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An increasing demand on functionality and flexibility leads to an integration of
beforehand isolated system solutions building a so-called System of Systems (SoS).
Furthermore, the overall SoS should be adaptive to react on changing requirements
and environmental conditions. Due SoS are composed of different independent
systems that may join or leave the overall SoS at arbitrary point in times, the
SoS structure varies during the systems lifetime and the overall SoS behavior
emerges from the capabilities of the contained subsystems. In such complex system
ensembles new demands of understanding the interaction among subsystems,
the coupling of shared system knowledge and the influence of local adaptation
strategies to the overall resulting system behavior arise. In this report, we formulate
research questions with the focus of modeling interactions between system parts
inside a So0S. Furthermore, we define our notion of important system types and
terms by retrieving the current state of the art from literature. Having a common
understanding of SoS, we discuss a set of typical SoS characteristics and derive
general requirements for a collaboration modeling language. Additionally, we
retrieve a broad spectrum of real scenarios and frameworks from literature and
discuss how these scenarios cope with different characteristics of SoS. Finally,
we discuss the state of the art for existing modeling languages that cope with
collaborations for different system types such as SoS.
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1 Introduction

Embedded software-intensive system can be found in many application domains
such as mobile devices, vehicles, avionics, buildings, or production systems [36].
Recently, due to an increasing demand on functionality and flexibility, such be-
forehand isolated systems become interconnected to gain powerful System of
Systems (SoS) solutions with an overall robust and flexible emerged behavior. As
a consequence, such composite systems consist of independent subsystems, where
each subsystem follows an individual strategy to fulfill local requirements. More-
over, the types of subsystems spawn a range from networked embedded systems
or cyber-physical systems that are characterized by a tight coupling to the physical
environment' to highly dynamic self-adaptive systems, which leads to diverse
overall system solutions with complex interaction patterns. Additionally, in most
cases, each subsystem has some individual self-* capabilities and is aware of its
environment to react on changing demands properly [31]. However, the overall
interconnected system is open in the sense that new subsystems (e.g., mobile
devices) may join or leave over time by providing or removing additional function-
alities. Furthermore, individual subsystems cooperate with other subsystems to
reach overall system goals [20]. On the one hand, because of the dynamics within
the system and an upfront unknown number of subsystem parts, there is a broad
range of possible coordination schemes between system parts ranging from central
coordination schemes to fully self-organizing solutions. On the other hand, there
are high demands on reliability, availability and robustness of the overall system.

'The term networked embedded system as well as cyber-physical system is discussed in
detail in Section 2.
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1 Introduction

Those kind of assembled systems are the motivation for our research, which
focuses on the modeling perspective of subsystem interaction with the following
research question:

Q-1 How can a modeling language comprise interactions between independent
system parts in a self-adaptive System of Systems?

Q-2 How can this modeling language for collaborations be used to visualize
and simulate dependencies and impact relations, local and global goals, and
knowledge propagation between system parts.

Q-3 How can this modeling language be used for formal verification to identify
possible system threats or ensuring that the overall system behavior fulfills
given requirements?

Q—4 Are there different patterns that support individual use case scenarios?

Q-5 How can a tool support help realizing concepts of the collaboration modeling
language with respect to the implementation and execution of the modeling
approach?

The research questions Q-1, Q—2 and Q-3 are mainly motivated by Stankovic
et al. [95], who emphasized that building complex physical computing systems
"requires a deep understanding of how to model and analyze large-scale systems’ behaviors,
which necessitate large-scale coordination and cooperation”.

Regarding to the first and third research questions (Q-1, Q-3), an appropriate for-
malism for a modeling language should be used for enabling further investigation
such as verification (e.g., model checking techniques) and simulation. Furthermore,
the modeling language should include a well-defined set of clear concepts with a
nonambiguous semantic that suits the description of collaborations in self-adaptive
SoS.

On basis of Q—1, we can further investigate different realistic scenarios for under-
standing the influence of subsystem interaction by looking at Q—2. Additionally,
we should be enabled to verify the overall system according to given goals to en-
sure that the assembled system behavior is as expected (Q-3). Afterwards, we may
identify some best practices, where systems perform well or find typical pattern
that may introduce threats in the system by looking at Q—4.

The Q-5 research question is orthogonal to the questions Q-1 to Q—4 and tack-
les the tool support. This includes the modeling of the systems collaboration, a
way to specify and execute verification and simulation scenarios as well as visu-
alizing threats, dependencies, interaction impacts or the current system structure.

11



1 Introduction

Therefore, the tooling should include implementation guidelines for the model-
ing language concepts, a framework to execute the modeling language or should
describe how different modeling aspects can be used in existing tools.

Within this report, we have the following aims. First, before we can start investi-
gating our research questions, we want to clarify our understanding of different
terms as for example self-adaptation or runtime models. Additionally, we discuss
several kinds of systems as cyber-physical system or system of systems. Therefore,
we review a broad spectrum from literature and subsume the existing perspectives
and definitions to establish a common understanding. Second, from this unified
view on terms and system types, we collect important characteristics for SoS from
literature and discuss how those characteristics influence the modeling of subsys-
tem interactions. Third, we derive a requirements catalog from the characteristics
a modeling language for collaborations should be aware of. This requirement cat-
alog can be used as basis for further research according to our research question.
Fourth, we collect several use cases and scenarios from literature about real system
implementations or simulations to visualize the design spectrum of system inter-
action on the one hand. On the other hand, we can take some of these use cases
as an evaluation basis for our modeling approach concerning system collaboration
in our future research work. Therefore, we identify how the beforehand collected
characteristics for SoS are covered in or influence the system design of the scenario.

The rest of the report is structured as follows. After a discussion about terms and
different kinds of systems in Section 2, we describe a set of important characteristics
for SoS with the scope of collaborations in Section 3. Afterwards, we derive a set
of requirements from the characteristics for modeling collaborations in SoS in
Section 4. Additionally, we collect and introduce several real use-case scenarios
from literature in Section 5 for giving an overview about the different kinds of
self-* systems and their realization in practice. We review related work in Section 6
and finally, we conclude with a discussion about next steps in research in Section 7.

12



2 Prerequisites

In this section, we discuss two directions that are needed for this report. First, we
discuss and define different system types in Section 2.1 that are needed in Section 3,
where we derive a set of typical characteristics for SoS. Second, we clarify our
understanding of different model-driven techniques and terms in Section 2.2 by
subsuming the current state of the art literature and discussing different research
viewpoints from that.

2.1 System Types

This section subsumes different system types. First, we start with self-adaptive
systems that provide flexible, dynamic behavior by providing so-called self-* prop-
erties. Second, we discuss systems that have to integrate physical elements together
with software aspects. Therefore, we start with cyber-physical systems and increase
the system size, which leads to networks of cyber-physical systems and further to
system of systems.

2.1.1 Self-Adaptive System

Definitions for (self-)adaptive systems vary a lot depending on the research view-
point and the application domain. In general, there are many challenges and
research questions for self-adaptive systems as discussed in [31, 73]. However, a
broad discussion about different viewpoints concerning self-adaptive software is
given by Salehie et al. [89]. They identify different domains, as for example au-
tonomic computing [65], adaptive programming, software evolution, or software-
intensive systems, that influence the definition and viewpoint for a self-adaptive
system. The common basis for all viewpoints is twofold. First, the life cycle of a
self-adaptive system does not end after the development phase of the software
or initial deployment on the target platform (cf. [89]), but rather is continued
during system execution. Therefore, the system is able to react on changes in
the environment, failures or new requirements at runtime. Second, self-adaptive
software introduce so-called self-* properties into the system as for example self-
configuration, self-optimization, self-healing, or self-protection (cf. [65]). The key re-
quirement for the self-* capabilities is that the system is aware of its own state

13



2 Prerequisites
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Figure 2.1: MAPE-K feedback loop in an external adaptation engine according
to [65]

(self-awareness [74, 101]), requirements/goals (requirements-awareness [91]), or
context (context-awareness [101]). As a consequence, for the rest of this report, this
*-aware property is enough for our definition for a self-adaptive system.

Definition Self-Adaptive System: A Self-Adaptive System (SAS) is a software system
that is aware of its own state, requirements, or context at runtime. Furthermore, the system
uses this runtime information for adjusting its behavior according to the systems’ purposes.

Beside the definition, we are looking only at self-adaptive systems that control
their dynamic behavior with the help of a feedback mechanism. This feedback
control is widely used in embedded systems by designing the control algorithm
in form of a feedback loop. Furthermore, from the autonomic computing domain,
Kephart et al. [65] propose a reference architecture with an autonomic manager
(also called adaptation engine) that is decoupled from the managed subsystem
(also called adaptable software system). In this approach, the managed subsystem
runs the application logic, which can be influenced by the autonomic manager
that executed the adaptation logic. As a consequence, the autonomic manager
introduces the beforehand mentioned self-* capabilities to the system.

As depicted in Figure 2.1, Kephart et al. propose four dedicated adaptation ac-
tivities, namely Monitor, Analyze, Plan, and Execute (MAPE) that are sequentially
executed. The MAPE activities share a common knowledge base (MAPE-K) that
for example consists of s set of different runtime models. The MAPE activities form
a feedback loop that is usually executed in a periodical way. First, the monitor
activity retrieves information from the running system that are extracted via (soft-
ware) sensors and updated in the knowledge base. Second, the analyze activity
checks on basis of the updated knowledge whether all system requirements and
constraints are met or if an adaptation is needed. The result of the analysis is also
annotated in the common knowledge base. Third, depending on the analysis result,
the planning activity derives proper adaptation strategies for the system that are

14



2.1 System Types

translated and executed afterwards. Therefore, the execute activity uses so-called
effectors to force the adaptation changes back to the running system.

In summary, self-adaptation is important for many system types to cope with
behavioral changes during system execution. It is a key feature for fulfilling high
demands on flexibility, elasticity, dependability, and robustness at runtime [31].
Therefore, we find adaptive characteristics for systems related to our research
scope as discussed in Section 3 and in many real use-cases as shown in Section 5.
A comprehensive discussion and a taxonomy of self-* properties is given in [89].

2.1.2 Cyber-Physical System

Cyber-Physical Systems (CPS) evolved from embedded systems that “combine physi-
cal processes with computing” [71]. Whereas embedded systems are mostly closed,
self-contained and do not “expose the computing capability to the outside” [71], an
increasing number of devices and demands of combined functionalities led to
a more and more interconnection of embedded systems to so-called Networked
Embedded System (NES) [36]. As a consequence, such isolated control systems and
afterwards interconnected embedded systems become open to its environment
and build different variants of cyber-physical systems that integrate the cyber
(software) and physical part [32]. Because CPS are a federation of interconnected
embedded systems, CPS inherit the sensing and interaction capabilities with the
environment from the characteristics of embedded systems as discussed in [60].
Furthermore, different research fields have to be considered that influence the de-
sign and solution space for CPS as for example distributed control and distributed
computing [111].

Although there are several definitions for cyber-physical systems in literature,
e.g., from Broy et al. [20], acatech the National Academy of Science [36], or
Choi et al. [32], all definition emphasize the tight coupling of physical processes
and software computation that is characteristic for a cyber-physical system. There-
fore, we use the following short, but precise definition from Lee et al. [72].

Definition Cyber-Physical System: A Cyber-Physical System (CPS) is a system that
integrates computation with physical processes.

It has to be noted that integration implies a tight coupling between cyber and
physical parts with the effect that physical components in the system, e.g., an
actuator or sensor may influence the software part and vice versa. Furthermore,
because of the historical roots of CPS from the embedded domain and control
engineering, CPS usually use feedback loops to cope with uncertainties in the
environment or the hardware (e.g., sensor noise). Therefore, CPS often have several
adaptive capabilities as discussed in Section 2.1.1. A comprehensive discussion
about CPS and related system types is given by Kim et al. in [67].

15



2 Prerequisites

2.1.3 Networked Cyber-Physical System

The openness of CPS lead to a varying number of subsystems that interactively
join and leave the overall system. As a consequence, clear system borders cannot
be defined. This causes further challenges concerning the availability of a certain
functionality, the reliability of the system, fault tolerance, security and safety issues.
In the following, we emphasize these additional challenges of an open system that
is composed of multiple networked subsystems by the more specific term Networked
Cyber-Physical System (NCPS). Definitions from literature, such as Kim et al. [68]
or Choi et al. [32], emphasize the distributed nature of a NCPS and the resulting
need for coordination schemes between independent subsystems. We combine
both viewpoints from [68] and [32] to the following definition, which is used for
the rest of this report.

Definition Networked Cyber-Physical System: A Networked Cyber-Physical Sys-
tem (NCPS) consists of distributed components (subsystems) that have diverse capabilities.
A NCPS requires a coordination scheme for its distributed subsystems that must balance
between autonomy and cooperation.

Furthermore, Kim et al. [68] stated that the autonomous subsystem must be con-
sidered as unreliable and loosely synchronized. We follow this argumentation due
to the openness characteristic of the NCPS, where subsystems may arbitrary leave
or join the NCPS over time. Additionally, it has to be noted that NCPS must deal
with the same problems of the tight coupling between physical components and
software as described for CPS in Section 2.1.2. Moreover, often each autonomous
subsystem of a NCPS must adapt its behavior according to its peer subsystems,
while considering the interplay between its own behavior, the other subsystems’
behavior, and the overall system-level behavior as defined by the collaborations.
Ruling such NCPS is challenging due to the complexity, dynamics, and emergence
and it is often not feasible to develop once and forever an autonomous subsystem
that then lives within a NCPS in the long term without any need to adapt to
changes. Therefore, it is highly attractive that NCPS are self-adaptive at the level
of the individual autonomous subsystems and at the overall system-level to cope
with the emergent behavior, to adapt and absorb open, dynamic, and deviating
NCPS architectures, and to adapt to open and dynamic contexts, while consider-
ing the shared ownership. However, due to the composition of subsystems that
autonomously adapt to their individual contexts into an NCPS, also unwanted
co-adaptation effects may emerge from interference of the individual feedback
loops placed in the autonomous subsystems (cf. [76]).

16



2.1 System Types

2.1.4 System of Systems

If we follow the trend of integrating more and more independent subsystems,
we will reach the point, where system borders become unclear. Isolated system
solutions become integrated into federations of distributed systems. We refer to
such kind of systems by using the term System of Systems (S0S) [99]. Note that
similar observations concerning the emergence of such systems and the importance
of its collaborating subsystems have been made for many related research areas as
for example Ultra-Large-Scale Systems (ULSS) [83], and for particular technological
domains as software-intensive systems [110], next generation of embedded real-
time systems [18, 82, 92, 97], vehicular systems [3], and service-based systems
[35]-

We define the term SoS following the ideas in the research agenda from [99] and
from Gezgin et al. [47] as follows.

Definition System of System: A System of Systems (SoS) consist of other (software)
systems, where each system is developed, operated, evolved, and governed independently
from the other systems. Systems in a SoS are networked to achieve common goals.

According to the definition, the overall behavior for the SoS emerges from the
capabilities of each system solution and the interaction between systems. On the
one hand, each system cannot achieve the overall goals by its own, which is the
initial trigger to cooperate with each other and emerge to a bigger system. On
the other hand, systems still follow local optimization strategies according to its
local subgoals. Furthermore, a clear distinction between NCPS and SoS cannot be
given. Depending on different domains the terms NCPS, SoS, and ULSS are used
synonymously.

2.1.5 Discussion

Depending on the research domain, different viewpoints on the system types exists.
We do not claim that we unify those different viewpoints in this report, but rather
than give a broad discussion about different kinds of systems by citing the state of
the art literature for each system type. Therefore, we will find characteristics in CPS
that also appear in NCPS as well as in SoS. However, although there are unclear
borders between the system types, we try to pinpoint specific characteristics for SoS
in the Section 3. Concerning our research questions as discussed in the introduction,
we investigate SoS that are composed of subsystems, which show characteristics
from a broad spectrum of CPS. Because of the different terminology between NCPS
and SoS, we use both system types synonymously for the rest of this report. For
us it is important that a SoS integrates different CPS and therefore has to deal
with the complete spectrum of large software intensive systems as well as the tight

17



2 Prerequisites

coupling to physical elements of the real world. Already existing scenarios of such
SoS are discussed in Section 5.

2.2 Terms and Techniques

While following the definitions of different system types in Section 2.1, we ob-
serve that the complexity of nowadays system rises. One approach for tackling
the complexity of large software systems is the usage of MDE techniques. The
goals of MDE techniques are twofold. First, MDE abstract from “complexities of the
underlying implementation platform” [42] by handling models as first-class entities
during software development. Second, as stated by France et al., MDE “hide[s] the
complexities of runtime phenomena” [42] by using runtime models that describe the
context of the software system or the system itself during execution. Furthermore,
runtime models can be used to describe system evolution or adaptation of the
running system. In our former research, we use different MDE techniques such as
model transformation, model checking, or model verification. Additionally, with
respect to our research questions as motivated in Section 1, we want to develop
a modeling language for collaboration that enables simulation capabilities and
system verification. In the following in this section, with this motivation in mind,
we clarify important terms that are related to MDE.

2.2.1 Model-Driven Engineering

First, we discuss the model-driven engineering term itself following the definition
from France et al. [42].

Definition Model-Driven Engineering: In Model-Driven Engineering (MDE), mod-
els are the primary development artifacts. MDE tackles complexity by describing complex
software systems via models at multiple levels of abstraction and from different viewpoints.
Furthermore, MDE supports techniques for model simulation, verification, and transfor-
mation.

Beside France et al., also other researches, such as Schmidt [93], discuss that
MBDE is a set of different techniques, technologies and frameworks. The common
view is that models are the primary development artifact. Even source code is seen
as a model representing the system behavior as stated in [42].

Related to MDE, the Model-Driven Architecture (MDA), as defined by the Object
Management Group (OMG), takes the idea of using models as first-class entities
and extends it by providing standards as well as a whole development process. The
MDA includes standards for model representation, exchange, modeling languages,
transformation and execution of models [77]. Furthermore, the OMG defines differ-
ent layers within a conceptual framework with different model types. For example,

18



2.2 Terms and Techniques

a platform independent model (PIM) is used to describe high level aspects of the
system related to the current problem domain. Additionally, according to the MDA
approach, a platform specific model (PSM), which contains more specific informa-
tion about the used realization technology or framework, should be derived from
the PIM using model transformation techniques [19, 77]. Appropriate modeling
languages, e.g., the Unified Modeling Language (UML) [57] or domain specific
languages, are needed for all these model types on different abstraction layers. The
transformation between model types and the definition of modeling languages is
enabled by metamodels as further discussed in Section 2.2.3. Further discussion
about MDA principles can be found in [19, 70, 77].

2.2.2 Model

According to the definition of MDE, models play a key role for system and software
development. Therefore, we subsequently discuss the model term in detail. There
are varying definitions of a model depending on its purpose of usage. In this
report, we follow the definition from our former work in [49] that describe three
main characteristics of a model.

Definition Model: A model is characterized by the following three elements: an (factual
or envisioned) original the model refers to, a purpose that defines what the model should be
used for, and an abstraction function that maps only purposeful and relevant characteristics
of the original to the model.

As a note, this definition goes hand in hand with the model definition in the
context of the MDA given by the OMG in [77, p. 5] and enriches the model defini-
tion of [60], which focuses on the abstraction only. Due to the definition, a model
is always an incomplete description of the original or running system. Because of
the special purpose of a model, different model types are used that fit best to the
corresponding representation of the original. As for example, the UML includes
different model types for describing the structure of a system (e.g., class diagrams,
component diagrams), the behavior (e.g., automata, activity diagrams), or the in-
teraction between system parts (e.g., sequence diagrams). Additionally, different
viewpoints on the same part of the system are typically modeled in distinct mod-
els that have different model types. Consequently, in a typical setting, the system
developer has to deal with large set of models using MDE techniques [59]. If the
size of the models or the number increases, further model management techniques
are needed to handle those during system development or at runtime as discussed
in Section 2.2.5.

19



2 Prerequisites

2.2.3 Metamodel

As emphasized in Section 2.2.1, metamodels play an important role enabling MDE
techniques such as model transformation, simulation and verification. Defining of
what a metamodel is, we follow the argumentation in [14] and the definition of the
OMG in [77].

Definition Metamodel: A metamodel defines the modeling language of a model.

The word “defines” in the definition means that a “metamodel is a formal speci-
fication” [14] of a model. Therefore, a metamodels provide concepts (define the
abstract syntax) to create models that conform to the metamodel. The relation
between model and metamodel is similar to the relation of a program and a pro-
gramming language. The programming language defines concepts, usually by a
grammar, which define the building blocks that can be used to create conform
programs according to the programming language. A comprehensive discussion
about models and metamodels is given by Bézevin in [14].

2.2.4 Runtime Model

In contrast to development-time models, runtime models provide “views of some
aspect of an executing system and are thus abstractions of runtime phenomena” [42]. The
idea behind runtime models is to benefit from available MDE techniques and ex-
perience in the same way as it is done during software development. Furthermore,
usually the same models describing parts of the system and created during the
development phase can be used during system execution. This enables abstract
system representation at runtime, which may support dynamic adaptation of the
system [42]. Bencomo [13] and Blair et al. [16] extend the viewpoint on runtime
models requiring a causal connection' to the running system. For the rest of this
report, we take the following definition of a runtime model from our former
work [49] that follows the line of argument from [13, 16, 42].

Definition Runtime Model: A runtime model is a model that complies with the model
definition (cf. Section 2.2.2) and, in addition, is characterized as follows: part of its purpose
is to be employed at runtime in a system and its encoding enables its processing at runtime.
The runtime model is causally-connected to the original (running system), meaning that a
change in the runtime model triggers a corresponding change in the running system and
vice versa.

In our former work, we describe a modeling language for self-adaptive systems
called Executable Runtime Megamodels (ELUREMA) [103] with respect of modeling the
adaptation loop according the MAPE approach [65]. In EUREMA, we use runtime
models that can be accessed by the MAPE activities within the modeled feedback
loop. Based on the experience with the EUREMA modeling language, we propose

'The concept of a causal connection is originally discussed by Maes [74].
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Figure 2.2: MAPE? feedback loop with different runtime model types [106]

a categorization of runtime model types in [106]. The main runtime model types
of this categorization together with the MAPE activities are depicted in Figure 2.2.
Within our categorization, we distinguish between Reflection Models, which describe
parts of the running system itself or its context, Causal Connection Models, which are
responsible to keep the runtime models synchronized with the running system,
adaptation models (Evaluation Model and Change Model in Figure 2.2), which describe
the possible configuration space of the system inside the given requirements, and
collaboration models (not shown in Figure 2.2), which describe the interaction of
the system with other (sub)systems. We refer the interested reader for a detailed
discussion about different runtime model types to our former work [106]. In our
runtime model taxonomy, only the Causal Connection Models are responsible to directly
establish and maintain the causal connection to the running system (adaptable
software). Other runtime models (such as Reflection Models) are a representation of
the running system that is updated by the adaptation activities. Consequently, we
do not require a direct causal connection for all runtime models to the running
system as done in [13, 16]. The definition of runtime models above requires a
causal connection, which is in our understanding fulfilled, if the runtime model is
indirect causal connected. The complete runtime model taxonomy together with a
discussion about characteristics for each runtime model type can be found in [106].

In general, runtime models are able to represent system information during
system execution [16]. In the context of our research questions, runtime models
are for example important for the data exchange within the collaboration of sub-

* The MAPE-K feedback loop is introduced in the context of self-adaptive systems in
Section 2.1.1.
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2 Prerequisites

systems. Furthermore, such runtime models can be dynamically manipulated on a
much higher level of abstraction to achieve interoperability, e.g., by automatically
transform different formats, force runtime model manipulations to the running
system or enabling runtime analysis and verification.

We want to note that executable models are a related research direction to runtime
models. Both approaches emphasize the runtime representation of key aspect from
the running system. Runtime models require an additional causal connection as
defined and discussed above. However, a clear distinctive feature between both
approaches cannot always be given depending on the research community and
concrete application domain. For example, Xiong et al. [64] propose an approach
named “knowledge-based executable model” for the quantitative evaluation of
SoS architectures and claims that it overcomes the limitations of conventional
architectural evaluation methods. The executable model can be used for simulating
the interaction and connections between components in the overall system in order
to assess the components ability to meet the specified capability requirements.
However, in this approach, the executable models of SoS architecture neither do not
represent the running system nor has a causal connection. Also Kilicay et al. [66]
argues for a shift towards executable models and the need for simulation tools.
He suggests executing the modeled SoS in order to analyze system state and
emergent behavior by the use of Artificial life tools. The Artificial Life framework
can generate executable SoS models and has the ability to analyze/simulate the
influence of architectural changes on the overall system behavior. Xiong et al. [64]
and Kilicay et al. [66] do not use the executable models as system representative
during runtime but rather for simulation of different system configurations.

2.2.5 Model Management

Because models are the main artifacts in MDE, new challenges concerning the
model management arise [59]. In MDE, models are created out of models via
model transformation, several views may exist describing (overlapping) parts of
a model, or different models are created in the different stages during software
development, where models in later stages are created on basis of models in for-
mer stages. As a consequence, there are a lot of dependencies between models
that are important during software development as well as system execution (e.g.,
considering runtime models). The explicit capturing and managing of such de-
pendencies is done in megamodels. A survey about megamodel approaches and
a comprehensive discussion is given by Hebig et al. in [59]. Hebig et al. give an
overview about definitions from the two founders of the term megamodel, which
are Bézevin (cf. [4, 15]) and Favre (cf. [40]), and provide a unified definition of the
term together with a core metamodel for megamodels. For the rest of this report,
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we take the definition from [59], because the authors already subsume different
viewpoints and the state of the art literature.

Definition Megamodel: A megamodel is a model (cf. model definition in Section 2.2.2)
that contains models and relations between them.

First of all, we want to use megamodels as model management technique for
runtime models. Thus, megamodels can be used to maintain relations between
runtime models such as different views or that a requirement model influence
parts of the system reflection model. Due to the distributed nature of SoS (see
characteristics in Section 3), different runtime model versions may located in dif-
ferent parts of the SoS that can be described in megamodels, too. Additionally,
we can use megamodels to determine dependencies between runtime models of
collaborating systems.

Concerning the collaboration of subsystems, we need techniques to describe
impact relations due to runtime model manipulations within the adaptation pro-
cess of systems. Those impact relations may emerge over system borders due to
the interaction of systems. We already start a discussion about impact relation of
self-adaptive systems in [106].

The definitions of the different terms from the MDE and system types are used
as basis to derive characteristics and specific requirements concerning our research
questions in the next sections.
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As we outlined in Section 2.1, a SoS is an ensemble of systems that comprises
a broad spectrum of subsystems types including embedded systems, NES, CPS,
and NCPS. Therefore, the overall SoS inherits the characteristics from its contained
subsystems that we derive in this section. As basis, we use our discussion of system
types from Section 2.1 and common literature.

The main characteristics are already caused by CPS that are stated as a federation
of "open, ubiquitous systems [that] dynamically and automatically reconfigure themselves
and cooperate with other CPS” [20]. Therefore, we derive four main characteristics of
a SoS that we name C—1 open, C—2 dynamic, C—3 collaborative, and C—4 independent.
From these four characteristics, we further refine SoS properties as follows:

C-1 Open: The SoS is considered as open, because it is a federation of subsystems,
where an arbitrary number of unknown, potentially heterogeneous system
parts may leave or join the overall SoS during system operation at arbitrary
point in times (cf. [5, 20, 99]).

C-1.1 Distributed: Within the SoS, the integrated, autonomous subsystems
are inherent distributed, potentially over larger geographic spaces [47].

C-1.2 Scalable: The integration of independent system solutions and for
the most cases the self-coordinating, decentralized collaboration scheme
between those systems leads to a large-scale federation of systems.

C-1.3 Flexible: The flexibility characteristic of the SoS enables the reaction of
the system to changes in the environment and system structure. This goes
hand in hand with an elastic overall system architecture. Furthermore,
we call the SoS agile, if the SoS is flexible and able to react on changes

rapidly [99].

C—2 Dynamic: The dynamic aspect of a SoS is caused by the openness and de-
scribes the ability of the system to change its internal structure (self-modifica-
tion) and cooperation scheme according to changes in the environment and
current needs.

C—2.1 Adaptive: The SoS is adaptive such that each autonomous subsystem
can adapt its structure as well as behavior to the particular needs and con-
straints in the current SoS configuration. Furthermore, an adaptive SoS
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exploits the full potential of autonomous, beforehand isolated subsys-
tems by building interconnections and collaborations [99]. Additionally,
the SoS handle the emergent behavior by dynamically adapt and absorb
deviations in the system structure.

C-2.2 Resilient: On the one hand, the SoS is robust in the sense that it reduces
the likelihood to experience failure due to the complexity, the dynamic
configuration, and potential emergent behavior of the SoS (resilience).
On the other hand, the SoS is less vulnerable to catastrophic and single
point of failures [99].

C—3 Collaborative: Due to the definition in Section 2.1.4, the independent subsys-
tems in a SoS must be collaborative to achieve common goals.

C—3.1 Emergent: Due to the collaborative nature, we observe emergent behavior,
where the overall behavior at the level of the SoS is the result from
the local behavior of the contained autonomous subsystems and their
interaction [47].

C—3.2 Competitive: Beside the emergent, collaborative behavior, a SoS is com-
petitive, because each subsystem follows and optimizes its behavior ac-
cording to local goals (cf. [47]). In the worst case, this leads to contra-
dicting behavior on the SoS level. Consequently, the SoS is responsible
of finding appropriate trade-offs between local and global goal optimiza-
tions.

C—4 Independent: As stated in [47], a SoS is independent in the sense that all
subsystems are independently designed, developed and managed for their
own purposes. Furthermore, subsystems operate independently at runtime
except during the collaboration.

C—4.1 Evolutionary: The development of a SoS is characterized by uncoordi-
nated, independent local evolution steps of the autonomous subsystems,
which may influence each other, rather than a global development plan
that is followed. These evolution steps can happen offline or at runtime
depending on changing purposes, demands or requirements [47].

C—4.2 Autonomous: The SoS is operational independent [47], which means that
the autonomous subsystems are operated independent from each other
and that no global coordination scheme, concerning the operation of the
autonomous subsystems, can be assumed.

C—4.3 Decentralized: The managerial independence [47] of a SoS implies that
also the management of the autonomous subsystems is not centralized
and thus the management decisions for different autonomous subsystems
may be conflicting.
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C—4.4 Concurrent: The application effects of a SoS are characterized by con-
current changes in the environment. Concurrency effects may spread over
the system and influence a bunch of local subsystems due to established
collaboration connections.

C—4.5 Incomplete: Concerning the knowledge, each independent subsystem
has always only incomplete views of the overall SoS and the environ-
ment. These views may be extended during the collaboration with other
subsystems or by sensing the local environment. Furthermore, due to
concurrency effects and decentralized coordination, the SoS has to deal
with inconsistencies by aggregating and distribution of the knowledge
to subsystems. In general, a complete and comprehensive view on the
overall SoS state with an aggregated, unified view of the knowledge
cannot be given.

Concerning our research questions, we consider the characteristics above and
how they influence the design as well as concepts of our collaboration modeling
language. The openness characteristic C—1 of a SoS implies that the overall system
is composed of a varying number of subsystems. As a consequence, clear system
borders cannot be defined because subsystems interactively join and leave the
overall SoS at arbitrary point in times. Furthermore, the overall behavior of the SoS
emerges from the available subsystems, where the size and number of subsystem
is usually neither known upfront nor limited during the SoS lifetime. Therefore, a
SoS must be considered as a federation of a large number of integrated systems
that goes hand in hand with the C—1.1 distributed characteristic. This distribution
of the system can be twofold. In the first aspect, the SoS can be logical distributed
in different parts that are executed on one physical node. Additionally, because
of the potential large size of the SoS, the geographic distribution of the overall
system is very likely (cf. [99]). Beside the distribution aspect, the SoS offers high
potentials concerning C-1.2 scalability and C-1.3 flexibility characteristics. The
resulting elasticity and agility of the overall SoS (cf. [99]) is needed to cope with
the permanent changing inner system architecture as well as with the interaction
with an unknown affecting environment. This causes further challenges concerning
the availability of a certain functionality, the reliability of the system, fault tolerance,
security and safety issues. With respect to collaboration, we must be aware that
new collaboration capabilities may arise in every point in time.

Caused by the openness, the dynamic characteristic C—2 of a SoS arises from
the integration of beforehand isolated system solutions such as CPS. Edward A.
Lee emphasizes that a “"Cyber-Physical System is an integration of computation with
physical processes [...] usually with feedback loops” [72]. Those feedback loops enable a
dynamic adaptation (C-2.1) of the CPS according to changes in the environment or
the system itself. The adaptation ability of each CPS or other subsystem emerges in
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the overall SoS. Furthermore, the C-2.1 adaptation capabilities of the SoS in combi-
nation with the C-1.3 flexibility capabilities lead to the C—2.2 resilient (robustness)
characteristic of the SoS in the sense that the likelihood of catastrophic and single
point of failures is drastically reduced (cf. [99]). From the modeling perspective,
the modeling of feedback loops is well known for the physical aspects (as widely
done for embedded systems). Modeling the physical system is not enough for
CPS, NCPS and SoS. Here, the cyber part has to be considered, too. Especially,
teedback loops controlling the software part of the autonomous subsystems and
its interaction with other subsystems has to be covered as well.

The importance of modeling the interaction aspects between subsystems is
strengthened by the C—3 collaborative characteristic of a SoS, which can be derived
from the C—1 openness and C—2 dynamics capabilities. Usually, each autonomous
subsystem of a SoS must adapt its behavior according to its peer subsystems, while
considering the interplay between its own behavior, the other subsystems’ behavior,
and the overall system-level behavior as defined by the collaborations. Therefore,
on the one hand, the overall system behavior C—3.1 emerges from the contained
subsystems in the sense that different system parts work together to reach global
goals that cannot be achieved by a single subsystem. On the other hand, each
subsystem behaves according to local optimization strategies that might influence
or even worse contradict other subsystems. This phenomenon is described by the
C-3.2 competitive characteristic, where the SoS is responsible of finding appro-
priate trade-offs between local and global requirements (cf. [47]). Moreover, due
to the composition of systems that autonomously adapt (C-2.1) to their individ-
ual contexts into the SoS also unwanted co-adaptation effects may emerge from
interference of the individual feedback loops (cf. [76]). A modeling language for
collaboration should comprise such effects and should be able to visualize as well
as analyze them.

Ruling such SoS is challenging due to the complexity (C—1), dynamics (C-2), and
emergence (C-3). The fourth characteristic C—4 copes with the independence of a
SoS. At first, the autonomous subsystems C—4.1 evolve over time. This holds for
the evolutionary development cycles as well as for the evolution of the subsystem
during system execution (e.g., due maintenance activities cf. [31, 73]). Such local
evolutions steps in independent subsystems leads to uncoordinated evolution
in the overall SoS. Another aspect is the operational independence [47] of the
subsystems within the SoS that we call the C—4.2 autonomous SoS characteristic,
because, in general, we do not assume a global coordination scheme controlling the
operation of all subsystems. Therefore, each subsystem must be seen as operational
independent from the other subsystems following local strategies. The operational
independence goes hand in hand with managerial independence [47] of the SoS. In
general, no central instance exists that is able to coordinate the interaction between
all subsystems and determine all local management decisions. Thus, the SoS is
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characterized by a C—4.3 decentralized coordination scheme. Additionally, the
C—4.4 concurrent characteristic inherently arise due to the independent behavioral
effects of the subsystems.

The last, C—4.5 incomplete characteristic focus on the partial knowledge aspect
in the SoS. Each subsystem has always a local, incomplete view on the overall SoS
and its own environment as basis for its own decision making. The local knowl-
edge can be updated by sensing the environment or extended via exchanging data
in collaborations. However, the SoS should be aware of different local views in the
subsystems, outdated knowledge or inconsistencies by updating data from differ-
ent sources. In general, it is not possible to provide one unified, global knowledge
base that describes the whole SoS and its environment.

In summary, considering the discussed characteristics, it is highly attractive
that SoS are self-adaptive at the level of the individual autonomous subsystems
and at the overall system-level to cope with the emergent behavior, to adapt and
absorb open, dynamic, and deviating SoS architectures, and to adapt to open and
dynamic contexts, while considering the shared ownership of knowledge inside the
subsystems. As a next step, we derive important requirements for our collaboration
modeling language from the discussed characteristics in the next Section 4.
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According our research questions in the introduction and discussed characteris-
tics of SoS in Section 3, the engineering of self-adaptive SoS must explicitly cover
the coordination among the individual subsystems. Because the subsystems it-
self usually have adaptive capabilities, which further can be realized in form of
feedback loops (cf. [22, 31, 72]), we assume that the overall SoS is composed of
subsystems that contains such feedback loops. Furthermore, we focus on SAS that
follow the MAPE-K blueprint from Kephart et al. [65] as discussed in Section 2.1.1.
This imposes several requirements for designing (modeling) and realizing the
coordination, which have been mainly derived from [109].

The major requirement for modeling is to explicitly support interacting feedback
loops during the design and runtime of the SoS, particularly, by specifying the
coordination as discussed in the following.

R-1 Degree of decentralization: Since there is no dichotomy of centralized and
decentralized control, there is a range of different patterns determining the
degree of decentralization [109]. For example, SoS subsystems can be orga-
nized in a hierarchy, where dedicated controllers are responsible to coordinate
parts of the hierarchy below. In contrast, other solutions can be completely
decentralized by following the idea of swarm algorithms or independent
agents. The modeling language should therefore support the whole spec-
trum of decentralization in self-adaptive SoS, which influences the type of
coordination.

R—2 Degree of distribution: As emphasized in C-1.1, SoS are potentially dis-
tributed over large geographic spaces. Therefore, a modeling language for
collaborations should be aware that interacting subsystems can be distributed
over large distances or may run on different execution nodes. This would
affect, among others, the communication mechanism between subsystems,
may cause timing delays during knowledge exchange, or cause security issues
by crossing subsystem boundaries over collaborations. Consequently, as the
degree of decentralization, the distance between subsystems affect the type
of coordination and therefore, a modeling language for collaboration should
distinguish between variants of inter-loop and intra-loop coordination [104].
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R-3

R4

R-5

Types of coordination: The modeling language should allow the specification
of different types of coordination such as delegating tasks among MAPE
activities or coordinating individual MAPE activities. For the former case
a typical example could be a client-server scenario, where the client (e.g.,
a mobile phone) has limited computational power or want to save energy.
Therefore, the client may delegate complex analysis and planning tasks to
the more powerful server node. The coordination of MAPE activities is use-
ful in distributed scenarios. As an example, mobile robots may coordinate
their monitoring by exchanging observations about their local environment
to achieve a higher coverage during exploration of its surroundings. The co-
ordination type is determined by its participants and the protocol between
the participants.

Coordination roles: The modeling language should cover the specification of
the participants when individual MAPE activities coordinate to accomplish
self-adaptation. This includes the specification of the local behavior of MAPE
activities relevant for the coordination. It seems reasonable to specify the
coordinating participants by means of roles to foster separation of concerns
with respect to a participant’s behavior relevant and irrelevant to the coordi-
nation. For instance, a mobile phone, which behaves as a client (role), should
follow instructions from a participant that acts as a server (role). The inter-
play between these two roles should be specified in a protocol to achieve the
aim of the coordination. Likewise, some processing or filtering of exchanged
knowledge according the current role is conceivable before sending or after
receiving the knowledge.

Coordination protocol: To specify the coordination behavior among distribu-
ted MAPE activities, the modeling language should support the specifica-
tion of the employed protocol, that is, the sequence of interactions among
them such as push-pull, request-reply, or negotiation. This corresponds to
the sequence of exchanged messages among MAPE activities. Additionally,
managerial independence (cf. C—4, C—4.3) of subsystems requires well-defined
collaboration contracts and interfaces that define in which form the required
knowledge is exchanged. For instance, according to a client-server scenario,
the client has to authenticate itself by the server first, before the server node
starts offering a service to the client. Another variant is the use of a gossip
protocol by the server to inform all possible clients about the available pool
of provided functionality.

R-6 Knowledge representation: Feedback loops are characterized by MAPE ac-

tivities sharing knowledge and thus, the knowledge influences the coordi-
nation. The modeling language should support runtime representations of
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knowledge with a clear semantic. Models at runtime [16] (as discussed in
Section 2.2.4) are able to represent system information during system ex-
ecution. Furthermore, data formats must be transformed to link different
subsystems and to achieve interoperability. For example, runtime models can
be dynamically manipulated on a much higher level of abstraction to achieve
interoperability, e.g., by automatically transform different formats, force run-
time model manipulations to the running system or enabling runtime analysis
and verification. This forces a common understanding of knowledge artifacts
in the system (similar to ontologies) and enables different participants to
define what information types are shared.

R—7 Knowledge exchange: Beside the semantic of knowledge, the modeling lan-
guage should support the specification of which, how much, and in which
way the knowledge is exchanged. Therefore, when specifying a coordination
protocol, it has to be addressed, which knowledge is shared or exchanged
among distributed MAPE activities. This includes characteristics of the knowl-
edge such as whether it is locally or globally accessible by MAPE activities
or whether it is partitioned and replicated in the system. Moreover, it should
be made explicit how the exchanged knowledge is processed by the activities
if this processing is relevant for the coordination (cf. local behavior of R—4
Coordination roles). Additionally, the modeling of knowledge exchange should
include considerations about the two dimensions that are completeness and
time. The completeness dimension tackles the specification of the necessary
amount of data that has to be shared within the collaboration. Because of the
distributed nature of a SoS (C-1.1), a complete transfer of the local knowledge
can be very inefficient or may raise security issues. Therefore, the modeling
should support full and partial knowledge transfer including different lo-
cal filters (views) or optional knowledge exchange. Concerning the timing
dimension, the modeling language should be aware of the timeline of the
knowledge. It might be helpful to exchange information that are collected
over a time period, of a specific time frame or knowledge that is not older
than a given timestamp. For example, if independent robots exchange their
information about the observed local environment with each other, they must
specify how the observations are represented (cf. R-6, e.g., in a runtime
model), which observations are exchanged (e.g., observed obstacles, robot
positions, waypoints), and how old/complete the data is. The explicit model-
ing of knowledge and its usage (local and via collaborations) enables further
impact analysis in the sense that changes in the knowledge base by one par-
ticipant may influence (over the collaboration) the behavior of an interacting
subsystem.
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R-8 Communication Paradigm: Besides specifying the roles and protocol of a
coordination, the underlying communication paradigm has to be defined,
especially as the paradigm influences the coupling of the roles when executing
the protocol. Examples for communication paradigms are direct message
exchange, either synchronously or asynchronously, or indirect blackboard
communication. The modeling language should offer a library for common
communication paradigm and can hide implementation details for realizing
the communication infrastructure. For example, due to an unreliable network,
a mobile client should communicate asynchronously by directly exchanging
messages to the server.

R—9 Pattern catalog: Being able to specify the coordination among distributed
MAPE activities with all its facets as just discussed is a promising way to
model in detail various control patterns [109]. Having a uniform modeling
approach enables the specification, comparison, and reuse of solutions to
build a pattern catalog at different levels of abstraction. In this context, the
client-server example mentioned above is an instance of the master/slave pat-
tern. Respectively, the exploring robots example (cf. R-3, R—7) shows some
characteristics of the information sharing pattern. Both patterns are discussed
in [109]. A pattern catalog enables to choose appropriate partial solutions
depending on different selection criteria as for example robustness, ability to
reach local and global goals, scalability by means of the amount of data to
be processed, and overhead of the interaction/communication. The next step
after a pattern catalog would be a standardization of coordination elements
such as roles, protocols, knowledge exchange, and communication techniques.
With respect to our research questions, standardization concerns are beyond
the scope of this report.

Based on the requirements R—1 to R—9 for the specification of a coordination, the
requirements concerning the realization of such a specification comprise the moni-
toring, analysis and execution of the specified collaboration concepts as described
in the following.

R-10 Monitoring of Collaboration: The realizing framework of the modeling lan-
guage should support monitoring capabilities of the specified collaboration
concepts for retrieving runtime information about the joint interaction of
subsystems. This requires well defined interfaces that can be provided by
well-known middlewares, standards or frameworks, which bridge the gap
between modeled collaborations and realistic runtime introspection. Further-
more, model-driven techniques such as runtime models on a higher layer
can give proper abstractions to represent key information of interest from the
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specified collaboration as well as may help processing, exchanging, updating,
and merging the retrieved knowledge at runtime.

R-11 Analysis of Collaboration: Developing coordinating MAPE activities re-
quires analysis, for instance, to ensure that an activity performing a certain
role fulfills the behavior as defined by the coordination. This can be consid-
ered as consistency between the behavior of an activity and the behavior
defined for a role in the coordination. Other analysis capabilities can be con-
cerned with the effects of knowledge access and distribution to ensure that a
certain role has only access to or is influenced by the knowledge specified in
the collaboration. Thus, when implementing or even executing coordinating
activities, means to ensure that the roles and protocols are properly realized
as required. Based on the monitoring capabilities as discussed in R-10, the
modeling language and its realization should be analyzable to ensure that
modeled collaboration constraints are fulfilled during execution.

R-12 Implementation and Execution of Collaboration: After specifying a coor-
dination, guidelines for supporting the implementation of the coordination
should be provided to ease the development. One approach could be to use
model-driven techniques such as code generation to create initial artifacts
to start implementation. Another approach could be the mapping of the co-
ordination specification to other specific frameworks or models specifically
targeting the development of self-adaptive software, which would show how
the coordination could be realized by already existing mechanisms and tools.
This additionally facilitates the use of existing runtime environments, such
as middleware employed in frameworks, to execute distributed self-adaptive
software.

Having discussed the requirements for modeling and realizing coordination
within a SoS, we discuss several real-world scenarios and implementations for
different system types in the following sections.
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In this section, we describe a broad spectrum of real scenarios in the context of
SAS, CPS, NCPS, and SoS from literature. An overview of all scenarios is given
in Table 5.1, where we provide the primary system type, a short description, the
key self-* capability and the main coordination scheme of the scenarios. In the
following, we sequentially discuss each scenario as listed in Table 5.1 in detail
and emphasize the key aspects that are especially of interest for the collaboration
modeling language. Afterwards, we close this section with a mapping of our
derived characteristics from Section 3 to the presented scenarios and discuss for
the corresponding scenario how those characteristics may influence the modeling
of collaboration aspects. Furthermore, we emphasize how the scenarios reflect the
elaborated requirements of Section 4.

5.1 Self-Adaptive Systems

In the context of SAS, Vromant et al. [104] presents a traffic monitoring system
with self-healing capabilities. The system consists of a set of intelligent cameras
that are equally distributed along the highway. Thereby, each camera has a specific
viewing range of the road. The aim of the camera system is the decentralized
detection of traffic jams. If a traffic jam is detected, cameras group each other into
so-called organizations, where the viewing range of each camera in the organization
detects the same traffic jam. This scenario supports two adaptive strategies. First,
the grouping, maintaining and restructuring of organizations according to the
current traffic situation. Second, a self-healing mechanism of the overall system that
allows the failing of cameras during operation, which may enforce restructuring
of existing organizations or may change the behavior of neighboring cameras.

In the context of the Rainbow framework, Garland et al. [45] describe two SAS
case studies, which are a web-based client-server system and a videoconferencing
system. The web-based client-server system consists of server groups. Furthermore,
each server group maintains several servers and is a connection point for an
arbitrary number of clients. The goal of the system is keeping the response time for
client request under a predefined maximum threshold. The response time depends
on two key aspects, namely, server load and available bandwidth. In summary, the
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Table 5.1: Overview of SAS, CPS, NCPS, and SoS scenarios

Source Type Description Self-* Capability Coordination and Properties
) o . distributed, decentralized,
[104] SAS traffic monitoring system self-healing collaborative
RAINBOW framework, . . .
[45] SAS e ey self-optimizing hierarchical
RAINBOW framework, o . .
[45] SAS videoconferencing system self-optimizing hierarchical
[69] SAS audio streaming svstem self-organizing decentralized, real-time,
& 85y self-optimizing agent-based, market-based
SAS, . . N self-awareness, distributed, hierarchical,
[54] mobile learning application
>4 CPs & apPp self-healing collaborative
[102] SAS EJB-based web shop self-healing runtime models
3] cPs cooperative vehicle situation-awareness, decentralized, collaborative,
39 safety system context-awareness real-time
CPS, . . hierarchical, real-time,
[113] NES multi-layered control approach self-healing ]
context-aware,
[29] CPS smart home self-configuration, feature runtime models
self-healing
5 CPS, CIMErZency Tesponse svstem situation-aware, distributed, real-time,
3 NCPSs gency resp Y context-aware safety-critical, mission-critical
CPS, . . . context-aware, distributed, runtime models,
[49] factory automation simulation o " .
NCPs self-optimizing safety-critical, uncertainty
autonomous robots and Context—.aV\.rare., distributed, decentralized,
[68] SoS . . self-optimization, .
isolated wireless sensors . collaborative
self-healing
autonomous vehicles crossing decentralized, collaborative,
[17] SoS . . R . context-aware . S
an unsignalised junction real-time, safety-critical
[85] So0S search and rescue with a fleet of context-aware, distributed, decentralized,
> heterogeneous, autonomous robots  self-optimizing collaborative
(98] SoS PLASMA, robot convoy Cf)nte>.<t-aware, dlstrlbutec.i, hierarchical,
situation-aware collaborative
[27] SoS Rellesth, tretin sl context-.avx.za.re, dlstrlputed, collab(?r.atlve,
self-optimizing real-time, safety-critical
SATRE project, . dlstrlbuteq, h1erarch1cal,
[30] SoS . . depend on scenario collaborative, real-time,
vehicle platooning i,
safety-critical
[112] SoS smart warehouse with robots self-optimizin, hierarchical
P g
(58] SoS intelligent transportation depend. on §cenario, e.g., depend on category, e.g.,
system catalog self-optimizing collaborative, safety-critical
situation-awareness, - "
[95] SoS SISAL, assisted living context-aware, alisiilbuires, niisiyaiifen,

self-healing

mission-critical
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system adaptively optimizes incoming client requests according to the given key
performance indicators by adding servers or migrating clients to other available
server groups. The second case study in [45] is about a videoconferencing system
that adaptively optimize for the two given concerns performance and cost. In this
scenario, different clients may join or leave the video conference over time, which
opens the adaptation space of removing or replacing gateways or proxy server
depending on the current situation. A very interesting aspect of this scenario is
the possible conflict of the two adaptation concerns. Increasing the performance of
the system within one adaptation loop (e.g., by adding more gateways for a faster
video transmission) may contradict the other adaptation loop that tries to reduce
cost.

A completely decentralized use case of a self-organizing multi-agent system is
described by Klein et al. [69]. In this example, an audio streaming system must
apply a sequence of different filter operations on audio packets before it can be pro-
vided to the client. The overall sequence must be performed within hard real-time
constraints. As a consequence, if the sequence of filter is not applied in the given
amount of time, the audio packet is dropped. Independent agents can perform one
specific filter operation for one audio packet at a time. Furthermore, agents can
reconfigure its behavior to provide another filter operation, whereas the reconfig-
uration takes time too and agents cannot operate during reconfiguration. Agents
work fully autonomous in a self-interested manner without any coordination to
other agents. Additionally, agents or the hardware that executes a specific amount
of agents may fail over time. The goal of the audio streaming system is the mini-
mization of packet losses by maximizing availability and reliability of successfully
processed audio packets.

A distributed self-adaptive scenario of a mobile learning application is described
in [54]. Students with mobile phones build up groups into so-called Mobile Virtual
Devices (MVD), where each group work on given tasks. Within a group, one mobile
device is elected as master device that communicate with a server to gather new
tasks and report results back. All other devices in the MVD monitor themselves
and provide data of interest to the master device. The tasks depend of, among other,
the GPS signal of the mobile devices in a MVD. Each device runs a local feedback
loops that enables self-awareness. If the GPS signal quality becomes worse, the
master device starts a self-healing adaptation loop, which is distributed over all
devices in the MVD, for providing enough functionality so that the students can
still work on their tasks. For example, other available devices can join the MVD
or further GPS capabilities are enabled. In contrast to the decentralized scenario
in [69], the described approach of Iglesia et al. [54] uses a centralized master-slave
coordination pattern between MVDs and the server and for all devices insight the
MVD.
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An example for the usage of runtime models that represent key information of
the running system in the context of SAS are discussed in our former work in [102].
In this paper, we describe a self-healing scenario of an Enterprise Java Beans-based
web shop. The web shop monitors running components and is able via structural
adaptation to replace or restart faulty components at runtime. The key aspect in
the paper [102] is the demonstration how model-driven techniques such as model
transformation and pattern matching can help creating appropriate runtime model
representation of the system, applying (synchronize) changes in the runtime model
back to the system and analyzing runtime models with predefined graph patterns
for detecting adaptation issues in the system.

5.2 Networked Embedded and Cyber-Physical
Systems

In the context of a CPS, Fallah et al. [39] describes two cooperative vehicle safety
(CVS) scenarios, namely active safety and situational awareness safety. In the active
safety scenario, vehicles continuously monitor and receive data from the environ-
ment for predicting possible threats (e.g., collisions). Systems that realize such a
collision warning functionality for enabling active safety in a vehicle must provide
information about possible threats within a latency of lower than few hundred
milliseconds (cf. [39, 94, 105]). As a consequence, such systems operate under strict
real-time constraints. Missing a deadline, e.g., providing the collision warning to
late, may lead to a situation, where the accident cannot be avoided by the driver.
In contrast to the active safety scenario, a situation awareness application has less
timing constraints informing the driver about possible hazards in the future. A
warning about a traffic jam in 5 kilometer distance is one situation awareness
example.

Another scenario from the automotive domain is given by Zeller et al. [113],
which describes a multi-layered self-adaptation approach for enabling self-healing.
The authors take a realistic example and simulate different system variants of a
car with up to 100 electronic control units," a communication infrastructure and
different software functions. Zeller et al. distribute the functions (in form of soft-
ware components) over the available ECUs and group them according to different
variants as for example required safety integrity levels or available network topol-
ogy on different software layers. Each layer hierarchical controls the layer below. In

1An electronic control unit (ECU) is a small interconnected, embedded electronic device
in a car that realizes the needed software functionality. The software functions range
from controlling the engine over safety functionalities as for example ABS or ESP to
non-critical infotainment application as radio, multimedia or navigation.
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the case of a hardware (ECU) failure, local adaptation loops try to heal the system
by shifting software components from the broken ECU to available resources in
the system. If the local adaptation fails, the upper layer is informed, which again
tries to heal the system. Therefore, in this scenario, there are multiple control loops
within different layers that are coordinated in a hierarchical manner.

Another domain of a CPS are smart homes, where Cetina et al. [29] sketches
different scenarios such as self-configuration or self-healing to improve the system
according to changing user needs. For example, an adaptable system for smart
homes must support the incorporation of new devices as well as the handling
of device failures. In other scenarios, the system has to cope with changing user
profiles or must fulfill requirements of different users at the same time. Cetina et
al. [29] describe a model-based reconfiguration engine to cope with the described
situations running a feedback loop on top of a runtime model representation of
the smart home.

Stankovic et al. describe typical settings for emergency response systems in [95]
with focus on a massive amount of sensor nodes. They emphasized that in case
of earthquakes, forest fires or other disasters, large sensor networks may enable
the fast retrieving of necessary information from the geographic area to derive
further appropriate disaster control strategies. A key aspect of such a scenario
is the deployment of a massive amount of independent sensor nodes that build
up a sensor network. Due to sensor failures, changing environmental conditions,
limited network capabilities, and timing conditions, the overall system has to be
highly adaptive to the current situation. Despite of the harsh conditions, the system
has to provide a minimal, robust amount of functionality until the disaster could
be eliminated. Such disaster scenarios describe a typical kind of systems that are
composed of different applications and hardware parts (e.g., sensor nodes), interact
or influence directly with an unpredictable environment, and are in the most cases
safety- of mission-critical.

In [49], we introduce a simulated factory automation scenario that consists of
three autonomous robots. These robots must coordinate each other by transporting
virtual products through an unknown and uncertain environment. Each robot is
equipped with several sensors (e.g., infrared distance sensors, laser scanner, indoor
GPS system) to monitor its current situation (e.g., battery level) and the environ-
ment. Each robot may adapt its current behavior regulated by its battery level,
pending tasks, goals, environmental situation and possible collaborations with
other participants. Key aspect of the paper [49] is the discussion about identifying
and handling uncertainty within this distributed CPS (e.g., in the runtime model
representations) at development and runtime.
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5.3 Networked Cyber-Physical and System of Systems

Kim et al. [68] introduce a case study,” where autonomous, mobile robots collect
data from wireless sensors. These sensors are isolated and statically deployed in
space. Each robot computes the most effective path through the placed sensors
following a multiple Traveling Salesmen (mTSP) algorithm. The load distribution
for each robot (sensor places, path length) is computed in a fully decentralized
manner and copes with robot failures. Along the path, robots act as data collectors.
Furthermore, robots opportunistically exchange collected data about other robots
and already covered sensors. The proposed framework in [68] is further applied in
different applications as described in [32].

Bouroche et al. [17] describe a scenario, where autonomous vehicles have to cross
an unsignalised junction. The vehicles can coordinate each other as soon as they
reach a critical zone around the junction and adapt its behavior accordingly by
fulfilling overall safety constraints. A vehicle is aware of the junction and can sense
whether it is free or not. As global constraint, there is at any time at most one
vehicle on the junction, whereas the number of vehicles and the arriving direction
at the junction is not known in advance. As soft goal, vehicles should not stop
or slow down by crossing the junction if it is free. We consider the scenario of
Bouroche et al. [17] as NCPS, because the vehicles temporary communicate via a
wireless infrastructure and therefore, form the overall varying system structure.

Ortiz et al. [85] uses a fleet of autonomous, heterogeneous robots in a "search and
rescue" scenario. The robots collaborate with each other to explore an unknown
environment, create a visual representation, find an object of interest (e.g., an
injured person), and maximize sensor coverage of the area (e.g., establishing a
proper ad-hoc communication infrastructure). In that scenario, robots join different
groups depending on its sensor and actor capabilities. Furthermore, because of
the spatial distribution of robots in combination with a limited communication
infrastructure, the robots use a distributed task allocation algorithm and directly
collaborate with other robots in range. To achieve the overall goal in this use case,
the distributed system must cope with a large, unknown environment, partial
communication and environmental data as well as robot or sensor failures at every
point in time.

In [98], the authors describe a convoy scenario. Three or more autonomous robots
follow a provided path in form of spatial coordinates (waypoints). One dedicated
leader robot is aware of the path information and guides an arbitrary number of
follower robots through the environment. Each follower robot moves and keeps

*More information about the case study from [68] can be found on this website:
http://ncps.csl.sri.com/demo.htm.
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safety distance to the robot in front autonomously but coordinates and shares
sensor information with the leader robot.

The same platooning use case but in the train transportation domain is described
in our former work [27]. A network of autonomous, self-optimizing shuttles in
the Railcab project? move on an existing rail track and individually build platoons
with other shuttles on the track. Within the platoon, the shuttles travel with only
a few centimeters between them and therefore, must coordinate and reconfigure
its behavior under hard real-time conditions to ensure safety constraints (cf. [27,
43]). As a consequence, the shuttles form a distributed NCPS* due to the varying
collaborations within the platoons and the exchanged information over temporary
established communication links.

Furthermore, the automotive domain, especially the European Safe Road Trains
for the Environment (SARTRE) project® as introduced in [30], extensively investigate
several research questions around autonomous driving cars in vehicle platoons.
Within the platoon, a dedicated leader takes over control about arbitrary follower
cars. In addition, follower cars can join and leave the platoon at arbitrary point in
times. The key motivation behind autonomous driving vehicles within a platoon
is for example saving resources such as fuel during the movement in the platoon
and safety issues such as reducing the overall risk of car accidents.

Wurman et al. [112] describes a distributed multi-agent system,® where au-
tonomous robots carry mobile storage units in a warehouse. The robots move from
its storage box to a packing station, where a human takes goods from the mobile
storage unit and pack it into boxes for shipping. Afterwards, the robot can move
back to the storage box. Robots calculate the path to the packing station and back
to the storage by its own but retrieve moving tasks from a global instance. This
scenario is very interesting for testing several optimization strategies looking at
different key aspects as for example reducing path length of a robot, increasing
throughput of packing goods by decreasing the overall costs (needed robots and
storage capabilities).

3More information about the Railcab project can be found on the official website:
http://www.railcab.de/.

4QOriginally, each shuttle in [27] is described as mechatronic system that is characterized
by mechanical parts (e.g., such as brakes or engines), electronic components (including
the software) and the interaction between those. For our understanding as discussed
in Section 2.1.2, this goes hand in hand with our definition of a CPS, which combines
physical and cyber parts of a system.

5More information about the SARTRE project can be found on the official website:
http://www.sartre-project.eu.

®We put this use case under the NCPS section, because the autonomous robots together
with the warehouse system evolve into an overall connected network of independent
subsystems.
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The European Telecommunications Standards Institute (ETSI) defines a use case
catalog in [38] concerning intelligent transportation systems (ITS). An ITS consists
of independent cars, service centers, roadside stations and a communication infras-
tructure. The ETSI defines different categories as for example co-operative road safety
and traffic efficiency for such an ITS. Furthermore, they provide for each category a
set of concrete use cases, such as vehicle status warnings, traffic hazard warnings,
or collision risk warnings, an ITS may support.

Stankovic et al. outlined a scenario for a SoS called sensor information system
for assisted living (SISAL) in [95], where a broad spectrum of intelligent monitors,
together with special devices, and applications should assist elderly people as
well as improve their living standard. The authors mention a broad spectrum of
applications that can be combined into an overall SISAL system (which is in fact a
SoS). Examples range from intelligent heart beat monitors, which detect irregular
patterns, robotic helpers that may for example improve mobility, to smart pantries,
which automate the buying process of required food or drug items.

5.4 Discussion of Scenario Characteristics

After we introduced several scenarios for SAS, CPS, and SoS system types, we
subsume for each scenario the characteristics following our structure as discussed
in Section 3. Therefore, we systematically reviewed the literature of the scenario
description and decide for each characteristic C—1 to C—y, if it is applicable to
the scenario. Table 5.2 shows an overview of mapped characteristics, where a
check mark (') denotes that the characteristic is found in the scenario, a minus (—)
denotes that we do not have enough information to decide whether the scenario
has this characteristic or not, and a cross (X) means the scenario does not have
this characteristic. The scenarios are grouped by the system type according to the
introduction in the former subsections. Furthermore, we individually count for the
SAS, CPS, and SoS system type how often each characteristic (does not) occur.

From the overview in Table 5.2, we see a first not surprising trend that the
number of found characteristics increases depending on the typical system size.
Therefore, we found much more characteristics in a SoS than in a SAS setting. We
want to note that the overview in Table 5.2 cannot be seen as representative statistic
but rather gives a first impression about a broad spectrum of different scenarios
from various application domains. However, we argue that this impression is
enough to get an understanding of typical coordination problems in different
domains and how they are solved in the related scenarios. Thus, in the following,
we discuss the found characteristics for each system type in more detail.
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Characteristics for SAS scenarios

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Hno 4 3 5 0 0 0 2 4 5 4 2
unknown| 0 0 0 0 1 0 2 0 0 1 0 0 2 0 0
W yes 2 3 1 6 5 6 2 2 1 1 4 0 4 2 5 1

Figure 5.1: Characteristics in SAS scenarios

5.4.1 SAS Characteristics

Figure 5.1 depicts the occurrence of found characteristics in the presented SAS
scenarios. First, we can observe that the openness (C—1) characteristic is not the
main focus of this system type. Thus, distribution aspects (C-1.1) and scalability
(C-1.2) are no typical phenomena, too.

According to our discussion of this system type in Section 2.1.1, such systems
are characterized by dynamically react on environmental or requirement changes
introducing self-* capabilities. Therefore, we found in almost all our described SAS
scenarios the flexibility (C-1.3), dynamic (C—2), and adaptive (C-2.1) characteristic
(cf. Figure 5.1), which goes hand in hand of our understanding of SAS.

On the other hand, we do not found often characteristics according to the col-
laboration (C—3) aspect. We argue that typically in small SAS only a few self-*
capabilities are implemented or even limited to one adaptation loop controlling
one specific aspect (such as self-healing or self-optimization) of the system. There-
fore, the need of collaborating subsystems (C-3) not exists. Furthermore, in such
isolated system solutions, we cannot observe emergent behavior (C—3.1) and com-
petitive (C—3.2) subsystems, which is reflected in Figure 5.1. In a SAS, competitive
behavior may arise if multiple feedback loops follow contradicting strategies. For
example, a feedback loop optimizing the energy consumption of a system may
contradict another feedback loop that tries to increase the throughput. However,
because SAS are mostly not composed at runtime (cf. missing C—1 characteristic as
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discussed above), such contradicting strategies can often resolved at design time
of the system.

Finally, if we look at the independence characteristics, we can identify the im-
portant characteristics autonomy (C—4.2) and concurrency (C—4.4). The former is
caused by the adaptive (C—2.1) characteristic. The latter can be explained by the
external adaptation approach that is used in all our scenarios, where we can ob-
serve at least the two running system parts that are the adaptation engine and the
adaptable software (cf. discussion about SAS in Section 2.1.1). Again, because of
the missing openness characteristic, we can neither observe the independent evo-
lution (C—4.1), the need for decentralization (C—4.3), nor a significant incomplete
knowledge base (C—4.5) for the SAS scenarios.

In summary, SAS focus on dynamically adapt its behavior to cope with changing
requirements and user needs at runtime. Therefore, distribution aspects, emergent
behavior and evolutionary development are not primary characteristics for this
system type.

5.4.2 CPS Characteristics

In contrast to the SAS scenarios, in the context of CPS, the openness (C—1) charac-
teristic plays a more important role as depicted in Figure 5.2. Because CPS evolved
from embedded systems that are mostly a composition of linked embedded com-
ponents that physically interact with an open world (cf. discussion in Section 2.1.2),
also distribution aspects (C—1.1) become more important. As shown in Figure 5.2,
the scalability (C—1.2) characteristic was not frequently found in our scenarios. We
argue that scalability strongly depends of the concrete use case. For example, a
CPS consisting of hundreds of sensor nodes will show different scalability charac-
teristics as a single moving robot. Therefore, we expect an increasing demand on
scalability depending on the number of subsystems as well as the overall system
size.

The CPS scenarios show the same trend concerning the dynamic (C-1.3, C—2,
C-2.1) characteristics. As we already emphasized in Section 2.1.2, this could be
explained by the physical interaction with the environment as well as reliability
demands (e.g., cope with hardware/sensor failures at runtime). Therefore, CPS
are often realized with self-* capabilities, which further enable adaptive behavior.
Another reason for the adaptive characteristics could be that CPS are mostly com-
posed of several embedded systems. In control engineering, embedded systems
are usually designed in form of feedback loops to guarantee stable and robust
behavior against external disturbances (cf. Section 2.1.2). Therefore, the control
engineering design of embedded systems introduces adaptive characteristics, too.
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Characteristics for CPS scenarios
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Figure 5.2: Characteristics in CPS scenarios

Furthermore, in contrast to the SAS scenarios, the composition of a CPS from
several embedded components explains the higher counts of the collaboration
(C—3), emergent (C—3.1), independence (C—4), autonomous (C—4.2), and concur-
rency (C—4.4) characteristics. In general, we could argue that the coordination effort
increases with the number of composed embedded subcomponents. In addition,
each embedded component usually controls or realizes one specific system func-
tionality independent from the rest of the system, which opens further challenges
concerning decentral control and emergent behavior.

Finally, we found no CPS scenario with competitive (C—3.2) behavior or the evo-
lutionary development (C—4.1) characteristic. In our presented scenarios, most CPS
have high demands on reliability or safety often under hard real-time conditions,
which enforces clear coordination schemes and a tight coupling of subcomponents.
Therefore, on the one hand, competitive behavior often cannot be tolerated and
must be eliminated during system design. On the other hand, the tight coupling
of subcomponents to the overall system explains the negative counts for the in-
dependent evolution of subsystems in Figure 5.2. In other CPS scenarios with
varying system boarders due to loosely coupled subsystems or long term running
components, the evolution aspect may look different.
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Characteristics for SoS scenarios
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Figure 5.3: Characteristics in SoS scenarios

5.4.3 SoS Characteristics

Figure 5.3 shows the characteristics for the SoS scenarios. As expected, SoS inherits
the characteristics of its containing subsystems. Therefore, the depicted results
for the dynamic and adaptive characteristics (C-2, C-2.1) are straight forward
as discussed for SAS and CPS. Furthermore, SoS are by definition open systems
(C—1) that have to cope with a large number of distributed (C—1.1) subsystems,
which further causes scalability (C—1.2) and flexibility (C—1.3) issues. In these open
scenarios, coordination needs (C—3) are very important as reflected in Figure 5.3 .

In contrast to the SAS and CPS scenarios, the evolutionary development charac-
teristic (C—4.1) of subsystems can be found more often. The increasing system size
together with highly independent subsystem solutions raises further challenges
concerning incomplete views and partial knowledge as represented by the C—4.5
characteristic.

5.4.4 Requirements Discussion

The overall design spectrum of SoS and the continuous integration of beforehand
isolated system solutions leads to a broad spectrum of systems. Depending on the
system type and concrete use case scenario, we can observe different characteristics
that raise several requirements concerning our collaboration modeling language.
By looking at our scenarios, which are representative for several realistic use cases
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from different domains, and collecting the identified characteristics, we observed
that every discussed characteristic from Section 3 appears.

Table 5.3 summarizes how the different SoS characteristics (cf. Section 3) cause
specific requirements for our modeling language (cf. requirement discussion in
Section 4). We can observe that the degree of decentralization and distribution
is correlated with the size of the system. Therefore, we claim that a modeling
language for collaboration should be aware of possible distributed interacting sub-
systems and must support the whole spectrum of centralized and decentralized
control (cf. R—1 and R-2). Interconnecting isolated system solutions increases the
overall capabilities that empowers the arising system reaching goals that cannot be
fulfilled by the isolated system solutions alone. On the one hand, as we can observe
it for the retrieved scenario characteristics (cf. Table 5.2), the system becomes flexi-
ble and benefits from the capabilities of the composed subsystems. On the other
hand, the overall SoS has to coordinate tasks and must aggregate intermediate
results. Thus, we argue that our modeling language has to cope with such coor-
dination types (e.g., delegating tasks, cf. R—3), which further needs orchestration
effort to coordinate the subsystem interaction (cf. R—4 to R—9).

In summary, we found the complete spectrum of SoS characteristics in our sce-
narios from literature. As depicted in Table 5.3, the openness C—1 of a system, the
degree of distribution C-1.1, independence C—4, autonomy C—4.2, and decentral-
ization C—4.3 are the main causes for our derived modeling language requirements.
Furthermore, the (distributed) collaboration C—3 and emergent behavior C-3.1
aspect raises additional needs of modeling and understanding the interaction of
system parts within the SoS. As we expect, well-established pattern, as represented
by the R—9 requirement in Table 5.3, would support tackling the problems caused
by each system characteristics and may help by the system design solving domain
specific problems.

We want to call special attention to the requirements R—10 to R—12, which are con-
cerned with introducing meta concepts in our aimed collaboration modeling lan-
guage. For example, R—10 represents the need of introducing monitoring concepts
to retrieve system interaction combinations at runtime. R—11 demands analysis
capabilities of modeled collaborations, e.g., on basis of the beforehand mentioned
monitor capabilities, to investigate the impact of collaborating subsystems as well
as to check whether global constraints are fulfilled. Finally, R-12 targets the imple-
mentation and execution support of the modeling language. Therefore, we observe
in Table 5.3 that the realization of the three requirements R-10 to R—12 beneficial
support each discussed SoS characteristic.
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Table 5.3: Derived requirements from SoS characteristics (v : characteristic directly causes requirement;
: characteristic contribute to the requirement; X : characteristic do not directly cause requirement)
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6 Related Work

In this section, we discuss the state of the art related to the modeling of collab-
orations in adaptive SoS. Thereby, we emphasize ideas from different modeling
languages and discuss related techniques, which may influence the design of our
modeling language. Furthermore, we give an overview of existing frameworks
from the domain of self-adaptive systems that already cover parts of modeling
feedback loops in potential distributed systems. Finally, we outline our related for-
mer work and discuss how we can benefit from that experience towards answering
our stated research questions.

Inspired by [109], where the authors present a set of pattern for distributed
feedback loops, the allocation of the individual adaptation activities and of the
shared knowledge in the distributed system to different feedback loops as well as
the coordination between these feedback loops including the knowledge exchange
have to be well engineered to realize the envisioned self-adaptation. However,
to the best of our knowledge, nowadays no approaches to systematically model
and develop distributed self-adaptive software and the coordination of their feed-
back loops exist. Existing approaches for distributed self-adaptive systems just
present specific solutions for particular problems of such systems or they provide
architectural frameworks supporting the implementation. However, all of them do
not explicitly specify how the distributed feedback loops are coordinated. Such
specifications are essential for an engineering approach.

6.1 Modeling Languages and Techniques

In this section, we want to discuss two aspects. First, we look at modeling language
approaches and show limitations related to our aimed modeling language con-
cepts. Second, we discuss a spectrum of existing techniques that focus on specific
problems to show the state of the art of existing modeling capabilities.

6.1.1 Modeling Languages and General Concepts

As we emphasized in our requirement Section 4, one important aspect is the en-
capsulation of local behavior related to an interaction in form of a role description
(together with an interaction protocol and the knowledge specification). The idea
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of applying role modeling concepts is introduced and comprehensively discussed
by Reenskaug et al. [87] and further enriched with new role modeling concepts for
framework designs by Riehle et al. [88]. In the papers, the authors describe how the
role concept can be used to foster separation of concerns, which further enables
the specification and usage of reusable patterns. In these papers, only general
concepts concerning role modeling are discussed. One research challenge related
to our modeling language is the mapping of the described concepts to the context
of adaptive SoS by tacking dynamic role assignments and emergent behavior into
account.

The Systems Modeling Language (SysML) [56] is a general-purpose modeling
language specified by the OMG for modeling complex systems from a system
engineering perspective. Therefore, this modeling language comprises the spec-
ification of requirements, system structure, behavior and constraints on system
properties. In SysML, the focus is not specifying the software part of a system but
rather defining the overall system architecture, its subcomponents, distribution
and resource allocation. For example, one simple but powerful concept of SysML
is the structural system specification via blocks. Blocks are modular units that can
be, similar to the component concept in UML, hierarchical decomposed, interact
with other blocks or contain constraint properties of the corresponding subsystem
part. Consequently, on basis of the SysML models, further design, verification, and
validation activities are enabled [56]. On the one hand, because SysML focus on
systems engineering, it supports a broad range of different system types such as
CPS as well as SoS and combines hardware as well as software specifications. On
the other hand, SysML lacks in comprehensive modeling techniques for the soft-
ware related parts of the system. Especially, SysML does not consider structural
dynamics of self-adaptive system, feedback loop modeling, the representation of
knowledge as runtime models, and collaborations as first class concepts.

Another possibility of describing systems are Architecture Description Lan-
guages (ADLs). ADLs “are formal languages that can be used to represent the architec-
ture of a software-intensive system.” [33]. Such an architecture specification comprises
subsystem components, structural system patterns, and interaction mechanism
between components. For enabling further simulation and verification capabilities,
ADLs are based on well-defined formal notations. For example, the ArchWare ADL
introduced by Morrison et al. [81] is based on the 7r-calculus process algebra and
supports evolvable architectures as required by SoS. Although, there are a lot of
other formal architectural notations, to the best of our knowledge, there is no
ADL covering dynamic collaborations between feedback loops of large SoS. In
general, ADLs focus on building concrete system solutions rather than describing
changing system structures at runtime. Additionally, the representation of runtime
knowledge, e.g., the requirements or runtime constraints, is not in the focus of
ADLs.
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Table 6.1: General modeling languages cope with our derived requirements
(v : requirement directly supported; — : requirement partially supported;
X : requirement not directly supported)

Requirements

R1 R2 R3 R4 R5 R6 R7 R8 R9 R-10 R-11 R-12

$ [87,88] Role X X X v v X v x v X X X
§° [56] SysML v X x v X X X
® [33,81] ADL v X x v X X X
% [571 UML X X v v v v v X X X
=  [551 SoaML X v v v v v X X X

In contrast to the modeling from the system engineering perspective using
SysML, the Unified Modeling Language (UML) [57] enables the modeling of SoS
architectures from the software perspective. The SysML and UML are no distinct
modeling languages but rather overlap in basic concepts (e.g., the SysML reuses
a subset of UML concepts to define an own language extension)." However, as
emphasized by Mittal et al. [80], both modeling languages can be used describing
different architectural perspectives of the overall SoS. The UML [57] provides lan-
guage concepts for modeling architectural collaborations. In these collaborations,
roles with dedicated interfaces describe the behavior of the systems while the
SoS level behavior emerges from the interactions of these roles. Furthermore, the
Service-oriented architecture Modeling Language (SoaML) [55] is an UML pro-
tile that extents the collaboration concepts of the UML in the context of service
compositions. SoaML provides advanced modeling concepts as for example the
specification of service contracts, service choreographies, service roles, and service
hierarchies (compositions) in the context of service-oriented systems. Both model-
ing languages UML and SoaML provide a set of building blocks to describe high
level collaborations, an interaction behavior, or the collaborating roles. However,
both approaches lack in a formal semantic and therefore in simulation as well as
verification capabilities. Moreover, botch approaches do not focus on adaptive SoS
systems and therefore do not support concepts of feedback loop modeling nor
taking the specifics of the tight interaction between the physical and cyber world
(as needed for CPS) into account.

Table 6.1 summarizes how the general modeling languages support our derived
modeling language requirements from Section 4. As we emphasized, the role base

'For a comprehensive discussion about SysML and UML concepts, we refer to the corre-
sponding specifications [56] and [57].

51



6 Related Work

modeling concept focuses on separation of concerns and enables the specification
of role based patterns. In addition, SysML and ADLs support the modeling of
system architectures and therefore, provide concepts for modeling different control
schemes (such as decentralized system and system hierarchies) and distribution
aspects of the system. In contrast to SysML and ADLs, UML and SoaML focus
on the software engineering perspective and thus provide additional concepts
for the modeling of data (knowledge) in the system. In general, we can observe
from Table 6.1 that the general modeling languages can be used for modeling a
broad spectrum of systems but do not support domain specific issues as first class
entities.

In MDE, Domain Specific Languages (DSLs) are used to provide specific mod-
eling elements that are tailored to the corresponding problem domain. Therefore,
DSLs can be used to fill the gap of missing concepts from the general purpose
modeling languages. On the one hand, because of the clear focus and the miss-
ing demand of generality, a domain specific modeling language often provides a
small subset of modeling elements enriched with a formal semantic. On the other
hand, a DSL is inherently restricted to the domain and often cannot be used for
general modeling purposes. For example, Fleurey et al. [41] propose a DSL for the
specification, simulation and execution of adaptive system. Within the proposed
DSL, system variability and adaptation rules can be modeled and the influence
of specified constraints can be simulated at design time. The system variants are
derived from a variability model together with rules as well as context constraints
that have to be fulfilled. Therefore, system properties are modeled as first class
entities, which consists of the beforehand mentioned variability, context constraint
and rule model. The explicit modeling of feedback loops, collaborations, runtime
model knowledge and a runtime verification of system constraints are not in the
focus of the presented DSL.

The DSL from Fleurey et al. [41] can be seen as representative for many other
DSLs, which enable the modeling of concrete problems. In most cases, DSLs have
a formal background that enables simulation and verification of the modeled
solutions. Even though well-established formal approaches such as 7r-calculus [78]
or bigrahs [79] tackle structural dynamics with well-defined formalisms, to the best
of our knowledge, no work exists that especially covers the problem of providing
assurances for dynamic collaborations of arbitrary (or large) size as needed for SoS.
Either the approaches require an initial system configuration and only support
finite state systems (or systems for which an abstract finite state model of moderate
size exist) [84, 100, 114] or they lack of the expressive power describing typical
problems concerning the structural dynamics [8].
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6.1.2 Specific Modeling Approaches

Beside modeling languages and formal approaches, there is a bunch of techniques
that focuses on solving specific problems for distributed and self-adaptive systems.
For example, Georgiadis et al. [46] propose a decentralized technique for the
self-assembly problem. In this work, components can interact with each other
via predefined static port and interface descriptions. A component manager is
replicated in each component that coordinates proper interaction to finally provide
a compound functionality of the overall system. Additionally, Sykes et al. [96]
extends the ideas from Georgiadis et al. by replacing the manager component by a
gossip protocol for coordination. Malek et al. [75] introduce a decentralized algorithm
called DecAp for the redeployment problem of software components without global
knowledge. All of these examples can be seen as representative solving existing
problems in the context of software architectures and self-adaptive systems, but
they present specific solutions for a concrete problem rather than systematically
using a modeling approach, especially for the behavior of the coordination.

Looking more precisely in the self-adaptation context that emphasize the use of
teedback loops, Oliveira et al. [1] propose one generic synchronization protocol to
coordinate different feedback loops by means of knowledge sharing and apply it to
an application example in the cloud computing domain. However, they only cover
a single synchronization scheme for coordinating complete feedback loops while,
in this report, our aim is a modeling language of arbitrary coordination schemes
for individual feedback loop activities.

Furthermore, Weyns et al. [107, 108] have identified the need of coordination
and they consider protocols, models, and channels for coordination but only as
high-level concepts in their FORMS reference model specified in Z. As an extension
of the FORMS model, Iftikhar et al. [63] provides an approach to formally model
the MAPE activities using timed automata. This approach enables the formal
verification of one feedback loop concerning given goals. Furthermore, the use
of collaborations for the modeling of services [21, 90], the use of class diagrams
for the structure and graph transformations for the behavior modeling [7], and a
formal model of ensembles [62] have been proposed.

Similar to our mUML approach (discussed later in Section 6.3), Gezgin et al. [47]
capture the dynamic architectures on the SoS level using graph transformation
rules. In this approach, the overall SoS is decomposed in system types that can be
seen as the subsystems of a SoS. Each system type has its own services and goals
and can be composed over predefined interfaces (called roles). In this approach,
explicit knowledge representation, runtime models and the modeling of feedback
loops is not considered.

Recently, Calinescu et al. [28] presented the DECIDE approach that enables run-
time verification of completely decentralized feedback loops on basis of probabilis-
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tic models such as probabilistic automata or continuous-time Markov chains. The
DECIDE approach shows for an unmanned underwater vehicle (UUV) scenario,
how each UUV adapts its local behavior according global QoS requirements.

On a higher level of abstraction, a set of architectural patterns for decentralized
control in self-adaptive systems using the MAPE feedback loop approach have
been presented in [109]. The authors discuss different variants of distributing in-
dividual MAPE activities and coordinate those between different feedback loops.
The proposed patterns comprise typical scenarios such as master/slave, informa-
tion sharing, regional planning, or hierarchical control. However, these patterns
are discussed on basis of the structural distribution of black box MAPE activities
neglecting the internal behavior. Furthermore, the coordination protocol between
activities and the distribution of the knowledge are not considered.

All of the discussed approaches offer great ideas and concrete solutions tailoring
a specific problem. Inspired by these approaches, our aim is the development of
a modeling language with a formal background that supports the modeling of
these problems. None of the discussed approaches focus on the development of
a modeling language for adaptive SoS as discussed in Section 3 and Section 4.
Therefore, they do not support the construction of dynamic collaborations as
required for adaptive SoS, where systems dynamically join or leave the federation.
Beside the collaboration aspect, the treating of the knowledge as runtime models
and the influence of knowledge sharing activities to multiple feedback loops have
to be considered.

6.2 Frameworks

Afimann et al. [2] propose a conceptual reference architecture for self-adaptive sys-
tems with special focus on runtime models. The authors discuss several research
questions that arise if multiple runtime models, where each model describes a very
specific purpose of the system, must be managed in an appropriate framework.
Furthermore, they emphasize the need of managing interconnected, multiple feed-
back loops following the MAPE-K approach as discussed in Section 2.1.1, which
are typical scenarios in the CPS and SoS context.

Beside the conceptual considerations and roadmaps from Afimann et al. [2]
concerning runtime models or self-adaptive systems in general as outlined in [31,
73], there are a lot implementations of real frameworks in literature. For example,
Edwards et al. [37] and Vromant et al. [104] provide architectural frameworks to
support the implementation of distributed systems with hierarchical and decen-
tralized control with focus on self-adaptation. Additionally, Edwards et al. [37]
propose a set of well-defined component types that are responsible for typical adap-
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tation activities such as monitoring of other components, analyzing the collected
monitoring data, and manipulating other components to enforce adaptation. These
component types are executed together with application specific components and
realize the communication and interaction between different subsystems within
the proposed framework. This approach proposes a layered architecture design for
realizing the needed reflection capabilities between components. The interaction
between layers/components is specified at the design time of the system compo-
nents over well-defined interfaces. The ideas from [37] are refined and lead to the
PLASMA approach as described by Tajalli et al [98]. The adaptive layered archi-
tecture of PLASMA has an additional planning layer on top that derives altering
architecture configurations of the layer below according to given high level goals.

As already introduced in our scenarios in Section 5.1, Garland et al. [45] pro-
pose the Rainbow architecture framework enabling self-adaption with two main
goals. First, Rainbow should enable the reuse of components and second, it han-
dles as well as provides access to the knowledge base in the adaptation engine.
Therefore, Rainbow uses a layered architecture that enables an architecture-based
self-adaption of the underlying system.

Baresi et al. [6] introduce a self-adaptive middleware for smart spaces called
SeSaMe that can handle highly dynamic, distributed large scale systems. The
SeSaMe framework already has the notion of roles and enable the structurally
decomposition of the system in hierarchical organized groups. A management
layer in the middleware coordinates and supervises the groups in the system as
well as supports group formation, self-configuration, and self-healing capabilities.

Frey et al. [44] introduce a goal driven control architecture approach together
with three general patterns in the context of smart micro-grids. An interesting key
aspect of this architecture is the resolution of conflicting goals concerning the local
energy production and consumption of system participants.

The DEECo component model and its corresponding realized framework as de-
scribed by Bures et al. [23] supports the specification of encapsulated components
that can dynamically group each other in so-called ensembles. Thereby, each com-
ponent can be a member to multiple ensembles. The runtime framework takes care
of the knowledge distribution over predefined interfaces, the coordination between
components and schedules the component execution.

From the multi-agent systems domain, Cossentino et al. [34] introduce an agent-
oriented software engineering process called ASPECS. The design process espe-
cially focuses on open and dynamic systems, where the overall system is decom-
posed in organizations at design time. Within the organizations, agents behave
according to a role and interaction specification, which is supervised by the execu-
tion framework. The ASPECS approach describes different engineering activities
for the system requirements, analysis, design, implementation and deployment

55



6 Related Work

phase and thus supports a complete software development process in the context
of agent-based systems.

Rajhans et al. [86] propose an architecture framework that is able to integrate
multiple views and development models for CPS. The framework is able to inte-
grate a broad spectrum of model types ranging from architectural descriptions to
hardware design or control models. Furthermore, following the described design
approach, the framework provides heterogeneous verification capabilities for the
structure and behavior of the designed CPS. The integration of multiple models
(e.g., partial runtime models) is very important for adaptive SoS, too. Therefore,
we could benefit from the ideas of [86] for the design of our collaboration modeling
language, where we have to integrate partial views and heterogeneous subsystems
as well.

Almost all frameworks hide the collaboration aspects within the framework ar-
chitecture. Therefore, the interaction of the subsystems is hidden in the specific
implementation details of the frameworks, which increases the problem of pre-
dicting or understanding emergent behavior capabilities in an adaptive SoS [99].
However, for the design our aimed modeling language, we could benefit from the
existing frameworks and bring ideas of explicit knowledge representation, local
and global goal handling, multi-level modeling, runtime models, and collaboration
as first class entities together. On the one hand, because of the different purpose
of a framework and a modeling language, we cannot directly compare both with
respect to our derived modeling language requirements as discussed in Section 4.
But on the other hand, the modeling language should support the concepts from
the frameworks, which has to be shown by remodeling the corresponding scenarios
in future work (see further discussion in Section 7).

6.3 Former Own Work

In our own mechatronic UML (mUML) approach [25, 61] for the model-driven
development of self-optimizing embedded real-time systems, we already support
collaborations of self-optimizing autonomous systems in a rigorous manner by
means of role protocols. Furthermore, for mUML and its collaboration concepts an
overall assurance scheme has been presented in [52]. It combines a modular verifi-
cation approach [50] for the component hierarchies of the autonomous systems, the
compositional verification [53] of ad hoc real-time collaborations between the au-
tonomous systems, and a fully automatic checker for inductive invariants of graph
transformation system rules [9] describing the possible changes of the dynamic
architecture at the SoS level. Additional work on assurances for mUML employs
a multi-agent system view on a SoS to study how commitments between the col-
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laborating systems can be modeled and analyzed [51]. Moreover, an extension for
the invariant checker to cover real-time behavior has been developed in [11] and
a code generation scheme in [26]. This scheme, which guarantees by construction
that the timing properties of the model are satisfied by the code, ensures that the
assurance results obtained for the models are also valid for the derived imple-
mentation. Therefore, the mUML approach provides assurances for systems that
combine self-adaptive autonomous systems similar to a SoS. However, we still
have no solution for collaborations with a dynamic number of roles, support for
runtime models, and the independent evolution of the autonomous systems as well
as collaborations. Moreover, in contrast to the challenges of adaptive SoS as dis-
cussed in Section 3 and Section 4, mUML provides no solution for collaborations
with structural dynamics of the roles, is restricted to homogeneous systems (i.e.,
systems that evolve jointly and similarly and that have complete knowledge about
each other), and does not support the runtime exchange of complex knowledge.
Additionally, the self-adaptation is limited to pre-planned reconfigurations in hi-
erarchical architectures. The mUML approach [25] supports the interaction of the
autonomous systems by an extension of UML collaborations [53] and components
for hybrid real-time behavior extending UML state machines [25].

Scenarios that require the covering of ad-hoc formation of collaborations between
mechatronic or cyber-physical systems (e.g., vehicles that form convoys) or other
forms of structural dynamism are captured by graph transformation systems [9,
11, 48]. In addition, first ideas for the exchange of models at runtime have been
developed in the context of [24].

We show an approach for model-based architectural online reconfiguration [12]
in the context of the AUTOSAR framework. In this approach, we present a model-
ing technique that captures all possible configuration of the system at design time.
Furthermore, we realize the configurations within a standard toolchain from the
automotive domain. This approach is limited with respect to flexible adaptations
at runtime. Because of the used AUTOSAR framework, all system configurations
must be planned at design time. On the one hand, this allows a resource effective
implementation as requested for hard real-time automotive systems. On the other
hand, this approach does not cover runtime model representations or dynamic
collaborations.

In the context of service-oriented SoS, we present a formal modeling approach
called rigSoaML that extends SoaML for the specification of evolving SoS architec-
tures in [10]. In contrast to SoaML, rigSoaML allows the modeling of structural SoS
dynamics as well as evolution of the system. The overall SoS can be decomposed
in Service Roles that can interact with each other by means of building service con-
tracts. Roles and service contracts are described by a set of graph transformation
rules that are used to verify the overall system structure against given SoS con-
straints. Although this approach introduces scalable formal verification techniques
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Table 6.2: Overview of own former modeling approaches supporting derived require-
ments (v : requirement directly supported; — : requirement partially supported;
X : requirement not directly supported)

Requirements

R1 R2 R3 R4 R5 R6 R7 R8 R9 R-10 R-11 R-12

[61] mUML X X v v v X v X
<
o
g [ feedba.ck loop X X v X X X X X X
g, modeling
o
< [10] rigSoaML X v b's X X X X
[103] EUREMA X v X X v X X

on SoS system types, it does not take the notion of runtime models or feedback
loops into account.

Our Executable Runtime Megamodels (EUREMA) approach [103] for the model-
driven engineering of self-adaptive systems supports — in contrast to mUML —
the flexible specification of self-adaptation by employing abstract runtime mod-
els (cf. [16]) of the context and the system itself. The self-adaptation behavior
can be specified by rules operating on the runtime model abstractions. However,
EUREMA is so far limited to centralized and non-distributed systems and does
not address collaborations and the distribution aspect of feedback loops in adap-
tive SoS. Moreover, our former approaches addressing the modeling of feedback
loops in general do not support the specification of the coordination among several
teedback loops. For instance, our earlier work [58] models feedback loops as black
boxes and only highlights the existence of interferences among feedback loops but
without specifying them by means of coordination.

Table 6.2 subsumes our former work concerning our four main approaches that
are mUML, the explicit feedback loop modeling, rigSoaML and EUREMA and
shows how these approaches support our modeling language requirements. The
idea of explicitly modeling feedback loops was initiated by our former work [58].
Therefore, this approach supports basic concepts for the description of feedback
loops in form of black boxes and basic dependencies between them. The EUREMA
modeling language [103] extends this work by introducing runtime models as
first class modeling elements and a fine-grained modeling of feedback loop ac-
tivities. Furthermore, EUREMA enables the specification of the control flow be-
tween adaptation activities as well as their access to the existing runtime models.
rigSoaML focus on the verification of service oriented SoS. Therefore, it abstracts
from concrete feedback loops and describe the overall SoS behavior with graph
transformation rules. The verification is done on the specified rules to ensure
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global SoS properties. As a consequence, rigSoaML does not consider concrete
teedback loops and their distribution as well as interaction. The mUML approach
considers distributed systems, which are CPS and mechatronic systems. Therefore,
it considers many aspects and modeling techniques for the tight interaction of
physical and mechanical parts with the software part that controls the physical
entities. Because of hard real-time constraints, safety issues and other resource
restrictions in the embedded domain, mUML lacks in the specification of dynamic
adaptation aspects and collaborations.

However, our aimed collaboration modeling language for adaptive SoS has to
extend the ideas from EUREMA by considering distributed and decentralized
systems but adopting the concepts of explicit knowledge representation and adap-
tation activity modeling. Additionally, the modeling language can benefit from the
existing verification techniques as described in mUML and rigSoaML. Here, an
integration of these formal concepts for enabling runtime verification of the sys-
tem as well as its collaborating subsystems would significantly extend our former
work. Our aimed modeling language can benefit from the mUML modeling tech-
niques specifying CPS and should further extend these ideas by adding dynamic
adaptation and collaboration aspects.

In the next section, we subsume this report and discuss concrete next steps for
realizing the modeling language.
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In this report, we introduced five research questions concerning the modeling of
collaboration in adaptive SoS in Section 1. The main idea is the explicitly modeling
of interacting system parts for enabling further analysis and verification. Further-
more, we want to help understanding the impact of collaborating systems beyond
own system borders for ensuring correct interaction and knowledge transfer.

As a prerequisite, we discussed several system types, terms and techniques in
Section 2 by retrieving the state of the art literature and consolidate different
opinions in well-defined definitions. On basis of this common understanding, we
derived typical characteristics for SoS from literature in Section 3 to get an impres-
sion of the SoS nature and to identify important aspects for our modeling language.
Furthermore, we derived a set of desirable modeling language requirements from
the beforehand discussed characteristics in Section 4. Beside the discussion about
terms, characteristics, and requirements, we introduce a set of real scenarios and
application examples from literature and discuss these scenarios against the found
SoS characteristics in Section 5. The related work discussion in Section 6 completes
the picture of the state of the art approaches and discusses our own former work in
this direction. On the one hand, the discussion of real implementations, approaches
and frameworks for the different system types broadens our understanding of real
system behavior and the solution space for different kind of problems. On the
other hand, the scenarios can be used as evaluation base that might show strengths
and weaknesses of our collaboration modeling language.

In future work, we plan to use the requirement catalog and SoS characteristics
for our modeling language design. Concrete next steps are, the introduction of
our modeling language elements and the discussion of the underlying modeling
formalism. Afterwards, we are going to model representative scenarios from liter-
ature using the discussed scenarios in Section 5 to validate the language against
the derived requirements in Section 4. Beside the modeling of scenarios, we plan
to expand possible verification and simulation capabilities of our models on basis
of the chosen formalism. On the one hand, we want to use the capabilities of
existing verification tools and techniques. On the other hand, we plan to develop a
simulation framework that helps understanding as well as visualizing the modeled
interaction of subsystems and the specified adaptation logic.
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