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Process models specify behavioral execution constraints between activities as well
as between activities and data objects. A data object is characterized by its states and
state transitions represented as object life cycle. For process execution, all behavioral
execution constraints must be correct. Correctness can be verified via soundness
checking which currently only considers control flow information. For data correct-
ness, conformance between a process model and its object life cycles is checked.
Current approaches abstract from dependencies between multiple data objects and
require fully specified process models although, in real-world process repositories,
often underspecified models are found. Coping with these issues, we introduce the
concept of synchronized object life cycles and we define a mapping of data con-
straints of a process model to Petri nets extending an existing mapping. Further, we
apply the notion of weak conformance to process models to tell whether each time
an activity needs to access a data object in a particular state, it is guaranteed that the
data object is in or can reach the expected state. Then, we introduce an algorithm for
an integrated verification of control flow correctness and weak data conformance
using soundness checking.
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1 Introduction

Business process management allows organizations to specify their processes struc-
turally by means of process models, which are then used for process execution.
Process models comprise multiple perspectives with two of them receiving the most
attention in recent years: control flow and data [32]. These describe behavioral exe-
cution constraints between activities as well as between activities and data objects.
It is usually accepted that control flow drives execution of a process model. While
checking control flow correctness using soundness [28] is an accepted method, cor-
rectness regarding data and control flow is not addressed in sufficient detail. In this
paper, we describe a formalism to integrate control flow and data perspectives that
is used to check for correctness.

In order to achieve safe execution of a process model, it must be ensured that
every time an activity attempts to access a data object, the data object is in a certain
expected data state or is able to reach the expected data state from the current
one, i.e. data specification within a process model must conform to relevant object
life cycles, where each describes the allowed behavior of a distinct class of data
objects. Otherwise, the execution of a process model may deadlock. To check for
deadlock-free execution in terms of data constraints, the notion of object life cycle
conformance [13,26] is used. This approach has some restrictions with respect to
data constraint specification, because each single change of a data object as specified
in the object life cycle, we refer to as data state transition, must be performed by some
activity. [31] relaxes this limitation such that several state changes can be subsumed
within one activity. However, gaps within the data constraints specification, i.e.
implicit data state transitions, are not allowed although some other process may be
responsible of performing a state change of an object, i.e. these approaches can only
check whether an object is in a certain expected state. We assume that implicit data
state transitions get realized by an external entity or by detailed implementations of
process model activities. In real world process repositories, usually many of those
underspecified process models exist, which motivates the introduction of the notion
of weak conformance [18]. It allows to also check underspecified models.

Additionally, in real world, often dependencies between multiple data objects
exist; e.g. an order may only be shipped to the customer after the payment is rec-
ognized. Non of above approaches supports this. Thus, we introduce the concept



1 Introduction

of synchronized object life cycles that allows to specify dependencies between data
states as well as state transitions of different life cycles. Based thereon, we extend
the notion of weak conformance and describe how to compute it for a given process
model and the corresponding object life cycles including synchronizations. We uti-
lize the well established method of soundness checking [28] to check for process
model correctness. In this light, we extend an existing control flow mapping [5] with
capabilities to map the data constraints to a Petri net as well to enable an integrated
checking of control flow and data correctness.

The remainder is structured as follows. Section [2|introduces the concept of syn-
chronized object life cycles. Subsequently, we describe the mapping of data flow
to a Petri net in Section |3} Utilizing this information, we introduce the extended
notion of weak conformance and the procedure for integrated correctness checking
in Section |4} Section [5/is devoted to related work before we conclude the paper in
Section[6l
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2 Synchronized Object Life Cycles

First, we give a generic process model definition and require the process model to
be (i) syntactically correct with respect to the used modeling notation and to be (ii)
structurally sound, i.e. a process model has exactly one start node and one end node
and each further node is on a path from the start to the end node. Behaviorally, we
require that the process model terminates for all execution paths and that every node

participates in at least one execution path, i.e. the process model must be lifelock
and deadlock free.

Definition 1 (Process Model).

A process model m = (N, D, Q, &, §, type, 1, @) consists of a finite non-empty set
N € AUEU G of control flow nodes being activities A, events E, and gateways G (A,
E, and G are pairwise disjoint), a finite non-empty set D of data nodes, and a finite
non-empty set Q of activity labels (N, D, and Q are pairwise disjoint). € C N x N is
the control flow relation specifying the partial ordering of activities and § C (A x
D)U (D x A) is the data flow relation specifying input and output data constraints of
activities. Function type : G — {AND, XOR} gives each gateway a type and function
p: A — Q assigns to each activity a label. Function ¢ : G x (A U G) - D assigns
to each control flow edge originating from a gateway of type XOR one condition
indicating when to follow that edge. o

We assume that events represent start and end nodes only and that the assigned data
conditions are non-blocking. For visualization of process models, we use BPMN [22],
but the concepts described in this paper can be generically applied to other process
description languages as well that follow above definition. Figure[2.1/shows a simple
order delivery and payment process model with one start event, one end event, 8
activities, 4 gateways, and multiple data nodes. Each data node has a name, e.g.
Order, and a specific data state shown in brackets, e.g. confirmed or shipped. Each
data node modeled in the process model refers to one data class of the same name;
several nodes with the same name reference the same class. A data class describes
the structure of data nodes used in the process model including information about
states to be assigned to a data node. A data state denotes a situation of interest for
the execution of the business process. During process execution, each data node

11



2 Synchronized Object Life Cycles
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Figure 2.1: A simple order delivery and payment process model in BPMN notation
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specified on model-level refers to one data object at run-time, where each of them
is an instance of the corresponding data class. The relations between all states of a
data class are represented within an object life cycle.

Definition 2 (Object Life Cycle).

An object life cycle 1 = (S, si, S¥, T, Z, ¢) is a finite state machine and consists of a finite
non-empty set S of data states, an initial data state s; € S, a non-empty set Sy C S
of final data states, and a finite set X of actions representing the manipulations on
data objects resulting in state changes (S and I are disjoint). T € S x £ x (S\{si})
is the data state transition relation through which an object life cycle describes the
relations between the data states of a data class. o

L denotes the set of all object life cycles for data classes utilized in the process model.
Figure |2.2| (solid lines) shows the object life cycles for data classes Order, Product,
and Invoice indicating, for instance, that state confirmed of class Order must precede
states shipped and paid. A manipulation performed on one data object often does
not only rely on the current data state of this data object but on the data states of
further data objects as well. To handle these inter object life cycle dependencies, we
introduce the concept of object life cycle synchronization (dotted edges). In this context,
we define active data states — a prerequisite — as follows.

Definition 3 (Active Data State).

A data state in an object life cycle is active at a specific point in time, if it is one of the
data states the corresponding data object may currently be in at this specific point
in time. o

12
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Product Invoice

o _ canceled
aw ’ 3
O~ ) ® sent_ > ressent
@

C.
@ St e o e
0
Order

Figure 2.2: Object life cycle synchronization of Order, Product, and Invoice data
classes

Deciding whether a certain data state is active requires information about manipu-
lations done to that data object. This information can be derived, for instance, from
process models. All data states on a path from the one accessed last to the one
accessed next in the corresponding object life cycle including these two states are
considered active. If an activity reads (writes) multiple data nodes of the same data
class, all of them are considered accessed last respectively accessed next. In case,
the activity representing the current point in time only reads (writes) nodes of the
specific data class, activities succeeding (preceding) this activity are inspected until a
match is found. If there exists no last accessed data state, the initial one is considered
last accessed. If there exists no next accessed data state, all reachable final data states
are considered next accessed. For instance, upon execution of activity Manufacture
product in Figure states confirmed and shipped of class Order are active. Next, we
proceed with the concept of object life cycle synchronization, where synchronization
is achieved by synchronization edges.

Definition 4 (Synchronization Edge).

A synchronization edge se = (src, tgt, dep) consists of a source src, a target tgt, and an
optional dependency type dep to connect multiple object life cycles synchronizing
the data state transitions between them. Thereby, it either connects two data states or
two data state transitions of two object life cycles defining preconditions towards data
state transitions or ensuring joint execution of the connected transitions respectively.
An undirected synchronization edge set = (t;,t2) connects data state transitions
t) € Tsy,and t, € Tsy, (L1 # 1). The third attribute, dep, is not used, i.e. an
edge set is untyped. A directed synchronization edge ses = (s1, sz, dep) connects
data states s; € Sy, and s, € Sy, (I1 # 1) with s; being the source data state, s,
being the target data state, and dep = {currently, previously} describing the type
of dependency between these data states, i.e. an edge ses is typed. o

13



2 Synchronized Object Life Cycles

For synchronization edges connecting data states, currently means that the source
state must be active in the corresponding object life cycle if a transition to the target
state shall occur in another object life cycle. Previously relaxes this requirement such
that the source data state must have been active some time in the past to allow the
data state transition to the target data state. Two data state transitions connected
by a synchronization edge get combined such that they are executed together. This
property is transitive. Referring to a process model, this means that one activity
changes the state of multiple data nodes respectively objects. SE denotes the finite
set of all synchronization edges.

Putting the concepts together, we define a synchronized object life cycle as follows.

Definition 5 (Synchronized Object Life Cycle).

A synchronized object life cycle £ = (L, SE) consists of a finite non-empty set L of object
life cycles and a finite set SE of synchronization edges connecting various object life
cycles. o

Visualization of synchronization edges is achieved by dotted directed edges between
the data states stated in a tuple and a label with respect to the type of dependency
or undirected edges between the data state transitions stated in a tuple. Figure
shows the synchronized object life cycle for the process model given in Figure
containing object life cycles of classes Order, Product, and Invoice. A data state within
an object life cycle is only reachable if the dependencies described by the synchro-
nization edges are fulfilled. Multiple synchronization edges with the same target
data state are handled with respect to the origin of the source data state. If they
belong to the same object life cycle, the described dependencies are disjunctions. If
they belong to different object life cycles, the described dependencies are conjunc-
tions. For instance, an Order may only reach state archived, if the Invoice currently is
either in state i (for initial), state canceled, or state paid.

When a data state transition within an object life cycle shall take place, the syn-
chronization validation function has to be executed for the affected synchronization
edges. If an appropriate subset regarding the mentioned disjunctions and conjunc-
tions evaluates to true, the transition may take place. Otherwise, the transition must
not execute.

Definition 6 (Synchronization Validation Function).

Given a synchronization edge se = (src,tgt, dep), the synchronization validation
function & : SE — {true, false} evaluates to true, if both data state transitions are
enabled or if the data state src is active (either dependency type) or was active earlier
(dependency type previously) in the corresponding object life cycle. Otherwise, &
evaluates to false. o

14



3 Mapping a Process Model with
Data Constraints to a Petri net

The generic process model described in the last section builds the basis for process
description languages currently used in industry as, e.g. BPMN [22], EPCs [10], and
activity diagrams [23]]. These languages usually lack formal semantics and analysis
techniques to check, amongst others, behavioral consistency. Therefore, we utilize
Petri nets [24]], a well established formalism to verify various properties of process
models [28]. Most existing process description languages can be transformed into
Petri nets; [16] gives an overview. One such mapping was introduced by Dijkman et
al. [5] for BPMN 1.0 whose modeling constructs with respect to control flow are a
superset of the ones presented in Definition 1fallowing to generalize that mapping.
Though, the consideration of data is omitted. In this paper, we utilize this mapping
as basis for the control flow mapping and extend it by a set of eleven rules to cover
the data flow as well. Figure summarizes these rules. In fact, the combination
of rules given in [5] and the ones given in Figure [3.1) transforms a process model
into its Petri net representation allowing further behavioral correctness checks as
the weak conformance check introduced in Section [4]

Application of this rule set requires some assumptions to hold: (i) the process
model follows Definition[1] (ii) the data annotations specify the information required
to execute an activity (read) and the information expected to exist after termination
(write), (iii) multiple data nodes with the same name read or written by one activity
are disjunctive while data nodes with different names are conjunctive, (iv) XOR
decision are based on the data results of the activity directly preceding the XOR
gateway, (v) all data nodes with the corresponding data states required for some
view on the process model are annotated to the activities, but the data annotation
does not need to be complete in terms of comprising all possibly occurring data
state transitions during process execution, (vi) an activity is enabled, if and only if
the control flow reaches that activity, all data objects read by the activity exist in the
states specified by the data nodes in the process model, and the synchronization
validation function & evaluates to true for all affected synchronization edges, and
(vii) concurrent read of a data node is allowed, whereas concurrent write or a mixture
of concurrent read and write are forbidden.

15



3 Mapping a Process Model with Data Constraints to a Petri net
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Figure 3.1: Rules to map data dependencies of a process model to a Petri net

The mapping rules introduced in this paper can be distinguished into three cat-
egories: control flow mapping (rules 1 and 8), data flow mapping (rules 2 to 7),
and concurrency handling using semaphores (rules g to 11). For all rules from Fig-
ure it holds that the white modeling constructs are the ones, which are tackled
or affected by a rule. The gray modeling constructs are helpers setting the context
for the white modeling constructs. Rule 1 extends the mapping of one activity to one
transition from [5] to a set of three transitions to initiate data reads and to confirm
and synchronize data writes. The second transition comprises the actual work per-
formed during activity execution indicated by two asterisks enclosing the activity
label. Rule 2 describes the read of a single data node with a specific data state, rule
4 describes the reading of one data node in one out of two data states (disjunction),
and rule 6 describes the read of two independent data nodes (conjunction). Rules 3, 5,
and 7 describe the corresponding write procedures. The semaphore place is marked
based on the type of access to the data node by an activity. We distinguish read

16



3 Mapping a Process Model with Data Constraints to a Petri net

(rule 9), write (rule 10), and modifying (rule 11) access. Rule 8 introduces XOR split
determinism. During the mapping process, places and labeled transitions, except
for the initiate read and confirm write transitions, with identical labels are identical
and are therefore merged into single places or activities respectively.

The presented rules guarantee that the resulting Petri net satisfies the soundness
property [28] by construction under the assumptions that no concurrent data modi-
tications take place and that the original process model is deadlock and lifelock free
from the control flow perspective. Each of the fragments replacing an activity or a
data node following rules 1 to 7 is a single entry single exit fragment and sound such
that their composition also remains sound. The soundness property also holds for
the semaphore rules 9 to 11, if no concurrent data access takes place, because there
is always a transition consuming the token and either the same transition or one suc-
ceeding it shortly puts the token back to the semaphore place without influencing
the control flow. With respect to our assumption in Section [2]that data conditions as-
signed to control flow edges are non-blocking, we can safely reason that rule 8 does
not induce deadlocks into the net. Finally, the mapping from [5] produces sound
Petri nets and therefore, the resulting Petri net after applying control flow and data
tflow rules is sound by construction.

17



4 Weak Conformance

The notion of weak conformance has been initially proposed in [18] as extension to
the notion of object life cycle conformance [13,26] to allow the support of under-
specified process models. A fully specified process model contains all reads and
writes of data nodes by all activities. Additionally, each activity reads and writes at
least one data node except for the first and last activities, which may lack reading
respectively writing a data node in case they only create respectively consume a data
node. In contrast, underspecified process models may lack some reads or writes of
data nodes such that they are implicit, performed by some other process, or they are
hidden in aggregated activities changing the state multiple times with respect to the
object life cycle. Though, full support of underspecified process models requires that
the process model may omit state changes of data nodes although they are specified
in the object life cycle.

Table 4.1: Applicability and time complexity of data conformance computation
algorithms

Attribute [13,26] [31] [18] this
Full specification + + + +
Underspecification - 0 + +
Synchronization - - - +
Complexity poly. exp. - exp.

In this paper, we extend the notion of weak conformance to also support object life
cycle synchronization. First, we compare different approaches to check for confor-
mance between a process model and object life cycles. Table[4.1]lists the applicability
and specifies the time complexity of the computation algorithms for approaches
described in [13,26], [31], [18], and this paper. The notion from [13,26] requires fully
specified process models and abstracts from inter-dependencies between object life
cycles by not considering them for conformance checking in case they are modeled.
Conformance computation is done in polynomial time. In [31], underspecification of

18



4.1 The Notion of Weak Conformance

process models is partly supported, because a single activity may change multiple
data states at once (aggregated activity). Though, full support of underspecified
process models would require that the process model may omit data state changes
completely although they are specified in the object life cycle. Synchronization be-
tween object life cycles is not considered in that approach and complexity-wise, it
requires exponential time. [18] supports fully and underspecified process models
but lacks support for object life cycle synchronization, which is then solved by the
extension described in this section. For [18], no computation algorithm is given such
that no complexity can be derived. The solution presented in this paper requires
exponential time through the Petri net mapping and subsequent soundness check-
ing as described in Section However, state space reduction techniques may help
to reduce the computation time for soundness checking [8]. The choice of using
soundness checking to verify weak conformance allows to check for control flow
soundness as well as weak conformance in one analysis and still allows to distinguish
occurring violations caused by control flow or data flow.

4.1 The Notion of Weak Conformance

Weak conformance is checked for a process model with respect to the object life cycles
referring to data classes used within the process model. To such concept, we refer as
process scenario h = (m, £, C), where m is the process model, £ is the synchronized
object life cycle, and C is the set of data classes. Next, we define several notions for
convenience considerations before we introduce the notion of weak conformance.
Let f € §m be a data flow edge of process model m. With f5 and fp, we denote
the activity and data node component of f, respectively. For instance, if f is equal to
(a,d) or to (d, a), then (in both cases) fA = a and fp = d. With ¥(f), we denote the
data state r4 involved in a read (f = (d, a) € §) or write (f = (a,d) € §) operation.
We denote the set of synchronization edges having data state r4 as target data state
with SE,. Further, a =,, a’ denotes that there exists a path in process model m
which executes activity a € A, before activity a’ € A,,. Analogously, s =, s’
denotes that there exists a path in the object life cycle 1. of data class ¢ which reaches
state s € S, before state s’ € S.. .

Definition 7 (Weak Data Class Conformance).

Given process scenario h = (m,£,C), m = (N,D,Q,¢,§,type,u, @) and £L =
(L, SE), process model m satisfies weak conformance with respect to data class ¢ € C
if for all f,f’ € F such that fp = d = f[; with d referring to ¢ holds (i) fA =m fi
implies 9(f) =1, 9(f'), (ii) Vse € SEy(¢/) originating from the same object life cycle

19



4 Weak Conformance

L€ L:3&(se) == true,and (iii) fa = f, implies f represents a read and f' represents
a write operation of the same activity. o

Given a process scenario, we say that it satisfies weak conformance, if the process
model satisfies weak conformance with respect to each of the used data classes.
Weak data class conformance is satisfied, (i),(iii) if for the data states of each two
directly succeeding data nodes referring to the same data class in a process model
there exists a path from the first to the second data state in the corresponding object
life cycle and (ii) if the dependencies specified by synchronization edges with a target
state matching the state of the second data node of the two succeeding ones hold
such that all dependency conjunctions and disjunctions are fulfilled. Two data nodes
of the same class are directly succeeding in the process model, if either (1) they are
accessed by the same activity with one being read and one being written or (2) there
exists a path in the process model in which two different activities access data nodes
of the same class in two data states with no further access to a node of this data class
in-between.

The process model of the process scenario used in this paper is given in Fig-
ure It contains three data classes: Order, Product, and Invoice. The corresponding
synchronized object life cycle is shown in Figure The process model satisfies
weak conformance with respect to data class Invoice and does not satisfy weak con-
formance with respect to the other data classes. Indeed, there exists a path in the
process model, which executes activity Check stock before activity Send bill such that
both are directly succeeding with regards to accessing nodes of class Order in states
confirmed and accepted respectively. However, there does not exist a path from state
confirmed to state accepted in the object life cycle. The weak conformance check re-
garding class Product fails for synchronization issues. States in stock and not in stock
can only be reached, if the order is in state accepted once the transition to either of
the mentioned states of the product shall occur. But as there exists one case where
this dependency of type currently does not hold (transition from data state i to state
in stock by activity Check stock), the weak conformance check is not satisfied. In fact,
in the given process scenario, the order is never in state accepted when the product
shall transition to state in stock or state not in stock.

4.2 Computation of Weak Conformance via Soundness
Checking

A given process scenario h = (m, £, C) can be checked for weak conformance by
applying the following four steps in sequence:

20



4.2 Computation via Soundness Checking

1. Map the process model m and the synchronized object life cycle £ to Petri nets,

2. integrate both Petri nets,

3. post-process the integrated Petri net and transform it to a workflow net system,
and

4. apply soundness checking to identify violations within the process scenario h.

Before we discuss these four steps, we recall the notions of preset and postset. A
preset of a transition t respectively a place p denotes the set of all places respectively
transitions directly preceding t respectively p. A postset of a transition t respectively
a place p denotes the set of all places respectively transitions directly succeeding t
respectively p.

1—Petri net mapping: The process model is mapped to a Petri net following the
rules described in [j5] for the control flow and in Section [3] for the data flow. The
mapping of the synchronized object life cycle is split. First, each single object life
cycle | € L is mapped to a Petri net, which than secondly are integrated utilizing
the set of synchronization edges. The mapping of single object life cycles utilizes the
fact that Petri nets are state machines, if and only if each transition has exactly one
preceding and one succeeding place [29]]. Thus, each state of an object life cycle is
mapped to a Petri net place and each data state transition connecting two states is
mapped to a Petri net transition connecting the corresponding places.

For each typed synchronization edge, one place is added to the Petri net. If two
typed synchronization edges have the same source and the same dependency type,
target the same object life cycle, and if the corresponding target states each have
exactly one incoming synchronization edge, both places are merged to one. Similarly,
two places are merged, if two typed synchronization edges have the same target,
the same dependency type, and origin from the same object life cycle. The preset of
an added place comprises all transitions directly preceding the places representing
the source and the target data states of the corresponding synchronization edge.
The postset of an added place comprises all transitions directly preceding the place
representing the target state of the synchronization edge. For currently typed edges,
the postset additionally comprises the set of all transitions directly succeeding the
place representing the source state.

For each untyped synchronization edge, one transition is added to the Petri net. If
Nse, {sTc U tgt} # 0 for two untyped synchronization edges, i.e. they share one data
state, then both transitions are merged. The preset and postset of each transition
comprise newly added places; one for each (transitively) involved synchronization
edge for the preset and the postset respectively. Such preset place directly succeeds
the transitions that in turn are part of the preset of the place representing the data
state from which the data state transition origins. Such postset place directly pre-
cedes the transition representing the corresponding source or target transition of
the typed synchronization edge. Figure[4.1]visualizes this for synchronization edges
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4 Weak Conformance

Figure 4.1: Mapping of untyped synchronization edges

ser,1 = (a,b) and set, = (b, c). The gray colored places and transition have been
added to the Petri net.

2—Petri net integration: First, data states occurring in the object life cycles but not
in the process model need to be handled to ensure deadlock free integration of both
Petri nets. We add one place p to the Petri net, which handles all not occurring states,
i.e. avoids execution of these paths. Let each q; be a place representing such not
occurring data state. Then, the preset of each transition t; being part of the preset
of g; is extended with place p, if the preset of t; contains a data state which post-
set comprises more than one transition in the original Petri net mapped from the
synchronized object life cycle.

Read order
in data state
received

received

Figure 4.2: Internal places for a place representing a data state

Each data state represented as place in the Petri net mapped from the process
model consists of a control flow and a data flow component as visualized in Fig-
ure 4.2l with C and D. Within the integrated Petri net, the control flow component
is responsible for the flow of the object life cycle and the data flow component is
responsible for the data flow in the process model. The integration of both Petri nets
follows three rules, distinguishable with respect to read and write operations. The
rules use the data flow component of data state places.

(IR-1) A place p from the object life cycle Petri net representing a data state of a
data class to be read by some activity in the process model is added to the preset
of the transition stating that this data node (object) is read in this specific state, e.g.
the preset of transition Read order in data state received is extended with the place
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4.2 Computation via Soundness Checking

representing data state received of class Order (cf. Figure[4.3), and (IR-2) a new place
q is added to the integrated Petri net, which extends the postset of the transition
stating that the data node (object) is read in the specific state and which extends the
preset of each transition being part of the postset of place p, e.g. the place connecting
transition Read order in data state received and the two transitions succeeding the
place labeled Order.received. (IR-3) Let v be a place from the object life cycle Petri
net representing a data state of a class to be written by some activity in the process
model. Then a new place w is added to the integrated Petri net, which extends the
preset of each transition being part of the preset of w and which extends the postset
of the transition stating that the data node (object) is written in the specific state, e.g.
the place connecting the two transitions preceding the place labeled Product.inStock
and the transition Write product in data state inStock.

3—Workflow net system: Soundness checking has been introduced for workflow
net systems [17)/28]]. Workflow nets are Petri nets with a single source and a single sink
place and they are strongly connected after adding a transition connecting the sink
place with the source place [28]. The integrated Petri net needs to be post-processed
towards these properties by adding enabler and collector fragments. The enabler
fragment consists of the single source place directly succeeded by a transition y. The
postset of y comprises all places representing an initial data state of some object life
cycle and the source place of the process model Petri net. The preset of each place is
adapted accordingly.

The collector fragment first consists of a transition t preceding the single sink
node. For each distinct data class of the process scenario, one place p; and one place
q; are added to the collector. Each place p; has transition t as postsef] Then, for
each final data state of some object life cycle, a transition u; is added to the collector.
Each transition u; has as preset the place representing the corresponding data state
and some place q; referring to the same data class. The postset of a transition wu;
is the corresponding place p; also referring to the same data class. Additionally, a
transition z succeeded by one place is added to the collector. The place’s postset
is transition t. The preset of z is the sink place of the process model Petri net. The
postset of z is extended with each place g;.

Next, the synchronization places need to be considered. If a typed synchronization
edge involves the initial state of some object life cycle as source, then the correspond-
ing place is added to the postset of transition y of the enabler fragment. For all
synchronization edges typed previously, the postset of the corresponding place is
extended with transition t of the collector. If a currently typed synchronization edge
involves a final state of some object life cycle as source, then the corresponding place
is added to the postset of the corresponding transition u; of the collector fragment.

'Generally, we assume that addition of one element a to the preset of another element b
implies the addition of b to the postset of a and vice versa.
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4 Weak Conformance

Finally, the semaphore places need to be integrated. Therefore, for each semaphore
place, the preset is extended with transition y from the enabler and the postset is
extended with transition t from the collector fragments. Now, connecting sink and
source node, the workflow net is strongly connected. A workflow net system consists
of a workflow net and some initial marking. The workflow net is given above and the
initial marking puts a token into the single source place and nowhere else. Figure[4.3]
shows the final workflow net system, where the gray colored modeling constructs
represent the control flow, the white ones represent the data access including the
semaphore places, the black places indicate the XOR split determinism, and the
shaded constructs are the enabler and the collector.

Write product
in data state

notinStock

rite order Read order

»O— in data state in data state
confirmed confirmed

Read order

in data state
received

Initiate data
:; object reads

#Product.
otInStock#

Initiate data

*Analyze O Confirm data
object reads

* " Confirm data
object writes Check stock* 1>

object writes

Write product
in data state
inStock

inStock#

Product. Product.
otInStoc| created

Figure 4.3: Extract of workflow net system representing the process scenario given

in Figure|2.1/and

4—Soundness checking: Assuming control flow correctness, if the workflow net
system satisfies the soundness property [28], no contradictions between the process
model and the object life cycles exist and all data states presented in all object life
cycles are implicitly or explicitly utilized in the process model, i.e. all paths in the
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4.2 Computation via Soundness Checking

object life cycles may be taken. If it satisfies the weak soundness property [17], no
contradictions between the process model and the object life cycles exist but some of
the data states are never reached during execution of the process model; for instance,
data state rejected of class Order in the given process scenario. As indicated above,
the given process scenario does not satisfy the notion of weak conformance. Thus,
the workflow net system neither fulfills the soundness nor the weak soundness
property. It deadlocks for two reasons. First, transition Read order in data state accepted
(not shown in Figure|4.3) will never be enabled, because it requires a token in place
Order.accepted but this token already advanced to place Order.confirmed. Second, the
workflow net system deadlocks when trying to write either data state inStock or state
notInStock of class Product. With respect to Figure 2.2} both states are only allowed to
be written, if the Order is in state accepted at this point in time, which is not the case. In
case, control flow inconsistencies would appear, places and transitions representing
the control flow would cause the violation allowing to distinguish between control
flow and data conformance issues.

Validation. The described approach reliably decides about weak conformance
of a process scenario. It takes sound Petri net fragments as input and combines
them with respect to specified data dependencies. Single source and sink places
are achieved through the addition of elements either marking the original source
places or collecting tokens from the original final places. Thus, they do not change
the behavior of the process model and the object life cycles, i.e. they do not influence
the result.
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5 Related Work

The increasing interest in the development of process models for execution has
shifted the focus from control flow to data flow perspective leading to integrated
scenarios providing control as well as data flow views. One step in this regard are
object-centric processes [4}21,33] that connect data classes with the control flow
of process models by specifying object life cycles. [12] introduces the essential re-
quirements of this modeling paradigm. [13,[26]] present an approach, which connects
object life cycles with process models by determining commonalities between both
representations and transforming one into the other. Covering one direction of the
integration, [14] derives object life cycles from process models considering synchro-
nization between actions (state transitions). Similarly, [33] defines synchronization
dependencies between transitions of different object life cycles. [30] also stresses the
importance of handling inter-dependencies between data classes for process exe-
cution they refer to as coupling that in turn corresponds to typed synchronization
edges. While we specify these inter-dependencies explicitly in the object life cycles,
the authors predict probable couplings between implementations of data objects.
Further, in contrast to these works, we combine both synchronization methods. Tack-
ling the integration of control flow and data, [19,20] enable to model data constraints
and to enforce them during process execution directly from the model. Similar to the
mentioned approaches, we concentrate on integrated scenarios incorporating pro-
cess models and object life cycles removing the assumption that both representations
must completely correspond to each other. Instead, we set a synchronized object
life cycle as reference that describes data manipulations allowed in a traditionally
modeled process scenario, i.e. activity driven as with, for instance, BPMN [22].

Correctness, or compliance, in process models often refers to checks of the process
model with respect to a defined rule set containing, for instance, business policies.
The field of compliance is well researched, especially with respect to control flow
compliance [2,9}[25]. However, some works considered data for correctness as well.
[11] describes a multi perspective compliance checking including data. [3]] introduces
means to check for compliance with respect to data dependencies, e.g. an object is
required to be in a certain state for activity execution. Compared to our approach,
the authors require to explicitly state data dependency rules instead of checking
against a graphical representation as, for instance, object life cycles.

26



5 Related Work

Furthermore, [15] applies compliance checking to object-centric processes by cre-
ating process models following this paradigm from a set of rules. These rules most
often specify control flow requirements. [[7] provides a technique to check for con-
formance of object-centric processes containing multiple data classes by mapping
to an interaction conformance problem, which can be solved by decomposition into
smaller sub-problems, which in turn are solved by using classical conformance
checking techniques. [33] introduces a framework that ensures consistent special-
ization of object-centric processes, i.e. it ensures consistency between two object life
cycles. In contrast, we check for consistency between a traditional process model and
an object life cycle. Eshuis [6] uses a symbolic model checker to verify conformance
of UML activity diagrams [23] considering control and data flow perspectives while
data states are not considered in his approach. [13]] introduces compliance between
a process model and an object life cycle as the combination of object life cycle con-
formance (all data state transitions induced in the process model must occur in the
object life cycle) and coverage (opposite containment relation). [31] introduces con-
formance checking between process models and product life cycles, which in fact are
object life cycles, because a product life cycle determines for a product the states and
the allowed state transitions. Compared to the notion of weak conformance, both
notions do not support data synchronization and both set restrictions with respect
to data constraints specification in the process model.

There do also exist approaches to represent data in Petri nets. [1] introduces a
mapping from BPMN to Petri nets based on six rules. Compared to our mapping,
the authors duplicate transitions in the Petri net to specify each data constraint of
the corresponding activity separately and did not address challenges with respect
to parallel data access. [27] discusses WFD-nets, which are workflow nets extended
with data. WFD-nets could directly be used to represent business processes with
the disadvantage that data flow cannot be visualized graphically and data states are
not regarded.
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6 Conclusion

In this paper, we presented an approach for the integrated verification of control
flow correctness and weak data conformance using soundness checking considering
dependencies between multiple data classes, e.g. an order is only allowed to be
shipped after the payment was received but needs to be shipped with an confirmed
invoice in one package. Therefore, we introduced the concept of synchronized object
life cycles. For checking data correctness, we use the notion of weak conformance
and extended it with means for object life cycle synchronization. Additionally, we
described a mapping of data constraints modeled within a process model to Petri
nets extending an existing control flow mapping. The resulting Petri net is integrated
with a Petri net representation of the synchronized object life cycle, which then
is used for soundness checking. With respect to the places or transitions causing
soundness violations, we can distinguish between control flow and data flow issues
and therefore, we can verify the notion of weak conformance. Revealed violations
can be highlighted in the process model and the synchronized object life cycle to
support correction. In this paper, we focused on the violation identification such
that correction is subject to future work.
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