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Introduction

It is a fundamental question whether we need to take into consideration random fluctuations
in our attempt to describe the nature. There are several reasons in favor of this stochastic
approach. Our common-day experience shows that noise or fluctuations are present in every
experimental measurement. This happens because real systems are sometimes embedded in
the complex environment, which is very often of an irregular fluctuational structure (Fig. 1).
In this case stochastic formulation of the problem is usually more elegant and apparently sim-
ple. One typical example for this situation is a movement of small pollen grains suspended in
water. This phenomenon is called Brownian Motion [66] due to the fundamental pioneering
work of Robert Brown in 1827. The simplicity of stochastic models is especially actual for
climate research because to describe ocean or atmosphere dynamics one needs thousands of
deterministic equations. Including noise can decrease the number of model equations and,
hence, significantly speed up the solution and make forecasting more commercially profitable.
On the other hand, fluctuational terms may be needed if we study a dynamics of some iso-
lated particle in a potential, which has a local minimum. Without external forces the particle
will never escape from this local minimum of the potential. To describe this escape we have
to include noisy or fluctuational terms in equations (Fig. 1). An interesting example, illus-
trating this point, and discussing the possible causes of the Permian extinction which some
225 million years ago wiped out more than 80 percent of all species living at that time, can
be found in [81]. However, it would be misleading to consider stochastic approaches as bridg-
ing between phenomenological models and microscopic description of statistical mechanics.
Recent investigations show the growing interest in mesoscopic descriptions of nature, also in
interdisciplinary research, and prove that fluctuations in nonlinear systems may also play
the key role in nonlinear dynamics [174].

Usually noise destroys the order in the system (Fig. 2), or serves as a nuisance in the
communication or any signal transmission. The street noise decreases the quality of the
lecture, we suffer from noise watching the TV, or loud music does not give us the possibility
to sleep. Mathematically this influence of noise consists in the fact that noise destroys the
ordered structure of the trajectory. This influence of noise is illustrated in Fig. 3, where the
attractors for the well-known Van-der-Pol oscillator [100] and the Lorenz model [100] are
shown without noise and after adding a noisy term in the equations. It can be clearly seen
that the ordered structure of the limit cycle or chaotic attractor is destroyed by adding noise.
This is the usual and logical action of random fluctuations on the system.

However, intensive investigations, performed in the last three decades, have shown that
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Figure 1: Real systems are often embedded in the very complex environment of external
conditions (left). In this case a stochastic description is much simpler and more elegant.
Another advantage of including fluctuational terms in equations is that we are able then
to describe an escape of isolated from external forces particle from local minimum of the
potential, which governs the behaviour of the system (right).

under certain conditions the influence of noise can be very counterintuitive, and noise can also
induce ordering in nonlinear nonequlibrium systems. Now it is a well established fact, that
there are many phenomena, which demonstrate noise-induced order in nonlinear systems
far from equilibrium. In these phenomena the energy of noise can be used for constructive
purposes in contrast to the usual role of noise as nuisance. It is very important to note, that
mechanisms responsible for the appearance of noise-induced order are present in biological
systems, and can be even considered as the evolutionary adaptation in living creatures. A
nice example for this is a recent experiment on the stochastic resonance in sensory nervous
system of a paddlefish [169]. In this experiment, the paddle fish was swimming in the aquar-
ium, detecting the electrical signals from the planktonic prey Daphnia and feeding itself by
capturing Daphnia. Some additional electric noise, supplied by putting two electrodes in
the aquarium has helped the paddlefish to detect the location of the planktonic prey. As a
consequence, the increase of the noise intensity resulted in the better detection. Additional
investigations have shown that the detector equipment of paddlefish is tuned to use the noise
from sea and planktonic conglomerations in the most optimal way.

Additionally, mechanisms of noise-induced order can be found not only in the biological
systems, but also in human cognition. The effect of stochastic resonance has been found in
the speed of the memory retrieval in the presence of noise[191]. The idea of the experiment
was to measure the speed of memory retrieval for arithmetical multiplication rules. The av-
erage response time has been found to be minimal for some optimal noise. This result can be
interpreted as a manifestation of stochastic resonance. This can be also the reason why sev-
eral people prefer hearing music during the work, where they need their memory. Moreover,
noise-induced phenomena have been found directly in the human brain’s visual processing
area: it has been found [133] that light noise, sent to one eye, improves the processing of a
periodic signal, which is sent to another eye of a human subject. In what follows we are going
to review state-of-the-art in the investigation of noise-induced phenomena.
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Figure 2: Usually the increase of noise intensity leads to disordering of the system. In con-
trast to this situation, in noise-induced effects the increase of noise may result in ordering,
e.g. in synchronization with a signal or appearance of a new ordered phase.

0.1 Review of noise-induced effects

Numerous theoretical and experimental works demonstrate that there are really many nonequi-
librium systems which demonstrate phenomena manifesting noise-induced ordering. Among
these phenomena we can emphasize several basic ones, such as stochastic resonance (SR)
[21, 53], noise-induced transitions (NIT) [81, 65][11*], coherence resonance [150], or noise-
induced transport in ratchets[122, 162]. This classification does not pretend to be complete,
because there are various modifications and extensions of these basic phenomena (e.g. res-
onance activation [39] or noise-induced pattern formation[146]). On the other hand there
are phenomena which possess properties of different groups from this classification. Two in-
teresting examples may illustrate this point: a synthesis of a ratchet mechanism and noise-
induced phase transition [163] , and a synthesis of stochastic resonance and noise-induced
transition [5*].

I start with stochastic resonance (SR), which is one of the most bright examples of
noise-induced phenomena. In general case of SR, optimal amount of noise improves synchro-
nization of the system output with input, and this improvement has resonant-like character
versus the noise intensity, giving the name to SR (Fig. 4). In the classical situation SR (for
review see [53], [10] and [74]) consists in the optimization of the bistable system response
by noise. The term stochastic resonance has been introduced by Benzi, Sutera and Vulpiani
[21, 47, 141], when they were exploring a model of a bistable oscillator proposed for expla-
nation of the periodic recurrences of the Earth’s ice ages. Two wells of the bistable potential
represented the ice period and the optimal normal climate of the Earth. The periodic force
referred to the oscillations of the eccentricity of the Earth’s orbit. The problem was that ac-
cording to estimations, the actual amplitude of the periodic force is far too small to force the
system to switch from one state to another one. The possibility of hops has been achieved by
the introduction of additional random force, i.e. noise, which induced transitions from one
potential well to another by surmounting the potential barrier of the system. In 1983, SR has
been studied experimentally in the Schmitt trigger system, where the Signal to Noise Ratio
(SNR) was first used to describe the effect [48]. It has been shown that there is an optimal
noise level at which the periodic component of the output is maximized because the SNR of
the Schmitt trigger with increasing noise intensity passes through a maximum and then de-
creases. SR has proven to be a very general phenomenon and there are several classifications
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Figure 3: Usually adding noise in the model equations destroys the order of the trajectory
structure. Top pictures: the Van-der-Pol oscillator, described by the egs.: & —0.2%(1 —x?) —x =
€&(1), without noise ¢ = 0 (left) and with noise € = 10 (right). Bottom pictures: the same for the
Lorenz model, which demonstrate deterministic chaos, and described by egs.: x = p(y —x),y =
—xz+rx—y+¢€E(t), z = xy — bz. Without noise € = 0 (left), and with noise € = 40 (right). The
remaining parameters are: p = 10, b =8/3, r = 28.

of SR:

1. With respect to the different situations and applications: SR has been found in in a ring
laser [125], in analog systems [35, 54, 55, 56, 57] [58, 59, 70, 71, 72, 135, 211] in mag-
netic systems [45], in passive optical bistable systems [41], in systems with electronic
paramagnetic resonance [60], in experiments with Brownian particles [180], in exper-
iments with magnetoelastic ribbons [185], in a tunnel diode [121], in superconducting
quantum interference devices (SQUIDS) [79], and in ferromagnetics and ferroelectrics
[148, 137]. SR has been also observed in chemical systems[109, 42, 80], in visual percep-
tion [164, 165, 181] and even in social models [14] as well. As it was already discussed
above, SR has been found in the behaviour of paddlefish[169] and in human cognition
[191].

2. With respect to the class of the system: SR has been found in many different sys-
tems, e.g. in monostable [186], excitable [203], non-dynamical [69], nonpotential [9],
and thresholdless [22] systems, and in systems with transient noise-induced structure
[62].

3. With respect to the form of a signal: SR has been found for periodic signal [53], digital
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or aperiodic signals [17, 18, 16], or in systems without signal [83].

4. With respect to different kinds of noise: SR has been investigated for white noise [53],
colored noise [140], chaotic signal [182], or even high-frequency periodic signal, which
played the role of noise [104].

Noteworthy, the effect of stochastic resonance can be extended for the case of spatially dis-
tributed systems as spatiotemporal stochastic resonance [123, 199], array enhanced stochas-
tic resonance [112], or stochastic resonance in extended bistable systems [205, 23]. Noise-
induced propagation is another effect, which is closely related to the effect of stochastic res-
onance, i.e. can be interpreted as nontrivial spatial extension of stochastic resonance. In
this effect the propagation of a harmonic signal through an unforced system is increased for
an optimal intensity of the additive noise. Noise-induced or noise-enhanced propagation has
been reported in bistable or excitable medium [111, 209, 92, 15, 63, 147, 168].

Synchronization?

—Ve System Vo
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Figure 4: A scheme of stochastic resonance: optimal intensity of noise leads to the syn-
crhonization between input and output of the system

Noise-induced transition is an effect in which changing the noise intensity causes the
transition to the new state, which is qualitatively different from the previous one. This differ-
ence can be estimated by the corresponding order parameter (Fig. 5). Noise-induced transi-
tions in nonequilibrium systems can be considered as a generalization of phase transitions in
thermodynamic equilibrium systems. Tracing the analogy between such equilibrium phase
transitions and nonequilibrium noise-induced transitions, one can say, that the noise inten-
sity plays the role of the temperature of the system, and the order parameter determines the
phase of the system [75]. Noise-induced transitions (NIT) can be classified into three main
groups:

1. NIT which lead to the appearance of additional extrema (maxima) in the system’s prob-
ability distribution,

2. NIT which lead to the excitation of oscillations,

3. NIT in spatially extended systems, which lead to breaking of symmetry and the creation
of a mean field.



NIT, which lead to the appearance of additional extrema (maxima) in the system’s probabil-
ity distribution ( for the review see the book [81]) or disappearance of old ones [49], occur in
zero-dimensional systems with multiplicative noise. Such transitions have been investigated
in the Verhulst model to study the dynamics of population growth in biological systems [81],
in the genetic model to describe the genotype dynamics in the fluctuational environment ([81]
and experimentally in [183]), in chemical reactions under the action of the fluctuating light
[32] and in bistable systems [166]. Additionally, NIT of this type have been found experimen-
tally in an electrical parametric oscillator [90, 91] and in analog circuits [89, 183]. The mecha-
nism, responsible for these NIT, is the fact, that multiplicative noise changes the “stochastic”
potential, which effectively governs the behaviour of the system. For such transitions the
order parameter will be the location of extrema in the system probability distribution.

Order A
paramerer

=
Noise intensity
(temperature)

Figure 5: Noise-induced transition: changing the intensity of noise, which plays the role
of temperature, results in qualitative change of the order parameter, which can be the ex-
tremum in the system probability distribution, an amplitude of oscillations, or a mean field.

NIT which lead to the excitation of oscillations (for the review see [100, 103, 102]), appear
in oscillatory systems, for example, in the pendulum with randomly vibrated suspension axis
[25%]. In this case, the order parameter is the average of the instantaneous amplitude of
oscillations or average of its square. If the noise intensity is below its critical value, there is
no oscillations in the system, but if the noise intensity is increased above the critical value,
oscillations are excited. Hence, the reason of these NIT is the parametric excitation of os-
cillations, performed by multiplicative noise, which changes the frequency of the system in
the random way. In addition to mechanical systems, this type of NIT can be found in non-
linear models, which describe the dynamics of childhood epidemics [24*][11*]. Noteworthy,
that noise-induced oscillations possess the property of on-off-intermittency [20*] and can be
controlled by additional periodic action [21*][156]. Finally, there exist a hypothesis, that such
NIT occur in open subsonic submerged jets in the appearance and evolution of the turbulence
[101][15*]. In particular, it can be especially potential for applications, that turbulence as
noise-induced oscillations can be controlled by a periodic additional force (acoustic wave or
sound).
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NIT which lead to breaking of symmetry and the creation of a mean field (for review see
[65]) occur in spatially extended systems, e.g. in systems of noisy coupled nonlinear oscilla-
tors. In this case the order parameter, which determines a phase of a system, is the mean
field In 1979 Mikhailov reported a noise-induced phase transition of this type in a biological
system with diffusion [129]. In [62, 195, 64, 196] generic models, in particular Ginzburg-
Landau equation, which demonstrate the noise-induced transition and formation a mean
fields, have been considered. If oscillators in these models are coupled via the especial form
of coupling,a la Swift-Hohenberg, then a transition will lead to the formation of spatially or-
dered patterns [146]. Noteworthy, the effect of colored noise is crucial for these transitions,
because additional memory of noise is disordering a system [119, 120]. A mechanisms, which
are responsible for these transitions, namely, a joint action of multiplicative noise and cou-
pling, are described in [196] and [172]. With respect to experimental application of the theory
of these noise-induced transitions, the understanding of these NIT will certainly help in the
investigation of liquid nematic crystals [93, 207], of noise-induced bistability in Helium-IV
[73], in electronic circuits [1], as well as in systems, which demonstrate noise-induced shift of
the phase transition, e.g, in: photosensitive chemical reactions [128, 32], or Rayleigh-Bénard
convection [127].

Periodicity?
System —
Output

/r Noise

Figure 6: Coherence resonance: increase of the noise intensity improves the periodicity of the
system output.

The effect of coherence resonance (CR) is another manifestation of the noise-induced
order, in which noise shows the surprising ability to increase level of periodicity in the output
of the nonlinear nonequlibrium system (Fig. 6). CR has been reported in different kinds
of systems, in particular, it has been found that some noise amplitude exists at which the
coherence of spiking in the output of the system can be significantly enhanced in an isolated
Fitz-Hugh Nagumo (FHN) system [150], in the Hodgkin-Huxley [106] and Plant/Hindmarsh-
Rose neuron models [115], and in dynamical systems close to the onset of bifurcations [138]
(note also experimental verifications of CR in optical systems [68]). In addition, CR has been
found in the behaviour of a dynamical system, which shows jumps between several attractors
[144]. Hence, two basic mechanisms of CR have been reported, CR in excitable systems via
the competition between the constant excursion time and waiting time, which in optimal
regime is negligibly small, and CR in a system with two attractors via jumps of the trajectory
between these attractors after one period of being on each of them.

In recent years, there has been a great interest in the CR behaviour of spatially extended



systems consisting of many interacting elements[77, 139]. It has been shown that match-
ing the noise-related characteristic time scales of the coupled excitable elements results in
noise-induced synchronization regimes very similar to those for coupled limit cycles ( for the
review on synchronization phenomena see [151]). Moreover, array-enhanced CR has been
reported, in which constructing an array of coherence-resonance oscillators significantly im-
proves the periodicity of the output [82, 210]. It is important to note that understanding of
CR mechanisms is very important for the modelling of the generation of different rhythms in
the description of several natural processes, such as locomotion [29] or playing piano [44].

H

T T
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Figure 7: Stochastic transport in ratchets: noise induces directied motion of particles in the
periodic assymetric potential, which is harmonically changed.

Stochastic transport in spatially extended systems with a periodic assymetric potential far
from equilibrium, or ratchets (Fig. 7), is still very actual topic in the investigation of noise-
induced effects (for the review see [162]). In 1963 Feynman has predicted that in the presence
of a second heat bath a ratchet effect will manifest itself [560]. Further on, previously known
results in the frame of the concept of molecular motors and pumps [85, 177, 178], have been
developed in numerous works on ratchet effects [24, 192, 107, 30, 12, 13, 190, 202]. Ratchet
effect in the form of voltage rectification by a de-SQUID in the presence of a magnetic field
and an unbiased ac-current has been experimentally observed and theoretically interpreted
in [34, 33, 20]. Two main ratchet scheme have been mainly investigated, tilted ratchet [117]
and on-off ratchet [8]. A synthesis of a noise-induced phase transition and a ratchet effect
has been considered in [163]. Up to now ratchets belong to the actual topic of modern physics
[173, 25, 161, 105, 145].

0.2 The aim and content of this work

Despite really intensive investigations, carried on in the last three decades, not all mecha-
nisms, responsible for the appearance of noise-induced order have been discovered and ana-
lyzed. Especially interesting are situations, in which a system is under the action of several
noise sources, e.g. an interplay between additive and multiplicative noise can be observed.
In particular, it is still not clear which role can be played by additive noise in the effect of
noise-induced transitions or noise-induced phase transitions, usually induced by multiplica-
tive noise. Also it has not been investigated, that noise-induced order can occur due to the
scenario, in which the role of noise is twofold: first noise creates the necessary feature in
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the system, and then this feature is used by noise to induce the order. The question which
naturally arises in this considerations is: is it possible to generalize noise-induced resonant
phenomena for systems which do not have necessary features? Hence, the problem is whether
we can observe noise-induced phenomena due to this property which is also induced by noise
and, therefore, use the energy of noise even more efficiently. We call these phenomena as
doubly stochastic effects (DSE), and investigate whether one can apply this concept to ba-
sic noise-induced phenomena, such as stochastic resonance, noise-induced propagation, or
coherence resonance. Doubly stochastic effects also occur due to the interplay between mul-
tiplicative and additive noises, and hence this problem is closely related to the investigation
of the role of additive noise in transitions, which are induced by multiplicative noise. To be
complete, it is neccessary to note that for ratchets, some kind of DSE have been found in
[163]. Finally, there are many other noise-induced effects and effects related to the action of
the noise, which have not been investigated. This was the motivation of the present research,
and hence, the aim of this work is the investigation of nonlinear systems under the action
of multiplicative and additive noise for the determination of new mechanisms responsible for
the appearance of noise-induced order, especially via doubly stochastic effects, and for finding
the appropriate applications of these effects.
According to this aim the following problems are considered in this work:

1. we study the effect of additive noise in noise-induced transitions,

2. we study doubly stochastic effects: doubly stochastic resonance, noise-induced propaga-
tion in monostable media, and doubly stochastic coherence,

3. we study new effects: noise-induced frequency selection of the propagation frequency,
vibrational resonance in a noise-induced structure, system size resonance in coupled
noisy systems, and coherence resonance in inhibitory coupled excitable oscillators,

4. we study possible applications for these findings, in particular, we design the electronic
circuit for doubly stochastic resonance, we study experimentally coherence resonance
via noise-induced symmetry, and we study experimentally a vibrational resonance in
bistable systems.

The research presented in this work is organized as follows. This work is devoted to the
investigation of new mechanisms responsible for the noise-induced ordering in nonlinear sys-
tems, to the development of the concept of doubly stochastic effects, and to some new effects,
which demonstrate the counterintuitive ability of noise to induce order in nonequlibrium sys-
tems. In the first chapter we start with the investigation of the role of additive noise in
noise-induced transitions. If we deal with noise-induced transitions, usually only multi-
plicative noise or the joint action of multiplicative noise and coupling is responsible for the
appearance of the transition. In noise-induced transitions, which lead to the appearance of
new maxima in the system probability distribution, the transition happens, because due to
the multiplicative noise some additional terms appear in the ”stochastic” potential, which
governs the behaviour of the system[81]. In noise-induced transitions, which lead to the exci-
tations of oscillations, the transition occurs due to the parametric action of the multiplicative



noise[102]. In noise-induced transitions, which lead to the breaking of symmetry and creation
of the mean field, the transition occurs again due to the multiplicative noise which induces
short-time bistability, and then due to coupling, which freezes a system in this bistable state
[65]. Meanwhile additive noise can also play a crucial and very nontrivial role in the effect of
noise-induced transition [11%,24% 19% 18*]. First, we investigate a transition in the presence
of additive noise in a pendulum with randomly vibrated suspension axis. We show that ad-
ditive noise smoothes a transition and influences the effect of on-off intermittency, which is
a characteristical feature of noise-induced oscillations [11¥,20¥]. Then, on the model, which
describe the behaviour of childhood epidemics, we show that additive noise is able to sta-
bilize noise-induced oscillations, which appear as a result of noise-induced phase transition
[11*]. Finally, we show that additive noise itself can induce a phase transition in the spa-
tially extended system of coupled noisy oscillators. This transition, induced by additive noise,
can be of the second- [19*] and first- order [12*]. In the latter case, the order parameter ,
here a mean field, is a discontinuous function of the noise intensity. If the oscillators coupled
via a coupling a la Swift-Hohenberg, then additive noise can induce a formation of spatially
ordered patterns, as a result of noise-induced phase transition [18*].

Nonlinear System

Noise—induced

—_— Property —
Effect
(e.g. threshold,symmetry

(e.g. ordering)
(or synchronization)

Noise

Figure 8: A concept of doubly stochastic effects: noise creates a property of the system which
is used by another noise to induce the effect in the nonlinear nonequlibrium system. Usually
it occurs due to the interplay between multiplicative and additive noise.

After an investigation of new mechanisms, which causes noise-induced order in systems
via phase transitions, in the second chapter we develop a concept of doubly stochastic
effects (Fig. 8). The idea of this concept is the following. Usually, if we observe noise-induced
order in an nonlinear system, it occurs due to the presence of some intrinsic property of
a system, which works as a mechanism of a noise-induced phenomenon. For example, in
the effect of stochastic resonance this feature is a threshold, which presents in the system.
Coming noise interacts with this feature, and we observe a noise-induced order. Meanwhile,
this mechanism, responsible for the noise-induced effect, can be also induced by noise. In this
case we deal with doubly stochastic effect, in which noise-induced order appears according to
the scenario, when noise-induced order is created in a system due to the feature, which was,
in its turn, also induced by noise. This is the idea of the concept of doubly stochastic effects.
Certainly, in such effects, the energy of noise is used more efficiently, because it is used not
only for the noise-induced ordering, but also for the mechanism, which is used in this process.
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The first effect, which has been found and investigated by us in frames of this concept is
doubly stochastic resonance [5*]. In this effect, multiplicative noise induces bistability in
the spatially extended system via a phase transition, and additive noise optimizes a signal
processing, i.e. synchronizes output with input, in this bistable system due to the principle of
stochastic resonance. To suggest a possible experimental implementation of doubly stochastic
resonance, we have designed a simple electronic circuit [4*]. The idea of doubly stochastic
effects can be developed not only for effects, based on the principle of stochastic resonance,
but also for coherence resonance effects. To do this, we consider the effect of doubly stochastic
coherence, which demonstrate a periodicity via noise-induced symmetry [34*]. It is important
to note that usually noise is able only to destroy a symmetry, as it happens in noise-induced
phase transitions. In contrast to this situation, in doubly stochastic coherence, multiplicative
noise induces a symmetry in the system, and then this symmetry helps to generate a periodic
output due to additive noise. We study doubly stochastic coherence on the paradigmatic
model, explain its behaviour by the consideration of an “effective” model, and finally confirm
these idea by experimental measurements on the electronic circuit.

As discussed above, SR can be extended for the case of spatially extended systems, as the
effect of noise-induced or noise-enhanced propagation. Nevertheless, these effects have been
sobserved only in bistable or excitable media, and not in deterministically monostable media,
which certainly describe a rather wide class of systems. Application of the concept of doubly
stochastic effects leads to the discovery of new effects in noise-induced propagation. We
discuss one of such effect in the third chapter, where we describe a noise-induced propagation
in monostable media [3*]. The idea of this effect is the following. First, a joint action of
multiplicative noise and coupling induces a bistability in the spatially extended system via
a noise-induced phase transition. Then additive noise is able to enhance a propagation of a
periodic signal through this system. Interesting that propagation of a signal does not destroy
a bistability, which is a collective effect. Discussing noise-induced propagation, we study also
another effect, which is related to the concept of doubly stochastic effects. Namely, we study
a propagation of a bichromatic signal through a bistable media in the presence of noise, and
find that under certain conditions noise is able to select a propagation frequency.

In the fourth chapter we study noise-induced effects and resonant effects in the
presence of noise, some additional new effects, which have been investigated during the
development of the concept of doubly stochastic effects. We start with the investigation of
vibrational resonance in a noise-induced structure [7*]. In this effect, an addition of high-
frequency optimizes a response of the system at the frequency of a low frequency signal, due
to the bistability, which has been created by joint action of multiplicative noise and coupling.
The effective model, responsible for this effect, is also studied experimentally on the elec-
tronic circuit [7*]. Further on, we study a new effect, which appear only in the presence of
noise, namely, system size resonance [153]. The effect consists in the fact, that when a small
periodic force on the ensemble of coupled noisy systems, the linear response of the system
has a maximum at a certain system size, similar to stochastic resonance phenomenon. This
effect can be observed if we change a size of a system of coupled bistable oscillators, but, in
particular, this effect can be also demonstrated for systems with noise-induced bistability.
After that, we study a coherence resonance in a system of coupled noisy excitable elements,

11



based in the new mechanism [5*]. For this we consider a system of two or three excitable
oscillators with inhibitory coupling. A new mechanism of noise-induced periodic output is
based on anti-phase motion of coupled oscillators, whereas for other mechanisms of coher-
ence resonance in spatially extended systems, in-phase movement was necessary. In the last
chapter we summarize the results, obtained in this work, and discuss possible direction of
the future research.

12
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nonequilibrium transitions
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CHAPTER 1. ADDITIVE NOISE IN NOISE-INDUCED NONEQUILIBRIUM
TRANSITIONS
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As mentioned in the introduction doubly stochastic effects occur in a nonlinear system
due to the interplay between two noise sources, usually sources of multiplicative and addi-
tive noise. One noise induces a new state in the system or a new property of the system, and
other noise uses this new state to work out noise-induced effect. The effect of noise-induced
transition already consists in the creation of the new state or in the transition to the new
state. Hence, logically the question arises, what additionally can happen, if we have two
noise sources in the system. Since usually transitions are induced by multiplicative noise,
we formulate the problem as follows: what is the role of additive noise in transitions, which
occur in nonlinear systems due to the action of multiplicative noise. We start with a study
of the transition which leads to noise-induced oscillations and happens in a pendulum with
randomly vibrated axis. This model can be considered as a paradigmatic model for such a
transition, besides, a pendulum is a classical and universal object of investigation in theoret-
ical physics.
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1.1. TRANSITIONS IN THE PRESENCE OF ADDITIVE NOISE. ON-OFF
INTERMITTENCY

1.1 Transitions in the presence of additive noise. On-off

intermittency

A pendulum with randomly vibrated suspension axis is a typical example of oscillatory
system, in which parametric action of noise can lead to the excitation of oscillations via a
second-order phase transition [25%,24* 11*]. In this case the intensity of multiplicative noise
plays the role of temperature and the average amplitude is the order parameter. Here we
discuss the question what happens if additionally additive noise is acting upon the system.
Therefore we consider a pendulum whose suspension axis is vibrating in the direction making
the angle y with respect to the vertical (Fig. 1.1). As shown in [11¥], for moderately small
vibrations of a suspension axis, i.e. in the presence of additive noise, the equation of motion
can be written as follows:

§+2B (1+00°) o+ f (1+E (1)) sing = w5&a(1), (1.1

where ¢ is the pendulum angular deviation from the equilibrium position, wg is the natural
frequency of small free pendulum’s oscillations, B is the damping factor, o is the coefficient of
nonlinear friction, & (¢) and &,(r) are comparatively broad-band random processes with zero
mean values.

We assume that the suspension axis vibration is moderately small in amplitude, i.e. the
pendulum oscillations can be considered small enough for ¢ to be substituted in place of sin@
in Eq. (1.1).

We start with an approximate analytical solution of this problem, which can be obtained
from the assumptions that B/wy ~ €, &;(t) ~ /&, and &;(¢) ~ /€, where € is a certain small
parameter which should be put equal to unity in the final results. Eq. (1.1) can then be
solved by the Krylov—Bogolyubov method; to do this we set ¢ = A(r) cosy(r) +€u; + ..., where

y(t) = wof + (1),

A=efi+..., d=¢F+..., 1.2)

ui, ..., fi,..., F, ..., are unknown functions. By using the Krylov—Bogolyubov technique for
stochastic equations (see [187]), we find expressions for the unknown functions f; and Fj.
Substituting these expressions into Eqs. (1.2) we obtain

=B (14 00 ) A+ onin GV G0 &0 a3

¢:OJQgQ(A,W(I),é;](t),&z(t)), (1.4)

where 4
§1(4,6.0) = S&1(1)sin2y(0) — Ex(0)sini(),

©2(4,0.1) =&1(1)cosy(1) ~ 1 ar)cos (),

the bar over the expression denotes averaging over time.
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E(1) ¢

o(t)

Figure 1.1: A scheme of a pendulum with randomly vibrated suspension axis. The direction

of this vibration is not vertical, and this provides additive noise in the model equation.

As follows from [187], the Fokker—Planck equation associated with Eqgs. (1.3), (1.4) is

aW(Aa¢7t) :7i l(B <1+Zaw(2)A2)A+(D(2)R1>W(A,(i),t)] 7(‘0(2)R28W(A3¢7t)+

a A 9

o2 | 92 Kii Ka '\ 9*w(A, 9,1)
0
R =/ <<7ag'(§f;¢’t)gn(A,¢,t+r)>+<ag'(§¢¢ ) 2(A,0,1+1 >

0
R2=/<<7ag2(§14’¢7t)g1(A,¢,t+T)>+<ag2(§¢¢ ) 2(A ¢t+1¢>

the angular brackets denotes averaging over the statistical ensemble,

where

dr,

dr,

1 1
Kii = 5k, (200),  Kiz = 5k, (o),

1 1 1 1
K = 1 (Kél (0)+ 5](&1 (2(00)) , K= 1 (Kéz (0)+ 5](&2 (0)())) ,
and

Ke (@) = /(&(t)é(t+r)>cosondr

is the power spectrum density of the process &(7) at the frequency ®.

(1.5)

(1.6)

1.7

(1.8)

(1.9)

Let us now calculate the integrals (1.6) and (1.7) taking account of the expressions for g;
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and g;. As a result we obtain:

0 0
R, = 3—A/(ﬁl(t)é;](t+T)>COSZ(Doth+i/(éz(t)ﬁz(t-i-’t»coswo’td‘c

8 2A7
3Ki1 Ko
:TAJFE, (1.10)
0 0
Re= 7 [0+ 0)sin20gtds— 5 [ o)+ sinwged (1.11)
2—4/< 1 1 S 0 A2 2( 2 ‘C) SIN®OTAT. .

—oo —oo

The value of R, depends on the characteristics of the random processes & (¢) and &;(¢): if they
are white noises then R, = 0; but if, for example, &,(¢) is white noise and &;(z) has a finite
correlation time and its power spectrum density is

a%KE_'] (2(00)

Ke, (0) = ——~———"
5 (@) (©—2w0)2+a?

then
B ag (J)()Kg;l (20)0)

41603 +a3)

It should be noted that in this case R; is negative, that results in a decrease of the mean
oscillation frequency with an increase of noise intensity. The Langevin equations which can
be related to the Fokker-Planck equation (1.5) in view of (1.10) and (1.11) are presented the
following:

. 302 o o
A=B (n - TOOLA2>A+ 2—A0K12+ TOAC,II(I) +(D()C12(l‘),

(1.12)
. t
o = ofM + wyp (Czl(t)+ %)7
where {11 (2), C12(7), 21(2), and $xa(¢) are white noises with zero mean value and uncorrelated
with A. The intensities of these noises are K1, K|2, K»1, and Kj;, respectively. We note that
even in the case with k¢, = 0 Egs. (1.12) differ from that derived in [187]. The reason is that
there the variable u = InA in place of A was used, i.e. the correlation between the noise &(r)
and the amplitude A was implicitly ignored [100][25%,22*].

First we consider the case when additive noise is absent, i.e. kK, =0. In this case the
steady-state solution of Eq. (1.5), satisfying the condition of zero probability flux, is

2

A
w(A,d) = ﬁexp{% (nlnA%)}, (1.13)

where a = 3003 /4 is the nonlinear parameter and 1 = 303K /8B — 1. The constant C is deter-
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Figure 1.2: (a) A noise-induced phase transition in a pendulum with randomly vibrated sus-
pension axis (Eq.(1.1)). The dependence of the averaged amplitude squared multiplied by
the parameter a = 30§ /4 on n, where 1 is an extent on which multiplicative noise intensity
exceeds the threshold value. Without additive noise gy = 0 (curve 1), and with increasing
additive noise gy = 0.005 (curve 2) and 0.02 (curve 3). The remaining parameters are p = 0.1,
o =100, and oy = 1. Analytical and numerical results are shown by solid and symbol curves,
respectively. (b) On-off intermittency for subcritical values of multiplicative noise intensity.
In contrast to this situation, if additive noise is absent, on-off intermittency is observed near
a threshold but for supercritical values of the multiplicative noise intensity.

mined from the normalization condition

27 oo

//w(A,¢)AdAd¢: 1.

00

Upon integrating (1.13) over ¢, we find the expression for the probability density w of the
oscillations amplitude

2
w(A) = CAGN-D/040) gy ( %) _ (1.14)

From the normalization condition we get

3a 3n/2(14n) 1
<2 1 ) —— forn>0
c_o) \20+m) r(3n/2(1+n)) (1.15)
0 forn <0.
Hence,
( 34 )3n/2(l+n) Aln=1)/(1+0) ( 3aA? )
——exp| —=—— ) form>0
W) —2) 20 r(3n/201+m) 2(14m) (1.16)
8(A) forn <0.

The fact that for n < 0 the probability density of the amplitude turns out to be a d-function is
associated with the absence of additive noise (see below).
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w(aA
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aA?

Figure 1.3: The system probability distribution for a pendulum. (a) The case without additive
noise. The probability distribution w(aA?) = w(A)/2aA for n = 0.01 (curve 1), and n = 0.2 (curve
2). (b) The case with additive noise. The dependence of w(aA?) = w(A)/2aA for ¢ =0.01/(1+n)
and n = —0.2, 0 and 0.2 for curves 1-3 respectively.

Using (1.16), we can determine (A) and (A2):

3 r((4n+1)/2(1+n))

n forn>0
=1 V2040 T (3m/(4m)+1) (1.17)
0 forn <0
n forn >0
Ay =4 4 (1.18)
0 forn <0

Therefore, it is evident that for n > 0 the parametric excitation of pendulum oscillations oc-
curs under the influence of multiplicative noise. This manifests itself in the fact that the
mean values of the amplitude and of the amplitude-squared become non-zero (Fig. 1.2, curve
1). This parametric excitation implies a transition of the system to a new state, that can
be treated as a phase transition. The condition n = 0 is the threshold for the onset of this
phase transition. It follows that, in the absence of additive noise, the critical value of the
multiplicative noise intensity is 168
r _

KE' (2000) = Ker = 3—@(2). (1.19)

Hence, the parameter n characterizes the extent to which the intensity of multiplicative noise

component exceeds its critical value.

It should be noted that, for n > 0, the steady state A = 0 loses its stability and the state
A # 0 becomes stable. At the same time, eq. (1.16) implies that the probability density of
A? is monotonically decreasing with increasing A” for any value of n > 0. Hence, in contrast
to the transitions considered in [81], the appearance of a new stable state needs not to be
accompanied by the appearance of a new maxima in the system probability distribution (see
Fig. 1.3, a).
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Now let us consider the case when the intensity of additive noise is not equal to
zero. The steady-state solution of Eq. (1.5), satisfying the condition of zero probability flux,
is conveniently written as

Ca 3 (n — aAZ) aA’ +q
W(A’q’)mexp{/ T maqa [ (1.20

where ¢ = 4aK|»/K)1 characterizes the ratio between the intensities of additive and multi-
plicative noise.

Following the calculations presented in the detail in [11*], we get an expression for

) = (1) |2 (5 - 20) (1420 (200 -2+ (54 50 ) -
3q 3¢ \* 3
T (x/EF(—Zu)(l —2p) (2(1 Jrn)) +2I2u)r (5 = 2#) (1 +2u))] X
2u
l? I(=2u)(1 —2u) (ﬁ) (2(1 +2u) + %) +
reu)r (% —2/.1) (142u) (2(1 —2u)+ H) (1.21)

where u = 3(n+¢q)/4(1+m). Note that similarly to the case without additive noise, after a
transition no additional maxima appear in the system probability distribution and the shape
of this distribution is not qualitatively changed (Fig. 1.3, b).

Next we compare these analytical results with numerical simulations. The corresponding
dependence of a(A?) on 1 for different values of the parameter g is illustrated in Fig. 1.2. We
see that additive noise of the small intensity results in a smoothing of the dependence of the
mean oscillation amplitude-squared on the multiplicative noise intensity: it becomes without
fracture inherent in a phase transition induced by only multiplicative noise. If we increase
additive noise intensity, the transition becomes less detectable (Fig. 1.2, curve 3).

In numerical experiment it is more convenient to calculate the variance of the correspond-
ing variable instead of the mean amplitude squared. It is evident that the dependencies of
these values on the noise intensity should be similar. Indeed, in the case when the amplitude
A is a slowly changing function, the variance is equal to (42)/2. The dependencies of a(A?) on
1 found by numerical simulation of Eq. (1.1) for both the presence of additive noise and its
absence are shown also in Fig. 1.2. We find that near the threshold the simulations match
the analytical results very good and that the dependencies for ¢ = 0 can be approximated by
a straight line intersecting the abscissa at 1 =0. With an increase of 1, the growth rate of
the variance in numerical simulations is smaller than in the analytical results. This can be
explained by the fact that the Krylov-Bogolyubov method is valid only near a threshold.

Now let us discuss how additive noise influences the effect of on-off intermittency. Nu-
merical simulation of the original Eq.(1.1) shows that if the noise intensity is slightly over
a threshold, then in the absence of additive noise on-off intermittency can observed in the

22



1.1. TRANSITIONS IN THE PRESENCE OF ADDITIVE NOISE. ON-OFF
INTERMITTENCY

form of oscillations [20*]. This means that for the same external action the system is some-
times in the state “on” (the amplitude is large), which is intermittent with the state “off” (the
amplitude is rather small). The additive noise influences the effect of on-off intermittency
in the following way. For supercritical values of the multiplicative noise intensity on-off in-
termittency is now hidden and not observable in the form of oscillations, but can be detected
for subcritical values, below a threshold (see Fig.1.2 b). Hence in the presence of additive
noise on-off intermittency, a sign of noise-induced transition, can be observed even before
this transition occurs with respect to the increase of the control parameter.

It is necessary to note that in the same system chaotic oscillations can be observed, if
the external parametric action is periodic. A comparison with this case is discussed in [25%].
Chaotic pendulum’s oscillations are very similar in its form to noise-induced oscillations.
However, a calculation of the probability distribution of the average amplitude squared allows
to distinguish between both cases of the external action by means of the Rytov-Dimentberg
criterion [25%].

As is shown by further examples, this effect of transition smoothing and influence on on-off
intermittency is not a single effect of additive noise in oscillatory systems.
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1.2. STABILIZATION OF NOISE-INDUCED OSCILLATIONS PERFORMED BY
ADDITIVE NOISE

1.2 Stabilization of noise-induced oscillations performed

by additive noise

In this section we study again a system under the action of noise, which has both additive
and multiplicative components. The aim now is to show that, in contrast to a pendulum,
here additive noise can have also another form of influence, namely, stabilize noise-induced
oscillations. To demonstrate this effect, we use a standard epidemiological model for the
dynamics of children diseases [37]. Two variants of excitation are possible, either by periodic
force [143, 43] or by noise [24*]. In both cases this system exhibits chaotic or noise-induced
oscillations which closely resemble oscillations observed in experimental data.

We analyze the influence of additive component of noise in the following model system
[24%]:

S = e(1-S)—bSILLE=bSI—(e+I)E, (1.22)
I = IE—(e+g)l

where S, E, and I denote the number of susceptible, exposed but not yet infected, and in-
vective children, respectively. An independent equation for the variable R, which denotes the
number of recovered children, can be added to this system of equations: R = g/ — mR. Mutual
relations between the components, involved in the model, are illustrated schematically by
Fig.1.4.

Births

S = E =1 = R

VooV

Figure 1.4: Diagram illustrating mutual relations between different components in the model
of childhood epidemics

The parameters 1/e, 1/1, 1/g are the average expectancy, latency and infection periods of
time. The contact rate b is the parameter of excitation and equal to b = by(1 + b1§(z)) where
&(r) is a harmonic noise with the peak of spectral density at the circle frequency 2n (seasonal
noisy oscillations with a period equal to one year) and the parameter b, is the amplitude of
noise. The excited oscillations are executed in the vicinity of the stable singular point with
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Figure 1.5: (a) Noise-induced oscillations (epidemics)in the epidemiological model Eqs.(1.24).
(b) The dependence of oscillation variance for the variable x on the parameter 5, which is
responsible for the noisy variation of a contact rate (see the text).

the coordinates (So, Eo,):

(m+a)(m+g) o om m(m+g) am m

E n=—"——"
0 » 0T mra)(mtg) bo

Sy — — _
0 abg ’ m+a abg

(1.23)

Hence, one can easily rewrite the equations for the new variables x=S/So—1,y=E/Ey—1,
and z =1/Ip — 1 which are deviations from the equilibrium point:

i+ex = —bolo(1+bi&(t))(x+z+x2) — bob11oE(2),
JHledly = (e+D(1+hiE0)(x+z+x0)+ e+ DbiE(), (1.24)
i+(e+g)z = (e+g)y.

This form of egs. clearly shows that the action of noise is multiplicative as well as additive.

An increase of the noise intensity causes noise-induced oscillations of the variables S,1,E
(Fig. 1.6 (a)). Their oscillatory behaviour closely resembles observed epidemiological data
(compare Fig. 1.6 (a) with figures in [157]). These oscillations are excited after a noise-induced
transition (see Fig. 1.6 (b)). There the variance of oscillations together with an approximating
straight line is shown. The point where the straight line crosses the abscissa-axis can be
taken as a critical point of the transition. To prove this, we remove artificially the additive
component of noise from eqs.(1.24). In this case the variance of oscillations is equal to zero
if by < by, and goes to infinity shortly after the noise intensity exceeds its critical value.
So, multiplicative noise indeed induces a transition. What is even more interesting, if the
additive and multiplicative components of noise act together, as in the model, a stabilization
of noise-induced oscillations occurs: in this case the dependence of the variance on the noise
intensity does not increase to infinity, that is not a case if multiplicative component of noise
acts separately.

Noteworthy, the same model can demonstrate deterministic chaotic oscillations, which are
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Figure 1.6: Left: experimentally measured epidemics[157], Right: chaotic solution of the
model with periodically varied contact rate [24*].

very irregular, and closely resembles in its form both to experimental data [157] and to noise-
induced oscillations [24*]. Hence, the problem arises whether we can distinguish the nature
of oscillations if we analyze time series. These noise-induced and chaotic oscillations can be
distinguished by use of the Rytov-Dimentberg criterion, initially proposed in [171, 38] to solve
the problem of distinguishing between noise passed through a linear narrow-band filter and
periodic but noisy self-oscillations. According to this criterion, the probability distributions
for the process itself and for the instantaneous amplitude squared are monotonic in the case
of noise-induced oscillations, whereas for chaotic oscillations these distributions have to have
peaks [24%,25%]. The instantaneous amplitude can be calculated by means of the Hilbert
transform [167].
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1.3. PHASE TRANSITIONS INDUCED BY ADDITIVE NOISE

1.3 Phase transitions induced by additive noise

1.3.1 Second-order phase transitions. Noise-induced pattern forma-
tion

Now we extend our study to spatially extended systems and show that additive noise is
able to induce second- and first-order phase transitions. We start with an investigation of
a nonlinear lattice of overdamped coupled stochastic oscillators [146][18*] under the action
of noise. In this system a transition manifests itself in the formation of spatially ordered
patterns, as a consequence of a special form of coupling a la Swift-Hohenberg. The system is
described by a scalar field x,, defined on a spatial lattice with points r:

ir = f(xr) + g(xr)&r + Lxr +Cr (1.25)

with f and g taken in the form (for the discussion, which functions can be chosen to observe
a transition see [172])
fx) = —x(1+x%)? gx) =a*+x* (1.26)

and &, {; are independent zero-mean-value Gaussian white noises:

E)En(t)) = opdewd(t—1') (1.27)
GG () = 038, p0(t—1').

Note that for these functions f(x) and g(x) the transitions described are pure noise-induced
phase transitions, in the sense that they do not exist in the system without noise. The cou-
pling operator L is a discretized version of the Swift-Hohenberg coupling term —D(g3 + V?)?
[18*].

To study the influence of the additive noise, we consider two limiting cases of correlation
between additive and multiplicative noise : strong correlation ({; = 0 and parameter « is
varied), and no correlation ( a = 0 and the intensity of {; is varied).

Using the generalized Weiss mean field theory (MFT) [65], the conditions of phase transi-
tion can be found. Substituting the value of the scalar variable x at the sites coupled to x;
by its special average:

(xp) = (x)cos[k- (r—r')], (1.28)
we obtain for x = x;
x = f(x) +g(x)&(t) + Da(k)x — Degr(x — (x)) +L(2), (1.29)
where ,
Defr = K% q(2)> + i—f + (k)| D (1.30)
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Figure 1.7: Additive noise induced phase transition in a nonlinear lattice Eqs.(1.25): pre-
dictions of the mean field theory. (a) The boundaries of the transition on the plane (62, D)
for different values of a Eqs.(1.26). It is clearly seen that by variation of a a point from the
dashed region is a point of the transition induced by additive noise. (b) Dependence of order
parameter |(x)| if the additive noise intensity is varied. (c) The transition lines for the case
when additive and multiplicative noise are independent: 62 = 1 (label 1), 0.5 (label 2), and
0.3 (label 3). (d) Large scaled region from the plot in (c).

and a dispersion relation o(k) = 0 for the most unstable mode, which is only of interest here
[146].

Now the value (x) plays the role of the amplitude of the spatial patterns with an effective
diffusion coefficient D.¢. The steady state solution of the Fokker-Planck equation correspond-
ing to Eq.(1.28) is written then as follows

_ S [ F0)=Derily— () -
W) = o2 ro2 P (20/ 67,8%(y)+03 dy) ’ (1.31)
and C((x)) is the normalization constant.
For the mean field value (x) we obtain [208]
(x) = /st.,(x, (x))dx. (1.32)

Solving eq.(1.32) with parameters D, ¢2, , and 62, we obtain a boundary between two

phases: a disordered (|(x)| = 0) and an ordered one (|(x)| # 0). The ordered phase corre-
sponds to the appearance of spatially ordered patterns, because its average amplitude be-
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Figure 1.8: Snapshots of the field for D = 1.0, 62, = 1.8, andc> = 0. The parameter a is equal
to (a) 0.1, (b) 1.0, and (c) 10.0. The increase of additive noise induces spatial patterns.
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Figure 1.9: (a)2D Fourier transform of the pattern shown in the previous Fig. Rotationally
symmetry is observed. (max,min) values are (1337,0.1). (b) Fourier transform averaged over
angles for D=1.0 and 2, = 1.8. values of parameter a are shown in the figure. (c) Dependence
of Snax O a
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Figure 1.10: A formation of spatial patterns induced by additive noise. From left to right
the intensity of additive noise is increased (a = 0): 62 = 0.001, 0.7 and 10 (from left to right).
The field in the nonlinear lattice of 128x128 elements is coded from white (minimum) to black
(maximum) colours.

comes nonzero. This happens due to the special form of coupling which includes wave length
of these patterns ¢o. It is known that in the considered system multiplicative noise induces a
phase transition [146]. We focus our attention to the influence of additive noise. The bound-
ary of the phase transition on the plane (62, D) is shown in Fig. 1.7 (a), which demonstrates
that variation of the intensity of correlated additive noise (the parameter « in Eq.(1.26))
causes a shift of the transition boundary. The most interesting situation occurs in the dashed
region. Here, the increase of the additive noise intensity causes the reentrant (disorder-
order-disorder) phase transition. The corresponding dependence of the order parameter on
the parameter a is shown in Fig. 1.7 (b). Hence changing additive noise can lead to the for-
mation of spatially ordered patterns (Fig. 1.8). The pattern, which corresponds to the ordered
case, has rotational symmetry, which can be clearly observed in the two-dimensional Fourier
transform of the field, represented in Fig.1.9. To make a transition more evident we have
plotted the Fourier transform of the field averaged over the angles of the wave vector. It is
shown in the Fig. 1.8 for different values of a. With increase of a a maximum in this structure
function is found.

For the case of uncorrelated additive noise (a = 0), the observed behaviour is qualitatively
the same ( Fig. 1.7 (c,d)). Here the transition lines are plotted on the plane (¢2,D) and the
intensity o2 of uncorrelated additive noise is varied. It is evident that again dashed region
corresponds to the phase transition. If we take parameters from this dashed region (in both
cases of correlation), and change the intensity of additive noise (varying the parameter a or
62) we observe a formation of patterns and further their destroying (see results of numerical
simulations in Fig. 1.10).

To understand the mechanism behind this transition, it is necessary to note that there
is no bistability either in the “usual” potential or in the so-called “stochastic” potential [81].
Nevertheless, using some approximations it can be shown [196][18*] that the short-time evo-
lution of the mean field can be described by the “effective” potential, which becomes to be
bistable after a transition. If D, and 62 vanish, the time evolution of the first moment of a
single element is simply given by the drift part in the corresponding Fokker-Planck equation
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Figure 1.11: An “effective” potential for the short time evolution of the mean field. (a) 62, = 2:
solid line, a® = 0.1; dashed line, a*> = 1.0. (b) a=0: solid line, 62, = 2; dashed line, 62, = 5. In
case (a) the short time behaviour can be described by the bistable potential if the constant
a is sufficiently large. In case (b) the situation is more complicated: the zero state remains
stable, but large enough additive noise can force a system to leave the zero state and form a
mean field.

(Stratonovich case)
—(g(x)g' (x)).- (1.33)

As it was argued in [196], the mechanism of the noise-induced transition in coupled sys-
tems can be explained by means of a short time evolution approximation [2]. It means that
we start with an initial Dirac & function, follow it only for a short time, such that fluctuations
are small and the probability density is well approximated by a Gaussian. A suppression of
fluctuations, performed by coupling, makes this approximation appropriate in our case[193].
The equation for the maximum of the probability, which is also the average value in this
approximation ¥ = (x), takes the following form

£= (1) + 20 (1), (1.34)

which is valid if f({x)) >> (8x?)f"((x)). For this dynamics an “effective” potential U.(x) can
be derived, which has the form
Uett(x) = Up(x) + Unoise = — / F0)dx— @ (1.35)

where Up(x) is a monostable potential and U5 represents the influence of the multiplicative
noise. In the ordered region, this “effective” potential has additional to x = 0 minima, that
explain the non-zero solutions for the amplitude of spatial patterns [18*] (see Fig. 1.11).

Here I have considered a second-order phase transition induced by additive noise in a spa-
tially extended system. Due to the special form of coupling, the phase transition manifested
itself in the formation of ordered spatial patterns. In what follows, I will demonstrate that
additive noise can also induce first-order phase transition in such systems.
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1.3.2 First-order phase transitions.

In [136] a first-order phase transition has been reported, which is induced by multiplicative
noise. Now we show that first-order nonequilibrium transitions in spatially extended sys-
tems can be also induced by additive noise. It is important, that in contrast to second-order
transitions, in a first-order transition very tiny fluctuation of the control parameter can lead
to a drastical change of the order parameter. The study is performed on a nonlinear lat-
tice of coupled stochastic overdamped oscillators introduced in [195] and further studied in
[196, 119][18*,19*%]. The time evolution of the system is described by the following set of

Langevin equations:
D

&= f() +g()ie) + 57 ) (xj —xi) +Gilo), (1.36)
J

where x;(t) represents the state of the i-th oscillator, and the sum runs over all nearest neigh-
bors of cell i. The strength of the coupling is measured by D, and d is the dimension of the
lattice, which has N = L? elements. The noise terms &;(z) and {;(¢) are the same as defined in
Egs. (1.27): mutually uncorrelated, gaussianly distributed, with zero mean and white in both
space and time. The functions f(x) and g(x) are defined in Eqs.(1.26).

We study the behaviour of this system by means of a standard MFT procedure. Solving
the corresponding Eq.(1.32) with respect to the variable m = (x), and wg defined by Eq.(1.31)
with D, = D, one can set the transition boundaries. In this way obtained order-disorder
transition lines are shown in Fig. 1.12 (a). Here we consider only the case when 62 = 0 and
the parameter « is varied. Curve 1 separates regions of disorder (below the curve) and order
(above the curve) for small multiplicative noise intensity. In this case, the ordered region is
characterized by three self-consistent solutions of Eq. (1.32), one of them unstable (m = 0) and
the other two stable and symmetrical. These new solutions appear continuously from m =0
in the course of the transition. Hence, if we fix the coupling strength e.g. D = 20, and increase
the intensity of additive noise (the parameter a) a second-order phase transition from disorder
to order occurs, followed by a reentrant transition back to disorder, also of second order.

The first-order transition can be observed when the multiplicative noise intensity in-
creases. In that case (curve 2 in Fig. 1.12 (a)), a region appears where Eq. (1.32) has five
roots, three of which (m = 0 and two symmetrical points) are stable. This region is marked
dashed in the figure. Thus, for large enough values of D, a region of coexistence appears in
the transition between order and disorder. This region is limited by discontinuous transition
lines between m = 0 and a nonzero, finite value of m. Hence, additive noise is seen to induce
a first-order phase transition in this system for large enough values of the coupling strength
and multiplicative noise intensity. The reentrant transition is again of second order. When
the first-order phase transition appears, hysteresis can be expected to occur in the coexis-
tence region (if a certain algorithm is applied [3]). The dependence of the order parameter
m on the control parameter a as predicted by MFT is shown in Fig. 1.12 (b) with a solid line.
The region of possible hysteresis is bounded by dotted lines.

In order to contrast the analytical results, we have performed simulations of the complete
model (1.36) using the numerical methods described in [65, 196]. The order parameter m, is

N

computed as m, = < >, where () denotes time average. Results for a two-dimensional
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(a) (b)

Figure 1.12: Characteristics on the phase transition in the nonlinear lattice Eqs.(1.36): (a)
Transition lines on the plane (a,D) for 6, = 0 and two different intensities of the multiplica-
tive noise (curve 1: 62, = 1.6; curve 2: ¢2 = 3.0). The dashed region (starting with the dot)
corresponds to the coexistence of disordered and ordered phase. (b) The corresponding de-
pendence of the order parameters m,m, on a for D = 20, 62, = 3.0 and 62 = 0.0 are plotted by
solid line (MFT predictions) and by diamonds (numerical simulations). The dotted line delim-
its the coexistence region exhibited by MFT (a region of the hysteresis effect). The unstable
state is plotted by the dashed line.
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Figure 1.13: An “effective” potential for the short-time evolution of m in the lattice
Eqs(1.36),for a*> =: 0.25 (curve 1), 0.28 (curve 2), and 0.34 (curve 3). Other parameters are
62, =3.0 and 62 = 0.0. A coexistence of ordered and disordered phases is observed for the curve
2.

lattice with lateral size L =32 are shown with diamonds in Fig. 1.12 (b). Analyzing this figure
one can observe that MFT overestimates the size of the coexistence region. This effect, analo-
gous to what was observed for multiplicative-noise induced transitions [195], can be explained
in terms of an “effective potential” derived for the system at short times (see discussion be-
low). For instance, as a increases the system leaves the disordered phase not when this state
becomes unstable but earlier, when the potential minima corresponding to the ordered states
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become much lower than the minimum corresponding to the state m = 0. It should also be
mentioned that the numerical simulations did not show hysteresis, because in the coexistence
region the system occupied any of the three possible states, independently of the initial con-
ditions. It can be explained by the small size of the simulated system, which permits jumps
between steady states when the system is sufficiently perturbed (e.g. by slightly changing the
parameter a).

We have thus seen so far that numerical simulations qualitatively confirm the existence
of a first-order phase transition induced by additive noise in this system, as predicted by
MFT. We note that the transition occurs in the two limiting cases of correlation between
multiplicative and additive noise. We also emphasize that variation of both the multiplicative
noise intensity and the coupling strength can change the order of this transition.

Let us now discuss a possible mechanism behind this effect. As pointed above, the collec-
tive behaviour of this system can be described by the “effective” potential (see Eq.(1.35)). We
can trace the behavior of this potential in the presence of multiplicative noise, for the case
62 =0 and a # 0. Its evolution for increasing a is shown in Fig. 1.13. This approach can be
clearly seen to successfully explain the mechanism of the first-order transition: first, only the
zero state is stable (curve 1), then there is a region where three stable states coexist (curve
2), and finally, the disordered state becomes unstable (curve 3). This approach also explains
why a variation of the multiplicative noise intensity influences the order of the transition: for
another (lower) o2, there is no region where ordered and disordered phases simultaneously
exist. We emphasize that the “effective” potential is derived only for short-time evolution, and
should not be confused with the “stochastic” potential [81], which for this system remains al-
ways monostable. For the other case of correlation between multiplicative and additive noise,
in the region of additive noise induced transition, the “effective” potential always has three
minima (two symmetric minima are lower than the central one). Sufficiently large (above a
threshold of the transition) additive noise causes an escape from zero state and leads to the
transition. The value of a critical additive noise intensity for this transition can be estimated
by the “effective” potential approach, only by MFT. Here we have considered only a case of
strong correlation between multiplicative and additive noise. As described in [12*], if additive
noise is independent, it can also induce a first-order phase transition. The level of correlation
between additive and multiplicative noise can be considered as an additional parameter in
this system, what we leave as an open question here.
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In what follows, I consider a concept of doubly stochastic effects and application of this
concept to several basic noise-induced phenomena. In this chapter two doubly stochastic ef-
fects are demonstrated: doubly stochastic resonance and doubly stochastic coherence. This is
the result of application of the concept of doubly stochastic effects to the effect of stochastic
resonance and of coherence resonance. In both these effects we are interested in the behavior
of the system output as a whole. In contrast to it, in propagation effects, it is not the re-
sponse of the system as a whole, but the propagation of a signal that is studied. Concerning
the propagation, doubly stochastic effect can also be found: this effect, called noise-induced
propagation in monostable media will be considered in Chapter 3, together with other new
effects of propagation.
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2.1. DOUBLY STOCHASTIC RESONANCE

2.1 Doubly stochastic resonance

Doubly stochastic resonance is at the borderline of two basic noise-induced phenomena.
The first class of phenomena is noise-induced phase transitions. The second basic phe-
nomenon is stochastic resonance. SR has been found and investigated in a large variety
of different class of systems (see Introduction). However, SR has not been considered in sys-
tems with a noise-induced structure [4]. Here a new type of SR is presented in a system
with a noise-induced nonequilibrium phase transition resulting in a bistable behaviour of the
mean field. This effect is called doubly stochastic resonance (DSR) to emphasize that additive
noise causes a resonance-like behaviour in the structure, which in its own turn is induced by

multiplicative noise.

This DSR is demonstrated on a nonlinear lattice of coupled overdamped oscillators firstly
introduced in [195] and further studied in [196, 119][18%*,19*]. The following set of Langevin
equations describes the considered system:

i = f(6) + g ()& (r) + ZZ( xi) +Gilt) + Acos(ar +9), @1

where x;(t) represents the state of the ith oscillator, i = 1,...,L¢, in the cubic lattice of the size
L in d dimensions and with N = L elements. The sum runs over 2d nearest neighbors of the
ith cell, and the strength of the coupling is measured by D. The noisy terms &;(¢) and ;(r)
represent mutually uncorrelated Gaussian noise, with zero mean and uncorrelated both in
space and time

Ei(nE;(1") = opdidlr—1), (2.2)
(Ci(ng(1) = 0388t —1). (2.3)

The last item in (2.1) stands for an external periodic force with amplitude A, frequency ® and
initial phase ¢.
For the sake of simplicity, the functions f(x) and g(x) are taken to be of the form [195]:

fx)=—x(1+x2)?%, gx)=1+x% (2.4)

In the absence of external force (A = 0) this model can be solved analytically by means of
a standard mean-field theory (MFT) procedure [65]. The mean-field approximation consists
in replacing the nearest-neighbor interaction by a global term in the Fokker-Planck equa-
tion corresponding to (2.1). In this way, one obtains the following steady-state probability

distribution we:

_ Cm ) m)
b = e (/ o8 ( +cz y), (2.5)

where C(m) is a normalization constant and m is a mean field, defined by the equation:
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20

Figure 2.1: Transition lines between ordered and disordered phase on the plane (c2;D) for
different intensities of the additive noise 62 = 0 (1); 1 (2), and 5 (3). The black point corre-
sponds to D = 20, 62, = 3.

m= /oo xwst(x, m)dx. (2.6)

Solving Eq. (3.4) self-consistently with respect to the variable m one determines transitions
between ordered (m £ 0) and disordered (m = 0) phases. Transition boundaries between differ-
ent phases are shown in Fig. 2.1 and the corresponding dependence of the order parameter
on o, is presented in Fig. 2.3. In addition to [195], we show influence of additive noise re-
sulted in the shift of transition lines. For 62 = 0 an increase of the multiplicative noise causes
a disorder-order phase transition, which is followed by the reentrant transition to disorder
[195]. In the ordered phase the system occupy one of two symmetric possible states with the
mean fields m; = —my # 0, depending on initial conditions (for a visualization of this transition
see Fig. 2.2).

Now let us turn to the problem, how the system (1) responses to periodic forcing (A; = A).
We have taken a set of parameters (c2,; D) within the region of two coexisting ordered states
with nonzero mean field. In particular, we choose values given by the dot in Fig. 2.1. As for
the network, we take a two-dimensional lattice of L? = 18 x 18 oscillators, which is simulated
numerically [97] with a time step Ar = 2.5 x 10~* under the action of the harmonic external
force. The amplitude of the force A has to be set sufficiently small to avoid hops in the absence
of additive noise during the simulation time of a single run which is much larger than the
period of the harmonic force [5]. Jumps between m; < m; occur only if additive noise is

additionally switched on. Runs are averaged over different initial phases.

Time series of the mean field and the corresponding periodic input signal are plotted in
1 N
Fig. 2.4 for three different values of 62. The current mean field is calculated as m(t) = P Y xi).
i=1

For a small intensity of the additive noise, hops between the two symmetric states m; and my
are rather seldom and not synchronized to the external force. If we increase the intensity 62,
we achieve a situation when hops occur with the same periodicity as the external force and,

hence, the mean field follows with high probability the input force. An increase of additive
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increase
of
noise

Figure 2.2: A symbolic visualization of a phase transition in the model Eqgs.(2.1), which leads
to the formation of a mean field. In the disordered phase the mean field is zero due to the
random deviation of different elements around zero (up). In the ordered phase, induced by
noise, the symmetry is broken and the mean field is either positive (right) or negative (left).
The elements in the lattice 128 x 128 are coded in accordance to its sign: if positive or zero -
white, if negative - black.

noise provides an optimization of the output of the system which is stochastic resonance. If

2

Oy

is increased further, the order is again destroyed, and hops occur much more frequently
than the period of the external force. Note also that for large 62 the value of the mean field
which corresponds to the stable state is becoming smaller. It is caused by the fact that ad-
ditive noise influences also transition lines [18*,19%][119]. An increase of 62 results in the
reduction of the ordered region (Fig. 2.1, curves 2 and 3) and decreasing the value m; = —m;
(Fig. 2.3, curves 2 and 3).

Fig. 2.4 illustrates that additive noise is able to optimize the signal processing in the
system (1). In order to characterize this SR-effect we have calculated signal-to-noise ratio
(SNR) by the extracting the relevant phase-averaged power spectral density S(®) and taking
the ratio between its signal part with respect to the noise background [53]. The dependence
of SNR on the intensity of the additive noise is shown in the Fig. 2.5 for the mean field
(filled points) and the mean field in a 2-state approximation (opaque point). In this 2-states
approximation we have replaced m(t) by its sign and put approximately m(r) =+1 or m(r) = —1,
respectively. Both curves exhibit the well known bell shaped dependence on c2 typically for
SR. Since the bimodality of the mean field is a noise-induced effect we call that whole effect
Doubly Stochastic Resonance. For the given parameters and A = 0.1, ® = 0.1 the maximum of
the SNRs is approximately located near 62 ~ 1.8.

Next we intend to give analytic estimates of the SNR. If A, D, and 2 vanish, the time
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Figure 2.3: The order parameter |m| vs the intensity of multiplicative noise for D = 20 and
62 = 0 (label 1), 1 (label 2), and 5 (label 3). Inside the ordered region for fixed value of 62, an
increase of the additive noise intensity leads to the decrease of the order parameter.

evolution of the first moment of a single element is given simply by the drift part in the
corresponding Fokker-Planck equation (Stratonovich case)

(@) = (£0) + 2 {g(x)g (). (2.7)

As it was argued in [196], the mechanism of the noise-induced transition in coupled sys-
tems can be explained by means of a short time evolution approximation [2]. It means that
we start with an initial Dirac & function, follow it only for a short time, such that fluctuations
are small and the probability density is well approximated by a Gaussian. A suppression of
fluctuations, performed by coupling, makes this approximation appropriate in our case[193].
The equation for the maximum of the probability, which is also the average value in this
approximation ¥ = (x), takes the following form

) o2
x¥=f(x)+ fg(i)g'(i), (2.8)

which is valid if f((x)) >> (8x?)f”((x)). For this dynamics an “effective” potential Ue.g(x) can
be derived, which has the form where Uy(x) is a monostable potential and Upeise represents
the influence of the multiplicative noise. In the ordered region, inside the transition lines
(Fig. 2.1), the potential Ue(x) is of the double-well form, e.g. U (x)er = —x* — 0.25x* 4+-x°/6, for
given f(x), g(x) and o2, = 3.

Now we consider a conventional SR problem in this potential with an external periodic
force of the amplitude A and the frequency ®. If we neglect intrawell dynamics and follow
linear response theory the SNR is well known [53, 124, 141, 6]

4mA?
(54 Fi (29)

a

SNR| =
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Figure 2.4: Example of input/output synchronization. The time evolution of the current mean
field (output) and the periodic external force F(¢) (input) for different intensities of additive
noise (from top to bottom) 62 = 0.01, 1.05, and 5.0. If the intensity of the additive noise is close
to their optimal value (middle row), hops occur with the period of the external force. The
remaining parameters are: A =0.1, ® = 0.1, D = 20, and G,Zn =3.

where 7y is the corresponding Kramers rate [99]

/(UL 00) =i U () [x=ximan )
27

2AU,
exp(— =) (2.10)

a

Iy =

for surmounting the potential barrier AU.. Using Eqs.(4.6),(2.19), and (2.20) we get an an-
alytical estimates for a single element inside the lattice. Further on, rescaling this value by
the number N of oscillators in the lattice [175] and taking into account the processing gain G
and the bandwidth A in the power spectral density [124, 141, 6], the SNRy of the mean field
of the network of N elements can be obtained

N
SNRN :SNRlTGnLl. (2.11)

This dependence is shown in the Fig. 2.4 by the solid line and demonstrates despite the
rough approximation a good agreement with the results of the numerical simulations. Nearly
exact agreement is found in the location of the maximum as well as for the quantitative
values of the SNR (“scalloping loss” [124, 141, 6] has been avoided in simulations by setting
the frequency o to be centered on one of the bins in the spectrum).
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SNR, SNR,,
g

Figure 2.5: The dependence of SNR on the additive noise intensity for the output (filled
points) and its 2-states approximation (opaque points). The solid line corresponds to the ana-
lytical estimation SNRy (2.21), performed on the base of derivation of the “effective” potential
and linear response theory. The parameters are the same as for Fig. 2.4 and the processing
gain G=0.7.

2,2
Ueff(x) = UO(X) + Unoise = */f(x)dx* GmgT(X), (2.12)

Some remarks should be added. Firstly, we have considered a system which undergoes
a pure noise-induced transition, in the sense that a transition is impossible in the absence
of noise. This is an important distinction of the DSR effect from SR in any variation of the
mean-field model [134]. Secondly, despite the coexistence of the two states in the considered
system, the so-called “stochastic” potential [81] for a single oscillator in the lattice (which
differs from (4.6)) always remains monostable. Thirdly, there are clear distinctions between
SR and DSR behaviour, because, in contrast to SR, in DSR additive noise does not only help
an input/output synchronization, but also changes the properties of the system in the absence
of the external force (see Fig. 2.1 and 2.3). As a consequence, completely different to standard
SR, in DSR amplitude of hops is decreased (bistability dissappears) for large noise intensities
62 (compare Fig. 2.4 and Fig. 4 from [53]). Finally, not arbitrary system with noise-induced
bistability will demonstrate DSR, e.g. we did not find DSR in zero-dimensional systems,
which are described in [81].

Noteworthy, noise-induced bistability, described here can be used not only for a synchro-
nization between output and input of the system, but also for other effects, observed in
bistable systems. For example, in 4.2 a system size resonance, which occur in spatially dis-
tributed system of coupled bistable oscillators, has been also demonstrated for the case of

noise-induced bistability.
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2.2 A simple electronic circuit model for doubly stochas-

tic resonance

We expect that these theoretical findings resulted from study of DSR will stimulate experi-
mental works to verify DSR in real physical systems (for the first experimental observation of
noise-induced bistability see [73]). Appropriate situations can be found in electronic circuits
[1], as well as in systems, which demonstrate noise-induced shift of the phase transition, e.g,
in: liquid crystals [93, 207], photosensitive chemical reactions [128, 32], or Rayleigh-Bénard
convection [127]. It can be crucial for such experiments, that, in contrast to conventional
SR, in DSR the energy of noise is used in a more profitable way: not only for the optimiza-
tion of the signal processing, but also for the support of the potential barrier to provide this
optimization.

Here we design an electronic circuit for the observation of DSR. The most direct way is the
realization through analog circuits but there are complicated due to the complex construction
of every unit, hence it is worth to look for a simpler electronic circuit model which exhibits
the DSR property. With this aim we consider an electrical circuit which consists of N coupled
elements (i, j). A circuit of one element is shown in Fig. 2.6. Three ingredients in this circuit
are important: input current, time-varying resistor (TVR) and a nonlinear resistor. Every
element is coupled with its neighbours by the resistor R, (i.e. by diffusive coupling). The
capacitor is shown by C. The nonlinear resistor Ry can be realized with a set of ordinary
diodes [86, 28], whose characteristic function is a piecewise-linear function

GbV+(Ga—Gb)Bp ifv < —By,
in=hHV)=4 G,V if V] < B,, (2.13)
GV — (G4—Gy)B, ifV >B,,

where iy is the current through the nonlinear resistor(Ry), V is the voltage across the ca-
pacitor(C), and parameters G,, G, and B, determine the slopes and the breakpoint of the
piecewise-linear characteristic curve. Another way to realize the nonlinear resistor is via a
third-order polynomial function:

iN Zfz(V) =g1V+g2V3.

The next important ingredient is a time-varying resistor(TVR)[142, 28]. The conductance G(r)
of TVRs varies with time. Presently, we consider the case that the function which represents
the variation of the TVR is a Gaussian d—correlated in space and time noise, i.e. G(¢) = (1),
where

(Ei()E;(1")) = 0,8;,;8(t —1").

An external action on the circuit is performed by the current input /(z), which is a pe-
riodic signal (with amplitude A, frequency ®, and initial phase ¢), additively influenced by
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Figure 2.6: The electronic circuit of the element (i, j).

independent Gaussian noise (7)

I(t) = (1) + Acos(wr + ¢),
where

(0L (1)) = 0381,;8(t —1").

The electronic circuit with respect to the element (i, ;) can be described by a set of Kir-
choff’s equations:
c Vi

dt

)= G(t)Vij— fi2(Vij) (2.14)

+

I(t
1
R_(Vi+1,j+vifl,j+vi,j+l +Vij-1—4Vi ;)
c

Hence, the following set of Langevin equations describes the considered system:

dvij

dr —fi2(Vij) + Vi j&ij(t) (2.15)

D
g Vi +Vierj+ Vi +Vijo1 = 4Viy)

+ G j(t) +Acos(or +¢),

where C is set to unity by normalization of time and D denotes a strength of coupling equal
to &. In the case when f; represents the TVR, the model is the time-dependent Ginzburg-
Landau equation, which is a standard model to describe phase transitions and critical phe-
nomena in both equilibrium and nonequilibrium situations [65]. It is important that we con-
sider only the situation when the potential of one element is monostable (G, = 0.5, G, = 10,
B, =1 for fi, and g; > 0,8 =1 for f> ), avoiding the possibility to observe SR without multi-
plicative noise

We are interested in the behaviour of the mean field m(z) = Z V; j(t) and consider it

1 N
=1 j=1

N

1
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Figure 2.7: Transition lines for the equation with function fi: 62 = 0.3 (label 1), 0.5 (label 2)
and 1 (label 3). Also the case with f> (the potential of every element is monostable: g; > 0,2, =
1); g1 =1, 62 =0.8 (label 4 ), 0.9 (label 5) and 1 (label 6).

as an output and the periodic signal as an input of the whole system. SR behaviour can be
expected if the system is bistable for the chosen set of parameters. Regions of bistability can
be determined by means of a standard mean-field theory (MFT) procedure [65]. The mean-
field approximation consists in replacing the nearest-neighbor interaction by a global term
in the Fokker-Planck equation corresponding to (2.15). In this way, we obtain the following
steady-state probability distribution wg:

wgt(x,m) =
C(m) Xfl.z(Y)—D(y—m)
SN S 2 d d 2.16
2l rol ¢ ( ) ong()+o; Y ) ’ 2.16)

where C(m) is a normalization constant and m is a mean field, defined by the equation:
m= / xwt (x, m)dx. (2.17)

Self-consistent solution of Eq. (3.4) determines the mean field and the transition lines be-
tween ordered bistable (m # 0) and disordered monostable (m = 0) phases. Transition bound-
aries for functions f; and f, are shown in Fig. 2.7. Note that bistability is impossible without
multiplicative noise and without coupling between elements. Since SR effect, described be-
low, appears due to the variation of additive noise, it is also important that a change of the
additive noise intensity shifts transition boundaries.

Next we estimate signal-to-ratio (SNR) analytically. Following short-time evolution ap-
proximation, first introduced in [196] and further developed in [18*,5%], the dynamics of the
mean field is governed by an “effective” potential U.¢(x) which has the form

2172
Ueff(v) = UO(V) ~+ Unoise = /f(V)dx - %, (2.18)

where Uy(V) is a monostable potential and U, ;5. represents the influence of the multiplicative
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noise. Note that this approach is valid only if a suppression of fluctuations, performed by the
coupling, is sufficient. It means that the coupling strength should tend to infinity, or actually
be large enough. DSR is expected for the regions where this effective potential has a bistable
form. To obtain an analytical estimation of SNR for one element we use a standard linear

response theory [53, 124], yielding

4TA?
SNR1 = =1 (2.19)

a

where 7 is the corresponding Kramers rate [99]

Ur(V)lv=v._. [ULV)|v=v,, 2AU,
Fr = \/(| eﬂ( )|V me| eﬁ( )lV Vmax) exp(f zeff)' (220)
2n (o5

Further we rescale this value by the number N of elements in the circuit [175] and take
into account the processing gain G and the bandwidth A in the power spectral density [124].
The SNRy of the mean field of the whole system of N elements is then

NG
SNRN :SNle +1. (2.21)

For the parameters, used below for numerical simulations (62, =3, A =0.1, N =324, G = 0.7,
A =0.012), we obtain the analytic estimation of SNR, shown in Fig. 2.8a by the solid line.
Except for the application for electronic circuits this calculation shows also that DSR can be
observed not only in the specific model described in [5*].

In order to verify the results obtained by our rough analytical approximation, we have
performed simulations of the model (2.15) using numerical methods described in [97]. We
have taken a set of parameters within the region of two coexisting ordered states with nonzero
mean field. As a total system, we take a two dimensional lattice of 18 x 18 elements, which
was simulated numerically with a time step Ar = 2.5 x 10~*. The amplitude of the external
signal was set to 0.1, i.e. sufficiently small to avoid hops between two states in the absence of
additive noise. To describe the SR effect quantitatively, we have calculated SNR by extracting
the relevant phase-averaged power spectral density S(®) and taking the ratio between its
signal part with respect to the noise background [53]. The dependence of SNR on the intensity
of the additive noise is shown in Fig. 2.8a for the mean-field (filled points) and the mean
field in a two-state approximation (opaque points). In this two-state approximation, we have
replaced the value of the mean field in time-series by its sign before calculating the power
spectral density, using method of symbolic dynamics [206], standardly used to investigate SR
[563]. Both curves demonstrate well-known bell-shaped dependence which is typical for SR.
In contrast to two-states approximation, for the mean field, SNR tends to infinity for small
values of multiplicative noise intensity (see black points for 62 < 0.1). It can be explained by
intrawell dynamics in the same way as in the conventional SR [53]. Numerical simulations
agree very good with our theoretical estimation despite the very rough approximation via
“effective” potential.

Note that this SR effect is created by multiplicative noise, since a bimodality is induced
by the combined actions of the multiplicative noise and the coupling. If we decrease only the
intensity of multiplicative noise, other parameters fixed, the SR effect is not observed, as it is
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Figure 2.8: (a) Numerical SNR (points) vs analytical estimation (solid line) for the equation
with f; and D = 3, 62, = 3. Numerical results are shown by black points for the mean field and
opaque points for its two-state approximation. The stochastic resonance effect is supported
by noise. If we decrease the intensity of multiplicative noise, we do not observe it; e.g. for (b)
D=3,02=0.5.

shown in Fig. 2.8b. The reason is that in this case our system is not bistable (see Fig. 2.7) For
f> the behaviour is similar: DSR is observed for g; = 1, g = 1, D=5, 62, = 5, but not for 62, = 3,
D = 5. For experimental setup a minimal number of elements, which are neccessary for DSR
observation, can be important. Reduction of the elements number in this system leads to the
fact, that a system can spontaneously (even in the absence of forcing) perform a hop between
two states. These jumps hide DSR effect, since they destroy a coherence between input and
output. For the system size 18 x 18, considered here, such jumps are rather seldom [136]
and do not hinder DSR. Our calculations have shown that a size 10 x 10 is still satisfactory,
whereas further decrease of the elements number will destroy the effect.
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2.3. DOUBLY STOCHASTIC COHERENCE: PERIODICITY VIA NOISE-INDUCED
SYMMETRY IN BISTABLE NEURAL MODELS

2.3 Doubly stochastic coherence: periodicity via noise-

induced symmetry in bistable neural models

Above we have suggested the concept of doubly stochastic effects. The idea is that ordering
occurs due to interplay of two noise sources and hence an optimization of both noise intensi-
ties is needed. Here we investigate doubly stochastic coherence (DSC), which appears via to
the noise-induced symmetry in the excitable system. Rhythm generation is a long-standing
problem in science, in particular, in biological and cognitive science contexts [204, 44]. A
paradigm of this kind of self-sustained oscillating behavior in nonlinear systems is offered
by limit cycles. But even in the absence of limit cycles, internal rhythms can be generated
in nonlinear systems by the effect of noise. An early realization of this phenomenon was re-
ported in a two-dimensional autonomous system when operating close to a limit cycle, and
was interpreted as a manifestation of stochastic resonance in the absence of external forcing
[83]. An optimal amount of noise was also seen to lead to a maximally coherent output in
an excitable system [150]. This effect, called coherence resonance, was studied in the well-
known FitzHugh-Nagumo model, which has been extensively used to describe the dynamics
of neural systems [94].

A complete understanding of these different mechanisms of coherence resonance is very
important for the study of rhythm generation in biological systems [44, 29], and in particular
in neural tissue. On the other hand, increasing experimental evidence has established in
recent years that certain types of neurons frequently operate in a bistable regime [84]. Thus,
the question arises whether noise can excite an autonomous coherent output in bistable neu-
ral systems. In this direction, both standard stochastic and coherence resonance have been
observed in a symmetrically bistable FitzHugh-Nagumo model [110]. Here we show that
coherence can also be generated in the general asymmetric case, where the stability of the
two stable steady states is not necessarily the same. We demonstrate that the mechanism
of coherence enhancement in this situation is utterly different from the standard one, being
based on the restoration of symmetry induced by a multiplicative source of noise. This effect
vividly contrasts with standard noise-induced phase transitions, where noise usually leads to
the breaking of symmetry [65].

Doubly stochastic coherence (DSC) can be observed in an asymmetric system under the
action of multiplicative and additive noises. Once multiplicative noise induces a symmetric
bistable state in the system, an optimal amount of additive noise can maximize coherence
in the output [110]. Hence, the resulting coherence is doubly stochastic, since simultaneous
optimization of two noise intensities is required in order to get the phenomenon. Here the
occurrence of DSC is reported on a modified version of the well-known FitzHugh-Nagumo
(FHN) model.

We consider the following version of the FHN model:

8% = (w(l—w(u—a)—v)
L= v w0 +L0). (2.22)
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In a neural context, u(z) represents the membrane potential of the neuron and v(¢) is related
to the time-dependent conductance of the potassium channels in the membrane [94]. The
dynamics of u is much faster than that of v, as indicated by the small time-scale-ratio param-
eter €. There are two mutually uncorrelated noise sources, represented by the d—correlated
Gaussian noises &(¢) and {(¢), with zero mean and correlations (§(1)§(¢')) = 62,8(t —t') and
(E()C(t")) = o28(¢t —t'). The multiplicative noise {(¢) is interpreted in the Stratonovich sense
[65].

In what follows we use the parameters a = 0.15, b = 0.12, and € = 0.01 , for which the
deterministic system has two stable fixed points with different stability (i.e. with different
thresholds of escape through the extrema of the u-nullcline), as shown in Fig. 2.9 (curve 1 and
its crossing points with the u-nullcline). Additive noise induces here jumps between these two
states, but the escape times are very different in the two states. This behavior is shown in
Fig. 2.11(a), as obtained from numerical simulations of model (2.22) for the above-mentioned
parameters.

0.15

0.10

~ 0.05

0.00

_0.05 1 1 1 1 1
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.9: Nullcline plot of the FHN model (2.22). Dashed line: u-nullcline (i = 0); solid lines:
v-nullclines (v = 0) for three different values of the multiplicative noise intensity: 62, = 0.0
(curve 1), 0.2 (curve 2), and 2 (curve 3). Multiplicative noise changes the relative stability of
the stable points and induces the symmetric situation.

The effect of multiplicative noise in this system can be determined by analyzing the sys-
tematic effect it produces in the system dynamics due to the fact that the corresponding
fluctuating term in the v equation has a nonzero average value. Computation of this average
value by means of standard techniques [172] leads to the following effective deterministic
model, which can be considered as a first order approximation in a small-noise expansion of
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Figure 2.10: Coherence parameter R vs. intensity of the multiplicative (left) and additive
(right) noises. 62 =2x 107* and 62, = 0.5 rsp. The curves have clearly defined minimum,
which corresponds to the most periodic behaviour.

E(r) [65]:
ou
g5 = (w(l—u)(u—a)—v) (2.23)
v 62, 5
E = bl/l*V‘i’?u v, (224)

The nullclines of this model for two nonzero values of 62, are shown in Fig. 2.9, as curves

2 and 3. It can be seen that for an intermediate value of 62, corresponding to curve 2, the

m>
two states are equally stable and the escape times are basically identical. As a result, jumps
in the output of the system in the presence of an optimal amount of additive noise are more
equidistant (2.11(b)). Hence, an increase of multiplicative noise enhances coherence via noise-
induced symmetry. For larger multiplicative noise intensity the asymmetry arises again, this
time reversed (curve 3 in the Fig. 2.9) and the coherence is strongly reduced [Fig. 2.11(c)].
In fact, in this extreme case the upper steady state has turned unstable, and the system

becomes excitable.

To quantify this coherence enhancement, we have measured the normalized variance of
subsequent periods 7;. The illustration of the definition of 7; is depicted in Fig. 2.11(a).
The normalized variance, which is called coherence parameter [150], is determined as R =

6% /(T;), where 67 is the variance of the sequence 7;, and (7;) is its average value. The depen-
dence of R on the multiplicative noise intensity for the time series depicted in Fig. 2.11(a-c)
is shown in the Fig.2.10 left. It is clearly seen that R first decreases to some minimum value
and then increases again. The minimal R corresponds to the highest degree of periodicity
in the system output, and is a manifestation of stochastically induced coherence. A similar
behavior occurs for varying the strength of the additive noise as well, as shown in the inset of
Fig. 2.10 right. Hence, both noise intensities need to be tuned in order to optimize periodicity
in the output (see Fig. 2.11 (d)), and hence we call this effect doubly stochastic coherence
(DSC). Different values of the excitation threshold correspond to different optimal intensities
of the noise. Hence, to optimize the periodicity one can vary either the threshold (provided by
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Figure 2.11: (a-c): Time evolution of the activator variable u for three multiplicative noise
intensities: (a) 62,=0.0, (b) 0.2, (c) 2. The intensity of additive noise is fixed to 62 =2 x 1074,
other parameters are given in the text. (d): 3D plot of the coherence parameter R vs. intensity
of the multiplicative and additive noises.

multiplicative noise), or the intensity of additive noise.

With the aim of confirming experimentally the phenomenon of DSC via noise-induced
symmetry, we have designed a circuit ( Fig. 2.12), which has two asymmetrically stable steady
states. In this circuit, the difference between the positive and negative voltages feedings
the operational amplifier provides the asymmetry in the stability of the two fixed points.
Multiplicative noise acts on the positive voltage V., which is a parameter that changes the
stability of the higher voltage fixed point of the circuit [19]. A second source of noise, which
acts as a signal, induces jumps between the two stable states, and acts as an additive noise.
The noise is produced electronically by amplifying shot noise from a junction diode [114].

Following the numerical approach, we fix the intensity of additive noise and increase that
of multiplicative noise. First, the upper steady state is more stable than the lower one, and
the system spends more time in the former [Fig. 2.13(a)]. As the strength of multiplicative
noise increases the situation is reversed [Fig. 2.13(c)], passing through a symmetric regime
for intermediate noise [Fig. 2.13(b)]. Calculating the coherence parameter R for the experi-
mental time traces, we find clearly the effect of doubly stochastic coherence [Fig. 2.13(d)].

We have also examined the effect of spatial coupling on a set of distributed bistable FHN
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Figure 2.12: Nonlinear electronic circuit with two asymmetrically stable steady states. The
values of the elements are: R=270Q, L=10mH, Cy =1nF,C,=10nF, R’ =220Q,V_=5V,
and V, =2 V. The operational amplifier is taken from a TL082 integrated circuit.

oscillators subject to two noise sources. The model is now given by:

aui P— . . PR — .
85 = (ui(l —w)(ui —a)—v;)
D
o (i1 + uim1 —2u;)
av,»
E = bui—vi—uiviﬁi(t)JrCi(t), (2.25)

where D denotes the strength of coupling and the noise terms are now &-correlated also in
space, with (&(1)£,(1')) = 62,8(t — )8, and (Gi(1)5,(1) = 623(t — )3,

We now study the joint effect of additive and multiplicative noise on the spatiotemporal
evolution of this extended system, using a binary coding for the activator variable u;(¢), asso-
ciating black or white to each one of the two fixed points of the local bistable dynamics. The
numerical simulation results are shown in Fig. 2.14 for three values of 62, and a fixed 2. As
expected, the local dynamics becomes more regular for an optimal amount of multiplicative
noise, as happens with an isolated FHN element. However, remarkably enough, the most
temporally coherent case corresponds also to the most spatially uniform behavior of the sys-
tem as a whole. To characterize such a synchronized coherence we calculate the coherence
parameter R for the mean field m(z) = ¥;u;. The dependence of this parameter vs the intensity
of multiplicative noise is shown in Fig. 2.15 (a) for a system of 50 coupled elements. The de-
pendence is non-monotonic, reflecting the DSC characteristic of isolated elements, although
in this case the parameter measures also the degree of synchronization in the system. Fur-
thermore, Fig.2.15 (b) shows that increasing the number of elements in the ensemble first
increases the coherence of the output (R initially decreases), due to the synchronization of
the elements, but further increase of the system size leads to a loss of synchronization, and
thus R increases again. The result is a system-size coherence resonance (cf with system-size
stochastic resonance, which happens in externally forced systems [153]). In a neural con-
text, this property could explain why neurons are coupled in networks of optimal size for the
organization of a pacemaker.
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Figure 2.13: Time evolution of the voltage drop through condenser C; for the circuit repre-
sented in Fig. 2.12, for three different intensities of the multiplicative noise (measured as
peak-to-peak amplitude of the random voltage): (a) 1.6 V, (b) 1.7 V, and (c) 1.9 V. Additive
noise intensity is fixed to 0.88 V. (d): coherence parameter vs multiplicative noise intensity
for the previous case.

In conclusion of this chapter, it has been shown that bistable neural systems exhibit dou-
bly stochastic coherence via noise-induced symmetry. This mechanism of rhythm generation
arises whenever the two stable steady states of the system have different escape thresholds.
An optimal amount of multiplicative noise renders the two fixed points equally stable, and
tuning the additive noise in this noise-induced symmetric situation maximizes the coherent
behavior in the system. The influence of multiplicative noise can be explained in terms of an
effective model that contains the systematic effect of the noise term. These results have been
confirmed by experimental measurements on a bistable nonlinear electronic circuit. From a
second standpoint, it has been shown that this effect leads to synchronized behavior in spa-
tially distributed systems. In this case, this coherence enhancement also exhibits a resonance
with respect to the size of the system, i.e. there is some optimal size of the system for which
the output is the most periodic one. Our study has been performed in the general framework
of the paradigmatic FHN model, in a bistable asymmetric regime which is realistic for biolog-
ical systems, and hence we expect that our findings could be of importance for understanding
the mechanisms of periodicity generation in neural and other excitable media.
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Figure 2.14: Spatiotemporal evolution of a chain of FHN oscillators in the bistable regime for
three intensities of the multiplicative noise. From left to right, 62, = 0.01, 0.2;4. Additive noise
is fixed to 62 = 4 x 107*. Coding is binary, with black corresponding to the upper fixed point,
and white to the lower one. Other parameters are D =30, a=0.15, »=0.12, and € = 0.01.
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Figure 2.15: (a): Coherence parameter R of the mean field m(z) vs intensity of the multiplica-
tive noise for a system with 50 coupled elements. (b): the dependence of R on the size of the
system (o2, = 0.005).
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Chapter 3

New effects in noise-induced
propagation
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3.1. NOISE INDUCED PROPAGATION IN MONOSTABLE MEDIA

3.1 Noise induced propagation in monostable media

In previous sections we have shown that in DSR the energy of fluctuations can be used
even more efficiently in spatially extended systems, by using noise twofold: to synchronize
output hops across a potential barrier with an external signal, and also to optimally con-
struct the barrier itself. Another important and nontrivial phenomenon connected with SR
in spatially distributed systems is the phenomenon of noise enhanced propagation, in which
the propagation of a harmonic forcing through an unforced bistable or excitable medium is
increased for an optimal intensity of the additive noise [111, 209, 15].

The idea of doubly stochastic effects in the application to propagation leads to a new propa-
gation phenomenon in monostable media. We show that noise can enhance propagation in de-
terministically monostable media, without any deterministic threshold, provided bistability is
induced by a second (multiplicative) noise and coupling through a noise-induced phase tran-
sition. Although numerous works about noise-induced propagation exist (cf. [63, 147, 168],
for instance), to our knowledge propagation in monostable media, which is a very important
class of dynamical systems, has not been considered before. Some exception is the work [160],
where noise-induced propagation in systems with one stable state has been considered, how-
ever the system was nonpotential and hence not with a monostable potential. In what follows,
we present noise-induced propagation in a general model of overdamped coupled monostable
nonlinear oscillators. Subsequently, and for the sake of concreteness, the phenomenon is
analyzed in particular in a simple model of coupled electronic circuits.

We begin by studying a general class of spatially distributed systems, which are locally
coupled and periodically forced:

&0

= f(xi)+g() &)+ Y, (xj—x)+ 1) +A; cos(er +¢), 3.1)

jenn(i)

where x; is defined in a two-dimensional discrete space of N x N cells, with i denoting the cell
position (i = iy + N(i, — 1), where i, and i, run from 1 to N). The sum in the right-hand side
runs over all nearest neighbors of site i [nn(i)]. The additive and multiplicative noise terms
are mutually uncorrelated Gaussian distributed with zero mean, and white both in space and
time, i.e. (G;(1)G;(t)) = 028;;8(t —1') and (&;(¢)&;(t')) = 062,8;;8(t —1'). The results are averaged
over the initial phase ¢ of a harmonic forcing, which has amplitude A; and frequency .

In the absence of periodic forcing (A; = 0), different types of noise-induced phase transi-
tions can be obtained for different deterministic and stochastic forces f(x;) and g(x;) [172].
In particular, a system with a monostable deterministic potential can undergo a phase tran-
sition to a noise-induced bistable state for a suitable stochastic forcing g(x;) [195]. There,
in the presence of a global harmonic forcing, DSR is observed [5%]. We consider here the
case that the periodic forcing is applied coherently along only one side, as shown in Fig. 3.1
[A; =A(S;,1+9; 240 3)], and study the propagation of this forcing action into the non-excited
portion of the system.

Even though the results shown below are very general, for a quantitative study we choose
particular functions f(x) and g(x). These functions model the local dynamics of the electronic
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Figure 3.1: Scheme of the spatially distributed system. The periodic excitation is performed
only from one side, elements under the direct periodic action are denoted by black. All oscil-
lators are under the influence of noise. To study the behavior of both driven and non-driven
elements, first three columns (i, = 1,2,3) are periodically driven, however to achieve propaga-
tion it is sufficient to excite only one column.

circuit designed theoretically (i.e. it is so far a thought experiment) and displayed in Fig. 2.6.
This circuit consists of a capacitor with capacitance C, a time-varying resistor (TVR) with
conductance G(r), a current generator I(¢), four coupling resistors R, (responsible for the dif-
fusive coupling with the neighbors), and a nonlinear resistor Ry, which is realized with a set
of ordinary diodes or operational amplifiers [4*], and has the characteristic function

GbV+(Ga—Gb)Bp ing—Bp,
iv=h(V)={ GV it V] < By, (3.2)
GbV*(Ga*Gb)BP ifVZBp,

where iy is the current through the nonlinear resistor (Ry), V is the voltage drop across it, and
the parameters G,, G, and B, determine the slopes and the breakpoint of its piecewise-linear
characteristic curve.

We now consider that the conductance of the TVR fluctuates randomly in time, in the
form of a Gaussian noise d—correlated in space and time [G;(r) = ;(¢)], and that the input
current /() has the form of a periodic signal to which an uncorrelated Gaussian noise {(7)
is added [/;(¢) = C;(z) + A;cos(wt + @)]. Under these conditions, the dynamics of the spatially
coupled system is described by Eq. (3.1), where x; now represents the voltage drop across the

nonlinear resistor of circuit i, and the forces are f(x) = —h(x) and g(x) = x [4*]. Additionally,
C =1 by an appropriate time normalization, and the coupling strength D = &.

SR behavior can be expected if the system is bistable for the chosen set of parameters.
Regions of bistability can be determined approximately by means of a standard mean-field
procedure [65]. The mean-field approximation consists of replacing the nearest-neighbor in-
teraction by a global term in the Fokker-Planck equation corresponding to (3.1) in the absence
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of external forcing. In this way, we get the steady-state probability distribution Pg:

_ Cm) fo m)
Palx,m) = 62,82(x) +<52 /Gmg +62 | 3.3)

where C(m) is a normalization constant and m is the mean field, defined implicitly by:
m= / X Py (x,m)dx. 3.4)

The value of m is obtained by the self-consistent solution of Eq. (3.4), which enables to deter-
mine the transition lines between the ordered bistable (;n # 0) and the disordered monostable
(m =0) phases. These transition boundaries are shown in Fig. 3.2 in the D — 62, plane for three
different values of the additive noise intensity. Note that bistability requires both multiplica-
tive noise and coupling between elements. We also find that an increase in additive noise
reduces the bistable region. This gives DSR a special character with respect to standard SR
[5*].

Now we place ourselves within the bistable regime supported by multiplicative noise and
coupling (e.g. D =3, 62, = 3), and investigate the propagation of a wave through the system.
To that end, we harmonically excite the lattice from one side, as shown in Fig. 3.1, with
boundary conditions periodic in the vertical direction and no-flux in the horizontal direction.
The propagation will be quantified by the system’s response at the excitation frequency, com-

. 2 2
puted as Q1) =/ lejg + 04\, with

(/)ZE/M"/(” (1)si
Qsin nm Jo sz (t) Sll‘l((ot)dt, (35)
. 2nn/o
oY) = 2/ 2mj(t)cos(wt)dt, 36
nm Jo

where m;(t) is the field (voltage) averaged along the vertical column (Fig. 3.1), i.e. m;(r) =
%ZkN 1 X (k- (1)

The value of QU) for different oscillators along the chain is shown in Fig. 3.3(a), for in-
creasing intensities of additive noise within the noise-induced bistable regime. The forcing
amplitude is taken to be large enough to produce hops between the two wells in the bistable
oscillators, without the need of additive noise. Therefore, for the first oscillators an increase
of additive noise leads only to a decreasing response at the forcing frequency, whereas for dis-
tant oscillators the situation changes qualitatively. There, a response is induced that depends
non-monotonically on the additive noise intensity. Clearly, a certain amount of additive noise
exists for which propagation of the harmonic signal is optimal. For smaller multiplicative-
noise intensity [Fig. 3.3(b)] the system leaves the bistable region; hence the response is small
and always monotonically decreasing. Hence, the resonant-like effect requires suitable inten-
sities of both the additive and multiplicative noises.

A propagation of the harmonic signal can also be obtained for values of the forcing ampli-
tude small enough so that hops are not produced in the directly excited sites in the absence of
additive noise. This is the regime in which DSR really occurs in the excited part of the system,
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Figure 3.2: Mean-field transition lines between disordered monostable (m = 0) and ordered
bistable (m # 0) phases for model (3.1): 62 = 0.3 (label 1), 62 = 0.5 (label 2) and ¢2 = 1.0 (label
3). Other parameters are G, =0.5, G, =10and B, = 1.

and the excitation propagates through the rest of the lattice enhanced by noise. Now all the
oscillators have a non-monotonic dependence on the additive noise intensity for a multiplica-
tive noise within the bistable region [Fig. 3.3(c)], and a monotonic one for a multiplicative
noise within the monostable region [Fig. 3.3(d)]. The former case corresponds to a spatiotem-
poral propagation in the DSR medium, and we call this phenomenon spatiotemporal doubly
stochastic resonance (SDSR).

The mechanism of this phenomenon can be explained theoretically on the basis of a mean-
field approximation. We give a first qualitative glimpse of this analysis in what follows; quan-
titative details will be published elsewhere. Due to coupling and multiplicative noise, the
system becomes bistable with the behavior approximately governed by a mean-field effective

potential [5%]

2x2

Uett(x) = Uo(x) + Unoise = — / Fxjax— 225 3.7)

Now the effect can be understood in the frame of a standard SR mechanism [53], where
the external signal is provided by the periodic force for the directly excited oscillators, and by
the influence of the left neighbors for the non-excited oscillators. For large forcing, only the
latter need an additive noise to hop synchronously between wells, whereas for small forcing,
both the excited and the non-excited oscillators display SR. These two behaviors correspond
to the situations depicted in Figs. 3.3(a) and 3.3(c), respectively.

At this point it is worth making several remarks to the phenomenon described above.
First, SDSR and noise-induced propagation in monostable media are strongly different to
spatiotemporal SR [123, 199] or noise enhanced propagation [111, 209] in bistable media.
The effect presented here can be controlled by multiplicative noise, which modifies the depth
and separation of the two potential wells. Therefore, an optimal amount of multiplicative
noise is required to support the bistable structure. Nothing similar occurs in array-enhanced
SR [112] or in SR in extended bistable systems [23, 205]. On the other hand, an increase of
additive noise also leads to a loss of bistability (see Fig. 3.2), and hence a decrease of Q for
large additive noise is explained not only by the fact that disordered hops are produced by
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Figure 3.3: Response Q) to a periodic excitation in different oscillators (the order j is shown
in the curve labels) vs. additive-noise intensity (a,c) inside the bistability region (c2 = 3),
and (b,d) outside that region (62, = 0.5). As shown in Fig. 3.1, the oscillators with index
Jj =iy = 1,2,3 are directly excited by the periodic force, and oscillators with j =i, > 3 are
excited through the excitation propagation. Parameters are those of Fig. 3.2, and D = 3.

The amplitude is: (a,b) A = 0.3 (noise-induced propagation) and (c,d) A = 0.2 (spatiotemporal
doubly stochastic resonance).
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intense noise, as in standard SR, but also by the loss of bistability.

Second, noise-induced propagation in monostable media is very intriguing from the view-
point of the theory of extended systems with noise and cannot be directly predicted from DSR.
The noise-induced bistability, on which DSR is based, is a collective phenomenon, which can
be observed only for a positive value of coupling. The coupling causes the situation when all
elements are close to the same position. In contrast to it, here we have shown that a prop-
agation, which implies that different cells are simultaneously in different states, can occur
in such a system without destroying the mechanism of bistability. Moreover this propaga-
tion can be enhanced by additive noise and controlled by multiplicative noise. An interesting
question is, how high can the frequency of the external signal be and still display propagation
in this medium.

In conclusion, we have reported the existence of a propagation phenomenon, in which
noise induces wave propagation in monostable media. The joint action of multiplicative noise
and spatial coupling induces bistability, and additive noise enhances the propagation of har-
monic forcing in the stochastically induced bistable medium. Due to its nontrivial propaga-
tion mechanism, this effect is interesting from a theoretical viewpoint, and can be considered
as a contribution to the theory of extended systems with noise. We also expect that these
theoretical findings will stimulate experimental work. Especially, such kind of a propagation
can be of great importance in communications, due to the fact that the energy of noise is used
in a very efficient way, both to construct the potential barrier and to provide propagation
enhancement in the noise-supported bistable system. We have demonstrated noise-induced
propagation in monostable media in a simple realistic model, but in a general framework.
Due to the generality of the model we expect that this effect can be also found in several
more complicated real extended systems with noise-induced bistability. Probable experimen-
tal implementations include the same as for DSR experimental situations: arrays of simple
electronic circuits as a communication system [4*], analog circuits [1], electronic cellular
neural networks [149, 11, 158], and are expected to be achieved in several real spatially
distributed systems, such as liquid crystals [93], photosensitive chemical reactions [128],
Rayleigh-Bénard convection [127] or liquid helium [73].
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3.2 Noise-induced propagation and frequency selection

of bichromatic signals in bistable media

Information needs to be transmitted in many different contexts, including for instance
cell signalling in biological systems [94] and optical communications in technological net-
works [7]. Biological systems, and in particular neural tissue (where signal transmission is
of utmost importance), are subjected to a large amount of noise of different origins. This
fact underlies the current interest in examining the effects of random fluctuations in signal
transmission processes. Actually, contrary to intuition, recent investigations have revealed
the constructive role of noise in the effect of noise-induced propagation. Numerical investi-
gations have shown that random fluctuations enhance propagation of harmonic (monochro-
matic) signals through bistable [209, 111] and even monostable [1*] media (see the previous
chapter). In those cases, the periodic response to a harmonic forcing being applied to one
end of the system propagates the farthest when the amount of noise acting on all elements
is optimal. The phenomenon has all ingredients characteristic of stochastic resonance [125];
one can say in fact that the system exhibits locally the noise-induced amplification of a weak
periodic signal coming from the neighboring sites. Here we are interested in the propagation
of a signal which contains more than one frequency.

Noise-enhanced propagation has also been observed for aperiodic signals [63]. But be-
tween the two limiting cases of purely harmonic (single frequency) and completely aperiodic
signals, the intermediate case of signals consisting of a finite number of harmonic modula-
tions is worth being studied. This kind of signals is commonly used, for instance, in multi-
channel optical communication systems based on wavelength-division multiplexing (WDM)
[7]. In a different type of application, probing methods based on the propagation of two-
frequency signals are used, for example, to determine the size and abundance of plankton
[132], to analyze evoked potentials in the human visual cortex [198], and to diagnose the
physical conditions of the Antarctic ice sheet [51]. Here we analyze the effect of noise on the
propagation of such kind of bichromatic signals. Two main conclusions can be drawn from
this study. First, noise enhances propagation of the two harmonic components of the driv-
ing, similarly to what happens with standard monochromatic driving [209, 111]. Second, and
more importantly, noise can be used to select the frequency which is propagated with higher
efficiency. We observe that for small noise levels the harmonic with lower frequency is prop-
agated better than the one with higher frequency, where for large noise levels the reverse
property is found. These two different effects will be analyzed in the following paragraphs.

We consider a one-dimensional chain of N coupled overdamped oscillators under the action
of spatiotemporal noise. The dynamics of this system can be described by the following set of
equations:

Xn = F () +€(xn—1—xn) + €1 — xn) + Eult) (3.8)

where n = 1...N denotes the different oscillators, € represents the strength of coupling be-
tween them, and &,(¢) is a Gaussian noise, 3-correlated in space and time with intensity c2.
The form of the deterministic force f(x), which is assumed equal for all oscillators, is chosen
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to correspond to a bistable dynamics:

F(x) = kix —kox®, (3.9

with ki, k; > 0. In what follows, we will use the values k; = 4.74 and k, = 7.48. The boundary
conditions of the model are such that the ends of the chain are free (xo = x1, xy+1 = xn). More-
over, an input signal is introduced at one end of the chain by forcing its first element with
two harmonic drivings:

i1 =f(x1)+e(x2—x1)+ & (t) +Arcos(@1) + Az cos(ar) (3.10)

We aim to analyze the propagation of this combined signal through the chain. We choose
non-commensurate frequencies and different amplitudes of the two harmonic components, to

avoid interference effects due to their superposition. An example of this signal is shown in
Fig. 3.4.

AN
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t

Figure 3.4: Two-frequency signal injected in one end of the chain. Its parameters are A; =7,
Ay =10, m; = 0.2, and ®; = mje ~ 0.54, where e is the base of a natural logarithm.

To estimate the quality of signal transmission at a certain oscillator k along the chain
and at a particular frequency ®;, we have calculated the response Q¥)(w;) as the Fourier
component of the spectrum of the corresponding time series x(¢) at this frequency:

01 () = /0%, + 02 (3.11)

where
; 21tn/ ®;
Osin = — xi () sin(w;z)dt, (3.12)
nm Jo
and
; 21n/ ®;
QOcos = —/ xk(t)COS((D,'l)dt. (3.13)
ntw Jo

We have performed numerical simulations of model (3.8) in the presence of the signal
shown in Fig. 3.4, and have analyzed the response of the different oscillators at the two
driving frequencies, as a function of the intensity of the spatiotemporal noise. The results
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for the first oscillators of the chain are shown in Fig. 3.5. We first note that for the second
and third oscillators (left and middle plot of the figure), the response at both frequencies
decreases with noise intensity. The reason for this behavior is that the amplitudes of the two
harmonic signals acting on the first oscillator are large enough to produce in it jumps between
the two wells of the bistable potential even without noise. This noiseless periodic output
pervades the neighboring oscillators (in this case the second and third ones). Therefore, any
amount of noise decreases the quality of the response. On the other hand, far enough from
the input end of the chain (depending on the value of the coupling strength; in this case,
where € = 4, it occurs at the fourth oscillator; for smaller coupling it occurs earlier, but the
response is weaker) the system does not jump spontaneously, and noise is needed to induce
the switchings between wells. For that reason, the response function of the fourth oscillator
(right plot in Fig. 3.5) initially increases with noise intensity. Naturally, for large noise levels
disorder comes into play and the response function decreases again. The result is that there
exist intermediate amounts of noise for which the response at each one of the two driving
frequencies is optimal, a characteristic signature of stochastic resonance. Hence, one can say
that noise enhances propagation of the two-frequency signal in this system, with the optimal
noise intensity being slightly different for each one of the two frequencies.
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Figure 3.5: Response of the system in the 2nd (left), 3rd (middle), and 4th (right) oscillators
at frequencies ; (thick line) and ®; (thin line). The number of oscillators in the chain is 32.

Another feature that can be observed in Fig. 3.5 is that the response in the first oscilla-
tors is larger at the high frequency than at the low one, for all values of the noise intensity.
As the signal travels farther away from the input end of the chain, the response decreases
monotonously. However, the decrease is fastest for the high frequency than for the low fre-
quency signal, an effect which is more pronounced for low noise levels. As a result, for oscilla-
tors far down the chain and for small enough noise, the response is larger at the low frequency
than at the high one. This can be seen in Fig. 3.6, which represents the response at the two
frequencies for the fifth, sixth and eigth oscillators. For the fifth and sixth oscillators, the
crossover between the two response regimes at an intermediate noise intensity can be clearly
seen. For the eight oscillators and at large noise, the response is approximately equally low
at the two frequencies. The result is that, for a certain set of oscillators along the chain, noise
selects the frequency which is being transmitter with better efficiency: the high-frequency
harmonic for large noise intensity and the low-frequency one for small enough noise. It is
worth to note that due to the intrinsic properties of the bistable chain, the high frequency
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is always better suppressed, hence this noise-induced selection is possible only under the
condition of different initial amplitudes.
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Figure 3.6: Response of the system in the 5th (left), 6th (middle), and 8th (right) oscillators
at frequencies ®; (thick line) and w, (thin line).

In order to visualize the noise-induced frequency selection effect described above, we have
performed a symbol coding of two time series for different amounts of noise. These results
are shown in Fig. 3.7. It can be clearly seen that for 62 = 0.65 (second plot from above) the
low-frequency harmonic (top plot) is better transmitted, whereas for 62 = 2.0 (third plot from
above) propagation is better for the high-frequency signal (bottom plot). The behavior of the
5th oscillator in Fig. 3.7 can be compared with the corresponding response curves in Fig. 3.6.
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Figure 3.7: Symbol coding of the spatio-temporal evolution of the system. Time evolves along
the horizontal axis, space along the vertical one. From top to bottom: low-frequency compo-
nent of the signal (cos(w?)); first six oscillators for 62 = 0.65; first six oscillators for 62 = 2.0;
high-frequency component of the signal (cos(®zt)).

In conclusion, here we have analyzed the constructive effect of additive noise in the propa-
gation of two-frequency (bichromatic) harmonic signals through discrete bistable media. The
results show that noise enhances propagation of such signals, similarly to what happens
with simpler monochromatic driving. Furthermore, we have shown that by changing the
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noise intensity one is able to select the propagation frequency. We expect this effects to be
also present with more general multifrequency signals. Hence, this results could be relevant
in biological and technological contexts where harmonic signals with many frequencies are
present or used.
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Chapter 4

Noise-induced resonant effects
and resonant effects in the

presence of noise
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4.1. VIBRATIONAL RESONANCE IN A NOISE-INDUCED STRUCTURE

4.1 Vibrational resonance in a noise-induced structure

It has been pointed out that stochastic resonance like phenomena can be also observed
in systems where a chaotic signal is used instead of noise [182]. Moreover, in [104] it has
been shown that a high-frequency periodic force can work as a noise and amplify the re-
sponse to the low frequency periodic signal in bistable systems. This effect has been called
Vibrational Resonance (VR) [104], analogously to SR. In VR the dependence of the system
response versus the amplitude of the high-frequency action has a well-known bell-shaped
resonant form. Since two-frequency signals are very often used in communication technolo-
gies [131], it means that an optimal high-frequency modulation may improve processing of a
low-frequency signal. It is important to mention that two-frequency signals are also object of
intensive interest in laser physics [188], acoustics[118], neuroscience[198], or physics of the
ionosphere[67]. Here we investigate whether VR can be achieved in noise-induced structures,
which do not have any threshold or a potential barrier in the absence of noise. For this pur-
pose we consider a spatially extended system consisting of a network of coupled monostable
noisy oscillators under the action of low- and high-frequency periodic signals. In this system a
collective action of coupling and multiplicative noise results in the organization of bistability
of the mean field. If the amplitude of a low-frequency signal is not enough for a synchronous
response of the system, then the high-frequency force is applied. We find that an increase of
the high-frequency amplitude leads to a non-monotonous change of the system response with
a clearly defined maximum. Therefore, we present a new phenomenon, vibrational resonance
in a noise-induced structure, which is a variation of SR.

We study this effect on a nonlinear lattice of coupled overdamped oscillators introduced in
[195] and further studied in [196][5*]. The following set of Langevin equations describes the
considered system:

D
Xi = f(xi) +g(xl~)§,~(t) + ﬁ Z (Xj —xi) +ACOS(0)I> +BCOS(QI), “4.1)
jenn(i)
where x;(t) represents the state of the ith oscillator, i = 1,...,L?, in the cubic lattice of size L in
d dimensions with N = L? elements. The sum runs over the 24 nearest neighbors of the ith
cell [nn(i)], and the strength of the coupling is measured by D. The noisy term &;(z) represents

Gaussian noise, with zero mean and uncorrelated both in space and time
<E_,i(t)§j(t/)> = 6%181'7]'5([ 72‘,). (4.2)

The last terms in (4.1) stand for external periodic forces, representing a low frequency signal
with amplitude A, frequency o, and a high-frequency signal with amplitude B and frequency
Q, where Q >> o and these frequencies can be incommensurable.

For the sake of simplicity, the functions f(x) and g(x) are taken to be of the form [4*]:

—Gbx—(Ga—Gb)Bp if x < —B,,
fx)=q —Gaux if [x| < B, (4.3)
*Gbx+(Ga*Gb)BP ifoBp,
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m(t),Bcos(wr)

m(t),Bcos(wr)

m(t),Bcos(wr)

Figure 4.1: Time series of the mean field of the system (eq. 4.1) compared with the low-
frequency signal Acos(or) (not in scale) for different intensities of high-frequency vibration.
From top to bottom, B=0.5, 1.5, and 4.0. Q =5.0,0 = 0.1,A = 0.15,62, = 3.0. This intensity of
multiplicative noise corresponds to the bistable region.

g(x) =x, (4.4)

where the parameters G, = 0.5, G, = 10 and B, = 1 determine the slopes and the breakpoint
of the piecewise-linear characteristic curve (an approximation of the function f(x) = —x —x%).
Such forms of functions describe a realistic electronic circuit designed in [5*]. In the ab-
sence of the external force (A = 0,B = 0) this model can be solved analytically by means of
a standard mean-field theory (MFT) procedure [65]. The mean-field approximation consists
in replacing the nearest-neighbor interaction by a global term in the Fokker-Planck equa-
tion corresponding to (4.1). Using this mean-field approximation, one determines transitions
between ordered (m # 0) and disordered (m = 0) phases[5*], where m is the mean field, de-

1Y . . . e .
fined as m(r) = 7l Y xi(t). This analysis shows that the joint action of multiplicative noise
=1

and coupling betwgen the elements leads to the bistability of the mean-field (ordered phase).
If we fix the coupling strength above its critical value, then an increase of the multiplicative
noise induces a disorder-order phase transition, which is followed by a reentrant transition
to disorder [195]. In the ordered phase the system occupies one of two possible symmetric
states with the mean fields m; = —m; # 0, depending on the initial conditions. This bistability
disappears if we switch off the multiplicative noise.

Now let us turn to the problem, how the system (1) responds to a periodic signal which
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Figure 4.2: Vibrational resonance in the noise-induced structure. Numerical simulations
(a) vs experimental results for the effective model (b). Response Q of the system vs. the
amplitude of the high-frequency force. In (a): 62 =3 (label 1), 0.5 (label 2), and 0 (label 3);
other parameters are the same as in Fig. 4.1

contains two very different frequencies (e.g. ®=0.1 and Q =5). First, we analyze the behavior
of the system in the parameter region (the parameters being the coupling strentgh and the
multiplicative noise intensity) where the noise-induced bistability is provided. We set the
amplitude of the low frequency signal A fixed and sufficiently small (e.g. A =0.15), which is
not enough to cause jumps between two potential wells. The time series of the mean field m()
and the corresponding periodic input signal are plotted in Fig. 4.1 for three different values
of B (increasing from top to bottom). For a small amplitude B we observe rare jumps between
the two symmetric states m; and m; in the output, which are not synchronized with the low-
frequency signal (here d =2 and N = 10). If we increase B to its optimal value (in the middle), it
is clearly seen that hops occur with the same periodicity as the input signal. Hence, the high-
frequency modulation optimizes signal processing in this noise-induced bistable structure.
Further increase of B leads to oscillations-hops at the high frequency, which completely hide
the signal at the low frequency. The situation differs qualitatively when we choose another
intensity of multiplicative noise corresponding to the monostable region. In this case, an
increase of B leads only to the destruction of synchronization between input and output.
Hence, the high-frequency modulation is unable to improve the quality of signal processing at
low frequency in this case. Therefore, the system considered exhibits vibrational resonance in
a noise-induced structure only when a collective bistability has been created by multiplicative
noise and coupling. To characterize this VR-effect quantitatively, we calculate the dependence
of the system response Q at the signal frequency on the amplitude of the high-frequency force
(Fig. 4.2 a). For the bistable regime the response curve (label 1) exhibits a clearly defined
maximum for the optimal value of B, which gives evidence for the presence of VR. Note that
this effect disappears if we decrease (label 2) or switch off (label 3) the multiplicative noise: in
this case an increase of the amplitude of a high-frequency force may lead only to the decrease
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Figure 4.3: Electronic circuit for the effective model (eq. 4.7).

of the system response.

The mechanism of this effect can be understood as follows. As it has been shown above,
the equation for the maximum of the probability, which is also the average value 1 = (x) in
this approximation, takes the following form

) o2
¥=f(x)+ {g(f)g’(f% (4.5)

which is valid if f((x)) >> (8x?)f”({x)). For this dynamics an “effective” potential U (x) can
be derived, which has the form
c2.¢%(x
Ueti (x) = Up(x) + Unoise = — /f(X)dx - 7’"5; ) , (4.6)
where Uj(x) is a monostable potential and Uy represents the influence of the multiplicative
noise. In the region, where VR in the noise-induced structure is observed, this potential has a
bistable form due to the input provided by multiplicative noise. This effect may be understood

assuming a model of an overdamped system with a bistable potential under the action of a
high- and a low-frequency periodic force:

m = F(m)+Acos(wr)+ Bcos(Qr) +&(1), 4.7)

where m(t) is the mean-field of the initial system, and the function F(x) describes a bistable
potential. The noisy term &(r) denotes tiny fluctuations, which are present in every real
system.

To verify the behavior of this effective model, we have constructed an electronic circuit
(Fig. 4.3), which is composed of two main parts. The first part is an adder, whose function is
to add a low and a high frequency signal (operational amplifier OA3 and resistors R.,R,|, and
R.:>). The second part is the integrator in the double-well potential, which consists of another
adder (R,,R,1,R., Rz and OA1), two multiplyers (AD633 with coefficient o), and an integrator
(Rp,Cp and OA2). Taking into account that the output of OA2 is —V,, the equation describing
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Figure 4.4: Vibrational resonance in the experiment (Fig. 3): in the middle plot the pro-
cessing is optimal. From top to bottom: increase of the amplitude of the high frequency
B =9.57,10.88,15.41.

the behavior of the circuit is given by

. Ry R, 3
RyCpVx = V=% + V=% — a2 =% 4.8
»CpVx = —VuL Ros + Vi Ror o Ron Vi, (4.8)
where o is a parameter introduced by the multiplier circuits and Vg, is the weighted sum of
the low and high-frequency signals.

The experimental results from a digital oscilloscope are shown in Fig. 4.4. In the upper
panel the jumps between wells are very rare ; in (Fig. 4.4 down) the amplitude is so high that
the “particle” always overcome the potential barrier. However, for intermediate values of the
high-frequency signal the jumps of the particle are synchronized with the low frequency sig-
nal showing the VR phenomenon described here, (Fig. 4.4 middle). Hence, by this experiment
we have shown qualitatively that the “effective” model undergoes the effect of VR, which in
the initial system occurs in the noise-induced structure.

It is worth to note that not every system with noise-induced bistability exhibits vibrational
resonance. For example, zero-dimensional systems, described in [81], demonstrate noise-
induced bistability due to the bistability of a so called “stochastic” potential but do not show
a pronounced VR. Although it is possible to observe a small maximum in the response of the
system, a further increase of the multiplicative noise, which provides bistability, decreases

83



CHAPTER 4. NOISE-INDUCED RESONANT EFFECTS AND RESONANT EFFECTS IN
THE PRESENCE OF NOISE

the response of the system.

In conclusion, we have described the novel phenomenon of the existence of vibrational
resonance in a noise-induced structure. This effect is a synthesis of a noise-induced phase
transition and vibrational resonance. High-frequency carrier force is able to optimize signal
processing, and this process can be controlled by multiplicative noise. Numerical simulations
for a spatially extended system has been confirmed by a experimental results for a zero-
dimensional “effective” model. We expect that due to its generality, this effect can be of a
great importance in communication technologies.

These theoretical findings can stimulate experimental work in order to verify VR in noise-
induced structures in real physical systems (for the first experimental observation of noise-
induced bistability see [73]). Appropriate situations can be found in electronic circuits [5%],
electronic cellular [149, 11, 158], as well as in systems which show a noise-induced shift of
the phase transition, e.g, in: liquid crystals [93], photosensitive chemical reactions [128],
or Rayleigh-Bénard convection [127]. The results presented here might be crucial for such
experiments because in the noise-induced structure presented here, the bistability of the
mean-field is controlled by noise.
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4.2 System size resonance in coupled noisy systems

In 2.1 we have shown that noise-induced bistability can lead to stochastic resonance phe-
nomena in the presence of additional signal. Here we investigate another effect, system size
resonance, and show that it is also possible in systems with noise-induced bistability. In
stochastic resonance there exists a “resonant” noise intensity at which the response to a pe-
riodic force is maximally ordered. Being first discussed in the context of a simple bistable
model, stochastic resonance has been also studied in complex systems consisting of many
elementary bistable cells [87, 134, 26, 61, 88]. Again, as in the conventional SR one ob-
serves a resonance-like dependence on the noise intensity, moreover, the resonance may be
enhanced due to coupling [112, 113]. Here we discuss another type of resonance in such sys-
tems, namely the system size resonance, when the dynamics is maximally ordered at a certain
number of interacting subsystems. Contrary to previous reports of array-enhanced stochas-
tic resonance phenomena (cf. [112, 113]), here we fix the noise strength, coupling, and other
parameters; only the the size of the ensemble changes.

The basic model to be considered below is the ensemble of noise-driven bistable over-
damped oscillators, governed by the Langevin equations

e N
xi:xi—x?—i—ﬁ Z,l(xj—xi)+\/@§i(f)+f(f)~ 4.9)

=
Here ;(¢) is a Gaussian white noise with zero mean: (§;(¢)€;(t')) = 8;;8(t —’); € is the coupling
constant; N is the number of elements in the ensemble, and f(¢) is a periodic force to be
specified later. In the absence of periodic force the model (4.9) has been extensively studied
in the thermodynamic limit N — . It demonstrates an Ising-type phase transition from the

disordered state with vanishing mean field

X=N"'Yx (4.10)

to the “ferromagnetic” state with a nonzero mean field X = +Xj. A theory of this transition,
based on the nonlinear Fokker-Planck equation, was developed in [36], where also the ex-
pressions for the critical coupling €. are given.

While in the thermodynamic limit the full description of the dynamics is possible, for finite
system sizes we have mainly a qualitative picture. Formally, for finite ensembles the average
of the mean field (X) vanishes for all couplings. However, in the ordered phase (i.e. for € > ¢.)
the mean field X switches between the values +Xj. The rate of switchings depends on the
system size and tends to zero as N — «~. The asymptotic dynamics in this limit has been
discussed in [31].

For us, of the main importance is the fact that qualitatively the behavior of the mean field
can be represented as the dynamics of a nonlinear noise-driven variable, with the effective
noise vanishing in the thermodynamic limit. A nonlinear potential of this effective dynamics
has one minimum in the disordered phase (at X = 0) and has two symmetric minima (at
X = +Xj) in the ordered phase. Now we can apply the ideas of the stochastic resonance to
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this effective noise-driven oscillator. In the bistable case, (i.e. in the ordered phase for small
enough noise or for large enough coupling), one can expect a resonant-like behavior of the
response to a periodic external force when the intensity of the effective noise is changed.
Because this intensity is inverse proportional to N, we obtain the resonance-like curve of the
response in dependence of the system size.

The main idea behind the system size resonance is that in finite ensembles of noise-driven
systems the dynamics of the mean field can be represented as driven by the effective noise
whose variance is inverse proportional to the system size. For the rigorous proof of the va-
lidity of this approach see [31]. This idea has been applied to description of a transition to
collective behavior in [152]. In [154] it was demonstrated that the finite-size fluctuations can
cause a transition that disappears in the thermodynamic limit. The description of finite-size
effects in deterministic chaotic systems using the effective noise concept has been suggested
in [155, 76]. We emphasize that noise plays an essential role in this picture: with D =0(4.9) is
a deterministic oscillator (double or single well, depending on &), whose response to a periodic
force does not depend on N.

Before proceeding to a quantitative analytic description of the phenomenon, we illus-
trate it with direct numerical simulations of the model (4.9), with a sinusoidal forcing term
f(t) = Acos(Qt). Figure 4.5 shows the linear response function, i.e. the ratio of the spec-
tral component in the mean field at frequency Q and the amplitude of forcing A, in the limit
A — 0. For a given frequency Q the dependence on the system size is a bell-shaped curve, with
a pronounced maximum. The dynamics of the mean field X(¢) is illustrated in Fig. 4.6, for
three different system sizes and for a particular frequency. The resonant dynamics (Fig. 4.6b)
demonstrates a typical for stochastic resonance synchrony between the driving periodic force
and the switchings of the field between the two stable positions. For non-resonant conditions
(Fig. 4.6a,c) the switchings are either too frequent or too rare, as a result the response is
small.

To describe the system size resonance analytically, we use, following [36], the Gaussian
approximation. In this approximation one writes x; = X + §; and assumes that §; are indepen-
dent Gaussian random variables with zero mean and the variance M. Assuming furthermore
that

1
LY =M,

and neglecting the odd moments N~'Y;8;,, N~'Y;87, as well as neglecting the correlations
between §; and §;, we obtain from (4.9) the equations for X and M:

. 2D
X = X—X3—3MX+\/Wn(t)+f(t), (4.11)
%M = M—3X’M—-3M*—eM+D, (4.12)

where 1 is the Gaussian white noise having the same properties as &;(). In the thermo-
dynamic limit N — o the noisy term 1 vanishes. If the forcing term is absent (f = 0), the
equations coincide with those derived in [36]. This system of coupled nonlinear equations
(4.11,4.12) exhibits a pitchfork bifurcation of the equilibrium X =0, M > 0 at €. = 3D. This
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Figure 4.5: Dependence of the linear response of the ensemble (4.9) of noise-driven bistable
systems (D = 0.5, € = 2) on the frequency of forcing and the system size N. The response to
forces with smaller frequencies is shifted to larger system sizes, where the effective noise,

and, consequently, the switching rate, is smaller. The linear response is obtained by virtue of
the fluctuation-dissipation theorem.

mean field X
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Figure 4.6: The time dependence of the mean field in the ensemble (4.9) for D = 0.5, € = 2,
A =0.02, Q =n/300, and different sizes of the ensemble: (a) N = 80, (b) N =35, and (¢) N = 15.
In (b) we also depict the periodic force (its amplitude is not in scale) to demonstrate the
synchrony of the switchings with the forcing.

bifurcation is supercritical for D > 2/3 in accordance with the exact solution given in [36],
below we consider only this case. For € > €. the system is bistable with two symmetric stable
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fixed points

Xo +(2—e+4/(2+€)2—24D)'/? )2, (4.13)

My

(2+e—14/(2+¢)>2—24D)/12,

and the unstable point X =0, M = (1 —&+ /(1 —¢)>+ 12D) /6. Now, with the external noise 1
and with the periodic force f(¢) the problem reduces to a standard problem in the theory of
stochastic resonance, i.e. to the problem of the response of a noise-driven nonlinear bistable
system to an external periodic force (because the noise affects only the variable X, it does not
lead to unphysical negative values of variance M, since M is strictly positive at M = 0). This
response has a maximum at a certain noise intensity, which according to (4.11) is directly
related to the system size.

To obtain an analytical formula, we perform further simplification of the system (4.11),(4.12).
Near the bifurcation point the dynamics of X is slower than that of M, and we can exclude
the latter one assuming M ~ 0. Then from (4.12) we can express M as a function of X and
substitute to (4.11). Near the bifurcation point we obtain a standard noise-driven bistable
system

X:aX—bX3+\/ZWDn(t)+f(t), (4.14)

where a =1+0.5(e—1)—0.5\/(e—1)2+12D, b= —0.54+1.5(e— 1)((e — 1)>+ 12D) /2. A better
approximation valid also beyond a vicinity of the critical point can be constructed if we use
b=aX, 2 instead of b, where the fixed point Xy is given by (4.13). Having written the ensem-
ble dynamics as a standard noise-driven double-well system (4.14) (cf. [53]), we can use the
analytic formula for the linear response. It reads

_NXG (Doap(—VE) [, P -
= 2Da <Q)1/Z(_\/§)> {HZ—QZCXP(S)} (4.15)

where s = aNXZ/(2D), and D are the parabolic cylinder functions. We compare the theoret-
ical linear response function with the numerically obtained one in Fig. 4.7. The qualitative
correspondence is good, moreover, the maxima of the curves are rather good reproduced with
the formula (4.15). This shows that the resonant system size is quite good quantitatively
described by the Gaussian approximation, see Fig. 4.8.

Above we concentrated on the properties of the linear response. Numerical simulations
with the finite forcing amplitude yielded the results similar to that presented in Figs. 4.5,4.7.
However, for large amplitudes of forcing (e.g., A > 0.1 for Q = 0.01, D = 0.5, € = 2) a saturation
was observed: here the response grows monotonically with N. This is in full agreement with
the corresponding property of the stochastic resonance in double-well systems of type (4.14),
where the saturation occurs for small noise intensities (cf. Fig. 7 in [53]). Qualitatively,
the saturation is due to the disappearance of multistability for large forcing amplitudes, so
that the oscillator (4.14) switches at every period of the forcing, contrary to the case of small
amplitudes, where the switchings are rare (Fig. 4.6a).

Above we have considered the system of globally coupled nonlinear oscillators (4.9). The
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Figure 4.7: Comparison of the system-size dependencies of the linear response function for
frequencies Q = 0.05 (circles) and Q = 0.1 (squares) with theory (4.15). The parameters are
D =1 and € —¢. = 2.5 (where the the exact €. and the approximate €. = 3D are used for the
ensemble and the Gaussian approximation, respectively).
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Figure 4.8: Dependence of the system size yielding maximal linear response on the driving
frequency Q. Circles: simulations of the ensemble (4.9), line is obtained by maximizing the
expression (4.15).

same effect of system size resonance can be observed in a lattice with nearest neighbors
coupling as well. Then, instead of (4.9), we have

i =i = = (5= x) + V2DE(D) + £(0), (4.16)
(ij)

where the number of nearest neighbors K depends on the geometry of the lattice and on the
dimension of the space. In the thermodynamic limit, the Ising-type phase transition occurs
in the lattice (if its dimension is larger than one). Similar to the globally coupled ensemble, in
finite lattices in the ordered phase the switchings between the two stable states of the mean
field are observed. With the same argumentation as above we can conclude that the response
of the mean field to a periodic forcing f(¢) can have a maximum at a certain lattice size,
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while all other parameters (noise intensity, coupling strength, etc.) are kept constant. We
illustrate this in Fig. 4.9. Here the two-dimensional lattice with periodic boundary conditions
is studied. In order to keep the lattice of nearly quadratic form, we have chosen the lattices
with sizes either /> or /(I +1), with [ =2,3,4,.... The response to the periodic force has a

pronounced maximum at a certain size of the system.

I
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T
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o
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. | . . . .
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Figure 4.9: Filled circles: Response of a rectangular two-dimensional lattice of N nonlinear
bistable noise-driven elements (4.16) to a periodic force with amplitude A = 0.02 and period
T = 500. The noise intensity is D = 0.5, the parameter of nearest-neighbors coupling € = 4.
Squares: Response of system (4.17) (a two-dimensional lattice with D = 1.25, ¢ =30, A = 0.1
and T = 140). Circles: the same as squares, but for a globally coupled lattice with D=1, € =20,
A=0.1and T = 100.

As the last example of the system size resonance we consider a lattice where each indi-
vidual element does not exhibit bistable noisy dynamics, but such a behavior appears due to
interaction and multiplicative noise. This model is described by the set of Langevin equa-
tions (see for details the section 2.1)

4= on(eadP e g R )
+V2DE;(t)(1+x7) +Acos(2mt /T) . (4.17)

The difference to the model (4.9) is that the noise is multiplicative and the on-site potential
has only one minimum. K is the number of elements to which the oscillator i is coupled,
for global coupling K = N and for a lattice of dimension d with nearest-neighbors coupling
K = 2d. As has been demonstrated in [194, 195], in some region of couplings € system (4.17)
exhibits the Ising-type transition, characterized in the thermodynamic limit N — o by the
onset of nonzero mean field X. Due to the symmetry of (4.17), there are states with positive
and negative mean field. If an additional additive noise is added to (4.17), then one observes
transitions between these states and the so-called double stochastic resonance in the presence
of the periodic forcing [4*,5%]. As is evident from the considerations above, such transitions
occur even in the absence of the additive noise if the system is finite. Thus, the system size
resonance should be observed in the lattice (4.17) as well. We confirm this in Fig. 4.9.
Another possible field of application of the system size resonance is the neuronal dynam-
ics (see, e.g., [189]). Individual neurons have been demonstrated to exhibit stochastic reso-
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nance [116, 40]. While in experiments one can easily adjust noise to achieve the maximal
sensitivity to an external signal, it may be not obvious how this adjustment takes place in
nature. The above consideration shows, that changing the number of elements in a small en-
semble of coupled bistable elements to the optimum can significantly improve the sensitivity
(cf. [87]). Moreover, changing its connectivity and/or coupling strength, a neuronal system
can tune itself to signals with different frequencies.

Concluding, we have shown that in populations of coupled noise-driven elements, exhibit-
ing in the thermodynamic limit the Ising-type transition, in the ordered phase (i.e. for rel-
atively small noise and large coupling) the response to a periodic force achieves maximum
at a certain size of the system. We demonstrated this effect for lattices and globally coupled
ensembles noisy oscillators. We expect the system size resonance to occur also in purely de-
terministic systems demonstrating the Ising-type transition, e.g. in the Miller-Huse coupled
map lattice [130]. The system size resonance is described theoretically by reducing the dy-
namics of the mean field to a low-dimensional bistable model with an effective noise that is
inverse proportional to the system size. The stochastic resonance in the mean field dynamics
then manifests itself as the system size resonance.
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4.3 Coherence resonance and polymodality in inhibitory

coupled excitable oscillators

Coherence resonance(CR) has been reported in different kinds of systems, in particular,
it has been found that some noise amplitude exists at which the coherence of spiking in the
output of the system can be significantly enhanced in an isolated Fitz-Hugh Nagumo (FHN)
system [150], in the Hodgkin-Huxley [106] and Plant/Hindmarsh-Rose neuron models [115],
in dynamical systems close to the onset of bifurcations [138], or in experimentally studied
laser [68]. On the base of another mechanism, in contrast to excitable systems, CR has
been also found in the behaviour of a dynamical system, which shows jumps between several
attractors [144].

The CR behaviour have been also studied in spatially extended systems consisting of many
interacting elements[77, 139]. It has been shown that matching the noise-related character-
istic time scales of the coupled excitable elements results in noise-induced synchronization
regimes very similar to those for coupled limit cycles. Moreover, array-enhanced CR has been
reported, in which constructing an array of coherence-resonance oscillators significantly im-
proves the periodicity of the output [82, 210]. To our knowledge, all these studies of the
CR behaviour have been performed in systems with coupling via fast variable exchange or
pulsed coupling which activates the neighbors. These modes of coupling lead to many collec-
tive phenomena, including noise-induced spiral waves [88] and “clustering” of FHN stochastic
oscillators [184]. As a consequence of this form of activatory coupling in spatially extended
system, CR may happen only if coupled oscillators move synchronously and in-phase. How-
ever, other interactions between stochastic oscillators, for example inhibitory coupling, are
also very interesting and reported to be important in numerous physical[95], electronical
[170] and chemical systems[197, 27]. To be particular, the inhibitory form of coupling is used
to explain morphogenesis in Hydra regeneration and animal coat pattern formation [126, 98],
or to provide the understanding of pattern formation in an electron-hole plasma and low tem-
perature plasma [95]. In chemistry, the effective increase of inhibitor diffusion by reducing
of activator diffusivity via the complexation of iodide (activator) with the macromolecules of
starch results in a Turing structure formation [108]. It is interesting to note that systems
with inhibitory coupling in its rhythmogenic activity resemble very much systems with time
delay [96, 159].

Following this motivation, here we study a system of noise-driven FHN elements, which
are coupled, in contrast to previous studies of CR, by the slow variable, i.e. by a diffusive
inhibitory coupling. This delays the firing of an element, if its neighbors are firing. We show
that a system of two coupled excitable elements demonstrates CR, which is intrinsically based
on the anti-phase behaviour of the elements. This is a new mechanism of CR, which works
via noise-induced synchronization in antiphase [151] of excitable elements. We demonstrate
that this effect is connected to the fact, that such systems have very rich dynamics in the
generation of rhythms, and, as a result, generate a polymodal interspike distribution. It is
important to note that the generation of polyrythms is an important problem in the descrip-
tion of several natural processes, such as locomotion [29] or playing piano [44]. Recently,
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many model investigations have been motivated by experimental studies of the firing activ-
ity of neurons that revealed polymodality in the interspike interval histograms (ISTH) [46],
[179] or studies of locomotor behaviour of halobacterium [176]. The most interesting feature
of such systems is the appearance of polymodality even without additional forcing. In this
study, we show that the application of an inhibitory coupling in a system of excitable oscilla-
tors is another possible mechanism for the generation of polymodality without any external
periodic stimuli. We study this behaviour in systems of two and three coupled elements and
show how the degree of coherence can be controlled by the noise amplitude and the coupling
strength. Such a nontrivial behaviour can be expected from the possibility of noise-induced
generation of coupling-dependent transient out-of-phase stochastic attractors in the phase
space. For two-dimensional FHN limit cycles, inhibitory coupling results in the appearance
of out-of-phase limit cycles which are stable in large areas of the parameter space if the stiff-
ness is large. The overlapping of the in-phase and the anti-phase limit cycles is typical for
two or three coupled oscillators and depends on the stiffness[200, 201].

We begin with the study of two FHN systems, coupled via diffusive exchange of the re-
covery (slow) variable, which is a kind of mutual inhibition of motion of the phase points
along the slow part of the FHN N-shaped nullcline. The equations of motion for identical
bidirectionally coupled elements are

dx
ﬁ =A—yi2+C(x21—x12)+&12 (4.18)
d
s% —x12—¥i2/3+ 12 (4.19)

Here, € << 1 is a small parameter, which determines that y; are the fast variables and A
is responsible for the excitatory properties of the isolated elements. It is well known that for
|A| > 1 the only attractor is a stable fixed point. For |A| < 1, the limit cycle generates a periodic
sequence of spikes. The choice of ranges for € and A is crucial in this study. We fix A close to
the bifurcation in the interval (1.01 + 1.03) in order not to use high-level noise (parameter D)
to excite oscillation and thereby to avoid masking of the fine structure of the ISTHs. Here ¢ is
in the range (.001-+.0001), which is significantly smaller compared to those that are commonly
used [150], [139]. To emphasize this specifically small value of €, the term “relaxator” will be
used instead of "very relaxation oscillator”. The stochastic forcing is represented by Gaussian
white noise &; with zero mean and intensity 2D: (€;(1)&;(t + 1)) = 2Dd(7)d; ;.

For numerics we take the standard constant-step Runge-Kutta fourth-order routine with
the white noise added according to the algorithm [78]. In cases of any doubt, control runs have
been done with smaller steps. The ISIH usually contains about 10,000 interspike intervals,
ensuring a reasonable statistical accuracy. The numerical results are presented in Fig. 4.10.
For weak noise (Fig. 4.10left(a)) the distribution is polymodal with equidistant positions of the
peaks and progressively decreasing peak amplitudes. Hence, the inhibitory coupling really
provides a mechanism for polyrhythm generation in a system of FHN oscillators. A 2.5-fold
increase of the noise amplitude shifts the peak positions and their relationships. The second
peak becomes now the main one (Fig. 4.10/eft(b)); however, the polymodal structure of the
ISIH is still preserved. A further increase in the noise amplitude results in the disappearance

94



4.3. COHERENCE RESONANCE AND POLYMODALITY IN INHIBITORY COUPLED
EXCITABLE OSCILLATORS

0.16
0.20 - 1
(b)
0.12 0.16 | / J
A2 ¢ 1
0.08 0
0.08 () (@) 1
0.04
0.04 - 1
0.00 : ' 0.00 IH‘\
2 4 6 8 10 12 14 2 4 6 8 10
Interspike interval Interspike interval

Figure 4.10: (left) Interspike interval histograms for two coupled very stiff (¢ = .0001) relax-
ators Eqgs.(1,2) for A=1.01, C=0.1: (a) D=10"%, (b) D=2.5x107°, (c) D = 107; (right) The
same for a larger coupling C=0.6: (a) D = 1075, (b) D =107, (¢c) D = 10~3. The built-in plot
corresponds to the typical histogram for a system with activatory coupling (C = 1.5).

of polymodality because of the global dominance of the second peak (Fig.4.10 left (c)). The
spiking behavior becomes highly regular. This simple ISIH shape is observed in a broad
range of noise amplitudes (at least up to D = 10~3). For comparison, in the similar system but
with an activatory coupling, the ISTH has always the same structure with one peak, as it is
shown in the built-in plot in the Fig. 4.10left.

These qualitative changes in the ISTH shape may be explained by analyzing the stochastic
time series. As in [150], the characteristic time of isolated stochastic oscillations is the sum of
the activation and excursion times. The former is the waiting time of the appropriate excita-
tion and fluctuates in a broad range; the latter is almost constant (7, ~ 3 for our parameters).
At low noise amplitudes and low coupling strengths, the shape and position of the first peak
in Fig.4.10 left(a) are very similar to those of the entire ISIH for each isolated element and for
activatory coupled elements (built-in plot in Fig. 4.10left). The origin of the ISIH polymodal-
ity is seen from the time dependences of the slow variables as presented in Fig.4.11(a). At this
particular noise amplitude, the average activation time is such that the order of spike gen-
eration by the two relaxators excited near the steady state does not depend on the coupling.
However, as soon as one element fires, the phase point of the other element moves away from
the excitation threshold due to a slow variable exchange (see Fig.4.11(b)). In other words,
when the noise amplitude is low, the second element is unlikely to fire, while its neighbor
makes an excursion. This simple consideration explains why the average interpeak interval
equals nT,,.. Obviously, the probability of three consecutive firings of the same element is
lower than that of two consecutive firings; therefore, the greater the number of the peak, the
lower the peak amplitude. If the noise amplitude increases at a fixed coupling strength, the
activation time becomes shorter, and the antiphase noise-induced regime as well as the previ-
ously described random excitations begin to compete. Their competition enlarges the second
peak in the ISIH and shifts it to the left ( Fig. 4.10 left(b)), because the augmented noise
may induce one element to fire slightly before the other finishes its excursion. A further in-
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slow variable

Figure 4.11: Typical waveforms of the slow variables for the cases (a) and (c) in Fig.4.10 left.
(b) - the zoom of (a) in the area near the firing point.

crease in the noise amplitude leads to the full dominance of antiphase stochastic oscillations
( Fig. 4.11left(c)), as can be seen from the waveforms presented in Fig.4.11(c).

Additional calculations (as in [200, 201]) show that the dominance of the antiphase regime
is not surprising because the basin of attraction of the antiphase deterministic limit cycle
(e.g., for A=.98) is significantly larger for coupling strengths .1 < C < .3 than the in-phase
regime basin. This is not the case for larger values of coupling, for which even strong noise
is unable to induce coherency via antiphase motion. Fig. 4.10 right shows the ISIH for C=0.6
and for different noise levels. In the case of low-level noise, the ISIH shape is as in the
Fig. 4.10 left(a), because changes in the coupling strength are not significant for the mech-
anism of equidistant polymodality. The other two histograms, Fig. 4.10 right(b) and (c), are
different from those in Fig. 4.10 left in that (i) anti-phase stochastic oscillations are not dom-
inant in them, and (ii) their peaks are split (especially the first peak of histograms). The
effect of peak splitting is a bright manifestation of the dual role of the coupling we consider:
on the one hand, it causes the phase points to move more slowly when they are on different
branches of the nullcline; on the other hand, it reduces the phase shift between them when
they are on the same branch.

Hence, at A=1.01, we find two main scenarios (Figs. 4.10 left and right), how noise controls
the evolution of ISIH polymodality. Both regimes, which differs in the value of coupling,
demonstrate polymodality, but only for small values of coupling noise is able to suppress this
behaviour and induces a coherent motion via anti-phase oscillations. These observations hold
not only if the system is very close to the bifurcation point. For example, for A=1.03, the main
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Figure 4.12: (left) Coherence resonance in inhibitory coupled noise-driven excitable oscilla-
tors. Correlation time 1. vs the noise intensity for different coupling strengths C. A =1.01;
(right)Interspike interval histograms for a ring of three very stiff relaxators (¢ = .0001 for
C=0.1,A=1.01). (@) D=2x10"%(b) D=10"7,(c) D =10"*.

steps of the ISIH evolution do not change, but a significantly stronger noise is required for
overcoming the threshold.

The changes in the ISIH structure with the noise amplitude increasing in the range from
107° to 1073 clearly indicate a growing coherence of ISIs, which is especially strong for small
values of coupling. In order to characterize this effect quantitatively, we compute the nor-
malized autocorrelation function of the slow variable: C(t)= < x(¢)x(t+1) >/< x()? >, x(t)=x(t)-
<x>. An important characteristic of the autocorrelation function is the correlation time: t.=f
C(t)*dt. Fig. 4.12 left shows 1. as a function of the noise level for weak and strong coupling
strengths. The coherence resonance is clearly seen from this figure; its significant dependence
on the coupling strength is evident. The increase in 1. with the noise level can be easily un-
derstood from the above considerations of the ISIH evolution. The reason for smaller t. at
higher noise amplitudes is as in [150]: in this region, the ISIH dispersion grows up more
rapidly with the noise level than does the average ISI value. Note, however, that two stochas-
tic relaxators are running mainly in antiphase, hence the underlying mechanism of this new
form of CR is significantly different from CR effects reported till now in ensembles of excitable
systems [77, 139, 82, 210].

The next important question is how the degree of ISTH polymodality depends on the num-
ber of interacting relaxators. We consider only the simplest extension, a system of three
elements with cyclic boundary conditions. For this ring of three oscillators, large regions of
the phase diagram are co-occupied mainly by the following attractors [200, 201]: (i) in-phase
oscillations and the anti-phase regime in which two oscillators move in phase with each other
and in anti-phase with the third one; (ii) the in-phase limit cycle and different types of the
rotating waves (all phase differences are equal to one third of the period); and (iii) the anti-
phase regime and rotating waves [200, 201]. It has been shown recently [170] that several
additional attractors arise when three inhibitorily coupled relaxators are slightly detuned. It
is natural to expect that the underlying attractors determine the richness of noise-induced
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behavior, although any particular attractor manifests itself only temporarily in the case of
stochastic relaxators. The noise-dependent evolution of the ISTH in the ring with a low exci-
tation threshold (A=1.01) and a low coupling strength (C=0.1) is presented in Fig. 4.12 right.
The qualitative properties of the distributions are not sensitive to C if C € (0.05+0.3) and
to A if A € (1.01 +1.03). The main difference between the histograms in Fig. 4.12 right and
Fig. 4.10 left is in the number of detectable peaks, which grows with the number of elements.
However, even in this case, due to the mechanism of out-of-phase motion, provided by in-
hibitory coupling, the increase of noise leads to an increase of coherency. It manifests itself in
the dominance of only one peak in the corresponding ISIH (see the evolution in Fig. 4.12 right
a,b,c) and based on the transient out-of-phase motion of any two oscillators. If the coupling
is strong, it can split all peaks of the ISIH, but the detailed analysis of this phenomenon is
beyond the volume of the Letter.

In summary, we have demonstrated two related phenomena, induced by inhibitory cou-
pling in a system of excitable oscillators: i) The first effect is the generation of nontrivial
polymodal distributions of interspike intervals without any periodic stimuli. Instead of ex-
ternal characteristic times, the time delays of the motion caused by the inhibitor exchange
modulate the probability of the firing. The values of these delays define the peak’s posi-
tions in the ISIHs. ii) The second effect is the coherence resonance which appears for this
polymodal regime if we increase the noise amplitude. This CR has in the background the
noise-dependent dominance of some out-of-phase attractor (anti-phase one for two coupled
relaxators). This type of CR is slightly weaker than the classical CR; it is based on a com-
pletely different mechanism and seems to be quite perspective for the selective interactions of
coupled relaxators with signals of different periods and forms. We have demonstrated these
two effects on a simple model but in a general framework, and, therefore, we expect that
these theoretical findings can be detected and used in different experimental systems with
inhibitory coupling in physics [95], biology[126], electronics [170], or chemistry [197, 27].
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Main results and conclusions

In this thesis I have investigated analytically, numerically, and experimentally several new
mechanisms of noise-induced transitions, new phenomena in the frame of the concept of dou-
bly stochastic effects, and I have reported several new effects in nonlinear systems, which
lead to noise-induced order. In particular, the following results have been presented in this
work:

1. Thave studied an interplay of additive and multiplicative noises in nonequilibrium tran-
sitions, and have shown that the role of additive noise in noise-induced transitions can
be very nontrivial. Consideration of a pendulum under the action of multiplicative and
additive noise has shown that if a transition occurs in the presence of additive noise, it
is blurred by this noise - this behaviour has been described analytically. Moreover, addi-
tive noise hides on-off intermittency, but causes this intermittency before a transition,
i.e. for subcritical values of the noise intensity. Consideration of an epidemiological
model has shown that an action of additive noise can stabilize oscillations.

2. T have shown that in spatially extended systems additive noise can induce second-order
phase transitions, which lead to breaking of the symmetry and the creation of a nonzero
mean field. Moreover, if a coupling term is a la Swift and Hohenberg, then additive noise
is able to induce spatially ordered patterns as a result of reentrant phase transition.
Under certain parameters of the system, additive noise is able to induce also a first-
order phase transition, in which the order parameter is changed not continuously versus
the additive noise intensity.

3. I have suggested and developed a concept of doubly stochastic effects. According to
this concept, a noise-induced order may appear in a nonlinear system in the following
scenario: one noise source creates some property of the system, and then another noise
induces the order in the system due to this property. Hence, the mechanism of a noise-
induced order is also induced by noise. It means that energy of noise is used more
efficiently for constructive purposes. The first effect, which is reported in the frame of
this concept is doubly stochastic resonance. Doubly stochastic resonance is a combined
effect which consists of a noise-induced phase transition and conventional stochastic
resonance. Multiplicative noise induces a bistability, and then this bistability is used
by additive noise to synchronize the output of the system with the incoming periodic
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signal. Doubly stochastic resonance has been investigated numerically, and confirmed
by analytical estimation

4. A simple electronic circuit for experimental implementation of doubly stochastic reso-
nance has been designed and numerically investigated. The main advantage is that the
energy of noise can be used more efficiently, not only for a synchronization as in conven-
tional stochastic resonance, but also for the creation of a potential barrier, needed for
this synchronization, and hence, this effect can be more commercially profitable. This
effect has been explained by a consideration of the “effective” model.

5. A new effect in neural models, doubly stochastic coherence via noise-induced symmetry,
has been reported. In this effect multiplicative noise creates symmetry in the system,
which is deterministically asymmetric, and additive noise generates periodic output
of the system. An optimization of both noise intensities is needed, and, hence, this
effect is also a doubly stochastic effect. The behaviour is explained in terms of the
“effective” model and confirmed by experimental measurements. For this an excitable
electronic circuit has been designed and measured. Additionally, it has been shown that
this effect can be enhanced in spatially extended system by coupling of elements. This
enhancement has a resonance with respect to the size of the system, i.e. there is an
optimal size of the system. Probably it explains the time generation in ensembles of
neurons due to noise and due to optimal size of the neuron network.

6. Another new phenomenon in the frame of the concept of doubly stochastic effects is a
noise-induced propagation in monostable media. The noise-induced propagation has
been reported only for excitable or bistable media (or systems without local potential).
In this work it has been shown that this effect can be also observed in deterministi-
cally monostable media. Combined action of multiplicative noise and coupling induces
a bistability, and additive noise enhances the propagation of a periodic signal in this
noise-supported bistable structure. Possible experimental implementations of this effect
include arrays of simple electronic circuits as a communication system, analog circuits,
electronic cellular neural networks, liquid crystals, photosensitive chemical reactions,

or liquid helium.

7. Studying the noise-induced propagation, the constructive effect of additive noise in the
propagation of a bichromatic signals through bistable media has been analyzed. Our
results have shown that noise enhances propagation of such signals, similarly to what
happens with simpler monochromatic driving. Moreover, it has been shown that by
changing the noise intensity one is able to select the propagation frequency. These
findings are potentially important for communication technologies.

8. Vibrational resonance in the noise-induced structure has been reported. This effect is a
synthesis of a noise-induced phase transition and a conventional vibrational resonance.
In this effect an additional high frequency force is able to optimize a signal processing
in the system whose bistability is created by noise. The effect has been explained by
the "effective” model, and this model has been tested in the experiment with a simple
electronic circuit.
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9. The effect of system size resonance in systems of coupled noisy elements has been re-
ported. It has been shown that in populations of coupled noise-driven elements, in
the ordered phase the response to a periodic force achieves maximum at a certain size
of a system. This effect has been also demonstrated in deterministically monostable
elements under the condition that bistability is created by multiplicative noise and cou-

pling.

10. Excitable systems with inhibitory coupling have been studied and two related phe-
nomena have been demonstrated: a generation of nontrivial polymodal distributions
of interspike intervals without any periodic stimuli and a new mechanism of coherence
resonance, that is based on the noise-dependent dominance of out-of-phase attractor
(antiphase one for two coupled relaxators).

Especial attention in this work has been paid to possible application of these theoretical
findings. Let me summarize this discussion and results. The results, concerning the influ-
ence of additive noise in noise-induced transitions can be applied for mechanical systems
[25%], models of epidemics [24*], and systems with a pattern formation [18*]. For the effect
of doubly stochastic resonance a simple electronic circuit has been designed [4*]. Also, it is
discussed that understanding of such doubly stochastic resonance effects, as doubly stochas-
tic resonance and noise-induced propagation in monostable media, can be potentially helpful
in the investigation of liquid nematic crystals [93, 207], noise-induced bistability in Helium-
IV [73], electronic circuits [1], as well as systems, which demonstrate noise-induced shift of
the phase transition, e.g, in: photosensitive chemical reactions [128, 32], or Rayleigh-Bénard
convection [127]. For communication technologies it can been important that in these dou-
bly stochastic effects the energy of noise is used more efficiently for constructive purposes.
For an experimental implementation of doubly stochastic coherence, an especial electronic
circuit has been constructed and investigated [34*]. New results, which show the possibility
of noise-induced selection of propagation frequency of bichromatic signal in bistable media,
can be used in communication technologies. A possible field of application of the system size
resonance is neural dynamics [189]. Finally, a new mechanism of coherence resonance, dis-
cussed here, can be found in numerous systems with inhibitory coupling, e.g. in physical[95],
electronical [170], chemical systems[197, 27], in particular, in morphogenesis of Hydra re-
generation and in the animal coat pattern formation [126], in the pattern formation in an
electron-hole plasma and low temperature plasma [95], or in chemical systems, where the
effective increase of inhibitor diffusion is achieved by reducing of activator diffusivity via
the complexation of iodide (activator) with the macromolecules of starch results in Turing
structure formation [108].

In the conclusion I would like to outline some perspective of the further research. It is
important to note that the topic of nonequilibrium phenomena which lead to noise-induced
order is rather new. I see three main directions in the study of these effects:

1. Theory of noise-induced phenomena which lead to ordering in nonlinear systems. The
phenomena described here are demonstrated by a large variety of models, and the ques-
tion naturally arises what is the complete classification of such effects. At the mo-
ment one can distinguish in this classification between several basic phenomena such
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as stochastic resonance, noise-induced transitions, ratchets and so on. Nevertheless,
recent researches, including this work, have shown that a synthesis of these basic phe-
nomena is possible. This makes the complete classification as an open question up to
now. Another and closely connected direction of theoretical research is finding of new
phenomena and new mechanisms, which demonstrate or create noise-induced order.
In particular, in the nearest future it will be very interesting to investigate the role
of colored noise in doubly stochastic effects, the effect of system size resonance in the
generation of periodic output in neuronal networks, i.e. ensembles of excitable system,
vibrational propagation in the chains of noisy elements, or hidden transitions induced
by additive noise in oscillatory systems due to the autoparametric effect. We expect that
doubly stochastic resonance or its modifications can be found not only in the system, de-
scribed here, but probably in oscillatory systems, or systems with a bistable “stochastic”
potential.

2. Experimental implementation and confirmation of theoretical findings developed in the
study of noise-induced effects, and, in particular, in this work. During the research,
presented here, we have paid an especial attention to possible experimental situations,
which can be considered as an application of this theory. Nevertheless, despite to the
discussed results, an experimental research and commercial use of noise-induced effects
is not sufficiently developed, and we leave it as a perspective direction of the future
research in physics, chemistry, and living sciences.

3. Modelling transitions and irregular oscillations observed in experimental data by stochas-
tic models. As has been shown in this work, already known phenomena which have
been explained in the framework of a deterministic theory, could be also successfully
described by stochastic models. Deterministic and noise-induced processes are very dif-
ficult to distinguish in many situations. Moreover, sometimes a noisy excitation looks
more justified. For example, in the recently outlined hypothesis it is mentioned that
turbulence in non-closed flows is a result of noise-induced phase transition. Also we ex-
pect that noise-induced processes may be very important for understanding of complex
natural systems studied in neuroscience or such as microseismic oscillations, or phase
transitions observed in physiological systems, especially in bimanual movements. An-
other open question, closely associated with modelling is the identification of the ex-
citation mechanism by the analysis of irregular time-series. This problem is of high
importance because to model a system one should know the physical mechanism of an
excitation. At the same time, time-series are often the single source of the information
about a nonlinear system - “black box”. At this point, it is essential to note that classical
methods of analysis, such as a spectral analysis or a calculation of correlation dimen-
sion are sometimes unable to distinguish between noise-induced irregular oscillations
and chaotic oscillations of deterministic nature.
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Doubly stochastic effects are effects in which an optimization of both multiplicative and
additive noise intensities is necessary to induce ordering in a nonlinear system. I review
recent achievements in the investigation of these effects and discuss two phenomena: dou-
bly stochastic resonance and noise-induced propagation in monostable medium. Finally
I discuss possible experimental implementations of these phenomena.
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1. Introduction

It is not surprising nowadays that noise or random fluctuations can induce counter-
intuitive effects, in which noise exhibits a constructive, leading to ordering, role in
the behaviour of dynamical systems. Many phenomena have confirmed this ability
of noise, among these noise-induced phenomena, one can distinguish between sev-
eral basic ones, such as noise-induced transitions [1-6], stochastic resonance [7, 8],
coherence resonance [9], or stochastic transport in ratchets [10]. The most popular
example of noise-induced ordering, which can be also found in the behaviour of bio-
logical objects [11] as well as in human recognition [12] or in human brain waves [13],
is the effect of stochastic resonance (SR). In the most standard situation SR con-
sists in an optimization by noise of the response of a bistable system to a weak
periodic signal. In addition to this conventional situation, due to its generality and
universality SR has been found in a large variety of systems, as monostable [14], ex-
citable [15], non-dynamical [16], and thresholdless [17] systems, in systems without
an external force (called coherence resonance) [9,18], and in systems with transient
noise-induced structure [19].

Noteworthy, the principle of SR can be also extended for the case of spatially
distributed systems. In such systems an optimal intensity of noise may lead to noise-
enhanced propagation, in which the propagation of a harmonic forcing through an
unforced bistable or excitable medium is increased for an optimal intensity of addi-
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tive noise [20,21]. This phenomenon has all ingredients characteristic of SR, because
the system exhibits locally the noise-induced amplification of a weak periodic signal
coming from the neighboring sites. It is important to note that, although numerous
works about noise-induced propagation exist (e.g. [22-24]), to our knowledge prop-
agation in monostable media, which is a very important class of dynamical systems,
has not been considered before. An interesting exception to this point is the ther-
mal resonance in a signal transmission [25], where noise-induced propagation has
been found in monostable systems, but without a local potential and with nonlinear
coupling.

In this review we discuss several phenomena in the frame of a concept of doubly
stochastic effects, which also demonstrate an improvement of signal processing or
signal propagation in nonlinear dynamical systems. This concept has been recently
introduced as new mechanism leading to noise-induced ordering in nonequlibrium
systems. The idea of this concept is the following. If we observe noise-induced order
in a nonlinear system, it occurs due to the presence of some intrinsic property of a
system, which together with noise results in noise-induced ordering. For example,
in the conventional scenario of SR this feature is a threshold, which is present in the
system. Coming noise interacts with this feature, and improves a response of the
system to the external periodic signal. Meanwhile, a crucial property of a system, a
potential threshold in this case, can be also induced by noise. Usually it happens if
we have an interplay of multiplicative and additive noise in the system. In this case
multiplicative noise induces a property of a system and additive noise maximizes
an ordering in a system with this property. Hence, such effects can be called doubly
stochastic effects (DSE), because for maximal ordering an optimization of both noise
intensities is necessary. Certainly, in such effects an energy of noise is used more
efficiently, because it is used not only for noise-induced ordering, but also for system
property, which is necessary for this ordering.

In this paper we review two DSE, doubly stochastic resonance (DSR) [26] and
noise-induced propagation (NIP) in monostable media [27]. After an introduction
of a model and reviewing of noise -induced phase transitions, demonstrated by this
model, we describe the effect of DSR. In DSR multiplicative noise (in combination
with spatial coupling) induces bistability in a deterministically monostable system,
and additive noise induces synchronization with the external signal in this noise-
induced bistable regime. Following this, we show that this system can exhibit doubly
stochastic effects which lead to signal propagation, if the system is periodically
excited from one side. Finally we discuss a possible experimental implementation
of suggested theoretical findings in designed simple electronic circuit [28]. In the
conclusion we discuss the obtained results and possible directions of the future
research.

2. A Model and Noise-induced Phase Transition
We study a general class of spatially distributed systems of elements, which are

locally coupled and periodically forced:

m:f@»w@»@(tﬂ% D (@ —mi) +Gi() + A cos(wt ), (1)

jeEnn(i)
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where z; is defined in a two-dimensional discrete space of N x N cells, with ¢ denoting
the cell position (i = iy + N(i, — 1), where i, and i, run from 1 to N). The sum
in the right-hand side runs over all nearest neighbors of site ¢ [nn(¢)]. The additive
and multiplicative noise terms are mutually uncorrelated Gaussian distributed with
zero mean, and white both in space and time, i.e. (¢;(¢)¢;(¥')) = 028;;0(t — ¢') and
(& (1) = 02,8,50(t — 1.

In the absence of periodic forcing (A; = 0), different types of noise-induced
phase transitions can be obtained for different forces f(z;) and g(x;). In particular, a
system with a monostable local deterministic potential can exhibit a phase transition
to a noise-induced bistable state [3,29]. This transition breaks a symmetry and
ergodicity of a system and leads to the formation of a non-zero mean field (see
Fig. 1). The reason of this phase transition is the common effect of short time
bistability induced by multiplicative noise and coupling. To understand which forces
f(z;) and g(z;) are necessary for the demonstration of noise-induced transition, let
us consider the following argumentation [30]. The time evolution of the first moment
of a single element can be found by the drift part in the corresponding Fokker-Planck
equation (Stratonovich case)

0.2

(@) = (f(2)) + 5 {g(2)g'(2))- (2)

Next if we start with an initial Dirac § function, follow it only for a short time, such
that fluctuations are small and the probability density is well approximated by a
Gaussian. A suppression of fluctuations, performed by coupling, which is absolutely
necessary for the transition under consideration, makes this approximation appro-
priate in our case [31]. The equation for the maximum of the probability, which is
also the average value in this approximation Z = (x), has the following form

i = (&) + T2 ()g (2. 0
which is valid if f({z)) >> (§2%)f”({z)). For this dynamics an “effective” potential
Ues () can be derived, which has the form

Ueﬁ‘(l') = U0($) Unoise = /f (z)v (4)

where Up(x) is a monostable potential and Upgise represents the influence of the
multiplicative noise. If this effective potential is bistable for some intensity of multi-
plicative noise, then with some approximation the system can undergo noise-induced
phase transition, which leads to bistability of the mean field.

More precisely, a borderline of the phase transition can be found analytically by
means of the standard mean-field theory procedure [3]. This mean-field approxima-
tion is based on replacing the nearest-neighbor interaction by a global term in the
Fokker-Planck equation corresponding to (1) for A; = 0. A steady-state solution of
Fokker-Planck eq. then gives:

we (2, m) = C(m) Q/f(y) QD —m) dy |, (5)

02,9 ()+02 ) (y) + o2
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of

noise

Fig. 1. A visualization demonstration of the phase transition in the model (1). In the disordered
phase the mean field is zero due to the random deviation of different elements around zero (middle).
In the ordered phase, induced by noise, the symmetry is broken and the mean field is either positive
(right) or negative (left). The elements in the lattice 128 x 128 are coded in accordance to its sign:
if positive or zero - white, if negative - black.

where C(m) is a normalization constant and m is the mean field, defined by the
equation:

m = /_ O:O e (2, m)dz. (6)

The self-consistent solution of eq.(6) determines transitions between ordered (m #
0) and disordered (m = 0) phases. Below we consider two examples of functions
f(x) and g(x), which provide a possibility of a noise-induced phase transition.

3. Doubly Stochastic Resonance

DSR is a synthesis of noise-induced phase transition and conventional SR. To
demonstrate DSR the functions f(z) and g(z) in eq.(1) are taken to be of the
form [29]:

fla)=—az(1+2%)?%  g(z) =1+2" (7)

With these forces, a system (1) undergoes a phase transition, whose transition
boundaries between different phases are shown in Fig. 2 (left) and the corresponding
dependence of the order parameter on o2, is presented in Fig. 2 (right).

Next we consider how the system (1) responses to the global periodic forcing
(A; = A). We have taken a set of parameters (02; D) within the region of two
coexisting ordered states with a nonzero mean field. In particular, we choose values
given by the dot in Fig. 2 (left). As for the network, we take a two-dimensional
lattice of L? = 18 x 18 oscillators, which is simulated numerically [32] with a time
step At = 2.5x10~* under the action of the harmonic external force. The amplitude
of the force A has to be set sufficiently small to avoid hops in the absence of additive
noise. Jumps between mi < ms occur only if additive noise is additionally switched
on. Runs are averaged over different initial phases. Time series of the mean field and
the corresponding periodic input signal are plotted in Fig. 3 left for three different

values of the intensity of additive noise o2. The current mean field is calculated as
1 N

m(t) = Iz Z ) z;(t). For small o2, hops between the two symmetric states m;
i=

and mgy are rather seldom and not synchronized to the external force. If we increase

the intensity o2, we achieve a situation when hops occur with the same periodicity as

the external force and, hence, the mean field follows with high probability the input

force. An increase of additive noise provides a synchronization of the output of the
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20

Fig. 2. Left: Boundaries of the bistable regime on the plane (02 ; D) for different intensities of
the additive noise 2 = 0 (1); 1 (2), and 5 (3). The black point corresponds to D = 20, o2, = 3.
Right: The order parameter |m| vs the intensity of the multiplicative noise for D = 20 and o2 =
0 (label 1), 1 (label 2), and 5 (label 3). Inside the ordered region for fixed value of o2, an increase
of the additive noise intensity leads to the decrease of the order parameter.

system with input forcing. If 02 is increased further, the order is again destroyed,
and hops occur much more frequently than the period of the external force. Note
also that for large o2 the value of the mean field which corresponds to the stable
state is becoming smaller. It is caused by the fact that additive noise influences
also transition lines. An increase of o2 results in a reduction of the ordered region
(Fig. 2 (left), curves 2 and 3) and decreasing the value m; = —mgy (Fig. 2 (right),
curves 2 and 3).

To quantify this DSR-effect, we have calculated the signal-to-noise ratio (SNR)
by extracting the relevant phase-averaged power spectral density S(w) and taking
the ratio between its signal part with respect to the noise background [8]. The de-
pendence of SNR on the intensity of the additive noise is shown in the Fig. 3 (right)
for the mean field (filled points) and the mean field in a 2-state approximation
(opaque point). In this 2-states approximation we have replaced m(t) by its sign
and put m(t) = +1 or m(t) = —1, respectively. Both curves exhibit the well known
bell shaped dependence on o2 typically for SR. Since the bimodality of the mean
field is a noise-induced effect we call that whole effect Doubly Stochastic Resonance.
For the given parameters and A = 0.1, w = 0.1 the maximum of the SNRs is
approximately located near o2 ~ 1.8.

To obtain analytic estimates of the SNR, an approximation of “effective” po-
tential (4) can be used. For this we consider a conventional SR problem in this
potential with an external periodic force of the amplitude A and the frequency w.
If we neglect intrawell dynamics and follow linear response theory the SNR is well
known 8, 33]

where ry, is the corresponding Kramers rate [34]

V (U (@) [x=xin
2T

(@) |x=x 2AU,
) oy 2AUen

Tk =
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100

SNR, SNR,
3

Fig. 3. Left: The time evolution of the current mean field (output) and the periodic external force
F(t) (input) for different intensities of additive noise (from top to bottom) ¢2 = 0.01, 1.05, and 5.0.
If the intensity of the additive noise is close to their optimal value (middle row), an input/output
synchronization occurs. The remaining parameters are: A = 0.1, w = 0.1, D = 20, and 02, = 3.
Right: The dependence of SNR on the additive noise intensity for the output (filled points) and its
2-states approximation (opaque points). The solid line corresponds to the analytical estimation
SNRy (10). The processing gain is G = 0.7.

for surmounting the potential barrier AUeg. Using Eqgs.(4),(8), and (9) we get an
analytical estimates for a single element inside the lattice. Further on, rescaling this
value by the number N of oscillators in the lattice [35] and taking into account the
processing gain G and the bandwidth A in the power spectral density [33, 36, 37],
the SN Ry of the mean field of the network of N elements can be obtained

NG
SNRyx = SNRi—"+1. (10)

This dependence is shown in the Fig. 3 right by the solid line and demonstrates
despite the rough approximation a good agreement with the results of the numerical
simulations. Nearly exact agreement is found in the location of the maximum as well
as for the quantitative values of the SNR (“scalloping loss” [33] has been avoided
in simulations by setting the frequency w to be centered on one of the bins in the
spectrum).

4. Noise-induced Propagation in Monostable Media

Next we study a propagation in the system (1). In this case the periodic forcing is
applied to the system (1) coherently along only one side, as shown in Fig. 4 (left)
[A; = A(6i, 1+0i, 2+ 9i,.3)]. Even though the results shown below are very general,
for a quantitative study we choose particular functions f(x) = — f1(z)(see eq.(12))
and g(x) = = [28]. Regions of bistability can be as above determined approximately
by means of a standard mean-field procedure [3] and are shown in Fig. 4(right) in
the D — o2, plane for three different values of the additive noise intensity.

Now we place ourselves within the bistable regime supported by multiplicative
noise and coupling (e.g. D = 3, 02, = 3), and investigate the propagation of a wave
through the system. The boundary conditions are periodic in the vertical direction
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Fig. 4. Left: A lattice which is excited only from one side: elements under the direct periodic action
are denoted by black; the first three columns (i = 1,2, 3) are periodically driven; all oscillators
are under the influence of noise. Right: Mean-field transition lines between disordered monostable
(m = 0) and ordered bistable (m # 0) phases for model (see Sec. 3): o2 = 0.3 (label 1), 02 = 0.5
(label 2) and 02 = 1.0 (label 3). Other parameters are G4 = 0.5, G = 10 and B, = 1.

and no-flux in the horizontal direction. The propagation will be quantified by the

. 2 2
system’s response at the excitation frequency, computed as Q) = Qéfr)l + QE%)S )
with

) w 2mn/w ' ) w 2mn/w
Qi = %/0 m;(t) sin(wt)dt , QL) = E/o m;(t) cos(wt)dt, (11)

where m;(t) is the field (voltage) averaged along the vertical column (Fig. 4), i.e.
1 N
mj(t) = § 2og=1 Lit (k1N (£)-

The value of QU for different oscillators along the chain is shown in Fig. 5(a)
for increasing intensities of additive noise within the noise-induced bistable regime.
The forcing amplitude is taken to be large enough to produce hops between the
two wells in the bistable oscillators, without a need of additive noise. Therefore,
for the first oscillators an increase of additive noise leads only to a decreasing re-
sponse at the forcing frequency, whereas for distant oscillators the situation changes
qualitatively. There, a response is induced that depends non-monotonically on the
additive noise intensity. Clearly, a certain amount of additive noise exists for which
the propagation of the harmonic signal is optimal. For smaller multiplicative-noise
intensity [Fig. 5(b)] the system leaves the bistable region; hence the response is
small and always monotonically decreasing. Hence, the resonant-like effect requires
suitable intensities of both the additive and multiplicative noises.

A propagation of the harmonic signal can also be obtained for values of the
forcing amplitude small enough so that hops are not produced in the directly ex-
cited sites in the absence of additive noise. This is the regime in which DSR really
occurs in the excited part of the system, and the excitation propagates through the
rest of the lattice enhanced by noise. Now all the oscillators have a non-monotonic
dependence on the additive noise intensity for a multiplicative noise within the
bistable region [Fig. 5(c)], and a monotonic one for a multiplicative noise within
the monostable region [Fig. 5(d)]. The former case corresponds to a spatiotempo-
ral propagation in the DSR medium, and we call this phenomenon spatiotemporal
doubly stochastic resonance (SDSR).
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Fig. 5. Response Q) to a periodic excitation in different oscillators (the order j is shown in the

curve labels) vs. additive-noise intensity (a,c) inside the bistability region (02, = 3), and (b,d)

outside that region (02, = 0.5). As shown in Fig. 1, the oscillators with index j = iy = 1,2,3
are directly excited by the periodic force, and oscillators with j = i; > 3 are excited through
the excitation propagation. Parameters are those of Fig. 7?7, and D = 3. The amplitude is:
(a,b) A = 0.3 (noise-induced propagation) and (c,d) A = 0.2 (spatiotemporal doubly stochastic
resonance).

Using an approximation of “effective” potential this effect can be understood in
the frame of a standard SR mechanism [8], where the external signal is provided by
the periodic force for the directly excited oscillators, and by the influence of the left
neighbors for the non-excited oscillators. For large forcing, only the latter need an
additive noise to hop synchronously between the wells, whereas for small forcing,
both the excited and the non-excited oscillators display SR. These two behaviors
correspond to the situations depicted in Figs. 5(a) and 5(c), respectively.

5. Experimental Implementation

We expect that these theoretical findings will stimulate experimental works to verify
DSR in real physical systems (for the first experimental observation of noise-induced
bistability see [38]). Appropriate situations can be found in electronic circuits [?],
as well as in systems, which demonstrate a noise-induced shift of the phase tran-
sition, e.g, in: liquid crystals [39,40], electronic cellular neural networks [41-43],
photosensitive chemical reactions [44,45], or Rayleigh-Bénard convection [46]. It
can be crucial for such experiments, that in doubly stochastic effects the energy of
noise is used in a more profitable way: not only for the optimization of the sig-
nal processing or propagation, but also for the support of the potential barrier to
provide this optimization.

Here we discuss a design of a simple electronic circuit which can be used for the
demonstration of these phenomena [28]. This electrical circuit consists of N coupled
elements (i,7). A circuit of one element is shown in Fig. 6 (a). Three ingredients
in this circuit are important: input current, time-varying resistor (TVR) and a
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nonlinear resistor. Every element is coupled with its neighbours by the resistor R,
(i.e. by diffusive coupling). The capacitor is shown by C. The nonlinear resistor Ry
can be realized with a set of ordinary diodes [47,48], whose characteristic function
is a piecewise-linear function

GV + (Gq — Gb)Bp itV <-B,,

in=f(V)=9 G,V if |V| < By, (12)
GyV — (Ga — Gb>Bp it v > B,,

where i is the current through the nonlinear resistor(Ry), V is the voltage across
the capacitor(C), and parameters G,, G, and B, determine the slopes and the
breakpoint of the piecewise-linear characteristic curve. The next important ingre-
dient is a time-varying resistor(TVR) [48,49]. The conductance G(t) of TVRs
varies with time. Presently, we consider the case that the function which represents
the variation of the TVR is a Gaussian j—correlated in space and time noise, i.e.
G(t) = &(t), where
(€(0)&; () = a78,30(t —t).

An external action on the elements under direct excitation in the circuit is
performed by the current input I(¢), which is a periodic signal (with amplitude A,
frequency w, and initial phase ¢), additively influenced by independent Gaussian
noise ((t) with intensity o2

I(t) = (1) + Aicos(wt + @), (G(1)G(t) = 030i;6(t —t').
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Fig. 6. (a) The electronic circuit of the element (4,7). (b) Numerical SNR (points) vs analytical
estimation (solid line) for the equation with f; and D = 3, 02, = 3. Numerical results are shown by
black points for the mean field and opaque points for its two-state approximation. The stochastic
resonance effect is supported by noise. If we decrease the intensity of multiplicative noise, we do
not observe it; e.g. for (c) D =3, 02, = 0.5.

1500
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The electronic circuit with respect to the element (7, ) can be described by a
set of Kirchoff’s equations:

av; ; 1
O = 1) =GOV = f(Vig) + 7= (Viray + Vieay + Vi + Vi1 — 4Viy)
Hence, the following set of Langevin equations describes the considered system:
dv; ;
i = Vi) Vi + Gy(0) + Ascos(wi + 9)65 (1) (13)

D
g Vit + Vierg + Vi + Vig-1 — 4Viy),
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where C is set to unity by normalization of time and D denotes a strength of
coupling equal to CLRC' In the case when f5 represents the TVR, the model is the
time-dependent Ginzburg-Landau equation, which is a standard model to describe
phase transitions and critical phenomena in both equilibrium and nonequilibrium
situations [3]. It is important that we consider only the situation when the potential
of one element is monostable (G, = 0.5, G, = 10, B, = 1), hence avoiding the
possibility to observe SR without multiplicative noise.

Due to the noise-induced bistability (transitions boundaries are shown in the
Fig. 4 right), this circuit will demonstrate both DSE effects considered above. We
focus on the case of DSR, i.e. an external excitation is applied to each element
and A; = A. An analytical estimation of DSR effect, calculated as in Sec. 2, is
shown in the Fig. 6 (b). The DSR effect is clearly observed in the behaviour of
SNR of the output mean voltage vs. the intensity of additive noise. To verify the
analytical results numerically, we have also performed simulations of the model (13.
We have taken a set of parameters within the region of two coexisting ordered states
with nonzero mean field. As a total system, we take a two dimensional lattice of
18 x 18 elements, which was simulated numerically with a time step At = 2.5x 1074,
The amplitude of the external signal was set to 0.1, i.e. sufficiently small to avoid
hops between two states in the absence of additive noise. The numerically obtained
dependence of SNR on the intensity of the additive noise is shown in Fig. 6(b)
for the mean-field (filled points) and the mean field in a two-state approximation
(opaque points). In this two-state approximation, we have replaced the value of the
mean field in time-series by its sign before calculating the power spectral density.
Both curves demonstrate well-known bell-shaped dependence which is typical for
SR. Let us note, that for these version of the model SNR for the mean field tends to
infinity for small values of additive noise intensity (see black points for o2 < 0.1).
Numerical simulations agree very good with our theoretical estimation despite the
very rough approximation via “effective” potential (we will study the question, what
is the parameters regions of its validity, in a following paper).

The fact that this SR effect is created by multiplicative noise, can be illustrated
as the following. If we decrease only the intensity of multiplicative noise, other pa-
rameters fixed, the SR effect is not observed, as it is shown in Fig. 6(c). The reason
is that in this case our system is not bistable (see Fig. 4 right) For experimental
setup a minimal number of elements, which are necessary for DSR observation, can
be important. Reduction of the elements number in this system leads to the fact,
that a system can spontaneously (even in the absence of forcing) perform a hop
between two states. These jumps hide DSR effect, since they destroy a coherence
between input and output. For the system size 18 x 18, considered here, such jumps
are rather seldom and do not hinder DSR. Our calculations have shown that a size
10 x 10 is still satisfactory, whereas further decrease of the elements number will
destroy the effect.

6. Summary and Outlook

I have reviewed recent findings on doubly stochastic effects. I have considered two
doubly stochastic phenomena, DSR and noise-induced propagation in monostable
media. In these phenomena the role of noise is twofold: first multiplicative noise (to-
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gether with coupling) induces a bistability in the spatially distributed system, and
then additive noise optimizes a processing or propagation of the input signal. An
optimization of both noise intensities is necessary for the demonstration of these
doubly stochastic phenomena. Noteworthy, DSR and NIP in monostable media,
considered here, differ substantially from the conventional SR and different varia-
tions of spatiotemporal SR or NIP in bistable or excitable systems (see discussion
in [26,27]).

One can distinguish between two possible directions of future research on dou-
bly stochastic effects. First, one can search for doubly stochastic effects in other
classes of systems, or doubly stochastic effects, which lead to noise-induced order-
ing of other type. For example, we are going to study doubly stochastic coherence
in excitable systems [50], where ordering means a generation of a coherent output
in neuron systems. Second, we hope that our theoretical findings will encourage
observers to perform experiments to study doubly stochastic effects. Here we have
suggested a simple electronic circuit as a possible experimental implementation of
doubly stochastic effects, in [26,27] we have discussed other appropriate experimen-
tal situations. We hope that due to its generality the concept of doubly stochastic
effects will be confirmed by experiments and used in applications, especially in signal
processing systems, such as communication systems or neuron populations.
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The generation of coherent dynamics due to noise in an activator-inhibitor system describing bistable
neural dynamics is investigated. We show that coherence can be induced in deterministically asym-
metric regimes via symmetry restoration by multiplicative noise, together with the action of additive
noise which induces jumps between the two stable steady states. The phenomenon is thus doubly
stochastic, because both noise sources are necessary. This effect can be understood analytically in the
frame of a small-noise expansion and is confirmed experimentally in a nonlinear electronic circuit.
Finally, we show that spatial coupling enhances this coherent behavior in a form of system-size

coherence resonance.
DOI: 10.1103/PhysRevLett.90.030601

Rhythm generation is a long-standing problem in sci-
ence, particularly in biological and cognitive science
contexts [1,2]. A paradigm of this kind of self-sustained
oscillating behavior in nonlinear systems is offered by
limit cycles. But even in the absence of limit cycles,
internal rhythms can be generated in nonlinear systems
by the effect of noise. An early realization of this phe-
nomenon was reported in a two-dimensional autonomous
system when operating close to a limit cycle and was
interpreted as a manifestation of stochastic resonance in
the absence of external forcing [3]. An optimal amount of
noise was also seen to lead to a maximally coherent
output in an excitable system [4]. This effect, called
coherence resonance, was studied in the well-known
FitzHugh-Nagumo model, which has been extensively
used to describe the dynamics of neural systems [5].
Coherence resonance has been confirmed in several ex-
perimental situations, such as in laser systems [6]. Fur-
thermore, it has also been predicted in a system with two
chaotic attractors [7] and in excitable media coupled via
an inhibitor concentration, provided the coupled elements
behave in antiphase [8].

A complete understanding of these different mecha-
nisms of coherence resonance is very important for the
study of rhythm generation in biological systems [2,9]
and, in particular, in neural tissue. On the other hand,
increasing experimental evidence has established in re-
cent years that certain types of neurons frequently oper-
ate in a bistable regime [10]. Thus, the question arises
whether noise can excite an autonomous coherent output
in bistable neural systems. In this direction, both standard
stochastic and coherence resonance have been observed in
a symmetrically bistable FitzHugh-Nagumo model [11].
In the present Letter, we show that coherence can also be
generated in the general asymmetric case, where the
stability of the two stable steady states is not necessarily
the same. We demonstrate that the mechanism of coher-
ence enhancement in this situation is utterly different
from the standard one, being based on the restoration of
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symmetry induced by a multiplicative source of noise.
This effect vividly contrasts with standard noise-induced
phase transitions, where noise usually leads to the break-
ing of symmetry [12].

Doubly stochastic coherence (DSC) can be observed in
an asymmetric system under the joint action of multi-
plicative and additive noises. Once multiplicative noise
induces a symmetric bistable state in the system, due to
the presence of optimal additive noise, coherence can be
maximized in the output. Hence, the resulting coherence
is doubly stochastic, since simultaneous optimization of
two noise intensities is required in order to observe the
phenomenon. The concept of doubly stochastic effects has
been introduced recently as a new mechanism of noise-
induced phenomena in the context of harmonically
driven systems [13]. These effects are usually possible
due to the interplay between additive and multiplicative
noise. In [13], multiplicative noise (in combination with
spatial coupling) induces bistability in a simple mono-
stable extended system, and additive noise induces
synchronization with the external signal in that noise-
induced bistable regime. Such doubly stochastic reso-
nance has been reported in simple electronic circuit
models [14]. Following those lines, we have shown re-
cently that doubly stochastic effects lead also to signal
propagation in simple monostable media [15]. The syn-
thesis of noise-induced transitions and noise-induced
transport reported in [16] is also related to this kind of
effects. In this Letter, we report the occurrence of DSC in
a modified version of the well-known FitzHugh-Nagumo
(FHN) model. The mechanism is explained theoretically
in the framework of a small-noise expansion of the
model, which extracts the systematic contribution of the
multiplicative noise that accounts for the symmetry res-
toration. The results of this analysis and numerical results
are confirmed by experiments on an electronic circuit.
Finally, we show that this effect can be generalized for
the case of spatially extended systems, where it leads to
synchronization induced by multiplicative noise.

© 2003 The American Physical Society 030601-1
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We consider the following version of the FHN model:

du

8= u(l —u)(u —a) — v,
dv .
T bu— v —uvé() + £(2).

In a neural context, u(f) represents the membrane poten-
tial of the neuron and v(7) is related to the time-dependent
conductance of the potassium channels in the membrane
[5]- The dynamics of u is much faster than that of v, as
indicated by the small time-scale-ratio parameter .
There are two mutually uncorrelated noise sources, rep-
resented by the §-correlated Gaussian noises £(¢) and £(z),
with zero mean and correlations (£(¢)£(¢)) = o2,8(t — ')
and (Z(1)¢(t)) = 028(t — t'). The additive noise is in-
serted in the slow-variable equation, as in most studies
of coherence resonance [4]. The multiplicative noise £() is
interpreted in the Stratonovich sense [12].

In what follows we use the parameters a = 0.15, b =
0.12, and & = 0.01, for which the deterministic system
has two stable fixed points with different stability (i.e.,
with different thresholds of escape through the extrema of
the u nullcline), as shown in Fig. 1(a) (curve 1 and its
crossing points with the u nullcline). Additive noise in-
duces here jumps between these two states, but the escape
times are very different in the two states. This behavior is
shown in Fig. 1(b), as obtained from numerical simula-
tions of model (1) for the above-mentioned parameters.

The effect of multiplicative noise in this system can be
determined by analyzing the systematic effect it produces
in the system dynamics due to the fact that the corre-
sponding fluctuating term in the v equation has a nonzero
average value. Computation of this average value by
means of standard techniques [17] leads to the following
effective deterministic model, which can be considered as
a first order approximation in a small-noise expansion of

@) [12]:
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FIG. 1. (a) Nullcline plot of the FHN model (1). Dashed line:
u nullcline (&z = 0); solid lines: v nullclines (¥ = 0) for three
different values of the multiplicative noise intensity: o2, = 0.0
(curve 1), 0.2 (curve 2), and 2.0 (curve 3). (b)—(d) Time
evolution of the activator variable u for the previous three
multiplicative noise intensities: (b) a2, = 0.0, (c) 0.2, (d) 2.0.
The intensity of additive noise is fixed to o2 = 2 X 10~4; other
parameters are given in the text.
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8% =u(l - u)u—a)—v, (2)
2
%=bu—v+%u2v+§(t). (3)

The nullclines of this model for two nonzero values of o2,
are shown in Fig. 1(a), as curves 2 and 3. It can be seen
that for an intermediate value of o2, corresponding to
curve 2, the two states are equally stable and the escape
times are basically identical. As a result, jumps in the
output of the system are more equidistant [Fig. 1(c)]. For
larger multiplicative noise intensity the asymmetry in-
creases again, this time reversed, as shown in curve 3 of
Fig. 1(a), and the system spends more time in the lower
state, as shown in Fig. 1(d) (in fact, in this extreme case
the upper steady state has turned unstable, and the system
becomes excitable).

Hence, an optimal amount of multiplicative noise opti-
mizes the symmetric response of the system. In that
situation, we can expect additive noise to be more effec-
tive in producing coherence, since the potential barrier
heights (and thus the corresponding escape times) are the
same in the two jump directions. To quantify this ex-
pected coherence enhancement, we have measured the
normalized variance of subsequent periods 7;. The illus-
tration of the definition of 7; is depicted in Fig. 1(b). The
normalized variance, which is called the coherence pa-

rameter [4], is determined as R = {/a%/(T;), where o7 is
the variance of the sequence T;, and (T;) is its average
value. The dependence of R on the multiplicative noise
intensity for the time series depicted in Figs. 1(b)—1(d) is
shown in Fig. 2 (left). It is clearly seen that R first
decreases to some minimum value and then increases
again. The minimal R corresponds to the highest degree
of periodicity in the system output and is a manifestation
of stochastically induced coherence. A similar behavior
occurs for varying the strength of the additive noise
as well, as shown in the inset of Fig. 2 (left). Different
values of the excitation threshold correspond to different
optimal intensities of the noise. To optimize the perio-
dicity, one should vary both the threshold (provided by
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FIG. 2. Left: coherence parameter R vs intensity of the multi-
plicative and additive (inset plot) noises. o2 =2 X 10™* and
o2, = 0.5, respectively. Right: contour plot of the coherence
parameter R vs intensity of the multiplicative and additive
noises (darker gray corresponds to smaller values of R).
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FIG. 3. Nonlinear electronic circuit with two asymmetrically
stable steady states. The values of the elements are R = 270 (),
L=10mH, C;, =1nF, C, =10nF, R" ' =220Q, V_=5V,
and V. =2 V. The operational amplifier is taken from a
TLO082 integrated circuit.

multiplicative noise) and the intensity of additive noise.
Both noise intensities need to be tuned in order to opti-
mize periodicity in the output [see Fig. 2 (right)], and
hence we call this effect doubly stochastic coherence.

With the aim of confirming experimentally the phe-
nomenon of DSC via noise-induced symmetry, we have
designed a circuit (Fig. 3), which has two asymmetrically
stable steady states. In this circuit, the difference between
the positive and negative voltages feeding the operational
amplifier provides the asymmetry in the stability of the
two fixed points. Multiplicative noise acts on the positive
voltage V., which is a parameter that changes the stabil-
ity of the higher voltage fixed point of the circuit [18]. A
second source of noise, which acts as a signal, induces
jumps between the two stable states and acts as an addi-
tive noise. The noise is produced electronically by ampli-
fying shot noise from a junction diode [19].

Following the numerical approach, we fix the intensity
of additive noise and increase that of multiplicative noise.
First, the upper steady state is more stable than the lower
one, and the system spends more time in the former
[Fig. 4(a)]. As the strength of multiplicative noise in-
creases, the situation is reversed [Fig. 4(c)], passing
through a symmetric regime for intermediate noise
[Fig. 4(b)]. Calculating the coherence parameter R for
the experimental time traces, we find clearly that multi-
plicative noise enhances coherence via the appearance of
symmetry [Fig. 4(d)].

We have also examined the effect of spatial coupling on
a set of distributed bistable FHN oscillators subject to two
noise sources. The model is now given by

ou.
el = u,»<]1) —u)(w; — a) — v
+ 5(ui+| + U1 — 2”[), (4)
av,-
o7 = bu; — v; — uv;£(1) + (),

where D denotes the strength of coupling and the
noise terms are now O correlated also in space,
with (&;()é,(1")) = 05,6(t — 1)8;; and (L(D);(1)) =
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FIG. 4. Time evolution of the voltage drop V; through ca-
pacitor C; for the circuit represented in Fig. 3, for three
different intensities of the multiplicative noise (measured as
peak-to-peak amplitude of the random voltage): (a) 1.6 V,
(b) 1.7 V, and (c) 1.9 V. Additive noise intensity is fixed to
0.88 V. (d) Coherence parameter vs multiplicative noise
intensity.

We now study the joint effect of additive and multi-
plicative noise on the spatiotemporal evolution of this
extended system, using a binary coding for the activator
variable u;(r), associating black or white to each one of
the two fixed points of the local bistable dynamics. The
numerical simulation results are shown in Fig. 5 for three
values of o2, and a fixed o2. As expected, the local
dynamics becomes more regular for an optimal amount
of multiplicative noise, as happens with an isolated FHN
element. However, remarkably enough, the most tempo-
rally coherent case corresponds also to the most spatially
uniform behavior of the system as a whole. To character-
ize such a synchronized coherence, we calculate the
coherence parameter R for the mean field m(r) = >, u;.
The dependence of this parameter on the intensity of
multiplicative noise is shown in Fig. 6(a) for a system of
50 coupled elements. The dependence is nonmonotonic,
reflecting the DSC characteristic of isolated elements,

0 T — 0
0 125 25 375 500 0 125 250 375 500 0 125 250 375 500
space space space

FIG. 5. Spatiotemporal evolution of a chain of FHN oscilla-
tors in the bistable regime for three intensities of the multi-
plicative noise. From left to right, o2, = 0.01, 0.2, 4. Additive
noise is fixed to o2 =4 X 107*. Coding is binary, with black
corresponding to the upper fixed point and white to the lower
one. Other parameters are D = 30, a = 0.15, b = 0.12, and
e = 0.01.
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FIG. 6. (a) Coherence parameter R of the mean field m(r) vs

intensity of the multiplicative noise for a system with
50 coupled elements. (b) The dependence of R on the size of
the system (o2, = 0.005).

although in this case the parameter measures also the
degree of synchronization in the system. Furthermore,
Fig. 6(b) shows that increasing the number of elements in
the ensemble first increases the coherence of the output (R
initially decreases), due to the synchronization of the
elements, but further increase of the system size leads
to a loss of synchronization, and thus R increases again.
The result is a system-size coherence resonance (cf. with
system-size stochastic resonance, which happens in ex-
ternally forced systems [20]). In a neural context, this
property could imply that neurons benefit from coupling
in networks of optimal size for the organization of a
pacemaker.

In conclusion, we have shown that bistable models of
neural dynamics exhibit doubly stochastic coherence via
noise-induced symmetry. This mechanism of rhythm
generation arises whenever the two stable steady states
of the system have different escape thresholds. An opti-
mal amount of multiplicative noise renders the two fixed
points equally stable, and tuning the additive noise in this
noise-induced symmetric situation maximizes the coher-
ent behavior in the system. The influence of multiplicative
noise can be explained in terms of an effective model that
contains the systematic effect of the noise term. These
results have been confirmed by experimental measure-
ments on a bistable nonlinear electronic circuit. From a
second standpoint, we have shown that this effect leads to
synchronized behavior in spatially distributed systems. In
this case, this coherence enhancement also exhibits a
resonance with respect to the size of the system; i.e., there
is some optimal size of the system for which the output is
the most periodic one. Our study has been performed in
the general framework of the paradigmatic FHN model,
in a bistable asymmetric regime which is realistic for
biological systems [10], and hence we expect that our
findings could be of importance for understanding the
mechanisms of periodicity generation in neural and other
excitable media.
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We show that external fluctuations are able to induce propagation of harmonic signals through monos-
table media. This property is based on the phenomenon of doubly stochastic resonance, where the
joint action of multiplicative noise and spatial coupling induces bistability in an otherwise monostable
extended medium, and additive noise resonantly enhances the response of the system to a harmonic
forcing. Under these conditions, propagation of the harmonic signal through the unforced medium is ob-
served for optimal intensities of the two noises. This noise-induced propagation is studied and quantified
in a simple model of coupled nonlinear electronic circuits.

DOI: 10.1103/PhysRevLett.88.010601

It is a well-established fact nowadays that dynamical
noise, which usually has a disordering impact, can be used
to induce order in nonlinear nonequilibrium systems un-
der certain conditions. Examples of this counterintuitive
influence of random fluctuations are noise-induced tran-
sitions [1—-4], stochastic transport in ratchets [S5] (also in
a synthesis with a transition [6]), or noise-induced pat-
tern formation [7]. However, one of the most far-reaching
examples is stochastic resonance (SR) [8], which has been
experimentally observed in several physical and biological
systems [9]. In the classical situation, SR consists of an
optimization by noise of the response of a bistable system
to a weak periodic signal. Besides this standard scenario,
SR has also been found in monostable [10], excitable [11],
nondynamical [12], and thresholdless [13] systems, in sys-
tems without an external force (what is called coherence
resonance) [14,15], and in systems with transient noise-
induced structure [16].

Additionally, it has been recently shown that the energy
of fluctuations can be used even more efficiently in spa-
tially extended systems, by using noise twofold: to syn-
chronize output hops across a potential barrier with an
external signal, and also to optimally construct the barrier
itself. This phenomenon is known as doubly stochastic
resonance (DSR) [17]. DSR occurs in systems of coupled
overdamped oscillators; and it is a synthesis of two basic
phenomena: SR and noise-induced phase transitions [18].
Another important and nontrivial phenomenon connected
with SR in spatially distributed systems is the phenomenon
of noise enhanced propagation, in which the propagation
of a harmonic forcing through an unforced bistable or ex-
citable medium is increased for an optimal intensity of the
additive noise [19,20].

In this Letter, we present a new propagation phenome-
non in monostable media. We show that noise can enhance
propagation in deterministically monostable media, with-
out any deterministic threshold, provided bistability is
induced by a second (multiplicative) noise and coupling
through a phase transition. Although numerous works
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about noise-induced propagation exist (e.g., [21]), to our
knowledge propagation in monostable media, which is a
very important class of dynamical systems, has not been
considered before. In what follows, we present this propa-
gation or in a general model of overdamped coupled
nonlinear oscillators. Subsequently, and for the sake of
concreteness, the phenomenon is analyzed in particular in
a simple model of coupled electronic circuits.

We study a general class of spatially distributed systems,
which are locally coupled and periodically forced:

b= ) + g EW + S Y (g - )
Jj€nn(i)
+ (1) + A;cos(wt + @), (1)

where x; is defined in a two-dimensional discrete space
of N X N cells, with i denoting the cell position
[i =i, + N(iy — 1), where i, and i, run from 1 to
N]. The sum in Eq. (1) runs over all nearest neighbors
of site i [nn(i)]. The additive and multiplicative noise
terms are mutually uncorrelated Gaussian distributed
with zero mean, and white both in space and time,
e, (G0 = 028;;6(t — 1') and (&(0)é;(1)) =
02,6;;6(t — t'). The results are averaged over the initial
phase ¢ of a harmonic forcing, which has amplitude A;
and frequency w.

In the absence of periodic forcing (A; = 0), different
types of noise-induced phase transitions can be obtained
for different forces f(x;) and g(x;) [3]. In particular, a
system with a monostable deterministic potential can un-
dergo a phase transition to a noise-induced bistable state
for a suitable stochastic forcing g(x;) [18]. There, in the
presence of a global harmonic forcing, DSR is observed
[17]. We consider in this Letter the case that the peri-
odic forcing is applied coherently along only one side, as
shownin Fig. 1 [A; = A(6, 1 + 6; » + &, 3)], and study
the propagation of this forcing action into the nonexcited
portion of the system.

Even though the results shown below are very general,
for a quantitative study we choose particular functions

© 2001 The American Physical Society 010601-1
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FIG. 1. Scheme of the spatially distributed system. The peri-

odic excitation is performed only from one side, elements under
the direct periodic action are denoted by black. All oscillators
are under the influence of noise. To study the behavior of both
driven and nondriven elements, first three columns (i, = 1,2,3)
are periodically driven; however, to achieve propagation it is
sufficient to excite only one column.

f(x) and g(x). These functions model the local dynam-
ics of the electronic circuit designed theoretically (i.e., it
is so far a thought experiment) and displayed in Fig. 2.
This circuit consists of a capacitor with capacitance C, a
time-varying resistor (TVR) with conductance G(t), a cur-
rent generator (¢), four coupling resistors R, (responsible
for the diffusive coupling with the neighbors), and a non-
linear resistor Ry, which is realized with a set of ordinary
diodes or operational amplifiers [22], and has the charac-
teristic function

(GyV + (G — Gy)B,, ifV =—B,,
iv=h(V)=1G,V, if [V] < B,,
G,V — (G4 — Gy)B,, ifV =B8,,
2

where iy is the current through the nonlinear resistor (Ry),
V is the voltage drop across it, and the parameters G, Gy,
and B, determine the slopes and the break point of its
piecewise-linear characteristic curve.

We now consider that the conductance of the TVR fluc-
tuates randomly in time [G;(¢) = &;(¢)], and that the input

FIG. 2. Nonlinear electronic circuit at element i.

010601-2

current /(z) has the form of a periodic signal to which an
uncorrelated Gaussian noise /() is added [I;(¢) = £i(¢) +
A;cos(wt + ¢)]. Under these conditions, the dynamics
of the spatially coupled system is described by Eq. (1),
where x; now represents the voltage drop across the non-
linear resistor of circuit i, and the forces are f(x) = —h(x)
and g(x) = x [22]. Additionally, C = 1 by an appropriate
time normalization, and the coupling strength D = CiRE.

SR behavior can be expected if the system is bistable
for the chosen set of parameters. Regions of bistability
can be determined approximately by means of a standard
mean-field procedure [3]. The mean-field approximation
consists of replacing the nearest-neighbor interaction by a
global term in the Fokker-Planck equation corresponding
to (1) in the absence of external forcing. In this way, we
get the steady-state probability distribution Pg:

C(m)
Pst(x, m) = \/W
X _ D _
X exp<2 . f(o)'};ngz(y)()-}i- oén) dy>, (3)

where C(m) is a normalization constant and m is the mean
field, defined implicitly by:

m = f xPg(x, m) dx . 4)
The value of m is obtained by the self-consistent solu-
tion of Eq. (4), which enables us to determine the tran-
sition lines between the ordered bistable (m # 0) and the
disordered monostable (m = 0) phases. These transition
boundaries are shown in Fig. 3 in the (D, o2) plane for
three different values of the additive noise intensity. Note
that bistability requires both multiplicative noise and cou-
pling between elements. We also find that an increase in
additive noise reduces the bistable region. This gives DSR
a special character with respect to standard SR [17].
Now, we place ourselves within the bistable regime
supported by multiplicative noise and coupling (e.g.,

6.0

4.0

20 r

0.0

FIG. 3. Mean-field transition lines between disordered monos-
table (m = 0) and ordered bistable (m # 0) phases for model
(1): 62 = 0.3 (label 1), o2 = 0.5 (label 2), and o2 = 1.0 (la-
bel 3). Here G, = 0.5, G, = 10, and B, = 1.
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D =3, o2 = 3), and investigate the propagation of a
wave through the system. To that end, we harmonically
excite the lattice from one side, as shown in Fig. 1, with
boundary conditions periodic in the vertical direction and
no-flux in the horizontal direction. The propagation will
be quantified by the system’s response at the excitation

frequency, computed as Q/) = \/ [Qii{l)]z + [QﬁéZ]Z, with

. 27n/w
ol = £ f 2m;(t) sin(wr) dr , (5)
0

nir

) ® 2mn/w
)= — f 2m;(1) cos(wt) dt , (6)
nimw Jo

where m;(t) is the field (voltage) averaged along the ver-
tical column (Fig. 1), i.e., m;(t) = %Zgﬂ Xj+(k—N(2).
The value of Q'/) for different oscillators along the chain
is shown in Fig. 4(a), for increasing intensities of additive
noise within the noise-induced bistable regime. The forc-
ing amplitude is taken to be large enough to produce hops
between the two wells in the bistable oscillators, without
the need of additive noise. Therefore, for the first oscilla-
tors an increase of additive noise leads only to a decreas-
ing response at the forcing frequency, whereas for distant
oscillators the situation changes qualitatively. There, a re-
sponse is induced that depends nonmonotonically on the
additive noise intensity. Clearly, a certain amount of ad-
ditive noise exists for which propagation of the harmonic
signal is optimal. For smaller o2 [Fig. 4(b] the system
leaves the bistable region; hence the response is small and
always monotonically decreasing. Hence, the resonantlike

1.0 0.8
0.8 3000035382 @ %4 ©
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FIG. 4. Response Q'/ to a periodic excitation in different
columns (the order j is shown in the curve labels) vs additive-
noise intensity (a),(c) inside the bistability region (o2, = 3), and
(b),(d) outside that region (62 = 0.5). As shown in Fig. 1, the
oscillators with index j = i, = 1,2,3 are directly excited by
the periodic force, and oscillators with j = i, > 3 are excited
through the excitation propagation. Parameters are those of
Fig. 3, and D = 3. The amplitude is: (a),(b) A = 0.3 (noise-
induced propagation) and (c),(d) A = 0.2 (spatiotemporal
doubly stochastic resonance).
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effect requires suitable intensities of both the additive and
multiplicative noises.

A propagation of the harmonic signal can also be
obtained for values of the forcing amplitude small enough
so that hops are not produced in the directly excited sites
in the absence of additive noise. This is the regime in
which DSR really occurs in the excited part of the system,
and the excitation propagates through the rest of the lattice
enhanced by noise. Now all the oscillators have a non-
monotonic dependence on the additive noise intensity
for a multiplicative noise within the bistable region
[Fig. 4(c)], and a monotonic one for a multiplicative noise
within the monostable region [Fig. 4(d)]. The former case
corresponds to a spatiotemporal propagation in the DSR
medium, and we call this phenomenon spatiotemporal
doubly stochastic resonance (SDSR).

The mechanism of this phenomenon can be explained
theoretically on the basis of a mean-field approximation.
We give a first qualitative glimpse of this analysis in what
follows; quantitative details will be published elsewhere.
Because of coupling and multiplicative noise, the system
becomes bistable with the behavior approximately gov-
erned by a mean-field effective potential [17]

2.2
onX

Ueff(x) = Up(x) + Unoise = _ff(x)dx -
(N

Now the effect can be understood in the frame of a
standard SR mechanism [8], where the external signal is
provided by the periodic force for the directly excited os-
cillators, and by the influence of the left neighbors for
the nonexcited oscillators. For large forcing, only the lat-
ter need an additive noise to hop synchronously between
wells, whereas for small forcing, both the excited and the
nonexcited oscillators display SR. These two behaviors
correspond to Figs. 4(a) and 4(c), respectively.

At this point it is worth making several remarks to the
phenomenon described above. First, SDSR and noise-
induced propagation in monostable media are strongly
different to spatiotemporal SR [23] or noise enhanced
propagation [19] in bistable media. The effect presented
here can be controlled by multiplicative noise, which modi-
fies the depth and separation of the two potential wells.
Therefore, an optimal amount of multiplicative noise is
required to support the bistable structure. Nothing similar
occurs in array-enhanced SR [24] or in SR in extended
bistable systems [25]. On the other hand, an increase
of additive noise also leads to a loss of bistability (see
Fig. 3), and hence a decrease of Q for large additive noise
is explained not only by the fact that disordered hops are
produced by intense noise, as in standard SR, but also by
the loss of bistability. Second, noise-induced propagation
in monostable media is very intriguing from the viewpoint
of the theory of extended systems with noise and cannot be
directly predicted from DSR. The noise-induced bistabil-
ity, on which DSR is based, is a collective phenomenon,

010601-3
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which can be observed only for a positive value of
coupling enabling all elements to be close to the same
position. In contrast to it, here we have shown that a
propagation, which implies that different cells are simul-
taneously in different states, can occur in such a system
without destroying the mechanism of bistability.

In conclusion, we have reported the existence of a
propagation phenomenon, in which noise induces wave
propagation in monostable media. The joint action of mul-
tiplicative noise and spatial coupling induces bistability,
and additive noise enhances the propagation of harmonic
forcing in the stochastically induced bistable medium.
Because of its nontrivial propagation mechanism, this
effect can be considered as a contribution to the theory of
extended systems with noise. We also expect that these
theoretical findings will stimulate experimental work.
Especially, such kind of a propagation can be of great im-
portance in communications, due to the fact that the energy
of noise is used in a very efficient way, both to construct
the potential barrier and to provide propagation enhance-
ment in the noise-supported bistable system. We have
demonstrated noise-induced propagation in monostable
media in a simple realistic model, but in a general frame-
work. Because of the generality of the model we expect
that this effect can be also found in several more compli-
cated real extended systems with noise-induced bistability.
Probable experimental implementations include arrays
of simple electronic circuits as a communication system
[22], analog circuits [26], electronic cellular neural net-
works [27], and are expected to be achieved in several
real spatially distributed systems, such as liquid crystals
[28], photosensitive chemical reactions [29], Rayleigh-
Bénard convection [30], or liquid helium [31].
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We consider an ensemble of coupled nonlinear noisy oscillators demonstrating in the thermodynamic
limit an Ising-type transition. In the ordered phase and for finite ensembles stochastic flips of the mean
field are observed with the rate depending on the ensemble size. When a small periodic force acts on
the ensemble, the linear response of the system has a maximum at a certain system size, similar to the
stochastic resonance phenomenon. We demonstrate this effect of system size resonance for different
types of noisy oscillators and for different ensembles—lattices with nearest neighbors coupling and
globally coupled populations. The Ising model is also shown to demonstrate the system size resonance.

DOI: 10.1103/PhysRevLett.88.050601

Stochastic resonance has attracted much interest re-
cently [1]. As was demonstrated in [2], a response of a
noisy nonlinear system to a periodic forcing can exhibit a
resonancelike dependence on the noise intensity. In other
words, there exists a “resonant” noise intensity at which
the response to a periodic force is maximally ordered. Sto-
chastic resonance has been observed in numerous experi-
ments [3]. Noteworthy, the order in a noise-driven system
can have a maximum at a certain noise level even in the
absence of periodic forcing, this phenomenon being called
coherence resonance [4].

Being first discussed in the context of a simple bistable
model, stochastic resonance has been also studied in com-
plex systems consisting of many elementary bistable cells
[5]; moreover, the resonance may be enhanced due to cou-
pling [6]. In this paper we discuss another type of reso-
nance in such systems, namely, the system size resonance,
when the dynamics is maximally ordered at a certain num-
ber of interacting subsystems. Contrary to previous reports
of array-enhanced stochastic resonance (cf. also [7]), here
we fix the noise strength, coupling, and other parameters;
only the size of the ensemble changes.

The basic model to be considered below is the ensemble
of noise-driven bistable overdamped oscillators, governed
by the Langevin equations,

N

b=l Y ) VIDED ).
J=

o))

Here &;(t) is a Gaussian white noise with zero mean:
(€i(1)€;(t")) = 6;;6(t — 1'); & is the coupling constant;
N is the number of elements in the ensemble, and f(¢) is
a periodic force to be specified later. In the absence of pe-
riodic force, the model (1) has been extensively studied in
the thermodynamic limit N — . It demonstrates an Ising-
type phase transition at € = g, from the disordered state
with vanishing mean field X = N~'Y; x; to the “ferro-
magnetic” state with a nonzero mean field X = *Xj [8].
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While in the thermodynamic limit the full description of
the dynamics is possible, for finite system sizes we have
mainly a qualitative picture: In the ordered phase the mean
field X switches between the values *Xj and its average
vanishes for all couplings. The rate of switchings depends
on the system size and tends to zero as N — .

For us, the main importance is the fact that qualitatively
the behavior of the mean field can be represented as the
noise-induced dynamics in a potential with one minimum
in the disordered phase (at X = 0) and two symmetric min-
ima (at X = *=Xj) in the ordered phase. Now, applying
the ideas of the stochastic resonance, one can expect in the
bistable case (i.e., in the ordered phase for small enough
noise or for large enough coupling) a resonantlike behav-
ior of the response to a periodic external force when the
intensity of the effective noise is changed. Because this
intensity is inverse proportional to N, we obtain the reso-
nancelike curve of the response in dependence of the sys-
tem size. The main idea behind the system size resonance
is that in finite ensembles of noise-driven or chaotic sys-
tems the dynamics of the mean field can be represented
as driven by the effective noise whose variance is inverse
proportional to the system size [9]. This idea has been ap-
plied to the description of a transition to collective behav-
ior in [10]. In [11] it was demonstrated that the finite-size
fluctuations can cause a transition that disappears in the
thermodynamic limit.

Before proceeding to a quantitative analytic description
of the phenomenon, we illustrate it with direct numerical
simulations of the model (1), with a forcing term f(¢) =
Acos(Qr). Figure 1 shows the linear response function,
i.e., the ratio of the spectral component in the mean field
at frequency () and the amplitude of forcing A, in the
limit A — 0. For a given frequency () the dependence on
the system size is a bell-shaped curve, with a pronounced
maximum. The dynamics of the mean field X(¢) is il-
lustrated in Fig. 2, for three different system sizes. The
resonant dynamics (Fig. 2b) demonstrates a typical for

© 2002 The American Physical Society 050601-1
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FIG. 1. Linear response of the ensemble (1) (D = 0.5, ¢ = 2)
in dependence on the frequency and the system size N.

stochastic resonance synchrony between the driving peri-
odic force and the switchings of the field between the two
stable positions.

To describe the system size resonance analytically, we
use, following [8], the Gaussian approximation. In this
approximation, one writes x; = X + §; and assumes
that 6; are independent Gaussian random variables with
zero mean and the variance M. Assuming furthermore
that N71Y; 87 = M and neglecting the odd moments
NS 8;, N"13. 87, as well as the correlations between
0; and &, we obtain from (1) the equations for X and M:

X=X — X3 —3MX + 1/271) n() + f(), @)

M =M —3X*M —3M> —eM + D, (3)

mean field X

| |
0 1000 2000 3000

time ¢t

FIG. 2. The time dependence of the mean field in the ensemble
(1) for D = 0.5, e =2, A = 0.02, Q = 7/300, and different
sizes of the ensemble: (a) N = 80, (b) N = 35, and (c) N =
15. We also depict the periodic force (its amplitude is not in
scale) to demonstrate the synchrony of the switchings with the
forcing in (b).
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where 7 is the Gaussian white noise having the same
properties as &;(7). In the thermodynamic limit N — o
the noisy term 7 vanishes. If the forcing term is absent
(f = 0), the equations coincide with those derived in [8].
This system of coupled nonlinear equations exhibits a
pitchfork bifurcation of the equilibrium X = 0, M > 0 at
€. = 3D. This bifurcation is supercritical for D > 2/3
in accordance with the exact solution of (1) given in [8];
below we consider only this case. For € > g, the system
is bistable with two symmetric stable fixed points,

Xo=Q2—-e+9)/4, My=Q2+¢e—9)/12 (4

[here S = /(2 + €)> — 24D ], and the unstable point
X=0 M=[1—-ge++( —¢?+12D]/6. Now,
with the external noise 1 and with the periodic force
f(z), the problem reduces to a standard problem in the
theory of stochastic resonance, i.e., to the problem of the
response of a noise-driven nonlinear bistable system to an
external periodic force (because the noise affects only the
variable X, it does not lead to unphysical negative values
of variance M, since M is strictly positive at M = 0).

To obtain an analytical formula, we perform further sim-
plification of the system (2) and (3). Near the bifurcation
point, we can use the slaving principle to obtain a standard
noise-driven bistable system:

X = aX — bX3 +1/27Dn(t) + f(r), )

where a =1+ 05(s — 1) — 0.5\/(¢ — 1)2 + 12D,
b=—-05+15&— D[ — 1) + 12D]" V2. A bet-
ter approximation valid also beyond a vicinity of the criti-
cal point can be constructed if we use b = aX, ? instead
of b, where the fixed point Xy is given by (4). Having
written the ensemble dynamics as a standard noise-driven
double-well system (5) (cf. [1,12]), we can use the ana-
Iytic formula for the linear response R derived in [12]. It
reads

o — NXo <D_3/2(—ﬁ)>2[1 Lm0’
2Da D_l/g(—ﬁ) 2612

]

(6)

where s = aNX}/(2D), and D are the parabolic cylin-
der functions. We compare the theoretical linear response
function with the numerically obtained one in Fig. 3. The
qualitative correspondence is good; moreover, the max-
ima of the curves are rather good reproduced with the
formula (6).

Above, we concentrated on the properties of the linear
response. Numerical simulations with the finite forcing
amplitude yielded the results similar to that presented
in Figs. 1 and 3. However, for large amplitudes of
forcing (e.g., A > 0.1 for Q) = 0.01, D = 0.5, ¢ = 2)
a saturation was observed: Here the response grows
monotonically with N. This is in full agreement with the
corresponding property of the stochastic resonance in
double-well systems of type (5), where the saturation
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FIG. 3. Comparison of the system size dependencies of the

linear response function for frequencies {1 = 0.05 (circles) and
Q = 0.1 (squares) with theory (6). The parameters are D = 1
and € — g, = 2.5 (where the exact &, and the approximate
g, = 3D are used for the ensemble and the Gaussian approxi-
mation, respectively). Inset: Dependence of the system size
yielding maximal linear response on the driving frequency ()
[circles: simulations of the ensemble (1), line is obtained by
maximizing the expression (6)].

occurs for small noise intensities (cf. Fig. 7 in [1]), due
to the disappearance of multistability for large forcing
amplitudes.

It is instructive to compare the response of the noise-
driven system (1) with the noise-free case D = 0. Without
external force, the ensemble relaxes eventually to a steady
state solution with some mean field X; in this state each
oscillator can be in one of the stable steady positions of
the potential; correspondingly, the oscillators form one or
two clusters. From the clustering it follows that the linear
response does not depend on the number of elements in
the ensemble. Our numerical experiments demonstrated
also that the response is system size independent for large
forcing amplitudes as well, where, e.g., the force-induced
cluster mergings occur. Thus, the effect of system size
resonance essentially relies on the presence of noise, which
breaks the clustering.

Above, we have considered the system of globally cou-
pled nonlinear oscillators (1). The same effect of system
size resonance can be observed in a lattice with nearest
neighbors coupling as well. In the thermodynamic limit,
the Ising-type phase transition occurs in the lattice (if its
dimension is larger than one). Similar to the globally
coupled ensemble, in finite lattices in the ordered phase
the switchings between the two stable states of the mean
field are observed. With the same argumentation as above,
we can conclude that the response of the mean field to
a periodic forcing can have a maximum at a certain lat-
tice size, while all other parameters (noise intensity, cou-
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pling strength, etc.) are kept constant. We illustrate this
in Fig. 4.

As the next example we consider the two-dimensional
nearest neighbor Ising model in the presence of a time-
dependent external field. The Hamiltonian of the system
reads

H=—JY si5; — Acos(Q1) D s;, (7
(i) i

where / > Oand s; = *1. We are interested in the depen-
dence of the response of the mean magnetization m(z) =
%Zi s;(¢) on the system size N (for the usual stochastic
resonance in the Ising model, i.e., for the dependence of
the response on the temperature, see [13]). To calculate the
linear response, we used the fluctuation-dissipation theo-
rem and obtained this quantity by virtue of the power spec-
trum of fluctuations of m(¢). The latter was found using
the Metropolis Monte Carlo method on a lattice with he-
lical boundary conditions [14]. The results presented in
Fig. 5 demonstrate the system size resonance of the linear
response in the two-dimensional Ising model.

As the last example of the system size resonance, we
consider a lattice where each individual element does
not exhibit bistable noisy dynamics, but such a behavior
appears due to interaction and multiplicative noise. This
model is described by the set of Langevin equations
[15,16]:

. €
xi = —x;(1 + Jcl-z)2 + EZ(xj — Xi)
J

+ V2D &) (1 + x,?) + f(1). (8)

As has been demonstrated in [15], in some region of cou-
plings the & system (8) exhibits the Ising-type transition.

021

<
O
T

response
(=]

0.05

0o 20 40 60 80 100

FIG. 4. Filled circles: Response of a two-dimensional lattice
of N with nearest neighbors coupling for A = 0.02, T = 500,
D = 0.5, and € = 4. Squares: Response of system (8) (a two-
dimensional lattice with D = 1.25, ¢ = 30, A =0.1,and T =
140). Circles: The same as squares, but for a globally coupled
lattice with D = 1, ¢ = 20, A = 0.1, and T = 100.
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FIG. 5. Linear response (in arbitrary units) of the Ising model
(7) for the temperature T = 2J slightly below the critical tem-
perature T, = 2.269J.

If an additional additive noise is added to (8), then one
observes transitions between these states and the so-called
double stochastic resonance in the presence of the periodic
forcing [17]. As is evident from the considerations above,
such transitions occur even in the absence of the additive
noise if the system is finite. Thus, the system size reso-
nance should be observed in the lattice (8) as well. We
confirm this in Fig. 4.

Another possible field of application of the system size
resonance is the neuronal dynamics (see, e.g., [18]). Indi-
vidual neurons have been demonstrated to exhibit stochas-
tic resonance [3,19]. While in experiments one can easily
adjust noise to achieve the maximal sensitivity to an ex-
ternal signal, it may not be obvious how this adjustment
takes place in nature. The above consideration shows that
changing the number of elements in a small ensemble of
coupled bistable elements to the optimum can significantly
improve the sensitivity (cf. [5]). Moreover, changing its
connectivity and/or coupling strength, a neuronal system
can tune itself to signals with different frequencies.

In conclusion, we have shown that, in populations of
coupled noise-driven elements, exhibiting in the thermody-
namic limit the Ising-type transition, in the ordered phase
(i.e., for relatively small noise and large coupling) the re-
sponse to a periodic force achieves maximum at a certain
size of the system. We demonstrated this effect for the
Ising model, as well as for lattices and globally coupled
ensembles of noisy oscillators. We expect the system size
resonance to occur also in purely deterministic systems
demonstrating the Ising-type transition, e.g., in the Miller-
Huse coupled map lattice [20]. The system size resonance
is described theoretically by reducing the dynamics of the
mean field to a low-dimensional bistable model with an ef-
fective noise that is inverse proportional to the system size.
The stochastic resonance in the mean field dynamics then
manifests itself as the system size resonance.
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We have recently reported the phenomenon of doubly stochastic resoffimge Rev. Lett.85, 227
(2000], a synthesis of noise-induced transition and stochastic resonance. The essential feature of this phenom-
enon is that multiplicative noise induces a bimodality and additive noise causes stochastic resonance behavior
in the induced structure. In the present paper we outline possible applications of this effect and design a simple
lattice of electronic circuits for the experimental realization of doubly stochastic resonance.

DOI: 10.1103/PhysRevE.63.020103 PACS nuner05.40—-a, 05.70.Fh

Investigations of phenomena such as noise-induced phaseent is coupled with its neighbors by the residRr(i.e., by
transitions [1-5], stochastic transport in ratchef§], or  diffusive coupling. The capacitor is shown bg. The non-
noise-induced pattern formatigi] have shown that the en- linear resistoiRy can be realized with a set of ordinary di-
ergy of noise, which was usually considered as a nuisance iddes[26,27], whose characteristic function is a piecewise-
any communication, can be potentially useful to induce ordefinear function
in nonlinear nonequilibrium systems. One of the most impor- .
tant examples is Ztochastic zasona(ﬁa) [8,9], which hasIO CpV+(Ga=Gp)Bp if V<—By
been found in different engineerim@0] and natural systems in=Ff(V)=1{ GaV if [V[<Bp, (1)
[11]. Ip the co'n'ventlo'nal S|tuat|op t.hIS effec't consists of 'ghe GpV—(Ga—Gp)B, if V=B,
following: additive noise can optimize the signal processing
in a bistable system, i.e., it increases the signal-to-noise rati@herei  is the current through the nonlinear resistggJ, V
in the output if a periodic signal acts upon a system. Injs the voltage across the capacit@)( and parameter§,,
addition to this conventional situation, SR has been alsg, andB, determine the slopes and the breakpoint of the
found in monostable systenjd2], systems with excitable pjecewise-linear characteristic curve. Another way to realize

dynamics[13], noisy nondynamical systenid4], systems the nonlinear resistor is via a third-order polynomial func-
without an external forcg15] (note also coherence reso- tjon,

nance[16]), systems without any kind of threshdl@i7], and

systems with transient noise-induced struc{ur@). in="F2(V)=g,V+g,V°.

However, the energy of noise can be used much more . ) ) ) i _ _
efficiently: The main point is to use noise not only for a "€ Next important ingredient is a time-varying resistor
synchronization of output hops across a potential barrier with TVR) [28,27. The conductanc&(t) of TVRs varies with
an external signal, but also for the construction of this barfime. Presently, we consider the case that the function which
rier. This happens in the effect of doubly stochastic resofepresents the variation of the TVR is Gaussfacorrelated

nance(DSR) [19]. In DSR the influence of noise is twofold: N space and time noise, i.&(t) = £(t), where

additive noise induces resonancelike behavior in the struc- 2 L

ture, which has been, in turn, induced by multiplicative (&g (M) =omdiot—t").

noise. DSR occurs in a spatially distributed system of  Ap external action on the circuit is performed by the cur-
coupled_ overdamped_ oscillators and can be cons_lder_ed asi@nt inputl (t), which is a periodic signalwith amplitudeA,
synthesis of two basic phenomena: SR and a nmse—mducq quencyw, and initial phasep), additively influenced by

phase transitio20]. independent Gaussian noi
An important question is, How can we observe DSR in P 541,

experimental systems? We have mentioned in Reéf] sev- ; ;
eral appropriate real systems: analog circyi4], liquid | i
crystals [22], photosensitive chemical reactionf23],
Rayleigh-B@ard convectiorj24], or liquid helium[25]. In

the present Rapid Communication we design an electronic Rc
circuit for the observation of DSR. The most direct way is --—WW -
the realization through analog circuits, but there are compli-

cations due to the complex construction of every unit; hence, noise ~ oise
it is worth looking for a simpler electronic circuit model that + - é
exhibits the DSR property. With this aim we consider an  signal

Re

electrical circuit which consists df coupled elementsi(j). e c L
A circuit of one element is shown in Fig. 1. Three ingredi-

ents in this circuit are important: the input current, a time- -

varying resistor(TVR), and a nonlinear resistor. Every ele- FIG. 1. Electronic circuit of the element,{).

1063-651X/2001/6@)/0201034)/$15.00 63 020103-1 ©2001 The American Physical Society
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I(t)=¢(t)+Acog wt+ o), 6.0
where
! ! 40 [
(GOGE)) =088, 8(t—t").
(m)]
The electronic circuit with respect to the elemengj)
can be described by a set of Kirchoff's equations, 20
C—p ~1O=GMV = T1AVij)
0.0 :
0 2 4 , 6 8 10
1 c
+ 5 (ViggjTVicgtVije1tVij-1—4Vi)). m

Re
5 FIG. 2. Transition lines for the equation with functidp: ai
(20 —0.3(label D, 0.5(label 2, and 1(label 3. Also the case witH,

- : . . the potential of every element is monostabde>0,9,=1); 9,
Hence, the following set of Langevin equations describes thé:l,gg=o.s (label 4, 0.9 (label 5, and 1(label 6.

considered system,

dvi | D A self-consistent sp!ution_w of Eq5) determines th_e mean
d—t':—fl,z(Vi,j)+Vi,j§i,j(t)+z(Vi+1,j+Vi—1,j+Vi,j+1 field and the transition lines between ordered blsta@e (
#0) and disordered monostablen€ 0) phases. Transition
+Vij-1—4V )+ () +Acod ot + o), (3)  boundaries for function$; andf, are shown in Fig. 2. Note
' ’ ' that bistability is impossible without multiplicative noise and
whereC is set to unity by normalization of time arld de- ~ without coupling between elements. Since the SR effect, de-
notes a strength of coupling equal toC&.. In the case scribed below, appears due to the variation of additive noise,
when f, represents the TVR, the model is the time-itis also important that a change of the additive noise inten-
dependent Ginzburg-Landau equation, which is a standarsity shifts transition boundaries.
model to describe phase transitions and critical phenomena Next we estimate the signal-to-ratiSNR) analytically.
in both equilibrium and nonequilibrium situatiofid]. It is Following the short-time evolution approximation, first intro-
important that we consider only the situation when the po-duced in[29] and further developed i¥80,19, the dynamics
tential of one element is monostablé{=0.5, G,=10, and of the mean field is governed by an “effective” potential
B,=1 for f; g;>0 andg,=1 for f,), avoiding the possi- Uei(X), which has the form
bility to observe SR without multiplicative noig&he effect 2
of SR in the system, which consists of bistable elements, is Ueff(V)ZUo(V)JFUnoise:f f(V)dx— Im ,
well-known and beyond the scope of this paper 4
We are interested in the behavior of the mean frald)
=(IN)=L =L,V (1) and consider it as an output and the WhereUo(V) is a monostable potential ardhqs. represents
periodic signal as an input of the whole system. SR behaviothe influence of the multiplicative noise. Note that this ap-
can be expected if the system is bistable for the chosen set §foach is valid only if a suppression of fluctuations, per-
parameters. Regions of bistability can be determined bjormed by the coupling, is sufficient. It means that the cou-
means of a standard mean-field theAWFT) procedurg 3]. pling strength should tend to infinity, or actually be large
The mean-field approximation consists of rep]acing theenOUgh. DSR is expected for the regions where this effective
nearest-neighbor interaction by a g|oba| term in the Fokkerpotentia| has a bistable form. To obtain an analytical estima-
Planck equation corresponding to E@). In this way, we tion of SNR for one element we use a standard linear re-
obtain the following steady-state probability distributiog: ~ SPonse theory9,31], yielding

2

(6)

c(m) sNR-2TA @
= r ,
We(XM) = ey e
ong°(X)+ oy ¢
xf, (y)—D(y—m) wherer, is the corresponding Kramers rd@2]
xext| 2| e W @
0 (o3 g ” n
md LY é 3 \/(|Ueff(V)|v=vmin|Ueff(V)|v=vma>) 2AU o
where C(m) is a normalization constant armd is a mean M= 2 B o |
field, defined by the equation ¢ (8)
I Further, we rescale this value by the numib&of ele-
m XWX, m)dx. (5 : - . .
—o ments in the circuif33] and take into account the processing
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500

effect quantitatively, we have calculated the SNR by extract-
ing the relevant phase-averaged power spectral deB&iy
and taking the ratio between its signal part with respect to the
noise backgroundi9]. The dependence of the SNR on the
intensity of the additive noise is shown in FigiaBfor the
mean field(closed circlesand the mean field in a two-state
approximation(open circleg In this two-state approxima-
tion, we have replaced the value of the mean field in time-
series by its sign before calculating the power spectral den-
sity, using the method of symbolic dynami&6], standardly
used to investigate SIO]. Both curves demonstrate well-
known bell-shaped dependence that is typical for SR. In con-
0 trast to two-state approximation, for the mean field, SNR
0.0 - : : tends to infinity for small values of multiplicative noise in-
tensity (see closed circles foar§<0.1). It can be explained
by intrawell dynamics in the same way as in the conven-
(b) tional SR[9]. Numerical simulations agree very well with
° our theoretical estimation despite the very rough approxima-
tion via “effective” potential (we will study the question,
100 0@ what is the parameters regions of its validity, in a future
O e | publication.
o ° Note that this SR effect is created by multiplicative noise,
0@ since a bimodality is induced by the combined actions of the
.O.O . multiplicative noise and the coupling. If we decrease only
500 o 1 the intensity of multiplicative noise, other parameters fixed,
g the SR effect is not observed, as is shown in Figp).3The
0 o O LA, reason is that in this case our system is not bistése Fig.
2). For f, the behavior is similar: DSR is observed for
%.0 2 20 =1,0,=1,D=5, ¢2=5, but not fore>,=3,D=5. For the
0, experimental setup a minimal number of elements, which is
neccessary for DSR observation, can be important. Reduc-
FIG. 3. (@) Numerical SNR(circles vs analytical estimation tion of the element number in this system leads to the fact
(solid line) for the equation withf, andD=3,02=3. Numerical that a system can spontaneou&yen in the absence of forc-
results are shown by closed circles for the mean field and opemg) perform a hop between two states. These jumps hide the
circles for its two-state approximation. The stochastic resonanceyop offect. since they destroy a coherence between input
ef_fect_ is supported by noise. If we _decrease the intenzsity of multi-and output.’ For the system size 188, considered here,
plicative noise, we do not observe it, e.g., ) D=3,0m=05. ¢, 5 s are rather selddi@6] and do not hinder DSR.
Our calculations have shown that a size<tI® is still satis-
factory, whereas further decrease of the element number will
destroy the effect.
In conclusion, we have proposed a rather simple elec-
SNR¢=SNF§&+1 ) tronic circuit implementation of the DSR effect in order to
A ' encourage observers to perform this or a similar experiment.

For the parameters, used below for numerical simulationd IS important to add that in spite of the fact that the DSR
(62=3, A=0.1, N=324, G=0.7, andA=0.012), we ob- can be interpreted as some modification of SR, there are
m ’ by y Ay . s

tain the analytic estimation of the SNR, shown in Figa)3 ;everal impprtant distingtions petyveen DSR and conven-
by the solid line. Except for the application for electronict'or.'aI SR: FII’S.t, a potential barrler. IS support_eq by multipli-
circuits, this calculation also shows that DSR can be opcative noise; it means that DSR is very effl_c:lent f“’”.‘ the
served not only in the specific model described in R&S). energetic viewpoint. Another consequence _|s_tha_\t th's. SR
In order to verify the results obtained by our rough ana-gffect can be controlled by a variation of multiplicative noise
lytical approximation, we have performed simulations of INtensity. _Second, In contrast to SR’ the ar.n.phtud(_a.of.hops IS
model (3) using numerical methods described in Re#]. changed if we change the intensity of additive ndisenilar

We have taken a set of parameters within the region of twdP Fig. 3 from[19]). This is explained by the fact that an

coexisting ordered states with nonzero mean field. As a tota['c"®2s€ of additive noise mfluenpes the.transmon lisee
system, we take a two-dimensional lattice of<IE8 ele- ig. 2) and decreases the mean field, which corresponds to a

ments, which was simulated numerically with a time Stepstable position in the absence of the external force.

At=2.5x10*. The amplitude of the external signal was set A.Z. acknowledges financial support from MP@Ger-
to 0.1, i.e., sufficiently small to avoid hops between twomany) and from ESA(MPA AO-99-030, and J.K. support
states in the absence of additive noise. To describe the SfRom SFB 555(Germany.
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gain G and the bandwidtiA in the power spectral density
[31]. The SNR, of the mean field of the whole system Nf
elements is then
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We report the effect of doubly stochastic resonance which appears in nonlinear extended systems if the
influence of noiseistwofold: A multiplicative noise induces bimodality of the mean field of the coupled
network and an independent additive noise governs the dynamic behavior in response to small periodic
driving. For optimally selected values of the additive noise intensity stochastic resonance is observed,
which is manifested by a maximal coherence between the dynamics of the mean field and the periodic
input. Numerical simulations of the signal-to-noise ratio and theoretical results from an effective two

state model are in good quantitative agreement.

PACS numbers: 05.40.Ca, 05.45.Tp, 05.70.Fh

The subject of this Letter is at the borderline of two
basic phenomena nowadays attracting significant interest
of a broad readership. Both phenomena are marked out
by the surprising ability of noise to create more order
in the behavior of nonlinear systems when the intensity
of the noise is increased. The first class of phenom-
ena is noise-induced phase transitions, intensively inves-
tigated since the 1980s. Within the investigated models
the appearance of new maxima in the system probabil-
ity distribution, which has no counterpart in the determin-
istic description, has been observed [1]. The excitation
of noise-induced oscillations [2,3] and the creation of a
mean field in spatially extended systems [4—6] are further
examples; various applications are discussed widely and a
description of many other noise-induced behaviors, even
of inhomogeneous structures, can be found in [1,4,6], and
references therein.

The second basic phenomenon is stochastic resonance
(SR) [7,8], which has been found in many natural
systems [9]. The conventional situation is the Brownian
motion in a bistable potential modulated by an external
periodic force. For an optimally selected strength of noise,
the Brownian particle hops coherently to the periodic
input between the two wells. In addition to this situation,
SR has been aso found and investigated in a large variety
of different classes of systems. monostable systems
[10], systems with excitable dynamics [11], noisy non-

dynamical systems[12], systems without an external force
[13], and systems without any kind of threshold [14].

However, SR has not been considered in systems with a
noise-induced structure [15]. Therefore, we present in this
Letter a new type of SR in a system with a noise-induced
nonequilibrium phase transition resulting in a bistable be-
havior of the mean field. We call this effect doubly sto-
chastic resonance (DSR) to emphasize that additive noise
causes a resonancelike behavior in the structure, which in
its own turn is induced by multiplicative noise.

This DSR is demonstrated on a nonlinear lattice of
coupled overdamped oscillators first introduced in [5] and
further studied in [6,16]. The following set of Langevin
equations describes the considered system:

xi = f(x;) + g(xi)é&i(r)
+ Z%Z(xj —x) + 4() + Acos(wr + @),
J
D

where x;(r) represents the state of the ith oscillator, i =
1,...,L%, inthe cubic lattice of thesize L in d dimensions
andwith N = L9 elements. The sum runs over 2d nearest
neighbors of the ith cell, and the strength of the coupling is
measured by D. The noisy terms &;(¢) and Z;(¢) represent
mutually uncorrelated Gaussian noise, with zero mean and
uncorrelated both in space and time

0031-9007/00/85(2) /227(5)$15.00 © 2000 The American Physical Society 227
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(fi(l)fj(l/» = U§5i,j5(f -1, 2
GGy = 078:;8(t — 1'). ©)
The last item in (1) stands for an external periodic force
with amplitude A, frequency w, and initial phase ¢.
For the sake of simplicity, the functions f(x) and g(x)
are taken to be of the form [5]:

fx) = —x(1 +x»)%  gx)=1+ x% 4

In the absence of external force (A = 0) this model can
be solved analytically by means of a standard mean-field
theory (MFT) procedure [4]. The mean-field approxima-
tion consists in replacing the nearest-neighbor interaction
by aglobal term in the Fokker-Planck equation correspond-
ing to (1). In this way, one obtains the following steady-
state probability distribution wy;:

il m) = )
o wlaégz(x) + 0'?
T f) - Dl —m)
% exp<2 0 aégz(y) + a'? dy),

®)
where C(m) is a normalization constant and 2 is a mean
field, defined by the equation

m = fistt(x,m) dx . (6)

Solving Eq. (6) self-consistently with respect to the vari-
able m one determines transitions between ordered (m #
0) and disordered (m = 0) phases. Transition boundaries
between different phases are shown in Fig. 1 and the cor-
responding dependence of the order parameter on aé is
presented in Fig. 2. In addition to [5], we show influence
of additive noise resulted in the shift of transition lines.
For o7 = 0 an increase of the multiplicative noise causes
adisorder-order phase transition, which is followed by the
reentrant transition to disorder [5]. In the ordered phase
the system occupies one of two symmetric possible states
with the mean fieldsm; = —m, # 0, depending on initial
conditions.

Now let us turn to the problem of how system (1)
responds to periodic forcing. We have taken a set of
parameters (0'?; D) within the region of two coexisting or-
dered states with nonzero mean field. In particular, we
choose values given by the dot in Fig. 1. As for the net-
work, we take atwo-dimensional lattice of L2 = 18 X 18
oscillators, which issimulated numericaly [17] with atime
step Ar = 2.5 X 10~ under the action of the harmonic
external force. The amplitude of the force A has to be set
sufficiently small to avoid hops in the absence of additive
noise during the simulation time of a single run which is
much larger than the period of the harmonic force [18].
Jumps between m; < m, occur only if additive noise is
additionally switched on. Runs are averaged over different
initial phases.

228

Time series of the mean field and the corresponding pe-
riodic input signal are plotted in Fig. 3 for three differ-
ent values of 7. The current mean field is calculated as
m(1) = 15 SN x;(t). For asmall intensity of the addi-
tive noise, hops between the two symmetric states m; and
my are rather seldom and not synchronized to the exter-
nal force. If we increase the intensity o7, we achieve a
situation when hops occur with the same periodicity as the
external force and, hence, the mean field follows with high
probability the input force. An increase of additive noise
provides an optimization of the output of the system which
is stochastic resonance. If o7 isincreased further, the order
is again destroyed, and hops occur much more frequently
than the period of the external force.

Figure 3illustratesthat additive noiseis ableto optimize
the signal processing in the system (1). In order to char-
acterize this SR effect we have calculated signa-to-noise
ratio (SNR) by extracting the relevant phase-averaged
power spectral density S(w) and taking the ratio between
its signal part with respect to the noise background [8].
The dependence of SNR on the intensity of the additive
noise is shown in the Fig. 4 for the mean field (filled
points) and the mean field in a two-state approximation
(opaque point). In this two-state approximation we
have replaced m(r) by its sign and put approximately
m(t) = +1 or m(r) = —1, respectively. Both curves
exhibit the well-known bell shaped dependence on af
typically for SR. Since the bimodality of the mean
field is a noise-induced effect we call that whole effect
doubly stochastic resonance. For the given parameters
and A = 0.1, = 0.1 the maximum of the SNRs is
approximately located near o7 ~ 1.8.

Next we intend to give analytic estimates of the SNR. |f
A, D, and o} vanish, thetime evolution of the first moment
of asingle element is given simply by the drift part in the
corresponding Fokker-Planck equation (Stratonovich case)

2

) =) + %(g(X)g’(x»- ()

As it was argued in [6], the mechanism of the noise-
induced transition in coupled systems can be explained
by means of a short time evolution approximation [19].
It means that we start with an initial Dirac é function,
follow it only for a short time, such that fluctuations are
small and the probability density is well approximated by
a Gaussian. A suppression of fluctuations, performed by
coupling, makes this approximation appropriate in our case
[20]. The equation for the maximum of the probability,
which is also the average value in this approximation x =
(x), takes the following form

2

Y= f0) + S g0, ®)

which isvalid if £({x)) > (6x2)f"({(x)). For this dynam-
ics an “effective” potential U (x) can be derived, which
has the form
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2
g(ﬂ
Ueff(x) = UO(X) + Unoise = §

- [ rwax
©

where Uy(x) is a monostable potential and U, ;s rep-
resents the influence of the multiplicative noise. In the
ordered region, inside the transition lines (Fig. 1), the po-
tential Use(x) is of the double-well form, e.g., U(x)etr =
—x? — 0.25x* + x%/6, for given f(x), g(x), and a'é = 3.

Now we consider a conventional SR problem in this
potential with an external periodic force of the amplitude
A and the frequency w. If we neglect intrawell dynamics
and follow linear response theory the SNR is well known
[8,21]

4arA?

SNR] = 1 Tk (10)
oy

where r is the corresponding Kramers rate [22]

ek =

VUL )=y Ul (0] =)
2 eXp<

2AUest )
-=—=
s
11)

for surmounting the potentia barrier AU.. Using
Egs. (9)—(11), we get an analytical estimate for a single
element inside the lattice. Further on, rescaling this value
by the number N of oscillators in the lattice [23] and tak-
ing into account the processing gain G and the bandwidth
A in the power spectral density [21], the SNRy of the
mean field of the network of N elements can be obtained

SNRy = SNR; % + 1. (12)

15 ¢

FIG. 1. Transition lines between ordered and disordered phase
on the plane (a2 ; D) for different intensities of the additive noise

0'{ =0 (1) 1 (2), and 5 (3). The black point corresponds to
= 20, 0'§ = 3.

This dependence is shown in Fig. 4 by the solid line
and demonstrates, despite the rough approximation, agood
agreement with the results of the numerical simulations.
Nearly exact agreement is found in the location of the
maximum as well as for the quantitative values of the SNR
(“scalloping loss’ [21] has been avoided in simulations by
setting the frequency w to be centered on one of the bins
in the spectrum). A more satisfying theory of DSR is left
as an open question in this Letter.

In conclusion, we have reported the existence of doubly
stochastic resonance, which results from the twofold influ-
ence of noise on a nonlinear system. DSR is a combined
effect which consists of a noise-induced phase transition
and conventional SR.

Some remarks should be added. First, we have con-
sidered a system which undergoes a pure noise-induced
transition, in the sense that a transition is impossible in
the absence of noise. This is an important distinction of
the DSR effect from SR in any variation of the mean-field
model [24]. Second, inthe considered system the so-called
“stochastic” potential [1] for a single oscillator in the lat-
tice [which differs from (9)] always remains monostable.
Third, there are clear distinctions between SR and DSR be-
havior, because, in contrast to SR, in DSR additive noise
does not only help an input/output synchronization, but
also changes the properties of the system in the absence of
the external force (see Figs. 1 and 2). As a consequence,
in DSR amplitude of hops is decreased (bistability disap-
pears) for large noise intensities af (compare Fig. 3 and
Fig. 4 from [8]). Finaly, not every system with noise-
induced bistability demonstrates DSR, e.g., we did not find
DSR in zero-dimensional systems, which are described
in[1].

We expect that these theoretical findings will stimu-
late experimental works to verify DSR in rea physica

1.0

0.8 r

0.6 r

04 r

0.2 r

0.0

FIG. 2. Theorder parameter |m| vsthe intensity of multiplica-
tive noise for D = 20 and o7 = 0 (label 1), 1 (label 2), and 5
(label 3).
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m(t), LOF(t)

-1.0

1.0

0.5

0.0

-1.0

0 500 1000

t

FIG. 3. Example of input/output synchronization. The time
evolution of the current mean field (output) and the periodic
external force F(t) (input) for different intensities of additive
noise (from top to bottom) a? = 0.01, 1.05, and 5.0. If the
intensity of the additive noise is close to their optimal value
(middle row), hops occur with the period of the external force.
The remaining parameters are A = 0.1, w = 0.1, D = 20,
and (rs% = 3.

systems (for experiments on noise-induced bistability, see
[25]). Appropriate situations can be found in electronic
circuits [26], as well as in system, which demonstrate a

100 T T T T

SNR, SNR,,
g

FIG. 4.

The dependence of SNR on the additive noise inten-
sity for the output (filled points) and its two-states approximation
(opaque points). The solid line corresponds to the analytical es-
timation SNRy (12), performed on the base of derivation of the
“effective” potential and linear response theory. The parameters
are the same as for Fig. 3 and the processing gain G = 0.7.
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noise-induced shift of the phase transition, e.g., in lig-
uid crystals [27], photosensitive chemical reactions [28],
or Rayleigh-Bénard convection [29]. It can be crucial for
such experiments that, in contrast to conventional SR, in
DSR the energy of noise is used in a more efficient way:
not only for the optimization of the signal processing, but
also for the support of the potential barrier to provide
this optimization.

It is a pleasure to thank B. Lindner for useful dis-
cussions. A.Z. acknowledges support from MPG and
J.K.and L. S.G. from DFG-Sfb 555.
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We study different nonlinear systems which possess noise-induced nonequlibrium transitions and
shed light on the role of additive noise in these effects. We find that the influence of additive noise
can be very nontrivial: it can induce first- and second-order phase transitions, can change properties
of on-—off intermittency, or stabilize oscillations. For the Swift—Hohenberg coupling, that is a
paradigm in the study of pattern formation, we show that additive noise can cause the formation of
ordered spatial patterns in distributed systems. We show also the effect of doubly stochastic
resonance, which differs from stochastic resonance, because the influence of noise is twofold:
multiplicative noise and coupling induce a bistability of a system, and additive noise changes a
response of this noise-induced structure to the periodic driving. Despite the close similarity, we
point out several important distinctions between conventional stochastic resonance and doubly
stochastic resonance. Finally, we discuss open questions and possible experimental
implementations. €2001 American Institute of Physic§DOI: 10.1063/1.1380369

In the majority of investigations, devoted to the study of phenomena, namely noise-induced transitiOk$r). In its
noise-induced processes, a supplement of additive noise turn, NIT can be classified into three main grouf$:NIT
leads only to smoothing of transition diagrams. Contrary  which lead to the appearance of additional maxima in the
to this situation, in this contribution we show that addi-  system’s probability distributiof i) NIT which lead to the
tive noise can play a much more crucial role. In oscilla-  excitation of oscillations>**and (iii) NIT in extended sys-
tory systems, additive noise is able to excite oscillations, tems which lead to breaking of symmetry and the creation of
to influence on-off intermittency, and to stabilize sto-  a mean fiel®:**~1"1%n the majority of the papers on these
chastic oscillations. In spatially extended systems, which topics only multiplicative noise is perceived to be respon-
consist of coupled overdamped oscillators, additive noise sible for the transitions. However, it was recently
can induce first- and second-order phase transitions, shown®'#2°=??that under certain conditions additive noise
which in particular cases manifest themselves in the ap- can also be very important and nontrivial in NIT. The aim of
pearance of spatially ordered patterns. Another interest-  the present paper is to discuss several aspects and recent
ing behavior occurs if a system works as a signal proces- results of this investigation and also to point out open ques-
sor. Then additive noise is able to optimize the response tjons and unsolved problems connected with the influence of
of a system to an external periodic signal, if this system  a(dditive noise on transitions in nonlinear systems.
possesses a property of multiplicative noise induced bista- First we analyzevscillatory systems under the action of

bility. noise. In Sec. Il we start by considering a transition induced
by multiplicative noise in a pendulum with randomly vi-
| INTRODUCTION brated suspension axis. We investigate the role of additive

noise in this effect and show that additive noise influences a

Intensive investigations in nonlinear physics in the lasttransition as well as on-off intermittency, observed in the
two decades have shown that there are many nonequilibriugxcited oscillations. In contrast to this situation in which ad-
systems which demonstrate phenomena manifesting noisgitive noise only smoothes the transition, in the next inves-
induced ordering. Among these phenomena we emphasiigated oscillatory model, a standard epidemiological model
several basic ones, such as stochastic reson@Reé? (for  with random excitation, the transition can be induced both by
SR in natural systems see Rej, Boise-induced transitions multiplicative and additive noiséSec. Ill). Moreover, addi-
(NIT),*~8 noise-induced transport in ratchétsy coherence tive noise is able to stabilize stochastic oscillations, which
resonancé.This classification does not pretend to be com-are unstable if only multiplicative noise is present. Another
plete, because there are various modifications and extensionkss of models under consideration are spatially extended
of these basic phenomena.g., resonance activatibror ~ systems, which consist of couplexverdampedoscillators.
noise-induced pattern formatiii. On the another hand, We show that in such systems second- and first-order transi-
there are phenomena which possess properties of differetibns induced by additive noise are possibBec. V). If a
groups from this classification. Two interesting examplesnonlinear distributed system is under the action of additional
may illustrate this point: a synthesis of a ratchet mechanisnexternal force, then doubly stochastic resonafiz®R) can
and noise-induced phase transittdrand a synthesis of sto- be observedSec. V). In DSR the influence of noise is two-
chastic resonance and noise-induced transtfion. fold: multiplicative noise induces a bistability of a mean

In the present review we focus on one of these basidield, and additive noise helps the system to respond coher-
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ently to an external signal. Finally, we summarize the results  Solving the Fokker—Planck equation associated with Eq.
and discuss open questions of the problem under consideft), a probability density for the amplitude(A) and ampli-
ation in order to show that there are a lot of unsolved probtude squaredv(A?)= (1/2A) w(A) can be found? Using
lems in this particular field, which is rapidly developing and the functionw(A?) we obtain
attracting constantly growing attention in the modern nonlin-
ear physics.

o for =0
(A?)=1 3awg ’ @
Il. TRANSITIONS IN THE PRESENCE OF ADDITIVE 0 for »<0,
NOISE: ON-OFF INTERMITTENCY

. . _ ~ where
A pendulum with randomly vibrated suspension axis is a

typical example of oscillatory system, in which parametric 2
action of noise can lead to the excitation of oscillations via a n= ﬂ( Kk (2wg) — 8_6)
second-order phase transitidf**8In this case the intensity 8B wg
of multiplicative noise plays the role of temperature and the
average amplitude is the order parameter. Here we diSCuss proportional to the difference between the noise intensity
the_ guestion “what happens if additionally a<_jd|t|ve noise isat the frequency @, and the critical noise intensity.
acting upon the system?” Therefore we consider a pendulum |t is clear from this that for;=0 the parametric excita-
whose suspension axis is vibrating in the direction makingion of the pendulum's oscillations occur under the effect of
the angley with respect to the vertical. As shown in Ref. 6, noise via a noise-induced transition. This manifests itself in
for mpderately .smaII V|brat|o.ns of a suspension axis, thne fact that the mean value of the amplitude squared be-
equation of motion can be written as follows: comes different from zero. The corresponding dependence of

.. o the order parametgfA?) on the parametew is plotted in

2 2 _ 2

¢+2B(1+ ap?) o+ w1+ £,1(1) o= wpéa(l), @ Fig. 1(a). Numerical simulation of the original E¢1) shows

where is the pendulum angular deviation from the equilib- that if the noise intensity is slightly over a threshold, then

rium position,w? is the natural frequency of small free pen- ©"~0f" inte‘rlmitt_ency can be observed in the form of
dulum oscillations 8 is a damping factor with the nonlinear oscillations®* This means that for the same external action

coefficienta, &(t) = &(t)cosy is the multiplicative compo- (e System is sometimes in the state “o(rnrje ?mplitude is
nent of the suspension vibration, agg(t)=— &(t)siny is Iarge_, which is intermittent with the state “offthe ampli-
its additive component(t) is a comparatively wide-band tude is rather small

random proces&r white noisg, responsible for the shift of Now let us discuss which changes happen in the pres-
the suspension axis in the direction of vibration. ence of additive noise. The analytical consideration for this

In the absence of additive nois&,=0, y=0, i.e., a Casecan be found in Ref. 22; here we present the results of
vibration is performed strictly in the vertical directipthe ~ NUMerical simulations. The results are shown in Fig).1
system can be analyzed analytically. Looking for the solution! "€ Presence of additive noise leads to the fact that the prob-
in the form o(t) = A(t)cos@gt+¢) and using the Krylov— ability distribution below the threshold is no longer a
Bogolyubov method for stochastic equatiGisve obtain the ~&-function, and the transition is now smoothed and not so
following truncated equations for the amplitudeand the well-defined, as in the case without additive noise. It is in-

phased of the pendulum’s oscillations: ter_esting to n(_)t_e that in both cases, with or Withou_t_ add_itiv_e
noise, no additional extrema in the system probability distri-

1, 3 X wé bution w(A?) are observed in the course of the transition.
U= g wor(2wo) = B| 1+ 7 Bawy exp | + - (b, The additive noise also influences the effect of on-off

intermittency[see Fig. 1b)]. For supercritical values of the

b= wols() multiplicative noise intensity on—off intermittency is now
052150 hidden and not observable in the form of oscillations, but can

whereu=InA, {,(t), and{,(t) are white noise with inten- be detected for subcritical values, below a threshold. Hence

)

sities in the presence of additive noise on—off intermittency, a sign
of noise-induced transition, can be observed even before this
Ki=3k(2wo), Ky=2%(k(0)+ 3k(2wy)). 3 transition occurs with respect to the increase of the control
parameter.
Here k()= 7 (&(t)&(t+ 7))cosr)dr is the power It is necessary to note that in the same system chaotic

spectrum density of the proces@) at the frequency, and  oscillations can be observed, if the external parametric action
the angular brackets signify averaging over statistical enis periodic. A comparison with this case is discussed in Ref.
semble. It is important that in the equation for the amplitudel3. Chaotic pendulum’s oscillations are very similar in its
u=In A, we have a constant terméx(Zwo)/S, which ap-  form to noise-induced oscillations. However, a calculation of
peared due to the parametric action of noise. Namely, thithe probability distribution of the average amplitude squared
fact is responsible for the excitation of noise-induced oscil-allows to distinguish between both cases of the external ac-
lations. tion by means of the Rytov—Dimentberg criterith.
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1000 1500 2000

FIG. 1. (a) A noise-induced phase transition in a pendulum with randomly vibrated suspensidiEgxi4)]. The dependence of the averaged amplitude
squared multiplied by the paramete+ 3aw§/4 on 7, where is an extent on which multiplicative noise intensity exceeds the threshold value. The curve 1
corresponds to the case without additive noise, curves 2 and 3 to the cases with additive noise irk&resitid?, wherek2>k1 (for details and analytical
expressions see Ref).@®nalytical and numerical results are shown by solid and symbol curves, respedfiyedn—off intermittency for subcritical values

of multiplicative noise intensity. In contrast to this situation, if additive noise is absent, on—off intermittency is observed near a threfhraddiercritical
values of the multiplicative noise intensity.

As is shown by further examples in this contribution, (Sy,Eg,l). Hence, one can easily rewrite the equations for
this effect of transition smoothing and influence on on—offthe new variablesx=S/S;—1, y=E/Ey—1, and z=1/1,
intermittency is not a single effect of additive noise in oscil- —1 which are deviations from the equilibrium point:
latory systems.

X+ex=—bglo(1+bi&(1))(X+z+x2) —bgblo&(t),

ll. TRANSITIONS INDUCED BOTH BY _
MULTIPLICATIVE AND ADDITIVE NOISE: y+(et+hy=(e+1)(1+b&(1))(x+z+x2)
STABILIZATION OF NOISE-INDUCED OSCILLATIONS

+(e+1)b&(t), (6)

In this section we study a system under the action of
noise, which has both additive and multiplicative compo-  z+(e+g)z=(e+Q)y.
nents. We show that these both multiplicative and additive
components of noise, considered separately, can induce Tais form of equations clearly shows that the action of noise
transition, and, what is especially interesting, the combinais multiplicative as well as additive.
tion of their actions stabilizes noise-induced oscillations. To  An increase of the noise intensity causes noise-induced
demonstrate these effects, we use a standard epidemiologidgcillations of the variableS, |, E [Fig. 2@]. Their oscil-
model for the dynamics of children diseag@3wo variants latory behavior closely resembles observed epidemiological
of excitation are possible, either by periodic foft& or by ~ data[compare Fig. @) with figures in Ref. 2& These os-
noise* In both cases this system exhibits chaotic or noisecillations are excited after a noise-induced transitjsee
induced oscillations which closely resemble oscillations obFig. 2b)]. There the variance of oscillations together with an

served in experimental data. approximating straight line is shown. The point where the
We analyze the influence of additive component of noisestraight line crosses the abscissa axis can be taken as a criti-
in the following model systent’ cal point of the transition. To prove this, we remove artifi-
) ) cially the multiplicative component of noise from E@6). In
S=e(1-5)—bSI, E=bSI-(e+l)E, this case the variance of oscillations is equal to zerb,if

5 <bs., and goes to infinity shortly after the noise intensity
exceeds its critical value. So, additive noise indeed is able to
whereS, E, andl denote the number of susceptible, exposednduce a phase transition. The same situation happens if the
but not yet infected, and invective children, respectively. Theadditive component of noise is absent but the multiplicative
parameters & 1/, 1/g are the average expectancy, latencyone is present.
and infection periods of time. The contact rdtes the pa- To conclude, this transition can be induced by noise
rameter of excitation and equal bo=by(1+b;£(t)) where  which contains both multiplicative and additive components.
&(t) is a harmonic noise with the peak of spectral density atAs shown by its separate consideration, both components
the circle frequency 2 (seasonal noisy oscillations with a play an important role in this transition. What is even more
period equal to one yenand the parametdr; is the ampli- interesting, if the additive and multiplicative components of
tude of noise. The excited oscillations are executed in th@oise act together, as in the model, a stabilization of noise-
vicinity of the stable singular point with the coordinates induced oscillations occurs: in this case the dependence of

I=1E—(e+Q)l,
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FIG. 2. (a) Noise-induced oscillation@pidemic$ in the epidemiological model Eqé5). (b) The dependence of oscillation variance for the variabte the
parameteb,, which is responsible for the noisy variation of a contact fate the text

the variance on the noise intensity does not increase to infiniplicative noise: strong correlatioid, =0 and paramete is
ity, that is not a case if multiplicative component of noisevaried, and no correlatiofa=0 and the intensity of, is
acts separately. varied.
Using the generalized Weiss mean field thetvfFT),®
the conditions of phase transition can be found. Substituting
the value of the scalar variable: at the sites coupled te,
Now we extend our study to spatially extended system®y its special average:
and show that additive noise is able to induce second- and _ /
first-order phase transitions. Due to a special form of cou- (xer) = (xjeogk-(r=r1, (19
pling these transition can also lead to the formation of spa¥ve obtain forx=x,

IV. TRANSITIONS INDUCED BY ADDITIVE NOISE

tially ordered patterns. k= 1(x) +g(X) £(t) + D (K)X— Degl(x— (X)) + £(1),
A. Second-order phase transitions: Noise-induced (11
pattern formation where
We investigate a nonlinear lattice of overdamped 2d 2
coupled stochastic oscillatdf<? under the action of noise. Def= (P—qg + 32+ 0(k)|D (12

In this system a transition manifests itself in the formation of

spatially ordered patterns, as a consequence of a special formmd a dispersion relatiom(k)=0 for the most unstable

of couplinga la Swift—Hohenberg. The system is describedmode, which is only of interest het&.

by a scalar fielck,, defined on a spatial lattice with points Now the valug(x) plays the role of the amplitude of the
o spatial patterns with an effective diffusion coefficidDgs.
=100+ 90 &+ Lx+ 4 ™ The steady state solution of the Fokker—Planck equation cor-

with f and g taken in the form(for the discussion, which responding to Eq(10) is written then as follows:

functions can be chosen to observe a transition see Rgf. 29

C((x)) xf(y)—Den(y —(x))
f(X)Z—X(l—I—XZ)z, g(x)=a2+X2 (8) Wst(X)ZWGX{(ZJ0 Uﬁ]gz(y)‘f‘O'i dy|,
and¢,, ¢, are independent zero-mean-value Gaussian white (13
noises: . N
andC((x)) is the normalization constant.
(& & (1)) =058, 8(t—t"), For the mean field valuéx) we obtairt*
N\ — 2 Y (9)

Note that for these functionf(x) and g(x) the transi-
tions described arpure noise-induced phase transitions, in Solving Eg.(14) with parameterd, afn, and ai, we
the sense that they do not exist in the system without noisabtain a boundary between two phases: a disordered
The coupling operatorl is a discretized version of the (|(x)|=0)and an ordered oné{k)|+0). The ordered phase
Swift—Hohenberg coupling termt D(q§+ v?)2.2 corresponds to the appearance of spatially ordered patterns,
To study the influence of the additive noise, we considelbecause its average amplitude becomes nonzero. This hap-
two limiting cases of correlation between additive and mul-pens due to the special form of coupling which includes
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FIG. 3. Additive noise induced phase transition in a nonlinear latticg Bgpredictions of the mean field theortg) The boundaries of the transition on the
plane erzn ,D) for different values of Egs.(8). It is clearly seen that by variation afa point from the dashed region is a point of the transition induced by
additive noise(b) Dependence of order parametéx)| if the additive noise intensity is variedc) The transition lines for the case when additive and
multiplicative noise are independeraztg: 1 (label 1), 0.5 (label 2, and 0.3(label 3. (d) Large scaled region from the plot i).

wave length of these pattermg. It is known that in the is varied. It is evident that again dashed region corresponds
considered system multiplicative noise induces a phasto the phase transition. If we take parameters from this
transition’® We focus our attention to the influence of addi- dashed regiottin both cases of correlatiopnand change the
tive noise. The boundary of the phase transition on the planmtensity of additive noisévarying the parametea or ag),
(O'Zm,D) is shown in Fig. 8), which demonstrates that we observe a formation of patterns and further their destruc-
variation of the intensity of correlated additive noigae  tion (see results of numerical simulations in Fig. 4
parameten in Eq. (8)] causes a shift of the transition bound- To understand the mechanism behind this transition, it is
ary. The most interesting situation occurs in the dashed reaecessary to note that there is no bistability either in the
gion. Here, the increase of the additive noise intensity causeé®isual” potential or in the so-called “stochastic” potential.
the re-entrant(disorder—order—disorderphase transition. Nevertheless, using some approximations it can be
The corresponding dependence of the order parameter on tisaowrt’-?!that the short-time evolution of the mean field can
parametem is shown in Fig. &). be described by the “effective” potential, which becomes

For the case of uncorrelated additive noise=(Q), the bistable after a transition. ID, and ag vanish, the time
observed behavior is qualitatively the safifégs. 3c) and  evolution of the first moment of a single element is simply
3(d)]. Here the transition lines are plotted on the planegiven by the drift part in the corresponding Fokker—Planck
(aﬁ],D) and the intensityrgl of uncorrelated additive noise equation(Stratonovich cage

FIG. 4. Aformation of spatial patterns
induced by additive noise. From left to
right the intensity of additive noise is
increased4=0): ¢2=0.001, 0.7, and
10 (from left to righd. The field in the
nonlinear lattice of 128 128 elements
is coded from white(minimum) to
black (maximum colors.
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FIG. 5. The nonlinear lattice Eq$18): (a) Transition lines on the planea(D) for o,=0 and two different intensities of the multiplicative noigmirve 1:
aﬁ; 1.6; curve 2:0’%1:3.0). The dashed regiofstarting with the dotcorresponds to the coexistence of disordered and ordered gghp$ae corresponding
dependence of the order parametersn, on a for D =20, 02m=3.0, anda§= 0.0 are plotted by solid line@VFT predictiong and by diamond$énumerical
simulation$. The dotted line delimits the coexistence region exhibited by NeFfiegion of the hysteresis effécThe unstable state is plotted by the dashed
line.

o2 further studied in Refs. 20, 21, 17, and 32. The time evolu-

()= (f())+ 5(9(x)g"(x))- (15 tion of the system is described by the following set of Lange-

vin equations:

As it was argued in Ref. 17, the mechanism of the noise-
induced transition in coupled systems can be explained by
means of a short-time evolution approximatiSnit means
that we start with an initial Dira@ function, follow it only
for a short time, such that fluctuations are small and thavherex;(t) represents the state of tih oscillator, and the
probability density is well approximated by a Gaussian. Asum runs over all nearest neighbors of ¢elThe strength of
suppression of fluctuations, performed by coupling, makeghe coupling is measured Y, andd is the dimension of the
this approximation appropriate in our cas€The equation lattice, which has\=L? elements. The noise tern§gt) and
for the maximum of the probability, which is also the aver- ¢i(t) are the same as defined in E¢8): mutually uncorre-
age value in this approximatiox=(x), takes the following lated, Gaussian distributed, with zero mean and white in both

_ D
=100+ 55 2 (5=x)+ LD, (18

form: space and time. The functiori$¢x) andg(x) are defined in
2 Egs.(8). . '
%= f(X)+ _mg(;)gr(@, (16) We study the behavior of_ this system by means of a
2 standard MFT procedure. Solving the corresponding(E4).

which is valid if f ((x))>( 5x2)f"({x)). For this dynamic, an with respect to the variablm=(x), andwy, defined by Eq.

“effective” potential U.x(x) can be derived, which has the (13) with D.z=D, one can set the transition boundaries. In
form this way obtained order—disorder transition lines are shown

in Fig. 5@). Here we consider only the case WhEi‘FO and
U%QZ(X) the parametea is varied. Curve 1 separates regions of dis-

Uert(X) =Uo(X) +Unoise= — f fedx————, 17 order(below the curviand orderabove the curvefor small

multiplicative noise intensity. In this case, the ordered region

is characterized by three self-consistent solutions of(E4),

one of them unstablen{=0) and the other two stable and

aFymmetrical. These new solutions appear continuously from
m=0 in the course of the transition. Hence, if we fix the
coupling strength, e.gD =20, and increase the intensity of
additive noise(the parametea) a second-ordeiphase tran-
sition from disorder to order occurs, followed by a re-entrant
transition back to disorder, also of second order.

In Ref. 33 a first-order phase transition has been re- Thefirst-ordertransition can be observed when the mul-
ported, which is induced by multiplicative noise. Now we tiplicative noise intensity increases. In that céserve 2 in
show thatfirst-order nonequilibrium transitions in spatially Fig. 5a)], a region appears where E@.4) has five roots,
extended systems can also be induced by additive noise. It taree of which(m=0 and two symmetrical pointsare
important, that in contrast to second-order transitions, in &table. This region is marked dashed in the figure. Thus, for
first-order transition very tiny fluctuation of the control pa- large enough values @, a region of coexistence appears in
rameter can lead to a drastic change of the order parametehe transition between order and disorder. This region is lim-
The study is performed on a nonlinear lattice of coupledited by discontinuous transition lines betweerr=0 and a
stochastic overdamped oscillators introduced in Ref. 16 andonzero, finite value oi. Hence, additive noise is seen to

whereUy(x) is a monostable potential andl,,s. represents
the influence of the multiplicative noise. In the ordered re-
gion, this “effective” potential has additionat=0 minima
that explain the nonzero solutions for the amplitude of spati
patterns:

B. First-order phase transitions
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induce afirst-order phase transition in this system for large 0.00 -
enough values of the coupling strength and multiplicative N
noise intensity. The re-entrant transition is again of second Bl e — /—2\/
order. When the first-order phase transition appears, hyster-
esis can be expected to occur in the coexistence redgfian X o0} 3
certain algorithm is appli€d). The dependence of the order >
parametem on the control parameteras predicted by MFT 015 |
is shown in Fig. Bb) with a solid line. The region of possible
hysteresis is bounded by dotted lines. -0.20 : . .
In order to contrast the analytical results, we have per- -1.0 -05 0.0 05 1.0

formed simulations of the complete mod@l8) using the X

numerical methods described in Refs. 5 and 17. The orde¥iG. 6. An “effective” potential for the short-time evolution ah in the

parametem, is computed as lattice Eqs.(18), for a2=:0.25(curve 1), 0.28(curve 2, and 0.34(curve 3.
Other parameters are?=3.0 ando2=0.0. A coexistence of ordered and
1 N disordered phases is observed for the curve 2.
my= _22 Xj )
L i=1

. for short-time evolution, and should not be confused with the
where () denotes time average. Results for a two-, - . : . .
stochastic” potential’ which for this system remains al-

dimensional lattice with lateral size=32 are shown with ways monostable. For the other case of correlation between
diamonds in Fig. &). Analyzing this figure one can observe ys mon ' - N . o
multiplicative and additive noise, in the region of additive

that MFT overestimates the size of the coexistence regionrioise induced transition, the “effective” potential always has
This effect, analogous to what was observed for ' P Y

multiplicative-noise induced transition®,can be explained E:herr?terz am;ngﬁtf%esn{{n E?tré(ca[;?, I\?elzn;ath?;esr:grc\j/ec:f :nzr][r:rf
in terms of an “effective potential” derived for the system at yiarg

: X i . : sition) additive noise causes an escape from zero state and
short times(see discussion belgwFor instance, ag in-

. eads to the transition. The value of a critical additive noise

creases the system leaves the disordered phase not when thi . . . . .
. Infensity for this transition can be estimated by the “effec-
state becomes unstable but earlier, when the potentm{iI

- . Ive” potential approach, only by MFT. Here we have con-
minima corresponding to the ordered states become muc . .
sidered only a case of strong correlation between multiplica-

lower than the minimum corresponding to the state O. It : o . . : . "
should also be mentioned that the numerical simulations di(ti\/(.a aqd gddmve NoIse- As descnbgd n Ref..35, If additive
noise is independent, it can also induce a first-order phase

not show hysteresis, because in the coexistence region the

system occupied any of the three possible states, indepebr_ansnmn. The level of correlation between additive and mul-

dently of the initial conditions. It can be explained by the _|p||cat|ve noise can be considered as an additional parameter

: . ) . in this system, what we leave as an open question here.
small size of the simulated system, which permits jumps be- . " .
In conclusion, we have reported that additive noise can

tween steqdy states when the system is sufficiently perturbelgduce a first-order phase transition in a spatially extended
(e.g., by slightly changing the parameter

We have thus seen so far that numerical simulation system. This transition leads to breaking of symmetry and

qualitatively confirm the existence of a first-order phase tran?he creation of a mean field. It should also be mentioned that

sition induced by additive noise in this system, as predicte for another fo”.“ of couplinga la Swift—Hohenberg as n
by MFT. We note that the transition occurs in the two limit- ec. IVA, spatial .p.atterns can appear as a result of a first-
ing cases of correlation between multiplicative and additiveOrder phase transition.
noise. We also emphasize that variation of both the multipli-
cative noise |n.tenS|ty la}nd the coupling strength can chang@_ ADDITIVE NOISE IN DOUBLY STOCHASTIC
the order of this transition. RESONANCE

Let us now discuss a possible mechanism behind this
effect. As pointed out above, the collective behavior of this  Doubly stochastic resonand®SR)'? is a synthesis of
system can be described by the “effective” potenfs#e Eq. two basic phenomena: noise-induced phase transition and
(17)]. We can trace the behavior of this potential in the presstochastic resonandSR).
ence of multiplicative noise, for the casé=0 anda+0. Its In the conventional situation SR manifests itself as fol-
evolution for increasin@ is shown in Fig. 6. This approach lows: additive noise optimizes the response of a bistable sys-
can be clearly seen to successfully explain the mechanism ¢ém to an external periodic force. In addition to this situation,
the first-order transition: first, only the zero state is stableSR has also been found and investigated in a large variety of
(curve 1), then there is a region where three stable stateslifferent class systems: monostable syst&frs;stems with
coexist(curve 2, and finally, the disordered state becomesexcitable dynamicg’ noisy non-dynamical system$,sys-
unstable(curve 3. This approach also explains why a varia- tems with sensitive frequency SR dependeticeystems
tion of the multiplicative noise intensity influences the orderwithout an external forc&2® and systems without any ex-
of the transition: for anotheflowen o2, there is no region plicit threshold*! In all these works SR has been observed in
where ordered and disordered phases simultaneously exishe structure, given by the system, and not in the noise-
We emphasize that the “effective” potential is derived only induced structure. In contrast to it, here we address the prob-
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FIG. 7. Transition lines between orderédside the curvesand disordered
(outside phase in the lattice Eq$19) on the plane &2 ;D) for different

intensities of the additive noise§=0 (1), 1(2), and 5(3). The black dot
corresponds td® =20, ¢2=3.

—4
lem whether SR can be observed in the bistable structureﬁ< 10
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Obtained by a standard MFT procedusee Sec. IV B
transition boundaries between different phases are shown in
Fig. 7. In addition to Ref. 16, we show that the influence of
additive noise resulted in the shift of transition lines. For
02=0 an increase of the multiplicative noise causes a
disorder—order phase transition, which is followed by the
re-entrant transition to disord&t.In the ordered phase the
system occupies one of two symmetric possible states with
the mean fieldan;= —m,#0, depending on initial condi-
tions (for a visualization of this transition see Fig). 8

Now let us consider the problem, how the systé€ifl)
responds to periodic forcing. We have taken a set of param-
eters b'zm;D) within the region of two coexisting ordered
states with a nonzero mean field. In particular, we choose
values given by the dot in Fig. 7. For numerical simulations
we take a two-dimensional lattice bf=18x 18 oscillators,
which is simulated numericaff§ with a time stepAt=2.5
under the action of the harmonic external force. The

which in its own turn is induced by multiplicative noise via @MPplitude of the forceA has to be set sufficiently small to

phase transition.

avoid hops in the absence of additive noise during the simu-

We study DSR in the nonlinear lattice of coupled over-lation time of a single run which is much larger than the

damped oscillators Eq18), but now under the action of an

period of the harmonic forc& Jumps betweem; < m, oc-

additional periodic force. Hence, the following set of Lange-Cur only if additive noise is additionally switched on. Runs

vin equations describes the considered system:
. D
X =100 T Q&M+ 55 2 (4=x)+ (D)

+Acogwt+ o), (19

where all notations and functiori$¢x) andg(x) are taken as
above. The last term ifl9) stands for an external periodic
force with amplitudeA, frequencyw, and initial phasep.

increase
of

noise

are averaged over different initial phases.

Time series of the mean field along the corresponding
periodic input signal are plotted in Fig. 9 for three different
values ofog. The current mean field is calculated m$t)
= (1/L2)EiN:1xi(t). For a small intensity of the additive
noise, hops between the two symmetric statgsandm, are
rather seldom and not synchronized to the external force. If
we increase the intensity?, we achieve a situation when
hops occur with the same periodicity as the external force

FIG. 8. A symbolic visualization of a
phase transition in the model Egs.
(19), which leads to the formation of a
mean field. In the disordered phase the
mean field is zero due to the random
deviation of different elements around
zero (up). In the ordered phase, in-
duced by noise, the symmetry is bro-
ken and the mean field is either posi-
tive (right) or negative (left). The
elements in the lattice 128128 are
coded in accordance to its sign: if
positive or zero, white; if negative,
black.
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FIG. 10. The dependence of SNR vs the additive noise intensity in the
lattice (19). The full output and its two-states approximation are plotted by
filled and opaque points, respectively. The solid line shows the analytical
estimation SNR (22), performed on the base of derivation of the “effec-
tive” potential and linear response theory. The parameters are the same as
for Fig. 9 and the processing ga®=0.7.

-1.0

1.0 ¢

05 f

gion, inside the transition lined-ig. 1), the potentialJ o#(X)
RN EN RN is of the double-well form, e.g.U(X)ef=—x°—0.25*
0 500 1000 +x5/6, for givenf(x), g(x), ando?=3.

From the analytical form of the system’s bistable poten-
FIG. 9. Doubly stochastic resonance in the lat(i£8): a coherent response  tial, we can solve a conventional SR problem in this potential
to periodic driving induced by additive noise. The time evolution of the with an external periodic force of the amplitudeand the
current mean fieldoutpuy and the periodic external forde(t) (input) for frequencyw. Using the well-known approach of a linear re-

different intensities of additive noisgrom top to bottom a§:0.01, 1.05, 44 : ; .
and 5.0. For the optimal value of the additive noise intengitiddle row, sponse theo&’ we get the following expression for SNR:

hops occur mostly with the period of the external force. The remaining 477A2
parameters ard=0.1, 0=0.1, D=20, ands?=3. SNR, = s (20)
‘Ta

and, hence, the mean field follows with high probability theWhererk is the corresponding Kramers réte

periodic input force. An increase of additive noise provides \/lugﬁ(x)|x:x JUZ(X) | xex p( 2AUeﬁ)
min max
= exp —

an optimization of the output of the system which is stochas-  r 5

tic resonance. lir2 is increased further, the order is again 2m Ta 21

destroyed, and hops occur much more frequently than the @D

period of the external force. Note also that for lagethe  for surmounting the potential barri&rU . Using Eqs(17),

value of the mean field which corresponds to the stable stat€20), and (21) we get analytical estimates for a single ele-

is becoming smaller. It is caused by the fact that additivement inside the lattice. Further on, rescaling this value by the

noise also influences transition lindsAn increase Ofo'ezl numberN of oscillators in the lattic® and taking into ac-

results in the reduction of the ordered regi®ig. 7, curves count the processing gaiG and the bandwidthd in the

2 and 3 and decreasing the valug;= —m,. power spectral densif{f,the SNR, of the mean field of the
Figure 9 illustrates that additive noise is able to optimizenetwork ofN elements can be obtained

the signal processing in the systéf®). In order to charac-

NG
terize this SR effect quantitatively, we have calculated SNRN=SNR1T+1. (22
signal-to-noise ratigSNR) by extracting the relevant phase-
averaged power spectral densBfw) and taking the ratio This dependence is shown in Fig. 10 by the solid line

between its signal part with respect to the noise backgréundand demonstrates despite the rough approximation a good
The dependence of SNR on the intensity of the additiveagreement with the results of the numerical simulations.
noise is shown in the Fig. 10 for the mean fiéiled point9 Nearly exact agreement is found in the location of the maxi-
and the mean field in a two-state approximati@pague mum as well as for the quantitative values of the SNR
point). In this two-states approximation we have replaced“scalloping loss”** has been avoided in simulations by set-
m(t) by its sign and put approximatelp(t)=+1 or m(t) ting the frequencyw to be centered on one of the bins in the
= —1, respectively. Both curves exhibit the well known bell spectrun.
shaped dependence orj typically for SR. In conclusion, we have reported the existence of doubly
Next we estimate the SNR analytically, in order to com-stochastic resonance, which is resulted from the twofold in-
pare it with numerical simulations. K, D, anda‘f1 are equal fluence of noise on a nonlinear system. DSR is a combined
to zero, the dynamics of the system is described by the “efeffect which consists of a noise-induced phase transition and
fective” potential U«(X) [see Eq.(17)]. In the ordered re- conventional SR. It is important to add, that there are clear
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distinctions between SR and DSR behavior, because, in coitems(see also a case considered in Ref), D8 systems with
trast to SR, in DSR additive noise does not only help ara bistable “stochastic” potentidf

input/output synchronization, but also changes the properties (2) Experimental confirmation of noise-induced transi-
of the system in the absence of the external fgsee Fig. 7.  tions predicted by theoretical studies. For the pendulum,
As a consequence, in DSR amplitude of hops is decreasadodelling a real mechanical obje@ec. 1), and the epide-
(bistability disappeajsfor large noise intensitieeg, that is  miological model, describing a real experimental d@ec.

not the case for standard SBompare Fig. 9 and Fig. 4 from IIl), the connection to the experiment is clear. Concerning
Ref. 2. It means also that a decrease of SNR with the inspatially extended systems with noise, described in Secs. IV
crease of the additive noise intensity can be explained nadnd V, we suggest the following potential experimental
only by disordered hops induced by large additive noise, buimplementations. As proposed in Ref. 17, it is worth to re-
also by the fact that the system loses its bistability. Anotheevaluate experiments in physical systems for which noise-
distinction is that DSR can be controlled by multiplicative induced shift§*®or purely noise-induced transitions may be
noise, and this control is not possible in a conventional SR. Itelevant. Some examples of noise-induced shifts can be men-
happens because change of multiplicative noise results in thgoned here, such as processes in photosensitive chemical
change of the “effective” potentidlEq. (17)], which governs  reactions under the influence of fluctuating light

the behavior of the system. intensity>>®! in liquid crystals;?>=>° or in the Rayleigh—
Benard instability with a fluctuating temperature at the
plates>®

VI. SUMMARY AND OPEN QUESTIONS We expect also that our theoretical findings will stimu-

We have reported here recent results concerning the idate experimental works to verify DSR in real physical sys-
fluence of additive noise on noise-induced nonequlibriuntems(for the first experimental observation of noise-induced
phase transitions. We have shown that the role of additivéistability see Ref. 517 Appropriate situations can be found
noise can be crucial in various aspedtsin oscillatory sys-  in analog® or electronic circuits; as well as in systems,
tems, represented by a single oscillator, additive noise is abehich demonstrate noise-induced shifts of the phase transi-
to induce such NIT, it strongly influences this transition andtion (see the discussion abgvet can be crucial for such
stabilizes oscillations occurred as a result of this transitionexperiments, that, in contrast to conventional SR, in DSR the
(i) In spatially extended systems, which are lattices ofenergy of noise is used in a more efficient way: not only for
coupled overdamped oscillators, additive noise can inducthe optimization of the signal processing, but also for the
first- as well as second-order phase transitions, cause tisipport of the potential barrier to provide this optimization.
formation of spatial patterns, and optimize the response ofhis can be of a large importance in the communication.
such a system to periodic driving. In the latter case, it is  (3) Modelling transitions and irregular oscillations ob-
important that the bistability of the collective behavior is served in experimental data by stochastic models. As shown
supported by multiplicative noise. in Ref. 14, already known phenomena which have been ex-

Despite these findings there are several open questiorained in the frames of a deterministic theory, could also be
and promising directions of future research. Note that thesuccessfully described by stochastic models. Note that deter-
topic of nonequilibrium phase transitions induced by additiveministic and noise-induced processes are very difficult to be
noise is rather new. We see three main directions in the studgistinguished in many situations. Moreover, sometimes a
of these transitions. noisy excitation looks more justified. It is worth to mention a

(1) Theory of noise-induced phase transitions. The pherecently outlined hypothesis that turbulence in nonclosed
nomena described here are demonstrated by a large varigipws is a result of noise-induced phase transitiRef. 60
of models, and the question naturally arises whether thesend the experiment in Ref. B1Also we expect that noise-
transitions belong to any of the existing universality classesinduced processes may be very important for understanding
A discussion about it can be found in Ref. 17 for the transi-of complex natural systems studied in neurosciefeg.,
tions which leads to the breaking of symmetry and creatiorRef. 62 or such as microseismic oscillatiofisor phase
of the mean field. In general, however, this is still an opentransitions observed in physiological systems, especially in
question as well as a question whether dependencies in themanual movemenf¥:%° Despite the fact that up to now
presented models are universal for other models demonstrahese tempo-induced transitions in the production of poly-
ing these transitions. Another interesting problem is a searcthythm are explained by deterministic mechanisms in the
of combined effects, as, e.g., a synthesis of white nois@resence of noise, we expect that models with noise-induced
driven ratchets and noise-induced nonequilibrium phasescillations will also be relevant in this case.
transitionst! globally synchronized oscillations in subexcit- Another open question, closely associated with model-
able medi&’ or DSR. One should investigate the translationling is the identification of the excitation mechanism by the
of the transitions discussed into other phenomena, probablgnalysis of irregular time series. This problem is of high
systems of coupled excitable elements. It is interesting alsomportance, because to model a system one should know the
to find hidden transitions induced by additive noise in oscil-physical mechanism of an excitation. At the same time, time
latory systems in the absence of multiplicative ndfS&n-  series are often the single source of the information about a
other group of open questions is connected to DSR. We exaonlinear system: “black box.” At this point, it is essential to
pect that DSR or its modifications can be found not only innote that classical methods of analysis, such as a spectral
the system, described here, but probably in oscillatory sysanalysis or a calculation of a correlation dimension are some-
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The effect of additive noise on transitions in nonlinear systems far from equilibrium is studied. It is shown
that additive noise in itself can induce a hidden phase transition, which is similar to the transition induced by
multiplicative noise in a nonlinear oscillatpP. Landa and A. Zaikin, Phys. Rev.®#, 3535(1996)]. Inves-
tigation of different nonlinear models that demonstrate phase transitions induced by multiplicative noise shows
that the influence of additive noise upon such phase transitions can be crucial: additive noise can either blur
such a transition or stabilize noise-induced oscillations.

PACS numbsd(s): 05.40—a, 05.70.Fh

[. INTRODUCTION induced in the high-frequency subsystem. Then we consider
a standard epidemiological modg2—-24 with a random

Noise-induced transitions occupy an important placeaction and show that this action can be split into additive and
among phenomena that demonstrate a strong influence 8iultiplicative parts. In contrast to the pendulum, here the
weak noise on the behavior of a systg®; e.g.,stochastic ~ transition can be induced by both additive and multiplicative
resonance[3_5], noise-induced transpor[G], coherence noise. The mechanisms are I|ke|y to be the same as in the
resonancd 7] or noise-induced pattern formatidig]. Inten-  oscillator with quadratic nonlinearity and in the pendulum,
sive investigations of recent years have shown that noisg€spectively. The combined action of additive and multipli-
induced phase transitions can manifest themselves in the apative noise in this system extends the range of the param-
pearance of new extrema in the system probabilityeters where noise-induced oscillations are stable, so we in-
distribution[9,10], in the creation of a mean fief[d1-13, terpret this phenomenon as stabilization of noise-induced
and in the excitation of oscillationd,14,15. The last two  Oscillations by additive noise.
types of transitiong16] have been termed nonequilibrium  The organization of the paper is as follows. In Sec. Il we
noise-induced phase transitiofts7, 1. consider a pendulum with multiplicative and additive noise,

In these and other works multiplicative noise is perceivedvhich demonstrates a phase transition induced by multipli-
to be responsible for the transitions. However, as has beefative and influenced by additive noise. In Sec. Ill systems
recenﬂy Shown ”ﬁl8_2q7 additive noise p|ays a Crucia' r0|e with additive noise alone are considered: an oscillator with
in these transitions. Hence, studying the influence of additivéluadratic nonlinearity and an electromechanical vibrator.
noise is of great importance. In this paper we study severapection IV is devoted to the study of transitions induced by
major aspects of the influence of additive noise by Considerboth additive and mUltiplicative noise and of the StabIIIZIng
ation of typical models in which a transition leads to noise-influence of additive noise in an epidemiological model. In
induced oscillations. Sec. V we summarize the results obtained.

First, we study a transition induced by multiplicative
noise in the presence of additive noise. We investigate such a
transition theoretically and numerically in a pendulum with
randomly vibrating suspension axis. In this model the addi-
tive noise blurs the transition induced by multiplicative  First, we study the problem of excitation of a nonlinear
noise. The pendulum is a key model for understanding anoscillator under parametric and forcing random actions. We
other effect: a hidden phase transition induced purely by adgive an approximate analytical solution of this problem to
ditive noise. We demonstrate it for an oscillator with qua-reveal the influence of additive noise on a phase transition
dratic nonlinearity and random force by showing thatinduced by multiplicative noise in a pendulum with a ran-
autoparametrical excitation occurs due to the additive noisgomly vibrated suspension axis. In the absence of additive
and quadratic nonlinearity. At the same time the presence gfoise such a transition has been considered1i25]. It
additive noise makes this transition hidden. The mechanisnghould be noted that the additive constituent of noise appears
of this transition is similar to subharmonic resonafitd]. by itself if the vibration of the pendulum’s suspension axis
Another mechanism, combination resonance, can also be agccurs in a certain direction making a nonzero angle with the
sociated with a phase transition induced by additive noiseyvertical [18].

This mechanism is illustrated by an electromechanical vibra- |n the presence of additive noise the equation of motion
tor energized from a source of sufficiently high-frequencyfor this system can be written as

random current in place of a periodic soul&i,14]. The

combination resonance is caused by nonlinear interaction of o ) ) )

random oscillations of the source current and the oscillations ¢+ 2B8(1+ a@?) e+ wg[ 1+ &1(t)]sine=wpéa(t), (1)

II. NOISE-INDUCED PHASE TRANSITIONS
IN THE PRESENCE OF ADDITIVE NOISE
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4810 P. S. LANDA, A. A. ZAIKIN, V. G. USHAKQV, AND J. KURTHS PRE 61

where is the pendulum’s angular deviation from the equi- 1.2 - . : . » -
librium position, wq is the natural frequency of a small free
pendulum’s oscillationsg is the damping factorg is the
coefficient of nonlinear friction, and;(t) and &,(t) are
comparatively broadband random processes with zero mean
values. We assume that the suspension axis vibration is mod-
erately small in amplitude, i.e., the pendulum oscillations can A
be considered small enough ferto be substituted in place § 0.
of sin ¢ in Eq. (1). o
An approximate analytical solution of this problem can be 0.
obtained from the assumptions th8fwy~e, &(t)~ e,
and &,(t)~ e, wheree is a certain small parameter which
should be put equal to unity in the final results. Equatibn
can then be solved by the Krylov-Bogolyubov method; to do
this we set o=A(t)cosy(t)+eu;+---, where (t)=wqt
+ (1),

) ) FIG. 1. The influence of additive noise on a noise-induced phase
A=efi+--, dp=€Fi+---, (2 transition in a pendulum with randomly vibrated suspension axis.
The dependence of the valeéA?), which is proportional to the
anduy,...f1,...,Fq,... areunknown functions. By using the Mean amplitude squared, opwithout additive noiseq,=0 and
Krylov-Bogolyuov technique for stochastic equatiofsee with additive noisegy=0.005 and 0.02 for curves 1-3 respectively.

[26]), we find expressions for the unknown functidhsand Theoretical (solid lineg and numerical resultgsymbols. In the
: _— : : . presence of additive noise the dependence is smooth. The remaining
F,. Substituting these expressions into E@.we obtain parameters arg=0.1, a— 100, andwo= 1.

A— 3 272
A== B(1+ zawA%)A+ g1 (A, o(t),£1(1), £2(1)), . R = fox(<&gl(§;\¢’t)gl(A,¢>,t+T)>
. (?gl(Avd)vt)
b= woGa(A Y(1), £1(1), E5(1)), @ T GAGLrD) ) ]dn (6
where A )
0 J ,o,t
= fx(<%glm,¢,t+r>>
A
91(A,¢,t) = 551(05"1 2¢(t) — E(t)siny(t), 90,(A b
+<Tg2(A,¢,t+T)> dr, ™
U2(A, p,t) = & (t)cos y(t) — A E2(Dcosy(t). ggseﬂaglar brackets denoting averaging over the statistical
The bar over an expression denotes averaging over time. K=k, (2wg), Ki=1 , 38
As follows from[26], the Fokker-Planck equation associ- 1= 2K (200) 12= 2K, o) ®
ated with Eqs(3) and(4) is
K21=%[K§1(0)+%K§1(2w0)],
IW(A, d,t) 9 ) )
T Al AT RawcADAT 6ok, Koz= 3k (0)+ g (wo)], ©)
WA, p,t)  wh
XW(A,QS,t)}—w%RzT-F % and
& [[Ky -
S TA2+ Ko W(A, 1) Kg(w):‘[7 (§(1)é(t+7))coswrdr

+| Kyt (5) is the power spectrum density of the procegs) at the
frequencyw.
Let us now calculate the integral) and(7), taking into

where account the expressions fgf andg,. As a result, we obtain

KZZ) aZW(A! ¢,t)
W st |
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3A (0 increasing noise intensity. The Langevin equations which
RF@[ (é1(t)&,(t+ 7))cos 2wgrdT can be related to the Fokker-Planck equatiBnin view of
o Egs.(10) and(11) are presented in Appendix A.

1 (o First we considethe case when additive noise is absent
+ ﬁj (&x(1)&x(t+ 7))cosword T i.e., kg, =0. In this case the steady-state solution of {9,
satisfying the condition of zero probability flux, is
3Ky Ky
8 T2 (10 g C 3 (A
w( ,¢)—mexm7]n it (12

1 (o
RZ:ZJ (&1(1)&1(t+ 7))sin 2wrd T where a=3aw3/4 is the nonlinear parameter ang
*°° =3w§K11/8,8—1. The constanC is determined from the
normalization condition

1 (o

—EJx(fz(t)gz(t-i-r))sinwofdr. (11) o

f fw(A,¢)AdAd¢=1.
0 0

The value ofR, depends on the characteristics of the random
processes;(t) and &,(t): if they are white noises theR,
=0; but if, for example£,(t) is white noise and(t) has a
finite correlation time and its power spectrum density is

Upon integrating Eq(12) over ¢, we find the expression for
the probability densityv of the oscillation amplitude:

3aA?
aixgl(zwo) W(A)=CAR7~D/(1+n) exp(— 21t (13
ke (@)= (0—20y2+a2’ (1+7
w—2wg)°taj o -
From the normalization condition we get
then
3a 37/2(1+7) 1 f 0
N e — —
Ryo L0k (200) c=2x{ |21+ 7) r@mzity) 7
4(16wpt+ag) 0 for 5=<0.
14
It should be noted that in this cas$® is negative, which 4
results in a decrease of the mean oscillation frequency witlHence,
|
3a 39/2(1+7) A(Zr]—l)/(l+ 7) [{ 3aA2
P exp — for =0
w(a)=2x1{ |2(1+7) T @7/2(1+ 7)) 2(1+7) 7 (15

S(A) for »=<0.

The fact that forp<0 the probability density of the ampli- multiplicative noise. This manifests itself in the fact that the
tude turns out to be & function is associated with the ab- mean values of the amplitude and of the amplitude squared

sence of additive noisesee below. become nonzer(Fig. 1, curve 1 This parametric excitation
Using Eq.(15), we can determinéA) and(A2): implies a transition of the system to a new state, which can
be treated as a phase transition. The conditjgnO is the
threshold for the onset of this phase transition. It follows
|3 Tyt 21+ y) » for y=0  that,in the absence of additive noise, the critical value of the
(A)= 2a(1+n) I'Gn/2(1+75)+1) multiplicative noise intensity is
0 for =<0,
16
(16 ) 168
Kg (sz)EKcrzg_w(z)- (18
5 7 for »=0
(A9=q 2 (17 Hence, the parametey characterizes the extent to which the
0 for »=<0. intensity of the multiplicative noise component exceeds its
critical value.
Therefore, it is evident that fo,>0 the parametric excita- It should be noted that, for;>0, the steady statA=0

tion of pendulum oscillations occurs under the influence ofloses its stability and the stafe#0 becomes stable. At the
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same time, Eq(15) implies that the probability density @ conveniently written as
is monotonically decreasing with increasiAg for any value

2 2
of »>0. Hence, in contrast to the transitions considered in (A, ¢)= - e F{ 3(n—aA )SA 9 ,
[9], the appearance of a new stable state need not be accom- 2m(aA™+q) (1+n)(aA”+q)A
panied by the appearance of a new maximum in the system (19
probability distribution[see Fig. 22)]. whereq=4aK,,/K; characterizes the ratio between the in-

Now let us considethe case when the intensity of addi- tensities of additive and multiplicative noise.

tive noise is not equal to zerdhe steady-state solution of Following the calculations presented in Appendix B, we
Eq. (5), satisfying the condition of zero probability flux, is get an expression for

) 4u 5 3q 3q
a(A)=(1+m)| 5 T(2p) (3= 20)(1+2u)| 2(1-2p) +(5—4p) 21+ 205
3g | 3q |
x| Vol (- 2) (1-2p) 2(1—277) +2F(2mr<%—2m<1+2mHgn—zm(l—zm 2(1—2,7)
9q ; 3(3—4w)q)|| "
X 2(1+2,u,)+2(1—+77) +TRu)I'(3—2w)(1+2u) 2(1—2/,L)+2(1—_|_7]) , (20

whereu=3(7+q)/4(1+ 7). Note that, similarly to the case tem with additive noise only. For this we consider an oscil-
without additive noise, after a transition no additional lator with a quadratic nonlinearity and additive random
maxima appear in the system probability distribution and theforce.

sha;])e of this distribution is not qualitatively chandétg. The oscillator under consideration can be described by
2(b)].
Next we compare these analytical results with numerical X+ 28X+ w(z,(1+x+ yx2)x= w(z,bg(t), (22

simulations. The corresponding dependence@?) on 7

for different values of the parametqg is illustrated in Fig.  \yhere the friction factog is assumed to be sufficiently small
1. We see that additive noise of small intensity results in g, comparison with the natural frequenay,, &(t) is an
smoothing of the dependence of the mean oscillation ampligyternal force, which is a sufficiently broadband random pro-
tude squared on the multiplicative noise intensity: it becomegeags with zero mean value, the parameter responsible for
without the break inherent in a phase transition induced byhe noise intensity, and the tergx? is introduced to avoid
only multiplicative noise. If we increase the additive noisehe sojution going to infinityfcaused by the presence of an
intensity, the transition becomes less detectalfiy. 1, | nstaple singular point of Eq21) for y<0.25].

curve 3. At this point it is necessary to note that direct use of the

In a numerical experiment it is more convenient to calcu-goyker-Planck equatiof26] and its stationary solution does
late the variance of the corresponding variable instead of thgot show that the system probability distribution for vari-

mean amplitude squared. It is evident that the dependencieg g &) is qualitatively changed with increase of the
of these values on the noise intensity should be similar. Infgise intensity. However, as we learned from the example in
deed, in the case when the amplitdlés a slowly changing - the previous section, the transition can take place despite the
funct|02n, the variance is equal té\")/2. The dependencies acts that there is no noise-induced maximum in the system
of a(A%) on » found by numerical simulation of Eq1) for  propability distribution(see Fig. 2 and that the transition is
both the presence of additive noise and its absence are shoygt ghservable in the dependence of variance on noise inten-
also in Fig. 1. We find that near the threshold the simulationg;jty (see Fig. 1, curve)3 Obviously, the presence of moder-
match the analytical results very well and that the dependenyteyy strong additive noise makes every transition hidden and
cies forq=0 can be approximated by a straight line inter- ndetectable. Nevertheless, the mechanism of the noise-
secting the abscissa aj=0. With an increase ofp, the  induced transition is present in the model and, therefore, we

growth rate _of the varia_nce in numeri_cal simulations_ iScall this phenomenon hidden phase transition induced by
smaller than in the analytical results. This can be explainedqgitive noise

by the fact that the Krylov-Bogolyubov method is valid only 1o demonstrate the physical mechanism that is respon-
near a threshold. sible for the hidden noise-induced phase transition, we will
use the same procedure as for the calculation of subharmonic

lll. PHASE TRANSITIONS INDUCED resonancefl4]. First, we decompose into

BY ADDITIVE NOISE

A. Oscillator with quadratic nonlinearity X(H)=y(t)+x(t), (22)

In this section we show that the mechanism of the noise-
induced phase transition may exist also in an oscillatory syswhere x(t) is a random process satisfying the equation
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(a) (b)
50 r . T v 20 T T v T T
45 1 1841 1 FIG. 2. The system probability distribution
40 1 16 1 for a pendulum.(@) The case without additive
n 23 ] I 1 noise. The probability distribution@(aA2)
% s | %10 | =w(A)/2aA for »=0.01 (curve ) and »=0.2
lg 20 1y 8l )l (curve 2. (b) The case with additive noise. The
15 6 ] dependence of W(aA?)=w(A)/2aA for q
10l \2 4 1 =0.01/(1+7) and »=-0.2, 0, and 0.2 for
503 2 i curves 1-3, respectively.
00 0.02 0.04 0.06 0.08 0.1 OO O.I05 Oil O.IlS 0.2 0.25 0.3
an? ahn2
X+ 2B+ whx = wib(t). (23  Wwhere
Now we will show t_hat _the system d_e_scribed by_ th_e vari- 300(2)K1 3y( 157(0(2)
abley undergoes a noise-induced transition. Substituting Eq. n= -1, a=—|1-——|(K,+Kjy),
(22) into Eq.(21) and taking into account Eq23), we get 2p 4 8B

the equation for the variablg
9y%A3
4

Sin 2wq 7+

0
J+28y+ w3{L+y+ £(0+ WY+ 3Ny =iV, a= | oxtes )

(24

where £,(t)=—x2()[1+vyx(t)] is additive noise and X (3 sinwgr+sin 3‘007))0'7'

&E(1)=x (1) [2+ 3yx(t)] is multiplicative noise. Comparing

Eq. (24) with Eq. (1), we find that these equations are simi- /. (t) and ¢,(t) are white noises with intensities
lar. In the absence of additive noi§g(t), Eq.(24) is similar

also to Eq.(1) in [1], except that the role of the random 9,2A2
processé(t) is played by the noisé&,(t). In the previous Ni=| K+ ———(K,+Kj) | A2
section we have shown analytically and numerically that in 16

the oscillator described by such an equation multiplicative
noise causes a phase transition. Hence, the ngigg is  an
responsible for the phase transition, whereas, as will be seen
from subsequent results, the additive noise makes the transi- Y
tion hidden. Ny=2Ko+ Kyt —5= (Kot Ky),

An approximate analytical analysis of H&4), in view of
Eq. (23), is possible in the specific case when the randomegpectively, Ki=x(200)/2, K=k (00)2, K
force in Eq.(23) is nonresonant. Owing to thig(t) is suf- =k, (3w0)/2, Ko=k,(0)/2, andk,(w) is the spectral den-
ficiently small, and we can ignore in E@4) both£,(t) and  sity of the random procesg(t) at the frequencyy.
3yx?y. As a result we obtain the following approximate solving the Fokker-Planck equation associated with Egs.

2A2

equation fory: (26), we get the probability densitw(A):
y+2By+wi[1+y+2x+yy(y+3x)ly=0. (25 W(A) = CA@7= DI+ 7)(1 4 A2)~[(2+Sm)r+3al2r (1),
(27)
Putting y=A(t)cosy(t)+---, where (t) = wot+ ¢(t), and
using now the Krylov-Bogolyubov method for stochastic where
equations, we obtain the following truncated equations for 942 Kot K
A(t) and ¢(t): = Y Ko Rs
16 K;
A=(n—ah®)A+woli(t), =M1+ wola(t), (26) From the normalization condition we find
|
a+r97r3”/2(1+n) I'G(at+rxy)/2r(1+mn)) for =0
C=2X% a I'(Bn/2(1+ »)I'(3al2r(1+ 7n)) (28)

0 for »=<0.
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s FIG. 4. The spectral density of the noise used in numerical
GEJ simulations for the oscillator with quadratic nonlinearity to exclude
the resonant frequency. The noise is passed through a bandpass
filter.
"0 10 20 a0 5 0 50 60 70 pendence Ofrzr, which can be treated as an order parameter,
b on the parametdn?, which can be regarded as temperature,

FIG. 3. Dependencies of the first moments of the simulatedS well approximated by the straight line described by the

: 2 _ 2_ K2 ~ ;
solutions onb? for y=0.251, wo=1, 8=0.1. (a) variances<rf, equat|oncryr—0.056(0 ber), wherebg~4.1. This means

(curve D, oi (curve 2, o2 (curve 3, alnda§rr (curve 4; (b) mean  that the critical index is equal to [ee Fig. 8a)].

value(y) (curve 1, (y,) (curve 2, and(y,,) (curve 3 for the same (2) Figure 3b) demonstr_ates that we can use as an order
value of y. parameter not only the variance, but the mean value as well.

Close to the critical point the dependence(gf) on b? can
It follows from here that the probability density of the am- be approximated by the straight lingy,)=—0.0256>

plitude turns out to be & function for <0, as for the —bgr).
pendulum considered ifi]. (3) To reveal the influence of the termy3?y that was
Using Eqs.(27) and (28) we calculate{A?) ({-) denotes dropped in the analytical consideration, we also numerically
the statistical average simulated Eq(25). The results are given in Fig(8 (curve
4) and Fig. 3b) (curve 3. We see that the phase transition
37 4y f ~0 occurs for a smaller value & if in the reduced equation the
(A2)={ 3a+r(2+5y) 3y—4r or n= (29)  term 3yx®y is ignored, i.e., this term suppresses the phase

transition[compare curves 2 and 4 in Figa®]. This is also
attested by the fact that the slopes of the dependencie§ of
Note that the solution found is valid only for)8K,+Ks) ando? on b? are essentially different. Thus, the numerical
<4Kj. simulations have shown that in the absence of additive noise

Thus, we have shown analytically that in the absence of1 Only, we obtain a clearly defined phase transition. As
the additive noise&t; and the term 32y, in a system de- Mmentioned above, the additive noige makes the transition
scribed by Eq(24), a noise-induced phase transition indeedhidden(see the dependence faf). It is interesting that the
occurs. As shown below, numerical simulations demonstratdependence for? is close to that forai; the difference
that this transition remains well defined if the term@y is  appears only for large values of the paraméteFhis means
included; though the additive noigg makes it hidden. The that close to the critical point the influence of the ngig¢)
main results of our numerical simulations are as follows. is negligibly small.

(1) The results of numerical simulation of the complete (4) To reduce the noise spectral density at the frequency
equationg23) and(24) in the case of sufficiently broadband wg, we have passed the noi§&) through a bandpass filter
noise, which can be considered as white noise, are shown inith central frequency @, and bandwidthv,. The spectral
Fig. 3. For comparison, the results of numerical simulationdensity of this noise is shown in Fig. 4. We see that it is
of Eq. (24) after dropping only the additive noisg(t) are  indeed very narrowband in the vicinity ab,. Next, we
also given there. We call Ed24) with &,(t)=0 the “re-  simulate Eqs(23) and(24) using this filtered noise a&(t).
duced equation” and denote its solution Yay. The solution For comparison we simultaneously simulate the reduced
of Eq. (25) is denoted byy,, . We see that for the complete equation(24). Figure 5 illustrates that, even though the spec-
equations, which are equivalent to the initial equation, theral density of the filtered nois&(t) at wq is very small, the
phase transition is practically undetectable and very noisynfluence of the noisé;(t) and of the term 32y is essen-
(curve 1. For the reduced equation, the phase transition igial. The reason is that the component of the nqiég at w,
clearly defined(curve 2. Close to the critical point the de- is not small because it is resonant. The smooth increase of

0 for »=0.
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b> well defined just by dropping some terms from the initial
system equation. We leave this as an open question in the
FIG. 5. Dependencies of the first moments of the simulatedyresent paper.
solutions onb? obtained using bandpass filtered noit®. Vari-
anceso; (curve 1, 0'5[ (curve 2, ando? (curve 3; (b) mean values

B. Elect hanical vibrat
() (curve 3 and(y,) (curve 2. ectromechanical vibrator

An electromechanical vibrator energized from a source of
periodic alternating current has been considerd@1n14]. It
consists of a sprung plate attracted to an electromagnet with
a power supply circuit forming an oscillatory circuit. We
demonstrated that under certain conditions powerful low-
frequency oscillations of the plate can be excifed,14.

§r with increasingb? from b2, onward is explained by the

fact that the influence of the termy3?y is less than for
broadband noise.

Coming back to the initial equatiof22), we decomposed
the initial variablex into the sum of variableg and noisey,

o

for x andy are very similar(Figs. 3 and b Dropping the
additive constituent of the noise from the equationyfpowe
get a clearly defined transition with an increase of noise in-
tensity. From this we conclude that the initial equation de-

the vibrator with a random power source is presented in Fig.

The equations of this vibrator can be written as

scribes a system in which a hidden nonequilibrium phase d? [L(x)I dl 5
transition is induced by additive noise. g2\ T T20rgy H ol =€),
The transition under consideration is similar to the transi- 0
tion studied in the previous section, not only in the physical 2
X ; . o~ d“x dx
mechanisnmautoparametrical and parametrical excitation, re- o+ 28—+ vgx: F(x,1) (30)
spectively, but also in the sense that both these transitions dt dt

occur via on-off intermittency27,28. This is clearly visible

from the shape of, (t) [Fig. 6(b)]. Because of additive noise Where x is the plate displacement,is the current in the

the intermittency forx(t) is hidden[Fig. 6@]. As for a  oscillatory circuit, L(X)=Lo(1+a;x+ax*+agx’+:--) is

pendulum with randomly vibrated suspension axis and addithe inductance of the coil with a core depending on the size

tive noise[28], the intermittency is defined more clearly for of the clearance between the plate and the cére;R/2L,

b<b,, [Fig. 6a)]. and &,= a/2m are the damping factors for the oscillatory
At the current stage of investigation we have shown thatircuit and the plate, respectivelf),=1/YLoCo and vg

an oscillator with quadratic nonlinearity may contain a=k/m are the corresponding natural frequencix,)

mechanism for a phase transition induced only by additive= (1%/2)(dL/dx) is the pondermotive force acting on the

noise. The strong influence of additive noise makes this tranplate, andé(t) is a random process that is proportional the

sition undetectable in the initial equation, but we guess that ielectromotive force of the power source. We §@t) to be

is possible to find a situation when the transition becomeslescribed by the following equation:
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FIG. 7. A schematic image of an electromechanical vibrator |, 0.10 |
. . . : =
with random power source is the plate displacemen; the fric- .
tion, L the inductancel the currentR the resistanceg(t) the ran- o
dom process responsible for the electromotive force of the power © o5t

source, andk the rigidity of the springs.

wherex(t) is white noise. It follows from Eq(31), that the FIG. 8. The noise-induced transition in the electromechanical
spectral density of(t) peaks at the frequenay. vibrator caused by a mechanism similar to combination resonance.

Numerical simulation of Eq430) shows that from a cer- The dependencies af? (a) and 1@-2 andX (b) on k? for w=1,
tain value of the power source intensity, low-frequency 0s€,=0.9, »,=0.05, 6;,=0.1, §,=0.005,L,/m=0.1, a;=1, a,=
cillations of the plate appear. The dependence of the variance0.5, anda;=0.1.
of these osciIIations(f)z() on k2, which is proportional to the
noise intensity, is illustrated in Fig.(&. The form of this can be partially suppressed by additional harmonic action
dependence closely resembles the corresponding dependerfig]. But, in contrast to the pendulum, the suppression oc-
for a pendulum with a randomly vibrated suspension axisurs at low-frequency action rather than at high frequency. If
and additive nois¢see Fig. 1L We find from this plot that, the action frequency is high, the action has little or no effect
for sufficiently large values ok?, the dependence can be on the variance of the plate oscillations. To describe the ad-
apprOXImated by a straight line described by the equatiomlitional action, we add the teracoswt to £(t) on the right
02=0.3(k*—0.025). Taking into account the similarity with of the first equation of E(30). Under low-frequency action
the dependencies for noise-induced transitions in a penda considerable constant displacement of the plate appears.
lum, we can take the point where this straight line crosses th&herefore, the study of the suppression is conveniently per-
abscissa as the threshold of a noise-induced transitiofiormed using the variance of the plate velocity instead of the
Hence, the critical value df is equal to 0.158. Unlike the plate displacement. The dependencies of this varian@a (
variance 0)2(, the variance of the current fluctuationa,z( on the action amplitude for a fixed value of the action
=1?) increases with an approximately constant ratekas frequencyw and onw for a fixed value of are shown in Fig.
increases. The corresponding dependence is presented in Fid.. We see that for a fixed value of the frequenay (
8(b) (curve 1. It can be approximated by the straight line =0.2) the varlancer initially decreases as the action am-

=0.07%?. Owing to the presence of a quadratic nonlin- plitude increases, and then abruptly increases owing to exci-
earlty, the mean value of the plate displacement is nonzerdation of oscillations at the frequeney. For a fixed value of
The dependence of on k? is also shown in Fig. @) (curve  the action amplitude, the dependencer@fon  has a mini-
2). mum whose location depends on the amplituald Fig.

Typically for noise-induced transitions that lead to the 11(b)].
excitation of oscillationg28], for k<k. one can detect on-
off intermittencylike behavior in oscillations of the varialie
[see, for example, Fig.(8)]. With increase ok this effect
disappears. An example of the oscillationsxpf, and ¢ for
k>k, is given in Fig. 9b).

Power spectra of the random source and excited oscilla-
tions are shown in Fig. 10. It is clearly seen that we deal with In this section we consider an example of a system under
high-frequency excitation. The mechanism responsible fothe combined action of additive and multiplicative noise.
the excitation seems to be similar to combination resonancéoth multiplicative and additive noise can induce a transi-

As in the case of a pendulum with slight additive noise,tion, and, what is especially interesting, a combination of
noise-induced oscillations of the vibrator under considerationtheir actions stabilizes noise-induced oscillations. To demon-

IV. TRANSITIONS INDUCED BY BOTH
MULTIPLICATIVE AND ADDITIVE NOISE:
STABILIZATION OF NOISE-INDUCED OSCILLATIONS
BY ADDITIVE NOISE
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FIG. 9. On-off intermittency in the vibrator. Examples of oscillations of the plaje ¢f the current in the oscillatory circuit), and of
the power sourcéé) for k=0.08 (a) andk=0.3 (b).

strate these effects, we use a standard epidemiological modefectiveg. Let us note that Eqs(32) do not contain the

for the description of seasonal oscillations of childhood in-variableR; hence these equations can be considered indepen-
fections, such as chickenpox, measles, mumps, and rubelldently of Eq.(33).

under the influence of variations of the contact rate of chil- It is easy to show that Eq§32) for b=by= const, and for
dren susceptible to infection with infective children. This any values of the remaining parameters, have one aperiodi-
model has been studied in detail both in the case of periodically unstable singular point with coordinat&=1E=1
variation of the contact rat22—24,29 and in the case of =0, and one stable singular point with coordinates

random variation of the contact rat&5,29. Here we dwell
only on one important aspect of this problem, namely, on the

+ + +
stabilizing influence of a combination of additive and multi- so:(m a(m+g) , Eo= m__mim g),
plicative noise on the excitation of induced oscillations. abo m+a abo
The model equations are
. ) . am m a4
S=m(1-S)-bSl, E=bSI-(m+a)E, o= mta)mig) by’ (34)
I=aE—(m+g)l, (32 o _
If the parameteb varies with time then the variabl&s E
= and | will oscillate, and these oscillations will be executed
R=gl-mR (33

around the stable singular point with coordinat@$. There-

where S is the relative number of children susceptible to fore, it is Eonvenient tf substitute into_Eq(§2) the new
infection, E is the relative number of children exposed butvi”ablesx_S/S‘)fl’ y_E/EOfl’ andz_—l/lo—l. .P.uttlng
not yet infective,l is the number of infective childrerR is b=Dbo[1+D,f(t)], wheref(t) IS a function d(_ascnblng_the
the number of children recovered and immunen i¢ the shape .Of the contact rate variation, we rewrite HG8) in
average expectancy time,alis the average latency period, the variables, y, z

1/g is the average infection period, abds the contact rate

(the average number of susceptibles in contact yearly with  X+mx= —bglo[1+b,f(t)](x+z+x2) —bgb4lf(t),

(a) (b)

15

20

10
I n FIG. 10. The power spectra of the random
10 1 power sourcda) and of the solutiorx (b).
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x10 ~ (b) . ’ 0

bcr bl

FIG. 12. A noise-induced phase transition in the SEIR model.
The dependence @f? on the parametds, in the case of a random

Nb“ 6 variation of the contact rate. The solid line represemnt$
ol =0.47(p,—0.066).
2 r . . . . .
this case the variance of oscillations is equal to zerobfor
%05 015 055 095 <b. and goes to infinity shortly after the noise intensity

o) represented by the parametey exceeds its critical value.
The same situation is observed if additive noise is absent but
multiplicative noise is present. Now it is clear that the point
b,=b, is a point of noise-induced phase transition, which
can be induced by both multiplicative and additive noise.
The physical mechanisms responsible for this effect are
likely to be the same as for the penduly®ec. 1) and the
nonlinear oscillatofSec. Il A), respectively.

It is even more interesting that the combined action of

FIG. 11. The dependencies of the variam:é on the action
amplitudea for «=0.2 (a) and on the action frequencay for a
=0.3(b). For w=0.2,a>0.4, the variance abruptly increases ow-
ing to excitation of oscillations at the frequeneyand goes, in fact,
to infinity.

y+(m+a)y=(m+a)[1+b;f(t)](x+z+x2)

+(m+a)b,f(t), (35)  additive and multiplicative noise performs a stabilization of
noise-induced oscillations: in this case the dependence of
z+(m+g)z=(m+g)y. variance on noise intensity does not go to infinity. Again, as

for previously considered mode]28], the transition can be

In Egs.(35) the termb; f(t) can be considered as an externalaccompanied by the effect of on-off intermittency. In the
action upon the system. This form of the equations clearlybsence of additive noise one can observe on-off intermit-
shows that this action is not only multiplicative, i.e., para-tency near the thresholdig. 13.
metric, but additive as well.

Olsen and Schaffef23] set the following values of the V. CONCLUSIONS
parameters: m=0.02year!, a=35.84year!, g
=100year?, by=1800year?, andb,;=0.28. These param- We have studied in this paper the role of additive noise in
eters correspond to estimates made for childhood diseasesi@ise-induced phase transitions and have shown that it can
first world countries. We follow them. be nontrivial. We have found several phenomena by consid-

In [15] we supposed that the contact rdtevaries ran-  €ration of different typical models; each of them has demon-
domly with the main period equal to one year, i.&() strated a certain aspect of the problem. Consideration of a

=X(t)’ WhereX(t) is a random process that is a solution of pendulum under the action of multiplicative and additive

the equation noise has shown that, if a noise-induced transition occurs in
X+2my+6mx=KE(t), (36) 0.3
&(t) is white noise, and is a factor that we choose so that 02t
the variance ofy(t) is equal to 1/2. It is easily seen that the o4 |
spectral density ok(t) peaks at the frequenay=_27r. )
Noise-induced oscillations appear as a result of a noise- 0.0

induced phase transition. To show this let us consider Fig.

12, where the dependence @f on b, is presented. With an -01
increase of noise intensity, the intensity of noise-induced os- 02 ‘ ‘ .
cillations is increased too. For rather large>b,, this de- 0 500 i 1000 1500

pendence can be approximated by a straight line. The inter-

section point of this line and the abscissa can be taken as a FIG. 13. On-off intermittency in the SEIR model. An example
point of a transition—a threshold valu®,. To prove it let  of oscillations of the variablesandy for b, =0.099 for the case of
us drop the artificially multiplicative noise from Eg85). In multiplicative random action alone.
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the presence of additive noise, it is blurred by this noise and’he integral on the right-hand side of E@®2) can be ex-
becomes hidden. We have presented results of an analyticatessed in terms of a Whittaker functif®2]. As a result we
study confirmed by numerical simulations. By the exampledind

of Sec. lll we have demonstrated that there are mechanisms

which allow additive noise alone to induce a hidden transi- ., _ Vr 3 |\t 3q

tion. Consideration of an epidemiological model has shown “4aqtP e\ 2(1+ ) ex 4(1+ n)
that, moreover, there exist nonlinear systems in which only

the combined action of multiplicative and additive noise W 3q ) (B3)
causes stable noise-induced oscillations. In such systems the el 21+ ) )

joint influence of additive and multiplicative noise can be
interpreted as the stabilization of noise-induced oscillationswhereu=3(7+q)/4(1+ 7).

In the present study we have considered only transitions that We obtain the expression fdC in explicit form in the
lead to the excitation of oscillationée.g., in contrast to limiting case when the additive noise intensity is small com-
[20,30,31). It should be mentioned also that we have re-pared to that of the multiplicative noise, so that

cently shown in[19,2Q that the role of additive noise may
also be crucial in noise-induced transitions that lead to the
creation of a mean field in a spatially extended system.

q<1. (B4)

In this case we can use a representation of the Whittaker
function W, ,(z) in terms of two other Whittaker functions
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APPENDIX A: LANGEVIN EQUATIONS I'(2u)
=M, _,(2). B5
The following Langevin equations can be related to the L(12+pu=N) N W2 (85

Fokker-Planck equatiofb) in view of Egs.(10) and (11): .
We then expand each of the functiord, ,(z) and

M, - .(2) in powers ofz [32]:

I'(=2up)
_ 7K
r'/2—u—N»)
1-2(\—
(1 #“'")
wherel4(t), £12(t), £21(t), and,,(t) are white noises with ( )
zero mean value and uncorrelated wihThe intensities of T(2u) 1-2(N+p)
these noises ar;;, Kyp, Ky1, andKy,, respectively. We mz‘ ( WH”
note that even in the case WitQ2=0 Eqgs.(37) differ from K K
that derived in[26]. The reason is that there the variable (B6)

=In A in place of A was used, i.e., the correlation between - .
the noiseé(t) and the amplitudeéA was implicitly ignored Substituting Eq(B6) into Eq. (B3) we get

. 3a)§ wé
A:ﬁ n— TCYAZ e

o
A+ SA Kot 7A§11(t) + wol1A(1),

W, .(2)= ﬁem( - ;

b= wiM+ wo| Lon(t)+ (A1)

ézz(t))
A ]

[14,1,23 C—l_ \/; F(_Zﬂ) m 1+ q +...)
s _
APPENDIX B: CALCULATIONS IN THE CASE 4a|I(3/2=2p) A1+2p)(1+7)
WITH ADDITIVE NOISE C(2u) (2(1+ 7) 2u
The dependence of the mean amplitude squared on the I'(3/2) 3

multiplicative noise intensity in the case where additive 3(3—4u)q

noise also acts on the pendulum can be calculated as follows. x| 1+ K 4. ) (B7)
Upon integrating Eq(19) over ¢ and calculating the integral 4(1-2u)(1+7)

within the exponential, we obtain The expression14), obtained in the absence of additive

W(A)=27AW(A, )= CAZ(AZ+qg/a)3@- DAL+ noise, follows at once from EqB7) for q—0.
The probability distribution(B1) for q#0 differs essen-

3aA? tially from Eq. (15): first, it is not aé function for <0 and,
XA T 51T ) (B secondlyw(A)=0 for A=0.
Using Egs.(B1) and(B3) we can calculatéA) and(A?).
It follows from the normalization condition that For example, fo{ A?) we obtain
o 2
C—l: J AZ(A2+q/a)3(q—l)/2(l+ 7) exr{ — —3aA dA. a<A2>= 3Q(1+ 77) W,u—3/2wv+1/2[3q/2(1+ 77)] .
0 2(1+7) Vo2 W,_1,[30/2(1+ )]

(B2) (B8)
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Taking into account the recursion relatipde]
Wi u(2)=VZW 172,04 1742) + (3= N = )Wy _1,,(2),
the expressioliB8) can be rewritten as

W/.L*Z,,U,[3q/2(1+ 7])]
(B9)

a(A?)=(1+ )| 1-(3-2p)

The expression fofA?) can be obtained in explicit form
only with the constraint(B4). Using Eg. (B6) we find

PRE 61

W, 2u(2) 2 [ﬁ
W/,L—l,/,L(Z) (3_41“’)

- F(=2p)2(1-2p)

X[2(142u)+52]+T(2)T (2 —2p)

4p

X 1—?)z#(1+2ﬂ)[2(1—2ﬂ)

+(5-4u)7] (gl“(—Z,u)Z“(l—Z,u)[Z(l

+2u)+32]+T (2T (2 —2u)z #

X(1+2u)[2(1-2p) +(3—4u)Z]

(B10)

for w,_,,(2)/W,_,,(z) the following approximate Substituting Eq.(B10) in Eq. (B9) we get the required

expression:

Eq. (20).

[1] P. Landa and A. Zaikin, Phys. Rev.3, 3535(1996.
[2] P. Landa and P. McClintock, Phys. Ré be published

[3] L. Gammaitoni, P. Haggi, P. Jung, and F. Marchesoni, Rev.

Mod. Phys.70, 223 (1998.

[4] M. Dykman and P. McClintock, Natur€_ondon 391, 344
(1998.

[5] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Ph§g,
251 (1990.

[6] F. Marchesoni, Phys. Lett. 237, 126 (1998.

[7] A. Pikovksy and J. Kurths, Phys. Rev. Let8, 775(1997).

to a more recent class of nonequilibrium phase transitises
also the Introduction if9]). However, there is also another
point of view [13,12, arguing that the name noise-induced
phasetransitions can be used only for transitions in spatially
extended systems.

[17] C. Van den Broeck, J. M. R. Parrondo, R. Toral, and R. Kawai,

Phys. Rev. B55, 4084(1997).

[18] P. Landa and A. Zaikin, irComputing Anticipatory Systems

edited by D. Dubois, AIP Conf. Proc. No. 46&IP, New
York, 1998, pp. 419-434.

[8] J. M. R. Parrondo, C. Van den Broeck, J. Buceta, and F. J. dg19] P. Landa, A. Zaikin, and L. Schimansky-Geier, Chaos Solitons

la Rubia, Physica A224, 153(1996.

and Fractal®, 1367(1998.

[9] W. Horsthemke and R. LefeveNoise-Induced Transitions [20] A. Zaikin and L. Schimansky-Geier, Phys. Rev.58, 4355

(Springer, Berlin, 1984
[10] J. Smythe, F. Moss, and P. McClintock, Phys. Rev. Lgt.
1062(1983.

(1998.

[21] P. Landa and Y. Duboshinsky, Usp. Fiz. Nauks8 729

(1989 [Sov. Phys. Usp32, 723(1989].

[11] J. Garca-Ojalvo, A. Hernadez-Machado, and J. Sancho, [22] K. Dietz, Lect. Notes Biomathl1, 1 (1976.

Phys. Rev. Lett71, 1542(1993.

[23] L. Olsen and W. Schaffer, Scien@d9, 499(1990.

[12] C. Van den Broeck, J. M. R. Parrondo, and R. Toral, Phys[24] R. Engbert and F. Drepper, Chaos Solitons and Fraetals

Rev. Lett.73, 3395(1994.
[13] J. Garca-Ojalvo and J. M. Sanchd\oise in Spatially Ex-
tended System(&pringer, New York, 1999

1147 (1994

[25] P. Landa and A. Zaikin, Zh. Eksp. Teor. F&4, 358 (1997

[JETP84, 197 (1997)].

[14] P. Landa,Nonlinear Oscillations and Waves in Dynamical [26] R. StratonovichTopics in the Theory of Random Noiggor-

SystemgKluwer Academic Publ., Dordrecht, 1996

don and Breach, New York, 1953vol. 1.

[15] P. Landa and A. Zaikin, iApplied Nonlinear Dynamics and [27] P. Landa, A. Zaikin, M. Rosenblum, and J. Kurths, Phys. Rev.

Stochastic Systems Near the Millenjuedited by J. Kadtke
and A. Bulsara, AIP Conf. Proc. No. 41(&AIP, New York,
1997, pp. 321-329.

E 56, 1465(1997).

[28] P. Landa, A. Zaikin, M. Rosenblum, and J. Kurths, Chaos,

Solitons and Fractal8, 1367(1997.

[16] We call the transitions considered in this paper noise-induced29] P. Landa and A. Rabinovitch, Phys. Rev.@, 1829(2000.
phasetransitions. In our terminology we follow the concept [30] H. Fujisaka and S. Grossman, Z. Phys. B: Condens. M4ger
suggested by Haken if83], where he shows that the name 69 (1981.
phase transitiongan be used for the transitions considered by[31] L. Brenig and N. Banai, Physica B, 208 (1982.
us on the basis of analogy with phase transitions in equilibrium{32] E. Whittaker and G. WatsorA Course of Modern Analysis
systems. Such a name expresses that these new transitions are (Cambridge Univ. Press, Cambridge, 1927
closely akin to the classical equilibrium phase transitions and33] H. Haken,Synergetic§Springer-Verlag, Berlin, 1978



RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 60, NUMBER 6 DECEMBER 1999

Nonequilibrium first-order phase transition induced by additive noise
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We show that a nonequilibrium first-order phase transition can be induced by additive noise. As a model
system to study this phenomenon, we consider a nonlinear lattice of overdamped oscillators with both additive
and multiplicative noise terms. Predictions from mean field theory are successfully confirmed by numerical
simulations. A physical explanation for the mechanism of the transition is gig4063-651X99)51912-0

PACS numbe(s): 05.40—a, 47.54+r, 05.70.Fh

Among all the counterintuitive phenomena observed inthe coupling is measured Iy, andd is the dimension of the
nonlinear systems with noisguch as stochastic resonancelattice, which hadN=L¢ elements. The noise tern§gt) and
[1], noise-induced transpoff], coherence resonand8],  ¢;(t) are mutually uncorrelated, Gaussian distributed, with
resonant activatiof4], etc) an important place is occupied zero mean and white in both space and time,
by noise-induced transitions. Discovered in the 1980sind

confirmed by numerous experimerisee, for exampldg]), (ED&))=025 ;8(t—t"), 2
noise-induced transitions have attracted intensive attention 5
due to the surprising ability of noise to produce order in the (GO )y =076 j6(t—t"). 3

system. These transitions can be characterized by a qualita- . _

tive change in the probability distribution of the systéerg., For the sake of simplicity, the functiori¢x) andg(x) are

by a change in the number of maximan the 1990s other taken to be of the form11]

kinds of transitions were found, such as those giving rise to f(x)=—x(1+x2)2,  g(x)=a’+x? (4)
noise-induced oscillations in single nonlinear oscillators ' ’

[7,8]. On the other hand, systems of spatially coupled oversg that two different sources of additive noise can be consid-
damped oscillators have been recently shown to displagred to exist in this system: the first one, controllecby is
noise-induceghasetransitions. In this case, contrary to the completely uncorrelated with the multiplicative noise; the
previous phenomena, the system exhibits ergodicity breakingecond one, controlled b, is strongly correlated with it.

and the transition can be characterized by standard tools in The behavior of this system can be analytically studied by
equilibrium statistical mechanid®]. Several models have means of a standard mean-field the@WFT) procedurd9].
exhibited so far the existence of noise-induced Second'ordqfhe mean-field approximation consists of rep|acing the
(continuous phase transitions leading to the creation of anearest-neighbor interaction by a global term in the Fokker-
nonzero mean fiel@-12). In [13] it was shown that noise- planck equation corresponding to H@). In this way, one
induced phase transitions can also be of first ofdescon-  obtains the following steady-state probability distribution

tinuous. We!

In the majority of the above-mentioned studies, phase
transitions are induced by multiplicative noise. However, re- C(m) x f(y)—D(y—m)
cent result§14—16 have shown that additive noise can play Ws(X,M)=————=exX f YN
a crucial role in this phenomenon, and even induce a transi- Vo9 (x) + oy 0 og(y)toa;

tion by itself. Such an influence has been observed both in ®)
oscillatory[14] and in nonoscillatoryoverdampep systems where C(m) is a normalization constant armd is a mean
[15,16. The present Rapid Communication shows that addifie|d, defined by the equation
tive noise can also indud@st-order nonequilibrium transi-
tions in spatially extended systems. These puee noise- ol
induced phase transitions, in the sense that they do not exist m:f mstt(x,m)dx. (6)
in the system in the absence of noise. The study is performed
on a nonlinear lattice of coupled stochastic overdamped os- By solving Eq.(6) self-consistently with respect to the
cillators introduced in [11] and further studied in variable m, one can find transitions between ordered (
[15,16,18.,19 It is described by the following set of Lange- +0) and disorderedni=0) phases. As shown ifL1], for
vin equations: a=1 ando =0 the system exhibits a disorder-order phase
b transition, followed by a reentrant transition back to disorder,
Y f(y. N = oy : both induced by multiplicative noise. Wheror o, are used
=100+ &(0+ 54 2 (=x)+ &, @) to control the system, additive noise is seen to fead to similar
transitions[15,1€]. In all cases, the transitiofwhich exists
wherex;(t) represents the state of thin oscillator, and the only in the presence of noisé of second order. But when
sum runs over all nearest neighbors of ¢elfhe strength of the complete system is analyzed more carefully, new aspects

1063-651X/99/6(6)/62754)/$15.00 PRE 60 R6275 © 1999 The American Physical Society
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FIG. 1. Phase transition boundaries on the plaa®j for o, FIG. 2. First-order phase transition induced by additive noise.

=0 and two different intensities of the multiplicative noigairve ~ Order parametersn, m, vs a for D=20, 0%=3.0 anda?=0.0.
1' a—g: 16, curve 2,0-?:30) The dashed regic(starting W|th the MFT predictions(solid I|ne) and numel’ica| Simulatior@iamond$

dot) corresponds to the coexistence of the disordered and orderedf€ presented. The dotted line delimits the coexistence region ex-
phases. hibited by MFT. The unstable state is plotted by the dashed line.

arise. Figure 1 shows order-disorder transition lines in thehat MFT overestimates the size of the coexistence region.
plane @,D), for o,=0 and two different values of the mul- Thjs effect, analogous to what was observed for
tiplicative noise intensityré. Curve 1 separates regions of multiplicative-noise-induced transitionsl1], can be ex-
disorder(below the curvg and order(above the curvefor  plained in terms of an “effective potential” derived for the
small multiplicative noise intensity. In this case, the orderedsystem at short timegsee the discussion beldwFor in-
region is characterized by three self-consistent solutions oftance, as increases the system leaves the disordered phase
Eq. (6), one of them unstablen{=0) and the other two not when this state becomes unstable but earlier, when the
stable and symmetrical. These new solutions appear contingotential minima corresponding to the ordered states become
ously from m=0 in the course of the transition. Hence, much lower than the minimum corresponding to the state
curve 1 corresponds tosecond-ordephase transition from m=0. It should also be mentioned that the numerical simu-
disorder to order aa increases, followed by a reentrant tran- |ations did not show hysteresis, because in the coexistence
sition back to disordefalso of second ordgr region the system occupied any of the three possible states,
The situation changes noticeably when the multiplicativeindependently of the initial conditions. This fact can be ex-
noise intensity increases. In that cdserve 2 in Fig. }, @  plained by the small size of the simulated system, which
region appears where E(f) has five roots, three of which permits jumps between steady states when the system is suf-
(m=0 and two symmetrical pointsire stable. This region is ficiently perturbed(e.g., by slightly changing the parameter
shown as dashed in the figure. Thus, for large enough valueg)
of D, a region of coexistence appears in the transition be- Now we consider the second kind of additive noise
tween order and disorder. This region is limited by discon-present in the system, namely, the one uncorrelated with the
tinuous transition lines between=0 and a nonzero, finite mu]tip”cative noise a:O anda-ggﬁ 0) MFT results are pre-
value ofm. Hence, additive noise is seen to inducéirst-  sented in the phase diagram of Fig. 3, which shows transi-
order phase transition in this system for large enough valuegons Jines in the p|aneO(§ ,D) for three different values of
of the coupling strength and multiplicative noise intensity.the additive noise intensitty? A coexistence region is again

The reentrant transition Is again of sgpond order. found in the disorder-order transitiofkeft) branch for all
When the first-order phase transition appears, hystereS{ﬁree values ofaf. For points in the dashed regiginset

can be expeCt.ed to occur in the coexistence regjfom cer- plot in Fig. 3, the system is in a disordered phase for small

tain algorithm is applied17]). The dependence of the order dl I o2 di ordered oh for int

parametem on the control parameteras predicted by MFT andlarge values ay,, and in an ordered pnase for Interme-
diate values of this parameter. Hence, in that region additive

is shown in Fig. 2 by a solid line. The region of possible <™~ " ; . "
g y 9 P noise is able to induce two consecutive phase transitions

hysteresis is bounded by dotted lines. . .
In order to contrast the previous MFT results, we havefrom disorder to order and back to disorder. The character of

performed simulations of the complete mod#l—(4) using the fwstgranlsmoln is very sle:r]snaije to trle p?jran}eter values:
the numerical methods described #)18]. The order param- as can be clearly Seeg n |_g_.( fves L an 2 for very
eterm, is computed as close values oD andoy, additive noise can induce either a
rameter, the width of the coexistence region as predicted by
MFT decreases with an increase of the additive noise inten-
dimensional lattice with lateral size=32 are shown with shown as diamonds in Fig. 4, again for a two-dimensional
diamonds in Fig. 2. Analyzing this figure one can observdattice with L=32. MFT overestimates once more the loca-

1 N
[z 2%

second- or a first-order phase transition. Note also that, if we
|
sity.

> consider the multiplicative noise intensity as a control pa-
where () denotes time average. Results for a two- Numerical simulations for this kind of additive noise are
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FIG. 5. “Effective” potential for the short-time evolution ah

FIG. 3. Phase diagram in the planeZ(D) for a=0 and three ~ for a®=0.25 (curve 1, 0.28(curve 2, and 0.34(curve 3. Other
different values of the additive noise intensity;= 0.3 (thick solid ~ parameters are?=3.0 ande?=0.0.
line), 0.5 (thin solid ling, and 1.0(dashed ling For large coupling
D additive noise shrinks the region of coexisting solutions, whereas . g
its left boundary coincides for different? and remains unaffected. x=f(x)+ ?gg(x)g’(x), (7)
The inset plot shows peculiarities of the transition lines in the small
box. Inside the dashed region an increase of additive noise induces
disorder-order and the reentrant transitisee the text and Fig)4  for which an “effective” potential can be derived. It is de-
scribed by U(X)=Uq(X) + Uppise= — S F(X)dx— aggz(x)m,
tion of the transition, hence if, according to MFT, a transitionWhere Unse represents the influence of the multiplicative
is observed foD=4.15, in numerical simulations it occurs noise. We can trace the behavior of this potential in the pres-
for D=6.5. The region of possible hysteresis for this set ofence of multiplicative noise, for the cas¢=0 and nonzero
parameters is too thin to be shown in Fig. 4; this fact is als@ Its evolution for increasing is shown in Fig. 5. This
confirmed by numerical simulations. But if we slightly in- approach can be clearly seen to successfully explain the
creaseD, hysteresis appeafd7]. For example, foD=7.0 mechgnism of the first-order trans_ition: fir;t, only the zero
the hysteresis region spans even fm@,: 0.0 t0 0.2. state is stablécurve 1), then there is a region where three
We have thus seen so far that numerical simulation$table states coexisturve 2, and finally, the disordered
qualitatively confirm the existence of a first-order phase tranState becomes unstableurve 3. This approach also ex-
sition induced by additive noise in this system, as predicted/@ins why a variation of the multiplicative noise Intensity
by MFT. We note that in the two limiting cases of correla- influences the order of the transition: for anotkiemwer) o
tion between multiplicative and additive noise, the transitionthere is no region where ordered and disordered phases si-
occurs. We also note that variation of both the multiplicativemultaneously exist. We emphasize that the “effective” po-
noise intensity and the coupling strength can change the ofential is derived only for short-time evolution, and should
der of this transition. not be confused with the “stochastic” potentid], which
Let us now present a possible physical mechanism behinf®r this system remains always monostable. For the other
this effect. In[16,18 it was argued that the short-time evo- case of correlation between multiplicative and additive noise,

lution of the average value of the local field can be describedn the region of additive noise induced transition, the “effec-
by the equation tive” potential always has three miniméwo symmetric

minima are lower than the central gn®©vercritical additive
noise causes an escape from zero state and leads to the tran-

05 sition. Hence, the “effective” potential approximation does
04l not explain all results of MFT: it explains well the transition
' but not an existence of threshold in the additive noise inten-
sity. It is important to add that the transition under consider-
=03 ; : .
= ation has much in common with th_e pheno_menqn of stochas-
£ 02 tic resonance: in both cases there is a multistability, and there
exists an optimal value of the additive noise intensity for
which the ordering is the most effective one. This similarity
01 is limited by the fact that here the multistability is induced
o only in short-time terms, and there is no external signal to be
°'°0‘_'c',"w"_ synchronized witi{see alsd16]).

In conclusion, we have reported the existence of nonequi-
librium first-order phase transitions induced by additive
FIG. 4. First- and second-order phase transitions induced byl0ise. Such a phenomenon can be expected to be experimen-
uncorrelated additive noise. Curves D35, ¢2=12.0) and tally observed18] in systems exhibiting shifts in a transition
2 (D=4.15, ¢2=11.0) correspond to MFT results, diamonds to induced by multiplicative noise. Possible candidates could be
numerical simulations@=6.5, o2=11). photosensitive chemical reactio®0,21], liquid crystals
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[22,23, and Rayleigh-Beard convection under a fluctuating properties in coupled ratchef26], and relation between
temperature gradieri24]. It should also be mentioned that noise-induced transitions and stochastic resonance in sys-
another form of coupling, Swift-Hohenberg, is possible intems with external forcing. Finally, these results could be of
the presented model. In that case, one can observe ordergslevance for the stochastic modeling of transitions and ir-
spatial patterns appearing as a result of a first-order phasegular oscillations that have been explained in the frames of
transition induced by additive noise. deterministic theory8,14,27.

The results presented here open up several questions.
First, it should be determined whether the behaviors reported
are universal. Second, one should investigate the translation It is a pleasure to thank J. Kurths for useful discussions.
of these effects into other phenomena, such as globally syrA.Z. acknowledges financial support from MRGermany
chronized oscillations in subexcitable medl#5], transport and J.G.O. from DGE$Spain).
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Spatial patterns induced by additive noise

A. A. Zaikin and L. Schimansky-Geier
Humboldt-Universitazu Berlin, InvalidenstraBe 110, 10115 Berlin, Germany
(Received 18 May 1998

We consider a nonlinear lattice with spatial coupling under the influence of multiplicative and additive noise.

In contrast to other studies, we pay attention mainly to the role of the additive noise and show that additive
noise, much like multiplicative noise, is able to induce spatial patterns. The reason is that the increase of
additive noise causes a nonequilibrium phase transition that manifests itself in the formation of ordered spatial
patterns. The presence of the additive noise correlated or uncorrelated with the multiplicative noise is a
necessary condition of the phase transition. We review the mean field theory for this model and show that this
theory predicts a reentrant phase transition caused by additive noise. Theoretical predictions are confirmed by
numerical simulationg.S1063-651X98)12510-3

PACS numbgs): 05.40+j, 47.54+r, 05.70.Fh

I. INTRODUCTION a set of Langevin equationg]

Over the past two decades nonlinear systems with noise X, = f(X)+9(X,) &+ LX, + ¢, (1)
have been continuously attracting attention. The reason is the
ordering role of noise in such phenomena as stochastic resg-. -
nance[f], noise-induced transp?c{rt], or noise-induced tran- With f andg defined as
sitions[3]. A large variety of model§4—12] appear to dem-
onstrate nonequilibrium noise-induced phase transition. In
these studies only multiplicative noise is shown to be the ) ] ]
reason for the transition and much less attention has beedd &.{; independent zero-mean-value Gaussian white
paid to the role of additive noise. Recently, we started tg10IS€ sources
study the influence of an additive noise on noise-induced

f(x)=—x(1+x%)?, g(x)=a?+x? 2)

transitions. It was shown that this influence can be crucial <§r(t)§r,(t’)>=(rgb‘r,r,ﬁ(t—t’), 3
because the additive noise may shift the boundaries of the
noise-induced phase transitiph3] or even cause these tran- (G (0 (t))= a?ﬁ,yryﬁ(t—t’). 4)

sitions[13,14].

In the present paper we continue to study the influence of ) o
additive noise on noise-induced phase transitions. We con- We note that such a form of the functigfix) implies that
sider the role of the additive noise in the formation of thethe parametea is responsible for an additive noise strongly
ordered spatially inhomogeneous patterns. For this we invesorrelated with the multiplicative one. To gain knowledge
tigate a paradigmatic model introduced #j (for the history ~ about the influence of additive noise on the noise-induced
of the subject see al§d5-18). As noted in[19], investiga- phase transition we study two different problems. First the
tion of this model is helpful for the understanding of resultsconstant contributiora? of the multiplicative noise¢, is
of experiments on electrohydrodynamic convection in nemchanged, setting;?:o_ The origin one could see, for in-
atic liquid crystals with thermal fluctuatioriadditive nois¢  stance, in a decomposition of the multiplicative noise into
and an external stochastic volta@aultiplicative nois¢. We o partsg(x) & =a2&l+x2¢2. Changing the parameter

show that this model displays noise-induced spatial patterng,, 4 imply an increase or a decrease of additive nafsé
with an increase of additive noise. After exceeding an opti-

o . . strongly correlated with the multiplicative one. We prove
mal level of the additive noise a further increase destroys th?n - C ;
structures again. at the constant contribution of that noise is essential for the

First we review mean field theory for this mod@l. The nonequilibrium phase transition. Only in the presence of the

theory predicts the existence of the reentrant phase transiti ditive compo_nent W't.h an _optlmally selected value does
by increasing the additive noise for two limiting cases of e system exh_|b|t _spa'glally d|so_rde_:red states. .
correlation between both additive and multiplicative noises. ,” different situation is the variation of the noise intensity
The transition manifests itself in breaking the symmetry and’¢ - It models additive noise Independeptly of the multlpl|-
appearing ordered spatial structures. Next we perform nufative one. In that case we set=0. Again we will find a
merical calculations and confirm some results of the theoretStrong influence of the additive noige _

ical considerations. After a discussion about understanding TNe spatial coupling in the model is described by the cou-

of the phenomena observed we summarize results obtaine!ing operator [see Eq(1)], which is a discretized version
of the Swift-Hohenberg coupling term D (g3+ V?)2:

Il. MODEL AND MEAN FIELD THEORY
2d
. , i . . ,
We consider a scalar field defined on a spatial lattice Lx,=— D[ 92— PZ‘

with pointsr. The time evolution of the field is described by

2
J X,. (5

J
1—exp{Ae,-E

1063-651X/98/581)/43556)/$15.00 PRE 58 4355 © 1998 The American Physical Society
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(a) 0.015 |
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Q 0012
0.8
0.007 . :
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2
O
5 04 FIG. 2. Boundaries of the phase transition on the plaﬂge D)
Vv in the case of uncorrelated additive noise. The param@fe'rs
equal to 1.0(label 1), 0.5 (label 2, and 0.3(label 3.
Note that for|k|<2w/A the dispersion relation(k) re-
0.0 . . . duces to the relation for the continuous Swift-Hohenberg
0.2 0.6 1.0 14 1.8

model: —D(q3— |k|?)2. For the most unstable mode in the
discrete casa (k) =0 (see[7]).

FIG. 1. (a) Boundaries of the phase transition on the plane Now the value(x) plays the role of the amplitude of the
(Ué ,D) in the case of correlated additive noise. The values of paspatial patterns with an effective diffusion coefficidDt;;.
rametera are shown in the picturgb) Dependence of the order The Fokker-Planck equation corresponding to &g.in the
parameter|(x)| on the control parametes for D=0.06 and(rg casew(k)=0 is
=3.0.

a

2

Heree are the unit vectors associated with the cubic lattice gy o 9
[f(x)— Deﬁ(x—<X>)]W—7(9(X) 5[9(X)W]>

of the dimensiord, andA is the lattice space. =
The conditions of phase transition can be found using

generalized Weiss mean field thedff]. According to this o'é% IW

theory, we replace the value of the scalar variableat the T2 X

sites coupled tx, by its averaged value, assuming the spe-

cific nonuniform average field

J
oX

For this equation it is possible to find the exact steady
state probability, parametrically dependent{c:

Xy =(xpcodk-(r—r")]. (6)
Substituting Eq(6) into Eq. (5) we get forx, o) = C((x)) exp( ijf(Y)—Deﬁ(y—<X>)d )
S [ 22 2 242 2
X=100+g(X) £+ DoKX~ Deylx— () +2, (7 Erer AT T
where whereC((x)) is the normalization constant determined by
D _<2d g3 2+ 2d+ (k)|D (8) 1
eff = P_ 0 P w C_l _ *
and - ) Lm“’égz(x)“’?

. ox p(z fxf(y)—Deﬁ<y—<x>> dy) ix

) o oigiy)+o;

[ 2
w(k)=—-D|qg3— 72(2—cosk,A—cokyA)

(12
The expression fow(k) can be obtained if one considers )
how £ acts on a plane wave'*'" for the case of a two- For the valug(x) we obtain
dimensional lattice:

LekT=p(K)elk T, (10 <X)=J’ XWX, (X)) dX, (13
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FIG. 3. Snapshots of the field f@=1.0, ng 1.8, andcr§=0. The parametea is equal to(a) 0.1, (b) 1.0, and(c) 10.0. The increase
of the additive noise induces spatial patterns. The scalar field from minimum to maximum value is coded in accordance with the color scale
shown in the same figure.

which is nonlinear equation for the unknown val»¢ and Now we study the case where the additive noise is uncor-
closes the system of equations. related (independent from the multiplicative noise g
Solving Eqg.(13), we can calculate boundaries of phases=0, oﬁé 0). As Fig. 2 shows in this case the behavior of
with (x)#0 (ordep and (x)=0 (disordej for specifick the system is qualitatively the same: For fixed parameters
whose modes are excited first. Nonzero solution of @)  (D,¢?) an increase of the multiplicative noise inten
means excitation of the corresponding mode and hence ex'&auses the noise-induced phase transition. Hence for large
tence of the phase transition. Due to the special form of thenough couplind one expects the formation of the spatially
spatial coupling, the transition manifests itself in a formationgrdered patterns |f,— exceeds it critical value. As concerns
of ordered spatial patterns with the wave number defined byhe influence of the additive noise on the transition, an am-

the parameteq. - plification of the additive noise intensity shifts the transition
The computation of E¢(13) shows that the condition for  poundaries and therefore causes the reentrant disorder-order-
the existence of nonzero solutions is disorder nonequilibrium phase transition. It can be clearly
seen if one take a point with fixed parameteds oﬁ-g) from

(14) point first belongs to the disordered phase, then to the or-

dF the dashed region in the Fig. 2: With an |ncreaser§>fth|s
’ dered one, and then again to the disordered phase.

We note that for rather larg® four nonzero rootstwo
stable and two unstablef Eq. (13) may be observed. Itis an
open question whether this indicates that additionally also We check the relevance of the theory presented above by
noise-induced first-order phase transition may be found imumerical simulations of the initial equatiofly. We use an

IV. NUMERICAL SIMULATIONS

this model(to this point see alsfl9,20). Euler scheme for stochastic differential equations interpreted
in the Stratonovich seng@1,22. The time step has been set
I1l. ADDITIVE NOISE AND NOISE-INDUCED At=5x10"%. For simulations we integrate the scalar field
TRANSITION x;(t) on a two-dimensional square lattice 2828 with

conditionsx, =0 andn- Vx,=0 at the boundaries. Hereis
First we study the case if an additive n0|se is stronglythe vector normal to the boundary.

correlated with multiplicative noisén this casezrg 0). For First we setg =0 anda#0. The remaining parameters
different values ofa the boundary of the phase transition on 56 p = 1, go=0. 7 A=0.5, anda —1.8. For these values
the plane ¢7,D) is shown in Fig. 1. As itis seen from this the mean field theory predicts the existence of spatial pat-
plot, the reentrant phase transition occurs for the specifigerns of the most unstable motid =1.0478 fora=1. For
value ofa with the increase of; [7]. Solving Eq.(13) for  additive noise intensities significantly larger than this value,
other values of, we find that aa decreases the boundary of for example,a=10.0, or significantly smallera=0.1, ac-

the phase transition significantly drops and is right shiftedcording to the mean field theory no spatial patterns will be
(see Fig. 1 Hence there is a set of parameten% (D) for  exhibited.

which the reentrant phase transition occurs with the increase In Fig. 3 the picture of the field after 100 time units has
of a (dashed region in Fig.)1 This means that for fixed been plotted for three different noise intensities. Clearly one
values ofcr§ and D an increase of additive noise intensity can see the appearance of the spatial patterns with the in-
will first induce the spatial patterns and then destroy themcrease of the additive noise and its further destruction. These
We note that this phase transition is possible only in thecalculations confirm the predictions of the mean field theory
presence of multiplicative noise. The corresponding depenrfor the case of correlated additive noise.

dence of the order parametéx)| on the control parameter The ordered patterns in Fig(l8 have rotational symme-

is shown in Fig. 1b). try, which can be clearly observed in the two-dimensional
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(a) Next we consider the case of uncorrelated additive noise,
in whicha=0 anda?;t 0. Numerical simulations show that
the behavior of the model is quite similar to the case of the
correlated additive noise. An increase of the additive noise
causes the formation of the rotationally symmetric spatial
patterns. A further increase of the additive noise destroys this
pattern(see Fig. 3. These results are also in good agreement
with the predictions of mean field theory.

V. DISCUSSION

Now we discuss the mechanism providing the appearance
of the ordered spatially patterns with the increase of the ad-
ditive noise and its further destruction. The appearance of the
ordered state is a manifestation of the phase transition, so
one should understand which factors lead to this transition.
To do this, let us follow the argumentation suggeste@6in
to give an explanation of the phase transition induced by the
multiplicative noise but now influenced by the additive
noise.

min max

(b) For a single element of the lattice the time evolution of
500 ' ' ' ‘ the first moment is given simply by the drift part in the
400 | Fokker-Planck operator, which reatftratonovich cage

10.0
2.0
= % 10
? 200 | 05 ()= <f(X)>+ (9 x)g’ (x)). (15
100 +
As it was argued iri6], the evolution over short times of an
(c) initial & function is well approximated by a Gaussian whose
extremum obeys
500 T T T T
° — ~ 0'2 Nl (v
400 . . x=f(x)+59(x)g" (). (16)
L4 ®
300
2ol .
o 200 f . Herex=(x) is the maximum of the probability, which is the
average value in this approximation. For this dynamics one
100 e is able to introduce a potentidl(x)=Uqy(X)+ U isc=
on . . . s —[f(x)dx— aggz(x)/4, whereUy(x) is the unperturbed po-
0 2 4 6 8 10 tential andU,,ic<<0 describes the action of the noise. In the

a case under consideratidiy(x) =x?(1+x2+x*/3)/2, which
is monostable with a minimum at,=0.

FIG. 4. (a) 2D Fourier transform of the pattern shown in Fig.  Let us consider how additive noise modifies the potential
3(b). Rotational symmetry is observedmax,min values are U(x). We start with the case sz 0 and additive noise is
(1337,0.}. (b) Fourier transform averaged over anglesf+1.0  included in the equations througﬂ(x) a’+x? by the con-
and 0¢=1.8. Values of parametex are shown in the figurelc)  stanta. For smalla the potentialU(x) remains monostable
Dependence 08, On a. and there is no possibility of a phase transition in the system.

If we increasen, i.e., the intensity of the correlated additive
Fourier transform of the field represented in Fig. 4. To makehoise, the potentialU(x) becomes bistable ifa>ag;
the transition more evident we have plotted the Fourier trans= 1/F [see Fig. 6a)]. For sufficiently strong coupling this
form of the field averaged over the angles of the wave vectonblstablllty will be the reason for the local ordered regions at
It is shown in Fig. 4 for different values af. With an in-  short time scales, which coarsen and grow with time. Hence
crease ofa a maximum in this structure function is found. It the additive part of the noise in the functigns essential for
corresponds to the dominating vallid ., indicating the the occurrence of the nonequilibrium phase transition.
appearance of a spatial pattern with a wavelength @,y The situation with uncorrelated additive noise<0 and
After an optimal value ofa the maximum of the structure aﬁé 0) is more complicated. In this case the state0O al-
function disappears, again signaling the destruction of thevays remains stable since the noisy pard{X)*x* [see
order. Fig. 6(b)]. Nevertheless, as it is seen from this figure, for
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FIG. 5. Snapshots of the field for in the case of the uncorrelated additive noise. The parzafn'etequal to(1) 0.001,(b) 0.7, and(c)

10.0. The remaining parameters @e- 3.5, a§=13, a=0, andAt=10"". (max,min values are (0.0072,0.0075), (7.14;6.33), and
(1.07-0.61).

large enough intensiwé, in addition to the stable state  intensity of an additive noise is optimally selected. For
=0, the potentialU(x) has two minima more, precisely if smaller and larger values of noise intensity the ordering pro-
o§>4. Therefore, in this case the phase transition is a resuftess is not effective as in stochastic resonance. As a result
of hard excitation and requires independent additive noiseand quite analogously to the shape of the SNR, the maximum
Sufficiently large additive noise causes escapes from the cewf the structure function behaves nonmonotonically depen-
tral minimum and the system does not return if the newdently on the parametes. The similarities are obviously
minimal states are lower than the central one. This argumersounded since in SR the input is independent from the reac-
tation can be considered as an intuitive explanation of théion of the system. In our case it differs due to the mutual
observed noise-induced phase transition by uncorrelated athteraction between the elements of the lattice. It determines

ditive noise. S _ _ ~the structure of the output, which plays the role of the input
Another interesting finding to be mentioned is the relationfgr another element.

between phenomena discussed and the well-known problem
of stochastic resonan¢&R). Namely, we trace the parallels
between the nonmonotonic behavior of the signal to noise
. . VI. CONCLUSION
ratio (SNR) in SR phenomena and the reentrant phase tran-

sitions dependent on the additive noise. In conclusion, we have shown by the example of the non-
Let us consider possible reasons for this similarity. Forinear model with coupling term similar to that &wift and
that purpose we reformulate the process of ordering in thélohenbergthat an increase of the additive noise may sur-
bistable potentiall(x) as a situation typically occurring in prisingly induce ordered spatial patterns. The reason is the
SR. The influence of the neighbors supplied by the couplingeentrant phase transition caused by the additive noise. The
serves as a driving force for the single system in the latticdurther increase of the additive noise destroys these struc-
with a bistable potential. Under this influence every singletures. In both limiting cases of the correlation between addi-
system is trying to obey the rules of the whole system, fortive and multiplicative noise the pictures are similar but the
example, to choose the proper minimum of a potential. Ac-origins differ. We stress that this phase transition is possible
cordance with stochastic resonance becomes evident sinoaly in the presence of multiplicative noise. As we have
this information is best transmitted to the single system if thediscussed, we interpret the phenomenon observed as a coop-

(a) (b)
10— . . 10
05| : 05 }
o3 ‘- i < a0l
00} i : X ool
5 '.‘ ! o 4
-05 U, 05|}
1. -1.0
103 -1 0 1 2 -2 -1 0 1 2
X X

FIG. 6. Potential for the short time evolution of the average vak(¢)). (a) a§=2: solid line,a?=0.1; dashed linea?=1.0. (b) a
=0: solid Iine,o§:2; dashed Iinea§:5. In case(a) the short time behavior can be described by the bistable potential if the coassant

sufficiently large. In caséb) the situation is more complicated: the stateremains stable, but large enough additive noise can force a
system to leave the zero state and form a mean field.
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