
Technische Berichte Nr. 90

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Embedded Operating
System Projects
Uwe Hentschel, Daniel Richter, Andreas Polze (Eds.)

ISBN 978-3-86956-296-4
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 90

Uwe Hentschel | Daniel Richter | Andreas Polze (Eds.)

Embedded Operating System Projects

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2014
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.
Druck: docupoint GmbH Magdeburg

ISBN 978-3-86956-296-4

Zugleich online veröffentlicht auf dem Publikationsserver der Universität Potsdam:
URL http://pub.ub.uni-potsdam.de/volltexte/2014/6915/
URN urn:nbn:de:kobv:517-opus-69154
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69154

mailto:verlag@uni-potsdam.de

Contents

1 Introduction 1

2 Development of a Simple Operating System for LEGO Mindstorms EV3 3
2.1 Introduction . 3
2.2 Development and Deployment Process 5
2.3 Creating a Simple Self-Contained Application 8
2.4 Architecture Considerations . 15
2.5 Experiment . 22
2.6 Conclusions . 24
2.7 Future Work . 25
2.A Appendix . 27

3 Real-Time Linux on Lego EV3 35
3.1 Introduction . 35
3.2 History and Mechanics of Real-Time Linux 38
3.3 Patching and Deploying Linux on EV3 44
3.4 Experiment: Real-Time Schedule on EV3 49
3.5 Discussion . 59
3.6 Conclusion . 61

4 Carrera Racing Track 65
4.1 Introduction . 65
4.2 Related Work . 66
4.3 Signal Detection . 69
4.4 Data Transmission . 72
4.5 Implementations . 76
4.6 Comparison . 80

v

List of Figures

2.1 A view on the CPU and internals of the LEGO Mindstorms EV3 . . . 4
2.2 Circuit Diagram: UART-to-USB Converter 5
2.3 Architecture of the Simple EV3 Operating System 16
2.4 The Inverse Pendulum in the Context of a Segway 23

3.1 EV3 Front. 37
3.2 EV3 left side with host USB and microSD slot. 37
3.3 EV3 top side with client USB and sensor ports. 37
3.4 EV3 bottom side with motor ports. 37
3.5 Architecture of RTLinux . 40
3.6 Different synchronization primitives in default and patched Kernel . 42
3.7 RJ Plug and UART-to-USB adapter . 48
3.8 A schedule period of a task set without interaction 50
3.9 The task set schedule showing priority inversion 50
3.10 The task set showing the priority inheritance mechanism 51
3.11 Intended schedule with priority inheritance 52
3.12 Expected schedule with priority inversion occurring 53
3.13 Actual schedule inferred from the timings measured in the first run. 53
3.14 Watchdog Schedule . 57
3.15 EV3 Software Architecture . 58

4.1 Start bit packet layout . 73
4.2 Payload length packet layout . 73
4.3 Control Protocol for the analog actuator board 75
4.4 Control Protocol for the digital actuator board 76
4.5 Windows Embedded Compact 7 Update Dialog 78
4.6 Bootstrap messages sent by the eBox 79
4.7 Messages sent by the eBox ethernet bootloader 80
4.8 Experimental setup . 82
4.9 Possible delays introduced by the Control Unit 83
4.10 Probability mass function of message latencies 84
4.11 Cumulative distribution function of message latencies 85

vii

List of Tables

3.1 Task set with timings . 51
3.2 Recorded runtimes on first tries. 53

4.1 FTDI files included in the OS design 81
4.2 Message latencies for both versions of the control software 83

ix

Listings

3.1 Excerpt of code for the high priority thread. 54
3.2 Comment excerpt from sched.h. 54
3.3 Code excerpt from sched.h. 55
3.4 Watchdog Implementation . 56
3.5 Upcall a user mode program to control the motors 59

4.1 Signal detection using a round-robin approach. 69
4.2 Signal detection with interrupts . 70
4.3 Signal detection using a hybrid approach 71
4.4 Function prototype for sending sensor data 74

xi

1 Introduction

This technical report presents results from the lecture “Operating Systems for Em-
bedded Computing” that has been offered by the “Operating Systems and Middle-
ware” group at HPI in Winter term 2013/14. Focus of the lecture and accompanying
projects was on principles of real-time computing. Students had the chance to gather
practical experience with a number of different OSes and applications. Three out-
standing projects are at the heart of this technical report.

In today’s life, embedded systems are ubiquitous. However, within our curriculum,
the focus is still on principles, development techniques, best practices, and tools that
are mainly targeted at traditional desktop systems. Embedded (operating) systems
are different in many aspects. These include predictable timing behavior (real-time),
the management of scarce resources (memory, network), reliable communication
protocols, energy management, special purpose user-interfaces (headless operation),
system configuration, programming languages (to support software/hardware co-
design), and modeling techniques.

The lecture on “Operating Systems for Embedded Computing” has discussed
design decisions and trade-offs of current embedded operating systems. We have
studied algorithms to manage resources, such as CPU, memory, network – together
with constraints imposed by the underlying hardware and environment. Configura-
tion of operating systems was another important aspect addressed by the lecture.

In order to gain practical experience with real-time systems, the “Distributed Con-
trol Lab” has been set up and operated by the “Operating Systems and Middleware”
group for a number of years. In line with the ideas of this Lab, numerous student
projects have been carried out.

Within this technical report, authors present experiences with near-hardware
programming. Projects address the entire spectrum, from bare-metal programming
to harnessing a real-time OS to exercising the full software/hardware co-design
cycle.

Project 1 focuses on the development of a bare-metal operating system for LEGO
Mindstorms EV3. The new EV3 is a fascinating piece of machinery. While still a
toy, it comes with a powerful ARM processor, 64 MB of main memory, standard
interfaces, such as Bluetooth and network protocol stacks. EV3 runs a version of

1

1 Introduction

Linux. Sources are available from Lego’s web site. However, many devices and their
driver software are proprietary and not well documented.

Developing a new, bare-metal OS for the EV3 requires an understanding of the
EV3 boot process. Since no standard input/output devices are available, initial de-
bugging steps are tedious. After managing these initial steps, the project was able
to adapt device drivers for a few Lego devices to an extent that a demonstrator (the
Segway application) could be successfully run on the new OS.

Project 2 looks at the EV3 from a different angle. The EV3 is running a pretty
decent version of Linux. And the pioneering work on Real-time Linux from 10 years
ago has found its way into today’s standard Linux distributions. In principle, the
RT_PREEMPT patch can turn any Linux system into a real-time OS by modifying
the behavior of a number of synchronization constructs at the heart of the OS.

Priority inversion is a problem, that is solved by protocols such as priority inher-
itance or priority ceiling. Real-time OSes implement at least one of the protocols.
The central idea of the project was the comparison of non-realtime and real-time
variants of Linux on the EV3 hardware. A task set that showed effects of priority
inversion on standard EV3 Linux would operate flawlessly on the Linux version
with the RT_PREEMPT-patch applied. If only patching Lego’s version of Linux was
that easy...

Project 3 takes the notion of real-time computing more seriously. The application
scenario was centered around our Carrera Digital 132 racetrack. Obtaining position
information from the track, controlling individual cars, detecting and modifying the
Carrera Digital protocol required design and implementation of custom controller
hardware. What to implement in hardware, firmware, and what to implement in
application software – this was the central question addressed by the project. Bottom
line here: development of custom hardware and firmware programming are tedious
tasks. However, once accomplished, they help immensely with the programming of
(real-time) control software.

The usage of standard operating systems (Windows/Windows Embedded) to
control real-time systems is quite possible with the help of some extra hardware and
firmware – that has been demonstrated by project 3.

Addressing the entire spectrum, from bare metal system development to mod-
ification / adoption of existent OSes to real-time control with commercial off-the-
shelf OSes – these three projects are good representatives for many problems and
tasks developers of embedded systems have to face everyday. Our students had to
understand the topic area, make design decisions, master tools and development
techniques, implement, demonstrate, and evaluate their systems.

The result is outstanding!

2

2 Development of a Simple
Operating System for LEGO
Mindstorms EV3

2.1 Introduction

The Mindstorms EV3 is LEGOs third generation of battery-powered embedded de-
vices designed for explorative programming and robotics with LEGO bricks. It
exposes a programmable interface to a number of different sensors and motors,
allowing LEGO creations of arbitrary behavioural complexity. In contrast to its pre-
decessors, which were shipped running custom firmware, the Mindstorms EV3 runs
a modified Ångström Linux Distribution, the complete source code of which, includ-
ing the source of the modified U-Boot boot loader, has recently been released as
open source. In addition to the general-purpose Operating System, the Mindstorms
EV3 has received a considerable upgrade in computing power when compared with
the previous generations. While the Mindstorms NXT 2.0 contained a 48MHz ARM7

3

2 Development of a Simple Operating System for LEGO Mindstorms EV3

CPU, the Mindstorms EV3 contains a more powerful 300MHz ARM9 CPU, more
precisely the AM1808 CPU by Texas Instruments, as can be seen in figure 2.1. The
datasheet [1] and the programmers reference manual [2] for the AM1808 CPU are
available as resources.

Figure 2.1: A view on the CPU and internals of the LEGO Mindstorms EV3

Based on this platform, we aimed at the creation of a simple Operating System
capable of controlling the device’s hardware, as well as a subset of the available
periphery devices, to perform an example real-time task. The result of our endeav-
ours was manifested as an open source repository, which is available on github via
http://github.com/ev3ninja/ninjastorms.

In the following sections, we outline our exploration of the platform, as well as
the creation of our development tools and deployment process, and give an insight
in our experiences with the development in a bare-metal environment. Addition-
ally, we describe the architecture of the resulting Operating System, and explain a
subset of its more interesting aspects in detail. Finally, we outline an experiment we

4

http://github.com/ev3ninja/ninjastorms

2.2 Development and Deployment Process

have created based on our system, and discuss some of the possibilities of future
extensions to our work.

2.2 Development and Deployment Process

During our research on the properties and capabilities of the Mindstorms EV3 plat-
form, we discovered that the EV3 provides an interactive serial console interface
on the first Sensor port [7]. In order to utilize this console, we soldered a UART to
USB converter with 3V logic to a stripped EV3/NXT cable, and trimmed the unused
wires, as illustrated in figure 2.2.

Figure 2.2: A UART to USB converter, where ground is connected to the third (red)
wire, Rx is connected to the fifth (yellow) wire, and Tx is connected to the sixth
(blue) wire of an EV3/NXT cable.

The resulting end-to-end coverter was used to connect the first sensor port of the
EV3 to a USB port on the host machine, which exposed a serial interface device
on the host, if configured properly. On a typical unix-like system, this device node
is called /dev/ttyUSB*. To set up a stable bidirectional communication via this
device, we configured it to a baudrate of 115200, 8 databits, no parity and 1 stopbit,
by setting the appropriate options in a serial console emulator, for example PuTTY.
Via this connection, it was possible to intercept the output of the bootloader of the
EV3 once the device was powered on.

However, when we began testing the connector, we had the problem that our
console only showed the first line of the bootloader output. Intrigued by the missing
data, we decided to capture the potential between ground and the data send channel
of the serial console using an oscilloscope, where we could clearly see a drop in the
signals voltage. Using a multimeter, we measured the resistance between the EV3s
ground and the channels of the first sensor port, and noticed that the guide we used
to construct our connector indicated a wrong channel to be connected to ground.
This resulted in a slow drop in the logic current of the serial consoles received data,

5

2 Development of a Simple Operating System for LEGO Mindstorms EV3

until the signal was no longer recognized by the UART converter, which happened
near the end of the first line of output. After this discovery, we connected the ground
to the right channel, which produced a connector that worked reliably.

The received output looked similar to the following:

EV3 initialization passed!
Booting EV3 EEprom Boot Loader

EEprom Version: 0.60
EV3 Flashtype: N25Q128A13B

[...]

Hit 'l' to stop autoboot: 0

[...]

This implied to us that the boot process of the EV3 was interruptable. Upon press-
ing l during boot, we discovered that the boot loader exposed an interactive shell,
allowing us to explore its behaviour and configuration. We identified the boot loader
as a U-Boot instance, which is generally configured using predefined environment
variables, which were accessible using the built-in command printenv. An excerpt
of this configuration is included below:

U-Boot > printenv
bootcmd=if mmc rescan 0; then if run loadbootscr; then run \

bootscript; else if run loadimage; then run mmcargs; run \
mmcboot; else run flashargs; run flashboot; fi; fi; else \
run flashargs; run flashboot; fi

loadbootscr=fatload mmc 0 ${bootscraddr} boot.scr
bootscript=source ${bootscraddr}
loadimage=fatload mmc 0 ${loadaddr} uImage
mmcboot=bootm ${loadaddr}

[...]

During boot, U-Boot evaluates the bootcmd variable as a set of instructions on
how and what to boot, to conditionally bring up the desired system. The following
pseudocode describes the preconfigured behaviour:

1 if sd card is inserted
2 if boot.scr file exists on sd card

6

2.2 Development and Deployment Process

3 load and source boot.scr
4 else
5 if uImage file exists on sd card
6 load and boot from sd card
7 else
8 load and boot from flash
9 fi

10 fi
11 else
12 load and boot from flash
13 fi

This configuration implied that we could provide the EV3 with bootable sd cards
injecting arbitrary code to the platform, just by inserting a properly deployed FAT32
formatted MicroSD card. This was very helpful in the creation of our operating
system, as it allowed us to test code on the device without removing or damaging
the existing operating system, as we did not need to access the flash memory at all to
boot our application. We think the reason for this design decision may have been to
provide a firmware update mechanism, or it may be a remainder of a development
and deployment mechanism that we just happened to rediscover.

However, in order to deploy applications to the EV3, we needed to be able to
compile code for the platform using our development machines, which required
a cross-compile toolchain for bare-metal ARM targets. The maintainers of the EV3
stock image github repository suggest using a version of the CodeSourcery pre-
compiled toolchain for ARM targets [5]. Unfortunately, this toolchain was intended
for glibc based linux targets, and caused linker issues when used for bare-metal
targets, where some glibc provided functions expected by the compiler were not
present at link time. This forced us to create a custom cross-compile GNU toolchain
from scratch later during the project, but fortunately this is a well documented and
straightforward process. Based on a guide by Adam Kunen [6], we created an auto-
mated shell script to create and install a cross-compiler for bare-metal ARM targets
on a GNU/Linux host system, which is included in the github repository of our
project, as well as in the appendix of this document for further reference.

Using the C compiler of this toolchain, we were able to generate ELF binaries for
ARM from C code. Unfortunately, the U-Boot instance on the EV3 was compiled
without the bootelf command, so we needed to use the objcopy of our toolchain
to convert the ELF binary to a plain binary file and used the go command of U-Boot
to jump to the entry point of our code. From this, we created a batch script for U-Boot
instructing the boot loader to load the binary to the proper adress in memory and
go to our entry point. This batch script was then converted to a bootable boot.cmd
file using the U-Boot utility mkimage. Copying the boot.cmd to the MicroSD card
together with our compiled binary completes the deployment process.

7

2 Development of a Simple Operating System for LEGO Mindstorms EV3

The complete compilation and deployment process was slightly more complicated,
as we needed to find out the entry point to our code dynamically at compile time,
and to instruct the linker about the load address on the EV3, but is explained in
more detail in Section 3, and also contained in the top-level Makefile of the project
in its entirety.

2.3 Creating a Simple Self-Contained Application

Concurrently to the creation of our toolchain and deployment process, we also
looked into the creation of a simple, self-contained example application to run on
the EV3 platform, in order to validate that the assumptions we made during our
exploration and research were correct. The canonical simplest possible application
in the world of computer science is a program that writes ”Hello World!” to a
well-defined output sink and then terminates. To find out how to accomplish this,
we searched through the source code of the Operating System running on the EV3,
which was available on github [3]. Looking at the main Makefile of the project,
which was located in the subdirectory lms2012/open_first, we found a section
responsible of configuring and building a modified version of the U-Boot boot loader,
which was also contained in the repository in the subdirectory extra/uboot-03.
20.00.13. This section was completely independent of the rest of the source code,
allowing us to extract the boot loader sources from the repository, and to use the
information gathered from the Makefile to properly configure this instance of U-Boot
for the EV3 outside the scope of the LEGO project sources.

Upon extracting the U-Boot sources from the LEGO project repository, we needed
to configure the sources. U-Boot expects to be configured for a certain platform
before initiating the build process, which is done by calling make and passing the
toolchain to use and the target board as parameters. In our case, the appropriate
configure and compile calls looked similar to the following:

$> make CROSS_COMPILE=arm-none-eabi- da850_omapl138_evm_config
$> make CROSS_COMPILE=arm-none-eabi- all

U-Boot provides a standalone application example, intended as a demonstration
on how an application would behave if executed outside of an Operating System
context, we utilized to create our example application. We extraced the sources of
the hello_world.c file, the stubs.c file, and the configured U-Boot include tree
into a separate project, as the standalone example heavily depends on U-Boot for
system calls and clones of standard library functions like printf. From there on,
we needed to break down this standalone example to the bare necessities, to be able
to lay the foundations of our own project. We extracted the necessary build flags

8

2.3 Creating a Simple Self-Contained Application

from U-Boots Makefiles, eliminated unnecessary or unsed includes and removed
unneeded files from the include tree, until we boiled it down to its base parts, which
are described in detail in the following subsections.

2.3.1 hello_world.c

The hello_world.c file contains all the logic required to print the string ”hello
world” to stdout in the following function:

// entry point
int
hello_world (void)
{

puts("hello world");

return 0;
}

However, since we developed in a bare-metal context, providing an implementa-
tion for the puts function was non-trivial. For this, we needed a prototype decla-
ration of the function, and we also needed to reference the actual implementation
provided by the running U-Boot instance via a stub. The function prototype can be
delared as expected:

void puts(const char*);

Providing the function stub is more difficult, and requires some ARM GCC inline
assembly, as well as the layout of U-Boots main global datastructure. We could export
more functions here, as U-Boot contains a large subset of the library functions as
described by the C standard, but our goal was to reduce the amount of necessary
code, hence we only exported puts, which is the fifth function in U-Boots function
jump table.

// U-Boot global data layout
typedef struct global_data {
/*bd_t*/ void *bd; // simplified, assuming

// pointers of equal size
unsigned long flags;
unsigned long baudrate;
unsigned long have_console;
unsigned long env_addr;
unsigned long env_valid;
unsigned long fb_base;

9

2 Development of a Simple Operating System for LEGO Mindstorms EV3

void **jt; // jump table
} gd_t;

// id of 'puts' in U-Boot function table
#define XF_puts 4

#include <stddef.h> /* required for offsetof */

// provide the 'puts' asm stub
void __attribute__((unused)) dummy(void)
{
asm volatile (
" .globl puts \n"
" puts :\n" \
" ldr ip, [r8, %0]\n" \
" ldr pc, [ip, %1]\n" \

: : "i"(offsetof(gd_t, jt)),
"i"(XF_puts * sizeof(void *)) : "ip");

}

This piece of source code exports a global symbol to the puts function as provided
by U-Boot, by calculating the address of the memory address of the function in
U-Boots in-memory jump table, which allowed us to directly use puts in our code.
The complete file is contained in the Appendix of this document.

2.3.2 Building and Deployment

Despite the code of this hello world example being quite simple, the building process
was fairly complex, due to the nonstandard way the application was going to be
deployed and executed. Before we were able to compile, we needed to specify the
prefix of the toolchain and store it in a variable, to decouple the build process from
the toolchain. In our case the respective command in GNU make syntax was similar
to the following:

PREFIX = arm-none-eabi-

Using this variable, we needed to find out the include directory of the toolchain’s
gcc by invoking:

LIBGCCDIR = $(shell dirname $(shell $(PREFIX)gcc \
-print-libgcc-file-name))

INCGCCDIR = $(LIBGCCDIR)/include

10

2.3 Creating a Simple Self-Contained Application

The INCGCCDIR should be passed to the compiler using -isystem to specify the
proper system include path for the compile calls. The complete listing for the compile
call of the application including the compiler flags we used is as follows:

$(PREFIX)gcc -g -O2 -pipe -fno-common -msoft-float \
-fno-builtin -ffreestanding -nostdinc -isystem \
$(INCGCCDIR) -marm -mabi=aapcs-linux -march=armv5te \
-mno-thumb-interwork -fno-stack-protector -Wall -Wextra \
-Wstrict-prototypes -Werror -o hello_world.o \
hello_world.c -c

Several of these flags, including -msoft-float, -marm, -march=armv5te are spe-
cific to the target ARM architecture, others including -ffreestanding, -nostdinc
and -fno-builtin are due to the bare-metal nature of this application, to isolate
the build environment from the libraries and header definitions present on the host
system. We extracted most of the compiler flags from the U-Boot Makefiles, but
altered them slightly during the process of our project, as our understanding of the
architecture and the toolchain developed and new options opened up. For example,
when we used the CodeSourcery Toolchain instead of our self-compiled one, it was
not possible to use any optimization flags, like -O2, because there would be linker
issues in the provided libgcc like the following:

/usr/local/bin/../lib/gcc/arm-none-linux-gnueabi/4.3.3/libgcc.a
(_dvmd_lnx.o): In function `__aeabi_ldiv0':

(.text+0x8): undefined reference to `raise'

This was due to the fact that the bare metal linkage that we did would not work
with the libgcc provided by CodeSourcery, when there was the possibility that the
divisor of an integer division would be zero. The ARM architecture we were working
on did not provide a hardware integer division, which is why the libgcc provided
a software implementation as replacement, which relied on the raise capabilities
of the glibc for divisions by zero. Since there was no glibc in our linkage, the errors
were raised by the linker.

The next step after compiling hello_world.c to hello_world.o, was linking.
The linker call was particularily interesting since we had to specify a custom entry
point, because the entry point of our application was not necessarily called main.
Additionally, we needed to provide the linker with the base address where the boot
loader was going to load the application to, because there was no virtual memory
management in the context of our bare metal application. The actual linker call we
ended up using was similar to the following:

$(PREFIX)ld -o hello_world -e hello_world hello_world.o -g \
-Ttext 0xC1000000 -L$(LIBGCCDIR) -lgcc

11

2 Development of a Simple Operating System for LEGO Mindstorms EV3

In this call, the -e switch defined the symbol name of the entry point, and -Ttext
defined the starting address of the .text segment, where the application expected
its instructions to start during runtime. This was for example important for the
calculation of absolute jumps, which are calculated relative to the starting point of
the program.

An examination of the resultinghello_world binary using thefileutility yielded:

hello_world: ELF 32-bit LSB executable, ARM, EABI4 version 1
(SYSV), statically linked, not stripped

This ELF binary had to be converted to a plain binary in order to work with
the version of U-Boot running on the EV3, because it did not contain the bootelf
command, as described before. The appropriate objcopy call for our example was
similar to the following:

$(PREFIX)objcopy -O binary hello_world hello_world.bin

This yielded the binary that was eventually deployed and booted on the EV3,
however, we still needed to create the boot.scr file before deployment. For this, we
needed to find the entry point of the application, in other words the address of the
function we want the program to begin with, which is usually called main. However,
as there is no Operating System to load our application, and the information on the
entry point was lost during the objcopy, we need to recover this information. There
are several ways to do this, one of which is to disassemble the ELF binary, and to use
the grep utility to find the address of the function we expect to be entry point. An
example code for this could look similar to the following, again in Makefile syntax:

ENTRY = hello_world
ASM = hello_world.asm
$(PREFIX)objdump -d hello_world > hello_world.asm
ENTRY_ADDR = 0x$(shell grep '<$(ENTRY)>' $(ASM) | head -n1 | \

cut -d' ' -f1)

Using this information, it became possible to generate the boot.cmd file as follows:

echo "fatload mmc 0 0xC1000000 hello_world.bin" > boot.cmd
echo "go $(ENTRY_ADDR)" >> boot.cmd

which instructed U-Boot to load the hello_world.bin file to the specified ad-
dress in memory, which in our case was located in the lower regions of the EV3 RAM,
and jump to our specified entry point. An interesting side effect of this method is
that after execution of our application, the EV3 will return back to the boot loader
console, which will probably cease to work properly, because our code may have

12

2.3 Creating a Simple Self-Contained Application

clobbered the register containing the address of U-Boots global datastructure. If we
wanted to preserve this, we could add the appropriate flag to the compiler flags,
but since the dependencies to U-Boots C library functions were only temporary, we
decided to ignore this issue for the time being.

After generating the boot.scr from the boot.cmd file, and copying both files
boot.scr and hello_world.bin to a FAT32 formatted MicroSD card, and booting
the EV3 with this card inserted, the serial console captured output similar to the
following:

[...]
reading boot.scr

127 bytes read
Executing script at c0600000
reading hello_world.bin

60 bytes read
Starting application at 0xC100000C ...
hello world
Application terminated, rc = 0x0
U-Boot >

Which implies that our application was loaded and executed correctly, as the string
hello world is visible in the output of the serial console. These were very exciting
results, because they showed that our understanding of the EV3 platform was correct,
and that our build and deployment process behaved the way we intended them to.

Note that the size of the resulting binary file is a mere 60 Bytes. An application
with similar functionality compiled for a standard GNU/Linux target may be up
to 8 Kilobytes large. Also, the U-Boot console unexpectedly still worked after our
simple example terminated, but this will probably not be the case for more complex
applications that clobber the U-Boot global datastructure address register.

An example Makefile for the complete build and deployment process is contained
in the repository of this project, and additionally a simplified version is included
in the Appendix of this document, to complement the hello_world.c file in the
Appendix.

2.3.3 Removing U-Boot dependencies

In its described state, the standalone example application still depends on the puts
implementation of U-Boot, as well as the presence of U-Boots jump table in memory
and the address of this jump table in the registers of the ARM CPU. To remove these

13

2 Development of a Simple Operating System for LEGO Mindstorms EV3

dependencies, we needed to provide a puts implementation of our own, like the
following:

int
puts (const char *s)
{

while (*s)
{

putchar(*s);
++s;

}

putchar('\n');

return 0;
}

This simplified our problem, but did not solve it because we were now lacking a
putchar implementation. Fortunately, implementing putchar for the EV3s serial
console interface in a bare-metal context was fairly straightforward. The reference
manual of the CPU stated that the AM1808 contained three UART devices, which
exposed memory mapped registers in different areas of the EV3s memory. Upon
reading the configuration of the U-Boot sources, we found out that the UART device
used in the serial console on the first sensor port was mapped to the memory region
beginning at 0x01D0C000. The manual also states that the offset of the Transmitter
Holding Register(THR) to this base address is zero, and that the offset of the Line
Status Register(LSR) to the base address is 0x14. Using this information, we were
able to implement a very simple putchar as follows:

#define UART_THR (volatile char*)(0x01D0C000)
#define UART_LSR (volatile char*)(0x01D0C014)

int
putchar (int c)
{

if (c == '\n')
putchar('\r');

while (!(*UART_LSR & (1 << 5)));

*UART_THR = c;
return c;

}

14

2.4 Architecture Considerations

This version included the output of an addition carriage return upon encountering
a line break, because we had some issues with our terminal emulators, where the
terminal would not acknoledge an implied carriage return upon line break, and
instead kept the indentation of the previous line.

Using these two functions, we removed the U-Boot dependency, effectively creat-
ing the simplest possible independent example application for our bare-metal ARM
target, including a working toolchain and deployment process. This enabled us to
move on to more complex tasks with maximum freedom as well as a solid under-
standing of the platform fundamentals, and to theoretically gain complete control of
the platform. Again, a complete version of the hello_world.c file without U-Boot
dependencies is contained in the appendix of this document, and can be compiled
using the same Makefile as before.

2.4 Architecture Considerations

Building upon the simple example described before, we developed a fairly complex
system, the architecture of which is going to be described in detail in this section. Our
system runs directly on the device hardware, using memory mapped registers as
means of communication and interaction with the hardware. After the boot process
is complete, we assume to be the only code operating the device, and expect the
hardware to react appropriately.

From an abstract point of view, our system consists of three basic components,
each of which is described in detail in a dedicated section below. Interfacing with the
hardware via the memory mapped registers is the Periphery Control Libray(libp). The
libp contains very basic versions of the device drivers and device interface providers
we needed, and was intended to provide a level of abstraction to the underlying
hardware, and a procedural interface to basic hardware functionality. Complement-
ing the libp, we implemented a subset of the C standard library functions we needed
as described by various standards. We updated this rudimentary libc with new func-
tions as they were required, but while we tried to keep to the standards as much as
possible, the specific use-case of our system allowed some simplifications, which
are outlined below. The third aspect of our system is a simple C runtime which
in the current state of the system fulfills some of the roles of the C runtime, but is
also used as a container for the application logic. The libc and libp are compiled
into shared libraries, which are linked statically to the application code and the C
runtime, resulting in a single binary file for deployment. This implies that for an
updated application code, the operating system has to be recompiled and -linked
as well, which creates some deployment overhead. However, the overall compila-
tion time was short enough to allow for that, and it simplified the system layout

15

2 Development of a Simple Operating System for LEGO Mindstorms EV3

significantly when compared to implementing a persistant operating system with a
dedicated application loader.

Figure 2.3: The architecture of the Operating System, coarsely divided into func-
tional blocks, the large upper box represents the project source code separated
into application logic, libc and periphery control library, while the lower box
represents the platform hardware, where memory mapped registers are used as
communication medium between hardware and software.

2.4.1 C Library Implementation

The C standard defines a lot of functions, and most C library implementations con-
tain extensions to a certain degree. However, since our system was intended to be
quite simple, we did not necessarily need the full power of a feature-complete C

16

2.4 Architecture Considerations

standard library, allowing us to omit most of the more advanced functions and con-
cepts. One of the more notable aspects we left out it the concept of file descriptors,
and files in general. We also left out anything regarding virtual memory manage-
ment. This was due to the fact that file systems and files in general are non-trivial
concepts, that we did not need to introduce into our system yet, and that would take
a considerable amount of work to implement properly. The same statement holds for
virtual memory management. Since our application is the only code running on the
platform, the concept of virtual memory is not essential to the execution of our code,
as there is no need to separate processes or hide physical memory functionality, like
memory mapped registers, from user code.

What we did need to implement was a subset of stdio.h, specifically charac-
ter and string output functions. Since the serial console via the UART adapter was
initally the only means of communication we established with the device, it was es-
sential to have a more sophisticated output method than putchar and puts, which
is why we implemented a feature-incomplete version of vprintf and printf. This
allowed us to print numerical values as well as formatted strings to the serial con-
sole, instead of mere character arrays using puts. During the development of our
simplified vprintf, we noticed that we were initially lacking a true understanding
of the inherent complexity of the functions of the printf family. Our vprintf clone
was only capable of printing characters, strings, signed integers, and hexadecimal
integers, excluding formatting like leading zeros or length specifiers, and already
spanned more than 150 lines of code. We found this astonishing and it lead us to
develop a new kind of respect for the convenience provided by some parts of the C
standard library.

Beyond these output functions, we also implemented a subset of the functions
of the mem* family, in particular memcmp, memcpy and memset. These functions may
be expected by the compiler to exist at compile time and may calls to them may be
sliently added when manipulating stack based array. An example for this can be
seen in the following code, where the compiler silently inserted a call to memset,
ignoring the possibility that memset may not exist:

void
function (void)
{

int arr[1000] = { 0 };
}

This is evident in the disassembly of this function:

c1000030 <function>:
c1000030: e1a0c00d mov ip, sp

17

2 Development of a Simple Operating System for LEGO Mindstorms EV3

c1000034: e92dd800 push {fp, ip, lr, pc}
c1000038: e24cb004 sub fp, ip, #4 ; 0x4
c100003c: e24ddefa sub sp, sp, #4000 ; 0xfa0
c1000040: e24b3efa sub r3, fp, #4000 ; 0xfa0
c1000044: e243300c sub r3, r3, #12 ; 0xc
c1000048: e3a02efa mov r2, #4000 ; 0xfa0
c100004c: e1a00003 mov r0, r3
c1000050: e3a01000 mov r1, #0 ; 0x0
c1000054: ebffffe9 bl c1000000 <memset>
c1000058: e24bd00c sub sp, fp, #12 ; 0xc
c100005c: e89da800 ldm sp, {fp, sp, pc}

The absence of these functions caused occasional linker errors, which is why we
chose to add them to our C library implementation. Generally speaking, we tried
to follow our usual workflow when developing the system and application code,
disregarding the fact that several C library functions were missing, and each time a
function required by us or the compiler was undefined, we added it to our C library
implementation, growing it in the process.

We tried to minimize the amount of direct interaction of C library functions with
the hardware, and instead to use libp functions for hardware access, to keep the
layered structure of our system as clean as possible. In fact, the only function of the C
library thar interferes with the hardware directly is putchar, when writing directly
to the UART console memory registers. We decided against abstracting from this,
because the actual abstraction is going to be part of the libc as soon as a means of
defining input and output streams is added, and the putchar implementation is
forced to adhere to the properties of the given stdout.

2.4.2 Reverse Engineering Platform Device Drivers

The final goal of our project was to be able to control the LEGO sensors and motors
from our system in a way that would enable us to set up a simple real-time based
experiment. However, the road to this goal was considerably longer and harder than
we expected, and we only partially succeeded.

To create the drivers, we used mainly two resources. For the devices of the AM1808
CPU, we found all required information in the reference manual of the CPU, but
for the higher level devices like the LEDs on the front of the EV3, we needed to
reverse-engineer the necessary information from the original LEGO source code
and to use a lot of trial-and-error debugging. This was aggravated by the fact that
the LEGO source code was partly obfuscated and overly complex which was due to
the way it was developed and probably carried over from earlier hardware revisions
and generations which were not running the Linux that was shipped with the EV3.

18

2.4 Architecture Considerations

The LEGO drivers were implemented as kernel-space devices using high-resolution
timer callbacks, and exposed their interfaces via device nodes to a higher level layer
of LEGO code, which then interfaced with the frontend on the device that was
exposed to the user via the LCD screen on the front of the EV3. Another resource
we had access to were the circuit plans of the Mindstorms NXT 2.0 hardware as well
as of some of the simpler sensors, and motors.

As a proof of concept, the first periphery device we wanted to be able to control
were the LEDs on the front of the EV3. The communication of our code with the
AM1808 CPU hardware was implemented using memory mapped registers. Some of
these memory mapped registers control a section of the chip called General-Purpose
I/O(gpio), which is one of the interfaces used to communicate with hardware out-
side of the CPU, for example the LEDs. Interfacing with the gpio ports is fairly
straightforward, except for the fact that these ports are multiplexed. In addition to
writing the correct values to the registers corresponding to the port data, we also
needed to properly configure the ports as input- or ouput-ports, as well as properly
configuring the pulldown resistors of the ports.

Beyond the difficult task of understanding the elctrical engineering aspects of
hardware interaction, we also had to reverse engineer the LEGO source code to find
out behind which ports the LEDs were listening. This was especially difficult, be-
cause the LEGO sources contained different port descriptions for multiple hardware
revisions, which meant that in case of an error we did not know if our gpio interface
code was the problem or if we simply interfaced with the wrong ports. In actual fact,
we spent several days after getting one of the two front LEDs to work debugging our
gpio implementation, while the real problem was that we used the wrong gpio ports,
and just got the first LED working out of sheer luck. Debugging this kind of problem
can be very frustrating, as there initially was no point of reference that could be taken
as a ground truth, and the hardware continuously degraded to a blackbox whose
state was not known, and whose behaviour was not fully understood. Following
the LEDs, we implemented support for the buttons on the front of the EV3, which
included extending our gpio driver from a write-only to a read/write driver, but
apart from this was a very straightforward process.

After finishing the LED and button control, we started looking into the devel-
opment of control code for the LEGO sensors and actuators. Again, we faced the
problem of reverse engineering thousands of lines of code to find out the main
points of sensor and motor control, but fortunately we had an additional resource.
We had access to the circuit schematics of the Mindstorms NXT 2.0 and a set of
sensors and motors of the NXT 2.0 generation. These schematics showed us how the
devices interfaced with the I/O ports on the EV3, and the LEGO sources described
which sensor port was mapped to which gpio ports. Using this information we were
able to capture the state of the appropriate gpio ports during the sensor operation.
However, there were generally two kinds of sensors. One kind of sensors exposed its

19

2 Development of a Simple Operating System for LEGO Mindstorms EV3

state as a continous value of voltage on a specific gpio port, requiring us to write a
driver for the analog/digital converter(adc) of the AM1808 to be able to interface with
these devices. Examples for sensors of this kind were the touch sensors, and the NXT
light/distance sensor. However, the sensors differed in the interpretation of these
signals, which meant that we needed to write different drivers that interpreted the
values captured by the gpio and the adc differently. Additionally, the LEGO sources
also identified which kind of sensor connected to a port, using a complex scheme
of port states and voltages. We chose to omit this functionality, and instead use
dedicated interfaces for each sensor type, which imples that the application needs
explicit knowledge on the kind of sensor or actuator attached, and risked invoking
undefined behaviour in case a wrong function is used, which was acceptable for our
use case.

The second kind of sensors, which were mainly the newer sensors of the EV3
generation, were more complicated. They did not expose their values via continuous
voltages on the gpio ports, but instead contained an I2C bus controller connected
via gpio to the linux kernel modules of the LEGO source. The AM1808 contains an
I2C bus controller abstracting away from the timing constraints of the bus protocol,
but unfortunately LEGO decided to use the software bus driver implementation
contained in the linux kernel instead. We were unable to create an I2C bus driver
implementation due to time limitations and the functionality requirements of such
a driver, which meant that we could not interface with the modern EV3 sensors.

After we finished working on the NXT style sensor drivers, we implemented the
motor driver which worked by similarily to the LED controller, just by switching gpio
pins on and off. To implement different levels of speed, we made it the applications
responsibility to turn the motor off and on in the appropriate intervals to basically
implement pulse width modulation.

The full source code of all of the device driver implementations can again be found
in the project repository on github.

2.4.3 Emulating GCC’s Constructor Function Attribute

Application and library state initialization is a non-trivial process. Optimally, ini-
tialization code for unused modules coule be omitted, and the initialization should
be processed before the program enters the application logic to ensure correct be-
haviour during runtime. Additionally, sometimes a library module requires another
module to be required before it starts its initialization.

This functionality is provided by an extension of the GNU toolchain to the C
language, which are the constructor and destructor function attributes [4]. The
syntax is as follows:

void

20

2.4 Architecture Considerations

__attribute__ ((constructor))
initialization (void)
{

// this function is executed before main
}

The ELF binary contains dedicated sections to implement this feature. Functions
declared constructor are placed in the .init_array section of the binary, and
functions declared destructor are placed in the .fini_array section. Upon exe-
cution of the binary, the C runtime as provided by the C library may honour these
section by executing the functions from the .init_array in unspecified order be-
fore jumping to the applications entry point, and executing the functions from the
.fini_array once the application returns from main or calls exit. If the applica-
tion terminates abnormally, for example via a call to abort or through a signal, the
.fini_array is ignored. Additionally, it is possible to give the constructurs a well-
defined order by providing an integer argument to the attribute, where constructors
with lower argument are executed before constructors with higher argument.

This mechanism is very useful for application and library state initialization and
finalization for a number of reasons. The linker may discard the constructors of
unused compilation units, effectively eliminating unused code from the binary. If
the constructor code would be invoked explicitly, the linker could not detect unused
compilation units und would not be able to optimize this. Additionally, it is possible
to specify complex dependency graphs of constructors by giving them appropriate
precedence arguments to ensure that higher-level constructors are always called
after the constructors they depend on. If these constructors would just invoke the
low-level constructor explicitly, there would be problems when several modules
depend on the same constructor, becasue it may be executed multiple times.

The constructor and destructor function attributes are useful features for initial-
ization and finalization, but only if they are honoured by the loader of the target
platform. Unfortunately, the makeshift loader we implemented using U-Boot scripts
does not support this. To remedy this, we needed to add another level of indirection
above the applications entry point that emulates this functionality of the linker. This
is what we called our C Runtime.

We altered our build and deployment process to point to a new entry point, which
was a function that calls all functions declared constructor, calls the old entry point
function and stores its return value, calls all functions declared destructor, and
returns the old entry points return vaule. The linker of our toolchain exposes the ad-
dresses of the constructor and destructor array as magic constants, which means that
the implementation of the initialization and finalization routines is fairly straightfor-
ward, for example a function for the initialization looked similar to the following:

static void

21

2 Development of a Simple Operating System for LEGO Mindstorms EV3

ev3ninja_runtime_init (void)
{

size_t count;
size_t i;

count = __preinit_array_end - __preinit_array_start;
for (i = 0; i < count; i++)

__preinit_array_start[i] ();

count = __init_array_end - __init_array_start;
for (i = 0; i < count; i++)

__init_array_start[i] ();
}

It should be noted here that the toolchain would not complain if we were to use
the constructor function attribute, but not call these functions in our actual code,
because the toolchain expects the execution environment of the compiled application
to honour these conventions. The fact that our deployment process did initially not
provide this functionality could have lead to silent failures of critical functionality,
which would have been hard to debug. However, since we did implement this feature,
we restored a functionality to the toolchain that it expected to have in the first place,
and we also improved the optimization capabilities of the linker in the context of
eliminiating unused code from the binary.

2.5 Experiment

After implementing the sensor and motor control in our system, we decided on a
proof of concept experiment to demonstrate the capabilities of our system. Despite
our problems with the I2C bus controller and the resulting inability to interface
with the gyroscope sensor or infrared distance sensor, we decided to create a self-
balancing two-wheeled robot based on the idea of a segway, or the inverted pendu-
lum, the physics of which is described in figure 2.4. For this, we created as robot,
using a set of two light sensors, which we used as distance sensors assuming even
ambient light, uniformly reflective surfaces and low direted and specular light. To be
able to balance, we moved the center of mass of the segway a bit to the top, allowing
the wheels to balance below the center of mass.

The robot was controlled using a simple PID controller implemented in C. A PID
controller is a basic building block capable of stabilizing different kinds of systems
by providing different paramters. The main idea of a PID controller is that it is
possible to stabilize a system by controlling an actuator based on the measurement

22

2.5 Experiment

Figure 2.4: The inverse pendulum in the context of a segway - The mass of the
segway is concentrated at the top of the pendulum, while the bottom is free to
move and keep the surface area connecting to the ground below the center of
mass to keep the balance.

23

2 Development of a Simple Operating System for LEGO Mindstorms EV3

between the current system state and a desired system state. The actual difference
between the system state and the desired state is called p, the differential over the
difference is called d, and the integral over the difference is called i. Each of these
aspects of the PID controller is assigned a constant Kp, Kd and Ki, and the output
is then calculated as Kp ∗ p + Kd ∗ d + Ki ∗ i. This simple principle is capable of
stabilizing a surprising variety of systems, if configured properly.

The p part of the controller brings the actual difference in state into the equation.
The d part of the controller brings the differential of the difference, that is, the rate of
change into the equation. This allows a properly configured controller to overshoot
less, as high rates of change can be translated to less output force if the controllers
state is near the desired state. The i part of the controller brings accumulated state
difference into the equation, which allows the segway robot to not only stabilize, but
theoretically also should allow for second order stability, where the robot tends to
stay close to the spot it started on. Unfortunately, the ligh sensors we used were not
precise enough for reliable segway control, however we managed to have it roughly
keep its balance for a limited amount of time, which can be seen in the demo video
we created, and which can be found at https://www.youtube.com/watch?v=-
t5TSZjHqMg. At the end of the video, it can be seen that one of the light sensors
moves from the brighter wooden tiles to a darker wooden tile, which introduced a
shift of the brightness measurements between the two light sensors, as the reflective
properties of the ground changed. This sudden change caused an unrecoverable
balance failure for our robot.

Another problem we faced was that the speed control of the wheels was not very
precise, and depended a lot on the current charge of the EV3s batteries.

The actual implementation of the PID controller in C is straightforward. Firstly,
the controller needs to capture a difference between its current state and its desired
state in a continuous loop. Then, the controller can approximate the differential
of the difference as the difference beween the current and the last measurement,
and can approximate the inegral over the difference as the continuous sum over
the difference. Depending on the frequency of measurements, the value for Ki will
probably need to be small as the sum over the differences grows quickly.

Generally, we considered the experiment to be successful, as we managed to build
a self-balancing robot using LEGO bricks, although it was still very much dependent
on environmental influences.

2.6 Conclusions

This project provided a very diverse and valuable learning experience, not only
in hacking proprietary hardware. We dived into several topics, including but not

24

https://www.youtube.com/watch?v=-t5TSZjHqMg
https://www.youtube.com/watch?v=-t5TSZjHqMg

2.7 Future Work

limited to reverse-engineering device drivers, creating PID controllers, electrical
engineering, driver development and C standard library development, all of which
most members of our team never touched before. Or knowledge of the C language in-
tensified, and we developed a better understanding about the complexity of and the
convenience provided by the C standard library functions. We deployed source code
to a bare-metal ARM platform, for which we compiled a cross-compile toolchain by
hand. We learned about hardware/software interfaces and debugging, and about
specific tools, bootloaders and Operating System features

We found out that the Mindstorms EV3 is a surprisingly hackable platform, that
can be applied to a very versatile range of applications, merely by properly provi-
sioning a MicroSD Card. This property makes the EV3 a very valid platform for
developing with, and learning about embedded systems, in a feature-complete op-
erating system context, as well as on the bare metal.

At the beginning, our goals were the creation of a bare-metal Operating System
capable of controlling the Mindstorms EV3s hardware and periphery, while being
independent of existing source code on the device, and while also keeping it as
simple as possible. Looking back, we think we achieved this goal. Our system is
capable of controlling a self-balancing robot, only based on source code we wrote and
that we kept as simple as possible. We also persisted the existing state of the project
and the development and deployment process with various scripts, Makfiles and
pieces of documentation, such that following generations of students can understand
what we did and hopefully also why we did it.

We feel that this learning experience was definitely worth the effort and want to
thank the Operating Systems and Middleware Chair at the Hasso Plattner Institute
for its continuous support. In particular, we want to thank Jan-Arne Sobania for
sharing his understanding on the ARM platform, and the U-Boot boot loader, Uwe
Hentschel for his deep knowledge of electrical engineering and hardware debugging,
Frank Feinbube for providing answers to any questions we dared asking, and of
course to Prof. Andreas Polze for providing the Lecture, the Project, the Hardware
and possibilities only limited by our abilities and timeframes.

2.7 Future Work

Our system was not designed to be a feature-complete general-purpose Operating
System. Instead, we developed it to be as slim as possible, tailored to a specific
purpose, while being as easily extendible as possible. As such, there are numerous
possibilities for future projects to extend upon our system, some of which we want
to list as suggestions below.

25

2 Development of a Simple Operating System for LEGO Mindstorms EV3

One large field we did not explore is the area of job control. Real Operating Systems
have more than one task, and hence have to protect the operating system from the
tasks, and the tasks from each other. This requires a lot of work and abstraction
that we intentionally left out because of a lack of time. But generally speaking, the
system would need a way to manage virtual memory, and to do context swiching
between tasks and also to do scheduling. Also, depending on the level of interactivity
desired the system might need some kind of shell or job control system, as well as
an application loader.

All of this would probably require proper interrupt handling, which is also a
field we have chosen not to look too deep into. If it would be possible to use the
dedicated real-time timers of the AM1808 CPU for high-precision timers, the creation
of a software I2C driver would be possible, allowing for interaction with the more
complex EV3 sensor devices.

Another field we did not have the time to explore is proper host-based remote de-
bugging using gdb hooks connected via the serial UART console. This would enable
more efficient debugging than the debug printing approach we used. Additionally,
the system could use some amount of hardware independence, as it is currently
very much limited to a single platform.

Generally, the possibilities to extend on the system we developed are almost un-
limited, and the hardware is affordable. To enable anyone interested to extend upon
our work, and as a complete reference to this document, we decided to release our
work as open source on github via http://github.com/ev3ninja/ninjastorms.
We hope that someone will find this useful, and would be glad to hear from anyone
deciding to continue where we left off. Please consider writing us an email.

26

http://github.com/ev3ninja/ninjastorms

References

References

[1] AM1808 ARM Microprocessor Datasheet. url: http://www.ti.com/lit/ds/
symlink/am1808.pdf.

[2] AM1808/AM1810 ARM Microprocessor Technical Reference Manual. url: http:
//www.ti.com/lit/ug/spruh82a/spruh82a.pdf.

[3] EV3 modified Ångström Linux and U-Boot github Repository. url: https://
github.com/mindboards/ev3sources.

[4] Function Attributes - Using the GNU Compiler Collection (GCC). url: http://
gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html.

[5] GitHub, (2013). mindboards/ev3sources. url: https://github.com/mindboar
ds/ev3sources/blob/master/README.md.

[6] A. J. Kunen. Building the GNU ARM Toolchain for Bare Metal. url: http://www.
kunen.org/uC/gnu_tool.html.

[7] X. Soldaat. EV3: Creating a Console Cable. url: http://botbench.com/blog/
2013/08/15/ev3-creating-console-cable/.

2.A Appendix

2.A.1 cross-compile toolchain creation

1 #!/bin/bash
2

3 # this script should be able to generate an arm−none−eabi toolchain
4 # on your system. if not, try to fix it. :)
5 # tested on Gentoo Linux, and Ubuntu 12.04 LTS
6

7 # you may need to run this as root, depending on your configuration.
8 # basically, you just need full write permissions to the path
9 # specified in PREFIX.

10

11 # third party dependencies (probably incomplete):
12 # − GNU make, gcc, ... (build−essential)
13 # − texinfo
14

15 # this script was generated using this guide:
16 # http://www.kunen.org/uC/gnu_tool.html
17

27

http://www.ti.com/lit/ds/symlink/am1808.pdf
http://www.ti.com/lit/ds/symlink/am1808.pdf
http://www.ti.com/lit/ug/spruh82a/spruh82a.pdf
http://www.ti.com/lit/ug/spruh82a/spruh82a.pdf
https://github.com/mindboards/ev3sources
https://github.com/mindboards/ev3sources
http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
https://github.com/mindboards/ev3sources/blob/master/README.md
https://github.com/mindboards/ev3sources/blob/master/README.md
http://www.kunen.org/uC/gnu_tool.html
http://www.kunen.org/uC/gnu_tool.html
http://botbench.com/blog/2013/08/15/ev3-creating-console-cable/
http://botbench.com/blog/2013/08/15/ev3-creating-console-cable/

2 Development of a Simple Operating System for LEGO Mindstorms EV3

18 set −e
19 set −u
20 set −x
21

22 BUILDROOT=${BUILDROOT:−/tmp}
23 PREFIX=${PREFIX:−/usr/local}
24

25 # set make flags in environment, e.g. −j2 for parallel builds
26 MFLAGS=${MFLAGS:−}
27 # clean up previous build, if any
28 rm −rf $BUILDROOT/{src,build}
29 # create build directories
30 mkdir −p $BUILDROOT
31 mkdir −p $BUILDROOT/{orig,src,build}
32 # create install directory
33 mkdir −p $PREFIX
34

35 # fetch required packages, if necessary
36 cd $BUILDROOT/orig
37 if [! −f gcc−4.3.3.tar.gz]; then
38 wget ftp://ftp.gnu.org/gnu/gcc/gcc−4.3.3/gcc−4.3.3.tar.gz
39 fi
40 if [! −f gcc−core−4.3.3.tar.gz]; then
41 wget ftp://ftp.gnu.org/gnu/gcc/gcc−4.3.3/gcc−core−4.3.3.tar.gz
42 fi
43 if [! −f gmp−4.1.tar.gz]; then
44 wget http://mirror.anl.gov/pub/gnu/gmp/gmp−4.1.tar.gz
45 fi
46 if [! −f mpfr−2.3.0.tar.gz]; then
47 wget http://www.mpfr.org/mpfr−2.3.0/mpfr−2.3.0.tar.gz
48 fi
49 if [! −f gdb−6.8.tar.gz]; then
50 wget http://mirrors.usc.edu/pub/gnu/gdb/gdb−6.8.tar.gz
51 fi
52 if [! −f binutils−2.19.tar.gz]; then
53 wget http://mirrors.usc.edu/pub/gnu/binutils/binutils−2.19.tar.gz
54 fi
55 if [! −f newlib−1.17.0.tar.gz]; then
56 wget ftp://sources.redhat.com/pub/newlib/newlib−1.17.0.tar.gz
57 fi
58

59 # unpack tarballs
60 cd $BUILDROOT/src

28

2.A Appendix

61 tar xzf ../orig/gcc−4.3.3.tar.gz
62 tar xzf ../orig/gcc−core−4.3.3.tar.gz
63 tar xzf ../orig/gmp−4.1.tar.gz
64 tar xzf ../orig/mpfr−2.3.0.tar.gz
65 tar xzf ../orig/gdb−6.8.tar.gz
66 tar xzf ../orig/binutils−2.19.tar.gz
67 tar xzf ../orig/newlib−1.17.0.tar.gz
68

69 mv gmp−4.1 gcc−4.3.3/gmp
70 mv mpfr−2.3.0 gcc−4.3.3/mpfr
71

72 # build binutils
73 mkdir $BUILDROOT/build/binutils−2.19
74 cd $BUILDROOT/build/binutils−2.19
75 ../../src/binutils−2.19/configure −−target=arm−none−eabi \
76 −−prefix=$PREFIX −−enable−interwork −−enable−multilib \
77 CFLAGS="−g −O2 −Wno−unused−but−set−variable \
78 −Wno−unused−but−set−parameter −Wno−format−security"
79 make $MFLAGS all
80 make install
81

82 export PATH="$PATH:$PREFIX/bin"
83

84 # build gcc compiler
85 mkdir $BUILDROOT/build/gcc−4.3.3
86 cd $BUILDROOT/build/gcc−4.3.3
87 # only enable C here
88 ../../src/gcc−4.3.3/configure −−target=arm−none−eabi \
89 −−prefix=$PREFIX −−enable−interwork −−enable−multilib \
90 −−enable−languages="c" −−with−newlib \
91 −−with−headers=../../src/newlib−1.17.0/newlib/libc/include
92 make $MFLAGS all−gcc
93 make install−gcc
94

95 # build newlib
96 mkdir $BUILDROOT/build/newlib−1.17.0
97 cd $BUILDROOT/build/newlib−1.17.0
98 ../../src/newlib−1.17.0/configure −−target=arm−none−eabi \
99 −−prefix=$PREFIX −−enable−interwork −−enable−multilib

100 make $MFLAGS all
101 make install
102

103 # finish gcc build

29

2 Development of a Simple Operating System for LEGO Mindstorms EV3

104 cd $BUILDROOT/build/gcc−4.3.3
105 make $MFLAGS all
106 make install
107

108 # build gdb
109 mkdir $BUILDROOT/build/gdb−6.8
110 cd $BUILDROOT/build/gdb−6.8
111 ../../src/gdb−6.8/configure −−target=arm−none−eabi \
112 −−prefix=$PREFIX −−enable−interwork −−enable−multilib \
113 CFLAGS="−g −O2 −Wno−unused−but−set−variable \
114 −Wno−unused−result −Wno−enum−compare"
115 make $MFLAGS all
116 make install
117

118 # if you get here, you should have a working toolchain.
119 echo "all done."

30

2.A Appendix

2.A.2 U-Boot puts based standalone hello_world.c

1 // U−Boot global data layout
2 typedef struct global_data {
3 /*bd_t*/ void *bd; // simplified, assuming
4 // pointers of equal size
5 unsigned long flags;
6 unsigned long baudrate;
7 unsigned long have_console;
8 unsigned long env_addr;
9 unsigned long env_valid;

10 unsigned long fb_base;
11 void **jt; // jump table
12 } gd_t;
13

14 // puts id in U−Boot function table
15 #define XF_puts 4
16

17 // puts prototype
18 void puts(const char*);
19

20 #include <stddef.h> /* offsetof */
21

22 // puts asm stub
23 void __attribute__((unused)) dummy(void)
24 {
25 asm volatile (
26 " .globl puts \n"
27 " puts :\n" \
28 " ldr ip, [r8, %0]\n" \
29 " ldr pc, [ip, %1]\n" \
30 : : "i"(offsetof(gd_t, jt)),
31 "i"(XF_puts * sizeof(void *)) : "ip");
32 }
33

34 // entry point
35 int
36 hello_world (void)
37 {
38 puts("hello world\n");
39

40 return 0;
41 }

31

2 Development of a Simple Operating System for LEGO Mindstorms EV3

2.A.3 U-Boot independent standalone hello_world.c

1 #define UART_THR (volatile char*)(0x01D0C000)
2 #define UART_LSR (volatile char*)(0x01D0C014)
3

4 int
5 putchar (int c)
6 {
7 if (c == '\n')
8 putchar('\r');
9

10 while (!(*UART_LSR & (1 << 5)));
11

12 *UART_THR = c;
13 return c;
14 }
15

16

17 int
18 puts (const char *s)
19 {
20 while (*s)
21 {
22 putchar(*s);
23 ++s;
24 }
25

26 putchar('\n');
27

28 return 0;
29 }
30

31 int
32 hello_world (void)
33 {
34 puts("hello world");
35

36 return 0;
37 }

32

2.A Appendix

2.A.4 Makefile to build the standalone hello_world.c

1 PREFIX = # arm−none−eabi−
2 CC = $(PREFIX)gcc
3 AR = $(PREFIX)ar
4 LD = $(PREFIX)ld
5 OBJCOPY = $(PREFIX)objcopy
6 OBJDUMP = $(PREFIX)objdump
7

8 SDDEV = # /dev/sd??
9 SDMNT = # /mnt/?

10

11 LOADADDR = 0xC1000000
12 ENTRY = hello_world
13

14 LIBGCCDIR = $(shell dirname $(shell $(CC) −print−libgcc−file−name))
15 LDFLAGS = −g −Ttext $(LOADADDR) −L$(LIBGCCDIR) −lgcc
16

17 INCGCCDIR = $(LIBGCCDIR)/include
18 CFLAGS = −g −O2 −pipe −fno−common −msoft−float −fno−builtin \
19 −ffreestanding −nostdinc −isystem $(INCGCCDIR) −marm \
20 −mabi=aapcs−linux −mno−thumb−interwork −march=armv5te \
21 −fno−stack−protector −Wall −Wextra −Wstrict−prototypes −Werror
22

23 OBJ = hello_world.o
24

25 ELF = hello_world
26 BIN = $(ELF).bin
27 SREC = $(ELF).srec
28 ASM = $(ELF).asm
29

30 ifeq ($(PREFIX),)
31 $(error Please set PREFIX to the prefix of your toolchain.)
32 endif
33 ifeq ($(SDDEV),)
34 $(error Please set SDDEV to the device node of your MicroSD card.)
35 endif
36 ifeq ($(SDMNT),)
37 $(error Please set SDMNT to an existing mount point of your choice.)
38 endif
39

40 .PHONY : all boot.scr boot.cmd deploy clean disas
41

33

2 Development of a Simple Operating System for LEGO Mindstorms EV3

42 all: $(ELF) $(SREC) $(BIN)
43

44 $(ELF): $(OBJ)
45 $(LD) −o $(ELF) −e $(ENTRY) $(OBJ) $(LDFLAGS)
46

47 $(BIN): $(ELF)
48 $(OBJCOPY) −O binary $(ELF) $(BIN)
49

50 $(SREC): $(ELF)
51 $(OBJCOPY) −O srec $(ELF) $(SREC)
52

53 boot.scr: boot.cmd
54 mkimage −C none −A arm −T script −d boot.cmd boot.scr > /dev/null
55

56 boot.cmd: disas
57 echo "fatload mmc 0 $(LOADADDR) $(BIN)" > boot.cmd
58 echo "go 0x$(shell grep '<$(ENTRY)>' $(ASM) | head −n1 \
59 | cut −d' ' −f1)" >> boot.cmd
60

61 deploy: $(BIN) boot.scr
62 mount $(SDDEV) $(SDMNT)
63 cp $(BIN) $(SDMNT)/
64 cp boot.scr $(SDMNT)/
65 umount $(SDDEV)
66

67 clean:
68 rm −f $(OBJ) $(ELF) $(ASM) $(BIN) $(SREC) boot.scr boot.cmd
69

70 disas: $(ELF)
71 $(OBJDUMP) −d $(ELF) > $(ASM)
72

73 %.o: %.c
74 $(CC) $(CFLAGS) −o $@ $< −c

34

3 Real-Time Linux on Lego EV3

3.1 Introduction

When building a real-time system, every part of the system has to ensure predictable
timing. This also includes the operating system and, as a specific part of it, its schedul-
ing mechanisms. One classic problem of priority-based scheduling mechanisms in
real-time operating systems is priority inversion. This problem needs be be solved
by an operating system used in a real-time system.

Depending on the financial and temporal constraints, it can be reasonable to use a
general-purpose operating system like Linux for building a real-time system. How-
ever, in order to use such a system we need to ensure that the scheduling mechanisms
of the general-purpose operating system have predictable timing behaviour, for ex-
ample, by implementing solutions to priority-inversion. For Linux, the RT_PREEMPT
patch1 changes the kernel in such a way that it has predictable timing, for example,
by implementing priority inheritance for kernel synchronization primitives.

To demonstrate the real-time behaviour of a RT_PREEMPT Linux, we conducted
an experiment. As our target platform, we chose the Lego Mindstorms EV32, since
it is an embedded platform that is nevertheless easy to program. In detail, our
experiment focuses on the mechanisms introduced into Linux to handle priority
inversion. Therefore, we constructed a mission program, which is based on a task
set that suffers from priority inversion. We evaluated this scenario by running the
program on an ordinary Linux and a patched version of it.

3.1.1 Lego EV3

The Lego Mindstorms EV3 is the third generation of programmable bricks pro-
duced by Lego. In the academic context, it is a versatile platform for prototyping
and researching embedded, robotic systems. The brick has the following hardware
specifications:

1RT_PREEMPT patch, also CONFIG_PREEMPT_RT: Kernel patch adding real-time support to
Linux [10]

2Lego Mindstorms EV3: Lego robotics platform, see http://mindstorms.lego.com/

35

http://mindstorms.lego.com/

3 Real-Time Linux on Lego EV3

• AM1808 System-on-a-Chip (SoC) with a 300MHz ARM-9 CPU, 64MB RAM
and controllers for SDHC-Card, USB, I2C, UART, GPIO and display.

• 4 motor and 4 sensor ports using a modified RJ-12 jack with the locking tap on
the side of pin 1. One port can be used as a serial console.

• A-Type USB host port and micro B-Type USB client port.

• Monochrome 178 × 128 LCD connected to the SoC graphics unit.

• 6 buttons with background LED.

• A speaker.

The platform is running Ångström Linux3, a Linux-2.6-based distribution special-
ized on embedded systems but not supporting hard real-time.

3.1.2 Linux and Real Time

The 2.6.x series of the Linux kernel are interesting for embedded systems due to
zero licensing costs, their wide range of supported hardware and low resource
consumption. They already provide basic real-time facilities, such as a constant-time
scheduler. Pages can be locked to prevent page faults, which would otherwise delay
memory accesses indeterminately. Real-time activities can suspend other running
tasks when certain preemption points in the kernel code are reached. User-mode
mutexes support the priority inheritance protocol and hence are not prone to priority
inversion.

However, there are still many non-preemptable code paths in the kernel, espe-
cially interrupt handlers and scheduling facilities. Moreover, the OS does not exploit
the full resolution of hardware timers, thereby limiting scheduling and deadline
precision. Synchronization mechanisms are (at least partly) prone to the priority
inversion phenomenon with potentially catastrophic failure of the deployed facil-
ity. One example showing the severity of such problems is the Mars Rover NASA
Mission [5].

The RTLinux project and its successor, the RT_PREEMPT configuration of Linux,
drastically improve the real-time capabilities of Linux by introducing (nearly) full
kernel preemptability and a protection against priority inversion in kernel synchro-
nization primitives through priority inheritance. Implementation details are given
in section 3.2.

3The Ångström Distribution: Linux distribution for embedded devices [11]

36

3.1 Introduction

Figure 3.1: EV3 Front.

Figure 3.2: EV3 left side with host USB
and microSD slot.

Figure 3.3: EV3 top side with client USB
and sensor ports.

Figure 3.4: EV3 bottom side with motor
ports. Port 1 can be used as UART
console.

37

3 Real-Time Linux on Lego EV3

3.1.3 Experiment Setup

The default operating system on the Lego EV3 cannot achieve hard real-time given
the limitations implied by Linux 2.6.

We approached these drawbacks by applying the RT_PREEMPT patch to the origi-
nal operating system running on the EV3. This patch left us with a fully preemptable
kernel and support for priority inversion in frequently used kernel synchronization
primitives, such as kernel mutexes. Subsequently we constructed a task set which
is likely to miss deadlines due to priority inversion. The task set controls the move-
ment of a robot and simulates sensor and communication activities. We show the
effectiveness of our change by implementing and running this task set on both the
original EV3 OS and the real-time variant. Using the original EV3 OS, the highest
priority task eventually misses its deadline and causes the robot to stop. The robot
running the task set on top of the patched OS never stopped as no task misses its
deadline.

3.1.4 Structure of this Chapter

Section 3.2 is concerned with the historical developments in the field of real-time
UNIX and Linux operating systems and highlights the reasoning behind important
real-time mechanisms. Section 3.3 describes the steps necessary to patch the EV3 OS
and elaborates on challenges and the solutions we found. Section 3.4 explains con-
cept, implementation and observations concerning our experiment in detail along
with implementation challenges and code snippets. Section 3.5 reflects on the cur-
rent situation of Linux in the real-time context and on our development process.
Finally, section 3.6 concludes.

3.2 History and Mechanics of Real-Time Linux

To understand what constitutes a real-time operating system, and particularly the
one we are developing our experiment for, we researched the historical reasoning
that has led to the current design of the RT_PREEMPT patch. The following section
will give an overview over the influential predecessors QNX and RTLinux, as well
as the changes introduced by the RT_PREEMPT patch in the context of Linux 2.6 and
how they contribute to an overall real-time behavior.

38

3.2 History and Mechanics of Real-Time Linux

3.2.1 History

Successful implementations of UNIX-like real-time systems date back to the early
1980s [7]. UNIX [9] had already become an attractive multipurpose operating sys-
tem, because it supported a wide range of hardware and enabled easy programming
and testing of software using C. However, due to its time-sharing nature, it was not
suitable for any hard real-time applications. Many of those applications were still be-
ing developed using assembly language on bare metal. QUNIX, later named QNX4,
successfully bridged this gap by implementing a UNIX-compatible microkernel OS
with hard real-time capabilities.

The microkernel of QNX only provided interrupt handling, scheduling, memory
mapping, synchronization, signaling and message passing between threads. The
kernel code was structured in a way that allowed to place upper bounds on the
time spent in non-preemptable kernel code paths. Most of the kernel code itself
was preemptable and message passing used a software-implemented bus, where
message sends can be preempted and resumed. Priority inheritance was put in
place at synchronization primitives. As any other concern, for example file system
access, had to be implemented as a thread, its execution was subject to priority-based
scheduling and preemption.

In the mid and late 1990s, the RTLinux project [14] initiated by Yodaiken, Dougan
and Barabanov aimed at adding QNX-inspired real-time capablities to the increas-
ingly popular Linux kernel. However, not the full Linux kernel was rewritten, but
instead it was put on top of a new microkernel. This architectural “shortcut” re-
tained all of the Linux kernel and user functionality but made it fully preemptable.
Real-time tasks operate directly on top of the microkernel which ensures that they
could meet their deadlines without the risk of interference with kernel or even user
code.

The architectural decisions in RTLinux are motivated by the following five threats
to predictable timing identified by the RTLinux team:

1. Disabling interrupts. Linux makes heavy and inconsistent use of CLI (dis-
able interrupts) and STI (enable interrupts) instructions, which causes unpre-
dictable interrupt response latencies. RTLinux replaces these instructions by
macros, which either forward interrupts directly to the Linux kernel (invok-
ing the ISR5) or delay them for later delivery. Delayed interrupts are delivered
when STI is reached. To decide, whether to delay an interrupt delivery, the
macros lookup the respective interrupt ID in a software-implemented bitmask.
This abstraction is named soft interrupts and allows the interrupting device to

4QNX: Commercial UNIX-like operating system for embedded systems, see http://www.
qnx.com/

5Interrupt service routine, also referred to as interrupt request handler or IRQ handler

39

http://www.qnx.com/
http://www.qnx.com/

3 Real-Time Linux on Lego EV3

RTLinux

Hardware

Virtual IRQ

Linux KernelISRsScheduler

ISRsScheduler

RT Tasks

User Tasks

IRQ

Figure 3.5: Architecture of RTLinux and its interactions with real-time tasks and the
original Linux kernel running on top.

receive a response from the CPU immediatley. Moreover, RTLinux-based code
can handle the interrupt regardless of the interrupt state of the Linux kernel.

2. Protected-mode changes and context switches are both expensive, as they
move registers to memory and back, and cause unpredictable delays due to
cache flushes and TLB6 invalidations. RTLinux puts real-time tasks into kernel
modules to avoid protected mode changes and limit context switches to ker-
nel threads only. While this avoids cache invalidations, it sacrifices isolation
between real-time threads completely.

3. The default scheduler in Linux aims at maximizing average throughput and
response times and does not care about deadlines. RTLinux maintains this
scheduler inside the original Linux kernel and adds a simple priority-based
rate-monotonic scheduler for real-time tasks as loadable microkernel module.

4. Periodic clock interrupts trade timer precision for interrupt load, for example
a 10ms precision requires the clock to emit 100 interrupts per second. RTLinux
eliminates this tradeoff by reprogramming the CPU hardware timers to trigger
an interrupt when needed. This way the precision can be as high as the hard-
ware timer’s precision, but timer interrupts only happen if some event was
scheduled beforehand (for instance, switching tasks).

6TLB: Translation lookaside buffer

40

3.2 History and Mechanics of Real-Time Linux

5. Inter-process communication. As the Linux kernel can be preempted at any
time (in any inconsistent state) it is unsafe to call kernel code from real-time
tasks. RTLinux adds a “safe”, non-blocking FIFO channel, which can be read
and written by both real-time tasks and Linux threads. Its maximum buffer
size is set at compile time, so it can be allocated in constant time.

The overall kernel preemptability results from the co-operation of timers and soft
interrupts: The microkernel’s ISR handles timeouts and hands over control to a real-
time task, while the original kernel can neither prevent nor notice this preemption as
long as real-time tasks do not violate certain isolation rules (for example, not to call
kernel code). The RTLinux scheduler resumes the kernel when there is no pending
real-time task and also emulates clock interrupts required by the original kernel to
do its own scheduling.

Moreover, RTLinux offers POSIX-style I/O for devices (read/write), shared
memory, priority-inheriting mutexes and semaphores as loadable microkernel mod-
ules - thus duplicating some of the original Linux functionality.

The original RTLinux distribution was developed at the New Mexico Institute of
Mining and Technology. It was later continued by FSMLabs and Wind River Systems
as commercial RTOS. The facts that RTLinux was patented from the beginning and
commercially discontinued in 2011 accelerated the development of a free alternative
based solely on modifying the Linux kernel: the RT_PREEMPT configuration of the
Linux kernel, which is maintained and distributed as separate patch and can be
applied directly to the mainline Linux kernel source.

3.2.2 Architecture of the RT_PREEMPT Patch

The RT_PREEMPT configuration of the kernel adresses the same concerns as RTLinux:
kernel preemptability, soft interrupts, context switches, scheduling and timers. In
contrast to the RTLinux architecture, RT_PREEMPT does neither implement nor re-
quire duplicated kernel facilities. It patches the existing kernel code to be safely
callable from real-time threads.

Threaded IRQ Handling
RT_PREEMPT does not fully virtualize interrupts and interrupt control instructions
as RTLinux does. It registers a default interrupt handler for each IRQ (interrupt
request) instead, which spawns original IRQ handlers inside a kernel thread. The
default handler itself has a predictable timing behavior. IRQ threads serve as fully
preemptable interrupt service routines. The default priority of an IRQ thread is
above user priorities but below standard real-time priorities, so interrupt servicing
will still preempt normal user code as usual. However, ISRs can decide to change
their thread priority to satisfy real-time constraints.

41

3 Real-Time Linux on Lego EV3

Unfortunately, threaded IRQ handling comes at the price of configuring (pre-
allocated) task structs and invoking the scheduler, which introduces significant, but
predictable overhead during device interaction compared to direct interrupt han-
dling. RT_PREEMPT could theoretically reuse one thread for all IRQs of the same
priority but is, to the best of our knowledge, not doing so [12].

Preemptable Synchronization and Priority Inheritance
The original Linux kernel provides and uses a range of synchronization primitives:
semaphore, mutex, spinlock and RT-mutex. A mutex is prone to priority inversion
while RT-mutexes implement priority inheritance. Spinlocks are not preemptable.
User space programs do not use these primitives directly. They mainly rely on the
Pthread API7, which also supports priority inheritance. Internally this API is imple-
mented using kernel primitives. So finally, the pthread priority inheritance relies on
the RT-mutex kernel API.
RT_PREEMPT replaces the general kernel mutexes with RT-mutexes to obtain kernel-

wide priority inheritance, a feature formerly rejected by Linux creator Linus Torvalds
[6]. Moreover, spinlocks are now implemented using RT-mutexes which makes them
preemptable regarding higher priorities. RT_PREEMPT introduces the new primitive
raw_spinlock, which is implemented like the original spinlock. These are still nec-
essary for some multi-processor operations: For instance, when a process is pushed
to another CPU, the scheduler on the receiving CPU waits behind a spinlock until
the pushing CPU has left the run queues in a consistent state. Additionally

Primitive Default RT_PREEMPT
semaphore semaphore semaphore
spinlock spinlock rt_mutex*
mutex mutex rt_mutex*
rt_mutex rt_mutex* rt_mutex*
raw_spinlock (not present) spinlock

Figure 3.6: Implementations of different kernel synchronization primitives in the
unmodified (default) kernel and a RT_PREEMPT variant. *) supports priority
inheritance.

7POSIX thread: http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/
pthread.h.html

42

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html

3.2 History and Mechanics of Real-Time Linux

Predictable Scheduling
While the RTLinux microkernel used its own scheduler to manage real-time tasks,
RT_PREEMPT uses the Linux kernel scheduler for both real-time and non-real-time
activities.

Linux natively supports “soft” real-time scheduling (as of version 2.6), so RT_
PREEMPT does not actually change the scheduling algorithm. Real time threads are
supported through the priorities 0 to 99, and scheduling strategies within those
priorities include first-in-first-out SCHED_FIFO and round-robin SCHED_RR. For the
real-time priorities and scheduling strategy SCHED_FIFO, the kernel chooses an op-
timized memory layout for the run queue: A bitmap keeps track of currently active
priorities and for each priority, a FIFO run queue is stored. Searching the bitmap
can be done in constant time using a BSF (bit scan forward) or CLZ (count leading
zeros) instruction if present.

During scheduling, the kernel needs to give up preemptability. This causes inter-
rupts to be actually disabled while the next thread is retrieved from the run queue
and the current thread is put back. RT_PREEMPT deferrs freeing memory (for exam-
ple, when threads finish) until no real-time activity is about to run. This way, this
period is kept as short and predictable as possible. RT_PREEMPT also disables the
system call yield(), which yields control to the next thread in the run queue.

3.2.3 Mainline Integration

Linux 2.6 already integrated many real-time capabilities into the official kernel,
for instance RT-Mutexes, constant-time preemptive FIFO scheduling strategies and
user-space priority inheritance support. The tendency to make mainline Linux better
suited for real-time application has continued as kernel preemptability was continu-
ously increased with each subsequent release, based both on RT_PREEMPT code and
refactorings thereof.

Linux 3.14 further adapted RTLinux’ raw_spinlock and natively uses priority-
inheritance protocols in all other kernel synchronization primitives. Threaded IRQ
handling is available and scheduling algorithms have evolved: The SCHED_DEAD-
LINE scheduler class implements an earliest deadline first (EDF) algorithm. It preempts
all other real-time priority tasks when necessary to meet a deadline. Instead of ex-
plicitly specifying priorities, a task is defined by its period, expected runtime and
deadline relative to the start of a period. Based on these properties, the SCHED_DEAD-
LINE scheduling policy dynamically assigns negative priority values to these tasks.
Tasks exceeding their configured runtime are de-scheduled immediately and given
a new time slice in the next period.

43

3 Real-Time Linux on Lego EV3

3.3 Patching and Deploying Linux on EV3

Before we were able to work on the actual experiment, we had to prepare the tool
chain and apply the RT_PREEMPT patch. We will explain our process and the single
steps in detail, so you can reuse our findings for your own projects. Hopefully, you
will be able to prevent running into the same problems we did.

The EV3 sources already include a configured tool chain. Nevertheless, we had
to prepare our local tool chain and hardware in order to be able to successfully
build an operating system for the EV3. To debug the build components, we used
a serial console. Using this environment, we applied the RT_PREEMPT patch to the
EV3 operating system. As there is no matching RT_PREEMPT patch for the specific
kernel version of the EV3 operating system, we had to choose between porting
EV3 software and drivers to another kernel version or manually resolving conflicts
arising during patching.

3.3.1 The EV3 Toolchain

We developed for the EV3 in a cross-platform fashion. We compiled our programs
using an ARM cross-compiler on an x86-based host machine running a Linux distri-
bution. Then we transferred the resulting files to a microSD card. From this card, we
could boot our own operating system on the EV3. In this section, we will describe
each of those steps in detail.

To use a microSD card as a boot medium for the EV3, the card needs a specific
partition layout. The repository of the original EV3 operating system contains scripts,
which create this layout. However, even those scripts expect an initial layout of two
arbitrary partitions, which we have to create first. After creating those partitions,
we can use the script lms2012/open_first/format_sdcard.sh to create the final
correct partitions.

For building the application for ARM on an x86-based system, we used a cross-
compiler toolchain. We used the code sourcery lite tool chain [1] as required by the
online setup documentation of the original Lego OS [2]. You can install the cross-
compiler toolchain either at the place specified in the setup documentation. Alterna-
tively, you can install them anywhere and create symbolic links in your /usr/bin
directory. With those tools, one can use the make targets specified in the original
Makefile provided with the Lego OS in the following order to build a complete stock
image:

1. u-boot: Creates the boot loader u-boot, which will be used to boot the new OS
from the microSD card.

2. kernel: Creates the kernel in extra/linux-03.20.00.13.

44

3.3 Patching and Deploying Linux on EV3

3. modules: Creates EV3 specific kernel modules, such as drivers, based on the
previously compiled kernel. Those modules are build from the sources in
lms2012/d_*/source.

4. lms2012: Creates the lms2012 virtual machine which executes Lego programs
by interpreting byte codes. The source code can be found inlms2012/lms2012/
source.

After building each single part of the system, we create a complete image includ-
ing all of those parts and deploy it to the microSD card. First we execute the script
lms2012/open_first/make_image.sh. Then, we copy the resulting images to the
microSD card. Therefore we first mount the first and the second partition of our card
to our earlier created mount points /media/LMS2012 and /media/LMS2012_EXT.
Now, we can start the script lms2012/open_first/update_sdcard.sh which
transfers all necessary data to the partitions. Afterwards, we use sync to complete
all I/O to the card and unmount the partitions. If one inserts this card into the EV3,
it will start the u-boot boot loader from the first partition, which will then load the
OS on the second partition.

Building custom kernel modules or applications with this tool chain requires
specific folder structures. So if you want to create your own application compiled
for the EV3, you have to create a new folder in lms2012/. It has to include a folder
called source which includes the source files. Further, it has to include a folder
called Linux_AM1808. It will be used for the build process and contains the final
executable. You should put a Makefile there resembling those which can be found
in the folders prefixed with c_. You can then create a make target for your application
using a line like this one for an application called motor_control:

control:
$(MAKE) -C $(BASE)/motor_control/Linux_$(ARCH)

To create a kernel module, you have to recreate the structure of one of the folders
prefixed with d_*. You can then add the module to the list MODULES in the Make-
file, so it will be build when you build the modules target. After building your
application or module, you still have to deploy it to the microSD card. We chose
a pragmatic approach and created a make target that takes care of these steps. It
basically mounts the partitions and copies the kernel modules and applications onto
the EV3 OS file system mounted via LMS2012_EXT. This way, we could also update
our application without reinstalling the whole EV3 OS.

In order to start your own applications, you also have to modify the start up
process of the operating system. Originally, it starts the lms2012 virtual machine.
This leads to two problems. First, as this process allocates device resources, such
as the screen, your application can’t use them anymore. Second, lms2012 loads the

45

3 Real-Time Linux on Lego EV3

device drivers during its start up phase. As some of the device drivers are currently
not working with a real-time patched OS (section 3.3.2), the system is halting at
loading those faulty drivers. So we had to disable the start of lms2012. You can
change it permanently by modifying the tar-archive containing the original content
of the file system for the EV3. Therefore, you edit the file /etc/init.d/lms in
the file lms2012/open_first/lmsfs.tar.bz2. You can also change it on every
deploy by modifying the file on the mounted partition LMS2012_EXT. We “misused”
the lms file to start our own applications.

The amount and configuration of all of those steps grew continuously during
the development of our project. In order to speed up development and prevent
mistakes during the build process, we implemented custom make targets for our
most common tasks. You can find them in lms2012/open_first/Makefile in our
fork of the official Lego EV3 OS [3].

3.3.2 Applying the RT_PREEMPT Patch

The EV3 system is based on an Ångström Linux distribution with EV3-specific
changes. The same goes for the Linux kernel deployed on the EV3. It is based on
a Linux 2.6.33-rc4 kernel with changes both by the Ångström distribution and the
EV3 developers.

To explain the problems that we were facing when trying to apply a RT_PREEMPT
patch to this kernel, let us first look at the development process of the RT_PREEMPT
team. While a new Linux kernel version is developed, the RT_PREEMPT team will
work on making the RT_PREEMPT patch compatible. During this development, sev-
eral patch revisions will be published, but compatibility is only maintained for the
respective latest release of the Linux kernel. Of course, the early revisions might not
feature the full support of all RT_PREEMPT features the patch will eventually provide.
For the kernel version of the EV3 kernel (2.6.33) the RT_PREEMPT team’s first release
was for the 8th release candidate version of the kernel, while EV3 runs only the 4th.
Consequently, none of the RT_PREEMPT patch releases was fully compatible with
the EV3 kernel, and even the first (incomplete) versions of the RT_PREEMPT patch
were only available for a newer kernel version.

At this point we had two choices: (a) stay with the current kernel and try to apply
a patch that is not fully compatible with the kernel release, fixing problems where
necessary; and (b) deploy and patch a different Linux kernel on the EV3. While a
newer kernel version would probably be compatible with the EV3 hardware, the
Lego software might not be compatible with it. As we wanted to be able to reuse at
least parts of the EV3 software (for example, the motor drivers), we had to ensure the
compatibility of our patched system with it. The changes to the EV3 kernel, however,
are undocumented, and so switching to a different Linux kernel version would

46

3.3 Patching and Deploying Linux on EV3

probably have required a lot of reverse engineering and code portation. Because of
this, we chose to stay with the current Ångström kernel and to manually fix any
problems that arose during the patching of the kernel.

Patching Lego’s Ångström Linux
We’ve subsequently tried to apply a number of different patch versions to the orig-
inal EV3 kernel, and decided to use the RT_PREEMPT patch version 2.3.66-rt8 (8th
release of the patch), because (among its newer releases) it gave the least merge
conflicts. Most of these conflicts could be solved easily, as they were only caused
by minor changes between the kernel revisions (for example, renamed variables or
reordered code sections). However, there was one slightly more tricky case in the file
kernel/timer.c. Between the EV3 kernel version and the kernel version the patch
expected, a few function calls were moved between the update_process_times()
and run_timer_softirq() functions. The changes that the patch made affected
that same ordering as well. As it was not perfectly clear which ordering should be
preferred, we chose to change the ordering to the way that the RT_PREEMPT patch
expected it. As we did not see any problems caused by this reordering, we assume
that it was successful.

As a result, we obtained a bootable version of the EV3 kernel with the RT_PREEMPT
patch applied to it. It can be obtained from our GitHub repository[3]. In order to test
whether the running kernel is a successfully patched one, you can execute uname
-a on the command line and look for the kernel version number. It should end with
a rtX suffix. Another method is to execute sudo ps x and look for the IRQ handler
threads. On a RT_PREEMPT kernel, they should be listed as kernel threads (that is,
in square brackets, for example as [ksoftirqd/0]), while on the old EV3 kernel,
they show up as userspace threads (that is, without square brackets).

USB Driver Problems in the Patched Linux
Initially, when booting the patched kernel, we experienced a system freeze during
the activation of the USB driver kernel module on startup. As we were not relying
on USB support for our application scenario, we solved this problem by disabling
the USB kernel module. However, in the scope of the Embedded Operating Sys-
tems lecture, another team tried to solve this problem differently. They were hop-
ing for USB support in order to use a WLAN dongle on the RT_PREEMPT patched
EV3-OS. They found out that the system freeze was a result of an interrupt that
the USB host device throws when it is activated. Apparently, the patched interrupt
handling mechanism does not mask the interrupt fast enough and because of that,
the interrupt fires continuously. This results in an interrupt storm and the ISR of
the driver (which masks the interrupt) consequently won’t ever be executed. The
team solved this problem by adding a masking command to the default irq handler
(irq_default_primary_handler()). Sadly, they later encountered a similar but

47

3 Real-Time Linux on Lego EV3

less easily debuggable problem with the drivers for the WLAN USB dongle they
wanted to use, and subsequently gave up on the topic. We would attribute these
problems to the RT_PREEMPT patch version we used, and to the fact that it was not
designed for the particular kernel version we are using. If USB and WLAN driver
support is a necessity, it might be useful to investigate the alternative route, to port
the EV3 software to a newer kernel version, as presented earlier.

3.3.3 Debugging

To conduct our experiment, we wanted to execute our patched OS on the EV3 it-
self. However, we also wanted to get information about our running applications
and even interact with them. As described in the introduction, the EV3 hardware
provides a UART console on the first sensor port. Based on a tutorial, one group
managed to create USB-to-UART cables, so we could use those to get a serial con-
sole connection to the EV3. To establish the connection we used Putty [8] with the
following parameters:

Serial line: /dev/ttyUSB0

Speed/Baud: 115200

Data bits: 8

Stop bit: 1

Parity: None

Flow control: None

Figure 3.7: Modified RJ plug (connector tap above the white wire) and UART-to-USB
adapter with yellow wire connected to RX, blue to TX and red to ground. Colors
in this image are different.

48

3.4 Experiment: Real-Time Schedule on EV3

On the software side, as we were interested in the actual timing of events, we
used print debugging. We were developing a kernel module, and, therefore, used
the printk procedure with the default log level. After executing our program, we
could then read the output from the kernel log using the dmesg command.

3.4 Experiment: Real-Time Schedule on EV3

Based on the tool chain and the RT_PREEMPT patched Linux, we were able to im-
plement our experiment. We already described the general idea of our experiment
in section 3.1.3. The concrete implementation was a kernel module, starting three
kernel threads running the control program. Each of the threads serves a specific
purpose, such as reading the sensors.

We implemented the experiment as a kernel module, as user space programs
are not prone to priority inversion in the original Linux kernel version running on
the EV3. We could simply use the corresponding Pthread API, which implements
priority inheritance. In kernel space, the situation is different, as synchronization
primitives only support priority inheritance through the RT_PREEMPT patch.

The central part of the experiment was the construction of a task set, which leads
to priority inversion. During the initialization of kernel threads, we faced ambiguous
information on the actual ordering of thread priorities. To implement the periodic
control threads, we used the timer API and implemented a simple watchdog to
recognize missed deadlines.

We wanted to reuse existing modules for accessing Lego devices, such as sensors
and motors. As the implementation of device modules are intertwined with a virtual
machine executing user programs, we had to refactor some of these modules.

3.4.1 Priority Inversion

One of the classic real-time problems the real-time patch addresses is priority inver-
sion. It is defined by a high priority thread being delayed by a lower priority thread.
While there are numerous ways this can happen in a real-time system, the classical
example is illustrated below.

In our example, we use three threads of different priorities in a preemtable system
with shared ressources. Figure 3.8 illustrates the normal way in which the system
should handle a thread becoming runnable that has a higher priority then the one
currently running. While this seems straight forward, it gets complicated as soon
as shared resources (in our example, a mutex) are involved. Figure 3.9 shows how
priority inversion can happen: The highest priority thread shares a mutex with the
lowest priority thread. The lowest priority thread holds the mutex when it gets inter-

49

3 Real-Time Linux on Lego EV3

high

medium
low

Figure 3.8: A schedule period of a task set without interaction.

rupted by the medium priority thread. When the highest priority thread becomes
runnable, it cannot accquire the mutex and waits for the lowest priority thread to
release it, which in turn cannot run, because the medium priority thread is running.
Therefore, the medium priority thread delays the high priority thread from running
and priority inversion occurs.

high c

medium b

low a d

Figure 3.9: Priority Inversion: A schedule period of the task set with task “low”
acquiring a mutex (a), being interrupted by the medium priority task (b) and
therefore preventing “high” from entering the mutex (c) until “low” can release
the mutex (d).

One common solution for priority inversion is illustrated in figure 3.10. When a
system with priority inheritance is faced with the above problem, it will boost the
priority of the lowest priority thread temporarily to the level of the highest thread
that also shares the mutex. Hence, the lowest priority thread cannot be interupted by
the medium priority thread while it holds the mutex and priority inversion cannot
occur. This principle is known as priority inheritance.

3.4.2 Modeling the Task Set

One of the reasons that the priority inversion problem is so well known is the publi-
cised occurance within the Mars Rover project [5]. Our task set and algorithm design

50

3.4 Experiment: Real-Time Schedule on EV3

high c

medium
low a e d

Figure 3.10: Priority Inheritance: Same task set with mutex as in figure 3.9, but the
mutex being acquired by “high” (c) elevates the holding task “low” (e) to its own
priority to avoid the interruption caused by “medium”.

is therefore in the style of the parts of the Mars Rover that contributed to the priority
inversion.

The priority inversion of the Mars Rover was ultimately solved by activating prior-
ity inheritance in its operating system, which is precisely what we hoped to do with
our example application and real-time enabled version of the EV3 Linux kernel.

The following task set is designed to show the effects of priority inversion and
inheritance and therefore illustrates one difference between the EV3 default kernel
and our patched variant. As explained above, at least three threads with different
priorities are required:

Table 3.1: Task set with timings relative to the start of a period. Period length: 100 ms
Task Priority Start Duration Deadline
High 30 40ms 10ms 60ms

Medium 20 30ms 30ms 100ms

Low 10 30ms 100ms 100ms

3.4.3 Real-Time Task Set

The task set described above is naturally implemented with three threads running
inside the kernel with the specified priorities. The synchronisation primitive we
chose as described in section 3.2.2 is Mutex from <mutex.h> and the runtimes are as
follows:

51

3 Real-Time Linux on Lego EV3

Task Priority Start Duration
High 60 200ms 200ms

Medium 30 200ms 800ms

Low 10 0ms 400ms

The most interesting part of the implementation was validating that a priority inver-
sion had actually occured. We observed several different executions of the task sets
that led to some unexpected conclusions.

We observed the execution by having each thread measure the time between
starting and terminating and inferred the execution orders accordingly.

high 400ms

medium 800ms

low e 400ms

Figure 3.11: Intended schedule with priority inheritance. Thread low runs on ele-
vated priority from the moment high tries to enter the critical section thereby
preventing medium from interfering.

Figure 3.11 shows our intended execution order with priority inheritance prevent-
ing priority inversion to occur. The run time of each thread is given at the right
side of the diagram. The low thread has its intended runtime (disregarding context
switch overhead) while the high threads execution time is extended by the time the
low thread runs elevated. The medium thread has its intended runtime because it
does not get to record a timestamp until both other threads have finished. Figure 3.12
shows the same task setup without priority inheritance enabled: Only the medium
thread has its intended runtime, because it does not get preempted. The low thread
has to wait for the medium thread to finish, while the high thread has to wait for
both (although only half of the low threads runtime) - and priority inversion occurs.

When we started to meassure the outcome of the scheduling problems, we ex-
pected one of the cases shown in figure 3.11 and figure 3.12 to occur, however neither
did. In fact the runtimes we recorded are shown in table 3.2. The only schedule we
could construct from these times made no sense and is shown in figure 3.13.

Lacking any explanation for this schedule, we experimented with the priorities
inside the Linux kernel and found that the documentation in the kernel sources
had mislead us (see section 3.4.5). After ensuring that the priorities we gave to
the threads were actually what we expected them to be, we observed the schedule

52

3.4 Experiment: Real-Time Schedule on EV3

high 1200ms

medium 800ms

low 1200ms

Figure 3.12: Expected schedule with priority inversion occurring. Thread high gets
delayed.

Table 3.2: Recorded runtimes on first tries.
Task Runtime
High 200ms

Medium 800ms

Low 400ms

high 200ms

medium 800ms

low 400ms

Figure 3.13: Actual schedule inferred from the timings measured in the first run.

53

3 Real-Time Linux on Lego EV3

from figure 3.12 when running the regular EV3 Linux kernel and the schedule from
figure 3.11 with our real-time enabled version of the EV3 Linux kernel.

3.4.4 Implementing the Tasks

As explained above, the RT_PREEMPT patch patches the mutex interface transpar-
ently. The Mutex API stays the same both as in the original kernel, but is trans-
parently replaced by the RTMutex implementation in the patched kernel. Hence
the code shown in listing 3.1 will use priority inheritance on the shared mutex in
our patched operating system, but in the original kernel will use the default Mutex
implementation without priority inheritance support.

Listing 3.1: Excerpt of code for the high priority thread.
1 sched_setscheduler(this_thread, SCHED_FIFO, high_priority);
2 mlockall(...);
3

4 while(true) {
5 start_us = get_current_time_us();
6

7 mutex_lock(sensor_mutex);
8 /* Actual control code */
9 mutex_unlock(sensor_mutex);

10

11 duration_us = get_current_time_us() − start;
12 sleep_us = (MOTOR_CONTROL_PERIOD_US − duration_us);
13 schedule_hrtimeout_range(sleep_us, 0,

HRTIMER_MODE_REL);
14 }

3.4.5 Linux Kernel Priorities

The source code documentation in include/linux/sched.h suggests that a lower
priority value represents a higher priority, even for real-time priorities.

Listing 3.2: Comment excerpt from sched.h.
1 /*
2 * Priority of a process goes from 0..MAX_PRIO−1, valid RT
3 * priority is 0..MAX_RT_PRIO−1, and SCHED_NORMAL/SCHED_BATCH
4 * tasks are in the range MAX_RT_PRIO..MAX_PRIO−1. Priority
5 * values are inverted: lower p−>prio value means higher priority.
6 * [...]
7 */

54

3.4 Experiment: Real-Time Schedule on EV3

However, when examining the Linux kernel code however, one will also find the
following code:

Listing 3.3: Code excerpt from sched.h.
1 static void
2 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int

prio)
3 {
4 BUG_ON(p−>se.on_rq);
5

6 p−>policy = policy;
7 p−>rt_priority = prio;
8 p−>normal_prio = normal_prio(p);
9 /* we are holding p−>pi_lock already */

10 p−>prio = rt_mutex_getprio(p);
11 if (rt_prio(p−>prio))
12 p−>sched_class = &rt_sched_class;
13 else
14 p−>sched_class = &fair_sched_class;
15 set_load_weight(p);
16 }

While the normal_prio function contains the following line:

prio = MAX_RT_PRIO-1 - p->rt_priority;

Therefore, we were forced to conclude that, internally, the Linux kernel treats lower
numbers as the higher priority, while values set through sched_setscheduler()
work in the opposite way.

3.4.6 Implementing a Watchdog

Missing a deadline in a hard real-time system is considered a failure. In order to mini-
mize the consequences of such failure, many real-time systems implement fail-safety
measures, such as self-checks, emergency stops, etc. A watchdog is a periodically
running self-checking routine, which ensures that either important tasks have met
their deadline or an emergency routine (alarm, system stop, recovery) is invoked.

Implementing a simple watchdog first requires the tasks in question to log a
timestamp once per period. The watchdog is a periodic task with highest priority,
which confirms that the task has correctly updated its timestamp by comparing it
with the current time. If the difference of the timestamp to the current time exceeds
twice the task’s period, the task has definitely missed one period. In our example,
this case is handled by stopping all motors and triggering an acoustic alarm.

55

3 Real-Time Linux on Lego EV3

Listing 3.4: Modification of a thread to update the variable last_ktime and im-
plementation of the watchdog thread checking if the thread has run in the last
period.

1

2 // supervised thread −−

3 int threadHigh_fn(void* params) {
4 sched_setscheduler(...); // set priority and SCHED_FIFO
5 while(true) {
6 last_ktime = ktime_get();
7 /* ... work ... */
8 usleep_range(MOTOR_CONTROL_PERIOD, MOTOR_CONTROL_PERIOD);
9 }

10 }
11

12 // watchdog thread −−−

13 int threadWatchdog_fn(void* params) {
14 sched_setscheduler(...); // set priority and SCHED_FIFO
15 while(true) {
16 now_ktime = ktime_get();
17 deltaNs = ktime_to_ns(now_ktime) − ktime_to_ns(last_ktime);
18

19 if(deltaNs > (2 * MOTOR_CONTROL_PERIOD)) {
20 /* Failure */
21 motor_command(MOTOR_CMD_STOP);
22 sound_command();
23 return 1;
24 }
25

26 /* Put yourself to sleep */
27 usleep_range(WATCHDOG_PERIOD, WATCHDOG_PERIOD);
28 }
29 }

56

3.4 Experiment: Real-Time Schedule on EV3

periods tperiod tperiod tperiod

2× tperiod − ttask ttask

success ↓ ↓

failure ↓ ↓
∆t

Figure 3.14: Timestamps are logged (indicated by ↓) at the beginning of task execu-
tion. Let ∆t be the time between timestamps. The rate-monotonic schedule fails
when∆t > 2×tperiod−ttask. For simplicity we use∆t > 2×tperiod as a sufficient
condition.

In theory, if the task’s exact execution time is known in advance, the watchdog
should be alarmed whenever the difference in timestamps exceeds 2×tperiod−ttask
with tperiod and ttask being the period and the task’s execution time respectively.
Hence exceeding 2× tperiod is a sufficient condition for unknown ttask.

3.4.7 Controlling the Hardware

To build our robot, we wanted to use stock Lego sensors and actuators. On the
software side, this allowed us to reuse the existing drivers and libraries in order to
access these devices. However the architecture of the EV3 software stack made it
necessary for us to refactor every library we needed. As the supplied libraries are
user space libraries, we also had to find a way to access the device API from kernel
mode.

EV3 Software Architecture
To understand the challenges regarding the device libraries, we first have to under-
stand the software architecture of the EV3 as depicted in figure 3.15. Usually, the
EV3 is programmed with a graphical programming language designed for educa-
tion. Those programs are then translated into byte codes. Therefore, the central part
of the software stack running on the EV3 is the lms2012 program, which is basically
an interpreter for those byte code programs. The interpreter itself uses several user
space libraries, which provide access to input and output devices. They convert data
into the right format and write it to the corresponding device files. The device files
are again implemented through drivers provided by Lego.

57

3 Real-Time Linux on Lego EV3

Figure 3.15: The layered software architecture as depicted in the source code doc-
umentation of the public EV3 operating system [2]. The VM layer and the user
space library layer are depicted as separated.

Creating Self-Contained Device Libraries
The conceptual architecture omits one fact about the device libraries: They are not
implemented as self-contained modules. They rely on the existence of the byte code
interpreter. However we wanted to solely use the device, without instantiating an
interpreter, as the interpreter could introduce all kinds of side-effects changing the
timing behaviour of our applications. Still we wanted to reuse the existing libraries as
they already implemented all necessary data conversions to control the devices. So
in order to make them self-contained we refactored the device libraries by removing
all calls to the interpreter. We managed to extract a self-contained library from the
motor and the sound library. We struggled with doing so for the sensor library
as several layers of abstraction seem to be intertwined in this library. There exist
procedures for interpreting input byte codes, using the Inter-Integrated Circuit (I2C)
bus protocol and decoding sensor values depending on the type of sensor attached.

Using the Device Libraries from Kernel Mode
As discussed, we implemented our experiment in a kernel module. However, our
refactored libraries are only usable from the user space, because they write to the
device files using the user space file API. As this API isn’t available in kernel mode,
we thought of two solutions for using the libraries anyway. The first and best solution
would be to create a kernel device library using the kernel API to access the device
file or directly communicate with the driver object. As this would have meant to

58

3.5 Discussion

rewrite the library, we used a second provisional solution. We used the concept of
an up-call to start a user space application, which then used the device libraries to
control the physical actuators (listing 3.5).

Listing 3.5: Upcall to call a user mode program, which uses the device libraries to
control the motors.

ret = call_usermodehelper("/home/root/motor_control",
argv, envp, UMH_WAIT_EXEC);

Of course, this can only be provisional, as an upcall introduces all kind of timing
challenges. For example, the priority of the called process has to be set correctly to
interrupt the running kernel process. Additionally, the time needed for the context
switch becomes part of the delay in controlling the actuators, which is undesirable
in a real-time system.

3.4.8 Observations and Results

Our goal was to evaluate the effectiveness of applying the RT_PREEMPT patch regard-
ing the handling of priority inversion. Therefore, we constructed a task set which is
likely to suffer from priority inversion. Additionally, we implemented a watchdog,
which observed the running tasks. In the case of a missed deadline, it stopped all
actuators and terminated the control program.

As an experiment, we ran our task set on a robot running an ordinary Linux and
one running the patched RTLinux. We observed that the robot running an ordi-
nary Linux in all cases stopped after approximately five seconds. The one running
RTLinux continued its journey. These physical results of one robot stopping and the
other one carrying on is rather unremarkable. Actually, the internal behaviour of
the mission program is of interest. The ordinary Linux encountered the intended
priority inversion. The watchdog, running reliably with the highest priority, de-
tected the error and stopped the robot. Finally, the overall result of the experiment
is visible from an architectural point of view. By only patching the underlying op-
erating system kernel, we successfully solved a timing problem of a user-provided
application.

3.5 Discussion

The experiment demonstrates the advantage of patching a general-purpose operat-
ing system to allow real-time timing constraints: An established operating system
API can be used and timing behaviour is guaranteed. However, we had to force the
problem of priority inversion by implementing our experiment with mechanisms

59

3 Real-Time Linux on Lego EV3

which were not yet real-time enabled. Considering all this effort to break the system,
the question arises whether it is actually still necessary to patch a Linux kernel to
gain real-time behaviour.

Regarding the implementation of our experiment, we mainly struggled with the
cross-platform development process. In particular, we encountered most problems
when communicating with the actual physical EV3 running our system. In retro-
spect, we should have evaluated other options of testing the system.

3.5.1 Future of Real-Time Features in Linux

During our research on the internals of Linux and RT_PREEMPT, we found ourselves
in the midst of a changing real-time world. The mainstream availability of embedded
systems ranging from rapid-prototyping technologies (RaspberryPi, Lego Mindstorms)
to commercially distributed smart devices is rapidly increasing due to low hardware
costs — and so is the demand for real-time capabilities in Linux.

As we have already seen in section 3.2.3, more and more of the real-time features
of RTLinux and the RT_PREEMPT patch were integrated into the official Linux kernel
during the past few years. By now, almost all features of RT_PREEMPT have been
successfully merged into the Linux kernel:

• Kernel preemtability can be activated by compiling with CONFIG_PREEMPT.

• Priority inheritance is always active, even inside the kernel.

• Threaded IRQs are available, when the configuration option
CONFIG_IRQ_FORCED_THREADING is activated.

• Hardware high-resolution timers are used, when the option
CONFIG_HIGH_RES_TIMERS is chosen.

Although it may seem that RT_PREEMPT is not necessary anymore from a feature
perspective, it still adds about 300 changes to the 3.14 version of Linux. Many of those
changes replace spinlocks and thus improve preemptability; some refactorings aim
at better predictability and shorter interrupt latency (response time a device experi-
ences after triggering an IRQ). Recent benchmarks confirmed that the RT_PREEMPT
patch still exhibits significantly better timing behavior than just CONFIG_PREEMPT
in terms of both mean and variance of interrupt or task switch latency [4, 13].

Considering these observations, we are confident that RT_PREEMPT will be main-
tained alongside Linux for a few more years by a growing community. It is also quite
reasonable to think of mainline Linux as a place for thoroughly tested and matured
parts of RT_PREEMPT and not as a future replacement thereof.

60

3.6 Conclusion

3.5.2 Remarks on the Development Process

As we presented in section 3.3.2, our RT_PREEMPT kernel does not support the
drivers for the EV3 USB WLAN dongle. For our development process, this meant
that deploying and debugging of our application via WLAN or network connection
was not possible. Therefore, we had to resort to deployment via SD card (see sec-
tion 3.3.1) and debugging via serial console (see section 3.3.3). This process proved
to be quite effortful and time-consuming. After every change, we had to recompile
the application, insert the SD card, mount it, copy the changed files, unmount the
card, plug it into the EV3, reboot it and watch for the results on the serial console.
Initially, many problems arose due to us forgetting to mount or unmount the SD
card, or similarly stupid things. As described in section 3.3.1, we eventually modified
the build scripts to prevent these mistakes.

Of course, we also experienced a number of errors in our application sources, and,
as we were mostly dealing with concurrent execution and thread synchronization,
these were incredibly hard to debug with the means of the serial console only. For
us, this meant debugging was only possible via kernel prints. This was a huge effort,
because we had to redeploy our application via the SD card whenever we wanted
to add debug statements.

If we were to do the project all over again, we would definitely reevaluate the
possibilities of emulating the EV3 operating system on a development machine in
order to provide a better means of testing and debugging the application before
actual deployment to the EV3. Even if emulating the exact EV3 OS and/or hardware
was not possible, setting up a virtual machine with a patched RT_PREEMPT kernel
and testing the hardware-independent parts of our application (for example, the
synchronization mechanisms) on this VM beforehand could have helped us save a
lot of time. We would, therefore, highly recommend any future groups working with
the EV3 to investigate any potential virtualization and emulation methods before be-
ginning application development. You cannot always prevent making mistakes and
having to debug. We underestimated the time we would have to put into debugging
— and in hindsight, we should have put more time and effort into our development
tools from the beginning.

3.6 Conclusion

Our goal was to evaluate the handling of priority inversion in a RT_PREEMPT patched
Linux, deployed on an EV3. To understand the foundations we would build on, we
first investigated on the history and architecture of real-time Linux, in particular the
RT_PREEMPT patch.

61

3 Real-Time Linux on Lego EV3

On the practical side, we implemented the mission program in a cross-platform
approach. Therefore, we adjusted the EV3 toolchain to build our extensions. For
debugging we used a console connected via a serial connection. The first step to-
wards our real-time experiment was to patch the the Linux kernel running on the
EV3. However, we encountered problems as there was no suitable patch for the run-
ning kernel version. Consequently, we solved this problem by applying the patch
manually. Based on the patched and the original Linux, we implemented a mission
program in a kernel module using three processes. To implement the kernel process
synchronization we used the standard kernel mutex API. The correct implemen-
tation of a task set leading to priority inversion turned out to be difficult due to
ambiguous information about the ordering of real-time priorities in Linux. Finally,
we conducted the actual experiment. We observed that it was sufficient to run our
mission program on a patched Linux system to get a solution for priority inversion.

Through describing this experiment with all its details, we hope to also provide
a guideline for everyone who wants to develop embedded software on the EV3 or
work with the RT_PREEMPT patch, or even both.

62

References

References

[1] Code Sourcery Lite Toolchain version 2009q1-203. Apr. 24, 2014. url: http://
www.mentor.com/embedded-software/sourcery-tools/sourcery-
codebench/editions/lite-edition/.

[2] EV3 modified Ångström Linux and U-Boot GitHub repository. url: https://
github.com/mindboards/ev3sources.

[3] EV3 operating system patched with RT-Preempt GitHub tepository. Apr. 24, 2014.
url: https://github.com/amintos/ev3sources.

[4] Felipe Cerqueira and Björn B. Brandenburg. A Comparison of Scheduling Latency
in Linux, PREEMPT RT, and LITMUS RT. 2013.

[5] M. B. Jones. What really happened on Mars. 1997.
[6] Linus Torvalds on priority inheritance. Apr. 24, 2014. url: http://lwn.net/

Articles/178258/.
[7] S. Murrel and T. Kowalski. “A real-time satellite system based on UNIX”. En-

glish. In: Behavior Research Methods and Instrumentation 12.2 (1980), pages 126–
131. issn: 1554-351X. doi: 10.3758/BF03201588.

[8] PuTTy release 0.63. Apr. 24, 2014. url: http://www.chiark.greenend.org.
uk/~sgtatham/putty/.

[9] O. Ritchie and K. Thompson. “The UNIX Time-Sharing System”. In: Bell System
Technical Journal, The 57.6 (July 1978), pages 1905–1929. issn: 0005-8580. doi:
10.1002/j.1538-7305.1978.tb02136.x.

[10] RT_PREEMPT Patch on the Real-Time Linux Wiki. May 26, 2014. url: https:
//rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO.

[11] The Ångström Distribution. May 26, 2014. url: http://www.angstrom-dist
ribution.org/.

[12] Threaded IRQs on Linux PREEMPT-RT. 2009. url: http://www.artist-
embedded.org/docs/Events/2009/OSPERT/OSPERT09-Henriques.pdf.

[13] H. Toyooka. Evaluation of Real-time Property in Embedded Linux. May 26, 2014.
url: http://events.linuxfoundation.org/sites/events/files/
slides/toyooka_LCJ2014_v10.pdf.

[14] V. Yodaiken. The RTLinux Manifesto. 1999.

63

http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
http://www.mentor.com/embedded-software/sourcery-tools/sourcery-codebench/editions/lite-edition/
https://github.com/mindboards/ev3sources
https://github.com/mindboards/ev3sources
https://github.com/amintos/ev3sources
http://lwn.net/Articles/178258/
http://lwn.net/Articles/178258/
http://dx.doi.org/10.3758/BF03201588
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02136.x
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://www.angstrom-distribution.org/
http://www.angstrom-distribution.org/
http://www.artist-embedded.org/docs/Events/2009/OSPERT/OSPERT09-Henriques.pdf
http://www.artist-embedded.org/docs/Events/2009/OSPERT/OSPERT09-Henriques.pdf
http://events.linuxfoundation.org/sites/events/files/slides/toyooka_LCJ2014_v10.pdf
http://events.linuxfoundation.org/sites/events/files/slides/toyooka_LCJ2014_v10.pdf

4 Carrera Racing Track

4.1 Introduction

Carrera’s slot car racing track has been around for a couple of years now. Starting
with an analog system where a slot car can only drive on one lane of the track,
the racing tracks have evolved into a digital system with junctions, intersections
and other special track segments. The use of a digital protocol to control the slot
cars also allows for more than two players to race against each other. This project
aims at providing a framework for building arbitrarily complex control applications,
ranging from rather simple ones like determining the maximum speed one can use
to safely drive around the entire track to more sophisticated ones like finding the
optimal strategy for a given track and driving even faster than a human being.

The following sections briefly describe the racing track and the slot cars and how
we determine a car’s position on the track.

4.1.1 Track

The slot car racing track consists of single segments, each with two lanes of metal.
The slot cars are held by these metal lanes and obtain their supply voltage from
them. There are straights in different lengths and curves in several radii and angles
available. With these segments it is possible to build very complex race courses. In
contrast to the analog slot car racing track, the digital one allows to drive multiple
slot cars on one lane.

Besides these passive segments there are also active ones such as junction seg-
ments which are controlled by a photo transistor and a decoder. The photo transistor
receives the infrared light from an infrared LED on the bottom of each slot car. The
decoder can identify the ID of the passing car by evaluating the time the LED is
turned on (the longer the LED is turned on, the higher the car ID). With this car ID
the decoder can listen to the digital track signal and decide whether it should switch
the junction for the passing car or not.

65

4 Carrera Racing Track

4.1.2 Slot Cars

The slot cars have an electric motor which drives the wheels. The supply voltage of
14 V is obtained from wiper contacts from the metal lane. Each car has a built-in
decoder which receives the digital track signal.

The decoder controls the electric motor with pulse width modulation. There are
15 different speed levels and one brake level available. It has been measured that the
decoder only controls the motor’s force and not the rotation velocity. Therefore, the
resulting velocity of a car is mainly influenced by rolling resistance and air drag.

A decoder can be programmed to listen to exactly one ID and to interpret the
digital track signal only for that ID. This signal contains information about every ID,
such as the desired speed level. In addition to the decoder each car has an infrared
LED which is located on the bottom of the car facing the track. The LED emits a
pulsed light signal whose period depends on the programmed ID of the decoder. It
is possible to recognize the ID of the slot car on special points on the track, such as
junctions or the starting and finishing straight.

4.1.3 Sensors

There are position sensors installed by Carrera at certain points on the track, which
can recognize the programmed ID of a passing slot car. These sensors are placed
in front of each junction in that way, that the decoder in the junction is able to
decide with the help of the track signal if the junction should switch or not. The start
finish straight has also a position sensor for each line to determine the lap times for
every slot car. Assuming an ordinary usage of the Carrera slot car racing track these
position sensors are engough. But for a more precise position and velocity estimation
it was necessary to develop and install more position sensors. The additional position
sensors consists of a photo transistor which receives the LED’s emitted infrared light.
The signal of the transistor is reinforced by another transistor and will be transmitted
to a central sensor board by wire. We placed the additional sensors on both lanes
before and after each curve.

4.2 Related Work

The introduction of Carrera’s digital racing tracks included a so-called ghost car, i.e.
an automatically controlled slot car. Although it is possible to specify the maximum
speed of these ghost cars, the cars are not able to change their speed but always use
the specified one. Thus, one has to make sure that the specified maximum speed is
suitable for all track sections or the car will jump off of the track.

66

4.2 Related Work

Several people tried to create an improved ghost car for digital racing tracks as
well as initial ghost car implementations for analog racing tracks. Of course the basic
idea is to provide some kind of control software with information about the car’s
position on the track and the course of track ahead. Based on these information the
control software then sets the car’s speed for the upcoming track section.

While some of the following implementations modify the slot car and control
it autonomously, others use external hardware and leave the slot car more or less
unmodified.

4.2.1 Carrera Control Using Artificial Intelligence (2003)

In their diploma’s thesis at University of Applied Sciences Regensburg, Dinauer and
Dinauer described a system that controlled a slot car on an analog Carrera racing
track using neural networks [1]. The rather small setup employed photoelectric
sensors to detect the car’s position on the track and used an unmodified slot car,
i.e. all control commands were sent through the racing track, allowing the car to
be used by both humans and the control system. Dinauer and Dinauer did not
attempt to change the car’s velocity in a continuous manner; their neural network
only calculates new velocities at discrete points in time: whenever the slot car passes
a photoelectric sensor.

4.2.2 Ghost Car with Photoelectric Sensor (2009)

Stephan Heß enhanced a digital Carrera slot car with an reflective photoelectric
sensor that allows the car to detect markers on the racing track [6]. Heß used these
markers to encode the maximum speed levels for different track sections. This al-
lowed him to improve the ghost car’s performance while keeping its ability to switch
lanes. Additionally, with only a small amout of changes made to the original slot
car, it can still be used by human player.

4.2.3 BlueRider (2009)

At the Department of Computer Sciences at Konstanz University of Applied Sci-
ences, Nagel and Urbanietz developed a prototype of Carrera slot car that is able
to communicate with a host computer per Bluetooth [16, 22]. The host computer
receives sensoric data from the slot car, which was enhanced with a tachometer on
the its rear axle and an accelerometer, and sends control information, e.g. engine
output, back to the car.

In his bachelor’s thesis Nagel later extended this prototype to receive infrared sig-
nals from the track that provide the car with information about its current position,

67

4 Carrera Racing Track

the state of the track ahead, e.g. if there is another car blocking the following track
section, and if it possible to change to a different lane [15]. In addition to the infrared
receivers that are already on the racing track and receive information from the car,
Nagel installed infrared emitters on the track that allow the slot car to receive the
aforementioned information about its position on the track. Moreover, photoelectric
sensors in the slot of the track provide another way of determining the position of a
passing car.

4.2.4 Controlling a Slot Car with an Android Device (2010)

Grant Skinner used his Android phone to accelerate and decelerate a slot car on an
analog racing track [21]. The phone connects per Wi-Fi to a host computer which in
turn is connected over USB to a PhidgetMotorControl. The PhidgetMotorControl
then increases the eletrical current on the racing track as the phone is tilted which
effectively accelerates the slot car.

4.2.5 Carrera Project Lab (2012)

The Department of Electrical Engineering and Computer Sciences at Münster Uni-
versity of Applied Sciences has a Carrera Project Lab that follows two approaces for
controlling a slot car.

Similar to the GhostCar project, one approach replaces the car’s control unit with
a custom microcontroller that directly controls the car’s speed depending on the
centrifugal forces acting upon the car [19]. This mapping is proportional, i.e. the car
has no memory of track sections it has already passed.

The other approach uses a camera above the racing track. Using image processing
techniques a computer observes the slot car’s position on the track. In this scenario
a separate “microprocessor black box” controls the speed of the car by emulating a
Carrera handset controller [20].

4.2.6 GhostCar Project (2013)

The GhostCar project [3] modified a slot car by adding a gyroscope to the car’s chassis
and a reflective photoelectric sensor to its rear axle. The gyroscope is used to detect
the course of the track and to identify curved and straight segments. The reflective
photoelectric sensor counts rotations of the car’s rear axle which is proportional to
its speed – assuming the wheels do not slip.

Using these two measurements the GhostCar project is able to continuously esti-
mate the car’s position on the racing track and adjust its speed appropriately. How-
ever, the GhostCar can be considered as a stand-alone product as it does not under-

68

4.3 Signal Detection

stand any of the Carrera track’s digital messages, i.e. the car can not be controlled
by a human player anymore.

4.3 Signal Detection

For the control software to be able to make informed decisions, we need to detect to
kinds of signals:

• The Carrera Control Unit transmits a track signal on the track’s supply voltage
[5]. This signal includes control information for every slot car, e.g. the car’s
speed level and whether it should switch lanes, and some status information
for the entire track, for example if the pace car is driving around the track [5].

• When a slot car passes a position sensor, the sensor’s photo transistor emits a
signal that encodes the ID of the passing car.

With the combination of the track signal and the position sensor signals we are
able to create a model of how fast the slot cars are travelling and where they are
on the track. The following sections deal with the detection and decoding of these
signals.

4.3.1 General Approach

Both the signal lines of the photo transistors and the track’s supply voltage are
connected to the I/O pins of the microcontroller on the sensor board. The microcon-
troller interprets the analog signals from the signal lines and presents them as digital
signals, i.e. logical ones and zeroes, to the firmware. Also, the microcontroller can
generate interrupts when the digital signal changes. This allows for three different
approaches for decoding the information in the digital signals.

Round-robin, no interrupts. Each input pin is queried and processed periodically.
The processing contains a comparison with a previous stored value. This is
necessary to detect input signals which have changed since the last processing.
Afterwards, further processing which depends on the concrete input signal
can be performed.

Listing 4.1: Signal detection using a round-robin approach.
1 int main() {
2 int i;
3 while (true) {
4 for (i=0; i<position_sensor_count; i++)

69

4 Carrera Racing Track

5 if (position_signal_has_changed(i))
6 process_position_signal(i);
7

8 if (track_signal_has_changed())
9 process_track_signal();

10 }
11 }

The advantage of this approach, which is shown in listing 4.1, is a simple and
easy to understand programming structure. A disadvantage could be the high
frequency in which every input pin has to be handled to avoid a miss of a rising
or falling edge. If one period takes too long it can happen that the signal goes
from high to low and then to high again without recognizing it. Furthermore,
the concrete point in time of the signal edge can not be determined.

Interrupts only. Using this approach, an interrupt service routine (ISR) is registered
on every necessary input pin. These ISRs are executed when the input signal
changes on that pin. The processing in the ISRs is similar to the round-robin
approach.

Listing 4.2: Signal detection with interrupts. The interrupt service routines are
called when the digital signal of one of the specified pins changes.
1 int main() {
2 enable_interrupts();
3

4 while (true)
5 ; /* nothing to do here */
6 }
7

8 ISR (PORTR_INT0_vect) {
9 /* decode the track signal here... */

10 }
11

12 ISR (PORTC_INT0_vect) {
13 /* decode position signals here... */
14 }

Like the round-robin approach, the code shown in listing 4.2 is relatively easy
to follow. The ISR approach has the additional advantage that the ISR code is
only ever executed when the signal on one of the input pin changes. During an
interrupt, other interrupts are masked and executed afterwards, but it is not
guaranteed that the signal has not changed until the masked ISR is ready to
execute. Thus, if the interrupt service routines take too long, we might miss
other signal edges.

70

4.3 Signal Detection

Hybrid. Round-robin with interrupts. This approach is a combination of both the
round-robin and interrupt approach. The ISRs are executed whenever a signal
edge occurs but we try to keep them as short as possible. As shown in listing 4.3,
every ISR only stores the significant data about the interrupt in a buffer which
is later processed by the main-loop in a round-robin manner.
With the short execution times of the interrupt service routines it is rather
unlikely that we miss a signal edge. Unfortunately, the code is now harder to
follow. Moreover, since the main-loop may be interrupted by the ISR execution,
we need to implement a rudimentary sychronization scheme in order to prevent
the ISRs from overwriting state variables that are currently processed in the
main-loop.

Listing 4.3: Signal detection using a hybrid approach. The interrupt service routines
store relevant information about the interrupt in a buffer. The main loop later
evaluates the contents of this buffer.
1 int main() {
2 enable_interrupts();
3

4 while (true) {
5 if (!event_queue_is_empty())
6 process_next_event();
7 }
8 }
9

10 ISR (PORTR_INT0_vect) {
11 store_relevant_information_in_event_queue();
12 }
13

14 ISR (PORTC_INT0_vect) {
15 store_relevant_information_in_event_queue();
16 }

4.3.2 Track Signal

Manchester Code
The detection of the track signal is done with a combination of interrupt and round-
robin approach. Inside the ISR, the Manchester code is decoded bit wise and stored
in a temporary buffer.

The Manchester code can be decoded by saving the last decoded bit and measure
the time until the next signal edge occurs. If this measured time is equal to known
period (100 µs), the new bit is the inverted from the previous saved one. The other

71

4 Carrera Racing Track

way is having two edges with a short measured time length 50 µs each. Then, the
new decoded bit is the same as the prevoius one. Each decoded bit is inserted in the
temporary buffer for later processing. The end of a decoder word can be determined
with an elapsing timer. If there is no signal edge for twice the base period, the
decoder word has ended and this can be indicated with a flag.

This flag is queried in the main loop and if a new complete decoder word is
recognized it will be analyzed to figure out the type of the decoder word depending
on the length. Afterwards, it is appended to the USB transmitting queue.

4.3.3 Position Sensors

The signal data from the position sensors are also processed with a combination of
round-robin and interrupt. The signals are falling and rising edges which correspond
to the pulsed infrared light of the slot cars’s id. With a mapping of input pins to
specific points on the track it is possible to determine the exact location of a slot car
at a time.

To detect the signal of the pulsed light, the timespan between the signal edges
have to be measured. ISRs are registered on the falling and rising edge of each input
pin. If a rising edge occurs, the current timestamp is inserted into a queue. Using
this approach, a further processing can be made with a list of timestamps.

4.4 Data Transmission

Data between the PC and both microcontroller boards is transmitted over USB. There
is a separate protocol for the sensor data traffic as well as the control traffic.

4.4.1 Sensor Data Protocol

The sensor board receives position sensor and track signals from the racing track. It
parses the signals and creates data packets that eventually will be sent to the PC. The
information included in a packet are the packet type, a timestamp and the packet
payload.

There are currently four packet types:

Position sensor. The packet payload contains the ID of the position sensor that was
passed over and the ID of the controller that passed over the specified sensor.

Controller state. The packet payload contains the decoded 9-bit controller state
word that is sent by the Carrera Control Unit.

72

4.4 Data Transmission

Control information. The packet payload contains the decoded 12-bit control word
that is sent by the Carrera Control Unit.

Activity information. The packet payload contains the decoded 8-bit active word
that is sent by the Carrera Control Unit.

But for the PC to be able to decode the received data packets, it has to identify
the start of a packet. We looked into two possible packet layouts that provide this
framing information: packets with a start bit and packets with a payload length
field.

Start Bit Packet Layout
The start of a packet is identified with a byte whose most significant bit is set. All
other bytes in the packet payload must not have their most significant bit set. As
figure 4.1 shows, this packet layout makes it pretty easy to identify the start of
packet. Unfortunately, the most significant bits separate multi-byte values which
makes sending arbitrary byte streams rather cumbersome. Since we do not need to
send arbitrary data but only have four kinds of messages, we could have adapted
the actual data protocol to fit in this packet layout.

Payload Length Packet Layout
With the packet layout that is shown in figure 4.2 we use a length field in the packet
header to determine the end of a packet rather than the start of the next packet. Since
the control information are only stored in the packet header, there are no restrictions
on the actual packet payload, which allows us to send multi-byte values like the
timestamp continuously. Thus, we can simply interpret a packet as a C structure in
order to decode it.

1

0

0

0

0

Type Reserved

Timestamp

Payload

7 6 5 4 3 2 1 0

0

1

2

3

4

Figure 4.1: Start bit packet layout

Type Reserved Payload Length

Timestamp

Payload

7 6 5 4 3 2 1 0

0

1

2

3

4

Figure 4.2: Payload length packet layout

73

4 Carrera Racing Track

Listing 4.4: Function prototype for sending sensor data
1 void usb_send_sensor_data(
2 sensor_type_t type, const uint8_t *payload, size_t length
3);

Comparison
As a first observation, the start bit layout can be considered to be more extensible
than the payload length layout. Both layouts allow us to define new packet types
by declaring new type identifiers, possibly by using some of the currently reserved
bits. Concerning the payload extensibility, however, we could easily append addi-
tional payload bytes to the end of a message in the start bit layout without breaking
previous implementations. The payload length layout, on the other hand, allows us
to append up to six additional bytes to the payload of an existing packet type. If we
wanted to add more bytes to an individual message, previous implementations may
no longer be able to parse those messages.

However, the restrictions on the packet payload (payload bytes must not have their
most significant bit set) make the start bit layout rather difficult to use in software.

Sending side. Assume we have the interface shown in listing 4.4. There are (at least)
two possibilities to implement this interface.

1. The function masks the most signifcant bit of each payload byte to ad-
here to the packet layout restrictions. This would create unnecessary high
coupling between the calling and the implementing code, i.e. the calling
code would have to know that the most significant bit of each byte will
not be sent. Also, the calling code would probably have to do some mar-
shalling on its own, e.g. reordering the bits of a 16-bit value (a timestamp
for example) to only use the lower seven bits of each byte.
Although changing the payload data type from uint8_t* to uint7_t*
would better communicate that the most signifcant bit of each byte will
not be sent, the aforementioned adjustments to the calling code would still
be necessary.

2. The function takes the full bytes into account and reorders the bits in a
way that does not use the most signicant bit of each byte. Although this
provides us with a cleaner interface than the previous method, it still
requires additional code that reorders “normal” bytes into “7-bit” bytes.

Receiving side. Regardless of how the function shown in listing 4.4 is implemented,
we would again need code that unmarshals “7-bit” bytes into “normal” bytes.

74

4.4 Data Transmission

The payload length packet layout, on the other hand, provides us with a cleaner
interface and more readable code on both the sending and the receiving side.

Additionally, the payload length layout allows us to process packets as soon as
we have received the last packet byte while the start bit layout requires us to wait
for the first byte of the next packet. This leads to lower processing latencies which is
why we decided to use the payload length packet layout to send packets from the
sensor board to the PC.

4.4.2 Control Protocol

The Control Protocol is a single byte protocol that is used to transport information
from the PC to the actuator board. The relevant information are which car – or
controller – should be affected by the command, which speed level it should use
and whether the controller’s lane change button should be pressed.

Port R B Speed

7 6 5 4 3 2 1 0

0

Figure 4.3: Control Protocol for the analog actuator board. The port value deter-
mines whether the values in the speed and lane change button (B) fields should
be sent to the first, the second or both ports. Which port of the actuator board
controls which slot car depends on which port of the Control Unit the actuator
board ports are connected to.

During the course of the lecture we worked with two separate actuator boards.
The first one emulates Carrera’s analog handset controllers and is able to control
two different slot cars. This actuator board is connected to two ports of the Carrera
Control Unit and the ports it is connected to determine which slot cars the board
can actually control. To assign the correct controller ids to a port the application
software needs to perform some bootstrapping steps. We send commands to the
both ports separately and listen on the track which controller id is affected by which
port. Figure 4.3 shows the protocol that is used to communicate with the analog
actuator board.

The second version of the actuator board mimics the behavior of Carrera’s wifi or
infrared adapters which use a digital protocol to communicate with the Control Unit
and are able to control six different slot cars. This board is connected to the Control
Unit with a single port but because of the digital protocol that is used on this port
it can directly tell the Control Unit which controller id should have which speed

75

4 Carrera Racing Track

Controller ID B Speed

7 6 5 4 3 2 1 0

0

Figure 4.4: Control Protocol for the digital actuator board. The controller id field
maps directly to the controller ids that are used on the Carrera racing track. The
values 0 through 5 address actual controllers while 6 and 7 are reserved for future
use.

level. There is no additional bootstrapping in software necessary since the concept
of ports is hidden from the application software. All participants can talk about
controller ids. The protocol that is used to communicate with the digital actuator
board is shown in figure 4.4.

4.5 Implementations

We implemented two versions of control software that both communicate with the
microcontroller to receive sensor data from the racing track but run on different
platforms. The first version is a Windows Forms application written in C# running on
a Windows 8 Professional. The other one is a Windows console application written
in C++ running on a Windows Embedded Compact 7.

Both versions use the same sensor and actuator board and communicate with
them with the messages described in the previous sections. In an experiment we
tested the message roundtrip times with both versions. Section 4.6 compares the
results from these measurements.

4.5.1 C# Application (Windows 8)

The C# application started out as spike to quickly test the microcontroller firmware
and the protocol. As it is developed and run on a Windows 8, there is no special setup
required except for providing a .NET runtime, and the FTDI drivers and libraries.

4.5.2 C++ Application (Windows Embedded Compact 7)

In addition to the C# application we also wrote a C++ application that would run
on an ICOP eBox-3300 VESA-PC with a Windows Embedded Compact 7. The main
purpose of the C++ application was to test whether an application would benefit

76

4.5 Implementations

from running on a real-time operating system. Section 4.6 discusses the results of
this test.

In order to conduct the experiment and deploy the application to the eBox, we had
to build our own operating system image from the Windoes Embedded Compact
sources, include the necessary FTDI drivers in this image, and connect the eBox to
our developer machine. We used Platform Builder, which is included in Windows
Embedded Compact 7 [11], to achieve all of these tasks.

Setting up Platform Builder
Platform Builder is a Visual Studio extension that is used to compile operating
system images for embedded devices [11]. We decided to install Platform Builder in
a virtual machine and basically followed the instructions in [13]. However, we had
some trouble getting to the first step in the installation guide.

The disk image and key for Windows Embedded Compact 7 that we used were
provided by Microsoft DreamSpark Premium. After we started the installation, we
were prompted with the dialog shown in figure 4.5. Since the update apparently
included some improvements, we decided to install it and the following updates.
Unfortunately, this led to our license key being invalid. When we restarted the setup
application and skipped the suggested updates, our product key was accepted and
we could continue the installation.

We selected three components to be installed: Platform Builder, Shared Source
and the x86 Architecture. The Shared Source component contains the source code
of the entire Windows Embedded Compact kernel and allows stepping through
the kernel source code during debugging [13]. The x86 Architecture includes Board
Support Packages for CEPC, Microsoft Virtual PC and our ICOP eBox-3300 [12, 14].
MSDN tells us that “a board support package (BSP) is a set of software components
that allows the OS to run on a specific hardware platform” [7].

Building an Operating System Image with a Hello World Application
After we had set up Platform Builder, we followed the guides in [8, 9] (while sub-
stituting Virtual PC with eBox-3300 of course) to create an operating system image
with a sample application. To download the image to the device, we needed to con-
nect the eBox with our development machine and make sure that Platform Builder
recognized the device.

The eBox BIOS has a “Boot from LAN” option which, when enabled, causes the
device to broadcast a series of DHCP messages across its local network. Figure 4.6
shows one of these messages in detail. According to [2], the bootfile name parameter
indicates the name of a boot image the client can download via TFTP. This parameter
seemed to us like a reasonable way to download the operating system image to the
eBox. Although the eBox included a request for a bootfile name in its DHCP Discover

77

4 Carrera Racing Track

Figure 4.5: Windows Embedded Compact 7 Update Dialog. When the machine that
we were trying to install Windows Embedded Compact 7 on was connected to
the internet, the setup application asked us to install a series of updates including
this update for EXFAT, Networking, Security and others.

messages, Platform Builder did not respond with appropriate DHCP Offer messages.
In fact, Platform Builder did not respond to the DHCP messages of the eBox at all.

The guide in [10] describes the connection progress as follows:

As the vCEPC starts, its boot loader obtains an IP address and then broad-
casts BOOTME messages over the network. When Platform Builder re-
ceives the BOOTME messages, it recognizes the device.

Apparently, we had to mimic the behavior of the vCEPC and make the eBox send
BOOTME messages (instead of DHCP or BOOTP messages) at boot time so that
Platform Builder would recognize it. The eBox Windows Embedded Compact 7
Jump Start Kit provided by EmbeddedPC.NET contains a preconfigured operating
system image with an ethernet bootloader which can be copied to a USB flash drive
[17]. Using this flash drive we configured the eBox to boot from USB which loaded
the preconfigured Windows Embedded Compact 7 image from the Jump Start Kit.
In turn, this image requested an IP address from our local DHCP server, started
the Ethernet bootloader, and broadcasted the BOOTME messages which were fi-
nally recognized by Platform Builder. Figure 4.7 shows the messages that were sent
between the eBox and our development machine during a successful boot of our
operating system image with the Hello World application.

78

4.5 Implementations

Figure 4.6: Bootstrap messages sent by the eBox (shortened). When the “Boot from
LAN” option is enabled in the eBox BIOS, it sends a series of DHCP Discover mes-
sages across the network. The Discover messages include a request for a bootfile
name which would be downloaded with TFTP [2, 4]. The DHCP Offer messages
are not sent by Platform Builder but a local DHCP server, which only offers an IP
address to the eBox but no bootfile name.

Including FTDI Drivers and Libraries in the Operating System Image
Communicating with the Carrera Racing Track, i.e. with the sensor board and the
actuator board, requires FTDI drivers and libraries.1 To make the drivers available
to the application, we need to include them in the operating system image. CECom-
ponentWiz2 allows us to add additional content to an operating system image as a
subproject to an OS design. After we had extracted the zip archive with the FTDI
drivers and archives, we used CEComponentWiz to create a thrid party catalog item
that we added to our operating system image.

Table 4.1 shows the files we used from the extracted zip archive. ftdi_d2xx.dll
contains the kernel mode driver and ftdi_d2xx.inf its corresponding INF file. The
interface library to this driver is ftd2xx.dll. We included the development files
ftd2xx.lib and ftd2xx.h so that we could compile and link our application with
the FTDI component without having to explicitly add the development files to the ap-
plication project. Once we had added the required files, we generated the FTDI cata-
log item with the menu entry Generate Component Project Publish Component to 3rd Party (and catalog) .
Afterwards, the component was available in the Catalog Items View of Platform
Builder below Third Party Embedded101.

1We used the Windows CE 6.0 drivers from http://www.ftdichip.com/Drivers/D2XX.
htm.

2https://cecomponentwiz.codeplex.com/

79

http://www.ftdichip.com/Drivers/D2XX.htm
http://www.ftdichip.com/Drivers/D2XX.htm
https://cecomponentwiz.codeplex.com/

4 Carrera Racing Track

Figure 4.7: Messages sent by the eBox ethernet bootloader. This filtered capture con-
tains messages from the eBox (host 192.168.0.101), our development machine
with a local DHCP server (host 192.168.0.1), and the virtual machine that runs
Platform Builder (host 192.168.0.2).
First, the eBox acquires an IP address from the local DHCP server (messages 1 to
4). Afterwards it broadcasts a BOOTME message (7) to which Platform Builder re-
sponds with a TFTP write request (message 8). Finally, Platform Builder transmits
the boot image with TFTP to the eBox (messages 10 and onwards).

Refer to [18, chapter 25] for a detailed explanation of how to add files to an oper-
ating system image.

4.6 Comparison

As described in section 4.5, we wrote two versions of a control software that receives
messages from the sensor board and sends messages to the actuator board. Both
versions use the same protocol stack, but one is written in C# and runs on a Windows
8 while the other one is written in C++ and runs on a Windows Embedded Compact
7. To compare both versions we measured the time it took each version to perform
a full roundtrip.

4.6.1 Experimental Setup

In our experiment the control software drives two slot cars around the racing track
with a fixed speed level. Whenever a slot car passes a position sensor, i.e. the sensor
board sends a position sensor packet with the car id to the control software, the
control software sends a command packet to the actuator board telling that particular

80

4.6 Comparison

Table 4.1: FTDI files included in the OS design. The internal file name column shows
the name of the file in the os image. The shortcut folder determines in which path
– if any – the file will be accessible in the file system of the OS. The following
flags were applied to the files: K – Kernel, S – System, U – Uncompressed, C –
Compressed. The files can be found in the original file path; $(Ftdi) is the path
of the extracted FTDI archive.

Internal file name Shortcut Folder Flags Original file path

ftdi_d2xx.dll None KSU $(Ftdi)\ftdi_d2xx.dll
ftdi_d2xx.inf Windows C $(Ftdi)\ftd2xx.inf
ftd2xx.dll Windows SU $(Ftdi)\ftd2xx.dll
ftd2xx.lib None C $(Ftdi)\ftd2xx.lib
ftd2xx.h None C $(Ftdi)\ftd2xx.h
ftd2xx.reg None $(Ftdi)\inf files\ftd2xx.reg

car to stop. After the software receives a controller state packet with the same car id,
it measures the time for the whole roundtrip and tells the car to continue driving.
This process was repeated 1000 times for each version of the control software.

The path of signals and messages for a single sensor passing as depicted in fig-
ure 4.8 is as follows:

1. A slot car passes a position sensor.

2. The position sensor generates a signal, which is interpreted by the sensor board.

3. The sensor board creates a position sensor packet, which contains a timestamp,
and sends it to the application via USB.

4. The application stores the timestamp, creates a command packet that sets the
speed of the slot car to zero, and sends it to the actuator board via USB.

5. The actuator board unmarshals the command packet and sends the appropriate
signals to the racing track’s control unit.

6. The control unit then puts the manchester-encoded signal on the racing track
which again can be interpreted by the sensor board.

7. The sensor board creates a controller state packet, which again contains a times-
tamp, and sends it to the application via USB.

81

4 Carrera Racing Track

Position Sensor

Sensor Board

Application

Actuator Board

Racing Track

MP

2

3

7

4

5 6

1

Figure 4.8: Experimental setup. After a slot car passes a position sensor, messages
are sent through the entire system. The timestamps of those messages are mea-
sured by the sensor board just before sending them to the application where they
are evaluated. The measuring point is represented by the black box labeled “MP”.

4.6.2 Evaluation

First let us consider the message latencies that we would observe with an optimal
system. This perfect system would have the same (constant) amount of processing
time tfix for every sensor passing of every slot car. tfix is the time it takes the sig-
nals and messages to complete the steps 2, 3, 4, 5 and 7 in figure 4.8 because we
can actually control the software and hardware that is involved in these steps. We
consider the time it takes the position sensor to recognize a passing slot car, i.e. the
time between step 1 and 2 and in extensions the time for step 1 itself, to be constant
as well. However, the Carrera Control Unit sends commands to individual slot cars
only once every 75 ms [5] and we do not know when exactly it does so. So, the
message roundtrip time for our perfect system would be

t = tfix + tvar

with tvar ∈ [0 ms, 75 ms) accounting for the variable delay caused by the Control
Unit. Since we do not know when the Control Unit sends its commands to the slot
cars, tvar is actually a random variable; and because every value of tvar is equally
likely (a slot car can pass a position sensor at any given point in the Control Unit’s
command cycle), it has a uniform distribution.

Figure 4.9 gives some example of how tvar is affected when a car passes a position
sensor at different points in time.

With these considerations in mind we can now compare both versions of our
control software to the perfect system. Table 4.2 shows the minimum, maximum

82

4.6 Comparison

tfix

tvar

tvar

tfix tvar

tfix

75 ms

Figure 4.9: Possible delays introduced by the Control Unit. With tfix being constant,
the actual value of tvar depends only on the time when a slot car passes a position
sensor. In the first line of this diagram the slot car passes the position sensor early
enough so that we can send our control command to the Control Unit before it
sends its command to the car causing a rather small value of tvar. In the second
line we just missed that deadline and the Control Unit will send our command
only after an additional 75 ms.

Table 4.2: Message latencies for both versions of the control software and their the-
oretical optimal counterparts. The values in the theoretical optimum column as-
sume that tfix = min(t) = 17 ms.

C++ (WEC 7) C# (Win 8) Theoretical Optimum

Minimum latency [ms] 17 17 17

Maximum latency [ms] 100 100 92

Average latency [ms] 58.4 57.9 54.5

Variance [ms2] 461.85 482.65 481.25

and average message latencies as well as the variance for both versions and the
perfect system with tfix being the minimum latency of the real ones. The entire value
set is plotted in a bar chart in figure 4.10. Finally, figure 4.11 shows the cumulative
distribution functions of roundtrip times for all three systems.

As we can see, both the C++ version and the C# version of our control software
do not have a constant processing time for each sensor pass. Otherwise min(t) =

max(t) − 75 ms would hold like it does for the perfect system. Unfortunately we
could not yet determine which component causes this deviation but we suspect the
USB connections between sensor board, actuator board and the control hardware to
be the culprit.

Interestingly though, both versions show rather similar characteristics with re-
spect to the cumulative distribution function in figure 4.11. We had expected to

83

4 Carrera Racing Track

observe a more layered image for the C# application because of scheduling and
most importantly garbage collection. However, we could not determine whether
garbage collection has any effect on the timing behavior of the C# application.

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

<= 9 10 - 19 20 - 29 30 - 39 40 - 49 50 - 59 60 - 69 70 - 79 80 - 89 90 - 99 >= 100

R
el

at
iv

e
fr

eq
u

en
cy

Latency in milliseconds

C++ (WEC 7) C# (Win 8) Theoretical Optimum

Figure 4.10: Probability mass function of message latencies sampled from 1000 mes-
sages. Blue bars show the relative frequencies of message latencies with the C++
application running on Windows Embedded Compact 7. Orange bars show the
relative frequencies of message latencies with the C# application running on Win-
dows 8. The gray bars indicate the probabilities of message latencies for a perfect
system with the same minimum latency as the tested systems.

84

4.6 Comparison

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

P
(X

 <
=

t)

Latency in milliseconds

C++ (WEC 7) C# (Win 8) Theoretical Optimum

Figure 4.11: Cumulative distribution function of message latencies sampled from
1000 messages. The blue line shows the probability of a roundtrip being com-
pleted in less than t milliseconds with the C++ application running on Windows
Embedded Compact 7. The orange line shows the same for the C# application run-
ning on Windows 8. The dashed, gray line indicates the probability for roundtrip
times in a perfect system with the same minimum latency as the tested systems.

85

4 Carrera Racing Track

References

[1] S. Dinauer and C. Dinauer. “Aufbau einer Rennstrecke zur Kontrolle eines
Carrera Rennbahnfahrzeugs mit Programmen der künstlichen Intelligenz und
Steuerelektronik zur Simulation eines Mensch-Maschine-Systems”. Diploma
Thesis. Regensburg: Fachhochschule Regensburg, Aug. 2003.

[2] R. Droms. Dynamic Host Configuration Protocol. RFC 2131. Mar. 1997. url: http:
//tools.ietf.org/html/rfc2131 (visited on 2014-05-24).

[3] A. Füsser. GhostCarProjekt. 2013. url: http://www.mikrocontroller.net/
articles/GhostCarProjekt (visited on 2014-04-30).

[4] J. Gilmore and W. J. Croft. Bootstrap Protocol. RFC 951. Sept. 1985. url: http:
//tools.ietf.org/html/rfc951 (visited on 2014-05-24).

[5] S. Heß. CU Daten-Protokoll. 2007. url: http://slotbaer.de/index.ph
p/carrera- digital- 124- 132/9- cu- daten- protokoll (visited on
2014-05-19).

[6] S. Heß. Ghostcar Etikettensteuerung. May 2009. url: http://www.slotbaer.
de/index.php/slotbaer-projekte-digital/28-pd132-d124/38-
ghostcar-etikettensteuerung (visited on 2014-05-06).

[7] Microsoft Corporation. Board Support Package (BSP) (Compact 7). Mar. 12, 2014.
url: http://msdn.microsoft.com/en- us/library/gg156127(v=
winembedded.70).aspx (visited on 2014-05-24).

[8] Microsoft Corporation. Create an Application (Compact 7). Mar. 12, 2014. url:
http://msdn.microsoft.com/en-us/library/jj200344(v=winembed
ded.70).aspx (visited on 2014-05-19).

[9] Microsoft Corporation. Design Your First OS (Compact 7). Mar. 12, 2014. url:
http://msdn.microsoft.com/en-us/library/jj200351(v=winembed
ded.70).aspx (visited on 2014-05-19).

[10] Microsoft Corporation. Download the OS to the Device (Compact 7). Mar. 12,
2014. url: http://msdn.microsoft.com/en-us/library/jj200350(v=
winembedded.70).aspx (visited on 2014-05-19).

[11] Microsoft Corporation. Getting Started (Compact 7). Mar. 12, 2014. url: http:
//msdn.microsoft.com/en-us/library/jj200349(v=winembedded.
70).aspx (visited on 2014-05-19).

[12] Microsoft Corporation. ICOP eBox 3300 Development Kit (Compact 7). Mar. 12,
2014. url: http://msdn.microsoft.com/en-us/library/gg155938(v=
winembedded.70).aspx (visited on 2014-05-24).

86

http://tools.ietf.org/html/rfc2131
http://tools.ietf.org/html/rfc2131
http://www.mikrocontroller.net/articles/GhostCarProjekt
http://www.mikrocontroller.net/articles/GhostCarProjekt
http://tools.ietf.org/html/rfc951
http://tools.ietf.org/html/rfc951
http://slotbaer.de/index.php/carrera-digital-124-132/9-cu-daten-protokoll
http://slotbaer.de/index.php/carrera-digital-124-132/9-cu-daten-protokoll
http://www.slotbaer.de/index.php/slotbaer-projekte-digital/28-pd132-d124/38-ghostcar-etikettensteuerung
http://www.slotbaer.de/index.php/slotbaer-projekte-digital/28-pd132-d124/38-ghostcar-etikettensteuerung
http://www.slotbaer.de/index.php/slotbaer-projekte-digital/28-pd132-d124/38-ghostcar-etikettensteuerung
http://msdn.microsoft.com/en-us/library/gg156127(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/gg156127(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200344(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200344(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200351(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200351(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200350(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200350(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200349(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200349(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200349(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/gg155938(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/gg155938(v=winembedded.70).aspx

References

[13] Microsoft Corporation. Installation (Compact 7). Mar. 12, 2014. url: http://
msdn.microsoft.com/en-us/library/jj200354(v=winembedded.70)
.aspx (visited on 2014-05-19).

[14] Microsoft Corporation. x86 BSPs (Compact 7). Mar. 12, 2014. url: http://msdn.
microsoft.com/en-us/library/ee479172(v=winembedded.70).aspx
(visited on 2014-05-24).

[15] M. Nagel. “Development of a Realtime Infrared Communication System, Con-
nected to a CAN Bus”. Bachelor’s Thesis. Konstanz: HTWG Konstanz, Aug.
2009.

[16] M. Nagel and D. Urbanietz. Platinendesign BlueRider. Sept. 2009.
[17] S. Phung. eBox-3310A-MSJK Compact 7 jump start kit. Aug. 8, 2011. url: http:

//www.embeddedpc.net/eBox3310AMSJK/ (visited on 2014-05-24).
[18] S. Phung and D. Jones. Introducing Compact 2013. June 17, 2013.
[19] P. Richert. Autonomes Auto für eine digitale Carrera-Bahn. 2012. url: https:

//www.fh-muenster.de/fb2/labore_forschung/kt/projekte/auton
omes_auto_pset.php (visited on 2014-04-30).

[20] P. Richert. Inside Carrerabahn. 2012. url: https://www.fh-muenster.de/fb
2/labore_forschung/kt/projekte/index.php (visited on 2014-04-30).

[21] G. Skinner. gskinner.com | gBlog. June 15, 2010. url: http://gskinner.com/b
log/archives/2010/06/air_for_android.html (visited on 2014-05-03).

[22] D. Urbanietz and M. Nagel. Steuerung eines Autos über Bluetooth. Aug. 2008.

87

http://msdn.microsoft.com/en-us/library/jj200354(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200354(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/jj200354(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/ee479172(v=winembedded.70).aspx
http://msdn.microsoft.com/en-us/library/ee479172(v=winembedded.70).aspx
http://www.embeddedpc.net/eBox3310AMSJK/
http://www.embeddedpc.net/eBox3310AMSJK/
https://www.fh-muenster.de/fb2/labore_forschung/kt/projekte/autonomes_auto_pset.php
https://www.fh-muenster.de/fb2/labore_forschung/kt/projekte/autonomes_auto_pset.php
https://www.fh-muenster.de/fb2/labore_forschung/kt/projekte/autonomes_auto_pset.php
https://www.fh-muenster.de/fb2/labore_forschung/kt/projekte/index.php
https://www.fh-muenster.de/fb2/labore_forschung/kt/projekte/index.php
http://gskinner.com/blog/archives/2010/06/air_for_android.html
http://gskinner.com/blog/archives/2010/06/air_for_android.html

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

89 978-3-86956-296-4 Embedded Operating System Projects Andreas Grapentin, Kirstin
Heidler, Dimitri Korsch, Rakesh
Kumar-Sah, Nicco Kunzmann,
Johannes Henning, Toni Mattis,
Patrick Rein, Eric Seckler, Björn
Groneberg, Florian Zimmermann

88 978-3-86956-282-7 HPI Future SOC Lab : Proceedings 2013 Meinel,Christoph; Polze, Andreas;
Oswald, Gerhard; Strotmann,
Rolf; Seibold, Ulrich; Schulzki,
Bernhard (Hrsg.)

87 978-3-86956-281-0

Cloud Security Mechanisms Christian Neuhaus, Andreas

Polze (Hrsg.)

86 978-3-86956-280-3

Batch Regions Luise Pufahl, Andreas Meyer,
Mathias Weske

85 978-3-86956-276-6 HPI Future SOC Lab: Proceedings 2012 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Bernhard Schulzki
(Hrsg.)

84

978-3-86956-274-2 Anbieter von Cloud Speicherdiensten im
Überblick

Christoph Meinel, Maxim
Schnjakin, Tobias Metzke, Markus
Freitag

83

978-3-86956-273-5 Proceedings of the 7th Ph.D. Retreat of the
HPI Research School on Service-oriented
Systems Engineering

Christoph Meinel, Hasso Plattner,
Jürgen Döllner, Mathias Weske,
Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese,
Patrick Baudisch (Hrsg.)

82

978-3-86956-266-7 Extending a Java Virtual Machine to
Dynamic Object-oriented Languages

Tobias Pape, Arian Treffer, Robert
Hirschfeld

81 978-3-86956-265-0 Babelsberg: Specifying and Solving
Constraints on Object Behavior

Tim Felgentreff, Alan Borning,
Robert Hirschfeld

80 978-3-86956-264-3 openHPI: The MOOC Offer at Hasso
Plattner Institute

Christoph Meinel,
Christian Willems

79 978-3-86956-259-9 openHPI: Das MOOC-Angebot des Hasso-
Plattner-Instituts

Christoph Meinel,
Christian Willems

78 978-3-86956-258-2 Repairing Event Logs Using Stochastic
Process Models

Andreas Rogge-Solti, Ronny S.
Mans, Wil M. P. van der Aalst,
Mathias Weske

Technische Berichte Nr. 90

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Embedded Operating
System Projects
Uwe Hentschel, Daniel Richter, Andreas Polze (Eds.)

ISBN 978-3-86956-296-4
ISSN 1613-5652

	Title
	Imprint

	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	2 Development of a Simple Operating System for LEGO Mindstorms EV3
	2.1 Introduction
	2.2 Development and Deployment Process
	2.3 Creating a Simple Self-Contained Application
	2.3.1 hello_world.c
	2.3.2 Building and Deployment
	2.3.3 Removing U-Boot dependencies

	2.4 Architecture Considerations
	2.4.1 C Library Implementation
	2.4.2 Reverse Engineering Platform Device Drivers
	2.4.3 Emulating GCC’s Constructor Function Attribute

	2.5 Experiment
	2.6 Conclusions
	2.7 Future Work
	References
	2.A Appendix
	2.A.1 cross-compile toolchain creation
	2.A.2 U-Boot puts based standalone hello_world.c
	2.A.3 U-Boot independent standalone hello_world.c
	2.A.4 Makefile to build the standalone hello_world.c

	3 Real-Time Linux on Lego EV3
	3.1 Introduction
	3.1.1 Lego EV3
	3.1.2 Linux and Real Time
	3.1.3 Experiment Setup
	3.1.4 Structure of this Chapter

	3.2 History and Mechanics of Real-Time Linux
	3.2.1 History
	3.2.2 Architecture of the RT_PREEMPT Patch
	3.2.3 Mainline Integration

	3.3 Patching and Deploying Linux on EV3
	3.3.1 The EV3 Toolchain
	3.3.2 Applying the RT_PREEMPT Patch
	3.3.3 Debugging

	3.4 Experiment: Real-Time Schedule on EV3
	3.4.1 Priority Inversion
	3.4.2 Modeling the Task Set
	3.4.3 Real-Time Task Set
	3.4.4 Implementing the Tasks
	3.4.5 Linux Kernel Priorities
	3.4.6 Implementing a Watchdog
	3.4.7 Controlling the Hardware
	3.4.8 Observations and Results

	3.5 Discussion
	3.5.1 Future of Real-Time Features in Linux
	3.5.2 Remarks on the Development Process

	3.6 Conclusion
	References

	4 Carrera Racing Track
	4.1 Introduction
	4.1.1 Track
	4.1.2 Slot Cars
	4.1.3 Sensors

	4.2 Related Work
	4.2.1 Carrera Control Using Artificial Intelligence (2003)
	4.2.2 Ghost Car with Photoelectric Sensor (2009)
	4.2.3 BlueRider (2009)
	4.2.4 Controlling a Slot Car with an Android Device (2010)
	4.2.5 Carrera Project Lab (2012)
	4.2.6 GhostCar Project (2013)

	4.3 Signal Detection
	4.3.1 General Approach
	4.3.2 Track Signal
	4.3.3 Position Sensors

	4.4 Data Transmission
	4.4.1 Sensor Data Protocol
	4.4.2 Control Protocol

	4.5 Implementations
	4.5.1 C# Application (Windows 8)
	4.5.2 C++ Application (Windows Embedded Compact 7)

	4.6 Comparison
	4.6.1 Experimental Setup
	4.6.2 Evaluation

	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

