
Technische Berichte Nr. 95

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the 8th
Ph. D. Retreat of the
HPI Research School
on Service-oriented
Systems Engineering
Christoph Meinel, Hasso Plattner, Jürgen Döllner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese, Patrick Baudisch (Hrsg.)

ISBN 978-3-86956-320-6
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 95

Christoph Meinel | Hasso Plattner | Jürgen Döllner | Mathias Weske |
Andreas Polze | Robert Hirschfeld | Felix Naumann | Holger Giese |

Patrick Baudisch (Hrsg.)

Proceedings of the 8th Ph. D. Retreat
 of the HPI Research School

 on Service-oriented Systems Engineering

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2015
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/7230
URN urn:nbn:de:kobv:517-opus4-72302
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-72302

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-320-6

mailto:verlag@uni-potsdam.de

Contents

Testbed Automation for Network Security and Security Analytics 1
Aragats Amirkhanyan

Data-Centric Business Process Improvement 11
Ekaterina Bazhenova

History Assisted View Authoring for 3D Models 23
Tim Chen

Service-Oriented Integration and Processing of Massive 3D Point Clouds . . 31
Sören Discher

Consciousness in Artificial Agents – A Theory 43
Fahad Khalid

Implementing an Object-Constraint Extension Without VM Support 59
Tim Felgentreff

Comparing the Layout Stability of Treemap Algorithms 71
Sebastian Hahn

Generating Dynamic Dependability Models from Call Traces 81
Lena Herscheid

Physical Motion Displays . 93
Alexandra Ion

Profiling the Web of Data . 101
Anja Jentzsch

Enterprise Simulations based on Value Driver Trees 111
Stefan Klauck

v

Contents

Proprioceptive Interaction . 123
Pedro Lopes

Question Answering for Biomedicine . 135
Mariana Neves

Adaptive Just-in-time Value Class Optimization 151
Tobias Pape

Processing Over Encrypted Data: Between Theory and Practice 163
Eyad Saleh

Migrate Highly-Available Applications to Non-HA-Infrastructure 181
Daniel Richter

Leveraging Programmers’ Skills: Interleaving of Modification and Use in
Data-driven Tool Development . 191

Marcel Taeumel

Omniscient Debugging in Database Applications 203
Arian Treffer

Learning Deep Semantic Feature for Cross-modal Representation 215
Cheng Wang

vi

Testbed Automation for Network Security and Security
Analytics

Aragats Amirkhanyan

Internet Technologies and Systems
Hasso-Plattner-Institut

aragats.amirkhanyan@hpi.de

The report summarizes my work in the past semester in the IT security team of
the chair “Internet Technologies and Systems”.

The testbed is an important part of any research work in the area of network
security and security analytics. Common testbeds are data and test network en-
vironments. The absence and the need to create a new testbed make an overhead
of research work and, as a result, this overhead slows down research progress.
Therefore, the issue of automation of the testbed creation is a crucial goal to accel-
erate research progress. In this report I show a method, which I used for solving a
problem of the lack of data for the certain research project in the security analytics
area.

The goal of the report is to show a method and identify research challenges in
solving the problem of testbed data automation for network security and security
analytics.

1 Introduction

When researching in network security and security analytics areas, it is very impor-
tant to have an appropriate testbed. The appropriate testbed includes appropriate
data in needed amount and an appropriate test network environment. But often
researchers do not have one of them or both of them.

In case with data, the lack of data is a result of the fact that mostly the huge amount
of data belongs to industrial companies, but they are usually not able to share them
because of security and privacy reasons. The limitation with data makes data for
security research is more inaccessible. And even if there is possibility to get such
information, this information should be anonymized before exporting for analysis.
Therefore, researchers have to simulate scenarios and generate data. And it means
that we have new challenges, such as how to simulate a scenario, how to generate
data, how to design a scenario based on modeling user behavior.

In case with a test network environment, researchers need to create and configure
a test network environment manually. Even if the installation is manual, it is still a
challenge, because it is needed to set up a test network environment of enterprise or

1

mailto:aragats.amirkhanyan@hpi.de

Aragats Amirkhanyan: Testbed Automation for IT Security Research

campus level. It means that we have to set up different complex systems, for instance,
a domain controller.

Any test network has its own specifics. In case with research in the area of network
security and security analytics, this specifics means that often needed to have a
potentially vulnerable environment and that means that old and vulnerable software
applications must be installed. This restriction complicates the ability to use many
existing IT automation systems, such as Chef1 and Puppet2.

There are several ways to generate data. One of them is to generate synthetic
data. This method implies that you know about the structure of data, the correlation
between data and you roughly know what the result of analysis will be on the
generated data. The advantage of this method is that you do not need to have a test
network environment and you can generate any data if you know the structure of
them. If the structure is quite simple then this way is more preferable. But if the
structure of data and the correlation between data are very complex and varies, then
this approach becomes complicated, because in this case, you have to implement
algorithms for each type of data and for each correlation.

Another approach to generate needed data is based on the simulation of some
activities needed to produce this data [1]. This approach is more complex than the
first one in case of simple data, because you need to set up a test network environment
before applying the simulation. Despite the fact that this approach is more complex,
it is more flexible and it can be applied for generation data with complex structure,
because we do not need to care about the structure of data or the correlation between
data. We need to care only about the simulation of specific activities. Also, this
approach is suitable for real-time research, for example, for generating data for
real-time intrusion detection systems.

Within the IT security team of the chair “Internet Technologies and Systems” we
also face with problems of the lack of testbeds. We are trying to solve them by
automation the process of the testbed creation. In the second section of the report,
I show how we solve the problem of the lack of data by the simulation of user
behavior.

2 Preparing testbed data to analytics

In the past semester the IT security team of the chair “Internet Technologies and Sys-
tems” worked on the project “Machine Learning for Security Analytics powered by
SAP HANA”. Within this project the team aimed to implement and test the machine
learning approach for security analytics based on SAP HANA. Under this approach

1Chef. http://www.getchef.com, accessed December 16, 2014.
2Puppet. http://puppetlabs.com, accessed December 16, 2014.

2

http://www.getchef.com
http://puppetlabs.com

2 Preparing testbed data to analytics

the team focused on the analysis of user events, particularly login and logout events.
To test the machine learning analytics module, we have generated several simple
brute-force attacks. Also, there was the idea to try the machine learning approach
powered on SAP HANA for security analytics with more sophisticated cases. But
the main problem of trying the approach with sophisticated cases is the lack of data.
As I mentioned in the introduction section, mostly only industrial companies have
such data in needed amount, but they do not share them because of security and
privacy reasons. For example, login and logout events contain information about
users and this information cannot be passed to third parties. I was faced with the
task to set up a test network environment and implement a tool to simulate par-
ticular user scenarios, user behavior, and as a result, generate necessary data for
further analysis. This simulation tool must provide capability to simulate normal
and abnormal scenarios to be able to analyze user behavior by the machine learning
approach to detect anomalies.

Challenges to create such testbed are setting up the domain controller of enterprise
or campus level, creating large amount of users, generating random user activities
and designing a model of user behavior, especially abnormal behavior.

2.1 Network architecture

For the first challenge, we started with designing and describing the test network.
Our test network contains the domain controller (DC) with installed Windows Server
2012, the wiki and database servers with Windows Server 2003 and four client
computers with Windows 7 Professional 64-bit. To complete the installation, we
created four user accounts. All the above information is presented below in the form
of compact lists.

Description of the network:
• 4 client computers with Windows 7 Professional 64-bit
• Domain controller with Widows Server 2012
• Wiki server with Windows Server 2003
• Database server with Windows Server 2003

Users:
• Ivanov
• Petrov
• Smirnov
• Admin

3

Aragats Amirkhanyan: Testbed Automation for IT Security Research

2.2 User behavior

Normal scenario
In our configuration, all users have access to client computers, the wiki server and
the database server, but only admin has direct access to the domain controller. In
the case of the normal scenario, users log into client computers by their credentials
and they do it several times per day. Users Petrov and Smirnov during the workday
visit the wiki server, but Ivanov does not visit the wiki server despite that he has
access. All users have access to the database server, but no one uses it in the normal
scenario. In turn, admin usually logs into to his computer and during the workday
he logs into to the domain controller, the database server and the wiki server by
the remote desktop connection (RDP). The description of the normal scenario you
can see in Figure 1. The lines show all allowed access to computers. The solid lines
illustrate access, which are used by users, the dash lines show access, which are not
used by users in the normal behavior despite that they are allowed to.

Figure 1: Normal scenario

Abnormal scenario
The abnormal scenario is the scenario that differs from the normal scenario by some
unusual but acceptable behaviors. In our case, the abnormal scenario includes addi-
tional user behaviors. The first abnormal behavior is that the user Ivanov uses the

4

2 Preparing testbed data to analytics

wiki server. This behavior is abnormal but not suspicious, because other users use it
every day. The second abnormal behavior is that the user Petrov uses the database
server but in the normal scenario no one uses it. This user behavior is more suspi-
cious and could be determined as an attack. The abnormal scenario is illustrated in
Figure 2. The straight solid lines show normal user behavior, the curve solid line
from Ivanov to the wiki server shows the first abnormal behavior and the curve
solid line from Petrov to the database server shows the second abnormal behavior
that is suspicious and could be determined as an attack.

Figure 2: Abnormal scenario

2.3 Implementation

The first part of the implementation is the deployment and the configuration of the
test network environment. To set up the network, we used the Future SOC Lab3

with installed VMware ESXi. Firstly, we created the network to isolate our virtual
machines from others hosted on the same ESXi server. Afterwards, all machines were
deployed and configured as described in the section 2.1. We used Windows Server
2012 for the domain controller, Windows Server 2003 for the wiki and database
servers and Windows 7 Professional 64-bit for client computers.

The architecture of the simulator is illustrated in Figure 3. This simulation tool is
implemented on the python programming language and uses the virtual network

3Future SOC Lab. http://hpi.de/en/research/future-soc-lab.html, accessed
December 16, 2014.

5

http://hpi.de/en/research/future-soc-lab.html

Aragats Amirkhanyan: Testbed Automation for IT Security Research

Figure 3: Simulator’s architecture

Table 1: Actions and commands
Action Command

Open the logon window [’ctrl-alt-del’, ’alt-w’,
’right’, ’right’, ’right’, ’right’, ’enter’]

Enter username, password
and press the enter key

[’:’ + kwargs[’username’],
’tab’, ’:’ + kwargs[’password’], ’enter’]

Log off [’lsuper-r’,
’:shutdown /l /f’, ’enter’]

Run the powershell script
to open the RDP connection [’cd /’, ’powershell rdp.ps1]

computing (VNC) protocol to connect to virtual machines as the ESXi server supports
the VNC protocol. But to use the VNC protocol, it is needed to enable VNC on the
ESXi server, specify the VNC port for each virtual machine and support the VNC
protocol on the application side. To use VNC in the simulator, we used the vncdotool
library [3]. This library also can take a screenshot of the remote desktop. We used this
screenshot functionality for checking a state of the virtual machine by comparing
image histograms with predefined states. Once we determined the current state
of the virtual machine, we can specify the activities to be undertaken in each case
according to the scenario description, such as sending the ctrl+alt+delete command
to the virtual machine, entering the username and the password, opening the RDP
connection and others. The RDP connection from the client computer to the database
and wiki servers is implemented by invoking the PowerShell script hosted on the
client computer. This script can accept parameters and it means that we can use the

6

2 Preparing testbed data to analytics

script to establish the connection with any server by specifying parameters, such as
the IP address, the username and the password. In the Table 1 you can see examples
of relations between actions that must be undertaken according to the scenario and
commands passed to VM to perform it.

Figure 4: Scenario relations

Figure 5: Active Directory’s logs

7

Aragats Amirkhanyan: Testbed Automation for IT Security Research

In this paragraph, I show how we described the scenario of user behavior. The
scenario descriptions are stored in csv files. There are three csv files. The first of them
is called computers.csv. It describes all computers that are involved in scenarios and
it contains the information about the computer identifier, the IP address or the host,
the VNC port, the VNC password and the type of operation system. The second file is
called scenarios.csv. It describes the main user activity, which is the connection to the
client computer. The file contains the computer identifier referring to the identifier
in the computer.csv file, the username, the password, the session time, the count of
sessions and the identifier referring to the identifier in the inner-scenarios.csv file. The
third file called inner-scenarios.csv describes the actions of users after logging into
the client computer. For example, it can describe the connection to the wiki server,
database server, domain controller or even the connection to another client computer.
The file contains the identifier, the host, the username, the password and the session
time. There are two sets of csv files. The first set is used to perform the normal
scenario and the second is used to perform the abnormal scenario, respectively. The
described relations between csv files are illustrated in Figure 4.

I have successfully used the simulator to simulate simple normal and abnormal
scenarios. The normal scenario takes about 3.5 hours with 41 login and logout events
into client computers and 25 RDP connections to the wiki and database servers. The
abnormal scenario takes about 5.5 hours with 45 login and logout events to client
computers and 34 RDP connections to the wiki and database servers. The result of
running the simulator is set of logs in the active directory of the domain controller.
This log dataset is presented in Figure 5.

3 Conclusion

I have presented a method of solving a problem of testbed automation for research
in the area of network security and security analytics regarding the problem of the
lack of data. My proposal is based on the simulation of user behavior. To prove the
concept of the method, I provided the implementation of the idea and, additionally,
I presented the network architecture used for the simulation, the description of
simulated scenarios and the architecture of the implementation. As result, and I
have successfully used the simulation tool to generate necessary data for research
and presented the example of dataset produced by the simulator.

As future work, I plan to try the simulator with large amount of users, with the
network of enterprise or campus level and random user behavior.

8

References

References

[1] S. U. A. Garg V. Sankaranarayanan and K. Kwiat. “USim: A User Behavior
Simulation Framework for Training and Testing IDSes in GUI Based Systems”.
In: 39th Annual Simulation Symposium, 2006.

[2] H. K. Emilie Lundin Barse and E. Jonsson. “Synthesizing Test Data for Fraud
Detection Systems”. In: 19th Annual Computer Security Applications Confer-
ence, 2003.

[3] M. Sibson. “VNCdotool. https://github.com/sibson/vncdotool”. In: 2014.

9

Data-Centric Business Process Improvement
A Data-Centric Approach for Business Process Improvement

Based on Decision Theory

Ekaterina Bazhenova

Business Process Technology Group
Hasso-Plattner-Institute

Ekaterina.Bazhenova@hpi.de

Business process management and improvement is crucial for the enterprises of
today. Nowadays, a great number of technologies are presented to public such as
SaaS, PaaS, in-memory computing etc., which can potentially improve business
processes. But an effective and quick application and adaptation of these technolo-
gies for business processes is a big challenge in an organization with its specific
goals and constraints. Traditional approaches for business process improvement
are based on activity flows, not considering data of business processes. This report
provides an ongoing work on an integrated method which will allow to consider
both activities and data into the scheme of business process improvement. At the
present time, we narrow down the scope of work to the improvement of deci-
sions subprocesses in process models and provide its analysis according to the
techniques from decision theory.

1 Introduction

The prerequisite of successful existence of the enterprise of today is effective business
process management. In consequence of technological progress in the last decades,
organizations have received not only vast opportunities for the optimization of busi-
ness processes, but also daunting challenges with regards to applying these inno-
vations in real businesses. With that, the question of how to re-organize the busi-
ness process in order to use new technologies, represents the challenge of business
process redesign which “is often not approached in a systematic way, but rather
considered as a purely creative activity” [3].

The majority of existing approaches to business process redesign are activity-
centric and they do not consider process model data. However, data-centric ap-
proach to modeling business operations and processes “has been evidenced in both
academic and industrial researches where it not only provides higher level of flexibil-
ity of workflow enactment and evolution, but also facilitates the process of business
transformations” [9].

11

mailto:Ekaterina.Bazhenova@hpi.de

Ekaterina Bazhenova: Data-Centric Business Process Improvement

Other factors, which influence the application of business process management
in enterprises are the instability of markets and the necessity of making decisions
under the conditions of risk and uncertainty. Even a simple business process, such as
scheduling meetings at an enterprise, can have different execution outcomes depend-
ing on, for example, the time preferences of customers. Due to technological develop-
ment, centralized, calendar-oriented software for scheduling meetings is available,
which can potentially improve the business process of time management [4]. How-
ever, the methodology of redesigning such a business process, considering both the
internal structure of the process, and uncertainties of the external environment, does
not exist.

The above mentioned factors served as the prerequisite for the development of
a methodology for data-centric business process improvement based on the appli-
cation of decision theory, which we present in this report. Our fundamental con-
tribution is a presentation of the integrated methodology for the identification of
patterns for redesign in process models, redesign guidelines and introduction of
process indicators which will allow the effectiveness of the redesigned models to be
monitored.

The remainder of the report is structured as follows. The related work is provided
in Section 2. In Section 3 the notions of process models, data and the foundations
of decision theory used in our approach are presented. In Section 4 we introduce
a special kind of process model, a decision subprocess, which serves as a redesign
pattern. Additionally, we present a transformation rule for improvement of such a
process model. In Section 5 we discuss the planned future work. Finally, the report
is concluded.

2 State-of-the-Art

In contrast to the topic of process modeling, process redesign has not received so
much attention from the scientific community [3]. A fundamental approach for
business-process re-design based on best practices of successful redesign heuristics
was presented in 2005 in [11]. In this report the authors are introducing best prac-
tices, which can support the technical challenge of the business process re-design
challenge in four dimensions: time, cost, quality and flexibility. This approach was
applied, for example, in the healthcare domain for the reduction of throughput and
service times of medical management processes, as described in [6]. As well, a num-
ber of different automation platforms supporting business process re-design were
presented to the public, such as a framework based on Petri-nets [13] or, for example,
software based on process mining techniques [7].

12

3 Foundations

However, the above mentioned approaches are based on traditional activity flows
and most of them do not consider data or business artifacts presented in the models.
In our work we suggest an integrated approach which considers both activities, and
the data of process models. Similar work was presented in IBM’s artifact-centric
process modeling approach [5]. Also, the artifact-based approach was developed
at Eindhoven University of Technology in cooperation with a Dutch consultancy
company [12]. However, the above mentioned approaches provide company-specific
redesign patterns. In contrast, our goal is to provide a generic hybrid scheme for busi-
ness process re-engineering, based on the application of techniques from decision
theory.

3 Foundations

The generic scheme of our approach for business process redesign is presented
in Figure 1, the detailed version of which can be found in our paper [1]. The first
step is to identify if the initial process model P contains patterns for redesign. The
example of such a pattern, a decision subprocess, is presented in Section 4. If it is

Figure 1: Scheme for business
process improvement

detected that the process model contains such
patterns, the transformation of the process
model is implemented as the second step of the
redesign scheme, which will be explained in de-
tail in Section 4. This transformation yields, as
an outcome, an improved process model P ′. To
verify the effectiveness of the transformation,
the third step of the redesign scheme simulates
the execution of the improved process model P ′

with the usage of the key performance indicators,
their development is planned for future work.

Depending on the simulation results, a conclusion is made, either to accept the
improved process model P ′ and start using it in the enterprise, or to conduct further
improvements of the process model. Such a decision can be done, for example, by a
business analyst or higher management.

3.1 Process Model and Data

The input and output for our redesign scheme are process models, which can be
viewed as blueprints for a set of process instances with a similar structure [14].

13

Ekaterina Bazhenova: Data-Centric Business Process Improvement

Definition 2.1 (Process Model). P = (N,E,D, F, R,ψ, γ) is a process model if it con-
sists of a finite non-empty set N of nodes, and a finite set E of edges. Herewith,
N = NA ∪NE ∪NG is a union of the mutually disjoint nonempty sets NA (a set of
activities),NE (a set of events), andNG (a set of gateways). With that, E is a set of di-
rected edges between nodes, such that E ⊆ N×N, representing control flow. Further,
F is a set of edges representing data flow relations: F ⊆ (NA ×D)∪ (D×NA). R is a
set of resources assigned to activities. ψ : NA −→ R is a function assigning to each
activity a corresponding resource. γ : NG −→ {xor, and} is a function assigning to
each gateway a corresponding control flow construct. �

In Definition 2.1, we take into account the resources which are involved in the exe-
cution of a business process. It is also assumed in the definition that the activities
of process models operate on an integrated set D of data nodes, which represent
application data, created, modified, and deleted during the execution of a process
model. The term data flow refers to dependencies between process activities and
data.

In our work we use the distinction of process data into data classes and data nodes
(see Figure 2), which can be viewed as analogous to the object-oriented programming

Unsaved diagram

Figure 2: Relations between data entitites

paradigm. Data class, used in a process
model, serves as an abstract data type,
which describes the properties of data
nodes. The data nodes can be viewed as
instances of the data classes at the mod-
eling level. Data nodes are associated
with exactly one data class in a process model, in a way that the particular values of
data class properties are assigned to the data node associated with it.

Definition 2.2 (Data Class). Data class Dc = (name, S,Qc) is a tuple, where:
• name is a constant which serves as a unique identifier for the data class Dc;
• S is a finite non-empty set of data states;
• Qc is a finite set of attributes, which are properties representing data fields

containing values of an arbitrary type. �

Definition 2.3 (Data Node). Let Dc be a data class, used in a process model. A
tuple Dn = (name, s, δ, τ,ϕ,Q) is a data node, related to the corresponding data
class Dc, with the following parameters:

• name is a constant labeling data node Dn, which serves as a reference to the
corresponding data class Dc;

• s ∈ S is a variable reflecting the state assigned toDn, where S is the set of data
states of Dc;

14

3 Foundations

• δ : Dn −→ {singlinst,multinst} is a function indicating if the data is a collec-
tion (singlinst) or not (multinst);

• τ : Dn −→ {input;output;default} is a function indicating if Dn is an input
data node (existed before the start of the process), ouput data node (will exist
after termination of the process) or none of these (default);

• ϕ : Dn −→ R is a function indicating the resource allocated for Dn;
• Q ∈ Qc is a set of attributes assigned toDn, where Qc is a set of attributes of
Dc. �

To be precise, we assume that the resource of a process model, allocated for the
data node, is the same as the resource allocated to the activity of a process model,
which accesses this data node. Thus, the value of the functionψ (from Definition 2.1),
mapping the activity a to the resource R, is equal to the value of the function ϕ
(from Definition 2.3), mapping the data node Dn, with which a is in a data flow
relation, to the same resource R. More specifically, ϕ(Dn) = ψ(a), where a ∈ NA,
and (a,Dn) ∈ F∨ (Dn, a) ∈ F. Also, as it can be seen from Definition 2.3, the set of
attributesQ store the context data relevant to the business process, i. e. the particular
characteristics of the data class.

3.2 Definitions from Decision Theory

As it was mentioned in the introduction, many business processes face uncertainties
of the business environment and decision theory is a tool which is focused on dealing
with such challenges. Below we provide the notions used in our approach, with
regards to the foundations of decision theory [8, 10].

The core setting of decision theory is an occurrence of a subject decision maker
whose aim is to make an optimal choice between a set of n alternatives: X = {xi},

i = 1, . . . , n, with a possible outcome event O. The main assumption is that any
realization of the alternatives resulting from a decision can be compared, which is
described by the preference relations of the decision makers, represented by the <
sign.

Definition 2.4 (Preference Relation). A preference relation < is a subset of the carte-
sian product X× X, that satisfies two principles :

1. Completeness. ∀xi, xj ∈ X: xi < xj, or xj < xi.
2. Transitivity. ∀xi, xj, xk ∈ X: if xi < xj and xj < xk then xi < xk. �

Definition 2.5 (Lottery). A lottery L is a finite vector (p1, . . . , pn), where pi is the

probability that the alternative xi ∈ X will be realized, such that
n∑

i=1

pi = 1, pi > 0.
�

15

Ekaterina Bazhenova: Data-Centric Business Process Improvement

Another assumption of decision theory is that a decision maker is making a choice
in a rational way, which is expressed by a utility function assigned to the decision
maker.

Definition 2.6 (Utility Function). A utility function u is a function which assigns a
real number to any given choice of the alternatives, u : X −→ R where R is a set of
real numbers. A utility function u is said to represent a preference relation < if and
only if ∀xi ∈ X, ∀xj ∈ X,u(xi) > u(xj)⇔ xi < xj �

The value of the utility function is a payoff. For comparing the alternatives in a
decision making process, a notion of expected payoff is used:

Definition 2.7 (Expected Payoff of the Lottery). An expected payoff E of the lot-
tery is the average of payoffs which the decision maker gets from the assumed
realization of the alternative, weighted by the probability of such a realization:
E(L) :=

∑n
i=1 piu(xi) �

In terms of the introduced definitions, the assumption of rational behavior is the
following: the goal of each decision maker is to maximize the expected payoff of the
lottery.

4 Decision Subprocess Improvement

Searching for ways to improve business processes led us to consider the typical
challenges of the business environment, such as making decisions under conditions
of risks and uncertainties. In order to provide an effective mechanism for dealing
with the uncertainties in business environment, in this section we provide a mapping
between the decision theory and business process management, and devise how to
use it for the business process redesign.

4.1 Process Model as a Decision Subprocess

The notions of decision theory, presented in Section 3, provides the premise for
defining a special kind of business process models, which we refer to as decision
subprocesses.

The generic structure of a decision subprocess is shown in Figure 3. The decision
subprocess represents a process model, the internal logic of which is hidden inside

16

4 Decision Subprocess Improvement

Figure 3: Structure of a decision subprocess

the collapsed subprocess.
As it can be seen from the
figure, the set of alterna-
tives in the decision subpro-
cess is presented as the col-
lection input data node Di

n, and the final decision is presented as the collection
output data node Do

n, so that τi = {input}, τo = {output}. The decision subprocess
should reflect the process of decision making, therefore it is assumed that the data
represented by the output data node “Decision” is a subset of the data represented
by the input data node “Alternatives”.

Based on the above mentioned considerations, the decision subprocesses can be
defined formally, based on following conditions. Let P be a process model, which
consists of K data nodes, including the input data node Di

n and the output data
node Do

n , which are bound to J data classes.
Condition 1. Set of alternatives is represented by the set of attributes Qi of the

input data node Di
n.

Condition 2. Final decision is represented by the set of attributesQo of the output
data node Do

n. The set of attributes Qo
c of data class Do

c , which is assigned to the
output data nodeDo

n, is a subset of the set of attributesQi
c of data classDi

c, which is
assigned to the input data node Di

n: Qo
c ⊆ Qi

c.
Condition 3. Decision makers are represented by a function ϕ, indicating re-

sources allocated for data nodes Dn (see Definition 2.3).
Condition 4. Decision making process consists of decision makers choosing al-

ternatives, so that each set of attributesQ of data classDc assigned correspondingly
to any data node Dn is a subset of the set of attributes Qi

c of data class Di
c assigned

to the input data node Di
n: ∀Qc : Qc ⊆ Qi

c.

Definition 2.8 (Decision subprocess). If a given process model P satisfies condi-
tions 1–4, then such a process model represents a decision subprocess. �

4.2 Scheme of Business Process Improvement

The introduction of the decision subprocess enables us to suggest an approach for
the improvement of such a process model. Below we present the detailed approach,
which consists of three consequent phases, corresponding to three stages of the
scheme for business process improvement (see Figure 1):

17

Ekaterina Bazhenova: Data-Centric Business Process Improvement

S1 (a). Analysis of Business Process Model The business process improvement
scheme is launched when a business analyst of the enterprise decides that the current
business process is not efficient.

S1 (b). Detection of Decision Subprocess It is identified if the current process
model P represents a decision subprocess, according to Definition 2.8.

S2 (a). Definition of Payoff Function The improvement of the internal structure
of the decision subprocess (i.e., the collapsed subprocess in Figure 3) can be done by
the application of the decision theory methods. The persons, or other resources, in-
volved in the execution of the decision subprocess, can be viewed as decision makers.
Additionally, according to the assumption of rational behavior of decision makers,
their goal is to maximize the expected payoff for the decision subprocess. Therefore,
the assigned goal of this stage is to set the payoff function of the decision subprocess.
The example of the payoff function could be the time saved by participants, to agree
on the decision.

S2 (b). Optimization of Decision Subprocess In such a way, we reduced the chal-
lenge of business process improvement to the task of maximizing the expected
payoff for the decision subprocess. To solve this task, we propose the following
transformation, which consists of two steps:

1. All the data classesDc of the decision subprocess are consolidated into one data
class D ′

c. Such transformation preserves the business context of the process
model, as, according to Condition 4 of Definition 2.8, each set of attributes of
any data class in a decision subprocess is a subset of the set of attributes of the
data class assigned to the input data node.

2. The access management of resources is changed in such a way that within the
decision subprocess, all the resources should have access to all the data nodes
assigned to the consolidated data class D ′

c.
The output of such a transformation is a process model P ′, which is different from

the initial process model P only in a way, that it contains a set of K data nodesD ′
n, all

of which are assigned to one consolidated data class D ′
c = (name ′, S ′, Q

′
c), where

• name ′ reflects the consolidated nature of the data class,name ′ can be assigned
by a business analyst;

• S ′ = {Sj}, j = 1, . . . , J is the set of states retrieved as a maximal subset of the sets
of states of data classes Dj

c, j = 1, . . . , J assigned to the initial process model P;
• Q

′
c is the consolidated set of attributes retrieved as a maximal subset of the sets

of attributes for all data classes in the initial process model P.
The data nodesD ′

n of the transformed model P ′ are different from the correspond-
ing data nodesDn of the initial model P only in a way, that the value of the parameter

18

5 Planned Work

name ′ for each data node D ′
n is equal to the value of the corresponding parameter

of the consolidated data class D ′
c.

S3. Simulation of Redesigned Process Model In order to assess the efficiency of
the transformation, we plan to develop a set of indicators and conduct a simulation
of the process model for estimating the values of these indicators. This is the final
step of the improvement scheme which is planned for future work.

To conclude, in this section we presented an integrated methodology for the iden-
tification of decision subprocesses in process models and its redesign guidelines.
An introduction of process indicators which will allow the effectiveness of the re-
designed models to be monitored, is not covered in this report and is planned for
future. We demonstrated the applicability of our approach to business process im-
provement with a use case, which incorporates the decision making process, in our
paper [2].

5 Planned Work

In this report we presented a methodology for detecting and improving decision
subprocesses in process models. However, the step “Optimization of Decision Sub-
process” (see Section 4.2) at the current moment operates with the most abstract
definition of the decision subprocess (see Definition 2.8), which does not take into
account the specifics of the decision subprocess. For example, the ways of represen-
tation of preferences of decision makers can differ from voting to executive decision.
However, the differentiation of the decision subprocesses into different types might
help to concretize the approach of maximizing the expected payoff of the subprocess.
In order to investigate this hypothesis, the following activities are planned:

1. Classification of the Types of Decision Subprocesses This step implies a thor-
ough review and analysis of interdisciplinary literature on decision and business
process management theories. All decision subprocess in process model differ from
each other in terms of structuredness, representation of the information, number of
decision makers etc. We plan to make an extended classification of possible types of
decision subprocesses.

2. Detection of Decision Subprocesses Types Based on the classifications of types
of decision subprocesses, we plan to derive its type automatically from the process
model. For example, the use case of scheduling the meeting of enterprises, based on

19

Ekaterina Bazhenova: Data-Centric Business Process Improvement

its process model structure (several roles, non-shared access to data objects), might
have a type “group decision, anonymous voting”.

3. Guidelines on Changing a Decision Subprocess Type In order to improve a
given decision subprocess, we plan to generate the recommendations on changing
the type of the decision subprocess. Such transformation should increase the ex-
pected payoff of the process. For example, the improvement of scheduling process
can be done by granting access for the decision makers to the data produced by each
participant. Then the decision makers can estimate the payoff of their choices more
precisely which might result in reducing the time spent on the decision making
process and the time spent on the execution of the whole scheduling process. In
such a case, it can be recommended for a business user to change the type of the pro-
cess from “group decision, anonymous voting” to “group decision, non-anonymous
voting”. Our goal is to provide such recommendations automatically.

4. Evaluation of Redesigned Decision Subprocess In order to assess the efficiency
of changing the type of the decision subprocess, we plan to develop a set of indicators
or non-functional parameters and to conduct a simulation of the process model for
estimating the values of these indicators. This is the final step of the improvement
scheme, and, depending on the results of the simulation, the conclusion is made,
either to accept the changing of the type of the decision subprocess, or to conduct
further improvements.

6 Conclusion

In this report we provided an approach for business process improvement, according
to the scheme, consisting of the identification of specific patterns in process models
and the redesigning of these models in order to increase its efficiency.

As a specific patern for potential business process improvement, we presented a
decision subprocess, which incorporates the mapping of decision theory and the
business process model at the modeling level. We introduced an approach for im-
proving the internal structure of the decision subprocess by introducing and maxi-
mizing the payoff function.

At the current moment, the transformation step of the improvement scheme stays
quite context-dependent and heuristic. To overcome this issue, we came up with
a plan of making the classification of different types of decision subprocesses and
deriving the type of the decision subprocess from the process model automatically.
We plan to provide the guidelines to a business user on how to change the type of
the decision subprocess in order to increase its expected payoff.

20

References

References

[1] E. Bazhenova. “Support of Decision Tasks in Business Process Management”.
In: Proceedings of the 2014 Central European Workshop on Services and their Com-
position. ZEUS ’14. 2014.

[2] E. Bazhenova and M. Weske. “A Data-Centric Approach for Business Process
Improvement Based on Decision Theory”. English. In: Proceedings of the 15th
International Conference on Business Process Modeling, Development and Support
(BPMDS 2014): Enterprise, Business-Process and Information Systems Modeling.
Volume 175. Lecture Notes in Business Information Processing. Springer Berlin
Heidelberg, 2014, pages 242–256. doi: 10.1007/978-3-662-43745-2_17.

[3] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business
Process Management. Springer, 2013, pages I–XXVII, 1–399.

[4] E. Ephrati, G. Zlotkin, and J. S. Rosenschein. “Meet your Destiny: A Non-
Manipulable Meeting Scheduler.” In: CSCW. Edited by J. B. Smith, F. D. Smith,
and T. W. Malone. ACM, 1994, pages 359–371.

[5] R. Hull. “Artifact-Centric Business Process Models: Brief Survey of Research
Results and Challenges”. In: Proceedings of the OTM 2008 Confederated Interna-
tional Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II on On the
Move to Meaningful Internet Systems. OTM ’08. Monterrey, Mexico: Springer-
Verlag, 2008, pages 1152–1163. doi: 10.1007/978-3-540-88873-4_17.

[6] M. H. Jansen-Vullers and H. A. Reijers. “Business Process Redesign in Health-
care: Towards a Structured Approach”. In: INFOR: Information Systems and
Operational Research 43.4 (2005), pages 321–339.

[7] M. M.Essam and S. L. Mansar. “Towards a Software Framework for Automatic
Business Process Redesign”. In: ACEEE International Journal on Communication
2.1 (Mar. 2011). Edited by D. V. V. Das, page 6.

[8] J. V. Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

[9] K. Ngamakeur, S. Yongchareon, and C. Liu. “A framework for realizing artifact-
centric business processes in service-oriented architecture”. In: Proceedings
of the 17th international conference on Database Systems for Advanced Applica-
tions - Volume Part I. DASFAA’12. Busan, South Korea: Springer-Verlag, 2012,
pages 63–78. doi: 10.1007/978-3-642-29038-1_7.

[10] J. Pratt, H. Raiffa, and R. Schlaifer. Introduction to statistical decision theory. Cam-
bridge, Mass. [u.a.]: MIT Press, 1995. XIX, 875.

21

http://dx.doi.org/10.1007/978-3-662-43745-2_17
http://dx.doi.org/10.1007/978-3-540-88873-4_17
http://dx.doi.org/10.1007/978-3-642-29038-1_7

Ekaterina Bazhenova: Data-Centric Business Process Improvement

[11] H. A. Reijers and S. Liman Mansar. “Best practices in business process redesign:
an overview and qualitative evaluation of successful redesign heuristics”. In:
Omega 33.4 (2005), pages 283–306.

[12] H. A. Reijers. Design and Control of Workflow Processes: Business Process Man-
agement for the Service Industry. Edited by G. Goos, J. Hartmanis, and J. van
Leeuwen. Lecture Notes in Computer Science 2617. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2003.

[13] W. M. P. Van der Aalst and K. M. van Hee. “Framework for business process
redesign”. In: Proceedings of the 4th Workshop on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WET-ICE’95). WET-ICE ’95. Washington,
DC, USA: IEEE Computer Society, 1995, pages 36–.

[14] M. Weske. Business Process Management - Concepts, Languages, Architectures, 2nd
Edition. Springer, 2012, pages I–XV, 1–403.

22

History Assisted View Authoring for 3D Models

Tim Chen

HCI Group
Hasso-Plattner-Institut
tim.chen@hpi.de

3D modelers often wish to showcase their models and associated workflows for
review, tutorial, and visualization purposes. This may consist of generating static
viewpoints across versions of the model, or authoring animated fly-throughs.
Unfortunately, manually creating such views is often tedious and few automatic
methods are designed to interactively assist the modelers on view authoring pro-
cess. We present a new view authoring system that supports automatic creation of
informative view points, view paths, and view surfaces, allowing authors to create
interactive summaries and viewpoint collages of a model. The key concept of our
implementation is to analyze the model’s workflow history, to infer important
regions of the model and representative viewpoints of those areas. An evalua-
tion indicated that the viewpoints generated by our algorithm are comparable to
those manually selected by the modeler. In addition, participants of a user study
found our system easy to use and provides an effective alternative for authoring
viewpoint summaries.

1 Introduction

Recent years have witnessed significant progress in 3D acquisition and modeling.
These advancements have resulted in a variety of 3D model libraries, and an abun-
dance of users wishing to understand proper modeling processes. It has thus become
desirable to be able to rapidly summarize and display 3D models [6] and their asso-
ciated workflows [4]. This can be achieved through a collection of static viewpoints
or animated fly-throughs across versions of the model. However, manually creating
such views can be a long and tedious process.

As a result, automatic viewpoint selection [5, 9] has been an active area of research
in the Computer Graphics community. However, the associated algorithms that have
been developed typically consider only the final geometric models. Such algorithms
may ignore features of the model that an author spent a particular amount of effort
on during their authoring process. Furthermore, automatic techniques that rely
solely on geometric features may not produce subjectively preferable views.

Alternatively, in the HCI literature, techniques for navigating along constrained
view paths and view surfaces to obtain effective overviews of 3D models have been

23

mailto:tim.chen@hpi.de

Tim Chen: History Assisted View Authoring for 3D Models

investigated [1]. However, these systems require predefined constrained views. The
authoring of such views, either manually or automatically, remains an open problem.

Recent work has demonstrated the utility of instrumenting a 3D modeling environ-
ment for visualizing editing operations and model differences [4] . Guided by a set of
observations and interviews, we hypothesize that enhancing such instrumentation
to also include the camera history could be useful for authoring viewpoint sum-
maries. In particular, original workflows used to create a model may be indicative of
the important parts of the models and the viewpoints from which these important
parts should be viewed. Thus, by capturing these workflows in-situ, effective views
can be derived from the workflows in addition to the final geometric models.

Figure 1: (A) the main MeshMixer modeling window, (B) the authoring overview
panel, and (C) the navigation panel

24

2 Algorithm and Implementation

In this project, we contribute a history assisted view authoring and navigation
system, which is integrated with the MeshMixer sculpting tool, for 3D modelers
(Figure 1). Our system stores the editing and viewpoint history along with discrete
versions of the underlying model. By analyzing both the history and the model, our
system can automatically generate informative views that may consist of viewpoints,
view paths, and view surfaces, from which the original authors can further cus-
tomize. The system also provides a region-specific view authoring function, where
modelers can directly specify regions of interest on the object surface, allowing our
system to automatically suggest the corresponding views.

Our system produces an interactive summary of the 3D model, allowing viewers
to easily navigate between authored views and along view paths, and compare
different versions from the model’s revision history. The authored views can also be
exported as an interactive viewpoint collage for brochure/catalogue-like display.

2 Algorithm and Implementation

2.1 Editing History Instrumentation

The editing history recorded by our instrumented MeshMixer comprises of a com-
plete log of the two most significant interactions in a 3D sculpting tool: interactive
sculpting brush strokes, and 3D camera manipulations. For each sculpting brush
operation we store: a unique operation ID, elapsed time of the stroke, a list of the
affected vertices, and the current camera viewpoint. For the camera history we store
all intermediate cameras (location, look-at, and up vector) during each camera trans-
formation operation, as well as the elapsed time of the entire camera manipulation.

2.2 Region-Specific View Suggestion

Our system interactively suggests candidate views based on the region specified
by the modeler. The following paragraphs describe the algorithms that generate
candidate viewpoints, view paths and view surfaces.

Candidate Viewpoint and View Path Construction Our approach is motivated
by the camera oscillations discussed in our formative observations. The captured
sculpting views and inspecting views tend to form dense, disjoint spatial clusters
whose weighted centers we interpret as candidate viewpoints for the surface region
specified by the modeler.

Given the modeler-specified region, we identify sculpting views as those where the
modeler applied a sculpting brush to that region. We then apply spatial clustering to

25

Tim Chen: History Assisted View Authoring for 3D Models

these views to pick a specific camera. Our algorithm takes a set C of sculpting-view
cameras, and builds an octree spatial decomposition based on the camera positions.
We then compute the accumulated camera time in each cell, by summing the camera
times in its sub-tree, and finding the dominant cell whose accumulated time consists
of 70 % of the total time. Finally, we calculate the weighted average center (based
on time) of the viewpoints in the dominating cell, and select the camera in C that
is closest to the calculated center. We denote this camera viewpoint csculpt, the
representative sculpting-view for the region of interest.

Note that in our prototype system, we use the octree spatial decomposition among
many other possible clustering techniques (e.g. k-mean), mainly because it is how
MeshMixer stores the geometric primitives and many query functions are optimized
for the octree data structure. To identify inspection views, viewpoints used by the au-
thor to assess the model, we search for camera manipulations which occur between
two sculpting operations applied to the same segment. We treat these as inspection
operations. For each such camera manipulation, the sequential camera positions
create a 3D piecewise-linear curve L. We compute the opening angle at each vertex
(camera position) of L, and choose as a turning point, cturn, the vertex with largest
opening angle (Figure 2). For a given region, we take the 3D cameras associated with
all of the turning points and then apply the same clustering technique described
above to extract the inspection-view, cinspect, for a segment. Iterating the proce-
dure described above, we can extract multiple sculpting views and inspection views.
We then treat these extracting views as candidate viewpoints and the oscillating
camera traces these views belong to as candidate view path of the specified region.

Candidate View Surface Construction We hypothesize that a view surface that
covers a cluster of sculpting views would be a good candidate for inspecting the
selected region. Given a surface region of a 3D model, we calculate the average center
vcenter of the surface vertex and obtain its dominating octree cell of sculpting views
and representative sculpting-view csculpt with the algorithm described above. Next,
we construct a spherical patch with the center at vcenter, radius as ||csculpt−vcenter||,
and spanning angles that cover the octree cell.

2.3 Global Viewpoint Suggestions

In addition to the interactive region-specific view suggestions, our system can also
automatically segment the 3D model into meaningful surface regions and suggest
good viewpoints for each of them. This allows our system to recommend a set of
global viewpoints that summarize the entire model. Our observations suggest that
modelers sculpt sequentially and locally. This leads to a feature-centric approach—
we explicitly segment the surface into (potentially overlapping) regions based on

26

2 Algorithm and Implementation

Figure 2: Cturn is the turning point of the oscillation camera movement pattern

the editing history and then rank them by an importance factor. We first define a
segment as a region in which each vertex has been given a roughly similar amount of
attention (i.e. accumulated sculpting time) by the modeler. We then extract segments
via standard greedy region-growing [18]. To create a segment S, we first choose as
the segment seed the vertex vs with the largest accumulated sculpting time T(vs).
We then incrementally include vertices v adjacent to S which have a similar T(v) to
the average accumulated sculpting time for S, denoted T(S). Specifically, we add v
to S if ||T(S) − T(v)|| < 0.3 ∗ T(S). The set S is then removed from the candidate set
and we repeat the above process until either the required number of segments is
found, or all vertices have been consumed.

Per our observations, most individual brush strokes do not span multiple semantic
features of a model (e.g. modifying the nose and ear in a single stroke). As our greedy
segmentation does not enforce this, we apply a refinement post-process. For each
modeling operation that affects any of the vertices contained in segment S, we grow
S to include all vertices of that operation. We note that this refinement step has the
added benefit of cleanly handling cases where sculpting brushes have automatically
been applied symmetrically, as is very frequently in sculpting workflows (Figure 3).

27

Tim Chen: History Assisted View Authoring for 3D Models

Figure 3: Segments generated by our algorithm

3 Related Work

3D Viewpoint Selection At the core of our system is the viewpoint selection algo-
rithm. Previous work [7] infers the importance of viewpoints based on the visible
geometric attributes of a given 3D surface. Secord et al. [8] summarize existing
techniques, and explore viewer preferences via crowd sourcing. They then generate
weightings of the various criteria explored in the literature such that the fitted model
can predict people’s preferred views. By additionally considering the editing history
of a 3D model, our approach could potentially create viewpoint selection results
that better convey the original author’s intentions.

Capturing and Utilizing Workflow Histories Numerous systems have been pro-
posed to automatically record users’ workflows within a software application. Cap-
tured interaction history and workflows have been shown to be useful for creating
step-by-step tutorials [3] or allowing users to explore and replay editing history of
a document [2]. Our work on viewpoint summarization demonstrates a previously
unexplored way to utilize captured workflows: to select views and create model
summarizations.

4 Conclusion

We propose a history assisted view authoring system for 3D models. Our system
provides modelers the ability to traverse and author the camera views, paths, and
surfaces across different model versions. We also introduce the region-specific view
authoring technique where candidate views are automatically calculated based on
the surface region specified by the 3D modeler. Internally, we introduce a unified
algorithm framework for 3D model segmentation and automatic view selection
based on the 3D model and editing history. Our user studies show that the quality of

28

References

the viewpoints generated by our algorithm is comparable to ones manually selected
by the modeler, and the history-assisted authoring system elicited a high level of
interest from potential end-users.

References

[1] N. Burtnyk, A. Khan, G. Fitzmaurice, R. Balakrishnan, and G. Kurtenbach.
“StyleCam: Interactive Stylized 3D Navigation Using Integrated Spatial &
Temporal Controls”. In: Proceedings of the 15th Annual ACM Symposium on User
Interface Software and Technology. UIST ’02. Paris, France: ACM, 2002, pages 101–
110. doi: 10.1145/571985.572000.

[2] H.-T. Chen, L.-Y. Wei, and C.-F. Chang. “Nonlinear Revision Control for Im-
ages”. In: SIGGRAPH ’11. 2011, 105:1–10.

[3] P.-Y. Chi, S. Ahn, A. Ren, M. Dontcheva, W. Li, and B. Hartmann. “MixT:
Automatic Generation of Step-by-step Mixed Media Tutorials”. In: Proceedings
of the 25th Annual ACM Symposium on User Interface Software and Technology.
UIST ’12. Cambridge, Massachusetts, USA: ACM, 2012, pages 93–102. doi:
10.1145/2380116.2380130.

[4] J. D. Denning, W. B. Kerr, and F. Pellacini. “MeshFlow: Interactive Visualization
of Mesh Construction Sequences”. In: SIGGRAPH ’11. 2011, 66:1–66:8.

[5] M. Feixas, M. Sbert, and F. González. “A Unified Information-theoretic Frame-
work for Viewpoint Selection and Mesh Saliency”. In: ACM Trans. Appl. Percept.
6.1 (Feb. 2009), 1:1–1:23. doi: 10.1145/1462055.1462056.

[6] V. G. Kim, W. Li, N. J. Mitra, S. DiVerdi, and T. Funkhouser. “Exploring Col-
lections of 3D Models Using Fuzzy Correspondences”. In: ACM Trans. Graph.
31.4 (July 2012), 54:1–54:11. doi: 10.1145/2185520.2185550.

[7] C. H. Lee, A. Varshney, and D. W. Jacobs. “Mesh saliency”. In: ACM SIG-
GRAPH 2005 Papers. SIGGRAPH ’05. Los Angeles, California: ACM, 2005,
pages 659–666. doi: http://doi.acm.org/10.1145/1186822.1073244.

[8] A. Secord, J. Lu, A. Finkelstein, M. Singh, and A. Nealen. “Perceptual Models
of Viewpoint Preference”. In: ACM Trans. Graph. 30.5 (Oct. 2011), 109:1–109:12.
doi: 10.1145/2019627.2019628.

[9] P. Shilane and T. Funkhouser. “Distinctive Regions of 3D Surfaces”. In: ACM
Trans. Graph. 26.2 (June 2007). doi: 10.1145/1243980.1243981.

29

http://dx.doi.org/10.1145/571985.572000
http://dx.doi.org/10.1145/2380116.2380130
http://dx.doi.org/10.1145/1462055.1462056
http://dx.doi.org/10.1145/2185520.2185550
http://dx.doi.org/http://doi.acm.org/10.1145/1186822.1073244
http://dx.doi.org/10.1145/2019627.2019628
http://dx.doi.org/10.1145/1243980.1243981

Service-Oriented Integration and Processing of
Massive 3D Point Clouds

Sören Discher

Computer Graphics Systems Group
Hasso-Plattner-Institut

soeren.discher@hpi.uni-potsdam.de

Advances in remote and in-situ sensing technology allow for the creation of dense,
spatial overlapping, and multitemporal 3D point clouds that are updated continu-
ously. However, workflows of traditional geoinformation systems commonly limit
the use of 3D point clouds to the generation of mesh-based 3D models which
in turn serve as the basis for subsequent processing and analysis tasks. Since
the generation of accurate mesh-based 3D models from 3D point clouds is time-
consuming, the overall performance can be improved notably by conducting these
tasks directly on the point data. In this report, concepts for the service-oriented
integration, processing, and provision of massive 3D point clouds are discussed.
A prototypical implementation of a corresponding service-oriented infrastructure
is presented and its performance is evaluated based on two different real-world
scenarios.

1 Introduction

Traditionally, geoinformation systems (GIS) use 3D point clouds, i.e., point-based
digital representations of real-world surfaces that can be created efficiently and
automatically by means of in-situ and remote sensing technology, to derive 3D
meshes, such as building or terrain models [1, 6]. These, in turn, can be applied in
different areas such as urban planning and development, environmental monitoring,
disaster and risk management, or homeland security [3]. Deriving mesh-based 3D
models from 3D point clouds is however a time consuming task as it often requires
manual post processing. Consequently, that approach is inefficient for large data
sets, especially when parts of the data have to be updated continuously.

These limitations have become more apparent in recent years due to advances in
3D laser scanning technology leading to an ever-increasing density (e.g., 400 points
per m2), availability, and capturing frequency of point-based 3D models. As an
example, an increasing number of german federal states captures their territory on a
regular basis (e.g., once a year) by means of aerial laser scanning or photogrammetric
approaches to facilitate the process of updating existing 3D city models or cadastre
data. Terrestrial laser scanning technology is becoming more prevalent in every

31

mailto:soeren.discher@hpi.uni-potsdam.de

Sören Discher: Service-Oriented Integration and Processing of Massive 3D Point Clouds

day life, e.g., as part of navigation and driver assistant systems, that use various
sensors to constantly capture the environment of a car and to identify relevant objects
(e.g., cars or pedestrians) within. Furthermore, that data can also be used to derive
georeferenced models of the environment [7]. Simultaneously, several consumer
applications (e.g., Autodesk 123D or Microsoft Photsynth) have been developed in
recent years that simplify the creation of digital models from real-world objects by
means of photogrammetric approaches [14], thus making that technology accessible
to a broad audience.

By combining these different data sources, point-based models of cities and land-
scapes can be created that are not only dense and highly detailed, but also spatial
overlapping, inherently featuring different levels of detail (LoD) since the given area
has been captured from different point of views (i.e., airborne, terrestrial, or fo-
cused on single objects). In addition, by combining information from multiple data
sources, the model can be updated more frequently, thus, creating a more realistic
representation of the real world. Keeping track of these changes, i.e., storing not only
positional but also temporal information, serves as a basis for various processing
tasks (e.g., detecting changes in an area over a certain amount of time) and speeds
up subsequent processing tasks in general as it allows for the efficient selection of
areas that have been subjected to changes in a given period of time.

However, to use dense, spatial overlapping, and multitemporal 3D point clouds
that are updated continuously in an efficient way, the workflows of traditional GIS
are not sufficient. Instead, we propose to conduct - whenever possible - processing
and analysis tasks directly on the point data. In this report, concepts for a service-
oriented infrastructure for 3D point clouds are discussed allowing for (1) the inte-
gration of heterogeneous 3D point clouds into a homogeneous spatial data model,
(2) the efficient conduction of common analysis and processing tasks (e.g., calcu-
lating distances for multitemporal point data), and (3) the efficient provision of the
point data for subsequent processes (e.g., to integrate processing results into pro-
cess chains of existing GIS). To display the practicability of the presented concepts,
a prototypical implementation of such an infrastructure is presented and evaluated
for two different use cases.

2 Service-Oriented Infrastructure for 3D Point Clouds

In workflows of traditional GIS the use of 3D point clouds is mostly limited to the
generation of mesh-based 3D models which in turn are used subsequently as the
geographic base data for various processing and analysis tasks. However, conducting
these tasks directly on the point data, thus, avoiding the time-consuming generation
of 3D meshes, can speed up the performance of these tasks notably [8]. To establish

32

2 Service-Oriented Infrastructure for 3D Point Clouds

Application

Layer

Integration

3D Point Cloud Database

Preprocessing

Administration & Configuration Client Analysis Client

3D Model

Extraction
WPS

Simulation WPS

Monitoring WPS Rendered

Images
WVS

Filtering WPS

Georeferencing WPS

Level of Detail

Generation
WPS

Change

Detection
WPS

Object Class

Identification
WPS

Normal

Calculation
WPS

Optimized

3D scenes
W3DS

Geodata WCS

Process

Layer

Function

Layer

Data

Layer

Visualization Client

Analysis Provision

Figure 1: Service-oriented infrastructure allowing for the management of dense,
spatial overlapping, and multitemporal 3D point clouds

3D point clouds as a universal type of geographic base data, we propose the use of a
specialized software and geodata infrastructure that manages 3D point clouds. That
means, it facilitates the integration of heterogeneous point data from various data
sources, it updates, processes, and analyses the managed point data and it allows
for the provision of that data based on different attributes (e.g., spatial, temporal, or
semantic information).

To ease the integration of such an infrastructure into existing workflows and pro-
cess chains, its functionality should be made available by standardized interfaces.
To ensure high performance rates both for the processing and the provision of the
point data, it should be organized in spatial data structures, that allow for an efficient
selection of points based on object classes as well as spatial or temporal attributes. In
addition, point-based processing tasks typically benefit from massive parallelization;
therefore distributed computing concepts—combined with a distributed storage of
the data—should be utilized. In summary, the following requirements need to be
matched:

• Integration of heterogeneous 3D point clouds (e.g., airborne, mobile, or terres-
trial) that may be specified in different formats or georeference systems into a
homogenous spatial data model.

33

Sören Discher: Service-Oriented Integration and Processing of Massive 3D Point Clouds

• Distributed storage of the managed point data.

• Distributed, scalable, adaptive and selective updating, processing and analysis
of existing point data (e.g., computation of point specific object classes such as
vegetation, building, terrain).

• Efficient provision (e.g., interactive visualization) of point data based on se-
mantic (e.g., certain object classes), temporal (e.g., certain acquisition periods)
or spatial attributes.

• Integration of the infrastructure into workflows of existing geoinformation
systems and applications by means of standardized interfaces.

An infrastructure that matches these requirements is the one depicted in Figure 1.
That service-oriented infrastructure provides several functions to integrate, analyze
and provide point-based geodata. All functionality can be accessed via standardized
web services such as Web Processing Services (WPS) [12], Web Coverage Services (WCS),
Web 3D Services (W3DS), or Web View Services (WVS); therefore it can be easily com-
bined with existing workflows and processing chains. Simultaneously, web services
may also be integrated by the given infrastructure to support certain processing tasks
(e.g., hybrid computation of object classes based on the point data and additional
geodata such as infrastructure maps).

The different services provided by the infrastructure can be assigned to the fol-
lowing categories:

• Data integration. Services allowing for the continuous updating of the man-
aged data. This includes the cleaning newly acquired 3D point clouds as well
as the transformation of point coordinates into a unified georeference system.

• Data preprocessing. Services computing basic attributes stored a per-point
basis that are used by several analyses or visualization approaches (e.g., color,
object class or topologic information) and therefore should only be computed
once.

• Data analysis. Complex analyses such as noise and flooding simulations or
the updating of 3D city models based on 3D point clouds. Typically, these tasks
require additional information (i.e., apart from a point’s spatial position) that
are either computed during the preprocessing or extracted from additional
geodata.

• Data provision. Services allowing for the export of the managed data or anal-
ysis results respectively, either directly in a standardized geodata format (i.e.,
via a WCS) or in a format optimized for the visualization of the data (i.e., via a
W3DS or WVS).

In the following, these categories are discussed in more detail.

34

2 Service-Oriented Infrastructure for 3D Point Clouds

2.1 Data integration

The integration of heterogeneous 3D point clouds into a homogenous data model
is essential both for the overall performance of the infrastructure as well as its com-
patibility with existing workflows. Compatibility can be ensured by supporting the
import and export of standardized geodata formats (e.g., LAS, GML, PLY), especially
of those following OGC standards or the INSPIRE directive. To improve the overall
performance, a data model should be chosen that allows for the efficient selection of
points based on different attributes, especially on a point’s spatial position. There-
fore, spatial data structures, such as quadtrees, octrees, or kd-trees, should be used to
organize the point data [9]. For many analyses and visualization approaches, only a
representative subset of the data for a given area is needed. Thus, the overall perfor-
mance may be improved further by using so-called level-of-detail data structures,
i.e., specialized spatial data structures storing different subsets of the data for each
area, thus allowing for the efficient provision of variously detailed representations
of the data [5].

Apart from the selection of points based on different attributes, the spatial data
structure also needs to allow for an efficient integration of newly acquired and
updating of existing point data. Kd-trees subdivide the given space into multiple
parts of varying size based on the given data. This proves to be disadvantageous
when the data basis is constantly updated since the integration of additional data
typically initiates a rebuilding of the whole structure. Octrees and quadtrees on
the other hand, conduct a three- or two-dimensional subdivision of the space into
equally large parts. The three-dimensional subdivision applied by octrees is beneficial
for terrestrial laser scans as the points in that case typically are spread uniformly
across the space. If, by contrast, a 3D point cloud has been acquired by means of
aerial laser scanning, large parts of the space typically remain empty, resulting in
unbalanced octrees that are inefficient to traverse. Thus, the use of quadtrees would
be favorable in general for airborne laser scans. To support the efficient integration
of both, terrestrial and airborne laser scans, a combination of octrees and quadtrees
should be considered.

2.2 Data preprocessing & Data analysis

Complex point-based analysis tasks typically require additional information about
the respective area aside from each point’s spatial position. Some information (e.g.,
two-dimensional land use information) can be extracted directly from additional
geodata, whereas other information has to be calculated on a per-point basis.

Object classes, for example, can be determined by computing and weighting differ-
ent features (e.g., normal distribution or surface variation) describing the topology

35

Sören Discher: Service-Oriented Integration and Processing of Massive 3D Point Clouds

of a point’s proximity [15]. By comparing newly acquired 3D point clouds with the
point data already managed by the infrastructure, changes that occurred in-between
these different acquisitions (e.g., newly constructed buildings) can be identified [10].
That change detection is an integral part of the described infrastructure as it allows for
the selective updating of those parts of the data that have been subjected to changes
lately.

While calculations like the change detection or the identification of object classes
are fundamental for a broad range of complex analyses, they are usually time con-
suming. Therefore, calculating these kinds of information only once for parts of the
data that have been newly integrated or updated and reusing it subsequently can
speed up the performance of those analyses notably.

Whereas preprocessing tasks always generate per-point attributes that are inte-
grated into the data basis, subsequent analysis tasks may also generate different
types of geodata such as mesh-based 3D models or cadastre data. In conclusion, the
described infrastructure speeds up the conduction of common analysis tasks, be-
cause (1) required subsets of the data can be selected efficiently due to the underlying
spatial data model and (2) crucial information (e.g., object classes) is precalculated
in a preprocessing phase.

2.3 Data provision

To integrate the infrastructure into existing workflows, the managed point data as
well as analysis results have to be accessible via various web services. If a component
requires full access to the requested data, e.g., to conduct subsequent analyses on it,
a Web Coverage Service (WCS) [2] should be implemented, that allows for the selection
of points based on various attributes (e.g., spatial position, temporal or object class
information). Since all the details for a given area are rarely needed, the WCS should
support the selection of different levels of detail as well. In addition, standardized
protocols (e.g., JPIP) and data formats (e.g., GMLJP2) optimized for the efficient
transfer of data in networks [13] should be used to ensure interoperability with
existing web coverage services and to speed up transfer rates for point data.

If the point data is only requested for visualization purposes, the usage of a WCS
is not always the best option since a lot of application logic is required on the client
that is responsible for both the selection and the configuration (e.g., color, size, and
primitive type of each point) of the visualized data. As opposed to that so-called thick
client approach, a Web 3D Service (W3DS) [11] selects and configures the requested
data on the server before transferring it to the client in a format optimized for ren-
dering purposes. However, such a medium client approach still requires the client
to render the transferred point data itself, thus limiting its applicability to clients
featuring a certain minimal hardware requirements (e.g., a stand-alone GPU).

36

3 Evaluation

3D City Model

Analysis Preprocessing

Tree Detection

Change Detection

Object Class

Identification

Metropolitan Area

3D PC

(2013)

Vegetation

points

Building

points

Ground

points

Changed

points

Tree

Locations

Integration

Georeferencing

Filtering

3D Point Cloud Database

3D PC

(2008)

Tree Database

Monitoring of the Tree Population

Building Outline

Extraction
Building

Outlines

GIS

Tools

Evaluation of a 3D City Model

Figure 2: Prototypical implementation of the service-oriented infrastructure, config-
ured for two real-world scenarios

To allow for the visualization of arbitrarily large 3D point clouds even on mobile
devices, a Web View Service (WVS) should be used instead, that renders the data
directly on the server and only transfers the rendered images to the client. This
thin client approach notably reduces the minimal hardware requirements on client
side. Since only the rendered images but not the visualized data itself have to be
transferred, the data traffic is independent from the amount of data that is visualized.
Therefore, when visualizing massive amounts of data, the data traffic of a WVS is
typically lower than the one of a W3DS [4].

3 Evaluation

A prototypical implementation of the proposed infrastructure was evaluated based
on two real-world scenarios. The first scenario was the evaluation of a 3D city model
based on two aerial laser scans of a metropolitan area. As a second scenario, the
same data basis was used to monitor changes in the tree population in the respective
area.

The data basis consisted of two aerial laser scans captured in 2008 and 2013, re-
spectively. The former one featured 7-10 points/m2, 5 billion points overall, and
75 GB of data; the latter one featured 100 points/m2, 80 billion points overall, and
1200 GB of data.

As depicted in Figure 2, the scenarios were based on a change detection as well
as an object class identification which were conducted as part of the preprocessing
phase. For the first scenario, all building points with a certain degree of change (e.g.,

37

Sören Discher: Service-Oriented Integration and Processing of Massive 3D Point Clouds

more than two meter distance between the old and the new laser scan) were selected
and used to derive building outlines (i.e. shape files) describing all newly constructed
or modified buildings in the given area. Subsequently, the exported building outlines
were used in combination with external tools to manually update the modified
parts of the 3D city model. Since the modified parts were already identified by our
infrastructure, only a small subset (i.e., approximately two percent) of the 3D city
model had to reevaluated. For the second scenario, all points representing vegetation
were analyzed to derive the location of individual trees as well as several attributes
(e.g., height, volume) characterizing these trees in more detail. The results of that
analysis were exported and—in conjunction with external tools—used to evaluate
an existing tree cadastre.

The processing tasks were conducted in parallel on a total of six computers—each
of which featuring an Intel Xeon CPU with 2.66 GHz, 12 GB main memory, and a
NVIDIA GeForce GTX 660 with 2 GB device memory. In Table 1, the data throughput
for the most relevant (pre-)processing tasks is specified. Data throughput for the
integration and the provision of the data is defined by the overall network and
memory bandwidth and was at around 80MB/second.

Table 1: Data throughput for the most relevant processing tasks for the given sce-
narios in billion points/hour.

Object Classification Change Detection Building Extraction Tree Detection
0.33 B pts/hour 5.00 B pts/hour 0.42 B pts/hour 6.51 B pts/hour

The use of the presented service-oriented architecture clearly proved to beneficial
for the evaluated scenarios. For once, the distributed storage and processing of the
point data allowed for high data throughput. Secondly, the spatial data structure
used to organize the point data allowed for the efficient selection of those points
relevant to the respective processing task. Finally, a WVS allowed for the interactive
exploration of the managed point data as well analysis results on a broad range of
hardware devices (see Figure 3).

4 Conclusion and Outlook

In this report concepts for a service-oriented infrastructure were discussed, that
allows for (1) the continuous integration of heterogeneous 3D point clouds into a
homogeneous spatial data model, (2) the conduction of various complex analyses

38

4 Conclusion and Outlook

Figure 3: Aerial laser scan of a metropolitan area. Points are colored based on color
information extracted from aerial images (left) or based on their respective object
classes

directly on the point data, and (3) the efficient provision of that data either in stan-
dardized geodata formats or in a format optimized for the visualization of the data.
Since additional per-point attributes that are required by multiple analyses are pre-
calculated for newly integrated or recently modified data, the performance of these
analyses could be sped up notably. In addition, the data structure used to organize
the point data allows not only for the efficient selection of points based on semantic,
temporal, or spatial attributes but also supports the selection of different levels of
detail.

The presented infrastructure is especially suited for the management of 3D point
clouds that are dense, spatial overlapping, and multitemporal. Thus, it demonstrates
an alternative approach to the workflow of traditional GIS, since it uses 3D point
clouds not as a mere basis to create mesh-based 3D models, but facilitates the con-
duction of various common analysis tasks directly on the point data itself. To ease
the integration of the infrastructure into existing workflows and process chains,
established web services are used for the external communication.

The practicability of the discussed concepts was evaluated based on a first, pro-
totypical implementation and two real-world scenarios. Future steps include the
integration of 3D point clouds from different data sources (e.g., aerial, terrestrial,
and mobile) into a homogeneous data model, since the infrastructure so far has only

39

Sören Discher: Service-Oriented Integration and Processing of Massive 3D Point Clouds

been tested for aerial laser scans. In addition, novel, more efficient concepts should
be evaluated for the compression and transfer of point data in networks.

5 Acknowledgements

This work was funded by the Federal Ministry of Education and Research (BMBF),
Germany within the InnoProfile Transfer research group ”4DnD-Vis”. I would like
to thank virtualcitySYSTEMS for providing datasets.

References

[1] M. Arikan, M. Schwärzler, S. Flöry, M. Wimmer, and S. Maierhofer. “O-snap:
Optimization-based Snapping for Modeling Architecture”. In: ACM Trans.
Graph. 32.1 (2013), 6:1–6:15.

[2] P. Baumann. Web Coverage Service (WCS) Interface Standard, Version 2.0.1. Open
Open Geospatial Consortium Inc. 2012.

[3] J. Coutinho-Rodrigues, A. Simão, and C. H. Antunes. “A GIS-based multicri-
teria spatial decision support system for planning urban infrastructures”. In:
Decision Support Systems 51.3 (2011), pages 720–726.

[4] J. Döllner, B. Hagedorn, and J. Klimke. “Server-based Rendering of Large 3D
Scenes for Mobile Devices Using G-buffer Cube Maps”. In: 17th International
Conference on 3D Web Technology. 2012, pages 97–100.

[5] P. Goswami, F. Erol, R. Mukhi, R. Pajarola, and E. Gobbetti. “An efficient
multi-resolution framework for high quality interactive rendering of massive
point clouds using multi-way kd-trees”. In: The Visual Computer 29.1 (2013),
pages 69–83.

[6] F. Lafarge and C. Mallet. “Creating large-scale city models from 3D-point
clouds: a robust approach with hybrid representation”. In: International journal
of computer vision 99.1 (2012), pages 69–85.

[7] H. Lin, J. Gao, Y. Zhou, G. Lu, M. Ye, C. Zhang, L. Liu, and R. Yang. “Semantic
decomposition and reconstruction of residential scenes from LiDAR data.” In:
ACM Trans. Graph. 32.4 (2013), page 66.

[8] S. Nebiker, S. Bleisch, and M. Christen. “Rich point clouds in virtual globes–
A new paradigm in city modeling?” In: Computers, Environment and Urban
Systems 34.6 (2010), pages 508–517.

40

References

[9] R. Richter and J. Döllner. “Concepts and techniques for integration, analysis
and visualization of massive 3D point clouds”. In: Computers, Environment and
Urban Systems 45 (2013), pages 114–124.

[10] R. Richter, J. E. Kyprianidis, and J. Döllner. “Out-of-Core GPU-based Change
Detection in Massive 3D Point Clouds”. In: Transactions in GIS 17.5 (2012),
pages 724–741.

[11] A. Schilling and T. H. Kolbe. Draft for Candidate OpenGIS Web 3D Service Interface
Standard, Version 0.4.0. Open Open Geospatial Consortium Inc. 2010.

[12] P. Schut. OpenGIS Web Processing Service, Version 1.0.0. Open Open Geospatial
Consortium Inc. 2007.

[13] Y. Shao, D. Liping, L. Kang, and W. Han. “Using Open Standards to Integrate
LIDAR and Geoprocessing”. In: LiDAR Magazine 10/2013 3.5 (2013), pages 66–
69.

[14] N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski. “Finding paths through the
worlds photos”. In: ACM Transactions on Graphics (TOG). Volume 27. 3. 2008,
pages 11–21.

[15] Q.-Y. Zhou and U. Neumann. “Fast and extensible building modeling from
airborne LiDAR data”. In: 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems. 2008, pages 1–8.

41

Consciousness in Artificial Agents – A Theory

Fahad Khalid

Operating Systems and Middleware Group
Hasso-Plattner-Institut

fahad.khalid@hpi.uni-potsdam.de

The phenomenon of consciousness has consistently proven a bottleneck in sim-
ulating human-like behavior in artificial agents. On the one side, consciousness
has been studied in neuroscience, with the intention of developing an understand-
ing of, and the scientific basis for the phenomenon. On the other hand, research
in artificial intelligence has focused on simulating the phenomenon in artificial
agents, by developing algorithms from first principles. In this report, a theory is
developed, which reveals insights into the potentially beneficial interplay of neu-
roscience and artificial intelligence; a novel approach to studying consciousness.

1 Introduction

The theory of artificial consciousness presented here is founded on the following
premise: If we consider consciousness as a set of functions—such as awareness,
emotions, etc.—then an artificial agent can be endowed with the same set of functions
as a human being. Such an agent would appear conscious to us in the same way
other humans do. The functions of consciousness [10] form the basis of comparison
between the theories of consciousness developed in neuroscience, and the theory of
artificial consciousness developed in this paper (see Figure 1 for an overview).

In addition to the discussion of functions as mechanisms, we describe the archi-
tectural details of an artificial implementation of these functions. In doing so, we
elaborate on the hierarchical and modular nature of such an architecture. More-
over, we comment on the interconnectedness of the different components/modules
involved in the various computations.

It is also our hypothesis that for a system to be able to generate conscious behavior,
it must be able to interact with its environment. We consider conscious agents, both
natural and artificial, as reactive systems. The mechanisms to perceive stimuli and
respond to them are essential for any reactive system. Therefore, we argue that
any conscious artificial agent capable of mimicking human consciousness must be
able to interact with the environment just as humans do. However, this assumption
raises an issue: the algorithms available today for stimulus-response mechanisms
are neither accurate enough, nor computationally feasible for mimicking human
abilities [12].

43

mailto:fahad.khalid@hpi.uni-potsdam.de

Fahad Khalid: Consciousness in Artificial Agents – A Theory

Figure 1: The figure highlights functions and structural elements as points of connec-
tion between theories of consciousness in AI and neuroscience. Moreover, human
computer interaction is presented as an Oracle, to which the AI theory refers.

As the focus of this paper is on functions of consciousness rather than stimulus-
response mechanisms, and since we do not aim to address the origin of conscious-
ness, we assume that the entire agent-environment interaction functionality is an
Oracle. Consequently, we can proceed with suggestions on how to implement con-
sciousness in an artificial agent without having to delve into the details of interaction
mechanisms.

It is also important to note that given today’s processor architectures, any reference
to software based artificial agents implicitly pertains to software designed for the
Von Neumann machine architecture [11]. This is fundamentally different from the
neural network architecture utilized by the human brain. It is well known [2] that
both Von Neumann machines and neural networks are capable of implementing
the basic logic operations required for universal computation. However, biological
neural networks appear to be superior in performance for certain specific tasks,
e.g., vision. Such tasks fall under the category of interaction functions comprising the
Oracle. Therefore, we ignore these. For the functions of consciousness though, there
is no empirical evidence suggesting that the neural network architecture is superior.
The one aspect that may benefit from a neural network machinery is memory. Our
hope is that with the progress in memory and microprocessor technology, this will
become less of a barrier to implementing human-like memory function.

In the following Section, we illustrate the mechanisms and processes involved in
artificial consciousness. We use awareness and emotions as illustrative functions of
consciousness.
Artificial Agents—Introducing John and Doe

In order to illustrate the mechanisms of artificial consciousness, we present exam-
ples of two hypothetical artificial agents named John and Doe. These are both mobile

44

2 Awareness in Artificial Agents

robots that look and behave exactly like humans, i.e., a human cannot identify John
and Doe as robots based solely on physical appearance and behavior. Therefore, our
descriptions of these agents are highly anthropomorphized.

Note: This report is an excerpt of this author’s contribution to the “How Artificial
Intelligence Can Inform Neuroscience: A Recipe for Conscious Machines?”1 project report,
which resulted from an interdisciplinary collaboration between researchers from
the 2014 Santa Fe Institute Complex Systems Summer School. The figures included
in this report were prepared by Claire Lagesse2.

2 Awareness in Artificial Agents

A high level software-based model of awareness involves the following components:

• Sensor input and fusion

• Sensor input prioritization

• Attaching the awareness property to the highest priority stimulus

We explain these processes in the following Subsections using hypothetical sce-
narios centered on the artificial agents introduced earlier.

2.1 The Process by way of Illustration

Let us consider a scenario where John is standing at the platform of a train station,
waiting for the train. John is facing the track, looking at the captivating scenery in
the background. At one point, he hears the train coming from the right. He instantly
turns his head to the right to see the train. By looking at the oncoming train, he has
visual confirmation of his interpretation of the auditory stimulus.

In the above mentioned scenario, as John sees the train, he also hears the sound
that gets louder as the train comes closer. John’s brain is concurrently receiving two
stimuli; visual and auditory. The artificial brain fuses the two stimuli to refine the
perception of the object. This is because in many cases, one stimulus is not enough to
assess the situation completely. E.g. hearing the sound of the train does not guarantee
that it is the train for which John is waiting, and not a different train passing by the
station. Similarly, if the train is coming in over a bend, John might not be able to see
it up until a certain point, but might still be able to hear the sound. Therefore, sensor

1http://santafe.edu/media/cms_page_media/598/CSSS_2014_Consciousness.
pdf, accessed December 16, 2014.

2Claire Lagesse is one of the co-authors of the SFI CSSS 2014 project report.

45

http://santafe.edu/media/cms_page_media/598/CSSS_2014_Consciousness.pdf
http://santafe.edu/media/cms_page_media/598/CSSS_2014_Consciousness.pdf

Fahad Khalid: Consciousness in Artificial Agents – A Theory

fusion is an important process to increase the amount of information available about
a certain situation.

Before John hears the sound of the train, he can hear many other sounds as well,
e.g., the birds chirping, some other passengers talking to each other, etc. As soon he
hears the sound of the train, it captures his attention, and he suddenly looks right.
Most of the other sounds, even though being perceived, are being assigned low
priorities. The sound of the train, however, is assigned a high priority, which enables
John’s artificial brain to filter out the rest and focus on that one sound. Prioritization
of sensor input plays an important part in the process of attention.

The attention focuses the visual system on acquiring visual information about
the train. This results in an increase in the amount of information, and therefore an
increase in certainty, about the belief that the train is coming. The sound tells John
that a train is coming; the visual perception further tells him that his train is coming.
At this point John is aware of the fact that his train is coming. Awareness in this case
is an additional property that is assigned to an object once enough information has
been acquired [5]. The amount of information is increased or acquired using the
process of attention.

Figure 2: The process of generation of awareness is depicted. From left, a stimulus is
received by one or more sensors and subsequently fused and prioritized. Attention
is given to the highest priority stimulus, to which awareness is then attached.

2.2 Sensor Fusion

Sensor fusion is a widely known and commonly used method in robotics. There
are several algorithms available for implementing sensor fusion, one of which is
based on the Kalman Filter [8]. The important point here is that the algorithms
for sensor fusion are available, and we assume that the software module responsi-
ble for performing sensor fusion in our agents can be implemented using existing
technology.

46

2 Awareness in Artificial Agents

2.3 Sensor Input Prioritization

The details of an algorithm for the sensor input prioritization would be too compli-
cated to include in this paper. Nevertheless, the basic concept is presented here. Let
us assume that the auditory system (a software module) receives several different
inputs. These are:

• Sound of birds chirping

• Sound of music playing

• Sound of people talking amongst a group (of which the observer is not a
member)

• Sound of an oncoming train

Each sound is prioritized based on two major properties.

• Loudness

• Type

We assume that the agent is already familiar with all the different sounds. There-
fore, when a sound enters the artificial brain, it is compared against a pattern that is
stored in the memory, and immediately recognized as belonging to a certain cate-
gory3, such as, the sound of birds chirping.

Given a certain state of the artificial mind, e.g., anticipation of the arrival of the
train, a certain ‘sound pattern’ has a high priority. This is based on the type of sound.
Moreover, the loudness can always result in a high priority for any sound if the
loudness is above a certain threshold value. E.g., even while John is anticipating the
arrival of the train, Doe shouting at him would capture his attention.

This concept can be distilled down to a very simple algorithm.
1 Loop: forever
2 Loop: For each auditory stimulus
3 Compute Loudness
4 if Loudness > threshold
5 focus attention on the stimulus
6 break Loop
7 Compute Type
8 if Type in Types of Interest
9 focus attention on the stimulus

3The machine learning savvy reader will notice that the process is analogous to pattern
recognition or classification learning.

47

Fahad Khalid: Consciousness in Artificial Agents – A Theory

10 break Loop
11 End Loop
12 End Loop

Please note that even though the computation of loudness is more or less similar
in most situations, the computation of the type of interest can vary significantly
depending on the given situation, i.e., the state of the artificial mind. E.g., when one
is anxiously waiting for a phone call, the sound of phone ringing has a very high
priority. However, when one is in a meeting, the sound of phone ringing has a lower
general priority, which is further dependent on the loudness.

Note: Whether an algorithm is formulated in terms of if-then-else clauses, or
edge weighted directed graphs (such as neural networks), is merely a matter of
representation. Both can generate equivalent results [2].

2.4 Attaching the Awareness Property to a Stimulus

Based on idea of the relationship between awareness and attention presented in the
theory of consciousness by Graziano and Kastner [5], once the prioritization module
assigns the highest priority to a stimulus, the awareness module enables the Is Aware
property for that stimulus. Therefore, the awareness module can be thought of as
an independent module that keeps track of attention and enables the awareness
property for the stimulus to which the mind is paying attention.

The awareness module can assign awareness object by object in a multi-node chain
of objects. This is useful for situations such as: Doe is aware of the fact that John is
aware of the oncoming train, which represents a 2−deep awareness chain. Moreover,
the same awareness module/function can be used to generate self-awareness. In this
case, the awareness property is attached the object self. This is similar to Graziano
and Kastner’s idea that self-awareness stems from the ability of the brain to reuse
the perceptual social machinery for awareness.

Note: For the sake of simplicity, we have ignored the process of object recognition.
Algorithms for object recognition exist [1, 3, 7, 14], although these do not perform
nearly as well as the human brain.

3 Emotions and Internal Loops

3.1 Emotions as Functions

Let us consider a scenario where John is taking a walk, and he arrives at a Koi pond.
He looks at the fish, which triggers a slight change (towards a calming feeling) in

48

3 Emotions and Internal Loops

his state of mind. What is the process that takes place between seeing the fish and
feeling calmer?

In the previous Section, we discussed the process that takes place between sensing
the stimulus and generating attention and awareness. In the above mentioned scenario,
we are adding another stage to the process. Once John’s attention is on the Koi,
this information is forwarded to the emotion module. This module implements the
emotional logic, which is the algorithm used to determine the emotion triggered by a
given stimulus. Once a specific emotion (or a set of emotions) has been determined,
in addition to possible physiological changes such as a change in facial expression,
a change is triggered in the state of mind. This new state of mind (in John’s case) is
perceived as feeling calmer.

Each emotion can be viewed as a function, which is called when a certain set
of properties/stimuli is evaluated to be true. The function itself implements an
algorithm that constitutes the set of actions to be taken when the function is called.
One such action would be the change in facial expression, such as smiling, when
an agent perceives happiness. Please note that algorithms circumscribed by these
functions change over time (these are governed by an adaptive/learning algorithm),
depending on a given state of mind, and also on a long-term or permanent change
(possibly caused by damage to the artificial brain) in how a certain stimulus affects
the agent.

3.2 Emotional Logic

The question we will try to answer in this Section is, “How does a stimulus trigger an
emotion in an artificial agent?”

Once a stimulus has been assigned a high enough priority, information about
the stimulus (the associated data structure; the stimulus object) is forwarded to the
emotion module. This module reads certain properties of the stimulus object, e.g.,
in the Koi fish example, the beauty associated with the scene. The property scan function,
i.e., the function that reads the properties, is followed by a call to the emotional logic
algorithm. This algorithm analyzes list of properties received from the property scan
function. In our example, beauty is considered a positive property. In the absence of
any negative properties, the algorithm determines the positive emotion that should
be triggered by this property. In this simple case, the feeling calm emotion is triggered.
A highly simplified version of the algorithm is depicted in Figure 3.

In order to represent a more realistic multi-emotional state, a more elaborate de-
cision process would have to be taken into account. The binary branching between
positive and negative perception of a property would not be enough. This too is not
an issue, since we know from machine learning that decision trees [4] can be used to
represent very complex decision processes.

49

Fahad Khalid: Consciousness in Artificial Agents – A Theory

Figure 3: Simple emotional logic: Based on its properties, a stimulus is classified as
either positive or negative. Then, the particular emotion to be triggered is deter-
mined.

Furthermore, the action associated with an emotion function can also be quite
elaborate; in addition to a change in the state of mind, multiple actuators can be
activated. Also, the intensity or significance of the stimulus can affect the intensity
and/or nature of the response. Please note that all this boils down to a complex set of
rules, which can be represented as a set of if-then-else clauses. Other representations
such as trees, networks, etc. can be used as well [17].

3.3 Internal Loops

The above discussion raises the question, “How can an artificial agent experience emo-
tions in a dream? How does an artificial agent feel emotion in the absence of external stimuli?”

The experiences of day to day life are stored in the agent’s memory in the form of
patterns. Once the agent is in a dream state, the sensory system can be temporarily
replaced by memory, i.e., the stimuli are loaded from memory rather than being re-
ceived from the sensory system. Once a stimulus is present, it can be processed using
the algorithms described earlier, regardless of whether the stimulus was received
from the environment, or loaded from memory. A similar mechanism is applica-
ble to how actuators can be perceived as interacting with the environment during
dreams while the body is completely at rest. Similarly, an agent’s own thoughts can
trigger emotions without any external stimuli.

The above stated explanations imply that there are internal connections between
the memory and the other functional modules mentioned earlier. It is these connec-

50

4 Hierarchical Architecture of an Artificial Brain

tions that make it possible for the mind to bypass the sensor-actuator modules in
the dream states. The architecture is depicted in Figure 4.

Figure 4: Internal loop: The loop constitutes loading a stimulus pattern from memory
and processing it. During processing, the emotion module might be used, which
might in turn load further stimuli from memory.

Nevertheless, it is important to note that the sensor-actuator system is a necessity
for constructing experiences in the first place, which are later used by the mind to
create dreams. If the agent never had the sensor-actuator system, it would not have
experienced sensory input and actuator responses, and therefore would not have
the necessary information in memory to construct dreams.

Please note that the same mechanism is used in situations when the agent is
wide awake, but thinking. E.g., consider a scenario where John is sitting at his desk,
developing a simulation in NetLogo [16]. Ideas are generated in his mind as he thinks
about how to solve certain problems. In this case, the thinking process does not solely
rely on the stimuli currently being perceived; much of the problem solving is done
using the information already stored in memory (information retrieval followed by
processing to arrive at ideas).

4 Hierarchical Architecture of an Artificial Brain

The concept of a hierarchical architecture is intrinsically related to the concept of
modularity. Modular system design is an established practice in software engineering.

51

Fahad Khalid: Consciousness in Artificial Agents – A Theory

This makes it possible to independently evolve a module over time, without the prop-
agation of side-effects to other modules. A common method of determining how to
divide the code into modules is to look at the coupling relations between different
functions. Tightly-coupled, highly interdependent, and functionally similar func-
tions are often included into a single module. On the other hand, loosely-coupled,
independent, and functionally dissimilar functions are kept in different modules.
There are other more complex decisions that come into play when making these
distinctions, but for brevity, only these simple cases are considered here.

There is evidence from neuroscience that certain functionally similar modules in
the brain are located in close spatial proximity [5]. This indicates that modularity is a
common structural property of complex decision making systems, be they artificial
or natural.

The architectural model we present of an artificial brain is strongly influenced by
the modularity principle employed in software engineering. In order to illustrate
how this hierarchical and modular structure functions, we present the following
illustration.

John is running late for a meeting with Doe this morning. He enters the train
station, and is pacing toward the platform, so that he can catch the train in time. It is
morning rush hour and the station is full of people walking to different platforms,
purchasing tickets, etc. As John is rushing toward the platform, he suddenly hears
the sound of a child talking; emanating in close proximity on his right hand side.

4.1 Sensor-Actuator Layer

The sound is a stimulus that is received at the bottom layer of the artificial brain
hierarchy, called the sensor-actuator layer. This layer is responsible for interaction
with the environment, and consists of sensors and actuators.

4.2 Attention and Awareness Layer

Once the stimulus (i.e., sound) is received by the sensor (John’s ears), it is forwarded
to the Attention and Awareness layer. This triggers the prioritization algorithm that
immediately gives the stimulus a high priority. This results in John’s attention being
focused on the sound of the child talking.

4.3 Reactive Layer

Once John’s attention is focused on the sound, it immediately results in him turning
his head to the right to see the child. This happens because any stimulus object to
which awareness is attached is sent onward to the reactive layer. The reactive layer is

52

4 Hierarchical Architecture of an Artificial Brain

adaptive in nature, which means that over time it can learn to react to stimuli that
are not pre-programmed. Turning the head toward the sound is such a learned reaction.

As soon as the stimulus object is received by the reactive layer, the corresponding
response is searched for in a map (similar to a hash map data structure), where the
key is a stimulus pattern and the value is the corresponding action. The action is a
function that can itself consist of a complex algorithm. In the case being discussed
here, the action function sends a request to the sensor-actuator layer with an instruc-
tion to turn the head right. It also activates the vision system and sets its status to
actively looking for the child object.

At this point, John sees the child. The vision system, which is a part of the sensor-
actuator layer, receives the stimulus of the child, which is fused with the auditory
stimulus, resulting in the strengthening of the belief of the agent that there is a child
in close proximity. In addition, sensor fusion results in the computation of estimation
of distance between John and the child. In this case, the distance is small enough
that another function in the reactive layer is triggered. This function sends a strafe
left message to the sensor-actuator layer. As a result, John suddenly strafes left.

The reactive system can trigger a function not just for the agent’s own safety,
but also for the safety of the other agents in the environment. The above mentioned
reaction where John strafes left was learned through the social perceptual machinery
of the artificial brain. The object of strafing left was to make sure that the child is not
harmed.

Note: There can be reactions analogous to the knee-jerk response of the human
nervous system. These are pre-programmed reactions or instinctive reactions [10] as
opposed to learned reactions.

4.4 Decision Making Layer

The significance of causing a child harm is high enough that as the reactive system
triggers the strafe left action, it also forwards the stimulus object to the emotion
module, which is located in the decision making layer. The emotion module evaluates
the stimulus object and decides to call the fear function. The fear function activates the
fear center (analogous to Amygdala [9] in the human brain). The fear center broadcasts
a special fear message to the sensory-motor layer, which increases the perceptiveness
of the sensory system. This ensures that for a certain short period of time in the
future, the agent is hyperalert.

The decision making layer is primarily responsible for: 1) evaluating stimuli (ex-
ternal or internal) that are not processed by the reactive layer, and 2) processing
ideas generated inside the artificial brain. In addition to the emotion module, this
layer comprises complex functions that implement algorithms for deliberating and
assessing situations. A simple example is an agent walking through the station and

53

Fahad Khalid: Consciousness in Artificial Agents – A Theory

trying to find its way to the correct platform (assuming it is not familiar with the
layout of the station building). At certain points, it is lost, in which case it decides
whether to ask someone, or to turn and move in a different direction, etc. The agent
may need to make several deliberative decisions in such a situation.

4.5 Reflective Layer

John managed to reach the platform in time, and is now seated inside the train. As
the agent is in a resting position now, and there are no stimuli that require specific
attention, the agent’s brain turns attention to the self object. There is an idle time
based algorithm; when the idle time, i.e., the amount of time without any significant
stimulus, crosses a certain threshold, awareness is attached to the self object. This is
when the control is passed on to the reflective layer.

As John settles down in the seat, he starts to reflect on the incident with the child.
He thinks about the possible outcomes had he not reflexively strafed left in time.
This negative feedback results in the thinking process looking back one step in the
history of the decision process. John starts to realize that the situation could have
been completely avoided had he not been walking too fast. This leads him to think
that the origin of this Markov chain is in not waking up early enough.

The reflective layer constitutes functions that evaluate decisions made earlier. This
is similar to the function of self-reflection in humans. The purpose of the functions
in this layer is to adapt the functions in the other layers according to previous out-
comes. This is similar to the feedback loop used in machine learning algorithms [6]
and adaptive filters [13]. In certain cases, the feedback results in an update in the
functions of the decision layer. In other cases, if the reflective layer determines that
the situation was severe enough that the response should be immediate for a similar
situation in the future, the corresponding functions of the reactive layer are updated.
This results in the creation of a learned reaction.

Please note that the reflective layer can directly influence the function of most of
the decision making layer, however, it has only limited access to the emotion module.
It is not possible for the reflective layer to directly alter the emotion functions4. If this
were not the case, unlike humans, the agent would be able to directly manipulate
the influence of stimuli on its emotional state. Since we intend for the artificial
agent to mimic human consciousness, we have proposed an implementation that
corresponds to the working of emotions in humans.

4This can be implemented by having only indirect connectivity between the emotion mod-
ule and the reflective layer via other modules and layers.

54

5 The Artificial Mind as a Highly Interconnected State Machine

Figure 5: Hierarchical architecture of the artificial brain. In order to generate con-
scious behavior, functions in the various layers must be integrated.

5 The Artificial Mind as a Highly Interconnected State
Machine

Whenever we use the term state of mind, we (perhaps unintentionally) refer to the
mind as a state machine. Given the myriad processes concurrently being performed
by the brain at a certain point in time, it is not feasible to enumerate all possible
states. Moreover, different states of the mind can be combinations of other different
states, which renders the state space practically unexplorable. How then can such a
system be implemented in an artificial agent?

In this Section we provide a speculative theory of the interconnection architecture
that would be required to create an artificial agent with a complex brain, i.e., one
with states of mind similar to that of a human brain.

The solution lies in a highly interconnected network of functions, implemented in
a hierarchical structure. High interconnectedness is required so that many different
functions can call each other without going through an intermediary. Also, depend-
ing on the current state and any given set of stimuli, it should be possible to represent

55

Fahad Khalid: Consciousness in Artificial Agents – A Theory

the next state as a graph of interacting functions. This can be represented by an edge-
weighted graph (possibly a hypergraph) with an edge set of high cardinality, and
edge weights representing connection strength. For such an architecture, a state
would constitute the set of active paths through the graph. The experience of the state
could then be the particular set of edge weights – assuming that edge weights can
change in response to learning.

The above mentioned description of interconnectedness highlights a possible point
of comparison with the Integrated Information Theory of consciousness [15]. Perhaps
it is the case that when we try to implement consciousness functions, the nature of
computation of these functions naturally requires a highly interconnected structure.
That is, even if we approach artificial consciousness from a functional rather than
structural point of view, a highly interconnected structure emerges as a result of the
necessary interactions between functions and layers.

6 Limitations and Future Work

In this paper, we have presented mechanisms and architectures that serve as a road
map for implementing consciousness in artificial agents, and inform the theories of
consciousness in neuroscience. Our approach, nevertheless, has been to keep our
discussion at a high level of abstraction.

We realize that in order to uncover major obstacles in the implementation of con-
scious agents, we need to design and analyze algorithms that uncover low level
details, and extend the architecture to various systems involved in conscious be-
havior that have not been covered in this paper. Therefore, one direction for future
research would be to delve deeper into the design process, and move towards im-
plementation of software agents to provide proof of concept.

There are various possible points of connection between the Integrated Informa-
tion Theory (IIT) [15] and our approach to artificial consciousness. These also lead to
open questions that are worth pursuing. A high priority task for us would be to use
artificial neural networks as toy models for doing an in depth empirical analysis of
the structures introduced in IIT, and their relationship to information integration. It
would be interesting to see how this compares to the concept of modularity, which
is a cornerstone of software systems engineering.

References

[1] M. Bennamoun and G. J. Mamic. Object Recognition: Fundamentals and Case
Studies. New York, NY, USA: Springer-Verlag New York, Inc., 2002.

56

References

[2] L. Fausett. Fundamentals of Neural Networks-Architectures, Algorithms, and Appli-
cations. Prentice Hall, 1994.

[3] S. Gong, S. J. McKenna, and A. Psarrou. Dynamic Vision: From images to face
recognition. London: Imperial College Press, 2000.

[4] K. Grabczewski. Meta-Learning in Decision Tree Induction (Studies in Computa-
tional Intelligence). Springer, 2014.

[5] M. S. A. Graziano and S. Kastner. “Human consciousness and its relationship
to social neuroscience: a novel hypothesis”. In: Cognitive neuroscience 2.2 (2011),
pages 98–113.

[6] S. Haykin. Neural networks and learning machines. Volume 3. Pearson Education
Upper Saddle River, 2009.

[7] M.-K. Hu. “Visual Pattern Recognition by Moment Invariants”. In: IRE Trans-
actions on Information Theory IT-8 (1962), pages 179–187.

[8] R. E. Kalman. “A New Approach to Linear Filtering and Prediction Problems”.
In: Transactions of the ASME–Journal of Basic Engineering 82.Series D (1960),
pages 35–45.

[9] E. Kandel, J. Schwartz, and T. Jessell. Principles of neural science. Volume 4.
McGraw-Hill New York, 2000.

[10] M. Minsky. The Emotion Machine: Commonsense Thinking, Artificial Intelligence,
and the Future of the Human Mind. SIMON & SCHUSTER, 2007.

[11] J. von Neumann. First Draft of a Report on the EDVAC. Technical report. Univer-
sity of Pennsylvania, 1945.

[12] R. W. Proctor and K.-P. L. Vu. Stimulus-Response Compatibility Principles: Data,
Theory, and Application. CRC Press, 2006.

[13] A. H. Sayed. Adaptive filters. John Wiley & Sons, 2008.
[14] B. Schiele and J. Crowley. “Probabilistic object recognition using multidimen-

sional receptive field histograms”. In: Proceedings of the 13th International Con-
ference on Pattern Recognition (ICPR 96). Volume B. 1996, pages 50–54.

[15] G. Tononi. “Consciousness as integrated information: a provisional mani-
festo”. In: The Biological Bulletin 215.3 (2008), pages 216–242.

[16] U. Wilensky. “NetLogo. http://ccl.northwestern.edu/netlogo/”. In: Center
for Connected Learning and Computer-Based Modeling, Northwestern University.
Evanston, IL. (1999).

[17] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning
Tools and Techniques. 3rd. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc., 2011.

57

Implementing an Object-Constraint Extension Without
VM Support

Tim Felgentreff

Software Architecture Group
Hasso-Plattner-Institut

Tim.Felgentreff@hpi.uni-potsdam.de

Constraints provide a useful technique for ensuring that desired properties hold
in an application. As a result, they have been used in a wide range of applica-
tions, including graphical layout, simulation, scheduling, and problem-solving.
We have previously proposed a design, Babelsberg, for a family of object-constraint
languages that cleanly integrates constraints with the underlying language in a
way that respects encapsulation and standard object-oriented programming tech-
niques. However, our work on Babelsberg has relied on modifying the underlying
virtual machine, but that is not an option for web-based applications, which have
become increasingly prominent.

We thus present an approach to implementing Babelsberg without virtual ma-
chine support, along with an implementation as a JavaScript extension. We demon-
strate the resulting language, Babelsberg/JS, on a number of applications and pro-
vide performance measurements. Programs without constraints in Babelsberg/JS
run at the same speed as pure JavaScript versions, while programs that do have
constraints can still be run efficiently. Our design and implementation also incor-
porate incremental re-solving to support interaction, as well as a novel cooperating
solvers architecture that allows multiple solvers to work together to solve more
difficult problems.

1 Introduction

Constraints are relations among objects that should hold. This could be that all
parts in an electrical circuit simulation obey the laws of physics, that the rows in a
Sudoku include each digit from 0 to 9, or that a streamed video plays smoothly in the
presence of changing CPU and network load. We also want to support interactive
use of constraints, for example, continuously re-satisfying a set of layout constraints
on screen widgets as they are moved with the mouse. In addition, it is useful to
extend the constraint formalism to allow soft constraints as well as required ones,
where the system should try to satisfy the soft constraints if possible, but it is not
an error if they cannot be satisfied. For example, we might have a soft constraint
for video quality that we are willing to relax if necessary, given the current network

59

mailto:Tim.Felgentreff@hpi.uni-potsdam.de

Tim Felgentreff: Object-Constraints Without VM Support

Figure 1: Constructing a Constraint-based Wheatstone Bridge Simulation

load, or a desired ideal spacing between two widgets that again can be relaxed if
need be. In the work reported here, we want to support constraints in a clean way
in an object-oriented language running in a lightweight, web-based programming
environment.

Figure 1 shows a screenshot from our prototype system implemented in the Lively
Kernel environment [12] that illustrates the kinds of capabilities we want. It shows a
constraint-based simulation of Wheatstone Bridge being constructed. (A Wheatstone
Bridge is used to measure an unknown electrical resistance by balancing two pairs
of resistors so that the electrical potential between them is 0.) Parts representing
batteries, resistors, and meters are copied from the Lively Kernel parts bin [12] on
the right, dropped into the circuit on the left, and wired together. These parts carry
constraints representing Ohm’s Law, Kirchhoff’s Current Law, and so forth. The
system automatically solves the constraints when the parts are first connected, and
re-solves them if the battery’s supply voltage or a resistance is edited, updating the
voltage displayed by the meter.

The capability to graphically construct constraint-based simulations dates back
to Sketchpad [18] and ThingLab [2]. Babelsberg [6] enables a closer integration of
constraints with the host object-oriented programming language in the spirit of
constraint-imperative programming in Kaleidoscope [13] and Turtle [10].

We now want to support this design in the existing web-based environment. Our
work is related to other approaches to constraint satisfaction in object-oriented pro-
grams, which use libraries [4, 19], domain-specific languages [5, 17], or (more re-
cently) functional-reactive programming [14, 16] to specify and solve constraints.
These approaches do not need special runtime support, but require the programmer

60

2 Object Constraint Programming Without VM Support

to call specific application programming interfaces (apis) or follow certain rules to not
accidentally circumvent the constraints. With Babelsberg, we provide a syntax and
semantics for unified declaration and execution of constraints and object-oriented
program entities.

The first implementation of Babelsberg in Ruby, called Babelsberg/R [6], extended
the Ruby Virtual Machine (vm). However, applications written in e.g. JavaScript
typically have to work on a variety of client vms included in different Web browsers.
This makes it infeasible to implement Babelsberg in a JavaScript vm. JavaScript is
currently of considerable interest in the industry and research communities. Thus,
an implementation as an extension written entirely in JavaScript enables us to apply
constraint programming to a variety of existing problems, and to compare it directly
with alternative solutions on a variety of platforms.

A useful Object Constraint Programming language requires sufficiently power-
ful constraint solving capabilities. In prior work [6], we identified an important
requirement, namely support for a new design for cooperating constraint solvers [1].
The motivation is that it is often infeasible to provide a single constraint solver that
works well for all aspects of a problem; instead, different solvers may be more appro-
priate than others for some aspects, and which need to work together to solve the
problem. Our design and implementation in Babelsberg/JS provides this capability,
in a way that supports incremental re-solving of constraints without requiring access
to the vm [7].

2 Object Constraint Programming Without VM
Support

In industry, JavaScript has become the de-facto standard for Web programming,
and a huge amount of code exists in the language. This fact, along with JavaScript’s
unique design and its execution environment in a Web browser, also make it of
great interest to the research community, motivating work on revising and adapting
useful features of other languages to include in it [11, 20].

To provide practical support for Object Constraint Programming (ocp) in JavaScript,
we adapt the Babelsberg design to not require support from the underlying vm. This
enables us to run Babelsberg/JS in modern browsers and use it in a variety of prac-
tical Web applications.

For Babelsberg/JS, since we do not have access to the vm, we cannot redefine the
operation of load and store instructions to handle variables with constraints on
them. Instead, the unmodified JavaScript vm is used only for imperative evaluation
mode. To intercept accesses and assignments to constrained variables, we wrap
properties with property accessors that interact correctly with the constraint solver.

61

Tim Felgentreff: Object-Constraints Without VM Support

To get the value of a constrained variable, the accessor gets the value for that variable
from its solver. For a store, the setter in general calls the appropriate constraint solver
to solve an equality constraint between the variable and its new value for a store.

For constraint construction mode, we use a custom JavaScript interpreter, itself
written in JavaScript. This custom interpreter is about three orders of magnitude
slower than the underlying one. However, since evaluating code in constraint con-
struction mode is a much less common activity, and one that doesn’t occur in inner
loops, the performance penalty is not a significant issue.

Generalizing our approach, we have thus identified the following requirements
for implementing the Babelsberg scheme without vm support:

• The host language must support a means to intercept variable lookup, so names
can refer to different objects.

• The vm-based implementation ignores encapsulation and modify vm data struc-
tures directly. In contrast, here the extension must enable calling the appropri-
ate api functions.

• The host language must provide a means to modify interpretation of a block
of code to implement the constraint construction mode.

The first requirement is only partially supported in JavaScript, namely for object
fields using property accessors. We therefore limit ourselves to constraining field
storage in Babelsberg/JS, but not storage into local variables. (Some compiled OO
languages, for example C#, also support property accessors; and other dynamic
OO languages, such as Python and Smalltalk, support method wrappers to enable
intercepting accessors, again within the limitation of only constraining field access.)
As with the original Babelsberg/R design, it does not matter whether the fields are
constrained directly or whether they are used in the execution of a method that was
constrained to produce a certain result. A property that is accessed in the execution
of a constraint expression is wrapped with property accessor that intercepts lookup
and storage.

Property Accessors for Constrained Objects
When an object has been used in a constraint, its constrained properties have been
replaced with property accessors. The property getter is a simple wrapper that reads
from the solver variable in the most upstream region in which the field is referenced
(cf. 2.1). Instead of returning the field value of the object, it returns the value of that
variable in the solver data structure. The property setter distinguishes two cases. If
the variable is writable from a solver, an equality constraint for that solver is created
and the updated constraint system is solved, potentially triggering other solvers.
On the other hand, if the variable is not writable (either because it is of a type that

62

2 Object Constraint Programming Without VM Support

no available solver supports or because it has been marked as read-only by the
programmer), its new value is stored, and all dependent constraints are recalculated.
These dependent constraints have treated the variable as a constant (because they
cannot modify it). To recalculate them, the constraints are deactivated in the solvers,
and the expressions that created them are re-evaluated in constraint construction
mode to create new constraints based on the new value. (The implementation of edit
constraints (subsection 2.2) handles the situation of repeated changes much more
efficiently.)

Creating Constraints
As an example of defining constraints, consider an interactive temperature converter,
which maintains the relation between sliders representing values on the Fahrenheit,
Celsius, Rankine, and Kelvin scales.

1 var conver ter = { } ,
2 cassowary = new CLSimplexSolver () ;
3 always : { so lver : cassowary
4 conver ter .C * 1 . 8 == conver ter . F − 32 &&
5 conver ter .C + 273 .15 == conver ter .K &&
6 conver ter . F + 459.67 == conver ter . R
7 }

In Babelsberg/JS, a source-to-source transformation creates a call to a global func-
tion — always — from an always: expression of this form (this transformation just
provides syntactic sugar — the function can also be called directly with function
object.) Once this function has executed, a change to any one of the temperature
values in the converter object will trigger changes to the other three values to keep
the constraint satisfied through property accessors described above.

The always function passes the predicate expressing the constraint and informa-
tion about the context into a custom JavaScript interpreter. This interpreter is used
to evaluate expressions in constraint construction mode, which is provided as part
of the Babelsberg/JS library. The custom interpreter creates property accessors (get-
ters and setters) for the C, F, K, and R fields of the converter object. The appropriate
accessor is then called whenever some other part of the program uses one of those
fields. However, within the constraint expression, accesses to these fields do not use
these accessors, but instead return ConstrainedVariable objects. Messages are then
sent to these objects, and instead of calculating values, build up networks of primi-
tive constraints that can then be satisfied by a solver. The always function returns
a Constraint object that provides meta-level access to the asserted relations, using
the protocol described for Babelsberg/R.

In this example, the constraints are on the fields of the object. However, constraints
in Babelsberg/JS (as with any instance of the Babelsberg scheme) can also invoke
methods that perform computations. For example, imagine the converter uses the
getCelsius method to return a cached temperature value that is updated in regular
intervals from a Web service:

63

Tim Felgentreff: Object-Constraints Without VM Support

1 var conver ter = { } ,
2 cassowary = new CLSimplexSolver () ;
3
4 conver ter . ge tCe l s ius = function () {
5 i f (! conver ter . updater) {
6 updateCelsius (conver ter) ; // updateCelsius omitted for brevity
7 conver ter . updater = s e t I n t e r v a l (5000 , function () {
8 updateCelsius (conver ter) ;
9 }) ;

10 }
11 return conver ter .C ;
12 }
13
14 always : { so lver : cassowary
15 conver ter . ge tCe l s ius () * 1 . 8 == conver ter . F − 32 &&
16 conver ter . ge tCe l s ius () + 273 .15 == conver ter .K &&
17 conver ter . F + 459.67 == conver ter . R
18 }

By placing the constraint on the result of sending messages rather than on fields,
Babelsberg respects object encapsulation. The value returned from the message send
in this example is simply a float, but return values can also be arbitrary objects and
computed values. For example, we could constrain the maximum pressure of a
volume of dry air with a fixed density and gas constant, which would effectively
limit the maximum temperature to around 36◦ Celsius.

1 conver ter . pressure = function () {
2 var gasConstantDryAir = 287 .058 , // J/(kg * K)
3 densi ty = 1 . 2 9 3 ; // kg/m^3
4 return densi ty * gasConstantDryAir * conver ter .K / 1000 ;
5 }
6
7 always : { so lver : cassowary
8 conver ter . pressure () <= 115 // kPa
9 }

2.1 Cooperating Constraint Solvers

The temperature converter described above has no graphical representation. Cas-
sowary only works on reals, yet in order to display the temperature scales, we need
to convert the values into strings and update the Web browser’s Document Object
Model (dom) using the appropriate api. This is best done with a local propagation
solver, which can invoke arbitrary methods to satisfy the constraints, in this case
by calling the api. (The constraints that define the temperature converter are sim-
ple enough that we could have used a local propagation solver for all of them, but
this is unsatisfactory for many problems, such as the Wheatstone bridge example
in Figure 1, since local propagation cannot handle such situations as simultaneous
equations or inequalities.)

64

2 Object Constraint Programming Without VM Support

There is currently no single solver that can efficiently handle all constraints that
arise in a typical application (and it seems unlikely that one can be created). To
address this, we extend the work presented in [6] to include an architecture for
cooperating constraint solvers, allowing a problem to be partitioned among multiple
solvers. For this example, we use two solvers: one for linear arithmetic on the reals,
and one for local propagation constraints.

Our architecture for cooperating solvers partitions constraints into regions that
are connected via read-only variables, implementing the design proposed in [1]. The
result is a very loose coupling among the cooperating solvers. This approach is in
contrast to the more commonly-used Satisfiability Modulo Theory (smt) technique
for supporting cooperating constraint solvers [15], which uses inferred equality con-
straints as the means for the cooperating solvers to communicate (including the case
when neither of the equated variables has a specific value). Our experience so far
indicates that our approach is more suited to integration with imperative constructs,
in which variables do always have specific values, and lends itself well to support
edit constraints for incremental re-solving. (While we have not yet done so in our
implementation, the architecture described in [1] in fact allows hierarchies of coop-
erating solvers, so that within a single region, there could be multiple solvers that
cooperate by sharing inferred equality constraints.)

In the cooperating solvers architecture, each constraint belongs to exactly one
solver. All constraints that belong to the same solver are in the same region. While
constraints belong to exactly one region, variables may be shared across regions. This
happens if variables occur in multiple constraints that belong to different regions.
These variables must be read-only in all but one of the regions. Read-only variables
are represented in a solver-specific manner, either using stay constraints for solvers
that support them, or through required equality constraints. To support this, solver
libraries should provide a method that makes a variable read-only for them.

In this architecture, the regions must form an acyclic graph, so that solving can
simply proceed from the upstream to the downstream regions, propagating variable
values. Figure 2 shows an example configuration. Solving proceeds from the left and
each solver propagates values for its variables to downstream solvers that need them.
The downstream solvers can only read, not write to those variables. This architecture
prohibits loops and a system that oscillates without finding a solution. To create this
graph, the system determines an order for the solvers based on the dependencies
between the constraints. The programmer can explicitly control the position of a
solver in this graph, or the libraries can provide information so the system can
create the order without the programmer’s support. Applications can use multiple
instances of the same solver type that are used one after the other (for example, for
a problem that first uses Cassowary to solve simultaneous linear constraints, then
DeltaBlue for local propagation constraints, then Cassowary again).

65

Tim Felgentreff: Object-Constraints Without VM Support

Figure 2: Regions propagating variable values downstream

Once the solver regions are sorted, solving proceeds from the furthest upstream
region. Each region will determine values for the variables it can write to, and the
downstream regions will adjust to accommodate the new values propagated to their
read-only variables from higher level regions. Soft constraints are solved for just
within each region — in keeping with the theory of hard and soft constraints in the
presence of read-only variables [3], if a soft constraint in an upstream region restricts
a variable to a certain value, then a downstream region must use that value and can
in fact not distinguish if this value was determined by a required or a soft constraint.
If constraints in a downstream region cannot be satisfied due to an upstream soft
constraint, we do not backtrack.

Given these additional capabilities, we can now add a graphical representation to
our temperature converter. We want the color of a div element to change when the
temperature is above 30◦ C.

1 var e l = jQuery (”#tooHotWarning”) ;
2
3 always : { so lver : de l tab lue
4 e l . co lo r . formula ([conver ter . ge tCe l s ius ()] , function (c e l s i u s) {
5 var co lor = c e l s i u s > 30 ? ”red” : ”blue” ;
6 e l . s e t A t t r i b u t e (”class” , co lo r) ;
7 return co lor ;
8 }) ;
9 }

Note that for the DeltaBlue local propagation solver, we do not provide a predicate
(although we could — in that case it would be run to test whether re-solving is
necessary). Instead, local propagation solvers need formulas for all writable vari-
ables that state their dependencies and how to update the variable. In this case,
we want the Celsius value to be used as input for the color, but not vice versa, so
we only provide one formula. The only dependency here is on the return value
of converter.getCelsius(), passed explicitly in line 4. (Note that this could be
omitted Babelsberg/R, because its version of DeltaBlue supports deducing the de-
pendencies from the formula function — a feature we have not yet implemented
here.) The dependencies are passed as arguments to the formula function, so we
can use them directly to update the dom using the browser’s setAttribute api and
return the new value. These functions, just like the predicates for Cassowary, are

66

2 Object Constraint Programming Without VM Support

evaluated in constraint construction mode which wraps variables with property
accessors — the function formula is simply a function defined by DeltaBlue.

2.2 Incremental Re-Solving for Cooperating Constraint Solvers

Some applications involve repeatedly re-satisfying the same set of constraints with
differing input values. A common such case is an interactive graphical application
with a constrained figure, in which we move some part of the figure with the mouse.
For such applications, it is important to re-solve the constraints efficiently, and a
number of constraint solvers, including DeltaBlue and Cassowary, support this using
edit constraints that allow a new value for a variable to be repeatedly input to the
solver.

The original Babelsberg design did not include support for incremental re-solving
at the language level — it was up to the solver library to provide access to such
functionality. However, to integrate with our cooperating solvers architecture,
Babelsberg/JS does include support for incremental re-solving through a solver-
independent edit function that takes the variables to be edited and returns a call-
back function. The process that produces new values can use this callback to input
new values into the solvers for the variables to be edited.

The edit function gathers all the constraints in which the passed variables par-
ticipate. Only variables that occur solely in solver regions that support edit con-
straints can be edited; otherwise an exception is raised. The read-only annotations
for variables in the solvers for downstream regions are converted to edit constraints,
reflecting the fact that the upstream regions will be providing new values for these
variables. Finally, the edit function creates a callback function and returns it. This
callback can then be used to feed new values into the solvers.

As an example, suppose we wanted to connect the Celsius value of our temper-
ature converter to a graphical slider. We wrap the original onDrag (which updates
the slider’s value) to input the new value into the edit callback as well.

1 var ca l l back = ed i t (converter , [’C’]) ;
2 s l i d e r . onDrag = s l i d e r . onDrag . wrap (function (originalOnDrag , evt) {
3 originalOnDrag (evt) ;
4 ca l l back ([s l i d e r . value]) ;
5 }) ;

Two restrictions apply to the use of incremental re-solving with cooperating solvers:
first, all variables that are edited must be only in regions of solvers that support edit
constraints; and second, while the edit callback is used, no new constraints can be
created. (Edit constraints are just a technique for optimizing the sequence of repeat-
edly replacing a constraint that a variable equal a constant with a new constraint
with a new constant. Thus, if the restrictions aren’t met, it is still possible to express
and solve the desired constraints, just not as efficiently.)

67

Tim Felgentreff: Object-Constraints Without VM Support

3 Future Work and Conclusion

We have presented a design for implementing an Object Constraint Programming
language without vm support, which is realized as a JavaScript extension called
Babelsberg/JS. We have also implemented a number of features from the origi-
nal ocp design, including unified language constructs for constraint definition and
object-oriented code, automatic maintenance of constraints, integration with the
existing syntax and semantics, an interface to add new solvers and constraint solver
constructs such as read-only variables and incremental re-solving; and also extended
the design to support cooperating constraint solvers. There are a number of direc-
tions for future work.

Usability of Babelsberg/JS An important area for future work is the evaluation
of the usability of our approach in general applications. We are interested in the
comprehensibility of Babelsberg/JS code, especially to the target group for this
language, i.e. imperative programmers with little prior experience with constraint
programming. This will also provide opportunity to compare performance on more
practical examples.

Debugging, Explanation, and Solver Selection It is currently difficult to tell why
a solver may not be able to satisfy a given constraint, why it produced an unexpected
result, or why finding a solution is slow. Our ConstraintInterpreter should include
support for reasoning about the constraint system it builds. Prolog (or just a direct
backtracking algorithm) may be useful as a “meta-solver” to automatically find a
solver (or set of solvers) for a particular configuration of constraints. We are experi-
menting with a debugging tool for constraint construction in a Squeak/Smalltalk
implementation of Babelsberg [9].

A Complete Formal Semantics The Babelsberg design has evolved alongside with
its implementation. However, both because the implementations were driven in part
by practical considerations about the expectations of programmers familiar with
the underlying host language, as well as because of the complexities of integrating
objects, state, and constraints, this has led to a number of semantic choices that are
muddled with implementation specifics. For example, there have been a number
of confusing issues with respect to constraints and object identity, how to repre-
sent assignment, what are the appropriate restrictions on expressions that define
constraints, and what should happen if the solver can’t find a solution to a set of
constraints. In an effort to understand these better and to provide a complete design

68

References

that instances of Babelsberg can implement, we are in the process of completing a
formal operational semantics for Babelsberg [8].

h

Babelsberg/JS, compared to the earlier Babelsberg/R implementation, can be
applied more directly to existing problems. It runs unmodified in different Web
browsers, and integrates with the existing imperative language and libraries. The
work reported here is quite recent, and we expect to continue to evolve both the
language and its implementation.

References

[1] A. Borning. Architectures for Cooperating Constraint Solvers. Technical report
VPRI Memo M-2012-003. Glendale, California: Viewpoints Research Institute,
May 2012.

[2] A. Borning. “The Programming Language Aspects of ThingLab, A Constraint-
Oriented Simulation Laboratory”. In: PLS 3.4 (Oct. 1981), pages 353–387.

[3] A. Borning, B. Freeman-Benson, and M. Wilson. “Constraint Hierarchies”. In:
LISP and Symbolic Computation 5.3 (1992), pages 223–270.

[4] L. De Moura and N. Bjørner. “Z3: An efficient SMT solver”. In: TACAS. Springer.
Mar. 2008, pages 337–340. doi: 10.1007/978-3-540-78800-3_24.

[5] Enthought Inc. Enaml 0.6.3 Documentation. Feb. 6, 2014.
[6] T. Felgentreff, A. Borning, and R. Hirschfeld. “Specifying and Solving Con-

straints on Object Behavior”. In: Journal of Object Technology 13.4 (Sept. 2014),
1:1–38. doi: 10.5381/jot.2014.13.4.a1.

[7] T. Felgentreff, A. Borning, R. Hirschfeld, J. Lincke, Y. Ohshima, B. Freudenberg,
and R. Krahn. “Babelsberg/JS”. English. In: ECOOP. Springer, 2014, pages 411–
436. doi: 10.1007/978-3-662-44202-9_17.

[8] T. Felgentreff, T. Millstein, and A. Borning. Developing a Formal Semantics for
Babelsberg: A Step-by-Step Approach. Technical report 2014-002. Viewpoints Re-
search Institute, Sept. 2014.

[9] M. Graber, T. Felgentreff, R. Hirschfeld, and A. Borning. “Solving Interactive
Logic Puzzles With Object-Constraints - An Experience Report Using Babels-
berg/S for Squeak/Smalltalk”. In: REBLS. To appear. ACM, 2014, 1:1–1:5.

[10] M. Grabmüller and P. Hofstedt. “Turtle: A constraint imperative programming
language”. In: RDIS. Springer, 2004, pages 185–198. doi: 10.1007/978-0-
85729-412-8_14.

69

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.5381/jot.2014.13.4.a1
http://dx.doi.org/10.1007/978-3-662-44202-9_17
http://dx.doi.org/10.1007/978-0-85729-412-8_14
http://dx.doi.org/10.1007/978-0-85729-412-8_14

Tim Felgentreff: Object-Constraints Without VM Support

[11] S. Kang and S. Ryu. “Formal Specification of a JavaScript Module System”. In:
OOPSLA. ACM. 2012, pages 621–638.

[12] J. Lincke, R. Krahn, D. Ingalls, M. Roder, and R. Hirschfeld. “The Lively
PartsBin–A Cloud-Based Repository for Collaborative Development of Ac-
tive Web Content”. In: HICSS. IEEE. Jan. 2012, pages 693–701. doi: 10.1109/
HICSS.2012.42.

[13] G. Lopez, B. Freeman-Benson, and A. Borning. “Kaleidoscope: A Constraint
Imperative Programming Language”. In: Constraint Programming. Volume 131.
NATO Advanced Science Institute Series, Series F: Computer and System
Sciences. Springer-Verlag, 1994, pages 313–329. doi: 10.1007/978-3-642-
85983-0_12.

[14] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg, A. Brom-
field, and S. Krishnamurthi. “Flapjax: A Programming Language for Ajax
Applications”. In: SIGPLAN 44.10 (2009), pages 1–20.

[15] G. Nelson and D. Oppen. “Simplification by Cooperating Decision Proce-
dures”. In: PLS 1 (1979), pages 245–257.

[16] Y. Ohshima, A. Lunzer, B. Freudenberg, and T. Kaehler. “KScript and KSWorld:
A Time-aware and Mostly Declarative Language and Interactive GUI Frame-
work”. In: Onward! Indianapolis, Indiana, USA: ACM, 2013, pages 117–134.
doi: 10.1145/2509578.2509590.

[17] E. Sadun. iOS Auto Layout Demystified. Addison-Wesley, Oct. 2013.
[18] I. Sutherland. “Sketchpad: A Man-Machine Graphical Communication Sys-

tem”. In: Proceedings of the Spring Joint Computer Conference. IFIPS. 1963, pages 329–
346.

[19] E. Torlak and D. Jackson. “Kodkod: A relational model finder”. In: TACAS.
Volume 4424. Springer, Apr. 2007, pages 632–647. doi: 10.1007/978-3-540-
71209-1_49.

[20] T. Van Cutsem and M. S. Miller. “Proxies: Design Principles for Robust Object-
Oriented Intercession APIs”. In: SIGPLAN 45.12 (2010), pages 59–72.

70

http://dx.doi.org/10.1109/HICSS.2012.42
http://dx.doi.org/10.1109/HICSS.2012.42
http://dx.doi.org/10.1007/978-3-642-85983-0_12
http://dx.doi.org/10.1007/978-3-642-85983-0_12
http://dx.doi.org/10.1145/2509578.2509590
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/978-3-540-71209-1_49

Comparing the Layout Stability
of Treemap Algorithms

Sebastian Hahn

Computer Graphics Systems Group
Hasso-Plattner-Institut

sebastian.hahn@hpi.uni-potsdam.de

Different approaches were presented to evaluate this property of a layout algo-
rithm. Since most of these approaches focus on the position change of the render-
ing artifacts there is minimal work that connects the effects that different changes
in the data causes on the geometric properties of the depicted items and the percep-
tion of the users and his mental map to support the comparison of different layout
algorithms of hierarchical visualization techniques (e.g., different treemap layout
algorithms. In this report I present the first two stages of a 3-stage framework for
the evaluation of layout stability.

1 Introduction

The visualization of hierarchical datasets is a well investigated research field with a
various range of use cases and data sets, e.g. the visualization of software system’s
package structure at a single state of the development process in so called “software
maps” to get an overview of the system [3]. The main idea of such “software maps”
is to give a shape to the shapeless information pieces of software systems by us-
ing different visual variables, like geometrical shape, height and color [2], use the
metaphor of a landscape or a map to arrange theses items - by a layout algorithm -
and support a user to create a mental map of the software system that allows for
fast recognition of certain points of interests.

Since software systems are evolving over time the layout algorithms that creates
those depictions need to fulfil a special requirement: Small changes in the datasets
should lead to similar depictions (see Figure 1). This requirement is called layout
stability and should make it possible for a long-time user of a software map to
preserve his before created mental map. A lot of publications claim that different
novel approaches are more stable than older ones and present different metrics to
evaluate this property of a layout algorithm [8, 9]. Although, each of the presented
approaches focus certain aspects of this ability, they are not entirely useful for a
full evaluation with respect to all stages of the visualization pipeline (see Figure 2).
Therefore, we present an approach that focusses not just on the position change of

71

mailto:sebastian.hahn@hpi.uni-potsdam.de

Sebastian Hahn: Comparing the Layout Stability of Treemap Algorithms

Figure 1: Comparison of two snapshots of a software system depicted with a squar-
ified treemap algorithm (top) [5] against depictions using voronoi treemaps with
stable initial distributions (bottom) [6]. Note the switching artifacts in the bottom
right corner of the rectangular-based approach and the minimal change in the
polygonal approach.

the rendering artifacts, but also connects the effects that different changes in the data
causes on the geometric properties of the depicted items and the perception of the
users and his mental map to support the comparison of different layout algorithms
of hierarchical visualization techniques (e.g., different treemap algorithms [1, 5, 6,
8]). In this report the data stage and mapping stage are presented.

2 Data Stage

First, to compare two snapshots of a varying hierarchical dataset metrics for the
change in the input data itself is needed. Boorman and Oliver differ the comparison

72

2 Data Stage

User Perception Visual Changes Data Changes

Filtering Mapping Rendering

Raw Data

Filtered Data Mapped Data Rendered Data

Figure 2: This report presents metrics to evaluate layout stability of treemap algo-
rithms on the data (left) and mapping stage (middle)

of tree structures in two different ways: a.) the definition of atomic functions (e.g.,
addChild, removeChild) that can be used to describe the changes from one tree to
another b.) find a metric that represents the changes of two tree structures [4]. In
addition to the structural changes of the hierarchies we also have to handle changes
in the attributes of the tree items. Our primary goal is to get an overview over several
changes of the dataset properties (e.g., the change in the hierarchical structure itself,
the changes of a certain attribute of tree items). For it, we declare metrics with a
range of 0 to 1 for different aspects of the changes that are connected to the layout
stability, while 1 means totally unchanged and 0 means that the compared datasets
are completely disjunct.

2.1 Hierarchical Change

The change in the hierarchical data is measured by a depth-weighted approach of
the Jaccard index applied on each subtree of the dataset in both directions. This
allows for comparing the hierarchical dataset with respect to their structure and
includes changes induced by add-, remove- or move-operations, claimed as the basic
operations applied on hierarchies of software system structure [4].

73

Sebastian Hahn: Comparing the Layout Stability of Treemap Algorithms

T = {uid,d,C} (1)
C = {N0, ...,Nn} | n ∈ N, N ∈ T (2)

depth(T) = Td (3)

maxDepth(T) =

{
0, if TC = ∅
1+max(maxDepth(TN0

), ...,maxDepth(TNi
)), otherwise.

(4)

J(A,B) =
|A

⋃
B|

|A
⋂
B|

(5)

J(T,T ′) =

{
0, if TC = ∅
(maxDepth(TRoot) −depth(T)) · J(TC, T

′
C) +

∑n
i=0 J(TNi

, T ′
Ni

), otherwise.
(6)

W(T,T ′) =

{
0, if TC = ∅
(maxDepth(TRoot) −depth(T)) +

∑n
i=0 W(TNi

, T ′
Ni

), otherwise.
(7)

HierChange(T,T ′) =
J(T,T ′) + J(T ′, T)

W(T,T ′) +W(T ′, T)
(8)

Figure 3: Data model for a hierarchy and calculation of metric for hierarchical
changes in two hierarchies T and T ′

2.2 Attribute Changes

In addition to the hierarchical structure of the aforementioned datasets, the infor-
mation contained in each node, or the nodes attributes used for the mapping stage,
change a lot. Therefore, a metric that covers the changes of a certain attribute of
the hierarchical nodes seems useful. Steinbrückner proposes the use of the Relative
Weight Change metric (see Figure 4). Since this metric proceeds the assumption that
all items appear in both compared states it is not sufficient for most of our datasets
in general, but for a metric just regarding the nodes attributes.

RWCw(DAHG, t) :=

∑
{v∈G|fe(v,t)=True}

|aw(v, t) − aw(v, t− 1)|∑
{v∈G|fe(v,t)=True}

aw(v, t− 1)

Figure 4: Relative weight change proposed by Steinbrückner [10]. The normalized
sum of each nodes attribute (aw) difference in two snapshots of a tree t and t− 1
is taken to calculate a similarity metric.

74

3 Mapping Stage

3 Mapping Stage

The mapping stage uses the mapped data from the visualization pipeline as an in-
put for the layout stability metrics calculation, that means, e.g., the items’ shape,
position, and size. Basically, we have two groups of mapping stage metrics: a.) the
intra-node and b.) the inter-node metrics. Intra-node metrics only takes the nodes ap-
pearance itself for each node into account. Bederson et al. present such a intra-node
metric for layout stability with the so called distance change (see Equ. 9) [1]. For each
leaf-node of a tree the Euclidean distance of its change in position (x, y) and size
(w,h) is calculated and added up. The metric itself worked fine for the comparison
of rectangular treemaps without border sizes, but is not sufficient to compare rect-
angular treemaps against those that are based on polygons. Additionally, neither,
the adjacency between nodes nor the (parent-)node appearances are used to define
the stability.

distChange =

√
dx

2 + dy
2 + dw

2 + dh
2 (9)

The aforementioned example (Figure 1) shows one of the main problems with the
distance change. If a high number of small changes in the layout appear (as in the
polygon-based approach) the distance change can be equal or even higher compared
to rectangular approaches with a few high changes. Nevertheless, the layout itself
appears more stable to the user because of the small changes in the overall structure,
coming from the adjacency informations of the nodes. Therefore, the additional use
of an inter-node metric would be sufficient.

The computation of the adjacency similarity is done in the following steps:

1. For each snapshot of a hierarchy, a diagonal adjacency matrixMt is set up for
each subtree.

2. The matrix values are populated by computing the directional vectors from
each node to its neighbours (see Figure 5).

3. The difference of the adjacency matrix between allMti is computed added up
and normalized.

By using this adjacency similarity metric the we can make sure to compare rect-
angular as well as polygon-based treemap algorithms with respect to their inner
structure and have an additional metric that also is aware of rotations to a certain
degree.

75

Sebastian Hahn: Comparing the Layout Stability of Treemap Algorithms

A B

C

(0.66,0)

(0.33,-0.66)

-

-

-

A

B

C

A B C

(0.66,0) (0.33,-0.66)

(-0.4,-0.66)

(-0.4,-0.66)

Figure 5: The adjacency matrix is populated by the computed directional vectors
for each item

4 Next Steps

In the next weeks I’m planning to finally run the evaluation of the layout stabil-
ity of the most common treemap algorithms (strip treemap, squarified treemaps,
slice’n dice treemaps) against those that are claimed to have a higher layout stability
(voronoi treemaps with stable initial site distribution, Hilbert-Moore treemaps [11]
and template-based treemaps [7]). After that, I want to investigate in the dynamic
visualization of changes between two states by using animated transitions, to make
the appearing changes more reasonable. In addition to that, the static visualization
of changes between two states of a software map has high potential to increase the
usability of software maps.

5 Further Activities

Besides to my research in the field of layout stability for software maps, I supervised
a master thesis focussing on the visualization of multi-threaded software behaviour
using a level-of-detail-based software-city approach, called Thread city (see Figure 6).
Moreover, I worked on an interactive visualization of a dependency graph for anal-
ysis purposes as a part of a software visualization project with the SAP Innovation
center (see Figure 7). Furthermore, I participated as a tutor for the 3D computer

76

References

graphics lecture at the HPI and contributed to our open source computer graphics
middle ware libraries (github.com/hpicgs).

Figure 6: ThreadCity tool

References

[1] B. B. Bederson, B. Shneiderman, and M. Wattenberg. “Ordered and quantum
treemaps: Making effective use of 2D space to display hierarchies”. In: AcM
Transactions on Graphics (TOG) 21.4 (2002), pages 833–854.

[2] J. Bertin and M. Barbut. Sémiologie graphique: les diagrammes, les réseaux, les
cartes. Mouton Paris, 1967.

[3] J. Bohnet and J. Döllner. “Monitoring Code Quality and Development Activity
by Software Maps”. In: Proceedings of the 2Nd Workshop on Managing Technical

77

Sebastian Hahn: Comparing the Layout Stability of Treemap Algorithms

Figure 7: SAPIC dependency analyzer

78

References

Debt. MTD ’11. Waikiki, Honolulu, HI, USA: ACM, 2011, pages 9–16. doi: 10.
1145/1985362.1985365.

[4] S. A. Boorman and D. C. Olivier. “Metrics on spaces of finite trees”. In: Journal
of Mathematical Psychology 10.1 (1973), pages 26–59.

[5] M. Bruls, K. Huizing, and J. J. Van Wijk. “Squarified treemaps”. In: Data Visu-
alization 2000. Springer, 2000, pages 33–42.

[6] S. Hahn, J. Trümper, D. Moritz, and J. Döllner. “Visualization of Varying Hier-
archies by Stable Layout of Voronoi Treemaps”. In: Proceedings of the 5th Inter-
national Conference on Information Visualization Theory and Applications (IVAPP
2014). SCITEPRESS – Science and Technology Publications, 2014, pages 50–58.

[7] N. Kokash, B. de Bono, and J. Kok. “Template-based Treemaps to Preserve
Spatial Constraints.” In: IVAPP. 2014, pages 39–49.

[8] B. Shneiderman and M. Wattenberg. “Ordered treemap layouts”. In: Infor-
mation Visualization, 2001. INFOVIS 2001. IEEE Symposium on. IEEE. 2001,
pages 73–78.

[9] F. Steinbrückner. “Consistent Software Cities: supporting comprehension of
evolving software systems”. PhD thesis. Universitätsbibliothek, 2012.

[10] F. Steinbrückner and C. Lewerentz. “Representing development history in
software cities”. In: Proceedings of the 5th international symposium on Software
visualization. ACM. 2010, pages 193–202.

[11] S. Tak and A. Cockburn. “Enhanced Spatial Stability with Hilbert and Moore
Treemaps”. In: IEEE Transactions on Visualization and Computer Graphics 19.1
(2013), pages 141–148. doi: http://doi.ieeecomputersociety.org/10.
1109/TVCG.2012.108.

79

http://dx.doi.org/10.1145/1985362.1985365
http://dx.doi.org/10.1145/1985362.1985365
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.108
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.108

Generating Dynamic Dependability Models from Call
Traces

Lena Herscheid

Operating Systems and Middleware
Hasso-Plattner-Institut

lena.herscheid@hpi.uni-potsdam.de

In order to make complex software dependable, its failure behaviour needs to be
well understood. Dependability modeling languages, such as fault trees, provide a
means for quantitatively and qualitatively assessing and comparing the reliability
of different systems. Reliability, i.e., the probability of providing a service without
interruption for a period of time, is an important dependability attribute also for
software systems, where any crashes and downtime lead to economic loss and
bad customer experience.

To assess software reliability, runtime information from realistic program exe-
cutions needs to be included when modeling software systems. A prototype tool,
PyFT, which generates dynamic fault trees from Python programs, is introduced
in this paper. PyFT traces the program execution and constructs a dependability
model, including information about exceptions, by harnessing the introspection
features of the Python language. Two ways of obtaining unreliability numbers are
suggested—from developer annotations, and from code complexity.

This article is a critical discussion of the approach of deriving quantitative de-
pendability models based on source code, as exemplified by PyFT. The lack of
a useful software fault model, which incorporates runtime aspects, remains an
unsolved problem.

1 Introduction

A major threat to dependability of modern software systems is their complexity,
which can lead to unforeseen error propagation chains and various different failing
paths through the program. Complexity arises from the composition of heteroge-
nous software modules to form systems of increasing scale and feature richness.
While single modules may be thoroughly tested and well understood by their engi-
neers, the emerging complexity of large, composed software systems is much harder
to reason about.

Heisenbugs—bugs that are activated only under certain environment conditions—
are becoming increasingly common in large scale software systems [9] [6]. Such
seemingly non-deterministic heisenbugs stem from the ordering of concurrent oper-

81

mailto:lena.herscheid@hpi.uni-potsdam.de

Lena Herscheid: Generating Dynamic Dependability Models from Call Traces

ations, the availability of shared resources, or the unpredictable behaviour of third
party dependencies.

Formal methods for assuring dependability fall short in large scale software sys-
tems due to combinatorial and variable range explosion. Naturally, this state space
explosion problem also affects humans: Manually creating and maintaining mod-
els for analyzing software dependability has become tedious and error-prone. The
dynamic behaviour of software systems is rarely thoroughly understood by its de-
velopers.

To assess and compare the dependability of complex software systems, automated
ways of obtaining dependability models are therefore needed. Such dependability
models should include runtime information in order to reflect the dynamic behaviour
of software realistically and also cover heisenbugs.

This paper introduces a prototype tool, PyFT, which generates fault trees from
the callgraphs of Python programs. By harnessing Python 3 features, PyFT observes
single executions of the program, generating a basic event for each function call
which may fail. Approximate reliability metrics for these basic events are obtained in
two different ways: first, by evaluating potential developer annotations and second,
by computing code complexity metrics for important encountered function calls.

2 Related Work

Software Fault Trees Leveson et al. [11] propose a static mapping of program-
ming language constructs to fault trees without static elements. This mapping takes
place at the granularity of source code lines, and is thus applicable to any imperative
programming language. This transformation has been discussed, extended and com-
pared with static analysis methods such as weakest precondition analysis by Clarke
et al. [5]. To our knowledge, dynamic fault trees containing sequence-dependent
gates, such as SPARE gates, have not yet been generated from source code in related
literature.

Runtime Dependability Models Exception propagation behaviour, as an error
recovery mechanism, has been formalized in a variety of related literature, e.g. [7].
At a much higher level of abstraction, the generation of models from runtime in-
formation, especially in the context of self-adaptive and distributed systems has
been studied [1]. In this context, the research area of runtime verification explores
how desirable correctness properties can be monitored and verified dynamically [2].
Verified properties are usually expressed in temporal logic formulae. A distributed
monitoring mechanism for these properties can then be synthesized, which in itself
needs to be fault tolerant. However, the transition to such methods is hindered by

82

3 PyFT - a Prototype Dependability Tracer for Python

human difficulties of using temporal logic correctly [8]. Since the advent of accessi-
ble, increased parallel computing powers, the application of other formal methods
such as model checking during runtime has also been proposed [3].

3 PyFT - a Prototype Dependability Tracer for Python

PyFT generates dependability models at the granularity level of function calls, serv-
ing two purposes: First, aspects of the program’s runtime behaviour relevant for
fault tolerance, are visualized in an intuitive fashion. Second, the resulting models
should be analyzable by existing tools, so programs can be assessed using estab-
lished methods from the reliability engineering domain.

To achieve the first objective, we use program traces, ideally obtained from test
suite executions, as a basis. In order to secondly re-use existing reliability modelling
tools, and to provide an intuitive graphical model of the execution dynamics, we
generate a dynamic fault tree from the traced call graph.

Implementation Due to its dynamic nature and in-built reflection and debugging
features, the Python programming language is well suited for tracing experiments.
Based on the open source pycallgraph package1, PyFT uses the with statement to
trace the execution of an arbitrary code block using a Callgraph object. The Call-
graph object’s __enter__ and __exit__ functions, called at the entry and exit of
the with block, take care of setting up and tearing down a custom tracer. This tracer
uses inbuilt the sys.settrace() facility. Custom code, keeping track of which
functions were invoked for how long, can be executed in the tracer. Python’s intro-
spection features allow for a straightforward implementation of the tracer—method
and variable names, memory usage and execution time can be figured out easily. In
case the processing takes a long time, for instance when additional code metrics are
computed, the tracer can also asynchronously work on a queue of incoming trace
events, containing all necessary frame information. Listing 1 shows an invocation of
the main function with the tracer.

1http://pycallgraph.slowchop.com/en/master/, accessed December 16, 2014.

83

http://pycallgraph.slowchop.com/en/master/

Lena Herscheid: Generating Dynamic Dependability Models from Call Traces

Listing 1: Example code, with traced execution. Function calls in the Eratosthenes
class are annotated by the developer. In primesUpTo, exception handling is used
to recover from wrongly typed inputs.

1

2 #!/usr/bin/env python
3 from output import FaultTreeOutput
4 from callgraph import CallGraph
5

6 class Eratosthenes:
7 def __init__(self) -> ’extremely_robust’:
8 self.primes = []
9

10 def clear(self):
11 self.primes.clear()
12

13 def primesUpTo(self, limit) -> ’robust’:
14 self.clear()
15 try:
16 n = limit+1
17 except TypeError:
18 n = int(limit)+1
19

20 multiples = set()
21 for i in range(2, n):
22 if i not in multiples:
23 self.primes.append(i)
24 multiples.update(range(i*i, n, i))
25

26 def __str__(self) -> ’extremely_robust’:
27 return(”Here are some primes: ” + str(self.primes))
28

29 def main():
30 output = FaultTreeOutput()
31 with CallGraph(output=output):
32 e = Eratosthenes()
33 e.primesUpTo(’100’)
34 print(e)
35

36 if __name__ == ’__main__’:
37 main()

84

3 PyFT - a Prototype Dependability Tracer for Python

3.1 Fault Trees from Call Graphs

While call graphs are easy to obtain from traces, how to interpret them as depend-
ability models is not obvious. Fault trees are a deductive dependability modelling
language in failure space [15]. In our case, the undesired top event is a failure of the
program execution to meet its specification. In this Section, we discuss first how to
derive a static fault tree from traced function calls. This fault tree is then enriched
by fault tolerance semantics using the dynamic SPARE gate.

Fault and Error Model Finding a realistic fault model for software systems at the
source code level is challenging. In theory, a fault is any syntactic deviation from a
correct program [14]. Moreover, error propagation and error handling mechanisms
can take on various forms and are therefore hard to detect automatically. Even
with runtime introspection, the program itself is devoid of information about the
developers’ original intent. In the absence of a complete, formal specification, which
is not provided for most modern software, a simplified fault and error propagation
model must be postulated. In this work, the following assumptions are made:

1. Binary Failure Model: Any function call can either fail or succeed. No other
nuances of the notion of “failed” software exist. When the traced execution rep-
resents a test case, the assumption is that the test suite provides a specification for
the system. If the test case fails, the top event occurs, otherwise, the system is
assumed fully functional.

2. Immediate, Deterministic Error Propagation: Unless explicitly handled (by catch-
ing exceptions), an error resulting from the failure of one function call immedi-
ately propagates to the calling function.

3. Fault Tolerance By Exception Handling A common way of handling and mit-
igating errors are exceptions, as supported by the programming language. We
assume that exceptions are only used for fault tolerance mechanisms, and not
for regular control flow. Speaking in terms of Hamner’s terminology for fault
tolerant software [10], we assume that the raising of the exception represents a
detected error, its handling represents error mitigation or error recovery. This is a
simplified stance which disregards the potential use of exceptions as a syntactic
tool for non-erroneous control flow manipulation.

Figure 1 depicts the dynamic fault tree for the code in Listing 1. A function call
fails, if the function itself fails to do what it is intended, or if a callee of the function
fails. Therefore, the callgraph is simply transformed to a hierarchy of OR gates.

According to Cristian [7],

85

Lena Herscheid: Generating Dynamic Dependability Models from Call Traces

Figure 1: Dynamic fault tree, generated from the example code in Listing 1. In the
model, each traced function call is represented by a basic event, with a rate pa-
rameter representing the complexity and developer annotation regarding function
robustness. Exception handling is assumed to be a fault tolerance mechanism, and
therefore represented by a SPARE gate.

86

3 PyFT - a Prototype Dependability Tracer for Python

Exceptions can therefore be viewed as being a software structuring con-
cept that helps bridge the conceptual gap which exists between behaviors
as opposite as “correct standard service provided” at one extreme, and
“program failure” at the other extreme.

Consider the primesUpTo function in our example. If the input variable type is in-
correct, exception handling is used to mitigate or recover from this error. Exceptions—
assumed fault tolerance mechanisms—are therefore transformed to SPARE gates
in the dependability model. Here, the function in which the exception was raised
becomes the “primary spare”. The function in which the exception is handled be-
comes the “secondary spare”. We use cold spare semantics, because the secondary
spare is not “used”, or executed, unless the exception really occurs.

3.2 Obtaining Software Reliability Metrics

Fault tree analysis can be either qualitative or quantitative. Qualitative fault tree
analyses, such as the determination of minimal cut sets, is meaningful only if the
fault tolerance mechanisms are also reflected in the model. As discussed in the
previous Section, we hoped to achieve that by mapping exception propagation to
SPARE gates.

On the other hand, quantitative analyses such as computing top event probabilities
from the model, can be used to compare any two fault trees. In this case, failure rates
for the basic events—function calls in our case—are needed.

We present two approaches to obtaining such quantitative metrics:

1. Developer Annotations Developers are usually able to provide an estimation
of the reliability of the code they implemented, taking into consideration its
complexity and their own experience. Since the dependability model should
incorporate as much information as possible, PyFT parses optional Python 3
annotations, provided by the developers, to obtain a vague reliability value. For
instance, in Listing 1, functions of the Erastothenes class have been annotated
with estimations of their robustness by developers.

2. Complexity Metrics Various code complexity metrics, as well as their relation
to software reliability, have been studied in the literature. McCabe’s cyclomatic
complexity [12] has been found to correlate with fault-proneness of software
modules [13]. Therefore, PyFT uses the radon package2 to estimate the failure
proneness of a function from its cyclomatic complexity.

Both developer annotations and complexity metrics can be mapped to basic event
failure rates. This mapping is somewhat arbitrary, hence, the resulting unreliability

2https://pypi.python.org/pypi/radon, accessed December 16, 2014.

87

https://pypi.python.org/pypi/radon

Lena Herscheid: Generating Dynamic Dependability Models from Call Traces

numbers are meaningful only in relation with other, similarly obtained, numbers.
PyFT does not claim that the absolute value, without comparison to other such
values, can be used as a realistic estimate of the system unreliability3.

Since both approaches are highly imprecise and speculative, we propose that the
resulting values should be regarded as “risk indicators” rather than probabilities
in the strict mathematical sense: the risk of different models (representing imple-
mentations of different code quality) can be compared and partially ordered, but
the numbers should not be used to compute scalar values such as times to failure.

To better reflect the imprecision inherent to the automated PyFT approach, we
propose to use triangular fuzzy numbers, as supported by the FuzzEd fault tree
analysis tool [16].

4 Towards Runtime Dependability Models

Figure 2 shows the bigger picture around the PyFT approach. The vision is a compre-
hensive framework which uses various sources to automatically run suitable fault
injection experiments on a software system. From the observed runtime behaviour
under faultload, more realistic dependability models can be derived automatically.

5 Conclusion and Future Work

PyFT needs to be applied to more real world examples, in order to validate its
usefulness in non-trivial software systems. To yield realistic dependability models
at the source code level, some further impediments still have to be overcome:

Tracing The approach of PyFT relies on tracing as a means for getting detailed
insights into the program’s runtime behaviour. Tracing obviously comes at a cost:
First, the execution of the program is slowed down significantly. Therefore, profiled
information such as the average time spent in a function can be very inaccurate.
Second, non-intrusive tracing is much harder to implement in compiled languages
such as C++, than it is in Python. Since many safety-critical software systems are
still written in such languages, a useful implementation of the tool presented here
in a compiled language might become an engineering challenge.

3Hardware fault trees frequently use quantitative analysis to compute the probability of
failure before mission end time. We do not believe that software fault trees can be applied
analogously at the source code level of granularity.

88

5 Conclusion and Future Work

A. Recorded program traces

Test suite
coverage data

B. Profiler information

Application config / metadata

Find critical fault
locations for
experiments

Repeatedly run under
additional faultload

C. Documentation

D.
Dependability

model
Evaluation

Software

Figure 2: PyFT in context. The highlighted (underlined) steps have been tackled par-
tially by PyFT. A: Program executions are traced using Python language support
such as settrace. B: Time and memory spent inside a function are also recorded
by the framework. Future work will investigate the usage of such measured val-
ues for computing reliability metrics. C: Python 3 annotations can be used by
developers to document the confidence they have in their code. These annotations
are used as a basis for quantitative per-function reliability metrics (basic event
probabilities). D: PyFT outputs dynamic fault trees as a preliminary, quantitative
reliability model.

Fault Models Most important, the approach lacks a unified, language-
independent software fault model, which takes into consideration runtime
phenomena. There is a vast amount of related efforts: literature such as the
orthogonal defect classification (ODC) [4], as well as online resources. A recent trend
is mining data from bug trackers and using collaborative defect databases such
as the common weakness enumeration (CWE)4. Pretschner et al. [14] propose a fault
model tailored for automatic testing.

Incorporating a realistic software fault model into the architecture in Figure 2 is
part of our future plans. To this end, we are currently doing a systematic literature
study of software fault models. We believe that fault activation patterns are of special
interest for a broad class of software failures. Understanding such environment-

4http://cwe.mitre.org/index.html, accessed December 16, 2014.

89

http://cwe.mitre.org/index.html

Lena Herscheid: Generating Dynamic Dependability Models from Call Traces

dependent fault activation patterns would pave the way for more efficient mitigation
approches relying on the prevention of fault/bug activation instead of fault removal
in the source code.

Fault Tolerance Patterns Assessing the program structure with regards to depend-
ability makes sense only when fault tolerance mechanisms are included. This raises
the question: Is it possible at all to extract developer intent from source code in a
fully automated fashion? We found this hard to achieve, and based PyFT on the
assumption that structured exceptions are the sole means for fault tolerance.

Future efforts of automatically detecting fault tolerance patterns in software are
necessary for more realistic models. Promising in this respect may be the Erlang
language, which, designed with fault tolerance in mind, offers dedicated syntactic
constructs and handling mechanisms for all kinds of errors.

As shown in Figure 2, PyFT is nevertheless a step towards the automated genera-
tion of dependability models from runtime behaviour. PyFT can be used to derive a
preliminary runtime dependability model, used to further guide analysis and exper-
iments. For instance, one might envision using the minimal cut sets, i.e., the minimal
paths to system failure modelled in the fault tree, for finding promising locations
for fault injection locations in the source code.

References

[1] A. Bauer, M. Leucker, and C. Schallhart. “Model-based runtime analysis of dis-
tributed reactive systems”. In: Software Engineering Conference, 2006. Australian.
Apr. 2006, doi: 10.1109/ASWEC.2006.36.

[2] A. Bauer, M. Leucker, and C. Schallhart. “Runtime verification for LTL and
TLTL”. In: ACM Transactions on Software Engineering and Methodology (TOSEM)
20.4 (2011), page 14.

[3] R. Calinescu and S. Kikuchi. “Formal Methods @ Runtime”. In: Proceedings
of the 16th Monterey Conference on Foundations of Computer Software: Modeling,
Development, and Verification of Adaptive Systems. FOCS’10. Redmond, WA:
Springer-Verlag, 2011, pages 122–135.

[4] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray,
and M.-Y. Wong. “Orthogonal defect classification-a concept for in-process
measurements”. In: Software Engineering, IEEE Transactions on 18.11 (1992),
pages 943–956.

90

http://dx.doi.org/10.1109/ASWEC.2006.36

References

[5] S. Clarke and J. McDermid. “Software fault trees and weakest preconditions:
a comparison and analysis”. In: Software Engineering Journal 8.4 (July 1993),
pages 225–236.

[6] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. Trivedi. “Fault
triggers in open-source software: An experience report”. In: 2013 IEEE 24th
International Symposium on Software Reliability Engineering (ISSRE). Nov. 2013,
pages 178–187. doi: 10.1109/ISSRE.2013.6698917.

[7] F. Cristian. “Exception Handling”. In: Dependability of Resilient Computers. 1989,
pages 68–97.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. “Patterns in Property Speci-
fications for Finite-state Verification”. In: Proceedings of the 21st International
Conference on Software Engineering. ICSE ’99. Los Angeles, California, USA:
ACM, 1999, pages 411–420. doi: 10.1145/302405.302672.

[9] M. Grottke and K. S. Trivedi. “A classification of software faults”. In: Journal
of Reliability Engineering Association of Japan 27.7 (2005), pages 425–438.

[10] R. Hanmer. Patterns for fault tolerant software. John Wiley & Sons, 2013.
[11] N. G. Leveson and P. R. Harvey. “Software fault tree analysis”. In: Journal

of Systems and Software 3.2 (June 1983), pages 173–181. doi: 10.1016/0164-
1212(83)90030-4.

[12] T. J. McCabe. “A complexity measure”. In: Software Engineering, IEEE Transac-
tions on 4 (1976), pages 308–320.

[13] N. Nagappan, T. Ball, and A. Zeller. “Mining metrics to predict component fail-
ures”. In: Proceedings of the 28th international conference on Software engineering.
ACM. 2006, pages 452–461.

[14] A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar. “A generic fault
model for quality assurance”. In: Model-Driven Engineering Languages and Sys-
tems. Springer, 2013, pages 87–103.

[15] M. Stamatelatos and J. Caraballo. Fault tree handbook with aerospace applications.
Office of safety and mission assurance NASA headquarters, 2002.

[16] P. Tröger, F. Becker, and F. Salfner. “FuzzTrees-Failure Analysis with Uncertain-
ties”. In: Dependable Computing (PRDC), 2013 IEEE 19th Pacific Rim International
Symposium on. IEEE. 2013, pages 263–272.

91

http://dx.doi.org/10.1109/ISSRE.2013.6698917
http://dx.doi.org/10.1145/302405.302672
http://dx.doi.org/10.1016/0164-1212(83)90030-4
http://dx.doi.org/10.1016/0164-1212(83)90030-4

Physical Motion Displays
A Wearable Device for Producing a Strong Tactile Stimulus

Alexandra Ion

Human Computer Interaction
Hasso-Plattner-Institut

alexandra.ion@hpi.uni-potsdam.de

We propose communicating simple two-dimensional shapes/messages to users
by dragging a physical tactor across their skin. The main benefit of this approach
is that it produces not only a sense of touch, but also stretches the user’s skin,
thereby reaching more skin re- ceptors than the currently prevalent modality, i.e.,
vibrotactile. We present a prototype that implements the concept as a wearable
device that users wear on their wrist. We built it in a very compact form factor so
that it fits under a watch.

1 Introduction

Wrist-worn devices are in continuous physical contact with the wearer’s skin. This
allows these devices to send simple messages to the user, e.g., by pulsing a message
using a single vibrotactile actuator [2, 5, 8].

In order to allow sending more “mnemonic” messages, e.g., individual characters
or simple icons, researchers extended the concept to two-dimensional arrays of
vibrotactile actuators [5, 11]. Fading from one vibration motor to the next, these
devices produce the illusion of a dot moving across the skin, which allows them to
draw simple shapes [3].

This approach is popular because it is easy to implement and miniaturizes well to
mobile and even wearable size. Unfortunately, vibrotactile units excite only a subset
of tactile receptors—so called fast-acting receptors. We argue that this limits their
effectiveness in communicating tactile messages.

Li et al. [6], in contrast, have explored a different type of tactile display. Their device
“rubs” the user’s skin using a tactor that moves back and forth. While their objec-
tive was to extend the expressiveness of tactile devices to better represent human-
to-human touch, we believe that this approach reaches more skin receptors than
vibrotactile. Because of its lateral motion, it also stretches the skin, thereby reaching
so-called skin stretch receptors.

We appropriate this concept of moving a physical moving tactor across the user’s
skin as a means for delivering tactile messages to the user. In order to do so, we

93

mailto:alexandra.ion@hpi.uni-potsdam.de

Alexandra Ion: Physical Motion Displays

extend the concept to 2D actuation. We call the resulting tactile displays physical
motion displays. We show that this concept can be implement in a compact form
factor suitable for wearable use.

Figure 1: Physical motions displays drag a tactor over the wearer’s skin in order to
communicate a spatial message. Our self-contained miniaturized prototype is the
size of a watch.

2 Related work

2.1 Vibrotactile feedback

Due to their compact size, vibrotactile actuators have not only been integrated in
large objects like chairs [3, 13], but also in mobile devices [2, 14] and wearable devices
[4, 12].

Vibrotactile devices allow sending non-visual messages to the user using patterns
of varying amplitude. Tactons [2] are a general concept of tactile icons, which can
be com-bined to send more complex messages. Lee et al. designed a wrist-worn
device featuring three vibration motors that produced 24 distinguishable patterns
[4]. Pasquero et al. [8] provided tactile feedback with a piezoelectric actuator that
was built into a wrist-watch.

To communicate spatial messages to the user, researchers proposed 2D arrays
of vibrotactile actuators. Tan and Pentland [11] proposed a 3 × 3 array of vibration
motors to create a directional tactile display using apparent motion. Lee et al. [5]
investigated sending directional and letter-like shapes (e.g. “L”) to the user using a
wrist-worn 4 × 4 array of vibrotactile units. More recently, Israr et al. [3] provided
gamers with directional strokes produced by a 3 × 3 array of vibrotactile actuators
mounted on the back of a chair.

94

3 Implementation

2.2 Techniques that create tangential forces on the skin

Researchers have investigated technologies that provide directional tactile cues by
exciting skin stretch receptors. Bark et al. [1] compared skin stretch feedback with vi-
brotactile feedback in a cursor positioning task and found a significant performance
benefit for skin stretch feedback. These results confirm findings from physiology [7]
that suggest the skin’s directional sensitivity is higher (8 mm on the forearm) than
its location acuity (30 mm–40 mm on the forearm).

Gesture output [9] ports the concept to displays that address the user’s proprio-
ceptive sense. They send eyes-free messages to users by dragging their thumb across
a mobile device. Li et al. [6] proposed a device that “rubs” and “taps” the user’s
skin. Stanley et al. [10] wrapped the concept in wrist-worn form factor. We build on
this work, extend it to 2D, and use it to encode tactile messages.

3 Implementation

To demonstrate the concept of physical motion displays, we have implemented a
watch-style prototype (shown in Figure 2). The device features a round actuation
area of 32 mm diameter. It creates a tactile message by dragging the shown tactor
across the wearer’s skin.

tactor

watch

32 mm

Figure 2: Our wrist-worn device actuates a 32 mm area in a 41 mm casing.

As discussed earlier, the main benefit of this design is that it produces a tangential
force when dragging a tactor across the user’s skin, because the motion of the tactor
excites the slow-acting as well as fast-acting mechanoreceptors [1].

95

Alexandra Ion: Physical Motion Displays

3.1 Mechanical design

As shown in Figure 3, our prototype is based on a rotating mechanism, which imple-
ments a polar coordinate design i.e., it actuates the 2-dimensional tactor motion in
the form of azimuth and radius. We chose this design because it enables us to place
all mechanical and electronic components “within the actuation area” yielding a
self-contained device. Unlike the more traditional XY-table design, this allows us to
fill the actuation area with components.

a b

Figure 3: (a) Traditional XY table design. (b) Our polar coordinate design allows
components to be placed on the actuation area.

3.2 Watch-size prototype providing tactile feedback

Our watch-size prototype is based on the polar coordinate design. The key compo-
nent behind this design is a capsule that rotates inside of the casing. As shown in
Figure 4, the casing features an inside gear along its inner circumference. A pinion
rides along the inside gear. It is driven by a 6 mm motor via a worm drive. A linear
micro servo (Spektrum AS2000L) drives the radius.

3.3 Electronics & Software

Figure 5 shows the design in semi-assembled state. The “bottom” layer of the device
holds all mechanical parts. It is connected to the top layer, which holds electronics.
The electronic part holds the battery, a motor controller and a microcontroller.

The microcontroller (ATtiny85) controls the motors. A li-ion battery powers the
device. The device runs self-contained. Currently, the shapes to be played back are
stored on the microcontroller and played back in fixed order as soon the device is

96

3 Implementation

inside gear

tactor

worm drive

motor
linear servo motor

Figure 4: We use a worm drive with an inside gear for rotation and a linear servo
for actuating the radius.

worm drive
for rotation

linear servo
for radius

battery ATtiny85

motor controller

Figure 5: Electronics are placed on the actuation area and rotate with it.

97

Alexandra Ion: Physical Motion Displays

switched on. We plan to send data from a notebook computer wirelessly (e.g. via
the a Bluetooth module).

4 Conclusion

We presented the concept of physical motion displays that are able to display simple
spatial shapes and a prototype that implements that concept. Our main contribution
is that we demonstrate more effective ways of communicating tactile messages than
the today’s prevalent modality, i.e., vibrotactile. We also show that the approach
is mechanically feasible and that we can fit it in a small package, opening up the
potential for use in actual wearable devices.

In the future, we want to study the differences between sending vibrotactile stimuli
and sending stimuli by producing physical motion on the user’s skin. We want
to learn how well participants recogize shapes drawn on their skin with physical
motion compared to vibrotactile stimuli.

References

[1] K. Bark, J. Wheeler, S. Premakumar, and M. Cutkosky. “Comparison of Skin
Stretch and Vibrotactile Stimulation for Feedback of Proprioceptive Informa-
tion”. In: Haptic interfaces for virtual environment and teleoperator systems, 2008.
haptics 2008. symposium on. Mar. 2008, pages 71–78. doi: 10.1109/HAPTICS.
2008.4479916.

[2] S. Brewster and L. M. Brown. “Tactons: Structured Tactile Messages for Non-
visual Information Display”. In: Proceedings of the Fifth Conference on Australasian
User Interface - Volume 28. AUIC ’04. Dunedin, New Zealand: Australian Com-
puter Society, Inc., 2004, pages 15–23.

[3] A. Israr and I. Poupyrev. “Tactile Brush: Drawing on Skin with a Tactile Grid
Display”. In: Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. CHI ’11. Vancouver, BC, Canada: ACM, 2011, pages 2019–2028.
doi: 10.1145/1978942.1979235.

[4] S. ” Lee and T. Starner. “BuzzWear: Alert Perception in Wearable Tactile Dis-
plays on the Wrist”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. CHI ’10. Atlanta, Georgia, USA: ACM, 2010, pages 433–
442. doi: 10.1145/1753326.1753392.

98

http://dx.doi.org/10.1109/HAPTICS.2008.4479916
http://dx.doi.org/10.1109/HAPTICS.2008.4479916
http://dx.doi.org/10.1145/1978942.1979235
http://dx.doi.org/10.1145/1753326.1753392

References

[5] S. C. Lee and T. Starner. “Mobile Gesture Interaction Using Wearable Tactile
Displays”. In: CHI ’09 Extended Abstracts on Human Factors in Computing Systems.
CHI EA ’09. Boston, MA, USA: ACM, 2009, pages 3437–3442. doi: 10.1145/
1520340.1520499.

[6] K. A. Li, P. Baudisch, W. G. Griswold, and J. D. Hollan. “Tapping and Rubbing:
Exploring New Dimensions of Tactile Feedback with Voice Coil Motors”. In:
Proceedings of the 21st Annual ACM Symposium on User Interface Software and
Technology. UIST ’08. Monterey, CA, USA: ACM, 2008, pages 181–190. doi:
10.1145/1449715.1449744.

[7] U. Norrsell and H. Olausson. “Spatial cues serving the tactile directional sensi-
bility of the human forearm”. English. In: The Journal of physiology 478.3 (1994),
pages 533–540.

[8] J. Pasquero, S. J. Stobbe, and N. Stonehouse. “A Haptic Wristwatch for Eyes-
free Interactions”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’11. Vancouver, BC, Canada: ACM, 2011, pages 3257–
3266. doi: 10.1145/1978942.1979425.

[9] A. Roudaut, A. Rau, C. Sterz, M. Plauth, P. Lopes, and P. Baudisch. “Ges-
ture Output: Eyes-free Output Using a Force Feedback Touch Surface”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’13. Paris, France: ACM, 2013, pages 2547–2556. doi: 10.1145/2470654.
2481352.

[10] A. Stanley and K. Kuchenbecker. “Design of body-grounded tactile actuators
for playback of human physical contact”. In: World Haptics Conference (WHC),
2011 IEEE. June 2011, pages 563–568. doi: 10.1109/WHC.2011.5945547.

[11] H. Tan and A. Pentland. “Tactual displays for wearable computing”. English.
In: Personal Technologies 1.4 (1997), pages 225–230. doi: 10.1007/BF01682025.

[12] K. Tsukada and M. Yasumura. “ActiveBelt: Belt-Type Wearable Tactile Display
for Directional Navigation”. English. In: UbiComp 2004: Ubiquitous Computing.
Edited by N. Davies, E. Mynatt, and I. Siio. Volume 3205. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2004, pages 384–399. doi: 10.
1007/978-3-540-30119-6_23.

[13] Y. Yanagida, M. Kakita, R. Lindeman, Y. Kume, and N. Tetsutani. “Vibrotactile
letter reading using a low-resolution tactor array”. In: Haptic Interfaces for Vir-
tual Environment and Teleoperator Systems, 2004. HAPTICS ’04. Proceedings. 12th
International Symposium on. Mar. 2004, pages 400–406. doi: 10.1109/HAPTIC.
2004.1287227.

99

http://dx.doi.org/10.1145/1520340.1520499
http://dx.doi.org/10.1145/1520340.1520499
http://dx.doi.org/10.1145/1449715.1449744
http://dx.doi.org/10.1145/1978942.1979425
http://dx.doi.org/10.1145/2470654.2481352
http://dx.doi.org/10.1145/2470654.2481352
http://dx.doi.org/10.1109/WHC.2011.5945547
http://dx.doi.org/10.1007/BF01682025
http://dx.doi.org/10.1007/978-3-540-30119-6_23
http://dx.doi.org/10.1007/978-3-540-30119-6_23
http://dx.doi.org/10.1109/HAPTIC.2004.1287227
http://dx.doi.org/10.1109/HAPTIC.2004.1287227

Alexandra Ion: Physical Motion Displays

[14] K. Yatani and K. N. Truong. “SemFeel: A User Interface with Semantic Tactile
Feedback for Mobile Touch-screen Devices”. In: Proceedings of the 22Nd Annual
ACM Symposium on User Interface Software and Technology. UIST ’09. Victoria,
BC, Canada: ACM, 2009, pages 111–120. doi: 10.1145/1622176.1622198.

100

http://dx.doi.org/10.1145/1622176.1622198

Profiling the Web of Data

Anja Jentzsch

Information Systems Group
Hasso-Plattner-Institut

anja.jentzsch@hpi.uni-potsdam.de

The Web of Data contains a large number of openly-available datasets covering a
wide variety of topics. In order to benefit from this massive amount of open data
such external datasets must be analyzed and understood already at the basic level
of data types, constraints, value patterns, etc.

For Linked Datasets such meta information is currently very limited or not avail-
able at all. Data profiling techniques are needed to compute respective statistics
and meta information. However, current state of the art approaches can either not
be applied to Linked Data, or exhibit considerable performance problems. This
paper presents my doctoral research which tackles these problems.

1 Problem Statement

Over the past years, an increasingly large number of data sources has been pub-
lished as part of the Web of Data1. At the time of writing the Web of Data comprised
already roughly 1,000 datasets totaling more than 82 billion triples2, including promi-
nent examples, such as DBpedia, YAGO, and DBLP. Furthermore, more than 17 bil-
lion triples are available as RDFa, Microdata and Microformats in HTML pages3.
This trend, together with the inherent heterogeneity of Linked Datasets and their
schemata, makes it increasingly time-consuming to find and understand datasets
that are relevant for integration. Metadata gives consumers of the data clarity about
the content and variety of a dataset and the terms under which it can be reused,
thus encouraging its reuse.

A Linked Dataset is represented in the Resource Description Framework (RDF).
In comparison to other data models, e.g., the relational model, RDF lacks explicit
schema information that precisely defines the types of entities and their attributes.
Therefore, many datasets provide ontologies that categorize entities and define data
types and semantics of properties. However, ontology information is not always
available or may be incomplete. Furthermore, Linked Datasets are often inconsistent

1The Linked Open Data Cloud nicely visualizes this trend: http://lod-cloud.net, ac-
cessed December 16, 2014.

2http://datahub.io/dataset?tags=lod, accessed December 16, 2014.
3http://webdatacommons.org, accessed December 16, 2014.

101

mailto:anja.jentzsch@hpi.uni-potsdam.de
http://lod-cloud.net
http://datahub.io/dataset?tags=lod
http://webdatacommons.org

Anja Jentzsch: Profiling the Web of Data

and lack even basic metadata. Algorithms and tools are needed that profile the
dataset to retrieve relevant and interesting metadata analyzing the entire dataset.

Data profiling is an umbrella term for methods that compute metadata for describ-
ing datasets. Traditional data profiling tools for relational databases have a wide
range of features ranging from the computation of cardinalities, such as the number
of values in a column, to the calculation of inclusion dependencies; they determine
value patterns, gather information on used data types, determine unique column
combinations, and find keys.

Use cases for data profiling can be found in various areas concerned with data
processing and data management [12]:
Query optimization is concerned with finding optimal execution plans for database
queries. Cardinalities and value histograms can help to estimate the costs of such
execution plans. Such metadata can also be used in the area of Linked Data, e.g. for
optimizing SPARQL queries.
Data cleansing can benefit from discovered value patterns. Violations of detected
patterns can reveal data errors, and respective statistics help measure and monitor
the quality of a dataset. For Linked Data, data profiling techniques help validate
datasets against vocabularies and schema properties.
Data integration is often hindered by the lack of information on new datasets. Data
profiling metrics reveal information on, e.g. size, schema, semantics, and dependen-
cies of unknown datasets. This is a highly relevant use case for Linked Data, because
for many openly available datasets only little information is available.
Schema induction: Raw data, e.g. data gathered during scientific experiments, often
does not have a known schema at first; data profiling techniques need to determine
adequate schemata, which are required before data can be inserted into a traditional
DBMS. For the field of Linked Data, this applies when working with datasets that
have no dereferencable vocabulary. Data profiling can help induce a schema from
the data, which then can be used to find a matching vocabulary or create a new one.
Data Mining: Finally, data profiling is an essential preprocessing step to almost any
statistical analysis or data mining task. While data profiling focuses on gathering
structural metadata about a dataset, data mining is usually more concerned with
gaining new insights about data.

2 Relevancy

There are many commercial tools, such as IBM’s Information Analyzer, Microsoft’s
SQL Server Integration Services (SSIS), or others for profiling relational datasets.

102

3 Related Work

However these tool were designed to profile relational data. Linked Data has a very
different nature and calls for specific profiling and mining techniques.

Finding information about Linked Datasets is an open issue on the constantly
growing Web of Data due to the use cases mentioned above. While most of the
Linked Datasets are listed in registries as for instance at the Data Hub (datahub.io),
these registries usually are manually curated, and thus incomplete or outdated.
Furthermore, existing means and standards for describing datasets are often limited
in their depth of information. VoiDand Semantic Sitemapscover basic details of a
dataset, but do not cover detailed information on the dataset’s content, such as their
main classes or number of entities. More detailed descriptions, e.g. information on
a dataset’s RDF graph structure, topics etc., is usually not available. Data profiling
techniques can help to fulfil the need for information about, e.g. classes and property
types, value distributions, or entity interlinking.

3 Related Work

While many general tools and algorithms already exist for data profiling, most of
them cannot be used for graph datasets, because they assume a relational data
structure, a well-defined schema, or simply cannot deal with very large datasets.
Nonetheless, some Linked Data profiling tools already exist. Most of them focus on
solving specific use cases instead of data profiling in general.

One relevant use case is schema induction, because the lack of a fixed and well-
defined schema is a common problem with Linked Datasets. One example for this
field of research is the ExpLOD tool [9]. ExpLOD creates summaries for RDF graphs
based on class and property usage as well as statistics on the interlinking between
datasets based on owl:sameAs links.

Li describes a tool that can induce the actual schema of an RDF dataset [11]. It
gathers schema-relevant statistics like cardinalities for class and property usage, and
presents the induced schema in a UML-based visualization. Its implementation is
based on the execution of SPARQL queries against a local database. Like ExpLOD,
the approach is not parallelized. Both solutions still take approximately 10h to pro-
cess a 10 million triples dataset with 13 classes and 90 properties. These results
illustrate that performance is a common problem with large Linked Datasets.

An example for the query optimization use-case is presented in [10]. The authors
present RDFStats, which uses Jena’s SPARQL processor to collect statistics on Linked
Datasets. These statistics include histograms for subjects (URIs, blank nodes) and
histograms for properties and associated ranges.

Others have worked more generally on generating statistics that describe datasets
on the Web of Data and thereby help understanding them. LODStats computes

103

datahub.io
owl:sameAs

Anja Jentzsch: Profiling the Web of Data

statistical information for datasets from the Data Hub [2]. It calculates 32 simple
statistical criteria, e.g. cardinalities for different schema elements and types of literal
values (e.g. languages, value data types).

In [4] the authors automatically create VoID descriptions for large datasets us-
ing MapReduce. They manage to profile the BTC2010 dataset in about an hour on
Amazon’s EC2 cloud, showing that parallelization can be an effective approach to
improve runtime when profiling large amounts of data.

Finally, the ProLOD++ tool allows to navigate an RDF dataset via an automatically
computed hierarchical clustering [5] and along its ontology class tree [1]. Data pro-
filing tasks are performed on each cluster or class dynamically and independently
to improve efficiency.

4 Challenges

This section describes selected challenges that I identified as specific to profiling
Linked Dataand web data, as opposed to profiling relational tables.

Profiling along hierarchies
Vocabularies define classes and their relationships. Ontology classes usually are ar-

ranged in a taxonomic (subclass–superclass) hierarchy. While the Web of Data spans
a global distributed data graph, its ontology classes build a tree with owl:Thing
as its root. Analyzing datasets along the vocabulary-defined taxonomic hierarchies
yield further insights, such as the data distribution at different hierarchy levels, or
possible mappings betweens vocabularies or datasets.

Keys are clearly of vital importance to many applications in order to uniquely
identify individuals of a given class by values of (a set of) key properties. In OWL 2
a collection of properties can be assigned as a key to a class using the owl:hasKey
statement [8].

Nevertheless it has not yet fully arrived on the Web of Data: only one Linked
Dataset usesowl:hasKey [7]. Thus, actually analyzing and profiling Linked Datasets
requires manual, time consuming inspection or the help of tools.

Many languages have a so-called “unique names” assumption. On the web, such
an assumption is not possible as real-world entities can be referred to with different
URI references.

Heterogeneity
A common practice in the Linked Data community is to reuse terms from widely

deployed vocabularies whenever possible, in order to increase homogeneity of de-
scriptions and, consequently, easing the understanding of these descriptions. There

104

owl:Thing
owl:hasKey
owl:hasKey

5 Research Questions

are at least 416 different vocabularies to be found on the Web of Data4. Some datasets,
however, also exist without any defined or dereferencable vocabularies. And even
if common vocabularies are used, there is no guarantee that the specifications and
constraints are followed correctly.

Nearly all datasets on the Web of Data use terms from the W3C base vocabu-
laries RDF, RDF Schema, and OWL. In addition, 191 (64.75 %) of the 295 datasets
in the Linked Open Data Cloud Catalogue use terms from other widely deployed
vocabularies [3].

As Linked Datasets cover a wide variety of topics, widely deployed vocabularies
that cover all aspects of these topics may not exist yet. Thus, data providers often
define proprietary terms that are used in addition to terms from widely deployed
vocabularies in order to cover the more specific aspects and to publish the complete
content of a dataset on the Web. Currently 190 (64.41 %) out of the 295 datasets use
proprietary vocabulary terms with 83.68 % making the term URIs dereferenceable.

Topical profiling
The Web of Data covers not only a wide range of topics, it also contains a number of

topically overlapping data sources. Since it provides for data-coexistence, everyone
can publish data to it, express their view on things, and use the vocabularies of their
choice. Integrating topically relevant datasets requires knowledge on the datasets’
content and structure.

The State of the LOD Cloud document [3] gives an overview of the Linked Datasets
for each topical domain but there is no fine-grained topical clustering for Linked
Datasets. With 504 million inter-dataset links the Web of Data is highly interlinked;
1.6 % of all triples are links stating the relationship between the real-world entities
in different datasets. Thus a huge topical overlap amongst the datasets is given.

Large scale profiling
With more than 82 billion triples distributed among roughly 1,000 Linked Datasets

and more than 17 billion triples available as RDFa, Microdata and Microformats, the
need for efficient profiling methods and tools is apparent.

The runtime of profiling tasks as presented in Sec. 7 takes up to hours, e.g., for
determining property co-occurrences [6]. Profiling tasks often have the same prepro-
cessing steps, e.g., filtering or grouping the dataset. Thus there is a large incentive
and potential to optimize the execution of multiple scripts.

5 Research Questions

The main question in my doctoral research is:

4http://lov.okfn.org/, accessed December 16, 2014.

105

http://lov.okfn.org/

Anja Jentzsch: Profiling the Web of Data

What are the challenges that are specific to profiling Linked Dataand web data, as opposed
to profiling relational tables?

After identifying four selected challenges, the following questions arise:
Profiling along hierarchies Does analyzing Linked Datasets along the vocabulary-defined
taxonomic hierarchies, such as the data distribution at different hierarchy levels, yield further
insights?
Heterogeneity How does profiling help analyzing the heterogeneity on the Web of Data?
Topical profiling How can topical clusterings for unknown datasets on the constantly
growing Web of Data be derived efficently?
Large scale profiling How can these huge amounts of Linked Data be profiled efficiently?

6 Approach

My approach to address the research questions is to tackle each of the identified
challenges. The main goal is to reuse existing profiling techniques and adapt them
to the Linked Data world.

This section presents possible and if available developed solutions by me to the
presented challenges.

Profiling along hierarchies
One example of profiling tasks along the class hierarchy is determining the unique-

ness of properties as well as the unique property combinations, which can bring
insights into the property distribution inside the dataset. It allows for finding rele-
vant (key-candidate) properties for each level in the class hierarchy and see if the
relevance is increasing or decreasing along hierarchy.

As I have found, due to the sparsity on the Web of Data, usually neither full key-
candidates of properties nor unique property combinations can be retrieved using
traditional techniques. Thus I defined the concept of keyness as the Harmonic Mean
of uniqueness and density of a property5, allowing to find potential key candidates.

Heterogeneity
Data profiling can be used to provide metadata describing the characteristics of

a dataset, for instance its topic and more detailed statistics, like the main classes
and properties. Furthermore, data profiling can not only determine the usage of
vocabularies but also the help understanding and reusing existing vocabularies.
Additionally, it can assist when mapping vocabulary terms.

5We define the uniqueness of a property as the number of unique values per number of
total values for a given property; and the density of a property as the ratio of non-NULL
values to the number of entities.

106

7 Preliminary Results

Topical profiling
The first profiling task is, of course, to discover (and possibly label) these topical

clusters. The discovery of which topics an unknown dataset is even about, is already
a very helpful insight. Next, any profiling task can be executed on data of a particular
topic and compared against the metadata of other topics.

Large scale profiling
The runtime of the profiling tasks takes up to hours already on 1 million triples,

e.g., for determining property co-occurrences [6]. A number of different approaches
can be chosen when trying to optimize the execution time of algorithms dealing
with RDF data in general and data profiling tasks in particular.
Algorithmic optimization: Profiling tasks that have high computational complexity
cannot be computed naïvely, e.g., it is infeasible to detect property co-occurrence
by considering all possible property combinations. Such metrics require innovative
algorithms for efficiently computing the targeted result. If such an algorithm can not
be found, approximation techniques (e.g., sampling) may be required. Because these
algorithms are often highly specialized for a specific profiling task, they usually do
not benefit other tasks.
Parallelization: When dealing with large datasets, a good approach for improving
performance is to perform calculations in parallel when possible [12]. This can be
done on different levels: dataset, profiling run, profiling task and triples. Cluster-
based parallelization based on MapReduce is a reasonable choice when working
with Linked Data.
Multi-Query Optimization: A data profiling run usually consists of a number of differ-
ent tasks, which all have to be computed on the same dataset. Depending on the
set of data profiling tasks, different tasks may require the same preprocessing steps,
or perform similar computation steps. Overall execution time can be reduced by
avoiding duplicate computations. Similar computation steps may be interweaved to
reduce runtime and I/O costs. If different tasks require similar intermediate results,
these can be stored in materialized views.

7 Preliminary Results

Initially, I have defined a set of 56 useful data profiling tasks along various groupings
to profile Linked Datasets. The have been implemented as Apache Pig scripts and
are available online6.

Furthermore, I illustrated the Web of Data’s diversity with the results for four
different Linked Datasets [6].

6http://github.com/bforchhammer/lodop/, accessed December 16, 2014.

107

http://github.com/bforchhammer/lodop/

Anja Jentzsch: Profiling the Web of Data

Profiling along hierarchies
When analyzing the uniqueness in the class hierarchy for DBpedia, I found that

there are properties that become more specific by class level, thus their uniqueness
gets higher for subclasses. For instance, dbpedia:team becomes more unique for
athletes than it is for all persons. I also found properties that are generic, their
uniqueness stays constant throughout the class hierarchy. For instance, dbpedia:
birthDate is not specific to persons or their subclasses.

Furthermore, I have defined the concept of keyness of the property to gap the
sparsity on the Web of Data and thus the possibility to find potential key candidates
where traditional approaches fail.
Large scale profiling

We have addressed the different approaches to improve Linked Data profiling
performance and not only developed LODOP, a system for executing, benchmarking
and optimizing Linked Data profiling scripts on Hadoop but also developed and
evaluated 3 multi-query optimization rules [6]. We experimentally demonstrated
that they achieve their respective goals of optimizing the amount of MapReduce
jobs or the amount of data materialized between jobs, thus reducing the profiling
tasks runtimes by 70 %.

8 Evaluation Plan

For the evaluation, there are three main lines of interest.
Metadata The main goal is to provide comprehensive dataset metadata that helps

analyzing the datasets. The metadata can be evaluated on quantity and quality wrt
existing metadata on the Data Hub, VoiD and Semantic Sitemaps.

Usability Tools and techniques should have a high usability in terms of results be-
ing presented in both human and machine readable ways to achieve better decision
making when working with datasets.

Performance evaluation Various aspects of the developed tools should be tested
for performance, especially the for huge amounts of data as it is present on the Web
of Data.

9 Reflections and Conclusion

The main difference in my approach with existing work on Linked Data profiling is
to address the shortcomings mentioned in section 3, in particular gathering compre-
hensive metadata in an efficient way. Within my research I am building on existing

108

dbpedia:team
dbpedia:birthDate
dbpedia:birthDate

References

profiling techniques for relational data and adapting them according to the different
nature of Linked Datasets.

This paper has presented the outline and preliminary results of my doctoral re-
search, in which I am focussing on profiling the Web of Data.

So far I have specified and implemented a comprehensive set of Linked Data profil-
ing tasks and illustrated the Web of Data’s diversity with the results for four different
Linked Datasets. Furthermore I introduced three common techniques for improving
performance of Linked Data profiling and implemented three multi-query optimiza-
tion rules, reducing profiling taskruntimes by 70 %.

References

[1] Z. Abedjan, T. Grütze, A. Jentzsch, and F. Naumann. “Mining and Profiling
RDF Data with ProLOD++”. In: Proceedings of the International Conference on
Data Engineering (ICDE). Demo. 2014.

[2] S. Auer, J. Demter, M. Martin, and J. Lehmann. “LODStats – an extensible
framework for high-performance dataset analytics”. In: Proceedings of the Int.
Conf. on Knowledge Engineering and Knowledge Management (EKAW). 2012.

[3] C. Bizer, A. Jentzsch, and R. Cyganiak. State of the LOD Cloud. 2011. url: http:
//lod-cloud.net/state/.

[4] C. Böhm, J. Lorey, and F. Naumann. “Creating VoiD Descriptions for Web-scale
Data”. In: Journal of Web Semantics 9.3 (2011), pages 339–345.

[5] C. Böhm, F. Naumann, Z. Abedjan, D. Fenz, T. Grütze, D. Hefenbrock, M.
Pohl, and D. Sonnabend. “Profiling Linked Open Data with ProLOD”. In:
Proceedings of the International Workshop on New Trends in Information Integration
(NTII). 2010.

[6] B. Forchhammer, A. Jentzsch, and F. Naumann. “LODOP - Multi-Query Opti-
mization for Linked Data Profiling Queries”. In: ESWC Workshop on Profiling
& Federated Search for Linked Data (PROFILES). 2014.

[7] B. Glimm, A. Hogan, M. Krötzsch, and A. Polleres. “OWL: Yet to arrive on the
Web of Data?” In: WWW Workshop on Linked Data on the Web (LDOW). 2012.

[8] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph, editors.
OWL 2 Web Ontology Language: Primer. W3C Recommendation, 2009.

[9] S. Khatchadourian and M. P. Consens. “ExpLOD: Summary-Based Exploration
of Interlinking and RDF Usage in the Linked Open Data Cloud”. In: Proceedings
of the Extended Semantic Web Conference (ESWC). Heraklion, Greece, 2010.

109

http://lod-cloud.net/state/
http://lod-cloud.net/state/

Anja Jentzsch: Profiling the Web of Data

[10] A. Langegger and W. Wöß. “RDFStats – An Extensible RDF Statistics Generator
and Library”. In: Proceedings of the International Workshop on Database and Expert
Systems Applications (DEXA). Los Alamitos, CA, USA, 2009, pages 79–83.

[11] H. Li. “Data Profiling for Semantic Web Data”. In: Proceedings of the Interna-
tional Conference on Web Information Systems and Mining (WISM). 2012.

[12] F. Naumann. “Data Profiling Revisited”. In: SIGMOD Record 42.4 (2013).

110

Enterprise Simulations
based on Value Driver Trees

Stefan Klauck

Enterprise Platform and Integration Concepts
Hasso-Plattner-Institute
stefan.klauck@hpi.de

Value driver trees are a well-known method to model dependencies such as the
definition of key performance indicators. While the models have well-known se-
mantics, they lack the right tool support for business simulations, because a flex-
ible implementation that supports multidimensional, hierarchical value driver
trees and data bindings is very challenging. My research tackles this problem
by developing an approach to build enterprise simulations which base on value
driver trees. This new approach consists of two parts: the definition of a simula-
tion meta model and the concept of a simulation tool. The simulation meta model
describes how simulation model instances look like, meaning the structure of the
simulation model graph, the data binding to a database and the parameterization
of the model to simulate data changes. The simulation tool is used to create and
edit simulation model instances and run simulations. Besides the formal descrip-
tion of the approach, this report presents a prototypical implementation of the
simulation tool.

1 Introduction

Companies measure their success based on key performance indicators (KPIs) as
the operating profit or return of investment. Thereby, they are not only interested
in the current state of these KPIs, but also in forecasted values. Companies invest
a significant amount of time in their yearly budgeting process and the resulting
quarterly or monthly forecasts. Value driver trees such as the DuPont model [1] are
a well-known technology to model KPIs with linear equations and dependencies
among another, as introduced by Zwicker [8]. Figure 1 shows a driver tree for the
operating profit. While their semantics are well-known, there is a lack of tool support
to enable simulations based on value driver trees.

For many years, the biggest challenge was the speed to access the data the simula-
tions base on. Value drivers comprise aggregated values for multiple dimensions,
e.g. time and location. To allow flexible simulations on all dimension levels for the
operating profit, sales documents with its line items have to be scanned. The corre-
sponding tables comprise billions of records, specifying the for the simulation rele-

111

mailto:stefan.klauck@hpi.de

Stefan Klauck: Enterprise Simulations based on Value Driver Trees

Operating Profit

Marginal Income Expenses

Net Sales Variable Costs
-

-

Figure 1: Value driver tree for the operation profit

vant attributes date, product, sales volume, price and customer, but also hundreds
of other attributes. The advent of columnar in-memory databases has increased the
performance of queries accessing few attributes of large datasets, which enables the
development of new enterprise applications on top of it, e.g. enterprise simulations
[4, 5]. A flexible approach can replace existing forecast tools like Microsoft (MS)
Excel, which have several drawbacks:

• Lack of flexibility: Existing simulation tools are targeted for specific processes
and are difficult to modify or extend to capture new use cases.

• Complexity: Value drivers can be defined to comprise multiple dimensions as
time, customer, location, product. Many of them can be hierarchically struc-
tured. Simulation tools have to support the drilldown into hierarchies and filter
for specific dimension values.

• Inconsistencies: Simulations with MS Excel enable flexibility at a very high
level, but they are missing efficient data binding techniques which can cause
inconsistencies in the simulation with respect to the underlying data.

• Missing collaboration: Simulations and what-if analyses are often done in many
iterations, with many users in potentially different roles. Collaboration is a
cumbersome and error-prone process with respect to inconsistencies.

My research targets theses deficiencies and tries to find a solution to flexibly create,
configure and run simulations interactively. This comprises two things: First, a way
to define multidimensional dependency graphs, the specification of data bindings
between nodes and data of database tables, and the supported simulations. Second,
a concept to define and edit the graph as well as to specify the parametrization for
the simulation.

This report describes the current state of that research. After this short introduction
into the problem domain, Section 2 presents challenges for dependency graphs and

112

2 Problem Description

derives requirements for the simulation model and the tool. Section 3 describes the
solution approach in a formal way, before an implementation is shown in Section 4.
Related work is presented in Section 5. Section 6 closes the report by presenting the
conclusions and offering an outlook for future work.

2 Problem Description

The operating profit is an important KPI of companies to measure their success. This
section uses it as example to describe the challenges and derives requirements for
the model definition and the simulation tool.

2.1 Model Definition

Figure 2 shows a more comprehensive calculation model for the operating profit. It
extends the model shown in Figure 1 by specifying the calculation for net sales and
variable costs. Both nodes are influenced by the sales volume. In general, nodes can
influence multiple other nodes. That is why, simulation models should be expressed
as dependency graphs instead of trees.

Operations connect two or more nodes. Thereby, the operation specifies not only
the calculation for a single node, but the dependency between the nodes. The oper-
ation between marginal income, net sales and variable costs in Figure 2 means that
given two values of these three, the third one can be calculated.

The values of nodes can be queried from data sources, e.g. database tables, or
calculated with values of connected nodes. The data source specification is inde-
pendent of the dependency graph and is called data binding. When specifying, the
dependency graph and the data binding, one has to ensure that the values of all
nodes can be calculated unambiguously, meaning that the data has to be sufficient
and consistent.

Besides the values, the data binding specifies the dimensions and finest hierarchy
level for each node. A single node with a data source contains values for all attribute
combinations of the dimensions. Dimensions and hierarchies allow to filter the data.
Instead of querying the sales volume of the whole company, one could request it
for a specific product or a selected month. The available dimensions and hierarchy
levels for nodes with calculated values depend on the connecting operation and
dimensions of the connected nodes (cf. Figure 2).

The following points summarize the requirements to model multidimensional
dependency graphs.

113

Stefan Klauck: Enterprise Simulations based on Value Driver Trees

Marginal Income

Net Sales Variable Costs

Sales VolumePrice per Unit Cost per Unit

**

-

Customer, Location, Product, Time(day) Customer, Location, Product, Time(day)

Customer, Location, Product, Time(day)Customer, Location, Product, Time(day) Product, Time(day)

Customer, Location, Product, Time(day)

Expenses

Operating Profit

-

Cost center, Time(month)

Time(month)

Figure 2: Dependency graph for the operation profit: Bold nodes represent data-
sources with its dimensions. The values of nodes which are marked by arrows
can be calculated recursively by following the operations from which the arrows
come.

114

2 Problem Description

1. General driver model: The driver model describes the nodes and its relation-
ships via operations. It has to support multiple dimensions, which can be
hierarchically structured.

2. Data binding: Data bindings connect nodes with data from database tables.
They define the available dimensions and the finest level of hierarchy.

2.2 Simulation Tool

The structure of the dependency graph can change. New KPIs can be defined, which
can be the basis for new simulation scenarios. Data bindings should be editable.
Finally, the simulation tool should allow to parameterize the node values to simulate
changes. The changes of node values can propagate via connected nodes through
the whole model. The simulation model has to define how changes affect connected
nodes. Using the connection between net sales, price per unit and sales volume as
example: Increased net sales can result in an increased price per unit or sales volume.
Besides it could be desirable to ignore the dependency between these nodes, because
one is interested in the effects for the other dependencies of net sales. Following
requirements have been identified for the simulation tool.

115

Stefan Klauck: Enterprise Simulations based on Value Driver Trees

1. Model editor: The model editor should enable users to create and change cal-
culation models as described in Section 2.1.

2. Simulation mode: Simulations specify changes of the queried or calculated
values. They can be defined on all nodes and additionally specify filter criteria
to limit the affected data. The simulation model has to define which nodes are
allowed to influence the values of which connected nodes.

3 Approach

This section describes the approach to develop generic simulation models. It is
divided into three parts: the definition of simulation models, the declaration of
data bindings and the introduction of the simulation tool concept. The following
subsections present the single parts in detail.

3.1 Simulation Model

Simulation models are hypergraphs. Each node has a name, available dimensions
and can be connected with other nodes by operations, which are hyperedges. The
simulation model specifies the available dimensions with its hierarchy levels. Time
can for example be hierarchically structured into years, months, days. The dimen-
sions of a specific node are determined by the data binding or the operation and
dimension specification of connected nodes in case the node has no data source.

Operations define the dependencies between nodes. Each operation has to define
the way it calculates the values for the result nodes. Thereby, the approach can define
the calculations of common operations as addition, subtraction, multiplication and
division, which work in a similar way as for one-dimensional data. Combining the
values of nodes with different levels of hierarchies may require a preaggregation
phase. In other cases, the operation cannot be executed at all. The signature and
algorithm of each operation has to be defined. The addition operation connects two
nodes with the same dimensions and creates a node with values for these specific
dimensions. The hierarchy level of the resulting node is the minimum of both input
nodes.

3.2 Data Binding

Nodes of the value driver tree can obtain their values in two ways. On the one hand,
they can query their data directly from database tables. On the other hand, they
can calculate their values by solving the equation defined by the operation between

116

3 Approach

connected nodes and itself. For the first case, data bindings are required. This report
focuses on relational databases as data source, although it is also possible to use
other sources. Data bindings define the database connection and SQL queries for all
supported dimension filter criteria and hierarchy levels. A generic way to implement
it without specifying each single possible query is to define the SQL query to request
the data for all dimensions at the lowest hierarchy levels. Based on this data, filter
criteria and aggregations can be applied to support selections and views of the data
at higher hierarchy levels.

3.3 Concept of Simulation Tool

The simulation tool supports creating, changing and running simulation models.
In general, different user groups are responsible for model editing and specifying
simulation scenarios. The choice of KPIs and its adaption to better fit the company’s
structure is executed at management level. As the management level does not have
a detailed knowledge of the data schema, it will delegate the task of defining data
bindings to more technical staff. The individual simulations can then be done in
collaboration with controllers. Hence, the tool has two modes to separate these
activities: one for editing simulation model instances, the other for simulating data
changes. The editor mode comprises an interface to create dependency models as
described in Section 3.1 and allows to specify the data binding. A graphical modeling
tool can be used as user-friendly interface, as well as a text editor to describe the
model with structured text, JSON or XML.

Simulation model instances could then be validated before switching to the simu-
lation mode. The simulation mode allows drilldowns, i.e. filtering the node values
by dimensions and hierarchy levels. The number of dimensions specifies the num-
ber of drilldown possibilities. The depth of the hierarchy specifies how deep the
drilldown goes. If a node does not support the current drilldown level, it is excluded
from the simulation. For each drilldown level, simulation parameters can be speci-
fied. Thereby, the model has to define directions for edges to specify which nodes
are affected by the parameterization of connected nodes.

Figure 3 shows an example of a simulation. Based on the dependency graph as
given in Figure 2 with data sources for net sales, sales volume, cost per unit and
expenses, the other nodes can be calculated forming the graph as presented in
Figure 3a. The values are the basis of the simulation. The double arrows specify
in which directions changes are propagated. Each value, independent whether it
was directly queried from a database table or was calculated, can be overwritten
by simulation parameters. Figure 3b shows the simulation of an increased price
per unit ($ 30 instead of $ 15) and how it propagates via the endpoints with double

117

Stefan Klauck: Enterprise Simulations based on Value Driver Trees

arrows. When parameterizing nodes with incoming double arrows, e.g. setting net
sales to $ 200, the connected nodes are ignored (cf. Figure 3c).

4 Simulation Tool Implementation

The simulation tool concepts has been implemented as a prototype. A graphical
editor, implemented with jsPlumb 1, can be used to create and edit calculation mod-
els. JSON is used to persist the calculation model, which specifies the dimensions,
nodes and operations as objects. Nodes with data sources have an sql property. The
prototype uses a single database so that connection details are not stored within the
model. The dimensions and level names map directly to column names so that map-
pings are given implicitly. The available dimensions for nodes with no datasource
are calculated on model load or change. Calculations are described as strings and
are parsed to calculate the values for corresponding nodes. The influenced property
states that changes for the specified node do not result in changes for the connected
nodes. Instead they are ignored.

5 Related work

Besides sophisticated controlling software, spreadsheets, MS Excel in particular, are
the main simulation tool in enterprises. The RS-Controlling-System2 offers Excel
templates for target-performance comparisons of balance sheets, profit and loss state-
ments and capital flows. Spreadsheets have an easy to understand interface, but do
not build on consolidated enterprise data, which is stored in a RDBMS. On the other
side, SQL lacks the support for array-like calculations as Witkowski et al. claim in [6].
Their idea is to combine both and offer a spreadsheet-like computation in RDBMS
through SQL extensions. In [7], they continue that research and introduce a way to
translate MS Excel computations in SQL. The simulation model is thereby expressed
in MS Excel. This approach comes with two drawbacks. First, it does not encapsulate
the definition of the simulation model so that it is not tangible, but only expressed
by multiple formulas spread over many table cells. Second, MS Excel is bound to
the two-dimensional representation and cannot visualize graphical dependencies
very well.

1https://jsplumbtoolkit.com/, accessed December 16, 2014.
2http://www.controllingportal.de/Shop/Excel-Tools/RS-Controlling-
System.html, accessed December 16, 2014.

118

https://jsplumbtoolkit.com/
http://www.controllingportal.de/Shop/Excel-Tools/RS-Controlling-System.html
http://www.controllingportal.de/Shop/Excel-Tools/RS-Controlling-System.html

5 Related work

Marginal Income
Paul, Berlin, P1, 14/10/9, $50

Net Sales
Paul, Berlin, P1, 14/10/9, $150

Variable Costs
Paul, Berlin, P1, 14/10/9, $100

Sales Volume
Paul, Berlin, P1, 14/10/9, 10

Price per Unit
Paul, Berlin, P1, 14/10/9, $15

Cost per Unit
P1, 14/10/9, $10

**

-

Customer, Location, Product, Time(day) Customer, Location, Product, Time(day)

Customer, Location, Product, Time(day)Customer, Location, Product, Time(day) Product, Time(day)

Customer, Location, Product, Time(day)

Expenses
CC1, 14/10, $15

Operating Profit
14/10, $35

-

Cost center, Time(month)

Time(month)

(a) Initial state with data from the database table

Marginal Income
Paul, Berlin, P1, 14/10/9, $200

Net Sales
Paul, Berlin, P1, 14/10/9, $300

Variable Costs
Paul, Berlin, P1, 14/10/9, $100

Sales Volume
Paul, Berlin, P1, 14/10/9, 10

Price per Unit
Paul, Berlin, P1, 14/10/9, $30

Cost per Unit
P1, 14/10/9, $10

**

-

Customer, Location, Product, Time(day) Customer, Location, Product, Time(day)

Customer, Location, Product, Time(day)Customer, Location, Product, Time(day) Product, Time(day)

Customer, Location, Product, Time(day)

Expenses
CC1, 14/10, $15

Operating Profit
14/10, $185

-

Cost center, Time(month)

Time(month)

(b) Simulation with an absolute value for price per unit

Marginal Income
Paul, Berlin, P1, 14/10/9, $100

Net Sales
Paul, Berlin, P1, 14/10/9, $200

Variable Costs
Paul, Berlin, P1, 14/10/9, $100

Sales Volume
Paul, Berlin, P1, 14/10/9, 10

Cost per Unit
P1, 14/10/9, $10

*

-

Customer, Location, Product, Time(day) Customer, Location, Product, Time(day)

Customer, Location, Product, Time(day) Product, Time(day)

Customer, Location, Product, Time(day)

Expenses
CC1, 14/10, $15

Operating Profit
14/10, $85

-

Cost center, Time(month)

Time(month)

(c) Simulation with an absolute value for net sales

Figure 3: Examples of Simulations

119

Stefan Klauck: Enterprise Simulations based on Value Driver Trees

1 {
2 ”dimensions”: {
3 ”time”: [”year”, ”month”, ”day”],
4 ”customer”: [”customer”],
5 ”location”: [”country”],
6 ”product”: [”product”],
7 },
8 ”node1”: {
9 ”name”: ”Operating Profit”,

10 },
11 ”node2”: {
12 ”name”: ”Marginal Income”,
13 },
14 ”node3”: {
15 ”name”: ”Expenses”,
16 ”sql”: ”SELECT cost center, month, sum(amount)
17 FROM expenses”
18 ”dimensions”: {
19 ”Cost center”: ”cost center”, ”time”: ”month”
20 },
21 },
22 ”operation1”: {
23 ”calculation”: ”node1 = node2 + node3”,
24 ”influenced”: ”node1”
25 }

120

6 Conclusion

To describe simulation models, Golfarelli et al. introduce a methodology to for-
mally express and build what-if analyses in [3]. They divide the process to design
simulations into seven phases: goal analysis, business modeling, data source analy-
sis, multidimensional modeling, simulation modeling, data design and implemen-
tation, and validation. To describe the actual simulation model they propose an
extension of UML 2 activity diagrams [2]. However, they do not focus on how to
develop generic simulation applications that are based on the formal descriptions.

6 Conclusion

This paper proposes a new approach to build enterprise simulations. It consists of
a multidimensional generic model to describe the dependencies of value drivers
as basis of simulations and the concept of a simulation tool to create, edit and pa-
rameterize model instances to simulate scenarios. The simulations base, thereby, on
enterprise data, stored in columnar databases.

The main benefits of the solution can be summarized as follows: The generic enter-
prise simulation approach enhances the focus on key factors that drive the business.
Further, it reduces the planning effort and drives cross-functional collaboration
and alignment. By directly using transactional data as a basis for the simulation, it
minimizes consistency issues. Most importantly, the simulation solution provides
leadership with visibility into different alternatives to achieve desired outcomes.

The calculation model and database binding are described in a semi-formal way
in prose text and JSON. My future work will formalize the model and the multi-
dimensional operations. Of special interest are the possibilities and specifications
of simulation changes. Beside, an investigation of optimization strategies for the
required database queries, which base on groupings with different granularities,
will be done.

References

[1] A. Chandler and S. Salsbury. Pierre S. Du Pont and the Making of the Modern
Corporation. BeardBooks, 2000.

[2] M. Golfarelli and S. Rizzi. “UML-Based Modeling for What-If Analysis”. In:
DaWak. 2008, pages 1–12. doi: 10.1007/978-3-540-85836-2_1.

[3] M. Golfarelli, S. Rizzi, and A. Proli. “Designing What-if Analysis: Towards
a Methodology”. In: DOLAP. 2006, pages 51–58. doi: 10.1145/1183512.
1183523.

121

http://dx.doi.org/10.1007/978-3-540-85836-2_1
http://dx.doi.org/10.1145/1183512.1183523
http://dx.doi.org/10.1145/1183512.1183523

Stefan Klauck: Enterprise Simulations based on Value Driver Trees

[4] H. Plattner. “A common database approach for OLTP and OLAP using an in-
memory column database”. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2009, Providence, Rhode Island, USA,
June 29 - July 2, 2009. Edited by U. Çetintemel, S. B. Zdonik, D. Kossmann, and
N. Tatbul. ACM, 2009, pages 1–2. doi: 10.1145/1559845.1559846.

[5] H. Plattner. “The Impact of Columnar In-Memory Databases on Enterprise
Systems”. In: PVLDB 7.13 (2014), pages 1722–1729.

[6] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A. Gupta,
L. Shen, and S. Subramanian. “Spreadsheets in RDBMS for OLAP”. In: ACM
SIGMOD. 2003, pages 52–63. doi: 10.1145/872757.872767.

[7] A. Witkowski, S. Bellamkonda, T. Bozkaya, A. Naimat, L. Sheng, S. Subrama-
nian, and A. Waingold. “Query by Excel”. In: VLDB. 2005, pages 1204–1215.

[8] E. Zwicker. Prozeßkostenrechnung und ihr Einsatz im System der integrierten Ziel-
verpflichtungsplanung. Techn. Univ. Berlin, 2003.

122

http://dx.doi.org/10.1145/1559845.1559846
http://dx.doi.org/10.1145/872757.872767

Proprioceptive Interaction

Pedro Lopes

Human Computer Interaction - Prof. Patrick Baudisch
Hasso-Plattner-Institut

pedro.lopes@hpi.uni-potsdam.de

Wearable and mobile devices allow users to access computing on-the-go. However,
these devices interfere with the users’ primary task, such as having a conversation,
because they heavily rely on the visual sense. We propose a new way of eyes-free
interaction for wearable devices. It is based on the user’s proprioceptive sense, i.e.,
rather than seeing, hearing, or feeling an outside stimulus, users feel the pose of
their own body. We have implemented a proof-of-concept device called Pose-IO
that offers input and output based on proprioception. Users wear Pose-IO on
their forearms. They communicate with Pose-IO through the pose of their wrists.
Users enter information by performing an input gesture by flexing their wrist,
which the device senses using a 3-axis accelerometer. Users receive output from
Pose-IO by finding their wrist posed in an output gesture, which Pose-IO actuates
using electrical muscle stimulation. This mechanism allows users to interact with
Pose-IO without visual or auditory senses, but through the proprioceptive sense
alone.

1 Introduction: why wearable devices?

As computing devices decrease in form-factor, from desktops to mobile phones,
the tendency for mobility emerges. This is a manifestation of our desire to access
computing power on-the-go, from gaming to cloud-based productivity applications,
which happens through small devices that fit in our pockets or through devices that
become an extension of our clothing, such as smartwatches and glasses.

Unfortunately, most wearable I/O devices use modalities that require visual or
auditory attention and interfere with common primary tasks, such as having a con-
versation. To enable devices to be interference-free from daily tasks, researchers
focus on developing eyes-free interactions, i.e., that do not require the visual chan-
nel (which is typically busy with the primary task). The predominant eyes-free
non-auditory type of output is vibrotactile output. Unfortunately, it is subject to a
range of limitations. Karuei et al. found that vibrotactile output degrades in mobile
situations, such as while walking [4]. Furthermore, vibrotactile output was found
to offer only limited bandwidth [8] and is hard to learn because it lacks mnemonic
properties [6]. To cope with these limtations of vibrotactile feedback, Roudaut et al.

123

mailto:pedro.lopes@hpi.uni-potsdam.de

Pedro Lopes: Proprioceptive Interaction

proposed an eyes-free symmetric input and output technique [9]. Their prototype,
Gesture Output, unifies input and output vocabularies in the form of 2D finger ges-
tures on a mobile phone with an actuated touchscreen. Here, users feel the system’s
reply in the form of a gesture, which is sensed, not visually, but through their sense
of proprioception.

2 Backround: what is proprioception?

The human proprioceptive sense allows sensing the position, orientation, and move-
ment of limbs, joints, and muscles [2]. Some debate has taken place whether pro-
prioceptive and kinesthetic are separate senses. However, the medical community
points that the term proprioception encompasses kinesthesia within [2]. More im-
portantly, research suggests that proprioception is independent from the visual and
auditory channels [2, 3]. Apart from research in cognitive and medical domain, pro-
prioception has been often evoked in HCI with regards to haptic feedback. Bark et
al. showed how the skin stretch sensation (part of proprioception), which is elicited
once a muscle is moved, is superior to vibrotactile feedback for input tasks in which
the user controls a cursor [1].

3 Related work

The work proposed in this paper builds on proprioceptive feedback and wearable
interfaces for eyes-free interaction. Furthermore it is inspired by different approaches
to muscle-based input or output. Given that we already presented wearable devices
and proprioception, we now turn into muscle input and output.

3.1 Reading Muscle Activity

More recently, researchers started measuring muscle activity as a means of achiev-
ing small wearable input devices that are controlled using finger flexion, such as the
forearm electromyography input device by Saponas et al. [10]. We gathered inspira-
tion from these findings and designed Pose-IO to be a wearable bracelet mounted
onto the user’s arm, which can read input signals from hand motion.

124

4 Proprioceptive Interaction

3.2 Actuating Users: Mechanically and using EMS

Actuating the user’s body using mechanical actuators is common in haptics. The
most common mechanical approaches actuate the body using pulley mechanisms.
These mechanical actuators displace the user’s body by pulling one limb using mo-
tors; a notable example is the SPIDAR [12]. The aforementioned Gesture Output [9] is
yet another example of such a system. Likewise, exoskeletons such as FlexTorque [12]
are a sub-class of pulley systems but attach the complete infrastructure to the user.
While mechanical actuators are great for their accuracy and output power, they
require attaching exoskeletons, motors and large batteries to the user.

As such, Electrical Muscle Stimulation (EMS) has been proposed as a means of
mobile actuation [7]. EMS has been applied in a range of interactive applications,
ranging from gaming [5] to assistive learning (e.g., Possessed Hand [11]). Lopes
et al. demonstrated EMS as a means to implement force-feedback in mobile de-
vices [7]. Since these systems do not use a control loops, actuation works through
pre-calibration.

4 Proprioceptive Interaction

Figure 1 illustrates the concept of proprioceptive interaction. Proprioceptive interac-
tion allows for input and output by posing one of the user’s limbs, here the user’s
wrist. Users enter information by performing an input gesture, here flexing their
wrists inwards. The device senses this using its accelerometer. Users can perform
such a gesture eyes-free, as their proprioceptive sense informs them about the posi-
tion of their wrist. Users receive output from a proprioceptive interface by finding
their body posed in an output gesture, here again the wrist. Also this they perceive
eyes-free by means of their proprioceptive sense.

The interaction shown in Figure 1 is of the “purest” form in that input and output
occur through the same limb, here the wrist. This “symmetric” interaction results
in a particularly intuitive interaction [9]. However, proprioceptive input and output
may also occur through different limbs, e.g., when the application requires more
input than output or more output than input. We call this asymmetric proprioceptive
interaction, which is depicted in Figure 2.

4.1 Prototypes

As shown in Figure 3, Pose-IO’s hardware design has the form of a bracelet with
attached electrodes. The bracelet is comprised of 3D-printed sections, each hosting
parts of the embedded electronics.

125

Pedro Lopes: Proprioceptive Interaction

Figure 1: Symmetric proprioceptive interaction revolves around the pose of one of
the user’s limbs, here the wrist.

Figure 2: In an asymmetric proprioceptive interaction, input and ouput occur
through different limbs.

Figure 3: The 3D printed Pose-IO bracelet

126

4 Proprioceptive Interaction

Figure 4 shows the opened-up bracelet. Pose-IO writes output to the muscles using
a medically-compliant electri-cal muscle stimulation unit (TruTens V3) connected to
four pre-gelled electrodes (50×50 mm). The amplification for the Electrical Muscle
Stimulation is regulated by two CMOS digital potentiometers with non-volatile
memory (X9C103, 10 kΩ) controlled by an Arduino Nano using a three-wire serial
interface.

Figure 4: A Pose-IO bracelet unrolled and with the top enclosure removed. On the
left side, the additional EMG unit.

Electrical Muscle Stimulation (EMS)
Pose-IO creates its EMS signal as a biphasic waveform. Its signal pulsates at 120 Hz
with a pulse-width of 150 μs. The current is limited to 100 mA, allowing for safe
operation. Given that the lowest power settings of the EMS unit did not achieve
muscle actuation with the users we tested with, we stepped up the control curve
by adding a 10 kΩ resistor in parallel to the EMS unit’s variable output and input
pins. This allows Pose-IO to achieve a smoother output current curve. Upon first
use, users calibrate Pose-IO’s EMS device by specifying the lowest stimulus that
still leads to a recog-nizable sensation (there is no visible hand motion at this level)
as well as the maximum signal that the user perceives as comfortable. At all times,
Pose-IO use is pain-free. Figure 5 shows the placement of the EMS electrodes on the

127

Pedro Lopes: Proprioceptive Interaction

extensor digitorum (wrist extension) and on the flexor digitorum superficialis (wrist
flexion).

Figure 5: Placement for Pose-IO’s EMS electrodes for wrist flexion and extension

Accelerometer
Pose-IO uses the accelerometer’s Y-axis to determine the user’s wrist position as the
tilt of the user’s hand against the horizontal, sampled at 50 Hz. We also made an
extended version of the device that determines the wrist pose with respect to a sec-
ond accelerometer worn on the forearm. This allows users to operate Pose-IO in any
body posture. Users invoke and dismiss Pose-IO by holding the hand horizontally
and then shaking it, which Pose-IO senses by looking for acceleration along any of
the other accelerome-ter axes. Pose-IO sends commands to its applications, such as
aforementioned games, which it runs on the Arduino microcontroller. Pose-IO talks
to software running on other computers, such as the video player in the presenter
tool scenario, via Bluetooth. Depending on version, Pose-IO either uses an Axivity
WAX3 or WAX9 3-axis wireless accelerometer that user wear on their ring finger.
After removing them from their casing, both measure 34.5 mm × 16 mm × 15 mm
and offer 4 mg resolution. The WAX-3 sends data over IEEE802.15.4 radio, which we
convert using a laptop com-puter with a radio dongle; this issue we resolved with
the newer WAX9, which sends data directly to Pose-IO’s Ar-duino via Bluetooth.
Pose-IO is powered by a 9 V power supply comprised of three 3.7V lithium ion
rechargeable batteries connected in series and regulated using an L7809CV. Under
continuous use, Pose-IO offers around 4 hours of battery-life on the bracelet and 8
hours on the accelerometer.

Control Loop for Symmetric Input and Output
When tracking an external signal, such as the video play position, Pose-IO actuates
the user’s muscles using a PID control loop. We obtain oscillation-free behavior

128

4 Proprioceptive Interaction

using the gain factors: Kp = 1.2, Kv = 1.1, Ki = 0.5 (Figure 6). Pose-IO calculates the
error derivative on a moving average over the 10 last measured velocities.

Figure 6: Behavior of Pose-IO’s PID control

If the accelerometer value deviates from the system state by 10°, Pose-IO assumes
that the user intends to override the system state—in the video scrubbing scenario
this allows users to override the video play head position.

4.2 Study 1: symmetric proprioceptive input and output

The purpose of our first study was to verify our basic proprioception interaction
concept, i.e., interaction by means of posing the wrist. The study focuses on sym-
metric input/output. For each trial, Pose-IO posed the participant’s wrist at a target
angle and held it stable for one second, played a sound, and dismissed the pose,
causing the hand to drop. Participants’ task now was to recreate the previous pose.
When satisfied, participants pressed a keyboard button, which caused the system to
record the trial. For each trial, we recorded Pose-IO’s accelerometer reading during
the target pose and during the recreated pose.

Procedure
There were 7 target angles in 20° steps between 60° (flexion) and 60° (extension)
reflecting the biomechanical constrains of the human wrist. Each participant per-
formed (7 target positions × 4 repetitions) = 28 trials. Target angles were presented

129

Pedro Lopes: Proprioceptive Interaction

in random order. Prior to the first trial, we calibrated the device for the respective
participant. However, participants received no training on the task, as our expecta-
tion was that the unified correspondence between input and output would allow
participants to complete the task based on their natural sense of proprioception
alone.

Participants
We recruited 10 participants (3 female) from our local organization. All were right-
handed.

Results
Participants recreated poses with an average error of 5.8° (SD = 5.1°) across all tri-
als. A linear regression found the overall model fit to be R2 = 0.954. Furthermore,
tilting the hand up further resulted in slightly larger errors (mean = 6.49, SD = 5.93)
(mean = 5.19, SD = 4.18). However, we found no statistical significant difference be-
tween any of the angles. For simplicity we present the results for the pairs with
larger deviation, e.g., 40° vs. −60° (Z=-1.886; p=0.059) and 60° vs. −60° (Z=-1.274;
p=0.203).

Discussion
Our results show that the interaction did actually use and benefit from proprio-
ception. As observed participants re-posing was accurate and included reposing
of fingers. The results suggest that proprioceptive interaction’s ability to allow for
symmetric input and output offers benefits when it comes to recreating poses, as
users can perceive and re-pose their wrist using their proprioceptive sense. On a
practical level, participants acquired the target poses with comparably high accu-
racy, i.e., 5.8° error on average. With respect to the motion range of 60° to 60° = 120°
this represents an error of under 5 %. If we map these values back to the motivating
example of video scrubbing, this means that Pose IO would allow users to jump to
a spot in a 1-minute video clip with ±3 seconds accuracy, which we would argue to
be a useful level of performance. Obviously, these values were obtained under ide-
alized conditions, i.e., a sitting user and immediate recreation of a pose, so should
be interpreted as a lower bound for error.

4.3 Study 2: asymmetric proprioceptive input and output

While our discussion so far was focused on the technical aspects and abilities of
proprioceptive interaction, one of its aspects that we are personally intrigued about
is its way of representing the computer as part of the user’s body. Very unlike tra-
ditional human computer interaction systems, where computers are outside and

130

4 Proprioceptive Interaction

different from the user, proprioceptive interfaces make the user’s limbs themselves
serve as the interface, which we argue is the very essence of proprioception—after
all the work stems from Latin “proprius”, meaning “one’s own”. Our video-scrubber
application makes the hand partially “owned” by the user and partially owned by
the machine. The two games we showed earlier push this approach even further
by questioning that notion of “ownership” in that they cause one hand to be fully
owned by the machine.

We were wondering how users perceive this aspect of proprioceptive interaction
and what emotional response it might produce. This is what we investigated in this
second, exploratory study. We had participants play the red hands game described
earlier. We recorded participants’ response to the interface on video and had them
fill in a question-naire.

Setup
We recruited 12 participants (3 female) from our local organization, which did not
partake in the previous study, and asked them to play the red hand game for about
5 minutes. As discussed earlier, participants’ objective was to evade getting slapped
by the computer-controlled hands. All participants received candy as a small in-
centive to par-ticipate and we promised additional candy to whoever would score
highest. The game offered levels of increasing difficulty. As mentioned earlier, these
were implemented in the form of barely noticeable actuation of the slapping hand
before the actual slap (750 ms to 50 ms, depending on level). We did not tell par-
ticipants about this “warning” mechanism, making it part of the game to either
consciously or unconsciously figure it out. For this study we used an earlier Pose-IO
prototype, i.e., same hardware but not wearable yet. To make sure participants only
responded to the pose inter-action, we canceled out any auditory signals by mak-
ing them wear noise-cancelling headphones that played music. Each study session
started by participants calibrating Pose IO, familiarizing themselves with the game
mechanics, and playing one training level with 10 slaps. They then played 5 levels
with about 10 slaps each. If they got hit less than 3 times per level, they proceeded
to the next level and their score continued to go up. If not, their score stopped in-
creasing, but we still let them finish the remaining levels to give them a chance to
experience the complete game.

Findings
We had designed the game to be challenging and partici-pants took the game quite
seriously. All except one participant completed level 3; three level 4, and two made it
to the fifth and final level. Participants rated the first two levels as easy (mean = 2.0
of 5; 1 = very easy, 5 = very hard) and the last levels as hard (mean = 3.92 of 5). All
participants rated the game as fun (mean = 4.6 of 5). When asked why, seven partic-
ipants pointed to the fact that they felt as if they were “playing against themselves”.

131

Pedro Lopes: Proprioceptive Interaction

Several participants went back and forth between referring to the hand wearing
the device as “me” and as “computer”, such as “it is weird that you lose against
yourself” and “sometimes the computer hand was faster than I”.

In the last two levels, ten of twelve participants stopped looking at their hands
while awaiting the slaps. When asked about it, only two stated to have played always
looking at their hands, while five participants stated to play eyes-free and seven
stated to have rarely looked. This suggests that participants operated our application
by means of proprio-ception alone.

Most participants agreed that the muscle output had con-tributed to their excite-
ment (mean = 4.91 of 5). One of the two participants who had continued to look at
their hands explained: “it was so remarkable to see my hand moving without my
intention that I could not look away”.

In summary, watching the twelve participants confirmed that Pose IO affords
being operated eyes-free and that players perceived the “blurred ownership” of the
user’s body as compelling. We discuss this further in the conclusions.

5 Conclusion and outlook

In this paper, we proposed the concept of proprioceptive interaction, which we in-
stantiate through a wearable prototype. Proprioceptive interaction leverages the
user’s proprioceptive sense for both input and output, i.e., the use of pose as a bidi-
rectional communication channel between human and computer. We demonstrated
how proprioceptive interactions allows for (1) eyes-free and ears-free use; (2) invoke
the device any time and return to their primary task immediately when necessary;
and, provides (3) two modalities: symmetric, in which input and output occur in the
same limb, and asymmetric (i.e., one limb for input, another for output). A unique
aspect of proprioceptive interaction is that it represents the computer using a part
of the user’s body, which our second study suggests that participants found this
experience compelling.

5.1 Future Work

As next steps for my research I plan to investigate how these type of interfaces (i.e.,
poses as input and output) provide support in interacting with unfamiliar objects.
Thus the next step is a deeper understanding of the usability implications of my
research.

132

References

5.2 Projects under submission

• Proptioceptive Interaction (working title), Pedro Lopes, and Patrick Baudisch

• Affordance++ (working title), Pedro Lopes, Patrik Jonell, and Patrick Baudisch

5.3 Pedagogical Activities and Other

• Certificate of International Teaching Professional, University of Potsdam.

• Editor of ACM XRDS Magazine.

References

[1] K. Bark, J. W. Wheeler, S. Premakumar, and M. R. Cutkosky. “Comparison of
Skin Stretch and Vibrotactile Stimulation for Feedback of Proprioceptive In-
formation”. In: Proceedings of the 2008 Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems. HAPTICS ’08. IEEE Computer Society,
pages 71–78. doi: 10.1109/HAPTICS.2008.4479916.

[2] S. Daniel. Handbook of Phenomenology and Cognitive Science. Edited by S. Gal-
lagher. Springer, 2010.

[3] E. Gardner and J. Martin. Coding of Sensory Information, Principles of Neural
Science. McGraw-¯Hill.

[4] I. Karuei, K. E. MacLean, Z. Foley-Fisher, R. MacKenzie, S. Koch, and M. El-
Zohairy. “Detecting Vibrations Across the Body in Mobile Contexts”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. CHI
’11. Vancouver, BC, Canada: ACM, pages 3267–3276. doi: 10.1145/1978942.
1979426.

[5] E. Kruijff, D. Schmalstieg, and S. Beckhaus. “Using Neuromuscular Electrical
Stimulation for Pseudo-haptic Feedback”. In: Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology. VRST ’06. Limassol, Cyprus:
ACM, pages 316–319. doi: 10.1145/1180495.1180558.

[6] K. Li. “Designing easily learnable eyes-free interaction”. PhD thesis. SanDiego.
[7] P. Lopes and P. Baudisch. “Muscle-propelled Force Feedback: Bringing Force

Feedback to Mobile Devices”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’13. Paris, France: ACM, pages 2577–2580.
doi: 10.1145/2470654.2481355.

133

http://dx.doi.org/10.1109/HAPTICS.2008.4479916
http://dx.doi.org/10.1145/1978942.1979426
http://dx.doi.org/10.1145/1978942.1979426
http://dx.doi.org/10.1145/1180495.1180558
http://dx.doi.org/10.1145/2470654.2481355

Pedro Lopes: Proprioceptive Interaction

[8] T. Ni and P. Baudisch. “Disappearing Mobile Devices”. In: Proceedings of the
22Nd Annual ACM Symposium on User Interface Software and Technology. UIST
’09. Victoria, BC, Canada: ACM, pages 101–110. doi: 10 . 1145 / 1622176 .
1622197.

[9] A. Roudaut, A. Rau, C. Sterz, M. Plauth, P. Lopes, and P. Baudisch. “Gesture
Output: Eyes-free Output Using a Force Feedback Touch Surface”. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’13.
Paris, France: ACM, pages 2547–2556. doi: 10.1145/2470654.2481352.

[10] T. S. Saponas, D. S. Tan, D. Morris, R. Balakrishnan, J. Turner, and J. A. Landay.
“Enabling Always-available Input with Muscle-computer Interfaces”. In: Pro-
ceedings of the 22Nd Annual ACM Symposium on User Interface Software and Tech-
nology. UIST ’09. Victoria, BC, Canada: ACM, pages 167–176. doi: 10.1145/
1622176.1622208.

[11] E. Tamaki, T. Miyaki, and J. Rekimoto. “PossessedHand: Techniques for Con-
trolling Human Hands Using Electrical Muscles Stimuli”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. CHI ’11. Vancouver,
BC, Canada: ACM, pages 543–552. doi: 10.1145/1978942.1979018.

[12] D. Tsetserukou, K. Sato, and S. Tachi. “ExoInterfaces: Novel Exosceleton Hap-
tic Interfaces for Virtual Reality, Augmented Sport and Rehabilitation”. In:
Proceedings of the Augmented Human. AH ’10. Megève, France: ACM, pages 1–6.
doi: 10.1145/1785455.1785456.

134

http://dx.doi.org/10.1145/1622176.1622197
http://dx.doi.org/10.1145/1622176.1622197
http://dx.doi.org/10.1145/2470654.2481352
http://dx.doi.org/10.1145/1622176.1622208
http://dx.doi.org/10.1145/1622176.1622208
http://dx.doi.org/10.1145/1978942.1979018
http://dx.doi.org/10.1145/1785455.1785456

Question Answering for Biomedicine

Mariana Neves

Enterprise Platform and Integration Concepts
Hasso-Plattner-Institut

Mariana.Neves@hpi.uni-potsdam.de

Question answering systems can support biologists and physicians when search-
ing for answers in the scientific literature or the Web. It allows users to pose
questions in natural language instead of keywords and to receive short answers
in return instead of documents which might be relevant to the query. Further,
multilingual question answering systems provide more possibilities and flexibil-
ity to users, by allowing them to write questions and get answers in their native
language, and the exploration of resources in other languages by means of ma-
chine translation. In this report I present my recent work on biomedical question
answering and its evaluation during participation on the BioASQ challenge and
on a multilingual dataset for English, German and Spanish.

1 Introduction

Question answering (QA) is the task of posing questions to search engines and
receiving an exact answer in return [4]. For instance, biologists frequently look
for answers in the scientific literature or in the Web to confirm results obtained
in the laboratory, e.g., whether a certain disease could be associated to a particular
genetic mutation. However, answers to such questions can be scattered over different
scientific publications (abstracts and full text), biological databases and Web pages.

QA differs to information retrieval in two main aspects: (a) queries are presented
as natural language questions (long input) instead of a set of keywords (short input);
and (b) an exact and short answer (yes/no, a fact or a paragraph) is returned instead
of a list of potential documents which might contain a answer. A variety of QA
systems have been developed for the so-called open domain (e.g., START1) and the
field has received increasing attention from the scientific community since the IBM
Watson system beat human participant in the Jeopardy TV show [3].

Multilingual question answering systems offer a variety of new possibilities to
the user, also for the biological domain. Although most of the relevant scientific
publications are available in the English language, there is a myriad of other re-
sources in other languages that could be explored, such as non-English biomedical

1http://start.csail.mit.edu/index.php, accessed December 16, 2014.

135

mailto:Mariana.Neves@hpi.uni-potsdam.de
http://start.csail.mit.edu/index.php

Mariana Neves: Question Answering for Biomedicine

scientific literature (e.g., Scielo2 for Spanish and Portuguese), as well as the whole
Web. Further, a multilingual QA system allows non-native English speakers to pose
questions and receive answers in their native language while the system queries
English (or any other language) documents by means of machine translation.

In this report I describe the architecture of my question answering system and
present its evaluation on the BioASQ challenge [8] and on a multilingual collection
of questions which includes the German and Spanish languages [9]. The QA system
was developed on the top of an in-memory database which include built-in text
analysis functionalities for eleven languages. Additionally, I have created and made
available two parallel collections of 50 questions each for English/German and
English/Spanish.

2 Related work

Despite the importance of QA systems for Biology, not much previous work has
been carried out for this domain, when compared to the state-of-art solutions in the
medical domain [1]. Currently, there seems to be only three QA systems available for
Biomedicine [2]: EAGLi3, AskHermes4 and HONQA5. However, both AskHermes
and HONQA have a focus on Medicine and might not be suitable for biologists.
Nevertheless, this scenario has been changing in the last couple of years thanks to
new initiatives such as the QA4MRE [7] and BioASQ [11] challenges which support
improvements in biomedical question answering.

Previous research is scarce in the biomedical multilingual question answering
field and in biomedical natural language processing (NLP) in general. From the QA
systems cited above, only HONQA allows questions to be posed in other languages
than English, namely Italian and French, whose performance has been evaluated
in [10]. The biomedical research seems to be always one (or more) step behind
state-of-art in NLP for other domains due to its complexity and the lack of suit-
able resources for system development and evaluation. For instance, QA systems
need to rely in high performing tools for the many pre-processing steps, such as
tokenization, part-of-speech tagging and parsing. However, previous research have
proved that sometimes specific models might be necessary for some domains, such
as Biomedicine [6]. One important step towards improvements in biomedical NLP is
the recent EU-funded Multilingual Annotation of Named Entities and Terminology
Resources Acquisition (Mantra) project [13] which has supported improvements in

2http://www.scielo.org/, accessed December 16, 2014.
3http://eagl.unige.ch/EAGLi/, accessed December 16, 2014.
4http://www.askhermes.org/, accessed December 16, 2014.
5http://www.hon.ch/QA/, accessed December 16, 2014.

136

http://www.scielo.org/
http://eagl.unige.ch/EAGLi/
http://www.askhermes.org/
http://www.hon.ch/QA/

3 Methods and Material

named-entity recognition of biomedical terms during the CLEF-ER challenge last
year. Finally, improvements in machine translation for Biomedicine have also been
recently published [5].

3 Methods and Material

I have developed a system which relies on the in-memory database technology [12]
and built-in text analysis provided by the SAP HANA database (hereafter called
“HANA”). In this section I start by presenting the datasets which have been used
and/or developed for the evaluation and describe the system architecture.

3.1 BioASQ dataset

The BioASQ challenge6 is an EU-funded project which aims to foster research and
solutions on biomedical question answering. A first challenge was run in 2013 as
part of CLEF 2013 [11] and a new edition has been held in 2014 together with other
QA and machine reading-related tasks7. The BioASQ challenge consists of two main
tasks: (2a) Large-Scale Online Biomedical Semantic Indexing and (2b) Biomedical
Semantic QA, the one in which I participated. The later is sub-divided in two phases:
Phase A and Phase B. In Phase A of task 2b, questions and their respective type
(yes/no, factoid, list or summary) were released and participants were requested to
provide the following information:

1. a list of relevant concepts belonging to five predefined ontologies and termi-
nologies (GO, DO, MeSH, Jochem and Uniprot);

2. a list of relevant articles from PubMed8;

3. a list of relevant snippets, including the PubMed document of origin, the start
and end sections and offsets in the documents, and the text of the snippet;

4. a list of relevant RDF triples.

In Phase B of task 2b, participants were provided with the questions and respective
types released for Phase A as well as gold-standard information for Phase A, i.e,
manually curated relevant concepts, documents, snippets and RDF triples. This time
participants were requested to submit the following answers:

6http://bioasq.org/, accessed December 16, 2014.
7http://nlp.uned.es/clef-qa/, accessed December 16, 2014.
8http://www.ncbi.nlm.nih.gov/pubmed, accessed December 16, 2014.

137

http://bioasq.org/
http://nlp.uned.es/clef-qa/
http://www.ncbi.nlm.nih.gov/pubmed

Mariana Neves: Question Answering for Biomedicine

1. an exact answer for the question: “Yes” or “No” for yes/no questions, and a
single or a list of short answers for factoid and list questions, respectively.

2. an ideal answer, which consists of a short paragraph for the summary questions
as well as an extended answer to the yes/no, factoid and list questions.

A training dataset which includes of 310 questions and manually curated infor-
mation for both Phases A and B was released for the participants to allow training
and/or evaluation during system development.

3.2 Multilingual question corpus

A collection of biomedical question in English, German and Spanish [9] has been
created together with a visiting Master student at the EPIC group. The construction
of the collection of parallel questions was based on the Medline documents in Span-
ish and German of the CLEF-ER resource (cf. below) which contain a corresponding
document in English. We chose this approach to allow a comparison between results
obtained with German and Spanish with those in English on the same documents.

Batches of 50 documents (titles) were randomly retrieved from the above datasets
and titles were manually chosen according to their relevance to the biomedical do-
main. During manual screening of the titles, we avoided documents related only
to the medical domain, an area where state-of-art in question answering is more
advanced in comparison to the biological one [1]. In particular for the Spanish ques-
tions, we selected titles related to tropical neglected diseases, which is a frequent
topic on publications in the Medline collection for this language.

Questions were manually written in a way that at least one answer could be found
in the corresponding document, i.e., the document’s title. However, not all of the
information cited in the text was always used and the questions sometimes are
more general than the respective text. We have generated only factoid questions,
i.e., questions which requires one or more specific short answer in return, such as
a chemical compound, an organism or a disease. While writing the questions, we
tried to rephrase the text, used synonyms for both the named entities and remain-
ing words (whenever possible), changed the word’s lexical class (e.g., from verb
to noun), and converted passive voice to active voice, or the other way round. Syn-
onyms for the lexical terms were supported by making queries to a variety of on-line
language-specific dictionaries.

The semantic concepts referred in the text were also, whenever possible, changed
to a equivalent synonyms. This task was supported by a variety of on-line resources,
such as Wikipedia (for the three languages), NCBI Taxonomy and other web sites
which were returned by the Google search engine. Therefore, we did not make use
of the thesaurus made available by the CLEF-ER challenge (cf. below), instead, we

138

3 Methods and Material

have tried to use the resources that the users (biologists) might use while posing
questions to a QA system.

Questions were initially written in English and were reviewed by an expert in
molecular biotechnology. In a second step, the questions were translated into Spanish
and German by the authors, who are either native or have advanced knowledge on
the languages. We have also sought to use synonyms for the words and concepts
in this step. Finally, we tried to make the questions with similar difficulty level in
both languages. Some examples of questions are presented in Table 1 and the list of
parallel questions is available for download9.

Table 1: Examples of parallel questions from the English/German and the En-
glish/Spanish datasets

English/German (document d6357751)
Which methods can be used to determine the living cell
count of cariogenic microorganisms?
Welche Methoden bieten sich zur Bestimmung der
Lebendzellzahl von kariogenen Mikroorganismen an?
English/Spanish (document d16888692)
What are possible drug targets for eye related infections?
Cuáles son los posibles objetivos farmacológicos en
infecciones relacionadas con el ojo?

CLEF-ER resources
The CLEF-ER challenge took place in 2013 as part of the Mantra project10 which aims
to provide multilingual documents and terminologies for the biomedical domain.
For the scope of this challenge, Medline and patent documents have been released
in five languages: English, German, French, Spanish and Dutch. Mapping to English
documents were provided for all documents in each of the languages other than En-
glish but no mapping seems to exist between documents from two other languages,
e.g., between Spanish and German.

For creating the collection of questions described above, we have utilized the Med-
line documents collections, which in fact consists only of the title of the documents.

9https://sites.google.com/site/marianalaraneves/resources/, accessed
December 16, 2014.

10https://sites.google.com/site/mantraeu/home, accessed December 16, 2014.

139

https://sites.google.com/site/marianalaraneves/resources/
https://sites.google.com/site/mantraeu/home

Mariana Neves: Question Answering for Biomedicine

Figure 1: Architecture of the system. The data work-flow for the three components
are identified by distinct colors: “red” for question processing, “green” for concept
recognition and “blue” for document and passage retrieval.

We have restricted our work to Spanish and German, given the support of the SAP
HANA database for these languages and the knowledge of the authors on them.

Organizers have also released a terminology containing synonyms for terms in the
above languages, which has been compiled from three resources: Medical Subject
Headings (MeSH), Systematized Nomenclature of Human and Veterinary Medicine
(SNOMED-CT) and Medical Dictionary for Regulatory Activities (MedDRA).

3.3 System architecture

Question answering systems usually include three main components [1]: question
processing, passage retrieval and answer processing. My system currently includes
only the two first steps. A schema of the system is shown in Figure 1 and each of its
components are described in details below.

140

3 Methods and Material

3.4 Question processing

The question processing component includes sentence splitting, tokenization, part-
of-speech tagging and chunking using the Stanford CoreNLP package11. For the
multilingual prototype, I use the OpenNLP Maximum Entropy-based tokenizer and
part-of-speech tagger and the corresponding available models for English and Ger-
man12. Given that no models are available for the Spanish language, I have used the
one available for Portuguese for the tokenization step, given the similarity between
these languages and that tokenization is even more challenging in the later due
to the composed words, which are not common in Spanish. For the part-of-speech
tagging in Spanish, I have used the Maxent model made available by Juan Manuel
Caicedo Carvajal13. Queries was generated from the original question based on both
tokens and chunks.

When evaluated on the BioASQ dataset, I performed query expansion based on
the extracted tokens and by calling services from BioPortal14. I required exact match
of the term to avoid potential wrong synonyms. For evaluation over the multilingual
corpus of questions, query expansion was performed using the CLEF-ER terminolo-
gies resources (cf. above). The CLEF-ER thesaurus has been loaded into the HANA
database and a fuzzy search is carried out for each token in the query against the
synonyms available for the corresponding language.

Weights are assigned for the terms of the query and the corresponding synonyms
and are calculated based on the popularity of the term in the BioPortal (or CLEF-ER)
resource. The higher the number of synonyms which match to a term, the lower
the weight of the later. Tokens which do not match any synonyms are assigned
weight 0.5, i.e., an average weight. Otherwise, weights are calculated based on the
number of terms which matched to this particular token (#MatchesToken) and the
total number of terms matched to all tokens of the query (#MatchesTotal), following
the expression below:

weight = 1−
#MatchesToken
#MatchesTotal (1)

3.5 Concepts retrieval

For each question in the BioASQ challenge, participants were required to return
relevant concepts in five ontologies or terminologies: MeSH, GO, SwissProt, Jochem

11http://nlp.stanford.edu/software/corenlp.shtml, accessed December 16, 2014.
12http://opennlp.sourceforge.net/models-1.5/, accessed December 16, 2014.
13http://cavorite.com/labs/nlp/opennlp-models-es/, accessed December 16,

2014.
14http://data.bioontology.org/documentation0, accessed December 16, 2014.

141

http://nlp.stanford.edu/software/corenlp.shtml
http://opennlp.sourceforge.net/models-1.5/
http://cavorite.com/labs/nlp/opennlp-models-es/
http://data.bioontology.org/documentation0

Mariana Neves: Question Answering for Biomedicine

Figure 2: Concepts retrieved by the HANA database for the sentence “Is Rheumatoid
Arthritis more common in men or women?” (5118dd1305c10fae75000001) from
the training data

and DO. Concepts were retrieved using two approaches: by matching previously
compiled dictionaries to the text of the question using HANA and by making queries
to the BioPortal web services.

The original ontologies and terminologies were retrieved from the respective web
sites15 and one dictionary was compiled for each of them. The dictionaries were con-
verted to HANA database XML format, compiled and used for matching the terms
in the text of the questions, which were previously loaded into a table in the database.
I generated an index which includes the identifier of the document (question), the
text span which was matched, the terminology/ontology, the respective identifier
and the start offset with respect to the original text of the question, as shown in
Figure 2. The terms recognized by HANA were retrieved from the database and I
skipped those matches whose text length was less than 3 and which coincided with
stopwords or Greek letters.

The second approach retrieved concepts of the MeSH and GO ontologies by mak-
ing queries to the BioPortal Recommender16. Queries were created based on the full
text of the question17 and all returned concepts were considered.

15http://www.ncbi.nlm.nih.gov/mesh, http://www.geneontology.org/, http:
//www.uniprot.org/, http://www.biosemantics.org/, http://disease-
ontology.org/, all accessed December 16, 2014.

16http://data.bioontology.org/documentation, accessed December 16, 2014.
17e.g., “http://data.bioontology.org/recommender?text=Is+Rheumatoid+

Arthritis+more+common+in+men+or+women%3F&ontologies=GO%2CMESH&
include_classes=true&apikey=7795d203-29ce-4f89-85aa-02c3555b21dd”

142

http://www.ncbi.nlm.nih.gov/mesh
http://www.geneontology.org/
http://www.uniprot.org/
http://www.uniprot.org/
http://www.biosemantics.org/
http://disease-ontology.org/
http://disease-ontology.org/
http://data.bioontology.org/documentation
http://data.bioontology.org/recommender?text=Is+Rheumatoid+Arthritis+more+common+in+men+or+women%3F&ontologies=GO%2CMESH&include_classes=true&apikey=7795d203-29ce-4f89-85aa-02c3555b21dd
http://data.bioontology.org/recommender?text=Is+Rheumatoid+Arthritis+more+common+in+men+or+women%3F&ontologies=GO%2CMESH&include_classes=true&apikey=7795d203-29ce-4f89-85aa-02c3555b21dd
http://data.bioontology.org/recommender?text=Is+Rheumatoid+Arthritis+more+common+in+men+or+women%3F&ontologies=GO%2CMESH&include_classes=true&apikey=7795d203-29ce-4f89-85aa-02c3555b21dd

4 Results and evaluation

3.6 Passages and documents retrieval

For each question from the BioASQ dataset, I perform four queries to the BioASQ
PubMed service18 according to whether considering query expansion or not and
whether using “OR” or “AND” operators between the tokens. I retrieve up to the 500
top ranked documents and I only consider titles and abstracts. However, an analysis
of the BioASQ training dataset shows that these constitute about 90% of the relevant
passages (5240 out of 5781 snippets).

The text of the titles and abstracts were inserted into the HANA database and
a full text indexing was performed on them which include sentence splitting and
tokenization. Queries were posed to the HANA database based on the terms of the
query (including synonyms extracted during query expansion) and an approximate
matching was performed by requiring at least 90% similarity. Sentences were ranked
according to a score, which was calculated based on the similarity of the tokens, their
weights in the query (cf. query processing above) and the total number of tokens
which were matched.

For evaluation on the multilingual dataset, Medline documents available for the
English, Spanish and German languages from the CLEF-ER (cf. above) were loaded
into HANA and a full text index was created for each collection. I have experimented
with three search strategies provided by HANA: exact, fuzzy matching (at least 90,%
of similarity) and linguistic.

4 Results and evaluation

In this section I present the preliminary results obtained for the BioASQ and the
multilingual datasets.

4.1 BioASQ dataset

I performed experiments with the training/development dataset which contains
310 questions and their respective relevant concepts, documents and snippets. I
calculated metrics of precision, recall and F-score for the concepts, documents and
passages retrieval, but I did not considered their ranks in their respective lists. Con-
cepts were evaluated based on their identifiers and documents based on the PubMed
identifiers. Passages were evaluated based on the particular document and section
they come from and I consider a true positive if there is an overlap of any length

18http://gopubmed.org/web/gopubmedbeta/bioasq/pubmedmedline, accessed
December 16, 2014.

143

http://gopubmed.org/web/gopubmedbeta/bioasq/pubmedmedline

Mariana Neves: Question Answering for Biomedicine

Table 2: Results in terms of precision, recall and F-score for the training dataset

Evaluation Precision Recall F-Score

Concepts
HANA 0.28 0.18 0.22
BioPortal 0.25 0.15 0.18
HANA+BioPortal 0.26 0.21 0.23

Documents w/o query expansion 0.022 0.11 0.037
with query expansion 0.022 0.12 0.037

Passages w/o query expansion 0.015 0.077 0.025
with query expansion 0.015 0.078 0.025

between the text of the gold standard and the one returned by our system. Results
for the training dataset are presented in Table 2.

The evaluation phase of Phase A of task 2b consisted of five batches of ques-
tions which were released every 2/3 weeks. Participants had 24 hours to process
the dataset, obtain the outputs for the corresponding information, build the JSON
output file and submit it to the BioASQ web site.

My system was under development while the BioASQ challenge was running and
my submissions to the various batches of test questions varied accordingly. I did not
submit runs for batches 1 and 5 and the only major change between the system used
for batch 2 (HPI-S1) and batches 3 and 4 (HPI-S2) was that the first did not include
synonyms for terms when performing queries to the BioASQ services for retrieving
relevant documents. Predictions for concepts were only provided for batches 3 and 4.
Table 3 presents the results for the three batches (as June 24th 2014) based on the
metrics of mean precision, recall, f-measure and MAP which are described in details
in the BioASQ guidelines19.

4.2 Multilingual dataset

We randomly split the two parallel collections of 50 questions in English/Spanish
and English/German in two sets of 25 questions each, i.e., two sets of 25 questions
for development and two sets of 25 questions for testing purposes. The development
datasets were used for choosing the best strategies, adding of extra stopwords and
error analysis, but have not been used to train any of components of the system.

Evaluation of the development and test datasets consisted in running the system
for each of them, retrieving the 10 best ranked passages (sentences) and checking

19http://bioasq.lip6.fr/Tasks/b/eval_meas/, accessed December 16, 2014.

144

http://bioasq.lip6.fr/Tasks/b/eval_meas/

4 Results and evaluation

Table 3: Results in terms of mean precision (P), recall (R), f-measure (FM) and MAP
(as June 24th 2014), along with our position (Rank) in this batch with respect to
the total number of runs. * indicates whether our position was ranked higher than
the Top 100 and Top 50 baselines provided by the organizers. § indicates that no
system outperformed any of the two baselines.

Documents P R FM MAP Rank
Batch 2 0.0235 0.1341 0.0376 0.0733 10/18
Batch 3 0.0216 0.1773 0.0343 0.1016 11/19
Batch 4 0.0159 0.1399 0.0271 0.0558 10/18
Snippets P R FM MAP Rank
Batch 2 0.0117 0.0746 0.0191 0.0521 1/10*
Batch 3 0.0126 0.0857 0.0195 0.0538 5/10*
Batch 4 0.0084 0.0882 0.0146 0.0339 6/12§

Concepts P R FM MAP Rank
Batch 3 0.1134 0.1318 0.1034 0.0567 8/10§

Batch 4 0.1042 0.1080 0.0959 0.0522 8/8§

whether the original document from which the question had been derived was
present in this list. With such an experiment, we sought to evaluate the precision
of our QA prototype for finding relevant passages to the questions as well as the
difficulty level of the questions. Text passages were retrieved only for documents in
the same language of the question, e.g., Spanish questions were queried only against
the Spanish documents, thus, no machine translation was used.

We have evaluated the following settings of our QA system:

1. HANA exact search;

2. HANA fuzzy matching (at least 90 % similarity);

3. HANA fuzzy matching (above), plus query expansion of the question words
using the CLEF-ER terminology;

4. HANA fuzzy matching (above), query expansion (above), plus HANA lin-
guistic matching for those words in the question which did not match to any
synonym.

For the evaluation, we calculate the R-Precision, which is the precision on the r-th
position where a first match with the original document was found, or zero, if not

145

Mariana Neves: Question Answering for Biomedicine

found. We then calculate the mean of the R-precision over the collection of questions,
i.e., over 25 questions for each dataset. Table 4 shows the results for each language
in the English/German and English/Spanish parallel collections of questions.

Table 4: R-Precision and number of sentences found (in parenthesis) for each dataset
and for various setting of the question answering system. Results for the train-
ing dataset are shown for the many setting options while the ones for the test
dataset were obtained when using query expansion and fuzzy matching (i.e., “+
synonyms”). Codes for the languages are the following: “EN”: English, “DE”:
German, “ES”: Spanish.

Settings English-German English-Spanish
EN DE EN ES

exact 0.04 (1) 0.04 (1) 0.01 (1) 0.09 (4)
fuzzy 0.05 (3) 0.02 (1) 0.10 (5) 0.10 (5)
+ synonyms 0.09 (3) 0.06 (2) 0.11 (4) 0.09 (6)
+ linguistic 0.10 (4) 0.04 (2) 0.03 (2) 0.08 (6)
Test 0.05 (5) 0.05 (4) 0.05 (3) 0.06 (4)

5 Conclusion and outlook

In this report I have shown the architecture of my question answering system de-
veloped based on the in-memory database technology and its evaluation on two
datasets: during its participation in the BioASQ challenge and on a multiligual
dataset for German, Spanish and English.

Comparison between the training and test batches of BioASQ shows that results
for the later have been only slightly lower than what have been obtained in the
training dataset, excepts for the concept retrieval whose results were far below. In
general, except for the concept retrieval step, recall is much higher than the preci-
sion because I provided the top 100 snippets (and respective documents) for each
question without specifying a minimum threshold score for that. Given that the
MAP results were always higher than the precision for all document and snippets
batches, I believe that precision (and consequently the F-Measure) can be improved
by experimentally defining a minimum threshold in the passage retrieval step.

146

5 Conclusion and outlook

Results for document retrieval was tightly dependent on the query processing
step, i.e., the conversion of the question to a appropriate query, to the performance
of the BioASQ services, which was used for retrieving the documents, and to our
passage retrieval step, from which the list of document was compiled. From a total
of 3847 false positives in the training data, 2782 (72 %) referred to documents which
were not contained in our database and 368 (9.5 %) to documents which were in
the database but that were not directed linked to the question, i.e., the documents
were retrieved by BioASQ for another question. As future work on document and
passage retrieval, I plan to query PubMed directly, instead of the BioASQ services, I
also experimenting with various queries.

Regarding the multilingual dataset, preliminary results show that passage re-
trieval is not a straightforward task for none of the three languages, even when
using a small collection of Medline document titles. Although the best results were
obtained for Spanish, this was probably due to the smaller set of documents avail-
able for this language than to the simplicity of the task or the language. On the other
hand, results for German were particularly low in comparison to the other languages
because of the presence of many compound words, as will be discussed below. De-
spite the overall low performance of our results, these experiments provide baseline
results for the proposed collection and gives an estimation on the quality of our
dataset.

In comparison to the development dataset, performance for the test dataset was
higher for the English/German dataset and a little bit lower for the English/Spanish
questions. Curiously, this is the best performing result for the German questions.
Discrepancies between development and test data are expected given the small
number of questions and the distinct topics they refer. The development dataset was
used only for comparing the different setting of the features, updating the stopwords
list with additional terms and performing an analysis of the results.

Results vary significantly for the many configurations of our system when evalu-
ated for the three languages (cf. Table 4). Despite the less complexity of the English
language, more exact matches have been obtained for the Spanish (4) than for English
(1 for each dataset) or German (1). The higher number of matches for Spanish have
occurred mainly due the impossibility in getting better synonyms in the Spanish
language when writing the question, together with the fact that less documents are
available for this language. For instance, the question “Qué métodos histoquímicos
permiten la observación y caracterización de glicoconjugados?” got the right match
(document d9279022) in the third rank, while no correct match was found for the
corresponding English question (“Which histochemical methods allow observation
and characterisation of glycoconjugates?”).

147

Mariana Neves: Question Answering for Biomedicine

References

[1] S. J. Athenikos and H. Han. “Biomedical question answering: A survey”. In:
Computer Methods and Programs in Biomedicine 99.1 (2010), pages 1–24. doi:
10.1016/j.cmpb.2009.10.003.

[2] M. Bauer and D. Berleant. “Usability survey of biomedical question answering
systems”. English. In: Human Genomics 6.1 (2012), pages 1–4. doi: 10.1186/
1479-7364-6-17.

[3] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur,
A. Lally, J. W. Murdock, E. Nyberg, J. M. Prager, N. Schlaefer, and C. A. Welty.
“Building Watson: An Overview of the DeepQA Project.” In: AI Magazine 31.3
(2010), pages 59–79.

[4] L. Hirschman and R. Gaizauskas. “Natural Language Question Answering:
The View from Here”. In: Nat. Lang. Eng. 7.4 (Dec. 2001), pages 275–300.

[5] A. Jimeno Yepes, E. Prieur-Gaston, and A. Neveol. “Combining MEDLINE
and publisher data to create parallel corpora for the automatic translation of
biomedical text”. In: BMC Bioinformatics 14.1 (2013), page 146. doi: 10.1186/
1471-2105-14-146.

[6] D. McClosky, E. Charniak, and M. Johnson. “Automatic Domain Adaptation
for Parsing”. In: Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics. HLT
’10. Los Angeles, California: Association for Computational Linguistics, 2010,
pages 28–36.

[7] R. Morante, M. Krallinger, A. Valencia, and W. Daelemans. “Machine Reading
of Biomedical Texts about Alzheimer’s Disease”. In: CLEF (Online Working
Notes/Labs/Workshop). 2012.

[8] M. Neves. “HPI in-memory-based database system in Task 2b of BioASQ”. In:
Working Notes for the CLEF BioASQ Challenge. 2014.

[9] M. Neves, K. Herbst, M. Uflacker, and H. Plattner. “Preliminary evaluation of
passage retrieval in biomedical multilingual question answering”. In: Proceed-
ings of the Fourth Workshop on Building and Evaluation Resources for Biomedical
Text Mining (BioTxtM 2014) at Language Resources and Evaluation (LREC) 2014.
2014.

[10] M.-D. Olvera-Lobo and J. Gutiérrez-Artacho. “Multilingual Question-Answer-
ing System in Biomedical Domain on the Web: An Evaluation.” In: CLEF.
Edited by P. Forner, J. Gonzalo, J. Kekäläinen, M. Lalmas, and M. de Rijke.
Volume 6941. Lecture Notes in Computer Science. Springer, 2011, pages 83–
88.

148

http://dx.doi.org/10.1016/j.cmpb.2009.10.003
http://dx.doi.org/10.1186/1479-7364-6-17
http://dx.doi.org/10.1186/1479-7364-6-17
http://dx.doi.org/10.1186/1471-2105-14-146
http://dx.doi.org/10.1186/1471-2105-14-146

References

[11] I. Partalas, E. Gaussier, and A.-C. N. Ngomo. “Results of the First BioASQ
Workshop”. In: 1st Workshop on Bio-Medical Semantic Indexing and Question
Answering, a Post-Conference Workshop of Conference and Labs of the Evaluation
Forum 2013 (CLEF 2013). Nov. 2013.

[12] H. Plattner. A Course in In-Memory Data Management: The Inner Mechanics of
In-Memory Databases. 1st. Springer, 2013.

[13] D. Rebholz-Schuhmann, S. Clematide, F. Rinaldi, E. V. Mulligen, I. Lewin, D.
Milward, A. J. Yepes, U. Hahn, J. Kors, C. Bui, J. Hellrich, and M. Poprat. “Mul-
tilingual semantic resources and parallel corpora in the biomedical domain:
the CLEF-ER challenge”. In: CLEF Lab. Sept. 2013.

149

Adaptive Just-in-time Value Class Optimization
Efficient Compaction of Immutable Data Structures in

Virtual Machines

Tobias Pape

Software Architecture Group
Hasso-Plattner-Institut

tobias.pape@hpi.uni-potsdam.de

The performance of value classes is highly dependent on how they are represented
in the virtual machine. Since value classes are supposed to be very lightweight and
fast it is important to optimize them well. In this paper we present a technique to
detect and compress commonly occurring patterns of value class usage to improve
memory usage and performance. The set of micro-benchmarks we use in a small
prototype language show two to ten-fold speedup over value classes in other object
oriented languages.

1 Introduction

Objects are at the heart of object-oriented languages and the choice of how to rep-
resent them in memory is crucial for the performance of a language implementa-
tion [2, 13]. Additionally, on the language level, typical best practice techniques of
object-oriented modelling and design, such as delegation or the composite design
pattern, have an inherent influence on performance. Every additional indirection
between delegators and delegates or composites and their parts has the overhead
of a new object. This includes memory consumption, but also execution time to
navigate the referenced objnects. A simple example is traversing linked lists or trees.
For collection structures, this problem has been tackled with arrays and their opti-
mization [15], e.g. with Z-rays [14]. However, for composite structures like trees or
composite objects, optimization is not as straightforward.

We want to provide performance similar to that of such flat structures while
retaining desirable properties of composite structures, such as to be recursive or
composable. Considering performance, the optimization of composite structures
is similar for both general objects and value class [1] objects. The latter is a special
form of objects that ist immutable, may reference only other value class objects or
primitive data, and has no object identity. Value classes are available in, e.g. Java,
Scala, and .Net.

151

mailto:tobias.pape@hpi.uni-potsdam.de

Tobias Pape: Adaptive Just-in-time Value Class Optimization

Composite structures involving value classes have certain usage patterns. This is
obvious in linked lists (a single list element probably references another list element
and so forth) or trees (a tree node references a number of other nodes or a value). Data
structures with such patterns can be transformed into lower-level structures more
fitting to the machine model. While simple variants of such patterns can be statically
inferred, many become apparent only at runtime. Especially recursive structures
exhibit patterns that are opaque to static inference, e.g. while a tree apparently
may have sub-nodes, it is statically unknown whether trees are used as deep trees
or rather flat ones. However, each case could be optimized differently. Hence our
optimization approach works at run-time in conjunction with a jit compiler.

2 Tracing Just-In-Time Compilers

One approach for writing jit compilers is using a tracing jit compiler. A tracing jit
comiler records the steps an interpreter takes to obtain an instruction sequence,
called trace and then uses this trace instead of the interpreter to execute the same
part of a program [12]. This produces specialized instruction sequences, e.g. only
one path in if–then–else constructs; missed branches still use the interpreter. Tracing
jit compilers have been used for optimizing native code [3] and also for efficiently
executing object-oriented programs [11].

Meta-tracing goes a step further and traces not the program execution but rather the
interpreter execution. Hence, a resulting trace is not specific to the program executed
but the interpreter [6]. It is not necessary for a language implementer to program a
language-specific jit compiler but rather to provide a language-specific interpreter
in RPython, a type-inferreceable subset of Python. Hints to the meta-tracing jit allow
fine-tuning of the resulting jit compiler. Meta-tracing been successfully applied to
Python with PyPy [8].

3 Optimization Approach

Our optimization detects common patterns of how instances of value classes (value
objects for short) reference each other. It then introduces short forms for these pat-
terns, whic we call shapes, that make it possible to represent these patterns more
efficiently in memory.

A straightforward value object representation would be a chunk of memory that
stores a pointer to the class of the value object, followed by its contents that typically
consist of pointers to all the fields of that value object. We call the contents the value
object’s storage. The class describes the storage, e.g. how many fields there are and

152

3 Optimization Approach

1 2
⊥
n

1 2 ⊥n

pr
og
ra
m
m
in
g

la
ng
ua
ge

ru
nt
im
e

en
vi
ro
nm

en
t

a

⊥⊥b

c ⊥⊥e

⊥⊥d

⊥
⊥
b

⊥
⊥
ea c

⊥
⊥
d

◊◊◊
Node/3

◊◊
Node/2

Node Node Node

Node

Node Node

Node Node

Figure 1: Value class representation for a linked list and a tree. Top: the language
view; bottom: runtime view with storage and shape

how they are to be interpreted. This representation corresponds very closely to the
programmers’ view on value classes.

In our approach, the storage area remains. but the pointer to the class is replaced
by a pointer to the shape. Like in the regular representation, the shape determines
the class of the value object and hence the meaning of its contents. Two examples
for this separation can be found in Figure 1. For every value class there is a default
shape that has no additional information compared to directly storing the class. If the
default shape was always used, the representation would be completely equivalent
to the straightforward one.

The difference to the straightforward representation is that a shape does not nec-
essarily describe only the class of the value object. Rather, a shape can additionally
describe the shape of referenced value objects, recursively. If a referenced value ob-
ject’s shape is not specified in the referencing object’s shape, it is stored as a reference
in the storage. If the shape is specified, that value object’s content is inlined into the
referencing value object’s storage. This process can be applied recursively.

To actually save memory, a shape has to be shard by as many value objects as
possible. Indeed, if every shape was used by only one object, the memory use is not
improved. Therefore, a new shape must only be introduced after runtime profiling
makes sure that it occurs often enough.

3.1 Shapes and their recognition

A shape describes the abstract, structural representation of composite value objects
and is shared between all identically structured value objects of the same value class,
denoted by its name.

Shapes are recursive; they consist of sub-shapes for each field in a value object’s
storage. A special type of shapes denotes unaltered access to object content and
termination of shape recursion. Value objects with these shapes are treated as black
boxes, e.g. scalar data or unoptimized objects, they are stored directly in the storage.
This is depicted in the bottom part of Figure 1; all three nodes in the list share the

153

Tobias Pape: Adaptive Just-in-time Value Class Optimization

0, n
…

1,

171,

3

history

…◊ ◊
Node/2 Node/2

◊ ◊

◊s1 s2 sn …

0,
…

1,

1,

transformations

s1

s1

…

s1

s2

… …

…

s2

…

s2

s1

…

s1

s1

Figure 2: Shapes and supplementary data structures: transformations rules and
history of encountered sub-shapes

same shape, which denotes that each node consists of two references with direct
access shapes. The same holds for the nodes of the tree in that figure, but with three
references.

Storing the shape of value objects may seem redundant given that the shape
matches what it tries to describe. This only holds as long as no optimization has
taken place. In this case, a value object’s shape is the default shape of its value class
and solely consist of direct access sub-shapes. The shapes in Figure 1 are the default
shapes for their value classes.

Further, a mapping of replacement options for inlining (the transformation rules),
and profiling data built up during object creation to aid the creation of new trans-
formation rules (the history) are supplementary structures that we use to aid the
inlining process.

History
The immutability of value objects demands that all to-be-refenced value objects
that will constitute its content have already been constructed beforehand. Hence,
their shapes will be available at construction time and we can count occurences of
sub-shapes at specific positions in the value object. That way, we obtain a histogram
of all possible shapes a referenced value object can have. In Figure 2, e.g. for shape s1
at position 1, the shape s1 itself has been encountered 17 times as sub-shape, while
shape s2 has been encountered 3 times as sub-shape in that position.

When a certain threshold of encounters has been reached, we generate a new
transformation rule.

Transformation rules and recognition
The transformation rules are mappings Shape×Position×Shape → Shape that drive
the inlining process. When constructing a new value object, they are consulted by

154

3 Optimization Approach

2
1 3 n

⊥
1 + 2 3

⊥
n

◊ ◊
Node/2

◊ ◊
Node/2Node/2

◊ ◊
◊

Figure 3: When creating a new node value object that should contain “1” and the
list as shown, a new value object that merges the “1” with the “2” object and a
different shape is created instead.

the inlining algorithm. These mappings can be specified prior to program execution
or inferred dynamically based on shape history.

Upon value object creation, just after updating the shape history, we check whether
the sub-shape counters hit a certain threshold, and if so, proceed to create a new
shape that combines the value object’s current shape with the sub-shape that hit the
threshold. In this new shape, we replace the direct access sub-shape at the position of
the threshold hit with the sub-shape found in the history entry. The position of the
hit, the sub-shape at that position, and the newly created shape are then recorded
as new rule in the transformations table. Considering Figure 2 as example, shape s2
would be the result of turning the history entry (s1, 1, s1, 17) into the transformation
rule (s1, 1,s1) 7→s2. The structure of shape s2 is the structure of shape s1 but with another
s1 structure in the final position.

We call the process of recording the shape history and inferring transformation
rules shape recognition.

3.2 Compaction though inlining

Since value objects are immutable, compaction does only need to happen when cre-
ating new ones. With this premise, our optimization technique works by inlining the
to-be-referenced value objects into the to-be-created value object upon its creation.

When a new value object is created, we handle the default shape s for the type
and the value object’s new content c as specified in the algorithm in algorithm 1. We
iterate over the given new content and for each to-be-referenced value object oi at
position i and its sub-shape sc, we look up a replacement shape in the transforma-
tions table. If the table contains a mapping, the replacement shape s ′ is assumed as
shape for the to-be-created value object. At that point, the storage of the current value
object ci is spliced into the current content c instead of the current value object ci
itself; the value object ci is now inlined. After a successful inlining, the new shape s ′
becomes the to-be-created value object’s shape s and the current content is reiterated
from start to allow for possible other transformations due to the shape change. That
way, transition chains are possible that may quickly lead to shapes of deeply nested

155

Tobias Pape: Adaptive Just-in-time Value Class Optimization

Algorithm 1: Merging composite objects based on shape
Input: s : Shape, c : [Object]
i← 0

while i < |c| do
o← ci
so ← o{shape}

s ′ ← transformationss,i,so
or s

if s ′ 6= s then
c ′ ←

[
c0,...,i−1, o{storage}, ci+1,...,|c|

]
s← s ′

// rewind over new storage:
i← 0, c← c ′

else
i← i+ 1

end
end
return s, o

structures. Once no further transitions are found, the value object’s shape s and the
current content c are returned as the shape and storage of the new value object.

The effect of this process is shown simplified with the example in Figure 3: creating
a new node consisting of “1” and a rest list as in the figure. We start with a list of
“1” and the rest list as initial content for the new value object and shape s1 as the
initial default shape. We iterate over the list and encounter “1” at position 0. For
this example, we assume that the transformation table does not contain a mapping
for “1” at position 0, thus s ′ will be s and we continue with the next position. At
position 1, we find the rest list with the sub-shape s1. In the transformation table,
the entry for (s1, 1, s1) holds a replacement shape, s2. Thus, we inline the current
value object’s storage into the current content as c ′, which now has three elements.
Note that it is not the shape of the rest list sc that is changed but rather the shape
s of the to-be-created value object. The content, now c, is reiterated but no further
transformations are found. The resulting value object is that to the right in Figure 3.

The shape of thusly optimized value objects are themselves subject to the shape-
recognition process and eventually, transition rules to more optimized shapes can
be created in the default shapes for the value classes. Thus, more specific shapes are
directly available for the inlining process. Value objects can be more directly tran-
sitioned into the most optimized shape compared to working off a long transition
chain.

This inlining technique has two main advantages. First and foremost, inlined value
objects take up less space than individual, interreferenced value objects. But even
more, the shape of a value object provides structural information in a manner the

156

4 Implementation in RPython with a tracing JIT compiler

1

3
2

⊥
…
n 2

3
n

⊥
…

1 3

⊥
…
n2

Node/2

◊
◊

◊ ◊

Node/2

◊ ◊
◊ ◊ ◊

Node/2 Node/2
…

Node/2
…

Node/2
…

Figure 4: Referenced value object reification. Accessing the second item 2 of the list
l← Node/2[1,Node/2[2,Node/2[3, . . .]]] by two operations head(tail(l)) results in
two differently reified rest lists to be created. Note how the shapes of the rest lists
differ.

meta-tracing jit compiler can speculate on. This is crucial for optimizing the access
to references of a value object.

3.3 Transparent field access

While optimization of data structures takes place during construction, we have to ap-
ply the reverse during deconstruction, i.e. when accessing a value object referenced
by another. This is no longer trivial, as several (formerly referenced) value object
may have been inlined into their referencing value objects. Therefore, we construct
new value objects whenever a reference is navigated, essentially reifying it. We use
the information a value object’s shape provides to identify which parts of the value
object’s storage comprise the value object to be reified. The structural information
allows a direct mapping from the language view of the data structure to the actually
stored elements. In Figure 4, the structural information in the shape of the leftmost
list allow the reasoning that the first element of the storage is equivalent to the head
of the language level node value object and the remaining three storage elements are
equivalent to the tail of that value object, as recored in the shape. Hence the middle
view in that figure; both the element “1” and the rest list have been reified. The same
goes for the rightmost view.

Note that this reification is completely transparent to the programming language
view. Taking, e.g. the tail of a node value object or accessing the third element of a
ternary tree repeatedly, the operations remain the same on the language level, no
matter the inlining status of the value objects at hand on the implementation level.

4 Implementation in RPython with a tracing JIT
compiler

We implemented our optimization approach in a simple execution model. It provides
a λ-calculus with pattern matching as sole control structure and is implemented

157

Tobias Pape: Adaptive Just-in-time Value Class Optimization

as a direct application of the cek-machine [10]. The only structured data types cur-
rently available are value classes. We used the RPython tool chain to incorporate its
meta-tracing jit compiler [4].

To improve performance, the jit compiler needs to reduce the overhead of these
operations. The first step is to treat the transformation tables as constant when a
function is compiled. This allows the jit compiler to compile value object creation
down to a series of type checks for the types of the referenced value objects. While
the transformation tables are not constant per se, we instruct the jit compiler to treat
them as such for all practical purposes.

Second, we have to avoid the otherwise necessary reification of referenced value
objects when it is being read from a value object it has been inlined into. For that,
the observation that most of these intermediate value objects are actually short-lived
is crucial; most value object are created just to be either immediately discarded or
consumed in another, typically larger data structure. As a concrete example, typical
linked list operations deconstruct the list they are working on. Hence, if the tail is
read off a linked list node which has the tail inlined (as the transition from left to
middle in Figure 4) and needs to be reified, that tail is usually soon deconstructed
itself into its head and tail components (as the transition from middle to right in
the same figure). This allows the tracing jit compiler to optimize the reading of
fields that need reification. Since the value objects allocated when reifying a field
are short-lived, the built-in escape analysis [5] will fully remove their allocation and
thus remove the overhead of reification.

5 Results

We report the performance of five micro-benchmarks, i.e. their execution time and
their maximal memory consumption (resident set size). The benchmarks chosen are
append, filter, map, and reverse on very long linked lists and the creation and complete
prefix traversal of a binary tree.

In the left part of Figure 5, the execution time of all benchmarks is reported. Our
implementation, labeled prototype ◦ , is significantly faster—from two to ten times
faster—for all but the tree benchmark, where our implementation is second to just
the ahead-of-time (aot) compiled OCaml version. However, the other two RPython
implementations are significantly slower than expected; the Pycket interpreter uses
the same cek execution model as our implementation. It is possible that not the
value class implementation but the interpreter style is responsible for most of the
execution time. Nevertheless, our implementation is still significantly faster than
both RPython implementations.

158

6 Related Work

● ● ● ● ●
0

2

4

6

8

10

12

14

16

18

20

append filter map reverse tree

E
x
e

c
u

ti
o

n
 t

im
e

 (
s

)

Implementation

● Prototype

OCaml

Racket

Pycket

Pypy

● ● ● ● ●
0
1

3

5

7

9

11

13

15

append filter map reverse tree

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

G
B

)

Implementation

● Prototype

OCaml

Racket

Pycket

Pypy

Figure 5: Benchmarking results. Each bar shows the arithmetic mean of ten runs for
exectuion time (left) and memory consumption (right). Lower is better

For memory consumption, shown in the right part of Figure 5, our implementation
always uses significantly less memory than the other implementations.

The results suggest that our approach is viable and warrants application to other
programming languages.

Compared Implementations

We included OCaml 4 , Racket � , Pycket + , and Pypy � in the comparison. OCaml
provides a concept similar to value classes with its algebraic data types and its exe-
cution model similarities to our implementation. OCaml produces native binaries.
Racket’s cons cells, structs and classes can act as value classes. Racket acts as virtual
machine with hand-written jit compiler. Pycket [7] is a RPython implementation
of Racket and provides a meta-tracing jit compiler. Pypy is the RPython implemen-
tation of Python and has a meta-tracing jit compiler. While Python has no actual
concept of value classes, we used regular classes in a value class manner, and then
Pypy is able to handle them as value classes. We intended to also include the stan-
dard Python (CPython) but it was too slow and would have rendered the comparison
meaningless.

6 Related Work

From a data structure optimization point of view, value classes are similar to the
notion of algebraic data types as found in languages in the ML family. Hence, opti-
mizations done to this category of data structures are relevant to value classes.

Wimmer has proposed object inlining [18] as a general data structure optimization
for structured objects in Java. Superficially, this approach is similar to this work, yet

159

Tobias Pape: Adaptive Just-in-time Value Class Optimization

object inlining is restricted to statically typed object oriented languages like Java, as
the approach needs full knowledge of all class layouts.

The idea to improve data structures to gain execution speed was proposed es-
pecially to improve operations on linked lists in functional languages, e.g. by un-
rolling [16]. Typically, those optimizations are restricted to linked lists.

One of the key effects in our optimization is avoiding to allocate intermediate data
structures. In that respect, hash consing [9], as used in functional languages for a long
time, is related to this work. However, hash consing typically works at the language
level using libraries, coding conventions, or source-to-source transformations. It is
not adaptable at runtime.

Deforestation [17] has the aim to eliminate intermediate data structures and is
in this respect related to our approach. However, deforestation deliberately works
through program transformation and does not incorporate dynamic usage informa-
tion.

7 Conclusion and Future Work

Our approach to just-in-time optimization of value classes provides very good first
results both for execution time and memory consumption for a prototype implemen-
tation on selected micro-benchmarks. They are promising and allow us to investigate
the matter further. Immediate next steps include the integration of our approach
into existing programming language implementations. Here, languages that already
have an implementation with a meta-tracing jit compiler would be obvious candi-
dates. Then, larger and more real-world benchmarks can be tackled.

Our aim is then to broaden the scope of our approach beyond value classes. We
want to support objects that have identity as well as mutable objects. Yet, in the
context of our optimization, these need more in-depth investigation.

References

[1] D. F. Bacon. “Kava: a Java dialect with a uniform object model for lightweight
classes”. In: Concurrency and Computation: Practice and Experience 15.3-5 (Feb. 12,
2003), pages 185–206. doi: 10.1002/cpe.653.

[2] D. Bacon, S. Fink, and D. Grove. “Space- and Time-Efficient Implementation
of the Java Object Model”. In: ECOOP 2002 — Object-Oriented Programming.
Edited by B. Magnusson. Volume 2374. Lecture Notes in Computer Science.

160

http://dx.doi.org/10.1002/cpe.653

References

Springer Berlin / Heidelberg, May 29, 2002, pages 13–27. doi: 10.1007/3-
540-47993-7_5.

[3] V. Bala, E. Duesterwald, and S. Banerjia. “Dynamo: A Transparent Dynamic
Optimization System”. In: ACM SIGPLAN Notices 35.5 (2000), pages 1–12.

[4] C. F. Bolz. “Meta-tracing just-in-time compilation for RPython”. PhD thesis.
Mathematisch-Naturwissenschaftliche Fakultät, Heinrich Heine Universität
Düsseldorf, 2012.

[5] C. F. Bolz, A. Cuni, M. Fijałkowski, M. Leuschel, S. Pedroni, and A. Rigo. “Al-
location Removal by Partial Evaluation in a Tracing JIT”. In: Proceedings of
the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion. PEPM ’11. Austin, Texas, USA: ACM, 2011, pages 43–52. doi: 10.1145/
1929501.1929508.

[6] C. F. Bolz, A. Cuni, M. Fijałkowski, and A. Rigo. “Tracing the Meta-level:
PyPy’s Tracing JIT Compiler”. In: Proceedings of the 4th Workshop on the Im-
plementation, Compilation, Optimization of Object-Oriented Languages and Pro-
gramming Systems. ICOOOLPS ’09. Genova, Italy: ACM, 2009, pages 18–25.
doi: 10.1145/1565824.1565827.

[7] C. F. Bolz, T. Pape, J. Siek, and S. Tobin-Hochstadt. “Meta-tracing makes a fast
Racket”. In: Dyla’14. Edinburgh, United Kingdom, June 2014.

[8] C. F. Bolz and L. Tratt. “The impact of meta-tracing on VM design and im-
plementation”. In: Science of Computer Programming (2013). doi: 10.1016/j.
scico.2013.02.001.

[9] A. P. Ershov. “On Programming of Arithmetic Operations”. In: Communications
of the ACM 1.8 (Aug. 1958), pages 3–6. doi: 10.1145/368892.368907.

[10] M. Felleisen and D. P. Friedman. “Control operators, the SECD-machine and
the λ-calculus”. In: Proceedings of the 2nd Working Conference on Formal De-
scription of Programming Concepts - III. Edited by M. Wirsing. Elsevier, 1987,
pages 193–217.

[11] A. Gal, C. W. Probst, and M. Franz. “HotpathVM: An Effective JIT Compiler
for Resource-Constrained Devices”. In: Proceedings of the 2nd International Con-
ference on Virtual Execution Environments. VEE ’06. Ottawa, Ontario, Canada:
ACM, June 14, 2006, pages 144–153. doi: 10.1145/1134760.1134780.

[12] J. G. Mitchell. “The Design and Construction of Flexible and Efficient Inter-
active Programming Systems”. PhD thesis. Pittsburgh, PA, USA: Carnegie
Mellon University, 1970.

[13] M. E. Noth. “Exploding Java Objects for Performance”. PhD thesis. University
of Washington, 2003.

161

http://dx.doi.org/10.1007/3-540-47993-7_5
http://dx.doi.org/10.1007/3-540-47993-7_5
http://dx.doi.org/10.1145/1929501.1929508
http://dx.doi.org/10.1145/1929501.1929508
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1016/j.scico.2013.02.001
http://dx.doi.org/10.1016/j.scico.2013.02.001
http://dx.doi.org/10.1145/368892.368907
http://dx.doi.org/10.1145/1134760.1134780

Tobias Pape: Adaptive Just-in-time Value Class Optimization

[14] J. B. Sartor, S. M. Blackburn, D. Frampton, M. Hirzel, and K. S. McKinley.
“Z-rays: Divide Arrays and Conquer Speed and Flexibility”. In: SIGPLAN
Notices 45.6 (June 2010), pages 471–482. doi: 10.1145/1809028.1806649.

[15] J. B. Sartor, M. Hirzel, and K. S. McKinley. “No Bit Left Behind: The Limits of
Heap Data Compression”. In: Proceedings of the 7th International Symposium on
Memory Management. ISMM ’08. Tucson, AZ, USA: ACM, 2008, pages 111–120.
doi: 10.1145/1375634.1375651.

[16] Z. Shao, J. H. Reppy, and A. W. Appel. “Unrolling lists”. In: SIGPLAN Lisp
Pointers VII.3 (July 1994), pages 185–195. doi: 10.1145/182590.182453.

[17] P. Wadler. “Deforestation: transforming programs to eliminate trees”. In: The-
oretical Computer Science 73.2 (1990), pages 231–248. doi: 10.1016/0304-
3975(90)90147-A.

[18] C. Wimmer. “Automatic object inlining in a Java virtual machine”. PhD thesis.
Linz, Austria: Johannes Kepler Universität, 2008.

162

http://dx.doi.org/10.1145/1809028.1806649
http://dx.doi.org/10.1145/1375634.1375651
http://dx.doi.org/10.1145/182590.182453
http://dx.doi.org/10.1016/0304-3975(90)90147-A
http://dx.doi.org/10.1016/0304-3975(90)90147-A

Processing Over Encrypted Data: Between Theory and
Practice

Eyad Saleh

Internet Technologies and Systems
Hasso-Plattner-Institut
eyad.saleh@hpi.de

In this report, we summarize our efforts in the past six months into two parts.
First, we present our solution towards the question of how to minimize the risk of
co-resident tenants in the context of SaaS. Second, we discuss the state-of-the-art
in the area of processing over encrypted data.

1 Secure Tenant Placement: SecPlace

Researchers study the tenant placement problem from a workload and resource
utilization perspective to optimize the performance and decrease the cost [16, 20,
38, 48]. Although cost and performance are crucial, security is critical as well. We
investigate the possibility of developing a security-aware placement algorithm that
minimizes the threats of placing several competing tenants on the same database
instance.

Consider “Butterfield Bank” and “Baloise Group”, two financial organizations
working in the banking field. Both organizations use an on-demand “Performance
and Goals” system provided by SuccessFactors. “Performance and Goals” is an
on-demand application used to develop and enhance employees’ performance. Both
companies compete in the market, and therefore, the data of their personnel, data of
employees and managers, and financial records are of much importance. The data
for both companies is at risk of being exposed to third parties, either accidentally or
maliciously. Accidentally, when for example a software bug or malfunction resulted
in sharing one tenant’s data with others, such as if the database developer forget to
filter a query that retrieve data by the appropriate filter, this would result in returning
the data of all tenants. Or maliciously, when an attacker exploits a weakness in the
software stack and gain illegal access to the data, such as SQL-injection or Cross Site
Request Forgery (CSRF) attacks. Therefore, our proposed approach is capable of
minimizing the risk of such issues by preventing any competing tenants from being
hosted on the same database instance. Thus, if one database instance is compromised,
data for existing tenants will be at risk while other competitors will not be affected.

163

mailto:eyad.saleh@hpi.de

Eyad Saleh: Processing Over Encrypted Data: Between Theory and Practice

1.1 Overview of SecPlace

We introduce SecPlace. A mechanism that minimizes the risk of co-resident tenants
by implementing the concept that no two competing tenants should share the same
infrastructure with each other. SecPlace enables the SaaS provider to control the
resource (i.e., database instance) allocation process while taking into account the
security of tenants as a requirement. SecPlace is based on the idea of hosting no
more than one tenant T of any business type BT on a any database instance DB.
This approach is useful to a certain extent. Yet, due to the fact that several tenants
of similar business types will be hosted by the SaaS provider, it is not possible to
have distinct tenants on the database server, i.e., at some point in time, we will not
be able to avoid hosting more than one tenant with similar business type on the
same database instance. Thus, we consider the second factor in our algorithm which
is the tenant size S. According to Salesfore and SuccessFactors, tenant’s size are
classified into three categories: Small, Medium, and Enterprise. When we can not
find any database instance to host the new tenant (because all instance are having
other tenants of the same business type BT), we look for an instance DB where a
tenant of the same BT exist but with different S. For instance, assume that we have
five new database instances DB, each one can host up to 20 tenants T. When a new T1
comes in, we host it onto DB1. Now if T2 is of a different BT than T1, it can be hosted
on DB1, otherwise, it will be hosted on DB2. Now assume that all DB1-DB5 contains
for example a T of High-Tech as its BT, when a new High-Tech tenant comes in, there
is no room for it because all DB1-DB5 contains the same BT. Thus, we search for a
DB that has the same BT but with different S. This is based on our assumption that
tenants of same BT are more likely to compete with each other if they have similar
S. This is due to the perspective that tenants of different S, for instance Enterprise
and small are hard to find as competing with each other. Take an example of a bank
(Enterprise) and a small credit institution (Small), the operations for both of them
are completely different, client-base is different, target-market is different, and so
on.

The main contribution of our approach is the design and implementation of a
mechanism that minimizes the security risk of co-resident tenants without break-
ing the functionality of the SaaS application or changes to the back-end database.
We leverage the fact that competing tenants should not be hosted on the same DB
instance, because compromising the instance would result in data leakage, and if
competitors are hosted on the same infrastructure, the loss for the tenants will be
much worse. Imagine the competitors obtain the data for each other. Furthermore,
we implement our approach using Java and the source code is available to download
from github [14]. Our system is designed as an independent tool to allow any SaaS
provider to download and start using it directly, transparent of the architecture of
their applications or data center operations.

164

1 Secure Tenant Placement: SecPlace

The goal of SecPlace is to improve the security isolation between the tenants of
any SaaS applications hosted in the cloud. We propose the usage of subscription
data such as business type BT and tenant size S, so our algorithm can recognize the
competing tenants and ensures that no two competing tenants of the same BT and
similar S are hosted on the same database instance DB. We assume that a compro-
mised DB that holds data for competing tenants is worse than other DB instances.
This is due to the fact that the attacker would be able to blackmails both competing
parties because he hold their information. While if no data for conflicting parties is
present, the risk remains, but it would be smaller. SecPlace can be used to redistribute
existing tenants to minimize the security risk of co-location, and can be also used
to place the new tenants according to the security requirements managed by our
algorithm. When the SaaS provider wants to board a new tenant, our algorithm start
looking for the most-secure DB (i.e., DB that does not have similar BT and S of this
tenant) to host this tenant.

In practice, tenant-placement is accomplished in two ways. First, place it randomly.
Second, the provider uses a formula to select the best-fit DB instances to maximize
the resources utilization. Our approach does not conflict with such practice, rather
we build on them. In the random placement, our algorithm minimizes the risk as
we show later in this work. When the formula is used, our approach is applied to
the subset that is resulting from the formula, so a smaller subset that achieve both
resource-utilization and our security requirements will be selected. SecPlace works
in transparent of the provider parameters, such as database schema, number of
database instances, number of tenants, etc.

1.2 The Placement Algorithms

We have two placement algorithms. Both are close to each other with a slight differ-
ence. We describe them in details in the next section.

Placement Algorithm I
Our algorithm is designed to find the best DB instance to place the tenant into. Best
instance means the instance that minimize the risk of being hosted with competing
companies. In Algorithm I, we do this by checking some attributes of the subscription
data, namely the business type (BT). In Algorithm II, we include also the tenant size
(S).

The algorithm starts by looping on all DB instances. First, it checks if the instance
can accept additional tenants, if yes it proceeds. Otherwise, it moves to the next
instance. When the database can accept the new tenant, it start checking the list of
all tenants in this tenants and compare their BT with the BT of the new tenant, if
no match is found, it place it in the instance, increase the number of tenants by one,

165

Eyad Saleh: Processing Over Encrypted Data: Between Theory and Practice

Algorithm 2: Tenant Placement Algorithm
input :NewTenant, DBsList, DBsList.TenantsList, andMAX
output :DBsList.NewTenantsList (A new distribution of tenants in all DBs)
initialization foundSameBizType← false; foundSameSize← false;
isPlaced← false;

foreach (db element in DBsList) do
/* Check if the DB instance is not full */
if db.TenantsCount 6=MAX then

foreach (t element in db.TenantsList) do
/* Check if the DB instance has a tenant of same business type */
if db.t.BizType = NewTenant.BizType then
foundSameBizType← true;
exitfor;

end
end
if foundSameBizType = false then

/* This DB instance does not have a tenant with similar business type */
db.TenantsList.Add(NewTenant);
db.TenantsCount++;
isPlaced← true;
exitAlgorithm;

else
/* We cannot place the tenant here and therefore move ahead to the next DB
instance to check */
foundSameBizType← false;

end
end

end

if isPlaced = false then
/* We cannot place the NewTenant because every DB instance has at least one tenant
with similar business type. Therefore, we run algorithm 2 which includes a check of
the second factor - tenant size */

Call Algorithm2;
end

166

1 Secure Tenant Placement: SecPlace

and exit the algorithm. If a tenant with the same BT is found, we break the loop and
move to the next instance. After checking all the DB instances, if the value of the
parameter isPlaced is false, this means that all DB instances have tenants with similar
BT. Therefore, we call Algorithm II.

Placement Algorithm II
Algorithm II is similar to Algorithm I, but with a slight change. Algorithm I works only
on a single parameter which is the BT of the tenants. However, in certain cases, we
fail to find a DB instance that do not have tenants with similar BT, thus, Algorithm II
is used.

According to Algorithm I, we compare the BT in line 7, and since the result of
Algorithm I indicates that all DB instance have tenants with similar BT, then we
replace this by another statement that checks if there is a tenant with s size (S) that is
similar to the S of the new tenant. If not similar S is found, then we place the tenant.
Otherwise, we break the loop and move to the next DB instance. We repeat this until
we find a DB instance that do not have similar S. If Algorithm II fails to find such
an instance, then it means all instances have tenants with similar BT and S. And
therefore, all instances become identical under our model, then we place the tenant
randomly.

1.3 Experiments and Discussion

In our experiments, we assume that we have a cluster with 5 homogeneous DB
instances. We further assume that every DB instance can accommodate up to 20
tenants.

The experiments can be classified into two main categories. In the first category,
we assume that the cluster is full and cannot accept new tenants. Our task is to
re-distribute the tenants to minimize the risk of co-locating competing tenants. In the
second category, we assume that the cluster can accept new tenants. Further, we took
the result of the first category of experiments (i.e., the cluster after re-distribution)
and assume that this is the baseline for the second category.

In all experiments, we normalize the values based on the minimum of the average
of variations in the DB instance. Variations means the percent of the existence of
any business type in the DB. For instance, if an instance has only three BT, such as
High Tech, Travel, and Financial. Then the variation for this instance would be close
to 33 %. Due to space limitations, we only describe experiment 1 and 2 that belong
to the first category.

In the Figures 1 and 2, the x-axis represents the if of the DB instance, and the y-axis
represents the degree of variation between tenants. The maximum the degree of

167

Eyad Saleh: Processing Over Encrypted Data: Between Theory and Practice

variation, the better it would be because it means that the co-locating of competing
tenants is as minimum as possible.

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5

V
ar

ia
ti

o
n

DB Instance Id

Resource-Based SecPlace

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5

V
ar

ia
ti

o
n

DB Instance Id

Resource-Based SecPlace Figure 1: Worst-Case Placement

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5

V
ar

ia
ti

o
n

DB Instance Id

Resource-Based SecPlace

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5

V
ar

ia
ti

o
n

DB Instance Id

Resource-Based SecPlace

Figure 2: Uniform Distribution

Experiment I: Worst-Case Placement. We assume in the this experiment that the
current status of distribution is at the worst case. This means that all tenants of same
business type BT and same size S are co-located at the same DB instance. Figure
1 shows the result after applying our approach. It is obvious that the variation of
tenants in reference to our factors (i.e., BT and S) has been increased very much in
all DB instances.

Experiment II: Uniform Distribution. We assume in the this experiment that the
distribution is uniformly random. We can see from Figure 2 that we enhance the
level of security on 3 instances, yet instance 4 and 5 still have issue. We justify this
by two reasons. First, If we stop this experiment in the middle of execution, we can
tell that all DB instances would have the same level of variation, but as we continue
with the algorithm, the enhancement is done sequentially, so the better variation
will go to the DB instances that our algorithm hits first. Second, we assume in all
the experiments that every tenant could be migrated only once. Thus, we cannot
balance the variation on instances 4 or 5 by re-distribute the tenants again.

2 Processing Over Encrypted Data

Encryption was previously used to encrypt data during transmission to prevent
eavesdroppers from intercepting the communication and receive the data. In addi-
tion, it prevents unauthorized disclosure of confidential data in storage. However, in
the modern era, and due to the advances in the computer hardware that yielded to
fast processing units, and motivated by the increasing adoption of the Cloud model,
the need and possibility of processing over encrypted data is no longer infeasible.

168

2 Processing Over Encrypted Data

The idea of processing over encrypted data was first introduced by Rivest et. al.
[46] in 1978. The main hypothesis was that useful privacy homomorphisms (i.e.,
encryption schemes) may exist to support processing data while being encrypted.
They discussed some examples of basic operations that could be applicable, such
as addition on integers. It was shown later by Brickell and Yacobi [12] that security
flaws exist in Rivest et. al. approach. In particular, known plaintext and known
ciphertext attacks. In 1985, Blakley and Meadows [6] followed Rivest approach and
propose an encryption scheme that supports some statistical operations such as sum
and average. Despite the previous initiation efforts, Feigenbaum [22] in 1986 and
Abadi et. al. [1] in 1987 can be considered as the first proposals to discuss the concept
of processing over encrypted data in its general form, and the first to use formal
definitions and strict security requirements.

Although several approaches and efforts were discussed by cryptographers as
explained above, the hype of processing over encrypted data did not receive a con-
siderable attention by the database community until 2002, when Hacigümüs et. al.
[31] discussed the idea in the context of database applications. A restricted version
that focuses only on search over encrypted documents has been previously pub-
lished by Song et. al. [49] in 2000. Since then, a rapidly growing literature evolved,
and yielded to several approaches and solutions that have been discussed in the
community, such as Fully Homomorphic Encryption (FHE) that has been introduced
by Gentry [25], CryptDB [44], CloudProtect [17], and Silverline [45].

This introduction is followed by a discussion of homomorphic encryption schemes,
both fully and partially. We then present the recent advances of processing on en-
crypted data. Afterwards, we discuss the current industry offerings. Finally, we
outline the limitations and open issues in processing over encrypted data.

2.1 Homomorphic Cryptosystems

Existing encryption schemes can be classified into two main categories in terms of
homomorphic properties. Namely, Fully Homomorphic Encryption (FHE) and Partially
Homomorphic Encryption (PHE). Homomorphic is an adjective that describes a special
property of an encryption scheme. That property, at an abstract level, can be defined
as the ability to perform computations on the ciphertext without decrypting it or
even knowing the keys.

Fully Homomorphic Encryption (FHE)
In the cryptography community, FHE was thought to be impossible to achieve un-
til 2009, when Gentry announced his new approach [26, 27]. It is considered one
of the recent breakthrough of cryptography. FHE supports arbitrary computation
over encrypted data and remains secure (achieve semantic security) as well. In his

169

Eyad Saleh: Processing Over Encrypted Data: Between Theory and Practice

PhD thesis [25], he discussed how his schemes can be constructed. Before Gentry’s
achievement, all encryption schemes that preserve a homomorphic property were
able to support only a single operation over encrypted data. The main contribution
of Gentry’s work is the supporting of two homomorphic operations at the same
time. Namely multiplication and addition. Correspond to AND (∧) and XOR (⊕) in
boolean algebra. The remarkable value of supporting these two boolean functions is
that any computation can be converted into a function that contains only (∧) and (⊕)
as we explained below. Finally, an open-source implementation of FHE is available
[34, 35].

In algebraic terms, any computation can be expressed as a boolean circuit. Usually,
several techniques can be used to convert a function (i.e., computation) into a more
simple or efficient one. However, they can also be used to transform a function
to use specific boolean operations. For instance, ¬A can be expressed as A ⊕ 1,
another example would be A ∨ B, this can be transformed into (¬A) ∧ (¬B) which
is equivalent to (A ⊕ 1) ∧ (B ⊕ 1). By utilizing such techniques, all functions can
be converted into a series of (∧) and (⊕) operations. This is the basis behind the
remarkable achievement of Gentry’s work.

Clearly, converting even a simple application into a series of boolean circuits re-
quires enormous number of operations. Moreover, both the complexity of encryption
and decryption and the size of the ciphertext hugely grow. Despite that Gentry is
trying with the support of his colleagues at IBM to optimize the first version of his
algorithm [10, 19, 28], his approach remains very expensive and hence impractical.

Partially Homomorphic Encryption (PHE)
Several PHE systems have been discussed in the Literature. As we explained earlier,
Rivest et. al. [46] in 1978 was the first to introduce the concept of privacy homomor-
phism. Then, several researchers follow such as ElGamal and Paillier. Below is a
brief discussion of the most well-known partially homomorphic cryptosystems.

Un-Padded RSA Cryptosystem: Conceptually introduced by Diffie and Hellman
[18] in 1976 (as the first proposal of public-key cryptography). Motivated by Diffie
and Hellman article, Rivest et. al. [47] followed in 1978 and invented the first prac-
tical public-key encryption scheme that is widely known as RSA. The RSA scheme
(without padding) is homomorphic for the multiplication operation with the mod-
ulo n. Given two plaintextsm1 andm2 with their corresponding ciphertexts c1 and
c2, where

c1 = E(m1) mod n, c2 = E(m2) mod n

c1 × c2 = E(m1)× E(m2) mod n
= E(m1 ×m2) mod n

170

2 Processing Over Encrypted Data

is an encryption ofm1 ×m2. In short, the multiplication of the ciphertexts modulo
n is equivalent to the multiplication of the plaintexts.

ElGamal Cryptosystem: In contrast to RSA scheme, that is based on the difficulty
of factoring n = p · q, where p and q are two large prime numbers. ElGamal [24] in
1984 proposed what is known as ElGamal Cryptosystem. His scheme is based on
problem of solving discrete logarithms. The homomorphic operation that ElGamal
supports is the multiplication over encrypted messages. Given two ciphertext c1 and
c2 that are encryption of m1 and m2, using random values k1 and k2 respectively,
then

(c1, c2) = (αk1αk2 , (m1 · yk1)(m2 · yk2))

= (αk1+k2 ,m1m2 · yk1+k2)

is a valid encryption of m1m2. One notable drawback of ElGamal scheme is that
the size of ciphertext is double the size of the plaintext message. Interestingly, sev-
eral variants of ElGamal have been proposed, such as Cramer et. al. [15] that is
homomorphic on the additive operation.

Paillier Cryptosystem: As discussed in [42], the Paillier scheme is based on the
problem of Composite Residuosity Class. i.e., given a composite n and an integer z , it
is hard to decide whether there exists y such that z ≡ yn mod n2 . The difference of
Paillier from RSA is the usage of square number as modulus, where n2 = pq is the
product of two large primes. As for homomorphic property, the scheme supports two
main operations, one is addition. Let c1 = gm1rn1 mod n2 and c2 = gm2rn2 mod n2,
then

c1c2 mod n2 = gm1rn1g
m2rn2 mod n2

= gm1+m2r1r
n
2 mod n2

is a valid encryption ofm1 +m2.
Based on the above discussion, it is very clear that homomorphic encryption

schemes are useful. However, they lack general computation support since they
can perform limited types of operations, and hence the question of designing full
functional systems that process encrypted data using only homomorphic schemes
is still an open challenge.

2.2 State of the Art

Existing literature of processing over encrypted data can be classified into three main
categories: (i) Systems that utilize homomorphic encryption schemes, (ii) Client-
Server Splitting Approaches, and (iii) Trusted-Hardware Systems. Below we discuss
systems that fall under these categories.

171

Eyad Saleh: Processing Over Encrypted Data: Between Theory and Practice

Systems Based on Homomorphic Schemes
CryptDB [44] can be considered as one of the “partially” practical systems that
utilized several homomorphic schemes to support database functionality. Their ap-
proach is basically built on two main ideas. First, Use SQL-aware encryption schemes
to efficiently execute queries. And second, use onions of encryption and adjust them
dynamically at the run-time based on the required functionality. The idea of SQL-
aware encryption schemes is a kind of mapping between the operation required
and the homomorphic scheme that can supports it. It is an interesting idea and
will be taken into consideration in future research on data confidentiality in the
Cloud. However, onions of encryption cause extra overhead. One major draw back
of CryptDB is the lack of support for Stored Procedures (where the SQL code is inte-
grated into the DBMS itself). This is crucial because the best-practice in developing
enterprise applications is to use Stored Procedures. Moreover, CryptDB is targeting
only transactional workloads, applications with analytical workloads or very large
and complex databases are infeasible to run over CryptDB.

Client-Server Splitting Approaches
Several approaches that utilize the concept of client-server query split have been
discussed by the community [31–33, 36, 45, 51]. Below we discuss examples of such
systems.

Silverline [45] keeps the data at the server-side confidential by encryption in away
that is transparent to the application and being able to have some functionality on
it as well. Silveline proposed to dynamically analyse the application to determine
which parts of the data can be functionally encryptable; it assumes that any data that
is never interpreted or manipulated by the application is encryptable. For instance,
a SELECT query in an HRM applications that searches for all records match the
employeeID ‘Jan’ is not required to interpret the actual string ‘Jan’ and hence can
execute the query if it would be encrypted. As for key-management, it divides the
users into groups, and assigns a single encryption key to this group, facilitates
encryption and information sharing at the same time. While Silveline seems to be
a practical to some extent, the main drawback is that it requires analysis of the
application and the data to determine which parts can be encrypted, which we
believe to be an expensive task, also a repetition of this process will be required
whenever a change to the application or upgrade is taking place. Also, major part of
the data will still be stored in plain-text, thus privacy and data compromise issues
still open.

In contrast to Silverline, Hacigümüs et. al. [31] proposed to store the entire data in
an encrypted form on the provider’s side, and introduced an algebraic framework for
query rewriting. The framework divides every query into two parts, execute the first
part on the encrypted version (i.e., stored on the server’s side), and then perform
client-side post-processing on the result come from the server. The efficiency of

172

2 Processing Over Encrypted Data

this approach relies on how data partitioning and query splitting and rewriting is
accomplished.

Finally, Monomi [51] utilizes both techniques, PHE and split client-server query exe-
cution. In contrast to CryptDB [44] that focuses on transactional workloads, Monomi
is mainly targeting analytical workloads. Since queries are not known ahead of time,
and to maximize efficiency, Monomi introduces an optimization designer that choose
an appropriate database design (on the server) according to the target workload.
Further, it provides a planner that selects the query execution path for every query.
Additionally, it provides some techniques such as per-row pre-computation and
pre-filtering. From practical point of view, Monomi is far from being practical for
several reasons. First, performance cost is very expensive. Queries over large (plain)
datasets often have the problem of I/O Bottleneck, imagine adding the cost of being
encrypted. Second, choose a physical design at the runtime, pre-filtering and pre-
computation are complex tasks and depend mainly on the targeted workload. Thus,
the task need to be repeated for every workload or application.

Trusted-Hardware Systems
To perform a computation on encrypted data, the keys need to be present at the server
to decrypt the data, compute, and then encrypt again. The drawback of this model is
the vulnerability of compromising cryptographic keys. Therefore, several techniques
and approaches have been discussed by researcher and industry to overcome such
vulnerabilities. These approaches use a secure, tamper-proof hardware components
attached to the server to store cryptographic keys and perform computation over
encrypted data [4, 5]. Examples of industrial solutions that are in use include secure
co-processors, Hardware Security Modules (HSM), and FPGAs.

A more detailed discussion about processing on encrypted data using secure
hardware is presented in [21, 40].

2.3 Current Industry Offerings

Oracle introduced Transparent Data Encryption (TDE) [41] that provides data-at-rest
encryption. The data will be stored on the file systems as encrypted. Yet, and upon
request, it transparently decrypt the data for the application to process. TDE sup-
ports both column-level and table-level encryption. However, a single key is used
for the entire table regardless of how many columns are encrypted. By default, TDE
utilizes AES with 192-bit length key as a standard encryption algorithm. However,
128 and 256 bits are also supported in addition to 3DES as an alternative encryption
algorithm. To prevent unauthorized disclosure, the keys for all tables are encrypted
with a database-server master key and then stored in a dictionary table in the data-
base. Afterwards, the master key is stored in an external secure module outside the

173

Eyad Saleh: Processing Over Encrypted Data: Between Theory and Practice

database and is accessible only to the security administrator. As a result, no keys are
stored in plain text.

Similar to Oracle, Microsoft offers TDE as well [39]. The main concept of securing
data at-rest by utilizing encryption remains the same. However, few differences
exist, such as storing the keys for encrypting data in the database boot record in
comparison to a dictionary in the case of Oracle. Another major difference is that
Microsoft TDE uses three-levels of encryption along with two master keys and one
certificate. Namely Service Master Key (SMK) and Database Master Key (DMK). First,
the SMK is created at the time of SQL Server setup. The Windows OS-Level Data
Protection API (DPAPI) is used to encrypt the SMK so it remains protected. Second,
The DMK is created and then protected by encrypting it using the SMK. Finally,
a certificate is generated using the DMK and stored in the master database that is
consequently used to encrypt the data encryption key. Worth to mention that the
entire user’s database is encrypted by the data encryption key.

Navajo Systems (acquired by Salesforce in 2011) [23], CipherCloud [13], and SQL-
Cipher [50] all provide techniques to encrypt enterprise data before storing them
in the Cloud. For instance, CipherCloud offers, in addition to key management and
other things, what they call Tokenization. It generates a random values to substitute
the original data and store them in the Cloud. The mapping between the random
values and the original data is stored at the client’s side.

Finally, Google is implementing and testing some partially homomorphic encryp-
tions in a new command-line client-tool that accesses their BigQuery service [7].

Obviously, the above industry offerings are mainly targeted to protect data at-rest
and in transit. Supporting functionality over encrypted data, other than basic search
or limited queries, remains a challenge and an open issue for both industry and
academia.

2.4 Limitations and Open Issues

Encryption schemes that preserve homomorphic property have pros and cons. On
one hand, it is a desirable property that allows the user to perform computations
on the encrypted data without decrypting it or even knowing the decryption keys.
One potential candidate for such need is electronic voting. On the other hand, it is
perceived as a drawback or a weakness in the encryption scheme since it cannot
satisfy IND-CCA2 requirements, and hence can leak sensitive information. This is
drawn from the fact that homomorphic encryption schemes are malleable by design.
For instance, a chosen-ciphertext attack by Ahituv et. al. [3] was reported against a
homomorphic scheme where the addition operation is supported.

174

3 Conclusion and outlook

Based on the above discussion, we point out inherited limitations of current
schemes and discuss some open problems in the domain of processing over en-
crypted data.

FHE is impractical
Despite the improvements [10, 11, 19, 30] that follow Gentry’s scheme, current pro-
posals of FHE are far from being practical due to the expensive cost to perform
operations. For example, An evaluation performed by Gentry et. al. in 2012 [29] for
AES-128 circuit showed that it cost about 40 minutes per AES block on a machine
with 256 GB of RAM. In addition to the performance cost and high security guar-
antees it requires, the computation model required by FHE is complex due to the
need of converting the application into a boolean circuit that may results in a very
large, non-trivial circuit. Therefore, designing an efficient and practical FHE scheme
remains an open issue.

PHE schemes are Limited
In contrast to FHE, PHE schemes are more efficient. This is due to the support of
only limited functionality. For instance, Paillier takes about 0.005 ms to perform
an addition on two ciphertexts. PHE schemes are crucial for systems to process
encrypted data because of their practicality. However, they only support partial
computations, and hence, cannot be used to build complete functional systems. Yet,
and motivated by the previous schemes and advances in cryptography, we believe
that more schemes to come that can help in bridging this gap.

Strong Order-Preserving Encryption
Order-Preserving Encryption (OPE) schemes [2, 9] are shown to be insecure and
reveal about half of the plaintext [43]. An extension to improve the security of [9] was
presented by the same authors in [8]. However, the leakage of nothing except order
remains questionable. More recent approaches [37, 43] claim that their schemes
achieve ideal security of OPE (i.e., they leaks nothing but order). The applicability
of such schemes in a general setting remains a challenge.

3 Conclusion and outlook

In this report, we presented our solution towards the question of how to minimize
the risk of co-resident tenants in the context of SaaS. Then, we discussed the state-
of-the-art in the area of processing over encrypted data. As for my next step, I am
working on a system to answer the third question of my thesis: How to protect the

175

Eyad Saleh: Processing Over Encrypted Data: Between Theory and Practice

tenant’s assets in terms of data confidentiality? by utilizing partially homomorphic en-
cryption schemes mentioned above.

References

[1] M. Abadi, J. Feigenbaum, and J. Kilian. “On Hiding Information from an
Oracle”. In: ACM Symposium on Theory of Computing. New York, USA, 1987.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. “Order-preserving encryption
for numeric data”. In: ACM SIGMOD Conference. Paris, France, 2004.

[3] N. Ahituv, Y. Lapid, and S. Neumann. “Processing encrypted data”. In: Com-
munications of the ACM 30.9 (1987), pages 777–780.

[4] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and
R. Venkatesan. “Orthogonal Security With Cipherbase”. In: CIDR. California,
USA, 2013.

[5] S. Bajaj and R. Sion. “TrustedDB: A Trusted Hardware-Based Database with
Privacy and Data Confidentiality”. In: ACM SIGMOD Conference. California,
USA, 2011.

[6] G. R. Balkley and C. Meadows. “A Database Encryption Scheme Which Allows
The Computation of Statistics Using Encrypted Data”. In: IEEE Symposium on
Security and Privacy. Oakland, CA, USA, 1985.

[7] G. BigQuery. Encrypted BigQuery Client. [retrieved: Sep, 2014]. url: https:
//code.google.com/p/encrypted-bigquery-client.

[8] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. “Order-preserving en-
cryption revisited: improved security analysis and alternative solutions”. In:
CRYPTO. California, USA, 2011, pages 578–595.

[9] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. “Order-Preserving Sym-
metric Encryption”. In: EUROCRYPT. Cologne, Germany, 2009, pages 224–
241.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. “(Leveled) fully homomorphic
encryption without bootstrapping”. In: Innovations in (Theoretical) Computer
Science. Cambridge, MA, USA, 2012.

[11] Z. Brakerski and V. Vaikuntanathan. “Fully homomorphic encryption from
ring-LWE and security for key dependent messages”. In: CRYPTO. California,
USA, 2011, pages 505–524.

[12] E. F. Brickell and Y. Yacobi. “On privacy homomorphisms (extended abstract)”.
In: EUROCRYPT. Volume 304. 1987, pages 117–125.

176

https://code.google.com/p/encrypted-bigquery-client
https://code.google.com/p/encrypted-bigquery-client

References

[13] CipherCloud. Cloud Data Protection. [retrieved: Oct, 2014]. url: http://pages.
ciphercloud.com/Guide-to-Cloud-Data-Protection.html.

[14] S. Code. Implementation of SecPlace. [retrieved: Sep, 2014]. url: https://gith
ub.com/johannessianipar/SecPlace.

[15] R. Cramer, R. Gennaro, and B. Schoenmakers. “A secure and optimally efficient
multiauthority election scheme”. In: EUROCRYPT. NY, USA, 1997, pages 103–
118.

[16] C. Curino, E. Jones, S. Madden, and H. Balakrishnan. “Workload-aware data-
base monitoring and consolidation”. In: ACM SIGMOD Conference. Athens,
Greece, 2011.

[17] M. H. Diallo, B. Hore, E. C. Chang, S. Mehrotra, and N. Venkatasubramanian.
“CloudProtect: Managing Data Privacy in Cloud Applications”. In: IEEE Cloud.
Hawaii, USA, 2012.

[18] W. Diffie and M. Hellman. “New Directions of Cryptography”. In: IEEE Trans-
actions on Information Theory 22.6 (1976), pages 644–654.

[19] M. v. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. “Fully Homomorphic
Encryption over the Integers”. In: EUROCRYPT. Nice, France, 2010.

[20] J. Duggan, U. Cetintemel, O. Papaemmanouil, and E. Upfal. “Performance
prediction for concurrent database workloads”. In: ACM SIGMOD Conference.
Athens, Greece, 2011.

[21] K. Eguro and R. Venkatesan. “FPGAs for Trusted Cloud Computing”. In: Field-
Programmable Logic and Applications. Oslo, Norway, 2012.

[22] J. Feigenbaum. “Encrypting Problem Instances, or, ..., Can You Take Advantage
of Someone Without Having to Trust Him?” In: CRYPTO. Springer-Verlag,
1986.

[23] Forbes. Salesforce acquires Navajo Systems. [retrieved: Oct, 2014]. url: http://
www.forbes.com/sites/greatspeculations/%202011/08/30/salesf
orce-com-brings-navajo-into-camp-to-boost-cloud-security/.

[24] T. E. Gamal. “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms”. In: CRYPTO. Santa Barbara, California, USA, 1984,
pages 10–18.

[25] C. Gentry. “A fully homomorphic encryption scheme”. PhD thesis. Stanford,
2009.

[26] C. Gentry. “Computing arbitrary functions of encrypted data”. In: Communi-
cations of the ACM 53(3) (2010), pages 97–105.

[27] C. Gentry. “Fully homomorphic encryption using ideal lattices”. In: ACM
Symposium on the Theory of Computing. Maryland, USA, 2009, pages 169–178.

177

http://pages.ciphercloud.com/Guide-to-Cloud-Data-Protection.html
http://pages.ciphercloud.com/Guide-to-Cloud-Data-Protection.html
https://github.com/johannessianipar/SecPlace
https://github.com/johannessianipar/SecPlace
http://www.forbes.com/sites/greatspeculations/%202011/08/30/salesforce-com-brings-navajo-into-camp-to-boost-cloud-security/
http://www.forbes.com/sites/greatspeculations/%202011/08/30/salesforce-com-brings-navajo-into-camp-to-boost-cloud-security/
http://www.forbes.com/sites/greatspeculations/%202011/08/30/salesforce-com-brings-navajo-into-camp-to-boost-cloud-security/

Eyad Saleh: Processing Over Encrypted Data: Between Theory and Practice

[28] C. Gentry, S. Halevi, and N. P. Smart. “Better Bootstrapping in Fully Homo-
morphic Encryption”. In: Public Key Cryptography. Darmstadt, Germany, 2012.

[29] C. Gentry, S. Halevi, and N. P. Smart≈. “Homomorphic Evaluation of the AES
Circuit”. In: CRYPTO. California, USA, 2012, pages 850–867.

[30] C. Gentry, A. Sahai, and B. Waters. “Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based”. In:
CRYPTO. California, USA, 2013, pages 75–92.

[31] H. Hacigümüs, B. Lyer, C. Li, and S. Mehrotra. “Executing SQL over encrypted
data in the database-service-provider model”. In: ACM SIGMOD Conference.
Wisconsin, USA, 2002.

[32] H. Hacigümüs, B. Lyer, and S. Mehrotra. “Efficient Execution of Aggregation
Queries over Encrypted Relational Database”. In: Database Systems for Advanced
Applications. Jeju Island, Korea, 2004.

[33] H. Hacigümüs, B. Lyer, and S. Mehrotra. “Query Optimization in Encrypted
Database Systems”. In: Database Systems for Advanced Applications. Beijing,
China, 2005.

[34] S. Halevi. HElib: an Implementation of Homomorphic Encryption. [retrieved: Oct,
2014]. url: https://github.com/shaih/HElib.

[35] S. Halevi and V. Shoup. “Algorithms in HElib”. In: CRYPTO. California, USA,
2014.

[36] B. Hore, S. Mehrotra, and G. Tsudik. “A Privacy-Preserving Index for Range
Queries”. In: VLDB. Toronto, Canada, 2004, pages 720–731.

[37] F. Kerschbaum and A. Schroepfer. “Optimal Average-Complexity Ideal-Security
Order-Preserving Encryption”. In: ACM Conference on Computer and Communi-
cations Security. Arizona, USA, 2014.

[38] W. Lang, S. Shankar, J. Patel, and A. Kalhan. “Towards Multi-tenant Perfor-
mance SLOs”. In: IEEE ICDE. Washington DC, USA, 2012, pages 702–713.

[39] Microsoft. Transparent Data Encryption. [retrieved: Oct, 2014]. url: http://
msdn.microsoft.com/en-us/library/bb934049.aspx.

[40] R. Müller, J. Teubner, and G. Alonso. “Data Processing on FPGAs”. In: PVLDB
2.1 (2009), pages 910–921.

[41] Oracle. Transparent Data Encryption. [retrieved: Oct, 2014]. url: http://www.
oracle.com/technetwork/database/%20options/advanced-securit
y/index-099011.html.

[42] P. Paillier. “Public-Key Cryptosystems Based on Composite Degree Residu-
osity Classes”. In: EUROCRYPT. Prague, Czech Republic, 1999, pages 223–
238.

178

https://github.com/shaih/HElib
http://msdn.microsoft.com/en-us/library/bb934049.aspx
http://msdn.microsoft.com/en-us/library/bb934049.aspx
http://www.oracle.com/technetwork/database/%20options/advanced-security/index-099011.html
http://www.oracle.com/technetwork/database/%20options/advanced-security/index-099011.html
http://www.oracle.com/technetwork/database/%20options/advanced-security/index-099011.html

References

[43] R. A. Popa, F. H. Li, and N. Zeldovich. “An Ideal-Security Protocol for Order-
Preserving Encoding”. In: IEEE Symposium on Security and Privacy. Berkeley,
California, USA, 2013.

[44] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. “CryptDB:
Protecting Confidentiality with Encrypted Query Processing”. In: ACM Sym-
posium on Operating Systems Principles. Cascais, Portugal, 2011.

[45] K. P. N. Puttaswamy, C. Kruegel, and B. Y. Zhao. “Silverline: toward data con-
fidentiality in storage-intensive cloud applications”. In: ACM SOCC. Cascais,
Portugal, 2011.

[46] R. L. Rivest, L. Adleman, and M. L. Dertouzos. “On Data Banks and Privacy
Homomorphisms”. In: edited by A. J. R.A DeMillo. D.P. Dobkin and R. Lipton.
New York: Academic Press, 1982, pages 169–179.

[47] R. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital Sig-
natures and Public Key Cryptosystems”. In: Communications of the ACM 21.2
(Feb. 1978), pages 120–126.

[48] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner, and A. Zeier. “Pre-
dicting in-memory database performance for automating cluster management
tasks”. In: IEEE ICDE. Hanover, Germany, 2011, pages 1264–1275.

[49] D. Song, D. Wagner, and A. Perrig. “Practical Techniques for Searches on
Encrypted Data”. In: IEEE Symposium on Security and Privacy. Berkeley, USA,
2000.

[50] SqlCipher. Database Encryption. [retrieved: Oct, 2014]. url: https://www.
zetetic.net/sqlcipher/.

[51] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. “Processing analyti-
cal queries over encrypted data”. In: VLDB. Volume 6. 5. Trento, Italy, 2013,
pages 289–300.

179

https://www.zetetic.net/sqlcipher/
https://www.zetetic.net/sqlcipher/

Migrate Highly-Available Applications to
Non-HA-Infrastructure

Daniel Richter

Operating Systems and Middleware Group
Hasso-Plattner-Institut

daniel.richter@hpi.uni-potsdam.de

High availability can be achieved at different levels. Due to the fact, that imple-
menting high availability at infrastructure or platform level is very expensive, the
trend is to focus on application level and improve existing methods and tools and
develop new ones. To evaluate the ability to be highly available, an applications
has to be examined at three different layers: logic layer, data layer, and execution
environment layer. Also, there are tools needed to identify critical code parts that
either are used often or are not covered by any test cases. The main goal is to
find out—with the help of different testbeds and real world scenarios—which
layers affect each other and which characteristics are important to be able to make
applications highly available with non-highly-available infrastructures.

1 Introduction

Nowadays, many applications demand (high) availability. More and more services
and software components are business critical—simultaneously the number of ser-
vice users is growing rapidly. Typically, under increasing load systems can be scaled
out or scaled up. Scaling up means adding more resources to a machine, whereas
scaling out means adding more machines or computing nodes. Which technique
one can use heavily depends on an application’s implementation—while scaling
up usually is possible without changing any implementation detail, the ability to
scaling out is generally limited by the possibility to parallelize a software’s behavior
and state.

This fact leads to an interesting dilemma: how can we deal with legacy applica-
tions? For many long-time existent applications it is hardly possible to change the
code-base. In many cases the effort to find or train programmers, setup necessary
tools, or find adequate documentation is very costly for the service providers. To
deal with increasing load for these applications and retain its dependability and
availability at the same time typically scaling-up is in many cases the only chance.

The migration issue also affects service providers that run applications with
special—and in most cases very expensive— highly-available infrastructure. A com-

181

mailto:daniel.richter@hpi.uni-potsdam.de

Daniel Richter: Migrate Highly-Available Applications to Non-HA-Infrastructure

mon attempt is to abstain from specialized hardware and switch to more cost effec-
tive—but usually also more unreliable—infrastructure.

The goal is to find blueprints to migrate applications from highly-available infras-
tructures to non-highly-available ones.

2 Background

The availability of a system is described by the ratio of the systems uptime to the sys-
tems overall runtime. The higher a system’s availability is, the lower is its downtime
per lifetime. An availability of 99.999 (“five nines”) for example means a downtime
of 5:16 minutes per year. The availability itself does not indicate at which point in
time the downtime (the time an application cannot provide the service its contract
promises) occurs. Therefore, there are multiple classifications of availability and
therefore high availability. Often, for highly available systems a downtime only is
allowed to occur within concrete, pre-defined time slots.

One of the main means to achieve low downtime and high availability is fault
tolerance [1, 7]. Fault tolerance consists of two phases: error detection and error
processing. Error processing can be performed by either mitigate the impact of an
error, or error recovery. Usually, on choses one of the following options to process
errors:

Reconfiguration Change a systems functional structure—add, remove, or replace
components—or change the internal processing configuration. The external
visible functionality remains the same.

Retry Use redundancy in time (execute the same action again), space (use different
service instances), or information (use another data representation),

Repair Remove the fault that causes the error.

A very popular method to implement high availability is spatial redundancy: a
service and its components will be distributed among multiple, different machines.
In case of one service instance or its hardware infrastructure fails, other instances
can take over and compensate a failure. However, this ability to compensate fail-
ures depends on the types of errors the choses fault tolerance patterns can handle
(e.g. crash faults, timing faults, omission faults, computation faults), and the under-
standing of consistency within the application (e.g. strict consistency vs. eventual
consistency).

Methods to gain availability can be implemented on different levels:

182

3 Existing Testbeds

• The infrastructure level consists of the underlying hardware an IT-system is
using, such as servers, storage, and network interfaces. Usually, high availabil-
ity at infrastructure needs special—and mostly expensive—hardware. Those
systems generally use redundant power supplies, multiple network cards, or
arrays of independent disks.

• The platform level consists of the operating system and middleware. Spatial
redundancy at this level can be implemented with the use of a hypervisor and
virtual machines. Common virtualization solutions provide the ability to repli-
cate a virtual machine images and run them in fail-over configurations such as
active-active (all virtual machine instances process the same requests and have
to be constantly in a consistent state) or active-passive (one virtual machine
instance handles requests and permanently stores its state or snapshots of it; in
case of a failure another virtual machine instance is started, restores the state,
and takes over the processing).
Important challenges are to detect possible error states (ideally forecast them)
and restore respectively migrate virtual machines without having long down-
times [6, 10, 12, 14].

• The application level provides a wide range for fault tolerance mechanism im-
plementations—but applicable techniques heavily depend on the specific ap-
plication. Options to make IT-systems more fault tolerant and available are
discussed in section 4

• Some failures only can handled manually at the user level. That could be the
case when fault tolerance mechanisms at other layers are way to hard or cost
intensive to implement, or the error processing step needs human decisions.
Because of the duration to process manual tasks, error processing at user layer
in most cases cannot guarantee high availability.

3 Existing Testbeds

In order to experiment with various fault tolerance techniques, we designed and
implemented some technology demonstrators and testbeds with different execution
environments and programming languages, such as:

3.1 The Carrera Racetrack Experiment

The Carrera Racetrack Experiment in an embedded system containing a customized
slotcar racetrack (extended with several position sensors), and additional custom-

183

Daniel Richter: Migrate Highly-Available Applications to Non-HA-Infrastructure

Figure 1: The Unstoppable Orchestra as a distributed fault tolerant system. Left:
Crash faults for track playback processes can be tolerated. Right: Fault tolerance
for node manager crash faults

made sensor and actuator boards. This testbed is used to investigate fault tolerance
mechanisms within an environment with real-time constraints and resource limi-
tations, with embedded components, as well as to handle arbitrary wrong sensor
signals. Due to the limited number of sensors, also the most of the time there is only
insufficient knowledge about the whole system state. Therefore, control algorithms
and fault tolerance mechanisms have be robust against measurement inaccuracy
and incompleteness.

3.2 The Unstoppable Orchestra

The Unstoppable Orchestra is a distributed system whose purpose is to evaluate several
fault tolerance mechanisms, too. The application’s functionality is to play a piece of
music, where the music composition itself is divided into separate tracks (usually
one track per instrument). A track playback is distributed over multiple computers,
so for example a crash-fault of one machine can be compensated through the other
running systems. (See figure 1)

This testbed targets the fault tolerant interoperability between multiple execution
environments and programming languages (such as C#, C++, or Erlang) and the
implementation and evaluation of several fault tolerance strategies. Further investi-
gated aspects are real-time constraints, group communication, client coordination,
and leader election.

To evaluate different strategies for varying classes of faults and failures the Un-
stoppable Orchestra testbed currently covers the following failure types:

Crash faults Crashed track playback processes can be detected and restarted (ac-
cording to the testbed’s parameterization) either by a node manager itself or
the orchestra manager. Crashed node managers can be restarted by the or-

184

4 Application Level Fault Tolerance and High Availability

chestra manager. A track playback processes can deliver its service without an
corresponding node manager.

Omission faults (no result is produced) In case of broken network connections both
the node manager (or orchestra manager) and track playback processes detect
the inability to communicate with its counterpart. The track playback process
will stop its actions autonomously as well as the node manager will start an-
other track playback process.

Timing faults (a result too late or too early) The orchestra master constantly dis-
tributes the current position within the tracks to all playback processes. In
case of big differences between the orchestra master’s send position and the
track playback process’ own time model this time will be updated (minor time
differences can be tolerated due to the characteristics of the human auditory
system).

Computation faults (an incorrect value is computed) or corrupted data cannot be
simulated because of the lack of computations and missing shared state (with read
and write access of all components).

4 Application Level Fault Tolerance and High
Availability

While achieving high availability at infrastructure level and platform level, frame-
works and middleware providing software fault tolerance at application level still
are developing [2, 5, 11].

4.1 Software Fault Tolerance Layers

Approaches for implementing software fault tolerance (and therefore increasing
availability) at application level can be views at the following layers: logic layer, data
layer, and execution environment layer.

Execution Environment Layer
The execution environment layer is where both the logic layer and the data layer
are operated, monitored, and managed. In conjunction with the fact that applica-
tion level software fault tolerance is desired, the underlying hardware and oper-
ating systems are non-highly-available systems. Instead, techniques such as repli-
cation and virtualization are used. It is possible to create—based upon template—
whole environments with custom settings for networking, computing, and storage

185

Daniel Richter: Migrate Highly-Available Applications to Non-HA-Infrastructure

resources. Infrastructure-as-a-service providers offer a wide range of pre-configured
VM-images for different purposes.

Within platform-as-a-service environments—such as Microsoft Azure, Amazon
WebServices, or Google AppEngine—even the underlying operating system is trans-
parent for developers. The chance to influence things at the execution environment
layer is limited or impossible and developers have to use specified tools and frame-
works. On the other hand the effort for managing and maintaining hardware and
operating systems is minimized. [13, 16]

Logic Layer
The logic layer is where the business logic is executed. The most important property
for a logic layer is the ability to parallelize actions, work independently, and handle
shared data within a distributed environment. To implement fault tolerance mecha-
nisms, it is also important to know whether standard libraries are available, whether
third party components are available, or whether direct resource access (e.g. local
file system, threads, or outbound network connections) is possible—which offers
possibilities such as synchronization with other instances, delegation of work, or
replication and recovery.

Data Layer
The data layer manages data processed by the logic layer. It is responsible for the
storage and retrieval of required data as well as caring about data consistency within
a distributed cloud environment.

According to the CAP theorem [3, 4], for highly available systems one has to choose
between available, partition tolerant, but not (strict) consistent systems; or available,
(strict) consistent, but not partition tolerant systems. One consequence is, that one
has to analyze the actual needed degree of consistency—is strict consistency really
required or is it sufficient to use a storage layer that guarantees eventual consistency
so one can use e.g. highly available transactions [2].

Nowadays, there are two popular types of data storage: relational databases with a
data schema (e.g. SQL databases) and document databases with more unstructured
data (e.g. NoSQL databases, key-value databases, big data stores, message queues,
distributed hash tables) [15]. The choice for one of them affects the usable tools,
methods, and algorithms.

4.2 Tools for Software Fault Tolerance Evaluation

Failures typically are trigged by environment conditions—such as task scheduling,
memory leaks, network outages, or hardware failures. To create reproducible fault

186

4 Application Level Fault Tolerance and High Availability

Figure 2: Example for a code coverage analysis based upon a test suite run. Blue
parts a fully covered, yellow ones partial; red code parts were not touched during
the test run

tolerance experiments, an environment or framework is needed that can trigger spe-
cific failures in a controlled manner. This approach is known as fault injection [8, 9].

One way to provoke faults is to stress an application. For example one can increase
the number of requests, simulate decreased CPU time or memory scarcity (by adding
CPU- or memory-consuming processes), or increase the network latency. Another
method to produce faults is to directly manipulate an applications’ memory or
code and check whether any faults or failures are noticed and can be tolerated.
Some of these approaches can be executed at virtual machine level, by modifying
the operating system, by patching the language runtime, or just add additional
processes.

Fault injection methods can be characterized e.g. by their cost/perturbation (run-
time overhead), controllability and triggerability (which faults can be triggered in
which granularity) and repeatability [8]. The goal is to create a fault injection tool
that has low runtime overhead, can cover and trigger as much failures as possible
with reproducible results.

To find suitable points to inject faults, one can use test cases out of a test suite.
Using tests has the advantage of reproducible results and—if the tests suite is almost
complete—has a high code coverage. With the help of code coverage tools one can
find both critical code parts that are used very often—so the fault tolerance and
reliability of these code parts could and should be hardened—and code parts that

187

Daniel Richter: Migrate Highly-Available Applications to Non-HA-Infrastructure

are used rarely or never—which gives the advantage to complete the test suite and
increase its overall code coverage capability (see figure 2).

With the help of code coverage and tracing tools one can prioritize code parts
that are worth investigated more precise (usually to check all code parts is very
time consuming and expensive). Also, one can find locations that are worth being
targeted by software fault injection tools to check whether critical code parts are
prone to issues such as data races or concurrency problems, corrupted state, or loop
perforation. Ideally, both faults should be detected and also processed by a fault
tolerance application.

4.3 Research Questions

The overall goal is to both increase the availability of IT-systems on application level
without having high availability guaranteed at infrastructure or platform level. For
the main part this can be done by making applications more fault tolerant. Therefore,
to first qualify and evaluate the capabilities of different components and even code
parts and second make these more fault tolerant and with it available, we want
to combine tools for tracing and code coverage, find locations to inject faults and
increase the workload within a controlled environment and identify components or
code parts, that have to be made more fault tolerant.

The following research questions arise out of the previous considerations:

• What is the impact of load on performance?
• What is the impact of fault tolerance on performance?
• Which influence do the different layers (logic layer, data layer, execution envi-

ronment layer) have over each other?
• Are there one or more layers more important than others?
• Which layer properties make it easier or harder to migrate existing applications

to environments without highly available infrastructure?
• How robust it the software and its components?
• How critical are faults in specific components?
• Which of the points above can be automated?

5 Conclusion and Future Work

Whereas high availability at infrastructure and platform level is a well understood
area, the achievement of high availability at application level offers room for im-
provements. Our existing testbeds—the Unstoppable Orchestra and the Carrera

188

References

Racetrack Experiment (see section 3)—provide the potential to try out and evaluate
different methods and mechanisms for fault tolerance at application level. However,
the available scenarios are mostly artificial, the layers mentioned in section 4.1 are
not fully available, and do not provide insights inside real world applications and
problems.

This issue is about to be solved in cooperation with the DB Systel, the IT arm of the
Deutsche Bahn. They will provide some insights into a real world business critical
application running for many years. Based upon documentation, implementation
details, experience of developers and end users, and the long time the applications
runs, we hope we can get more insights into real world scenarios and can create
more complex components with a bigger code base to investigate.

The main goal is to find answers for the questions asked in section 4.3 and to be
able to create blueprints for highly-available applications with non-highly-available
infrastructures, both for new applications an existing ones.

References

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic concepts and
taxonomy of dependable and secure computing”. In: Dependable and Secure
Computing, IEEE Transactions on 1.1 (2004), pages 11–33.

[2] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
“Highly Available Transactions: Virtues and Limitations (Extended Version)”.
In: Proceedings of the VLDB Endowment 7.3 (2013).

[3] E. Brewer. “CAP Twelve Years Later: How the ”Rules” Have Changed”. In:
45.2 (2012), pages 23–29.

[4] E. A. Brewer. “Towards robust distributed systems”. In: PODC. 2000, page 7.
[5] S. Bykov, A. Geller, G. Kliot, J. Larus, R. Pandya, and J. Thelin. Orleans: A

Framework for Cloud Computing - Microsoft Research. Technical Report MSR-TR-
2010-159. Microsoft Research, Nov. 2010.

[6] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. “Live migration of virtual machines”. In: Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation - Volume
2. NSDI’05. Berkeley, CA, USA: USENIX Association, 2005, pages 273–286.

[7] R. Hanmer. Patterns for Fault Tolerant Software. Wiley Publishing, 2007.
[8] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. “Fault injection techniques and tools”.

In: Computer 30.4 (1997), pages 75–82.

189

Daniel Richter: Migrate Highly-Available Applications to Non-HA-Infrastructure

[9] R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira. “On fault representa-
tiveness of software fault injection”. In: Software Engineering, IEEE Transactions
on 39.1 (2013), pages 80–96.

[10] M. Nelson, B.-H. Lim, and G. Hutchins. “Fast Transparent Migration for Vir-
tual Machines”. In: (2005).

[11] J. M. Paluska, P. Hubert, G. Schiele, C. Becker, and S. Ward. “Vision: a Light-
weight Computing Model for Fine-Grained Cloud Computing”. In: (June
2012).

[12] A. Polze, P. Tröger, and F. Salfner. “Timely Virtual Machine Migration for
Pro-active Fault Tolerance”. In: 2012 IEEE 15th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops.
Los Alamitos, CA, USA: IEEE Computer Society, 2011, pages 234–243. doi:
10.1109/ISORCW.2011.42.

[13] R. Ranjan and B. Benatallah. “Programming cloud resource orchestration
framework: operations and research challenges”. In: (2012). arXiv: 1204.2204
[cs.DS].

[14] F. Salfner, P. Tröger, and M. Richly. “Dependable Estimation of Downtime for
Virtual Machine Live Migration”. In: 5.1 and 2 (June 2012), pages 70–88.

[15] M. Stonebraker. “SQL databases v. NoSQL databases”. In: 53.4 (Apr. 2010),
pages 10–11. doi: 10.1145/1721654.1721659.

[16] C. Weinhardt, A. Anandasivam, B. Blau, N. Borissov, T. Meinl, W. Michalk,
and J. Stoesser. “Cloud computing–a classification, business models, and re-
search directions”. In: Business & Information Systems Engineering 1.5 (2009),
pages 391–399.

190

http://dx.doi.org/10.1109/ISORCW.2011.42
http://arxiv.org/abs/1204.2204
http://arxiv.org/abs/1204.2204
http://dx.doi.org/10.1145/1721654.1721659

Leveraging Programmers’ Skills:
Interleaving of Modification and Use

in Data-driven Tool Development

Marcel Taeumel

Software Architecture Group
Hasso-Plattner-Institut

marcel.taeumel@hpi.uni-potsdam.de

Many programmers use programming tools but hesitate to modify them to ac-
commodate challenging scenarios—taking on the role of a tool builder seems too
costly, maybe not even rewarding. We propose a new perspective on graphical
tools and provide a framework to build and modify them with low effort, that is,
few lines of code and short feedback loops. We applied our framework to context-
oriented programming, source code versioning, run-time state exploration, and
also its own evolution. At the time of writing, we are investigating to which extent
programmers do take advantage of our mechanism.

1 Introduction

Programming tools, like other software systems, are created and modified iteratively.
Building such tools comes with a subjective trade-off between utility and usability.
Thus, programming tools are likely to exhibit deficiencies during actual usage. When
tool builders assume an idealized set of prospective tasks and users, there is a chance
that they make inadequate assumptions or miss some corner cases. In such a case,
the tool user who detects a deficiency can contact the tool builder; bug notices or
feature requests can typically be submitted. Then, the user can wait for a resolving
response or go on working around the detected deficiency. Now for programmers
being the tool users, this procedure may be unsatisfactory. If they have access to the
tool’s sources, they may want to address the problem by themselves to save time.

We propose a new perspective on graphical programming tools and environments
such as Eclipse or Visual Studio. We want to express the existing functionality of
those tools in simpler terms and provide a tool building framework that exposes
this expression. Eventually, tool builders and tool users should be roles that any
programmer can take on.

191

mailto:marcel.taeumel@hpi.uni-potsdam.de

Marcel Taeumel: Data-driven Tool Development

Figure 1: Our data-driven perspective applied to Eclipse (left) and Squeak (right).
Software artifacts include projects, files, classes, and methods.

1.1 A Data-driven Perspective

We see graphical tools as data processing pipelines whose intermediate results can
be displayed on screen. Software artifacts are repeatedly transformed and prepared
for views; programmers interactively explore and modify artifacts through such
views. Given this, we want to bring the simplicity and flexibility of creating and
composing Unix filter programs from the text-based world into the graphics-based
one. Means of configuration represent the selection of relevant artifact relationships
and the extraction of characteristic information to reveal an appropriate degree of
insight. Means of combination represent the arrangement of multiple views, each
having particular strengths, that cooperate and help programmers see problems
from different angles. Means of abstraction represent different groups of tools and
the notion of tool boundaries like it exists in terms of Eclipse’s perspectives.

Figure 1 applies our data-driven perspective to the programming environments
Eclipse and Squeak; each environment consists of rectangular boxes that exchange
software artifacts and where scripts prepare them for visualization on screen.

By projecting this data-driven perspective on graphical tools, we support pro-
grammers to focus on their domain-specific software artifacts. In contrast to usually
not self-explaining interfaces, data-driven tools provide discoverable cues for the
whereabouts and happenings of software artifacts. For example, a typical user may
reason about the rules of practice in a graphical user interface like this:

If I click on that file name on the left-hand side, the environment somehow
shows that file’s contents in the central, editable area. I have to remember
that.

In our data-driven perspective, we anticipate thoughts that focus on artifacts and
their projections like this:

192

1 Introduction

If I choose that file representing my module in the left-hand view, this very
artifact will flow to the central, editable view where it is projected to its
text-based contents. I can change that if I want to.

There are already list-based views where programmers can be in control of their
software artifacts because each artifact has a distinguishable representation on
screen. In our perspective, we can also make the rules of processing such artifacts
explicit and customizable because we establish discoverable boundaries in the graphical
user interface.

1.2 VIVIDE: Our Tool Building Framework

We propose a mechanism that supports low-effort construction of graphical tools [16].
It resides between the fields of (1) processing data and (2) presenting data in graphi-
cal views on screen. On the one hand, it can provide the necessary glue to decouple
both fields and promote their extensibility and reusability. On the other hand, it
can reach into one or the other field to provide missing functionality ad-hoc accord-
ing to specific domains, tasks, or personal preferences. Basically, it is a script-based,
data-driven approach to transform software artifacts and prepare them before showing
them on screen.

We implemented the framework in the object-oriented programming language
Squeak/Smalltalk1 and use Smalltalk as the scripting language. An exemplary script
looks like this; it transforms classes into methods and extracts the selector and some
meta information to be displayed in a table widget:

[:class | class methodDict values].
[:method | {
#text -> method selector.
#tooltip -> (method author, method timestamp)}].

Our framework has the notion of panes as uniform building blocks, which describe
where to show information on screen. That is, panes are invisible rectangles with a
position and an extent being placeholders for actual content. Encapsulated in each
pane, there is set of artifacts, a current script, and a current widget. When new
artifacts arrive, the particular pane evaluates its script and updates the intermediate
model for its widget.

Panes can talk to each other as illustrated in Figure 2. Such communication allows
for modeling the dataflow within one tool and across tools. For each pane, there is
an interaction loop through the widget, which allows users to influence the dataflow.
They can, for example, select which artifacts to process if widgets support such a
selection like most list-based ones do.

1https://www.github.com/hpi-swa/vivide

193

https://www.github.com/hpi-swa/vivide

Marcel Taeumel: Data-driven Tool Development

Figure 2: In our framework, graphical tools consist of cooperating panes, which
encapsulate interactive widgets and evaluate scripts on incoming artifacts.

1.3 Research Question

We observed that many programmers use their programming tools and environ-
ments but often hesitate to adapt those when facing challenging situations in unan-
ticipated domains or tasks. Now this profession of a programmer should encourage
not only to create software systems for paying customers but also to constantly
improve the own working practice and tool sets. That is why we investigate the
following research question:

How can we provide low-effort construction of graphical tools so that pro-
grammers can take advantage of informative data sources and insightful
visualizations while accommodating unanticipated tasks on their own?

We chose the domain of graphical programming tools because we argue that their
interactive views take more advantage of modern display and input technologies
than text-based command-line interfaces do. When programmers can conveniently
take on both roles—tool builder and tool user—, they may not only create software
systems with fewer bugs but also may have more fun in their profession.

2 Applications

We applied our framework to context-oriented programming, source code version-
ing, run-time state exploration, and also its own evolution.

194

2 Applications

2.1 Improving VIVIDE using VIVIDE

We rebuilt many standard tools of Squeak with scripts to explore the limitations
of our framework but also to create a consistent user experience. We argue that a
data-driven working practice can only be investigated if programmers do not have
to frequently fall-back to traditional tools. The first scripts dealt with listing class
and package contents as well as editing source code by means of class definitions
and methods. Then, we created scripts for change management and code versioning.
At the time of writing, we provide more than 100 scripts that also include debugging
and file management. The debugger, for example, can be expressed in our framework
like this: the input object for is a suspended process object; the first script can extract
the stack and put it into a list widget; the second script can show code for the current
selection in the stack; the third script can reveal more context information such as
the message receiver.

All new kinds of data that VIVIDE introduces can be managed with scripts as
well. This includes scripts themselves, which can be treated as software artifacts of
their own right and be transformed as well as prepared for some interactive view.
We are still in the process of refactoring other framework code and map it to its own
concepts to improve maintenance and extensibility.

2.2 Tools for Exploring Run-time Information

When it comes to debugging and exploring run-time information, our framework
can save much efforts by adjusting views to concrete, domain-specific data. Typi-
cally, default debugging tools fall short on providing appropriate views. They clutter
the screen with information that align with the programming language representa-
tion (i.e., objects and fields) but not with the particular domain (e.g., persons and
telephone numbers).

Scripts are evaluated on concrete objects. As shown in Figure 3, such objects can
be part a system’s run-time state; scripts can filter, reorder, or extend corresponding
information to reveal an appropriate degree of insight. Supporting this, all views
can be arranged freely on screen, thus supporting programmers to compare abstract
code with concrete examples side-by-side [17].

2.3 Tools for Context-oriented Programming

There is not only one strategy to design and implement context-oriented program-
ming (COP) for a programming language along with tool support. Indeed, for many
languages where COP is available, at least two different implementations exist [1].
Chances are that even basic tools, once created with an effort, cannot be reused

195

Marcel Taeumel: Data-driven Tool Development

Figure 3: Traditional debugging tools show typically unspecific information (left).
Our framework supports tailoring views (right) that fit specific tasks.

across different COP implementations. Even for shared host languages, the exten-
sion’s meta-model may differ and hence existing tools have to be adapted. Here, the
programmer who implements COP is not necessarily a tool builder, but only a user
of similar COP tools. To provide basic tool support for the new implementation, the
programmer has to learn the tool framework and become a tool builder, which may
involve a steep learning curve.

We applied our framework [15] and created tools that answer essential program
comprehension questions related to COP such as “Which layers refine class C?” or
“Which layers are currently active in process P?” The resulting tools showed that
small scripts are sufficient to provide basic tool support and that extended tasks
can be accommodated by configuring or combining those. We assume that they are
more or less domain-independent and likely to be reused in any COP projects.

2.4 Tools for Source Code Versioning

During software evolution, representative programming tool support includes means
to manage source code versions and log the project’s history. Programmers are ad-
vised to follow best practices to maximize the benefits of version control systems
(VCS) such as Git or Mercurial. Such practices include continuous integration [4],
which addresses both committing and testing code on a regular basis, and the advice
to only store small, coherent, complete change sets with a brief yet descriptive mes-
sage to improve comprehensibility [18]. In reality, programmers commit frequently
about once per day on average [13] but only two-thirds of commits get assigned with
an appropriate message [3]. Further research shows [7, 9] that programmers even
commit incoherent change sets.

We propose a semi-automatic, interactive approach that supports programmers to
(1) identify consecutive changes that indicate continuity of an activity and (2) collect

196

3 Data-driven Tool Development

scattered runs of changes that belong to the same activity. Observing multiple pro-
gramming sessions, we derived several reusable algorithms that form a multi-stage
analysis chain. In each stage, an algorithm assigns changes into groups and adds rec-
ommendations if in doubt. After the analysis, programmers can explore the proposed
groups, adjust them manually, or resolve recommendations. We used our framework
to provide graphical tool support, that is, visualizing intermediate results concisely
and having scripts that reduce the effort for manual adjustments of algorithms.

3 Data-driven Tool Development

In this section, we present our vision of extensible programming environments. Our
data-driven tool building approach simplifies not only the creation of throw-away
prototypes but also the perfection of well-established tools. It supports the whole
tool evolution process.

3.1 Reducing the Costs if the Value is Questionable

If the added value is not clear, the costs for building tools should be low. Program-
mers should be able to try out any idea, whether it turns our to be beneficial or
not. Otherwise, they may miss an opportunity that prevents many errors and saves
hours of effortful work. If the added value is obvious and very high, there can be a
dedicated tool builder who has the time and means to construct any complex tool.
Even in such a case, however, minor adaptation requests of the users, which are also
programmers, will face the same problem like when building new tools of uncertain
value.

Exploring run-time information represents a common example. In debugging
sessions, the existing tool support seems to address all tasks to some extent: pro-
grammers can navigate the execution stack, browse through object state, or add
watchdogs. Typically, this is accompanied with numerous mouse clicks, tool focus
changes, and manual note taking. Programmers may notice such inconvenience but
hesitate to accommodate the situation because they actually can get their work done
the traditional way. The expected improvement might pay off only once. BUT: Tools
could and should automate repetitive tasks, reduce information clutter, reflect the mental
model, and hence save time.

Another example addresses design patterns, which are not meant to be created
but to be discovered. We argue that this is also true for highly valuable, reusable pro-
gramming tools—even directly related. For example, existing tools do often support
only the underlying programming language concepts such as classes and methods
as well as inheritance and polymorphism. When introducing patterns that build

197

Marcel Taeumel: Data-driven Tool Development

upon these concepts, such as the strategy pattern and the visitor pattern [5], exist-
ing tool support falls short. This phenomenon is often called crosscutting concerns:
modules cannot be expressed concisely at the textual level, code scatters and tangles,
and existing tools typically fail to recognize the changed situation appropriately.
Language extensions such as COP address this problem by adding concepts while
reusing tools for editing text. When programmers would use our approach to create
new views on the source code at hand, language extensions could be avoided2 and
patterns could be discovered along with supportive tools.

3.2 An Evolving Tool Landscape

We see the landscape of tools in a programming environment in a process of constant
change and improvement. Fresh prototypes communicate with well-established
tools to support programmers in code reading, writing, executing, debugging, ver-
sioning, deploying, or documenting. As the programmer may not know whether a
prototype should be extended or thrown away, the process of building tools should
be transparent to other programming activities.

We envision emergent tool designs. Our framework supports programmers to
be both tool user and tool builder. Given that we keep the overhead for switching
between roles minimal, there may be no dominant role anymore. When working
with concrete artifacts, programmers can create and modify scripts, try out various
widgets, and combine them to efficiently use the screen real estate. There is arguably
the chance that tools just happen to be built while programmers focus on processing
their domain- and task-specific data.

Given our framework, we distinguish three stages in the tool building process,
which programmers might not notice at all:

Apply (resp. reuse) existing scripts to particular data to explore and modify it in
the context of the software system to be built for a customer.

Modify or copy scripts to better fit particular data and widgets. The resulting view
can help to get new insights for the problem at hand—or not.

Integrate and persist new scripts to a shared repository of all scripts to use them in
different tasks or projects. Once the value of a script can be assessed, it should
be possible to promote the resulting tool to distinguish it from other prototypes.

These three stages form a cycle for each script (resp. tool) in the environment. While
programmers are focused on their domain-specific tasks and work in a data-driven
way, they can mold and improve the whole tool landscape.

2Language extensions need custom tool support anyway.

198

3 Data-driven Tool Development

Figure 4: We expect a big effect in exploration tasks when the architectural patterns
actually used do not align with the basic language representation.

3.3 Tool Containers

There are many opinions about how to efficiently use the two-dimensional screen
space. Layouting flavors include overlapping windows such as in Squeak, tiled areas
such as in Eclipse, unbounded spaces [2], and horizontal tapes [6]. They differ in
their degree of freedom considering the manual arrangement of widgets.

Our data-driven tool building approach is independent from particular tool con-
tainers. Theoretically, panes could be arranged al gusto—even on top of each other—
because the essence lies in accessing scripts and modifying them in situ. Program-
mers should be able to point with the finger on the screen and say “Why are my
artifacts presented this way?” or “I want to see more details about my artifacts in
this widget here.”

3.4 Towards a Controlled Experiment

At the time of writing, we are investigating to which extent programmers can benefit
from our framework. We are preparing a controlled experiment with a within subjects
design. The tasks will be about exploring source code and run-time state in the
context of fixing bugs or adding features. The control group will not be allowed
to access or modify scripts but only use a given set that is small but sufficient and
comparable to familiar tools. This includes traditional code browsing, object state
exploration, and code execution in a read-eval-print loop.

As for the experimental group, we expect an alternation of tool using and modifi-
cation activities as shown in Figure 4. To measure both kinds of activities, we want
to provide a modal interface for reading and writing scripts, which may complicate
the use of VIVIDE a little bit compared to its current modeless implementation. In
sum, the experimental group should be several times faster than the control group

199

Marcel Taeumel: Data-driven Tool Development

because they may not have to simulate and remember many things but can try them
out and see the results directly.

4 Related Work

The idea of data-driven approaches for building graphical applications manifested
itself long time ago in the domain of visual programming such as Fabrik [8] and its
web-based successor LivelyFabrik [10] do. The programmer can combine scriptable,
graphical components and establish dataflow in between. More recent research
projects include KScript [12], which employs functional reactive programming with
declarative, data-driven constructs for building graphical applications.

There are also industry-focused projects such as [14], which combines ActiveX
and JavaBeans components as filters into graphical interfaces. As spreadsheet pro-
gramming is also considered straightforward, the ActiveSheets project [19] explores
the possibilities of stream processing and visual output in Excel.

Our approach targets programmers but not necessarily the professional ones.
We explicitly appreciate the combination of different language concepts such as
object-oriented programming and data-driven scripting. In contrast to the projects
mentioned, we consider means of abstraction to facilitate the construction of more
complex tools.

5 Conclusion

Live programming systems such as Squeak/Smalltalk provide short feedback loops
to promote iterative, low-effort, and high-quality tool construction. Programmers
can modify pieces of source code and immediately observe changed behavior in
running programs. Graphic frameworks such as Morphic [11] leverage this idea for
programs with interactive, visual output. Programmers can directly explore and
adapt graphical objects and hence shape the user experience as desired.

With our data-driven perspective, we proposed a novel mechanism to further
facilitate the idea of modifying the tools in use and applied it to a range of graphi-
cal tools for the programming domain. Given this, programmers can perceive the
requirements for being both tool user and tool builder differently. We think that this
perspective on graphical tools can inspire the creation of new trade-offs in modular-
ity for both data-providing projects and interactive views.

200

References

References

[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid. “A Com-
parison of Context-oriented Programming Languages”. In: Proceedings of the
1st International Workshop on Context-Oriented Programming. ACM. 2009, page 6.

[2] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan, C.
Coleman, F. Adeputra, and J. J. LaViola Jr. “Code Bubbles: Rethinking the
User Interface Paradigm of Integrated Development Environments”. In: Pro-
ceedings of the 32nd International Conference on Software Engineering. ACM. 2010,
pages 455–464.

[3] R. P. L. Buse and W. R. Weimer. “Automatically documenting program changes”.
In: Proceedings of the 25th International Conference on Automated Software Engi-
neering (ASE). IEEE/ACM. 2010, pages 33–42.

[4] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration: Improving soft-
ware quality and reducing risk. Pearson Education, 2007.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements of
reusable object-oriented software. Pearson Education, 1994.

[6] A. Z. Henley and S. D. Fleming. “The Patchworks Code Editor: Toward Faster
Navigation with Less Code Arranging and Fewer Navigation Mistakes”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2014, pages 2511–2520.

[7] K. Herzig and A. Zeller. “The impact of tangled code changes”. In: Proceedings
of the 10th International Workshop on Mining Software Repositories (MSR). IEEE.
2013, pages 121–130.

[8] D. Ingalls, S. Wallace, Y. Chow, F. Ludolph, and K. Doyle. “Fabrik: A Visual Pro-
gramming Environment”. In: ACM SIGPLAN Notices 23.11 (1988), pages 176–
190.

[9] D. Kawrykow and M. P. Robillard. “Non-essential changes in version histo-
ries”. In: Proceeding of the 33rd International Conference on Software Engineering
(ICSE) (2011), page 351.

[10] J. Lincke, R. Krahn, D. Ingalls, and R. Hirschfeld. “Lively Fabrik A Web-based
End-user Programming Environment”. In: Proceedings of the 7th International
Conference on Creating, Connecting and Collaborating through Computing (C5).
IEEE. 2009, pages 11–19.

[11] J. H. Maloney and R. B. Smith. “Directness and Liveness in the Morphic User
Interface Construction Environment”. In: Proceedings of the 8th Symposium on
User Interface and Software Technology. ACM. 1995, pages 21–28.

201

Marcel Taeumel: Data-driven Tool Development

[12] Y. Ohshima, A. Lunzer, B. Freudenberg, and T. Kaehler. “KScript and KSWorld:
a time-aware and mostly declarative language and interactive GUI frame-
work”. In: Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software. ACM. 2013, pages 117–
134.

[13] R. Robbes and M. Lanza. “A change-based approach to software evolution”.
In: Electronic Notes in Theoretical Computer Science 166 (2007), pages 93–109.

[14] D. Spinellis. “UNIX Tools as Visual Programming Components in a GUI-
builder Environment”. In: Wiley Software: Practice and Experience 32.1 (2002),
pages 57–71.

[15] M. Taeumel, T. Felgentreff, and R. Hirschfeld. “Applying data-driven tool
development to context-oriented languages”. In: Proceedings of the 6th Interna-
tional Workshop on Context-oriented Programming. ACM. 2014.

[16] M. Taeumel, M. Perscheid, B. Steinert, J. Lincke, and R. Hirschfeld. “Interleav-
ing of Modification and Use in Data-driven Tool Development”. In: Proceedings
of the Symposium for New Ideas, New Paradigms, and Reflections on Everything to
do with Programming and Software (Onward!) 2014. ACM. To appear.

[17] M. Taeumel, B. Steinert, and R. Hirschfeld. “The VIVIDE programming envi-
ronment: Connecting run-time information with programmers’ system knowl-
edge”. In: Proceedings of the ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!) ACM, 2012,
pages 117–126.

[18] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim. “How do software engineers
understand code changes?: An exploratory study in industry”. In: Proceedings
of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM. 2012, page 51.

[19] M. Vaziri, O. Tardieu, R. Rabbah, P. Suter, and M. Hirzel. “Stream Processing
with a Spreadsheet”. In: Proceedings of the European Conference on Object-oriented
Programming (ECOOP). Springer, 2014, pages 360–384.

202

Omniscient Debugging in Database Applications

Arian Treffer

Enterprise Platform and Integration Concepts
Hasso-Plattner-Institut

arian.treffer@hpi.de

Omniscient debuggers can greatly improve developer productivity. Not only do
they allow for more efficient navigation in the execution of a program, they can
be used as a foundation for dynamic analyses that further help the developer
to identify relevant parts of code. Much work has been done on debugging and
analyzing object-oriented code.

We present an approach of bringing omniscient debugging and advanced analy-
sis algorithms to stored procedures. Our prototype allows omniscient debugging
of SQLScript that handles large amounts of data, while creating only a small
overhead through slicing. Furthermore, we show how the trace can be used as a
foundation to run dynamic analysis algorithms whilst reducing the amount of
data that has to be processed.

1 Introduction

The debugger is one of the most important of a software developer. It allows to
observe and inspect a program’s execution and is useful for many purposes, such
as bug detection and code comprehension. Studies found that developers spend up
to 50 % of their time debugging.

The usage of a debugger usually follows the same pattern:

1. The developer forms a hypothesis about the workings of a specific part of the
program.

2. She sets a breakpoint inside or before the code of interest. If the control flow
through the program is not certain, multiple breakpoints can be used.

3. Once the debugger halts the execution, the program’s state can be examined.

4. The execution is continued in small or larger steps, e.g., using step instructions
or more breakpoints.

5. If unexpected values or behavior are observed, the hypothesis is adapted.

203

mailto:arian.treffer@hpi.de

Arian Treffer: Omniscient Debugging in Database Applications

This process is repeated until the developer’s hypothesis is sufficiently confirmed.
Alas, with commonly used debuggers, this approach has several problems. To

find good locations for setting breakpoints, extensive knowledge is often necessary.
If the hypothesis is changed, other parts of the program may become of interest. If
these parts have already been executed, the debug session has to be restarted. This
is particularly common in bug hunting, where the infection chain has to be followed
from the failure to the code defect, backwards in time. Furthermore, navigation
errors such as stepping over a method call instead of into it often make restarting
the debug session necessary.

The remainder of the report is structured as follows: The next section gives a brief
introduction to omniscient debuggers and presents our previous work on debugging
and slicing Java applications. Section 3 shows our ongoing work of adapting these
concepts to SQLScript and describes new challenges that emerge when debugging
code that handles large amounts of data. A history of omniscient debugging and
other related work is presented in section 4, before we conclude in section 5.

2 Omniscient Debugging

A Backwards Debugger is a debugger that allows to step not only forwards, but also
backwards in the execution. As an extension, an Omniscient Debugger is a debugger
that knows every state of the program, in the past and future of the current point in
time.

Working backwards debuggers have been implemented for several programming
languages [7, 11–13]. Many of them internally work like omniscient debuggers, but
do not reveal this to the user.

2.1 Modeling the execution trace

Debuggers are a special kind of runtime analysis tools. Basically, there are two ways
to implement a runtime analysis.

A live analysis evaluates the program as it is executed; as soon as, or even before,
the program terminated, the result of the analysis is available. Common debuggers
typically fall into this category.

A post-mortem analysis first records aspects of the programs execution and then
analyses the recorded data. Sometimes, this approach has the advantage that multi-
ple analyses may be run iteratively, without having to re-execute the program. This
disadvantage of this approach is that, depending on the granularity of the recorded
data, it requires much more memory.

204

2 Omniscient Debugging

Backwards debuggers can be implement with both the live and the post-mortem
approach. In the scenario described above, where the debug session begins at the
occurrence of a failure, it does not make much of a difference. In other use cases,
however, the look-ahead that is possible with the post-mortem approach can make
the difference between a backwards and an omniscient debugger.

Many strategies have been proposed to reduce the amount of data that has to be
captured to allow a replay of the execution. However, since we aim for an omniscient
approach, we will record almost everything, including method calls and returns,
exceptions, and variable and field accesses.

2.2 Advanced navigation

As described above, a recurring task is to find the source of a value. It seems obvious
how a backwards debugger can improve the time required to find the source of an
error.

Restarting the debug session becomes virtually unnecessary. Once an error is
identified, the developer can step backwards to its source. If a method call is stepped
over by accident (in either direction), the operation can be easily reverted.

Nevertheless, this may still require stepping (backwards) through large parts of
the application. An omniscient debugger, on the other hand, immediately knows
where the value was set.

Figure 1: Variables View in Eclipse

Figure 1 shows the variable view of Eclipse’s debugging perspective, which is
typically used to spot erroneous values. With the omniscient debugger extension,
the developer can directly jump back in time to the assignment of a value simply by
double clicking it. This changes the debugging process as follows:

The developer finds the value and double-clicks to jump to its source. She finds
that the value is build from three other values, using a formula that seems to be
correct. However, she is not sure which of the input values is erroneous. Thus, she

205

Arian Treffer: Omniscient Debugging in Database Applications

bookmarks the current point-in-time and begins to investigate the first value, again
by double-clicking it.

Once she stepped around through the value’s creation, she is certain that this
value is valid and uses the bookmark to return back to the future. Then she begins
to investigate the second value. When she realizes that it is invalid, this process is
repeated until the fault is reached.

As the example shows, another important task is to determine whether a value is
valid by examining how it is produced. Here, the omniscient debugger can assist in
multiple ways.

Firstly, instead of showing just the current stack trace, the omniscient debugger
can provide a tree of previous and subsequent invocations (cf. Figure 2). Especially
after jumping backwards, the developer may have to regain orientation, where this
additional context can be helpful.

Figure 2: Call Tree

Secondly, the debugger can show the history of a variable, or even an entire object
(cf. Figure 3). Mostly, this is helpful when a value is created in a loop or if an object is
changed in multiple, different parts of the application over a longer stretch of time.

Finally, the debugger knows whether a given value is used again or at all. By
greying out variables and fields that are not accessed again (at least not before their
values are changed), the program state that has to be examined by the developer is
effectively reduced.

206

2 Omniscient Debugging

Figure 3: Variable History

2.3 Slicing

According to Weiser [19], a (static) slice S is a subset of the statements of a program
P on a slicing criterion C, so that for any input I, S and P produce state trajectories
equivalent with respect to C. A typical example for a slicing criterion would be a
variable in a given line. Then, all statements that can never impact the value of that
variable can be removed from the slice. Dynamic slices are defined similarly, but
have to produce the equivalent state trajectories only for specific inputs [10].

It has been shown that slicing represents how programmers naturally think about
problems in programming [19] and has many applications, including, but not limited
to, debugging [1] and program comprehension [4].

Typically, static and dynamic slicing algorithms focus on finding statements be-
longing to a slice. However, in many cases statements are executed multiple times
in a single program run and not all executions are relevant for the slice. Therefore,
our algorithm focuses on state-changing events, i.e., actual executions of statements,
instead of the statements themselves.

On the highest level, our algorithm to compute a dynamic slice works as follows:
The output of the algorithm will be a sorted set of events. The target event, i.e., the
event for which the slice was requested, is added to both the result set and a queue
of unprocessed events. Then, until the queue is empty, an event is polled and its
dependency events are determined as follows:

Firstly, the event is mapped to a statement in the code. Secondly, the static depen-
dency graph for that method is obtained. Thirdly, the statement is looked-up in the
graph and candidate dependency statements are mapped back to events.

207

Arian Treffer: Omniscient Debugging in Database Applications

Each dependency event that is not yet part of the result set is added to both the
result and the queue. Finally, the result set is returned.

Compared to existing Java dynamic slicers, our approach has several advantages.
Unlike JSlice, we separated the tracing and the analysis phase. This allows for faster
results when computing multiple slices on the same execution. Both JSlice and
JavaSlicer allow to visualize the slice by highlighting relevant lines in the source
code. Our approach uses the slice in the context of a debug session, which means
it not only allows to step through the slice, but also allows the developer to inspect
variables and objects at any point in time. Furthermore, the developer can choose to
exclude different types of dependencies from a slice to set a focus, for instance, on
calculation or reachability questions.

3 Debugging Stored Procedures

Many large and complex applications use a database to persist large amounts of data.
However, with the advance of in-memory databases and the decline of RAM cost,
the database is no longer seen as a simple data provider [15]. For maximum perfor-
mance, more and more business logic is moved away from the so-called application
layer, which is typically coded in some high-level object-oriented language, into the
database, where it has to be rewritten in SQL queries and stored procedures (mostly
SQLScript). The increasing complexity of database routines brings an increased need
for tool support for debugging.

Regular debuggers for stored procedures already exist. They allow to set break-
points and to inspect variables and tables, as one would expect. However, often they
can not be used as efficiently as debuggers for other languages. It is common for a
stored procedure to run several seconds or even minutes, which increases the cost
for restarting a debug session. Furthermore, the large amounts of data that can be
processed in a single call can make it impossible for the developer to gain a complete
understanding of the program state.

Both problems can be solved by testing with minimal example data. However, if
the nature of a bug is not yet known, creating such an example may be impossible.
In this section, we show how an omniscient debugger for stored procedures can be
realized and discuss specific problems such a debugger has to face. A prototypical
implementation is currently being developed.

3.1 Tracing and Omniscient Debugging

An omniscient debugger also suffers from the large amounts of data. Our Java debug-
ger traces every field and variable access. Tracing every tuple of a table would create

208

3 Debugging Stored Procedures

a dramatic overhead. Using an even-bigger database, just to manage a single debug
session, is not feasible. Instead, we take advantage of the same that makes stored
procedures so powerful in the first place: the declarative nature of SQL queries.

Unlike in object-oriented programs, where almost every behavior can be changed
by virtual method calls, it is not possible to change the behavior of a where-clause.
Furthermore, SQL queries are well defined so that it is not necessary to analyze the
internal workings to allow an analysis of the overall behavior.

Instead, we only need to trace variable assignments to be able to reproduce the
program execution. Queries don’t have to be traced at all, although for some pur-
poses it will be helpful to record some meta information, such as the execution time
or the number of results. However, we need to be able to reproduce the query results,
otherwise the debugger would be quite useless.

3.2 Reproducing Queries

By tracing all variables, the debugger has enough information available to re-execute
any query. However, the query will only yield the same results as long as the under-
lying data has not changed.

In general, one can expect that debugging will take place on a development ma-
chine where no other data manipulation occurs. However, in cases where this as-
sumption doesn’t hold, the debugger might end up showing wrong or misleading
data the developer, which can make the tool outright harmful. Furthermore, the
debugged stored procedure itself may change the data, which will cause a query to
return different results at different points in time.

We have identified three strategies of dealing with data changes, each with its
own advantages and disadvantages.

Temporary Tables Auxiliary tables can be used to track all data changes. Values
of deleted tuples and modified attributes have to be recorded, as well as timestamps
of the manipulation events. To re-execute a query, it has to be rewritten to include
this additional data.

An advantage of this approach is that it allows to efficiently analyze the modifi-
cations that were applied by the stored procedure. Disadvantages are that copying
data to auxiliary tables greatly increases the tracing overhead, and that rewritten
queries are much more complex and thus may take longer to execute.

Transactions If the hole debug session runs in a single database transaction, it is
automatically protected from concurrent modifications. Nested transactions can be
used to rollback changes done by the debugged code.

209

Arian Treffer: Omniscient Debugging in Database Applications

This approach requires only little effort by the debugger, as it builds upon ex-
isting features of the database. However, to re-execute a single query, the whole
stored procedure has to be re-executed up until that point, which can create a sig-
nificant overhead. Furthermore, depending on how transactions are implemented,
the developer might accidentally lock the database for everyone else.

Insert-Only In systems that are relevant to accounting, such as ERP, finance, and
CRM systems, data is never deleted. Such behavior often even is a legal requirement.
If we require for all tables that data can never be changed or deleted and annotate
all tuples with timestamps of when they have been created and invalidated, we can
reconstruct the state of the database of any point in time.

This approach combines the advantages of both previous approaches. Especially
in in-memory databases, the overhead can be less than expected due to compression,
and it may even improve the performance as inserts can be faster than updates or
deletes. Finally, adding timestamp filters to select queries does not cause a significant
slowdown.

3.3 Slicing

The slicing algorithm that we presented in subsection 2.3 can be easily transferred
to stored procedures. Statements depend on each other through the variables they
access, and from the variable trace the execution path that is necessary for dynamic
slicing can be reconstructed easily.

However, the power of dynamic slicing comes from knowing where fields of ob-
jects are read and written. In stored procedures, we would expect that the slicing
algorithm can tell us which tuples of a table are actually relevant for the slice. How-
ever, without tracing access to tables, this information is not immediately available.

Exact approach One way to find relevant tuples is to reproduce the filter expres-
sions that were used to access a table. By or-chaining all expressions, the result is the
union of all individual query results. Additional attributes can be introduced that in-
dicate which of the filter expression matched for a tuple. While this approach might
not scale well when nested queries are involved, we are now, at least in principle,
able to get a view on the database that reflects ours slice.

However, the slicing algorithm does not yet consider this information when com-
puting a slice. It might be the case that a particular filter expression, or a particular
variable in a filter expression, does not affect the result set. In this case, the expression
or variable should be excluded from the slice.

210

4 Related work

In principle, it is possible to use this information when constructing a slice. How-
ever, actually executing these queries can increase the time required for building a
slice until it is no longer desirable.

Approximate approach Another way to build a data slice is to approximate a fil-
ter. Bloom filters use hashing to store subsets of large data in comparatively small
bitmaps, at the cost of creating some false positives [14]. Inserting bloom filters at
selected parts in the stored procedure can reduce the need to analyze larger parts of
code and simplify filters that are used to compute slices.

A usable dynamic slicing algorithm could first create a slice without inspecting the
tables. In cases where more precision is needed, the developer could then choose to
apply one of the approaches outlined above to refine the results.

4 Related work

An omniscient debugger is a debugger that immediately knows about every event
in the execution of a program [11]. While reversible execution for debugging pur-
poses has been researched earlier [5], the first omniscient debugger was presented
by Lewis [11]. The debugger supported several ways to jump through points-of-
interest in the execution, but had no slicing capabilities. Subsequent work in the
area focused mostly on memory aspects, for instance by developing a specialized
event database [16] or allowing garbage-collection of unreachable past events [13].

The concept of slicing has first been introduced by Weiser, along with a first static
slicing algorithm [19]. Korel and Laski, and Agrawal and Horgan later extended the
idea to include runtime information to produce more precise slices [2, 10]. Further-
more, Agrawal et al. presented a debugger for C programs with dynamic slicing
capabilities [1]. Since then, different slicing algorithms have been proposed and
analyzed [3, 8, 20].

For Java, dynamic slicing has been implemented for byte-code traces [17, 18]. JSlice
[18] and JavaSlicer [6] are available tools. Ko and Myers used a combination of
techniques similar to static and dynamic slicing to automatically answer causality
questions [9].

5 Conclusion and Future Work

We have shown how omniscient debuggers can increase developer productivity
by allowing backwards navigation and providing fast advanced dynamic analyses.

211

Arian Treffer: Omniscient Debugging in Database Applications

While these techniques can be applied to all imperative programming languages,
a prototype for SQLScript has revealed particular problems that occur when large
amounts of data are handled in the analyzed execution.

Future work will consist of developing omniscience-based algorithms for analyz-
ing stored procedure, and evaluating them with regards to required tracing overhead
and performance.

References

[1] H. Agrawal, R. A. Demillo, and E. H. Spafford. “Debugging with dynamic
slicing and backtracking”. en. In: Software: Practice and Experience 23.6 (1993),
pages 589–616. doi: 10.1002/spe.4380230603.

[2] H. Agrawal and J. R. Horgan. “Dynamic Program Slicing”. In: Proceedings
of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation. PLDI ’90. New York, NY, USA: ACM, 1990, pages 246–256. doi:
10.1145/93542.93576.

[3] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, Á. Kiss, and B. Korel. “The-
oretical foundations of dynamic program slicing”. In: Theoretical Computer
Science 360.1–3 (2006), pages 23–41. doi: http://dx.doi.org/10.1016/j.
tcs.2006.01.012.

[4] A. De Lucia. “Program slicing: methods and applications”. In: First IEEE Inter-
national Workshop on Source Code Analysis and Manipulation, 2001. Proceedings.
2001, pages 142–149. doi: 10.1109/SCAM.2001.972675.

[5] S. I. Feldman and C. B. Brown. “IGOR: a system for program debugging via
reversible execution”. In: Proceedings of the 1988 ACM SIGPLAN and SIGOPS
workshop on Parallel and distributed debugging. PADD ’88. New York, NY, USA:
ACM, 1988, pages 112–123. doi: 10.1145/68210.69226.

[6] C. Hammacher. Design and Implementation of an Efficient Dynamic Slicer for Java.
Published: Bachelor’s Thesis. Saarland University, Nov. 2008.

[7] C. Hofer, M. Denker, and S. Ducasse. “Design and implementation of a backward-
in-time debugger”. In: NODe 2006 (2006), pages 17–32.

[8] T. Hoffner. Evaluation and comparison of program slicing tools. Citeseer, 1995.
[9] A. J. Ko and B. A. Myers. “Debugging reinvented: asking and answering why

and why not questions about program behavior”. In: Proceedings of the 30th
international conference on Software engineering. ICSE ’08. New York, NY, USA:
ACM, 2008, pages 301–310. doi: 10.1145/1368088.1368130.

212

http://dx.doi.org/10.1002/spe.4380230603
http://dx.doi.org/10.1145/93542.93576
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2006.01.012
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2006.01.012
http://dx.doi.org/10.1109/SCAM.2001.972675
http://dx.doi.org/10.1145/68210.69226
http://dx.doi.org/10.1145/1368088.1368130

References

[10] B. Korel and J. Laski. “Dynamic slicing of computer programs”. In: Journal
of Systems and Software 13.3 (Nov. 1990), pages 187–195. doi: 10.1016/0164-
1212(90)90094-3.

[11] B. Lewis. “Debugging backwards in time”. In: Computing Research Repository
cs.SE/0310016 (2003).

[12] H. Lieberman. “Reversible Object-Oriented Interpreters”. English. In: ECOOP’
87 European Conference on Object-Oriented Programming. Volume 276. Lecture
Notes in Computer Science. Springer Berlin/Heidelberg, 1987, pages 11–19.

[13] A. Lienhard, T. Gîrba, and O. Nierstrasz. “Practical Object-Oriented Back-in-
Time Debugging”. In: ECOOP 2008 – Object-Oriented Programming. Edited by
J. Vitek. Lecture Notes in Computer Science 5142. Springer Berlin Heidelberg,
Jan. 2008, pages 592–615.

[14] A. Pagh, R. Pagh, and S. S. Rao. “An Optimal Bloom Filter Replacement”.
In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms. SODA ’05. Vancouver, British Columbia: Society for Industrial and
Applied Mathematics, 2005, pages 823–829.

[15] H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point for
Enterprise Applications. Springer, 2011.

[16] G. Pothier, É. Tanter, and J. Piquer. “Scalable omniscient debugging”. In: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented program-
ming systems and applications. OOPSLA ’07. New York, NY, USA: ACM, 2007,
pages 535–552. doi: 10.1145/1297027.1297067.

[17] A. Szegedi and T. Gyimothy. “Dynamic slicing of Java bytecode programs”.
In: Fifth IEEE International Workshop on Source Code Analysis and Manipulation,
2005. Sept. 2005, pages 35–44. doi: 10.1109/SCAM.2005.8.

[18] T. Wang and A. Roychoudhury. “Dynamic Slicing on Java Bytecode Traces”.
In: ACM Trans. Program. Lang. Syst. 30.2 (Mar. 2008), 10:1–10:49. doi: 10.1145/
1330017.1330021.

[19] M. Weiser. “Programmers use slices when debugging”. In: Commun. ACM
25.7 (July 1982), pages 446–452. doi: 10.1145/358557.358577.

[20] X. Zhang, R. Gupta, and Y. Zhang. “Precise dynamic slicing algorithms”. In:
25th International Conference on Software Engineering, 2003. Proceedings. May
2003, pages 319–329. doi: 10.1109/ICSE.2003.1201211.

213

http://dx.doi.org/10.1016/0164-1212(90)90094-3
http://dx.doi.org/10.1016/0164-1212(90)90094-3
http://dx.doi.org/10.1145/1297027.1297067
http://dx.doi.org/10.1109/SCAM.2005.8
http://dx.doi.org/10.1145/1330017.1330021
http://dx.doi.org/10.1145/1330017.1330021
http://dx.doi.org/10.1145/358557.358577
http://dx.doi.org/10.1109/ICSE.2003.1201211

Learning Deep Semantic Feature for Cross-modal
Representation

Cheng Wang

Internet Technologies and Systems
Hasso-Plattner-Institut

Cheng.Wang@hpi.uni-potsdam.de

This report summaries my research activities in the HPI Research School on Ser-
vice Oriented Systems Engineer of the past six months on multimodal learning.
In this report, deep semantic features are learned for cross modal mapping be-
tween visual and textual data. In processing text modality, in order to extract text
sematic features, multi-level Online Latent Dirichlet Allocation is proposed and
implemented for fitting 3.3 million Wikipedia articles to 336 topics with different
topic granularity. For image modality, visual features are learned with deep Con-
volutional Neural Networks (CNNs) that is pre-trained with 1.2 million images.
Those features are used to train a 3-layer neural network for cross representation
and thus to bridge the semantic gap across text and image modality.

1 Introduction

The rapid increasing of multimedia data on web brings new challenges for informa-
tion retrieval. Web applications produce massive multi-modal data every day, such
as image, text, audio and video. It means the information we received from vari-
ous information channels. This trend makes conventional uni-modal based retrieval
systems that only considering single modality by using key words or caption more
difficult to retrieve user interested information. Besides text-based engines, image
[5] and video retrieval systems [4] also been proposed for retrieval multimedia in-
formation. But those researches still cannot apply to multi-modal case. Modeling
multimodal data is needed as previous research [11] have proved that one modality
can be a semantic complementary for another modality, which shown to outperform
state-of-the-art information retrieval systems on a uni-modal retrieval task.

Recently, several cross-modal approaches have been proposed to enhance infor-
mation retrieval performance, in which fusing data modality was widely studied,
particularly, image-text modality fusion. Conventional approach is to represent the
image component within document to visual words with SIFT [9] descriptor. In
processing text modality, Latent Dirichlet Allocation (LDA) [2] is considered, as a
probabilistic models, it has proved that this kind of model can effectively exploring
the hidden topics in given corpus. One popular approach is to build joint model

215

mailto:Cheng.Wang@hpi.uni-potsdam.de

Cheng Wang: Learning Deep Semantic Feature for Cross-modal Representation

for fusing text and image modality and discover the underlying shared “concept”
between those modalities. This approach is useful because different data modality
actually carry different interesting information. By combining those information
can definitely achieve better retrieval results. How to build a joint model is still a
difficult problem to be address due to following challenges:

(1) Many previous cross modal retrieval systems tackle retrieval tasks by assigning
predefined categories to inquiry text (image), and selecting top-K matched image
(text) as retrieval results. One problem of this approach is that existed image labels
often ambiguous, which means one image can be classified to different categories.

(2) With respect to feature representation. LDA is a common method that used
to infer documents’ major topics for representing text modality. On the other hand,
traditional visual representation of use the bag-of-visual-words (BOVW), in which
image key points are often extracted by SIFT or SURF [1]. Features of each image
utilized to visual topic clustering in image representation. The correlation between
word topics and visual topics generally involves Canonical Correlation Analysis
(CCA). Thus the features obtained by taking LDA and BOVW vectors are important
for cross mapping performance. The problem of those kinds of research is how to
appropriately represent image and text in order to improve cross representation
performance.

As in [13], “Different modalities typically carry different kinds of information”.
Thus it requires both image and text features should be well learned so that those
feature can more appropriately represent input data modality. To address those
problems, we therefore propose a novel cross modal retrieval architecture which
allows cross representation with deep networks. Specifically, image will be repre-
sented by text feature and vise-versa in this research. Deep networks [10] has been
applied to cross modality feature learning and demonstrated it effectiveness in un-
supervised feature learning for single modalities. In this work, similarly, we apply
it to learn features from image and text separately. In learning image feature, deep
Convolutional Neural Networks (CNN)[8] has achieved considerably outperform
previous result in visual representation. In text modality feature, we propose multi-
level Online LDA for constructing the bag of topics with different topic granularity,
by doing so, text can be semantically represented as topical feature. For mapping
between image and text we propose 3-level neural network for training projection
layers between image and text modality.

Work that is most relate to our research are [11, 14, 15], which are used as baselines
for our research. For compare with those works, in this paper, we will evaluate our
model on open benchmark Wikipedia corpus 1 that used in the baselines for cross
model retrieval. Our retrieval tackles two retrieval tasks: (1) retrieving best matched
image for a given query text, (2) retrieving best related text for give query image.

1http://www.svcl.ucsd.edu/project/crossmodal/, accessed December 16, 2014.

216

http://www.svcl.ucsd.edu/project/crossmodal/

2 Related work

Different to previous approach in modeling multimodal data, our research concen-
trate on cross modal representation with deep networks. Consequently, improving
cross-modal retrieving performance.

2 Related work

2.1 Modeling Multimodal Data

Modeling and analysis of multimodal data have gained much attention in last sev-
eral years, much effort have put into discover new joint model for multimodal data.
N. Rasiwasia et. al [3] proposed a novel approach to match text and image modal-
ity via canonical correlation analysis (CCA). SFIT feature of image and text feature
that generated with LDA are considered. Through projecting image feature and
text feature into two intermediate spaces and matching different modalities and
applied it to cross-modal multimedia retrieval. Similarly, Jin Yu [15] designed a
cross-modal retrieval system that considering image-text statistical correlations. The
images are represented with SIFT feature and quantized to 100-dimensional vector,
correspondingly, 100 topics that generated from LDA use to represent text modality.
Motivated by those works, K. Y. Wang [14] proposed an approach which combines
common subspace learning and coupled feature selection for cross-modal matching
problem. l21-norm was used in this case for selecting features from coupled modal-
ities and coupled linear regression was used to project data to a common space.
As deep learning technique received a lot of attention recently, it has been applied
to various researches including multimodal data analysis. J. Ngiam [10] applied
multimodal deep learning approach in audio-visual speech classification. Greedily
training restricted Boltzmann machine (RBM) and deep auto-encoder are used to
discover correlation connections across different modalities. In [13] N. Srivastava
used a Deep Boltzmann Machine to extract a unified representation from different
data modalities, it found out this representation is useful in addressing classification
and information retrieval problem.

2.2 Deep Convolutional Neural Networks

Deep Convolutional Neural Networks (CNNs) has already been proved very pow-
erful in image feature extraction and image classification [8, 16]. Conceptually, at a
convolution layer, a feature map is formed by convolving the previous layers’ feature
maps with kernels and activation function. If we denote j-th feature map at given
layer l as x(l)j , for given weights w(j) and bias b(j), the feature map x(l)j combine
convolutions with multiple input maps that represented asMj , and then denoted

217

Cheng Wang: Learning Deep Semantic Feature for Cross-modal Representation

as follows:
x
(l)
j = f(

∑
i∈Mj

x
(l−1)
i w

(l)
ij + b(l)),

where f(·) is activation function.
At sub-sampling layer, input maps is down sampled to smaller version for reduc-

ing the computational complexity, generally, an output map denoted as:

x
(l)
j = f(β

(l)
j S(x

(l−1)
i) + b(l)),

where f(·) and S(·) are activation function and sub-sampling function respectively,
and each output map given its own multiplicative bias β(l)

j and bias b(j). Inspired by
[7] which implemented a fast convolutional architecture for effectively representing
sensory inputs. Part of our work is implemented base on Caffe framework.

3 Learning Architecture

To address the problem of cross modal representation we will learn highly repre-
sentative features for image and text modality separately with different pre-trained
visual and textual models. Document contains image-text pair will be represented as
feature pairs. For a training dataset S, which contains documentsD = {D1, D2 . . . Dn}

and each document is image-text pair that we represented asDi = {Ii, Ti}. Modeling
multimodal data always need informative method to represent different modalities.
To achieve this goal, we designed learning architecture to represent text and image
modality separately. First, text and image representation model are pre-trained with
deep convolution neuron network and multi-granularity Latent Dirichlet Alloca-
tion. As shown in Figure 1, the architecture tackles input document to two different
modalities and extracts features. In order to build the connection between visual
and textual feature, we designed two project layers, LI→T and LT→I. The function
of projection layers is to project visual feature to textual feature and vice versa. The
learned features from pre-trained visual and textual model used as training data for
learn LI→T and LT→I. In cross modal representation stage, we focus on two problems:
(1) represent image with textual feature, (2) vice versa. By doing this, cross modal
representation is achieved and further applied to cross modal retrieval field.

218

4 Modality Representation

Figure 1: Figure Learning Architecture for text and image modality

4 Modality Representation

4.1 Text Representation

In processing text modality, the problem we need to address is to learn feature rep-
resentation. To this end, we extend the concept of “bag of words (BOW)” to “bag
of topics (BOT)”, which is derived from Latent Dirichlet Allocation (LDA). LDA is
a generative probabilistic model for discover latent topics from given corpus. The
generative process can be decomposed into doc-topic and topic-word generative
process. For a given corpus D , the topic proportion θ follows a Dirichlet distri-
bution with prior probability α. For given θ, the specific topic zn is draw from a
multinomial distribution. Similarly, in topic-word distribution, a word wn follows
multinomial distribution with ϕk that is drawn from a Dirichlet distribution with
prior probability β. Thus joint probability distribution can be described as

p(w, z, | θ, β) = p(θ | α)

N∏
n=1

p(zn | θ)p(wn | zn, β),

where wn means the n-th word in document, zn means the topic of n-th word.N is
the number of words in corpus.

Inspired by recent work in [12] in which a multi-level LDA approach is used for
text representation. It regards learned topics from different level as topical feature
so that the most discrimination features are extracted. In this work, we redesigned
that topic learning architecture to fit our experiment. In order to represent text as
topical features, we need to learn a topical feature map from corpus, to address
this problem we design our text representation scheme as following In this scheme,

219

Cheng Wang: Learning Deep Semantic Feature for Cross-modal Representation

Figure 2: Text representation architecture

3 levels designed to generate 16, 64 and 256 topics from bottom to top respectively,
each topic regard as feature which consists of about 50 words. Topical feature map is
“bag of topics” which combines of those topics. That is, 16+ 64+ 256 = 336 topical
features. For each input text, pre-trained topical feature map which is pre-trained
model used to extract text features. Assume input text with words, we calculate word
distribution over topics and generate topical features. It is possible one word belongs
to different topics. This assures that different meanings carried by one word can be
considered. That’s our text representation mechanism expects to achieve. Here we
summarized the algorithm for text representation using topical feature map as in
Algorithm: This is a straightforward algorithm for calculating word distribution

Algorithm 3: Text feature extraction with pre-trained topic model
Input: text T ,MT =MT

1 ,M
T
2 . . .M

T
n, n = 336

Output: TF = f1, f2 . . . fn
ForMT

1 ∈MT

W ⇐ T ∩MT
t

f =
∑

w∈W v(w)

end for

over pre-trained topical feature model. In implementation of this algorithm we firstly
use OnlineLDA [6] to train topic feature model. OnlineLDA fits topic models with
online stochastic optimization thus it can easily apply to large scale corpus. In this
research, we extend OnlineLDA to multi-level for fitting topics models from different
semantic level. Finally we got 336 topic models and we generate the top-50 words
for each topic. We here list some 5 example topics with top-8 words.

220

4 Modality Representation

Table 1: example topics learned from Wikipedia
Topic 0 war, force, prime, royal, navy, commander, killed, squadron
Topic 1 science, back, silver, audience, scientific, knowledge, shooting, christmas
Topic 2 best, directed, festival, short, girl, drama, special, series
Topic 3 river, western, south, state, australia, greek, running, williams
Topic 4 county, district, village, population, town, province, rural, towns
… …
Topic 336 southern, natural, black, established, map, history, animals, iowa

Figure 3: deep CNN architecture

4.2 Image Representation

In order to learn grounded feature from images, we use the-state-of-art approach for
extracting features. In this paper we concentrate on features that learned from deep
conventional neuron network which realized by A. Krizhevsky [8]. But we removed
the last layer in feature extraction, in that way, each image can be represented as
4096-dimension vector. For each input image, it was resized to 256 × 256 pixels before
image processing. The first convolutional layer filters it with 64 feature maps whose
size is 55 × 55 pixels. The subsampling operation summarizes the neighborhood
pixels of center pixel with size 2 × 2. Subsampling results as input of C2, which has
256 feature maps, each feature map is 27 × 27 pixels. And C3, C4, C5 same feature
size 13 × 13 pixels and have 384,384 and 256 feature maps respectively. F6 and F7 is
full connection layer, both of them have 4096 feature vector. The output of F7 is the
features that we aim to extract from image.

221

Cheng Wang: Learning Deep Semantic Feature for Cross-modal Representation

Table 2: configurations for model training
Modality Configuration Training time

Image model ubuntu 12.04, 4 cpus, nvdia 780 GPU 8 days
Topic models ubuntu 12.04, 4 cpus, 9 days for 3 levels

5 Ongoing Experiments

5.1 Datasets

In this work, we used dataset from different modalities for training visual and textual
model respectively. For building visual model we use ImageNet [3], which is a large
scale manually labeled image database. Our dataset is from ILSVRC2012, a subset
of ImageNet and consists of 1.2 million training image and 50,000 validation images.
Those images are assigned to 1000 categories according to the center meaning of
image. With respect to modeling text data, we use Wikipedia dataset, on one hand,
we used 3.3 million Wikipedia [12] articles to train 336 topic models from 3 level.
For comparison reason, we use the same dataset as used in [11, 14, 15]. This dataset
contains 2886 documents and each document is image-text pair, it is more convenient
for us to examine the effeteness of our approach and compare with others’ work.

5.2 Training Procedure

In this subsection, we describe the experiments of feature learning for text and
image separately. Firstly, we give our configuration information for training image
model and text topic models as follows: It takes about 8 days for obtaining visual
models and 9 days for textual model, in which we conducted our topic training
experiments for each topic level serially. The accuracy of visual model is verified in
image classification tasks. Through fine tunning layer “conv”, “conv 4” and “conv 5”
and learning rate to adapt our 64-batch size. The final test accuracy is about 53.4 %
after around 1.4 million iterations.

As we mentioned before, in multi-level topic training, we trained 16 topics, 64 top-
ics and 256 topics respectively. In fitting topics to 3.3 million Wikipedia articles, we
configured training settings as recommend in [6]. The training configurations and
iteration times are: (1) in level-16, 35516 iterations with batch size 64, (2) level-64,
25521 iterations with batch size 64 and (3) level-256 have 3220 iterations with batch
size 1024. To compare with different topic levels, we selected one topic which is
mainly about “music” in three different topic levels.

222

5 Ongoing Experiments

Figure 4: The proceudure of visual model training

Figure 5: “Music” topic in three different levels (top-10 words are displayed)

223

Cheng Wang: Learning Deep Semantic Feature for Cross-modal Representation

6 Conclusion and outlook

In this report, an approach for modeling multimodal data is proposed, visual fea-
tures are learned by pre-trained visual model and textual features are learned with
pre-trained topical feature map, which is trained by using proposed multi-level on-
line LDA. Our future work will focus on mapping visual data to textual and mapping
textual data to visual with deep neural network. And apply cross representation to
multimedia retrieval for improving retrieval performance with extracted semantic
features.

References

[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. “Speeded-up robust features
(SURF)”. In: Computer vision and image understanding 110.3 (2008), pages 346–
359.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. “Latent dirichlet allocation”. In: the
Journal of machine Learning research 3 (2003), pages 993–1022.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A large-
scale hierarchical image database”. In: Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on. IEEE. 2009, pages 248–255.

[4] J. Fan, A. K. Elmagarmid, X. Zhu, W. G. Aref, and L. Wu. “ClassView: hierar-
chical video shot classification, indexing, and accessing”. In: Multimedia, IEEE
Transactions on 6.1 (2004), pages 70–86.

[5] X. He, W.-Y. Ma, and H.-J. Zhang. “Learning an image manifold for retrieval”.
In: Proceedings of the 12th annual ACM international conference on Multimedia.
ACM. 2004, pages 17–23.

[6] M. Hoffman, F. R. Bach, and D. M. Blei. “Online learning for latent dirichlet al-
location”. In: advances in neural information processing systems. 2010, pages 856–
864.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. “Caffe: Convolutional Architecture for Fast Feature Em-
bedding”. In: arXiv preprint arXiv:1408.5093 (2014).

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information pro-
cessing systems. 2012, pages 1097–1105.

[9] D. G. Lowe. “Distinctive image features from scale-invariant keypoints”. In:
International journal of computer vision 60.2 (2004), pages 91–110.

224

References

[10] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. “Multimodal deep
learning”. In: Proceedings of the 28th International Conference on Machine Learning
(ICML-11). 2011, pages 689–696.

[11] N. Rasiwasia, J. Costa Pereira, E. Coviello, G. Doyle, G. R. Lanckriet, R. Levy,
and N. Vasconcelos. “A new approach to cross-modal multimedia retrieval”.
In: Proceedings of the international conference on Multimedia. ACM. 2010, pages 251–
260.

[12] A. H. Razavi and D. Inkpen. “Text Representation Using Multi-level Latent
Dirichlet Allocation”. In: Advances in Artificial Intelligence. Springer, 2014, pages 215–
226.

[13] N. Srivastava and R. Salakhutdinov. “Multimodal learning with deep boltz-
mann machines”. In: Advances in neural information processing systems. 2012,
pages 2222–2230.

[14] K. Wang, R. He, W. Wang, L. Wang, and T. Tan. “Learning coupled feature
spaces for cross-modal matching”. In: Computer Vision (ICCV), 2013 IEEE In-
ternational Conference on. IEEE. 2013, pages 2088–2095.

[15] J. Yu, Y. Cong, Z. Qin, and T. Wan. “Cross-modal topic correlations for multime-
dia retrieval”. In: Pattern Recognition (ICPR), 2012 21st International Conference
on. IEEE. 2012, pages 246–249.

[16] M. D. Zeiler and R. Fergus. “Visualizing and understanding convolutional
networks”. In: Computer Vision–ECCV 2014. Springer, 2014, pages 818–833.

225

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

94 978-3-86956-319-0 N/A N/A

93 978-3-86956-318-3 ecoControl : Entwurf und
Implementierung einer Software
zur Optimierung heterogener
Energiesysteme in
Mehrfamilienhäusern

Eva‐Maria Herbst, Fabian
Maschler, Fabio Niephaus,
Max Reimann, Julia Steier,
Tim Felgentreff, Jens Lincke,
Marcel Taeumel, Carsten Witt,
Robert Hirschfeld

92 978-3-86956-317-6 Development of AUTOSAR
standard documents at Carmeq
GmbH

Regina Hebig, Holger Giese,
Kimon Batoulis, Philipp
Langer, Armin Zamani
Farahani, Gary Yao, Mychajlo
Wolowyk

91 978-3-86956-303-9 Weak conformance between
process models and synchronized
object life cycles

Andreas Meyer, Mathias
Weske

90 978-3-86956-296-4 Embedded Operating System
Projects

Uwe Hentschel, Daniel
Richter, Andreas Polze

89 978-3-86956-291-9 openHPI: 哈索•普拉特纳研究院的
MOOC（大规模公开在线课）计划

Christoph Meinel, Christian
Willems

88 978-3-86956-282-7 HPI Future SOC Lab :
Proceedings 2013

Christoph Meinel, Andreas
Polze, Gerhard Oswald, Rolf
Strotmann, Ulrich Seibold,
Bernhard Schulzki (Hrsg.)

87 978-3-86956-281-0

Cloud Security Mechanisms Christian Neuhaus, Andreas

Polze (Hrsg.)

86 978-3-86956-280-3

Batch Regions Luise Pufahl, Andreas Meyer,
Mathias Weske

85 978-3-86956-276-6 HPI Future SOC Lab:
Proceedings 2012

Christoph Meinel, Andreas
Polze, Gerhard Oswald, Rolf
Strotmann, Ulrich Seibold,
Bernhard Schulzki (Hrsg.)

84

978-3-86956-274-2 Anbieter von Cloud
Speicherdiensten im Überblick

Christoph Meinel, Maxim
Schnjakin, Tobias Metzke,
Markus Freitag

83

978-3-86956-273-5 Proceedings of the 7th Ph.D.
Retreat of the HPI Research
School on Service-oriented
Systems Engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch (Hrsg.)

Technische Berichte Nr. 95

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the 8th
Ph. D. Retreat of the
HPI Research School
on Service-oriented
Systems Engineering
Christoph Meinel, Hasso Plattner, Jürgen Döllner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese, Patrick Baudisch (Hrsg.)

ISBN 978-3-86956-320-6
ISSN 1613-5652

	Title
	Imprint

	Contents
	Testbed Automation for Network Security and Security Analytics // Aragats Amirkhanyan
	Abstract
	1 Introduction
	2 Preparing testbed data to analytics
	2.1 Network architecture
	2.2 User behavior
	2.3 Implementation

	3 Conclusion
	References

	Data-Centric Business Process Improvement: A Data-Centric Approach for Business Process Improvement Based on Decision Theory // Ekaterina Bazhenova
	Abstract
	1 Introduction
	2 State-of-the-Art
	3 Foundations
	3.1 Process Model and Data
	3.2 Definitions from Decision Theory

	4 Decision Subprocess Improvement
	4.1 Process Model as a Decision Subprocess
	4.2 Scheme of Business Process Improvement

	5 Planned Work
	6 Conclusion
	References

	History Assisted View Authoring for 3D Models // Tim Chen
	Abstract
	1 Introduction
	2 Algorithm and Implementation
	2.1 Editing History Instrumentation
	2.2 Region-Specific View Suggestion
	2.3 Global Viewpoint Suggestions

	3 Related Work
	4 Conclusion
	References

	Service-Oriented Integration and Processing of Massive 3D Point Clouds // Sören Discher
	Abstract
	1 Introduction
	2 Service-Oriented Infrastructure for 3D Point Clouds
	2.1 Data integration
	2.2 Data preprocessing & Data analysis
	2.3 Data provision

	3 Evaluation
	4 Conclusion and Outlook
	5 Acknowledgements
	References

	Consciousness in Artificial Agents – A Theory // Fahad Khalid
	Abstract
	1 Introduction
	2 Awareness in Artificial Agents
	2.1 The Process by way of Illustration
	2.2 Sensor Fusion
	2.3 Sensor Input Prioritization
	2.4 Attaching the Awareness Property to a Stimulus

	3 Emotions and Internal Loops
	3.1 Emotions as Functions
	3.2 Emotional Logic
	3.3 Internal Loops

	4 Hierarchical Architecture of an Artificial Brain
	4.1 Sensor-Actuator Layer
	4.2 Attention and Awareness Layer
	4.3 Reactive Layer
	4.4 Decision Making Layer
	4.5 Reflective Layer

	5 The Artificial Mind as a Highly Interconnected State Machine
	6 Limitations and Future Work
	References

	Implementing an Object-Constraint Extension Without VM Support // Tim Felgentreff
	Abstract
	1 Introduction
	2 Object Constraint Programming Without VMSupport
	2.1 Cooperating Constraint Solvers
	2.2 Incremental Re-Solving for Cooperating Constraint Solvers

	3 Future Work and Conclusion
	References

	Comparing the Layout Stability of Treemap Algorithms // Sebastian Hahn
	Abstract
	1 Introduction
	2 Data Stage
	2.1 Hierarchical Change
	2.2 Attribute Changes

	3 Mapping Stage
	4 Next Steps
	5 Further Activities
	References

	Generating Dynamic Dependability Models from Call Traces // Lena Herscheid
	Abstract
	1 Introduction
	2 Related Work
	3 PyFT - a Prototype Dependability Tracer for Python
	3.1 Fault Trees from Call Graphs
	3.2 Obtaining Software Reliability Metrics

	4 Towards Runtime Dependability Models
	5 Conclusion and Future Work
	References

	Physical Motion Displays: A Wearable Device for Producing a Strong Tactile Stimulus // Alexandra Ion
	Abstract
	1 Introduction
	2 Related work
	2.1 Vibrotactile feedback
	2.2 Techniques that create tangential forces on the skin

	3 Implementation
	3.1 Mechanical design
	3.2 Watch-size prototype providing tactile feedback
	3.3 Electronics & Software

	4 Conclusion
	References

	Profiling the Web of Data // Anja Jentzsch
	Abstract
	1 Problem Statement
	2 Relevancy
	3 Related Work
	4 Challenges
	5 Research Questions
	6 Approach
	7 Preliminary Results
	8 Evaluation Plan
	9 Reflections and Conclusion
	References

	Enterprise Simulations based on Value Driver Trees // Stefan Klauck
	Abstract
	1 Introduction
	2 Problem Description
	2.1 Model Definition
	2.2 Simulation Tool

	3 Approach
	3.1 Simulation Model
	3.2 Data Binding
	3.3 Concept of Simulation Tool

	4 Simulation Tool Implementation
	5 Related work
	6 Conclusion
	References

	Proprioceptive Interaction // Pedro Lopes
	Abstract
	1 Introduction: why wearable devices?
	2 Backround: what is proprioception?
	3 Related work
	3.1 Reading Muscle Activity
	3.2 Actuating Users: Mechanically and using EMS

	4 Proprioceptive Interaction
	4.1 Prototypes
	4.2 Study 1: symmetric proprioceptive input and output
	4.3 Study 2: asymmetric proprioceptive input and output

	5 Conclusion and outlook
	5.1 Future Work
	5.2 Projects under submission
	5.3 Pedagogical Activities and Other

	References

	Question Answering for Biomedicine // Mariana Neves
	Abstract
	1 Introduction
	2 Related work
	3 Methods and Material
	3.1 BioASQ dataset
	3.2 Multilingual question corpus
	3.3 System architecture
	3.4 Question processing
	3.5 Concepts retrieval
	3.6 Passages and documents retrieval

	4 Results and evaluation
	4.1 BioASQ dataset
	4.2 Multilingual dataset

	5 Conclusion and outlook
	References

	Adaptive Just-in-time Value Class Optimization: Efficient Compaction of Immutable Data Structures in Virtual Machines // Tobias Pape
	Abstract
	1 Introduction
	2 Tracing Just-In-Time Compilers
	3 Optimization Approach
	3.1 Shapes and their recognition
	3.2 Compaction though inlining
	3.3 Transparent field access

	4 Implementation in RPython with a tracing JIT compiler
	5 Results
	6 Related Work
	7 Conclusion and Future Work
	References

	Processing Over Encrypted Data: Between Theory and Practice // Eyad Saleh
	Abstract
	1 Secure Tenant Placement: SecPlace
	1.1 Overview of SecPlace
	1.2 The Placement Algorithms
	1.3 Experiments and Discussion

	2 Processing Over Encrypted Data
	2.1 Homomorphic Cryptosystems
	2.2 State of the Art
	2.3 Current Industry Offerings
	2.4 Limitations and Open Issues

	3 Conclusion and outlook
	References

	Migrate Highly-Available Applications to Non-HA-Infrastructure // Daniel Richter
	Abstract
	1 Introduction
	2 Background
	3 Existing Testbeds
	3.1 The Carrera Racetrack Experiment
	3.2 The Unstoppable Orchestra

	4 Application Level Fault Tolerance and High Availability
	4.1 Software Fault Tolerance Layers
	4.2 Tools for Software Fault Tolerance Evaluation
	4.3 Research Questions

	5 Conclusion and Future Work
	References

	Leveraging Programmers’ Skills: Interleaving of Modification and Use in Data-driven Tool Development // Marcel Taeumel
	Abstract
	1 Introduction
	1.1 A Data-driven Perspective
	1.2 VIVIDE: Our Tool Building Framework
	1.3 Research Question

	2 Applications
	2.1 Improving VIVIDE using VIVIDE
	2.2 Tools for Exploring Run-time Information
	2.3 Tools for Context-oriented Programming
	2.4 Tools for Source Code Versioning

	3 Data-driven Tool Development
	3.1 Reducing the Costs if the Value is Questionable
	3.2 An Evolving Tool Landscape
	3.3 Tool Containers
	3.4 Towards a Controlled Experiment

	4 Related Work
	5 Conclusion
	References

	Omniscient Debugging in Database Applications // Arian Treffer
	Abstract
	1 Introduction
	2 Omniscient Debugging
	2.1 Modeling the execution trace
	2.2 Advanced navigation
	2.3 Slicing

	3 Debugging Stored Procedures
	3.1 Tracing and Omniscient Debugging
	3.2 Reproducing Queries
	3.3 Slicing

	4 Related work
	5 Conclusion and Future Work
	References

	Learning Deep Semantic Feature for Cross-modal Representation // Cheng Wang
	Abstract
	1 Introduction
	2 Related work
	2.1 Modeling Multimodal Data
	2.2 Deep Convolutional Neural Networks

	3 Learning Architecture
	4 Modality Representation
	4.1 Text Representation
	4.2 Image Representation

	5 Ongoing Experiments
	5.1 Datasets
	5.2 Training Procedure

	6 Conclusion and outlook
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

