µn,µ)→ 0, ‖ f‖Lip = sup
x 6=y

| f (x)− f (y)|
ρ(x,y)

(please prove the first inequality), and therefore µn⇒ µ; cf. [4, Theorem 2.1].

Exercise 2.14 Prove that the metric space (P(X),ρ) is separable.
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Hint: If {xi} is a separability set in X, then a countable set of all finite sums of the form

∑
k

ckδxik
, {ck} ⊂Q∩ [0,∞), ∑

k
ck = 1

is dense in
(
P(X),ρ

)
.

Exercise 2.15 Prove that the metric space
(
P(X),ρ

)
is complete.

Hint: Prove that, if a sequence {µn} is Cauchy w.r.t. ρ , it is tight. Then use the Prokhorov
theorem and Exercise 2.13 to show that this sequence has a limit point in

(
P(X),ρ

)
.

Hence
(
P(X),ρ

)
is a Polish space, and then both S = P(X)×P(X) and S′ =

P(X×X) are Polish spaces with respective metrics, as well.

Exercise 2.16 Prove that for any fixed µ , ν the set C (µ,ν) is a compact subset of P(X×
X).
Hint: Use the tightness argument from the proof of Proposition 2.7.

Exercise 2.17 Prove that for any fixed µ , ν the set Cd,opt(µ,ν) is a closed subset of
P(X×X); this together with the previous exercise shows that it is compact.
Hint: Apply the “common probability space” principle and use the lower semi-continuity
of d.

Exercise 2.18 Prove that if d is continuous, then the set-valued mapping ψ defined
by (2.4) is semi-continuous.
Hint: Combine the tightness argument similar to that from the proof of Proposition 2.7
with the “common probability space” principle, and use the lower semi-continuity of d.

Summarizing all the above we get the following.

Proposition 2.19 Let a distance-like function d be continuous. Then there exists a mea-
surable function

Φ : P(X)×P(X)→P(X×X)

such that for every µ,ν ∈P(X)

Φ
(
(µ,ν)

)
∈ Cd,opt(µ,ν).

Observe that any probability kernel P(x,dx′) can now be understood as the measurable
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mapping X→P(X). Hence we can construct the required kernel Q e.g. in the form

Q
(
(x1,x2), ·

)
= Φ

((
P(x1, ·),P(x2, ·)

))
.

Remark 2.20 Continuity requirement on d comes from our intent to restrict our consider-
ation to the case of a semi-continuous set-values mapping ψ . This excludes from consid-
eration the discrete metric d, for example, and respectively, the total variation distance.
It is simple and instructive to check that in this case the semi-continuity property for ψ

fails; we leave this as an example for the reader. A more elaborate analysis shows that
the measurability property of ψ , required in [54, Theorem 12.1.10], actually still holds
true when d is assumed to be only lower semi-continuous; in order to keep the exposition
reasonably transparent we do not address this question here.

At the end of this section we give a short discussion of some important and closely
related topics, which will not be used in the sequel. Our construction of a coupling (min-
imal) distance is in some aspects more restrictive than the one available in the literature.
Generally, such a distance is defined as

inf
(ξ ,η)∈C (µ,ν)

H(ξ ,η),

where H is an analogue of a distance-like function on a class of random variables,
defined on a common probability space. The particular choice H(ξ ,η) = Ed(ξ ,η)

leads to the definition used above. Another natural choice of H is the Lp-distance

H(ξ ,η) =
(
Edp(ξ ,η)

)1/p
, p > 1. Observe that such an H possesses the triangle inequal-

ity if d does as well, and hence, the respective coupling distance inherits this property;
the proof here in the same as in Proposition 2.5. The probability metric

Wρ,p(µ,ν) = inf
(ξ ,η)∈C (µ,ν)

(
Edp(ξ ,η)

)1/p

is called the Lp-Kantorovich(-Wasserstein) distance on P(X).

One good reason to use coupling distances is that they are very convenient for estima-
tion purposes. We have already seen this in the previous chapter: to bound the total vari-
ation distance between the laws of Xn with various starting points, we have constructed
the pair of processes with the prescribed law of the components, and thus transformed the
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initial problem to estimating the probability P
(
X1

n 6= X2
n
)
. A similar argument appears

to be practical in other frameworks and for other coupling distances. This is the reason
why it is very useful that some natural probability metrics possess a coupling representa-
tion. We have already seen one such example: the coupling representation given by the
Coupling Lemma for the total variation distance. Another example is the Lipschitz metric

dLip(µ,ν) = sup
f :‖ f‖Lip=1

∣∣∣∣∫ f dµ−
∫

f dν

∣∣∣∣ ;
the coupling representation here is given by the Kantorovich-Rubinshtein (duality) theo-

rem, which states that
dLip =Wρ,1.

Finally, for the classical Lévy-Prokhorov metric

dLP(µ,ν) = inf
{

ε > 0 : µ(A)≤ ν
(
{y : ρ(y,A)≤ ε}

)
+ ε, A ∈X

}
,

the Strassen theorem gives the coupling representation

dLP(µ,ν) = inf
(ξ ,η)∈C (µ,ν)

HKF(ξ ,η),

where HKF stands for the Ky Fan metric

HKF(ξ ,η) = inf
{

ε > 0 : P
(
ρ(ξ ,η)> ε

)
< ε

}
.

For a detailed exposition of this topic, we refer to [14, Chapter 11].

• • • • • • • • • • • • • • • • • • • •

2.3 Dissipative stochastic systems

Let us come back to examples we discussed in Section 2.1 and use them in order to
illustrate one simple and natural argument which, for some classes of Markov models,
both gives the ergodicity and controls respective weak ergodic rates in a very transparent
way. The linear SDE which describes the process X in Example 2.1 is “too simple” in
the sense that we can give the solution explicitly. To illustrate the main argument, it is
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convenient to consider an example of a slightly more general SDE in Rm of the form

dXt =−aXt dt +b(Xt) dWt . (2.5)

Here the Wiener process takes values in Rk, and we assume the coefficient b :Rm→Rm×k

to be Lipschitz continuous. Fix two initial values x,x′ ∈ Rm and consider two respective
solutions X , X ′ to (2.5) with the same Wiener process W . Then for ∆t = Xt −X ′t one has

d∆t =−a∆t dt +
(
b(Xt)−b(X ′t )

)
dWt ,

and, by the Itô formula applied to the function F(x) = |x|p, p≥ 2,

|∆t |p = |x− x′|p− pa
∫ t

0
|∆s|p ds

+
p
2

∫ t

0
|∆s|p−2

m

∑
i, j=1

k

∑
l=1

(
bil(Xs)−bil(X ′s)

)(
b jl(Xs)−b jl(X ′s)

)(
δi j +(p−2)

∆i
s∆

j
s

|∆s|2

)
ds

+Mt ,

where M is a local martingale. Denote

|||b|||Lip = sup
x 6=y

‖b(x)−b(y)‖
|x− y|

,

and observe that the expression under the second integral is dominated by

m(p−1)|||b|||2Lip|∆s|p.

To see that, note that the norm of the matrix(
δi j +(p−2)

∆i
s∆

j
s

|∆s|2

)m

i, j=1

does not exceed p−1, and that for any two m× k-matrices B,C,∣∣∣∣∣ m

∑
i=1

k

∑
l=1

Bi jCil

∣∣∣∣∣≤ m‖B‖‖C‖.
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Now the same argument as we have used in the proof of Proposition 1.27 shows that for
every p≥ 2, the respective process M is a (usual) martingale, and

E|∆t2 |
p−E|∆t1 |

p ≤
∫ t2

t1

[
−ap+

mp(p−1)
2

|||b|||2Lip

]
E|∆s|p ds.

Therefore the comparison principle for ODEs gives the bound

E|∆t |p ≤ |x− x′|pe−θpt , θp = ap− mp(p−1)
2

|||b|||2Lip.

We can summarize these calculations as follows. If in (2.5) the coefficient b is constant
(which is the case considered in Example 2.1), then ∆t follows a linear ODE and can
be given explicitly: ∆t = (x− x′)e−at . When a > 0, this means that the whole system
is contractive in the following sense: if two points perform the motion according to the
same SDE, the distance between these points decreases at exponential rate. This feature
appears to be quite non-sensitive w.r.t. complications in the structure of the model. What
we have shown above is that, if the Lipschitz norm of the diffusion coefficient b is small
when compared with the contraction index a, the system still performs a contraction,
with the change that now instead of the norm of the difference |∆t | itself its moment of
the order p should be considered. The linearity of the drift term is also not required;
without any essential changes, the above argument provides the following statement.

Proposition 2.21 For two solutions X , X ′ of the SDE (1.57) with X0 = x, X ′ = x′ and for
any p≥ 2,

E|Xt −X ′t |p ≤ |x− x′|pe−θpt ,

where

θp =−psup
x 6=y

1
|x− y|2

[(
a(x)−a(y),x− y

)
+

m(p−1)
2

∥∥b(x)−b(y)
∥∥].

If θp > 0 for some p, it is usually said that the model based on the SDE (1.57) is dis-

sipative in the Lp sense. We remark that the statement of Proposition 2.21 still holds true
for p ∈ [1,2): although in this case the function F(x) = |x|p does not belong to C2(Rm),
its only “irregular” point is 0. Once ∆t hits 0, the solutions Xt and X ′t coincide, and there-
fore they coincide afterwards because of the strong Markov property and uniqueness of
the solution to (1.57). This allows one to apply the Itô formula “locally”, i.e. up to the
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first time for ∆ to hit 0; we omit further details here.

Therefore, we can summarize that for the model (1.57) to be dissipative in the Lp sense
for some p≥ 1, it is sufficient to assume that the coefficient b is Lipschitz continuous and
the coefficient a satisfies the following “drift dissipativity condition”:

sup
x 6=y

(a(x)−a(y),x− y)
|x− y|2

< 0. (2.6)

As a straightforward corollary of Proposition 2.21, for the transition probabilities of
the solution to (1.57), one gets the following bound in terms of the coupling distance,
which corresponds to the distance-like function dp(x,y) = |x− y|p:

dp
(
Pt(x, ·),Pt(x′, ·)

)
≤ e−θptdp(x,x′).

To verify this bound, one should just note that the pair (Xt ,X ′t ) above is a representative
of the class of couplings C

(
Pt(x, ·),Pt(x′, ·)

)
.

Motivated by this example, we call a Markov chain d-dissipative for a given distance-
like function d if there exists θ > 0 such that, for every x, x′ ∈ X

d
(
P(x, ·),P(x′, ·)

)
≤ e−θ d(x,x′). (2.7)

If a Markov chain is d-dissipative, the distance-like function d is called contractive for
this chain.

For a dissipative chain, a natural analogue of the first part of Theorem 1.3 holds true,
with the total variation distance replaced by the coupling distance d.

Proposition 2.22 Let a continuous distance-like function d be contracting for a given
Markov chain X . Then for every x, x′ ∈ X,

d
(
Pn(x, ·),Pn(x′, ·)

)
≤ e−θnd(x,x′), (2.8)

where θ is the same as in (2.7).

Proof. Consider a kernel Q on X × X such that for every x, x′ ∈ X the measure
Q
(
(x,x′), ·

)
belongs to the set of d-optimal couplings of P(x, ·) and P(x′, ·). Due

to Proposition 2.19, we know that such a kernel exists; note that this is exactly the
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point where the continuity assumption for d is required. Consider a Markov process
Z =

(
Z1,Z2

)
in X×X with the transition probability Q. We have

E
(

d
(
Z1

n ,Z
2
n
)∣∣∣F Z

n−1

)
=
∫
X×X

d(y,y′)Q
(
(x,x′),dydy′

)∣∣∣∣
x=Z1

n−1,x
′=Z2

n−1

=d
(
P(x, ·),P(x′, ·)

)∣∣∣∣
x=Z1

n−1,x
′=Z2

n−1

≤ e−θ d
(
Z1

n−1,Z
2
n−1
)
.

Iterating this inequality, we get the bound

EZ
(x,x′)d

(
Z1

n ,Z
2
n
)
≤ e−θnd(x,x′), n≥ 1.

This proves the required statement, because the laws of Z1
n , Z2

n w.r.t. PZ
(x,x′) equal P(x, ·)

and P(x′, ·), respectively.

The coupling construction used in the above proof also yields that the chain X has
at most one IPM. Indeed, consider two IPMs π , π ′, and let the chain Z have the initial
distribution π⊗π ′. Fix ε > 0, δ > 0 and choose C and n large enough such that

P
(

d
(
Z1

0 ,Z
2
0
)
>C

)
< ε, Ce−θn < εδ .

Then

P
(

d
(
Z1

n ,Z
2
n
)
> δ

)
≤ P

(
d
(
Z1

0 ,Z
2
0
)
>C

)
+P
(

d
(
Z1

n ,Z
2
n
)
> δ , d

(
Z1

0 ,Z
2
0
)
≤C

)
≤ ε +

e−θn

δ
Ed
(
Z1

0 ,Z
2
0
)
1I

d
(

Z1
0 ,Z

2
0

)
≤C

< 2ε.

Because Z1
n , Z2

n have the laws π , π ′ respectively and ε and δ are arbitrary, this means that
d(π,π ′) = 0 and therefore π = π ′.

In many cases of interest, the same construction also leads to the existence of an IPM
and gives a convergence rate of transition probabilities to the IPM; that is, the full ana-
logue of Theorem 1.3 holds true.

Proposition 2.23 Let a continuous distance-like function d be contracting for a given
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Markov chain X . Assume also that for some x∗ ∈ X

C∗ ..= sup
n

∫
X

d(x∗,y)Pn(x∗,dy)< ∞, (2.9)

and there exists p≥ 1 such that d1/p dominates the initial metric ρ on X. Then there exists
a unique IPM π for X, and, for every x ∈ X,

d
(
Pn(x, ·),π

)
≤ e−θn

∫
X

d(x,y)π(dy), n≥ 1. (2.10)

Proof. Consider a sequence Pn(x∗, ·), n ≥ 1. Take a pair m, n with, say, m < n, and
consider the chain Z with Z1

0 = x∗ and Z2
0 having the law Pn−m(x∗, ·). Then

d
(
Pm(x∗, ·),Pn(x∗, ·)

)
≤ e−θmEd

(
Z1

0 ,Z
2
0
)
= e−θm

∫
X

d(x∗,y)Pn−m(x∗,dy).

By Jensen’s inequality, this yields the bound

ρ
(
Pm(x, ·),Pn(x, ·)

)
≤C∗e−

θm/p, m < n;

at this point, we use the fact that d1/p dominates ρ . Hence the sequence Pn(x∗, ·), n≥ 1, is
Cauchy w.r.t. the coupling distance ρ and therefore weakly converges to some π ∈P(X).
It is easy to verify that π is an IPM and (2.10) holds; we leave this as an exercise for the
reader.

In the continuous time setting, we call a Markov process d-dissipative if there exist
θ > 0 and T > 0 such that, for every x, x′ ∈ X,

d
(
PT (x, ·),PT (x′, ·)

)
≤ e−θT d(x,x′)

and, in addition, if there exists C > 0 such that

d
(
Pt(x, ·),Pt(x′, ·)

)
≤C d(x,x′), t ≤ T.

For such a process, straightforward analogues of Proposition 2.22 and Proposition 2.23
are available, with obvious changes: the time variable n should be changed to t and
the additional multiplier CeθT should appear at the right hand sides of the bounds (2.8)
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and (2.10); we leave the details for the reader.

Coming back to Markov processes defined by SDEs, we note that the dissipativity
feature appears also to be rather insensitive w.r.t. to the structure of the noise term. One
can see this already in Proposition 2.21, where any non-degeneracy assumption on the
diffusion matrix is not involved. A similar argument is applicable in a wide variety of
models, e.g., infinite-dimensional SDEs including Lévy driven SDEs ([7, Chapter 11.5];
[48, Chapter 16.2]), SDDEs ([23]), etc. Below we outline a version of this argument for
SDDEs, which in particular proves the weak ergodicity we have claimed in Example 2.3.

Consider an SDDE in Rm of the form

dXt = a(Xt) dt +b(Xt−r) dWt , (2.11)

where the delay constant r > 0 is fixed and functions a : Rm→ Rm, b : Rm→ Rm×k are
Lipschitz continuous. Take two initial values h, h′ ∈C([−r,0],Rm) and consider respec-
tive processes X , X ′ and ∆ = X−X ′. Denote

α = sup
x 6=y

(
a(x)−a(y),x− y

)
|x− y|2

,

and assume that α < 0; that is, the drift dissipativity condition (2.6) holds true. Assume
also that, for some p≥ 2,

mp(p−1)‖b‖2
Lip

2
<−α.

Denote

θ =−α p−
mp(p−1)‖b‖2

Lip

2
> 0

and apply the Itô formula to the process ∆t , t ≥ 0, with the function F(t,x) = eθ t |x|p:

eθ t |∆t |p = |∆0|p +
∫ t

0
eθs
(

θ |∆s|p + p|∆s|p−2(a(Xs)−a(X ′s),∆s
))

ds

+
p
2

∫ t

0
eθs|∆s|p−2

m

∑
i, j=1

k

∑
l=1

(
bil(Xs−r)−bil(X ′s−r)

)
×
(
b jl(Xs−r)−b jl(X ′s−r)

)(
δi j +(p−2)

∆i
s∆

j
s

|∆s|2

)
ds
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+ p
∫ t

0
eθs|∆s|p−2(

∆s,b(Xs−r)−b(X ′s−r)
)

dWs.

The same argument from the beginning of this section leads to the following inequality:

Eeθ t |∆t |p ≤ |∆0|p +E
∫ t

0
eθs
(

θ |∆s|p + p|∆s|p−2(a(Xs)−a(X ′s),∆s
))

ds

+
mp(p−1)

2
E
∫ t

0
eθs|∆s|p−2‖b(Xs−r)−b(X ′s−r)‖2 ds.

By the Young inequality, the term under the second integral does not exceed

‖b‖2
Lip

(
(p−2)|∆s|p

p
+

2|∆s−r|p

p

)
.

Denote

α = sup
x 6=y

(
a(x)−a(y),x− y

)
|x− y|2

,

and observe that∫ t

0
|∆s−r|p ds =

∫ t−r

−r
|∆s|p ds≤

∫ t

0
|∆s|p ds+

∫ 0

−r
|hs−h′s|p ds.

Then we can continue the above estimate and write

Eeθ t |∆t |p ≤ |∆0|p +m(p−1)‖b‖2
Lip

∫ 0

−r
|hs−h′s|p ds

+

(
α +θ +

mp(p−1)‖b‖2
Lip

2

)
E
∫ t

0
eθs|∆s|p ds.

Recall that ∆0 = h0−h′0; hence, from our choice of θ , we finally get

E|∆t |p ≤C1e−θ t‖h‖p
C(−r,0), t ≥ 0, (2.12)

where
‖h‖C(−r,0) = sup

s∈[−r,0]
|h(s)|, C1 = 1+ rm(p−1)‖b‖2

Lip.

Now we are ready to give the final bound for the ‖ · ‖C(−r,0)-norm for the values of the
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segment process {∆(t)}; that is,

‖∆(t)‖C(−r,0) = sup
s∈[t−r,t]

|∆s|.

Write

|∆t2 −∆t1 |
2 =

∫ t2

t1

(
2
(
a(Xs)−a(X ′s),∆s

)
+

m

∑
i=1

k

∑
l=1

(
bil(Xs−r)−bil(X ′s−r)

)2

)
ds

+2
∫ t2

t1

(
∆s,b(Xs−r)−b(X ′s−r)

)
dWs = (It2 − It1)+(Mt2 −Mt1).

Since
|It2 − It1 | ≤C2

∫ t2

t1
|∆s|2 ds,

it follows from the Hölder inequality that, for any p≥ 2 such that (2.12) holds,

E sup
s∈[t−r,t]

|Is− It−r|p/2 ≤C3e−θ t .

On the other hand, the quadratic characteristic of the martingale Mt has the form d〈M〉t =
ft dt with

ft ≤C4|∆t ||∆t−r|.

Then by the Burkholder-Davis-Gundy inequality, for any p > 2 such that (2.12) holds,

E sup
s∈[t−r,t]

|Ms−Mt−r|p/2 ≤C5e−θ t .

Summarizing all the above, we get the following sufficient condition for the segment
process X(t), t ≥ 0, to be dissipative.

Proposition 2.24 Assume

m(p−1)‖b‖2
Lip

2
<−α = sup

x 6=y

(
a(x)−a(y),x− y

)
|x− y|2

. (2.13)

Then, for every

p ∈

(
2,1+

2α

m‖b‖2
Lip

)
,
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there exists a positive C such that, for every two initial values h, h′ ∈C(−r,0), respective
solutions X , X ′ to (2.11) satisfy

E
∥∥X(t)−X ′(t)

∥∥p
C(−r,0) ≤Ce−θpt‖h−h′‖p

C(−r,0), t ≥ 0,

where

θp =−α p−
mp(p−1)‖b‖2

Lip

2
> 0.

Repeating the argument from the proof of Proposition 2.23, one can now easily deduce
the following.

Theorem 2.25 Let coefficients of the equation (2.11) satisfy (2.13). Assume in addition
that, for some h ∈C(−r,0), the respective solution to (2.11) satisfies

sup
t≥0

E‖X(t)‖p
C(−r,0) < ∞ (2.14)

for some

p ∈

(
2,1+

2α

m‖b‖2
Lip

)
.

Then the segment process X(t), t ≥ 1, has a unique IPM π , and the following rate of
convergence holds true in terms of the coupling distance corresponding to the distance-
like function dr(h,h′) = ‖h−h′‖p:

dp
(
Pt(h, ·),π

)
≤Ce−θpt

∫
C(−r,0)

‖h−h′‖p
π(dh′), t ≥ 0.

Note that it is easy to give sufficient conditions for (2.14), formulated in terms of the
coefficients. Calculations here are similar to those used in Section 1.6, with the modi-
fications similar to those used in the proof of Proposition 2.24; we leave details for the
reader.

• • • • • • • • • • • • • • • • • • •

2.4 General Harris-type theorem

The condition for the Markov chain to be dissipative w.r.t. d is, in a sense, a condition
for the chain to be “uniformly ergodic” w.r.t. the distance-like function d: this analogy
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corresponds well with the analogy between Proposition 2.22 and Proposition 2.23 on
one hand, and Theorem 1.3 on the other hand. In this section we extend this analogy;
it appears that the global condition for the chain to be dissipative w.r.t. d (i.e., on the
distance-like function d to be contracting) can be localized in a way very similar to that
explained in Section 1.3.

We say that a distance-like function d is contracting for a Markov chain X on a set K

if there exists θ > 0 such that

d
(
P(x1, ·),P(x2, ·)

)
≤ e−θ d(x1,x2), x1, x2 ∈ K.

We also say that a distance-like function d is non-expanding for a Markov chain X if

d
(
P(x1, ·),P(x2, ·)

)
≤ d(x1,x2), x1, x2 ∈ X.

Theorem 2.26 Let a continuous distance-like function d be non-expanding for a given
Markov chain X and be contracting for this chain on some set K. Assume that, for the
chain X and set K, the conditions of Theorem 1.15 hold true. Then for every p > 1, σ > 1
there exist δ > 0, C > 0 such that

dp
(
Pn(x1, ·),Pn(x2, ·)

)
≤
(
Φ
−1(

δ t
))−1/qσ (

V (x1)+V (x2)
)1/qσ

×dp(x1,x2), n≥ 0, (2.15)

where 1/p+ 1/q = 1, function Φ−1 is an inverse of (1.25), and by the symbol dp we denote
both the distance-like function d1/p and the corresponding minimal probability distance.

In addition, there exists a unique IPM π for X which satisfies∫
X

V dπ < ∞, (2.16)

and

dp
(
Pn(x, ·),π)

)
≤
(
Φ
−1(

δ t
))1/qσ

(
V (x)+

∫
X

V dπ

)1/qσ

×
(∫

X
d(x,y)π(dy)

)1/p

, n≥ 0.
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Before proceeding with the proof, let us engage the above in discussion. In the case
of total variation distance (that is, the coupling distance corresponding to d(x,y) = 1Ix 6=y),
the condition on d to be contracting holds true for any Markov chain. Hence the assump-
tions imposed on d should be understood as a one-to-one analogue of the local Dobrushin
condition from Theorem 1.13. Therefore Theorem 2.26, in the framework of weak con-
vergence, exhibits the same effect as discussed in Section 1.3. Namely, the weak local
irreducibility combined with the recurrence assumption provide weak ergodicity with ex-
plicit bounds for the rate of weak convergence to an IPM. This type of theorem was
first developed in [23], where it was called a general Harris type theorem. In [23], a
linear Lyapunov-type condition and corresponding exponential ergodic bounds are con-
sidered. More general Lyapunov-type conditions and respective ergodic bounds were
treated in [6].

Proof. The strategy of the proof is very similar to that of Theorem 1.13. Consider a
Markov chain Z =

(
Z1,Z2

)
with the transition probability Q such that for every x, x′ ∈X

the measure Q
(
(x,x′), ·

)
belongs to the set of d-optimal couplings of P(x, ·) and P(x′, ·);

such a kernel exists due to Proposition 2.19. For a given x1, x2 ∈ X consider the law
PZ
(x1,x2)

of this process with Z0 = (x1,x2). Then for every n ≥ 1, the pair Z1
n , Z2

n gives a
coupling for Pn(x1, ·), Pn(x2, ·), and therefore

dp
(
Pn(x1, ·),Pn(x2, ·)

)
≤ EZ

(x1,x2)
d1/p
(
Z1

n ,Z
2
n
)
.

Denote by Sk, k ≥ 1, the time moments of consecutive visits of Z to K×K. Then we can
continue the previous bound:

dp
(
Pn(x1, ·),Pn(x2, ·)

)
≤ EZ

(x1,x2)
d1/p
(
Z1

n ,Z
2
n
)
1IS1≥n

+
∞

∑
k=1

EZ
(x1,x2)

d1/p
(
Z1

n ,Z
2
n
)
1In∈(Sk,Sk+1]. (2.17)

Let us separately analyse the terms in the right hand side of the previous inequality. By
Theorem 1.15, conditions R.1 and R.2 of Theorem 1.13 are satisfied with

λ (t) = Φ
−1(αt), α = 1− 2C

φ
(
1+ infx 6∈K V (x)

)
for any Markov coupling Z and therefore for the process Z under consideration. Then the
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first term in (2.17) can be estimated simply as

EZ
(x1,x2)

d1/p
(
Z1

n ,Z
2
n
)
1IS1≥n ≤

(
EZ
(x1,x2)

d
(
Z1

n ,Z
2
n
))1/p(

P(S1 ≥ n)
)1/q

≤
(
EZ
(x1,x2)

d
(
Z1

n ,Z
2
n
))1/p(

EZ
(x1,x2)

λ
σ (S1)

)1/qσ(
λ (n)

)−1/qσ

≤
(
EZ
(x1,x2)

d
(
Z1

n ,Z
2
n
))1/p(

V (x1)+V (x2)
)1/qσ

(
λ (n)

)−1/qσ

.

Because the kernel Q is optimal w.r.t. d and d is non-expanding, we have

EZ
(x1,x2)

(
d
(
Z1

n ,Z
2
n
)∣∣∣F Z

n−1

)
=
∫
X×X

d(y,y′)Q
(
(x,x′),dydy′

)∣∣∣
(x,x′)=Zn−1

≤ d
(
Z1

n−1,Z
2
n−1
)
,

and consequently

EZ
(x1,x2)

d
(
Z1

n ,Z
2
n
)
≤ EZ

(x1,x2)
d
(
Z1

n−1,Z
2
n−1
)
≤ . . .≤ d(x1,x2).

This finally gives the bound for the first term in the right hand side of (2.17):

EZ
(x1,x2)

d1/p
(
Z1

n ,Z
2
n
)
1IS1≥n ≤

(
d(x1,x2)

)1/p(V (x1)+V (x2)
)1/qσ

(
λ (n)

)−1/qσ

.

The idea of how to get a bound for subsequent terms is mainly the same but some new
technicalities arise. Observe that, by its construction, the chain Z has the property that
once its coordinates coincide, they stay equal afterwards. Because d(x,x) = 0, this means
that

EZ
(x1,x2)

d1/p
(
Z1

n ,Z
2
n
)
1In∈(Sk,Sk+1] = EZ

(x1,x2)
d1/p
(
Z1

n ,Z
2
n
)
1In∈(Sk,Sk+1]1IL>Rk ,

where
L = inf

{
n : Z1

n = Z2
n
}

is the coupling time for Z and Rk = Sk +1. This gives

EZ
(x1,x2)

d1/p
(
Z1

n ,Z
2
n
)
1In∈(Sk,Sk+1] ≤

(
EZ
(x1,x2)

d
(
Z1

n ,Z
2
n
)
1ISk<n

)1/p

×
(
PZ
(x1,x2)

(
L > Rk, Sk+1 ≥ n

))1/q
.
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We have

PZ
(x1,x2)

(
L > Rk, Sk+1 ≥ n

)
≤ λ

−1/σ(γn)EZ
(x1,x2)

1IL>Rk λ
1/σ(γRk+1).

because Rk+1 = Sk+1 +1 and λ is monotone. Using (1.21) and (1.22) with p replaced by
σ , we get

E1IL>Rk λ
1/σ(γRk+1)≤ ϑ(γ)

(
V (x1)+V (x2)

)1/σ

,

where ϑ(γ) is some function which can be given explicitly and is such that ϑ(γ)→ 1,
γ → 0.

On the other hand, on the set {Sk < n} the chain Z visits the set K×K, where d is
contracting, at least k times. Therefore

EZ
(x1,x2)

d
(
Z1

n ,Z
2
n
)
1ISk<n ≤ e−θkd(x1,x2),

where θ > 0 is the constant from the condition on d to be contracting for X on the set K.
This inequality can be obtained using induction in k; we leave the details for the reader.

Exercise 2.27 Give a rigorous proof of the above inequality.

Hence, we can finally write, for any γ ∈ (0,1),

dp
(
Pn(x1, ·),Pn(x2, ·)

)
≤
(
d(x1,x2)

)1/p(V (x1)+V (x2)
)1/qσ

×
(
λ (γn)

)−1/qσ

[
1+

∞

∑
k=1

e−θk
ϑ

k(γ)

]
.

Taking γ small enough, we can make e−θ ϑ(γ)< 1, which completes the proof of (2.15);
now

δ = αγ and C = 1+
∞

∑
k=1

e−θk
ϑ

k(γ).

The rest of the proof is similar to the corresponding part of the proof of Theorem 1.13
and is omitted.





Chapter 3

Limit Theorems

In this chapter we study limit theorems for functionals of a Markov chain, with the
main assumptions formulated in the terms of the ergodic rates of the chain. This field of
applications of ergodic rates is both, very natural and very common, and actually dates
back to the seminal A.A. Markov’s papers [40], [41]. Section 3.1 is an introductory one,
where we start with an outline of basic notions and tools, which apply very naturally
when ergodic rates in the total variation distance are available. The main part of the
chapter (Sections 3.2–3.4) is devoted to the less studied case of weakly ergodic Markov
chains. To treat this case, we develop an extension of the “martingale approach” which
dates back to [46]. This extension is insensitive w.r.t. the structure of the Markov process
and is well applicable to Markov models with intrinsic memory.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3.1 Preliminaries: Covariance and Mixing Coefficient

Throughout this chapter, we assume an ergodic Markov chain Xn, n ≥ 0 be fixed, and
denote by P(x,dy) its one-step transition probability and by π its unique IPM.

Let X possess uniform ergodic rate in the total variation distance. In Section 1.5 we
observed that such a rate then should be exponential; that is, there exist C > 0, ρ ∈ (0,1)
such that

‖Pn(x,dy)−π(dy)‖TV ≤Cρ
n, n≥ 1, x ∈ X. (3.1)

79
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Choose a bounded function f : X→ R, and consider a sequence

1
n

n

∑
k=1

f (Xk), n≥ 1.

Because
E f (Xk) = E

∫
X

f (y)Pk(X0,dy), k ≥ 1,

and
E[ f (Xk)|X0, . . . ,X j] =

∫
X

f (y)Pk− j(X j,dy), k > j,

it is easy to deduce from (3.1) that

E f (Xk)→
∫
X

f dπ, k→ ∞, (3.2)

E f (X j) f (Xk)→
(∫

X
f dπ

)2

, j→ ∞, k− j→ ∞. (3.3)

Hence
Cov

(
f (X j), f (Xk)

)
→ 0, j→ ∞, k− j→ ∞, (3.4)

which one can use to derive easily the following version of the Law of Large Numbers
(LLN),

1
n

n

∑
k=1

f (Xk)→
∫
X

f dπ, n→ ∞, (3.5)

where the convergence holds in the mean square sense.

Exercise 3.1 Please, prove (3.2), (3.3), and (3.5).

The above argument can be summarized as follows: if the chain X satisfies (3.1), which
should be understood as a kind of a stabilization property for the transition probabilities
of the chain, then the covariances for distant values of the sequence f (Xn), n≥ 0 vanish,
which yields the LLN for this sequence. We will see below that this simple argument
is quite flexible, and remains useful in various settings where the stabilization property
holds true in a weaker sense than (3.1). For instance, if instead of (3.1) we assume a
non-uniform bound

‖Pn(x,dy)−π(dy)‖TV ≤V (x)rn, n≥ 1, (3.6)
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with rn→ 0, then the relation (3.4) and therefore the LLN (3.5) would hold true under an
auxiliary assumption

sup
n≥0

EV (Xn)< ∞.

Exercise 3.2 Please, prove this.

If the function f is centered in the sense that∫
X

f dπ = 0,

it is natural to expect the sequence

1√
n

n

∑
k=1

f (Xk), n≥ 1,

to converge weakly to a normal distribution; that is, the Central Limit Theorem (CLT) to
hold true. One possible way to prove such an assertion under the assumption (3.1) is to
establish analogues of (3.2), (3.3) for higher order mixed moments of the sequence f (Xn),
n≥ 0, and to use then the classical method of moments. Such an argument was used e.g.
in [41]; note that the CLT proved by A.A. Markov in this paper for dependent random
variables was conceptually new, because at that time a common point of view was that
the CLT is essentially an effect which appears only for independent sequences.

Method of moments is historically the first method for proving the CLT, it is but rather
cumbersome. A modification of the other classical method based on the characteristic
functions for the case of dependent random variables was developed by S.N. Bernstein;
cf. [2]. For an excellent and classical exposition of the CLT with the proof based on
Bernstein’s block method we refer to [25], Chapter 18. Below we briefly outline the main
results available within this approach.

Let ξn, n ∈ Z, be a strictly stationary sequence of random variables such that Eξ0 = 0.
Denote F≤n = σ(ξk,k ≤ n), F≥n = σ(ξk,k ≥ n), and define the uniform mixing (or
Ibragimov’s) coefficient for the sequence {ξn} by

φ(n) = sup
A∈F≥n,B∈F≤0,P(B)>0

∣∣P(A)−P(A|B)
∣∣, n≥ 0,

where P(A|B) = P(A∩B)/P(B) is the conditional probability.
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Theorem 3.3 ([25], Theorem 18.5.2) Let the strictly stationary sequence satisfy Eξ0 = 0,
Eξ 2

0 < ∞, and

∑
n

(
φ(n)

)1/2
< ∞. (3.7)

Then the sum
σ

2 = Eξ
2
0 +2

∞

∑
k=1

Eξkξ0 (3.8)

converges and
1√
n

n

∑
k=1

ξk⇒N (0,σ2), n→ ∞.

The heuristics of this statement is clear and simple. The coefficients φ(n), in a sense,
measure the rate of dependence between F≥k+n and F≤k for any k. Condition (3.7)
means that such a dependence vanishes as n→ ∞ sufficiently fast; and this is a principal
assumption in the above version of the CLT.

We will see below that the uniform mixing coefficient, in some cases, is too strong
and hardly can be used as a sufficient condition. Define the strong mixing (or complete

regularity, or Rosenblatt’s) coefficient by

α(n) = sup
A∈F≥n,B∈F≤0

∣∣P(A∩B)−P(A)P(B)
∣∣, n≥ 0.

The following theorem is of the same virtue as Theorem 3.3, but the rate of dependence
therein is bounded by means of the strong mixing coefficient instead of the uniform one;
this leads to stronger integrability assumptions on the sequence {ξn}.

Theorem 3.4 ([25], Theorem 18.5.3) Let for some δ > 0 the strictly stationary sequence
satisfy Eξ0 = 0, E|ξ0|2+δ < ∞, and

∑
n

(
α(n)

)δ/(2+δ )
< ∞. (3.9)

Then the sum (3.8) converges and

1√
n

n

∑
k=1

ξk⇒N (0,σ2), n→ ∞.

Let us return to our Markov setting. Consider a strictly stationary version of the chain
X ; that is, a Markov chain X defined on Z with the one-step transition probability P(x,dy)
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and all one-dimensional distributions equal to the IPM π .

Exercise 3.5 Use the Kolmogorov consistency theorem to prove that, given a Markov
chain with an IPM π , one can construct on a proper probability space its strictly stationary
version Xn, n ∈ Z.

For every f :X→R the real-valued sequence ξn = f (Xn), n∈Z, is strictly stationary as
well. To apply the above general sufficient conditions for the CLT, one should verify the
principal assumptions (3.7) or (3.9). Below we denote by the same symbols α(n), φ(n)

the mixing coefficients for the sequence {Xn} itself; clearly, they dominate respective
mixing coefficients for the sequence {ξn}.

Recall that the Markov property of X is equivalent to the following: for every n and
every A ∈F≥n, B ∈F≤n,

P(A∩B|Xn) = P(A|Xn)P(B|Xn).

Then for any n≥ 0 and any A ∈F≥n, B ∈F≤0 we have

P(A|F≤n) = ψ≤n,A(Xn), P(B|F≥0) = ψ≥0,B(X0)

with some measurable ψ≤n,A, ψ≥0,B which take their values in [0,1].

Exercise 3.6 Please, prove the above identities.

Then

P(A∩B) = E
[
1IBP(A|F≤n)

]
= E

[
1IBψ≤n,A(Xn)

]
= E

[
ψ≤n,A(Xn)P(B|F≥0)

]
= E

[
ψ≤n,A(Xn)ψ≥0,B(X0)

]
=
∫
X

∫
X

ψ≤n,A(y)Pn(x,dy)ψ≥0,B(x)π(dx).

On the other hand,

P(A) =
∫
X

ψ≤n,A(y)π(dy), P(B) =
∫
X

ψ≥0,B(x)π(dx),

hence

∣∣P(A∩B)−P(A)P(B)
∣∣≤ ∫

X

∣∣∣∣∫X ψ≤n,A(y)
(
Pn(x,dy)−π(dy)

)∣∣∣∣ψ≥0,B(x)π(dx)
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≤ 1
2

∫
X
‖Pn(x,dy)−π(dy)‖TVψ≥0,B(x)π(dx). (3.10)

This, on one hand, yields the bound

∣∣P(A)−P(A|B)
∣∣= ∣∣P(A∩B)−P(A)P(B)

∣∣
P(B)

≤ 1
2

sup
x∈X
‖Pn(x,dy)−π(dy)‖TV,

and therefore
φ(n)≤ 1

2
essup

x∈X
‖Pn(x,dy)−π(dy)‖TV,

where the essential supremum is taken w.r.t. π . On the other hand, (3.10) simply yields

α(n)≤ 1
2

∫
X
‖Pn(x,dy)−π(dy)‖TV π(dx).

We can summarize the above argument as follows.

� If X is uniformly ergodic in the total variation distance, then it is uniformly mixing
at exponential rate, i.e.

φ(n)≤Cρ
n

with some C ≥ 0, ρ ∈ (0,1), and then (3.7) holds true.

� If X possesses a non-uniform ergodic rate in the total variation distance (3.6) and
in addition it is assumed that the function V involved therein is integrable,∫

X
V dπ < ∞,

then X satisfies
α(n)≤Crn

with some C > 0. Consequently, if

∞

∑
n=1

r
δ/(2+δ )
n < ∞,

assertion (3.9) holds true.

Observe that the above bound for φ(n), in fact, is an optimal one: if A = {Xn ∈ C},
B = {X0 ∈ D}, then ψ≤n,A = 1C, ψ≥0,B = 1D, and taking the supremum over all the pairs
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C, D yields the same lower bound for φ(n); we leave the details of this calculation as
an exercise to the reader. Typically, there is no actual difference between taking the
supremum over x and essential supremum over x w.r.t. π , hence one can conclude that the
uniform mixing coefficient applies well, only in the case of X being uniformly ergodic in
the total variation distance. Otherwise the assumptions of Theorem 3.3 typically would
fail, and one should use Theorem 3.4 instead, where the main assumption (3.9) follows
from a non-uniform ergodic rate (3.6), if V is integrable and rn→ 0 sufficiently fast.

For Markov chains with intrinsic memory (see Section 2.1),

α(n)≥ α > 0, n≥ 1,

is usually satisfied.

Exercise 3.7 For stationary versions of the processes in Example 2.1 and Example 2.3
consider their time discretizations Xn, n≥ 0 and construct α > 0, and C,D∈X such that

∣∣P(Xn ∈C, X0 ∈ D)−P(Xn ∈C)P(Xn ∈ D)
∣∣≥ α, n≥ 1.

Hence one can not apply directly the above classical results in order to prove the CLT
for functionals of Markov chains which are only weakly ergodic. Below we show that this
difficulty is of a technical nature, rather than of a conceptual one, and explain a practical
way to prove limit theorems for functionals of weakly ergodic Markov chains.

• • • • • • • • • • • • • • • • • • • • • •

3.2 Covariances and the LLN, revisited

In this section we explain a natural way to deduce the relation (3.4), and consequently
to prove the LLN (3.5), for a chain X which is ergodic only in a weak sense. In what
follows, we assume that the chain X satisfies

d
(
Pn(x,dy),π(dy)

)
≤V (x)rn, n≥ 0, (3.11)

where V : X → [1,∞), rn → 0, and d denotes the coupling distance on P(X) which
corresponds to some distance-like function d on X. In addition, to make the exposition
most transparent, we restrict the consideration to the case of stationary X ; that is, we
assume X0 ∼ π . We outline the (general) non-stationary case at the end of this section.
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Consider a function W : X→ R+, and define for γ ∈ (0,1] the weighted Hölder class

Hγ,W (X,d) w.r.t. d with the index γ and the weight W as the set of functions f : X→ R
such that

‖ f‖d,γ,W = sup
x1 6=x2

| f (x1)− f (x2)|
dγ(x1,x2)

(
W (x1)+W (x2)

)1−γ
< ∞.

Here and below we use the convention a0 = 1, a ∈ R+; hence for γ = 1 the weight W is
inessential, and H1,W (X,d) = H1(X,d) is just the Lipschitz class w.r.t. d.

The following statement is very simple, but it plays a key role in the sequel.

Proposition 3.8 Let a function f belong to Hγ,W (X,d) for some γ ∈ (0,1]. Then for any
µ,ν ∈P(X),∣∣∣∣∫X f dµ−

∫
X

f dν

∣∣∣∣≤ ‖ f‖d,γ,W
(
d(µ,ν)

)γ

(∫
X

W dµ +
∫
X

W dν

)1−γ

. (3.12)

Proof. For any coupling (ξ ,η) ∈ C (µ,ν) we have∣∣∣∣∫X f dµ−
∫
X

f dν

∣∣∣∣= ∣∣E f (ξ )−E f (η)
∣∣≤ E

∣∣ f (ξ )− f (η)
∣∣

≤ ‖ f‖d,γ,W E
[
dγ(ξ ,η)

(
W (ξ )+W (η)

)1−γ
]
.

If γ < 1, we apply the Hölder inequality with p = 1/γ:∣∣∣∣∫X f dµ−
∫
X

f dν

∣∣∣∣≤ ‖ f‖d,γ,W
(
Ed(ξ ,η)

)γ(
EW (ξ )+EW (η)

)1−γ

= ‖ f‖d,γ,W
(
Ed(ξ ,η)

)γ

(∫
X

W dµ +
∫
X

W dν

)1−γ

.

For γ = 1 the same bound holds true directly. Taking the infimum in this bound w.r.t. all
the couplings (ξ ,η) ∈ C (µ,ν), we get the required statement.

Now one can easily deduce the relation (3.4).

Proposition 3.9 Let f ∈ Hγ,W (X,d) and∫
X

f 2 dπ < ∞,
∫
X

V 2 dπ < ∞,
∫
X

W 2 dπ < ∞.
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Then∣∣∣Cov
(

f (X j), f (Xk)
)∣∣∣

≤ 21−γ rγ

k− j‖ f‖d,γ,W

(∫
X

f 2 dπ

)1/2(∫
X

V 2 dπ

)γ/2(∫
X

W 2 dπ

)(1−γ)/2

(3.13)

and consequently (3.4) holds true.

Proof. Using the bound (3.12) with µ(dy) = Pn(x,dy), ν(dy) = π(dy) as well as (3.11),
we get ∣∣∣∣Ex f (Xn)−

∫
X

f dπ

∣∣∣∣≤ rγ
n‖ f‖d,γ,WV γ(x)

(
ExW (Xn)+

∫
X

W dπ

)1−γ

. (3.14)

Then, by the Hölder inequality,

∣∣∣Cov
(

f (X j), f (Xk)
)∣∣∣= ∣∣∣∣E f (X j)

(
EX j f (Xk− j)−

∫
X

f dπ

)∣∣∣∣
≤ rγ

k− j‖ f‖d,γ,WE

[∣∣ f (X j)
∣∣V γ(X j)

(
EX jW (Xk− j)+

∫
X

W dπ

)1−γ
]

≤ rγ

k− j‖ f‖d,γ,W
(
E f 2(X j)

)1/2(
EV 2(X j)

)γ/2

×

(
E

(
EX jW (Xk− j)+

∫
X

W dπ

)2
)(1−γ)/2

.

Recall that X is strictly stationary, hence

E f 2(X j) =
∫
X

f 2 dπ, EV 2(X j) =
∫
X

V 2 dπ,

E

(
EX jW (Xk− j)+

∫
X

W dπ

)2

≤ 2EW 2(Xk)+2
∫
X

W 2 dπ = 4
∫
X

W 2 dπ,

which completes the proof of (3.13).

We can summarize the above argumentation as follows.

Theorem 3.10 Let X satisfy (3.11) and be stationary. Assume that V ∈ L2(X,π) and let
f ∈ L2(X,π) belong to Hγ,W (X,d) for some γ ∈ (0,1] and some W ∈ L2(X,π). Then the
LLN (3.5) holds true.
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The above proof of LLN is mainly based on the following feature: if the transition
probabilities of chain X possess the “stabilization” property w.r.t. a coupling probability
distance, then a kind of “stabilization” can be derived also for the expectations w.r.t. the
laws of the chain of functionals from a properly chosen Hölder class, cf. Proposition 3.8
and (3.14). This feature remains quite useful when more sophisticated limit theorems are
considered; see Section 3.4 below. Clearly, this feature does not require the process X

to be stationary, and an analogue of the above LLN would hold true in a (general) non-
stationary case in essentially the same manner, up to some minor technicalities related to
a slightly more cumbersome analysis of the integrability issues. We propose the reader
two exercises, which lead to such an extension.

Exercise 3.11 Let X satisfy (3.11), and denote by µ the distribution of X0. Assuming
f ∈ Hγ,W (X,d) and∫

X
V dµ < ∞,

∫
X

W dπ < ∞, sup
n≥0

EµW (Xn)< ∞,

prove Equation (3.2).

Exercise 3.12 Assume in addition to the assumptions of Exercise 3.11 that∫
X

f 2 dπ < ∞,
∫
X

W 2 dπ < ∞, sup
n≥0

EµV 2(Xn)< ∞, sup
n≥0

EµW 2(Xn)< ∞.

Prove that (3.4) holds true, and consequently the LLN (3.5) follows.

• • • • • • • • • • • • • • • • • • • •

3.3 The corrector term and the CLT

In this section we explain one practical method to prove the CLT

1√
n

n

∑
j=1

f (X j)⇒N (0,σ2
f ), (3.15)

where X is a weakly ergodic Markov chain. For convenience, we slightly modify the
ergodicity assumption (3.11) imposed on X before. In fact, the bound (3.11) controls the
rate of convergence of the one-dimensional distributions of X w.r.t. Px to those w.r.t. the
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law of the stationary version of X . The assumption below requires a similar bound for
two-dimensional distributions. Namely, given a distance-like function d on X, denote by
the same letter d both the distance-like function on X×X defined by

d
(
(x1,x2),(x′1,x

′
2)
)
= d(x1,x′1)+d(x2,x′2),

and the respective coupling distance on P(X × X). For 0 < m < n, denote by
Pm,n(x,dy1,dy2) the distribution of (Xm,Xn) w.r.t. Px, and by πm(dy1,dy2) the distribution
of (X0,Xm) w.r.t. Pπ ; that is,

Pm,n(x,dy1,dy2) = Pm(x,dy1)Pn−m(y1,dy2), πm(dy1,dy2) = π(dy1)Pm(y1,dy2).

We assume the following: there exist a function V : X→ [1,∞), a sequence rn→ 0, and a
sequence Cl > 0, l ∈ N such that for every l ∈ N

d
(
Pn,n+l(x,dy1,dy2),πl(dy1,dy2)

)
≤ClV (x)rn, n≥ 0. (3.16)

Clearly, (3.16) yields (3.11) with ClV (x) instead of V (x): to show that, one can simply
integrate w.r.t. dy2 on the entire space X. Though, the difference between (3.11) and
(formally, stronger) (3.16) is not really substantial: a natural way to prove (3.11), which
we developed in Section 2.4, is to construct a two-component process Z = (Z1,Z2), with
the laws of the components equal to Px and Pπ , such that

Ed(Z1
n ,Z

2
n)≤V (x)rn.

One can easily see that, once such a process is constructed and rn is decreasing, one
has (3.16) with Cl = 2, l ∈ N.

The main result of this section is presented in the following theorem.

Theorem 3.13 Let X satisfy (3.16) and be stationary. Let function f : X→ R satisfy the
following:

1) for some δ > 0,
∫
X
| f |2+δ dπ < ∞;

2) f is centered, i.e.
∫
X

f dπ = 0;

3) f ∈ Hγ,W (X,d), f ∈ Hγ̄,W (X,
√

d) for some γ, γ̄ ∈ (0,1] and some W .
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Assume furthermore that

∑
n

rγ
n < ∞. (3.17)∫

X
V 2 dπ < ∞,

∫
X

W 2 dπ < ∞.

Then the CLT (3.15) holds true with

σ
2
f =

∫
X

f 2(x)π(dx)+2
∞

∑
k=1

∫
X

∫
X

f (x) f (y)π(dx)Pk(x,dy).

Remark 3.14 Comparing Theorem 3.10 and Theorem 3.13 with the limit theorems dis-
cussed in Section 3.1, one can see that the weak ergodicity assumptions (3.11) and (3.16)
therein play the role analogous to that of the mixing conditions. In that concern, the prin-
cipal assumption on a functional f is the Hölder-type condition (unlike the moment type
conditions used in Theorem 3.3, Theorem 3.4), and respective Hölder index should relate
to the weak ergodic rate; cf. (3.17).

Remark 3.15 We impose two Hölder-type conditions on f , because we will need to use
the “stabilization” property both of f itself and for some quadratic expressions involv-
ing f ; see Equation (3.21) and Lemma 3.20. We formulate these two conditions with
one weight function W , which does not restrict generality: if there are two different W1,
W2 such that f satisfies Hölder-type conditions with d,

√
d and those weights, respec-

tively, then one may choose W =W1∨W2. Observe that only the Hölder index γ , which
corresponds to the initial distance-like function d, is involved into the condition (3.17).

Proof of Theorem 3.13. Our aim is to verify that, for every λ ∈ R,

Eexp

(
iλ√

n

n

∑
j=1

f (X j)

)
→ e−λ2σ2

f/2, n→ ∞; (3.18)

then (3.15) holds true by the continuity theorem for characteristic functions. Denote

ξ j,n
..=

f (X j)√
n

, ζk,n
..=

k

∑
j=1

ξ j,n,
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and for a fixed λ ∈ R denote φ(x) = eiλx. Consider the family of expectations

mk,n = Eφ(ζk,n), k = 1, . . . ,n;

we will prove that the sequence of functions

mn(t) = m[nt],n, t ∈ [0,1]

converge uniformly to a continuous function m which satisfies

d
dt

m(t) =−
λ 2σ2

f

2
m(t), m(0) = 1.

The unique solution to this equation is

m(t) = e−tλ2σ2
f/2,

hence such a convergence would yield (3.16) immediately.

Write
φ(ζk,n)−φ(ζk−1,n) = φ

′(ζk−1,n)ξk,n +
1
2

φ
′′(ζk−1,n)ξ

2
k,n +χk,n (3.19)

with

χk,n = φ(ζk−1,n)

[
eiλξk,n −1− iλξk,n +

λ 2

2
ξ

2
k,n

]
,

then

m[nt],n−1 =
[nt]

∑
k=1

E[φ ′(ζk−1,n)ξk,n]+
1
2

[nt]

∑
k=1

E
[
φ
′′(ζk−1,n)ξ

2
k,n
]
+

[nt]

∑
k=1

Eχk,n

=.. Σ
1
[nt],n +Σ

2
[nt],n +Σ

3
[nt],n.

Let us analyse the terms Σi
[nt],n, i = 1,2,3 separately, beginning with the most simple

Σ3
[nt],n and finishing with the most intrinsic Σ1

[nt],n.

A bound for Σ3
[nt],n. Let δ be as in assumption 1). There exists a constant Cλ ,δ , which

depends only on fixed λ and δ , such that

|χk,n| ≤Cλ ,δ |ξk,n|2+δ .
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Exercise 3.16 Please, prove the above upper bound.

Recall that
|ξk,n|2+δ = n−1−δ/2| f (Xk)|2+δ ,

and X is stationary. Then we have

∣∣Σ3
[nt],n

∣∣≤Cλ ,δ

n

∑
k=1

E|χk,n|= nCλ ,δE|ξk,n|2+δ = O
(

n−δ/2
)
, n→ ∞. (3.20)

Managing Σ2
[nt],n. The following delay trick appears to be very convenient in order to

analyze the limit behavior as n→ ∞ of

Σ
2
[nt],n =

1
2

[nt]

∑
k=1

E
[
φ
′′(ζk−1,n) f 2(Xk)

]
.

Choose a sequence {Dn} ⊂ N and write

Σ̃
2
[nt],n

..=
1

2n

[nt]

∑
k=Dn

E
[
φ
′′(ζk−Dn,n) f 2(Xk)

]
.

For the difference between the present value ζk−1,n and the “delayed” value ζk−Dn,n, we
have

E(ζk−1,n−ζk−Dn,n)
2 =

1
n
E

(
k−1

∑
j=k−Dn+1

f (X j)

)2

=
1
n

k−1

∑
j1, j2=k−Dn+1

Cov
(

f (X j1), f (X j2)
)
,

because f is centered and X is stationary. Using (3.13), we get then

E(ζk−1,n−ζk−Dn,n)
2 ≤C

Dn

n

Dn

∑
l=0

rγ

l .

Choose {Dn} such that Dn→ ∞, but Dn/n→ 0. Then by condition 3)

Dn

n

Dn

∑
l=0

rγ

l → 0,
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and therefore
max

Dn≤k≤n
E(ζk−1,n−ζk−Dn,n)

2→ 0, n→ ∞.

Because φ ′′ is bounded and has a bounded derivative, this yields

max
Dn≤k≤n

E|φ ′′(ζk−1,n)−φ
′′(ζk−Dn,n)|

2+δ → 0, n→ ∞.

Exercise 3.17 Please, prove this.

Finally, we get that the difference between Σ2
[nt],n and Σ̃2

[nt],n is negligible:

∣∣Σ2
[nt],n− Σ̃

2
[nt],n

∣∣≤ C
n

Dn−1

∑
k=1

E f 2(Xk)+
C
n

n

∑
k=Dn

∣∣φ ′′(ζk−1,n)−φ
′′(ζk−Dn,n)

∣∣ f 2(Xk)

≤ CDn

n

∫
X

f 2 dπ +C
(

max
Dn≤k≤n

E
∣∣φ ′′(ζk−1,n)−φ

′′(ζk−Dn,n)
∣∣2+δ

)δ/(2+δ )

×
(∫

X
| f |2+δ dπ

)2/(2+δ )

→ 0.

On the other hand,

Σ̃
2
[nt],n =

1
2n

[nt]

∑
k=Dn

E
(
φ
′′(ζk−Dn,n)EXk−Dn

f 2(XDn)
)
,

and because Dn → ∞, the conditional expectations EXk−Dn
f 2(XDn) enjoy the “stabiliza-

tion” property. Namely, one has

∣∣ f 2(x)− f 2(y)
∣∣≤ ‖ f‖√d,γ̄,W d γ̄/2(x,y)

(
W (x)+W (y)

)1−γ̄(| f (x)|+ | f (y)|),
hence similarly to the proof of Proposition 3.8 one can show that∣∣∣∣Ex f 2(Xk)−

∫
X

f 2 dπ

∣∣∣∣≤ 4rγ̄

k‖ f‖√d,γ̄,WV γ̄/2(x)

×
(
ExW 2(Xk)+

∫
X

W 2 dπ

)(1−γ̄)/2(
Ex f 2(Xk)+

∫
X

f 2 dπ

)1/2

. (3.21)

Exercise 3.18 Please, prove this.
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Then, by the Hölder inequality applied to p1, p2, p3 with 1/p1 = γ̄/2, 1/p2 = 1−γ̄/2,
1/p3 = 1/2,

E

∣∣∣∣EXk−Dn
f 2(XDn)−

∫
X

f 2 dπ

∣∣∣∣= ∫X
∣∣∣∣Ex f 2(XDn)−

∫
X

f 2 dπ

∣∣∣∣ π(dx)

≤ 4rγ̄

Dn
‖ f‖√d,γ̄,W

(∫
X

V 2 dπ

)γ̄/2(
2
∫
X

W 2 dπ

)(1−γ̄)/2(
2
∫
X

f 2 dπ

)1/2

→ 0. (3.22)

Because φ ′′ is bounded and φ ′′ =−λ 2φ , this finally gives∣∣∣∣∣Σ2
[nt],n +

λ 2

2n

(∫
X

f 2 dπ

) [nt]−1

∑
k=1

mk,n

∣∣∣∣∣→ 0, n→ ∞.

Managing Σ1
[nt],n using the corrector term. To manage the “most dangerous” term Σ1

[nt],n,
an auxiliary corrector term construction appears to be very useful. An important ingredi-
ent of this construction is the potential of the function f :

R f (x) =
∞

∑
k=0

Ex f (Xk), x ∈ X. (3.23)

Proposition 3.19 Let X satisfy (3.11) and condition 3) of Theorem 3.13 hold true. Let
a function f ∈ Hγ,W (X,d) belong to L2(X,π) and be centered. Then the series (3.23)
converges in L2(X,π) sense, and the sequence

Mk =
k−1

∑
j=0

f (X j)+R f (Xk), k ≥ 0,

is a martingale w.r.t. the natural filtration {Fk} of the process X . If, in addition,

sup
k
ExW (Xk)< ∞, x ∈ X, (3.24)

then the series (3.23) converges for every x ∈ X.

Proof. Write
Pk f (x) = Ex f (Xk) =

∫
X

f (y)Pk(x,dy).
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Because f is centered, we get from (3.14)

|Pk f (x)|=
∣∣∣∣Ex f (Xk)−

∫
X

f dπ

∣∣∣∣≤ ‖ f‖d,γ,W rγ

kV γ(x)
(
ExW (Xk)+

∫
X

W dπ

)1−γ

. (3.25)

This immediately yields that (3.23) converges for every x ∈ X under the additional as-
sumption (3.24). On the other hand, the same bound yields

‖Pk f‖L2(X,π) ≤ ‖ f‖d,γ,W rγ

k

(∫
X

V 2 dπ

)γ (
4
∫
X

W 2 dπ

)1−γ

(see the calculation at the end of the proof of Proposition 3.9), which proves that (3.23)
converges in L2(X,π).

Because X is stationary and f ∈ L2(X,π), for every ρ ∈ (0,1) we have that the series

S(ρ) ..=
∞

∑
j=0

ρ
j f (X j)

converges in L2(Ω,F ,P). Then

M(ρ)
k

..= E
(
S(ρ)

∣∣Fk
)
=

∞

∑
j=0

ρ
jE
(

f (X j)
∣∣Fk

)
, k ≥ 0

is a martingale. Denote

R(ρ) f (x) =
∞

∑
k=0

ρ
kEx f (Xk) =

∞

∑
k=0

ρ
kPk f (x),

then we get

M(ρ)
k =

k−1

∑
j=0

ρ
j f (X j)+ρ

kR f (ρ)(Xk), k ≥ 0.

It follows from the bound (3.25) that

R(ρ) f →R f , ρ → 1−

in L2(X,π). Hence, because every Xk obeys law π , we deduce

M(ρ)
k →Mk, ρ → 1−
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in L2(Ω,F ,P) for every k ≥ 0. Therefore {Mk} is a martingale.

Write
ηk = R f (Xk)− f (Xk), k ≥ 0,

and consider the sequence

Uk,n = φ
′(ζk,n)ηk, k = 0, . . . ,n.

Observe that

Uk,n−Uk−1,n√
n

= φ
′(ζk−1,n)

ηk−ηk−1√
n

+
(
φ
′(ζk,n)−φ

′(ζk−1,n)
) ηk√

n

= φ
′(ζk−1,n)

Mk−Mk−1√
n

−φ
′(ζk−1,n)ξk,n +

(
φ
′(ζk,n)−φ

′(ζk−1,n)
) ηk√

n
.

Because M is a martingale, the expectation of the first term in the right hand side equals
0. The second term is exactly the one involved into Σ1

[nt],n. Hence, summing over k and
averaging yields

EU[nt],n−EU0,n√
n

+Σ
1
[nt],n =

[nt]

∑
k=1

E

[
φ
′′(ζk−1,n)ξk,n

ηk√
n

]
+

[nt]

∑
k=1

Eϑk,n =.. ϒ
1
[nt],n +ϒ

2
[nt],n,

where

ϑk,n =
(
φ
′(ζk,n)−φ

′(ζk−1,n)−φ
′′(ζk−1,n)ξk,n

) ηk√
n

= iλeiλζk−1,n
(

eiλξk,n −1− iλξk,n

)
ηk√

n
.

We will see that the terms ϒ1
[nt],n and ϒ2

[nt],n can be treated similarly to Σ2
[nt],n and Σ3

[nt],n,
respectively. On the other hand, because φ ′ is bounded and {ηk} is a stationary and a
square integrable sequence, ∣∣∣∣EU[nt],n−EU0,n√

n

∣∣∣∣≤ C√
n
.

This is the essence of the corrector term method, which dates back to [46]: by adding
a small corrector term n−1/2E(U[nt],n−U0,n), one transforms a “dangerous” expression
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Σ1
[nt],n, where the summands have an order n−1/2, into a more manageable one, where the

summands have an order at most n−1. Clearly, such a transformation exploits substan-
tially the semimartingale structure of the summands involved in Σ1

[nt],n.

A bound for ϒ2
[nt],n. We have

|ϑk,n| ≤C|ξk,n|1+δ/2

∣∣∣∣ ηk√
n

∣∣∣∣=C
∣∣∣∣ f (Xk)√

n

∣∣∣∣1+δ/2 ∣∣∣∣ ηk√
n

∣∣∣∣
with C which depends only on λ , δ . Then

|ϑk,n| ≤Cn−1−δ/2
(
E f 2+δ (Xk)

)1/2(
E
(
R f (Xk)− f (Xk)

)2
)1/2

,

and since X is stationary we get

|ϒ2
[nt],n|= O

(
n−δ/2

)
, n→ ∞.

Managing ϒ1
[nt],n. We have

ϒ
1
[nt],n =

[nt]

∑
k=1

Eφ
′′(ζk−1,n)

g(Xk)

n
,

where we denote

g(x) = f (x)
(
R f (x)− f (x)

)
= f (x)

∞

∑
l=1

Ex f (Xl).

Hence ϒ1
[nt],n has exactly the same form as Σ2

[nt],n, and we can use the same arguments to
analyze its asymptotic behavior. In what follows we sketch the calculations, leaving the
details for the reader.

Firstly, since

∫
X
|g|1+δ/2 dπ ≤

(∫
X
| f |2+δ dπ

)1/2(∫
X
(R f − f )2 dπ

)1/2

< ∞,
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one shows that ϒ1
[nt],n, up to a negligible term, equals

ϒ̃
1
[nt],n

..=
[nt]

∑
k=Dn

Eφ
′′(ζk−Dn,n)

g(Xk)

n
.

The limit behavior of ϒ̃1
[nt],n now is well understood because the conditional expectation

EXk−Dn
g(XDn) has the following “stabilization” property.

Lemma 3.20 Under the conditions of Theorem 3.13,

∫
X

∣∣∣∣Exg(Xn)−
∫
X

g dπ

∣∣∣∣ π(dx)→ 0, n→ ∞.

Proof. Let
gl(x) = f (x)Ex f (Xl) = f (x)Pl f (x), l ≥ 1.

Because the series R f − f = ∑
∞
l=1 Pl f converges in L2(X,π), we know that

L

∑
l=1

gl → g, L→ ∞

in L1(X,π). Then, to prove the required statement, it is sufficient to prove that

∫
X

∣∣∣∣Exgl(Xn)−
∫
X

gl dπ

∣∣∣∣ π(dx)→ 0, n→ ∞ (3.26)

for every l ≥ 1. Because

Exgl(Xn) =
∫
X×X

f (y1) f (y2)Pn,n+l(x,dy1,dy2),∫
X

gl dπ =
∫
X×X

f (y1) f (y2)πl(dy1,dy2),

(3.26) follows naturally from assumption (3.16) imposed on two-dimensional distribu-
tions of X . Namely, for every y = (y1,y2), y′ = (y′1,y

′
2) we have

| f (y1) f (y2)− f (y′1) f (y′2)|

≤ ‖ f‖√d,γ̄,W d γ̄/2(y,y′)
(
W (y1)+W (y2)+W (y′1)+W (y′2)

)1−γ̄(| f (y1)|+ | f (y′2)|
)
.
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Hence for every pair of random vectors ξ = (ξ1,ξ2), η = (η1,η2) we obtain

E
∣∣ f (ξ1) f (ξ2)− f (η1) f (η2)

∣∣≤ ‖ f‖√d,γ,W

(
Ed(ξ ,η)

)γ̄/2

×
(

4E
(
W 2(ξ1)+W 2(ξ2)+W 2(η1)+W 2(η2)

))(1−γ̄)/2(
2E
(

f 2(ξ1)+ f 2(η2)
))1/2

.

Taking the infimum over all pairs (ξ ,η) ∈ C (Pn,n+l(x, ·),πl), we get by means of (3.16)∣∣∣∣Exgl(Xn)−
∫
X

gl dπ

∣∣∣∣≤ ‖ f‖√d,γ,W (Clrn)
γ̄/2
(
V (x)

)γ̄/2

×
(

4ExW 2(Xn)+4ExW 2(Xn+l)+8
∫
X

W 2 dπ

)(1−γ̄)/2

×
(

2Ex f 2(Xn)+2
∫
X

f 2 dπ

)1/2

.

Now (3.26) can be deduced similarly to (3.22); we leave details to a reader.

As a corollary, we obtain that∣∣∣∣∣ϒ̃1
[nt],n +

λ 2

n

(∫
X

g dπ

) [nt]−1

∑
k=1

mk,n

∣∣∣∣∣→ 0, n→ ∞.

We saw that ∣∣∣Σ3
[nt],n− ϒ̃

1
[nt],n

∣∣∣→ 0,

hence we can summarize the above calculations, and write∣∣∣∣∣m[nt],n−1+
λ 2

2n

(∫
X
( f 2 +2g) dπ

) [nt]−1

∑
k=1

mk,n

∣∣∣∣∣→ 0, n→ ∞.

Then it is easy to prove that

m[nt],n→ e−tλ2σ2/2, t ∈ [0,1]

with
σ

2 =
∫
X
( f 2 +2g) dπ

(please, prove this!). Because

∫
X

g dπ =
∫
X

(
f

∞

∑
k=1

Pk f

)
dπ =

∞

∑
k=1

∫∫
X2

f (x) f (y)π(dx)Pk(x,dy),
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this completes the proof of Theorem 3.13.

We finish this section with a similar remark we made concerning the LLN: an analogue
of the above CLT holds true in a non-stationary case in essentially the same manner.
Minor technicalities, related to an analysis of the integrability issues, need to be then
taken into account; we propose the proof of such an extension as an exercise for the
interested reader.

Exercise 3.21 Let all the assumptions of Theorem 3.13, except the stationarity of X , be
satisfied, and

sup
n≥0

EµV 2(Xn)< ∞, sup
n≥0

EµW 2(Xn)< ∞,

where µ denotes the distribution of X0. Prove that the CLT (3.15) holds true.

• • • • • • • • • • • • • • • • • • • • • • • • • • •

3.4 Autoregressive models with Markov regime

Both, the LLN and the CLT studied in the previous sections, can be considered as
particular cases of the following model. Let ζk,n, 1 ≤ k ≤ n < ∞ be a triangular array of
random variables, with the n-th row being determined by the recurrence relation

ζk,n = Fn(ζk−1,n,Xk), k = 1, . . . ,n, ζ0,n = y0, (3.27)

where X is a given Markov chain, and Fn, n ≥ 1 is a given sequence of functions. What
can be said then about the (weak) convergence of ζn,n?

Choosing either

Fn(ζ ,x) = ζ +
1
n

f (x)

or
Fn(ζ ,x) = ζ +

1√
n

f (x),

we obtain the models studied in the two previous sections, which are “additive” in the
sense that an increment ζk,n−ζk−1,n depends only on the value Xk−1 of the “driving pro-
cess” X . In the general model (3.27), an increment may also depend on the current value
ζk−1,n of the target process, and that is why the name autoregressive is used. Because
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the driving noise is assumed to be Markov, we call (3.27) an autoregressive model with

Markov regime.

Remark 3.22 In the available literature, when an autoregressive model with Markov
regime is discussed, a typical assumption on the term on the right hand side of (3.27)
is that it is of the form

Fn(ζk−1,n,Xk,εk),

where {εk} is a sequence of i.i.d. random variables. Introducing an additional “random
seed” {εk} allows to extend the model (3.27), and to consider sequences with ζk,n, not
being defined by ζk−1,n, Xk through a functional relation, but having its conditional distri-
bution defined by ζk−1,n, Xk. In our framework, there is no substantial difference between
these settings, because, at least formally, we can consider the pair X̃k = (Xk,εk) as a new
Markov “driving process”. To simplify the notation, in what follows we do not introduce
separately a “random seed” {εk}, and consider the model (3.27).

We consider (3.27) with Fn : R×X→ R of the form

Fn(ζ ,x) = ζ +
1
n

f (ζ ,x)+
1√
n

g(ζ ,x), (3.28)

which is a natural “non-additive” extension of the models studied in the previous two
sections. We will show that the corrector term method, explained in Section (3.3), still
allows one to study this much more general setting without an essential complication of
neither the assumptions nor the structure of the proof.

One could notice already from the proof of Theorem 3.13 above, that it is more con-
venient to study the limit behavior of the whole time series {ζk,n}k=1,...,n rather than of
its endpoint ζn,n. Namely, we will study the limit behavior of the sequence of piece-wise
constant processes

Yn(t) = ζ[nt],n, t ∈ [0,1]. (3.29)

To do that, we will follow the standard plan of proving functional limit theorems, which
consists of two principal steps:

1) prove that the sequence of processes {Yn} is weakly compact in a certain sense;

2) describe all the weak limit points of this sequence, and prove that, actually, such a
limit point is unique.
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Here, we will consider the weak convergence in the sense of finite-dimensional distri-
butions; in that case, weak compactness is equivalent to the following: any subsequence
{ζnk} contains a (sub-)subsequence {Yn′k

} such that, for any m≥ 1, t1, . . . , tm ∈ [0,1], the
vector-valued sequence (Yn′k

(t1), . . . ,Yn′k
(tm)) converges weakly as k→ ∞.

To describe the limit points, we will use the concept of martingale problems; below
we briefly recall respective results (for a detailed exposition, we refer to [54] and [20]).

Let L be an operator defined on some set D of functions φ : Rd → R. A process
Y = {Y (t), t ∈ [0,1]}, taking values in Rd , is called a solution of the martingale problem

(L ,D), if for any φ ∈D the process

φ
(
Y (t)

)
−
∫ t

0
L φ

(
Y (s)

)
ds, t ∈ [0,1]

is a martingale w.r.t. the natural filtration of Y . Note that this definition includes as
a natural pre-requisite the claim that the above integral is well defined; typically, it is
assumed that process Y is measurable.

A martingale problem (L ,D) is said to be well-posed, if for every y ∈ Rd any two
solutions of (L ,D) with the same initial value Y (0) = y, the finite-dimensional distribu-
tions agree. Actually, this means that the solution of (L ,D) with Y (0) = y is (weakly)
unique.

Theorem 3.23 Let X satisfy (3.16) and be stationary. Consider the triangular array {ζk,n}
defined by (3.27) with Fn having the form (3.28). Assume furthermore

1) There exists a derivative ∂ζ g, and f (ζ , ·), g(ζ , ·), ∂ζ g(ζ , ·) ∈ L1(X,π) for every
ζ ∈ R.

2) There exist γ, γ̄ ∈ (0,1] and a function W , such that for every ζ ∈ R,

g(ζ , ·), ∂ζ g(ζ , ·) ∈ Hγ,W (X,d),

f (ζ , ·) ∈ Hγ̄,W (X,d), g(ζ , ·) ∈ Hγ̄,W (X,
√

d).

In addition,

sup
ζ∈R

(
‖g(ζ , ·)‖d,γ,W +‖∂ζ g(ζ , ·)‖d,γ,W +‖ f (ζ , ·)‖d,γ̄,W +‖g(ζ , ·)‖√d,γ̄,W

)
< ∞,
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and there exists δ > 0 such that

sup
ζ1 6=ζ2

|ζ1−ζ2|−δ
(
‖g(ζ1, ·)−g(ζ2, ·)‖d,γ,W +‖∂ζ g(ζ , ·)−∂ζ g(ζ2, ·)‖d,γ,W

)
< ∞,

sup
ζ1 6=ζ2

|ζ1−ζ2|−δ‖ f (ζ1, ·)− f (ζ2, ·)‖d,γ̄,W < ∞.

3) For every ζ ∈ R, the functions g(ζ , ·), ∂ζ g(ζ , ·) are centered; that is,

∫
X

g(ζ ,x)π(dx) = 0,
∫
X

∂ζ g(ζ ,x)π(dx) = 0.

The function f satisfies

sup
ζ∈R

∣∣∣∣∫X f (ζ ,x)π(dx)
∣∣∣∣< ∞,

sup
ζ1 6=ζ2

|ζ1−ζ2|−δ

∣∣∣∣∫X f (ζ1,x)π(dx)−
∫
X

f (ζ2,x)π(dx)
∣∣∣∣< ∞.

4) ∑
n

rγ
n < ∞,

∫
X

V 2+δ dπ < ∞,
∫
X

W 2+δ dπ < ∞.

Then for the sequence {Yn} of the piece-wise constant processes (3.29) the following
statements hold true:

I The sequence {Yn} is weakly compact in the sense of convergence of finite-
dimensional distributions.

II Any weak limit point of the sequence {Yn} is a solution of the martingale problem
(L ,D) with

L φ(ζ ) = A(ζ )φ ′(ζ )+
1
2

B(ζ )φ ′′(ζ ), D =C∞
0 (Rd), (3.30)

where

A(ζ ) =
∫
X

f (ζ ,x)π(dx)+
∞

∑
k=1

∫∫
X2

g(ζ ,x)∂ζ g(ζ ,y)π(dx)Pk(x,dy),
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B(ζ ) =
∫
X

g2(ζ ,x)π(dx)+2
∞

∑
k=1

∫∫
X2

g(ζ ,x)g(ζ ,y)π(dx)Pk(x,dy).

Consequently, if the martingale problem (3.30) is well-posed, then the sequence {Yn}
converges weakly, in the sense of convergence of finite-dimensional distributions, to a
diffusion process which is the unique solution of this martingale problem.

Remark 3.24 Sufficient conditions for a martingale problem to be well-posed in the clas-
sical “diffusive” case, where L is a second order differential operator, are well studied;
cf. [54]. Hence, under the assumptions of Theorem 3.23, it is easy to give sufficient
conditions for the weak convergence of the sequence {Yn}. In particular, the coefficients
A, B are continuous, therefore for the martingale problem (3.30) to be well-posed it is
sufficient to assume the diffusion coefficient to be non-degenerate.

Remark 3.25 Note that in the case f ≡ 0 and g(ζ ,x) = g(x), the assumptions of Theo-
rem 3.23 coincide with those of Theorem 3.13. That is, the CLT proved above actually
can be considered just as a particular case of Theorem 3.23: to do that, one should recall
that the martingale problem

L φ(ζ ) =
1
2

σ
2
φ
′′(ζ ), D =C∞

0 (R)

is well-posed, and its unique solution is σW , where W denotes the Wiener process. How-
ever, in order to explain the method clearly, we have split the exposition, and, before
considering the general statement, we have to prove the important particular case of CLT
separately and more explicitly, using the characteristic functions technique rather than the
concept of the martingale problem.

Remark 3.26 The statement of Theorem 3.23 can be extended in various ways: instead of
real-valued {ζk,n}, one can consider sequences with values in Rd , and in that case the limit
process Y is a multidimensional diffusion; instead of considering uniform conditions in ζ

on f and g, one can impose weaker (but more cumbersome) conditions which allow the
coefficients to have at most linear growth; instead of a weak convergence in the sense of
finite-dimensional distributions, convergence in the Skorokhod topology can be proved
under slightly modified conditions on the weight functions V , W . Not to overburden
the exposition, we do not discuss these possibilities here, referring the interested reader
to [37], where such results were obtained in the continuous time setting.
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Before proving Theorem 3.23, we give some analytical preliminaries and develop an
auxiliary corrector term construction. Some of the calculations below are similar to those
we developed in previous section, in that case we just sketch the argument and leave the
details to the reader.

Define the potential of the function g, which now depends on an additional variable ζ ,
by treating this variable as a “frozen” parameter; that is,

Rg(ζ ,x) =
∞

∑
k=0

Exg(ζ ,Xk), x ∈ X. (3.31)

One can prove the following properties similarly to Proposition 3.19; we omit the details:

(i) for every ζ , the series (3.31) converges in L2(X,π);

(ii) for every k ≥ 1, ζ ∈ R,

E[Rg(ζ ,Xk)|Fk−1] = Rg(ζ ,Xk−1)−g(ζ ,Xk−1),

where {Fk} denotes the natural filtration for the process X .

Proposition 3.27 There exists a function H : X→ R+ such that
∫
X

H2+δ dπ < ∞ and

| f (ζ ,x)| ≤ H(x), | f (ζ1,x)− f (ζ2,x)| ≤ |ζ1−ζ2|δ H(x),

|g(ζ ,x)|+ |Rg(ζ ,x)| ≤ H(x), |g(ζ1,x)−g(ζ2,x)| ≤ |ζ1−ζ2|δ H(x),

|Rg(ζ ,x)| ≤ H(x), |Rg(ζ1,x)−Rg(ζ2,x)| ≤ |ζ1−ζ2|δ H(x).

Proof. Let us construct a function HRg which gives the required bounds for Rg. Recall
that, because g(ζ , ·) is centered, for any k ≥ 0

|Exg(ζ ,Xk)| ≤ ‖g(ζ , ·)‖d,γ,W rγ

kV γ(x)
(
ExW (Xk)+

∫
X

W dπ

)1−γ

,

|Exg(ζ1,Xk)−g(ζ2,Xk)| ≤ ‖g(ζ1, ·)−g(ζ2, ·)‖d,γ,W rγ

kV γ(x)
(
ExW (Xk)+

∫
X

W dπ

)1−γ

;

see (3.25). Then, by the condition 2) of Theorem 3.23,

|Exg(ζ ,Xk)| ≤Crγ

k Hk(x), |Exg(ζ1,Xk)−g(ζ2,Xk)| ≤C|ζ1−ζ2|δ rγ

k Hk(x)
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with

Hk(x) =V γ(x)
(
ExW (Xk)+

∫
X

W dπ

)1−γ

.

Then the required bounds for Rg hold true with

HRg(x) =C ∑
k≥0

rγ

k Hk(x).

Note that HRg ∈ L2+δ (X,π) because, by the Hölder inequality and the condition 4),

‖Hk‖2+δ

L2+δ (X,π)
= Eπ

[
V γ(X0)

(
EX0W (Xk)+

∫
X

W dπ

)1−γ
]2+δ

≤
(
EπV 2+δ (X0)

)γ

[
Eπ

(
W (Xk)+

∫
X

W dπ

)2+δ
]1−γ

≤ 2(2+δ )(1−γ)

(∫
X

V 2+δ dπ

)γ (∫
X

W 2+δ dπ

)1−γ

=C < ∞, k ≥ 0.

For f , g the construction of respective functions H f , Hg is similar and simpler: in that
case one needs to consider the term with k = 0, only; we omit the details. By choosing

H = H f +Hg +HRg

we complete the proof.

Proposition 3.28 The function Rg, considered as a map R 3 ζ 7→Rg(ζ , ·) ∈ L2(X,π),
has a continuous derivative, which has a representation

∂ζ Rg(ζ ,x) =
∞

∑
k=0

Ex∂ζ g(ζ ,Xk).

In addition, there exists a function H̃ : X→ R+ such that∫
X

H̃2+δ dπ < ∞

and

|∂ζ g(ζ ,x)| ≤ H̃(x), |∂ζ g(ζ1,x)−∂ζ g(ζ2,x)| ≤ |ζ1−ζ2|δ H̃(x),
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|∂ζ Rg(ζ ,x)| ≤ H̃(x), |∂ζ Rg(ζ1,x)−∂ζ Rg(ζ2,x)| ≤ |ζ1−ζ2|δ H̃(x).

Proof. Consider the potential of the function ∂ζ g(ζ ,x):

R
(
∂ζ g
)
(ζ ,x) =

∞

∑
k=0

Ex∂ζ g(ζ ,Xk),

which is well defined by condition 2), because ∂ζ g(ζ ,x) is centered. Denote also

RL(
∂ζ g
)
(ζ ,x) ..=

L

∑
k=0

Ex∂ζ g(ζ ,Xk), L≥ 0;

note that R0(∂ζ g) = ∂ζ g. Similarly to the proof of the previous Proposition 3.27, one
constructs a function H̃ ∈ L2+δ (X,π) such that∣∣∣RL(

∂ζ g
)
(ζ ,x)

∣∣∣≤ H̃(x),∣∣∣RL(
∂ζ g
)
(ζ1,x)−RL(

∂ζ g
)
(ζ2,x)

∣∣∣≤ |ζ1−ζ2|δ H̃(x), L≥ 0.

Hence, for every L ≥ 0, the function RLg(∂ζ g), considered as a map R→ L2(X,π), is
continuous. In addition, by the dominated convergence theorem,

RLg(ζ2,x)−RLg(ζ1,x) =
∫

ζ2

ζ1

RL(
∂ζ g
)
(ζ ,x) dζ

where the integral in the right hand side is well-defined in the mean square sense; we omit
the details. Because RLg, RL(∂ζ g) converge to Rg, R(∂ζ g) in L2(X,π) as L→ ∞ for
every fixed ζ , we have the same identity and the same bounds for Rg and R(∂ζ g).

Let
R̃g = Rg−g.

For a given function φ ∈C3(R) with bounded derivatives, define the respective corrector
term by

Uk,n = φ
′(ζk,n)R̃g(ζk,n,Xk), k ≥ 0.
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Lemma 3.29 For any k ≥ 1,

φ(ζk,n) +
Uk,n√

n
= φ(ζk−1,n)+

Uk−1,n√
n

+
1
n

φ
′(ζk−1,n)

(
f (ζk−1,n,Xk)+g(ζk−1,n,Xk)

(
∂ζ R̃g

)
(ζk−1,n,Xk)

)
+

1
2n

φ
′′(ζk−1,n)

(
g2(ζk−1,n,Xk)+2g(ζk−1,n,Xk)R̃g(ζk−1,n,Xk)

)
+φ

′(ζk−1,n)
Mk−Mk−1√

n
+ϑk,n,

(3.32)
where

E|ϑk,n| ≤Cn−1−δ/2, (3.33)

and {Mk} is a martingale w.r.t. {Fk} such that

E(Mk−Mk−1)
2 ≤C. (3.34)

Proof. We have

φ(ζk,n) = φ(ζk−1,n)+φ
′(ζk−1,n)

(
1
n

f (ζk−1,n,Xk)+
1√
n

g(ζk−1,n,Xk)

)
+

1
2n

φ
′′(ζk−1,n)g2(ζk−1,n,Xk)+ϑ

1
k,n

(3.35)
with the residue term

ϑ
1
k,n = φ(ζk,n)−φ(ζk−1,n)−φ

′(ζk−1,n)
(
ζk,n−ζk−1,n

)
− 1

2n
φ
′′(ζk−1,n)g2(ζk−1,n,Xk).

Next, recall that ζk−1,n is Fk−1-measurable. Hence, by the property (ii) of the potential
defined by (3.31), we obtain

E[Rg(ζk−1,n,Xk)|Fk−1] = E[Rg(ζ ,Xk)|Fk−1]ζ=ζk−1,n

= R̃g(ζ ,Xk−1)
∣∣∣
ζ=ζk−1,n

= R̃g(ζk−1,n,Xk−1).

Then

Mk =
k

∑
j=1

(
R̃g(ζ j−1,n,X j)−Rg(ζ j−1,n,X j−1)

)
, k ≥ 0
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is a martingale, and we have

R̃g(ζk−1,n,Xk)− R̃g(ζk−1,n,Xk−1) =−g(ζk−1,n,Xk)+Mk−Mk−1. (3.36)

Then
Uk,n−Uk−1,n =

(
φ
′(ζk,n)−φ

′(ζk−1,n)
)
R̃g(ζk,n,Xk)

+φ
′(ζk−1,n)

(
R̃g(ζk,n,Xk)− R̃g(ζk−1,n,Xk)

)
+φ

′(ζk−1,n)
(
−g(ζk−1,n,Xk)+Mk−Mk−1

)
.

Multiplying by 1/
√

n and summing with (3.35), we get the required identity (3.32) with
the residue term

ϑk,n = ϑ
1
k,n +ϑ

2
k,n +ϑ

3
k,n +ϑ

4
k,n,

where ϑ 1
k,n is defined above, and

ϑ
2
k,n =

1√
n

(
φ
′(ζk,n)−φ

′(ζk−1,n)
)(

R̃g(ζk,n,Xk)− R̃g(ζk−1,n,Xk)
)
,

ϑ
3
k,n =

1√
n

(
φ
′(ζk,n)−φ

′(ζk−1,n)−
1√
n

g(ζk,n,Xk)φ
′′(ζk−1,n)

)
R̃g(ζk−1,n,Xk),

ϑ
4
k,n =

1√
n

φ
′(ζk−1,n)

(
R̃g(ζk,n,Xk)− R̃g(ζk−1,n,Xk)−

1√
n

g(ζk,n,Xk)∂ζ R̃g(ζk−1,n,Xk)

)
.

Let us proceed with the bounds on the residue terms ϑ i
k,n, i = 1, 2, 3, 4. Because φ has

bounded derivatives φ ′, φ ′′, φ ′′′, one has∣∣∣∣φ(y)−φ(x)− (y− x)φ ′(x)− 1
2
(y− x)2

φ
′′(x)

∣∣∣∣≤C|y− x|2+δ .

Then

|ϑ 1
k,n| ≤ C

∣∣∣∣1n f (ζk−1,n,Xk)+
1√
n

g(ζk−1,n,Xk)

∣∣∣∣2+δ

+
1
2n

φ
′′(ζk−1,n)

∣∣∣∣∣
(

1√
n

f (ζk−1,n,Xk)+g(ζk−1,n,Xk)

)2

−g2(ζk−1,n,Xk)

∣∣∣∣∣ .
By Proposition 3.27, we have then |ϑ 1

k,n| ≤Cn−1−δ/2H2+δ (Xk), which yields the bound

E|ϑ 1
k,n| ≤Cn−1−δ/2.
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The bound for ϑ 3
k,n is similar, and we leave it for the reader; we only note that because

R̃g =Rg−g, from Proposition 3.27 we get |R̃g(ζ ,x)| ≤ 2H(x). To bound ϑ 2
k,n, observe

that by Proposition 3.27

|ϑ 2
k,n| ≤

C√
n
|ζk,n−ζk,n|1+δ H(Xk),

and
|ζk,n−ζk,n|=

∣∣∣∣1n f (ζk−1,n,Xk)+
1√
n

g(ζk−1,n,Xk)

∣∣∣∣≤ C√
n

H(Xk).

Hence |ϑ 2
k,n| ≤Cn−1−δ/2H2+δ (Xk), and

E|ϑ 2
k,n| ≤Cn−1−δ/2.

The bound for ϑ 4
k,n can be obtained similarly, using the integral identity

R̃g(ζk,n,Xk)− R̃g(ζk−1,n,Xk) =
∫

ζk,n

ζk−1,n

∂ζ R̃g(ζ ,Xk) dζ

and the Hölder continuity of ∂ζ R̃g(ζ ,x) w.r.t. ζ ; we leave the details for the reader.

Proof of Theorem 3.23. Step I: weak compactness. To prove that the sequence {Yn} is
weakly compact in the sense of convergence of finite-dimensional distributions, it suffices
to prove that

limsup
n→∞

sup
s,t∈[0,1]:|t−s|<δ

E|Yn(t)−Yn(s)| → 0, δ → 0. (3.37)

Choose φ(x) = x, then by Lemma 3.29 we have

Yn(t) = Y 0
n (t)+Y 1

n (t)+Y 2
n (t)+Y 3

n (t),

where

Y 0
n (t) = y0 +

U0,n−U[nt],n√
n

,

Y 1
n (t) =

1
n

[nt]

∑
k=1

(
f (ζk−1,n,Xk)+g(ζk−1,n,Xk)

(
∂ζ R̃g

)
(ζk−1,n,Xk)

)
,
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Y 2
n (t) =

1√
n

[nt]

∑
k=1

(Mk−Mk−1),

Y 3
n (t) =

[nt]

∑
k=1

ϑk,n;

here we used that φ ′(x) = 1, φ ′′(x) = 0. Let us show that for every i = 0, 1, 2, 3, (3.37)
holds true with Yn replaced by Y i

n. By Proposition 3.27,

|Uk,n|= |R̃g(ζk,n,Xk)| ≤ 2H(Xk),

and therefore the sequence E|Uk,n| is bounded (recall that X is stationary and, in particular,
every Xk obeys law π). Then

E|Y 0
n (t)−Y 0

n (s)| ≤
C√

n
,

and 3.37 holds true for Y 0
n (t). By Proposition 3.27 and Proposition 3.28,∣∣∣ f (ζk−1,n,Xk)+g(ζk−1,n,Xk)

(
∂ζ R̃g

)
(ζk−1,n,Xk)

∣∣∣≤ H(Xk)+2H(Xk)H̃(Xk),

then

E|Y 1
n (t)−Y 1

n (s)| ≤
1
n ∑
[ns]<k≤[nt]

E
(
H(Xk)+2H(Xk)H̃(Xk)

)
≤C

(
|t− s|+ 1

n

)
,

which implies (3.37) for Y 1
n (t). Using Proposition 3.27 once again, we get

|Mk−Mk−1|=
∣∣R̃g(ζk−1,n,Xk)−Rg(ζk−1,n,Xk−1)

∣∣≤ 3H(Xk),

which shows that the sequence E(Mk−Mk−1)
2 is bounded. Because {Mk} is a martingale,

this yields

E
(
Y 2

n (t)−Y 2
n (s)

)2
=

1
n ∑
[ns]<k≤[nt]

E(Mk−Mk−1)
2 ≤C

(
|t− s|+ 1

n

)
,
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which implies (3.37) for Y 2
n (t). Finally, by (3.33),

sup
t∈[0,1]

E|Y 3
n (t)| → 0, n→ ∞,

which implies (3.37) for Y 3
n (t) and completes the proof of the weak compactness.

Step II: identification of a limit point. Let Y be a limit point for the sequence {Yn}; that
is, for some subsequence {Ynk} all its finite-dimensional distributions converge weakly
to the respective distributions of Y . By (3.37) and by Fatou’s lemma, the process Y is
continuous in L1:

sup
s,t∈[0,1]:|t−s|<δ

E|Y (t)−Y (s)| → 0.

In particular, there exists its measurable modification. In what follows, we assume that Y

itself is measurable; in order to simplify the notation, we assume that Y is a weak limit of
the entire sequence {Yn}.

Fix φ ∈C∞
0 (R). To prove that

φ
(
Y (t)

)
−
∫ t

0
L φ

(
Y (s)

)
ds, t ∈ [0,1]

is a martingale w.r.t. the natural filtration of Y , it suffices to prove the following: for every
t > s, m≥ 1, s1, . . . ,sm ∈ [0,s], F ∈Cb(Rm)

E

(
φ
(
Y (t)

)
−
∫ t

s
L φ

(
Y (v)

)
dv
)

G
(
Y (s1), . . . ,Y (sm)

)
= 0. (3.38)

Denote
Qφ(ζ ,x) = φ

′(ζ )
(

f (ζ ,x)+g(ζ ,x)
(
∂ζ R̃g

)
(ζ ,x)

)
+

1
2

φ
′′(ζ )

(
g2(ζ,x)+2g(ζ ,x)R̃g(ζ ,x)

)
, (3.39)

then by (3.32), for every n≥ 1, the process

φ
(
Yn(t)

)
+

1√
n

U[nt],n−
∫ [nt]

0

(
Qφ
(
Yn(v),X[nv]

)
+nϑ[nr],n

)
dv

is a martingale w.r.t. the filtration
{
F n

t = σ(Xk,k ≤ nt), t ∈ [0,1]
}

. Recall that {ϑk,n}
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satisfies (3.33) and

E|Uk,n| ≤C, E|Qφ(Yn(v),X[nv])| ≤C

by Proposition 3.27. Hence

E

(
φ
(
Yn(t)

)
−
∫ t

s
Qφ
(
Yn(v),X[nv]

)
dv
)

F
(
Yn(s1), . . . ,Yn(sm)

)
→ 0, n→ ∞. (3.40)

Because
(
Yn(t),Yn(s1), . . . ,Yn(sm)

)
converges weakly to

(
Y (t),Y (s1), . . . ,Y (sm)

)
and φ ,

F are continuous and bounded,

Eφ
(
Yn(t)

)
F
(
Yn(s1), . . . ,Yn(sm)

)
→ Eφ

(
Y (t)

)
F
(
Y (s1), . . . ,Y (sm)

)
, n→ ∞.

Hence, to obtain (3.38), we have to prove that

E

(∫ t

s
Qφ
(
Yn(v),X[nv]

)
dv
)

F
(
Yn(s1), . . . ,Yn(sm)

)
→ E

(∫ t

s
Lφ

(
Y (v)

)
dv
)

F
(
Y (s1), . . . ,Y (sm)

)
, n→ ∞. (3.41)

We follow the same idea we used in the proof of Theorem 3.13: first, we will delay

the time variable in the term Yn(v) under the integral; second, we will make use of the
stabilization property and derive (3.41).

By Proposition 3.27 and Proposition 3.28,

|Qφ(ζ ,x)| ≤ G(x), |Qφ(ζ1,x)−Qφ(ζ2,x)| ≤ |ζ1−ζ2|δ G(x),

where
G =C(H + H̃)2 ∈ L1+δ/2(X,π).

Denote δ ′ = δ/(2+δ ) < δ , then

|Qφ(ζ1,x)−Qφ(ζ2,x)| ≤max
{
|ζ1−ζ2|δ G(x),2G(x)

}
≤ 2|ζ1−ζ2|δ

′
G(x).

Hence for any vn ∈ [0,v],

E|Qφ(Yn(v),X[nv])−Qφ(Yn(v− vn),X[nv])|
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≤ 2E|Yn(v)−Yn(v− vn)|δ
′
G(Xk)

≤ 2
(
E|Yn(v)−Yn(v− vn)|δ

′(2+δ )/δ

)δ/(2+δ )(
E(G(Xk))

1+δ/2
)2/(2+δ )

=C
(
E|Yn(v)−Yn(v− vn)|

)δ/(2+δ )
.

Using (3.37) and the previous inequality, we get

E

(∫ t

s+vn

(
Qφ
(
Yn(v),X[nv]

)
−Qφ

(
Yn(v− vn),X[nv]

))
dv
)

F
(
Yn(s1), . . . ,Yn(sm)

)
→ 0

for any deterministic sequence {vn} such that vn → 0. Note also that the integrals over
the time interval [s,s+ vn] in both sides of (3.41) are negligible because Qφ , L φ are
bounded.

This was the first (delay) part of the argument. The second (stabilization) part is almost
literally similar to that in the proof of Theorem 3.13, and hence we just sketch it. Let
QLφ , L ≥ 1 be the functions defined by the formula (3.39), where R̃, ∂ζ R̃ are replaced
by R̃L, ∂ζ R̃L, L ≥ 1, respectively; see the notation in the proof of Proposition 3.28. Let
{vn} be such that nvn→ 0, then for any L≥ 1,

E

(∫ t

s+vn

(
QL

φ
(
Yn(v− vn),X[nv]

)
−L L

φ
(
Yn(v− vn)

))
dv
)

F
(
Yn(s1), . . . ,Yn(sm)

)
→ 0,

where
L L

φ(ζ ) =
∫
X

QL
φ(ζ ,x)π(dx).

This relation follows from our principal assumption (3.16); the argument is very simi-
lar to that in the proof of Lemma 3.20, and we leave the detailed proof as an exercise
for the reader. It follows from the estimates given in the proof of Proposition 3.27 and
Proposition 3.28 that

E
∫ t

s+vn

∣∣∣QL
φ
(
Yn(v− vn),X[nv]

)
−Qφ

(
Yn(v− vn),X[nv]

)∣∣∣ dv→ 0, L→ ∞

uniformly w.r.t. s, t, n, and that

L L
φ(ζ )→L φ(ζ ), L→ ∞
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uniformly w.r.t. ζ . Every function L Lφ is continuous (actually, even Hölder continuous
with the index δ ) and bounded, hence L φ is continuous and bounded, as well. Then it
follows from the weak convergence of Yn to Y and (3.37), that

E

(∫ t

s+vn

L φ
(
Yn(v− vn)

)
dv
)

F
(
Yn(s1), . . . ,Yn(sm)

)
=

(∫ t−vn

s
L φ

(
Yn(v)

)
dv
)

F
(
Yn(s1), . . . ,Yn(sm)

)
→ E

(∫ t

s
L φ

(
Y (v)

)
dv
)

F
(
Y (s1), . . . ,Y (sm)

)
, n→ ∞;

again, we leave the detailed proof for the reader. This completes both the proof of (3.41)
and the proof of Theorem 3.23.
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