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Abstract

Plant cell walls are complex structures that underpin plant growth and are widely exploited in
diverse human activities thus placing them with a central importance in biology. Cell walls have
been a prominent area of research for a long time, but the chemical complexity and diversity
of cell walls not just between species, but also within plants, between cell-types, and between
cell wall micro-domains pose several challenges. Progress accelerated several-fold in cell wall
biology owing to advances in sequencing technology, aided soon thereafter by advances in omics
and imaging technologies. This development provides additional perspectives of cell walls across
a rapidly growing number of species, highlighting a myriad of architectures, compositions, and
functions. Furthermore, rather than the component centric view, integrative analysis of the
different cell wall components across system-levels help to gain a more in-depth understanding
of the structure and biosynthesis of the cell envelope and its interactions with the environment.

To this end, in this work three case studies are detailed, all pertaining to the integrative
analysis of heterogeneous cell wall related data arising from different system-levels and analytical
techniques. A detailed account of multiblock methods is provided and in particular canonical
correlation and regression methods of data integration are discussed. In the first integrative
analysis, by employing canonical correlation analysis - a multivariate statistical technique to
study the association between two datasets - novel insight to the relationship between glycans
and phenotypic traits is gained. In addition, sparse partial least squares regression approach that
adapts Lasso penalization and allows for the selection of a subset of variables was employed. The
second case study focuses on an integrative analysis of images obtained from different spectro-
scopic techniques. By employing yet another multiblock approach - multiple co-inertia analysis,
insitu biochemical composition of cell walls from different cell-types is studied thereby high-
lighting the common and complementary parts of the two hyperspectral imaging techniques.
Finally, the third integrative analysis facilitates gene expression analysis of the Arabidopsis root
transcriptome and translatome for the identification of cell wall related genes and compare ex-
pression patterns of cell wall synthesis genes. The computational analysis considered correlation
and variation of expression across cell-types at both system-levels, and also provides insight into
the degree of co-regulatory relationships that are preserved between the two processes.

The integrative analysis of glycan data and phenotypic traits in cotton fibers using canonical
methods led to the identification of specific polysaccharides which may play a major role during
fiber development for the final fiber characteristics. Furthermore, this analysis provides a base
for future studies on glycan arrays in case of developing cotton fibers. The integrative analysis
of images from infrared and Raman spectroscopic approaches allowed the coupling of different
analytical techniques to characterize complex biological material, thereby, representing various
facets of their chemical properties. Moreover, the results from the co-inertia analysis demon-
strated that the study was well adapted as it is relevant for coupling data tables in a symmetric
way. Several indicators are proposed to investigate how the global and block scores are related.
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In addition, studying the root cells of Arabidopsis thaliana allowed positing a novel pipeline
to systematically investigate and integrate the different levels of information available at the
global and single-cell level. The conducted analysis also confirms that previously identified key
transcriptional activators of secondary cell wall development display highly conserved patterns
of transcription and translation across the investigated cell-types. Moreover, the biological pro-
cesses that display conserved and divergent patterns based on the cell-type-specific expression
and translation levels are identified.





Abstrakt

Pflanzliche Zellwände sind komplexe Strukturen, die wichtig für das Zellwachstum und auch
nützlich für den Menschen sind, weshalb sie eine wichtige zentrale Rolle in der Biologie haben.
Zellwände sind schon seit einiger Zeit ein bedeutsames Untersuchungsgebiet, jedoch stellen Fra-
gen nach der chemischen Komplexizität und Diversität nicht nur zwischen Zellwänden ver-
schiedener Spezies, sondern auch innerhalb von Pflanzen, zwischen verschiedenen Zelltypen
und auch zwischen dem Mikro-Bereich von Zellwänden eine Herausforderung dar. Ein großer
Fortschritt in der Forschung konnte durch die Weiterentwicklung der Sequenziertechniken erzielt
werden, sowie auch durch Fortschritte der “omik”-Technologien und Imaging-Technologien.
Dieser Fortschritt ermöglicht eine zusätzliche Perspektive auf Zellwände über die stark wach-
sende Anzahl verschiedener Spezies, die eine Vielzahl von Architekturen, Zusammensetzung und
Funktionen hervorhebt. Des Weiteren werden statt einer Komponenten-zentrierten Sichtweise
eine integrative Analyse der verschiedenen Zellwandkomponenten über unterschiedliche Syste-
mebenen genutzt, um ein tieferes Verständnis über die Struktur und Biosynthese der Zellhülle
und ihrer Wechselwirkung mit der Umgebung zu erlangen.

Zu diesem Zweck werden in dieser Arbeit drei Fallstudien ausführlich beschrieben, die sich
alle auf die integrative Analyse von heterogenen zellwandbezogenen Daten beziehen, die von un-
terschiedlichen Systemebenen und analystischen Techniken stammen. Eine detailierte Darstel-
lung von Multiblock-Methoden wird verschafft, wobei besonders kanonische Korrelationsanalyse
und Regressionsmethoden der Datenintegration diskutiert werden. In der ersten Studie wer-
den unter Einsatz kanonischer Korrelationsanalyse - einer multivariaten statistischen Technik,
um Zusammenhänge zwischen zwei Datensätzen zu ermitteln - angewendet, um neue Erken-
ntnisse in Bezug auf die Beziehungen zwischen Glycanen und phenotypischen Merkmalen zu
erhalten. In der zweiten integrativen Analyse wird ein Sparse Partial Least Square Regres-
sionsansatz verwendet, der Lasso Penalization anwendet und die Auswahl von einem Sub-Set
von Variablen erlaubt. Außerdem fokussiert sich die zweite Studie auch auf integrative Anal-
yse von Bildern, die von zwei verschiedenen spektroskopischen Techniken aufgenommen wur-
den. Zunächst werden die zwei Sets von Bildern vor-bearbeitet und so aufbereitet, dass sie
eine Blockdaten-Struktur bilden. Durch Anwendung eines weiteren Multiblock-Verfahrens, der
multiple Co-Inertia Analyse, wird die in-situ biochemische Zusammensetzung der Zellwände
von verschiedenen Zelltypen untersucht und die Gemeinsamkeiten und Unterschiede der zwei
hyperspektralen Imaging-Techniken hervorgehoben. Zuletzt ermöglicht die dritte Studie eine
integrative Genexpressions-Analyse des Arabidopsis Wurzeltranskriptoms und -translatoms zur
Identifikation von zellwandbezogenen Genen und dem Vergleich von Expressionsmustern von
Zellwandsynthese-Genen. Die numerische Analyse zieht sowohl Korrelation als auch Variation
der Genexpression verschiedener Zelltypen auf den beiden Systemebenen in Betracht und liefert
so einen Einblick in den Grad der ko-regulierten Beziehungen, die zwischen den beiden Prozessen
konserviert sind.
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Die integrative Analyse der Glycandaten und den phenotypischen Merkmalen in Baum-
wollfasern unter Benutzung der kanonischen Methoden führte zur Identifikation von spezifischen
Polysacchariden, welche eine wesentliche Rolle für die Entwicklung der finalen Fasereigenschaften
spielen könnten. Weiterhin stellt diese Analyse eine Basis für zukünftige Studien über Glyca-
narrays von sich in der Entwicklung befindlichen Baumwollfasern dar. Die integrative Analyse
von Bildern von Infrarot- und Raman-spektroskopischen Methoden erlaubt die Verknüpfung
von verschiedenen analytischen Techniken, um komplexes biologisches Material zu charakter-
isieren, und somit eine Vielzahl ihrer chemischen Eigenschaften darzustellen. Darüber hinaus
zeigen die Ergebnisse der Co-Inertia Analyse, dass die Studie gut adaptiert ist, was relevant
für die symmetrische Verknüpfung von Datentabellen ist, aber auch weil mehrere Indikatoren
vorgestellt wurden, um zu untersuchen, in wie fern die globalen und Block-Scores in Beziehung
stehen. Außerdem konnte durch die Untersuchung der Wurzelzellen von Arabidopsis thaliana
eine neue Pipeline zur systematischen Untersuchung und Integration verschiedener Information-
sebenen auf globaler und Einzelzellebene zuzüglich Identifikation von zellwandbezogenen Genen
postuliert werden. Die ausgeführte Analyse bestätig auch, dass vorherige identifizierte Schlüssel-
Transkriptionsfaktoren der sekundären Zellwandentwicklung hoch-konservierte Transkripions-
und Translationsmuster in den untersuchten Zelltypen zeigen. Dazu kommt, dass biologischen
Prozesse mit konservierten und divergenten Mustern auf zelltypspezifischer Expressions- und
Translationebene identifiziert werden konnten.
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Chapter 1

Introduction

Plants as living organisms arguably hold an exceptional place as dynamic components of

our world that shape and are, in turn, shaped by the environment. The evolution of plants

is an important chapter in the history of life and forms the backbone of human well-being

on earth. Throughout their life, plants typically remain in one location and harvest the

physical energy of the sunlight through photosynthesis, which is stored chemically in the

form of carbohydrate-based polymers. These carbohydrates serve as the sole source of

energy as well as the source of building blocks of a protective extra-cellular matrix, called

the cell wall (McCann and Rose, 2010, Sørensen et al., 2010, Chapelle and Carpita, 1998).

Without the ability to evolve locomotive mechanisms, plants face many challenges to

survive predation, unfavorable climatic conditions, and scarcity of resources. During the

course of evolution, they have adapted to their respective niche resulting in a wide variety

of morphological changes. This specialization of function is reflected at the molecular

level in the specific designs of cell walls. Thus cell walls not only changed throughout

evolution but are constantly remodeled and reconstructed in response to environmental

stress during the development of an individual plant (Purbasha et al., 2009, Popper, 2008,

Sørensen et al., 2010).

Plant cell walls are complex and dynamic structures composed mainly of polysaccha-

rides such as cellulose, hemicellulose, pectins, and a variety of other minor components,

including proteins and lignin, thus allowing them to perform various functions (Heredia

et al., 1995, Keegstra, 2010). The physical aspects of cell walls provide tensile strength

to the plant body and acts as a physical barrier against biotic and abiotic stresses. The

biochemical functions include many aspects of growth and development, such as cell di-

vision, growth, cell-cell communication, and differentiation. Nutritionally, plant cell wall

polysaccharides are the major food and feed products that are used globally. Further-
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more, these glycan rich cell walls are of commercial importance, and are widely used as

gelling and thickening agents in the food industry, fiber products in textile industry, phar-

maceuticals, and as materials for fuel and composite manufacture (McCann and Carpita,

2008, Chapelle and Carpita, 1998, Thakur et al., 1997). This wide reach of issues pertain-

ing to cell walls and their components places them with a central importance in biology.

Therefore, research on cell walls is essential to gain new insights into the role of cell walls

during evolution and investigate how the observed diversity varies between different plant

lineages, within a single plant, between cell-types, and even within individual walls.

1.1 Understanding the functional architecture of plant

cell walls

Since the early 1970’s cell wall biology has been an area of prominent research, but the

plant community has been facing many challenges in understanding cell wall structure,

function, and biosynthesis. Increasingly, genetic manipulation and conventional breeding

techniques are being applied in attempts to modify the quality and quantity of individ-

ual cell wall components for broader commercial applications. The best candidates for

this manipulation are the genes, enzymes, and biochemical pathways involved in the cell

wall biosynthesis process, which includes multiple cellular components in different loca-

tions that are assembled into a functional wall matrix (Somerville et al., 2004, Somerville,

2006). Biochemical analyses have revealed that all plant cell walls share common features,

which form the mechanical framework of the cell. However, cell walls exhibit diversity

with respect to chemical composition and are modulated according to functional require-

ments, thereby, limiting our knowledge on cell wall design and maintenance (Roberts,

2001, Pilling and Höfte, 2003). Although biochemical analysis yields the composition and

stoichiometry of cell wall components, fractionation and purification of intact polymers is

quite complicated (McCann et al., 2001, Minorsky, 2002). Biochemical analyses comple-

mented by genetic analyses help to identify the genes that are required for the synthesis

and metabolism of cell wall synthesis (Reiter, 2002, Somerville et al., 2004, Mutwil et al.,

2008, Ruprecht and Persson, 2012). It has been estimated that well over 2000 different

gene products are involved in making and maintaining the cell wall (Somerville, 2006).

In contrast, limited knowledge on the temporal and spatial patterns of the identified gene

products together with a limited understanding of the physical and chemical interactions

between wall components has hampered our understanding of the mechanisms and con-

trol of the bio-synthetic steps. Another goal is to examine the structural details of the
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cell walls of various plants, and thereby determine how their primary, secondary, and

higher-order structures vary from tissue to tissue and from plant to plant.

Although genetics and genomics have proved to be key tools in the past decade, new

biophysical methods such as imaging and nanoscale interrogation are increasingly being

used for characterizing the machinery that underlies the formation and growth of the cell

wall (McCann and Carpita, 2008, Somerville et al., 2004, Minorsky, 2002). In order to

develop a coherent picture of this complex process, it is necessary to combine information

regarding the biosynthetic mechanisms and chemical structures of cell wall polysaccha-

rides, the physical bases of molecular conformations for their assembly, the nature of their

covalent and non-covalent interconnections, the specificity and regulation of enzymes that

catalyze the formation of these interconnections, the overall topology of interconnected

polysaccharide networks, and the rheological consequences of these interacting factors

(Somerville et al., 2004, Purbasha et al., 2009). This is a formidable problem demanding

a multidisciplinary approach.

1.2 Technology-driven opportunities and data gener-

ation

All of our exalted technological progress, civilization for that matter, is comparable to an

axe in the hand of a pathological criminal

-Albert Einstein

These puzzling words by Einstein are certainly true in the field of plant sciences - thanks to

the technological advances in the past few decades, we live in an exciting and progressive

era. Recent game-changing technologies have led to the development of new techniques,

including the adoption and adaptation of instruments from other fields at the highest

levels of measurement resolution to query unchartered frontiers in the knowledge of plant

growth, metabolism, and response to environmental cues. Current technologies have

facilitated the measurements of cell content and activity at the whole plant, tissue and

organ, cell layer, single cell, and even compartment level (Yuan et al., 2008b, Mochida

and Shinozaki, 2011, 2010).

Of all the high-speed analytical techniques developed, two of the most commonly used

ones are next-generation sequencing and microarray technology which enable a compre-

hensive understanding of complex biological systems. The first description of microarrays

dates back to 1995 when Schena and co-workers used it for transcriptome analyses, and

has a profound impact on gene expression research with a broad range of applications
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(Schena et al., 1995, Peeters and Van der Spek, 2005). There exist several microarray

platforms based on differences in array fabrication, density and length of the spotted

probes, selection and number of dyes used. As microarray technology became widely

adopted in profiling gene expression, the advent of next generation sequencing technolo-

gies (NGS) and their relatively low cost has made it possible to sequence genomes and

profile transcriptomes, thereby widening the biological questions that scientists can in-

vestigate. Several NGS platforms have been released by various companies, and a few

representative platforms are HiSeq and MiSeq (Illumina), and PacBio (Pacific Biotech-

nology) (Egan et al., 2012, Mochida and Shinozaki, 2010, 2011). In each of these plat-

forms, distinct methods of template preparation and signal detection are used. The whole

genome sequencing of Arabidopsis thaliana completed in 2000 was a milestone in plant

biology and made Arabidopsis one of the most popular species for basic plant research.

Following this, genome sequences for around 55 plant species have been completed as of

2013 (Michael and Jackson, 2013). Large-scale sequence analysis technology has opened

a wide range of opportunities beyond genome sequencing, and it has contributed sub-

stantially to recent advances in omics research which spans a wide range of fields ranging

from ‘genomics’ (complete set of DNA within an organism), ‘transcriptomics’ (RNA and

gene expression), ‘translatomics’ (study of polysomal mRNA), ‘proteomics’ (focussing on

protein abundance), ‘metabolomics’ (metabolites), ‘glycomics’ (study of glycans), and

‘phenomics’ (study of plant phenotypic traits).

Higher plants contain organs and tissues that comprise interspersions of different cell-

types. In addition, the plant developmental signals differ across cell-types within an organ

and in response to environmental stimuli. To this end, advances in omics technologies

produce cell-type specific transcript profiles that allow functional annotation of genes, as

well as elucidate many gene networks that were masked at the organ level due to restricted

expression (Mochida and Shinozaki, 2010, Fukushima et al., 2009). Moreover, cell-type-

specific metabolic profiles take into account variability in the concentration and chemical

properties of the metabolites, which could otherwise not be obtained from intact organ

metabolomics (Rogers et al., 2012). This could be done using the state-of-the-art tech-

nologies in mass spectrometry which pinpoints details at the single cell and sub-cellular

resolutions (Kueger et al., 2012, Oikawa and Saito, 2012). In addition to our knowledge of

genomics and metabolomics of plant tissues, exploration of the functional and structural

role of specific classes of chemicals such as lipids is possible. Technological advances to

dissect the lipid composition of extract, as well as the possibility to visualize lipids in a

sub-cellular context are increasingly available to researchers (Horn and Chapman, 2012).

For applications of mass spectrometry imaging technologies in plants, as for example in
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surface lipids and secondary metabolites, usually chemical images are formed by compil-

ing spectra of ions of interest (Lee et al., 2012). As of now, this could be done mostly

up to the single-cell resolution level, because increasing the spatial resolution reduces the

sensitivity of chemical analyses. Of particular note in this respect is that all of those

approaches described above are at the macro-scale of investigating plant species, but the

field of plant cell imaging has been developed extensively allowing micro-scale analysis.

It is fascinating to witness how technological advances in the optical imaging of cellu-

lar structures are operating over a range of spatial scales, spanning from tissues to single

molecules, monitoring activities of sub-cellular compartments to levels that were not even

imaginable just over a decade ago (Ehrhardt and Frommer, 2012). Parallel advances in

fluorescent protein technology (FPT) image sub-cellular dynamics of plant cell organelles

at a spatial and temporal resolution. In addition, FPT also manipulates the distribution

of fluorescent markers to identify the genes responsible for the inner activities of plant

cells by coupling light microscopy with genetics and genomics (Sparkes and Brandizzi,

2012). Innovative approaches based on laser trap microscopy manipulate the position of

organelles and probe fundamental and exciting questions about inter-organelle relation-

ships in live cells (Okumoto, 2012). In addition, adaptations of spectroscopic techniques

could be used to query the composition and the activity of sub-cellular compartments at

a scale of few micrometers (Gierlinger et al., 2012, Gierlinger, 2014).

Ehrhardt and Frommer (2012) provides an excellent account of the technical advances

in the field of plant science. Thanks to such advancements - plus the breadth of techniques

which offer a wide spectrum of data resources increasingly available to researchers for data

mining and hypothesis generation.

1.3 Heterogeneous data analysis and challenges

Overall, large, heterogeneous data is composed of several data-types. The first category is

nucleic acid sequence data, which mainly consists of genomic DNA sequences and several

subgroups of RNA sequences. Gene expression data at the RNA level constitutes the sec-

ond category. To date, this category contains data mostly from microarray and RNA-seq

to effectively infer gene activities in a spatially-defined and time-resolved manner. The

third category includes protein data such as protein-level expression, protein sequences,

and even secondary and three dimensional structures of proteins that help to translate

static genetic information to dynamic carriers of cellular activities. The fourth category

of data includes interactions such as protein-protein interaction, protein-DNA/RNA in-

teractions and genetic interactions. Metabolite data comprising the intermediary and
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end products of metabolism corresponds to the fifth category of data. This category of

data captures the cellular physiology and complements the big picture from genes to gene

expression to cellular activities. The sixth category comprises of annotation data from

various sources such as standard biological annotation terms such as gene ontology (GO)

and Kyoto encyclopedia of genes and genomes (KEGG). Specifically, this category of data

is useful for biologists to learn about each aspect of the biological system under study and

helpful when leveraging the study from the known to the unknown. The last category

of data includes the data from imaging and spectroscopic approaches characterizing the

study of different cell-types at a scale of few micrometers.

Our repertoire of functional omics tools is steadily increasing, however, analysis of

this data requires significant statistical and computational efforts. From a computational

point of view, a great deal of information regarding cellular metabolism has been acquired

through application of individual omics approaches. However, it is also becoming clear

that any single omics approach may not be sufficient to characterize the complexity of

biological systems. For instance, the expression level of a given gene does not indicate the

amount of protein produced, nor its location, biological activity or functional relationship

with metabolites. Moreover, in cells many levels of regulation occur after genes have been

transcribed, such as post-transcriptional, and post-translational regulation, and all forms

of biochemical control such as allosteric or feedback regulation (Mochida and Shinozaki,

2011, Ehrhardt and Frommer, 2012). For example, in a study on how cells of different

types arise from a homogeneous cell pool during development of an organism, connec-

tions must be made based on the interplay of genes, gene products, hormone pathways,

metabolites, and signaling pathways to determine how the components work together as

a system. Taking this view into account, it is hard to believe that functional genomics

can stop at the mRNA level or any other single level of information. To this end, inte-

gration of multiple layers of information to understand the functional principles and total

dynamics of cellular systems is essential.

1.4 Thesis outline

The general aim of this thesis is an understanding of various cell wall related aspects

by an integrative analysis of high-throughput data arising from modern systems biology

experiments. The centrality of the biological question addressed in this thesis, i.e., an

understanding of plant cell walls will undoubtedly create new opportunities for the de-

velopment of crops with enhanced productivity, nutritional value, and biotechnological

potential.
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Specifically, Chapter 2 introduces multivariate analysis of heterogeneous data using

multiblock methods, a statistical technique for the integration of two or more datasets.

This chapter covers the fundamental principles and types of multiblock methods, of which

the mathematical aspects and hypothesis testing of canonical correlation and regression

based methods are provided. As it will be described in the subsequent chapters, only a

short account of the three case studies is provided of which the first and third study focus

on the integrative analysis of different system-levels. The second case study focuses on

cross-platform comparisons using an integrative approach.

In Chapter 3, the integration of system-level data from cotton fibers is discussed. The

relationship between the system-levels was established in an integrative manner using lin-

ear correlation and regression methods. The conducted analysis demonstrated the useful-

ness of regression based approaches in establishing a relationship between polysaccharide-

rich cell walls and their phenotypic characteristics. In addition, the analysis also identified

specific polysaccharides which may play a major role during fiber development for the final

fiber characteristics (cf. Rajasundaram et al. (2014a)).

Chapter 4 describes the comparison and integration of data that estimates the cell-type

composition of maize stem cell walls using two different spectroscopic techniques. The

analysis of different hyperspectral images was done initially using exploratory approaches

and then compared to results obtained from coupling of the images from both techniques

using multiblock methods. The integrative analysis of the hyperspectral images helps to

interpret and analyze on one hand the common structure revealed by the two imaging

techniques and on the other hand the independent contribution of each technique.

Chapter 5 details a novel analysis pipeline for integrating different system-levels from

the roots of Arabidopsis. Using cell-type-specific datasets of the root transcriptome

and translatome of Arabidopsis, a systematic assessment was made of the degree of co-

ordination and divergence between these two levels of cellular organization. The compu-

tational study focuses on comparing these two system-levels in the context of cell wall

biogenesis by considering correlation and variation of expression across cell-types in addi-

tion to the degree of co-regulatory relationships. The importance of the translatome as the

intermediate level at which reprogramming of biological processes propagate to changes in

protein synthesis and finally the phenotype is elaborated here. (cf. Rajasundaram et al.

(2014b)).

Finally, Chapter 6 provides a general conclusion of this thesis and highlights the con-

tributions of the integrative analysis towards an understanding of the different aspects

of plant cell walls. In addition, this chapter also provides an outlook, thus outlining a

method for knowledge-transfer across other plant species.



Chapter 2

Multivariate analysis of multi-source

data

The term ‘systems biology’ has emerged recently to describe the frontier of cross-disciplinary

research in biology. Interest in systems biology has increased owing to the rapid advance-

ments in high-throughput technologies and the need to assimilate fast-growing volumes of

biological data into biologically meaningful interpretations (Kitano, 2002a). Nevertheless,

the definition of systems biology is still contentious, reflecting the difficulty in defining

a heterogeneous school of thought by a comprehensive, yet concise, definition. However,

the consensus view of systems biology revolves around a fundamental understanding of

biological systems by studying the underlying component interactions, which otherwise

cannot be studied by a reductionist methodology (Hood, 2003, Kitano, 2002b). Past bi-

ological research has taught us about how individual biological units are structured and

function, and the future lies in focusing on a system-level understanding emerging from

dynamic interactions of individual components in a biological system.

Modern systems biology is a rapidly evolving discipline invoked in the context of a va-

riety of systems and overlaps with several emerging, post-genomics fields such as systems

microbiology, systems biotechnology, integrative biology, and metagenomics. While many

systems biology approaches involve mathematical and computational modeling, there is

often no clear boundary between bioinformatics and systems biology. As a discipline,

bioinformatics is also increasingly merging and contributing to system approaches which

include the development of software tools for analysis and visualization of a system, so-

phisticated data processing, statistical analysis for high-throughput molecular profiling

technologies, and maintenance of biological databases to account for the inherent com-

plexity of biological systems (Ideker et al., 2001, Likić et al., 2010).
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As discussed in the previous chapter, there is an ever-growing effort in plant biology

to generate data from experiments measuring multiple cellular levels across a wide range

of species. In addition, data from advances in microscopy to study the chemical and

structural information is fast accumulating.

Figure 2.1: Hierarchical organization of biological complexity. The complexity of
biological data is multi-dimensional owing to the advances in high-throughput technolo-
gies. The heterogeneity of the data sources is attributed to several factors ranging from
the use of different technologies to studying multiple cellular levels across different species.
Along the axes of the cellular levels, some of the possible system levels and their corre-
sponding ‘omics’ is highlighted. There has been a dramatic increase in high-throughput
technologies enabling the measurement of several omics levels starting from the genome to
determining the phenotype. The short arrows within this figure depict that lipidomics is a
direct subset of the metabolomics research area. Moreover, it also depicts that glycomics
has the potential to gain insight into the biosynthesis of novel glyco-conjugate structures.
This is done by probing the metabolome for substrates that are known to be involved in
bio-synthetic processes.
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Clearly, the multidimensional nature of the generated data (Figure 2.1) need systematic

approaches that inherently require integration of heterogeneous information. The multi-

source nature of the data is attributed to the use of different techniques and studying one

or more plant species/population across different cellular levels at the macroscopic and

microscopic scale.

2.1 Multiblock data analysis

With the availability of data from several fields, often problems occur that have to deal

with analyzing several blocks of generated data. This has generated the need for two

new classes of data analysis methods. The first class of methods include multiblock

methods - the aim of which is to find underlying, i.e. latent relationships between several

blocks, or matrices under the hypothesis that they are related. From the point of view

of statistical methods, two approaches of multiblock methods can be contrasted; the

multiblock component problem and the multiblock regression problem (De Roover et al.,

2012). In the multiblock component problem, it is assumed that there is at least one mode

in common between all the matrices involved, and component vectors that summarize the

information in all the matrices simultaneously are sought (Smilde et al., 2003). In a

multiblock regression problem, the models are designed to predict a certain response in a

multiblock setting. The second class of methods namely the multiway analysis methods

pertain to the analysis of datasets that can be arranged into a multiway array (Smilde

et al., 2005, Coppi, 1994). Precisely, many problems in biology generate three-way data

and this three-dimensional data matrix could be analyzed using two alternative strategies,

a bi-linear or a tri-linear approach. Smilde et al. (2000) have also developed methods for

analyzing multiway multiblock problems.

Multiblock analysis methods already have a long history in psychometrics and are

still the subject of active research in the field of ecology, food quality assessment, chemo-

metrics, and computational statistics (Kettenring, 1966, Moyon et al., 2012, Thioulouse

et al., 2004, Thioulouse, 2011, Skov et al., 2014). In ecological data analysis, these methods

have been developed for studying species-environment relationships. Exploring species-

environment relationships is quite complicated owing to spatial and temporal influences

and multiblock methods have contributed a necessary step towards the comprehension of

ecosystem functioning. In addition, it is also used in the field of veterinary epidemiology

to assess risk factors for animal health issues (Bougeard et al., 2011a). In sensory prod-

uct development, this method gives a reliable basis for creating products which meets

customer expectations by using sensory profiles to model consumer liking (Stéphanie and
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Mireille, 2014). Other contributions in this field include understanding the relative con-

tribution of oral food processing events in cheese consumption (Feron et al., 2014) and

serve as powerful tools in analyzing spectroscopic data.

From a statistical perspective, all the data involving multiple omics data-types, multi-

ple tissues, multiple sources, or any of their combination constitute separate data blocks

and can be formulated as a multiblock framework problem. The resulting multivariate

datasets gathered from biological entities (e.g., genes) under various conditions (e.g.,cellular

levels) can be investigated by application of multiblock methods which account for the

dependence between the data tables while capturing the common and unique information

across them. This perception of high-throughput data analysis proposes a great variety

of methods to integrate, summarize and visualize the data blocks so that the systems

picture can be drawn.

Depending on the structure of the datasets under study, there are different classifi-

cations of multiblock problems. In Figure 2.2, we provide a schematic representation of

some of the types of multiblock data representation wherein a number of variables have

been measured on some samples, and the data for each subject constitute a different data

block or data table.

The general representation of a single block is shown in Figure 2.2a and the data is

obtained from ‘n’ samples and ‘p’ variables. The second class of problems is encountered

in cases where we have ‘1 table + 1 factor’ (Figure 2.2b) or ‘2 tables + 1 factor’ (Figure

2.2c). The third class (Figure 2.2d) is where we have a pair of tables and usually the

variable mode is different among the data blocks. In yet another case (Figure 2.2e), we

have a ‘k table structure’ wherein the samples are the same but the measured variables

are different. In this case ‘k’ refers to the different conditions (e.g., timepoints) in which

the data is obtained. Stacking such datasets on top of each other gives a three-way array

and hence multiblock methods can be seen as a generalization of multiway models. In

another case, we have a series of pairs of ‘2k tables’ (Figure 2.2f) although measured

across different conditions. In Figure 2.2g, we have the ‘k+1 table’ data block structure

consisting of ‘k’ explanatory blocks and a response dataset to be explained or predicted. It

is not directly evident from the structure of the data if there exists a relationship between

the different blocks of data. In the subsequent sections of this chapter, the focus is on

detailing the analysis of two block data tables.
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a. 1 table b. 1 table +
1 factor

c. 2 tables + 1 factor

d. 2 tables e. k tables

f. 2k tables g. k+1 table

Figure 2.2: Schematic representation of possible types of data structures avail-
able from different experiments. (a) In a general block framework, each block is a
n× p data matrix as represented here corresponding to a set of ‘p’ variables observed on
a set of ‘n’ observations. (b and c) Both data representations are tailored to study data
tables and their relation to factors like categorical variables or physico-chemical character-
istics. (d) The ‘2 table’ analysis deals with ‘n’ observations across variables ‘p’ and ‘q’. (e
and f) The ‘k tables’ or the ‘2k tables’ representations are used to analyze series of tables
where ‘k’ refers to experimental conditions such as timepoints or batches measured on ‘n’
observations across variables ‘p’ or ‘q’. (g) This pertains to the k+1 setting addressed for
the analysis of multiple ‘k’ tables which aims at explaining a response data block.
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2.2 Data pre-processing

Data pre-processing of large and complex datasets produced by high-throughput biological

experiments is one of the prime challenges in statistical analysis of the data. Complex

biological, experimental and technical processing inherent to the technology introduces

sources of variations in the data that alters the true signals (Mühlberger et al., 2011,

Zhang et al., 2010, Kohl et al., 2014). Although there is no standard protocol for data pre-

processing, normalization and missing value imputation generally occur as pre-processing

steps followed by statistical inference to answer questions of primary scientific interest. In

an effort to enable comparisons between samples, normalization techniques remove any

excess technical variability whilst preserving biological information. In this thesis, it is

emphasized that pre-processing is an important step of the analysis pipeline, and that the

assumptions and limitations of the pre-processing method should always be taken into

account.

Systematic bias refers to any non-biological signal which may occur due to many fac-

tors including variations in sample processing conditions, instrument calibrations, and

changes in temperature over the course of an experiment. Expression levels of RNA

transcripts are widely monitored using microarrays and the measured expression values

are typically unitless. There are a number of reasons to normalize a microarray, which

includes type of the microarray used, unequal starting quantities of starting RNA, differ-

ences in labeling, differences in use of fluorescent dyes and resulting detection efficiencies,

hybridization artifacts, and accurate comparisons of expression levels between and within

samples (Durinck, 2008, Fujita et al., 2006, Quackenbush, 2002). Recent transcriptomic

approaches based on sequencing of transcripts result in sequence reads which are then

mapped onto a reference genome. Often, sources of systematic variation that must be

taken into account include library size, technical variation amongst samples, biases in

sequencing e.g., longer fragments are sampled more frequently, preferential enrichment of

specific sequences (ChIP-seq), within-sample gene-specific effects related to gene length,

and GC-content. Most importantly, before starting the analysis on any dataset it is good

to examine the biases present and choose a normalization method that does not mask

the real biological differences between samples. A number of normalization approaches

to treat RNA-seq data is available and relevant ones must be adopted prior to statistical

analysis (Goncalves et al., 2011, Oshlack et al., 2010, Dillies et al., 2013). In case of

metabolomic approaches, samples have large amounts of biological variability, variability

from the analytical method itself, and diverse physical properties that makes quantifica-

tion of large numbers of structurally diverse metabolites challenging. In such cases, data
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pre-processing is essential to minimize or eliminate batch-batch data variation (De Livera

et al., 2012, Wishart, 2010). In yet another example, high dimensional data arising from

microscopic or spectroscopic techniques require pre-processing for proper band selection,

spectral and temporal resolution, and to enhance the richness of the displayed data (Vi-

dala and Manuel, 2012, Burger and Gowen, 2011). The aforementioned examples are only

a few instances of why high-throughput data should be normalized and, importantly, it

pertains to how specific methods should be used for particular data-types.

In the course of data analysis, standard methods for analyzing data lead to biased

estimates and a loss of statistical power due to missing values (Liew et al., 2011). A value

may be missing due to several reasons, including: (i) the sample truly is present at an

abundance the instrument should be able to detect, but is not detected or is incorrectly

identified, (ii) the sample truly is present but at an abundance below the instrument’s de-

tection limits, and (iii) the sample is not present. Most of the statistical methods require

complete datasets, and furthermore missing values imply a certain loss of information.

For this reason, the validity of results of a study with missing values has to be rated less

than in a case where all data had been available. Common statistical procedures that

are implemented in most of the statistical standard software packages or tools are based

on a complete dataset, and in case of a missing value, the regarding observation will be

excluded from the analysis population. The omission of whole observations may lead to

a drastic reduction of the number of observations, and a reduced validity of the study

(Gromski et al., 2014, Oh et al., 2011). There is no guideline yet that explicitly controls

the handling of missing data and the usage of the most appropriate imputation method is

highly dependent on several aspects. It mostly depends on the cause of the missing value

in the data, dependence between observed and missing values, distribution, amount of

the missing values in the dataset, and most importantly on the experimental settings and

question under study. Some of the methods which have been reported in the literature

include: replacing missing values by half of the minimum value found in the dataset; miss-

ing value imputation using probabilistic principal component analysis (PPCA), Bayesian

PCA (BPCA) or singular value decomposition imputation (SVDImpute); replacing miss-

ing value by means of K nearest neighbors (KNN impute algorithm); simple row average

(for gene expression analysis) or replacing the missing values with zeros (Aittokallio, 2010,

Troyanskaya et al., 2001). Filling missing values with zeros or with average values over

the cases are far from optimal solutions, and generally lead to serious biases.

Another important issue to be considered in multiblock analysis is replicate filtering.

Replication is essential to identify and reduce the variation in any experimental assay

design. Biological replicates are derived from distinct biological sources and provide a
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measure of natural biological variability in the system under study, as well as any random

variation in sample preparation. Technical replicates include replicated elements of a

particular sample and accounts for the natural and systematic variability that occur in

performing the experiment. To reduce the complexity of the dataset the replicate measures

maybe averaged. The averaging is not justified if there is poor concordance between

samples and the variance in each sample is not similar. This could be tested using a

multivariate correlation estimator.

However, in the context of integrative analysis, the input biological data frequently

originate from different experimental platforms, different levels of biological organization,

and from a wide range of cells, tissues and organs (Palsson and Zengler, 2010). More-

over, it is not straight-forward to compare data from different experimental designs, and,

therefore, normalization procedures must be applied carefully depending on the choice of

data to be analyzed. The three different case studies considered in this thesis details the

normalization methods used to facilitate cross-data comparison.

2.3 An overview of multiblock data analysis methods

With the unprecedented amount of information from high-throughput experiments, re-

liable and robust methods for integrating heterogeneous data have been developed and

some of these methods have been covered in excellent reviews (Gonzalez et al., 2012, Lê

Cao et al., 2009, Hamid et al., 2009, Sánchez et al., 2012). Table 2.1 gives an overview

of some of the multiblock methods available for integrative analysis and the application

of these methods in different contexts. However, it is beyond the scope of this thesis to

discuss in detail all the available methods for data integration.

Method Type R-

package

References

1 table + 1 factor

Within-group analy-

sis

Predictive

approach

ADE4 Doldec and Chessel (1987)

Linear discriminant

analysis

Predictive

approach

ADE4 Venables and Ripley (2002)

Between-group analy-

sis

Descriptive

approach

ADE4 Culhane et al. (2002)

2 table + 1 factor
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Table 2.1 – Continued from previous page

Method Type R-

package

References

Between group

co-inertia analysis

Predictive

approach

ADE4 Thioulouse (2011)

2 tables

Canonical correspon-

dence analysis

Predictive

approach

Vegan ter Braak (1986)

Multiple correspon-

dence analysis

Descriptive

approach

FactomineR Tenenhaus and Young (1985)

Multiple coinertia

analysis

Descriptive

approach

omicade4 Chessel and Hanafi (1996)

Canonical correlation

analysis

Descriptive

approach

mixOmics Weenink (2003), Hardoon

(2004)

Partial least squares

regression

Predictive

approach

pls Geladi and Kowalski (1986)

Sparse partial least

squares regression

Predictive

approach

mixOmics Lê Cao et al. (2009)

k tables

Multiple factor

analysis

Descriptive

approach

FactoMineR Abdi et al. (2013)

STATIS Descriptive

approach

ADE4,

MExPosition

Abdi et al. (2012), Lavit et al.

(1994)

Partial triadic analy-

sis

Descriptive

approach

ADE4 Mendes et al. (2010)

dual-STATIS Descriptive

approach

ADE4. Abdi et al. (2012)

COVSTATIS Descriptive

approach

ADE4,

MExPosition

Abdi et al. (2012)

DISTATIS Descriptive

approach

ADE4,

MExPosition,

Distatis

Abdi et al. (2012)

ANISOSTATIS Descriptive

approach

ADE4,

MExPosition

Abdi et al. (2012)

power-STATIS Descriptive

approach

ADE4 Abdi et al. (2012)



2.3 An overview of multiblock data analysis methods 17

Table 2.1 – Continued from previous page

Method Type R-

package

References

CANOSTATIS Descriptive

approach

ADE4,

MExPosition

Abdi et al. (2012)

Regularized general-

ized canonical corre-

lation analysis

Descriptive

approach

RGCCA,

mixOmics

Tenenhaus and Tenenhaus

(2011)

Sparse regularized

generalized canonical

correlation analysis

Predictive

approach

SGCCA,

mixOmics

Tenenhaus et al. (2014)

2k tables

STATICO Descriptive

approach

ADE4 Simier et al. (1999)

COSTATIS Descriptive

approach

ADE4 Thioulouse (2011)

DO-ACT Descriptive

approach

MExPositionAbdi et al. (2012), Vivien and

Sabatier (2004)

STATIS4 Descriptive

approach

ADE4 Sabatier and Vivien (2008)

Multiblock pls Predictive

approach

ADE4,

PLS-2.1.0

Westerhuis et al. (1998)

K+1 tables

k+1 STATIS Predictive

approach

ADE4,

MExPosition

Abdi et al. (2012)

Multiblock redun-

dancy Analysis

Predictive

approach

ADE4 Bougeard et al. (2011b)

Table 2.1: Overview of the available multiblock methods. Each of the methods
is distinguished based on their predictive or descriptive nature. The R packages imple-
menting the specific method is also listed.

Mathematical aspects

Of the multiblock methods presented in Table 2.1, the mathematical details of three

particular methods namely canonical correlation analysis, sparse partial least squares,

and co-inertia analysis are presented here. The focus is on these particular methods that
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are used in this thesis to analyze two-block data matrices of the dimension X (n× p) and

Y (n× q).

Canonical correlation analysis

Canonical correlation analysis (CCA) has attracted considerable attention as the impor-

tance of integrating multiple data sources has been noticed. Proposed by Hotelling in 1936

(Hotelling, 1936), CCA is a method of correlating linear relationships between two mul-

tidimensional variables and is closely related to several methods like multiple regression,

discriminant analysis, and principal component analysis (PCA). As such, multiple regres-

sion can predict the value of a single dependent variable from a linear function of a set

of independent variables, whereas CCA seeks to quantify the strength of the relationship

between two sets of independent and dependent variables. CCA resembles discriminant

analysis in its ability to determine independent dimensions similar to discriminant func-

tions for each variable set. When compared to these two methods, CCA has the added

advantage of handling multiple dependent variables which can be metric or non-metric.

PCA attempts to explain the linear relationship among a set of observed variables and

an unknown number of variates whereas CCA focuses on the linear relationship between

two variates (Gonzalez et al., 2012, Lê Cao et al., 2009). Clearly, CCA is the generalized

member of the family of multivariate statistical techniques and the availability of statis-

tical tools or packages contributed to its role as an integration tool for data arising from

different system-levels.

Two datasets are represented by matrices X and Y of dimension n × p and n × q

respectively where ‘n’ denotes the number of observations, ‘p’ corresponds to the variables

in matrix X and ‘q’ to the variables in matrix Y. It can be seen as the problem of finding

basis vectors for two sets of variables such that the correlation between the projections of

the variables onto these basis vectors are mutually maximized. We denote the two basis

vectors as a1 = (a1
1, ...., a1

p)T and b1 = (b1
1, ...., b1

q)T such that the correlation between

the projection of the variables-columns in X and Y-onto these basis vectors are given by

the derived linear projections U1 = a1X and V1 = b1Y which maximize the correlation

ρ = corr(a1X, b1Y). Here, the derived linear projections are called the first canonical

variates and constrained to be of unit variance. The correlation between the projections

of the variables-columns in X and Y- onto the basis vectors is given by a linear combination

of X variables
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U1 = a1
1X1 + a1

2X2 + ... + a1
pXp, (2.1)

and a linear combination of Y variables

V1 = b1
1Y1 + b1

2Y2 + ... + b1
qYq, (2.2)

where a1
i and b1

j are the canonical coefficients, U1 and V1 are the canonical variates. The

first canonical correlation is the maximum correlation coefficient between U1 and V1, for

all U1 and V1.

ρ = cor(U1, V1) = max
a1,b1

cor(U1, V1). (2.3)

The subsequent pairs are found by eigenvalues of decreasing magnitudes and orthogonality

is guaranteed by the symmetry of the correlation matrices. Thus, we can seek vectors

maximizing the same correlation and successive canonical functions can be found as a

step-wise problem by estimating pairs of canonical variates based on residual variance

from the previous canonical functions.

The mathematical aspects of CCA are shown below but a more detailed treatment of

the derivation of the CCA equations is given in Hardoon (2004), Weenink (2003). For the

variables included in X and Y, we define the total covariance matrix

C =
[

CXX CXY
CYX CYY

]
as a block matrix where CXX and CYY are the within-group covariance matrices of vari-

ables in X and Y, respectively. Correspondingly, CXY = CT
YX denotes the between-group

covariance matrix between variables in X and Y.

Employing the definition of the Pearson correlation coefficient, as well as the definition

of the covariance matrix C, we can then rewrite the generalized equation (2.3):

ρ = max
a,b

aTCXYb√
aTCXXabTCYYb

(2.4)



20 Multivariate analysis of multi-source data

Note, that ρ is not affected by re-scaling of the vectors a and b, i.e., the multiplication by

the same scalar α does not change the value for ρ in equation (2.4):

aTCXYb√
aTCXXabTCYYb

=
αaTCXYb√

α2aTCXXabTCYYb
(2.5)

The optimization problem formulated in equation (2.4) is equivalent to maximizing the

numerator subject to the two constraints aTCXXa = 1 and bTCYYb = 1. By incorporat-

ing these constraints and writing the Lagrangian form, we obtain:

L(λX, λY, a, b) = aTCXYb – λX(aTCXXa – 1) – λY(bTCYYb – 1),

where λX and λY denote the Lagrange multipliers. Taking the derivatives with respect to

a and b by considering that aTa = a2 and bTb = b2, respectively, we arrive at:

∂L

∂a
= CXYb – 2λXCXXa = 0 (2.6)

and

∂L

∂b
= CYXa – 2λYCYYb = 0 (2.7)

Furthermore, by subtraction of equation (2.7) multiplied with bT from equation (2.6)

multiplied with aT, one obtains:

0 = aTCXXb – aT2λXCXXa – bTCYXa – bT2λYCYYb = 2λYbTCYYb – 2λXaTCXXa

Considering the initial constraints aTCXXa = 1 and bTCYYb = 1, it can be concluded

that 2λY –2λX = 0 and further define λ = 2λX = 2λY. In the case of CYY being invertible

we get from equation (2.7):

b =
C–1

YYCYXa

λ
(2.8)
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and by substitution in equation (2.6):

CXYC–1
YYCYXa = λ2CXXa (2.9)

Note that equation (2.9) is a generalized eigenproblem of the form Ax = λBx, where A =

CXYC–1
YYCYX, B = CXX, a = x and λ corresponding to the squareroot of the eigenvalues.

By solving the eigenproblem, we obtain a solution for the canonical correlation ρ as the

root of the derived eigenvalues λ2 and the eigenvector ‘a’ corresponds to the normalized

canonical basis vectors initially defined in equation (2.3). Finally, by inserting ‘a’ in

equation (2.8), we were able to find the corresponding vector ‘b’. Alternatively, to the

outlined procedure, one can also arrive at the following generalized eigenproblem, directly

by combining equations (2.6) and (2.7):[
0 CXY

CYX 0

]
[ a
b ] = λ

[
CXX 0

0 CYY

]
[ a
b ]

where λ = 2λX = 2λY.

If the eigenvalues are r1, r2, ..., rm where m is the number of canonical correlations, we

test the hypothesis that there is no (linear) relationship between the two variable sets.

This is equivalent to the statement that none of the correlations r1, r2, ..., rm is significant.

Some of the measures for assessing the statistical significance of the found canonical

correlations is listed below. The following statistics test the multivariate hypothesis in

various ways, and their p-values can be approximated by F distributions.

Wilks’ (Wilks, 1932) lambda statistic

Λ1 =
m
Π

i=1
(1 – r2

i ) (2.10)

is a likelihood-ratio statistic. This statistic is distributed as the Wilks Λ-distribution.

Rejection of the null hypothesis is for small values of Λ1.

Pillai’s (Pillai, 1955) trace for canonical correlations is

V(m) =
m
Σ

i=1
(1 – r2

i ) (2.11)

Thus, the null hypothesis is rejected if this test statistic is large.

The Lawley-Hotelling trace (Lawley, 1938, Hotelling, 1951) is
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V(m) =
m
Σ

i=1

r2
i

(1 – r2
i )

(2.12)

Thus, the null hypothesis is rejected if this test statistic is large.

Roy’s (Roy, 1939, Kuhfeld, 1986) largest root is given by

Θ = r2
i (2.13)

Rejection of the null hypothesis is for large values of Θ.

In this thesis, the application of CCA to biological datasets is described in Chapter

3 wherein CCA is employed for integrating data arising from cotton fiber measurements

across two different system-levels. Here, the matrix X is defined by ‘p’ probes (monoclonal

antibodies) whose specificity for a particular polysaccharide is measured for a wide range of

cotton lines ‘n’. The matrix Y describes the fiber characteristics (set of ‘q’ measurements)

measured on the same ‘n’ cotton lines. The obtained results serve as an exploratory tool

to display associations between the probes and the fiber measurements which would not

be obtained by investigating the linear relationship using Pearson correlation. This is an

example of classical CCA wherein n > p + q. However, when the number of variables is

larger than the number of experimental observations, a form of regularization must be

considered. Such a regularization in this context was first proposed by Vinod (1976), then

developed by Leurgans et al. (1976).

Sparse partial least squares

There are two important statistical problems that commonly arise in regression problems,

the first being the selection of a set of important variables among a large number of

predictors. The second problem is related to the fact that such variable selection often

arises as an ill-posed problem where the sample size is much smaller than the total number

of variables or the covariates are highly correlated. Partial least squares (PLS) regression

was introduced by Wold in 1966 (Wold, 1966) and has been used as an alternative approach

to the ordinary least squares (OLS) regression in ill-conditioned linear regression models.

PLS is clearly superior to CCA in its stability property to face collinear matrices and, in

addition, has an edge over multiple linear regression, ridge regression or other regression

techniques. The PLS regression method aims to describe linear relationships between two
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sets of variables, and the prediction factor is achieved by extracting a set of orthogonal

factors called latent variables (Boulesteix and Strimmer, 2007). The basic concept in this

procedure is that the weights used to determine these linear combinations of the original

variables are proportional to the maximum covariance among input and response variables.

The noise and the multicollinearity of the original data are removed by compressing the

p-dimensional X-space into the H-dimensional latent variable space (Commonly, H<<p,

where p is the number of the original variables and H is the number of latent variables).

Given the standardized predictor (X) and response variables (Y), there are many methods

for extracting the latent variables from X and Y. The algorithm for PLS which uses the

singular value decomposition (SVD) is provided below as a follow-up to comprehend the

working principle behind sparse partial least squares regression (sPLS) (Boulesteix and

Strimmer, 2007). In this algorithm, steps (e) and (f) compute the regression coefficients

of the matrices on the latent variables, whereas steps (g) and (h) compute the deflated

residual matrices.

Algorithm 1 PLS

1: X0 = X, Y0=Y

2: For h = 1..H (where H is the number of latent variables):

(a) Set Mh-1 = XT
h-1Yh-1

(b) Using SVD, decompose Mh–1 and extract the first pair of singular vectors u = u1

and v = v1 corresponding to the eigenvalue with the maximum absolute value.

(c) th = Xh–1u

u
′
u

where t is the latent variable vector of X.

(d) wh = Yh–1v

v
′
v

where w is the latent variable vector of Y.

(e) ch =
XT
h–1th

t
′
hth

where c is the loading vector of X.

(f) dh =
YT
h–1th

t
′
hwh

where d is the loading vector of Y.

(g) Xh = Xh–1 – thch

(h) Yh = Yh–1 – thdh

3: Return Xh and Yh

Although dimension reduction via PCA or PLS is a principled way of dealing with ill-posed

problems, it does not automatically lead to the selection of relevant variables. Penalized

partial least squares method proposed by Huang et al. (2004) imposes sparsity on the

final PLS estimates by using a soft thresholding rule but it does not necessarily lead to

sparse linear combinations of the original predictors. This is because the sparsity principle
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is imposed on the solution and is not incorporated on the dimension reduction step. To

overcome this issue, Chun and Kele (2010) proposed the sparse partial least squares which

imposes sparsity on the dimension reduction step of PLS so that the sparsity can play a

direct principled role.

Sparse partial least square approach deals with integration problems which cannot be

solved with usual feature selection approaches. The main principle of this methodology

is to impose sparsity within the context of partial least squares and thereby carry out

dimension reduction and variable selection simultaneously. sPLS regression exhibits good

performance even when (1) the sample size is much smaller than the total number of

variables; and (2) the covariates are highly correlated. One additional advantage of sPLS

regression is its ability to handle both univariate and multivariate responses (Lê Cao

et al., 2009). sPLS is a combination of two different penalties: the continuous penalty

is a LASSO penalty and discrete penalization is achieved by PLS. Variable selection is

achieved by LASSO, and dimension reduction by PLS. The respective hyper-parameters

i.e. the number of PLS components and the size of the LASSO penalty are optimized

simultaneously by cross fold validation. As in normal PLS, each of the latent components

is a linear combination of the original variables. The sparse PLS algorithm (sPLS) with

its two deflation variants (Lê Cao et al., 2009), based on the iterative PLS algorithm:
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Algorithm 2 sPLS

1: X0 = X, Y0 = Y

2: For h = 1..H

(a) Set Mh-1 = XT
h-1Yh-1

(b) Using SVD decompose Mh–1 and extract the first pair of singular vectors u = u1

and v = v1 corresponding to the eigenvalue with the maximum absolute value.

(c) Until convergence of unew and vnew (in the first iteration uold = u1 and vold = v1)

(i) unew = gλ1(Mh–1vold), re-normalize unew

(ii) vnew = gλ2(MT
h–1uold), re-normalize vnew

(iii) uold = unew, vold = vnew

where gλ(y) = sign(y)(|y| – λ)+ is the soft-thresholding penalty function and λ

is the penalty parameter.

(d) th = Xh–1u

u
′
u

where t is the latent variable vector of X.

(e) wh = Yh–1v

v
′
v

where w is the latent variable vector of Y.

(f) ch =
XT
h–1th

t
′
hth

where c is the loading vector of X.

(g) dh =
YT
h–1th

t
′
hwh

where d is the loading vector of Y.

(h) Xh = Xh–1 – thch

(i) Yh = Yh–1 – thdh

3: Return Xh and Yh

The re-normalization of the weighting vectors ‘u’ and ‘v’ in step (b) of the algorithm

is very important as the comparatively uninformative elements of the weighting vectors

are sucessfully forced to zero. Re-normalization of the variables lead to the re-valuation

of their importance and as a result, the contributions of important variables having the

larger absolute weighting values can be enhanced. In cases where there is no sparsity

constraint (λ1 = λ2 = 0), we obtain the same results as in a classical PLS. The penalization

parameters λh1 and λh2 can be simultaneously chosen by computing the root mean squared

error prediction (RMSEP) with k-fold or leave-one out cross validation for each given

dimension. In both PLS and sPLS, the optimal number ‘H’ of dimensions has to be

determined. The parameter ‘H’ can be tuned by cross-validation as in the original PLS

and as proposed by Chun and Kele (2010). In sPLS regression, in addition to ‘H’, the

number of variables selected in each dimension of the model has to be fixed.

Q2
h is computed for validation of the choice of PLS dimension. It is a criteria that

measures the marginal contribution of the latent variable to the predictive power of the
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PLS model by performing cross-validation computations. Q2
h is computed as

Q2
h = 1 –

Σq=1PRESSqh

Σq=1RSSq(h–1)
(2.14)

where PRESS
q
h is the PRediction Error Sum of Squares and RSS

q
h is the Residual Sum of

Squares for the variable ‘q’ and the PLS dimension. The value of Q2
h ≥ (1–0.952) = 0.0975

is said to contribute significantly to the prediction. The approach for evaluation of the

predictive power include computing the RMSEP which is done for each variable ‘q’ in Y.

The application of this method is illustrated in Chapter 3 of this thesis for a regression

based study of cotton fibers.

Multiple Co-inertia analysis

Multiple Co-inertia analysis (MCIA) is used to describe the similarities between two

or more than two data matrices, also called blocks, observed on the same ‘n’ samples by

recovering the maximum total variance from each matrix. It is a symmetrical method used

widely in the field of hyperspectral data analysis and provides orthogonal loadings and

score images for spectral and spatial interpretation, respectively. MCIA can be compared

to other methods that are used to analyze multiblock data. When compared to the

partial least squares approach which focuses on the prediction of one data table based

on the subspace generated by the other one, MCIA gives both data tables the same

importance. Moreover, in PLS, deflation is made on the global scores whereas MCIA

deflates data tables using block scores. Deflation is the process that consists in removing

the information described by a component from the initial data table before assessing

the next one. MCIA is an extension of co-inertia analysis (CIA) to more than two data

tables and has an added advantage in the deflation step. The first step in both MCIA and

CIA is the same, whereas the major difference lies in the deflation step. CIA, just like

PLS deflates data tables using global scores. Hence, MCIA method being symmetric and

orthogonal has an advantage over PLS, CIA, and consensus principal component analysis

in its ability to deflate data tables using the block scores.

When we consider X and Y data tables, the method is based on the analysis of the

covariance matrix between the whole set of variables of the data tables. In order to do

this, a common structure is required to study the covariances between the data tables.

The steps involved in MCIA include determining a global component ‘cv’ and block com-

ponents such that the sum of the squared covariances is maximized (Hanafi et al., 2011,
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Chessel and Hanafi, 1994).

Usually, the solution to the maximization problem is obtained by performing PCA of

the concatenated data tables X and Y. The first global score c
(1)
v is the first standardized

principal component of the concatenated data tables. The loading ũ(1) associated to c
(1)
v

is then fragmented into subsets ũ(1) = [ũX
(1), ũY

(1)]. Each of the subvector associated to

the concatenated data table is normalized to obtain the block loadings

ũX
(1) =

ũ1
(1)

‖ũX
(1)‖

(2.15)

and

ũY
(1) =

ũ1
(1)

‖ũY
(1)‖

(2.16)

for X and Y data tables, respectively. The second step in MCIA is to calculate the

scores and loadings of order higher than 1 by deflating each data table with respect

to the block loadings. Deflation of each data tables with respect to its block loadings

involves subtracting the information from the initial component before calculating the next

component. The original X and Y blocks are updated and this is an iterative procedure

where the new block loadings and scores are calculated as mentioned.

The covariant patterns revealed by MCIA are assessed using block loadings, block scores,

global loadings and global scores. The common and specific information brought by

each data table could be investigated. The relationship between the two data tables are

calculated by the RV coefficient. This is a measure of global similarity between the data

tables, and is a number between 0 and 1. The closer it is to 1, the greater the global

similarity between the two data tables.

Application of multiple co-inertia analysis in integrative analysis is illustrated in Chap-

ter 4. By applying this method to analyze hyperspectral data, we were able to analyze

the common structure revealed by two different hyperspectral techniques and also the

independent contribution which explains the variability under each block.

Difference between the approaches

The above explained canonical methods are used to determine the common structure

between two sets of variables (p and q) but profoundly differ in their construction, and
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hence their aims. CCA uses information from all the variables in both the exposure and

outcome variable sets and maximizes the estimation of the relationship between the two

datasets. Thus, CCA may offer a more efficient approach for assessing the relationship

of two sets of variables than methods routinely used such as multiple linear regression.

CCA starts with simultaneous consideration of both datasets, limiting the inefficiencies

that may accompany conventional multiple testing, and thus, reducing type-1 error. How-

ever, canonical correlation based methods are statistically difficult to assess as they do

not fit into a regression framework. In this context, penalized CCA adapted with elastic

net (CCA-EN) could be used but the elastic net is similar to a Lasso soft-thresholding

penalization and the algorithm uses partial least squares and not canonical correlation

computations (Lê Cao et al., 2009). On the other hand, sPLS and MCIA aim at maxi-

mizing the covariance between the score vectors. From Lê Cao et al. (2009), it is evident

that sPLS made a good compromise between all of these approaches and includes variable

selection. Moreover, sPLS maximizes the covariance between the latent variables whereas

the canonical correlation based methods maximize the correlation. The major advantage

of coinertia analysis is its ability to deflate data tables using block scores.

However, in addition to the application of canonical methods for data integration, this

thesis includes a novel analysis pipeline for two block data tables of higher complexity.

Here, the focus is on joint analysis of gene expression datasets using network based ap-

proaches to study the correlation and co-expression patterns of 22000 genes across different

cellular levels. Furthermore, Tukey Honest Significant Difference (HSD) tests determines

the number of genes which show cell-type specific patterns across different cellular levels

and classify them into particular motif occurrences. The benefits of this analysis pipeline

are two-fold: using the concept of expression conservation score, it is possible to iden-

tify genes which exhibit altered expression levels. Moreover, the analysis pipeline detects

co-expression relationships which are reflective of substantial rewiring of co-regulation of

genes across different cellular levels. In addition, the pipeline takes into account the gene

expression patterns and their specificity across multiple cell-types. Bootstrap procedures

ensure the robustness of the analyses.

2.4 Case studies for integrative analysis of two block

data tables

In this section, the data structure of the case studies used in this thesis is detailed.

Three case studies involving heterogeneous data-types from various plant sources will be
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presented. The underlying biological question for each case study will be explained in

detail as subsequent chapters.

Case-study 1

This study was based on cotton fibers, one of the commercially important raw materials

of the fiber industry. With the sequencing of the Gossypium hirsutum genome, studies on

cotton fiber is increasingly becoming more important. In this case, two different datasets

were generated across different omics levels, the glycome and the phenome. Specifically,

the glycome refers to the full set of sugar molecules or the entirety of carbohydrates

in a cell (Bertozzi and Sasisekharan, 2009, Campbell and Yarema, 2005). The dataset

employed in this study is generated from high throughput screening of plant cell wall

polysaccharides from cotton fibers. A key goal of biology is to understand the phenotypic

variations in the environment and phenomics is pursued as an independent discipline to

enable the development of high throughput phenotyping (Bilder et al., 2009, Houle et al.,

2010, Joyce and Palsson, 2006). To this end, the second dataset is generated from a

phenotyping experiment in cotton fibers. Experimental information related to these two

experiments will be explained in detail in Chapter 3 of the thesis.

Figure 2.3: Integration two block data tables generated using different exper-
iments. These two blocks of data were generated across different cellular levels from
cotton fibers. There are ‘n’ observations that corresponds to the cotton lines. The vari-
ables ‘p’, and ‘q’ correspond to antibody probes and phenotypic traits, respectively.

The datasets from the glycan profiling and phenotyping experiments represent a two block

data structure and correspond to matrices X and Y respectively (Figure 2.3). The number

of observations ‘n’ in this case refer to the number of cotton lines used. The variables ‘p’ of

the glycan profiling experiment correspond to the antibody probes used to study specific

cell wall polysaccharides. Contrastingly, the variables ‘q’ refer to the measurements of the
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cotton fiber characteristics for eg., elongation and strength of the fibers. This case study

is different from the others in terms of the cellular levels and also the data structure. The

number and type of variables studied in the two datasets are completely different whereas

the number of observations still remain the same.

Case-study 2

Spectroscopic approaches is quite extensively applied in monitoring developmental and

compositional changes of plant cell walls. In this case-study, we use data from spectroscopy

techniques such as Fourier Transformed Infrared (FT-IR), and Raman. Cell wall polymers

can be studied by these two types of spectroscopy with different sensitivity depending

on the polymer structure. FT-IR spectra can reveal very slight modifications in the

polysaccharide composition of the cell wall (Alonso-Simón et al., 2011, Sene et al., 1994,

Kačuráková et al., 2000). Raman spectroscopy involves inelastic scattering with a photon

and the structural characteristics of plant cell walls in the native state could be studied

on the single cell level (Gierlinger et al., 2012).

Figure 2.4: Data tables generated from spectroscopy experiments. These two
blocks of data were generated to study the chemical composition of particular cell-types
using two different techniques. There are ‘n’ observations, and the variables are repre-
sented by ‘p’, and ‘q’ across both datasets.

The data from the spectroscopy experiments represent a two way data table wherein the

first data block X refers to the Raman dataset and Y to the infrared dataset (Figure

2.4). This study is an example of integrating two block data tables generated from two

different techniques used to study the same set of samples. The observations in both

datasets correspond to the paired spectral profile (number of common pixels) across both

spectroscopy techniques. The variables ‘p’, and ‘q’ correspond to the wavenumbers used in

the Raman and infrared experiment, respectively. In this case, the number of observations
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across both experiments remain the same whereas the nature and number of variables is

different.

Case-study 3

This study is on Arabidopsis thaliana, a widely used model plant organism in basic re-

search. The availability of its genome sequence has made it an invaluable resource for

the identification and characterization of genes encoding enzymes especially in the field

of plant cell wall biosynthesis. Arabidopsis has 22800 genes and 14 non-overlapping cell-

types. Recently, two microarray datasets of Arabidopsis root samples were generated to

study the gene expression of multiple cell-types across two different omics levels. The

omics level under study were the transcriptome and the translatome level characterizing

cell-type specific gene expression and translation levels respectively. Briefly, the genome is

made up of deoxyribonucleicacid (DNA) molecules that contains the information necessary

for the construction and maintenance of a cell. Utilization of the biological information

in a cell requires the coordinated activity of enzymes and proteins to produce a complex

series of biochemical process called as genome expression. The initial product of genome

expression is the transcriptome and is maintained by a process called transcription in

which individual genes are copied into ribonucleicacid (RNA) molecules (Sharp, 2009).

Translation of the individual RNA molecules into aminoacid chains forms proteins and

the repertoire of proteins is referred to as the proteome. As an intermediate step between

the transcriptome and the proteome is the translatome which describes the RNA which

are attached to the ribosomes. In particular, the composition of the translatome is based

primarily on translation initiation, i.e. the loading of ribosomes on messenger ribonucle-

oprotein particles (mRNPs) to form polysomes and secondarily on translation elongation

(Gebauer and Hentze, 2004). More detailed information of the experiments pertaining to

the generated datasets can be found in the material and methods section of Chapter 5.
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Figure 2.5: Two block data table representation. These two blocks of data were
generated across different cellular levels from the same plant system. There are ‘n’ ob-
servations that correspond to the genes. The variables ‘p’, and ‘q’ correspond to the
cell-types from the transcriptome and translatome level, respectively.

Clearly, the above mentioned datasets represent a block data structure wherein the first

block refers to the transcriptome dataset and, second to the translatome dataset (Figure

2.5). The block structures are of the order two if both blocks refer to two-way data matri-

ces wherein ‘n’ represent the number of observations, ‘p’, and ‘q’ represent the number of

variables in matrices X and Y, respectively. Here, data matrices X and Y corresponds to

the transcriptome and translatome datasets, respectively. In the transcriptome (X) and

translatome (Y) data matrices, ‘n’ refer to the number of genes under study in Arabidop-

sis roots. The variables ‘p’ refer to the cell-types in which the gene expression studies

were carried out in the transcriptome. The variables ‘q’ refer to the number of cell-types

profiled in the translatome. The number of genes in the transcriptome and translatome

dataset were the same albeit the number of profiled cell-types were different.

Statistical computation

In consecutive chapters of this thesis, specific case-based examples of various integrated

approaches are elaborated with an aim to understand the architecture of plant cell walls. R

version 3.1.2 (R Core Team, 2014) on a 64-bit Linux platform was used for computations

in Chapters 3 and 5. MATLAB (MATLAB, 2013) was used for image processing and

analysis in Chapter 4 of this thesis.



Chapter 3

Case study 1: Understanding the

relationship between cotton fiber

properties and non-cellulosic cell

wall polysaccharides

3.1 Specific rationale and objectives

A detailed knowledge of cell wall glycans and complexity is crucial for understanding plant

growth and development. However, glycans are not readily amenable to sequencing and

existing biochemical methods for glycan analysis are usually low throughput. Microarrays

are widely used in plant research for the high throughput analysis of nucleotides, proteins,

and increasingly, carbohydrates (Schena, 1996, Wang, 2003). Carbohydrate microarrays

also referred to as glycan arrays enable hundreds of glycans to be analyzed in parallel.

Glycans on the arrays can include oligosaccharides, polysaccharides, glycoproteins, and

glycolipids (Park et al., 2008, Wang et al., 2005). Glycan arrays have several biological,

and medical applications which include glycoproteomic methods to identify new glycopro-

teins and glycans (Hanson et al., 2007, Hsu et al., 2007), characterization of glycan probes

(Pedersen et al., 2012), profiling carbohydrate-lectin interactions (Uchiyama et al., 2006,

Gupta et al., 2010), glycosaminoglycans-growth factor and cytokine interactions (Gama

et al., 2006, De Paz et al., 2006), pathogen-induced antibody interaction (Ratner and

Seeberger, 2007, Wang et al., 2004), cancer-antibody induced interaction (Huang et al.,

2013, Lawrie et al., 2006), carbohydrate-virus interactions (Blixt et al., 2004), quantita-
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tive carbohydrate-protein interactions (Liang et al., 2007), and drug discovery (Bryan and

Wong, 2004, Disney and Barrett, 2007).

Comprehensive microarray polymer profiling (CoMPP), a microarray based glycan

screening method is mostly used for high throughput characterization of plant cell walls.

In this technique, generation of microarrays by sequential extraction of cell wall polysac-

charides and screening samples against a large number of well-defined cell wall probes

such as antibodies, carbohydrate binding proteins, and modules is done (Wang et al.,

2005, Park et al., 2008, Pedersen et al., 2012). Despite the availability of glycan arrays

from several experiments, computational analysis has mostly been restricted to collection

of glycobiology information in databases, motif analysis of glycans, and oligosaccharide

structure determination (von der Lieth, 2004, Marchal et al., 2003, Aoki-Kinoshita and

Kanehisa, 2006).

One key challenge is to establish links between polysaccharide-rich cell walls, and their

phenotypic characteristics. It is of particular interest for some plant material, like cotton

fibers, which are of both biological, and industrial importance. To this end, the glycan ar-

ray technology is used to study cotton fibers, one of the most important raw materials for

the textile industry. There are four different domesticated species producing cotton fibers

namely Gossypium hirsutum (‘Upland cotton’), Gossypium barbadense (‘Pima’ or ‘Egyp-

tian’ cotton), Gossypium arboreum (‘Tree cotton’), and Gossypium herbaceum (Wendel

et al., 2009). The development of cotton fibers occurs in four major stages: initiation,

elongation, secondary wall synthesis, and maturation. Although much work has already

been done on the cotton fiber transcriptome, the key question in cotton fiber research is

to link the cell wall profile of different cotton types to the cotton fiber properties for a

better understanding of fiber development.

Here, the aim is to study the relation between fiber properties and non-cellulosic

polysaccharide composition using correlation and regression based approaches on a di-

verse set of cotton fibers. The two datasets used in this chapter include a glycan array

profile and the physical properties of cotton fibers. Taking advantage of the compre-

hensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different

cotton species were studied. The glycan array was generated by sequential extraction of

cell wall polysaccharides from mature cotton fibers and screening samples against eleven

extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers

such as length, strength, elongation, and micronaire were measured. The conducted anal-

ysis highlights the usefulness of regression based approaches in establishing a relationship

between glycan measurements, and phenotypic traits. In addition, the analysis also iden-

tified specific polysaccharides which may play a major role during fiber development for
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the final fiber characteristics.

3.2 Materials and methods

The methods described under the subsection 3.2.1 was done by Dr. Jean-Luc Runavot

from Bayer CropSciences and the work on glycan microarrays (3.2.2) was carried out

by Xiaoyuan Guo in Copenhagen. They provided the datasets for the regression based

analysis.

3.2.1 Plant material and evaluation of phenotypic traits

The plant material used in the analysis include 32 different cotton lines of which three

are from Gossypium arboreum, three from Gossypium barbadense, two from Gossypium

herbaceum, and 24 from Gossypium hirsutum. Deatils of the cotton lines, and their

corresponding plant introduction number (PI number) from the USDA National plant

germplasm system (http://www.ars-grin.gov/npgs/) are listed in Table S1 (Appendix

B). Seeds were sown in soil compost and plants were grown at constant conditions in a

greenhouse at 26-28 ◦C during a 16 h photoperiod. Mature cotton fibers were collected by

harvesting all fully open bolls from several plants. The impact of boll position, and plant-

to-plant variation was minimized by mixing the fiber from all harvested bolls. Two types

of analyses were performed on these fibers, the first being the glycan array measurements

and the second being fiber characteristics/phenotype measurements. For each line, High

Volume Instrument (HVI) and Advanced Fiber Information System (AFIS) measurements

were performed on 40 g of mature cotton fiber by CIRAD (France) according to the

standard methods ASTM D3818-92 and D5867-05. These measurements were done on

six and five replicates for HVI and AFIS, respectively, except for micronaire where only

two replicates were performed. Five fiber characteristics which include length from HVI

and AFIS, strength, elongation, and micronaire were selected for further analysis due to

their importance for textile processing. Length HVI refers to the average fiber length of the

longer 50 % of fibers in a given sample. Length AFIS (W) deduces length parameters from

individual fiber measurements. Strength of the cotton fiber refers to the force required to

break a bundle of fibers 1 tex in size (1 tex equals the weight in grams of 1000 meters of

fibers). Elongation of the cotton fibers is the measurement of the elasticity of cotton fibers

with a higher number indicating more elasticity. Micronaire is obtained by measuring

the resistance of the fibers to airflow and depends on the fiber fineness and degree of

maturation.
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3.2.2 Comprehensive Microarray Polymer Profiling (CoMPP)

of mature cotton fiber cell wall

CoMPP analysis was performed on mature cotton fibers as previously described by Singh

et al. (2009) with minor modifications. Mature cotton fiber samples were extracted se-

quentially in 50 mM cyclohexanediamine tetraacetic acid (CDTA) and 4 M Sodium hy-

droxide (NaOH) with 1 % (v/v) sodium tetrahydridoborate (NaBH4). These two solvents

were used to extract pectins and non-cellulosic polysaccharides, respectively. For each line,

300 µL of solvent was added to 10 mg of sample and incubated with shaking for 2 h. Af-

ter centrifugation, supernatant from each extraction was printed in four replicates and

four dilutions (1:2, 1:6, 1:18 and 1:54 [v/v] dilutions). Cadoxen extraction was omitted

because it is mainly used to extract cellulose which we do not aim to analyze in our study.

The array was probed with eleven monoclonal antibodies (mAbs) recognizing different

carbohydrate epitopes as listed out in Table 3.1.

Probes used in
the analysis

Specificity of the probes Reference

BS-400-2 (1,3)-β-D-glucan (callose) Meikle et al. (1991)
JIM5 Partially methyl-esterified

homogalacturonan (HG)
Willats et al. (2000)

LM19 Un-esterified homogalacturonan (HG) Verhertbruggen et al. (2009)
JIM13 Arabinogalactan (AGP) Yates et al. (1996)
JIM20 Extensin glycoproteins Smallwood et al. (1994)
LM11 Xylan McCartney et al. (2005)
LM15 XXXG xyloglucans (XG) epitope Marcus et al. (2008)
LM24 XXLG and XLLG xyloglucan

(XG) epitopes
Pedersen et al. (2012)

LM25 XXLG and XLLG xyloglucan
(XG) epitopes

Pedersen et al. (2012)

BS-400-4 Mannan Pettolino et al. (2001)
LM21 Mannan Marcus et al. (2010)

Table 3.1: List of probes used in the glycan array. The cell wall epitopes used
in the glycan array experiment were kindly provided by Prof. Knox’s lab, University of
Leeds.

The dataset was generated to display the relative intensity of each signal to the maximum

signal observed within each antibody detection. CoMPP is a semi-quantitative technique

and should not be taken to obtain absolute amounts. Practically speaking, we set the

maximum value in the whole dataset as 100 and the other values are divided by this

maximum value and multiplied by 100 to obtain numbers comprised between 0 and 100.

When the quantification is done, the arrays are manually checked to make sure that there
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are clear dots on it and not only background or noise. The negative control is an array

incubated with 5 % milk in phosphate buffer saline and probed with secondary antibody

and then developed as the others.

3.2.3 Pre-processing of the data

The numerical values from both datasets were of different physical quantities and on

different scales of magnitude. Moreover, there is no external knowledge that variables

with higher numeric variation should be considered more important. Standardization

of the raw data was done by computing Z-scores of the raw data. The Z-scores were

calculated for each data point by subtracting the mean and dividing by the standard

deviation of all data points.

3.2.4 Linear methods to delineate the relationship between the

two datasets

Multiple regression models the relationship between a single scalar response variable and

a set of explanatory (or independent) variables. Here, we used multiple regression analysis

to model which of the cell wall probes were associated to the fiber characteristics. This

allowed us to determine the overall fit (variance explained) of the model and the relative

contribution of each of the cell wall probes to the total variance explained. The results

from the analysis were reported in the coefficients and ANOVA tables. Summary of the

fitted model object gave an account of the residuals, the estimates of the intercept, the

slope (with the results of a t-test), the residual standard error, the R2 statistic and the

results of an F-test. Residual standard error is the standard deviation of the data about

the regression line. The squared multiple correlation coefficient (R2) is the proportion of

variability in the response that is fitted in the model and the F value is a test statistic to

decide whether the model as a whole has statistically significant predictive capability. The

statistically significant predictive capability in the presence of other variables is given by

the p-values (Schneider et al., 2010, Tabachnick, 2013). Based on this, five models were

selected to determine which of the cell wall polysaccharides play an important role in

determining that particular fiber characteristic.

In addition to the multiple regression analysis, relationships between multiple depen-

dent and independent variables were investigated simultaneously using canonical corre-

lation analysis (CCA). The two sets of data were represented by matrices X (dimension

n× p) and Y (dimension n× q). The columns in X and Y denote the variables ‘p’ (gly-

can measurements) and ‘q’ (fiber characteristics), respectively. Classification of variables
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as dependent or independent is of little importance for the statistical estimation of the

canonical functions as canonical correlation finds linear combinations of sets of multiple

dependent and independent variables which are maximally correlated (Lutz and Eckert,

1993, González et al., 2009).

The first step in CCA was to derive one or more canonical function between the

glycan and phenotypic measurements. Each function consisted of a pair of variates, one

representing the cell wall probes and the other representing the fiber characteristics. The

maximum number of canonical variates (functions) that could be extracted from the sets of

variables equals the number of variables in the smallest dataset, independent or dependent.

As a result, the first pair of canonical variates was derived so as to have the highest inter-

correlation possible between the glycan array and the fiber measurements. Technically,

the second pair of canonical variates exhibits the maximum relationship between the two

sets of variables (variates) not accounted for by the first pair of variates and successive

pairs of canonical variates were based on residual variance. Therefore, each of the pairs of

variates is orthogonal and independent of all other variates derived from the same set of

data. The strength of the relationship between the pairs of variates obtained from both

datasets was determined by the canonical correlation. An estimate of shared variance

between the canonical variates was provided by the squared canonical correlations, also

called canonical roots or eigenvalues. The statistical significance of each canonical function

was assessed as detailed in Chapter 2 using multivariate tests of significance namely Wilk’s

lambda, Hotelling’s trace, Pillai’s trace and Roy’s greatest characteristic criterion (Roy’s

gcr). The statistically significant canonical functions were then interpreted using canonical

loadings, cross-loadings, and redundancy index (Witten and Tibshirani, 2009, Gonzalez

et al., 2012, Rencher, 2002, Tenenhaus et al., 2014).

3.2.5 Sparse partial least square regression to predict the cell

wall probes associated to fiber characteristics

Partial least squares (PLS), a well-known regression technique dealing with collinear ma-

trices, clearly has an edge over other regression techniques (Boulesteix and Strimmer,

2007). Unlike CCA, the PLS latent variables are linear combinations of the variables

based on the maximization of covariance but do not allow feature selection. There are

many variants of PLS of which we focused on a sparse partial least squares approach

(sPLS) which includes a built-in feature to select variables while integrating the data. A

detailed algorithm for both the PLS and sPLS is available in Chapter 2 of this thesis.

Specifically, we use a two block data setup, X be the n×p matrix and Y be the n×q ma-



3.3 Results 39

trix where ‘n’ denotes the samples, variables ‘p’ and ‘q’ denote the glycan measurements

and fiber characteristics, respectively. Sparse PLS, based on Lasso regression penalizes

the loading vectors using singular value decomposition (SVD) and has an additional ad-

vantage to perform better even when the covariates are highly correlated. We used sPLS

in the regression mode where the aim was to model the relationship between the variables

and also predict one group of variables from the other (Gonzalez et al., 2012, Lê Cao

et al., 2009, 2008).

3.3 Results

3.3.1 Standardization of the raw data

The analysis was done to assess the relationship between the cell wall polysaccharides and

the physical fiber properties of mature cotton fibers. The glycan array values used for the

regression analysis were the sum of the CDTA and the NaOH extractions as performing

the analysis using the individual values gave the same correlations. For the fiber character-

istics dataset, the values were in different units and scales such as mm (for length), g/tex

(for strength), and percentage (for elongation). To make the fiber characteristics dataset

compliant to the glycan array, the raw data were jointly standardized using Z-scores prior

to the analysis.

3.3.2 Modeling the fiber properties using linear regression mod-

els

We investigated the linear relationship between the fiber properties and their correspond-

ing array values by a series of regression analyses. Multiple regression models were built

considering one fiber characteristic at a time as the dependent variable and multiple probes

as the independent variables. Five such models were predicted for the phenotypic traits

and the overall model prediction result (Table 3.2) shows that the model for length HVI,

length AFIS and micronaire are statistically significant. The significant predictor vari-

ables of length HVI are BS-400-2, LM19 and the ones for length AFIS include BS-400-2,

JIM5, JIM20, LM15, and LM19.
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Fiber charac-
teristics

Residual
standard
error

Multiple
R-squared

Adjusted
R-squared

F-statistic p-value Significant
predictors

Length HVI 0.696 0.706 0.545 4.372 on 11
and 20 DF

0.002 BS-400-2,
LM19

Length AFIS 0.632 0.720 0.566 4.677 on 11
and 20 DF

0.001 BS-400-2,
JIM5, JIM20,
LM15, LM19

Strength 0.940 0.378 0.036 1.107 on 11
and 20 DF

0.404 JIM20

Elongation 0.825 0.376 0.033 1.098 on 11
and 20 DF

0.410 -

Micronaire 0.469 0.851 0.769 10.400 on
11 and 20
DF

4.90E-
006

LM15, LM19,
LM24, LM25

Table 3.2: Summary statistics of the five possible multiple regression models.
The F-statistic and p-value criterion were further used to assess the significant predictors.

Probes LM15, LM19, LM24 and LM25 are the significant predictor variables for the model

predicting cotton fiber micronaire and the overall model has a p-value of 4.90E-006. The

models for strength and elongation do not show any statistical significance.

3.3.3 Simultaneous assessment of the relationship between mul-

tiple probes and all of the fiber characteristics

The multiple regression analysis can predict the value of a single (metric) dependent

variable from a linear function of a set of independent variables. However, to explore the

relationship of sets of multiple predictor variables (probe measurements) to sets of multiple

response variables (phenotypic traits) CCA was used (cf. Chapter 2). For the CCA

analysis, the glycan array measurements (probed by eleven antibodies) are designated as

the set of independent variables. The fiber characteristics namely length AFIS, length

HVI, strength, elongation and micronaire were specified as the set of dependent variables

(Figure 3.1). However, it is of little importance to classify the variables as independent

or dependent as the technique aims to maximize the correlation between the two sets of

variables. In Figure 3.1, the terms rx1 to rx11 represent the canonical loadings which reflect

the variance that the eleven variables from the glycan array shares with the independent

canonical variate U1. Similarly the terms ry1 to ry5 represent the canonical loadings which

reflect the variance that the five phenotypic variables share with the dependent canonical

variate V1.
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Figure 3.1: Canonical correlation analysis maximizes the correlation between
the linear combination of the cell wall polysaccharides in the glycan array
and the fiber properties. In this figure, given a linear combination of X variables
and a linear combination of Y variables, the first canonical correlation is the maximum
correlation coefficient between U1 and V1, for all U1 and V1.

The canonical correlation between the independent and dependent canonical variates is

measured by the canonical functions which are represented by R2
c1 to R2

c5. The statistical

problem involved identifying any latent relationships (relationships between composites

of variables rather than the individual variables themselves) between the glycan and the

fiber measurements.

The canonical correlation which is based on the linear relationship of the glycan array

data and fiber characteristics was computed to derive five canonical functions (Table 3.3).

Each of these functions consists of a pair of variates, one for the glycan array data and the

other for the fiber characteristics. Since the study includes eleven independent variables

and 5 dependent variables, the maximum number of canonical functions which could be

derived is five.
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Canonical function Canonical correlation Canonical R2 F statistics p-value

1 0.945 0.883 2.850 1.573E-005
2 0.868 0.753 1.883 0.011
3 0.803 0.645 1.321 0.203
4 0.523 0.273 0.590 0.871
5 0.342 0.116 0.344 0.904

Table 3.3: Canonical correlation analysis relating probe signals and fiber char-
acteristics with the measure of overall model fit. There are five canonical functions
because the maximum number of canonical functions that could be extracted equals the
number of variables in the smallest dataset.

In addition to tests of each canonical function separately, multivariate tests of these

five functions simultaneously were also performed. The test statistics employed include

Wilks’ lambda, Pillai’s criterion, Hotelling’s trace, and Roy’s gcr (cf. Chapter 2). Table

3.4 details the p-values from the multivariate test statistics, which all indicate that only

the first canonical function, taken collectively, is statistically significant at 1 % level.

Canonical
function

Wilks’
Lambda

Hotelling-
Lawley Trace

Pillai-Bartlett
Trace

Roy’s largest
root

1 1.573E-005 2.666E-007 0 8.732E-012
2 0.011 0.001 0.042
3 0.203 0.055 0.285
4 0.871 0.836 0.801
5 0.904 0.885 0.848

Table 3.4: Multivariate tests of significance for the canonical functions. Four
different test statistics were employed to indicate if the canonical functions are significant.
Test statistics were computed as detailed in Section 2.3 (cf. Chapter 2).

From the results of these tests, we proceeded to interpret other aspects of the analysis

based on the first canonical function. A redundancy index was calculated for the inde-

pendent and dependent variates of the first function in Table 3.5. The redundancy index

is calculated as the average loading squared times the canonical R2. As can be seen, the

redundancy index for the dependent (0.191) and independent variates (0.200) is quite low.

The low values result from the relatively low shared variance in the dependent variates

(0.214) and independent variates (0.225), not the canonical R2. With such a small per-

centage, this is an example of a statistically significant canonical function that does not

have practical significance because it does not explain a large proportion of the dependent

variables’ variance.
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Parameters
Their own canonical variates The opposite canonical variates

Percentage Cumulative
percentage

Canonical
R2

Percentage Cumulative
percentage

Standardized
variance of the
dependent variables
explained by:

0.214 0.214 0.883 0.191 0.191

Standardized
variance of the
independent
variables explained
by:

0.225 0.225 0.883 0.200 0.200

Table 3.5: Redundancy analysis of dependent and independent variates for
the first canonical function. Redundancy is the measure of how well the independent
canonical variate predicts the values of the original dependent variables or vice versa.
Standardized variance of the dependent and independent variables explained by their
own canonical variates and their opposite canonical variates is listed here.

The interpretations involve examining the canonical functions to determine the relative

importance of each of the original variables in deriving the canonical relationships (Table

3.6). The three methods for interpretation are (1) canonical weights (standardized coef-

ficients), (2) canonical loadings (structure correlations), and (3) canonical cross-loadings.

Table 3.6 contains the standardized canonical weights for each canonical variate for

both dependent and independent variables. As mentioned earlier, the magnitude of the

weights represent their relative contribution to the variate. Based on the size of the

weights, the order of contribution of independent variables to the first variate is LM19,

LM25, JIM5, LM15, BS-400-4, LM21, LM24, JIM13, and JIM20. Similarly, the order of

contribution of dependent variables to the first variate is micronaire followed by length

AFIS, length HVI, strength and elongation. Because canonical weights are typically un-

stable, particularly in instances of multicollinearity, owing to their calculation solely to

optimize the canonical correlation, the canonical loadings, and cross-loadings are consid-

ered more appropriate.

Table 3.6 also contains the canonical loadings for the dependent and independent

variates for the first canonical functions. In the first dependent variates, all the five

variables had different values of loadings resulting in low shared variance (0.214). This

indicates a low degree of inter-correlation among the five dependent variables. Observing

the independent variates, there is a different pattern and loading values ranged from 0.06

to 0.77. The variables with the highest loadings on the independent variate are LM25,

LM19, LM15, and JIM5. We also observed some loadings with negative values which
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include those of BS-400-4, JIM20, and LM11.

In case of the cross loadings, micronaire has a value of 0.890 and interestingly has a

negative loading. Length AFIS to some extent has a loading value of 0.387 while those of

the other variables is low. By squaring these terms, we find the percentage of the variance

for each of the variables explained by function 1. The results show that 79.21 % of the

variance in micronaire, 14.97 % of the variance in length AFIS is explained by function

1 whereas strength, elongation and length HVI have very low values. Similarly for the

independent variables’ cross loadings, variables LM25, LM19, LM15, JIM5 have high cor-

relations of 0.73, 0.67, 0.61, and 0.61, respectively. From this information, approximately

51.8 % of the variance in LM25, 45.1% of the variance in LM19, 36.3% of the variance

in LM15, and 35.7% of the variance in JIM5 is explained by the dependent canonical

variates.

Canonical weights Canonical loadings Canonical cross-loadings

Dependent variables

Length HVI -0.636 0.127 0.120
Strength -0.226 0.040 0.038
Elongation -0.033 0.056 0.053
Micronaire -0.843 -0.941 -0.890
Length AFIS 0.810 0.409 0.387

Independent variables

BS-400-2 0.184 0.362 0.342
BS-400-4 -0.487 -0.119 -0.113
JIM5 -0.823 0.632 0.598
JIM13 -0.290 0.288 0.272
JIM20 -0.204 -0.376 -0.355
LM11 -0.114 -0.362 -0.343
LM15 -0.719 0.638 0.603
LM19 1.243 0.712 0.672
LM21 0.356 0.275 0.265
LM24 -0.324 0.066 0.062
LM25 1.082 0.767 0.724

Table 3.6: Canonical weights, loadings, and cross-loadings for the first canon-
ical function. Larger canonical weights contribute more to the canonical function.
Canonical loading provides a direct assessment of each variable’s contribution to it’s re-
spective canonical variate. Canonical cross-loading corresponds to the correlation of each
observed dependent or independent variable with its opposite canonical variate.

The final step of interpretation is examining the signs of the cross-loadings. Examining

the signs of the independent variables’ cross loadings, those with high correlations have

a positive direct relationship whereas BS-400-4, JIM20, and LM11 have an inverse rela-

tionship. The four highest cross-loadings of the first independent variate correspond to
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the variables with the highest canonical loadings as well. Observing the cross loadings of

the dependent variables, we see that micronaire has the highest canonical loading and an

inverse relationship. Also, elongation is observed to have an inverse relation but since it

is of very low value, it was not taken into account.

3.3.4 sPLS approach to predict specific cell wall polysaccharides

involved in fiber properties

sPLS was computed in the regression mode and the input for the analysis included the

eleven cell wall probes along with the five fiber characteristics. The number of dimensions

to be retained was estimated with the Q2
h criterion, for which a value below the threshold

0.0975 indicates a significant contribution for the prediction purpose. The Q2
h values

calculated as described in Chapter 2 showed that 2 dimensions were enough to capture

the whole information. From Figure 3.2, we can interpret the results from the sPLS

via the correlation circle plot where the predictor variables are in red and the response

variables are represented in blue. A correlation circle plot is a graphic tool to represent

variables of two different data-types and examine the relationships between the variables

and variates. The relationship between these two data-types is approximated by the inner

product between the associated vectors which is defined as the product of the two vector

lengths and their cosine angle. For better interpretation, two circles of radii 0.5 and 1 are

represented to visualize the variables. The longer the distance to the origin, the stronger

is the relationship between the variables.
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Figure 3.2: Graphical representation of the variables selected by sPLS on
the first two dimensions predicts specific cell wall polysaccharides linked to
the fiber properties. The coordinates of each variable are obtained by computing the
correlation between the latent variable vectors and the original dataset. The selected
variables are then projected onto correlation circles where highly correlated variables
cluster together. These graphics help to identify association between the two datasets.
The correlation between two variables is positive if the angle is sharp (cos(α) > 0), negative
if the angle is obtuse (cos(Θ) < 0), and null if the vectors are perpendicular (cos(β) ∼ 0).

Using the interpretation which is detailed, we find that BS-400-4, LM21, and JIM13

share a positive relationship with elongation characteristic of cotton fibers. We were also

able to attribute the strength of the cotton fibers to JIM20, LM11, and LM24. Interest-

ingly, LM19, JIM5, LM15, and LM25 were projected diametrically opposite to that of the

micronaire in the correlation circle, thereby indicating a strongly negative relationship.

Length HVI and length AFIS share a negative relation to BS-400-2. To estimate the sig-

nificance of the predicted relationships, the root mean squared error prediction (RMSEP)

values were computed for each response variable (fiber properties) and ranked according

to the absolute value of their loadings. The lower the RMSEP value, the better the pre-

diction of the model is. In this case, the model for micronaire was the best one (RMSEP

of 0.71), followed by that of length AFIS (1.13), strength (1.14), elongation (1.15), and

length HVI (1.21).
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Figure 3.3: Graphical representation of the cotton lines on the first two sPLS
dimensions shows the trend in clustering of specific cotton lines across differ-
ent species. Four different species of cotton are shown in different colors. Gossypium
hirsutum is colored in magenta, Gossypium barbadense in green, Gossypium herbaceum
in orange and Gossypium arboreum in red.

Figure 3.3 displays the graphical representation of the cotton lines in dimension 1 and 2.

This plot shows that some of the lines are clustered together, with Acala SJ1, Germains

Acala (GC 352 and GC 362), TAM-90C-19 S, and FM966 forming one cluster, Acala red

okra, okra leaf, multiple marker, Tidewater, and TTU 202-1107B forming a second cluster

and PIMAS7, Lankart 57, IV4F-91057, GA161, Ting tao tzu ching chung mien, Brymer

brown, Malla guza, Selection of SHIH, China 10, Texas rust brown, Tex 1000 and 30834

(A1660) forming a third cluster.

Interestingly, some of these clusters indicate that the variation in fiber characteristics

and composition is clearly not species-specific. However, one should be careful in interpret-

ing the results from the individual lines as the study was designed to discover correlations

between fiber properties and composition and not to study properties of individual lines.



48
Case study 1: Integrative system-level analysis to study cotton fiber

properties

3.4 Discussion

Understanding the genetics and physiology of cotton fibers is of importance to the tex-

tile industry. There have been numerous studies, both profiling and sequencing based

experiments to study cotton fiber development at the transcriptional level. The high de-

gree of transcriptional complexity in the development of cotton fibers has been the focus

of these studies (Singh et al., 2009, Gilbert et al., 2013, Bowman et al., 2013, Rambani

et al., 2014, Lacape et al., 2012). We used the CoMPP technique in our analysis to study

directly the glycan composition of cotton lines from different species. The work presented

here demonstrates the potential of glycan microarrays in combination with multivariate

statistical approaches for understanding the cell wall composition responsible for the fiber

characteristics. Specifically, the use of regression based approaches in our study helps to

predict models for each of the fiber trait under study.

We studied the association between glycan array measurements and their relation with

fiber characteristics using linear approaches like multiple regression, CCA and sPLS. From

the results of multiple regression (Table 3.2), we were able to predict three models for

length HVI, length AFIS and micronaire of cotton fibers but not for strength and elon-

gation characteristics. Moreover, to extend our understanding of the data to situations

involving more than one fiber characteristic at a time, CCA was used as it simultaneously

models effects of multiple independent variables on multiple dependent variables. CCA

uses information from all the variables in both the exposure and outcome variable sets

and maximizes the estimation of the relationship between the two sets. The resulting

procedure gives a global view of association between indicators of both datasets. Thus,

CCA could be used as a comprehensive approach to extract information from data simul-

taneously. Another major advantage of using the CCA to multiple regression analysis is

to deal with the issue of multicollinearity. In multiple regression, the interpretation is

usually based on the significance of weights, which is highly influenced by multicollinear-

ity. If two variables have a high correlation one of them will be completely eliminated

even if both have a high correlation to the outcome. In our analysis, this is illustrated by

JIM5 and LM19 (both detecting homogalacturonan), with both showing a high correla-

tion with micronaire in CCA but only LM19 being identified as a predictor of micronaire

in the linear regression model. From the results of the CCA, we obtained an overall

picture of associations between the glycan and phenotype measurements, with informa-

tion about the relative contribution of the variables to that particular canonical variate

through canonical loadings. The canonical analysis revealed that the canonical correlation

was statistically significant at 1%. Additionally, we used the sPLS approach to be able
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to predict specific cell wall polysaccharides linked with fiber characteristics.

There were both unique and common findings from the three types of regression anal-

ysis. The major and most significant finding in common to all these analyses is that mi-

cronaire is negatively correlated with the xyloglucan (XG) and homogalacturonan (HG)

probes. One possible explanation for this observation is that cotton fiber with a high

micronaire usually has a very thick secondary cell wall resulting in very high levels of

cellulose and lower levels of the non-cellulosic components. However, we do not find a

negative correlation of micronaire with other non-cellulosic compounds suggesting that

increased cellulose levels of high micronaire fibers affect the XG and HG epitopes in a

different way than the other non-cellulosic epitopes. For instance, it could specifically de-

crease extractability of the XG and HG epitopes. As micronaire measures a combination

of fiber fineness and maturity, we wanted to understand whether the observed correla-

tion is with maturity or fineness or a combination of both. We tested this using linear

regression models once again and built models for fineness and maturity of the fibers. We

observed that the regression models for fineness had an adjusted R2 value of 0.803 with

JIM5, LM19, and LM25 as significant predictors at a 1 % threshold. The regression model

for maturity was also significant at the 1 % threshold but with no particular significant

predictors thereby suggesting that the observed correlation is attributed to fiber fineness.

This indicates that this correlation is linked to the thickness rather than the shape of the

fiber, which is consistent with a link to the cellulose levels.

Since only the first canonical function of the CCA analysis is statistically significant

and this function explains only for micronaire a large fraction of the variance, the results of

the CCA analysis are not informative with respect to the other fiber properties. For these

fiber properties, the correlation between fiber length and callose is the only one that was

detected in both the linear regression and the sPLS analysis. Callose has been described to

play a role in cotton fiber elongation. Indeed, it was reported that plasmodesmatal closure

was positively correlated with the rapid fiber elongation and that callose was involved in

the gating of these plasmodesmata (Ruan et al., 2004). However, this observation involves

transient callose detection, only after 5 dpa and already significantly reduced at 20 dpa,

what makes it unlikely to be detected in mature fibers. Another type of callose deposition

was reported by Salnikov et al. (2003) wherein the callose is supposed to be deposited in

the secondary cell wall and remains in the fiber. From the results of the multiple regression

models (Table 3.2), a positive correlation between several of the homogalacturonan probes

and length property of the fibers is apparent. The link between pectins and the elongation

of cell walls is already observed in several plant systems (Goldberg et al., 1996) and

studies in flax stems, pea stems and maize coleoptiles revealed a negative correlation
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between pectin levels and cell elongation. In cotton fibers and trichomes, there exists

a positive correlation between pectic sheath and elongation (Vaughn and Turley, 1999).

Recent studies by Tokumoto et al. (2002) have established that pectic polysaccharides

and xyloglucan containing uronic acids were the major polysaccharides extracted during

elongation. Hence, our results are in agreement with various studies which state that

pectin biosynthesis promotes fiber elongation (Haigler et al., 2012) and that the degree of

esterification is a key factor in controlling the elongation (Singh et al., 2009, Wang et al.,

2010a). The correlation between length and HG was not detected in the sPLS analysis

most likely because the stronger (negative) correlation of HG with micronaire.

Furthermore, relationships between fiber strength or elongation and specific carbo-

hydrate epitopes could be deduced from the results of the sPLS analysis (Figure 3.2).

For instance, fiber strength was associated both with the xylan (LM11) and the extensin

(JIM20) epitope. A role of xylan in fiber strength would be consistent with the function

of heteroxylan in other cell-types which is commonly related to the strengthening of cell

walls as revealed by defects in cellulose deposition in xylan mutants (Hao and Mohnen,

2014). A role of extensin in fiber strength is less expected and would need experimental

validation. In the linear regression analysis, extensin was identified as a significant pre-

dictor for length AFIS but not for length HVI. A role for extensin in determining cotton

fiber length would be more consistent with its role in other plant cell-types (Sadava et al.,

1973). Finally, AGP glycan (JIM13) and mannan (BS-400-4 and LM21) epitopes were

found to predict cotton fiber elongation from the sPLS model. Interestingly, studies have

indicated that AGPs are important players during fiber development. Immunofluores-

cence assays by JIM 13 showed distinct patterns in developing fiber cells indicating that

polysaccharide chains of AGPs are involved in initiation and elongation stages of cotton

fibers (Bowling et al., 2011, Huang et al., 2013, Qin et al., 2013). However, it is not

clear how these AGPs would affect the elongation property of the mature fiber. These

unexpected correlations thus present interesting hypotheses for further structure-function

relationship studies of the cotton fiber.

Overall, CoMPP assays of cell wall polysaccharides from cotton fibers suggest that

it will be a powerful tool in detecting and quantifying the differences between large sets

of cotton lines. With the use of predictive statistical approaches to integrate different

kinds of datasets, this analysis has thus discovered some correlations that are in line with

already known biological functions and others for which the biological relevance still has

to be tested. Also, it confirmed the relevance of this type of analysis to enable a detailed

understanding of the data from CoMPP assays of cell wall polysaccharides. However,

the use of mature cotton fibers in this analysis only allows detecting relevant correla-
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tions for components that are still present at maturity. In addition, many changes in

polysaccharide composition occur between the fiber elongation stage and maturity. One

would thus expect to identify only a fraction of the relationships between polysaccharide

composition and fiber properties by analysis of mature fibers, especially for fiber prop-

erties such as length that are determined in the early stages of development. Hence it

would be interesting to perform a similar kind of analysis using the polysaccharide com-

position of developing fibers to see whether additional relationships with fiber properties

can be determined. The panel of cotton lines used in this study was selected to have

maximal diversity in fiber properties and composition. Applying this type of analysis

to commercially important cotton lines would allow to understand whether differences

in polysaccharide composition affect properties of commercial cotton in the same way as

observed in this study and to gain insight into the developmental polysaccharides that

are essential to obtain high quality cotton fibers. With the sequencing of the G. hirsutum

genome, cotton fiber research is an exciting field and the work presented here will provide

a base for future studies, with potential to translate this study on the developing fibers.



Chapter 4

Case study 2: Understanding cell

wall chemical composition by

integrative analysis of infrared and

Raman images from maize

cross-sections

4.1 Specific rationale and objectives

Plant cell walls constitute the single largest source of renewable biomass in plants and

play an increasingly important role in our energy and industrial future. The plant cell

wall is mainly composed of cellulose, hemicellulose, pectins, including a wide variety of

non-polysaccharide components like proteins, lipids, enzymes, and other aromatic com-

pounds. The polysaccharides can be broken down to sugar monomers (saccharification)

for potential conversion into biofuels, bioplastics, and other chemicals. However, the cur-

rent biochemical conversion rate into biofuels is far below from first generation feedstocks

such as corn and sugarcane. Although the reasons for biomass recalcitrance to biofu-

els remains yet to be fully elucidated, a better understanding of cell-type specific cell

wall polysaccharide composition would greatly improve the saccharification process. In

addition, this would provide information on the limits of cell wall degradation prior to

alcoholic fermentation (Hansen et al., 2011, Jung and Casler, 2006).
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Most traditional chemical analysis of cell walls require the disintegration of plant tis-

sues, use of enzymes or chemicals to study the polysaccharides, and isolation from single

layers or smaller regions of interest which is quite tedious. Hence, traditional methods of

studying plant cell walls are destructive and much of the chemical and structural infor-

mation is lost. Advances in microscopy tackle this problem and spectroscopic approaches

is extensively applied in monitoring developmental and compositional changes of plant

cell walls (McCann et al., 2001, Purbasha et al., 2009). Investigating the variability of

cell wall composition according to cell-types requires techniques to determine the chem-

ical composition at a maximum scale of a few micrometers. This can be achieved using

microspectroscopy such as Fourier-transform infrared (FT-IR) or Raman. Cell wall poly-

mers can be studied by these different techniques at varying sensitivity depending on the

polymer structure. FT-IR spectra can reveal very slight modifications in the polysac-

charide composition and has many applications in the study of cell wall architecture

and plant development in general (Černá et al., 2003, Alonso-Simón et al., 2011, Hori

and Sugiyama, 2003). Raman spectroscopy involves inelastic scattering with a photon

from a laser light source in contrast to infrared spectroscopy which involves photon ab-

sorption. The structural characteristics of plant cell walls in the native state could be

studied on the single cell level using Raman microspectroscopy (Gierlinger, 2014, Gier-

linger et al., 2012). Details of 1× 1 µm2 can be revealed by Raman spectroscopy using a

conventional source of light, and a pixel size around 5× 5 µm2 can be obtained by FT-

IR microspectroscopy using a synchrotron source. Although both methods are based on

discrete vibrational transitions and have been developed as important tools in plant cell

wall research, they reveal complementary information in the compositional analysis of cell

walls. Previous studies have focused on the use of one particular type of spectroscopy to

reveal visualized differences in composition between and within cell wall layers. Besides

providing both spectral and spatial information, chemical imaging method of vibrational

spectroscopy creates a dataset with a huge amount of data. Methods, such as principal

component analysis (PCA), independent component analysis (ICA), and correspondence

analysis (COA) are the exploratory data analysis approaches that are usually applied to

analyze the key information from the spectra.

Owing to the the complexity of cell wall polymers, it is expected that coupling several

spectral domains will heighten differences in composition not observable using only one

spectral range. To this end, we compare the cell wall composition of different cell-types

by taking into account the information provided by the use of different hyperspectral

imaging techniques. Here, the focus is to understand the biochemical composition of

plant cell walls in maize stem cells using both Raman and infrared spectroscopy. Maize, a
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plant model and a major source of biofuel production is used to understand the cell wall

composition variability in different cell-types. In practice, each technique operates at its

own spatial resolution, making the coupling of the different spectral domains not straight-

forward. Multiblock methods can be employed to jointly analyze the two data tables.

However, the data to be analyzed was acquired from two different techniques and has to

be appropriately pre-processed and normalized. We analyze the common and independent

information from these hyperspectral images using multiple co-inertia analysis (MCIA).

MCIA is used instead of the canonical correlation analysis (CCA) because the former

maximizes the covariance and are efficient in determining main individual effects in paired

dataset analysis. In contrast, CCA maximizes the correlation between datasets and tends

to discover effects present in both datasets, but may omit to discover strong individual

effects.

4.2 Materials and methods

4.2.1 Plant material: Maize stem cross-sections

The hyperspectral images used in this chapter were kindly provided by INRA, Nantes.

Briefly, maize lines (F2 generation) were grown at INRA Lusignan and stems were har-

vested at female flowering stage.

Figure 4.1: Available cell-types in maize stem cell cross-section. Zea mays
(Maize), an important monocotyledonous crop resemble other grasses in the arrangement
of tissues in the stem, leaf, and root.



4.2 Materials and methods 55

The internodes under the ear were collected and stored in 70 % (v/v) ethanol/water.

Sections of 10 µm from the middle of maize internodes were used as samples and embedded

into paraffin. Sectioning was done using a microtome. Before spectral acquisition, starch

was eliminated using alpha-amylase enzymes, paraffin was removed using the protocol

described in Jamme et al. (2008), and proteins using a protease enzyme subtilisin A type

VIII from Bacillus licheniformis. The different cell-types in maize are shown in Figure

4.1 of which spectral data from xylem, phloem, sclerenchyma, and parenchyma cells was

acquired using FT-IR and Raman spectroscopy.

4.2.2 Infrared and Raman hyperspectral imaging

Infrared images were obtained using the FT-IR spectrometer Tensor 27 (Bruker optics)

equipped with an Hyperion 2000 microscope. Infrared spectra were collected in the range

of 1800 – 700 cm–1 using the X15 lens. 700 scans were co-added for the background and

500 scans for the sample. An infrared image consisting in 10 points per line and 25 points

per column was acquired.

Figure 4.2: Infrared image of the maize stem cells cross-section. The mapped
regions include xylem, phloem, sclerenchyma, and parenchyma cells highlighted by the
red rectangle.

For each spectrum, the size of the infrared window was adapted to obtain a good sig-

nal/noise ratio. The aperture was at least 20 × 20 µm2. The infrared images were

obtained first (Figure 4.2) and the Raman images second (Figure 4.3) because the latter
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has the possibility to destroy the samples during acquisition. Infrared image of size 10×25

µm2 was recorded.

Figure 4.3: Raman images of the maize stem cells cross-section. The
mapped regions are highlighted by yellow rectangles. Here the six Raman images la-
beled as 2f11mc2rfh1b1, 2f11mc2rfh1b2, 2f11mc2rfh1b3, 2f11mc2rfh1b4, 2f11mc2rfh1b5,
and 2f11mc2rfh1b6 correspond to images acquired from xylem+phloem, phloem,
sclerenchyma+phloem, sclerenchyma+parenchyma, single parenchyma wall, and scle-
renchyma cell-types, respectively. The inset blue rectangle represents the region mapped
by the infrared.

Raman images were acquired at the synchrotron SOLEIL (Gif sur Yvette, France). All

spectra were acquired using a confocal DXR Raman microscope (Thermo Fisher Scientific,

WI, USA) using a 532 nm exciting laser of a power of 10 mW. Raman spectra were

recorded between 3500 and 50 cm–1 per step of 0.9642 cm–1. Data collection, stage

control, and baseline correction was performed using OMNIC software. The collection

time for each spectrum was 5s and the spatial step size was 1× 1 µm2. Five Raman

images of size 32×65, 45×61, 44×61, 53×63, 45×10, and 28×33 µm2 were recorded to

cover the same region mapped using infrared spectroscopy. The raw Raman spectra are
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available as supplementary figures S1-S6 (Appendix A). The hyperspectral images used

for this analysis were obtained from the same regions (cell-types) mapped using infrared.

Together with the hyperspectral image, a visible image is also acquired, brightfield in

case of the infrared image and darkfield in case of the Raman images. These images

are referred to as infrared visible image and Raman visible image in all further instances

in this chapter. In addition, a brightfield image of the whole cross-section was acquired

using the facilities of biopolymers-structural biology platform (INRA, Nantes) using an

inverted Nikon A1 confocal laser scanning microscope. This is used as the reference image

for registration.

4.2.3 Pre-processing of Raman images

A hyperspectral image is a three-dimensional data cube with two dimensions correspond-

ing to the spatial coordinates of the pixels and a third dimension corresponding to the

wavelength. The obtained hyperspectral image is a wide collection of data stored in pix-

els and is composed of thousands or, sometimes, millions of data points (Schultz et al.,

2001, Grahn and Geladi, 2007). In hyperspectral imaging, there is a spectral resolution

that determines the amount of different information obtained for each pixel based on

the different channels (wavelengths). An important problem for the analysis is the pres-

ence of erroneous data values which might be bad pixels (having either missing or zero

signal values), unexpected spectral readings (extreme values), and outliers (observations

inconsistent to the whole dataset). Hence, pre-processing of these hyperspectral images is

mandatory (Vidal et al., 2012, Jones et al., 2012). Raw Raman spectra were pre-processed

in several steps to reduce spectral/spatial artifacts and the procedure includes (Allouche

et al., 2012b):

• Band selection was performed because the entire spectral range is not usable.

• Baselines can be described as the slowly varying curve going through the lower part

of the spectra without the jumps of the peaks. Baseline variation is a problem

encountered in spectral data. Typically, it is a linear or nonlinear addition to the

spectra that causes expected zero measurements to attain a positive value. For

better resolution and analysis of the spectra, the phenomenon of baseline drift was

eliminated from the spectra during acquisition using OMNIC software (Gonzalez

and Woods, 2006).

• Spikes and spectral noise were removed by considering each spectrum individually.

Spikes are narrow peaks and the principle consists in identifying peaks narrower
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than a window of given size and higher than a given threshold. This was done by

applying a 1-dimensional top-hat transformation (Gonzalez and Woods, 2006).

• The noise in our data was removed using the Fourier transform as described in

Gonzalez and Woods (2006). For each spectrum, the Fourier transform is calculated

and a Gaussian filter is applied to retain only the lower frequency components of

the signal and the inverse Fourier transform yields the smoothed spectrum.

Spatial and spectral normalization

Spectra are acquired by scanning adjacent points, which form a matrix with two spatial

dimensions and one spectral dimension. There may be intensity variations in the spectra

based on the morphology of the maize sections, i.e., high intensity spectra may be acquired

on the junctions or in cell wall whereas low intensity spectra are acquired from the inside

of the cells. Other issues such as the thickness of the sample, heterogeneity leading to

spectral acquisition at different focal planes with respect to the surface, and variations

of intensity related to the position in the image may result in different spectral intensity

(Vovk et al., 2007, Tomazevic et al., 2002). Hence, it is essential to enhance both the

spectral and spatial structures of the spectra in order to study the chemical information

contained within.

Conventionally, in spectroscopy, the spectra are pre-processed individually giving the

same overall intensity, i.e., by dividing each spectrum by total sum of intensities or the

sum of intensities of a peak or by their standard. In this case, this would give the

same importance to spectra within cells as spectra from walls and thus introduce spectra

noise in the analysis. One way would be to eliminate the spectra corresponding to a no

signal by defining a threshold intensity only above which a spectrum is considered valid.

The problems associated with this include defining the threshold and the application

of thresholds to areas of high and low contrast. To overcome this, we considered the

methods which take into account the spatial neighborhood of the spectra as described

in Devaux et al. (2010). The principle is similar to the classic normalization procedure

used in spectroscopy except that the normalization factor applied to each spectrum was

assessed by considering neighbor pixels. This was done by assessing the image of the sum

of spectral intensities and low values corresponding to the cell lumens are replaced by

the lowest values of the surrounding cell walls by adopting the hole fill image analysis

procedure. Then the image of the sum of intensities of each spectrum after normalization

was obtained. The result of this normalization is such that the spectra on cell walls show

similar intensity, signal is low inside the cell and intermediate intensity on the edge is
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preserved (Devaux et al., 2010).

4.2.4 Infrared image pre-processing

Spectra were pre-processed using the Unscrambler V 10.1 software. Linear baseline cor-

rection was applied between 1800 – 700 cm–1. A moving average of size 9 was applied for

spectral smoothing. No intensity normalization was performed in order to preserve the

variation of sample density between cell-types.

4.2.5 Principal component analysis of hyperspectral data

Principal component analysis (PCA) is a technique that is useful for the compression and

classification of data. The purpose is to reduce the dimensionality of a dataset (sample) by

finding a new set of variables, smaller than the original set of variables, that nonetheless

retains most of the sample’s information. Here, information refers to the variation present

in the sample, given by the correlations between the original variables. The new variables

called principal components (PCs) are uncorrelated, and are ordered by the fraction of

the total information each retains. The initial investigation of hyperspectral images was

done using PCA. Hyperspectral images can be seen as stack of images of dimension (a,

b), as sets of spectral vectors of λ wavelengths or as cubes of data (x, y, λ). The third

dimension λ is referred to as the spectral way and are usually considered as variables in

multivariate spectral data analysis.
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Figure 4.4: Steps involved in PCA of hyperspectral data. The hyperspectral cube
is unfolded to obtain the matrix of the format (a ∗ b, λ) and after computing the PCA,
scores and loadings are used to make the spectral and spatial interpretations, respectively.

Unlike the conventional way of computing PCA, here it is necessary to ‘unfold’ the hyper-

cube into a two-dimensional matrix in which each row represents the spectrum of pixel

(Hori and Sugiyama, 2003, Gowen et al., 2008, Lim et al., 2001). Unfolding in this context

means reorganizing a hypercube into a two-dimensional data matrix. The hyperspectral

cube with the dimensions (a, b, λ) shown in Figure 4.4 was unfolded to obtain the matrix

of the format (a ∗ b, λ). Note that the notation denoted here is only for an understanding

of how the PCA works for the case of a hypercube. After unfolding of the hypercube, PCA

was applied to the hyperspectral data to obtain the scores and loading matrix. The scores

contain the concentration variability of the pixels and the loadings denote the spectral

variability. After the application of PCA, refolding of the scores give the score images

which contain the individual contribution for each component of the original hypercube

and help to visualize the distribution of the components.

4.2.6 Image registration

Infrared and Raman hyperspectral images were acquired independently using separate

instruments. The raw data was therefore not paired and the multiblock data structure

could not be obtained in a straightforward way. The first step to obtain a two block data

table was to register the spatial position of the infrared and Raman pixels. In addition,
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the two hyperspectral domains are heterogeneous in terms of spatial resolution and joint

data analysis of Raman and infrared images therefore requires registration and data fusion

techniques.

Image registration is the process of aligning a pattern image over a reference image so

that pixels present in both images are disposed in the same location. In typical image reg-

istration problems, the reference image and the pattern image are expected to be related

to each other in some way and have some elements in common. The source of differences

could be of alignment, differences due to occlusion, differences due to noise, differences

due to change and these may be significant for the interpretation of the mapped region

(Gonzalez and Woods, 2006, Grahn and Geladi, 2007). The registration algorithm used

was based on the combination of a template matching technique with a multi-resolution

technique (Allouche et al., 2012b). The image to be registered is chosen as the template.

A brightfield image of the whole cross-section was used as the reference image for registra-

tion. As the mapped infrared and Raman regions were small compared to the reference

image, registration was performed in two steps (Figure 4.5):

• Each spectral image was registered to its associated visible image (cf. Section 4.2.2).

• Each visible image was registered to the reference image.

Figure 4.5: Registering a spectral image onto a reference image. The first
part of the figure depicts how the registration of the spectral images onto the reference
image is produced in two steps (from spectral image→ visible image→ reference image).
The figure also represents the calculation of transformation matrices for the infrared
(TIR = TvTs) and Raman (TR = TvTs). The subscripts ‘v’ and ‘s’ refer to the visible
and spectral image, respectively.

The procedure was followed as in Allouche et al. (2012b,a). A set of template images is

assessed by scaling and rotating the template image with several scales, and with rotation

combinations within a given interval defined from a rough initial estimates of scale and

rotation. The solution was to test different values of scaling factor and rotation angles,

and then the cross correlation translations were calculated for template matching. Values

of scale, rotation and translation corresponding to the maximum correlation are retained.

The resolution and the number of pixels of the reference images are very different than
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those of the images to be registered. Search parameter transformations by applying a

pyramid decomposition of images was considered. In order to speed up the search pro-

cessing, reference and template images were considered at different resolutions using a

Gaussian pyramidal decomposition. Briefly, the search process starts with a low resolu-

tion, and the whole procedure is iterated to refine values of scale and rotation until the

maximum image resolution is reached. In this multi-resolution approach, the level of the

pyramid must be chosen to preserve the cellular structure within the images. The algo-

rithm developed by Allouche et al. (2012b) provides all possible solutions, and a suitable

level must be chosen.

At the end of the registration procedure, we have the transformation matrices TIR and

TRaman connecting different infrared spectral images, and Raman to the reference image.

The calculation of the affine transformation ‘T’ to register the spectral image to the area

of the reference image was obtained by multiplying affine transformations of two matrices

(Figure 4.5):

• Ts to pass the spectral image to the visible image.

• Tv for moving from the visible image to the reference image.

At the end of the registration step, it is possible to find the spectra acquired at every

location point for each spectral data image. However, Raman and infrared datasets are

heterogeneous in terms of size and content. The final structure of the data is obtained

through unfolding first the infrared data table. For each infrared data table, a set of

Raman pixels will be paired. All pixels will not be paired and missing data can be

observed. Each data block will be considered as partitioned with some parts completely

paired with the other spectral modalities, and some parts with no pairing.

4.2.7 Application of multiple co-inertia analysis

Infrared pixels covered an area of 5 × 5 µm2 while pixels from Raman imaging covered

a 1 × 1 µm2 area. Consequently, each infrared spectrum was paired to a set of Raman

spectra. The data tables were built through unfolding first the infrared hyperspectral im-

age. Each line of the infrared table was paired to the Raman spectra after unfolding the

small images. The steps include unfolding multi-resolution pixels, pairing and stacking

all pixels, obtaining a paired data structure, and obtaining the two data tables. The final

data structure was a set of two data tables:
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• A two-way Raman data table X, with ‘n’ being the number of Raman spectra for

which the infrared spectra were also acquired and ‘p’ corresponds to the variable

mode (λ).

• A two-way infrared data table Y with ‘n’ observations and a variable mode (q).

The working principle behind MCIA is detailed in Chapter 2. Briefly, we applied MCIA to

the two data tables. This analysis will reveal covariant patterns between the multivariate

data tables. Block loadings, scores, global loadings, scores were assessed and used as

indicators to investigate the common and specific information brought by the infrared

and Raman data table. In contrast to the CCA, this technique maximizes the covariance

between the two data tables and explains the unique as well as common information

between the data tables.

4.3 Results

Infrared image of the size 10×25 and Raman images of size 32×65, 45×61, 44×61, 53×63,

45×10, and 28×33 µm2 were used. For each spectral domain, pre-processing consisted of

the corrections specific to each spectroscopy. Raman spectra were automatically baseline

corrected at acquisition. Pre-processing steps consisted in selecting spectral region of

interest, spike removal, smoothing and are illustrated below. The normalization step

takes into account both the spectral and spatial information.

4.3.1 Spectral pre-processing and normalization

Figure 4.6 shows the different pre-processing steps for analyzing one Raman image. Band

selection was performed based on Raman hyperspectral data taken at 1800-600 cm–1

spectral range.
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a. Raw spectra b. Spectra selection

c. Elimination of spikes d. Pre-processed spectra

Figure 4.6: Steps involved in pre-processing of one hyperspectral image. The
steps involved in pre-processing is detailed using the second Raman image (corresponding
to phloem cell-type). The process includes (a) visualizing the raw spectra (3500-0 cm–1),
(b) band selection of the raw spectra from 1800-600 cm–1, (c) elimination of spikes, and (d)
pre-processed spectra. Similar pre-processing was done for all the other Raman images.

Spikes observed in the Raman spectra were removed using the procedure described in

methods section (Section 4.2.3). First, the most intense spikes of width less than 11

spectral points and greater than 200 in intensity were removed, then, the less intense

spikes of less than 7 spectral points width and exceeding 50 in intensity were also removed.

The noise was removed by Fourier transform using a Gaussian filter of size 151 spectral

points. The spatial/spectral normalization was applied by considering a neighborhood

of 11 × 11 pixels. Intensity normalization was performed taking into account both the

spectral and spatial information as described in Devaux et al. (2010). Infrared spectra

were pre-processed as described in the material and methods section of this chapter. The

spatial/spectral normalization was not performed for the infrared spectra in order to keep

the information that in some regions, only small cell walls (phloem or parenchyma) are

observed while in other regions large cell walls are observed (sclerenchyma). The pre-

processed and normalized Raman and infrared spectra are available as supplementary
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figures S7-S13 (Appendix A).

4.3.2 Variability according to cell-types

Spectral images from infrared (one image) and Raman (six images) were analyzed indi-

vidually using principal component analysis. The objective is to identify the information

available in each dataset before submitting it to joint analysis. Since the spectra were

normalized preserving the differences of intensities between holes and cell walls, the first

component describes the intensity variations between spectra. Score images are displayed

as grey level images and were obtained by refolding the scores.

Xylem+phloem cell-types (2f11mc2rfh1b1)

The first two components obtained for the first Raman image describe 94.97 % and 4.02,

respectively (a cumulative of 98.99 %) of the total variability. Assignment and interpre-

tation of the peaks in the spectrum was done using previously reported assignments from

literature (Table S2, Appendix B). The first and second components are shown in Figure

4.7. In the corresponding score images, the cell walls are shown in white and the holes

(inside of the cell) are in black. Again the first spectral profile was an intensity profile

(Figure 4.7) and the positive peaks at 1171, 1270, 1332, 1603, and 1632 cm–1 correspond

to lignin profile whereas the one at 1268 cm–1 correspond to arabinoxylan. In the second

loading of Figure 4.7, the positive peaks at 1171, 1606, 1632 cm–1 correspond to lignin.

Negative peaks at 898, and 1093 cm–1 correspond to arabinoxylan, and those at 1093,

and 1377 cm–1 correspond to cellulose. In the second score image, xylem cell walls appear

bright and phloem cell walls appear black consistent to the lignin/polyscaccharide content

of xylem and phloem cell walls.
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a. Intensity spectra b. Score image

c. Second loading d. Score image

Figure 4.7: PCA analysis of the first Raman image that profiles
xylem+phloem cell-type. (a) and (b) depicts the intensity spectra and its corre-
sponding score image, respectively. (c) and (d) pertains to the second component and its
corresponding score image, respectively.

Phloem cell-type (2f11mc2rfh1b2)

The first and second components describe 95.64 % and 1.29 % of the total variability,

respectively. In the intensity profile of Figure 4.8, the positive peaks at 1094 correspond

to cellulose whereas those at 1094, 1460 cm–1 correspond to arabinoxylans and 1600, 1632

cm–1 to a strong lignin profile.
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a. Intensity spectra b. Score image

c. Second loading d. Score image

Figure 4.8: PCA analysis of the second Raman image that profiles phloem
cell-type. (a) and (b) depicts the intensity spectra and its corresponding score image,
respectively. (c) and (d) pertains to the second component and its corresponding score
image, respectively.

Once again, the score image shows the cell wall in contrast to cell lumen. In the second

loading of Figure 4.8, the positive peak at 1094 cm–1 correspond to both cellulose and

arabinoxylans. Negative peaks at 1508, 1598, and 1634 cm–1correspond to lignin. The

corresponding score images show black spots corresponding to cell junctions mainly for

the smaller cells of phloem. As this image correspond only to phloem cell types, this

loading shows some enrichment maybe in lignin or phenolic compound in the junction
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region and in polysaccharides in other cell walls. The unknown peaks at 1296, 1063 cm–1

were found mainly on the large cell walls.

Sclerenchyma+phloem cell-type (2f11mc2rfh1b3)

The first two components describe 97.70 % and 1.75 % of the total variability (a cumulative

of 99.45 %).

a. Intensity spectra b. Score image

c. Second loading d. Score image

Figure 4.9: PCA analysis of the third Raman image that profiles scle-
renchyma+phloem cell-type. (a) and (b) depicts the intensity spectra and its corre-
sponding score image, respectively. (c) and (d) pertains to the second component and its
corresponding score image, respectively.
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The first spectral profiles and score images were interpreted as for the other images as a

description of global intensity variations as shown in Figure 4.9. The positive peaks at

1171, 1603, 1630 cm–1 correspond to a strong lignin profile. In this image, sclerenchyma

cells were mainly observed with very few phloem cells. Hence, the first loading corre-

sponds to a sclerenchyma spectrum. In the second spectral profile of Figure 4.9, the

positive peaks at 1171, 1606, 1628 cm–1, and negative peak at 1648 cm–1 correspond to

a lignin profile. The positive peak at 1268 cm–1 and negative ones at 896, and 1461 cm–1

refer to arabinoxylans. The score image shows phloem/sclerenchyma walls in contrast.

Sclerenchyma+parenchyma cell-types (2f11mc2rfh1b4)

The first two components obtained for the fourth Raman image describe 91.79 and 6.28

% of the total variability, respectively. Positive profiles for lignin (1171, 1604, 1631 cm–1),

and arabinoxylans (1268 cm–1) were found in the first profile. The second profile in Figure

4.10 has positive peaks referring to lignin and negative ones to cellulose and arabinoxy-

lans. In the second score image, some parenchyma cell walls were contrasted with the

sclerenchyma.
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a. Intensity spectra b. Score image

c. Second loading d. Score image

Figure 4.10: PCA analysis of the fourth Raman image that profiles scle-
renchyma+parenchyma cell-types. (a) and (b) depicts the intensity spectra and
its corresponding score image, respectively. (c) and (d) pertains to the second component
and its corresponding score image, respectively.

Single parenchyma cell wall (2f11mc2rfh1b5)

The fifth image corresponded to a cell wall selected at the frontier between the two

parenchyma cells highlighted in the preceding image. The first two components obtained

for the fifth Raman image describe 99.77 % of the total variability. Again, the first loading

and its corresponding score images reveal the variations in the global intensity. Positive

peaks of the intensity profile at 1093, and 1379 cm–1 correspond to cellulose whereas those

at 1171, 1604, and 1630 are lignin profiles (Figure 4.11).
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a. Intensity spectra b. Score image

c. Second loading d. Score image

Figure 4.11: PCA analysis of the fifth Raman image that profiles a single
parenchyma cell wall. (a) and (b) depicts the intensity spectra and its corresponding
score image, respectively. (c) and (d) pertains to the second component and its corre-
sponding score image, respectively.

Positive peaks of second spectral profile correspond to cellulose at 1094, and 1377 cm–1

and negative peaks to lignin (1169, 1605, and 1629 cm–1). The second loading actually

corresponds to the inverted loadings of Raman images 2f11mc2rfh1b1, 2f11mc2rfh1b3,

and 2f11mc2rfh1b4 and thus revealed an opposition between lignin and polysaccharides.

The cell junctions were rich in polysaccharides while the cell wall contained some lignin

showing a strong variation of composition within a small sampled region.
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Sclerenchyma cell-type (2f11mc2rfh1b6)

This last image contained only the sclerenchyma cell walls.

a. Intensity spectra b. Score im-
age

c. Second loading d. Score im-
age

Figure 4.12: PCA analysis of the sixth Raman image that profiles border Scle-
renchyma cell-types. (a) and (b) depicts the intensity spectra and its corresponding
score image, respectively. (c) and (d) pertains to the second component and its corre-
sponding score image, respectively.

The first loading and score image described intensity variations. The second loading ex-

hibited many peaks that could not be assigned easily to known compounds. The first two

components obtained for the sixth Raman image describe 99.80 % of the total variability.
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In the first spectral profile (Figure 4.12), the peaks correspond to cellulose (positive ones

at 1407 cm–1).

Infrared image (2f11mc2r)

a. Intensity spectra b. Score image

c. Second loading d. Score image

Figure 4.13: PCA analysis of the infrared image. (a) and (b) depicts the intensity
spectra and its corresponding score image, respectively. (c) and (d) pertains to the second
component and it’s corresponding score image, respectively. The infrared image profiled
the same cell-types as obtained from the 6 Raman images.

Similar to the peak assignments of the Raman spectra, the infrared peaks assignments
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were collected from literature and tabulated in Table S3 (Appendix B). The first and

second components obtained for the infrared image describe 91.97 %, and 5.44 % of the

total variability, respectively. The peaks of the first spectral profile correspond to lignin at

1419, 1508, and 1597 cm–1. The corresponding score image highlights the sclerenchyma

region as the one with the most intense spectra. It also corresponds to the larger cell wall,

and therefore a higher density of the material. The second profile corresponds to xylans

at 1041 cm–1, cellulose at 1111 cm–1, and lignins at 1720 cm–1. The negative peak at 945

cm–1 describes the shift between lignified and non-lignified tissue in the region between

1040 and 800 cm–1. Together with the peak at 1504 cm–1, it can be associated to a lignin

response. The second loading mainly described the opposition between between lignified

and non-lignified tissues. The score image is not easy to interpret in this case but the

sclerenchyma region appeared in black compared to other cell-types.

4.3.3 Pairing of hyperspectral images

Based on the algorithm described in methods section (Section 4.2.5), pairing of the hy-

perspectral images was done. Briefly, each spectral image was registered to the reference

image (bright-field image) in two steps. In Figure 4.14, pairing of the spectral to ref-

erence images is depicted for each of the Raman images and infrared image. The scale

and rotation factors for pairing each of these images is listed in Table 4.1 including the

processing parameters before and after registration. The level of the pyramid chosen to

preserve the cellular structure within the images during registration is mentioned. In case

of 2f11mc2rfh1b5 corresponding to the single parenchyma cell wall, the obtained Raman

image was small and direct registration of the target image (spectral image) to the refer-

ence image was not feasible. To ensure accurate registration of this image to the reference,

the target image was first registered to a portion of the reference image and then to the

entire reference image (Figure 4.14). Hence, in Table 4.1, we have two sets of parameters

for the registration of the target to the reference image. In contrast to Figure 4.14, Figure

4.15 depicts the registration of all the six Raman images and the infrared image onto

the reference image. This was done using the computed affine transformation matrices

for each of the images. More details on computing the affine transformation matrices is

detailed in Section 4.2.5.
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a. Xylem+phloem cell-type (2f11mc2rfh1b1)

b. Phloem cell-type (2f11mc2rfh1b2)

c. Sclerenchyma+phloem cell-type (2f11mc2rfh1b3)

d. Sclerenchyma+parenchyma cell-type (2f11mc2rfh1b4)
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e. Single parenchyma cell wall (2f11mc2rfh1b5)

f. Sclerenchyma cell-type (2f11mc2rfh1b6)

g. Infrared image (2f11mc2r)

Figure 4.14: The first six images show the registered Raman images while
the last shows the registered infrared image. (a-f) Briefly, using the registration
algorithm detailed in section 4.2.5 each of the Raman image (spectral image) is registered
onto the reference image in two steps (spectral image→ visible image→ reference image).
(g) Similarly, the infrared image is also registered to the reference image. The figure to
the left shows the registration of spectral image → visible image and the figure to the
right shows the visible image→ reference image. The parameters used in this registration
are listed out in Table 4.1.
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Figure 4.15: The six Raman images (shown in green) and the infrared image
(shown in red) are projected together onto the reference image. In figure 4.14,
each of the hyperspectral images is registered individually onto the reference image. But,
in this case all the images from both techniques are registered onto the reference image.

After registration of the spectral images to the reference image, data tables were built

from the common region of interest covered by the infrared and Raman images. The

translation, scale and rotation factors were used to assess transformation matrices that

allowed computing the coordinates of the infrared pixels corresponding to the Raman

pixels. Each infrared pixel in the region of interest was considered and its corresponding

Raman spectra were recovered. This way, we were able to identify 47 paired spectra across

the infrared and Raman images. Figure 4.16 displays the 47 pixels of the Raman spectra

that are also found in the infrared.
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Figure 4.16: The pixels of the six Raman images which are common to the
infrared image. The green star represents the pixels in the Raman images for which
their corresponding infrared pixels were also recovered.

4.3.4 Percentage of variances and data table contributions

Co-inertia analysis was performed on the two data tables obtained: 47×1090 (Raman spectra×
wavenumbers) and 47× 274 (Infrared spectra×wavenumbers). Table 4.2 summarizes the

contribution of each data table to the analysis using different indicators. For comparison,

the first indicator is the percentage of variance described by principal components, and

second is the variance explained by the block components. The correlation coefficient

between the infrared and Raman block scores is also presented.
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4.3.5 Spectral and spatial interpretation

Loadings were drawn for each spectroscopy and the first loading usually corresponds to

intensity variation. The first, second and fourth components are interpreted and discussed

as the peaks of the third component look deformed. Moreover, the block scores for

each data table were assessed, back-folded and displayed. Such representation allowed

interpreting score intensity variations with their spatial location i.e., their cell-type origin

to be specific.

a. IR co-inertia loading 1 b. Raman co-inertia loading 1

c. Co-inertia component 1

Figure 4.17: (a and b) Multiple co-inertia first loading plot for infrared and
Raman spectroscopy. (c) In addition, score plots are also shown to facilitate interpre-
tation of the peaks with respect to their cell-type.

The spectral profile (first loading) is intense for the sclerenchyma both in Raman and

infrared (Figure 4.17). The negative peaks correspond to pectins (1022 cm–1), esters

(1230 cm–1), and lignins (1419 and 1508 cm–1). The positive Raman peaks correspond
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to Ferulic acid (1221, and 1286 cm–1), and cellulose (1407 cm–1). The negative ones

correspond to 1096 cm–1 (cellulose, xylans, glucomannans), 1171 cm–1 (lignins), 1267

cm–1 (arabinoxylan), 1338 cm–1 (cellulose), 1603 and 1632 cm–1 (lignins).

a. Infrared spectra b. Raman spectra

c. Infrared spectra d. Raman spectra

Figure 4.18: Spectral profiles of par88 and scl137 corresponding to the
parenchyma and sclerenchyma region. (a and b) Infrared and Raman spectra cor-
responding to the parenchyma region. Clearly, there is a deformation in case of the
obtained infrared spectra. (c and d) The profile from scl137 is deformed in case of the
Raman spectra.
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Spectra from the parenchyma and sclerenchyma region (par88 and scl137) show some

discrepancies. When we observe the paired spectral profiles in Figure 4.18, we notice

that spectra par88 varies between the Raman and infrared. Spectra (scl137) is a difficult

region to obtain the Raman spectra and some deformation has occurred (Figure 4.18).

Similarly, the spectral profiles of scl 125, 127, 128, and 135 were observed and attributes

to the poor correlation between infrared and Raman scores.

a. IR co-inertia loading 2 b. Raman co-inertia loading 2

Figure 4.19: Multiple co-inertia second loading plot for infrared and Raman
spectroscopy. In addition, score plots are also shown to facilitate interpretation of the
peaks with respect to their cell-type.

In figure 4.19, we observe the second co-inertia component for the two spectroscopies

and the correlation coefficient between the block scores is 0.85 (Table 4.2). The positive

peaks of the infrared at 953, 1219, and 1500 cm–1 correspond to a lignin profile. Similarly

for the Raman profile, peaks at 1603, 1630, 1701 and 1171 cm–1 correspond to a lignin

profile. Contribution of Raman is stronger and it may be due to the strong lignin profile.

Clustering of the spectral points were observed and marked in the score plots (Figure

4.20) to understand the strong correlation between the two techniques.
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a. Co-inertia component 2

Figure 4.20: Multiple co-inertia score plot for the second component. The
score plot was further interpreted by marking manually the observed clusters. The
identified clusters are represented in green (phloem), yellow (parenchyma), brown
(parenchyma+proteins), pink (sclerenchyma), and red (another set of sclerenchyma clus-
ters).

In addition, we also studied the score spatial interpretations using the score images ob-

tained by combining the high-resolution brightfield image with the refolded scores. From

the score image (Figure 4.21), we see that the positive peaks correspond to sclerenchyma

and the negative ones to phloem.

Figure 4.21: Score image of the multiple co-inertia second component.

In the third component (Figure 4.22), the correlation coefficient between the block scores

is 0.30. The peak looks deformed and hence not interpreted.
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a. IR co-inertia loading 3 b. Raman co-inertia loading 3

c. Co-inertia component 3

Figure 4.22: (a and b) Multiple co-inertia third loading plot for infrared and
Raman spectroscopy. (c) In addition, score plots are also shown to facilitate interpre-
tation of the peaks with respect to their cell-type.

The fourth component has a correlation coefficient of 0.46 between the block scores (Fig-

ure 4.22). From the score plots, we see a clear separation between the parenchyma and

phloem cells. The Raman peaks at 899 (arabinoxylans), 1094 (cellulose and arabinoxy-

lans), 1132 (cellulose and arabinoxylans), 1607 (lignins), and 1633 (lignin) cm–1 have a

positive profile. The negative peaks at 1340 and 1656 cm–1 correspond to cellulose and

lignin respectively. The positive infrared peaks correspond to lignins at 1720 cm–1. The

negative infrared peaks correspond to 891(pectins), 1165 (cellulose), 1512(lignins) cm–1.
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a. IR co-inertia loading 4 b. Raman co-inertia loading 4

c. Co-inertia component 4

Figure 4.23: (a and b) Multiple co-inertia fourth loading plot for infrared
and Raman spectroscopy. (c) In addition, score plots are also shown to facilitate
interpretation of the peaks with respect to their cell-type.

4.4 Discussion

In the plant domain, investigating the structure and assembly of plant cell wall polymers is

very complex. To this end, it is necessary to use methods which probe the cell walls insitu

and preserve the chemical and structural information. Hyperspectral imaging is one such

tool to perform insitu chemical analysis and it has been used to reveal the occurrence of

particular compounds in the biological material (Chylińska et al., 2014, Sun et al., 2011,

Agarwal, 2014). Hyperspectral images provide three dimensional data structures with two

spatial dimensions and one spectral dimension. Moreover, the spectroscopic techniques

could be either complementary (infrared and fluorescence) or partly redundant (infrared

and Raman techniques).
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Up to now, the most commonly used multivariate methods for the analysis of infrared

and Raman spectra includes principal component analysis, vertex component analysis,

and multivariate curve resolution (Chylińska et al., 2014, Bajorski, 2009, Jones et al.,

2012, Gierlinger, 2014). Moreover, studies by Chylińska et al. (2014) and Gierlinger (2014)

focused on the visualization and distribution of polysaccharides acquired from Raman

spectroscopy. In other cases as in Szymanska-Chargot and Zdunek (2013), PCA was used

to analyze the FT-IR spectra for the characterization of cell wall residues in fruits and

vegetables. To take advantage of the different spatial resolutions of various spectroscopy

techniques, a joint analysis of the data is essential. To this end, Allouche et al. (2012b)

conducted a joint analysis of infrared and fluorescent spectroscopy data using multivariate

inter-battery tucker analysis. The strong point of this analysis is that Allouche et al.

(2012b) extended the multivariate inter-battery method to analyze jointly a three-way

and a two-way data table. The three-way data table in this case is a typical example

of multiway data analysis as detailed in Section 2.1 of this thesis. In addition, another

study on the joint data analysis of three different spectroscopies (Infrared, Raman, and

fluorescent) was also done. The main drawback of this study was the use of fluorescence

spectroscopy as very few molecules are naturally luminescent. Moreover, the common

regions between three different techniques had to be recovered. In addition, only three

different cell-types were profiled namely, the xylem, phloem, and sclerenchyma cell-types

from maize stem cross-sections (Allouche et al., 2012a). Hence, the joint analysis of

different spectroscopic techniques is limited to the studies of Allouche et al. (2012a,b).

In this chapter, the focus is to estimate the raw cell wall content and composition

from several tissue proportions at different levels of spatial resolution. Here, two different

spectroscopy techniques were used (infrared and Raman) to jointly analyze the complexity

of cell wall polymers, because coupling spectral domains could heighten differences in

composition not observable using one spectral range. Infrared spectroscopy has proven to

be relevant in identifying main cell wall components such as cellulose, pectins, xyloglucans,

arabinose, and galactose. To complement the information obtained from FT-IR, Raman

spectroscopy is used to identify compounds at a resolution of 1 µm2.

The images used in the analysis were provided by INRA, Nantes and covered a region

in the maize internode cross-section that contained mainly xylem, sclerenchyma, phloem,

parenchyma and parenchyma border cells. For each spectral domain, pre-processing was

done in two steps; the first being the corrections specific to each spectroscopy and the

second is a normalization step that took into account both the spatial and spectral infor-

mation. The procedure avoids normalizing the spectra recorded in the holes of the maize

stem cells by taking the spatial neighborhood into account. This principle is important
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cross-sections

to preserve the spatial resolution and in particular, the variations of intensities observed

in cell junctions and holes when compared to walls were taken into account.

Initially, the application of spectroscopic techniques was also limited by the large

amount of data obtained as well as overlapping band components. However, the de-

velopment of computerized systems and the use of statistical tools have enabled easier

processing of the information obtained from the spectra, thus increasing the interest and

usefulness of these spectroscopic techniques. Principal components analysis (PCA) has

been used to study the variability within each spectrum and is then represented as a

smaller set of values (axes) termed principal components. In addition, refolding of the

scores was done and represented as grey-level images. They are used to interpret the

individual contribution for each component and helps in visualizing the distribution of

the chemical composition in different cell-types. In the infrared spectra, intense and large

peak were observed for polysaccharides such as xylans, cellulose and xyloglucans. In

case of the Raman spectra, peaks in xylem cells correspond to an intense lignin profile.

Phloem Raman spectrum correspond strongly to cellulose, and arabinoxylans whereas

sclerenchyma Raman spectrum correspond mainly to lignins. Parenchyma close to the

sclerenchyma had a polysaccharide profile while parenchyma cells correspond to lignin

profiles. Raman and infrared results clearly revealed that lignin or polysaccharide profile

exists depending on the investigated cell-types.

In addition to the use of PCA to investigate particular cell-types, we focused on jointly

analyzing the hyperspectral images from both techniques using multiblock methods. Since

both the spectroscopic techniques were of different resolutions, coupling of the different

spectral domains was not straight-forward. The procedure consisted of identifying the

region of interest where the spectra were jointly acquired by projecting each spectral

image onto the reference image using image registration techniques. After pairing the

infrared and Raman images, the regions mapped in common were recovered. The scale

and rotation factors listed in Table 4.1 were used to assess the transformation matrices

which allowed computing the coordinates of the Raman pixels homologous to the infrared

pixels. The scale factor to register the spectral image onto the reference image ranged

between 3.6 - 3.9 in case of the six Raman images and was 22.69 for the infrared image.

Values of scale, rotation and translation corresponding to cross correlation coefficients

values between 0.5 - 0.7 were obtained.

The recovered 47 pixels of the Raman images which had corresponding similar pixels

in the infrared were used as ‘n’ observations in the data tables and were submitted to

multiple co-inertia analysis. The two block data tables were of the dimension 47 × 1090

(Raman spectra×wavenumbers) and 47×274 (infrared spectra×wavenumbers), a typical
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example of ‘n < p+q’ setting. Hence, the use of MCIA is more appropriate in the ‘n < p+

q’ setting when compared to methods like CCA. In addition, MCIA focuses on extracting

the unique and common information between the two datasets unlike CCA which focuses

on maximizing the correlation between two datasets. Once again, this emphasizes the

use of appropriate methods based on the biological question under investigation. The

percentage of variances and data table contributions detailed in Table 4.2 were described

by principal components and block components. The sum of contributions to the first

global loading is 100 over the two data tables wherein 51 % are due to the infrared table,

and 49 % are due to the Raman data table. Similarly in case of the second global loading,

23 % and and 77 % are contributed by infrared and Raman, respectively. The sum of

contributions of global scores over both data tables is equal to the first eigenvalue of the

principal component analysis of the merged block scores table, and therefore less than 100

%. The first block component for infrared accounted for 96.6 % of the total variance and

91.8 % for Raman. As expected from the orthogonal loadings computed using multiple

co-inertia analysis, the percentage of variance described by block components obtained

by multiple co-inertia components follow the percentage of variance obtained by principal

components. This was consistent for all the five components of infrared and Raman.

Furthermore, three components (first, second and fourth) were interpreted and dis-

cussed. The first component (Figure 4.17) described intensity variations caused by the

occurrence of holes and cell walls in case of both spectroscopies. Interpreting the sec-

ond component, we observed lignin signals opposed to polysaccharide signals (Figure 4.19

and 4.20). The score spatial interpretations of the lignin peaks correspond to the scle-

renchyma region (Figure 4.20). This observation is consistent with previous studies that

sclerenchyma cells have strong lignin signals. Here, contribution of Raman is stronger

than that of the infrared probably due to strong lignin profile in the former. In the fourth

infared loading (Figure 4.23), the positive peaks have strong lignin signals and the neg-

ative ones correspond to pectins, cellulose, and lignins. Whereas, in case of the Raman

loading the positive peaks pertain to cellulose, arabinoxylans, and lignins. In addition,

from the score images we were able to see a clear separation between the parenchyma and

phloem cells (Figure 4.23).

Thus, with the use of multiblock methods and adequate interpretation tools, it is

possible to prove that each of the different techniques used to study similar cell-types

could contribute disproportionately to form the global components. The joint analysis of

the hyperspectral image data is useful to characterize biological material on the basis of

data tables representing various facets of their chemical properties.



Chapter 5

Case study 3: Co-ordination and

divergence of cell-specific

transcription and translation of

genes in Arabidopsis root cells

5.1 Specific rationale and objectives

Arabidopsis thaliana has become one of the most widely used plant model organisms in

basic research, largely due to the availability of resources (Hamilton and Buell, 2012,

Mochida and Shinozaki, 2010). Recently, efforts have been made to monitor gene ex-

pression at the level of specific cell-types and across different developmental stages in

Arabidopsis to obtain a deeper and systematic understanding of the underlying cellular

processes (Edwards and Coruzzi, 1990, Birnbaum et al., 2005, Brandt, 2005, Shen-Orr

et al., 2010, Wang and Jiao, 2011). These studies have resulted in the accumulation of

distinct data-types which provide a different, partly independent and complementary view

of the whole genome.

The relationship between information elements (genes/transcripts) and functional el-

ements (metabolites) has been studied by integrated transcriptomic and metabolomic

analyses (Tohge et al., 2005, Hannah et al., 2010, Osorio et al., 2012, Brink-Jensen et al.,

2013). In addition, there are numerous integrative studies of transcriptomic and proteomic

datasets (Kleffmann et al., 2004, Baginsky et al., 2010, Vogel and Marcotte, 2012, Pan

et al., 2012). However, these mass spectrometry-based approaches only reveal a limited



5.1 Specific rationale and objectives 91

coverage of the proteome and metabolome, i.e. allowing identification of a few hundred

metabolites (Schauer et al., 2006) and a few thousand proteins in plants (Petricka et al.,

2012). Despite the limited coverage of the proteome, recent combined transcriptomic and

proteomic analyses have reported weak correlation of protein and mRNA abundances

(Hack, 2004, Wang et al., 2010b). As an intermediate step in the flow of genetic infor-

mation in a biological system, the level of translational control determines quantitative

variation of the proteome together with protein degradation (Tebaldi et al., 2012). In par-

ticular, the composition of the translatome is based primarily on translation initiation,

i.e. the loading of ribosomes on messenger ribonucleoprotein particles (mRNPs) to form

polysomes, and secondarily on translation elongation (Tebaldi et al., 2012). Finally, cor-

relation of levels of transcripts and polysomal-bound mRNA abundances allow inferences

about gene activities and the conversion of its mRNA into a protein.

This chapter elaborates on the comparative study of cell-specific transcripts in plants.

The relative simplicity of Arabidopsis root anatomy and availability of cell-specific expres-

sion profiling data from developmental zones has made it appropriate for this study (Bevan

and Walsh, 2005, Benfey et al., 2010). Arabidopsis also serves as a powerful model sys-

tem for plant cell wall research, such as the identification of cell wall biosynthesis-related

genes. Moreover, Arabidopsis has also been extensively used to study the root cell wall

biology and understand how cell walls are developmentally controlled in different cells

(Milioni et al., 2002, Liepman et al., 2010). To complement these studies, we investigated

coupled transcription and translation by use of publicly available root datasets. Using

cell-type-specific datasets of the root transcriptome and translatome of Arabidopsis, a

systematic assessment was made of the degree of co-ordination and divergence between

these two levels of cellular organization. Although the previously described canonical

methods of data integration are efficient in case of large datasets, here, we wanted to

study the variation in cell-type specific gene expression patterns across the two system

levels. Hence, the computational analysis considered correlation and variation of expres-

sion across cell-types at both system-levels, and also provided insights into the degree of

co-regulatory relationships that are preserved between the two processes. We elucidated

the genome-wide correlation of cell-specific transcription and translation for the majority

of genes in the Arabidopsis genome. We present evidence for translational prioritization

of transcripts of cell-wall-related gene families and root-related biological processes.
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5.2 Materials and methods

5.2.1 Arabidopsis root transcriptome and translatome gene ex-

pression datasets

In this study, two microarray datasets of A. thaliana root samples were employed char-

acterizing gene expression and translation levels of tissues and cell-types. While the first

dataset comprises a discrete global map of total mRNA levels, i.e. the transcriptome

(Birnbaum et al., 2005, Brady et al., 2007), the latter measured polysome-associated

mRNAs, i.e. the translatome (Mustroph et al., 2009), in a variety of cell-types and de-

velopmental stages of the root.

The two datasets were generated using different experimental protocols and originate

from two different laboratories. For the transcriptome dataset, fluorescence activated

cell sorting (FACS; (Iyer-Pascuzzi and Benfey, 2010)) of Arabidopsis radial sections of

root samples under the control of cell-type-specific promoters was used to profile tran-

script levels. Affymetrix ATH1 microarrays were used as the platform for gene expression

profiling. Genome-wide transcriptomic profiles of eight green fluorescent protein (GFP)-

marked cell populations with two-three replicates each were obtained, that in combination

with a previous study of 11 microarray expression experiments yielded a transcriptomic

expression atlas. The expression atlas profiles the expression of 14 non-overlapping Ara-

bidopsis root cell-types targeted by 19 promoters (Brady et al., 2007, Birnbaum et al.,

2003). For the transcriptome data available from Birnbaum et al. (2003), cell-type and

tissue-specific expression was obtained by protoplasting of plant roots expressing GFP

in specific cell-types. The raw data [accession number GSE ID 8934 available via Gene

Expression Omnibus (GEO; (Barrett and Edgar, 2006))] from the radial root sections

were downloaded in the form of CEL files for further analysis.

The translatome dataset was obtained by the immunopurification of ribosome-associated

transcripts from Arabidopsis root cells and the immunopurified mRNAs were hybridized

to the Affymetrix ATH1 microarray platform. In this study, the immunopurification was

extended by using developmentally regulated promoters to drive the expression of FLAG-

tagged RPL18 lines allowing the generation of 21 cell-specific populations in root and

shoot (Mustroph et al., 2009). While the complete translatome data additionally include

a stress condition (hypoxia), for the following computational analysis, raw data with an

accession number GSE ID 14502 comprising only root control samples were used. An

overview of all promoters used in the transcriptome and translatome data together with

their intended tissue specificity can be found in Table S4 (Appendix B).
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Furthermore, to avoid artefacts arising from different normalization techniques, the

raw data from these two datasets were pre-processed using the same normalization strat-

egy. Here, the robust multichip average (RMA) method was used to conduct pre-processing,

e.g. removal of background noise and quality control, subsequent probe summarization

and adjustment by quantile normalization (Irizarry et al., 2003). Applying the same nor-

malization strategy, both datasets were jointly and independently normalized to study

the influence of the normalization to the final results.

Lastly, given the availability of 19 promoters in the transcriptome and 10 different pro-

moters in the translatome dataset (see Table S4, Appendix B), a common set of identical

cell-types corresponding to identical promoters (see Appendix C: Supplementary text for

the nucleotide sequences of the promoters) in both datasets - namely the phloem compan-

ion cells, root vasculature, quiescent center, cortex, and non-hair cells/root atrichoblast

epidermis were identified. Moreover, because in some cases different promoters were used

to drive gene expression of the same cell-type on the two system-levels, a mapping of

promoter and target cell-type was conducted using a literature survey.

5.2.2 System-level analysis of cell specific mRNA levels

Genome-scale system-level comparisons between the transcriptome and translatome were

conducted by quantifying the similarity of expression (total mRNA) and translation

(polysome-associated mRNA) levels of genes across the same set of cell-types. Here,

Pearson correlation coefficient (PCC) was used to assess this similarity (Stigler, 1989).

The statistical significance of observed PCC values was further assessed by creating 1000

bootstrapped datasets of the transcriptome and the translatome, respectively. Using the

available data for all 19 and ten promoters for transcriptome and translatome as back-

ground, a bootstrapped dataset of equal size was randomly selected without replacement.

As each bootstrapped group comprises a random mixture of cell-types, any variations

in deriving PCCs would exist mainly as a result of cell-type-specific expression rather

than differences in translatome and transcriptome expression levels, thus resembling an

adequate null model. For each of these bootstrapped data, and for all genes, PCC of trans-

latome and transcriptome was calculated. Z-scores were calculated for each observed PCC

value by subtracting the mean and dividing by the standard deviation of the correspond-

ing gene’s PCC value obtained from the bootstrapping analysis (Figure 5.1). Those genes

which exhibit a high positive PCC value that corresponds to a Z-score ≥ 1.96 comprise

the set of genes that exhibit a high degree of correlation between transcription and trans-

lation. Likewise, PCCs of high negative value, i.e. a corresponding Z-score of ≤ –1.96,
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correspond to genes that display a high degree of uncoupling of cell-specific transcription

and translation. Note that an absolute Z-score of 1.96 corresponds to a statistical signif-

icance level of 5 % in the case of a two-tailed test (Sokal and Rohlf, 1995). Additionally,

following suggestions of Huttenhower et al. (2006), PCC values were adjusted using Fisher

transformation, resulting in normal distributions of PCC values irrespective of the dataset

analyzed, further allowing for cross-dataset comparisons.

Figure 5.1: Analysis of similarity of cell-specific mRNA levels on the level of
transcriptome and translatome in Arabidopsis root cells using identical and
common cell-types for both datasets. The Pearson correlation coefficient (PCC)
between expression and translation levels for each gene was computed. Eight promoters
were identified that drive gene expression in common cell-types in both datasets. By com-
paring the observed PCC value of each gene with PCC values obtained from bootstrapped
data, Z-scores were computed for each of the corresponding genes.

Finally, a characterization of the biological processes of these genes was conducted by gene

set enrichment analysis (GSEA; (Subramanian et al., 2005)). Here, the gene ontology

(GO) was used to obtain functional gene annotation used for GSEA (Ashburner et al.,

2000). Specifically, the sub-ontology Biological Process (GO-BP) was used to derive

overrepresented GO terms and further pre-processed following the considerations given

by Klie and Nikoloski (2012). For statistical testing, the hypergeometric distribution was
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used to test for the probability that a specific set of genes is annotated with the same GO

term by considering the background distribution of GO terms (Rivals et al., 2007).

5.2.3 Identification of altered regulation of gene expression across

system-levels

In addition to the analysis of cell-type-specific gene expression/translation similarity by

means of PCC, the genome-wide co-expression structure for each gene was investigated

by deriving co-expression networks (Butte and Kohane, 2003). Specifically, both a co-

expression and a co-translation network were constructed based on the common cell-

type-specific transcriptome and translatome data to further identify the co-expression/co-

translation relationships of genes which differ between the two networks. In the co-

expression and co-translation networks, nodes correspond to genes and edges (connec-

tions) are present between any two nodes that are significantly connected resulting in a

fully connected network (Chartrand, 1985). As a consequence, the similarity of a gene’s

neighbourhood within the co-expression and co-translation in the network reflects the

extent to which expression and translation relationships of groups of genes are coupled.

Accordingly, changed network topology suggests altered regulation or regulatory uncou-

pling of co-expression and co-translation relationships.

All edges were weighted, where the weight of an edge adjacent to two nodes/genes cor-

responds to the value of the PCC between the corresponding mRNA levels of both genes.

For the co-expression network this weight is defined by the PCC of expression levels; like-

wise, in the co-translation network, this weight is defined by the PCC of translation levels

in the cell-types of interest. Furthermore, the concept of expression conservation (EC)

was used to assess the similarity of co-expression relationships for all genes contrasting

the translatome and transcriptome networks (Dutilh et al., 2006). Both networks can be

represented by an adjacency matrix that can then be compared. Technically, this proce-

dure simplifies the computation of the PCC of the same row corresponding to a gene in

both matrices (cf. Figure 5.2).

The statistical significance of the difference of a gene’s EC score was assessed by

creating a series of n=1000 random co-expression networks for translatome and tran-

scriptome by selecting two random equal-sized sets of cell-type-specific translatome and

transcriptome data. Based on this procedure, an empirical null distribution of random

EC scores, genes that exhibit a statistically significant low EC score can be derived by cal-

culation of Z-scores: genes with a positive EC score and a Z-score ≥ 1.96 comprise genes

with highly conserved co-expression relationships. Correspondingly, genes with a low EC
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score (matching to Z-scores ≤ –1.96) exhibit low or no conservation of co-expression/co-

translation. Again, to characterize processes over-represented within those genes with

low and high EC scores, a subsequent characterization of biological processes, GO-BP by

GSEA, was conducted.

Figure 5.2: Co-expression/co-translation networks (represented by adjacency
matrices) for five cell-types using the common eight promoters. Two fully con-
nected co-expression/co-translation networks were generated separately using the tran-
scriptome and translatome datasets. RC

2 and RL
2 represent the second row of the transcrip-

tome and translatome adjacency matrix, respectively. An expression conservation score
(EC score) was then defined as the PCC between the co-expression and co-translation
networks. Further, the same analysis was performed on a set of 1000 bootstrapped co-
expression/co-translation networks generated from bootstrapped datasets. Rewired genes
were identified using Z-scores.

To investigate co-expression and co-translation relationships on a global scale, we com-

puted the correlation of the adjacency matrices of both networks. The similarity of the

co-expression and co-translation network is defined by their topology. As with PCC, the

value of this full matrix (or network) correlation falls in the interval [-1,1] (Swanson-

Wagner et al., 2012). Again, the statistical significance of the observed value of the full

matrix correlation was assessed by selecting random cell-type expression and translation

data to generate 1000 pairs of networks. Subsequently, the observed similarities were then

compared with values obtained from these bootstrapped networks.
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5.2.4 System-level analysis of cell-type specificity

Figure 5.3: Conversion of pairwise differences in cell-type-specific expression
levels derived by Tukey’s HSD test, to cell-type similarity networks. Gene 1 is
overexpressed in phloem companion cells (SUC2), rendering this cell-type different from
the remaining 3 cell-types (represented by no edge). In case of gene 2, there exists no
significant difference in cell-type specific expression levels. As a result, all cell-types are
similar, further represented by edges.

Differentially expressed/translated genes (for simplicity jointly referred to as DE genes)

displaying statistically significant mean differences in expression levels across the common
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cell-types were identified by performing an analysis of variance (ANOVA; (Kerr et al.,

2000)). The ANOVA was performed independently for the transcriptome and translatome

data. Moreover, while an ANOVA identifies genes exhibiting significant mean expression

differences across all cell-types, post-hoc tests, such as Tukey’s honest significant difference

(HSD) were applied to further derive statistical significance of pairwise mean differences

(Tukey and Braun, 1985). In this study, a series of Tukey’s HSD tests were performed for

those genes determined to be differentially expressed by ANOVA after a Benjamini and

Hochberg false discovery rate (FDR) correction (Benjamini and Hochberg, 1995). The

significance level was set to 5 % for both ANOVA and Tukey’s HSD.

To summarize the pairwise differences of cell-type expression levels on translatome and

transcriptome, cell-type similarity networks were constructed for each gene (Figure 5.3).

In this cell-type similarity network, nodes correspond to the respective cell-type of the

Arabidopsis root. An edge between two nodes indicates no significant mean difference of

expression values of the investigated gene. Accordingly, the absence of an edge indicates

a significant difference and thus dissimilarity of the adjacent nodes. Given a certain

number of cell-types, it is possible to obtain a total of 2m possible network topologies

or configurations, which are defined as network motifs (Milo et al., 2002). Furthermore,

the statistical significance of a particular number of occurrences, i.e. the number of genes

that coincide with any particular network motif, was assessed empirically by permutating

the data obtained for pairwise cell-type mean expression differences (i.e. the results of

the Tukey HSD tests) for all DE genes.

5.3 Results

In this chapter, we attempted to compare and assess the relationship between cell-type-

specific transcriptome and translatome data of Arabidopsis roots. In particular, we were

interested in testing to what degree gene expression and translation patterns were con-

served in these samples.

5.3.1 Normalization of datasets

The obtained raw data were jointly normalized using RMA (Figure 5.4) to allow compar-

isons between the gene expression and translation datasets (Irizarry et al., 2003).
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a. Pre-normalization

b. Post-normalization

Figure 5.4: Normalization of the CEL files. (a) The transcriptome dataset has 19
promoters in total with replicates (53 CEL files in total) which are shown in grey and
the translatome dataset has 10 promoters with replicates (22 CEL files in total) coloured
in red. The pre-normalized CEL files are displayed here. (b) RMA normalization of the
CEL files from the transcriptome and translatome was done together.

For the transcriptome datasets, data from Birnbaum et al. (2003) and Brady et al. (2007)

were used. Here, 19 cell- or tissue-type-specific root promoters driving GFP had been

used in combination with cell sorting to obtain a transcriptome map of root cells. For the

translatome datasets, data from Mustroph et al. (2009) were used. In this experiment,
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ten cell- or tissue-type-specific root promoters driving a FLAG-tagged RPL18 to achieve

a translatome map of the root cells (the full list of promoters is available in Table S2,

Appendix B).

First, we considered the effect of separate RMA normalization of the datasets. We

observed only slight differences in the distributions of probe log-intensities over all mi-

croarrays belonging either to the transcriptome or to the translatome datasets indicating

comparable average signal intensities between datasets and limiting the possibility of

technical bias between the two datasets. We also affirmed high reproducibility of the

biological replicates (correlation between replicates of 0.96 ± 0.03 in the transcriptome

and 0.98± 0.01 in the translatome).

5.3.2 Promoter/cell-type mapping

Four identical promoters had been used to obtain the transcriptome and translatome data

(Birnbaum et al., 2003, Brady et al., 2007, Mustroph et al., 2009) and these therefore

served as a first platform for our study (Table 5.1).

Cell-type Transcriptome Translatome
Phloem compan-
ion cells

SUC2 (At1g22710), APL SUC2 (At1g22710), SULTR2

Root vasculature WOL (At2g01830) WOL (At2g01830), SHR
Quiescent center AGL42, J0571, SCR (At3g54220) SCR (At3g54220)
Cortex CORTEX CO2, PEP (based on whether

it is meristamatic, elongation
or maturation zones)

Non-hair cells/
root atrichoblast
epidermis

GL2 (At1g79840) GL2 (At1g79840)

Table 5.1: List of promoters and cell-types common to the transcriptome
and the translatome datasets. Identical promoters in both datasets are underlined.
The promoters used in the analysis include SUC2 (Sucrose transporter 2), APL (Altered
phloem development), SULTR2 (Sulfate transporter), WOL (Woodenleg), SHR (Short-
root), AGL42 (Agamous-like 42), JO571 (J0571), SCR (Scarecrow), CORTEX (Cortex),
CO2 (Cortex specific transcript), PEP (Endopeptidase), and GL2 (Glabra2). In addition,
the genomic coordinates of the identical promoters are also specified.

Additionally, eight different promoters that target the same five cell-types were also used in

these two studies (Table 5.1). For example, WOL and SHR promoters are both indicated

as vasculature-related; however, it is clear that the activity of these promoters may not

exactly overlap. Nevertheless, these related promoters served as a second platform for



5.3 Results 101

our study. Hence, two scenarios were considered: (1) only data from the four identical

promoter sets were used in comparisons (referred to as ‘identical’), and (2) combined data

from the four identical promoters and the eight promoter sets that presumably target

the same cell-types were used in comparisons (referred to as ‘common’). Therefore, the

‘identical’ and ‘common’ datasets target four and five different cell-types, respectively.

5.3.3 Transcription and translation of cell-wall-related genes are

highly correlated

We investigated the variability in total or polysome-associated mRNA levels for any given

gene to test how expression or translation patterns change across cell-types. This is derived

by employing the coefficient of variation (CV).

a. CV of genes in identical promoters b. CV of genes in common promoters

Figure 5.5: Coefficient of variation (CV) of ribosome-associated (translatome)
and total mRNA (transcriptome) for the identical and common dataset. The
distribution of obtained CV values for all 22810 genes is visualized using kernel density
estimates. (a) In the identical dataset (n = 22810, bandwidth = 0.002265), the mean
CV value is 0.066 and 0.036 for the transcriptome and translatome, respectively. (b) In
the common dataset (n = 22810, bandwidth = 0.002568), the mean CV value is 0.043
and 0.0072 for the transcriptome and translatome, respectively. In both comparisons, the
translatome displays a smaller degree of variation in cell-type expression levels.

Figure 5.5 shows the distribution of CVs for all genes (22810 on the ATH1 platform) for

the ‘identical’, and ‘common’, cell-types of the translatome and transcriptome data. The

transcriptome varies more (CV mean value: 0.066) than the translatome (CV mean value:
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0.036) across the ‘identical’ promoter datasets. The ‘common’ promoter datasets revealed

a similar scenario (CV mean value transcriptome: 0.072, translatome: 0.043).

To examine how similar a given gene’s expression and translation patterns are across

the different cell-types we used PCC. Figure 5.6 shows the PCCs between translatome and

transcriptome for all genes across the ‘identical’ and ‘common’ datasets, respectively. In

the case of the ‘identical’ promoter dataset, the distribution of PCCs is best characterized

by an almost uniform distribution, with a slightly higher frequency of positive PCC values

(mean/median: 0.08/0.12; Figure 5.6). When using the ‘common’ promoter dataset the

distribution of observed gene-wise PCCs resembles a normal distribution (mean = median:

0.04) in which extreme absolute values of PCCs are less common (Figure 5.6).

Figure 5.6: Pearson correlation coefficient (PCC) between ribosome-
associated (translatome) and total mRNA (transcriptome) levels of the iden-
tical (red) and common promoter dataset (blue). The distribution of obtained
PCC values for all 22810 genes is visualized using kernel density estimates. In the identi-
cal dataset, the PCC distribution is characterized by an almost uniform shape and has a
higher frequency of positive PCC values. In the common dataset, the PCC distribution
resembles a normal distribution.

To estimate whether the observed PCC for a gene, i.e. correlation of its expression and

translation, is higher or lower than what may be observed by chance, bootstrapping was

employed. Here, we re-computed PCCs using 1000 randomized datasets. Next, the ob-

served PCC values for each gene were compared with an empirical null distribution derived

from the randomized bootstrapping analysis. This null distribution of PCCs was derived

by performing a bootstrap procedure randomly selecting four (for the ‘identical’ analysis

corresponding to four cell-types) or eight (for the ‘common’ analysis corresponding to
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five cell-types) promoters from the transcriptome and translatome dataset (in total 19

promoters and ten promoters, respectively, see Table S4, Appendix B). By computing

Z-scores, the strength of the observed PCC value can be compared to what is randomly

expected. In theory, genes with high positive or negative PCC values should therefore

display high absolute Z-scores. Finally, based on PCC and Z-score, each gene can be clas-

sified into one of two groups: genes with coupled total and polysome-associated mRNA

levels (high PCC and Z-score of ≥ 1.96) or genes in which the mRNA levels are uncoupled

(low PCC and Z-score of ≤ –1.96).

A subsequent enrichment analysis of GO-BP terms allowed us to estimate if certain

processes were enriched in either of the two groups of genes. Supplementary tables S5

and S6 (Appendix B) list enriched GO-BP terms found for genes with strong positive and

negative PCC values, respectively. We found that 494 and 373 genes displayed uncou-

pled expression and translation for the ‘identical’ and ‘common’ promoters, respectively.

These genes were enriched for GO-BP terms related to cell growth, root and meristem

development, protein glycosylation, and cytoskeletal organization (Supplementary tables

S5 and S6, Appendix B). However, it is important to remember that the two datasets,

i.e. the transcript and translation datasets, were generated in two different labs with two

different techniques, and it is therefore possible that some of the uncorrelated processes

are due to these differences.

We found that 851 genes and 790 genes for the ‘identical’ and ‘common’ promoters

displayed coupled expression and translation, respectively. GO-BP enrichment analyses

showed that these genes are associated with regulation of transcription, post-translational

modification (protein phosphorylation), and responses to various biotic and abiotic stim-

uli/stresses (Supplementary tables S5 and S6, Appendix B). Moreover, we found that

genes associated with cell-wall-related processes and root tissue formation processes were

common. This comprises GO-BP terms such as cell wall modification, secondary cell wall

biogenesis, xylan biosynthetic process, xylem and phloem pattern formation, and meris-

tem initiation. These data are in agreement with various co-expression approaches that

have been undertaken for secondary wall synthesis, i.e. many secondary wall genes are

transcriptionally and functionally coordinated (Persson et al., 2005).

5.3.4 Co-expressed relationships are not preserved across system-

levels

So far, our analysis has focused on quantifying the degree of similarity in expression and

translation for individual genes across different cell-types. However, one could also inves-
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tigate whether larger contexts of genes are coordinated across the two levels. To assess

whether genes that are transcriptionally coordinated, or co-expressed, are also coordi-

nated on a translational level, we constructed co-expression and co-translation networks

for the ‘identical’ and ‘common’ promoter datasets. Note that while a particular gene can

exhibit changes between cell-specific transcription and translation, this does not exclude

that the co-expression and co-translation neighborhoods of genes are preserved, i.e. one

could imagine that certain co-expressed genes change their translational patterns in a

coordinated fashion.

For one particular gene, an EC score is derived by calculating the PCC between

the adjacent edge-weights, i.e. the co-expression relationship, of the two networks thus

capturing similarity of gene neighborhoods (Figure 5.2). Accordingly, genes displaying

low EC scores show different patterns of co-expression relationships in the two respec-

tive networks, while high EC values indicate the presence of highly similar co-expression

relationships on the translatome and transcriptome.

The edges are weighted according to the similarity of expression/translation, which

is defined as the PCC scores between the cell-specific expression/translation levels of the

neighboring genes. For each gene, the EC, i.e. the similarity of the gene’s genome-wide

co-expression and co-translation relationships, was calculated. For this, differences in

the edge-weights of a gene’s incident edges, i.e. its network neighborhood, are compared

between the co-expression and co-translation networks. The computation of EC score

has been previously applied to elucidate the ‘expression context’ of orthologous genes

in four Eukaryote species, successfully illustrating that co-expression neighborhoods of

orthologues are highly conserved (Dutilh et al., 2006). Figure 5.7 shows the distributions

of EC scores using the ‘identical’ and ‘common’ promoters, respectively. For both the

‘identical’ and the ‘common’ datasets, the range of EC scores lies in the interval -0.4 to

0.5.
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Figure 5.7: Expression conservation (EC) scores of co-expression relationships
on the translatome and translatome within the identical (red) and common
promoter dataset (blue). The distribution of obtained PCC values for all 22810 genes
is visualized using kernel density estimates. For both the identical and the common
dataset, EC score values lie in the interval 0.4 - 0.5.

To validate the observed relationships on the level of co-expression and co-translation net-

works, we derived the correlation on a global scale by considering the entire networks. The

observed value of the full-matrix correlation was 0.06 and 0.10 between the co-expression

and co-translation networks for the ‘identical’ and ‘common’ promoters, respectively. To

assess whether these values are different from what could be expected by chance, we again

selected random cell-type expression and translation data, and used 1000 bootstrap sam-

ples that then were compared against our observed similarities (Figure 5.8). For both

the ‘identical’ and the ‘common’ promoter sets we found the values to be statistically

significantly lower than expected by chance (p< 0.01). These data suggest that globally,

or genome-wide, co-expressed gene patterns are dissimilar from co-translational patterns

in Arabidopsis root cells.
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a. Identical promoters

b. Common promoters

Figure 5.8: Similarity of the co-expression and co-translation network for the
(a) identical and (b) common dataset. The similarity of both networks is determined
by the PCC of the adjacency representation of the networks, i.e. a full matrix correla-
tion. Only 0.001 and 0.005 % of the 1000 pairs of networks derived from bootstrapping
procedure exhibit lower correlations than the observed transcriptome and translatome net-
works, respectively. This indicates a low degree of coupling of co-expression relationships
between the two system-levels.

Returning to a per-gene analysis, we investigated which genes either significantly devi-

ated or correlated in co-expression and co-translation relationships (i.e. EC scores) by
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assessing statistical significance by Z-scores and bootstrapping. Hence, these genes ei-

ther exhibited tight coupling (high EC score, and Z-scores ≥ 1.96) or uncoupling (low

EC scores, and Z-scores ≤ –1.96; Figure 5.2) of their co-expression and co-translation

to other groups of genes, thus reflected in conserved or changed network neighborhoods.

Only 71 and 39 genes exhibited (statistically significant) high EC scores for the ‘identi-

cal’ and ‘common’ promoters, respectively. In contrast, 10057 and 12681 genes displayed

(statistically significant) low EC scores for the two promoter sets, respectively. Subse-

quently, we tested if these sets of genes were enriched for certain GO-BP terms (Tables S7

and S8, Appendix B). For both groups of genes (high/low EC scores) and promoter sets

(‘identical’/‘common’), we found enrichment of the GO-BP terms DNA-dependent reg-

ulation of transcription, cell wall biogenesis and organization, transmembrane transport,

cell wall organization and cell growth, and signal transduction. Due to the high number of

genes with uncoupled co-expression and co-translation relationships, i.e. low EC scores,

we found numerous GO-BP term enrichments, including a wide range of metabolic and

catabolic, as well as transport processes.

Finally, to assess what types of genes both display a good correlation between expres-

sion and translation (high PCC score) and retain a good correlation between co-expression

and co-translation network neighborhoods (high EC score) we identified such genes for

the ‘identical’ and ‘common’ promoter sets. Figure 5.9 shows that ten genes (‘identical’

promoters) and two genes (‘common’ promoters) have these characteristics. Remarkably,

the majority of the identified 12 genes are transcription factors, or contain predicted

DNA binding protein domains, e.g. ATHB-3, MYB46, VND7 and WRKY9. Several of

the genes are associated with key regulatory roles in roots, either for developmental or

for response processes (Table 5.2). For instance, WRKY9 is involved in mediating cell

responses to nutrient deprivation (Shin and Schachtman, 2004, Shin et al., 2005), and

the transcription factor MYB46 has a prominent role in the developmental programme

of secondary wall biosynthesis (Zhong et al., 2007). In addition, VND7 has been char-

acterized as transcriptional master switches for plant meta- and protoxylem formation in

Arabidopsis (Kubo et al., 2005).
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a. Identical promoters

b. Common promoters

Figure 5.9: Venn diagrams illustrating the overlap of genes displaying con-
served expression levels (PCC) and co-expression relationships (EC scores)
across root cell-types in translatome and transcriptome. (a) Ten genes could be
identified using the scenario considering identical promoters (four promoters) and (b) two
genes considering common promoters (eight promoters).
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No. of cell-
types

Array
element

Locus
identifier

Annotation

4 260067 at AT1G73780 Protease inhibitor/seed storage/lipid
transfer protein (LTP) family protein

4 250108 at AT5G15150 ATHB-3 (Arabidopsis thaliana HOME-
OBOX 3); DNA binding/transcription
factor

4 250322 at AT5G12870 AtMYB46/MYB46 (myb domain protein
46); DNA binding/transcription factor

4 251009 at AT5G02640 Similar to unknown protein [Arabidopsis
thaliana] (TAIR:AT3G46300.1); similar to
hyp. protein [Vitis vinifera]
(GB:CAN667791)

4 260173 at AT1G71930 VND7 (VASCULAR RELATED NAC-
DOMAIN PROTEIN 7); transcription
factor

4 253076 at AT4G36160 ANAC076/VND2 (VASCULAR-
RELATED NAC-DOMAIN 2); transcrip-
tion factor

4 267613 at AT2G26700 Protein kinase family protein
4 253120 at AT4G35790 ATPLDDELTA (Arabidopsis thaliana

phospholipase D delta); phospholipase D
4 266342 at AT2G01540 C2 domain-containing protein
4 260468 at AT1G11100 SNF2 domain-containing protein/helicase

domain-containing protein/zinc finger
protein-related

5 255637 at AT4G00750 Dehydration-responsive family protein
5 260432 at AT1G68150 WRKY9 (WRKY DNA-binding protein

9); transcription factor

Table 5.2: Genes displaying conserved expression levels (PCC) and co-
expression relationships (EC scores) across root cell-types in transcriptome
and translatome. In total, ten genes could be identified using the scenario considering
the ‘identical’ promoters and two genes considering the ‘common’ promoters.

Furthermore, a more detailed network analysis was conducted to analyze whether addi-

tional network properties of those 12 genes deviate from the majority of genes and further

explain the conservation/similarity of neighborhoods. Thus, un-weighted, classical gene-

relevance networks were created, using a threshold, t = 0.9, for the PCC of two genes

to decide whether an edge (≥ t) or no edge (< t) is present. Based on this threshold,

two networks were created dichotomously capturing the co-expression and co-translation

properties of the twelve genes across the two system-levels.
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a. Degree distribution of the network

b. Edge betweeness of the network

Figure 5.10: Degree distribution and edge betweenness of the co-expression
and co-translation network. (a) This figure displays the distribution of the degree for
the co-expression and co-translation network using the 4 identical promoters. Clearly, the
difference of both network topologies becomes visible. However, the degree of the ten genes
(indicated by small red bars at the x-axis) is not strongly confined to a particular range, i.e.
low degree or high degree. (b) The other figure displays the distribution of the betweenness
for the co-expression and co-translation network using the 4 identical promoters. In this
case, both network-structures seem more similar, but again, the betweenness of the ten
genes (indicated by small red bars at the x-axis) is evenly spaced across the whole range
of obtained betweenness values.
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The network properties considered here comprise of the degree, edge betweenness, close-

ness, eigen vector centrality, alpha centrality and transitivity. Figure 5.10 indicates the

degree distribution and edge betweenness for the ten genes identified to show both con-

served expression as well as co-expression relationships in case of the ‘identical’ promoters

(Table 5.2). Similar plots were obtained for the other computed network properties of the

ten genes but not shown here. Also, network properties of the 2 genes identified to show

both conserved expression as well as co-expression relationships in case of the ‘common’

promoters were computed (data not shown). Interestingly, for all of the tested properties,

the twelve genes (ten from the ‘identical’ and 2 from the ‘common’ promoters, cf. Table

5.2) display network properties that are well distributed across the whole range of the

corresponding properties as compared with all genes. An enrichment analysis of these

genes suggests that certain key genes for root development maintain a direct relationship

between expression and translation (Table 5.3).

GO term Term description No. of genes p-value
GO:0006355 Regulation of transcription,

DNA-dependent
4 < 0.01

GO:0009741 Response to brassinosteroid
stimulus

2 < 0.01

GO:0010089 Xylem development 2 < 0.01
GO:0010413 Glucuronoxylan metabolic

process
2 < 0.01

GO:0045492 Xylan biosynthetic process 2 < 0.01
GO:0045893 Positive regulation of tran-

scription, DNA-dependent
2 < 0.01

Table 5.3: GSEA of genes displaying conserved expression/translation lev-
els and co-expression/co-translation relationships (EC scores) in the identical
promoter dataset. Note that the corresponding two genes from the common promoter
dataset did not result in a significant enrichment of GO-BP terms (cf. Table 5.2).

5.3.5 Root cell-type similarity based on transcriptome and trans-

latome

To complement the gene ‘centric’ analysis of (un-)coupled expression and translation,

a cell-type ‘centric’ analysis may reveal common themes among root cell-types. Here,

we attempted to elucidate whether transcriptional and/or translational patterns (termed

themes) may be conserved across multiple cell-types. To characterize a particular cell-

type, we first identified genes that showed differential expression and translation across

the datasets. These estimates were derived for both the ‘identical’ and the ‘common’
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promoter sets using ANOVA [FDR of 5 % by Benjamini-Hochberg (BH) multiple testing

correction]. For the ‘identical’ promoters, a set of 890 genes displayed both differential

expression and translation across the cell-types (Figure 5.11). Moreover, for the five

‘common’ promoters, a set of 3923 genes showed differential expression and translation

across the cell-types (Figure 5.11).

a. Identical promoters b. Common promoters

Figure 5.11: Visualization of the set of differentially expressed (DE) genes
across the transcriptome and translatome of the identical (a) and common (b)
promoter datasets. Differential expression was assessed by ANOVA at an FDR rate of
5 %. The numbers in the Venn diagram correspond to the number of DE genes found in
each system-level and the intersection thereof.

Considering expression and translation separately, we found that most genes exhibit dif-

ferential expression across the cell-types: ≈ 38 % (‘identical’ promoters) and ≈ 67 %

(‘common’ promoters), while only ≈ 5 % (‘identical’ promoters) and ≈ 20 % (‘com-

mon’ promoters) of all genes display differential translation. Hierarchical clustering of the

genes exhibiting differential expression on both levels, i.e. the 890 and 3923 genes above,

revealed divergent patterns in cell-type-specificity (Figure 5.12).
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a. Transcriptome-Identical
promoters

b. Translatome-Identical promoters

c. Transcriptome-Common
promoters

d. Translatome-Common promoters

Figure 5.12: Common DE genes show divergent patterns of cell specificity
across the two system-levels. (a) Relative gene expression levels for the 890 DEG with
significant differences across identical promoters in transcriptome and (b) translatome.
(c) Relative gene expression levels for the 3922 DEG with significant differences across
common promoters in transcriptome and (d) translatome.
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We conducted a series of Tukey HSD tests (p < 0.05) for all genes displaying differential

transcription and translation to further derive which cell-type-specific expression and

translation levels differed significantly. Performed for each gene, the Tukey HSD post-hoc

test allowed us to determine for which pair-wise cell-type comparisons there is a significant

difference in cell-type expression/translation levels (Figure 5.3). When considering the

four ‘identical’ promoters (representing cell-types; Table 5.1) in the Tukey HSD test, we

obtained a characteristic pattern of six pairwise cell-type comparisons encoded for by

a binary matrix (0 and 1). Then, for any given pair of cell-types and system-level, a

significant difference in cell-type expression or translation profile is assigned the value 1,

and a similar expression profile is assigned a value of 0.

Figure 5.13: All possible motif occurrences across the identical promoter data
of the transcriptome and translatome. Out of all possible network motifs (Supple-
mentary table S9, Appendix B) for the transcriptome and translatome, only nine for the
transcriptome and five for the translatome occur more often than expected by chance. The
“C” and “L” used in the figure indicate the transcriptome and translatome, respectively
and give the number of genes which coincide with each motif.
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We displayed the results as networks, here referred to as network motifs, to show patterns

of similar gene levels. In these small networks, the four cell-types (‘identical’ promoter

dataset) correspond to nodes, and similarity between two cell-types (= 0) is indicated

by an edge. From the 64 possible configurations of those networks (cf. Materials and

Methods), we found that only five network motifs for the translatome and nine for the

transcriptome occur more often than expected by chance (Figure 5.13).

The significance of these motifs was tested empirically by permuting the results from

the Tukey HSD test for each gene (i.e. shuffling the 0 and 1 values) and comparing the

observed occurrence counts of genes for a particular motif with those obtained randomly

over n = 1000 permutations (Supplementary table S9, Appendix B). Furthermore, of all

significantly occurring motifs only two are represented by a high number of genes [279

and 214 unique genes, motif 1 (Figure 5.14) and motif 2 (Figure 5.14), respectively] of

the 890 differentially expressed genes. Both these motifs contain one isolated node, i.e.

a cell-type that is not connected by edges to any other cell-types, indicating that this

cell-type is dissimilar based on the gene’s expression or translation profile.

a. Motif 1 b. Motif 2

Figure 5.14: Two most commonly occurring network motifs for the tran-
scriptome and translatome. A series of Tukey HSD tests were used on the common
DE genes from the identical promoter dataset (890 genes) to detect significant pairwise
cell-type differences across the transcriptome and translatome. Network motifs were con-
structed using cell-types as nodes and cell-type similarity indicated by a red edge. (a)
Network motif 1 is represented by 279 unique genes. (b) Network motif 2 is represented
by 214 unique genes.
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Moreover, in both the motifs, the remaining three cell-types are fully connected by

edges, indicating similar behavior of the relative levels of expression/translation of the

genes included in the motif. The first motif (motif 1) shows that the majority of genes

have dissimilar expression pattern in phloem companion cells (SUC2) as compared with

the other three cell-types (WOL, SCR and GL2). In the second motif (motif 2), the root

quiescent center (SCR) displays deviating expression patterns. Looking more closely at

these differences shows that the major driving force behind the deviation in the phloem

companion cells can be attributed to the transcriptomic datasets (214 differentially ex-

pressed genes), while the deviation of the quiescent root center is largely due to differences

in the translatome profiles (203 differentially expressed genes). An enrichment analysis

using GO-BP terms associated with the genes in the first motif (214 genes) reveals mainly

transport processes (general and transmembrane), as well as responses to sugar stimuli

(glucose, sucrose and fructose) to be over-represented (Table S10, Appendix B). These

data are in agreement with a major function of phloem companion cells in sugar transport

(Stadler et al., 1995, Oparka, 1999, Williams et al., 2000). When we looked at the relative

expression levels of the genes associated with this motif (again 214; Figure 5.15) we found

that the transcript levels were elevated. This is consistent with a role of the gene products

in the function of these cells.

By contrast, genes associated with the second motif, i.e. where the root quiescent cen-

ter showed dissimilar expression patterns, were enriched for cell wall modification, xylan

biosynthetic process and root hair cell differentiation/elongation. More importantly, the

GO-BP terms oxidative stress, oxidation-reduction processes and auxin polar transport

were also enriched. The quiescent center cells typically accumulate high auxin levels that

serve as a distal organizer (Sabatini et al., 1999). This is accompanied by the overproduc-

tion of reactive oxygen species. This is mediated by high levels of activity of ascorbate

oxidase that cause reduction in the reduced form of ascorbic acid and glutathione and,

simultaneously, an increase in the content of reactive oxygen species in the root quiescent

center cells (Ivanov, 2007). Oxidative stress represses proliferation of these cells, thus

maintaining the cells in a quiescent state (Jiang et al., 2003). Expression levels of genes

corresponding to this second motif are shown in Figure 5.15, which indicates a relatively

higher degree of translation in the root quiescent center.
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a. Expression levels of genes associated to Motif 1

b. Expression levels of genes associated to Motif 2

Figure 5.15: Boxplots of expression levels separated by promoters individually
for translatome and transcriptome for network motif 1 and motif 2. (a) In motif
1, 279 of 890 DE genes exhibit this characteristic cell-type-specific expression pattern. (b)
Furthermore, 214 genes correspond to motif 2.
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5.4 Discussion

A long-standing question in cellular biology is how well the transcriptome is coupled to the

proteome (Zanetti et al., 2005). Profiling of mRNAs associated with polysomes can give

a rough estimate of a cell’s or tissue’s proteome. Hence, by comparing cell-type-specific

levels of total and polysomal mRNA in a global context, one can derive to what extent

expression and translation are coupled. Based on the efforts of Brady et al. (2007) and

Mustroph et al. (2009) the Arabidopsis root atlas allows us to analyze transcriptomic and

translatomic datasets and to identify particular genes that show either a tight coupling, or

an uncoupling, of expression and translation profiles over a collection of cell-types. On the

computational level, this analysis represents an extension to the analysis of Mustroph et al.

(2009), who used their root and shoot data in combination with hypoxia conditions to

identify DE genes at the single cell-, region-, and organ-specific levels. Recently, Lin et al.

(2014) have investigated the translatome of in-vivo grown pollen tubes from self-pollinated

gynoecia of Arabidopsis. By using a pollen-specific promoter, epitope-tagged polysomal-

RNA complexes could be affinity purified to obtain mRNAs undergoing translation. We

also employed joint (RMA-) normalization to compare the translatome data with publicly

available transcriptomics datasets. Set theory and analysis of the differential behavior of

genes finally identified a group of genes important in in-vivo pollen tube biology.

Although canonical correlation based methods has previously been used in the analy-

sis of the NCI60 datasets, it was largely limited to the identification of clusters of genes

and their associated over-represented biological terms (Lê Cao et al., 2009). Moreover, Lê

Cao et al. (2009) focused on analyzing the transcriptome data arising from two different

microarray platforms (cDNA and affymetrix chips). In this case study, the number of

profiled cell-types were similar i.e., four in case of the ‘identical’ promoters and ‘8’ for the

common promoters across the transcriptome and translatome. One of the biological ques-

tions under investigation in this chapter focuses on studying the correlation of expression

patterns in multiple cell-types across system-levels. Using CCA in such a case will result

in the problem of high dimensionality i.e., the observations will be the profiled cell-types,

and the variables will be the gene expression values across the two system-levels. This is

clearly a problem of ‘n < p + q’ setting which CCA is not suited for. Although sparse

CCA addresses this issue, the problem is that it obtains the weighted linear combinations

of the variables from each dataset and hence interpretation would be quite tedious consid-

ering that there are 22000 genes. On the other hand, considering the observations as the

number of genes, and the variables as profiled cell-types while using CCA is not suitable

to answer the biological question under investigation. This is because, CCA will produce
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a weighted linear combinations of the different cell-types and does not focus on the gene-

expression measurements. In contrast, the novel analysis pipeline in this chapter takes

into account two different system-levels (transcriptome and translatome) and focuses on

extracting cell-type specific expression patterns of genes. Moreover, the pipeline takes

into account the expression conservation of the genes across different system levels using

appropriate computations.

Furthermore, we examined the variance in expression and translation levels using CVs

and tested the similarity of gene expression/translation patterns across the root cell-

types using PCC. The observed change in CVs (Figure 5.5) and the presence of negative

PCC values (Figure 5.6) when globally comparing the translatome and transcriptome

is similar to what was found by Tebaldi et al. (2012). Here, the authors concluded

a general uncoupling of the translatome and transcriptome based on low correlations

found using epidermal growth factor stimulation in mammalian HeLa cells. Uncoupling

of transcriptome and translatome has also been documented in human and yeast cells in

response to various stimuli and stresses (Mikulits et al., 2000, Grolleau et al., 2002). For

example, yeast exposed to different stresses, such as amino acid depletion and fusel alcohol

addition, show distinct translational profiles (Smirnova et al., 2005), suggesting there is a

distinct role of translational regulation for rapid responses in cells to environmental stress.

However, by further focusing the analysis to the level of individual genes, our results also

revealed groups of genes displaying coupled transcription/translation involved in processes

such as stress responses (e.g. wounding, bacteria, nitrogen starvation and osmotic stress).

These findings are, on the other hand, in agreement with the study in yeast by Halbeisen

and Gerber (2009), who found relatively high overall PCC values of 0.75-0.81 of the overall

genomic (fold-) changes in expression upon different conditions of cellular stress, such as

osmotic stress between transcriptome and translatome.

Genes that show correlated transcription and translation are enriched in cell-wall-

related processes, which is in agreement with co-expression approaches that have success-

fully been undertaken for secondary wall synthesis (Persson et al., 2005). Here, many

secondary wall genes are transcriptionally and functionally coordinated, which implies

that the translation also would be coordinated with the transcription (Mutwil et al.,

2009, Ruprecht and Persson, 2012). While these processes appear to be coupled, most of

the genes displayed uncoupled transcription and translation in the cell-types considered

in our analysis.

In addition, a high degree of uncoupling between transcription and translation was ob-

served when investigating correlations in co-expression and co-translation relationships.

Here, over 12000 genes displayed altered co-expression patterns in the eight ‘common’ pro-
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moter datasets. This may reflect a re-wiring of co-regulation of genes during translation

compared to transcription. In addition, cell-type-specific mRNA abundance appeared

different on the two levels with 11453 genes differentially expressed exclusively in the

transcriptome (Figure 5.11). Notably, large proportions of genes displaying conserved

co-expression/co-translation neighborhoods are transcription factors or are putatively in-

volved in regulation of transcription.

Note that bootstrapping procedures were carried out to ensure the robustness of our

analyses. The benefits of this approach are two-fold: the random PCC and EC scores

account for, first, sample size and, second, differences in cell-type promoter specificity

and the presence of multiple promoters targeting the same cell-type in the case of the

‘common’ promoter dataset. As a consequence, one can robustly classify genes whose total

and polysomal-associated mRNA levels are coupled (high PCC and Z-score of ≥ 1.96)

as well as genes that display an uncoupling of both mRNA levels (low PCC and Z-

score of ≤ –1.96). Accordingly, we employed the same statistical framework to confirm

the similarity of co-expression and co-translation neighborhoods in the network analysis

to ensure robustness. Nevertheless, the observed effects must be carefully interpreted

given that the datasets originate from different labs and, moreover, rely on different

extraction procedures. Here, the identified coupled attributes of gene expression on the

transcriptional and translational level are therefore remarkable. Moreover, many of our

observations are in close agreement with well-established characteristics of root cell-type

function and development.

One of the limitations of this analysis is the available selection of promoters, i.e. cell-

types, for the datasets. Clearly, in the case of the correlation analyses of transcription and

translation of the individual genes, a greater sample size would have been desirable. Also,

in the case of the ‘common’ five cell-types, artefacts may arise due to slight variation in

promoter strength and specificity across the cell-types. Therefore, it is impossible to rule

out deviations in transcription and translation based on promoter patterns. Nevertheless,

we found correlation between transcription and translation for genes that we anticipated,

such as for the secondary wall genes discussed above. These results are reassuring, and

may provide a foundation for future efforts in this area. We propose that using more cell-

type-specific promoters and performing the transcript and translatome analyses in one

lab using the same methods will generate a robust and interesting data series that may be

used to improve our results. Such datasets would be of immense interest to understand

coupled and un-coupled gene regulation in Arabidopsis roots.
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Conclusion

Given the availability of sophisticated techniques, it is essential to adopt a multidisci-

plinary approach to understand the complexity and diversity of plant cell walls. Therefore,

the contributions of this thesis are two-fold: first, novel applications of existing methods

are illustrated for the integration of heterogeneous datasets to yield unprecedented views

on different aspects of plant cell walls. Secondly, it was demonstrated using a novel

analysis pipeline how integrative system-level analysis can be used to extract discernable

information pertaining to cell wall related genes and functions. In addition to the dis-

cussion sections contained in the different case-studies of this thesis, a general conclusion

concerning the integration of heterogeneous datasets shall be discussed here.

Contributions to integrative system-level analysis

The availability of high-throughput techniques revolutionize plant research and provide

system-level measurements for virtually all types of cellular components in various plant

species (cf. Chapter 1). However, the abundance of datasets generated from different

system-levels pose challenges to understand the system as a whole. To this end, the

concept of multiblock data analysis is introduced in Chapter 2 wherein each dataset

generated from different system-levels or using different analytical techniques is considered

as a data block. Multiblock methods have a long history in the field of behavioral research

and ecological data analysis and a table of methods proposing the available methods in

literature for different instances of combining data blocks is provided (cf. Table 2.1). All

the three case-studies elaborated in this thesis focus on the integration of two data blocks

and biological understanding of various aspects of cell walls are discussed.

Cotton fiber is one of the most useful systems for cell wall research. Further analysis

of cotton fiber cell walls is relevant to improve this important natural textile fiber and to
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create the next generation of crop plants for optimized production of biomaterials (Haigler

et al., 2012). The development of cotton fibers is a very complicated biological process,

and previous analysis in cotton fibers mainly focused on the identification of genes for

fiber quality improvement (Gilbert et al., 2013, 2014, Al-Ghazi et al., 2009). Moreover,

the results from these studies employed data from one particular system level i.e., the

transcriptome or the metabolome. In chapter 3 of this thesis, the combined analysis of

the glycome and phenome levels in cotton fibers established links between polysaccaharide

rich cell walls and their phenotypic characteristics. The inherent potential of glycan ar-

rays (CoMPP) for high throughput characterization of plant polysaccharides has mostly

been restricted to the generation of quantitative information (Moller et al., 2008, Peder-

sen et al., 2012) and lacks efficient computational tools to extract relevant information.

The comparative analysis of the glycan array with the phenotypic characteristics reveals

the potential of glycan arrays in combination with multivariate statistical methods as

a powerful approach for understanding cell wall composition and their effect on pheno-

typic characteristics. Specifically, correlation and regression based approaches were used

to elucidate the relationship between the two datasets. Appropriate pre-processing of

the datasets was done and the initial analysis by multiple regression analysis depicted

that it is possible to predict only one fiber characteristic at a time. The application of

canonical correlation analysis (CCA) provided a global view of association between the

system-levels with information about the relative contribution of the variables to a par-

ticular canonical variate. In case of a high dimensional framework, other methods such

as regularized canonical correlation analysis and sparse generalized canonical correlation

analysis proposed in Table 2.1 could be used. Although CCA proves to be a universal

tool to identify exploratory relationships between datasets, it is not suitable to predict

models for each of the fiber trait under study. For this purpose, CCA with elastic net

penalization was proposed (Lê Cao et al., 2009) and allowed variable selection as a one

step procedure. The major drawbacks of using CCA-EN is that it requires intensive com-

putations in cases when “p+q” is large, and moreover, it uses elastic net with a similar

Lasso soft thresholding penalization and does not involve CCA computations. Instead,

sparse partial least squares regression (sPLS) maximizes the covariance between the la-

tent variables and is a highly recommended approach as it includes a built-in variable

selection that captures subtle individual effects. The conducted analysis using sPLS ap-

proach deduced relationships between fiber strength, and specific carbohydrate epitopes.

Furthermore, this association was attributed to the role of xylan epitopes consistent to

previous experimental studies on the role xylans in fiber strength. It would be interesting

to perform similar kinds of analysis as in Chapter 3 by relating time series glycan arrays
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to that of phenotypic characteristics using ‘k+1’ table methods proposed in Table 2.1.

Time series glycan arrays refers to those obtained from developing cotton fibers and such

a kind of analysis would allow to understand differences in polysaccharide composition

over time and their relation to the development of cotton fibers.

The conducted analysis using correlation and regression based methods in Chapter 3

emphasize statistical significance by adopting different tests of significance to validate the

results. In case of validation of results from the CCA, measures such as Wilk’s lambda,

Pilai’s Trace, Lawley Hotelling Trace, and Roy’s criterion were used as detailed in Chap-

ter 2. However, computing an empirical permutation tests on the original data would

destroy the covariance structure both within and among each dataset thus leading to

different canonical variates. Therefore, this would directly influence the observed canon-

ical structure between the variable and the canonical variates. In case of the regression

analysis, model validation involved determining how well the data fits the theoretically

implied model and focuses on the model predictive ability. The performance of the model

was reported in terms of root mean square standard error of prediction (RMSEP), and

for simplicity the latent variables included were defined from that model with the lowest

RMSEP. Computing the Q2
h criterion is closely related to RMSEP, but it gives a more

general insight of the model, whereas the RMSEP requires to be computed for each vari-

able in the response dataset (cf. Section 2.3). The predictive ability of the model could

also be assessed by the R2, also called the determination coefficient.

Contributions to analyzing different analytical techniques

The presented integrated analysis in Chapter 4 relies on maximizing the sum of the

squared covariance between scores of each data table by multiple co-inertia analysis

(MCIA). The power of MCIA for cross-platform comparison is illustrated here. In this

chapter, the variations in the biochemical composition of plant cell walls were analyzed

combining two different kinds of spectroscopy. Spectroscopy has proven to be an effec-

tive tool for rapid estimation of the numerous polysaccharides and lignin components

in unfractionated plant cell wall materials. Both FT-IR and Raman spectroscopy are

highly suitable for the estimation of cell wall composition but each of the spectroscopic

technique operates at different levels of resolution. Therefore, coupling of the spectral do-

mains reflects the information provided by different techniques. Estimation of the cell wall

composition at different spatial resolutions across several cell-types help in understanding

enzymatic digestibility and differences in saccharification yield for biochemical conversion

into ethanol (Chen and Dixon, 2007, Yuan et al., 2008a, Hisano et al., 2009, Van Acker
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et al., 2013). For cross-comparisons and joint analysis of different analytical platforms,

MCIA is preferred when compared to other methods such as CCA, PLS, and CIA. More

specifically, MCIA is preferred over PLS because the former deflates data blocks using

the block scores whereas the latter deflates the scores of one data table. Furthermore,

MCIA has the advantage over CCA and PLS in it’s ability to analyze both the common

and specific information brought by different data tables. In addition, MCIA was more

appropriate to analyze the ‘n < p + q’ condition of the joint analysis.

Pre-processing and normalization was an important step in the integrative analysis of

different spectroscopic techniques. The pre-processing procedure was different than that

of the other integrative studies in this thesis. The procedure includes band selection,

spike and noise elimination taking into account corrections specific to each spectroscopy.

In addition, the normalization step was assessed considering spatial neighborhood and

intensity variations in the spectra based on the morphology of the maize sections. The

pre-processing procedures involved in this integrative analysis were a vital step to enhance

the spatial and spectral resolution of the spectra in order to study the chemical information

within. Consequently, pairing the hyperspectral images to map the regions in common

between the two spectroscopies was done and allows the joint analysis of the hyperspectral

image data. Cross correlation coefficients were computed to assess the validity of the

registration parameters used to map the infrared and Raman images to the reference

images (Table 4.1). The joint analysis of the data tables obtained after pairing of the

hyperspectral images were used for the MCIA, and adapted to compute and compare how

well the global and block information are related. Different indicators were proposed to

analyze the contributions of the two data tables and the percentage of variances described

by the block scores. Adequate visualization tools were used to interpret the findings from

the MCIA such as the comparison of the spectral plots as shown in Figure 4.18 which

reveals particular spectral profile profiling the same cell-types. This information when

combined with the infrared and Raman score plots allows interpreting why particular

spectral profiles are not correlated across both techniques and the discrepancies in the

information provided. Another kind of visualization is the score images of the MCIA

components obtained by blending the bright field image and the refolded scores. These

score images reveal information with respect to particular cell-types and can be used in

the interpretation of the infrared and Raman loadings. Moreover, identification of the

peaks from the PCA and MCIA loadings help to understand the biochemical composition

of various cell-types.

The statistical significance of the relationship between the data blocks was assessed by

means of the RV coefficient. The RV coefficient is the coefficient of correlation between
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the two tables X and Y (cf. Section 2.3). This coefficient varies between 0 and 1: the

closer the coefficient to 1, the stronger the relationship and the common information pro-

vided between the tables. This kind of joint analysis on maize stem cells allows studying

the insitu chemical composition which aids in the degradation of cell walls for biofuel

production. The joint analysis can be extended to more than two different kinds of spec-

troscopies using MCIA. Such kinds of joint analysis using MCIA can also be applied for

an integrative analysis of multiple microarray or RNAseq platform comparisons.

Correlation and altered regulation of global transcript levels and

translatome

One of the key challenges in biology is to analyze how strong the correlation between

mRNA expression levels and protein abundance is. There is a growing body of literature

reporting studies integrating either the transcriptome to the proteome or the transcrip-

tome to the metabolome (Kleffmann et al., 2004, Baginsky et al., 2010, Tohge et al., 2005,

Hannah et al., 2010, Osorio et al., 2012). Originally studied in yeast and mammalian cells

(Halbeisen and Gerber, 2009, Tebaldi et al., 2012), translational control has been iden-

tified as the intermediate level in the flow of genetic information and might reflect why

particular mRNA’s do not necessarily correlate with those of the encoded proteins. Chap-

ter 5 of this thesis addressed two sets of biological questions (1) first, using cell-specific

datasets a systematic assessment of the variation of expression was made between the

transcriptome and translatome levels, and (2) Secondly, the data used to study the two

system levels was from Arabidopis root cells and hence components and processes asso-

ciated to cell wall related genes were also studied. This is because Arabidopsis serves

as a powerful plant model for the identification and functional characterization of genes

encoding enzymes involved in cell wall biosynthesis.

Since the two datasets originated from different labs, appropriate normalization pro-

cedures were adopted to enable an integrative system-level comparison. Moreover, as

detailed in Chapter 2 of the thesis averaging the replicates was done using the multivari-

ate correlation estimator. The cell specificity of the two employed datasets was further

classified into identical and common based on the promoters used to drive the expression

of the particular cell-type under study. Careful comparison of the promoter sequences

and the identification of the genomic coordinates helped to classify the promoters as

identical or common (cf Table 5.1). In contrast to other studies investigating different

system levels using only the differentially expressed genes, here genome scale system-level

comparisons were adopted. Pearson correlation coefficient (PCC) was used in compari-
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son to the Spearmans rank correlation coefficient to estimate the similarity as the former

is sensitive to the actual expression values while the latter loses some of the precision

in the data through ranking. Moreover, the investigation of co-expression relationships

on a global scale allows the identification of altered regulation of gene expression levels

across both system levels. The similarity of the co-expression and co-translation network

was determined by the PCC of the adjacency representations of the networks, and a full

matrix correlation showed that the whole-network correlation is significantly lower than

expected by chance. This finding suggests a global, or genome-wide, dissimilarity of co-

expression and co translation, which has previously been interpreted as an uncoupling

of both system levels (Halbeisen and Gerber, 2009, Tebaldi et al., 2012). Moreover, this

finding serves as a starting point to analyze individual gene neighborhoods in detail as

it is done by the expression conservation score (EC score) approach. The computation

of EC scores was used to assess the similarity of the co-expression relationships for all

genes contrasting the translatome and transcriptome networks (cf. Figure 5.2). Twelve

genes displaying both conserved expression levels and co-expression relationships (based

on EC scores) across the two system-levels were identified to be transcription factors, or

those containing predicted DNA binding protein domains (Table 5.2). Additional network

properties of these twelve genes were computed to further explain the conservation/sim-

ilarity of gene neighborhoods. Thus, the computational analysis considered a systematic

assessment of the degree of co-ordination and divergence on the global level between the

two levels of cellular organization. In addition, key insights into the biological processes

associated to cell wall and root development that display conserved and divergent patterns

of transcription and translation were identified.

To complement the analysis done on the entire system-level, cell-type centric analysis

elucidates whether transcriptional and translational patterns are conserved across multiple

cell-types. Through a series of Tukey Honest Significant tests, the differentially expressed

genes from the identical promoter dataset reveal significant pair-wise cell-type differences

across the two system-levels. Network motifs were constructed using cell-types as nodes

and cell-type similarity indicated by an edge. These network motifs are used to display the

significant differences in expression or translation. In addition, it also reflects the number

of genes that coincide with any particular network motif, indicating that a particular

cell-type is dissimilar based on the genes expression or translation profile.

All the approaches in Chapter 5 emphasize statistical significance at each level of the

conducted analysis step. The outlined procedure for computing the PCC and EC scores

across two system levels strongly relies on the employed bootstrapping procedures. As a

consequence, it ensures robust classification of genes whose total and polysomal associ-
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ated mRNA levels are coupled (Z-scores >1.96) or uncoupled (Z-scores < –1.96). With

respect to the Fisher transformation of the PCC values by Z-transformation, normal dis-

tribution of PCC correlation values was ensured. This allows to limit effects that arise

when applying the proposed approach on datasets with varying numbers of observations,

here corresponding to promoters. Characterization of the biological processes of the genes

identified in each step of the analysis was done by gene set enrichment analysis. Hyper-

geometric distribution was used to test for the probability that a specific set of genes

annotates with the same gene ontology term. Finally, where applicable, derived p-values

are adjusted to account for the testing of multiple hypotheses.

Although CCA has been used in the integration of large scale microarray datasets,

Chapter 5 focuses on establishing a novel analysis pipeline which takes into account the

cell-type specificity across the system-levels. A more detailed discussion on the need for

a new analysis pipeline for this chapter instead of the CCA is emphasized in Section

5.4 of this thesis. Moreover, the use of EC scores elucidates the “expression content” of

the rewired genes, successfully illustrating the co-expression/co-translation relationships

between gene neighborhoods across the system-levels.

Synopsis

Case
study

Plant
species

Number of
observations
(n)

Number of
variables (p)

Number of
variables (q)

1 Cotton 32 11 5
2 Maize 47 1090 274
3 Arabidopsis 22810 4 4

8 8

Table 6.1: An overview of the heterogeneous datasets used in this thesis. The
complexity of the datasets in terms of the number of observations and variables is il-
lustrated here. In case study 1, the observations correspond to the number of cotton
lines whereas the variables ‘p’ and ‘q’ correspond to the monoclonal antibodies and fiber
characteristics, respectively. In case study 2, the observations correspond to the com-
mon Raman and infrared spectra whereas the variables ‘p’ and ‘q’ corresponds to the
wavenumbers (Raman) and wavenumbers (Infrared), respectively. The observations were
obtained by mapping the common pixels between the Raman and infrared. In case study
3, the observations correspond to the number of genes whereas the variables ‘p’ and ‘q’
correspond to the profiled transcriptome and translatome cell-types, respectively. The ‘p’
and ‘q’ variables are provided for both the identical and common promoters.
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As a summary, Table 6.1 illustrates the complexity and heterogeneity of the datasets

used in this thesis. Clearly, each case study has different data dimensions and require

appropriate statistical methods to investigate particular biological questions. The use of

CCA in case study 1 illustrates the relationship between the two datasets in a descriptive

manner. Moreover, use of CCA is appropriate for the ‘n > p+q’ condition of the datasets.

For a predictive approach to deal with the two datasets, sPLS was more suitable as it

takes into account variable selection and model prediction of the fiber characteristics.

In case study 2, ‘n < p + q’ condition of the available datasets makes it appropriate

to use MCIA instead of CCA. Case study 2 is a typical example of high dimensional

data analysis, where the number of variables exceeds the observations. In such cases,

CCA does not provide sparse linear solutions and may lack biological plausibility and

interpretability. Thus, MCIA was used in order to extract both unique and common

information between the two datasets. In addition, the results from MCIA were also

compared to the results from principal component analysis. When compared to the other

case studies, the data from Arabidopsis was complex and had 22000 genes. The biological

question under investigation in this chapter focuses to identify the correlation of gene

expression patterns between two different system-levels and also analyze cell-type specific

expression patterns. Although CCA is a descriptive method which determines linear

combinations of all variables of each type with maximal correlation between the two

linear combinations, it is not suited in this particular context as discussed in Section 5.4

of this thesis. Hence, the novel analysis pipeline in Chapter 5 takes into account the

expression conservation of the genes and identifies co-regulation of gene expression across

system levels. Moreover, the established pipeline classifies the genes into coupled and

uncoupled category across the transcriptome and translatome. Overall, it is justified that

each of the methods employed in the different case-studies helps to answer different kinds

of biological questions. Table 2.1 highlights some of the other methods which could be

applied in two or more than two data block setting. In short, the essential steps to be

highlighted in integrative data analysis are five-fold: (1) the centrality of the biological

question; (2) predictive or descriptive nature of the statistical analysis; (3) choosing the

right method based on the question under study; (4) appropriate pre-processing of the

datasets; and (5) ensuring robustness of the analysis using suitable hypothesis testing and

bootstrapping procedures.
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Future perspectives

The systematic integrative analysis of heterogeneous data envisages the relationship be-

tween and within different biological layers for extensive knowledge discovery. The main

findings presented in Chapter 3, 4, and 5 implies that integrative analysis is insightful

than analysis of individual datasets and how inter-relationships between different datasets

can be exploited to understand cell wall related biological questions in crop species like

Cotton, Maize and Arabidopsis. Application of the outlined approaches to situations

involving more than two data tables including times series datasets could help to cap-

ture the dynamics of the response of the biological system. However, cell wall related

mechanisms are very complex and vary among the same plant species, different tissues or

even the same tissue at different developmental stages. In cross-species translation type

of studies, it is important to highlight that the role of the cell wall components need to

be tested in diverse genotypes, species, and specific tissues.
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Pilling, E. and Höfte, H. (2003). Feedback from the wall. Current opinion in plant biology,

6:611–616.

Popper, Z. A. (2008). Evolution and diversity of green plant cell walls. Current opinion

in plant biology, 11:286–92.

Purbasha, S., Elena, B., and Manfred, A. (2009). Plant cell walls throughout evolution:

towards a molecular understanding of their design principles. Journal of experimental

botany, 60:3615–3635.

Qin, L.-X., Rao, Y., Li, L., Huang, J.-F., Xu, W.-L., and Li, X.-B. (2013). Cotton GalT1

encoding a putative glycosyltransferase is involved in regulation of cell wall pectin

biosynthesis during plant development. PloS one, 8:e59115.

Quackenbush, J. (2002). Microarray data normalization and transformation. Nature

genetics, 32:496–501.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rajasundaram, D., Runavot, J.-L., Guo, X., Willats, W. G. T., Meulewaeter, F., and

Selbig, J. (2014a). Understanding the Relationship between Cotton Fiber Properties

and Non-Cellulosic Cell Wall Polysaccharides. PloS one, 9:e112168.

Rajasundaram, D., Selbig, J., Persson, S., and Klie, S. (2014b). Co-ordination and di-

vergence of cell-specific transcription and translation of genes in arabidopsis root cells.

Annals of botany, 114:1109–1123.

Rambani, A., Page, T., and Udall, J. (2014). Polyploidy and the petal transcriptome of

Gossypium. BMC plant biology, 14:3.



BIBLIOGRAPHY 147

Ratner, D. M. and Seeberger, P. H. (2007). Carbohydrate microarrays as tools in HIV

glycobiology. Current pharmaceutical design, 13:173–183.

Reiter, W. D. (2002). Biosynthesis and properties of the plant cell wall. Current opinion

in plant biology, 5:536–42.

Rencher, A. C. (2002). Methods of Multivariate Analysis. John Wiley & Sons, Inc.,

NewYork, NY, USA.

Rivals, I., Personnaz, L., Taing, L., and Potier, M.-C. (2007). Enrichment or depletion of

a GO category within a class of genes: which test? Bioinformatics (Oxford, England),

23:401–407.

Roberts, K. (2001). How the cell wall acquired a cellular context. Plant physiology,

125:127–30.

Rogers, E. D., Jackson, T., Moussaieff, A., Aharoni, A., and Benfey, P. N. (2012). Cell

type-specific transcriptional profiling: implications for metabolite profiling. The Plant

journal : for cell and molecular biology, 70:5–17.

Roy, S. (1939). p-statistics or some generalizations in analysis of variance appropriate to

multivariate problems. Sankhya, 4:381–396.

Ruan, Y.-L., Xu, S.-M., White, R., and Furbank, R. T. (2004). Genotypic and devel-

opmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation

mediated by callose turnover. Plant physiology, 136:4104–4113.

Ruprecht, C. and Persson, S. (2012). Co-expression of cell-wall related genes: new tools

and insights. Frontiers in plant science, 3:83.

Sabatier, R. and Vivien, M. (2008). A new linear method for analyzing four-way multi-

block tables: STATIS-4. Journal of Chemometrics, 22:399–407.

Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P.,

Leyser, O., Bechtold, N., Weisbeek, P., and Scheres, B. (1999). An auxin-dependent

distal organizer of pattern and polarity in the Arabidopsis root. Cell, 99:463–472.

Sadava, D., Walker, F., and Chrispeels, M. J. (1973). Hydroxyproline-rich cell wall protein

(extensin): Biosynthesis and accumulation in growing pea epicotyls. Developmental

Biology, 30:42–48.



148 BIBLIOGRAPHY

Salnikov, V. V., Grimson, M. J., Seagull, R. W., and Haigler, C. H. (2003). Localization

of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers.

Protoplasma, 221:175–184.

Sánchez, A., Fernández-Real, J., Vegas, E., Carmona, F., Amar, J., Burcelin, R., Serino,

M., Tinahones, F., de Villa, M., Minrro, A., and Reverter, F. (2012). Multivariate

methods for the integration and visualization of omics data. In Freitas, A. and Navarro,

A., editors, Bioinformatics for Personalized Medicine. Springer publishers, Berlin, Ger-

many.

Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Perez-

Melis, A., Bruedigam, C., Kopka, J., Willmitzer, L., Zamir, D., and Fernie, A. R. (2006).

Comprehensive metabolic profiling and phenotyping of interspecific introgression lines

for tomato improvement. Nature biotechnology, 24:447–454.

Schena, M. (1996). Genome analysis with gene expression microarrays. BioEssays : news

and reviews in molecular, cellular and developmental biology, 18:427–431.

Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995). Quantitative monitoring

of gene expression patterns with a complementary DNA microarray. Science, 270:467–

470.

Schneider, A., Hommel, G., and Blettner, M. (2010). Linear regression analysis: part 14

of a series on evaluation of scientific publications. Deutsches Ärzteblatt international,
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Stéphanie, B. and Mireille, C. (2014). Multiblock modeling for complex preference study.

Application to European preferences for smoked salmon. Food Quality and Preference,

32:56–64.

Stigler, S. M. (1989). Francis Galton’s Account of the Invention of Correlation. Statistical

Science, 4:73–79.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,

M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P.

(2005). Gene set enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proceedings of the National Academy of Sciences of

the United States of America, 102:15545–15550.

Sun, L., Simmons, B. A., and Singh, S. (2011). Understanding tissue specific compo-

sitions of bioenergy feedstocks through hyperspectral Raman imaging. Biotechnology

and bioengineering, 108:286–95.

Sun, R. C., Tomkinson, J., Zhu, W., and Wang, S. Q. (2000). Delignification of maize

stems by peroxymonosulfuric acid, peroxyformic acid, peracetic acid, and hydrogen



BIBLIOGRAPHY 151

peroxide, 1. Physicochemical and structural characterization of the solubilized lignins.

Journal of Agricultural and Food Chemistry, 48:1253–1262.

Swanson-Wagner, R., Briskine, R., Schaefer, R., Hufford, M. B., Ross-Ibarra, J., Myers,

C. L., Tiffin, P., and Springer, N. M. (2012). Reshaping of the maize transcriptome by

domestication. Proceedings of the National Academy of Sciences of the United States

of America, 109:11878–11883.

Szymanska-Chargot, M. and Zdunek, A. (2013). Use of FT-IR Spectra and PCA to the

Bulk Characterization of Cell Wall Residues of Fruits and Vegetables Along a Fraction

Process . Food biophysics, 8:29–42.

Tabachnick, B. (2013). Using multivariate statistics. Pearson Education, Boston, USA.

Tebaldi, T., Re, A., Viero, G., Pegoretti, I., Passerini, A., Blanzieri, E., and Quattrone,

A. (2012). Widespread uncoupling between transcriptome and translatome variations

after a stimulus in mammalian cells. BMC genomics, 13:220.

Tenenhaus, A., Philippe, C., Guillemot, V., Lê Cao, K., Grill, J., and Frouin, V. (2014).
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Appendix A: Supplementary figures

Figure S1: Raw Raman spectra corresponding to xylem cell-type. Spectral
noise and spikes can be observed.
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Figure S2: Raw Raman spectra corresponding to xylem+phloem cell-types.
Raw spectra was acquired between 3500-0 cm–1. In addition, baseline curves, spectral
noise and spikes can be observed.

Figure S3: Raw Raman spectra corresponding to phloem cell-type. Raw spectra
has the presence of spikes which need to be eliminated.
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Figure S4: Raw Raman spectra corresponding to sclerenchyma+parenchyma
border cell-types. Baseline curves can be observed and are slowly varying curves that
are considered as linear or nonlinear addition to the spectra. In addition, spikes need to
be eliminated for better resolution of the spectra.

Figure S5: Raw Raman spectra corresponding to parenchyma border cell-
type. Spikes can be observed in the region between 2000-2500 cm–1.
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Figure S6: Raw Raman spectra corresponding to sclerenchyma cell-type. The
raw spectra has the presence of spectral noise and baseline curves.

Figure S7: Pre-processed Raman spectra corresponding to xylem cell-type.
Steps involved in pre-processing of the Raman spectra are detailed in Section 4.2.3.



160 Appendix A: Supplementary figures

Figure S8: Pre-processed Raman spectra corresponding to xylem+phloem
cell-types. Steps involved in pre-processing of the Raman spectra are detailed in Section
4.2.3.

Figure S9: Pre-processed Raman spectra corresponding to phloem cell-type.
Steps involved in pre-processing of the Raman spectra are detailed in Section 4.2.3.
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Figure S10: Pre-processed Raman spectra corresponding to scle-
renchyma+parenchyma border cell-types. Steps involved in pre-processing of the
Raman spectra are detailed in Section 4.2.3.

Figure S11: Pre-processed Raman spectra corresponding to parenchyma bor-
der cell-type. Steps involved in pre-processing of the Raman spectra are detailed in
Section 4.2.3.
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Figure S12: Pre-processed Raman spectra corresponding to sclerenchyma cell-
type. Steps involved in pre-processing of the Raman spectra are detailed in Section 4.2.3.

Figure S13: Pre-processed infrared spectra pertaining to different cell-types.
The profiled cell-types are the same as that of the Raman experiment. Steps involved in
pre-processing of the infrared spectra are detailed in Section 4.2.4.
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Appendix B: Supplementary tables

Sample name USDA PI number Species
30834 (A 1660) PI 629988 G. arboreum
JFW10 PI 629811 G. arboreum
Selection of SHIH PI 529781 G. arboreum
China 10 PI 433738 G.barbadense
PIMAS 7 PI 560140 G.barbadense
Tidewater PI 528642 G.barbadense
Krasnyj PI 529661 G.herbaceum
Rustam 65 PI 529699 G.herbaceum
Acala Red Okra PI 528608 G.hirsutum
Acala SJ1 PI 529540 G.hirsutum
AK DJURA HIGG BROWN PI 529165 G.hirsutum
Brown lint clean seeds PI 528476 G.hirsutum
BRYMER BROWN PI 528452 G.hirsutum
FM966 PI 619097 G.hirsutum
GA161 PI 612959 G.hirsutum
Germains Acala (GC-352) PI 601180 G.hirsutum
Germains Acala (GC-362) PI 601142 G.hirsutum
GREEN LINT 4 PI 528787 G.hirsutum
Half and half PI 528511 G.hirsutum
IV4F-91057 PI 566946 G.hirsutum
Lankart 57 PI 528822 G.hirsutum
Malla Guza PI 529659 G.hirsutum
Multiple marker PI 528950 G.hirsutum
okra leaf PI 552560 G.hirsutum
PD93002 PI 573282 G.hirsutum
PD93003 PI573283 G.hirsutum
Shafter Brown PI 528451 G.hirsutum
TAM 90c-19s PI 614954 G.hirsutum
TEX 1000 PI 529888 G.hirsutum
Texas Rust Brown PI 528453 G.hirsutum
Ting-Tao tzu ching chung mien PI 451747 G.hirsutum
TTU 202-1107B PI 613162 G.hirsutum

Table S1: Fiber characteristics/phenotype measurements for the 32 cotton
lines used in the study. The plant introduction number (PI number) from the USDA
national plant germplasm is included for each cotton line.
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Raman Band

intensity

(cm–1)

Compound Reference

896 Arabinoxylan Himmelsbach and Akin. (1998)

903 Cellulose Gierlinger and Schwanninger (2006)

970 Cellulose Himmelsbach and Akin. (1998)

997 Cellulose Himmelsbach and Akin. (1998), Gierlinger

and Schwanninger (2006)

1045 Lignin Gierlinger and Schwanninger (2006)

1093 Cellulose, arabinoxylan Himmelsbach and Akin. (1998)

1096 Cellulose, Xylan, Gluco-

mannan

Gierlinger and Schwanninger (2006)

1122 Cellulose, Xylan, Gluco-

mannan

Gierlinger and Schwanninger (2006)

1131 Cellulose, arabinoxylan Barron et al. (2006)

1143 Lignin Gierlinger and Schwanninger (2006)

1150 Cellulose Gierlinger and Schwanninger (2006)

1152 Cellulose, arabinoxylan Barron et al. (2006)

1176 Ferulic acid Himmelsbach and Akin. (1998)

1219 Ferulic acid Himmelsbach and Akin. (1998)

1265 Ferulic acid Himmelsbach and Akin. (1998)

1267 arabinoxylan Barron et al. (2006)

1274 Lignin Gierlinger and Schwanninger (2006)

1287 Ferulic acid Himmelsbach and Akin. (1998)

1291 Cellulose Himmelsbach and Akin. (1998)

1333 Cellulose Gierlinger and Schwanninger (2006)

1337 Cellulose Himmelsbach and Akin. (1998)

1376 Cellulose Gierlinger and Schwanninger (2006)

1378 Cellulose Himmelsbach and Akin. (1998)

1408 Cellulose Himmelsbach and Akin. (1998)

1423 Lignin Gierlinger and Schwanninger (2006)

1453 Ferulic acid lignin G Himmelsbach and Akin. (1998)

1462 Arabinoxylan, Lignin

and Cellulose

Gierlinger and Schwanninger (2006), Barron

et al. (2006)

1465 Cellulose Himmelsbach and Akin. (1998)
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1508 Lignin Gierlinger and Schwanninger (2006)

1600-1631 Lignin Himmelsbach and Akin. (1998)

1599,1630 Lignin Himmelsbach and Akin. (1998)

1641-1612 p-coumaric acid Himmelsbach and Akin. (1998)

1599-1658 Lignin Himmelsbach and Akin. (1998)

2897 Cellulose Gierlinger and Schwanninger (2006)

2945 Lignin, Glucomannan,

Cellulose

Gierlinger and Schwanninger (2006)

Table S2: Raman shift (cm–1) and assignment of bands in the Raman spectra
of cell wall polysaccharides based on the literature. This tabulated information
was used to identify the peaks in the spectra acquired from different cell-types of the
maize stem cross-section.

Infrared Band

intensity

(cm–1)

Compound Reference

807 Arabinan Kačuráková et al. (2000)

808 Arabinogalactan Kačuráková et al. (2000)

810 Arabinogalactorhamnoglycan, Lignin Kačuráková et al. (2000)

813 Galactoglucomannan Kačuráková et al. (2000)

814 Glucomannan Kačuráková et al. (2000)

834 Pectin Kačuráková et al. (2000)

837 Arabinogalactorhamnoglycan, Lignin Kačuráková et al. (2000)

840 Glucan, Lignin Kačuráková et al. (2000)

842 Arabinogalactan Kačuráková et al. (2000)

850 Starch Kačuráková et al. (2000)

868 Arabinogalactan Kačuráková et al. (2000)

879 Arabinogalactan (Type II) Kačuráková et al. (2000)

880 Arabinogalactan Kačuráková et al. (2000)

881 Arabinoglucoronoxylan+

Galactoglucomannan

Kačuráková et al. (2000)

883 Galactan Kačuráková et al. (2000)

891 Pectin Kačuráková et al. (2000)

892 Arabinogalactan (Type II) Kačuráková et al. (2000)

893 Galactan Kačuráková et al. (2000)

895 Arabinan Kačuráková et al. (2000)
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897 Xyloglucan, Arabinogalactan,

Galactoglucomannan GX

Kačuráková et al. (2000)

898 Cellulose, Glucomannan,

Arabinoglucoronoxylan+Galactoglucomannan

Kačuráková et al. (2000)

902 Rhamnogalacuronan Kačuráková et al. (2000)

914 Arabinogalactorhamnoglycan Kačuráková et al. (2000)

918 Arabinan Kačuráková et al. (2000)

930 Cellulose Kačuráková et al. (2000)

931 Starch Kačuráková et al. (2000)

934 Galactoglucomannan Kačuráková et al. (2000)

941 Glucomannan Kačuráková et al. (2000)

944 Xyloglucan Kačuráková et al. (2002)

945 Xyloglucan Kačuráková et al. (2000)

951 Rhamnogalacuronan Kačuráková et al. (2000)

953 Pectin Kačuráková et al. (2000)

960 Galactoglucomannan Kačuráková et al. (2000)

972 Pectin Kačuráková et al. (2000)

985 Arabinogalactan GX Kačuráková et al. (2000)

989 Rhamnogalacuronan Kačuráková et al. (2000)

1004 Pectin Kačuráková et al. (2000)

1017 Pectin Kačuráková et al. (2000)

1022 Pectin Kačuráková et al. (2000)

1026 Glucan, Starch Kačuráková et al. (2000)

1030 Xylane Kačuráková et al. (1999)

1033 Cellulose Kačuráková et al. (2000)

1038 Galactan Kačuráková et al. (2000)

1039 Arabinan Kačuráková et al. (2000)

1040 Arabinogalactan (Type II) Kačuráková et al. (2000)

1041 Xyloglucan, Glucan Kačuráková et al. (2000)

1042 Xylane Xiao et al. (2001)

1043 Rhamnogalacuronan,

Arabinogalactan

Kačuráková et al. (2000)

1045 Arabinogalactan, Xylane Kačuráková et al. (2000)

1047 Pectin GX Kačuráková et al. (2000)

1049 Arabinogalactorhamnoglycan Kačuráková et al. (2000)

1051 Pectin Kačuráková et al. (2000)
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1059 Cellulose Kačuráková et al. (2000)

1061 Cellulose Kačuráková et al. (2000)

1064 Glucomannan,

Galactoglucomannan

Kačuráková et al. (2000)

1065 Xylane Kačuráková et al. (1999)

1072 Galactan Kačuráková et al. (2000)

1074 Arabinogalactan Kačuráková et al. (2000)

1076 Glucan Kačuráková et al. (2000)

1082 Pectin, Starch Kačuráková et al. (2000)

1092 Glucomannan Kačuráková et al. (2000)

1097 Arabinan Kačuráková et al. (2000)

1100 Pectin Kačuráková et al. (2000)

1104 Glucan Kačuráková et al. (2000)

1109 Arabinoglucoronoxylan+

Galactoglucomannan

Kačuráková et al. (2000)

1110 Starch Kačuráková et al. (2000)

1118 Xyloglucan Kačuráková et al. (2000)

1120 Cellulose Kačuráková et al. (2000)

1134 Galactan Kačuráková et al. (2000)

1139 Arabinogalactan Kačuráková et al. (2000)

1122 Rhamnogalacuronan Kačuráková et al. (2000)

1141 Arabinan Kačuráková et al. (2000)

1144 Pectin Kačuráková et al. (2000)

1149 Galactoglucomannan Kačuráková et al. (2000)

1150 Rhamnogalacuronan, Glucomannan Kačuráková et al. (2000)

1152 Pectin Kačuráková et al. (2000)

1153 Xyloglucan Kačuráková et al. (2000)

1155 Galactan, Starch Kačuráková et al. (2000)

1156 Arabinogalactan (Type II) Kačuráková et al. (2000)

1161 Arabinoglucoronoxylan+

Galactoglucomannan

Kačuráková et al. (2000)

1162 Cellulose Kačuráková et al. (2000)

1341 Lignin Sun et al. (2000)

1378 Ferulic acid Kačuráková et al. (1999)

1387 Lignin Sun et al. (2000)

1420 Lignin Sun et al. (2000)
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1426 Lignin Xiao et al. (2001)

1466 Lignin Xiao et al. (2001)

1467 Lignin Sun et al. (2000)

1638 Lignin Xiao et al. (2001)

1665 Lignin Kačuráková et al. (2002)

Table S3: Assignment of wavenumbers corresponding to the infrared band
intensity. This tabulated information was used to identify the peaks in the spectra
acquired from different cell-types of the maize stem cross-section.

Promoter Targeting cell-type Dataset Dataset source

AGL 42 Quiescent center Transcriptome Nawy et al. (2005)

PET 111 Columella tier 2 Transcriptome Nawy et al. (2005)

LRC Lateral root cap Transcriptome Birnbaum et al. (2003)

GL2 Non-hair cells Transcriptome Birnbaum et al. (2003)

J0571 Ground endodermis

+cortex+quiescent center

Transcriptome Birnbaum et al. (2003)

S17 Phloem pole

pericycyle

Transcriptome Brady et al. (2007)

S32 Protophloem and

Metaphloem

Transcriptome Brady et al. (2007)

COBL9 Isolated hair cells Transcriptome Brady et al. (2007)

JO121 Xylem pole pericycle Transcriptome Brady et al. (2007)

S4 Isolated Protoxylem

and Metaphloem

Transcriptome Brady et al. (2007)

WOL Stele Transcriptome Birnbaum et al. (2003)

SCR Quiescent center Transcriptome Birnbaum et al. (2003)

SUC2 Phloem companion

cells

Transcriptome Brady et al. (2007)

J2501 Pericycle, protoxylem,

metaxylem

Transcriptome Brady et al. (2007)

RM1000 Lateral root primordia ini-

tials

Transcriptome Brady et al. (2007)

J2661 Mature pericycle Transcriptome Levesque et al. (2006)

APL Phloem sieve cells and com-

panion cells

Transcriptome Lee et al. (2006)

CORTEX Cortex Transcriptome Lee et al. (2006)
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S18 Differentiating xylem Transcriptome Lee et al. (2006)

35S Root proliferating

cells

Translatome Mustroph et al. (2009)

SCR Root endodermis and Qui-

escent center

Translatome Mustroph et al. (2009)

SHR Root vasculature Translatome Mustroph et al. (2009)

WOL Root vasculature Translatome Mustroph et al. (2009)

GL2 Root atrichoblast epidermis Translatome Mustroph et al. (2009)

SULTR2 Root phloem companion

cells

Translatome Mustroph et al. (2009)

CO2 Root cortex

meristamatic zone

Translatome Mustroph et al. (2009)

PEP Root Cortex elongation

and maturation zone.

Translatome Mustroph et al. (2009)

RPL11C Root proliferating cells Translatome Mustroph et al. (2009)

SUC2 Sucrose transporter Translatome Mustroph et al. (2009)

Table S4: List of available cell-types and their corresponding promoters in the
transcriptome and translatome dataset. Originally, there were 19 and 10 cell-types
profiled across the transcriptome and translatome, respectively.

Coupled/

uncoupled

GO-term Term description No. of

genes

p-value

C GO:0000041 transition metal ion transport 9 3.26E-02

C GO:0000278 mitotic cell cycle 4 1.36E-02

C GO:0006184 GTP catabolic process 4 2.73E-02

C GO:0006355 regulation of transcription,

DNA-dependent

77 3.31E-02

C GO:0006468 protein phosphorylation 51 1.71E-02

C GO:0006633 fatty acid biosynthetic process 8 4.04E-02

C GO:0006661 phosphatidylinositol

biosynthetic process

8 2.35E-02

C GO:0006807 nitrogen compound metabolic

process

4 1.75E-02

C GO:0006857 oligopeptide transport 10 8.20E-03

C GO:0006970 response to osmotic stress 10 2.16E-02
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C GO:0006995 cellular response to nitrogen

starvation

3 4.40E-02

C GO:0007169 transmembrane receptor

protein tyrosine kinase signal-

ing pathway

10 2.51E-02

C GO:0008610 lipid biosynthetic process 4 1.36E-02

C GO:0009416 response to light stimulus 11 4.93E-02

C GO:0009553 embryo sac development 5 3.15E-02

C GO:0009611 response to wounding 20 1.92E-02

C GO:0009617 response to bacterium 12 2.08E-02

C GO:0009741 response to

brassinosteroid stimulus

7 2.23E-02

C GO:0009834 secondary cell wall biogenesis 5 4.00E-03

C GO:0009862 systemic acquired resistance,

salicylic acid mediated signal-

ing

pathway

17 2.35E-02

C GO:0009886 post-embryonic morphogenesis 3 3.09E-02

C GO:0009908 flower development 8 1.62E-02

C GO:0009939 positive regulation of

gibberellic acid mediated sig-

naling pathway

3 3.26E-04

C GO:0010014 meristem initiation 10 2.51E-02

C GO:0010073 meristem maintenance 6 3.97E-02

C GO:0010089 xylem development 9 3.99E-03

C GO:0010150 leaf senescence 7 6.88E-03

C GO:0010162 seed dormancy process 11 2.68E-02

C GO:0010167 response to nitrate 15 9.78E-03

C GO:0010260 organ senescence 4 1.75E-02

C GO:0010440 stomatal lineage progression 5 4.87E-02

C GO:0010583 response to cyclopentenone 12 1.30E-02

C GO:0015706 nitrate transport 15 1.57E-02

C GO:0016569 covalent chromatin

modification

3 2.02E-02
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C GO:0042218 1-aminocyclopropane-1-

carboxylate biosynthetic pro-

cess

3 3.09E-02

C GO:0042546 cell wall biogenesis 7 1.06E-02

C GO:0043069 negative regulation of

programmed cell death

13 1.28E-02

C GO:0045454 cell redox homeostasis 12 3.69E-03

C GO:0046855 inositol phosphate

dephosphorylation

3 3.94E-02

U GO:0006486 protein glycosylation 7 8.04E-03

U GO:0007010 cytoskeleton organization 5 4.61E-02

U GO:0009607 response to biotic stimulus 4 1.63E-03

U GO:0009860 pollen tube growth 8 4.26E-02

U GO:0009886 post-embryonic morphogenesis 3 3.41E-03

U GO:0016579 protein deubiquitination 3 4.22E-02

U GO:0048364 root development 7 3.89E-03

U GO:0048366 leaf development 5 3.95E-02

U GO:0048440 carpel development 4 3.43E-02

U GO:0048507 meristem development 3 2.41E-02

U GO:0048653 anther development 4 1.20E-02

U GO:0048825 cotyledon development 5 6.47E-03

U GO:0051301 cell division 5 1.22E-02

Table S5: Enriched GO-terms of coupled/uncoupled gene expression patters
on translatome and transcriptome for the identical promoter data. Here, ‘C’
refers to those genes with coupled total and polysome-associated mRNA levels. ‘U’ refers
to uncoupled genes across the transcriptome and the translatome.

Coupled/

uncoupled

GO-term Term description No.

of genes

p-value

C GO:0000023 maltose metabolic process 10 2.55E-02

C GO:0000041 transition metal ion transport 9 1.53E-02

C GO:0000956 nuclear-transcribed

mRNA catabolic process

12 1.09E-04

C GO:0006355 regulation of

transcription, DNA-dependent

68 3.73E-02

C GO:0006399 tRNA metabolic process 4 2.61E-02
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C GO:0006468 protein phosphorylation 45 2.13E-02

C GO:0006817 phosphate ion transport 3 3.14E-02

C GO:0006914 Autophagy 5 4.99E-02

C GO:0007043 cell-cell junction assembly 3 2.21E-04

C GO:0007165 signal transduction 28 1.26E-02

C GO:0007186 G-protein coupled receptor sig-

naling pathway

3 4.27E-03

C GO:0007188 adenylate cyclase-modulating

G-protein coupled receptor

sign. Pathway

3 8.98E-05

C GO:0007346 regulation of mitotic cell cycle 3 4.71E-02

C GO:0007389 pattern specification process 5 3.21E-02

C GO:0008219 cell death 5 3.44E-02

C GO:0009416 response to light stimulus 11 2.17E-02

C GO:0009630 Gravitropism 8 4.95E-02

C GO:0009638 Phototropism 3 5.45E-03

C GO:0009733 response to auxin stimulus 18 4.21E-02

C GO:0009789 positive regulation of abscisic

acid mediated signaling path-

way

3 1.42E-02

C GO:0009886 post-embryonic morphogenesis 3 2.18E-02

C GO:0009902 chloroplast relocation 9 5.57E-03

C GO:0010027 thylakoid membrane organiza-

tion

13 1.91E-02

C GO:0010051 xylem and phloem pattern for-

mation

7 5.76E-03

C GO:0010119 regulation of stomatal move-

ment

4 1.96E-02

C GO:0010413 glucuronoxylan metabolic pro-

cess

16 4.81E-04

C GO:0016114 terpenoid biosynthetic process 4 3.66E-02

C GO:0016558 protein import into peroxisome

matrix

7 3.55E-02

C GO:0016569 covalent chromatin modifica-

tion

3 1.42E-02

C GO:0019252 starch biosynthetic process 14 4.14E-03
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C GO:0032957 inositol trisphosphate

metabolic process

3 1.91E-02

C GO:0034660 ncRNA metabolic process 9 1.26E-03

C GO:0042545 cell wall modification 11 1.81E-03

C GO:0045492 xylan biosynthetic process 16 4.81E-04

C GO:0046777 protein autophosphorylation 9 3.70E-02

C GO:0046855 inositol phosphate dephospho-

rylation

3 2.80E-02

C GO:0048439 flower morphogenesis 6 2.27E-02

C GO:0048519 negative regulation of biologi-

cal process

5 1.34E-02

C GO:0048527 lateral root development 7 1.15E-02

C GO:0048574 long-day

photoperiodism, flowering

3 1.20E-02

C GO:2000067 regulation of root

morphogenesis

3 8.98E-05

U GO:0000902 cell morphogenesis 4 6.85E-03

U GO:0006486 protein glycosylation 6 8.38E-03

U GO:0006816 calcium ion transport 6 3.71E-03

U GO:0006863 purine nucleobase transport 4 4.41E-02

U GO:0006972 hyperosmotic response 4 3.14E-02

U GO:0009734 auxin mediated signaling path-

way

3 8.08E-03

U GO:0010584 pollen exine formation 3 2.70E-02

U GO:0015986 ATP synthesis coupled proton

transport

3 2.82E-03

U GO:0016049 cell growth 7 6.60E-04

U GO:0030243 cellulose metabolic process 3 6.31E-03

U GO:0044237 cellular metabolic process 3 3.83E-02

U GO:0048868 pollen tube development 3 2.34E-02

U GO:0080022 primary root development 4 3.32E-05

Table S6: Enriched GO-terms of coupled/uncoupled gene expression patters
on translatome and transcriptome for the common promoters. Here, ‘C’ refers
to those genes with coupled total and polysome-associated mRNA levels. ‘U’ refers to
uncoupled genes across the transcriptome and the translatome.
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AEC GO-term Term description No. of

genes

p-value

+ GO:0006355 regulation of transcription,

DNA-dependent

12 4.47E-03

+ GO:0030968 endoplasmic reticulum

unfolded protein response

3 1.52E-02

+ GO:0042546 cell wall biogenesis 3 8.20E-04

+ GO:0055085 transmembrane transport 4 4.53E-02

+ GO:0071555 cell wall organization 3 6.27E-03

- GO:0000338 protein deneddylation 5 7.53E-03

- GO:0000956 nuclear-transcribed

mRNA catabolic process

57 1.07E-03

- GO:0002679 respiratory burst involved

in defense response

79 8.54E-07

- GO:0006091 generation of

precursor metabolites and en-

ergy

64 1.45E-21

- GO:0006120 mitochondrial electron trans-

port, NADH to ubiquinone

5 3.22E-02

- GO:0006353 DNA-dependent transcription,

termination

3 4.03E-02

- GO:0006354 DNA-dependent transcription,

elongation

91 2.25E-12

- GO:0006511 ubiquitin-dependent protein

catabolic process

146 3.62E-03

- GO:0006569 tryptophan catabolic process 47 2.71E-03

- GO:0006826 iron ion transport 62 2.08E-02

- GO:0006863 purine nucleobase transport 87 9.65E-16

- GO:0006873 cellular ion homeostasis 3 4.03E-02

- GO:0006882 cellular zinc ion homeostasis 11 4.14E-02

- GO:0006952 defense response 169 1.46E-02

- GO:0006974 response to DNA damage stim-

ulus

9 3.42E-02

- GO:0007243 intracellular protein kinase

cascade

10 3.82E-02
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- GO:0007275 multicellular organismal

development

67 1.89E-02

- GO:0007346 regulation of mitotic cell cycle 18 1.37E-02

- GO:0008272 sulfate transport 10 1.97E-02

- GO:0008643 carbohydrate transport 6 4.34E-02

- GO:0009150 purine ribonucleotide

metabolic process

3 4.03E-02

- GO:0009414 response to water deprivation 147 1.06E-02

- GO:0009607 response to biotic stimulus 22 3.73E-03

- GO:0009611 response to wounding 158 9.79E-04

- GO:0009612 response to mechanical

stimulus

38 3.17E-05

- GO:0009615 response to virus 16 4.97E-02

- GO:0009620 response to fungus 59 3.73E-04

- GO:0009646 response to absence of light 16 3.25E-02

- GO:0009653 anatomical structure morpho-

genesis

9 6.16E-03

- GO:0009684 indoleacetic acid biosynthetic

process

59 5.07E-03

- GO:0009693 ethylene biosynthetic process 70 3.19E-05

- GO:0009695 jasmonic acid biosynthetic pro-

cess

70 4.54E-03

- GO:0009753 response to jasmonic acid stim-

ulus

135 3.55E-04

- GO:0009767 photosynthetic electron trans-

port chain

11 2.28E-02

- GO:0009769 photosynthesis, light harvest-

ing in photosystem II

5 7.53E-03

- GO:0009809 lignin biosynthetic process 25 7.65E-03

- GO:0009853 Photorespiration 88 1.86E-04

- GO:0009966 regulation of signal transduc-

tion

7 2.30E-02

- GO:0010038 response to metal ion 7 2.30E-02

- GO:0010043 response to zinc ion 30 2.59E-02

- GO:0010106 cellular response to iron ion

starvation

58 4.14E-02
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- GO:0010167 response to nitrate 104 1.75E-03

- GO:0010200 response to chitin 232 1.39E-08

- GO:0010254 nectary development 3 4.03E-02

- GO:0010262 somatic embryogenesis 5 3.22E-02

- GO:0010286 heat acclimation 43 3.67E-03

- GO:0010289 homogalacturonan

biosynthetic process

3 4.03E-02

- GO:0010337 regulation of salicylic

acid metabolic process

6 4.34E-02

- GO:0010387 signalosome assembly 5 3.22E-02

- GO:0010390 histone monoubiquitination 4 1.74E-02

- GO:0010434 bract formation 3 4.03E-02

- GO:0010438 cellular response to sulfur star-

vation

4 1.74E-02

- GO:0010507 negative regulation of au-

tophagy

3 4.03E-02

- GO:0010599 production of lsiRNA involved

in RNA interference

3 4.03E-02

- GO:0015675 nickel cation transport 3 4.03E-02

- GO:0015706 nitrate transport 111 7.94E-04

- GO:0015866 ADP transport 3 4.03E-02

- GO:0015979 Photosynthesis 140 3.08E-12

- GO:0015986 ATP synthesis coupled

proton transport

17 7.13E-03

- GO:0015991 ATP hydrolysis coupled

proton transport

16 3.25E-02

- GO:0015992 proton transport 12 4.40E-02

- GO:0016106 sesquiterpenoid biosynthetic

process

3 4.03E-02

- GO:0016441 posttranscriptional gene si-

lencing

7 2.30E-02

- GO:0018119 peptidyl-cysteine S-

nitrosylation

11 1.12E-02

- GO:0019684 photosynthesis, light reaction 80 5.03E-03

- GO:0019761 glucosinolate biosynthetic

process

88 1.73E-03
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- GO:0030010 establishment of cell polarity 3 4.03E-02

- GO:0030029 actin filament-based process 5 7.53E-03

- GO:0030048 actin filament-based

movement

43 2.95E-02

- GO:0030308 negative regulation of cell

growth

4 1.74E-02

- GO:0031930 mitochondria-nucleus

signaling pathway

4 1.74E-02

- GO:0034605 cellular response to heat 9 3.42E-02

- GO:0034755 iron ion transmembrane trans-

port

4 1.74E-02

- GO:0035556 intracellular signal

transduction

102 1.44E-03

- GO:0042218 1-aminocyclopropane-1-

carboxylate biosynthetic pro-

cess

15 5.33E-03

- GO:0042325 regulation of phosphorylation 3 4.03E-02

- GO:0042742 defense response to bacterium 159 2.63E-02

- GO:0042773 ATP synthesis coupled elec-

tron transport

8 6.06E-04

- GO:0043069 negative regulation of pro-

grammed

cell death

84 2.31E-02

- GO:0043255 regulation of carbohydrate

biosynthetic process

3 4.03E-02

- GO:0045333 cellular respiration 20 2.99E-04

- GO:0046168 glycerol-3-phosphate catabolic

process

3 4.03E-02

- GO:0046786 viral replication complex for-

mation and maintenance

4 1.74E-02

- GO:0048507 meristem development 24 3.62E-02

- GO:0048510 reg. of timing of trans. from

veg. to reproductive phase

14 1.72E-02

- GO:0048523 negative regulation of cellular

process

6 1.57E-02

- GO:0048830 adventitious root development 4 1.74E-02
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- GO:0048869 cellular developmental process 7 1.40E-03

- GO:0051026 chiasma assembly 8 2.92E-02

- GO:0051090 regulation of sequence-specific

DNA binding TF activity

3 4.03E-02

- GO:0051127 positive regulation of actin nu-

cleation

3 4.03E-02

- GO:0051603 proteolysis involved in cellular

protein catabolic process

17 1.75E-03

- GO:0051788 response to misfolded protein 95 7.25E-03

- GO:0051865 protein autoubiquitination 9 1.71E-03

- GO:0052542 defense response by callose de-

position

26 4.90E-02

- GO:0055062 phosphate ion homeostasis 7 2.30E-02

- GO:0070301 cellular response to hydrogen

peroxide

3 4.03E-02

- GO:0070734 histone H3-K27 methylation 3 4.03E-02

- GO:0071456 cellular response to hypoxia 14 4.76E-02

- GO:0071722 detoxification of arsenic-

containing substance

3 4.03E-02

- GO:0072334 UDP-galactose

transmembrane transport

3 4.03E-02

- GO:0080003 thalianol metabolic process 3 4.03E-02

- GO:0080027 response to herbivore 7 1.40E-03

- GO:0080086 stamen filament development 7 7.59E-03

- GO:0080129 proteasome core complex as-

sembly

72 8.44E-04

Table S7: GSEA of GO-BP terms for AEC genes for identical promoter data.
A ‘+’ indicates a high degree of conservation of co-expression relationships derived by Z-
scores, while a ‘-’ indicates divergences of co-expression relationships on the translatome
and transcriptome.

AEC GO-term Term description No. of

genes

p-value

+ GO:0000271 polysaccharide biosynthetic

process

3 3.26E-04

+ GO:0007165 signal transduction 4 8.68E-03
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+ GO:0007389 pattern specification process 3 8.18E-05

+ GO:0008361 regulation of cell size 3 4.52E-05

+ GO:0009825 multidimensional cell growth 3 2.47E-04

+ GO:0009926 auxin polar transport 3 1.60E-04

+ GO:0009932 cell tip growth 3 2.20E-04

+ GO:0010015 root morphogenesis 3 3.68E-05

+ GO:0010075 regulation of meristem growth 4 9.70E-05

+ GO:0010817 regulation of hormone levels 3 1.40E-04

+ GO:0040007 Growth 3 7.75E-05

+ GO:0043481 anthocyanin accumulation in

tissues in response to UV light

3 6.75E-04

+ GO:0048767 root hair elongation 3 2.45E-03

+ GO:0071555 cell wall organization 3 1.04E-03

- GO:0000041 transition metal ion transport 78 2.12E-03

- GO:0000059 protein import into nucleus,

docking

11 1.51E-02

- GO:0000302 response to reactive oxygen

species

21 2.78E-02

- GO:0000338 protein deneddylation 5 2.45E-02

- GO:0000461 endonucleolytic cleavage 4 4.48E-02

- GO:0002679 respiratory burst involved in

defense response

90 7.35E-06

- GO:0006071 glycerol metabolic process 12 2.52E-02

- GO:0006091 generation of precursor

metabolites and energy

65 1.30E-16

- GO:0006352 DNA-dependent transcription,

initiation

25 2.33E-02

- GO:0006354 DNA-dependent transcription,

elongation

94 3.06E-07

- GO:0006355 regulation of transcription,

DNA-dependent

893 5.33E-03

- GO:0006511 ubiquitin-dependent protein

catabolic process

179 3.31E-03

- GO:0006569 tryptophan catabolic process 54 1.03E-02

- GO:0006612 protein targeting to membrane 217 3.24E-02

- GO:0006629 lipid metabolic process 122 2.97E-02
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- GO:0006636 unsaturated fatty acid biosyn-

thetic process

46 1.55E-02

- GO:0006680 glucosylceramide catabolic

process

4 4.48E-02

- GO:0006814 sodium ion transport 26 1.70E-02

- GO:0006826 iron ion transport 83 2.61E-04

- GO:0006857 oligopeptide transport 76 2.80E-04

- GO:0006863 purine nucleobase transport 96 8.25E-15

- GO:0006886 intracellular protein transport 109 3.21E-02

- GO:0006952 defense response 219 4.33E-04

- GO:0006984 ER-nucleus signaling pathway 11 3.83E-02

- GO:0007243 intracellular protein kinase

cascade

13 5.80E-03

- GO:0008272 sulfate transport 11 3.83E-02

- GO:0009228 thiamine biosynthetic process 7 3.46E-02

- GO:0009395 phospholipid catabolic process 5 2.45E-02

- GO:0009414 response to water deprivation 177 3.24E-02

- GO:0009607 response to biotic stimulus 24 1.85E-02

- GO:0009611 response to wounding 192 1.32E-03

- GO:0009612 response to mechanical stimu-

lus

44 2.13E-05

- GO:0009620 response to fungus 69 7.64E-04

- GO:0009637 response to blue light 64 4.24E-03

- GO:0009646 response to absence of light 23 1.50E-04

- GO:0009649 entrainment of circadian clock 5 2.45E-02

- GO:0009653 anatomical structure morpho-

genesis

9 3.80E-02

- GO:0009684 indoleacetic acid biosynthetic

process

68 2.48E-02

- GO:0009693 ethylene biosynthetic process 80 2.37E-04

- GO:0009694 jasmonic acid metabolic pro-

cess

25 2.33E-02

- GO:0009695 jasmonic acid biosynthetic pro-

cess

92 3.40E-05

- GO:0009734 auxin mediated signaling path-

way

26 1.70E-02
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- GO:0009751 response to salicylic acid stim-

ulus

81 1.93E-02

- GO:0009753 response to jasmonic acid stim-

ulus

164 2.92E-04

- GO:0009767 photosynthetic electron trans-

port chain

13 1.64E-02

- GO:0009768 photosynthesis, light harvest-

ing in photosystem I

4 4.48E-02

- GO:0009769 photosynthesis, light harvest-

ing in photosystem II

5 2.45E-02

- GO:0009773 photosynthetic electron trans-

port in photosystem I

36 1.73E-02

- GO:0009813 flavonoid biosynthetic process 40 1.41E-02

- GO:0009867 jasmonic acid mediated signal-

ing pathway

170 4.44E-03

- GO:0009939 positive regulation of gibberel-

lic acid mediated signaling

pathway

5 2.45E-02

- GO:0010043 response to zinc ion 37 1.31E-02

- GO:0010093 specification of floral organ

identity

24 1.01E-02

- GO:0010103 stomatal complex morphogen-

esis

89 1.30E-02

- GO:0010106 cellular response to iron ion

starvation

78 9.66E-04

- GO:0010107 potassium ion import 4 4.48E-02

- GO:0010114 response to red light 59 2.56E-02

- GO:0010167 response to nitrate 130 2.35E-04

- GO:0010200 response to chitin 286 9.33E-11

- GO:0010207 photosystem II assembly 111 2.51E-03

- GO:0010231 maintenance of seed dormancy 4 4.48E-02

- GO:0010286 heat acclimation 52 2.03E-03

- GO:0010363 regulation of plant-type hyper-

sensitive response

220 2.36E-02

- GO:0010390 histone monoubiquitination 4 4.48E-02
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- GO:0010438 cellular response to sulfur star-

vation

4 4.48E-02

- GO:0015706 nitrate transport 137 1.97E-04

- GO:0015979 Photosynthesis 164 6.86E-13

- GO:0018119 peptidyl-cysteine S-

nitrosylation

12 2.52E-02

- GO:0019684 photosynthesis, light reaction 105 4.07E-05

- GO:0019761 glucosinolate biosynthetic pro-

cess

101 1.96E-02

- GO:0030308 negative regulation of cell

growth

4 4.48E-02

- GO:0031540 regulation of anthocyanin

biosynthetic process

12 2.52E-02

- GO:0031930 mitochondria-nucleus signal-

ing pathway

4 4.48E-02

- GO:0034755 iron ion transmembrane trans-

port

4 4.48E-02

- GO:0035556 intracellular signal transduc-

tion

125 6.82E-04

- GO:0035725 sodium ion transmembrane

transport

31 1.75E-02

- GO:0042218 1-aminocyclopropane-1-

carboxylate biosynthetic

process

17 7.30E-03

- GO:0042549 photosystem II stabilization 7 7.33E-03

- GO:0042773 ATP synthesis coupled elec-

tron transport

7 3.46E-02

- GO:0043161 proteasomal ubiquitin-

dependent protein catabolic

process

73 3.69E-02

- GO:0043407 negative regulation of MAP ki-

nase activity

12 9.39E-03

- GO:0045333 cellular respiration 20 1.10E-02

- GO:0045727 positive regulation of transla-

tion

13 1.46E-03
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- GO:0046786 viral replication complex for-

mation and maintenance

4 4.48E-02

- GO:0048235 pollen sperm cell differentia-

tion

20 2.15E-02

- GO:0048869 cellular developmental process 7 7.33E-03

- GO:0050832 defense response to fungus 177 2.77E-02

- GO:0050994 regulation of lipid catabolic

process

4 4.48E-02

- GO:0051603 proteolysis involved in cellular

protein catabolic process

18 1.12E-02

- GO:0051865 protein autoubiquitination 9 1.23E-02

- GO:0052542 defense response by callose de-

position

32 3.26E-02

- GO:0055062 phosphate ion homeostasis 8 2.07E-02

- GO:0055114 oxidation-reduction process 635 4.09E-02

- GO:0070838 divalent metal ion transport 53 4.67E-02

- GO:0071216 cellular response to biotic

stimulus

11 3.83E-02

- GO:0071577 zinc ion transmembrane trans-

port

10 2.41E-02

- GO:0071786 endoplasmic reticulum tubular

network organization

5 2.45E-02

- GO:0080027 response to herbivore 7 7.33E-03

- GO:0080086 stamen filament development 7 3.46E-02

- GO:0080129 proteasome core complex as-

sembly

80 2.31E-02

- GO:0090333 regulation of stomatal closure 7 3.46E-02

- GO:2000037 regulation of stomatal complex

patterning

5 2.45E-02

- GO:2000038 regulation of stomatal complex

development

5 2.45E-02

- GO:2001141 regulation of RNA biosyn-

thetic process

5 2.45E-02
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Table S8: GSEA of GO-BP terms for AEC genes for the common promoters.
A ‘+’ indicates a high degree of conservation of co-expression relationships derived by Z-
scores, while a ‘-’ indicates divergences of co-expression relationships on the translatome
and transcriptome.

System-level Number of

genes

Observed motif p-value

Transcriptome 214 1110 0

Transcriptome 58 11111 0

Transcriptome 47 1000 0

Transcriptome 33 11101 0

Transcriptome 34 111000 0

Transcriptome 31 111110 0

Transcriptome 22 110110 0

Transcriptome 19 100100 0.04

Transcriptome 26 100000 0.2

Transcriptome 25 100101 0.02

Transcriptome 23 10011 0

Transcriptome 25 1010 0.99

Transcriptome 67 0 1

Transcriptome 25 1100 1

Transcriptome 16 11110 1

Translatome 203 100101 0

Translatome 94 1110 0

Translatome 72 100100 0

Translatome 46 10011 0

Translatome 28 101011 0

Translatome 29 110110 0.01

Translatome 45 101110 0.11

Translatome 37 110 0.11

Translatome 8 111011 0.92

Translatome 57 100110 0.95

Translatome 23 101111 0.99

Translatome 12 100 0.99
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Translatome 10 111000 0.99

Translatome 21 111111 1

Table S9: All possible motif occurences across the identical promoters of tran-
scriptome and translatome. The observed motifs are depicted in the order GL2-SCR,
GL2-WOL, SUC2-GL2, SUC2-SCR, SUC2-WOL, WOL-SCR of pairwise cell-type com-
parison. A characteristic pattern of the pairwise differences are represented by 0 (no
significant mean difference of expression values) and 1 (significant mean difference of
expression values).

Motif GO-term Term description No. of

genes

p-value

1 GO:0001666 response to hypoxia 4 1.03E-02

1 GO:0005986 sucrose biosynthetic process 3 1.31E-03

1 GO:0006084 acetyl-CoA metabolic process 5 2.44E-03

1 GO:0006085 acetyl-CoA biosynthetic process 3 2.02E-04

1 GO:0006612 protein targeting to membrane 9 4.85E-02

1 GO:0006810 Transport 9 4.45E-02

1 GO:0006833 water transport 5 3.38E-02

1 GO:0008033 tRNA processing 3 4.79E-03

1 GO:0008219 cell death 3 2.59E-02

1 GO:0009684 indoleacetic acid biosynthetic

process

4 3.74E-02

1 GO:0009691 cytokinin biosynthetic process 3 5.25E-03

1 GO:0009735 response to cytokinin stimulus 3 2.72E-02

1 GO:0009736 cytokinin mediated signaling

pathway

3 4.74E-02

1 GO:0009741 response to brassinosteroid stim-

ulus

4 1.19E-02

1 GO:0009744 response to sucrose stimulus 9 1.29E-03

1 GO:0009749 response to glucose stimulus 6 3.83E-04

1 GO:0009750 response to fructose stimulus 6 9.06E-03

1 GO:0009910 negative regulation of flower de-

velopment

3 1.37E-02

1 GO:0009963 positive regulation of flavonoid

biosynthetic process

6 1.79E-03

1 GO:0010075 regulation of meristem growth 5 3.93E-02
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1 GO:0010264 myo-inositol hexakisphosphate

biosynthetic process

3 3.37E-02

1 GO:0016036 cellular response to phosphate

starvation

5 1.87E-02

1 GO:0016126 sterol biosynthetic process 7 4.71E-03

1 GO:0016132 brassinosteroid biosynthetic pro-

cess

4 4.57E-02

1 GO:0019375 galactolipid biosynthetic process 5 7.54E-03

1 GO:0019745 pentacyclic triterpenoid biosyn-

thetic process

3 1.06E-02

1 GO:0045454 cell redox homeostasis 9 3.59E-05

1 GO:0048653 anther development 7 6.87E-06

1 GO:0051645 Golgi localization 3 1.21E-02

1 GO:0051646 mitochondrion localization 3 1.21E-02

1 GO:0055085 transmembrane transport 15 8.51E-04

1 GO:0060151 peroxisome localization 3 1.21E-02

2 GO:0000041 transition metal ion transport 11 5.21E-08

2 GO:0006084 acetyl-CoA metabolic process 6 1.51E-04

2 GO:0006633 fatty acid biosynthetic process 5 3.98E-03

2 GO:0006826 iron ion transport 6 1.50E-03

2 GO:0006865 amino acid transport 4 4.78E-02

2 GO:0006979 response to oxidative stress 12 1.50E-05

2 GO:0007043 cell-cell junction assembly 5 1.00E-10

2 GO:0007169 transmembrane receptor protein

tyrosine kinase sign. pathw.

7 4.11E-04

2 GO:0007389 pattern specification process 3 1.57E-02

2 GO:0008152 metabolic process 16 2.67E-02

2 GO:0008361 regulation of cell size 3 9.11E-03

2 GO:0009269 response to desiccation 3 4.55E-03

2 GO:0009611 response to wounding 10 1.92E-03

2 GO:0009664 plant-type cell wall organization 4 4.05E-02

2 GO:0009739 response to gibberellin stimulus 5 3.06E-03

2 GO:0009741 response to brassinosteroid stim-

ulus

5 1.01E-03

2 GO:0009750 response to fructose stimulus 5 1.62E-02

2 GO:0009805 coumarin biosynthetic process 4 1.84E-03
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2 GO:0009825 multidimensional cell growth 3 4.15E-02

2 GO:0009926 auxin polar transport 3 2.85E-02

2 GO:0009932 cell tip growth 4 7.52E-03

2 GO:0009963 positive regulation of flavonoid

biosynthetic process

6 7.36E-04

2 GO:0010015 root morphogenesis 3 7.54E-03

2 GO:0010075 regulation of meristem growth 7 1.20E-03

2 GO:0010106 cellular response to iron ion star-

vation

6 1.20E-03

2 GO:0010167 response to nitrate 10 5.37E-05

2 GO:0010413 glucuronoxylan metabolic process 8 7.10E-04

2 GO:0010817 regulation of hormone levels 3 2.54E-02

2 GO:0015706 nitrate transport 10 8.54E-05

2 GO:0016126 sterol biosynthetic process 9 7.11E-05

2 GO:0016132 brassinosteroid biosynthetic pro-

cess

10 4.23E-07

2 GO:0030003 cellular cation homeostasis 4 1.96E-02

2 GO:0040007 Growth 3 1.49E-02

2 GO:0042545 cell wall modification 8 3.30E-05

2 GO:0045492 xylan biosynthetic process 8 7.10E-04

2 GO:0048765 root hair cell differentiation 5 1.62E-02

2 GO:0048767 root hair elongation 6 1.13E-02

2 GO:0055114 oxidation-reduction process 22 7.23E-03

2 GO:0070838 divalent metal ion transport 4 9.36E-03

Table S10: Enriched GO-terms of genes with characteristic cell-type specific
gene expression patters found for motif 1 and motif 2. More details on motifs 1
and 2 can be found in Figure 5.14.



Appendix C: Supplementary text

Transcriptome dataset- Promoter sequences

Promoter SUC2

>gi |1019750| emb|X79702 .1| A.thaliana AtSUC2 gene

GGATCCCCTAAAATCTGGTTTCATATTAATTTCACACACCAAGTTACTTTCTATTATTA

ACTGTTATAATGGACCATGAAATCATTTGCATATGAACTGCAATGATACATAATCCACT

TTGTTTTGTGGGAGACATTTACCAGATTTCGGTAAATTGGTATTCCCCCTTTTATGTGA

TTGGTCATTGATCATTGTTAGTGGCCAGACATTTGAACTCCCGTTTTTTTGTCTATAAG

AATTCGGAAACATATAGTATCCTTTGAAAACGGAGAAACAAATAACAATGTGGACAAAC

TAGATATAATTTCAACACAAGACTATGGGAATGATTTTACCCACTAATTATAATCCGAT

CACAAGGTTTCAACGAACTAGTTTTCCAGATATCAACCAAATTTACTTTGGAATTAAAC

TAACTTAAAACTAATTGGTTGTTCGTAAATGGTGCTTTTTTTTTTTGCGGATGTTAGTA

AAGGGTTTTATGTATTTTATATTATTAGTTATCTGTTTTCAGTGTTATGTTGTCTCATC

CATAAAGTTTATATGTTTTTTCTTTGCTCTATAACTTATATATATATATGAGTTTACAG

TTATATTTATACATTTCAGATACTGATCGGCATTTTTTTTGGTAAAAAATATATGCATG

AAAAACTCAAGTGTTTCTTTTTTAAGGAATTTTTAAATGGTGATTATATGAATATAATC

ATATGTATATCCGTATATATATGTAGCCAGATAGTTAATTATTTGGGGGATATTTGAAT

TATTAATGTTATAATATTCTTTCTTTTGACTCGTCTGGTTAAATTAAAGAACAAAAAAA

ACACATACTTTTACTGTTTTAAAAGGTTAAATTAACATAATTTATTGATTACAAGTGTC

AAGTCCATGACATTGCATGTAGGTTCGAGACTTCAGAGATAACGGAAGAGATCGATAAT

TGTGATCGTAACATCCAGATATGTATGTTTAATTTTCATTTAGATGTGGATCAGAGAAG

ATAAGTCAAACTGTCTTCATAATTTAAGACAACCTCTTTTAATATTTTCCCAAAACATG

TTTTATGTAACTACTTTGCTTATGTGATTGCCTGAGGATACTATTATTCTCTGTCTTTA

TTCTCTTCACACCACATTTAAATAGTTTAAGAGCATAGAAATTAATTATTTTCAAAAAG

GTGATTATATGCATGCAAAATAGCACACCATTTATGTTTATATTTTCAAATTATTTAAT

ACATTTCAATATTTCATAAGTGTGATTTTTTTTTTTTTGTCAATTTCATAAGTGTGATT

TGTCATTTGTATTAAACAATTGTATCGCGCAGTACAAATAAACAGTGGGAGAGGTGAAA

ATGCAGTTATAAAACTGTCCAATAATTACTAACACATTTAAATWATCTAAAAAGAGTGT
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TTCAAAAAAAATTCTTTTGAAATAAGAAAAGTGATAGATATTTTTACGCTTTCGTCTGA

AAATAAAACAATAATAGTTTATTAGAAAAATGTTATCACCGAAAATTATTCTAGTGCCA

CTCGCTCGGATCGAAATTCGAAAGTTATATTCTTTCTCTTTACCTAATATAAAAATCAC

AAGAAAAATCAATCCGAATATATCTATCAACATAGTATATGCCCTTACATATTGTTTCT

GACTTTTCTCTATCCGAATTTCTCGCTTCATGGTTTTTTTTTAACATATTCTCATTTAA

TTTTCATTACTATTATATAACTAAAAGATGGAAATAAAATAAAGTGTCTTTGAGAATCG

AAACGTCCATATCAGTAAGATAGTTTGTGTGAAGGTAAAATCTAAAAGATTTAAGTTCC

AAAAACAGAAAATAATATATTACGCTAAAAAAGAAGAAAATAATTAAATACAAAACAGA

AAAAAATAATATACGACAGACACGTGTCACGAAGATACCCTACGCTATAGACACAGCTC

TGTTTTCTCTTTTCTATGCCTCAAGGCTCTCTTAACTTCACTGTCTCCTCTTCGGATAA

TCCTATCCTTCTCTTCCTATAAATACCTCTCCACTCTTCCTCTTCCTCCACCACTACAA

CCACCGCAACAACCACCAAAAACCCTCTCAAAGAAATCTTTTTTTTCTTACTTTCTTGG

TTTGTCAAATATG

Associated genomic coordinate: AT1G22710

Promoter WOL

>gi |11595486| emb|AJ278528 .1| Arabidopsis thaliana

AGTTGGAGCAAAGTTGCTTCTTTTGAGAACCATGCGTTTCTTTCTCTCTTTTGTTCTTG

AATTCGCAAAAACATGTCCTTTTTCGTCTACAGGTTTCTAGGGTTTGTTTCTGTACTAT

AAACTATGTTTATGCTCAGATATGAACTGGGCACTCAACAATCATCAAGAAGAAGAAGA

AGAGCCACGAAGAATTGAAATTTCTGATTCCGAGTCACTAGAAAACTTGAAAAGCAGCG

ATTTTTATCAACTGGGTGGTGGTGGTGCTCTGAATTCGTCAGAAAAGCCGAGAAAGATC

GATTTTTGGCGTTCGGGGTTGATGGGTTTTGCGAAGATGCAGCAGCAGCAACAGCTTCA

GCATTCAGTGGCGGTGAAGATGAACAATAATAATAATAACGATCTAATGGGTAATAAAA

AAGGGTCAACTTTCATACAAGAACATCGAGCATTGTTACCAAAAGCTTTGATTCTGTGG

ATCATCATTGTTGGGTTTATAAGCAGTGGGATTTATCAGTGGATGGATGATGCTAATAA

GATTAGAAGGGAAGAGGTTTTGGTCAGCATGTGTGATCAAAGAGCTAGAATGTTGCAGG

ATCAATTTAGTGTTAGTGTTAATCATGTTCATGCTTTGGCTATTCTCGTCTCCACTTTT

CATTACCACAAGAACCCTTCTGCAATTGATCAGGAGACATTTGCGGAGTACACGGCAAG

AACAGCATTTGAGAGACCGTTGCTAAGTGGAGTGGCTTATGCTGAAAAAGTTGTGAATT

TTGAGAGGGAGATGTTTGAGCGGCAGCACAATTGGGTTATAAAGACAATGGATAGAGGA

GAGCCTTCACCGGTTAGGGATGAGTATGCTCCTGTTATATTCTCTCAAGATAGTGTCTC

TTACCTTGAGTCACTCGATATGATGTCAGGCGAGGAGGATCGTGAGAATATTTTGCGAG

CTAGAGAAACCGGAAAAGCTGTCTTGACTAGCCCTTTTAGGTTGTTGGAAACTCACCAT

CTCGGAGTTGTGTTGACATTCCCTGTCTACAAGTCTTCTCTTCCTGAAAATCCGACTGT
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CGAAGAGCGTATTGCAGCCACTGCAGGGTACCTTGGTGGTGCGTTTGATGTGGAGTCTC

TAGTCGAGAATTTACTTGGTCAGCTTGCTGGTAACCAAGCAATAGTTGTGCATGTGTAT

GATATCACCAATGCATCAGATCCACTTGTCATGTATGGTAATCAAGATGAAGAAGCCGA

CAGATCTCTCTCTCATGAGAGCAAGCTCGATTTTGGAGACCCCTTCAGGAAACATAAGA

TGATATGCAGGTACCACCAAAAGGCACCAATACCGTTGAATGTGCTCACAACTGTGCCA

TTGTTCTTTGCGATTGGTTTCTTGGTGGGTTATATACTGTATGGTGCAGCTATGCACAT

AGTAAAAGTCGAAGATGATTTCCATGAAATGCAAGAGCTTAAAGTTCGAGCAGAAGCTG

CTGATGTCGCTAAATCGCAGTTTCTTGCTACCGTGTCTCACGAGATCAGGACACCAATG

AATGGCATTCTCGGAATGCTTGCTATGCTCCTAGATACAGAACTAAGCTCGACACAGAG

AGATTACGCTCAAACCGCTCAAGTATGTGGTAAAGCTTTGATTGCATTGATAAATGAGG

TTCTTGATCGCGCCAAGATTGAAGCTGGAAAGCTGGAGTTGGAATCAGTACCATTTGAT

ATCCGTTCAATATTGGATGATGTCCTTTCTCTATTCTCTGAGGAGTCAAGGAACAAAAG

CATTGAGCTCGCGGTTTTCGTTTCAGACAAAGTACCAGAGATAGTCAAAGGAGATTCAG

GGAGATTTAGACAGATAATCATAAACCTTGTTGGAAATTCGGTTAAATTCACAGAGAAA

GGACATATCTTTGTTAAAGTCCATCTTGCGGAACAATCAAAAGATGAATCTGAACCGAA

AAATGCATTGAATGGTGGAGTGTCTGAAGAAATGATCGTTGTTTCCAAACAGTCAAGTT

ACAACACATTGAGCGGTTACGAAGCTGCTGATGGTCGGAATAGCTGGGATTCATTCAAG

CATTTGGTCTCTGAGGAGCAGTCATTATCGGAGTTTGATATTTCTAGCAATGTTAGGCT

TATGGTTTCAATCGAAGACACGGGTATTGGAATCCCTTTAGTTGCGCAAGGCCGTGTGT

TTATGCCGTTTATGCAAGCAGATAGCTCGACTTCAAGAAACTATGGAGGTACTGGTATT

GGTTTGAGTATAAGCAAGTGTCTTGTTGAACTTATGCGTGGTCAGATAAATTTCATAAG

CCGGCCTCATATTGGAAGCACGTTCTGGTTCACGGCTGTTTTAGAGAAATGCGATAAAT

GCAGTGCGATTAACCATATGAAGAAACCTAATGTGGAACACTTGCCTTCTACTTTTAAA

GGAATGAAAGCTATAGTTGTTGATGCTAAGCCTGTTAGAGCTGCTGTGACTAGATACCA

TATGAAAAGACTCGGAATCAATGTTGATGTCGTGACAAGTCTCAAAACCGCTGTTGTTG

CAGCTGCTGCGTTTGAAAGAAACGGTTCTCCTCTCCCAACAAAACCGCAACTTGATATG

ATCTTAGTAGAGAAAGATTCATGGATTTCAACTGAAGATAATGACTCAGAGATTCGTTT

ATTGAATTCAAGAACCAACGGAAACGTTCATCACAAGTCTCCGAAACTAGCTCTATTCG

CAACAAACATCACAAATTCGGAGTTCGACAGAGCTAAATCCGCAGGATTTGCAGATACG

GTAATAATGAAACCGTTAAGAGCAAGCATGATTGGGGCGTGTCTGCAACAAGTTCTCGA

GCTGAGAAAAACAAGACAACAACATCCAGAAGGATCATCACCCGCAACTCTCAAGAGCT

TGCTTACAGGGAAGAAGATTCTTGTGGTTGATGATAATATAGTTAACAGGAGAGTAGCT

GCAGGAGCTCTCAAGAAATTTGGAGCAGAAGTGGTTTGTGCAGAGAGTGGTCAAGTTGC

TTTGGGTTTGCTTCAGATTCCACACACTTTCGATGCTTGCTTCATGGATATTCAAATGC

CACAGATGGACGGATTTGAAGCAACTCGTCAGATAAGAATGATGGAGAAGGAAACTAAA

GAGAAGACAAATCTCGAATGGCATTTACCGATTCTAGCGATGACTGCGGATGTGATACA
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CGCGACCTACGAGGAATGTCTGAAAAGTGGGATGGATGGTTACGTCTCCAAACCTTTTG

AAGAAGAGAATCTCTATAAATCCGTTGCCAAATCATTCAAACCTAATCCTATCTCACCT

TCGTCGTAATCCAATCTTCCGGCGAGTTTTTTTTCTCTCTCCGCAGCCGGAAGAGTGGA

CCGATTCTGCTGATTGATATGCATTTTGGTTTCTGTACATACAGTAGGTTCACAATCTA

GAGATTTTGAAGGTTTTTTTTTCTTTCACCGAAGTAATGTAGCTTGCCATGACTAGTGT

ATGTTGTTAAACGACAACGTCTAAGACGACGGTTCAGTGTTGATCTTAGCGTAAGTATT

AATCCCACGGGATCGTTTGTACTGTATCAGATTTGGTTAGTCGTTTAAACATTGTAATG

TTCTAATAATAACTTTTCCAT

Associated genomic coordinate: AT2G01830.2

Promoter GL2

>gi |334184031| ref|NM_001198514 .1|

TTTATATCATTCCAACATAATTCATATTAAAGTTAGTAGCTGAAATTGGAAGGCTGATA

TATTTTCCATAATTCAAATTTGAATTTTGCTCATCATATATATATGTATATATTAAAAA

TCGAATATTAAGAAGAAAAATGAAGTCGATCGATGGCTGCCAATGCTGTAGCTGGCCAT

GTTTTAAACTACTCAATTCAAAGAAGCTAGCTAGGGACAGGATTTGTATGTCAATGGCC

GTCGACATGTCTTCCAAACAACCCACCAAAGACTTTTTCTCCTCTCCAGCCCTCTCTCT

ATCTCTCGCTGGGATATTCCGGAATGCATCCTCCGGCAGCACCAACCCTGAGGAGGATT

TCCTGGGCAGAAGAGTAGTTGACGATGAGGATCGCACTGTGGAGATGAGCAGCGAGAAC

TCAGGACCCACGAGATCCAGATCAGAGGAGGATTTGGAGGGTGAGGATCACGACGATGA

GGAGGAGGAAGAGGAGGACGGCGCAGCTGGAAACAAGGGCACTAATAAGAGAAAGAGGA

AGAAGTATCATCGTCACACCACCGATCAGATCAGACACATGGAAGCGCTATTCAAAGAG

ACACCACATCCGGACGAGAAGCAAAGACAGCAGCTGAGCAAGCAACTAGGGCTGGCCCC

TCGCCAGGTCAAGTTCTGGTTCCAAAACCGCCGCACACAGATCAAGGCTATTCAAGAAC

GGCACGAGAACTCCCTGCTCAAGGCGGAACTAGAGAAGCTGCGAGAGGAAAACAAAGCC

ATGAGGGAGTCTTTTTCCAAGGCTAATTCCTCCTGCCCCAACTGCGGAGGAGGCCCCGA

TGATCTCCACCTCGAAAACTCCAAACTGAAAGCCGAGCTCGATAAGCTTCGTGCAGCTC

TTGGACGCACTCCCTATCCCCTGCAGGCTTCATGCTCCGACGATCAAGAACACCGTCTC

GGCTCTCTCGATTTCTACACGGGCGTCTTTGCCCTCGAGAAGTCCCGTATTGCCGAGAT

TTCTAACCGAGCCACCCTTGAACTCCAGAAGATGGCCACCTCAGGCGAACCTATGTGGC

TCCGCAGCGTTGAGACTGGCCGTGAGATTCTCAACTACGATGAGTACCTCAAGGAGTTT

CCCCAAGCGCAAGCCTCTTCGTTTCCTGGAAGGAAAACCATCGAAGCATCTAGAGATGC

GGGGATTGTGTTTATGGACGCACATAAACTTGCCCAGAGTTTCATGGACGTGGGACAAT

GGAAAGAGACATTTGCATGCTTGATCTCAAAGGCTGCAACGGTCGATGTTATCCGGCAA

GGCGAAGGGCCTTCACGGATCGACGGGGCTATTCAGCTGATGTTCGGAGAGATGCAGCT
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GCTCACTCCGGTCGTCCCCACAAGAGAAGTGTACTTCGTGAGAAGCTGCCGGCAGCTGA

GCCCTGAGAAATGGGCAATAGTGGACGTCTCGGTCTCCGTGGAGGACAGCAACACGGAG

AAGGAGGCTTCTCTTCTGAAATGTCGAAAACTCCCCTCCGGTTGCATCATCGAGGACAC

CTCCAACGGTCACTCCAAGGTCACCTGGGTGGAGCACCTCGACGTGTCTGCATCCACAG

TTCAGCCTCTCTTCCGCTCCTTAGTCAACACCGGTTTGGCCTTTGGGGCTCGACACTGG

GTCGCCACCCTTCAGCTCCATTGCGAACGCCTTGTCTTCTTCATGGCTACCAACGTCCC

CACCAAAGACTCTCTCGGAGTTACAACTCTTGCCGGGAGAAAGAGTGTGCTGAAGATGG

CTCAGAGAATGACACAAAGCTTCTACCGCGCCATTGCTGCATCAAGCTACCATCAATGG

ACCAAAATCACCACCAAAACTGGACAAGACATGCGGGTTTCTTCCAGGAAGAACCTTCA

TGATCCTGGCGAGCCCACGGGAGTCATTGTCTGCGCTTCTTCTTCGCTGTGGTTACCTG

TTTCTCCAGCTCTTCTCTTCGATTTCTTTAGAGATGAAGCTCGTCGGCATGAGTGGGAT

GCTTTGTCAAACGGAGCTCATGTTCAGTCTATTGCAAACTTATCCAAGGGACAAGACAG

AGGCAACTCAGTGGCAATCCAGACAGTGAAATCGAGAGAAAAGAGCATATGGGTGCTGC

AAGACAGCAGCACTAACTCGTATGAGTCGGTGGTGGTATACGCTCCCGTAGATATAAAC

ACGACACAGCTGGTGCTCGCGGGACATGATCCAAGCAACATCCAAATCCTCCCCTCTGG

ATTCTCAATCATACCTGATGGAGTAGAGTCACGGCCACTGGTAATAACGTCTACACAAG

ACGACAGAAACAGCCAAGGAGGGTCGCTCCTGACACTCGCCCTCCAAACCCTCATCAAC

CCTTCTCCTGCAGCAAAGCTGAATATGGAGTCTGTGGAATCCGTGACAAACCTCGTCTC

AGTCACACTACACAACATTAAGAGAAGTCTACAAATCGAAGATTGCTGATGACAAGTCA

CAGCAGATATTATTTACCTATATATAATTATATGATAATGTATAGCAGCAGTGCATTAA

AGTTTTGTACAAAAACGACCAGCTCTCTCTTCTCCAATCCTATTATTATCCAACACCTT

TTTGGTCCATTCCATTGGCAAATGAACCATAACAAGAGGAGCAAGAACCGTAGAATTAG

CAGAAACAAAAGTCGGATCACTGAGACCACAAGCACACAGTAGCAACAGAAACATATTA

ATTCACATTCTAAATGTAACTGGAGGTGAAGATGAAGTAAGAGCAAACAATTGGTAGTC

GGAAACAATCAGATTGAAAACACACTCATGGCATAAGCAATGAAATCACAAAAGCATTC

CATAAATTACACTGGTTCCGGGATACACAACAAACAAACAGAAGCAGAGCAAAAAAAAG

ACGG

Associated genomic coordinate: AT1G79840

Promoter SCR

>gi |1497986| gb|U62798 .1| ATU62798 Arabidopsis thaliana

CCTTATTTATAACCATGCAATCTCACGACCAACAACCCTTCAATCTCCATGGCGGAATC

CGGCGATTTCAACGGTGGTCAACCTCCTCCTCATAGTCCTCTGAGAACAACTTCTTCCG

GTAGTAGCAGCAGCAACAACCGTGGTCCTCCTCCTCCTCCTCCTCCTCCTTTAGTGATG

GTGAGAAAAAGATTAGCTTCCGAGATGTCTTCTAACCCTGACTACAACAACTCCTCTCG
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TCCTCCTCGCCGTGTCTCTCACCTTCTTGACTCCAACTACAATACTGTCACACCACAAC

AACCACCGTCTCTTACGGCGGCGGCTACTGTATCTTCTCAACCAAACCCACCACTCTCT

GTTTGTGGCTTCTCTGGTCTTCCCGTTTTTCCTTCAGACCGTGGTGGTCGGAATGTTAT

GATGTCCGTACAACCAATGGATCAAGACTCTTCATCTTCTTCTGCTTCACCTACTGTAT

GGGTTGACGCCATTATCAGAGACCTTATCCATTCCTCAACTTCAGTCTCTATTCCTCAA

CTTATCCAAAACGTTAGAGACATTATCTTCCCTTGTAACCCAAATCTCGGTGCTCTTCT

TGAATACAGGCTCCGATCTCTCATGCTCCTTGATCCTTCCTCTTCCTCTGACCCTTCTC

CTCAAACTTTCGAACCTCTCTATCAGATCTCCAACAATCCTTCTCCTCCACAACAGCAA

CAGCAGCACCAACAACAACAACAACAGCATAAGCCTCCTCCTCCTCCGATTCAGCAGCA

AGAAAGAGAAAATTCTTCTACCGATGCACCACCGCAACCAGAGACAGTGACGGCCACTG

TTCCCGCCGTCCAAACAAATACGGCGGAGGCTTTAAGAGAGAGGAAGGAAGAGATTAAG

AGGCAGAAGCAAGACGAAGAAGGATTACACCTTCTCACATTGCTGCTACAGTGTGCTGA

AGCTGTCTCTGCTGATAATCTCGAAGAAGCAAACAAGCTTCTTCTTGAGATCTCTCAGT

TATCAACTCCTTACGGGACCTCAGCGCAGAGAGTAGCTGCTTACTTCTCGGAAGCTATG

TCAGCGAGATTACTCAACTCGTGTCTCGGAATTTACGCGGCTTTGCCTTCACGGTGGAT

GCCTCAAACGCATAGCTTGAAAATGGTCTCTGCGTTTCAGGTCTTTAATGGGATAAGCC

CTTTAGTGAAATTCTCACACTTTACAGCGAATCAGGCGATTCAAGAAGCATTTGAGAAA

GAAGACAGTGTACACATCATTGACTTGGACATCATGCAGGGACTTCAATGGCCTGGTTT

ATTCCACATTCTTGCTTCTAGACCTGGAGGACCTCCACACGTGCGACTCACGGGACTTG

GTACTTCCATGGAAGCTCTTCAGGCTACAGGGAAACGTCTTTCGGATTTCACAGATAAG

CTTGGCCTGCCTTTTGAGTTCTGCCCTTTAGCTGAGAAAGTTGGAAACTTGGACACTGA

GAGACTCAATGTGAGGAAAAGGGAAGCTGTGGCTGTTCACTGGCTTCAACATTCTCTTT

ATGATGTCACTGGCTCTGATGCACACACTCTCTGGTTACTCCAAAGGTAAAATAAACAT

TACCTTTTAATCACTCTTTATCTATAAATTATTTTAAGATTATATAGGAAAGATATGTT

CTAAAAAGCTGGCTTTTTTGGTTAATGATTGGGGAATGAACAGATTAGCTCCTAAAGTT

GTGACAGTAGTGGAGCAAGATTTGAGCCACGCTGGTTCTTTCTTAGGAAGATTTGTAGA

GGCAATACATTACTACTCTGCACTCTTTGACTCACTGGGAGCAAGCTACGGCGAAGAGA

GTGAAGAGAGACATGTCGTGGAACAGCAGCTATTATCGAAAGAGATACGGAATGTATTA

GCGGTTGGAGGACCATCGAGAAGCGGTGAAGTGAAGTTTGAGAGCTGGAGGGAGAAAAT

GCAACAATGTGGGTTTAAAGGTATATCTTTAGCTGGAAATGCAGCTACACAAGCGACTC

TACTGTTGGGAATGTTTCCTTCGGATGGTTACACTTTGGTTGATGATAATGGTACACTT

AAGCTTGGATGGAAAGATCTTTCGTTACTCACTGCTTCAGCTTGGACGCCTCGTTCTTA

GTTTTCTTCTCCTTTTTCACAAACAATGTGCCCATAAAT

Associated genomic coordinate: AT3G54220.1

Translatome dataset-Promoter sequences
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Promoter SUC2

Primer sequences

SUC2 fw CACCAAGTTACTTTCTATTATTAACTGTTATAATGG

SUC2 rev ATTTGACAAACCAAGAAAGTAAGAAAAAAAAG

>gi |240254421:8032971 -8035071 Arabidopsis thaliana chromosome 1

CACCAAGTTACTTTCTATTATTAACTGTTATAATGGACCATGAAATCATTTGCATATGAA

CTGCAATGATACATAATCCACTTTGTTTTGTGGGAGACATTTACCAGATTTCGGTAAATT

GGTATTCCCCCTTTTATGTGATTGGTCATTGATCATTGTTAGTGGCCAGACATTTGAACT

CCCGTTTTTTTGTCTATAAGAATTCGGAAACATATAGTATCCTTTGAAAACGGAGAAACA

AATAACAATGTGGACAAACTAGATATAATTTCAACACAAGACTATGGGAATGATTTTACC

CACTAATTATAATCCGATCACAAGGTTTCAACGAACTAGTTTTCCAGATATCAACCAAAT

TTACTTTGGAATTAAACTAACTTAAAACTAATTGGTTGTTCGTAAATGGTGCTTTTTTTT

TTTGCGGATGTTAGTAAAGGGTTTTATGTATTTTATATTATTAGTTATCTGTTTTCAGTG

TTATGTTGTCTCATCCATAAAGTTTATATGTTTTTTCTTTGCTCTATAACTTATATATAT

ATATGAGTTTACAGTTATATTTATACATTTCAGATACTTGATCGGCATTTTTTTTGGTAA

AAAATATATGCATGAAAAACTCAAGTGTTTCTTTTTTAAGGAATTTTTAAATGGTGATTA

TATGAATATAATCATATGTATATCCGTATATATATGTAGCCAGATAGTTAATTATTTGGG

GGATATTTGAATTATTAATGTTATAATATTCTTTCTTTTGACTCGTCTGGTTAAATTAAA

GAACAAAAAAAACACATACTTTTACTGTTTTAAAAGGTTAAATTAACATAATTTATTGAT

TACAAGTGTCAAGTCCATGACATTGCATGTAGGTTCGAGACTTCAGAGATAACGGAAGAG

ATCGATAATTGTGATCGTAACATCCAGATATGTATGTTTAATTTTCATTTAGATGTGGAT

CAGAGAAGATAAGTCAAACTGTCTTCATAATTTAAGACAACCTCTTTTAATATTTTCCCA

AAACATGTTTTATGTAACTACTTTGCTTATGTGATTGCCTGAGGATACTATTATTCTCTG

TCTTTATTCTCTTCACACCACATTTAAATAGTTTAAGAGCATAGAAATTAATTATTTTCA

AAAAGGTGATTATATGCATGCAAAATAGCACACCATTTATGTTTATATTTTCAAATTATT

TAATACATTTCAATATTTCATAAGTGTGATTTTTTTTTTTTTTGTCAATTTCATAAGTGT

GATTTGTCATTTGTATTAAACAATTGTATCGCGCAGTACAAATAAACAGTGGGAGAGGTG

AAAATGCAGTTATAAAACTGTCCAATAATTTACTAACACATTTAAATATCTAAAAAGAGT

GTTTCAAAAAAAATTCTTTTGAAATAAGAAAAGTGATAGATATTTTTACGCTTTCGTCTG

AAAATAAAACAATAATAGTTTATTAGAAAAATGTTATCACCGAAAATTATTCTAGTGCCA

CTCGCTCGGATCGAAATTCGAAAGTTATATTCTTTCTCTTTACCTAATATAAAAATCACA

AGAAAAATCAATCCGAATATATCTATCAACATAGTATATGCCCTTACATATTGTTTCTGA

CTTTTCTCTATCCGAATTTCTCGCTTCATGGTTTTTTTTTAACATATTCTCATTTAATTT

TCATTACTATTATATAACTAAAAGATGGAAATAAAATAAAGTGTCTTTGAGAATCGAACG

TCCATATCAGTAAGATAGTTTGTGTGAAGGTAAAATCTAAAAGATTTAAGTTCCAAAAAC
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AGAAAATAATATATTACGCTAAAAAAGAAGAAAATAATTAAATACAAAACAGAAAAAAAT

AATATACGACAGACACGTGTCACGAAGATACCCTACGCTATAGACACAGCTCTGTTTTCT

CTTTTCTATGCCTCAAGGCTCTCTTAACTTCACTGTCTCCTCTTCGGATAATCCTATCCT

TCTCTTCCTATAAATACCTCTCCACTCTTCCTCTTCCTCCACCACTACAACCACCGCAAC

AACCACCAAAAACCCTCTCAAAGAAATTTCTTTTTTTTCTTACTTTCTTGGTTTGTCAAA

T

Associated genomic coordinate: At1g22710

Promoter WOL

Primer sequences

WOL fw CACCTACTGTCTCTAAGCGCACG

WOL rev CTGAGCTACAACAATAGAGAACAAAAGAAG

>gi |240254678:367432 -369575 Arabidopsis thaliana chromosome 2

GTTCCTAAAATCCATTTGAATATTCAAAAACTTCTCTCAAATATCATGTAGTTATAGAAG

CTACTGTCTCTAAGCGCACGAGAGAAAGCTACACAACCCACGTCAGTTTCCATCTACACA

TATAAGGTAATAATAATATTTTCATGTATCTTTAATAATAGCTCTATGTTTTTTTCTGTA

TTTTTCATTATAAAACTCATAACTATGTTATCATTTAATATGGTACTAATTTAATGGGAT

TGATTTACTATTGCCTCAAACATGTAATAATTTAATGATTTTTTGTTTTTAACGTTTTTA

GAAATTCATGAGCATTTTAAATTTGTGGTTAGGTCATAACAATTTGCTATTACAAAAAAA

AGAAACACTCTAAATAATATAAAAAATAGTTTACCGTATAATACTAGTAGTAAATAAATA

ATTTGATTGTTATTCATAAATTTTGAATTCTAAAATCTCCTGAATCAACTCATGCAATTG

TCTTAAGAATTACACGTGGATAAATCATGGGCTTATGAGTCAGGCCCATTTAACCGGGGT

ATTTTCGTAGTTAAGAGACTAGAATGGTGGGTATTTCAGGTAAAAGGTCTATGGGGCCAG

ATCTGCGCTTTGTCGCGATGTCATTATCGCCAAAGATATGCGATAGCGACTCTCGTACAA

AGTCTCTCACTCACCTATATTTTTTGTTTTCTTATATTTCAACAAAAAAACGTTTTATTT

TCCTTTTGGTGTAAGTAAAAAAACAAAACAAAACGTTTTATTTCTAAAGTTCAGAAAACT

TATTTATACCAAGGAAAAAATAGATAATAAATTTTGAGAAGTTGGTGACTATATATTACT

TCACTTATTCAAGAAATTTAAACATGGTAAATGTTACTTTAAATGTTAAATGATGTATAA

GAAATGTAATGAAATTGAATAAATGTAGTTTTAAAGATGTTTTAATTAGTAAGACAAACC

TAGTTAGTGTCACAATAATTATATTTTTTTTTTTGTCATCCAAAATTATTAAAGCTCAAG

TAAACCAATCCTGAGGGATATTATTTACAAATGTGATATGATGCGGTTCGGTGCGGATCT

TCCGCGCCAAATTATACGCTTTTATATTAGCATTATAAAAAATTATAGATAAAGAGAAGT

TTGTGAATTCTTCATTGTCGCTTTGCAATTTCTCTAAATACACAGTAAATACCGACAATT

CGGTTAGAGAAAATATATCTATTTCGTATAATAATGTTAACTTTGAGGAGATTTTGGGTA

AAATAATAACTTTTGTTGGATGGATCATATCATGAGCCATTAAGAAAAAGTCCAAAACTT
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TTCTTCTTCAAAGTTGGACTCAAGTTAGAAAAAGAAAAAAGAGCTAGAGAGATATAAAAA

TGAAAAGAAAGTTCATGGCAAAAAACTGATATAGACAGAGACACAGAGAGAGAGAAACGT

ATCTGAAGAAAATCTAAAAAATTCGATTCAATTTTTTTCTTACTTTTAAAAGCAAAAAAT

CTCACTAAAACAAAAGAAGAAGAAAGAAGAAAGAAAATGGAATACCTACATTTGAAGTGA

TGAGAAGAGATTTTGTGTATAATAATAATGCAATGTTCAATCCTCTCACAACTCATTACA

GGTAACTAAAATAATTTCTCCATGTGCTTGCTTATTAGTCGTTCTTCCTAATGTTATGTT

TCTCTCTGTGTTCTTTCTTTCTTTGGTCAAAGCTTTAATTTTTTTTCTATTGTTGGATTT

GAGACAGTGAACATAGCTATGTTCTTGTTCCAATAATAAACAATCACGCCTGTAAAGAGC

TTATGATTGATTAGTGTGTTTTTTAGTATTAATTAATTTCTCTGACAATAATTACTTAGT

TTTTAATTCTTCTCTGTAAGAAACCTTTGGAAACTGAGCAAAGTTGCTTCTTTTGAGAAC

CATGCGTTTCTTTCTCTCTTTTGTTCTTGAATTCGCAAAAACATGTCCTTTTTCGTCTAC

AGGTTTCTAGGGTTTGTTTCTGTACTATAAACTATGTTTATGGTAACATTCTTAATCATA

ACTACACTACCAATGCTTTTATGTTATATGTATGCAAAAAAGGCTCTAACTTTTGTTTTC

TTTCACTATTGTTTCTTCTTTTGTTCTCTATTGTTGTAGCTCAG

Associated genomic coordinate: At2g01830

Promoter GL2

Primer sequences

GL2 fw CACCGTTTCCTTCACTATACGTCTTCGTCC

GL2 rev CTGTCCCTAGCTAGCTTCTTTGC

>gi |240254421:30035467 -30037518 Arabidopsis thaliana chromosome 1

GTTTCCTTCACTATACGTCTTCGTCCATTTACGTACGTATTATACGGACGGTTTAAGCT

ACTATATCTATATTGTTAACAATGTAACTGTTGAGATATATCTTGCAATAATATGTCAT

GGTGTATGCATACGATAATATGAATCAATGTTTGAAATCTTGACGTGCCCGTGATACAA

TAAGATGATCAAAATTTCAAATTTTGTCAAATATTAAAACAACATACACATACACATGT

GTCCAGGTGGCATTATAAAATGTATATATGGTGGATATAGAGAGAGAGGGAGATGCGTA

TAGTGAATAGGAAAGTAAGTAATAAAGAGAGGGTGGAGGAATTGGAAAGGGGTTGGAGG

CAAACCCATAAAGAGCATTCATTTCCTTTTAAGGTCGCTGAAATTAATGAGTAACGATC

GGTCAATGCCTCTCGCTGACCTTTTTCTTTTTTTACAACAACAAATAAAAATAAAATAA

ATTTCGACGTCTCTTTCCGCTGCTGAATTACATTTGTTGAATTAATTTTCTCTGCTTAC

GTACGTCTTCTAAACTTTCTCTATCCGAATTCTTTTTTAACTTTCTAACTTATATTCAA

CAACTCTTCTTTCCTGCCTTTACCGTTAGTCTAATTGTTTTCCTAATACTGCTACGTAC

ATACCCCTACTATACTAGTCAGTGTATTAGATTCGATTGGGATTAATCCAGGAATATAG

ATATCCCATTAGTTTTTATAAAAATATTGGAAGAGGACAAGTCTCAAGCAATTTAGGGT
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TCCATGTAGCGCTGCAATATACTGTTAGTAACTCTCTCTTACCCATATATTGTATATGC

TAATTCTTATCAAATATATATATATGCTTCTCCCAGAGTCCCAGTTTCCTATAATCCTG

ACGCAATTATACTAATAGAGCCAAGTTTACATAATAAAGTATATATGATTAATAGATAG

GGTTTCTTATTAAGCCATATCTTAAATTAAGATGTGATGATAGCGTTTTGTATAAGTTA

CCAATTGTTTGAAAGAAGAGATCATCACAATAATAAATCATAAGTAGTAGTATATAGTA

ATAAATAAATACACAAGTCATAATAAGAGTAATGAGAGGATAATTAAGGAGGGAAGAAG

AAAGCAGAAAATGCGGTTGGAGAATTAGGTGCTAAAAGTTAGTTGAGTCCATCTCAGTA

TCTAACGGTCAACTCTCTCTCTCTCTAGAGAAAACAATTAAGAAATCTGACATACACAT

ATGTCTCTCTCTCTCTCTCTCTCTAGTCTATACACACAATTCAATTAAAGAAGAGACAG

AGAAGTTCGTCTTTTTTGTTTTTATACCCTTAAATCAATCATGCAATTGTAACCCTTCC

TTCTTATTCTCATTCCTTCCCCCCCTGTCTACAGTAATCTATAGCAACGCCATTATGTA

CTACTTTTAACGGATAATTTGCTCATGTTTCAATATGGCTTCATTGTATATATGTTCAA

GTTCTTCTCAATCCTTTATATCATTCCAACATAATTCATATTAAAGTTAGTAGCTGAAA

TTGGAAGGCTGATATATTTTCCATAATTCAAATTTGAATTTTGCTCATCATATATATAT

GTATATATTAAAAATCGAATATTAAGAAGAAAAATGAAGTCGATCGATGGCTGCCAATG

CTGTAGCTGGCCATGTTTTAAACTACTCAATTGTCGGATTGAAGTATAGCCAAAATATA

TAAAACCGTAAAAGGACTAAATATAATAATATAATAGGTATTAATTAATTAAAACTAAT

TAATTATAAAAGAAGCACCTAAAAGTCAAGAGCAGTAGAGAAATGGAAGAAATATCTGA

AAAACGACCGCTTATATATATATGTATCATTGGAATTGAAGAGGCTATATATATATATA

TATATATATATATCGATCTTAGCTTATATATTAATTGAAAGTACATTTTGGTGTATAAG

TAATTAAAGAAGAAAGAAAAAAAGAGAGATAATATATAAGGAAGAAGGAGTGCGAGGAG

AAGAGGGAAGAGATCATAATTAAGCAAAGAAGCTAGCTAGGGACAG

Associated genomic coordinate: At1g79840

Promoter SCR

Primer sequences

SCR fw CACCGGATAAGGGATAGAGGAAGAGG

SCR rev GGAGATTGAAGGGTTGTTGGTCG

>gi |240255695:20068432 -20070549 Arabidopsis thaliana chromosome 3

GGAGATTGAAGGGTTGTTGGTCGTGAGATTGCATGGTTATAAATAAGGTAAGAAAAGGGT

TAAATCCAAAATCGAAAATTTCCAAACAGAAAAAGGTTTGGTAGTAGAAAAGCTAGACTC

TTTTATCAATGGTGGGATTCTTAAATTACTTGATCGTCTTCACGATCTCCGATGAGGAGA

AAAAGCAAAAACTCAGTGAGGGGGTGAGAATTTGGAAGGATGTGGGTTGGAGATGAATCC

CGGAAAAAGGGGTTAGGGGTAATTGAGGAGGACGAGGAGGACAGTGAAGCCTGGCCGTAT

CTAAGTCGTCTTCCACCTTTCGAATTATTGTGAATGTCGCTTCGTACATTTAATGACTCT
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TTCTATCTCTATTCATCTTAACTCTTTCTCTCTCTGTTTCTGTTTTTTTCTTCTTAATTA

ATTTGAGTTTTGAAAAATAATAAAAATGGGAAGAGATTAGGTGGGTGATCGGAAAATGTT

CGTCGTTGTGTGTTTGACGTCTTCCGTTTGCCGATCCATTTCGTTTCTTCTTGACCTCTC

TCTCGAACTAACCACAAGAAGATAATATTTTGTTTGTTTGGTCTATAATAATAGAGCTCT

ATTTCGTGGAACCGGTACAATATATAACAAAATTTCAGAATATTATGATGTATGACAAAG

TTAATAAATTATGGAATATCAAAATTGTTGAATAATGAAAAAGATGATCTTGCTAATTAC

AAAATTGAGTAGTAAATGATGTAAATAAAATGTCAGATTCAGTTCATTATGTGAAATGAA

TGGGTTTCTATTCTATAGAGCTACATGAGTTGGATTCATAAACCGATTTATTAGTTATGG

TCATATGGAGTCAGCAGGTTGCACCACTAGTCATTTGATTTAGGTTTGGTATGAGAGATG

GGATGAAGAAGTCTCTCACACAATCAAAGTGTGGTACGATGTGCTTACTAAGATGGGGCA

CCAACTTGCAATTTTGTGCTAAAATTAGAAAGATGGTATTCCTTAAACCGTACTAATCTA

AAGAGAGGAGAAAAATAAAGGAATCCAAGTAAAGATTTAGACAAAACAAGGATAAGAAAA

GGGAAAAAGCATTAGTCCCCTTGTATATTAGTATCATATTAAAGGCATTTTACTTGAGAG

GAATTGGACAAGACGTAGAGCTAAAACAGTAAATAACAAAAAAGGAAAAAGATGCACATG

TTTTGATGAGAGGCCATTACATACATACACCAACTGTCAAACCCCAGTTCCCGATAAAAT

CTGAAACTAGTGTTTGACATTTTGCTTTCATCTGCATCCTCATCTTTTCCCTTTTGTTCT

TTTTTTAACAATTTTTAGAAAATTTGCTATTATTATATTATTTTTCTTACAAAGTTTTGG

ACCTGTTTGACTGACAATTTTTAGACTTTTGTACGTCAAACACTAGCCCCATGGCCAATT

TAATAATCGCATGGCAGTGAACCCAAGAAGAAACCATCCACGCTTTCTACGATCTTATTT

TTTCTTCTCCTTTTTCACTTCAAATTATTTTTTATTACTTCTCTTCACAACACAAACACA

CGGCTCAATATGAAAGTTTCTCAGCGTAAAAAGCTGAATGTCTTTCTCCAAGTCCATATT

TGAATAGTCTTTTCTGCCCTTTTAGACTTAATTTGTTAATTTTTGAGTGATCTTAACGAA

TACCATGTACTATTATACACAAAAAATGTGAAATGTATTTTACTACATAGTTTTTTTTAA

TACTCTTTATCTTCAATTTAACTGATATTAAGGATTTTCCCAAAATTTATCCAATTTTAA

GAAAGTATATAAAATATTTTAATATATCTTAGAACACCATTTATTAACATCAAAGTCTCT

ATAATAGAAATGCTCATTAAAACCAAAATAAAAATGAAATGTTTGTAAATCACAAATGCA

CTTAAACAATATCTAGCAATAGCATACATTATAAAATAATTCTAACATTACATAGCCCAA

ATGCAAATATCTGTTTGGCAACAAAAACCTTAAAAAGTCTCTTGTTGGCAAAGCGCTACA

GAGTTACAGTTTATAGGCCCATTAAGGCCCATCAAAAGGTTTCTGATAAACAAAGTCCTC

TTCCTCTATCCCTTATCC

Associated genomic coordinate: At3g54220
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AFIS Advanced fiber information system

AGL42 Agamous-like 42

ANOVA Analysis of variance

APL Altered phloem development

BH Benjamini-Hochberg

BPCA Bayesian principal component analysis

CCA Canonical correlation analysis

CCA – EN Canonical correlation analysis-Elastic net

CDTA Cyclohexanediamine tetraacetic acid

CIA Co-inertia analysis

CO2 Cortex-specific transcript

COA Correspondence analysis

CoMPP Comprehensive microarray polymer profiling

CORTEX Cortex

CV Coefficient of variation

DEG Differentialy expressed genes

DNA Deoxyribonucleic acid

EC Expression conservation

FACS Fluorescence activated cell sorting

FDR False discovery rate

FPT Fluorescent protein technology

FT – IR Fourier transformed infrared spectroscopy

GEO Gene expression omnibus

GFP Green fluorescent protein

GL2 Glabra2

GO Gene ontology

GO – BP Gene ontology biological process
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GSEA Gene set enrichment analysis

HVI High volume instrument

ICA Independent component analysis

KEGG Kyoto encyclopedia of genes and genomes

KNN K nearest neighbors

mAbs Monoclonal antibodies

MCIA Multiple co-inertia analysis

mRNA Messenger ribonucleic acid

mRNP Messenger ribonucleoprotein

NaBH4 Sodium tetrahydridoborate

NaOH Sodium hydroxide

NGS Next-generation sequencing

OLS Ordinary least squares

PEP Endopeptidase

PCs Principal components

PCA Principal component analysis

PCC Pearson correlation coefficient

PLS Partial least squares

PPCA Probabilistic principal component analysis

RMA Robust multichip average

RMSEP Root mean squared error in prediction

GCR Roy’s greatest characteristic criterion

SCR Scarecrow

SHR Shortroot

sPLS Sparse partial least squares

SUC2 Sucrose transporter 2

SULTR2 Sulfate transporter

SVD Singular value decomposition

TukeyHSDTukey Honest significance difference

USDA United States department of agriculture

WOL Woodenleg
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