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ASYMPTOTIC EXPANSIONS AT NONSYMMETRIC CUSPIDAL

POINTS

IBRAHIM LY AND NIKOLAI TARKHANOV

Abstract. We study asymptotics of solutions to the Dirichlet problem in

a domain X ⊂ R
3 whose boundary contains a singular point O. In a small

neighbourhood of this point the domain has the form {z >
√

x2 + y4}, i.e., the
origin is a nonsymmetric conical point at the boundary. So far the behaviour

of solutions to elliptic boundary value problems has not studied well in the case

of nonsymmetric singular points. This problem was posed by V.A. Kondrat’ev
in 2000. We establish a complete asymptotic expansion of solutions near the

singular point.
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Introduction

In 2000 V.A. Kondrat’ev called the attention of the second author to the problem
of asymptotics of solutions of the Dirichlet problem in a bounded domain X ⊂ R

3

with a nonsymmetric singular point O at the boundary. By the local principle in
elliptic theory the behaviour of any solution in a neighbourhood of O is completely
determined by the nature of the singular point and the data of the problem nearby
O. This allows one to restrict the study to a small neighbourhood U of O, in which
the boundary surface does not contain any singular point different from O. One
chooses a coordinate system in R

3 with origin at O, and so the domain in question

looks like {z >
√

x2 + y4}.
The behaviour of solutions to elliptic boundary value problems in domains with

conical points at the boundary was completely described in the seminal paper

[Kon67]. However, the singular point of {z >
√

x2 + y4} goes beyond the class
of singular points treated in [Kon67]. The plane {y = 0} meets X over the corner
{z > |x|} while the intersection of X with any plane {y = c}, |c| � 1, is a smoothly
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2 I. LY AND N. TARKHANOV

bounded domain. Hence, on thinking of the intersection of ∂X with the plane
{x = 0} as artificial smooth edge at the boundary surface we don’t achieve any
smooth cone bundle structure of X close to the origin. This clarifies the surprise
at this problem.

In [RST01] a simple change of variables is shown which reduces the Dirichlet
problem in X to analysis of pseudodifferential operators with slowly varying symbols
in domains with cuspidal points at the boundary. Within the framework of calculus
of such operators elaborated in [RST00] it is possible to give certain criteria in terms
of operator-valued symbols for the Fredholm property of the Dirichlet problem in
appropriate weighted Sobolev spaces. However, the theory of [RST00] falls short
of providing explicit asymptotic expansions of solutions in a neighbourhood of the
singular point.

The present paper is aimed at constructing asymptotic expansions of solutions
close to the singular point, thus completing [RST01]. To do this we first localise
the problem to a neighbourhood of the singular point O to see that it degenerates
at O to a nonelliptic problem. Hence it follows that the techniques of construct-
ing formal solutions to the boundary value problem developed in [AKT14] do not
apply to suggest any crude solution. Although the problem reduces to an ordinary
differential equations U̇ = A(t)U +F with operator-valued coefficients independent
of t up to a separate interfering factor e2t, the long-standing results of [Paz67] do
not lead to a satisfactory solution, for the limit problem related to A(−∞) is quite
sophisticated.

The approach we take is an extension of [PT03]. It is based on a structure
theorem for solutions with a compact set of singularities for elliptic equations with
real analytic coefficients, see [Tar95, Ch. 3]. For an efficient use of this theorem one
ought to have merely a fundamental solution of the differential equation, which is
often the case. The approach can be extended to boundary value problems both
for parabolic and hyperbolic equations. However, this topic exceeds the scope of
this paper.

1. Reduction of the Dirichlet problem

Let X be a bounded domain in R
3 whose boundary is smooth except for a

singular point O which we identify with the origin of R3. In a neighbourhood U of

O the domain X has the form {z >
√

x2 + y4}. It is easy to see that the boundary
of X is a Lipschitz surface.

Given a distribution f ∈ H−1(R3) with support in the closure of X and a function
u0 ∈ H1/2(∂X ) at the boundary of X , there is a unique function u ∈ H1(X )
satisfying { Δu = f in X ,

u = u0 at ∂X ,
(1.1)

see for instance [Agr13]. By the equality u = u0 at ∂X is meant that the trace of
u at the boundary in the sense of Sobolev spaces coincides with u0. However, this
no longer holds if the data f and u0 fail to be as regular as above. In particular,
there are infinitely many linearly independent harmonic functions u in X of finite
order of growth near the boundary whose weak limit values vanish at ∂X \{O}, cf.
[PT03].

Pick an open cover U1 and U2 of the closure of X in R
3, such that U1 = U

and U2 is bounded away from the origin. Let ϕ1 = ϕ and ϕ2 = 1 − ϕ be a C∞
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partition of unity on U1 ∪ U2 subordinate to this cover. Then ϕ is equal to 1 in a
neighbourhood of U \ U2. Choose any subdomain X ′ of X with smooth boundary,
such that X \ X ′ is a compact subset of U \ U2. Consider the Dirichlet problem
in X ′ with data ϕ2f and ϕ2u0 in X ′ and at ∂X ′, respectively. This problem has
a unique solution u2 = G(ϕ2f) + P (ϕ2u0) in compliance with elliptic regularity in
Sobolev spaces in X ′. Let ψ2 be a smooth function in U1∪U2, such that ψ2 vanishes
in a neighbourhood of X \ X ′ and ψ2 ≡ 1 on the support of ϕ2. The product ψ2u2

is well defined in all of X and it satisfies Δ(ψ2u2) = f in a neighbourhood of X \U
and ψ2u2 = u0 in a neighbourhood of ∂X \ U . If now u is any solution of problem
(1.1), then the difference u − ψ2u2 satisfies Δ(u − ψ2u2) = 0 in a neighbourhood
of X \ U and u − ψ2u2 = 0 in a neighbourhood of ∂X \ U . By the local elliptic
regularity we conclude that u−ψ2u2 is smooth in X \U up to the boundary. Hence,
to describe the behaviour of solutions of the Dirichlet problem near the singular
point O, it suffices to solve (1.1) in X ∩U with data f and u compactly supported
in X ∩ U and ∂X ∩ U , respectively.

To this end we introduce new coordinates in the upper half-space {z > 0} by
the formulas ⎧⎨

⎩
x = r2x1,
y = rx2,
z = r2,

(1.2)

where (x1, x2) ∈ R
2 and r > 0. The determinant of the Jacobi matrix of (1.2) is

2r4, hence the coordinates are singular at the hyperplane {r = 0}. Under (1.2) this
hyperplane is blown-down to the origin O.

On using the chain rule we get

∂

∂x
=

1

r2
∂

∂x1
,

∂

∂y
=

1

r

∂

∂x2
,

∂

∂z
=

1

2r2

(
r
∂

∂r
− 2x1

∂

∂x1
− x2

∂

∂x2

)
,

and so the pullback of the Laplace operator c�Δ = c∗Δ(c∗)−1 under the change of
variables (1.2) takes the form

c�Δ =
1

4r4

(
(r∂r)

2 − 2 (E+1) (r∂r) + 4∂2
1 + 4r2∂2

2 + E (E+2)
)
,

where

E = 2x1∂1 + x2∂2.

Note that the Fuchs derivative r∂r is typical for analysis on spaces with conic
singularities.

By abuse of notation, we continue to write u for the pullback c∗u under the
change of variables (1.2), and similarly for the data f and u0. Then problem (1.1)
reduces to {

c�Δu = f in D × (0, 1),
u = u0 at ∂D × (0, 1),

where D is the domain in the plane of variables x1 and x2 consisting of those points
(x1, x2) which satisfy x2

1 + x4
2 < 1. The data f and u0 are assumed to vanish for r

close to r = 1. Thus, after blowing up the singularity at O we arrive at a boundary
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value problem in the cylinder D× (0, 1) with no data posed at the base D×{0} of
the cylinder.

Our next goal is to transform the scalar equation c�Δu = f to a system of two
equations of the first order in the Fuchs derivative. To this end we introduce the
function

U =
(

u1

u2

)

with values in R
2, where u1 = u and u2 = (r∂r)u1. For U we obtain immediately

the boundary value problem

{
(r∂r)U = A(r)U + F in D × (0, 1),

BU = U0 at ∂D × (0, 1),
(1.3)

where

A(r) =
( 0 1

−4∂2
1 − 4r2∂2

2 − E(E+2) 2(E+1)

)
, B =

( 1 0
0 0

)

and F =
( 0

4r4f

)
and U0 =

( u0

0

)
.

2. Specification within edge calculus

Problem (1.1) can be also handled within the framework of analysis on spaces
with edges. To do this, we think of the curve z = y2 in the plane of variables (y, z)
as artificial edge at the boundary of X lying in U , and give X ∩U the structure of
(stretched) cone bundle over the edge. In our case the only singular point of the
edge is the origin O.

To wit, we introduce the new coordinates

x1 = y,

x2 =
x√

z2 − y4
,

r =
√
z2 − y4,

so that x1 is a coordinate along the edge, x2 ∈ (−1, 1) a coordinate along the base
of the cylinder which is actually the fibre cone blown up at the vertex, and r > 0 is
a coordinate along the axis of the cylinder which is the distance to the edge. The
inverse transformation is

x = rx2,
y = x1,

z =
√
x4
1 + r2,

(2.1)

whence

∂

∂x
=

1

r

∂

∂x2
,

∂

∂y
=

∂

∂x1
+

2x3
1x2

r2
∂

∂x2
− 2x3

1

r

∂

∂r
,

∂

∂z
= −

√
x4
1 + r2x2

r2
∂

∂x2
+

√
x4
1 + r2

r

∂

∂r
.
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A routine computation now shows that the pullback of the Laplace operator under
the change of variables (2.1) is

c�Δ =
( ∂

∂x1

)2

+
4x3

1x2

r2
∂

∂x1

∂

∂x2
+

( 1

r2
+

(4x6
1 + x4

1 + r2)x2
2

r4

)( ∂

∂x2

)2

− 4x3
1

r

∂

∂x1

∂

∂r
− 2(4x6

1 + x4
1 + r2)x2

r3
∂

∂x2

∂

∂r
+

4x6
1 + x4

1 + r2

r2

( ∂

∂r

)2

up to terms containing the derivatives of order less than or equal to one in x1, x2

and r.
On comparing the pullbacks of the Laplace operator under transformations (1.2)

and (2.1) we deduce that the first of the two suits better for analysis than the
second one. Explicit results seem thus to depend on the good fortune of researcher
in discovering proper cordinates in a neighbourhood of the singular point 0 to
interpret the singularity.

3. Formal solutions

In order to set up an adequate functional theoretical approach to problem (1.3)
we specify the formal solutions to this problem. Since (1.3) is of Fuchs type, analysis
on manifolds with conical singularities suggests an Ansatz for solutions. To wit,
this is

U(x, r) =

∞∑
j=1

mj−1∑
k=0

Uj,k(x) r
λj (log r)k, (3.1)

where λj are complex numbers satisfying 	λ1 ≤ 	λ2 ≤ . . ., and mj are natural
numbers to be determined. The coefficients Uj,k are assumed to be sufficiently
smooth functions in the closure of D. For definiteness, we assume that the coeffi-
cient U1,m0−1 is different from zero. The advantage of using this Ansatz lies in the
fact that

(r∂r)
(
rλj (log r)k

)
= rλj

(
λj(log r)

k + k(log r)k−1
)
.

A routine computation shows that

(r∂r)U =
∞∑
j=1

mj−1∑
k=0

(λjUj,k + (k + 1)Uj,k+1) r
λj (log r)k,

A(r)U =
∞∑
j=1

mj−1∑
k=0

A(0)Uj,k r
λj (log r)k +

∞∑
j=1

mj−1∑
k=0

(A(1)−A(0))Uj,k r
λj+2(log r)k,

for the matrix A(r) = A(0) + r2(A(1)−A(0)) depends polynomially on r. On sub-
stituting the series for U(x, r) into the boundary value problem (1.3) and equating
the coefficients of the same terms rλ1(log r)k we obtain a collection of successive
equations {

kU1,k = (A(0)−λ1I)U1,k−1 + F1,k−1 in D,
BU1,k−1 = U0;1,k−1 at ∂D

(3.2)

for k = 1, . . . ,m1, where V1,m1 := 0.
By F1,k and U0;1,k are meant the coefficients of rλ1(log r)k in the expansions of

F and U0, respectively.
We restrict our attention to formal solutions of the homogeneous boundary value

problems, for the data f and u0 may initiate their own “frequencies” in the solution.
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In this case equations (3.2) just amount to saying that U1,m1−1 is an eigenfunction
of the operator A(0) corresponding to the eigenvalue λ1 of algebraic multiplicity
m1, and

k!

(m1 − 1)!
U1,k

for k = 0, 1, . . . ,m1−1 is the corresponding chain of associated functions. Moreover,
each U1,k satisfies the boundary condition BU1,k = 0.

Pick any eigenvalue λ1 of algebraic multiplicity m1 for the differential operator
A(0) in D subject to the boundary condition BU = 0. This enables us to find
smooth functions U1,k for k = 0, . . . ,m1 − 1, such that U is a solution to (1.3) up
to terms of order

O(rλ1+2(log r)m1−1).

Our next objective is to improve this solution U by introducing amendments into
formula (3.1). If there exist different eigenvalues λj of A(0) subject to B, which
satisfy 	λ1 ≤ 	λj ≤ 	λ1+2, then arguing as above we evaluate several new terms
in expansion (3.1). However, the discrepancy of the formal solution obtained in this
way still remains to be of order O(rλ1+2(log r)m1−1). To reduce it, we go beyond
the spectrum of A(0).

Set λ2 := λ1 + 2 and m2 := m1. On substituting the series for U(x, r) into
the boundary value problem (1.3) and equating the coefficients of the same terms
rλ2(log r)k we obtain a collection of successive equations
{ kU2,k = (A(0)−λ2I)U2,k−1 + (A(1)−A(0))U2,k−1 + F2,k−1 in D,

BU2,k−1 = U0;2,k−1 at ∂D
(3.3)

for k = 1, . . . ,m2, where U2,m2 := 0.
Even if the data f and u0 are zero, the equation for U2,m2−1 is inhomogeneous

and so it possesses a nonzero solution, provided that λ2 is away from the spectrum of
the differential operator A(0) subject to B. Under this choice of λ2 the formal series
U satisfies (1.3) up to terms of order O(rλ2+2(log r)m2−1). If λ2 is an eigenvalue of
A(0) subject to B, the question of solvability of equations (3.3) requires a careful
examination, cf. [AKT14].

The analysis of formal solutions displays strikingly the main difficulty which
occurs in the study of asymptotic expansions at nonsymmetric singularities. On
passing to appropriate coordinates one obtains a problem with small parameter
r > 0 which degenerates at r = 0 to a nonelliptic problem. Another way of stating
this is to say that the degeneration is nonregular, i.e., it can no longer be treated
within elliptic theory. To wit,

A(0) =
(

0 1
−4∂2

1 − (E+1)2 + 1 2(E+1)

)

and (1.3) reduces to the boundary value problem
{ (

4∂2
1 + E(E+2)

)
u = f in D,
u = u0 at ∂D,

(3.4)

in the domain D ⊂ R
2 consisting of those (x1, x2) which satisfy x2

1 + x4
2 < 1. This

is the Dirichlet problem in D for a second order partial differential equation whose
symbol vanishes with multiplicity 2 on the submanifold {x2 = 0, ξ1 = 0} of the
cotangent bundle T ∗

R
2 ∼= R

4. This fits well into the analysis of the problem in
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the domain X containing the artificial edge {x = 0, z = y2} at the boundary, cf.
Section 2. Perhaps the nonstandard problem (3.4) can be treated explicitly in detail,
however, it gives rather an evidence to the inadequacy of the techniques chosen for
studying asymptotics at nonsymmetric conical points, let alone singular points of
more involved nature. This is just a good motivation for our approach which
exploits a sophisticated structure formula for harmonic functions with arbitrary
compact set of singularities, see Theorem 3.2.1 in [Tar95]. The approach applies
not only to harmonic functions but also to solutions of arbitrary elliptic equations
with real analytic coefficients in a neighbourhood of the closure of X . In order to
get asymptotic result, it is necessary to get a fundamental solution of the partial
differential equation in an explicit form, which is obviously the case for the Laplace
equation.

4. A structure theorem

In order to apply the results of [Tar95, Ch. 3] to problem (1.1) we intend to reduce
it to a boundary value problem for solutions of a homogeneous elliptic equation,
to wit, to the Dirichlet problem for harmonic functions. We do this in a standard
manner.

Let f ∈ H−1(X ). Since

H−1(X ) = (H1(X ))′ ∼=
( H1(Rn)

C∞
comp(R

n \ X )

)′ ∼= (
C∞

comp(R
n \ X )

)o
= H−1

X (Rn),

the subspace of H−1(Rn) consisting of all distributions with support in X , we can
think of f as a distribution in H−1(Rn) supported in X . Write Φ for the standard
fundamental solution of convolution type of the Laplace operator in R

n. For n �= 2,
we get

Φ(x) =
1

σn

|x|2−n

2− n
,

where σn is the surface area of the unit sphere in R
n, and Φ(x) = (2π)−1 log |x|,

if n = 2. The convolution Φ ∗ f is known to belong to H1
loc(R

n) and satisfy
Δ(Φ ∗ f) = f in R

n. Hence, if one looks for a solution of problem (1.1) of the form
u = v + Φ ∗ f in X , then the problem reduces to

{
Δv = 0 in X ,
v = u0 − Φ ∗ f at ∂X ,

the limit values of the solution at the boundary are required to constitute a function
in H1/2(∂X ).

Thus, the contribution of the right hand side f into the solution u is localised
in the term Φ ∗ f . Pick any C∞ function ϕ with compact support in a small
neighbourhood U of the singular point O, which is equal to one close to O. Then,
the potential Φ ∗ ((1−ϕ)f) is a harmonic function in a neighbourhood of O and
the singular behaviour of Φ ∗ f near O is encoded in the summand Φ ∗ (ϕf) to be
handled independently.

We restrict our attention to the study of singularities of v near O. To this end, we
note that X is a Lipschitz domain and so its boundary is a rectifiable surface. The
surface ∂X is a regular compact subset of R3 and the induced Lebesgue measure
ds on ∂X is massive, see [Tar95, S. 3.1]. The function V in R

3 \ ∂X , which is equal
to v in X and to 0 in the complement of X , is harmonic away from the boundary
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of X . On applying Corollary 3.2.11 of [Tar95] to the function V one arrives at the
formula

v(x) =

∞∑
j=0

∫
∂X

hj(y, x− y)

|x− y|n+2(j−1)
ds (4.1)

for all x ∈ X , where hj(y, ξ) are homogeneous harmonic polynomials of degree j in
ξ with coefficients of class L2(∂X ) in y. The coefficients are shown to satisfy the
growth condition

lim
j→∞

( 1

j!

∫
∂X

|hj(y, ∂ξ)
∗hj(y, ξ)| ds

)1/2j

= 0,

which is typical for hyperfunction theory. Under this condition, the series in (4.1)
converges uniformly on compact subsets of X .

Remark 4.1. Conversely, each function v of the form (4.1) is harmonic in the domain
X .

It is worth pointing out that if v is a harmonic function in X smooth up to the
boundary of X then

v(x) =

∫
∂X

(
− 1

σn

1

2−n

1

|x−y|n−2

∂v

∂ν
(y)− 1

σn

(ν(y), x−y)

|x−y|n v(y)
)
ds

for all x ∈ X , which is due to the Green formula. Here, ν(y) is the outward unit
normal vector to the boundary at a point y ∈ ∂X . Comparing this formula with
(4.1) yields

h0(y, ξ) = − 1

σn

1

2−n

∂v

∂ν
(y),

h1(y, ξ) = − 1

σn
(ν(y), ξ) v(y).

For general v ∈ H1(X ) the restriction of the normal derivative to the boundary
is no longer defined in the sense of Sobolev spaces. It has mere weak limit values
at ∂X belonging to H−1/2(∂X ). Hence, the first boundary integrand in the Green
formula should be rearranged to fit well into representation (4.1). This shows that
(4.1) is much more refined than the Green formula for harmonic functions. The
harmonic polynomials hj(y, ξ) can be thought of as generalised boundary values
of the harmonic function v. However, they fail to be uniquely determined by v in
general.

A harmonic function v on X is said to be of finite order of growth near the
boundary of X if there are a natural number Q and a constant C > 0 with the
property that |v(x)| ≤ C dist(x, ∂X )−Q holds for all x ∈ X . It is obvious that the
summands of (4.1) are of finite order of growth near ∂X . Hence, if the series breaks
up, then the function v is of finite order of growth near ∂X , too. Conversely, if v is a
harmonic function in X of finite order of growth near the boundary, then it admits a
representation (4.1) with finitely many terms. More precisely, denote by S(∂X ) the
vector space of functions harmonic on neighbourhoods of ∂X . Since each harmonic
function is real analytic, the family of seminorms ‖∂αg‖L2(∂X ) parametrised by
α ∈ Z

n
≥0 makes S(∂X ) to a metrisable locally convex space. (Clearly, this space

is not complete.) Any harmonic function v in X defines a linear functional Fv on
S(∂X ) by the formula

Fv(g) =

∫
∂Ug

(
g
∂v

∂ν
− ∂g

∂ν
v
)
ds
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for g ∈ S(∂X ), where Ug is a relatively compact domain in X with piecewise smooth
boundary, such that g is still harmonic near the closure of X \Ug. From the Green
formula it follows that Fv is well defined, i.e., it does not depend on the particular
choice of Ug.

Theorem 4.2. In order that a harmonic function v in X have a representation of
the form

v(x) =

N∑
j=0

∫
∂X

hj(y, x− y)

|x− y|n+2(j−1)
ds,

where hj(y, ξ) are homogeneous harmonic polynomials of degree j in ξ with coeffi-
cients of class L2(∂X ) in y, it is necessary and sufficient that the functional Fv on
S(∂X ) be continuous.

Proof. For the proof it suffices to apply Theorem 3.2.9 of [Tar95] to the harmonic
function V in R

n \ ∂X which is equal to v in X and 0 away from the closure of
X . �

On returning back to the solution of the Dirichlet problem (1.1) we get

u(x) =

N∑
j=0

∫
∂X

ϕ(y)
hj(y, x−y)

|x−y|n+2(j−1)
ds+ Φ ∗ (ϕf)(x),

for x ∈ X close to O, up to a harmonic function in some neighbourhood of the
singular point O. This representation allows one to specify the asymptotics of
u(x), when x ∈ X converges to O, as long as f belongs to H−s(X ) with a finite
integer s > 0. One may conjecture that N can be taken to be s+1 but we will not
develop this point here.

5. Return to classical potential theory

The approach developed in the last section extends actually to boundary value
problems for solutions of elliptic partial differential equations of order two with
real analytic coefficients. More precisely, assume that X is a bounded domain
with rectifiable boundary in R

n. The boundary of X may contain, e.g., a finite
number of cuspidal points or edges, etc. The induced Lebesgue measure ds on ∂X
is obviously massive, i.e., any subset of ∂X of measure zero has no interior points.
Let A be a second order partial differential operator with real analytic coefficients
in a neighbourhood of X . Our basic assumption is that A is elliptic. Then A
possesses a two-sided fundamental solution Φ in a neighbourhood of X which is a
pseudodifferential operator of order −2. As usual, we write Φ(x, y) for the Schwartz
kernel of A. The approach is efficient provided one is in a position to construct
Φ(x, y) in an explicit form. Consider the problem of finding a function u in X
satisfying the equation Au = f in X and a boundary condition Bu = u0 at ∂X .
In order to get asymptotic results, it is necessary to put some restrictions on the
right hand side f . We require f to belong to H−s(X ) for some integer s > 0 to
not go beyond the class of solutions u of finite order of growth near the boundary
of X . Then f can be thought of as a distribution in H−s(Rn) with support in
the closure of X . The potential U := Φ(f) restricted to X solves the differential
equation AU = f in X . Hence, on setting u = v + U we reduce our boundary
value problem to Av = 0 in X and Bv = v0 at ∂X , where v0 = u0 − BU . This
reduction initiates the problem of specifying BU within distributions on the surface



10 I. LY AND N. TARKHANOV

∂X . Since AU = f in X , under reasonable conditions the restriction of BU to the
boundary can be defined with the help of the Green formula for A. The study of
the behaviour of Φ(f) near the surface ∂X makes a part of the theory of classical
pseudodifferential operators. Hence, we restrict our discussion to the behaviour of
v close to ∂X in X . Any Poisson type formula v = ℘(v0) assumes the knowledge of
the singularities of the Poisson kernel ℘(x, y) in x ∈ X and y ∈ ∂X . Hence, it is an
issue rather than a tool for studying asymptotic behaviour of v at the boundary.
With this as our starting point we exploit the structure theorem for solutions of
Av = 0 away from the compact set ∂X , see Theorem 3.2.9 in [Tar95]. Assuming
v to be of finite order of growth at the boundary and applying Theorem 3.2.9 of
[Tar95] to the solution V given by v in X and to zero away from the closure of X ,
we get

v(x) =
∑

|α|≤N

∫
∂X

∂α
y Φ(x, y) c−α(y) ds (5.1)

for all x ∈ X , where c−α ∈ L2(∂X ) for |α| ≤ N . Formula (5.1) is more general
than the representation of Theorem 4.2. Using a suitable cut-off function ϕ we may
localise this formula to any singular part of ∂X , thus displaying typical asymptotics
of the solution.

Remark 5.1. An easy calculation shows that in this way we recover, in particular,
the so-called Fuchs type asymptotics which are typical for conical points at the
boundary.

Formula (5.1) shows that the classical approach to boundary value problems
for elliptic equations based on potential theory (see for instance [Lop53]) gains in
importance for analysis on singular spaces.
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