MODELING APPROACHES TO CHARACTERIZE THE
DISPOSITION OF M ONOCLONAL ANTIBODIES

FROM DETAILED PBPK MODELS TO
CLASSICAL COMPARTMENT MODELS

Dissertation zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)
an der Mathematisch-Naturwissenschaftlichen Fakultat

der Universitiat Potsdam

vorgelegt von

Ludivine Fronton

November 2014






Supervisor:  Prof. Dr. Wilhelm Huisinga
Universitdt Potsdam
Institute fiir Mathematik & Institute fiir Biochemie und Biologie
Science Park Golm
Karl-Liebknecht-Str. 24/25
D-14476 Potsdam Golm

Reviewers: Prof. Dr. Joachim Selbig
Prof. Dr. Michel Tod

Date of PhD defense: 12/02/2015

Published online at the

Institutional Repository of the University of Potsdam:
URN urn:nbn:de:kobv:517-opus4-76537
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76537






A la mémoire de ma Sorciére Bien-Aimée, mon Mentor, ma Confidente,
Tante Hélene Bagot-Robert.

19542012






Acknowledgments

I first express my gratitude to my PhD supervisor, Prof. Dr. Wilhelm Huisinga
for the grand opportunity he offered me to join the mathematicians’ world, for his
trust, support and guidance to carry out this challenging but how much rewarding
PhD project. My PhD work could reach maturity thanks to Wilhelm’s constant and

unerring commitment to high standard work.

I also thank my co-supervisor, Prof. Dr. Charlotte Kloft for valuable discussions
and comments on my PhD project and for her support to foster a continual collabo-
ration between the groups of the PharMetrX program from Potsdam University and
Free University. I am also thankful to my mentor, Dr. Stefanie Reif for offering me
the opportunity to present my PhD project at Bayer and for bringing the perspective
from industry into my work. I am very grateful to Dr. Thierry Lavé, Dr. Antje
Walz and colleagues from the Modeling & Simulation group at Roche, Basel, for
their support and to Drs. Stefanie Bendels and Michael Gertz for their help for the
German translation of the abstract. I greatly thank Prof. Dr. Joachim Selbig and
Prof. Dr. Michel Tod for reviewing this PhD thesis.

I warmly thank my PhD colleagues from the PharMetrX program at Potsdam
University and at Free University for our regular, stimulating and always lively
interactions both professionally and personally. My warm thanks go to Sathej
Gopalakrishnan for being such a wonderful office mate and a true friend. I also want
to greet Dr. Buket Benek Gursoy and Dr. Fernando Lopez who I met at the Hamilton

Institute during the first months of my PhD, in Ireland, and who are dear friends.

I want to thank my dancing friends, Romuald Wokam for being such a fabulous
salsa partner and friend, the Basel Kiz’ Team, Djazia Djaffer, Eva Lopez, Didier
Fortes, Rafael Lahoz, Gilles Lollia, Philippe Moniz and Arnaud Wustmann — c’est un
véritable bonheur de les avoir rencontrés. I also thank Mirian Liu for her patience
and support during the time of PhD writing. My warm feelings go to Julia and
Gabrielle Tarsten who welcomed me in Berlin and supported me as I were part of their
admirable family. My deep thanks go to Henrik Akesson for his constant supportive

and carrying friendship for the past ten years.

Finally, my greatest gratitude goes to my family. Je remercie mes parents Frangoise
et Bernard, ma soeur Pauline et mon frére Adrien, de leur soutien et de leur présence
aux moments importants. Je remercie aussi immensément Mamie de sa grande sagesse

qui guide chacun de mes pas.

vil



The work was funded by the Graduate Research Training Program "PharMetrX:

Pharmacometrics and Computational Disease Modelling".

viii



Abstract

Monoclonal antibodies (mAbs) are engineered immunoglobulins G (IgG) used for more
than 20 years as targeted therapy in oncology, infectious diseases and (auto-)immune
disorders. Their protein nature greatly influences their pharmacokinetics (PK),
presenting typical linear and non-linear behaviors.

While it is common to use empirical modeling to analyze clinical PK data of mAbs,
there is neither clear consensus nor guidance to, on one hand, select the structure of
classical compartment models and on the other hand, interpret mechanistically PK
parameters. The mechanistic knowledge present in physiologically-based PK (PBPK)
models is likely to support rational classical model selection and thus, a methodology
to link empirical and PBPK models is desirable. However, published PBPK models
for mAbs are quite diverse in respect to the physiology of distribution spaces and the
parameterization of the non-specific elimination involving the neonatal Fc receptor
(FcRn) and endogenous IgG (IgGendo). The remarkable discrepancy between the
simplicity of biodistribution data and the complexity of published PBPK models
translates in parameter identifiability issues.

In this thesis, we address this problem with a simplified PBPK model—derived
from a hierarchy of more detailed PBPK models and based on simplifications of tissue
distribution model. With the novel tissue model, we are breaking new grounds in
mechanistic modeling of mAbs disposition: We demonstrate that binding to FcRn
is indeed linear and that it is not possible to infer which tissues are involved in
the unspecific elimination of wild-type mAbs. We also provide a new approach to
predict tissue partition coeflicients based on mechanistic insights: We directly link
tissue partition coefficients (Kis) to data-driven and species-independent published
antibody biodistribution coefficients (ABCy;s) and thus, we ensure the extrapolation
from pre-clinical species to human with the simplified PBPK model. We further
extend the simplified PBPK model to account for a target, relevant to characterize
the non-linear clearance due to mAb-target interaction.

With model reduction techniques, we reduce the dimensionality of the simpli-
fied PBPK model to design 2-compartment models, thus guiding classical model
development with physiological and mechanistic interpretation of the PK parameters.

We finally derive a new scaling approach for anatomical and physiological parame-
ters in PBPK models that translates the inter-individual variability into the design
of mechanistic covariate models with direct link to classical compartment models,

specially useful for PK population analysis during clinical development.
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General introduction

Since the concept of the magic bullet introduced by Paul Ehrlich [1] in 1878, bio-
pharmaceutical products and in particular monoclonal antibodies (mAbs) have been
exponentially used as analytical, diagnostic tools and therapeutic agents for treat-
ment of a variety of diseases, mainly cancers, infections, diabetes, (auto-)immune
and cardiovascular disorders [2, 3, Tab. 1]. Monoclonal antibodies are hydrophilic
and charged molecules presenting a high molecular weight (> 150 kDa) and a high
specificity for their target. These properties greatly influence their pharmacokinetics
(PK) and limit their distribution into tissues [4-7]. Even with growing knowledge on
molecular processes governing mAbs disposition, it is still a challenge to understand

and predict their PK, an area which can gain insights from modeling and simulation.

Important biological considerations for mAbs disposition

Structure of mAbs Antibodies, also known as immunoglobulins (Igs), are large
endogenous Y-shaped proteins that play a key role in the humoral immunity by
identifying and neutralizing foreign agents such as bacteria and viruses. They have
two functional domains: the fragment of antigen binding (Fab) responsible for specific
recognition and binding to the antigen and the fragment crystallizable (Fc) region
that interacts with Fc receptors present at the surface of effector cells and endothelial
cells [8-10]. Figure 1.1 (upper half) provides a representation of the structure of an Ig.
In human, there are five isotypes of Igs, i.e. alpha (IgA), delta (IgD), epsilon (IgE),
gamma (IgG) and mu (IgM) with different molecular weights, biophysical properties,
antigen-binding sites and immunological functions. The most prevalent isotype is IgG
and represents 70-80% of total Ig level in serum [11]|. IgGs possess a long half-life of
~ 20 days for IgG1, IgG2, IgG4 subtypes and ~ 7 days for IgG3 subtype [4].
Monoclonal antibodies are immunoglobulins (mostly IgG1) produced by a single
type of immune cells that are all clones from a parent cell. Therefore, they are
identical and monospecific Igs which production is reproducible and allow their use

as therapeutics.

Pharmacokinetic properties of mAbs Pharmacokinetics refers to a branch of

pharmacology aiming at studying the fate of administered drugs in body fluids (e.g.
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Figure 1.1: Typical mAb structure and four types of IgGs used as therapeutics (from [12]).

blood, plasma, interstitial fluid) and in tissues/organs [13|. In this section, we present

the principal properties of mAbs which impact their pharmacokinetics.

Monoclonal antibodies are charged therapeutic proteins of high molecular mass
(~ 150 kDa). These aspects are reflected in specific ADME properties. Convective
transport, transcytosis, target-mediated disposition, pinocytosis, lysosomal degrada-

tion are key mechanisms governing the disposition of mAbs.

As proteins, mAbs are catabolized by proteases, present at high concentration
in the gastro-intestinal (GI) tract. Along with their charge and size, GI proteolysis
prevents from oral administration. Therefore, intravenous (IV), subcutaneous (SC)

or intramuscular (IM) injections are favored routes of administration for mAbs.

Studies of uptake into the systemic circulation following SC administration high-
lighted the importance of the lymphatic system in the distribution of mAbs [5, 14, 15].
After SC administration, mAbs are present in the interstitial fluid of the skin from
which they are drained via the lymph through lymphatic vessels to the bloodstream.
Of note, due to a lack of a pumping system, the lymph flow is 100-500 times slower
than the blood flows [16]. From the bloodstream, mAbs distribute to the tissues by
extravasation from the vascular space to the interstitium across the endothelium. Ac-
cording to the two-pore formalism [6], fluids and large molecules are transported across
the endothelium through large pores (~ 250 A) while small molecules are 'filtrated’
through small pores (~ 45 A). The difference of hydrostatic pressure between the
two spaces creates a convective transport, characteristic to mAbs tissue-distribution,

which results in their extravasation through the large pores into the interstitial fluid



FcRn-mediated transcytosis also plays an important role in the extravasation of
mAbs in the interstitium. The relevance of the neonatal Fc receptor (FcRn) stems
from the fact that it protects IgGs from catabolism [17] and is responsible of the
homeostasis of endogenous IgG and the observed long half-life of IgG1l mAbs in
plasma. IgGs bind to FcRn, via their Fc part, in a pH-dependent manner with a
high and strong affinity at acidic pH (< 6.5). It was previously reported in [18] that
FcRn protein is expressed by a wide variety of tissues e.g., renal proximal tubules,
endothelial cells of most organs vasculature, keratinocytes, hepatocytes, mammary
epithelium, monocytes, intestinal macrophages, dendritic cells, aortic endothelial
cells, and spleen. FcRn resides in the endosomal vesicles within those cells. Following
pinocytosis, endogenous IgG and mAb bind to FcRn in acidic sorting endosomes.
IgG-FcRn complexes are bidirectionally transported to the cell surface and once
outside the cell, at physiological pH, the IgGs dissociate from FcRn and are released
in the extra-cellular space. The FcRn-mediated salvage mechanism contributes to
the delivery of IgGs to plasma and interstitium and protects from the non-specific
elimination by lysosomal degradation in the tissue. Figure 1.2 proposed in [19]
illustrates this mechanism.

Immunoglobulins also bind to cell-surface Fcy receptors (FeyR), implicated in
IgG-induced phagocytosis of microbes and cancer cells [25]. Their role on the
pharmacokinetics of IgGs is not fully understood [10].

High specific binding of mAbs to their pharmacological target (affinities Kp are
commonly in the range of the pM to nM) is responsible of the saturable target-
mediated elimination, also known as target-mediated drug disposition (TMDD). It
is reflected in the non-linear PK at doses inferior to target saturation [26]. Binding
to the target triggers internalization of the mAb-target complex which is thereafter

catabolized by lysosomal proteases.

Relevance of modeling & simulation in understanding pharmacological

processes of therapeutic drugs

Modeling and simulation methods play an important role in supporting the discov-
ery and the development of new molecule drugs and the optimization of marketed
medicines. The fields covered by modeling and simulation activities extend from
identification and validation of new targets, selection of lead candidate molecules,
description and prediction of pharmacokinetic properties, i.e. absorption, distribution,
metabolism, excretion (ADME), efficacy and safety of drug candidates [27-33|. The
integration in mathematical models of the knowledge acquired through the devel-
opment of a drug aids at predicting the human dose, developing new formulations,
designing safety and efficacy trials, and guiding regulatory decisions to develop a

medicine with the best efficacy /safety profile [13, 34| for a given population. Most
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Figure 1.2: Proposed FcRn-mediated salvage mechanism that occurs in the endothelial cells
(from [19]). In short, circulating molecules of IgGs (endogenous IgGs and therapeutic mAbs)
in the vascular space are taken up by endothelial cells via spontaneous pinocytosis (also
referred to as a fluid phase endocytosis). The pH decreases in newly formed endosomes from
physiological pH = 7.4 to acidic pH = 6.0. At acidic pH, IgGs bind with high affinity to FcRn
[20], in the range of nM [21-24]. Sorting of the endosomes directs remaining unbound species
towards lysosomal degradation while FcRn-bound species are recycled to plasma or delivered
to the interstitial fluid space via transcytosis when the binding of IgG-FcRn is cleaved at the
contact of physiological pH.

models are developed and used in a build-validate-learn-refine cycle in which the
available knowledge is initially captured during model building and compared to
actual data to gain confidence during model evaluation and refinement [27, 35-39].
Fig. 1.3 illustrates the various areas supported by modeling and simulation along the

value-chain.

Pharmacokinetic modeling is a mathematical means which uses the concentration-
time profiles to provide quantitative and dynamic information about the processes
that affect the kinetics of a drug, i.e. absorption, distribution, metabolism, excre-
tion (ADME properties), see Fig. 1.4 [13, 34, 43|. All models are a representation
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Figure 1.3: Drug development and modeling & simulation: Build-validate-learn-refine

paradigm along the value-chain (inspired from [30, 40-42]).

of the body which is discretized into spaces referred to as compartments. The
simplicity /complexity of the models varies as per their data-driven or mechanistic

nature.

The non-compartmental approach allows to derive descriptive PK parameters from
the experimental data, i.e. area under the curve (AUC), peak exposure (Cmax), time
at which occurs Cmax (Tmax) [44, 45]. Non-compartmental analysis (NCA) provides
an initial descriptive analysis to assess dose proportionality, characterize general drug
disposition and determine the degree of exposure following the administration of a

drug.

Classical compartmental modeling is a data-driven approach. The body is rep-
resented by a system of compartments, typically one to three, where the drug is
assumed to distribute instantaneously and homogeneously. The structure and param-
eterization of the empirical models are directly dictated by the experimental data
and derived by non-linear fitting means [38]. The choices of the structure of such
models is based on the goodness-of-fit to the experimental data [38]. Fig. 1.5 gives a
representation of the most commonly used empirical compartmental models governed
by first-order distribution processes. The empirical character of these models prevents
from extrapolation beyond the range of doses, dose routes, species and population
used to build them. As for NCA, this approach is rather employed for exploratory

data-analysis.
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Figure 1.4: ADME processes influencing the pharmacokinetics of drugs: Absorption, Distri-

bution, Metabolism, Fxcretion.

Mechanistic PK models consider the system under study with more physiological
meaning and take into consideration some physical and chemical properties of the
drug. Three types of mechanistic modeling approaches are mainly used and applied to
kinetic modeling: systems biology, systems pharmacology and physiologically-based
pharmacokinetic (PBPK) modeling [46-48|. While the two first are still emerging
disciplines in drug discovery and development, PBPK models have been more widely
applied to characterize and predict the biodistribution of small molecule drugs (SMDs)
[39, 48-53].

PBPK models offer a unique framework to use actual knowledge and new under-
standings of the physiological, anatomical and biophysical aspects of the system and
of the biochemical properties of the drug, generated from various in vitro and in
vivo experiments at all stages of the pre-clinical and clinical development [39, 50, 51].
Whole-body PBPK models aim at analyzing, understanding, interpreting and predict-
ing the PK of drugs from cellular level, tissues, organs to the whole organism level.
They consist of multiple compartments that represent the most relevant anatomical
spaces of the body connected by arterial and venous blood flows, as depicted in
Fig. 1.6. The level of granularity of these anatomical spaces depends on the ADME
properties and the mechanism of action of the drug and extends from molecular

reactions at the cellular level to the overall organ or tissue. Commonly, PBPK models,
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Figure 1.5: Most frequently used empirical compartmental models to describe drug dispo-
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the concentration at the site of measurement (plasma, blood, etc.). All kinetic processes are
rate-limited of first-order. The inter-compartmental clearance, @, accounts for inflow and
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Figure 1.6: Topology of a theoretical 10-compartment whole-body PBPK model with hepatic

CLy, and renal CL,e, elimination.

first develop and used for SMDs, include parameters that are drug-dependent, e.g.
lipophilicity, protein binding, ionization, permeability, receptor affinity, hepatocyte
and microsomal clearances and species-dependent, e.g. cardiac output, blood, plasma
and lymph flows, tissue composition, organ volumes, etc. [41, 49, 53]. The mechanistic
nature of PBPK models allows for (i) integration of in vitro, and in vivo data, (ii)
mechanistic understanding of underlying processes, (iii) prediction of the pharma-
cokinetics of different drugs before any in vivo testing, (iv) extrapolation to different
species and populations, (v) analysis of drug-drug interaction and (vi) analysis of
the impact of inter-individual variability on the PK [54]. Beyond the complexity of
PBPK models along with availability and accuracy of their parameterization that
can represent an obstacle to their use to support drug development, they represent
the most advanced modeling approach to mechanistically describe the disposition
of therapeutics at the cellular and/or organ and/or whole body levels. The real
advantages of PBPK modeling are its integrative and translational features which

are a real asset to optimize the transition from pre-clinical to clinical development.

NCA, empirical compartmental modeling and PBPK modeling approaches are used
during drug development to better understand, describe and predict the concentration-

time profiles of monoclonal antibodies. In the sequel, we highlight each of the method-



ology and set the grounds for the need of a PBPK model for mAbs consistent with

available experimental data.

Pharmacokinetic modeling of monoclonal antibodies disposition

Descriptive classical approaches The underlying assumptions of NCA | i.e. linear
drug disposition, mono-exponential decline of the concentrations at the terminal
phase, elimination from the sampling pool, PK parameters constant over time [45],
may not be valid for monoclonal antibodies. Several authors |2, 3, 19, 55|, whom
Dirks and Keizer, report a low Vss for mAbs in human close to the plasma volume (i.e.
5L [56]), at therapeutic dose levels. Specific properties of mAbs, i.e. extravasation
into the tissue via convective transport & transcytosis, saturable binding to their
target and intra-cellular internalization suggest otherwise [19]. In [18], Shah and Betts
report tissue-to-plasma partition coefficients (also named antibody biodistribution
coefficients ABCs). ABCs are directly derived from experimental plasma and tissue
concentrations of several mAbs and range from 3.97 % for muscle to 67.5 % for
thyroid suggesting clear tissue distribution (even if limited) which is not reflected in
NCA.

Empirical modeling is typically applied in the context of population pharmacoki-
netic analysis of clinical data [37, 57]. In their respective reviews of population
analysis of clinical mAbs data, Dirks and Keizer report that a two-compartment
model most commonly describes the disposition of mAbs, showing that different
mAbs present similar PK despite their different target and disease population of
analysis. While the clearance is mainly characterized by a linear process from the
central compartment, some models include a non-linear clearance or parallel linear
and non-linear clearances [2|. The non-linear clearance reflects the elimination of
mAbs via target-mediated mechanisms (at doses below the saturation threshold
of the target) and is usually described by the Michaelis-Menten equation [58, 59].
Due to its empirical nature, mechanistic interpretation of the parameters in the
Michaelis-Menten equation (Km, the Michaelis-Menten constant representing the
concentration of mAb at which the elimination is at half maximum and Vmax, the
maximum elimination rate) and extrapolation to different species are limited.

Semi-mechanistic models have been developed to accommodate the specificities
of mAbs PK. They remain empirical in their structure but integrate aspects of
mechanistic processes. In [60], the two-compartment model describes the PK of the
mADb, 7TE3, in mice non expressing the target. The peripheral compartment refers to
the endosomal space where the saturable binding to FcRn occurs. Unbound species
are cleared from the endosomal space following a linear process and FcRn-bound
mAbs flow back into the central compartment. The explicit consideration of FcRn

binding allows to derive FcRn saturation level. The model predicts that FcRn is
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saturated at baseline level, i.e. by steady-state of endogenous IgG. Incorporating
FcRn-binding into PK models for mAbs is highly valuable specially to investigate the
PK of mAbs with engineered Fc-region, with increased/decreased affinity to FcRn
[61-63]. However, the lack of in vitro data on FcRn binding capacity, trafficking rates
of endosomes and in vivo endosomal concentration of mAbs does not support the
underlying model assumption made by Hansen [60] that the volume of distribution
in the endosomal space is equal to the volume of the central compartment [64]. It
also does not allow to reliably estimate the parameters associated with the peripheral
compartment and link them to physiological meaning. In [64], Xiao proposes a
2-compartment model which also accounts for the non-linear binding to FcRn in
the peripheral compartment, where the resulting fraction unbound of total IgG is
derived from a cutoff value '"MAX’ (that is identical to total FcRn concentration,
fitted to plasma data) and from total IgG concentration which presents the typical
biphasic behavior. Unless the model from Hansen [60], the cutoff model from Xiao
predicts a constant non-specific linear clearance for endogenous IgG baseline levels
with low saturation level of FcRn. The contradictory status of the two models on
the saturation level of FcRn at baseline brings out the difficulty of describing the
interaction of IgG with FcRn without supporting experimental data. The cutoff
model also differs from the previous in the definition of the peripheral compartment
which is a lumped form of the endosomal space with any other space accounting
for peripheral distribution. It, however, still remains empirical in the sense that
the estimated parameters, including the total concentration of FcRn, are apparent
parameters. Therefore, they do not inform on the ’real’ physiological biodistribution
of mAbs which complicates the extrapolation to other species. Lammerts van Bueren
et al. [6] developed a 3-compartment pharmacokinetic model, in cynomolgus monkeys,
which accounts for distribution of zalutumumab, targeting EGFR, in plasma and
interstitial pools. The distribution kinetics is described by first-order processes while
the interaction with EGFR is modeled in terms of Michaelis-Menten parameters,
Bmax and Km, accounting for the non-linear interaction of the mAb with the receptor
system and known as receptor mediated endocytosis (RME). The model accurately
describes experimental plasma data for high and low doses. However, as pointed out
in [65], the parameters Bmax and KM are specific to zalutumumab administered
to cynomolgus monkeys. An analysis of the impact of changes in the drug-receptor
interaction is not feasible with this model which limits its use and interpretation in

other species.

Predictive PBPK approaches for mAbs Over the 20 year-experience of develop-
ment of mAbs as therapeutic agents, knowledge of physiological and pharmacological
processes involved in their biodistribution has considerably expanded (for details, see

above paragraph Pharmacokinetic properties of mAbs) and are integrated in PBPK



models for mAbs [66-74]. We review the different PBPK models for mAbs presently

reported in the literature. The term PBPK model refers to whole-body PBPK model.

The first PBPK model for mAbs was developed in 1986 by Covell and co-workers
for a mAb, non cross-reactive with the mouse [66]. The PBPK model accounts for
(i) distribution to the organs via plasma flows; (ii) trafficking across the capillary
wall described with a single pore model (simplified version of the two-pore model
published by Rippe and Haraldsson [6]); (iii) return from the interstitial space to
the bloodstream via the lymph; (iv) unspecific distribution and elimination in a
‘cell-associated’ space described by first order processes. The model includes six
organs/tissues (liver, gut, lung, spleen, kidney and carcass) and plasma. Each tissue
is divided into 3 sub-compartments accounting for vascular, interstitial and cellular
spaces. While some parameters are estimated for each tissue by fitting to plasma
and tissue data, i.e. the permeability surface area product PS of the pore model,
the apparent volume of distribution in the cellular space V. and the cellular space
associated first order elimination kej;,, with no guarantee of identifiability, others were
arbitrarily fixed, i.e. the exchange rate between interstitial and cellular spaces R to

0.02/min, the value of the reflection coefficient o to 0.95 for all organs and the lymph

flows for visceral and non-visceral organs to 2 and 4 % of plasma flows, respectively.

It is important to mention that these parameter values still serve as references for

development of subsequent PBPK models development.

Later, Baxter and co-workers presented an extension of the previous PBPK model
introducing an additional tumor compartment to describe the PK of mAbs in xenograft
mice also expressing the target in bone [67]. The organ model is simplified to two
sub-compartments, i.e. vascular space and interstitial space. The transcapillary
exchange is described by both convective and diffusive transports according to the
two-pore formalism [6] (where large molecules are 'filtrated’ through large pores of
~ 250 Awhile small molecules are “filtrated’ through small pores of ~ 45 A. Tissue

parameters including large-pore volume flows (Jr, s, €q. 18-32 in [6]), lymph flows and

target-binding association rate constants are fitted to plasma and tissue concentrations.

Tissue plasma flows and total tissue volumes, reported in Table 1 in [67], origin from

literature [75] which validity is questioned in a following commentary |[76] and from

experimental data. They are still used as reference values in PBPK models for mice.

The first PBPK model to incorporate FcRn-IgG interaction was developed by Ferl
and co-workers to describe the biodistribution of an anti-CEA mAb in mice previously
injected with human colorectal cancer cells [68]. The model includes 11 compartments

with 9 tissues/organs (heart, kidney, GI tract, spleen, lungs, bone, muscle, skin and

liver), a plasma compartment for vein and artery plasma and a tumor compartment.

In comparison to Baxter’s model, (i) most of organ compartments are divided into
2 sub-compartments, i.e. vascular space and interstitial space, except for muscle

and skin accounting for the endosomal space and for the tumor accounting for the

11
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tumor tissue space; (ii) a first-order elimination occurs from the liver where significant
degradation of proteins takes place as suggested in [77]; (iii) the saturable binding to
FcRn occurs solely in the endosomal space of muscle and skin based on experimental
data suggesting that FcRn is mainly expressed in those two tissues |78, Fig. 2(left)].
As it remains unknown, the unbound FcRn concentration, along with elimination
rate constants, was estimated with the experimental data. One can question the

physiological value of FcRn concentration and how to scale it to other species.

In a subsequent attempt to gain quantitative insights on FcRn-mediated salvage
mechanism, Garg and Balthasar published a FcRn-based PBPK model for endogenous
IgG and non-antigen specific mAbs [69]. The model allows to replicate plasma and
tissue concentration-time profiles of the mAb, 7E3, in wild-type and FcRn-knockout
mice. Each organ/tissue (except for plasma) is sub-divided into 3 compartments, i.e.
vascular, interstitial spaces and an endosomal compartment where endogenous IgG
and therapeutic mAb compete for binding to FcRn. Tissue distribution is described
by fluid-phase endocytosis (also named pinocytosis) [79-81] and convective transport
from the vascular space in the interstitium and back to the central circulation via the
lymphatic system. Pinocytosis into endosomes and transcytosis to the cell surface
is represented by first-order rate constants. The convective transport through the
vasculature is described with a single pore model. While most of physiological
parameter are obtained from previous PBPK models [66, 67] (cited above), others
were empirically derived, i.e. endosomal volumes, vascular reflection coefficients, tissue
FcRn capacities, tissue intrinsic clearances from various references [60, 66, 81, 82]
and others were fitted to plasma data solely, i.e. first-order rate constants in relation

to trafficking in the endosomes.

The PBPK model proposed par Davda and colleagues offers an alternative tissue
model composed of a vascular and an interstitial space. The model accounts for a tu-
mor compartment to describe the biodistribution data of mAb CC49, an anti-antigen
TAG-72, expressed by mucinous adenocarcinomas and cross-reactive in xenograft
mice. The linear component of the clearance is described by a catabolic clearance
solely occurring in the endosomal space of carcass and liver where FcRn-binding
is not explicitly considered [70]. The two-pore model from Rippe and Haraldsson
[6] is used to describe the transport of mAbs across the capillary wall. Unknown
parameters related to the two-pore model, linear clearance, and lymph flows were
iteratively fitted to biodistribution data. The model is sensitive to changes in most
of the fitted parameters, i.e. tumor volume, fluid recirculation rate, lymph flow
rate, small pore vascular permeability, and partition coefficients. Identifiability of
parameters in PBPK models are frequently encountered problems when they are

over-parameterized compared to the data available.



Following published PBPK models based on the work from Garg and Balthasar

[69], increase the level of details of the tissue model.

Urva and co-workers [71] introduced a lymph node compartment playing the role
of transit compartment which physiological volume is arbitrarily fixed to the volume
of spleen. Missing parameters related to the endosomal space and lymph node were

fitted to plasma data solely.

Chen and Balthasar [72]| represent the endosomal space with a catenary model
allowing representation of the time-dependent acidification during endosomal traffick-
ing (from pH=7.4 at the initiation of pinocytosis to pH=6 in the late endosome). The
number of transit compartments is set to 4 in which FcRn binding is not considered
at equilibrium. The catenary PBPK model differs from previous models as it (i)
incorporates tissue-specific FcRn expression based on unpublished FcRn-mRNA data;
(ii) modulates the bioavailabilty from the lymph; (iii) considers uptake rates in the
tissue that are derived from published pinocytosis rates for mono-layers endothelial
cells [83-85]; (iv) does not consider FcRn-binding at equilibrium but accounts for
association, kon, and dissociation, koff, rate constants at different pH. The catenary
model allows to address the impact of FcRn-binding affinity variations which is
valuable for better understanding of the impact on the biodistribution of mAbs with
Fc-engineered variants. Interestingly, it predicts 1.5-fold increase in plasma half-life
while equilibrium models predict up to 7-fold increase, for a 100-fold increase in FcRn
affinity. The missing parameters, i.e. constant endogenous IgG production rate, coef-
ficients accounting for non-FcRn-dependent tissue uptake (therapeutic mAb-specific)
and the transit time in the lymph node compartment, are fitted to plasma data solely
and the authors report that different sets of those parameters could be estimated

which is typically related to a problem of identifiability for over-parameterized models.

Shah and Betts 73] present a platform PBPK model which intends to characterize
the biodistribution of mAbs in mice, rats, monkeys and human, given a set of only
four unknown parameters, i.e. FcRn concentration, the rate of pinocytosis, CLyp, the
endosomal degradation rate constant, kqes and the scaling factor to derive the lymph
flow of lymph node from plasma flow, Cynpp. Values of vascular and lymphatic
reflection coefficients, ovas and oiympn respectively, were set based on literature review
of physiologic upper limits of pore size of blood capillaries [86]. The underlying
assumptions for this platform PBPK model are that: These parameters are conserved
between different species and that binding to FcRn is described by kon and koff rates
and is not impacted by endogenous IgG that is not considered in this model. While
the model provides reasonable predictions of plasma and tissue concentration-time
profiles of several mAbs, the authors report that the model is highly sensitive to kqeg,
kog and notably sensitive to FcRn, kon, 0vas and CLy, which might be linked to the

above-mentioned assumptions.
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Cao, Bathasar and Jusko [74] provide an alternative minimalistic PBPK model
which aims at describing general attributes of the biodistribution of mAbs, i.e (i)
overall plasma kinetics; (ii) extra-vascular distribution represented by two interstitial
spaces accounting for two groups of tissues classified as leaky and tight; (iii) non-
specific clearance from plasma and/or from interstitial compartments. The structure
of the model is based on general considerations and does not allow to describe
experimental concentration-time profiles in the tissues.

Reduction of PBPK model dimensionality has been previously mathematically
derived for SMDs [87-91]. Such derivation still need to be applied to full PBPK
model for mAbs in order to derive minimal PBPK models fully consistent with the

underlying complex mechanisms involved in mAbs biodistribution.

From their intrinsic mechanistic nature, there is a lot of interest in developing
PBPK models for mAbs to answer an array of questions related to the disposition and
efficacy of therapeutic mAbs. Mechanistically, most of the recent models take into
account the uptake of the mADb into the endosomal space by fluid phase endocytosis
and also the recycling/protection of catabolism of IgGs by FcRn within the endosomal
space, under some, more or less legitimate, assumptions. Multiplicity of assumptions
and potential error prorogation may lead to liabilities to model misspecification and
result in misinterpretation. More work is needed to reduce to its minimum the number

of assumptions made in whole-body PBPK models for mAbs.



Objectives

Despite growing understanding of molecular processes involved in mAbs disposition
[3, 55|, there is still no clear consensus on the structure and parameterization of
physiologically-based pharmacokinetic models [41] nor on the interpretation of classi-

cal compartment models [64].

Published PBPK models for mAbs are quite heterogeneous with respect to their
representation of the physiology and the parameterization of the mechanisms involved
in mAbs disposition [66-74]|, e.g., regarding (i) the definition of the relevant tissue
spaces (vascular and interstitial tissue spaces or additionally an endosomal compart-
ment); (ii) how to model extravasation (by diffusive and convective transport or only
by convective transport); (iii) the relevance of FcRn (whether to explicitly account
for the interaction with FcRn and whether to use an equilibrium model or a detailed
binding kinetics, whether to account for pH-dependent binding); (iv) the importance
to explicitly account for the endogenous IgGs; (v) the relevance to include a lymph

node compartment; or (vi) how to describe the clearance of mAbs.

A clearer understanding of the physiological processes to be explicitly considered
and the necessary assumptions to make within PBPK models for mAbs are required
to increase their use in drug development, to better understand the mechanisms
governing the disposition of monoclonal antibodies from the cellular level to the
whole-body level and to translate the knowledge accumulated in discovery and early

development into relevant animal species and ultimately in human.

The PK of mAbs is commonly described by a classical 2-compartment disposition
model [3|, with central and peripheral compartments typically associated with plasma
and interstitial space, respectively. Description of mAb elimination processes in
empirical models is quite diverse (i.e. either linear [92] or non-linear [93, 94] or
parallel linear and non-linear clearances [95, 96|). Non-linearity in the PK is mainly
attributed to the saturable binding to the target |65, 97-101]. Much less is known
about the physiological mechanisms involved in the linear elimination. Monoclonal
antibodies similar to IgGs present common structural properties and molecular mech-
anisms, independent of target-binding. Elimination in lysosomes and protection
from elimination by binding to FcRn is known to be a major process influencing the
PK of mAbs. However, it is not obvious, how to link the non-linear FcRn-mediated

protection from elimination in the endosomes to commonly used linear clearance terms
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in classical compartment models. The derivation of low-dimensional compartment
and covariate models consistent with PBPK models for mAbs would greatly benefit
the mechanistic interpretation of classical compartment models typically developed

in the the population context during late stage drug development.

The focus of the thesis is to derive mechanistic modeling approaches to support
the development of monoclonal antibodies. The thesis is formulated around three

thematics:

e the development of a whole-body PBPK model, consistent with the current

knowledge of processes governing the disposition of mAbs;

e the extension of the lumping approach previously published for SMDs [91] to

mAbs to carry the mechanistic knowledge into classical compartment models;

e the analysis of the predictable impact of variations in anatomical and physiolog-
ical parameters of PBPK models typically used as covariates for PK parameters

derived from classical compartment models.

We first develop whole-body PBPK models and highlight the need of model
simplification to allow for stable parameter estimation, given currently available
plasma and tissue data. A detailed PBPK model accounts for FcRn binding and
endogenous IgG while an intermediate PBPK model implicitly considers binding to
FcRn.

Based on time scale considerations, we propose a simplified PBPK model for mAbs
while retaining the mechanistic knowledge embedded in the current experimental
data. We also illustrate that the simplified PBPK model can easily be extended to
account for a target and therefore describe the non-linear clearance due to mAb-target
interaction.

We define the link between empirical PK and PBPK models for mAbs to carry
the mechanistic knowledge into low-dimensional compartment models allowing for
mechanistic interpretation of the PK parameters of classical compartmental models.

We finally make use of the mechanistic knowledge present in whole-body PBPK
models in order to analyze the influence of variability of anatomical and physio-
logical parameters on covariate models typically used in the context of population

pharmacokinetic analysis.



Full PBPK Models for mAbs

To better understand the physiological processes to be explicitly considered and the
necessary assumptions to make within PBPK models for mAbs, we describe, in this
chapter, full PBPK models which integrate detailed tissue models to characterize
the disposition of endogenous IgG and therapeutic mAb similar to IgG1. We further
study the importance and the impact of the model parameterization to explicitly

account for FcRn-IgG interaction.

3.1 Detailed PBPK model

The whole-body detailed PBPK model intending to describe the disposition of endoge-
nous IgG and mAbD in mice is based on the extension of the PBPK model published
by Garg in [69]. The PBPK model (Fig. 3.1(left)) comprises 32 compartments rep-
resenting the most relevant anatomical spaces involved in the disposition of IgGs:
venous and arterial plasma as well as plasma, endosomal and interstitial spaces of
lung, adipose, bone, heart, kidney, muscle, skin, gut, spleen and liver. Furthermore,

the presence of endogenous IgG in addition to the therapeutic mAb is considered.

3.1.1 Modeling endogenous IgG and mAb disposition

The tissue model comprises the vascular, endosomal and interstitial sub-compartments
with the corresponding volumes V,, Ve and V;. The following processes relevant for
endogenous and therapeutic antibodies distribution and elimination are considered:
(i) body distribution via the plasma flow; (ii) transport into the interstitial space
of tissues via convective transport through the para-cellular pores in the vascular
endothelium (simplified two-pore model, i.e. one-pore formalism); (iii) convective
transport via the lymph from the interstitial space in the plasma circulation; (iv)
uptake from the plasma and interstitial spaces into the endosomal compartment
via fluid phase endocytosis; (v) saturable binding to FcRn in the endosome, (vi)
salvage of FcRn-bound complexes to the plasma and interstitial spaces; (vii) lysosomal
degradation of the unbound species in the endothelium. A detailed overview of all

considered processes and the corresponding parameters can be found in Fig. 3.1(right).
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Figure 3.1: Topology of the detailed PBPK model for mAbs. Left: Structure of the detailed
PBPK model for mAbs. Organs, tissues and plasma spaces are interconnected by the plasma
flows (red and blue solid arrows) and the lymphatic system (green dashed arrows). Right:
Detailed organ model comprising a plasma compartment, the endosomal and interstitial
spaces. Q and L represent plasma and lymph flows, 0vas and oiympn denote the vascular and
lymphatic reflection coefficients, ki, is the rate constant of uptake of IgGs from the plasma or
interstitial space into the endosomal space. Koy is the recycling rate constant of IgGs from
the endosomal space (with a fraction FR recycled into the vascular space), while fu - CL,

denotes the linear clearance from the endosomal space.
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3.1 Detailed PBPK model

Based on previously developed whole-body detailed PBPK models for mAbs
[67, 69, 70], the rates of change of endogenous IgG and mAb concentrations are given
by the following system of ordinary differential equations with C = IgG or C = mAb

(the abbreviations of names for organs/tissues are given in Table 3.2):

d
Vvenacven = + Jprod
+ Qven : (Cin,ven - CVen) + Z Lis - (1 - Ulymph) : Ci,tis (31)
tis
tis = lun, adi, bon, gut, hea, kid, liv, mus, ski, spl
d
Vartacart = (Qlun - Llun) : Cp,lun - Qart . Cart (32)
d
Vp,tisacp,tis = Qtis : Cin,tis - (Qtis - Ltis) : Cp,‘cis
— Lyis - (1 - Uvas) : Cp,tis — Kin - Vp,tis : Cp,tis (33)
+ FR - koys (1 - futis) : Ve,tis : Ce,tis
d
Ve,tisdice,tis = + kin : Vp,tis : Cp,tis + kin ’ Vi,tis : Ci,tis
t (3.4)
— kout - (1 - futis) : Ve,tis : Ce,tis - CLe,tis - fugss - Ce,tis
d
Vi,tisaci,tis = + Ly - (1 - Uvas) : Cp,tis

— Liis - (1 = 01ymph) - Citis — kin - Vitis - Ci,tis (35)
+ (1 — FR) “Kout - (1 - futis) : Ve,tis : Ce,tis'

In the above equations, the subscripted concentrations Cyen and C,y¢ refer to
the total plasma concentration in vein and artery, while C,, Ce and C; refer to the
total concentration in the tissue vascular, endosomal, and interstitial spaces. The
corresponding compartment volumes are Vyen, Vart, Vp, Ve and Vi. The plasma and
lymph flows are denoted by Q and L. The parameters o, and ojympn refer to the
vascular and lymphatic reflection coefficients; ki, and kqyt to the endosomal uptake
and the recirculation rate constants; FR to the recirculation fraction of FcRn-bound
antibody from the endosomal space into the vascular space. The unbound antibody
in the endosomal space is subject to elimination following a linear clearance CLe.
The fraction unbound in endosome is denoted by fu and defined as in eq. (3.8). For
endogenous IgG, there is an additional constant rate of production gproq, Which is set
to zero for therapeutic mAbs.

For all tissues except vein, artery, liver and lung, the inflowing concentration Cy, is

given by

Cin,tis = Cart .
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For lung, vein and liver, it is

Cin,lun = Cven7

1
Cin,ven = Z (Qtis - Ltis) . Cp,tisa
Qven tis

tis = adi, bon, hea, kid, liv, mus, ski

Cinliv = ! (Z(Qtis — Ltis) - Cptis + <Qliv - Z(Qtis - Ltis)) . Cart>-

th tis tis

tis = spl, gut

The mADb is administered via IV bolus. For the vein, the initial condition of the above
system of ODEs is set to
dose

Cven (O) = vV y

while we set Cept(0) = 0 for all other compartments "cmt’.

3.1.2 Model parameterization

A description of the parameters entering the detailed PBPK model is given in Ta-
ble 3.1. Physiological and anatomical data were taken from [67, 69, 75, 102, 103]
and are summarized in Table 3.2. Note that in [67, 69|, the plasma space of each
organ/tissue is simplistically noted 'vascular space’. However, in the original work |67,
p. 1518, 4th paragraph]|, the cited values are reported as 'vascular (plasma) space’.
Hence, the plasma space in the present PBPK model is equivalent to the values of

the ’vascular space’ in [67, 69].

Unless PBPK models for small molecule drugs, PBPK models for monoclonal
antibodies are parameterized with parameters which values remain unknown due to
the lack of experimental data, e.g. in-vitro, in-vivo or imaging data. In the detailed
PBPK model for mAbs, these parameters are the total FcRn capacity FcRnyt, the
rate constant of uptake into the endosomal compartment ki, the outflow rate constant
from the endosomal compartment k¢, the endosomal degradation rate constant kgeg,
the fraction of recirculated bound antibody FR, and the zero-order production rate
of endogenous IgG gproa (see Fig. 3.1(right) for an overview of all model parameters).
Considering the unknown tissue-dependent parameters would result in estimating
61 parameters. Commonly in PBPK models for mAbs, FcRnot, Kin, kout Kdeg are
assumed tissue-independent and FR is fixed to its reported value in [69] . Appendices
A.2 and A.3.1 provide the source of experimental data used for model evaluation and

an overview of the methodology for parameter estimation.
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Table 3.1: Detailed PBPK model for mAbs in mice: Summary of parameters

Parameter Ref. Description

V. ml Tab. 3.2 T = p, i, e; plasma, interstitial, endo-

somal volume (tissue-specific)

Q ml/min Tab. 3.2 plasma flow (tissue-specific)

L ml/min Tab. 3.2 lymph flow (tissue-specific)

Ovas 0.95 |66, 69] vascular reflection coefficient

Olymph 0.20 [69] lymphatic reflection coefficient

kin 1/day - estimated rate constant of endosomal uptake
kout 1/day - estimated recirculation rate constant of FcRn-

bound antibody

FR 0.72 (69| fraction of recirculated bound anti-
body

Kdeg 1/day - estimated degradation rate constant of free an-
tibody from endosomal space (tissue-
specific)

FcRn nM - estimated FcRn capacity

Kp nM 4.80 [21] dissociation constant of the antibody-
FcRn binding

prod nmol /day - estimated zero-order rate constant of endoge-

nous IgG production

In the sequel, we present the founding principles of the simplification of PBPK
models for mAbs for the development of a simplified PBPK model to characterize
the disposition of mAbs while integrating pharmacologically relevant processes but

parameterized by a lesser number of parameters.

3.2 FcRn - IgG interaction

Binding to FcRn plays an important role in the homeostasis of endogenous IgG and
the observed long half-life of mAbs in plasma (for details, see paragraph Pharma-
cokinetic properties of mAbs). Understanding FcRn-IgG interaction sheds light on
the mechanisms of IgG transport. IgGs bind via their Fc portion with high affinity
to FcRn at an acidic pH (< 6.5) but not at a physiological pH. In the latter, we
focus on FcRn-mediated salvage which occurs primarily via formation of circulating

endosomes in endothelial cells.

Most of published detailed PBPK models |68, 69, 71-73| explicitly consider the

binding to FcRn and describe the elimination of FcRn-unbound mAbs from the
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Table 3.2: Detailed PBPK model for mAbs in mice: Tissue-dependent parameters

Viot Vi Vi VeI Q" L

mL mL mL  107?mL mL/min 10~2mL/min
Lung (lun)  0.191¢ 0.019* 0.057*  0.096  4.380% 1.752
Adipose (adi)  1.750° 0.001¢ 0.236¢  0.875 0.307¢ 0.124
Bone (bon) 1.500¢ 0.080* 0.280* 0.750  0.170% 0.068
Cut (gut)  3.450¢ 0.100* 0.600¢  1.725  0.900% 0.180
Heart  (hea) 0.133¢ 0.007* 0.019° 0.067  0.280° 0.112
Kidney (kid) 0.298* 0.030* 0.101*  0.149  0.800% 0.320
Liver (liv)  0.951¢ 0.095* 0.190*  0.476  1.100° 0.220
Muscle  (mus) 7.924% 0.150* 1.032* 3.962  0.800% 0.320
Skin (ski)  2.940% 0.200® 0.999*  1.470  1.210° 0.484
Spleen  (spl)  0.100¢ 0.010¢ 0.020°  0.050  0.050% 0.010
Artery  (art)  0.2197 0.2197 - - 4.380% -
Vein (ven) 0.5367 0.5367 - - 4.380% -

“from [67, 69]. Note that in [67, 69], the plasma space of each organ/tissue is simplistically denoted
as 'vascular space’. See text for more details

7% of total body weight [102] assuming a body weight of 25 g and a tissue density of 1 g/ml
“total vascular volume (Vvas) in adipose is 1.00 % of total volume (measured in rats but assumed to
be species-independent for mammals) [103]; V, = (1 — het) Vyas with het = 0.45 [75]

dadipose: 1.35 % of total volume [103]

°plasma flow in adipose tissue accounts for 7.0% of total plasma flow [102]

ftotal plasma volume Vplasma = 1.25 mL (assuming a body weight of 25 g) [75],

Vart = 0.29 - (Vplasma — Y Vpitis); Vven = 0.71+ (Vplasma — Y Vptis) [102]

9assumed to be 0.5 % of tissue volume [69]

"the sum of individual organ plasma flows [67, 69, 102] exceeds the observed total plasma flow of
vein, lung, and artery [75, for hct = 0.45]. For consistency, we set the total plasma flow to the sum
of all plasma flows entering the vein.

‘assumed to be 2 % and 4 % of plasma flow for visceral and non-visceral organs, respectively [69]



3.2 FcRn - IgG interaction

o o
=) ®
T T

o
~

FcRn saturation level
1gG fraction unbound

0.2f

P T S S S S 0 2 4 6 8 10
1gG / FcRn 19G / FcRn

Figure 3.2: FcRn saturation level (left) and fraction unbound of IgG (right) as a function
of the total IgG concentration (stated in units of total FcRn). Due to the high binding
affinity of IgG to FcRn, the FcRn saturation level increases practically linearly with IgG
concentration, until FcRn is fully saturated. As a consequence, the fraction unbound fuisc
of IgG is practically zero until IgG concentration exceeds total FcRn concentration, when it
follows the form furzg = 1 — FcRn/IgG. We choose FcRn = le + 5 nM and Kp = 4.8nlM ,

in line with values reported in Table 4.4.

endosomal space with a first-order rate constant. Here, we illustrate that under
commonly encountered (dosing) conditions, the clearance of mAbs in the endosomal
space can be expected to be linear, regardless the level of saturation of FcRn that

protects IgGs from degradation.

3.2.1 Role of FcRn and endogenous IgG in modeling mAbs
disposition: From saturable IgG-FcRn interaction to linear
mADb clearance

Denoting by IgG, a1, and IgG,, 4, the therapeutic and endogenous IgG concentrations

in the endosomal space of endothelial cells, the resulting total IgG concentration is

given by
IgG = IgGepngo + 18Gap-

In the endosomal space, free IgG binds to free FcRn with a dissociation constant
Kp forming a IgG - FcRn complex. While the complex is recycled to the interstitial

and/or plasma space, free IgG is eventually catabolized in the lysosomes:

IgG, + FcRn, Ko, IgG;, — recycling
ke .
IgG, ~%  catabolism

To study the IgG - mAD interaction in more details, free FcRn is denoted by FcRny,,
free and FcRn-bound IgG by IgG,, and IgG,,, respectively. Consequently, IgG,, is the

sum of the free endogenous and free therapeutic mAb. The two conservation relations
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IgG = IgG, + IgGy, and FcRn = FcRn, + IgGy, hold.

In the sequel, we make the assumption that Kp values of IgG and IgG At

endo
are comparable. This is a reasonable assumption for most mAbs—however, it does

not hold for mAbs with their Fc part engineered for high binding affinity to FcRn.

Binding processes are typically fast compared to the time-scale of other phar-
macokinetic processes. Assuming a quasi-steady state for FcRn binding yields
IgG,, - FcRn, = Kp - IgGy,.

Solving for the bound concentration and exploiting the conservation relations yields

FcRn,

oGy = ——
&% = K ¥ FeRny

IgG. (3.6)

Exploiting again the second conservation relation, it results

FcRn,
F =FcRn, + ——+—— -1
cRn cRny, + Kp + FcRny eG
and finally
1
FcRny, = 3 (FCRneﬁ‘ + /(FcRneg)? + 4Kp - FcRn) (3.7)

with FcRneg = (FcRn — IgG — Kp). This allows to determine the fraction unbound
furgq based on eq. (3.6) as

IgG, - IgGy, Kp
IgG IgG  Kp + FcRn,

fugge = (3.8)

with FcRny, defined in eq. (3.7).

The level of saturation of FcRn is defined as

FcRn — FcRn,

FcRn saturation level =
cRn saturation leve FeRn

Figure 3.2 (left) shows the FcRn-saturation level as a function of the total IgG concen-
tration, expressed in terms of units of total FcRn. One clearly identifies two regimes:
(i) for IgG lower than FcRn, the saturation level of FcRn is linearly increasing with
increasing IgG concentration; (ii) for IgG larger than total FcRn, the FcRn-saturation
level appears to be 1. As shown below in section 3.2.2; this behavior is theoretically
justified based on the reasonable assumption that Kp < FcRn, i.e., that IgG has a
very high affinity to FcRn. This assumption is in line with the physiological function
of FcRn. For the mAb 7E3 in mice, the estimated total FcRn concentration, from a

semi-mechanistic 2-compartment model, is 2.2 - 10° nM, while the reported Kp is 4.8
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nM (see Table 4.4), thereby supporting the assumption Kp < FcRn.

As shown in Figure 3.2 (right), the fraction unbound fur,g also exhibits two
regimes: (i) a phase of IgG concentration below FcRn, where fuyyq is almost zero,
and (ii) a phase of hyperbolic increase for IgG above FcRn. This behavior is again

justified theoretically, as shown in section 3.2.2 and summarizes as

0; IgG < FcRn

1- Fl‘gén; IgG > FcRn '

fngG =

Without the underlying theoretical justification, such a model is proposed in [64],
termed the cutoff model, based on some cutoff value 'MAX’ (that is identified to
total FcRn capacity).

The above derivations have direct impact on modeling the endosomal clearance
and the FcRn-mediated salvage mechanism for a large number of mAbs. If the
total IgG concentration is dominated by endogenous IgG and hardly perturbed
by the administration of therapeutic IgG, i.e, IgG A, < IgG which implies

endo»

IgG ~ IgGg,q0, then the fraction unbound of mAb is constant, i.e.,
fupman = fulgg ~ fugeq, ,, = const. (3.9)

Such a situation is quite common for many mAbs. In mice, the baseline concentration
of endogenous plasma IgG is reported to be 1.47e+4 nM in [60] and [104]. In [64],
Xiao shows that the administration of an i.v. bolus of 8 mg/kg mAb (7E3) does not
affect the overall endogenous plasma level of IgG. Under such conditions, the extent
of saturation of FcRn and consequently the fraction unbound fu,,ap only depend on
the endogenous IgG concentration; in other words, it is set by the endogenous IgG

levels.

3.2.2 Theoretical derivation of FcRn saturation level and fraction
unbound of mAb

The special form of the dependence of the FcRn saturation level, i.e.

FcRny,
FcRn

on the total IgG concentration is justified from eq. (3.7). To this end, we introduce

Kp 5 1gG
=4/ d z=1-€— .
““VFRn ¢ 7 ¢~ FeRn

Due to the tight binding of endogenous IgG and mAb to FcRn, i.e. Kp <« FcRn,

one can make the reasonable assumption that € is very small, i.e., ¢ < 1. For 7E3 in

FcRn saturation level =1 —

(3.10)

the parameters
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mice, we estimate ¢ < 51073 from Table 4.4. Dividing in eq. (3.7) both sides by
FcRn yields the fraction unbound of FcRn:

FcRn, 1 , IgG , IgG\* .
FcRn 2 L-e FcRn+\/<1 “ ” FcRn e (3:11)

or FcRn,/FcRn = 1/2 - (z + V22 + 4€2). When IgG/FcRn = (1 — €?), i.e., when the

(total) IgG concentration is approximately equal to the (total) FcRn concentration,

it is x = 0 and therefore FcRn,/FcRn = e. The larger the IgG concentration, the
larger the bound fraction of FcRn and the smaller the unbound fraction of FcRn.
Thus, IgG/FcRn > (1 — €) implies

FcRny, <e

3.12
FcRn — ( )
This finally results in the lower bound of FcRn saturation level, such that
FcR:
FcRn saturation level = 1 — —— % > 1 ¢ (3.13)

FcRn —
for IgG/FcRn > (1 —¢). For small IgG concentrations with € < z in the upper bound,

we use a simple estimate of the square-root term vz2 + 4€2 < v/z2 + 4xe and apply

the Taylor expansion to the first order

Vaz+der = x4+ 2

for z > e. This results in
FcRn, < 1_¢ IgG

FcRn ~ = ¢  FeRn @ ©
Also, neglecting the 4¢? term in the square root in eq. (3.11) yields
1 IgG < FcRnu.
FcRn = FcRn
From these two inequalities and eq. (3.10) we finally obtain
IeG IeG
8% .. (1 — €) < FcRn saturation level < +é? (3.16)

FcRn FcRn
for > ¢, ie., IgG/FcRn < 1 — € — ¢2. Taken together, egs. (3.13) and (3.16)

theoretically justify the peculiar form of the FcRn-saturation level depicted in Fig. 3.2
(left).

The above derivation also permits to theoretically justify the dependence of the
fraction unbound fureg on IgG, as shown in Fig. 3.2 (right). For IgG/FcRn = (1 —€?)
it is FcRn, /FcRn = € as before, and

KD 62
fureq = —
Kp + FcRn, €2+ FcRn,/FcRn
€2 €
= —— =——<e.
e2+e 1+e€
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Since furgq decreases monotonically with decreasing IgG concentration, the bound
furgg < € continues to hold for all IgG < (1 — €) - FcRn.

For larger IgG concentrations, we consider the relation

IgG, IgG — (FcRn — FcRny)

IgG IeG

1 FcRn n FcRn, ‘ FcRn
IgG FcRn IgG '’

fu gG =

where IgGy = FcRnp, = FcRn — FcRny,.

For IgG/FcRn > (1 — €2) together with (3.12), it yields the inequality

1 FcRn <t <1 FcRn
_ 2o e _
oG — ¢ IgG

+e-(1—e), (3.19)
where the first inequality trivially follows from eq. (3.18). Taken together, eqs. (3.17)

and (3.19) theoretically justify the peculiar form of the fraction unbound of IgG
depicted in Fig. 3.2 (right).

3.3 Intermediate PBPK model

Herein, we provide the rational to simplify the tissue model with implicit consideration

of FcRn-binding in the endosomal space.

plasma
QL c . 9
P
kin.Vpv FR.Q ..
endosome CLint,
L'(l'cvas) Ce
3
| EaV||aFRLQ,.
interstitium
(I_"_'S.l_'_f’.lxan.nh). C
i

Figure 3.3: Intermediate tissue model comprising a plasma compartment, endosomal and
interstitial spaces. Q and L represent plasma and lymph flows, ov.s and oiympn denote the
vascular and lymphatic reflection coefficients, ki, is the rate constant of uptake of endogenous
IgG and mAb from the plasma or interstitial space into the endosomal space. Qoyy 1S the
total FcRn-mediated outflow from the endosomal space (with a fraction FR recycled into the

vascular space), while CLint, denotes the linear endosomal intrinsic clearance.
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3.3.1 Intermediate complexity of the PBPK model

The authors in [69] explicitly consider endogenous IgG in their model—in addition
to therapeutic mAb to account for the competition for binding to FcRn. Based on
the observation preceding eq. (3.9) and thereon based derivations, the detailed tissue
model is greatly simplified by implicitly considering endogenous IgG. It is indeed
assumed that the fraction unbound of mAb in the endosome is constant. Therefore,

we define the total FcRn-mediated outflow and the endosomal intrinsic clearance as

Qout = kout . (1 - fu) . Ve
CLint, = CLg-fu.

This is the basis for an intermediate complexity of a PBPK model describing mAbs
disposition.

The intermediate PBPK model comprises 32 compartments representing the most
relevant anatomical spaces involved in mAb disposition (see Fig. 3.1, left): venous
(ven) and arterial (art) plasma as well as the vascular plasma (p), endosomal (e) and
interstitial (i) spaces of ten tissues, i.e. lung, adipose, bone, heart, kidney, muscle,
skin, gut, spleen and liver (see Fig. 3.3 for the intermediate tissue model). In addition
to the processes at the tissue level, the model incorporates the distribution of mAb
via the plasma flow and the convective transport via lymph flow from the interstitial
spaces to the plasma circulation. The rates of change of all concentrations are given

by

Vvenacven = + Qven . (Cin,ven - CVen)
+ Z Ltis : (1 - U]ymph) : Ci,tis (320)
tis
tis = lun, adi, bon, gut, hea, kid, liv, mus, ski, spl
d
Vart&Cart = (Qlun - Llun) : Cp,lun - Qart . Cart (321)
d
Vp,tisacp,tis = Quis - Cintis — (Qtis — Liis) - Cp tis
- Ltis : (1 - Jvas) : Cp,tis - kin . Vp,tis : Cp,tis (322)
+FR - Qout,tis . Ce,tis
d
Vc,tisdicc,tis = + kin : Vp,tis ' Cp,tis + kin ' Vi,tis ' Ci,tis
t (3.23)
- Qout,tis : Ce,tis — CLint, - Ce,tis
d
Vi,tisaci,tis = + Ly - (1 - Uvas) : Cp,tis

— Ltis - (1 = otymph) - Citis — Kin * Vijgis - Citis (3.24)
+ (1 - FR) ’ Qout,tis : Ce,tis‘
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For all tissues except vein, artery, liver and lung, the inflowing concentration Cj,
is given by Cin,tis = Caurt. For lung, it is Cin,lun = Cyen-

For vein, it is

Qvencin,ven = Z (Qtis - Ltis) : Cp,tis
tis
with tis = adi, bon, hea, kid, liv, mus, ski.

For liver, it is

Qlivcin,liv = Z(Qtis - Ltis) : Cp,tis

tis

+(Qiv =" Qui) - Can

tis

with tis = gut, spl. As previously described, the mAb 7E3 is administered via i.v.
bolus. For vein, the initial condition of the above system of differential equations is

set to

dose
Cven (0) = Vv 5

while Cemt(0) = 0 is set for all other compartments "cmt’.

3.3.2 Model parameterization

A description of all parameters of the intermediate PBPK model is given in Table 3.3.

Physiological and anatomical data are reported in Table 3.2.

Given the new parameterization of the tissue model, the intermediate PBPK
model is ’decoupled’ to describe data in FcRn-KO and WT mice. For FcRn-KO mice,
the endosomal rate constant of uptake kj, and the tissue-specific endosomal intrinsic
clearance, CLint, y, are estimated by fitting the PBPK model to FcRn-KO data only.
For WT mice, the unknown parameters are (i) the rate constant of uptake in the
endosomal space, kin; (ii) the tissue-specific endosomal intrinsic clearance, CLinte wt;
(iii) the tissue-specific total FcRn-mediated outflow from the endosomal space, Qout.
All parameters are estimated simultaneously by fitting the intermediate PBPK model
stated in egs. (3.20)-(3.24) to experimental plasma and tissue data in mice for the
mADb, 7TE3. The experimental data are treated as described in appendix A.2. We
further assume that kj, is tissue-independent. The fraction of recirculated bound
antibody is set to FR = 0.715, as published in [69]. The number of remaining

unknown parameters is 11 for FcRn-KO mice and 21 for WT mice.
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Table 3.3: Intermediate PBPK model for mAbs in mice: Summary of parameters

Parameter Ref. Description

V, ml Tab. 3.2 T = p,1i,e; plasma, interstitial, endo-

somal volume (tissue-specific)

Q ml/min Tab. 3.2 plasma flow (tissue-specific)

L ml/min Tab. 3.2 lymph flow (tissue-specific)

Ovas 0.95 [66, 69| vascular reflection coefficient

Olymph 0.20 [69] lymphatic reflection coefficient

kin 1/day - estimated endosomal uptake rate

Qout ml/min - estimated total FcRn-mediated outflow (tissue-
specific)

FR 0.72 [69] fraction of recirculated bound anti-

body (see also Discussion section for
comment on identifiability)
CLinte ml/min - estimated endosomal intrinsic clearance (tissue-

specific)

3.3.3 Parameter identifiability

Estimation of the unknown parameters is highly sensitive to initial values and several
sets of parameters could accurately characterize the venous plasma data and the
tissue data. A more detailed description of the methodology for parameter estimation
and model performance is presented in Appendices A.4.1 and A.4.2. When sensitive
to initial values, the estimated parameters have to be read and interpreted with
caution. One might argue against the validity of such a PBPK model. For monoclonal
antibodies, given common experimental data (only plasma, or plasma and tissue
data), it appears that it is not possible to reliably identify the unknown parameters
and infer which tissues are eliminating. Therefore, it is very unlikely that the level of

detailedness of the tissue model can be supported by commonly available data.

3.4 Discussion

In this chapter, we assess the relevance to explicitly integrate the binding of endogenous
IgG and the therapeutic mAb to FcRn in detailed PBPK models, in absence of target.
The detailed PBPK model published in [69] is extended and explicitly accounts for the
non-linear and competitive binding of endogenous IgG and mAb to FcRn. It enables

to analyze the relation between FcRn saturation level and steady-state endogenous
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IgG level and its impact on mAb disposition. While the analysis is based on the mAb

7E3 in mice, the conclusions drawn hold under more general conditions.

Binding to FcRn is a potentially saturable process, giving rise to the question
whether FcRn binding has to be, if at all, included as a non-linear or a linear process
in pharmacokinetic models. Based on the detailed PBPK model of therapeutic
mADb and endogenous IgG disposition in mice, we demonstrate that mAb binding to
FcRn can be considered linear if (i) both mAb and endogenous IgG have comparable
affinities to FcRn; and (ii) IgG o < IgGepgo- In mice, the baseline concentration
of endogenous IgG in plasma is reported to be 1.47e+4 nM in [60, 104]. In [64],
Xiao shows that the administration of an i.v. bolus of 8 mg/kg therapeutic IgG
(TE3) does not affect the plasma and endosomal levels of endogenous IgG. This
implies that mAby.; < endogenous IgG;,; in the plasma and in the endosomal space
such that the level of saturation of FcRn is 'dictated’ solely by the concentration
of endogenous IgG. From the point of view of the therapeutic mAb, binding to
FcRn is therefore linear. The assumption holds for other relevant situations. For
example, in healthy men, the mean concentration of total endogenous IgG is 65 uM
[105]. For an exemplary set of 7 mAbs registered at the European Medicines Agency
(EMA) in human (cetuximab [106], infliximab [107], rituximab [108], trastuzumab
[109], golimumab [110] and tocilizumab [111]), the mean maximum concentrations
Chax following single or multiple administration of the therapeutic dose vary from
20.6 nM to 3.2 uM, thus being 1-3 orders of magnitude lower than the concentration
of IgG

endo-*

The results on the fraction unbound fuj,g in the different endosomal spaces
presented in Fig. 3.2(right) show a very distinct behavior: The fraction unbound of
IgG is either almost zero or close to one. This behavior is due to the low dissociation
constant in comparison to the much larger total FcRn concentration. As a result,
effectively all endogenous IgG is bound to FcRn whenever its concentration is below
FcRngot. The free endogenous IgG concentration only effectively rises, if endogenous
IgG;o; > FcRnygot, in which case free IgG,, 4, s approximately identical to FcRngor —
IgGy- This result is general in nature and applies to any protein binding situation
where the dissociation constant is much smaller then the total binding protein
concentration. Consequently, even for varying total FcRn concentration in the
endosomal spaces of the different tissues and organs, the results continue to hold
as long as Kp < FcRny. In addition, the results also extend to the situation
in which FcRn is not present at all or present at very low concentration in some
endosomal spaces. In this case, it is fujsg = 1, as for compartments, where endogenous
IgG;or > FcRnyor. These findings are in line with the recent results reported by Xiao
[64]. The proposed cutoff model accounts for the non linear binding to FcRn in the

peripheral compartment. The resulting fraction unbound of IgG,; is derived from
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a hypothetical FcRn-capacity and the total IgG concentrations which presents the
same biphasic behavior.

These results provide further evidence that the therapeutic mAb can exhibit
time-independent linear i.e. FcRn-mediated clearance, even if the FcRn system is not
fully saturated. This is in line with more recent experimental findings reported in [3]
and can explain the explicit linear component of the clearance in the cutoff model in
[64].

In the PBPK model, fu is derived from the total capacity of FcRn and the

total concentration of IgG in the endosome. The current lack of data and

endo
understanding of the processes governing (i) FcRn expression level, (ii) FcRn turnover,
(iii) IgGpgo production and (iv) IgG,,4, concentrations in the endosomal space does
not allow the estimation of physiological meaningful and accurate endosomal FcRn
total concentration as well as endogenous IgG production rate. The present findings

on the linear fuj,q based on the assumptions that FcRngo and IgG concentrations

endo
in the endosomal space are not influenced upon the mAb administration and therefore
remain constant over time allow to simplify the detailed PBPK model at the organ
level. FcRnot and IgG

and are no longer estimated parameters. The parameters to be determined are

endo are implicitly considered in the intermediate PBPK model
(i) the rate constant of uptake in the endosomal space, ki,; (ii) the tissue-specific
endosomal intrinsic clearance, CLinte v+; (iii) the tissue-specific total FcRn-mediated
outflow from the endosomal space, Qout. As in [73|, the estimation process is
unstable and unknown parameters are not identifiable. This clearly indicates that
the intermediate PBPK model is still over parameterized given the solely plasma and
total tissue concentrations currently available. This observation is the grounds for

further simplification, derived thereafter.
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The novel PBPK model to characterize the disposition of mAbs is obtained from the
intermediate PBPK model (detailed in Chapter 3, section 3.3) by simplification of
the tissue model. The resulting simplified tissue model is characterized by a single
ODE for all tissues and integrates the linear component of the clearance of mAbs
such that it provides insight on the characterization of the tissues involved in mAbs
elimination.

The resulting simplified PBPK model for mAb disposition is a whole-body model with
extravasation rate-limited tissue distribution and elimination potentially occurring

from various tissues and plasma.

4.1 Simplification of the tissue model

The reduction of the tissue model is justified based on time-scale arguments. To this
end, we consider the generic ODE for the rate of change of the concentration Cepyt of

some compartment ’cmt’ with inflow Qinfow and outflow Quutfiow:

d
chticcmt = Qinﬁow : Cin - Qoutﬂow : Ccmt-

dt
The response time 7¢t—i.e., the time scale which the compartment concentration

responses to changes in the inflowing concentration Cj,—is given by

In(2)
Qoutﬂow/vcmt '

Temt =

Hence, small compartments or compartments with large outflow respond quickly to
changes of inflow. Of note, the inflow Qjuaow influences only the concentration levels

Cemt and its steady state concentration, but has no impact on the response time.

4.1.1 Lumping all vascular spaces and tissue sub-compartments

In view of the system of ODEs eq. (3.20)-(3.24), three groups of compartments
presenting different response times are identified and supported by parameters values
published in [69-71, 73] and physiological insight:
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e Fust: Arterial and venous plasma and peripheral plasma of all tissues with

response times
In(2) In(2)
5 Tven = s
Qart / Vart Qven / Vven

Tart =
and
In(2)
Tp,tis = ;
Pt (Qtis - Ltis)/vp,tis

with 75,1, the average of the above response times.

e Intermediate: The interstitial space of all tissues, with response times

In(2)
(1 - Ulymph)LtiS/Vi,tis ’

T <

with 7yt the average of the above response times.

Comparison to plasma response time: V1, and V; are of the same order of
magnitude (e.g. [67]), while Lys is about two-orders of magnitude smaller than
Qtis, and (1 — olympn) = 0.8 [69]. Consequently, the response time of plasma &
vascular compartments is approximately two-orders of magnitude faster than of
the interstitial compartments, i.e., Ty, < Ting. Of note, the much slower inflow
corresponding to (1 — oyas) - Ltis does not influence the response time, it only

influences the interstitial concentration levels.

e Slow: The endosomal space of all tissues, with response times

In(2) < In(2)

Te < : < s
(Qout,tis + CLlnte)/Ve Qout,tis/ve

with 7enq the average of the above response times.

According to [69], V. is approximately two-orders of magnitude smaller than
Vi, while Qout tis is five orders of magnitude smaller than Qs and therefore
three orders of magnitude smaller than L. Consequently, the response time
of the interstitial compartment is approximately one order of magnitude faster

than for the endosomal compartment, i.e., Tint < Tend-

The above time-scale considerations suggest to lump arterial and venous plasma
and all peripheral plasma spaces, resulting in a lumped plasma compartment with

total plasma volume V,j, and plasma concentration defined by
Vpla . Cpla = Vart . Cart + Vven . Cven + Z Vp,tis . Cp,tis-
tis
Due to the large uncertainty of parameters related to the endosomal space, the choice

is made to lump the interstitial and endosomal spaces of each tissue. For easier
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comparison to experimental data, the intracellular space with volume V. is also

included. The tissue volume becomes Viis = Vi + Ve + V¢ and the tissue concentration
Vtis'Ctis :Vi 'Ci+ve'ce+vc'cc-

Since the mAb—in the absence of target—does not distribute in the intracellular

space, it is C. = 0.

4.1.2 Derivation of the ODEs for the simplified PBPK model

From the above time-scale considerations and the resulting lumping, it follows the
ODEs describing the rate of change of Cp, and Cijs in the different tissues. For

plasma, it is

d d

d d
plaacpla = Vart 7Cart + VVGH &Cven + Z Vp,tis
tis

v I

dt Cp,tis

= Z Liis - (1 - Ulymph) : Ci,tis +FR- Qout,tis : Ce,tis
tis

- (Ltis : (1 - Uvas) + Vp,tis : kin) : Cp,tis-

The equation for plasma is derived from Cp, = Cyen = Cart = Cyp tis and the following
assumptions: (i) Since it is difficult to distinguish between the two-pore-related and
the fluid-phase endocytosis component of the vascular extravasation, i.e., Lis (1 —0vyas)
versus Vyp tis - Kin, the single term (Lyjs - (1 — o)) similar to the one-pore formalism
is derived and allows to introduce an effective lumped reflection coefficient oy;g such
that

Liis - (1 - Jtis) = Lijs - (1 - Uvas) + Vp,tis : kin;

Further, (ii) since all tissue sub-compartments are lumped, C, and C; are considered

as multiples of the lumped concentration Cyg, i.e. Co = a - Cijs and C; = B - Cys.

Writing Qout,tis as a fraction ¢ of the lymph flow Ly yields

Lis - (1 = 01ymph) - Citis + FR - Qout,tis - Ce,tis
= Liis - ((1 - Ulymph) -B+FR-6- 04) - Ciis

and allows to define the tissue partition coefficient, Kiis, as

1 _
Ktis

(1 = oymph) - B+FR-a -0 (4.2)
As a consequence, the ODE for the rate of change of the plasma concentration is

d C 1S
\Y Cp]a = Z Ltis ' L - Ltis : (1 - Utis) : Cp1a7
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For the tissue concentration Cyg, it is

d d d d
Vtisactis — Viaci + Veace + Vcacc
= (Ltis : (1 - Jvas) + Vp,tis : kin) : Cp,tis
—Lijs - (1 - Ulymph) : Ci,tis - FR- Qout,tis : Ce,tis

—CLlnte . Ce,tis .

Defining the intrinsic tissue clearance CLintys = CLinte - « and using the same

assumptions and arguments as above yields

d C is .
Vtisactis = L (1 — otis) - Cpla — Lis - Kitus — CLintyjs - Cis.

The simplified PBPK model is derived from the more detailed intermediate PBPK
model by considering time-scale separation and additional well-grounded assumptions.
The resulting number of equations is reduced by a factor of approximately 6 and 3 in

comparison to [69] and [73], respectively.

4.2 Simplified PBPK model

The model accounts for the anatomical compartments plasma, lung, adipose, bone,
gut, heart, kidney, liver, muscle, skin and spleen. The tissue topology and model
structure is shown in Fig. 4.1.

The plasma compartment with volume V., comprises total arterial and venous
plasma, including the vascular space associated with the tissues. The tissue compart-
ments with volume Viis account for interstitial, endosomal and intracellular spaces,
as described for the detailed tissue model in Fig. 3.3. Exchange between plasma and
tissue is described in terms of the tissue lymph flow Ly, a tissue partition coefficient
Kiis and a reflection coefficient otis. Fach tissue is potentially involved in elimination

with intrinsic tissue clearance CLintys in addition to a plasma clearance CLpla.

4.2.1 Equations of the simplified PBPK model

The simplified PBPK model accounts for the rate of change of the concentrations Cp,
in plasma and Cy;s in the different tissues. It is described by the system of ODEs:

d Ctis
Visicis:Lis' 1- iS'Ca_i
t dt t t <( Tt ) pl Ktis> (48)
— CLthtis . Ctis
d
Vplaacpla = Lpla - <Cin — (1= opn)- Cpla) (4.9)

— CLpla - Cpa,
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Figure 4.1: Topology of the simplified PBPK model for mAbs. Tissues are interconnected
by plasma (red and blue arrows) and lymph (green dashed arrows) flows. The plasma
compartment comprises total arterial and venous plasma, including the vascular plasma space
associated with the tissues. The tissue compartments account for interstitial, endosomal and
intracellular spaces. Each tissue (except for plasma) has the potential to play a role in the

elimination of IgGs, represented with black arrows.

where the first equation (eq. 4.8) applies to all tissues.

The inflowing concentration Cj, into plasma is defined by
Ci
Lpla : Cin = Z Ltis ' 715

where the sum is taken over all considered tissues. For the plasma compartment, the
total lymph flow L, and the apparent total reflection coefficient o, are defined as

Lpla = » Lus  and Ly (1= 0p1a) = D Luis - (1 — 04is).-

tis tis

For an i.v. bolus administration, the initial conditions at time ¢ = 0 were set to
Cpla(0) = dose/ Vi, and Cyig(0) = 0 otherwise. A full set of parameter values for

mice is given in Tables 4.2-4.6.

The above system of ODEs include several physiological processes known to be

relevant for mAb disposition: (i) tissue uptake by convection through large pores
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and transcytosis, the parameter oyis is an effective parameter accounting for the fact
that only a fraction (1 — oys) of the plasma concentration is accessible for these
processes; (ii) back-flow into the plasma space via the lymph flow or via transcytosis.
In the simplified PBPK model, the tissue partition coefficient Kyis accounts for pro-
cesses influencing tissue distribution and can be interpreted as the tissue-to-accessible
plasma concentration partition coefficient; (iii) elimination of therapeutic antibodies
via several processes, like e.g., degradation into the endosomes, Fcy receptor-mediated
clearance, nonspecific endocytosis. These different elimination processes are described
as a whole by CLinttjs and CLpla.

The most important assumptions underlying the derivation of the ODEs are (i) the
dissociation constants of therapeutic mAb and endogenous IgG to FcRn are similar;
(ii) the mAb concentration in plasma is lower than the plasma concentration of
endogenous IgG. This is generally expected to be the case with the notable exception
of intra-venous immunoglobulin (IVIG) therapy; (iii) there is no target present (the
theoretical derivation to include a membrane-bound target is presented in Chapter 6).
Under the conditions (i) and (ii), considered in section 3.2.1, there is no need to
explicitly account for endogenous IgG and the competitive binding to FcRn in the
endosomal space, since the clearance term resulting from catabolism in the endosomes

is shown to be linear, regardless the saturation level of FcRn.

In summary, the simplified PBPK model describes the disposition of mAbs assum-
ing an extravasation rate-limited tissue distribution and linear elimination occurring

from several sites.

4.2.2 Model parameterization

A description of the parameters of the simplified PBPK model is given in Table 4.1.
Physiological and anatomical data are taken from [67, 69, 75, 102, 103, 113]. The
original parameters are summarized in Table 4.2 and the derived parameters in
Table 4.3. Note that in [67, 69|, the plasma space of each tissue is simplistically
denoted as ’vascular space’. Hence, the plasma volume of each tissue in the simplified
PBPK model is equivalent to the values of the 'vascular volume’ in [67, 69]. There
are reports about differences in vasculature pore size between tissues [86] and are
implemented in PBPK models in [73] and in [113, Chapter III, p. 74 and Table V,
p. 107]. Based on simulations, we identify three groups of tissues with different
reflection coefficients: oy = 0.98 for adipose, bone, muscle and skin; ois = 0.95 for

gut, liver and spleen; o5 = 0.90 for heart, kidney and lung.
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Table 4.1: Simplified PBPK model for mAbs in mice: Summary of parameters

Parameter Ref. Description

Viis mL Tab. 4.3 [67, 69, 102] tissue (excluding vascular space) vol-
ume

Liis mL/min Tab. 4.3 |66, 69| tissue-specific lymph flow (see discus-

sion for identifiability)

Otis Tab. 4.3 69, 71, 86]  tissue-specific reflection coefficient
(see discussion for identifiability)

IA{tis Tab. 4.5 estimated tissue-specific elimination-corrected
partition coefficient

CLinty;s mL/min  Tab. 4.6  estimated tissue-specific intrinsic clearance de-
rived from estimated extraction ratio
Eis (according to eq. (4.15))

CLpla mL/min Tab. 4.6 estimated plasma clearance

4.2.3 The simplified PBPK model predicts plasma and tissue data

in mice

Based on the estimated parameters, the simulated concentration-time profiles agree
very well with the experimental data of the mAb 7E3 after an i.v. bolus administration
of 8mg/kg to wild type mice, see Fig. 4.2 for tissue data and Fig. 5.1 for plasma data.
The simplified PBPK model reproduces the main features of experimental plasma
and tissue data profiles. i.e. the characteristic slower distribution in muscle and skin.

To evaluate the impact of residual blood on experimental tissue measurements,
tissue concentrations including and excluding residual blood contribution are simulated
and are shown in Fig. 4.2. For most tissues, the impact is minimal. Only little
perturbations are observed. For lung, the contribution of residual blood is more
pronounced. For spleen, the perturbation is substantial; almost all of the drug in
spleen results from the drug in the residual blood.

For model evaluation, we used the simplified PBPK model to predict the plasma
concentration of T84.66 [71]|, a murine IgG1 mAb targeting the carcinoembryonic
antigen (CEA). T84.66 is administered to 20g control mice at 3 dose levels: 5, 10 and
25 mg/kg. To this end, tissue weights are scaled linearly with body weight to account
for the difference in body weight (25g vs. 20g). As shown in Fig. 4.3, the model
predicts accurately the distribution and elimination phase at all 3 dose levels—except
for the last time point at 35days. This last time point, however, is most likely not
reliable: a simple linear regression based on the last three time points (12, 21 and
35 days) was performed to determine the resulting half-life. We obtained half-life of
40 days (for the low dose of 5mg/kg) and 24 days (for the high dose of 25 mg/kg),
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Table 4.2: Reference tissue-dependent parameters in mice

Vesp Vo Ve blos” Q
Units mL mL  mL / 100g tissue mL/min
Lung 0.217* 0.022¢ 13.13 4.380°
Adipose  1.910° 0.011°¢ - 0.307¢
Bone 1.967* 0.091¢ - 0.170¢
Gut 3.920 0.114¢ 1.27 0.900°
Heart 0.151* 0.008% 4.81 0.280¢
Kidney  0.339* 0.034¢ 6.23 0.800¢
Liver 1.081* 0.108% 5.27 1.100®
Muscle  9.005* 0.170¢ 0.63 0.800¢
Skin 3.341*  0.227¢ 0.77 1.210¢
Spleen 0.114* 0.011¢ 21.51 0.050¢
Plasma® 0.880% 0.880“ - 4.380%

2 from [67, 69] and scaled for a mouse of 25 g body weight.
Note that in [67, 69], the plasma space of each tissue is
simplistically denoted as 'vascular space’. See text for
more details

b 7% of total body weight [102] assuming a body weight
of 25 g and a tissue density of 0.916 g/mL [112]

¢ total blood volume (Vyy,) in adipose: 1 % of total volume
(measured in rats but assumed to be species-independent
for mammals) [103]

d plasma flow in adipose tissue assumed to be 7% of total
plasma flow [102]

¢ plasma space not associated with any tissue (as in [67])

f from [113] (Table III, p. 105)
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Table 4.3: Tissue-dependent parameters for the simplified PBPK model in mice

Vres,pla,a VtiS)b Lyis,© O'ti57d
Units 102mL  mL  mL/min -

Lung 1.567 0.189 0.175 0.95
Adipose - 1.909 0.012 0.98
Bone - 1.950 0.007 0.98
Gut 2.738 3.871 0.018 0.90
Heart 0.400 0.144 0.011 0.95
Kidney 1.160 0.318 0.032 0.95
Liver 3.132 1.024 0.022 0.90
Muscle 3.120 8.948 0.032 0.98
Skin 1.415 3.315 0.048 0.98
Spleen 1.344 0.089 0.001 0.90
Plasma - 1.675¢ - -

a Vres,pla = (1 — th) . Vres,blo with het = 0.45
[75]

> Viis = Vexp — Vies blo

¢ assumed to be 2 % and 4 % of plasma flow,
Q, for visceral and non-visceral organs, respec-
tively (66, 69|

d values assigned based on a simulation study
(data not shown) [18, 69, 86|

¢ Vp = > Vpiis, total plasma volume including

the vascular plasma space of tissues
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Figure 4.2: Prediction of tissue concentration-time profiles of scenario 2 (Table 4.6) based
on the simplified PBPK model (with '—’ and without - -’ residual blood contamination)
compared to experimentally measured concentrations in wild-type mice (blue dots) after i.v.
bolus administration of 8 mg/kg TE3 to wild-type mice. Experimental data was extracted from
[69] and represent mean data. For plasma see Fig. 5.1. The predictions was indistinguishable

for scenarios 3-7.
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Figure 4.3: Predictions of plasma concentration-time profiles in mice predicted by the
simplified PBPK model (solid line) compared to experimental plasma concentrations in 20g
nude mice for different doses of the mAb T84.66, an anti-CEA mAb: 25mg/kg (diamond),
10mg/kg (square) and 1mg/kg (circle). Experimental data was extracted from [71].

which are in contrast to reported half-lives of 4-8 days in mice [22].

4.3 Insight into parameter estimation and identifiability

4.3.1 Tissue extraction and elimination-corrected partition
coeflicients

The following derivation gives key insight on the impact of distribution and elimination
on tissue concentration and is important for the two-step parameter estimation process
(detailed in the next section). Introducing the tissue-specific ratio
CLintys - Kiis

Rys = 4.10
tis Ltis ) ( )

the tissue extraction ratio Eijs is defined via the relation

1
1+ Ryys) = . 4.11
( + t 5) 1 - Etis ( )
Using eq. (4.10), this results in
CLintys - Ky;

Eis = IMNtis tis (412)

CLintys - Keis + Ltis’
which is the common form of an extraction ratio—as it is, e.g, analogously defined
for the hepatic extraction for small molecules. Based on Rys, the right hand side of
eq. (4.8) can also be read as

C is
Lis - <(1 - Utis)cpla - (1 + Rtis)I{t.> s
t1s

43



Simplified PBPK Model for mAbs

44

and using eq. (4.11) this yields
d Cis
Vs 3 Ctis = Luis - <(1 — 0tis) Cpla — At> ; (4.13)
tis

which is parametrized in terms of the elimination-corrected partition coefficient
Ktis - (1 - Etis) : Ktis- (4.14)

Eq. (4.14) is used in the 1st step of the parameter estimation process. We give another
representation here that is equivalent to eqgs. (4.8) and (4.13) and that is used in the
2nd step of the parameter estimation process. Noting that Rys = Eyis/(1 — Egis) and
with eq. (4.10), we obtain

. Ltis : 1:{tis Ltis . Etis Ltis : Etis
CLintyjs = = = — . 4.15
v Ktis (1 - Etis) : Ktis Ktis ( )
From egs. (4.13) and eq. (4.15), it results the ODE
d Cii
Vtisdictis = Ly - <(1 - Utis)cpla - (1 - Etis)f\tls>
¢ . tis (4.16)
- LtiSEtisga

tis
which is parameterized in terms of Ktis and Eiis. Note that the second term
Liis - Egis - Cyis/ Ktis equals CLints - Ciis according to eq. (4.15).

Comparing the three equivalent equations (4.8), (4.13) and (4.16), we conclude
that it is mot possible to infer from typically available experimental tissue data
whether some tissue is eliminating or not. All three equations predict identical tissue
concentration-time profiles (for identical input Cp1a), with eq. (4.8) being interpreted
as an eliminating tissue and eq. (4.13) allowing the interpretation of a non-eliminating
tissue with partition coefficient IA(tis. This is of relevance to the present study, since

the extent of elimination of mAbs in the different tissue is still under discussion.

4.3.2 Two-step parameter estimation process

Based on the venous plasma and tissue experimental data, the simplified PBPK
model is used to estimate the tissue partition coefficients IA(tiS, the extraction ratios
Eiis (used to determine CLintys) and CLpla following a two-step approach:

In the first step, only the elimination-corrected tissue partition coefficients Ktis
are estimated. This is done based on tissue data and egs. (4.13) and (A.1), where
the plasma concentration in eq. (4.13) is identical to the plasma concentration mAb;
predicted by the semi-mechanistic 2-compartment model in eq. (4.17) as described

below. This way, reliable plasma-concentration time profiles are enforced for the
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estimation of tissue disposition. Note that the plasma concentration profile can be
seen as a marker for tissue elimination. Since tissue elimination is embedded in the
plasma data, it is generally not possible to estimate tissue elimination just from
simple tissue data (see above section 4.3.1).

In the second step, we use the simplified PBPK model defined by egs. (4.16) and
(4.9) with Kiis fixed to the values estimated in the first step. The corresponding
tissue extraction ratios Es and CLpla values are estimated using plasma data and
assumptions on the sites of elimination. The above procedure can be seen as an

extension of the approach described in [103].

Semi-mechanistic 2-compartment model for the disposition of
endogenous IgG and the mAb 7E3 in mice

A corrected version of the models published in [60] and [64] is used in the parameter
estimation process. The disposition of endogenous IgG and mAb is described by a
2-compartment model with volumes Ve and Vengo, respectively. The flow Qj, from
the central compartment into the peripheral compartment accounts for the fluid phase
endocytosis. The reverse flow Qqut describes the FcRn-mediated salvage mechanism
of the bound species. Catabolism of the unbound species occurs in the peripheral
compartment and is described by the linear clearance CL. The competitive binding
of IgG

defines the fraction unbound fu. The rate of change of the central and peripheral

endo anld mADb to FcRn is assumed to occur in the peripheral compartment and

concentrations of endogenous IgG and therapeutic mAb is given by the system of
ODEs:

d
Veen aIgGendo,l = Qout(l - fu) IgGendo,Q + ksynth
- Qin : IgG’endo,l
d
Vendo aIgGendoQ = Qin- IgG’endo,l —CL-fu- IgGendo,Q

- (Qout(1 - fu) ' IgGendo,?

d
VcenamAbl = Qout(l — fu) rnAbQ
— Qin - mAb;
d
Vendo—mAbs = Qi, - mAb; — CL - fu - mAb
gt = ¢ 1 i (4.17)

— Qout (1 — fu) - mAbg

with fu defined in eq. (3.8); FcRn, defined in eq. (3.7); and FcRneg = FcRn —
[IgGepdo2 +mAbs] —Kp. This corrected version of the 2-compartment model proposed
in [60] is simultaneously fitted to plasma data of 7E3 in WT and FcRn-KO mice
after an i.v. bolus administration of 0.2mg (i.e., 8mg/kg for a 25g mouse) and to the

plasma steady-state concentration of endogenous IgG in WT mice. The parameter

45



Simplified PBPK Model for mAbs

46

Table 4.4: Parameter estimates of the semi-mechanistic 2-compartment model, describing

the plasma concentrations of TE3 and the steady state plasma concentrations of IgGendo
Veen  Vendo Qin Qout CL ksynth FcRngot  Kp
mL mL  mL/d mL/d mL/d nmol/d nM nM
1.600 1.597 1.849

0.088 0.102  0.043 2.22e+5 4.8

cen

endo

values of the model are summarized in Table 4.4. The initial conditions (in mg/ml)
are IgGopgo1 = 2-29, 1gGepgo 2 = 39.7, mAb; = dose/Veen = 0.125 and mAby = 0.

4.3.3 Parameter identifiability

Link elimination-corrected tissue partition coefficients IA(tis to reported
antibody biodistribution coefficients ABCeyp

In [18], antibody biodistribution coefficients (ABCs) relating tissue to plasma con-
centrations were analyzed for a variety of non-binding mAbs and species (i.e., the
species do not express a target for the mAb). The authors found a linear relationship
between ’tissue’ and plasma concentrations. Their analysis is based on a variety of
different studies so that estimated ABC values can be expected to be perturbed by
residual blood (in line with their comment [18, p.302|). Thus, we denote by ABCexp

the residual blood-contaminated antibody biodistribution coefficients, i.e.,

Cexp

ABCox = 2.
pla

ABCp are corrected for residual blood to determine the 'pure’ steady-state antibody
biodistribution coefficients ABCy;s. Dividing eq. (A.1) by Cpj, yields

Vtis Ctis Vres,pla
Vexp Cpla Vexp

ABCeyp = (4.18)

Solving for Cyis/Cpla and using the definition of resyy,, it follows the relation between
estimated ABCexp in [18] and ABCy;s as

ABCexp — (1 — het)respo

ABCys =
tis 1 — respio

(4.19)

At steady-state, it is dCyis ¢s/dt = 0 so that from eq. (4.13) it follows Lis((1 —
tis) Cpla,ss — Chis,ss/ IA(tis) = 0. Thus, ABCjjs is also defined as

Ctis,ss

oo = (1= o) Kiis. (4.20)
pla,ss

ABCtis =
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Table 4.5: Estimated elimination-corrected tissue partition coefficients IA(tiS and resulting
antibody biodistribution coefficients ABCyis according to eq. (4.20) (excluding residual blood)
and ABCeyxp values according to eq. (4.18) (including residual blood contribution). The
difference between ABCys and ABCeyp is largest for spleen and lung
K. ABCys ABCey

Adipose 1.695 0.034 0.034

Bone 1.695 0.034 0.038

Gut 0.623  0.062 0.068

Heart 2.322 0.116 0.137

Kidney 2.576  0.129 0.155

Liver 1.324 0.132 0.154

Lung 2.152  0.108 0.166

Muscle 1.695 0.034 0.037

Skin 6.270  0.125 0.129

Spleen  0.303  0.030 0.142

Exploiting eq. (4.20), thus, the elimination-corrected tissue-to-plasma partition coeffi-
cients are directly derived from experimentally determined ABC,y,, values:

= ABCexp — (1 — het)respo
BT (1= o) (1 — resplo)

(4.21)

Estimating tissue partition coefficients

As described in section 4.3.2, unknown parameters of the simplified PBPK model
are estimated with a two-step approach based on plasma and tissue data of the
mADb 7E3. The estimated parameters for Ktis together with the resulting antibody
biodistribution coefficients ABCy;s derived from eqgs. (4.19) and (4.21) are reported
in Table 4.5. Our resulting ABCys values are consistent with the values reported
in [18]—with differences being due to residual blood contamination (described in
appendix A.5) and the fact that the values in [18] have been estimated across various
species. Since in [18], ABCeyp, values are shown to be approximately constant for
different pre-clinical species and human, we may use relation (4.21) to also determine

Kjiis values for these species, i.e., rat, monkey and human.

Estimating total plasma clearance

There are no consistent reports to discriminate the tissues involved in mAbs elimi-
nation. Several authors report that adipose, kidney, liver, muscle, skin and spleen
are involved in IgGs catabolism [78, 114, 115]. As a consequence, herein different

scenarios of tissue elimination are considered and studied.
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Table 4.6: Estimated tissue extraction ratios and plasma clearance for scenarios (sc.) 2-7
(see text for details). Compartments, where no elimination was assumed are indicated by *-’.
Of note, the resulting total clearance defined in eq. (4.22) (in mL/min) is constant across the

different scenarios.

Scenario sc.2 sc.3 sc.4 sc.5h sc.6 sc. 7

Eaai 0.029 - - _ _ _
Evon - - - - , _
Egut - - - ; _ _
FEhea - - - - , B}
Eyiq <le-8 - - - . _
Eyiv 0.029 - - - 0.042 -
Erun - - - - B, B}
Erus 0.029 . - 0.14 B }
Egi <le8 - 0.095 - - _
Egp1 0.029 0.92 - - - _
CLpla - - - ; B} 9e-5
CLtot 9¢-5 9e-5  9e-5  9e-5  9e-5  9e-5

In a first scenario, all tissues are eliminating. The estimated Ey;g are sensitive to
the initial values (therefore, their estimated values are not reported). Interestingly,
even though the Eyg values are differing from one fit to another, the total clearance

CLyot remains practically constant. Here, the total clearance is defined as

CLiot = Y Euis - Luis(1 = 04is) + CLpla. (4.22)
tis#pla

The second scenario assumes that the tissue elimination is linked to FcRn expression
levels, which were studied in different tissues of C57BL/6 control mice in [78, Fig. 4,
p. 1295]. Notable FcRn expression levels are only identified in adipose, muscle, liver,
kidney, skin, and spleen. It appears that FcRn expression levels are similar and high
in kidney and skin, while being similar and low in adipose, liver, muscle and spleen.
Two groups of tissues are therefore defined: {kidney, skin} and {adipose, liver, muscle,
spleen}. An identical extraction ratio is assigned to each group and estimated, while
the extraction of the remaining tissues and the plasma clearance is set to 0. The
estimated Eijs for kidney and skin is close to 0 suggesting that no extraction in these
two tissues occurred (consistent with the high expression of protecting FcRn). This

result is surprising and is not in accordance with |78, 114, 115].
In the scenarios 3-6, only one eliminating tissue is considered, exemplified for
skin, muscle, liver and spleen. Scenario 7 assumes that all elimination processes
take place in the plasma compartment. The estimated extracting ratios and the

plasma clearance for all scenarios as well as the corresponding total clearance CLyt
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are reported in Table 4.6. Surprisingly, for all scenarios, CLyt remains unchanged.
These results suggest that, given the mice plasma and tissue data, the individual
Eiis cannot be estimated and that it is not possible to determine which tissues are

involved in the elimination of mAbs.

These findings apply analogously to the more complex models (see Chapter 3 (secs.
3.1 and 3.3) and Appendix A ( apps A.3 and A.4)), from which the simplified PBPK

model is derived.

4.4 Discussion

The simplified PBPK model (i) includes explicitly or implicitly the physiological
processes relevant to describe mAbs disposition; (ii) is parameterized by a minimum
number of parameters to allow stable parameter estimation; and (iii) allows repro-
ducing typically observed characteristics of concentration-time profiles in plasma
and tissues. A key step to substantially reduce the complexity in comparison to
published PBPK models [69-71, 73] is to implicitly consider the endosomal space
and the FcRn-mediated salvage mechanism. Analogous model reduction approaches
have been successfully used for small molecule drugs, e.g., when considering the inter-
action of moderate to strong bases with intra-cellular acidic phospholipids without
modeling explicitly diffusion across the cell membrane and binding kinetics to the
acidic phospholipids [116].

The simplified PBPK model for mAb disposition is a whole-body model with
extravasation rate-limited tissue distribution and elimination potentially occurring
from various tissues and plasma. The tissue model for mAbs presents analogies with
the permeability rate-limited tissue model for small molecule drugs, with one marked
difference: In the permeability rate-limited tissue model, the inflow is typically limited
by the low permeability across the cellular membrane which also limits the outflow,
respectively defined as Qiniow = P - SA and Qoutfiow = Qinflow/Ktis, where P denotes
the drug permeability, SA the surface area of the tissue and Kjiis some tissue partition
coefficient. The (intra-cellular) tissue response time for permeability rate-limited
tissues, given by 7 = log(2) - Viis - Kiis/Qinflow, is usually long. In the extravasation
rate-limited tissue model, it is Qinfiow = (1 — 0) - L and Qoutiow = Qin/ABCiis,
with ABCys the antibody biodistribution coefficient. The inflow is slow due to
the small size of pores in the vascular wall which restricts the extravasation. The
outflow, however, is almost one order of magnitude faster due to the larger pore
size of lymphatic vessels. Consequently, it results in moderate tissue response time
7 = log(2) - Viis - ABClis/Qinflow- We notice that even if the inflows in both tissue
models would be identical, i.e, P-SA = (1 — o) - L, it would take much longer for
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the SMD to reach its (quasi) steady state than for the mAb, since usually Ki;s > 1,
while ABCyis < 1/5 (Table 4.5, [18]).

From common experimental data (only plasma, or plasma and tissue data) it is not
possible to infer, which tissues are involved into the unspecific elimination. This also
holds true for small molecule drugs, where, however, assumptions on which tissues
are eliminating (typically liver and/or kidney) are commonly supported by in vitro
assay (hepatocytes, microsomes) or additional experimental data (urine). Without
such additional information, the location and extent of mAb elimination remains to
be elucidated. For monoclonal antibodies, this ambiguity is reflected in the different
assumptions made in published PBPK models about where and how to account
for elimination [67-70] and is here further illustrated by the different elimination
scenarios (sc. 1-7) in section 4.3.3, Table 4.6. The ambiguity is also reflected at the
level of the ODEs describing the rate of change of tissue concentrations: compare
egs. (4.8) and (4.13). The argument is not restricted to the simplified PBPK model
but holds also true for the more complex PBPK models.

Since tissue-to-plasma partition coefficients are small, contamination of tissue
samples by residual blood/plasma content can have a large impact on reported tissue
concentrations. In [113], residual blood volumes of the harvested organs in mice
are reported. As can be inferred from Fig. 4.2, residual plasma contamination has
an impact for spleen and lung, unless the other tissues, where the impact is only
minor. These findings have to be read in the light of the methodology used in [113] to
measure the residual blood volume which is base on 51Cr-labeled red blood cell uptake
method [117]. As spleen is the organ of production and storage of red blood cells,
the assessment of residual blood volume might be biased. Measurement of residual
blood has been proven of importance to determine the extent of tissue partitioning
for small molecule drugs [118, 119]. In [120], the authors conclude that correction for
the residual blood is necessary when tissue-to-blood partition coeflicients are very
small and when the volume fraction of the blood in tissue is substantial as for lung.

In [41], PBPK models for mAb disposition are reviewed. A surprising 200-fold
range of lymph flow values used in published PBPK models for the same tissue was
observed. With the parameterization of the simplified PBPK model, this observation
can be understood. Given some positive parameter «, the rate of change of the tissue

concentration in eq. (4.8) can be equivalently expressed as

d ~ - Cyi .

Vtisictis = Lyis - (1 - Utis)cpla - ﬁ - CLlnttis : Ctis

dt tis
with itis = alys; (1 —0is) = (1 —oyis)/a and I~(tis = aKys. Varying a between 1-200
would explain the observed range of values for lymph flows in [41]. It also highlights
the fact that reported values of oy and Kis are relative to the lymph flow values,
which are commonly assumed to be 2% or 4% of plasma flow (see Table 4.3). As

expected, steady-state partitioning is not influenced, since « cancels out in eq. (4.20).



4.4 Discussion

The simplest way to parameterize the simplified PBPK model is based on eqgs. (4.8)-
(4.9) with species-dependent parameters given in Table 4.3, plasma clearance CLpla
given in Table 4.6 (sc. 7) and Eijs = CLintys = 0 for all tissues. Due to eq. (4.14),
the partition coefficients fulfill Ky;g = Ktis and can therefore be taken from Table 4.5.
For extrapolation of the simplified PBPK model to other species/strains, one can
make use of the ABCy;s values (see Table 4.5, assumed to be species-independent in
[18]) by exploiting the relationship in eq. (4.20). Then, only the physiological data
(often readily available from literature) and the plasma clearance CLpla are missing.
In addition, the simplified PBPK can be used to "extrapolate” to FcRn knockout mice
by simply increasing the plasma clearance (by a factor of 23), thereby accounting for
the loss in protection from degradation. The partition coefficients, as was already

remarked in [18], are comparable for wild type and FcRn-knockout mice.
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Lumping Approach and derivation of Classical

Compartment Models for mAbs

In their review, Keizer et al. [3] report on clinical pharmacokinetic studies of 27
commercialized mAbs. In most of the cases, the PK of mAbs is described by a classical
2-compartment disposition model. The central and peripheral compartments are
typically associated with the plasma and the interstitial space, respectively. Modeling
the processes involved in the elimination of mAbs is quite diverse: it includes linear
[92] and/or non-linear [93, 94| clearance(s) from the central compartment, or parallel
linear and non-linear clearances from the central and/or peripheral compartment(s)
[95, 96]. The non-linearity in the PK is mainly attributed to the saturable binding to
the target which is not integrated at this stage in the simplified PBPK model (see
Chapter 6 for extension to a membrane-bound target).

In this chapter, the aim is to determine which low-dimensional compartment
model structures are consistent with the simplified PBPK model accounting for the
linear non-specific clearance. To this end, the lumping approach presented in [91] is

extended to account for peripheral elimination.

5.1 Extended lumping approach: Mechanistic derivation

of simple compartment models

We first define the lumping criterion specific to the parameterization of the simplified
PBPK model and derive lumped parameters based on the extension of the lumping
approach previously developed for PBPK models for SMDs [91] to eliminating tissues
for mAbs. We secondly theoretically draw the general ODEs of lumped models,
representing the foundations for later link and interpretation of classical compartment

models.

5.1.1 Lumped parameters

The steady-state antibody biodistribution coefficient,ABCys, is determined from

steady state conditions for tissue concentrations (eq. (4.20), in section 4.3.3). It is

ABCtiS = s = (1 - Utis) : I/itis-
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Figure 5.1: Predictions in comparison to the in vivo plasma data for an i.v. bolus admin-
istration of 8 mg/kg TE3 in wild-type mice (exp. data extracted from [69, Fig. 3, p.699]).
Plasma concentration-time profiles of scenario 2 (Table 4.6) are based on the simplified
PBPK model (’11-cmt PBPK model’), the minimal lumped 2-compartment model (’2-cmt
minimal lumped model’) and the semi-mechanistic 2-compartment model (’2-cmt empirical
model’). The predictions of the simplified PBPK model based on clearance scenario 2 are

indistinguishable from scenarios 3-7.

In accordance with the above equation, for plasma, we formally set Kpla =1/(1—0p1a)
and ABCy, = 1. Rearranging eq. (4.20) to

Ctis,ss

Ryy = Ciss
® (1 - O-tiS)Cpla,ss’

IA(tis can be interpreted as the elimination corrected tissue-to-accessible plasma par-
tition coefficient and, based on eq. (4.14), Kijs as the tissue-to-accessible plasma
partition coefficient (comparable to tissue-to-unbound plasma partition coefficients
for small molecule drugs).

According to the lumping criterion |91, eq.(20)], tissues tisy, ..., tisy are grouped
together to form a lumped compartment L = {tisy, ..., tisg}, if the normalized tissue

concentration-time profiles coincide, i.e, if

Ciis, () _ Cis, (t) (5.1)

(1 - Utisl) : I/itiS1 B (]- - O-tisk) : Ktisk

for £ > 0. For later reference, the central compartment is defined as the lumped

compartment containing plasma. Below, the lumped model parameters are determined

as in [91]. The lumped tissue volume V7, is defined as

VL= Vi,

tiseLk



5.1 Extended lumping approach: Mechanistic derivation of simple compartment models

where here and below, tis € L means that the sum is taken over all tissues that are
lumped together into L. For all non-central compartments, the lumped lymph flow

L, and the lumped reflection coefficient or, are defined by

Ly = Z Lis; Lp-(1—on) = Z Ltis - (1 — ois),
tiseL tis€L

while for the central compartment, the central lymph flow and reflection coefficient

are

Leen = ZLL§ Leen - (1 - Ucen) = ZLL : (1 - O-L)v (52)
L L

where in the above equations, the sum is taken over all non-central lumped compart-
ments (in case there are any; otherwise Leen and ocen are neither defined nor needed).

The concentration Cy, of the lumped compartment is defined by

VL . CL — Z Vtis : Ctisa (53)
tiseL

resulting in the definition of the lumped tissue partition coefficient IA{L according to

Ve (1—op) KL= Vi (1 - 0is) - K. (5.4)

tiseLL
We remark that the above equation can also be formulated in terms of ABC values,
with Vi,-ABCy, = ZtisEL Viis- ABCiis. To extend the lumping approach to eliminating

tissues, the lumped extraction ratio Er, is defined by
Ep-Ly-(1-oL)= ZEtis - Liis - (1 — ois),

where the sum is taken over all tis € L for non-central compartments L, while it
is taken over all tis € cen,tis # pla for the central compartment. Using Ep, the
lumped partition coefficient Ki, is determined from the elimination corrected partition

coefficient Ki, analogously to eq. (4.14) by
K. = (1-Ey) Ky
For all non-central compartments, the lumped intrinsic clearance CLinty, is defined

analogously to eq. (4.15) as

Er-Ly  Ep-Ly

CLinty, = = —
LT OCE) KL R

Finally, for the central compartment, the lumped central clearance CLce, is defined
by
CLcen = Ecen - Leen * (1 — 0cen) + CLpla. (5.5)
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5.1.2 Equations of lumped models

The ODE describing the rate of change of the lumped concentrations Cy, is charac-
terized based on eq. (5.3) with L = {tisy, ..., tisg}. To this end, the relation is first
established between the lumped concentration Ci, and some tissue concentrations
Ciis with tis € L. Starting from eq. (5.3), it is

k
VL-CL = ) Vi, - Cu,
i=1

k ~ o
- Z Vtisi(]‘ - UtiSi)KtiSi : #
i=1 (1 - Utisi)Ktisi
k
= Y Vi, (1 = 0116 )Kiis, | - ——
=1 (1 — ois) Kitis
~ C ;
= Vi(l—op)Kp ——%

(1 - Utis)Ktis’
where the third line is derived from the lumping criterion Cyis/((1 — ois) - Ktis) =

Ciis; /(1 — ois;) - Ktisi) for tis € L and ¢ = 1,...,k, while the last line is based on

eq. (7.16). Rearranging the last equation yields

~ C

Ciis = (1 - UtiS)KtiS : 7LA (56)
(1 - UL)KL
For the plasma compartment, this specifically reads
C

Cpla = — (5.7)

(1 - Jcen)Kcen

For all compartments except for the central compartment, we obtain

d C is
VLaCL = Z Lis - ((1 — 0tis)Cpla — IA(t>

C is
= Z Liis(1 — ois) - <Cpla - (tA>

tiseLL
C
= Z Ltis(l - Utis) : <Cpla - LA)
tiseLL (1 - JL)KL
Cr,
= Li(l—0o . C a — = )
Ll = o) ( PR JL)KL>
where we exploit eq. (5.6) in the third line. Thus
d CL
—_— = Lt - 1-— - =
VLdtCL L <( o1,)Cpla KL)
CL .
= Ly - (1 - UL)Cpla — — ) — CLinty, - Cy,.
Ky
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For the central compartment, based on egs. (5.2) and (5.5), it results

d Cyj
Vceniccen = ZLtis : ( t.S - (1 - Utis)cpla> + ...

dt . Ktls
tis
C .
Z Liis - <(1 - Utis)cpla — ,\tls>
tis€cen Ktis
Ctis
- Li(1 — o) - [ % )+
tlz tls( Utls) <(1 — O'tis)KtiS pla -+
is¢cen
C .
Z Lis - <Atls - (1 Utls)cpla> -
tis€cen Kiis
Cy; Cyj
Buislis=— — > Luis - (J —(1- atis>cpla>
tis tis€cen Ktis
C
= ZLL(l_UL)' %—Cpla
L (1—on)Ky

EcenLcen (1 — Ocen ) Cpla

= ZLL . <9L - (1 — UL)Cpla) — CLplacen . Cpla
L KL

= Lcen - (Cin,L - (1 - Ucen)cpla> - CLplacen : Cpla-

The inflowing concentration into the central compartment is defined as

These equations and relationships are the foundation for the derivation of lumped

compartment models developed below.

5.2 Lumped models and their link to classical

compartment models

Here we focus on establishing the link between 2-compartment lumped models, directly
derived from the simplified PBPK model, and the most commonly used classical
2-compartment models. The equations for 1- or 3-compartment models can be derived

analogously.
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5.2.1 Derivation of classical compartment models

With the lumped peripheral compartment denoted by ’per’, the rate of change of the
central and peripheral lumped compartment concentrations Ceen and Cpe, are given
by

d Cper
VcenaCcen = L- (KZZr - (1 - Uper)cpla>

_CLcen : Cpla
d Cper
Vper&Cper = L- <(1 - Uper)cpla - I{;er)

—CLintper - Cper

with initial conditions Ceen(0) = dose/Veen and Cper(0) = 0. The plasma concentra-
tion Cp, is linked to the central concentration as defined in eq. (5.7). This lumped
model is parameterized in terms of physiological parameters: volume of central and
peripheral compartments Veen and Vper; lumped peripheral lymph flow L = Lper;
peripheral reflection coefficient op,er; central plasma clearance CLcen and peripheral

intrinsic clearance CLintpe,.

To establish the link to classical two compartment models, the above lumped
model is alternatively parameterized in terms of apparent parameters: central and
peripheral volumes of distribution V; and Vg; central plasma clearance CL; and
peripheral intrinsic clearance CLsg; and inter-compartment clearance ). For this
parameterization, the rates of change of the plasma and peripheral concentrations Cy
and Cy are defined by the ODEs

d

Vlacl = Q(Cy—-Cy)—CL;-Cy
d

VarCz = Q(C1—Cy)—CLs G

with C;(0) = dose/V; and C2(0) = 0 for an i.v. bolus administration. This results in

the following relationships between the apparent and physiological parameters:
Vl = Vcen : ABCCen
Vo = Vper - ABCper/(1 — Eper)
Q = L- (1 - Uper)

CL; = CLeen

CL; = CLintpe - ABCper/(1 — Eper)
Ccen

Cl B ABCcen

o — Cer

ABCper/(1 — Eper)



5.2 Lumped models and their link to classical compartment models

Table 5.1: Comparison of parameter values corresponding to three minimal lumped 2-
compartment models (MLMs).

Parameter MLMc¢enper MLMceen MLMper
Veen (mL) 3.4 3.4 3.4
Vper(mL) 20.0 20.0 20.0
L(mL/d) 5.5 5.5 5.5
CL¢en(mL/d) 0.10 0.13 -
CLintper(mL/d) 0.67 - 24
Keen 1.2 1.2 1.1
Kper 1.7 1.7 1.7

with ABCeen = (1 — Ucen)ﬁcen and ABCper = (1 — O'per)err. The additional factor
(1 — Eper) in the relationships for the peripheral parameters accounts for peripheral
elimination.

If some elimination is assumed to occur only from the central compartment, then
CLintper = 0 and the relationships between physiological and apparent parameters of

the central and peripheral compartments become comparable: Vi = Vg, - ABCeen;
V= Vper ’ ABCper; C = Ccen/ABCcen and Cg = Cper/ABCper~

5.2.2 Mechanistic and physiological interpretation of classical

compartment models

The dimensionality of the simplified PBPK model is reduced based on the extension of
the lumping approach detailed in paragraph 5.1. The normalized concentration-time
profiles of all plasma and tissue compartments, defined in eq. (5.1) are represented
in Fig. 5.2. Four groups of kinetically similar tissues are identified: cen—{plasma,
lung}, Li={heart, kidney, liver, spleen}, Lo={gut} and Ls={adipose, bone, muscle,
skin}. These would be the basis for mechanistically lumped models that aim at
predicting the concentration-time profiles of all tissues. Here, however, we are only
interested in the minimal lumped model that aims at predicting only the plasma
concentration-time profile. This is achieved by further reducing the number of tissue
groups. Motivated by the biphasic characteristics of the plasma-concentration time
profile, we study different options of grouping all tissues into a central (cen) and
peripheral (per) compartment.

In the first minimal lumped model, cen = {plasma,lung} and the peripheral
compartment contains all remaining tissues. In the second minimal lumped model,
per={adipose, bone, gut, muscle, skin} and the central compartment contains all

remaining tissues. Depending on which tissues are assumed to be eliminating, there
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Figure 5.2: Identification of groups of tissues with similar normalized concentration-time
profiles, as predicted by the simplified PBPK model after an i.v. bolus administration of 8
mg/kg TE3 to wild-type mice. Similar concentration-time profiles are indicated by identical

color.

are three different scenarios regarding where to assign clearance processes (see Fig. 5.3):
(i) from the central and peripheral compartments, (ii) from the central compartment
only; or (iii) from the peripheral compartment only. Each of these three clearance
scenarios could be combined with the different choices of the tissues constituting the

central and peripheral compartments.

dose dose dose
Vcen Vcen V-cen i
) v
CL CL
Ccen’ Kcen ﬂ) Ccen’ Kcen —> ccen’ Kcen
L L L
Vper Vper Vpel‘ y

Cper' I{per Cper' err Cper’ I{per

CLintper l CLintper l

Figure 5.3: Structure of different minimal lumped models that all describe the experimental

plasma concentration-time profiles (TES3, in mice) equally well.

For the choice of per={adipose, bone, gut, muscle, skin} and the central com-
partment containing all the remaining tissues, the parameter values of the resulting
minimal lumped compartment models are given in Tab. 5.1. Figure 5.1 shows the

experimental plasma data in comparison to the predictions of the simplified PBPK



5.3 Discussion

model, the minimal lumped 2-compartment model, and the semi-mechanistic 2-
compartment model. Predictions for the simplified PBPK and minimal lumped
models are based on the clearance scenario 2. Parameterizations based on other
clearance scenarios resulted in indistinguishable predictions. All models were in very
good agreement with the experimental data (and differ only slightly, e.g., in the

terminal phase).

5.3 Discussion

To inform the development and interpretation of classical compartment models, we
identify which simple compartment model structures are consistent with the simplified
PBPK model. Such an approach has several advantages: (i) the lumping approach
links the mechanistic interpretation of a PBPK model to the classical compartment
models and thereby suggests possible interpretations; (ii) the model reduction process
links the two levels of description and shows that the two approaches are not so
different; (iii) if one is interested in parameter estimation for a PBPK model, lumping
might provide a means to stabilize the estimation process; (iv) a mismatch between a
minimal lumped model arising from a PBPK model and a classical compartment model
suggests that some processes are not appropriately described, either in the PBPK
model or in the classical compartment model, or in both; (v) the reduction processes
offer a systematic means to derive covariate relationship for classical compartment
models based on the integration of the covariate in the PBPK model. This is usually
much simpler due to the mechanistic interpretation of parameters in a PBPK model
(see [121] for full details).

The derivation of lumped models, based on the experimental data in mice, outlines
that several definitions of the central compartment are consistent with the data (see
section 5.2.2). The central compartment could comprise only plasma and lung or,
e.g., it could comprise all tissues except for adipose, muscle, gut, bone, and skin.
Other scenarios are possible.

While it is common knowledge for small molecule drugs that parameters of classical
compartment models generally allow only for an apparent interpretation, this seems
to be much less acknowledged for monoclonal antibodies. Although mAbs generally
do not exhibit non specific binding—in contrast to small molecule drugs—, this does
not imply that apparent volumes are identical to anatomical volumes. In general, the

following relation holds

Vapparent = Ktissue ' Vanatomicala

where Kijssue denotes the tissue-to-plasma partition coefficient. For the mice data,
the estimated tissue-to-plasma partition coefficients are identical to the antibody
biodistribution coefficients (see eq. (4.20) and [18]). The values range from 0.03 —0.17
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(see Table 4.5) and therefore are quite different from 1—a value that would result in
Vapparent = Vanatomical. For the mAb 7E3 in mice, the summed physiological volumes
are Veen = 3.4 mL and Ve, = 20.0 mL, while the apparent volumes are much smaller
with Vi = 1.9 mL and Vo = 1.1 mL, see Table 5.1 and eq. (5.10). In particular
the central volume V; has often been associated with the plasma volume (for mice,
it is Vpia = 1.7 mL according to Table 4.3). Such an interpretation, however, is
not supported by classical compartment modeling. It is also not in line with the
expectations arising from the simplified PBPK model, neither with the experimental
data shown in Fig. 4.2, which clearly show two groups of tissues, (i) lung, heart,
kidney, liver, spleen, gut that behave kinetically similarly to plasma; and (ii) muscle

and skin, which both are kinetically similar, but not to plasma.



Extension of the simplified PBPK model to account for

a membrane-bound target

Observed non-linearity in the pharmacokinetics of therapeutic monoclonal antibod-
ies is mainly attributed to the saturable binding to the target. Michaelis-Menten
kinetics [58], target mediated drug disposition (TMDD) [97-100, 122-125], and
receptor-mediated endocytosis (RME) [65, 101] models have been successfully used
to mechanistically justify the non-linear clearance. The simplified PBPK model can
easily be extended to account for a target. Herein, we exemplify the extension for
a membrane-bound target (e.g., the epidermal-growth-factor receptor, EGFR). The
mADb-Target interaction is modeled by the extended Michaelis-Menten model. A
detailed justification of the model is found in [65, 101], in particular for a mechanistic
derivation of such a model and its link to more detailed cell-level systems biology

models of the targeted receptor system.

6.1 Parameterization of the simplified PBPK model in

terms of interstitial concentration

Physiologically, only free mAb in the interstitial space has access to a cell-membrane
target. To account for the mAb-Target interaction at the interface of the interstitial
space and the cell surface, the simplified PBPK model is first re-parameterized
in terms of the interstitial concentration Cj,; based on the rate of change of the
concentrations in plasma Cy, and in tissues Cyjs (defined in Chapter 4, egs. (4.8)
and (4.9)). The tissue partition coefficient Kiis and the tissue intrinsic clearance
CLintjs are respectively translated into the interstitial partition coefficient Kj,z and
the interstitial intrinsic clearance CLintiys tis to derive the new ODE of the rate of

change of the concentrations in the interstitial space.

For later use, we define the common scaling factor for the interstitial space, SFyyt,

as the fractional tissue volume of the interstitial space,

Vint

SFint = Voo
tis

63



Extension of the simplified PBPK model to account for a membrane-bound target

64

6.1.1 Derivation of interstitial partition coefficients and interstitial
intrinsic clearance

The following derivations of partition coefficient and intrinsic clearance for the intersti-
tial space are based on the assumption that, in absence of target, extra-vascular mAb
mainly distributes into the interstitium. In [74], the authors report that the endosomal
volume accounts for only about 0.4% of plasma and <0.1% of interstitial fluid and
stress the little contribution of mAb amount in the endosomal space respective to the
total amount of mAb distributed in the extra-vascular space. We therefore neglect
the amount of mAb in the endosomal space, i.e. Agng € Ayis and we further assume
that the amount in the interstitial space is a good approximation of the amount in

tissue, i.e. Ajnt 2 Agis.
This approximation allows to relate the interstitial concentration Ciy; to the tissue
concentration Ciis via the common scaling factor for the interstitial space, such as

Atis ~ Aint o Vint Atis
Vtis Vtis Vtis Vint

Ctis - = SFint . Cint- (61)

In eq. (4.20) (see Chapter 4, section 4.3.3), we define the tissue-to-plasma antibody
biodistribution coefficient ABCj;s as

Cs: ~
ABCtis - Cti&ss = (1 - Utis) : Ktis-
pla,ss

Similarly, we define the interstitial-to-plasma antibody biodistribution coefficient,
ABCG;yt as
Cint,ss

ABCiyy = o
pla,ss

= (1 — o) - Kint. (6.2)
Rearranging eq. (6.2) to

> . Cint,ss
)
(1 - Utis) : Cpla,ss

int —

Kim can be interpreted as the elimination corrected interstitial-to-accessible plasma

partition coefficient. We further define
Rint = (1 - Etis) . Kil’lt7 (63)

with Kjut the interstitial-to-accessible plasma partition coefficient. Kint and K;,; are
unknown parameters and are derived from previously estimated parameters for tissue,
i.e. IA(tiS, the elimination corrected tissue-to-accessible plasma partition coefficients

and Eijs, the tissue extraction ratios.



6.1 Parameterization of the simplified PBPK model in terms of interstitial concentration

Table 6.1: Comparison of tissue- & interstitial-to-plasma antibody biodistribution coefficients
ABCys € ABCyy.

ABCys ABCiy  ABCiy /ABCyis

Adipose  0.034 0.249 7.333
Bone 0.038 0.193 5.071
Gut 0.062 0.345 5.583
Heart 0.116 0.770 6.631
Kidney 0.129 0.342 2.654
Liver 0.132 0.597 4.505
Lung 0.108 0.326 3.017
Muscle 0.034 0.254 7.533
Skin 0.125 0.345 2.743
Spleen 0.030 0.136 4.500

Determining the elimination-corrected partition coefficient for the

interstitial space

Solving eq. (4.20) for Ciys and using the relation from eq. (6.1) allow to determine
ABC;y; from ABCis
ABCiyy =

-ABC isy
SFint ’

which also reads )
(1 - Utis) -King = : (1 - Utis) - Kiis.
SFint

It follows that I/iint is directly derived from estimated IA(tis (for details on the parameter

estimation procedure, see section 4.3.2) yielding

K. (6.4)

Table 6.1 summarizes the tissue- & interstitial-to-plasma antibody biodistribution
coefficients, ABCyjs & ABCiy (egs. (4.20) and (6.2)). ABCiy gives insight into the ex-
tent of the distribution of mAbs into the interstitial space. The ratio ABCjiy; / ABChs
defines an interstitial-to-tissue partition coefficient. ABCj, is 3 to 7 folds higher
than ABCys which is in agreement with the expected extended distribution of a
non-binding mAb in the interstitial fluid. This observation must however be qualified
as further investigation is required to associate ABCjy; to the volume interstitial fluid
accessible for mAbs distribution as introduced in [7, 126, 127].

Determining the intrinsic interstitial clearance

In section 4.3.1, we define the intrinsic tissue clearance, CLintys (eq. (4.15)) in

terms of tissue extraction ratio, Es (eq. (4.12)) and elimination corrected tissue-
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to-accessible plasma partition coefficient, Ky (eq. (4.14)). Similarly, we define the

intrinsic interstitial clearance as

Ltis - Eint . Ltis - Eint
= — ,

CLinting,tis =
1NLint,tis (1 _ Eint) . Kint Kint

where E; is the extraction ratio related to the interstitial fluid. Based on time scale
considerations (see section 4.1.1) and the small fractional plasma and interstitial
volumes of the endosomal space [74], we neglect the contribution of the endosomal
volume and amount of mAb in the endosomal space respective to the overall tissue.
Since (i) the extraction of mAbs from the tissue mainly occurs in the endothelial
cells via lysosomal degradation (for details, see section Pharmacokinetic properties of
mAbs) and (ii) Ajns >~ Atis, the interstitial and tissue extraction ratios refer to the

same extracted fraction of mAb, yielding
Eint = Egis- (6.5)
Exploiting egs. (6.3), (6.4) and (6.5), it results the interstitial partition coefficient

Kint = : Ktis‘ (66)

6.1.2 Equations for the simplified PBPK model in terms of
interstitial concentration

From the previous derivations of Kj,, and CLinting tis, it results the system of ODEs

of the simplified PBPK model respective to the interstitial space:

d Cint tis
Vin 7Cin =1L is * 1-— is) * C a :
t g ot tis (( ois) - Cpl Kin tis (6.7)
— CLinting tis - Cint tis»
d
a— a = Lpla- ( in — (1 — a)’ a)
Vol T Cpl pla - (C (1= 0pia) - Cpl (6.8)

— CLpla - Cpla.

where the first equation (eq. 6.7) applies to all tissues. Of note, the form of the
rate of change of plasma concentrations remains unchanged. However, the inflowing

concentration Cj, into plasma becomes

Cint tis
Lpla : Cin = Z Liis - —.

K. .
tis int,tis
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6.2 Extension of the simplified PBPK model with the

extended Michaelis-Menten model

The simplified PBPK model is next extended to account for a target, accessible from
the interstitial space in the tissue or present at the surface of circulating cells in

plasma.

At the cell level, receptor mediated endocytosis (RME) is an important route

for cellular uptake and disposition for many mAbs binding to a membrane receptor.

As described in details in [65, 101], RME is the process of binding of a ligand to a
receptor followed by internalization of the resulting ligand - receptor complex forming

an endosome. Within the cell, the complex is recycled to the cell surface or cleaved

leading to the degradation of the ligand into lysosomes as depicted in [101, Fig. 1].

Also in [101], Krippendorff et al. derived a reduced model of RME, namely the
extended Michaelis-Menten model, eMM [101, Fig. 2: Model B|. The derivation of
the eMM model is based on the consideration of the fast time-scale of the transient
redistribution of the different receptor species compared to pharmacokinetics of the
ligand, translated into quasi-steady state assumptions of the receptor system. The
eMM model captures the effective dynamics of the receptor system on the distribution

and elimination of the ligand while still allowing for mechanistic interpretation.

In short, the extended Michaelis-Menten model is parameterized in terms of (i) a
receptor system capacity Bpax, describing the maximal amount of drug (that can
distribute into the receptor system) divided by Vi, and Byax represents the target
expression level; (ii) the Michaelis-Menten constant Ky referring to the half-maximal
receptor system capacity; and (iii) the degradation rate constant kqes, describing
the elimination of the drug by receptor-mediated endocytosis. The concentration

associated with the receptor system Crg [65, 101], is given by

Crg = —2x 1, (6.9)

Of note, C, is equivalent to the extra-cellular tissue concentration Cex in [101].

For a target expressed at the cell-surface of a given tissue, Byax corresponds to
the maximal amount of mAb in the receptor system divided by Vi, and Cy = Cing,u,
corresponds to the unbound concentration in the interstitial space. From eq. (6.1),

we deduce the (total) tissue concentration, Cyis = SFipt - Cint.

For a target expressed at the membrane of circulating cell in the plasma space,

Buax corresponds to the maximal amount of mAb in the receptor system divided by

67



Extension of the simplified PBPK model to account for a membrane-bound target

Vpla and Cy = Cpla,y, the unbound concentration in plasma.

For sake of illustration Ky and kgeg are assumed tissue-independent, while Bpax =
Bmax,tis can be different for different tissues, depending on the expression levels of
the target. For tissues not expressing the target, Buax,tis is set to 0.

Then, the rate of change of the total concentrations in the interstitial space and

in the plasma are given by the following system of ODEs and algebraic equations:

d Cint u,tis
Vint,tisicint,tis = Lijs (1 - Utis) : Cpla,u - —
dt Kint,tis
- CLintint,tis : Cint,u,tis (61())
Bmax,tis . Cint,u,tis
KM + Cint,u,tis

- kdeg : Vint,tis :

with the unbound interstitial concentration defined by

1
a (Cint,eff,tis + \/(Cint,eﬂ,tis)2 + 4KMCint,tis) (6.11)

Cint,u,tis = 9

with Cint eff tis = (Cint,tis — Bmax.tis — Kam); while for plasma, it is

d
Vplaacpla = Lpla : <Cin - (1 - Upla) : Cpla,u)
— CLpla - Cplau (6.12)
Bmax pla ° Cpla u
K - Ve - : )
deg pla KM + Cpla,u

with the inflowing concentration into the plasma defined as

Cint u,tis
Lpla : Cin = § Liis - ———
Kint

tis

with the unbound plasma concentration defined by

1
Cpla,u = 5 (Cpla,eff + \/(Cpla,eﬁ)z + 4I<MCp1a> (613)

with Cpla,cff = (Cpla - Bmax,pla - KM)
In egs. (6.10)-(6.13), Cin,tis and Cp, refer to the total concentrations in the intersti-

tial space and in plasma, respectively.

If Biax tis = 0 for some tissue (including plasma) then the corresponding square-
root term in eqs. (6.11) and (6.13) gives Cint u,tis = Cint and Cplay = Cpla, the total
concentrations in the interstitial space and in plasma, respectively. In this case, the

concentration in the receptor system Crg = 0 as expected and eq. (6.10) is identical
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Figure 6.1: Prediction of plasma and tissue concentration-time profiles based on the simplified
PBPK model with a hypothetical target (in skin) for for an i.v. bolus administration of 8 mg/kg
7ES8 in mice: the reference prediction without a target (solid black line, as in Fig. 4.2) was
compared to a target system with (i) high capacity Bmax = 1.33¢2 nM, Michaelis-Menten
constant Ky = 0.013 nM and slow degradation rate constant kgeg = 4e — 5/h (middle/top
red dashed line); and (ii) with low capacity Bmax = 1.33e — 2 nM, Michaelis-Menten constant
Ky = 0.013 nM and fast degradation rate constant kaeg = 4/h (lowest, blue dashed line).

The biphasic behavior of the initial phase is present in all three scenarios.
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Figure 6.2: Prediction of target saturation level based on the simplified PBPK model with
a hypothetical target (in skin) for an i.v. bolus administration of 8 mg/kg TES in mice
with a target system which (i) high capacity Bmax = 1.33€¢2 nM, Michaelis-Menten constant
Kum = 0.013 nM and slow degradation rate constant kqeg = 4e — 5/h (red line); and (i) with
low capacity Bpax = 1.33¢ — 2 nM, Michaelis-Menten constant Ky = 0.013 nM and fast
degradation rate constant kgeg = 4/h (blue line).

to eq. (4.8). The above stated equations can also be used in the case of a tumor

tissue (potentially with a time-dependent tumor tissue volume).

Based on the extension of the simplified PBPK model in egs. (6.10)-(6.12), the
impact of a hypothetical target in skin is predicted on plasma and tissue concentration-
time profiles. In Fig. 6.1, two different scenarios are depicted and compared to
the simplified PBPK model without a target: a targeted system with (i) high
receptor system capacity and low elimination rate constant (Bpax = 1.33¢2 nM,
kgeg = 4e — 5/h); and (ii) low receptor system capacity and high elimination rate
constant (Bpax = 1.33e — 2 nM, kqeg = 4/h). The impact of the target on plasma
concentrations does not solely depend on the receptor system capacity alone: Although
the capacity Bpax in (ii) is a factor 10000 lower than in (i), the impact on the plasma
concentration-time profile is much larger due to faster degradation by receptor-
mediated endocytosis, i.e., larger kqee. The plasma and tissue profiles shown in
Fig. 6.1 are typical profiles that one would expect in the presence of target-mediated
drug disposition. As in the no-target case, the concentration-time profiles of tissues
not expressing the target are kinetically similar to the plasma, except for the initial
phase (during the first 1-2 days) when the distribution plays the major role. Skin,
where the target is expressed, shows a different profile, most notably, when the

targeted system has a large receptor system capacity, as in scenario (i).

The level of saturation of the target is defined as

Crs

Target saturation level =
max



6.3 Discussion

From eq. (6.9), it yields

Cint,u

Target saturation level = ——————.
KM + Cint,u

Figure 3.2 shows the saturation level of the target for the two scenarios. For an
i.v. bolus of 8mg/kg, even with high maximum receptor capacity, Bpmax, the saturation
level of the target is maximum (100 % receptor occupancy) for a prolonged period of
time (45 days) mainly attributed to the slow elimination rate constant by RME, kgeg.
When Bpax is 10000 times lower, full receptor occupancy is indeed reached rapidly
but for a relative short time (10 days) due to the fast elimination of the mAb-target

complex.

6.3 Discussion

For compartmental models used to describe the PK of mAbs (see section Descriptive
classical approaches, |2, 81, 128, 129]), the non-linear clearance is commonly attributed
to the interaction with the target. It is described with empirical models, i.e. Michaelis-
Menten model, first introduced by Michaelis L and Menten M in 1913 [58| in the
context of enzymatic reaction and with semi-mechanistic models, i.e. target mediated
disposition models (TMDD) [97, 99, 122-125]. However, these approaches do not
allow to represent physiologically the concentration of the drug at the target site, e.g.
the interstitial space for a membrane-bound target. More recently Krippendorff et al.
derived systems pharmacology models accounting for processes at the cellular level,
based on receptor-mediated endocytosis (RME), in order to combine in a unique
model the pharmacokinetics of mAbs and the cellular target dynamics [65, 101]. Drug
development of therapeutic proteins, especially dose range finding studies in disease
animal models and first in human studies, can greatly benefit from these modeling
approaches when integrated into the framework of a PBPK model which enables to
quantify the concentration of therapeutic mAbs at the target site. Physiologically
and mechanistically, a cell-surface target is accessible to the mAb from the interstitial
space.

The first step to extend the PBPK model to a target is to consider the interstitial
concentration in place of tissue concentrations. The PBPK model is re-parameterized
which leads to the derivation from tissue parameters of parameters related to the
interstitial space, i.e. partition coefficients, Kj,¢, antibody biodistribution coefficients,
ABC,, extraction ratios, Ein; and intrinsic clearances, CLiyg.

We derive the elimination-corrected partition coefficients for the interstitial space,
IA{int, from the elimination-corrected partition coefficients for the tissue IA(tis which
are estimated from typical biodistribution data (see Appendix A.2 and section 4.3.2).

One can circumvent the estimation step for to derive Kmt by making use of the
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antibody biodistribution coefficients ABCey;, determined from experimental data
from different species and genders [18] and detailed in section 4.3.3. From eqgs. (4.18)
and (6.2), we link the partition coefficient for the interstitial space Kiy; and the

interstitial-to-plasma antibody biodistribution coefficient ABCiy; to ABCexp:

1 ABCeyp — (1 — het) - resp)o
SFint (1 = ois) (1 — resplo)

Kint =

1 ABCexp — (1 — het) - respo

ABCipy = :
t SFint (1 — resblo)

(6.14)

with resp), the fraction of residual blood.

In Chapter 4, section 4.3.3, we show that it is not possible to infer which tissue is
eliminating and to estimate intrinsic tissue clearances. Only the total clearance, CLt,
can be reliably estimated. Since E;,t = Eijis, the same conclusions can be drawn for the
intrinsic interstitial clearances. Considering interstitial concentrations, the simplest
way to parameterize the simplified PBPK model is based on egs. (6.7) and (6.8) with
species-dependent parameters given in Table 4.3, plasma clearance CLpla given in
Table 4.6 (sc. 7) and Ejp, = CLint;y, = 0 for all tissues. It follows from egs. (6.2)-(6.3)
that Kt = I/{int = ABCiyt / (1 —oyis). Therefore Ky and IA{int values can be deduced
from ABC;y values reported in Table 6.1. For extrapolation of the simplified PBPK
model to other species/strains, one can make use of the ABCjy values (see Table 6.1,
assumed to be species-independent in [18]) by exploiting the relationship in eq. (6.14).
However, it becomes critical to identify the peripheral clearances, i.e. the interstitial
intrinsic clearances when considering the interaction with the target in order to
discriminate between the linear and the non-linear component of the total clearance.
More research, experimentally and in-silico, needs to be done to address this need.

The interstitial fluid is formed of positively-charged collagen and strongly negatively-
charged hyaluronan which, partly due to charges repulsion/attraction and allosteric
effect, limit the access of macromolecules to the interstitial fluid space. The resulting
phenomenon is referred to the interstitial exclusion as described and characterized by
Wiig and colleagues for normal tissues |7, 126] and tumor [127]. As a consequence of
the exclusion, the concentration of mAb (as any protein) in the accessible interstitial
fluid is higher than the concentration derived for the tissue and total interstitial fluid
volume. This phenomenon would result in the estimation of higher ABCjy than the
one reported in Table 6.1. Further extension of the PBPK model will be needed in
the future to address this phenomenon.

While the focus of the thesis is to derive mathematical models to describe the
disposition of mAbs in absence of target, we show here how to integrate a target
into the simplified PBPK model. The first results based on simulation support the

statement in [71]| that in the presence of a significant target mediated elimination



6.3 Discussion

pathway, the linear component of the total clearance plays a minor role in determining

the disposition of monoclonal antibodies.
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Accounting for Inter-Individual Variability (ITV) in
PBPK Models

Mathematical modeling of the pharmacokinetics of drugs has proved its value through-
out drug development [48, 130]. The PK models are mainly used as exploratory
models to understand the mechanisms involved in the drug disposition and its response
(as often the case in pre-clinics) and as predictive models to typically plan future
clinical studies (for details, see section General introduction and [131-133]). The
predictive capabilities are ensured by integrating variability in such models. Analyzing
inter-individual variability in pharmacokinetics and understanding its origins is of

critical importance in clinical development |38, 134, 135].

Typically, clinical PK data are analyzed in a population analysis framework. One
of its application is to investigate the impact of covariates (i.e. independent variables
that possibly allow to explain inter-individual variability) on PK parameters to explain
observed inter-individual variability [27, 136-140]. Although most covariate models
are likely to be motivated by mechanistic or (patho-)physiological considerations, a

formal derivation from underlying mechanistic principles is rarely presented.

In drug development, typically PBPK models are used to represent drug PK in a
mechanistic manner [31, 48|. Several approaches to model inter-individual variations
in physiological parameters in PBPK models for small molecule drugs in human
have been proposed in the literature [141-145] and various sources of inter-individual
variability are identified, i.e. age, gender, ethnicity, body-weight, creatinine clearance,
etc. In the present work, we focus on the predictable impact of variations in anatomical
and physiological parameters typically used as covariates for the PK parameters in

empirical models, e.g. clearance and volume of distribution.

We first present a novel scaling approach for anatomical and physiological pa-
rameters used in PBPK models. We implement our approach in a generic PBPK
model for small molecule drugs, in human, to compare to different approaches and
clinical data. We then derive a systematic approach to translate this inter-individual
variability into the design of mechanistic covariate models with a direct link to
classical compartment models commonly used in clinical drug development. Finally,
we present the methodology to include inter-individual variability in the previously

developed simplified PBPK models for monoclonal antibodies.
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7.1 Whole-body PBPK model for small molecule drugs
(SMDs) in human

We adopt the PBPK model for SMDs proposed in [91|. The generic whole-body
PBPK model comprises 13 compartments representing important tissues/organs
within the human body (see Figure 7.1). In a generic setting for PBPK models for
small molecule drugs, it is assumed that the drug distributes within the body via
advective transport by the blood flow and via passive diffusion homogeneously into
organs/tissues, and that the drug is eliminated predominantly by metabolism in the
liver. In the presence of additional or more specific information, the PBPK model
can be adapted accordingly, e.g., to account for gut metabolism, renal excretion etc.

This also includes patho-physiological alterations in patients.

7.1.1 Parameterization of a generic whole-body PBPK model

Based on the perfusion-limited tissue model, the following system of differential
equations describes the rate of change of the total drug concentration Cys in the

different tissues (noted tis) (see Table 7.1 for abbreviations):

d
Vvenacven = Qco . (Cin,ven - Cven)
d Clun
Vlunaclun - Qco . (Cven Klun>
d Clun
VartECart - Qco : <Klun - Cart>

Ctis
actls - Qtls : (Cart - Ktis)

tis = adi; bra; gut; hea; kid; mus; ske; ski; spl

C iv .
—Civ = Quiv- <Cin,1iv - Kh> — CLint - Cyiy.
liv

Above, Vi and Qyis denote the tissue volume and blood flow, respectively. Kiis
denotes the corresponding tissue-to-blood partition coefficient and Cj, ;s represents
the inflowing blood concentration. The term CL;y denotes the hepatic intrinsic
clearance- Some PBPK models assume that only the unbound concentration in the
liver C,, jjy can be metabolized, resulting in a term CLintC, j;, instead of CLjyCriy .
Assuming that C, iy = fuyCyiy, this can easily be integrated in our setting by
changing CLiyt to CLintfuyy, where fuy, is the fraction unbound of the drug in the

liver. For liver and vein, the inflowing concentrations are

1 Ctis 1 Ctis
Cin,liv = N Z Qtisia Cin,ven = 5 Z Qtisi
Qliv tis Ktis Qco tis Ktis



7.1 Whole-body PBPK model for small molecule drugs (SMDs) in human

where the first sum is taken over spleen, gut and the arterial hepatic vein, while the
second sum is taken over adipose, skeleton, brain, heart, kidneys, muscle, skin and
the liver. For an i.v. bolus administration, the initial condition C(¢t = 0) for the
system of ODEs is set to Cyen(0) = dose/Vyen and Ciis(0) = 0 otherwise. See [91] for
i.v. infusion and p.o. administration.
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Figure 7.1: Topology of a generic 13-compartment PBPK model for SMDs. For the purpose

of this work, only hepatic elimination is considered.

7.1.2 Data for reference individuals

Tissue weights are issued from the report of the International Commission of Radio-
logical Protection (ICRP report) [146]. The adipose compartment is identified with
the separable adipose tissue while the muscle compartment is identified with the total
skeletal muscle. The gut is identified with the sum of the small intestine wall, large
intestine wall, left and right colon, and recto-sigmoid wall. The skeleton is identified
with total skeleton, including bone and bone marrow. The considered tissues account
for 93.4 and 92.1 % of total body weight for male and female adults, respectively.
Blood flows originate from [146]. For consistency, the blood flows of lung, vein

and artery are set to the percentage of cardiac output. Alternatively, one could scale

all blood flows to match the cardiac output; or include a rest of body compartment.

The hematocrit value is determined by dividing the volume of red blood cells by the
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Table 7.1: Reference anatomical and physiological data for adults (20-50y).

volume®? blood flow
L L/min

male female male female
adipose (adi) 15.76  20.65 0.325 0.502
brain (bra) 145  1.30 0.780  0.708
gut (gut) 102 0.96 0.910  0.944
heart (hea) 0.33 0.25 0.260 0.295
kidney (kid) 0.31  0.28 1.235 1.003
liver® (liv) 1.80  1.40 1.657  1.593
lung (lun) 0.50  0.42 6.013  5.399
muscle (mus)  29.00 17.50 1.105 0.708
skeleton (ske) 8.08  6.00 0.325 0.295
skin (ski) 3.30 2.30 0.325 0.295
spleen (spl) 0.15  0.13 0.195 0.177
artery (art) 1.56  1.15 6.013  5.399
vein (ven) 3.74 275 6.013  5.399
rest of body (rob) 4.84  4.77 0.487  0.502

¢ without residual blood

® tissue density of 1 g/ml for all tissues except adipose (0.92 kg/L) and skeleton (1.3 kg/L) [112, 146]
¢ total hepatic blood flow

The data are referenced for adults (20-50y) for Western Europeans and North Americans. All data
are based on [146].
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Table 7.2: Reference anthropometric data for adults (20-50y).

male female
body height (m) 1.76 1.63
body weight (kg) 73.00 60.00
lean body mass (kg) 58.50 41.00
fat mass (kg) 14.50 19.00
body mass index (kg/m?)  23.57 22.58
body surface area® (m?) 1.90 1.66
total blood (L) 5.30 3.90
hematocrit® (%) 43.40 38.50
cardiac output (L/min) 6.50 5.90

“determined from the relation BSA(m?) = 0.1644 - BH(cm)%*2246 . BW (kg)%-51456 | see [143].
® from [146].
The data are referenced for adults (20-50y) for Western Europeans and North Americans. All data

are based on [146], except for hematocrit values.

total plasma volume as reported in the ICRP report [146]. Table 7.2 summarizes all

gender-dependent anthropometric data.

7.1.3 Drug specific parameters

The main physico-chemical properties parameters entering the whole-body PBPK
models of SMDs are (i) drug-specific parameters: pK, value, n-octanol-buffer partition
coefficient log Py ; and (ii) mixed drug-gender related parameters: fraction unbound
in plasma fuP, blood-to-plasma ratio BP, tissue-to-blood partition coefficients Kj;s,

and blood clearance CL.

7.2 Integrating IIV in PBPK models for SMDs

We propose a new approach to scale anatomical & physiological parameters. The
novel approach takes into account important anthropometric characteristics like body
weight (BW), lean body weight (LBW), body height (BH), body mass index (BMI)
and body surface area (BSA). It can be interpreted as a size model approach [147]
for anatomical & physiological data, where reference values are scaled with a factor
incorporating relevant anthropometric characteristics to obtain the parameter values

of the individual of interest.
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Individual parameters like tissue volumes Vs, blood flows Qs and tissue partition
coefficients Kijs are predicted from parameter values of a reference individual based

on scaling factors:

Vtis = SVtis ' Vtis,refv Qtis = SQtis : Qtis,reﬁ Ktis = SKtis : Ktis,refy

where SViis, SQys and SKyis denote the scaling factors for tissue weights, blood flows
and partition coefficients, respectively, and ’ref’ refers to the reference individual.
Parameter values for the reference individuals (i.e. adults age 20y-50y) are listed in
Table 7.1.

The input of the approach are all parameter values with an index 'ref’, including
anatomical & physiological data as well as drug specific data. In addition, the
covariate values of the reference as well as the individual of interest are required.

All parameters and covariates are based on units [m| for length, [kg] for weight,

[L] for volume and [min| for time, unless otherwise stated.

7.2.1 The LBW-scaling approach

Scaling the tissue/organ volumes

For many drugs, the adipose tissue is a key space for distribution [91]. The organ
weight (OW) of the adipose tissue is defined as

OW,q; = BW — LBW. (7.7)

In the absence of knowledge of LBW, it is approximated by the fat free mass FFM
[148, 149], i.e.,

Mpwmr
Kgwmi + BMI
with Mpyr = 9270/216 and Ky = 6680/216 (for male) and Mpyr = 9270/244 and

Kpwmr = 8780/244 (for female). The body mass index is defined as

LBW ~ FFM = BW, (7.8)

BMI = BW/BH?.

It yields the following scaling factor for adipose volume

BW — LBW

SV.ai = .
47 BW,ef — LBW,t

The brain volume is assumed to remain constant in each age class, i.e.,
SVira = 1,

consistent with [146]. In line with [143|, the body surface area is considered as a
factor of proportionality for the skin tissue, resulting in

BSA

SV = BSA.
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In the absence of knowledge of BSA, the approximate formula [150] is used:

BH-BW
BSA =/ —5—.
S 36

For the remaining tissues we assume that all tissues scale identically with the scaling

factor
LBW — OWy,n — OWgy

SV = 9
% LBW et — OWirarof — OWeidi re

(7.9)

exploiting BW — (OW,q; + OWpy + OWg) = LBW — OWy,,, — OWy.

Scaling the cardiac output

For the reference individuals, the blood flow for each organ is expressed as a fraction
of the cardiac output. In the following, these fractions are assumed to remain constant
within each age class. Therefore, for an individual, the blood flow in each organ
scales according to the scaling of the cardiac output. In the sequel, we present the
derivation of a scaling factor for the cardiac output.

The cardiac output is defined as
Qco = Vs-HR

with stroke volume Vg and heart rate HR [151]. The stroke volume is related to the
end diastolic volume Vgp according to Starling’s Law of the Heart [152]. It states
that for a constant heart rate, the end diastolic volume increases with the volume of
blood ejected during the systolic contraction, i.e., the stroke volume, and vice-versa.
The ratio of stroke volume to end diastolic volume is defined by the ejection fraction
EF [151]:

_ Vs

=

In resting subjects, EF is a constant ratio of approximately 0.6 [153|. Assuming that

EF

the end diastolic volume is proportional to the left ventricular volume Vry, it follows
the deductive reasoning for the scaling relation of cardiac output: The tissue volume

scaling factor SV is applied to the left ventricular volume yielding
Viv = SViis - VIV ref

and

VEp = SViis - VED ret-

Exploiting the definition of the ejection fraction and EF = EF,¢ yields for the stroke

volume

VS = Svtis : VS,ref-
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Since amongst healthy, untrained subjects, the heart rates are approximately equal

independent of body weight or body height [154], we obtain
QCO = Svtis . Qco,ref- (710)

The above derivation is supported by a number of observations: Combining eq. (7.10)
with eq. (7.9), we infer that the cardiac output is approximately scaled with LBW.
Under physiological conditions this scaling is reasonable since LBW represents body
compartments with high metabolic demands and therefore high oxygen consumption
[155, 156]. The larger LBW, the more oxygen needs to be transported into the
respective tissues. Therefore a higher blood flow and cardiac output are required.
Furthermore, the scaling of the left ventricular volume with the formerly derived
SViis (see eq. (7.9)) is supported by [155, 157, 158] who observed a relation between
LBW and left ventricular volume. Finally, for obese individuals it is reported in [154]
that an increase in cardiac output is only due to an increase in stroke volume. Herein,

we provide supportive evidence for scaling cardiac output according to

SQeo = SViis.

Tissue blood flows are then scaled by assuming SQy;s = SQ,,. It follows the common

scaling factor for the peripheral blood flows

SQuis = SViis- (7.11)

Scaling the partition coefficients

Given gender and age dependent changes in binding protein concentrations [159-161],
the fraction unbound in plasma fuP is considered as a potential gender dependent
parameter. For SMDs, the gender-dependent tissue-to-blood partition coefficients
Ki;s are determined from the relation

fu

P
Ktis = ﬁmtisa (712)

where the tissue-to-unbound plasma partition coefficients Kuyjs are assumed gender
independent. Values of Kuyjs are predicted based on the in silico method proposed by
Rodgers et al. [116, 162| (including the proposed correction for residual blood). The
derivation of the blood-to-plasma ratio BP highlighted its gender dependency (for
details, see Appendix B.3).

Using the fraction unbound in plasma fuP, the blood-to-plasma ratio BP and

eq. (7.12) yields
fuP - BP,ef

Kiis = m— st Ky er
is BP - fUPref is,ref

resulting in the scaling factor for tissue-to-blood partition coefficients

fuP  BPye

K= .
S fuP,s BP

(7.13)
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Scaling the intrinsic and blood clearances

The intrinsic hepatic clearance CLint is assumed to scale with the liver volume

CLint, .
CLint = Vi - 2t _ Qv . CLintye.

liv,ref
The hepatic extraction ratio is defined as

CLint - Ky;y
CLint - Kjiy + Qv

Ehep =

Exploiting that SQy;, = SV, it yields

SK - CLint ¢ - Kliv,ref
SK - CLintrof : Kliv,rcf + Qliv,rcf .

Ehep = (7.14)

It follows for the hepatic blood clearance

CL = Ehep : Qliv = Ehep : SQliv : Qliv,ref-

7.2.2 Validation of the the LBW-scaling approach

In the autopsy study by De La Grandmaison et al. [163], organ weights of n = 355
male and n = 329 female Caucasians are reported. Based on the mean and standard
deviation of BH and BMI, a virtual population of n = 355 male and n = 329 female
individuals is generated (for details, see appendix B.2), taking into account known
correlations between BW and BH. The distribution of individual BH and BW is
shown in Fig. 7.2 for male (top, left) and female (top, right) subpopulations. For
each individual of the virtual De La Grandmaison population, the organ weights are
assessed using the LBW-scaling approach and compared to the BH-scaling [142] and
the regression equation approach [143]. For the experimental data of the autopsy
study, a normal distribution is assumed as suggested in [163] by reporting mean and
standard deviation. The conclusions, however, do not depend on this distributional
assumption. No information on the correlation between different organ weights is
provided in [163].

Figures 7.2 and 7.3 show the predicted distribution of organ weights based on the
herein proposed LBW-scaling approach in comparison to existing methods (BH-scaling
[142] and the regression equation approach [143]) and experimental data from the
large autopsy study by De La Grandmaison [163|. For heart, kidneys, liver and lung,
the LBW-scaling approach is in close agreement with the experimental data. The BH-
scaling approach largely underestimates the variability, while the regression equation
approach poorly predicts mean values. For spleen, the LBW-scaling approach largely
underestimates the observed variability—in comparison to the other two approaches.

However, it still generates more realistic variations. The lack of correlation of spleen
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Figure 7.2: Distribution of body height (BH) and body weight (BW) for a male (left) and
female (right) population with characteristics given in Table 7.3 (red diamond = mean value).
Comparison of lean-body weight (LBW) scaling approach, regression equation approach (REG)
and BH scaling approach (given in terms of box plots) in comparison to experimental data
(characterized in terms of red dashed lines) from the autopsy study [163] for male (left) and
female (right) population. Box plots & dashes lines from left to the right: the lower whisker,
the 0.25 quartiles, the median, the 0.75 quartile and the upper whisker.
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Figure 7.3: For description, see caption of Fig. 7.2. For lung, also a lean body weight

(LBW) scaling approach is used in [143].
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Table 7.3: Characteristics of the autopsy study by De La Grandmaison et al. [165].

Males Female

(n = 355) (n = 329)

Mean + SD  Range Mean + SD  Range
Age (years) 42 £ 17 49 £ 20
Body height (cm) 172+7.5 161+ 7.5
Body weight (kg) 68+ 11 58 +13.2
BMI (kg/m?) 22.8 £3.3 225+45
Heart (g) 365 + 71 90 — 630 312+ 78 174 — 590
Right lung (g) 663 + 239 200 — 1593 546 + 207 173 — 1700
Left lung (g) 583 £ 216 206 — 1718 467 £ 174 178 — 1350
Liver (g) 1677 +£396 670 — 2900 14754362 508 — 3081

Right Kidney (g) 162 £ 39 53 — 320 135+ 39 45 — 360
Left Kidney (g) 160 + 41 50 — 410 136 £+ 37 40 — 300
Spleen (g) 156 £ 87 30 — 580 140 £ 78 33 — 481

weight with BW, BH or BMI has been observed in females in [164], and might be
attributable to its "spongy" structure [143].

7.3 Classical compartment models with mechanistically

integrated covariates

In comparison to empirical, purely descriptive models, mechanism-based pharma-
cokinetic models (i.e. classical compartment models and whole-body PBPK models)
contain key elements to characterize, in a strictly quantitative manner, processes af-
fecting the pharmacokinetic properties of drugs. The addition of mechanistic covariate

models reinforces the predictability of such models.

7.3.1 Derivation of lumped parameters

The starting point is the previously described whole-body PBPK model whose anatom-
ical & physiological parameters incorporate important anthropometric characteristics.
Based on the lumping approach described in [91], the dimensionality of the PBPK
model is reduced to compartment models with lumped volumes Vy,, lumped blood

flows Qr,, lumped tissue-to-blood partition coefficients Ky, and blood clearance CL.
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On the basis of the scaling relations (7.7)-(7.14) and the lumping approach [91],

parameters of the lumped model are given as

Vi = Z S\/vtis : Vtis,ref (715)
tis
1 ~
KL = V7L % S\/vtis ' Vtis,ref -SK - KtiS (716)
QL = Z SQCO . Qtis,refa

tis
where the sum is taken over all tissues that are grouped together in the lumped
compartment 'L’. Above, IA(tis denotes the elimination-corrected tissue-to-blood
partition coefficient
Kiis = (1 — Es)Kuis,

where Eys is the tissue-specific extraction ratio (see [91] for details). In the generic
PBPK model, it is Ejj, = Epep > 0 and Eyjs = 0 for all other tissues. For artery and
vein, we formally set IA{VQH = fiart = 1.

If tissue volumes are all scaled with identical SV = SVy;g, then eq. (7.15) can be
simplified to

VL= SViis - Viisret =SV Y Viisret = SV - VL et (7.17)
tis tis

Thus, the individual volume Vi, can be derived from the reference volume Vi, ;¢f via
the simple scaling relation Vi, = SV - Vi, ¢. In general, however, volume scaling
factors might differ between tissues. To bridge the gap to the simplicity of common
empirical covariate relations, an approximate scaling factor is defined so that eq. (7.17)
holds approximately.

For the LBW-scaling approach, we define the common scaling factors as

LBW BW — LBW

——— and SF,4 = .
LBW BWiet — LBW et

For all tissues except brain and skin, SF1gw provides an excellent approximation to

SFipw = (7.18)

the scaling factors SVys in eq. (7.9). For brain and skin, the approximation has to
be seen in the light of eq. (7.17). Since brain and skin comprise only 8% of LBW
(reference adult), the error introduced to the lumped volume Vi, in eq. (7.17) is
negligible. Regarding the blood flows, we also approximate the scaling factor SQ by
SFrpw in view of eq. (7.11). Finally, we approximate SK = 1 in eq. (7.13).

7.3.2 Low-dimension compartment models integrating mechanistic

covariate models

The mechanistic approach to covariate modeling is applied to derive commonly used

2-compartment models describing the blood concentration time profiles of SMDs.
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The model incorporates the mechanistic covariate models, consistent with the generic
whole-body PBPK model and the inter-individual variability based on the LBW-
scaling approach.

For the generic situation, i.e. the liver is lumped into the central compartment

and the adipose tissue is part of the peripheral compartment (see [91] for details), we

obtain
d
V1501 = Q (CQ - Cl) - CL- Cl + Tadmin,
d
Vza(b = Q(C1—0Cy)

with mechanistic covariate models

Vi = O1-SFipw (7.19)
Vo = O3 SFLBW + Oagi * SFaqi (7.20)
Q = Oq-SFLew

CL = @CL . SFLBW'

The scaling factors are defined in eq. (7.18). The population parameters satisfy

6)1 = Z Ktis,ref : Vtis,ref:
tis
where the sum is taken over all tissues of the central compartment;
@2 = Z I/{tis,ref ' Vtis,refa
tis#adi

where the sum is taken over all tissues of the peripheral compartment except adipose

tissue; and finally

~

G)adi = Kadi,ref : Vadi,ref
Oq = Quref
GCL = CLref .

All population parameters have a mechanistic interpretation. The volume of distribu-

tion at steady state for the reference individual Vg rer is given by
Vss,ref =01 + O3 + Ouq;- (721)

Figure 7.4 compares the venous blood concentrations of Lidocaine (400mg, 60min
i.v. infusion) predicted by the whole-body PBPK and the compartment model with
mechanistically integrated covariates for a single individual (left) and a larger virtual
population (right). All predictions are in excellent agreement and in line with
theoretical expectations. They illustrate the predictive power of the new approach to

mechanistic covariate modeling.
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Figure 7.4: PBPK model vs. associated 2-compartment model with mechanistically integrated
covariates. Prediction of venous blood concentration after administration of 400mg Lidocaine
(60min i.v. infusion). Left: Comparison for a single individual based on the PBPK model
(solid black) and the 2-compartment model (dashed blue). Right: Comparison for the virtual
De La Grandmaison population with n = 684 male/female individuals.

7.4 Integrating ITV in PBPK models for mAbs

We described above how to integrate inter-individual variability in PBPK models for
SMDs based on a set of common anthropometric characteristics that have mechanistic,
physiological and clinical pertinence and proved to be of significant relevance in
covariate analyses. Such analyses are also performed routinely to describe and
understand the IIV in PK data of monoclonal antibodies. Bodyweight is often
reported to be a significant covariate on the volume of distribution and/or clearance
[3]. In this section, we adapt the LBW-approach and exemplify how to introduce
inter-individual variability in the simplified PBPK model for mAbs. Individual tissue
volumes Viis, plasma flows Qtis, lymph flows Lyjs and tissue partition coefficients Ki;g
can be predicted from parameter values of a reference individual based on scaling

factors:

Vtis = Svtis'vtis,refa Qtis = SQtis'Qtis,refa Ltis = SLtis'Ltis,ref> Ktis = SKtis'Ktis,ref7

where SViis, SQus SLtis and SKyis denote the scaling factors for tissue weights,
plasma flows, lymph flows and partition coefficients, respectively, and 'ref’ refers to

the reference individual.
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7.4.1 Scaling organ volumes with the LBW-scaling approach

In [78], Borvark and co-workers study the distribution of a murine IgG1 in mice. They
show that skin, muscle and adipose play a major role in the distribution of mAbs; the
same observation is reported for SMDs by Pilari and Huisinga in [91]. This similarity
motivated us to adapt the LBW-scaling approach previously described for SMDs (in
section 7.2.1) to mAbs. The LBW-approach is based on a specific scaling for the
organ volumes of adipose and skin while other tissues volumes are scaled similarly.
The weight of the adipose is defined by

OW,qi = BW — LBW.

It follows the scaling factor for the volume of adipose:

BW — LBW
BWref - LBWref ‘

Svadi =

The volume of skin scales with the body surface area (BSA) [143],

BSA

SVski = BSAref.

The scaling factor of the remaining tissues is then adjusted and defined as

LBW — OWgyi
LBWref - OWski,ref .

SVtis =

7.4.2 Scaling plasma & lymphatic flows

In section 7.2.1, we show that the cardiac output scales accordingly to the tissue

volumes:

SQeo = SViis.

Assuming that plasma flows scale like the cardiac output, i.e. SQy; = SQ., it is
SQtis = SViis.

In published PBPK models for mAbs [69, 72-74] and in the herein PBPK models,
the peripheral lymphatic flows are defined as a fraction of the tissue plasma flow,
i.e. Ly = a - Qs with o = 0.02 for visceral organs and o = 0.04 for non-visceral
organs [16, 66, 69]. It follows that the lymph flows scale like the blood flows, i.e.
SLtis = SQy;s yielding

SLiis = SViis.
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7.4.3 Scaling partition coefficients

For the simplified PBPK model, we define (in section 4.1.2; eq. (4.2)) the tissue-to-
accessible plasma partition coefficient, Kyis, as

1 J—

Kis

where FR is the fraction of free mAb recycled from the endosomal space; a and 3,

(1_Ulymph)'B+FR'a'57

are the multiplicative factors relating mAb concentrations in the endosomal space,
Ce, and in the interstitial space, Cj, to the tissue concentrations, Cyg; and d is the

fraction of lymphatic flow determining the endosomal outflow, Qout tis, such that

Ce = a - Cyjs and C; = 8- Cyjs and Qout,tis =0 - Lys.

In absence of data supporting otherwise, we assume that «, § and J are independent
of gender, BW and BH. It results that no specific scaling is needed for the tissue

partition coefficients, i.e. SK = 1. Therefore,

Ktis = Ktis,ref .

The interstitial-to-accessible plasma partition coefficient, K, (defined in section 6.1,
eq. (6.6)), scales directly from Ki;s. Thus, the same scaling principles are applied to
Kint yielding

Kint = King,ref-

7.4.4 Scaling tissue intrinsic clearances and total plasma clearance

Scaling the tissue intrinsic clearance

In the simplified PBPK model for mAbs, any tissue can be eliminating. Similarly to
the intrinsic hepatic clearance determined for SMDs (for details see section 7.2.1),
the tissue-specific intrinsic clearance, CLintis, is assumed to scale with the tissue
volume, so that

CLintyg e

CLinttis = Vtis .
Vtis,ref

= SViis - CLintyg ref.
The tissue extraction ratio, derived in section 4.3.1 (eq. (4.12)), is expressed as
CLinty;s - Kiis
CLintgs - Kis + Liis
Exploiting SLt;js = SViis and SKiis = 1(for details, see paragraph above), it yields
CLintgs rer - Kiig ref
CLintgs ref - Ktis,ref + Liis,ref

Etis =

Etis =

= Etis,ref .
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Scaling the tissue plasma clearance

For a given eliminating tissue, the peripheral plasma clearance (see section 4.3.3) is
given by
CLplay, = Egis - (1 — ois) - Luis

with oys denoting the effective tissue reflection coefficient. Assuming that oiis is
gender, BW and BH independent, it follows for the individual tissue plasma clearance
CLplatis = Etis,ref . (1 - O-tis,ref) . SLtis . Ltis,ref
CLplatlS — SLtlS . CLplatismef’

Exploiting SLijs = SVys it is finally

CLplags = SViis - CLplagg yef- (7.22)

Scaling the total clearance

The total clearance is previously defined in eq. (4.22), i.e.

CLtot = » CLplay, + CLpla.
tis # pla

From the above equation, scaling the total clearance is directly inferred from scaled
peripheral plasma clearances, CLplay;,, and scaled plasma clearance occurring from
the plasma compartment, CLpla. The scaling of peripheral plasma clearances CLplay;,
is defined in previous paragraph. In the sequel, we justify the scaling of the plasma
clearance.

CLpla, is derived from the plasma clearance of a reference individual scaled with

the plasma volume, namely

CLpla, ¢

CLlpla =V, - .
e Vpla,ref

We define the scaling factor for the plasma volume SV, such that

Vpla = S\v/vpla ' Vpla,ref- (723)

The volume associated with the plasma compartment V, represents the sum of the

volumes of artery and vein and the peripheral vascular volumes. It is defined as

Vpla = Z Vp,tis + Vart + Vven + Vp,ski + Vp,adi- (724)

tis # art; ven; adi; ski
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Under the general assumption that vascular volumes scale like tissue volumes i.e.
with SViis, SVagi and SV, eq. (7.24) also reads

Vpla = Svtis : Vp,tis,ref + SVski : Vp,ski,ref + Svadi : Vp,adi,ref (725)

with Vp,tis,ref = Z Vp,tis,ref + Vart,ref + Vven,ref~

tis # art; ven; adi; ski

Dividing by Vopla ref, €q. (7.25) becomes

Vo A Vi adi
p,tis,ref p,ski,ref p,adi,ref
+ S\/ski + S\'/adi Vpla,ref-

Vpla = (Svtis
Vpla,ref Vpla,ref Vpla,ref

It follows the scaling factor for plasma,

Vo A A

p,tis,ref p,ski,ref p,adi,ref

SVpla = SViyjs——"— + SVgi——"— + SVgi ———. (7.26)
pla,ref Vpla,ref Vpla,ref

For the reference individual (across species, gender and age classes), it is reasonable
to consider that Vj skiret & Vp adiref < Vplarer.- In mice, skin and adipose volumes
account only for 3.27% and 0.66% of total plasma space, respectively [67, 103, 112].
Thus, Equation (7.26) simplifies to

V. .

p,tis,ref

SVpla = SViis - ————.
Vpla,ref

From egs. (7.22) and (7.23), scaled individual total clearance is finally expressed as

CLtot = Y SVi - CLplagg ot + SVpia - CLplays.
tis # pla

We earlier highlighted in Chapter 4 that it is not possible to infer which tissues are
involved and to which extent into the unspecific elimination, i.e. the total clearance
CLtot, from common experimental data (only plasma, or plasma and tissue data).
We also discussed that the simplest way to parameterize the simplified PBPK model
is based on egs. (4.8)-(4.9) with the total clearance occurring from the plasma space,
i.e. CLpla = CLtot (for details see Section 4.3.3, CLpla given in Table 4.6 (sc. 7)) and
Eiis = CLints = 0 for all tissues. This indeed impacts the scaling of CLtot, i.e. one
need to consider that CLpla = CLtot for both the reference individual and the studied
individual. Here, the scaling for the total clearance becomes CLtot = SV, - CLpla,¢.
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7.5 Discussion

In the first part of this chapter, we propose a new scaling approach of physiological
and anatomical parameters in PBPK models. There are several approaches to model
inter-individual variability of physiological parameters in PBPK models for SMDs
[141-145, 165]; but only few provide all necessary information to predict it. Price et
al. [143] review various regression equations describing the variations of physiological
parameter observed in different studies as a function of different covariates. A
general disadvantage of the regression analysis approach is its dependence on the
characteristics of the underlying study population.

Willmann et al. [142] take a different approach restricting their set of covariates

essentially to BH and BW, and including additional random perturbations to create
a virtual population. Adipose tissue weight is defined as the weight that remains
after scaling all other tissues. Hence, any error in scaling non-adipose tissues impacts
the accuracy of adipose weight. Young et al. [145] take an intermediate approach.
They fit up to fifth-order polynomials in BW. As in the Willmann et al. approach,
adipose weight is defined as the difference between BW and the sum of all remaining
tissue weights, resulting in the above mentioned disadvantage.
In contrast, the present approach is based on a set of common anthropometric
characteristics that have proven to be of relevance in the covariate analyses of clinical
pharmacokinetic data and that are underpinned by mechanistic considerations. Due
to its important role in PK, adipose weight is defined as accurately as possible using
its definition BW — LBW.

This new approach suggests a new covariate relation for the volume of distribution
at steady state Vg that seamlessly integrates both, BW and LBW as covariates.
Combining eqs. (7.19),(7.20) and (7.21) yields

(7.27)

LBW BW — LBW
Vss = Vss,ref ' ((1 - R) > )

. +R-
LBWref BWref - LBWref

where the drug-specific parameter R = 0,4i/ Vs ret denotes the adipose-to-total volume
of distribution ratio for the reference individual.

Whether or not LBW and BW are systematically measured and reported data
depends on the underlying study design (and occasionally on the training of staff
in clinical investigation centers). However, for some drugs with small therapeutic
window, reliable scaling relations are mandatory for extrapolation. To circumvent
missing LBW and BW data, we rewrite eq. (7.8) to define the percentage lean body

weight
LBW Mg

BW ~ Kpar + BMI'
The term (1 — %LBW) represents the percentage of body fat, a common measure of
obesity [166-168|.

%LBW =




7.5 Discussion

We obtain LBW = %LBW - BW and OW,q; = BW — LBW = (1 — %LBW) - BW.

If the studied population only includes volunteers/patients such that (approximately)
BMI = const, or equivalently %LBW = const, (7.28)

then LBW/LBW,ot = BW/BW,of = (BW — LBW)/(BW,ef — LBW,¢). This is
typically the case in Phase I studies. In such a case, the scaling equation (7.27)

simplifies to
BW

BWref '
Most importantly, this equation holds for any value of R, i.e., for any drug. For

Vss = Vss,ref '

a population satisfying condition (7.28), scaling with BW is equally appropriate,
and—depending on the actual clinical data—might even result in the best covariate
relation. BW-based scaling, however, could be completely misleading, when R is
indeed large; i.e. for the typical individual of a given population, the weight of adipose
accounts for a non negligible fraction of the total volume of distribution Vg rer. In this
case, extrapolation to an obese population based on BW would result in erroneous
predictions. If precise scaling is mandatory, the design of a clinical study including
volunteers with a range of %LBW values is expected to be more informative. In this
context, pre-clinical data may be exploited to generate expectations. For example, in
[169], a prolonged accumulation of diazepam in obese was found. Elimination half-life
was greatly prolonged in the obese subjects (82 vs. 32 hours), with no change in total
metabolic clearance. Instead, a large increase in volume of distribution (228 vs. 70
liters) was the reason for prolongation of elimination half-life [169]. Pre-clinical rat
data in [162] on tissue-to-plasma partition coefficients show a marked difference with
Kaqi > 4.8 - Kyjs (for tis # adi). Hence, translating data from rat to human would
have at least flagged this issue. This knowledge is important for the appropriate
design of clinical trials, following the spirit of the “learning vs. confirming” approach
[27, 28, 30, 36, 170, 171].

In the second part of this chapter, we theoretically establish how to include IIV in
the simplified PBPK model for mAbs, based on the LBW-scaling approach previously
developed for PBPK models for SMDs. As just discussed, this approach is relevant for
human when LBW, BW or BMI are measured/determined. However, the simplified
PBPK model is developed and validated in mice. BMI is not a metric that is calculated
for pre-clinical species. Measuring LBW can prove to be challenging: Formulas do not
apply to animal species, experimental measurements including impedance analysis
and imaging techniques are too costly to be routinely used, finally, weighing fat tissue

for each animal requires a lot of effort from in-vivo teams and more importantly is

against animal welfare. Most of laboratory animal species are genetically very similar.

In animals of same age, one does no expect much variability of organ weights and
eq. (7.9) can be approximated by SViis = BW / BW .
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Monoclonal antibodies (mAbs) are engineered immunoglobulins G (IgG) used for
more than 20 years as targeted therapy in disease areas where specific antigens are
identified, mainly oncology, infectious diseases and (auto-)immune disorders. mAbs
are hydrophilic and charged therapeutic proteins with high and selective affinity
for their target. These properties greatly influence the pharmacokinetics (PK) of
mAbs: Convective transport via blood and lymph flows, extravasation from the
vascular space in tissues via pinocytosis and transcytosis, lysosomal degradation in
endosomes, target-mediated drug disposition (TMDD) are key mechanisms governing

the disposition of mAbs.

Even with constant growing knowledge of these processes, it is still a challenge to
understand and predict the PK of mAbs and to support the extrapolation from animal
to human, areas which can gain insights from modeling and simulation. Empirical
models are routinely used to analyze PK data of mAbs through research & development
while the interest for mechanistic and physiologically-based PK (PBPK) models for
mAbs is expending in order to get insight on their biodistribution, preferably at the
biophase.

While it is common to use empirical 2-compartment models to analyze clinical
PK data of mAbs, there is neither clear consensus nor guidance to, on one hand,
identify and account for linear and non-linear components of the total clearance
and on the other hand, interpret physiologically and mechanistically PK parameters
[3, 41, 55, 64]. The mechanistic knowledge present in PBPK models is likely to support
a more rational model selection in the empirical approach and thus, a methodology
to link empirical and mechanistic PBPK modeling is desirable. However, PBPK
models published for mAbs [66-74], are quite diverse in respect to the physiological
distribution spaces to consider (vascular, interstitial, endosomal) and the parameteri-
zation of the non-specific elimination involving the neonatal Fc receptor (FcRn) and
endogenous IgG (IgGendo). The more detailed the description of these processes, the
more parameters are needed, yet their values are mostly unknown. The remarkable
discrepancy between the simplicity of experimental plasma and tissue profiles and the

complexity of published PBPK models translates in parameter identifiability issues.

In this thesis, we address this problem by developing a simplified PBPK model—

derived from a hierarchy of more detailed PBPK models—that is consistent with the
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current knowledge of processes governing the disposition of mAbs and in agreement
with common biodistribution data of mAbs. Based on model reduction (lumping),
we derive classical two-compartment models that are comparable to empirical models,

yet retaining a mechanistic and physiological interpretation.

Integrating detailed processes at cellular and tissue levels in detailed PBPK
models is highly valuable to gain insights in the most influential mechanisms in
mAbs disposition. The detailed PBPK models that we developed for mAbs enable
to study the relation between FcRn saturation level and steady-state endogenous
IgG level and its impact on mAbs disposition. We demonstrate that binding to
FcRn can be considered linear if (i) both mAb and endogenous IgG have comparable
affinities to FcRn; and (ii) IgG 2 < IgG This finding justifies, for the first time,

simplification of detailed PBPK models for mAbs based on mechanistic considerations.

endo*

The key step to substantially reduce the complexity (of the tissue model) is to implicitly

consider the endosomal space and the FcRn-mediated salvage mechanism.

With the novel simplified parameterization of the tissue model, we are breaking
new grounds in mechanistic modeling of mAbs disposition. In this thesis, we present
the simplified PBPK model with extravasation rate-limited tissue distribution that (i)
includes explicitly or implicitly the physiological processes relevant to describe mAbs
disposition; (ii) is parameterized by a minimum number of parameters to allow stable
parameter estimation; and (iii) allows reproducing typically observed characteristics
of concentration-time profiles in plasma and tissues. We demonstrate that it is not
possible to infer from common experimental data (only plasma, or plasma and tissue
data) which tissues are involved in the unspecific elimination. We provide a new
approach to predict tissue partition coefficients based on mechanistic insights: We
directly link tissue partition coefficients (Kyis) to data-driven and species-independent
antibody biodistribution coefficients (ABCyjs) recently published by Shah and Betts
[18] and thus, we assure the extrapolation from pre-clinical species to human with
the simplified PBPK model.

By extending the lumping approach from [91] to monoclonal antibodies, we identify
which low-dimensional compartment models are consistent with the simplified PBPK
model and experimental data. Hence, we provide a rational to guide empirical model
development for analysis of mAbs PK data when we outline that a common interpre-
tation of empirical two-compartment models for mAbs disposition—identifying the
central compartment with the total plasma volume and the peripheral compartment

with the interstitial space (or part of it)—is not consistent with current knowledge.

While the main focus of the thesis was to derive a simplified PBPK model to

describe the disposition of mAbs in absence of target, we show here how to integrate



a target into the simplified PBPK model. The first results, based on simulation,
support the statement in [71] that in the presence of a significant target mediated
elimination pathway, the linear component of the total clearance plays a minor role

in determining the disposition of monoclonal antibodies.

Empirical models are commonly used in late stage clinical development in the
context of population analysis to identify covariates that contribute to explain observed
inter-individual variability (IIV) in clinical PK data [27, 136-140]. Although most
covariate models are likely to be motivated by mechanistic or (patho-)physiological
considerations, a formal derivation from underlying mechanistic principles is rarely
presented. In the literature, several approaches to model inter-individual variations in
physiological parameters in PBPK models for small molecule drugs (SMDs) have been
proposed [141-145]. The most relevant approaches, however, allowed only poorly to

reproduce experimentally observed inter-individual variability.

In this thesis, we extend the lumping approach from [91] established for PBPK
models for SMDs that integrate variability present in physiological and anatomical
parameters typically used as covariates for the PK parameters in empirical models, e.g.
clearance and volume of distribution. Individual parameter values are derived from
reference physiological data which are corrected with scaling factors that account for
additional individual characteristics, e.g. body height, body weight, lean-body weight,
etc. From the extended lumping approach, we define a new mechanistic approach to
covariate modeling that is applied to derive commonly used 2-compartment models
describing the PK profiles of SMDs and that can directly be used in population

analysis.

Given that clinical PK data of mAbs are greatly influenced by the interaction
with the target and that the simplified PBPK model integrating a target requires
further development and validation in pre-clinical species and human, we theoretically
present the methodology to include IV in the simplified PBPK models without a
target that will serve as basis for future derivation of a lumping approach to support
the development of low-dimensional compartment models for mAbs accounting for

linear and non-linear clearances.

In conclusion, the work presented in this thesis greatly contributes to the expending
field of mechanistic modeling of monoclonal antibodies disposition. The simplified
PBPK model provides an integrative framework to integrate current knowledge on
relevant processes governing mAbs disposition and to create new learnings on biodis-
tribution peculiarities of monoclonal antibodies. With lumping methodology, the
link is now established between physiologically-based pharmacokinetic and classical

compartment models for mAbs providing guidance for model development and mech-
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anistic interpretation of pharmacokinetic parameters for monoclonal antibodies in

late stage clinical development.
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PBPK modeling of mAbs disposition

A.1 Software

MATLAB R2010a is used for modeling and simulation (odelbs solver). Parameter
estimation is performed using the MATLAB optimization toolbox, version 4.2, and
the predefined functions ’lsqcuvefit’ using the Levenberg-Marquardt algorithm and

"fminsearch’ which uses the simplex search method of Lagarias [172].

A.2 Mice experimental data for model development and

evaluation

Experimental data of a murine monoclonal IgG1 antibody, 7E3, in FcRn-KO and
WT mice, were extracted from [69] using the software Digitizelt, version 1.5.8a,
Bormann (2001-2006). 7E3 is an anti-platelet mAb with a high affinity for the
human glycoprotein IIb/IITa which does not bind to the murine glycoprotein IIb/IIIa
[69]. The experimental data include measurements of 125I-labeled 7E3 after a single
IV bolus dose of 8 mg/kg in FcRn-KO and WT mice in venous plasma, in lung,
heart, kidney, muscle, skin, gut, spleen and liver. Additionally, the steady-state

concentration of endogenous IgG in plasma was reported in [60, 104].

For model evaluation, experimental venous plasma data of a murine monoclonal
IgG1 anti-CEA, T84.66, were extracted from [71]. T84.66 was administered intra-
venously to nude (20g) mice at three dose levels: 1, 10 and 25 mg/kg (n=4 per dose

group).

A.3 Detailed PBPK model

A.3.1 Parameter estimation

Simulations that include both, monoclonal antibody 7E3 and endogenous IgG, are
performed as follows: Endogenous IgG levels prior to 7E3 administration are deter-

mined by simulating the PBPK model with initial concentrations of 7TE3 set to zero
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Table A.1: Detailed PBPK model for mAbs in mice: Parameters estimates

Parameter Reference  Description

Kin 1/day 1.75 fit rate constant of endosomal uptake

Kout 1/day 2.91 fit recirculation rate constant of FcRn-bound antibody

Kdeg 1/day 0.06 fit degradation rate constant of free antibody from endo-
somal space (tissue-specific)

FcRn nM 1.48¢5 fit FcRn capacity

Uprod ~ 1mol/day 2.09 fit zero-order rate constant of endogenous IgG production

in all compartments. The resulting steady state levels of endogenous IgG serve as

initial conditions for the simulations including 7E3 administration.

Since not all parameters are reported and following the same methodology as
in [69], five of six unknown model parameters are estimated from the experimental
plasma data, given the detailed PBPK model including the brain tissue, as stated
in egs. (3.1) - (3.5). The parameters are the total FcRn capacity FcRnyet, the rate
constant of uptake into the endosomal compartment k;,, the outflow rate constant
from the endosomal compartment ko, the degradation rate constant kqeg, and the
zero-order production rate of endogenous IgG qproq (see Fig. 3.1 for an overview
of all model parameters). We further assume FcRuygot, Kin, Kout, and kgeg to be

tissue-independent. Tissue-specific clearances are obtained as follows:
CLe,tis = kdeg ' Ve,tis;

where Ve s is the tissue-specific volume of the endosomal space. The sixth unknown
parameter is the fraction of recirculated bound antibody FR. It is set to FR = 0.715,
as published in [69]. A different approach has demonstrated that the PBPK model is
robust to changes of FR values and that its exact value does not influence outcomes
of PBPK model simulations and further derivations [173, Sec. 2.4.1, p. 50, and
Appendix B.5.2, p. 91].

The unknown parameters are estimated using a two-step approach. In the first
step, kin is estimated thanks to the FcRn-KO data for the mAb only; no plasmatic
concentration of endogenous IgG in FcRn-KO mice has been reported to date. In
the knockout scenario, the recirculation of mAb/IgGendo is prevented since no
binding to FcRn takes place which is necessary for exporting mAb /IgGendo out of the
endosomal space. Therefore, solely the disappearance of mAb /IgGendo due to the
uptake from vascular and interstitial spaces into the endosomal space is reflected by the
experimental KO-plasma data. In the second step, the remaining parameters i.e. Kout,
Kgeg, FcRngor and qproq are estimated simultaneously using plasma concentrations of

mADb and IgGendo in the WT mice. The parameter values are reported in Tab. A.1.
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Figure A.1: Predictions of plasma concentration-time profiles of mAb TE3 after an IV bolus
administration of 8 mg/kg in wild-type (wt) and FcRn-knockout (FcRn-ko) mice (exp. data
extracted from [69]) and steady-state plasma concentrations of endogenous IgG as reported in
wild-type mice [60, 1047 ].

A.3.2 Insight on parameter identifiability

The model predictions of the plasma concentrations, based on the estimated parame-
ters reported in Tab. A.1, are presented in Fig. A.1. The simulated concentration-time
profiles in plasma agree very well with the experimental data of the mAb 7E3 after a
single IV bolus dose of 8 mg/kg in wild-type and FcRn-knockout mice and with the

steady-state concentration of endogenous IgG in wild-type mice.

However, the model fails to reproduce accurately the tissue concentration-time
profiles (data not shown). Figure A.2 depicts the simulated steady state level of
IgGendo in the different endosomal spaces. For the specific well-perfused organs, i.e
lung, liver, spleen and kidney, the endosomal concentrations of total IgGendo are
above the threshold of solubility commonly reported, 100 - 150 mg/mL or 6.5e5 - 1e6
nM [174-178].

One attempt to circumvent the failure of the detailed PBPK model to accurately
describe the plasma and tissue data of the mAb 7E3 is to estimate the unknown
parameters in regards to all data. However, it is that either the estimation step
fails or one can estimate a set of parameters allowing to describe plasma data but
poorly tissue data or a different set of parameters allowing to describe tissue data
but poorly plasma data. Clearly, the detailed PBPK model is over-parameterized
given the information embedded in the experimental data and the current knowledge

of processes governing the biodistribution of IgGs.
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Figure A.2: Predicted total endogenous concentration in the different endosomal spaces
based on a plasma steady state concentration of endogenous IgG,., = 1.47e4 nM [104]. The
dashed line corresponds to the total FcRn concentration as given in Table 4.1.

A.4 Intermediate PBPK model

A.4.1 Parameter estimation

Model fitting is performed using the MATLAB optimization toolbox, version 4.2, and
the predefined function ’lsqcuvefit’ using the Levenberg-Marquardt algorithm. The
maximum change in variables for finite-difference gradients was set to 0.001 and the

maximum number of functions allowed to be evaluated was set to 5000.

Given the new parameterization of the tissue model, the 21 unknown parameters in
WT mice are estimated by fitting the intermediate PBPK model stated in egs. (3.20)-
(3.24) to experimental plasma and tissue data in mice for the mAb, 7TE3. The
experimental data are treated as described in appendix A.2. The unknown parameters
are (i) the rate constant of uptake in the endosomal space, kiy; (ii) the tissue-specific
endosomal intrinsic clearance, CLinte; (iii) the tissue-specific total FcRn-mediated
outflow from the endosomal space, Qquut. We further assume that ki, is tissue-
independent. The fraction of recirculated bound antibody is set to FR = 0.715, as
published in [69].

The parameters are estimated following a two-step approach. Firstly, ki, is
estimated using the venous plasma data in FcRn-KO mice, setting all Qqyut to 0. In
FcRn-KO mice, recirculation of mAb is prevented since no binding to FcRn takes
place which is necessary for exporting mAb from the endosomal space. Therefore,

solely the disappearance of mAb due to its uptake from plasma and interstitial into
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endosomal spaces is reflected in FcRn-KO plasma data. In the following step, ki, is
fixed to its estimated value. The PBPK model is fitted to WT plasma and tissue data
to estimate CLinte wt and Qout, in WT mice. While the focus is indeed to develop a
PBPK model in WT mice to further extrapolate to other species, i.e. non-human
primates (NHPs) and human, one can also estimate CLinte o, for FcRn-KO mice.
They are obtained by fitting the intermediate PBPK model to the FcRn-KO tissue
data. In FcRn-KO mice, CLinty, represents the maximum clearance due to the

lysosomal degradation.

A.4.2 Model performance

The intermediate PBPK model is fitted to plasma and tissue data of the mAb
TE3 after an IV bolus administration to FcRn-KO and WT mice. The parameter
estimation is highly sensitive to initial values and several set of parameters could
accurately characterize the venous plasma data as well as the organ/tissue data after
correction by the residual blood (for details, see appendix A.5). The rate constant of
endosomal uptake kin is estimated to be 1.65 /day. Tissue-dependent parameters,
i.e. CLintewt and Qout in WT mice and CLint, y, for FeRn-KO mice are reported in
Table A.2. The resulting venous plasma and tissue predictions are shown in Fig. A.3.
However, it is recommended to read and interpret these results with caution, in regards
to the comment above made on the high sensitivity to initial values and the high
likelihood that another set of parameters could describe the data equally well as those
reported in Table A.2.

In absence of FcRn, the IgGs present in the endosomal space cannot undergo the
salvage process mediated by FcRn and therefore are entirely cleared by proteolytic
degradation in the lysosomes. CLint, y,, in KO mice, accounts for the maximum
linear clearance solely due to the lysosomal degradation. The fraction unbound in
the endosome, fu, is deduced from the ratio of the clearance in WT to the clearance

in KO mice:
o CLinte,Wt

fu = ,
CLint ko

fu values are reported in Table A.2. For all tissues, the fraction unbound for 7TE3

remains lower than 0.6, indicating that FcRn is not saturated.

A.5 Correction for residual blood

As it is expected for any low volume of distribution drug, residual blood can have a

major impact on experimentally measured tissue concentration [113, Table III, p. 105].
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Figure A.3: Predictions of venous plasma and tissue concentration-time profiles vs. observed
concentrations in WT (blue square) and FecRn-KO mice (blue rounds) of mAb 7ES after an
IV bolus administration of 8 mg/kg, based on the intermediate PBPK model. The data are

represented as mean data and were extracted from [69].
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Table A.2: Intermediate PBPK model for mAbs in mice: Parameter estimates

Qout CLinte wt CLinte ko fugs

(10~%ml/min) (10~%ml/min) (10~%ml/min) -
Lung 18.175 0.0173 15.555 0.001
Adipose 16.083 0.277 6.944 0.040
Bone 1.405 0.641 6.113 0.105
Gut 53.560 5.351 47.260 0.113
Heart 0.026 1.004 1.685 0.597
Kidney 24.570 0.032 2.933 0.011
Liver 17.602 0.194 7.773 0.025
Muscle 37.496 0.772 97.910 0.008
Skin 11.174 0.985 45.306 0.022
Spleen 25.278 0.069 5.758 0.012
Artery - - - -
Vein - - - -

We parameterize the PBPK models in such a way that predictions are independent

of residual blood. Instead, correction for residual blood is a post-simulation step.

We denote the residual blood volume related to a given tissue by Viesplo and the

tissue volume including residual blood by
Vexp = Vtis + Vres,blo~

The subscript tis in Vey, and other parameters is omitted to keep notation simple.
Data on residual blood are typically reported in terms of some ratio relating residual
blood to tissue volume or weight. Here, we use the ratio resp), of residual blood

volume to blood-contaminated tissue volume, i.e.,

Vres,blo .

)
Vexp

IeéSplp =

see Table 4.2 for experimentally determined ratios in mice. Based on Veyp, we
determine the residual blood volume according to Vies blo = resplo * Vexp-

Denoting by Aes the amount of drug in the residual blood yields
Vres,blo : Cblo = Ares = Vres,pla : Cpla»

where the residual plasma volume is obtained using the hematocrit (hct) via Viyeg pla =
(1 —hct)Vyes plo- The residual blood-contaminated tissue concentration Ceyp is defined

as
. Vtis : Ctis + Vres,pla : Cpla

Cexp -
Vexp

(A.1)
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Hence, based on the prediction of Cp, and Cyjs by the PBPK model, we can directly
predict Ceyp based on the above equation. If experimental data have already been
corrected for residual blood, the PBPK model does not need to be altered.
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B.1 Software

MATLAB R2010b (version 7.5) is used for modeling & simulation and R (version
2.12.0) for statistical analysis.

B.2 Algorithm for creating a virtual population

BH is assumed normally distributed with mean uppg and standard deviation opy, i.e.,
BH ~ N (ugH, 03).-

We further assume that BMI is log-normally distribution with parameters pupyr and

O']%MI, ie.,
BMI ~ InN (fipnt, 68a)-

Both assumptions are in line with the NHANES study [179]. In this study, the
difference between a normal and a log-normal distribution for BH of Caucasians is
negligible; so alternatively, one might also assume a log-normal distribution for BH.
In the NHANES study, BH and BMI are weakly correlated, so assuming these two
covariates as uncorrelated seems a reasonable approximation.

To generate a virtual population in terms of N pairs of (BH,BW) of a given sex,
we require the parameters upm, o, upmr and opymr as input. The work flow to

generate a single pair of BH and BW is the following:
1. Sample a BH value from N (upm, 03g)-

2. Sample a BMI value from InN (figmr, 6]23MI). If only a descriptive statistics on
BMI is available (rather than on log BMI), sample a transformed BMI value

from the normal distribution N (figmi, &%MI) with mean and variance

MI23MI 2 ‘71231\/11
IELBMI = log ﬁ s (}BMI = log < 2 + 1) y
\/ HBMI T 9BMI Hpw

where pupymr and oppyp denote the mean and standard deviation of the descriptive
statistics. Finally, set BMI = exp(IB/MI).
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3. Finally, determine BW according to

BW = BH? - BMI.

The above steps are repeated N times. For example, to create a virtual population
with the characteristics of the autopsy study [163] listed in Table 7.3, we choose for
the male adults: n = 355, ugy = 1.72 [m], oy = 0.075 [m], upmr = 22.8 [kg/m?]
and opy1 = 3.3 [kg/m?]. The above algorithm enforces a correlation between BH
and BW, as observed in the NHANES study [179].

Given the ensemble of N individual (BH, BW) pairs, we use the LBW-scaling
approach together with the parameters of the reference adult (Table 7.2+7.1) and
the compound specific input (Table 3 in [91]) to generate all parameters required to

parameterize the generic PBPK model.

B.3 Determining the individual blood-to-plasma ratio

Given sex and age dependent changes in binding protein concentrations [159-161],
the fraction unbound in plasma fuP was considered a potentially age/sex dependent
parameter. It was assumed that BP was measured in healthy male adults (ad/m). Us-
ing this values we determined the erythrocyte-to-unbound plasma partition coefficient

Ku, from

BP (ad/m) — (1 — hetadq/m))

Ku, =
th(ad/m) . fuP(ad/m)

Assuming Ku, to be age/sex-independent, we determined the age/sex-specific blood-

to-plasma ratio for other age classes by

BP = het - Ku, - fuP + (1 — het).

B.4 Allometric scaling approach

A common approach for extrapolation of classical compartment models from adults
to children is based on allometric scaling see, e.g., [147] and references therein. Most

body size relations take the form
Y =a-BW?,

where Y is the biological characteristic to be predicted, BW is the body weight, and
a and b are empirically derived constants. Following Table 1 in [147], the exponent is

b =1 for volumes & organ weights, and b = 3/4 for cardiac output, blood flows and



B.4 Allometric scaling approach

clearances. Allometric scaling from a reference adult (with body weight BW 4q,¢ and

parameters Vuqult, Qadult, and CLaquie) to a child of body weight BW yields:

Vadult >
V= (it ). pw
<Bwadu1t

and

Q _ ( Qadult ) . BW3/4, CL = ( CLadult > . BW3/4-

3/4 3/4
Bwadult Bwadult
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