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Abstract

The first thing we do upon waking is open our eyes. Rotating
them in our eye sockets, we scan our surroundings and collect the
information into a picture in our head. Eye movements can be split
into saccades and fixational eye movements, which occur when
we attempt to fixate our gaze. The latter consists of microsaccades,
drift and tremor. Before we even lift our eye lids, eye movements —
such as saccades and microsaccades that let the eyes jump from
one to another position — have partially been prepared in the
brain stem. Saccades and microsaccades are often assumed to
be generated by the same mechanisms. But how saccades and
microsaccades can be classified according to shape has not yet
been reported in a statistical manner. Research has put more effort
into the investigations of microsaccades’ properties and generation
only since the last decade. Consequently, we are only beginning
to understand the dynamic processes governing microsaccadic eye
movements.

Within this thesis, I aim to assess the dynamics governing the
generation of microsaccades and model the underlying processes.
I will use eye movement trajectories from different experiments,
recorded with a video-based eye tracking technique, and propose a
novel method for the scale-invariant detection of saccades (events
of large amplitude) and microsaccades (events of small amplitude).
Using a time-frequency approach, I examined the method with
different experiments and validated it against simulated data. I sug-
gest a shape model that allows for a simple estimation of saccade-
and microsaccade related properties. For sequences of microsac-
cades, I conclude this thesis by the proposal of a time-dynamic
Markov model, with a memory horizon that changes over time and
which can best describe sequences of microsaccades.






1 Introduction

The complexity of the human brain and nervous system is the
subject of many different research areas. Attempts have been made
to at least partially model its complex, often nonlinear behavior.
Vision research focuses on reading, perception, and visual attention.
Every human executes eye movements to read, for example, this
thesis and is half-aware of the movements because, while each
word needs to be read, some words are unconsciously skipped.
To investigate these movements and, for example, understand
why some words are skipped, recordings of eye movements and/or
electroencephalography (EEG) measurements are studied. Whereas
eye movements allow a direct access to the eyes’ trajectories during
different tasks, eye movements in EEG are measured by electrical
potentials which occur whenever the eye is moved.

In natural viewing, two different patterns continually alternate:
saccades and visual fixations. A saccade moves the eye from one
position to another and can be identified by its high-velocity. In
a fixation, the eyes appear to be motionless at a single spot. They
seem to be at rest, however almost three centuries ago Jurin (1738)
proposed the existence of eye movements during fixation on a tiny
target. Darwin and Darwin (1786) were the first to empirically show
that our eyes move during fixations. Paradoxically, this continuous
motion during fixation is called fixational eye movements (FEM).
In Adler and Fliegelman (1934), three different components were
identified and Ratliff and Riggs (1950) gave a widely-accepted
classification that was dependent upon different sizes of amplitude:

e small-scale oscillations
e a slow, diffusive-like movement

e a ballistic jump-like movement
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These three components are referred to as tremor, drift, and mi-
crosaccades (Martinez-Conde, Macknik & Hubel, 2004; Rolfs, 2009;
Liversedge, Gilchrist & Everling, 2011).

In this thesis, I set out to understand the stochastic aspect of
generating mechanisms of microsaccades. Using a wavelet based
approach for saccade and microsaccade detection, I will be able to
detect both movements at once. A statistical analysis of microsac-
cade and saccade shapes can return the characteristics of both
and simplify subsequent analyses. In the last two decades, eye
movement research focused on the last component of fixational eye
movements — microsaccades. There is an ongoing debate regarding
whether they serve a specific purpose (Kowler & Steinman, 1979;
Collewijn & Kowler, 2008) and how a process could possibly gen-
erate them (Desbordes & Rucci, 2007; Engbert, Mergenthaler, Sinn
& Pikovsky, 2011; Hafed, Goffart & Krauzlis, 2009; Otero-Millan,
Macknik, Serra, Leigh & Martinez-Conde, 2011; Rolfs, Kliegl & En-
gbert, 2008). Whether they play any important role in fixational eye
movements or not, might be answered by an explanation of the gen-
erating process of microsaccades. Often, approaches to understand
natural phenomena include mathematical models. Well-suited to
describe the observations, they offer an optimal description of the
data, allowing researchers to test different hypotheses against a
well-defined theoretical model. Additionally, to arrive at “the best”
fitting model for the data, the data analysis should also be optimal.
For microsaccade detection, velocity-based algorithms (Engbert
& Kliegl, 2003b) and detection by hand are the most prominent
methods, with the former dominating because of the huge data sets
recently available from video-based eye trackers (cf. Chapter 1.5).

For the purpose of my investigation, I will provide a brief intro-
duction in the first chapter to human eye movements, which follow
multiple nonlinear rules which will be disentangled step by step. In
the second chapter, I present a scale-free saccade detection method
for saccades of all amplitudes, based on the continuous wavelet
transform (Holschneider, 1995). A statistical (micro)saccade shape
model yields a simple way to investiate microsaccade properties.
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The third chapter presents how to arrive at such a model with the
principal component analysis (Jolliffe, 2002). Finally, in the fourth
chapter, I represent microsaccades as particular symbols which can
be investigated using Markov processes (Taylor & Karlin, 1984),
Bayes factor model selection (Kass & Raftery, 1995) and symbolic
dynamics (Lind & Marcus, 1995). Finally, a stochastic model for
the generation of microsaccade directions is proposed. The thesis
will be concluded in the fifth chapter and the new findings will be
discussed in the context of previous findings. At the beginning of
every chapter, I will briefly introduce the mathematical concepts
used for the particular chapter and review existing concepts.

Although the methods proposed and developed in this work are
primarily used for data from eye movements, they might prove
to be useful for a broad class of complex systems. The method
for distinguishing different Markov orders through the use of a
discrete-time symbol mapping and Bayes factor also allows the
characterization of underlying generating processes for biological
or neurological data such as neural spike trains (Rieke, Warland &
Bialek, 1997). The detection method demonstrated its applicability
to be used as “black-box” for the detection of microsaccades and
saccades. Particularly for EEG studies, the eye movements cause
artifacts in recordings of electric potentials. The wavelet method
could be used by researchers whose main interest is not the study
of eye movements but who are currently “cursed” to optimize
a threshold multiplier to optimally detect (micro)saccades in the
velocity space (Engbert & Kliegl, 2003a; Engbert & Mergenthaler,
2006).

1.1 Eye movements and fixational eye
movements

Since ancient times, vision has been considered one of the five
human senses (Aristotle, 384 BC-322 BC). The human eyes move
constantly to perceive the surrounding visual world, explore scenes,
read or perceive of surroundings. Most activities of our visual
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system require our eyes to be moved from one point to another
point in a scene or from one word to another.

Studies in both passive and active vision examine eye movements.
Yet, studies in passive vision investigate the duration or appearance
of movements whereas active vision looks into the generation and
integration of these movements at the physiological level by e. g.,
muscle contraction (J. M. Findlay & Gilchrist, 2003). In this thesis,
eye movement trajectories are examined in the context of passive
vision.

Under laboratory conditions, with an immobile viewer looking
at a scene in a fixed position, the eye movement can be separated
into two major and disjunct modes: saccadic eye movement and
fixation (Land, Mennie & Rusted, 1999; Land & Nilsson, 2002).
Below or above conscious awareness, these small-sized (see Land
et al.,, 1999, between 18-20° visual angle in daily tasks), ballistic
movements occur at approximately the same time, conjugated in
both eyes. Saccades are present in both movement directions of the
eyes: the horizontal and vertical dimensions and oblique directions in
a mixture of both. Their amplitude and peak-velocity are measures
which are mutually linked in a linear fashion and referred to as main
sequence (Zuber, Stark & Cook, 1965). Importantly, this relationship
holds for saccades of all scales of amplitude.

The time intervals between saccades are referred to as fixation, in
which the eye stationary rests at one point. Photoreceptors of the
retina, the cells that transform visual input into electrical poten-
tials processable by the brain (cf. Figure 1.1), continuously receive
activation during saccades and fixations, while visual processing
during saccades is suppressed (Thilo, Santoro, Walsh & Blakemore,
2004). A saccade moves the eye such that, while visually inspecting
something, the point of interest the visual input is reflected to one
spot on the retina with highest resolution, the fovea centralis or
foveal region.!

I The foveal region refers to that part of the retina (cf. Figure 1.1) with highest spatial
resolution, originating from the highest density of cone photoreceptors (those
secondary receptors to “convert” visual input to electrical potentials).



Introduction

Choroid

Lens

Pupil Retina

Iris

/ Optic Nerve

Cornea

Figure 1.1: Illustration of the anatomy of the eye. An image-at-view is upside-down
and reversely projected onto the retina.

Visual fixation is the basis for perception of a stationary target
object. Jurin (1738) proposed the existence of tiny eye movements
during fixation. Then, von Helmholtz (1867) showed that our eyes
constantly move during fixation to continually produce input and
proposed that these movements are essential to prevent retinal
fatigue. In the 1950s and early 1960s, the eyes were artificially
stabilized in a laboratory experiment and it was demonstrated
that stationary objects rapidly fade from perception (Ditchburn
& Ginsborg, 1952; Pritchard, 1961; Riggs, Ratliff, Cornsweet &
Cornsweet, 1953). The adaptation of retinal receptor systems to
constant input causes such perceptual bleaching and can occur
rapidly (Coppola & Purves, 1996). Therefore, while our eyes fixate a
stimulus to visually analyze fine details, miniature eye movements
have to be produced to counteract the described perceptual fading.
The term fixational eye movements was introduced to describe this
seemingly paradoxical behavior. The perceptual performance, a
function of self-generated noise, is an unimodal function which
lends support to the underlying nonlinear mechanisms (Starzynski
& Engbert, 2009).

Fixational eye movements consist of three components: tremor,
drift and microsaccades (e. g., Ciuffreda & Tannen, 1995; Martinez-
Conde et al., 2004; Rolfs, 2009). Tremor is a rapid irregular move-
ment, which is superimposed on the drift in fixational eye move-
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ments. Tremor was reported by Adler and Fliegelman (1934) for
the first time and nowadays is reported with amplitudes between
1.6 x 1073 to 8.3 x 1072 degree visual angle (Ratliff & Riggs, 1950).
Tremor occurs at very high frequencies, varying between 0-100 Hz
(Eizenman & Hallett, 1985), between 30-100 Hz (Adler & Fliegel-
man, 1934; Higgins, 1953; Ratliff & Riggs, 1950) and more recently
from 70-103 Hz (Bolger, Bojanic, Sheahan, Coakley & Malone, 1999),
as governed by the different recording techniques used through
the studies. Not the frequency but instead the small extent of this
micromovement of the eye demands a technique with high spatial
resolution. Piezoelectronic devices are used to measure these tiniest
of eye movements, which includes eye contact with the apparatus.
For non-contact recordings, setups like the Purkinje eye trackers
which use reflections from the front of the cornea and the back of
the lens to track the eye position (Crane & Steele, 1985), or laser
interferometry are chosen (for an overview of different devices,
see Collewijn, 1998). The video-based eye tracking device used to
record the trajectories this thesis investigated for eye movements
are not capable of recording these movements. Instead, the video-
based eye tracking can — in addition to microsaccades — record
the drift movements on which tremor is superimposed. This slow
eye movement is erratic and occurs in the intermicrosaccadic inter-
vals in the trajectory of fixational eye movements, i. e., recordings
with the video-based system contain intervals of drifts and mi-
crosaccades. In a fixation task, the amplitude of drift movements
ranges from 0.016° to 0.13° at slow velocity of 0.5° /s whereas in
natural viewing conditions, higher velocities have been measured
(Deubel & Bridgeman, 1995). Mostly, drift was described as com-
pletely random process (Cornsweet, 1956) and random walk (Matin,
Matin & Pearce, 1970). Investigations by Ditchburn and Ginsborg
(1952) and Nachmias (1959) suggested that drift movements are —
at least with regard to direction — not random. J. Findlay (1971)
modeled both tremor and drift as a white-noise like signal. More
recently, Mergenthaler and Engbert (2007) modeled fixational eye
movements and, in particular, the drift movement by a fractional
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Brownian motion in two different time regimes. For short time
scales (< 100ms), in order to counteract visual fading, persistent
behavior enhances retinal image slip whereas on longer time scales
(> 100ms) fixation is stabilized by antipersistent behavior. The be-
havior of this model for short time scales and the work by Engbert
and Kliegl (2004) motivated a successive work from Engbert et al.
(2011), in which fixational eye movements altogether are modeled
by a self-avoiding random walk model that includes drift and
microsaccadic eye movements.

The fastest component of fixational eye movements, up to 1°
visual angle (Rolfs, 2009), is produced by microsaccades which are
high-velocity movements with the largest amplitudes. Microsac-
cades are movements sharing a fixed relation between amplitude
and peak velocity. Furthermore, they do — alongside saccades —
appear in the main sequence (Zuber et al., 1965) which constitutes
a linear relation between the peak velocity and amplitude of the
events and saturation of velocities for saccades larger than 10°
(Bahill, Clark & Stark, 1975; M. Harris & Wolpert, 2006). This the-
sis deals in particular with microsaccades, their detection, shape
classification and dynamics and I will review their characteristics,
findings and importance for fixational eye movements in an extra
section but first review findings on saccades, which are closely
related to microsaccades.

1.2 Saccades

The term “saccade” can be credited to Louis Emile Javal (Javal, 1879;
Wade & Tatler, 2005), who was the first to call a jump-like move-
ment during reading that way. He was referring to an experiment
performed by Lamare and published years later in Lamare (1892).
In the English translation given in Wade and Tatler (2005, p.137),
the first experiment he performed to investigate saccades is de-
scribed as follows: “[...] The first method was based on counting:
he counted the number of letters he could read in one minute and
divided that by the estimated number of pauses made. The average
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value he arrived at was ten letters per saccade. [...]”. Nowadays,
having high-precision techniques to track eye movements, we know
that a normal saccade amplitude ranges between 18-20° during an
everyday task (Land et al., 1999). In a condition reproducible in the
laboratory, saccades are typically of 2° amplitude for reading and
5° amplitude for scene perception (Abrams, Meyer & Kornblum,
1989; Rayner, 1978). These ballistic, binocularly-occurring eye move-
ments have a particular shape which can occur in both directions,
horizontal and vertical, and be illustrated as a jump in the trajectory
of the eye movement, i. e., an abrupt change in position across time
(Kowler, 2011). Investigating the trajectory of the eye movements,
the oculomotor system can indirectly be studied. Saccades, occur-
ring 3 to 4 times each second in most natural viewing tasks, have a
strong relationship between their peak-velocity and amplitude, the
main sequence (Zuber et al., 1965). The latter also determines the typ-
ical duration of a saccadic eye movement. A typical saccade shape
is described as follows: “After an initial stationary rest of the eye,
it accelerates to a maximal velocity just before it rapidly reduces its
pace to again rest at the new position” (adapted from J. M. Findlay
& Gilchrist, 2003). Furthermore, a saccade can directly reach the
intended target position (a normometric or orthometric saccade) or
move the eye too short (hypometric) or beyond the target position
(hypermetric) (Ciuffreda & Tannen, 1995). Typically, saccades show
another type of overshoot, a so-called dynamic overshoot. The eye
surpasses the target position and then quickly reverses to the for-
mer to arrive at the final target position. Ciuffreda and Tannen
(1995) suggested that “[...] this latter movement may represent a
‘time optimal” behavior that places the target within the general
foveal region as rapidly as possible [...]” — referring to the dynami-
cal overshoot (see also C. M. Harris & Wolpert, 1998). We will now
see, how many of these properties also apply to microsaccades or
“saccades during fixation” and how they vary in their shape, with
respect to microsaccades.



Introduction

1.3 Microsaccades

The largest component of fixational eye movements is produced by
microsaccades, which are high-velocity movements with small am-
plitudes (compared to saccades). Their name originates from their
resemblance to saccades, which are present in eye movements and
which, in principle, separate single fixations. I will call saccades
during fixation the microsaccades and 1 will refer to saccadic eye
movements of all amplitudes as saccades. Later, we will see that a
separation in size between both different scale saccadic eye move-
ments is not easily done and discussed through the whole vision
research community. The sizes of microsaccades were reported by
Adler and Fliegelman (1934) for the first time. They vary between
0.01° to 2° but their main range is from 0.1° to 0.5° (Engbert, 2006b;
Otero-Millan, Troncoso, Macknik, Serrano-Pedraza & Martinez-
Conde, 2008; Hermens & Walker, 2010). Microsaccades occur 1
to 2 times per second and, with similar direction and amplitude,
occur at approximately the same time in both eyes (Moller, Laursen,
Tygesen & Sjolie, 2002; Schulz, 1984).

Following Zuber et al. (1965), a prototypical microsaccade shape
is given in Figure 1.2. Here, the horizontal eye movement is plotted
versus time. Upward and downward deflections denote rightward
and leftward directed eye movements. In this example, the trajec-
tory shows that, after an initial period of rest, the eye moves quickly
towards the right, which then is followed by a small leftward move-
ment before arriving at the new horizontal position. The illustration
depicts three important characteristics of microsaccades: amplitude,
displacement, and overshoot. The last is also often called dynamic
overshoot (Kapoula, Robinson & Hain, 1986), referring to a small
saccade immediately following a large saccade during “normal
viewing.” These dynamic overshoot saccades are mostly consid-
ered part of the preceding saccade (Moller et al., 2002; Otero-Millan
et al., 2008; Troncoso, Macknik & Martinez-Conde, 2008) and do
not count as another saccadic movement. I will solely use the term
overshoot as depicted in Figure 1.2 and, if not clear by context, name
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Figure 1.2: Illustration of microsaccades’ properties. A trajectory of a microsaccade
plotted over time has three distinctive measures: displacement, overshoot and, as sum of
both, the amplitude.

its origin. The maximum deflection is referred to as amplitude; the
difference between amplitude and overshoot the displacement. Thus,
the distinction between amplitude and displacement is due to vari-
ations in the overshoot component and is relevant to kinematic as
well as functional aspects of microsaccades.

Recent findings demonstrated various neural, perceptual and
behavioral functions of microsaccades (Martinez-Conde et al., 2004;
Martinez-Conde, Macknik, Troncoso & Hubel, 2009; Rolfs, 2009).
The relevance of microsaccades for various neural and cognitive
systems offers a possible explanation for the difficulties in identify-
ing a specific function for microsaccades (for recent overviews see
Martinez-Conde et al., 2004; Rolfs, 2009; Liversedge et al., 2011). I
will now provide in a short list a brief review of recent findings
about the functions of microsaccades (adapted from Bettenbiihl
et al., 2010):

Perception

Microsaccades are important for peripheral vision. During the
perception of bistable visual scenes, microsaccades induce tran-

10
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sitions to visibility and counteract transitions to perceptual fad-
ing (Engbert, 2006a; Martinez-Conde, Macknik, Troncoso & Dyar,
2006; Rucci, Iovin, Poletti & Santini, 2007). Moreover, fixational eye
movements and microsaccades present noise sources that enhance
perception (Starzynski & Engbert, 2009). Also during fixation, mi-
crosaccades support second-order visibility (Troncoso et al., 2008).

Attention

Microsaccades can be suppressed voluntarily with focused atten-
tion (Bridgeman & Palca, 1980; Gowen, Abadi & Poliakoff, 2005).
They are also modulated by crossmodal attention with a pro-
nounced signature in both rate and orientation (e. g., Engbert &
Kliegl, 2003b; Galfano, Betta & Turatto, 2004; Hafed & Clark, 2002;
R. Laubrock, Engbert & Kliegl, 2005; Rolfs, Engbert & Kliegl, 2005).
The hypothesis that microsaccades represent an index of covert
attention has been criticized by Horowitz, Fine, Fencsik, Yurgenson
and Wolfe (2007) (but see Horowitz, Fencsik, Fine, Yurgenson &
Wolfe, 2007; J. Laubrock, Engbert, Rolfs & Kliegl, 2007). However,
new work by J. Laubrock, Kliegl, Rolfs and Engbert (2010) lends
support to the coupling between attention and microsaccades.

Saccadic latency

Microsaccades interact with upcoming saccadic responses, which
can result in prolonged as well as shortened latencies for saccadic
reactions (Rolfs, Laubrock & Kliegl, 2006). Recently, Sinn and Eng-
bert (2011) demonstrated that this effect contributes to the saccadic
facilitation effect in natural backgrounds.

Neural activity

Microsaccades are correlated with bursts of spikes across the vi-
sual pathway (Martinez-Conde, Macknik & Hubel, 2000; Martinez-
Conde et al., 2004, 2009). Theoretical analyses suggest that they
help to decorrelate neural responses in natural viewing (Rucci &
Casile, 2004).

11
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Oculomotor control of fixation

Microsaccades enhance retinal image slip (to counteract retinal
fatigue) on a short time scale and control fixational errors on a
long time scale (Engbert & Kliegl, 2004). Moreover, recent evidence
suggests that microsaccades are triggered on perceptual demand
based on estimation of retinal image slip (Engbert & Mergenthaler,
2006).

The list of results demonstrates the importance of understanding
the generating mechanisms for microsaccades. Another type of mi-
crosaccade studies focused on the patterns of successive microsac-
cades. Hypotheses on the generating mechanism for microsaccades
are potentially relevant for the analysis of correlations within se-
quences of microsaccades.

Since sequences of microsaccades appear to have a non-random
structure, isolated microsaccades are often distinguished in saccadic
intrusions (SI) (Abadi, Scallan & Clement, 2000) or from square-
wave jerks (SWJ) (Sharpe & Fletcher, 1986; Otero-Millan, Serra et al.,
2011). Abadi and Gowen (2004) exploited the direction dissimilar-
ity of microsaccadic events and their temporal proximity to define
different types of SIs with characteristic kinematic properties (am-
plitude, displacement) and rate-of-occurrence. They separated four
different types in their study on shapes and sequences of conjugate,
horizontal saccadic eye movements during fixation. I handpicked
representative parts of a horizontal eye movement’s trajectory for
each type of saccadic intrusion in Figure 1.3. The types are de-
scribed as:

Single Saccadic Pulse (SSP)
A single saccade which has a slow return component (Abadi,
Clement & Gowen, 2003).

Double Saccadic Pulse (DSP)

A single saccade whose second part of movement returns the eye
to the initial velocity baseline.

12
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Figure 1.3: Illustration of the four types of saccadic intrusions. Hand-picked se-
quences of microsaccadic eye movements. The time intervals between the successive events
are not representative and the vertical position is, for visualization purposes, not on the
same scale.

Monophasic Square Wave Intrusion (MSWI)

A sequence of two subsequent events where a primary saccade
moves the eye away from the initial eye position, followed by a
short period in which the eye only drifts and a secondary saccade
to return the eye to its initial position.

Biphasic Square Wave Intrusion (BSWI)

A sequence of three subsequent events with a primary saccade
to leave the initial position of the eye, followed by a short time
interval of rest. The second saccade overshoots the initial position
and after another short period of rest, a third saccade returns the
eye to its initial position.

In their study, Abadi and Gowen (2004) reported amplitude ranges
of 0.4+ 0.2° and 0.3 + 0.4° which agrees with ranges of 0.4°
(Mergenthaler & Engbert, 2010) and 0.46° for microsaccades (Otero-
Millan, Serra et al., 2011) for the SIs which consist of only one
single saccadic event (SSP and DSP).

Recently, Otero-Millan, Serra et al. (2011) introduced an ad-
vanced treatment of microsaccade sequences. Based on the velocity-
threshold algorithm by Engbert and Kliegl (2003b), they used direc-
tion dissimilarity, magnitude dissimilarity, and temporal proximity
to calculate an index to decide whether a pair of events is a SWJ
or not. In Figure 1.4, I illustrate their decision-making properties
(adapted from Otero-Millan, Serra et al., 2011).

13
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Figure 1.4: Illustration of the properties used to calculate the square-wave jerk
index in Otero-Millan, Serra, et al. (2011). Shown are the used properties from (a)
the angular difference, (b) the magnitude dissimilarity, (c) the time delay. The figure is
adapted from Otero-Millan, Serra, et al. (2011).

Studying the relationship between microsaccades and SWJs in
healthy subjects and Progressive Supranuclear Palsy (PSP) patients,
Otero-Millan, Serra et al. (2011, pp. 4386) concluded “that microsac-
cades and Sls are essentially the same phenomena and that SW]s
are generated by a common coupling mechanism in PSP patients
and healthy observers.”

All the above-listed results contain issues: in general, microsac-
cades are detected by their high-velocity and hence bound to their
amplitude scale. That brings up the question of whether a scale-
free detection, based on other microsaccade properties, delivers
similar or equal results. Furthermore, the identification of a sta-
tistical model for microsaccade sequences can influence future
investigations on the patterns of microsaccades or even serve as

14
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a base-model to establish a model for the generation of microsac-
cades.

1.4 Saccade and microsaccade generation

Saccades, microsaccades, and all other eye movements are executed
from the oculomotor system by contraction and relaxation of the
six extraocular muscles that rotate the eye in the eye socket. The
muscles are arranged as presented in Figure 1.5. The muscles M1
and M2 are responsible for the rotation along the horizontal axis;
the other four, denoted by M3, ..., M6, rotate the eye in the vertical
axis or produce torsions.

M1

v
M4 ‘/
~
N AN

M3

M5

g

M6 M2

Figure 1.5: Illustration of the positions of the six extraocular muscles, frontal
view. The interplay of contraction and relaxation rotates the eye in its socket.

The neural mechanisms for generating saccades is the focus
of diverse neurophysiological studies (Munoz & Everling, 2004;
Schall & Thompson, 1999; Sparks & Mays, 1990) and saccade-
related activity in the different components of the neural pathway
is reported in different works (Otero-Millan, Macknik et al., 2011;
Scudder, Kaneko & Fuchs, 2002). For microsaccades, no different
neural generation mechanism is proposed but, instead, results
suggest the sharing of the neural pathway for large-amplitude
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saccade generation (Hafed et al., 2009; Hafed, 2011; Otero-Millan,
Macknik et al., 2011).

The works of Otero-Millan, Macknik et al. (2011) and Hafed
(2011) summarized that three different brain areas can be sepa-
rated according to their different functional role in the generation
of saccades. The first brain area, for the target selection, is the
superior colliculus (SC). The SC integrates input from the frontal
eye field (FEF), lateral parietal area (LIP), and supplementary eye field,
and dorsolateral prefrontal cortex (DLPFC) as well as basal ganglia
(BG) and other sensory systems (Leigh & Zee, 1999; Moschovakis,
Scudder & Highstein, 1996; Sparks, 2002; Wurtz & Goldberg, 1989).
The FEF, SEE, DLPFC, and LIP load the SC with excitatory input
whereas the BG inhibits the SC. With this combined information,
the SC encodes the position of the aimed target into a retinotopic
map, which is also often referred to as priority map or saliency map,
encoding the stimuli with behavioral relevance (Krauzlis, 2005;
Schall & Thompson, 1999; Wurtz, Goldberg & Robinson, 1982). In-
terestingly, when only the SC or the FEF were deactivated, saccades
were generated but the shutdown of both resulted in the loss of any
saccadic activity (Schall & Thompson, 1999). The SC is the main
actor in the saccade generation mechanism. The second brain area
forwards the signal to execute saccades and is represented by the
neural network of the burst generator (nBG) in the brain stem. The
spatially-encoded command, originating from the SC to trigger a
saccade, is converted into a temporally encoded motor signal in the
nBG. The required change of eye position is translated into muscle
contraction or relaxation in order to perform an eye movement.
Finally, the third brain area does the final adjustments of the move-
ment, providing the accuracy of the saccadic eye movement. At this
stage, the cerebellum fixes the variation, accruing from the different
integrations along the three brain areas (Robinson & Fuchs, 2001).
The whole neural pathway is illustrated in Figure 1.6.

Now, one important aspect in the neural mechanism for saccade
generation is the connection between SC and nBG. While rostral SC
neurons strongly fire excitatory signals to the omnipause neurons, the
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Figure 1.6: Illustration of the neural pathway for saccade generation. The influ-
ences of each single element of the pathway are more complex then illustrated. Yet, for the
purpose of my thesis, I abbreviate the most important parts. Green arrows indicate excitatory
signals, red arrows inhibitory signals. The abbreviations are FEF = frontal eye field, SEF
= supplementary eye field, DLPFC = dorsolateral prefrontal cortex, LIP = lateral parietal
area, BG = basal ganglia, SC = superior colliculus, OPN = omnipause neurons, LLBN =
long-lead burst neurons, BN = burst neurons. The last three build the neural network of
the burst generator. For references, please see (Otero-Millan, Macknik et al., 2011; Scudder
et al., 2002).

caudal SC neurons — firing excitatory signals — indirectly influences
the nBG through long-lead burst neurons (LLBN). In this circle of
mutual interaction, the activity before, during and after saccades
of all these three elements have proven to be equivalent or similar
during microsaccades (Brien, Corneil, Fecteau, Bell & Munoz, 2009;
Hafed, 2011; Munoz & Wurtz, 1993; Van Gisbergen, Robinson &
Gielen, 1981; Van Horn & Cullen, 2012).
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Three different qualitative models exist which try to explain
the triggering mechanism for microsaccades and sometimes incor-
porate it with the triggering mechanism for normal, large-scale
saccades. Based on the results that the peak of neural activity is lo-
cated around the center in the SC map, a microsaccade is triggered
whenever the peak surpasses a certain threshold distance from the
center (Hafed et al., 2009; Hafed, 2011). For Rolfs et al. (2008), the
firing rate at the center of the SC map has to exceed an activity
threshold. Away from the SC map, Otero-Millan, Macknik et al.
(2011) proposed a model in which the balance in the inhibitory
circuit between OPN and LLBN spills over to the one or other op-
ponent such that microsaccades are triggered. In the last proposal,
microsaccades and saccades can be triggered by the same causes.

In the model by Hafed (2011), neurons from the rostral SC prove
to be selective for microsaccade directions and amplitudes. Whereas
Hafed (2011) suggests that a deviation from the center of the SC
map will be the source of a microsaccade trigger, in their work,
Rolfs et al. (2008) suggest that the direction of deviation of the
peak of neural activity from the center of the SC map relates to the
microsaccade direction. The last assumption for the selection of the
direction of microsaccades is also assumed in the proposed model
by Otero-Millan, Macknik et al. (2011).

1.5 Video-based eye tracking

The experimental data from the three different experiments whose
data I will be using in this thesis were recorded with the EyeLink
II and EyeLink 1000 video-based eye tracking devices from SR
Research, Osgoode, ON, Canada and one iViewX system from
SensoMotoric Instruments, Teltow, Brandenburg, Germany. I will
briefly introduce the systems and setup used for the experiments.

The EyeLink II system sampled the data at 500 Hz with a spatial
resolution better than 0.01° (RMS; root-mean square). Three sensi-
tive (to infrared light) cameras are mounted on a device fastened
to the head, two recording the eye movements with a third on
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Figure 1.7: Illustration of the EyeLink II setup. This device is fastened on the partic-
ipant’s head, eyes are illuminated with the infrared diodes on either side of the cameras.
Adapted from the EyeLink II manual.

the forehead to account for head movement corrections onto the
trajectory. The setup is shown in Figure 1.7. The cameras measuring
the eyes are seated on an arm which reaches from the temple to a
position below the eye at a distance of about 5cm.

Beside each of these cameras, one infrared diode illuminates the
eye at 925 nm and another at 880 nm, the latter allowing detec-
tion of the corneal reflex. The forehead camera identifies head
movements through displacement measurements to four 880 nm
infrared markers fastened around the screen. The recording of eye
movements is threshold-based and adaptable for each participant.
A participant’s pupil appears more dark than its surrounding. The
threshold reduces the recorded video to a video of a disk, repre-
senting the pupil. The detected center of this disk at every time
point is recorded as the trajectory of the eye. Optionally, the corneal
reflex can be used for a more accurate identification of the eye
position. Recorded data are filtered for random outliers with an
heuristic filter by Stampe (1993).

Additionally, the EyeLink 1000 from SR Research was used. This
system operates without any fixed apparatus on the participant’s
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IR illuminator camera

Figure 1.8: Illustration of the EyeLink1000 device. This device is situated below the
stimulus screen, illuminating the eye with infrared light and recording it with an high-speed
camera. Adapted from the EyeLink 1000 manual.

head. The EyeLink 1000 systems sits below the stimulus screen and
features the 890 nm infrared illuminator and camera for binocular
recording in desktop mount mode (illustrated in Figure 1.8).

No further equipment was required for a recording. A partici-
pant stabilizes his or her head on a chin rest. The eye position was
processed the same way as with the EyeLink II system. Also here,
the corneal reflex was optionally available for a measurement. The
recordings were sampled at 1000 Hz with a spatial resolution of
0.01° RMS.

Furthermore, the iViewX Hi-Speed system from SensoMotoric In-
struments, Teltow, Brandenburg, Germany was used in an experi-
ment. The system consists of a tracking column with a head fixture,
a mirror and high-speed camera. The camera is situated above the
participant’s head, focusing the mirror in front of the participant’s
eyes. For an illustration, see Figure 1.9. The mirror, coated on one
side, reflects infrared light and allows the transmission of visible
light. The camera records the infrared illuminated image in the
mirror. The pupil is detected and computer-based image processing
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Figure 1.9: Illustration of the iViewX Hi-Speed setup. Adapted from the iViewX
manual.

calculates the position of the eye by detection of the pupil center.
This system also allows for optional tracking with corneal reflex.
Data were acquired binocularly at 500 Hz at a typical tracking
resolution of 0.01°.
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2 Detection of saccades and
microsaccades

In particular, in studies of scene perception (J. M. Findlay &
Gilchrist, 2003) and reading (e.g., Cunitz & Steinman, 1969; Li-
versedge et al., 2011), the focus of interest is often not only on
saccades and fixations but additionally on the microsaccades oc-
curring during a fixation. Then both saccades and microsaccades
appear in the trajectory of the eye. If both types of ballistic eye
movements (cf. Chapter 1.3) are of interest in a particular study,
the detection of both at the same time is a complex problem. In this
chapter, I will present a novel detection method, which is capable
of identifying saccades and microsaccades at the same time, is
scale-invariant and uses the representation of the time series in the
time-frequency domain. Until now, if saccades and microsaccades
co-occur, they are either detected by hand (e. g., Abadi & Gowen,
2004) or, in the majority of cases, automatically detected through
the first derivative or its alterations, i. e., the routines based on their
property of high velocity (Engbert & Kliegl, 2003b; Mergenthaler,
2009). All extant detection approaches are either not objective or
crucially dependent upon the amplitude scale. Saccades can be
seen as large-scaled versions of microsaccades or microsaccades as
small-scale saccades. Many times, small involuntary saccades that
occur during fixation are even called microsaccades, expressing the
close relation between both (Otero-Millan et al., 2008; Mergenthaler
& Engbert, 2010). To extract saccades of all scales of amplitude from
the horizontal and vertical trajectory of the eye, their time series is
examined with the continuous wavelet transform (Holschneider,
1995; Mallat, 1998). Through the scale-invariance of the continu-
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ous wavelet transform, both saccades and microsaccades can be
detected as singularities in the time series.

In the following, I will briefly review the most prominent existing
method for saccade detection, and after a mathematical preamble,
I will show its applicability for detecting saccades and microsac-
cades in an eye movement and fixational eye movement experiment.
In contrast to derivative-based methods, I use structural properties
of the trajectory in this novel detection method. Furthermore, the
proposed method is tested against surrogate data that mimic the
unknown properties of the fixational eye movements’ time series.
Parts of the results have been published in Bettenbiihl et al. (2010)
during the preparation of this thesis.

2.1 Existing concepts

As mentioned above, two different approaches exist to determine
saccades and microsaccades in eye and fixational eye movements.
Reviewing hand-picking would mostly rely on the skills of a hu-
man observer to determine shapes in the trajectories of the eye
movements, as in Figure 1.2. I will focus my review on the velocity-
based threshold method, which has been shown to assist in the
detection of saccadic eye movements in different modifications.

2.1.1 Velocity-based detection of saccadic events

With the introduction of video-based eye tracking, the amount of
data available to study saccades and microsaccades increased ex-
ceptionally and detection by human observers (Adler & Fliegelman,
1934; Ratliff & Riggs, 1950; Nachmias, 1959) needed to be (semi-)
automatized. Several algorithms have been proposed (Boyce, 1967;
Kohama & Usui, 2002; Martinez-Conde et al., 2000; Mgller et al.,
2002; Mould, Foster, Amano & Oakley, 2011; Nystrom & Holmqvist,
2010) to deal with the huge amount of available data and detect
saccadic eye movements — e. g., in fixation tasks, reading or scene
perception experiments. In vision research, most of the detection
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algorithms used one main property shared between saccades and
microsaccades: the high velocity (or its derivative, acceleration).

For the first time, Boyce (1967) used a method that was based on
the statistics of the increments of the trajectory, the first derivative
of the time series. Engbert and Kliegl (2003b) introduced an algo-
rithm that accounts for different velocities of saccades of individual
participants. This method is still widely used in the field of eye
movement research. Basically, the method uses an ellipse in the
velocity space of the eye movements’ trajectories. An individual
threshold multiplier then determines the radii of the ellipse in the
space of the horizontal and vertical eye movement’s velocities. The
threshold multiplier is set according to the data’s standard devia-
tion in horizontal and vertical eye movement directions. As a result,
parts of the trajectory that leave the ellipse for a short period of
time are detected and considered saccadic eye movements (Engbert
& Mergenthaler, 2006). In order to acquire the best detection re-
sults for every participant and experiment, a so-called threshold
multiplier needs to be optimized such that the radius of the ellipse
is individually adapted.

A challenge for the velocity threshold method is the detection of
microsaccades and saccades at the same time. The velocity thresh-
old method offers three possibilities for detecting both event types —
saccades and microsaccades. First, optimization of the threshold
multiplier by visual inspection of the results in order to obtain an
optimal value, which then is sensitive enough to detect microsac-
cades and thereby also large-scale saccades. Second - if recording a
secondary dataset of fixational eye movements — the determination
of a proper threshold multiplier through the former. Third, succes-
sive computations in order to primarily detect saccades and, after
removal of the former and adjustment of the threshold multiplier,
the detection of microsaccades.
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2.2 Mathematical background

Mathematically, both microsaccades and saccades can be seen as
singularities in a time series. I will give a primer on singularities
and the continuous wavelet transform for real-valued and complex-
valued time series as well as the method of maximum modulus lines, a
numerical method for detecting singularities in time series through
the continuous wavelet transform.

2.2.1 Singularities, onsets and cusps

A time series is a function s(t) which at each time point ¢ associates
the observed quantity s(t) with a number. Now suppose that a
time series s(t) is differentiable at all time points t except for a
denumerable number of time points. At these time points, the
time series is irregular. In mathematical terms, the term pointwise
regularity refers to the local behavior of a function or time series
at an individual time point. The lower the pointwise regularity is
at a time point t, the stronger the singularity at ty. More than one
singularity can occur in a time series. A complex time series can
appear as a superposition of singularities. One way to characterize
and detect singularities is to measure the Holder regularity of the
time series s(t). A time series s(t) is called a-Holder regular in tg if
a polynomial P, (t) of degree n exists such that

s(to 4+ At) — P, (A)| < c|At[® 2.1)

with At — 0, a constant ¢ > 0, and n = [«] the integer part of
« € R (adapted from Farge, Schneider, Pannekoucke & Nguyen van
yen, submitted 09/2010). An example of a stochastic process!
whose realizations are almost always singular is the fractional

ITo give a brief definition of the term stochastic process, it is sufficient to note
that a stochastic process is a collection of random variables X(t) = X; on an
index set t € T. The random variables are drawn from a specifiable probability
distribution, which, in the case of a fractional Brownian motion, is the normal
distribution. One finite-length realization is one set of random variables X(t)
ordered according to their index t = 1,..., N. This realization presents us a time
series.

26



Detection of saccades and microsaccades

or fractal Brownian motion (Mandelbrot & Van Ness, 1968). Frac-
tals have structure at all length scales and display self-similar
behavior, i. e., zooming to smaller scales inside the function, the
same pattern will appear over and over again (Mandelbrot, 1982).
Normalized fractional Brownian motion By (f) is, in terms of prob-
ability distributions, self-similar since

Br(At) ~ |A["Bp(t) (22)

with A € R and H € (0,1) the Hurst exponent (Hurst, Black &
Simaika, 1965) as a measure of intensity of the self-similarity. A self-
similar time series By (f), which was achieved as one realization
from a fractional Brownian motion process, is everywhere non-
differentiable and is composed of dense singularities. The time
series By(t) has the same Holder regularity (the same Holder «)
everywhere and is called monofractal (Mandelbrot, 1982).

In contrast to these dense singularities, a typical example of a
function that contains an isolated singularity is an onset, presented
in Figure 2.1a as singularity at ty = 0. The equation of a local cusp
as in (Holschneider, 1995) is given by

s(to+ 1) =s(tg) +c—[t|% +c4 [t (2.3)

witha € R, cx € Rand [t|+ = J(|t| £t). An onset is obtained by
eliminating one of the summands c— = 0 or c = 0. Additionally,
different values for « are illustrated in Figure 2.1b.

For &« — 0, the trajectory of the time series looks steplike if
presented over time. For & — 1 the trajectory after the onset point
to = 0 increases (almost) linearly. If both ¢4 and c_ are nonzero as
in Figure 2.1b, different slopes are obtained on the left and right
side of the singularity.

In Figure 2.2, a trajectory of a fractional Brownian motion and
inserted cusps is presented. The trajectory is singular almost every-
where but differs in the type of singularity. The dense singularities
of the fractional Brownian motion and the isolated singularities
inserted through the cusps differ. Both the dense and isolated sin-
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Figure 2.1: Different shapes of singularities at ty = 0 for different «. Trajectories
of the time series defined by Equation (2.3) with (a)c— =0, c4 = 1and (b) c— = —1.0,
cy = —04 and different a.
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Figure 2.2: The generated trajectory of a fractional Brownian motion with in-
serted isolated singularities. Six singularities were inserted at positions t = n x 150
forn=1,...,6. The Hurst exponent of the fractional Brownian motion is H = 0.35.

gularities are scale-invariant. Here, a scaling of the amplitude does
not change the local regularity in the time series. We will see how it
is possible to detect the latter although dense singularities occur in
the time series. The continuous wavelet transform offers the most
suited tool to this purpose.

28



Detection of saccades and microsaccades

2.2.2 Continuous wavelet transform

To analyze local regularity in a time series and detect local singular-
ities, the continuous wavelet transform has proven to be a powerful
tool (Arneodo, Grasseau & Holschneider, 1988; Holschneider
& Tchamitchian, 1991; Mallat & Hwang, 1992). Analyses of a
time series in its time-frequency representation found several
applications in signal processing and time series analysis (see
e.g., Daubechies, 1992; Holschneider, 1995; Quiroga, Nadasdy &
Ben-Shaul, 2004; Daubechies & Teschke, 2005; Diallo, Holschneider,
Kulesh, Scherbaum & Adler, 2006).

The transform for a real-valued time series

For a time series s(t) € R, the Fourier transform is given by

S(w) = /S(f) g(tw)dt = (g(t,w) | s(t)) (24)

with ¢(t,w) = ¢! and the complex conjugate g(t,w) = et
Interpreting w as frequency, the function S(w) is the frequency
representation of the time series s(t) at frequency w. The integral
equals the scalar product if and only if the integral converges
absolutely.

The continuous wavelet transform of a time series s(t) € R with

respect to a wavelet ¥ is defined by the integral transform

Ws(a,b)zlfs(t)w(tb)dt _ <iw(tb> s() (2.5)

a a

IS

such that Ws(a, b) is a complex-valued function of two parameters
a and b. Its values are referred to as wavelet coefficients. Here, the
bar at ¥ denotes the complex conjugate of the wavelet or wavelet
function ¥. Again, the integral needs to converge absolutely such
that the second equal sign is true. The parameter b is called
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translation parameter such that a variation of b shifts the wavelet
along the time axis, whereas a is the dilation parameter to scale the
wavelet. For the analysis of singularities, the L!-normalization is
used by applying prefactor 1/a to the dilated wavelet in Equa-
tion (2.5). This emphasizes small scales, i.e., high frequencies
(Antoine, 2004). The dilated wavelet ¥ has its Fourier spectrum
concentrated around w = wg/a such that the real frequency w
is present through w = wg/a with wyp the (characteristic) center
frequency of the wavelet Y. The Fourier transform of the dilated
wavelet is localized around wyq/a.

In wavelet analysis, the time series is transformed into its time-

frequency representation, which indicates when (parameter b)
which frequency (parameter wg/a) occurs. Other time-frequency
transformations exist, for example, the short-time Fourier trans-
form (Oppenheim, Schafer, Buck et al., 1989) or Gabor transform
(Feichtinger & Strohmer, 1998), which is a special case of the former.
But only wavelet analysis is able to characterize local singularities,
as it has fewer a priori limits to its time-resolution.
If the origin of the time series is a measurement, the time series
will no longer be continuous but discrete in time. Then, the inte-
gral transform (Equation 2.5) for a time series s(t;) € R will be
calculated by a sum (Torrence & Compo, 1998)

N L
Wala,b) = - Y s(t)F (“b)) 26)

i=1 a

with t; the discrete time and N the number of time points of the
time series s(t;). Transforming s(t) or s(t;) into its time-frequency
representation, the wavelet transform contains information about
the distribution of amplitude and phase of the time series in time
and frequency such that

Wy(a,b) = As(a,b) & ®s(*P) 2.7)
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where the modulus |Ws(a,b)| = As(a,b) is the amplitude and
D,(a,b) = arg(Ws(a, b)) is the phase.

Not every function can be used as mother wavelet ¥ but the
function has to respect three major properties (Holschneider, 1995):

1. localization in time or space,
2. localization in frequency space,

3. function of zero mean or, in more general, some consecutive
moments must vanish.

In mathematical terms, the condition on localization in time and
space is given by

¥ (1)) < e(L+[t?)~"2 (2.8)

for some ¢ > 0 and v > 1. Denoting with ¥ (w) the Fourier trans-
form of ¥ (t), the second condition is written as

¥ (w)] < c(1+ |wf?) /2 (2.9)

with some ¢ > 0 and u# > 0. The last condition is for some consecu-
tive moments defined as

/ Y(t) t"dt =0 for m=0,...,n (2.10)

with a positive integer nn > 0. With reference to the vanishing of
the first moment it is called admissibility condition.

The Morlet wavelet

To detect singularities, even if they are superimposed, the best
choice is a complex-valued wavelet (Farge et al.,, submitted
09/2010). The Morlet wavelet (Grossmann & Morlet, 1985) is a
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complex-valued wavelet and is presented in time-space domain
through (Holschneider, 1995, p.30)

Y(t) = elwole=/2 (2.11)
and in frequency domain through (Holschneider, 1995, p. 30)
(w) = V2me (W=w0)*/2 2.12)

with 2 = wp/w and wy as center frequency. The oscillating wavelet
is enveloped by a Gaussian function that is given by e /2 In
a strict mathematical sense, the Morlet wavelet is not a wavelet
because the first moment does not vanish (cf. Equation 2.10) and
it is called pseudo-wavelet. However for large enough wy > 0, the
Fourier coefficients of the negative frequency components are small
compared against those of the positive frequency components of
¥(w) and ¥(0) ~ 0 or, what amounts to the same, the wavelet
is over zero mean and the admissibility condition is fulfilled. For
practical purposes, values of wy > 5 are chosen to avoid problems
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—0.5

— real part
Ly - imaginary part
~1.0 - envelope

-4 -3 -2 -1 1 2 3 4

0
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Figure 2.3: The Morlet wavelet at center frequency wo = 7rv/2/In2. The oscil-
lations of the real and imaginary part of the complex-valued wavelet ¥(t) are
enveloped by the positive and negative modulus of ¥ (t).
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with smallest frequency components. The illustration in Figure 2.3
(adapted from Holschneider, 1995) presents the Morlet wavelet at
a center frequency wy = 71v/2/In2 ~ 5.336. At this value, the real
part of the Morlet wavelet touches the Gaussian envelope at half its
height and the value has proven to be particularly useful in signal
processing (Grossmann, Kronland-Martinet & Morlet, 1989).

For what follows, it is essential to review the definition of the
terms progressive and regressive function (from Holschneider, 1995).
If and only if the Fourier transform of a function f(t) € L?>(R) is
supported by positive frequencies only,

-~

supp f(w) C Ry (2.13)

~

then the function f(t) is called progressive. Here, f(w) denotes
the Fourier transform of the function f(t). In contrast, a function
¢(t) € L?(R) is called regressive if and only if

supp g(w) C R (2.14)

or, what amounts to the same, if the time-reversed function g(—t)
is progressive.

The Morlet wavelet becomes a progressive wavelet with a real-
valued frequency representation ¥(w) € R by adding a corrective
term 7(t) such that

W (t) = ot /2 Ly (f) (2.15)

The fact that the Morlet wavelet is a progressive wavelet allows, for
example, the study of phase shifts in the complex-valued part of
the wavelet transform W;(a, b) and simplifies the application to a
complex-valued time series.

The transform for a complex-valued time series

Applying the wavelet transform with a complex-valued wavelet
function ¥ on a time series s(t) € C and considering Equation (2.5),
attention has to be paid to the absence of symmetry in frequency.
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This symmetry exists for s(t) € R. If s(t) € C, then the full wavelet
transform for all frequencies is separated into the progressive
component W' (a,b) and regressive component W; (a,b) (Kulesh,
Diallo & Holschneider, 2005) such that

Wis(a,b) = W (a,b) + W7 (a,b) (2.16)
with
n Ws(a,b) alwy >0
W (a,b) = 0 e < 0 (2.17)
_ [0 a twyg >0
Wy (a,b) = { Wa(a,b) alwp <0 (2.18)

with dilation and translation parameters a = wy/w and b and
the characteristic center frequency wy. In contrast to the physical
frequency w, the dimensionless dilation parameter a can take both
positive and negative values.

Now, to represent a time series s(t) € R or s(t) € C in its
time-frequency representation, the dilation parameter a4 has to be
scaled such that it covers the frequency range that is of interest
for the time series. For every different dilation parameter 4, the
wavelet transform W;(a, b) contains the frequency information of
the time series s(t) up to the frequency w = wq/a. Selecting a
specific frequency range of interest for the wavelet transform is
called a zoom of the wavelet transform. Using different dilation
parameters obtained through a = ay 4+ nAa with gy the maximum
scale, corresponding to minimum frequency, n = 1,...,N the
number of voices (frequency steps) and Aa selected such that the
frequency zoom can be covered, one obtains the wavelet transform
that represents the time series at N voices over time.

Now, to perform the full wavelet transform as in Equation (2.16),
two transforms have to be computed. The N voices can be differ-
ently distributed for a given frequency range. A logarithmic scaling
in the frequency range is particularly useful for the characterization
of singularities as we will see below.
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2.2.3 Detection of singularities

In Chapter 2.2.1, the onset was presented as an example of an
isolated scale-invariant singularity. Now, the time series s(t) might
be given through Equation (2.3) withc— =0, c; =1 and « = 0.15.
In Figure 2.4, at different frequencies w = wp/a the modulus and
the phase ®(a,b) (cf. Equation 2.7) of the wavelet transform are
shown. The wavelet transform is calculated for 128 voices in the
frequency range between 20 and 50 Hz. The frequency range, on
which the time series was analyzed, is logarithmically sampled.
Then, the Morlet wavelet was dilated with these parameters a.
In time-frequency representation, the singularity at time point £y
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Figure 2.4: Modulus and phase of the wavelet transform of an onset. The onset
was calculated by Equation (2.3) withc_ =0, cy =1, and « = 0.15.
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appears as a cone-like structure in the modulus of the wavelet
transform. At lower frequencies, the wavelet is broader such that
the width of the cone scales with the width of the wavelet function
at each voice a. The latter is only true for low variance in the
time series before and after the singularity. The wavelet focuses
the whole variance at time points of singularities into the cone,
whose maximum at each voice corresponds to the position of the
singularity in the time series.

Now, singularities can be detected in the modulus of the wavelet
transform (Mallat & Hwang, 1992; Tu, Hwang & Ho, 2005). The
slope of the wavelet coefficients over all analyzed frequencies
at the time point of the singularity characterizes the singularity
(Holschneider, 1988; Jaffard, 1989). In Figure 2.4, one single cone,
centered around ¢, is present for the isolated singularity at ¢y. The
slope of the wavelet coefficients of the time series s(t) characterizes
the Holder « regularity such that at time point ¢y the singularity is
characterized through

Ws(a, by) =~ ¢ a® ¢!s(abo) (2.19)

with the overall amplitude ¢ and ®;(a, by) the phase of the wavelet
transform — the local geometry of the singularity (Holschneider,
1995). In Figure 2.5, the wavelet coefficients at point ¢y from Fig-
ure 2.4 are plotted against frequency in green color. The other lines
correspond to the other onsets which were illustrated in Figure 2.1.
The slope of every line identifies the Holder «.

Building on this, singularities can be characterized and detected
in the modulus of the wavelet transform. Numerically, the detection
is usually done with the so-called method of maximum modulus lines
(Marr & Hildreth, 1980; Witkin, 1983). Mallat and Hwang (1992)
gave a precise definition of a maximum modulus line, which I
adapted as follows:

If W;s(a,b) is the wavelet transform of a time series s(t), then

e Any point (ag, by) is called local extremum if
oW (ap,b)/0b has a zero-crossing at b = by,
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Figure 2.5: The asymptotic behavior of |W;(a,bo)| of a scaling singularity in
a log-log-plot. The slope of every single line identifies the « value used for the onsets
presented in Figure 2.1.

e Any point (ag, by) is called maximum modulus if
|Ws(ag, b+ e)| < |Ws(ag,by)| for some & > 0.

Then, any curve, which connects the maximum modulus at each
single voice a as such that the curve passes the whole analyzed
frequency range, is called a maximum modulus line. It is called a
line because, for a singularity as exemplified in Figure 2.4, the line
would be on top of the cone through the maxima of each voice.
We will see later that, for real-world time series, it might not be a
straight line every time but instead a curve with slight variations
in bo.

For a real-valued time series s(f) € IR, the maximum modulus
line £(a, by) contains for ¢ > 0 the wavelet coefficients over all a at
by such that

|Ws(ﬂ/ bo :|:€)| < ‘Ws(arb0)| = AS(”/ bO) = E(”/ bO) . (2.20)

The parameter € can be scaled with the frequencies 1/4a to account
for the cone-like structure of the singularity in the modulus of the
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wavelet transform. Each singularity occurring in the time window
of 2e produces a cone-like structure in the modulus of the wavelet
transform. For dense singularities, the overlapping of the cones
forms a smooth surface such that isolated singularities can be
detected by the maxima in the modulus. According to Mallat and
Hwang (1992), a maximum modulus line converges at small scales
to the location of the singularity such that

L(a,by) = L(0,ty) for a—0 (2.21)

and f( defines the position of a singularity in the time series s(t).

In Chapter 2.2.1, we have seen that a time series originating from
a fractional Brownian motion process is singular (almost) every-
where. Now, only if a time series has few isolated singularities, can
the singularities be identified by their asymptotic behavior along
the frequency (Equation 2.21) and the values of Equation (2.19)
estimated. The wavelet coefficients of the dense singularities of
fractional Brownian motion are rarely local maxima. Using the
Morlet wavelet and transforming a time series as presented in Fig-
ure 2.2, only isolated singularities can be detected by the cone they
produce in the wavelet transform (Farge et al., submitted 09/2010).
In Figure 2.6, the isolated singularities are visible on all scales but
are influenced by the cones of the surrounding singularities of
fractional Brownian motion such that the identification through the
method of maximum modulus lines will detect the time points of
isolated singularities in the time series.

Analyzing a time series s(t) € C with the Morlet wavelet, the
wavelet transform for all frequencies is separated into progressive
and regressive wavelet transform. Recapitulating Equation (2.19),
the slope of the wavelet coefficients identifies the Holder « reg-
ularity. For a singularity, it identifies the type of singularity by
«. Now, for the purpose of this thesis, no interest is turned into
the type of singularity indicated by a but instead, a singularity
should, using the maximum modulus lines be detected irrespectively
of its contribution of positive or negative frequencies. Instead of
using a pre-defined threshold to separately detect the time points
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Figure 2.6: Modulus of the wavelet transform for a trajectory of fractional Brow-
nian motion with inserted isolated singularities. The six singularities were inserted
at positions n x 150 for n = 1,...,6. Their corresponding cones are visible in the wavelet
transform.

of singularities in both transforms, I overestimated the modulus of
the wavelet transform to detect maximum modulus lines such that

Ws(a,bp+€)| < |Ws(a,by)| = W5 (a,by) + Wy (a,bo)l
< Wi (a,bo)| + Wy (a,bo)|
— £(a, bo) (2.22)

Considering real world data, “perfect” singularities are physi-
ologically impossible because they would require infinite acceler-
ations. Thus, a more realistic model of singularities might be to
consider smoothed singularities. Then, the maximum modulus line
may end at a scale related to the smoothing scale of the singularity.
For this reason, I only considered those maximum modulus lines
which go from a fixed highest frequency (= smallest scale) to small-
est frequency (= largest scale). The estimated position ¢y of the
singularity is then simply the small-scale end of the corresponding
maximum modulus line.
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2.3 Novel detection method for saccades

We have seen how the continuous wavelet transform allows the
detection of isolated singularities, even in a time series of superim-
posed dense singularities. Now in vision research, the time series
of eye movements during a sequential scanning task experiment
can be divided into time periods of saccades and fixations. Si-
multaneously, fixations are again subdivided into tremor, drift
and saccades during fixation (cf. Chapter 1.1). Mergenthaler and
Engbert (2007) showed that fixational eye movements can be mod-
eled by a fractional Brownian motion process. According to this,
if the time series of a sequential scanning task experiment can
be divided into saccades and fixational eye movements, the latter
containing microsaccades, and if the continuous wavelet transform
can scale-invariantly detect isolated singularities in time series of
superimposed dense singularities, then the proposal to define sac-
cades and microsaccades as singularities in the time series of eye
movements leads to a novel detection method for both.

To examine this proposed novel detection method, I used data
from a Landolt-C-maze experiment (Snellen & Landolt, 1874b,
1874a). Saccades of all scales appear in these eye movements
through the jumps between stimuli and within stimuli fixations.
The specifications of the video-based eye tracking setup are given
in Chapter 1.5 and the Landolt-C-maze experiment was performed
as follows: Each participant was required to perform a visually
guided search through a maze of Landolt-Cs with a closed circle as
a target. The start position was marked with a bold font Landolt-
C. The gap position indicated the search direction, the proposed
movement direction for the eye.

The Landolt-C stimuli were black of 1.12° size (when presented
centrally), 0.27° width and with a gap of 0.07° in one of four
cardinal positions at 0°, 90°, 180°, or 270°. The 9 x 11 stimulus
maze was plotted on an invisible grid. Symbols placed in a
distance of 3° were presented on a light gray background to
account for illuminance homogeneity. The resolution of the screen

40



Detection of saccades and microsaccades

(a) (b)
0O 0O O 0C OO0 O0OOCCC 0O 0O 9 0C OO0 OOCGCOC
0O OO 0 0 OO0 060 O O C 0O OO 0 0 OO0 0 O O C
0O 0 9 0 0 0O OO0 O O O 0O 0 92 0 0 0 O 0O O O
0O 9 ¢cCcC O 0O 0 0 o0 2 ¢C 0O 9 ¢cc O 0 0 0O o0 2 ¢C
c 0 0c 09252 095 0 0 DO c o0 0¢Cc o092 0 0 2 O
0O C 00 02 0 00 O O C 0O CcC 695 0 O O 0 O cC
0O 0 00 ¢CcC o0 0cCcO0O0CO O 0 O 0 ¢C O O SO C O
O 0 00 00 0290 000 O 0 0 0 0 D900 00
O 0O 000 O cCc O 0O O 0O 0 O O 0O C O 0O

Figure 2.7: Illustration of the Landolt-C-maze and an eye movement trajectory
on the Landolt-C-maze. (a) A path, given by the sequence of open sides of the Landolt-C
stimuli, needed to be followed by a participant with their eyes. The path started at the bold
font C and stopped when the participant reached the closed symbol. (b) A representative eye
movement trajectory observed from one participant through video-based eye tracking.

was 1280 x 1024 pixels. Positions of gaps for Landolt-Cs outside
the search path have been chosen at random. Eye movements were
recorded using a video-based eye tracking system (cf. Chapter 1.5).
Each of the 38 participants performed 100 trials. For each trial,
a randomly chosen Landolt-C-maze was used. For the scale-free
detection with the wavelet method, a set of 2574 randomly chosen
trials was used. The experiment was designed and performed by
Hans A. Trukenbrod at the University of Potsdam (Trukenbrod
& Engbert, 2007, 2012) with the iViewX Hi-Speed eye tracking
device (cf. Chapter 1.5). The optional corneal reflex was used in the
experiment to compensate head-camera-related position changes.

By using the complex-valued Morlet wavelet, I aimed to detect
saccadic events in more than one movement direction. Saccades
occur more prominently in horizontal and vertical direction but
also in oblique direction (cf. Chapter 1.2). The time series h(t) and
v(t) are recorded for the horizontal and vertical eye movements.
To detect singularities irrespectively of movement direction with

41



Detection of saccades and microsaccades

the continuous wavelet transform, I constructed a complex-valued
time series 5(¢) such that

5(t) = h(t) +io(t) (2.23)
with

O A TR R SO el (2.24)

with fIj, and i, the estimated mean and ¢, and ¢, the estimated
standard deviations of the values in time series h(t) and v(t),
respectively. The time series /i(t) and () are standard-normalized
such that variances are equal. No influence exists in the selection
of which time series is taken to represent real or imaginary part of
5(t).

For the detection of singularities in the time series 5(¢) with the
continuous wavelet transform as given in Equation (2.5) and the
Morlet wavelet (Equation 2.11), a frequency range from 20 to 50 Hz
was chosen. As the left and right eye are well-correlated over this
range. Additionally, this allowed for working above a threshold
of 20 Hz, considering that below this threshold, the wavelet trans-
form gets influenced by other structures that might mask the data.
Above 50 Hz, the wavelet transform identifies more and more sin-
gular points. The filtering effect by the superposition of the single
cone and those related to each time point is reduced. Addition-
ally, the number of voices has to be chosen for the wavelet, i.e.,
the number of different dilation parameters a. On the logarithmic
scale, 128 voices have been used, i. e., 128 logarithmically sampled
frequencies between 20 and 50 Hz.

Singularities are visible at all frequencies such that I detected
those time points of singularities at which the maximum modu-
lus lines passed through the whole analyzed frequency range. In
Figure 2.8, the modulus of the wavelet transform W;(a, b) together
with both dimensions of the eye movement trajectory is shown.
The positions of occurrence of a singularity are marked with dots.
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Figure 2.8: Time-frequency representation of an eye’s trajectory performing the
visual search path. (a) First 6 seconds of a representative horizontal and (b) vertical
component of the eye trajectory with detected singularities (green dots). (c) Modulus of
the wavelet transform. The maximum modulus lines (cf. section 2.2.3) are apparent during
visual inspection.

Having detected the saccadic eye movement at all scales, I show
in Figure 2.9 a representative eye’s trajectory of one trial of one
participant on a Landolt-C-maze. The wavelet method is a point
estimator for t, the time point of the occurrence of the singularity —
the saccadic eye movement. In Figure 2.9, a time window of +60 ms
around these time points of singularities is used to mark the sac-
cade. In the inset figure, the part of the trajectory that belongs to a
saccade (in green) or fixation (in yellow) is marked.

Both the saccades that separate fixations and the microsaccades
inside the fixations have been identified by the wavelet method.
Thus, the proposed wavelet method proves to be a scale-free de-
tection method for saccades and microsaccades. No optimizing
computation steps need to be performed to detect both at the same
time. I computed the detection for all participants and trials. The
detection of singularities using the continuous wavelet transform
and definition of saccades and saccades during fixation as iso-
lated smoothed singularities has been proven to be an appropriate
method for their detection. We will now see how the detection
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Figure 2.9: Detection of saccadic eye movements in the trajectory of the left eye,
following a path on a Landolt-C-maze. Trajectory parts in green depict a 0.12 seconds
time window around the detected time point of a singularity. The yellow parts are the rest
of the trajectory, i.e., for this type of task the fixations. The inset figure is a zoom into the
trajectory. Start and end point of the search task are marked as black and red dot, respectively.

method performs on time series acquired from a fixational eye
movement experiment.

2.4 Detection of microsaccades

We have seen how the wavelet method allows us to detect saccades
of all amplitude scales in the two time series of horizontal and
vertical eye movements in a sequential scanning task experiment.
Time series with smaller variances in their amplitude distribution
are the time series recorded in a fixation task experiment. During
fixational eye movements, the amplitudes of the drift and microsac-
cadic movement are smaller. This reflects itself in the velocity
distribution and complicates the detection through the latter.
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First, I will give a brief introduction into the fixation task experi-
ment. Participants with an average age of 22 years and normal or
corrected to normal vision performed a fixation task. A black square
on a white background (3 x 3 pixels, spatial extent of 7.2 arcmin)
was presented. Participants were asked to remain focused on this
point and to prevent blinking during each record. An online check
for blinks assured the completion of trials. Skipped trials were re-
peated. To avoid false detection of blinks, trajectories were checked
by hand and skipped if a blink occurred. Each subject was required
to finish 30 trials of 20 seconds each. Every fixation trial was fol-
lowed by the presentation of a photograph for 10 seconds, allowing
participants to relax and perform inspection saccades or blinks.
The horizontal and vertical position of the eye was examined by
the position of the center of mass of the recorded dark area of the
pupil.

This experiment was designed and operated (cf. Chapter 1.5)
by Konstantin Mergenthaler on the EyeLinkIl eye tracking de-
vice at the University of Potsdam (Engbert & Mergenthaler, 2006;
Mergenthaler & Engbert, 2007; Mergenthaler, 2009).

As mentioned in the previous section, fixational eye movements
have been modeled as fractional Brownian motion and we saw how
the wavelet method is capable of detecting isolated singularities
inside these dense singularities. In fact, it is more convenient to
define microsaccades as smoothed versions of isolated singularities.
The trajectory of microsaccades and the evolution of an onset over
time look highly similar, when considering the notion of defining
microsaccades as smoothed singularities (compare Figures 1.2 and
2.1).

In Figure 2.10, the trajectories of both eyes in a fixation task
experiment are plotted. The dot in the center of each axes marks
the position of the visual target the participants were asked to fixate.
For illustration purposes, the size of the target was not changed
such that it is a direct representation of the eye movements on the
target. Furthermore the scale of the movements in comparison to
the target is proportional.
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Figure 2.10: First five seconds of the time series representing the trajectory of
both eyes fixating a small spot on a computer display. (a) shows the trajectory of the
left eye and (b) the trajectory of the right eye. The target is displayed at the center of the
screen.

Previous results (Engbert & Kliegl, 2003b, 2003a) have shown
that microsaccades in fixational eye movements are highly pro-
nounced in the horizontal movement direction. And Liang et al.
(2005) have shown that the horizontal component dominates the
vertical component in microsaccades. Using only the time series
h(t) of the horizontal eye movements, the detection of singular-
ities reduces to the detection of maximum modulus lines in the
modulus of Wj,(a, b). The only preprocessing needed for h(t) is the
subtraction of the mean. Figure 2.11c shows a typical example of
the modulus of Wj,(a, b), the wavelet transform of the time series of
the horizontal fixational eye movements. The frequency range and
number of voices is the same as for the Landolt-C-maze experiment
data (20 to 50 Hz and 128 voices). Again, the time points of each
maximum modulus line at the highest frequency analyzed refers to
the position of the singularity in the time series (cf. Equation 2.21).
The trajectories in 2.11a and 2.11b for horizontal and vertical fixa-
tional eye movements are presented together with the marks at the
detected time points of singularities.

The detection of singularities was performed for both eyes sep-
arately. In the total number of 682 trials, 35531 and 35066 singu-
larities have been detected in the left and right eye, respectively.
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Figure 2.11: Representation of a fixational eye movement trajectory in time-
position and time-frequency space. (a) Horizontal and (b) vertical trajectory is plotted
together with markers indicating the detected time points. Green markers refer to detected
singularities and magenta markers refer to singularities that satisfied the binocularity crite-
rion. (c) Modulus of the wavelet transform of the horizontal component of the fixational eye
movements trajectory. Maximum modulus lines are identified because they connect local
maxima through the frequency range.

The difference in the number of detections between the eyes is
lower than 1.3 %, yielding good agreement for the microsaccadic
processes in both eyes.

Taking previous works into consideration (Ditchburn & Gins-
borg, 1952; Krauskopf, Cornsweet & Riggs, 1960), microsaccades
are generally binocular and conjugated eye movements. For the
further analysis on microsaccades in this thesis, I restrict myself to
the analysis of those singularities which occurred within a given
time window of £ 15 ms around the point of a singularity in
both eyes (T = 15 ms). Microsaccades in one eye have to have
their simultaneously appearing microsaccades in the other eye in
a time window [t) — T, fp + T]. I will refer to this as binocularity
criterion. In Figure 2.11a and 2.11b, the magenta-colored marks
identify binocular singularities and green marks correspond to
the remaining singularities. Table 2.1 provides a summary of the
detection results. After application of the binocularity criterion as
described above, a total number of 16947 time points of binocular
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Table 2.1: Rates of detected singularities in the horizonal eye movement in the
fixation task experiment. The total rates are given as mean + standard deviation.

Detected Binocular
Participant Number singularities singularities
of trials rate of [1] rate of [1]
left right
1 30 2.6 2.7 1.5
2 29 3.3 3.3 24
3 30 2.7 2.8 1.4
4 30 2.2 2.1 0.3
5 22 23 23 0.6
6 30 2.8 29 1.8
7 30 2.8 2.8 1.7
8 30 29 2.8 1.7
9 30 2.1 2.0 0.5
10 17 2.6 25 1.0
11 28 2.5 2.4 1.0
12 30 2.4 2.4 0.8
13 29 2.3 2.3 0.6
14 30 2.6 2.5 12
15 29 3.1 2.9 1.8
16 30 27 25 1.2
17 29 2.4 2.4 0.8
18 23 2.6 2.5 1.4
20 29 2.8 2.7 1.7
21 29 2.9 2.9 1.9
22 30 2.1 21 0.3
23 29 2.6 2.5 1.2
24 30 2.8 2.7 1.7
25 29 2.5 2.5 12
Total 682 2.6+£03 2.6+0.3 1.2+0.5

singularities remains. The mean rate of binocular singularities is
1.2 £ 0.5 events per second, given as mean =+ standard deviation.
This is in good agreement with Engbert and Mergenthaler (2006)
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on trials of the same experiment, using a threshold multiplier of
A = 5 in the velocity method.

2.5 Test of the detection method against
surrogate data

In fixational eye movement studies, a persistent behavior on a
short time scale (Engbert & Kliegl, 2004; Engbert & Mergenthaler,
2006) is observed. This is reflected in a positive autocorrelation
function of the velocities for small lags. Additionally, it has been
shown that microsaccades only influence the persistence behavior
of fixational eye movements. Detecting saccadic eye movements as
isolated singularities in the time series of fixational eye movements,
the approach has to be tested against the possibility that drift move-
ments might have been identified as isolated singularities. Then,
the null hypothesis that positively autocorrelated samples in the
drift are the reason for the observation of high-velocity epochs
in fixational eye movements, may be rejected. Drift or fixational
eye movements have been described as a time series that consists
of dense singularities. Indeed, autocorrelated samples could be
identified by the wavelet method to be isolated singularities. To
obtain a measure for false detections of singularities in the fixa-
tion task experiment, a time series is generated which preserves
properties of the velocity distribution of fixational eye movements
but shuffles the time indices. One specific type of surrogate data
allows us to test the null hypothesis. It is the amplitude-adjusted
phase-randomized surrogate data (Theiler, Galdrikian, Longtin,
Eubank & Farmer, 1992), which keeps the velocity distribution and
approximates the autocorrelation function of the original dataset.
The velocity 9(t) of the time series h(t) of horizontal fixational eye
movements is calculated as in (Engbert & Kliegl, 2003b). The gener-
ation of amplitude-adjusted surrogates is split into the following
steps (adapted from Bettenbiihl et al., 2010):

1. Sort ¥(t) and obtain a rank series r(9(t)).
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2. Generate a series g(t) of Gaussian distributed random num-
bers with the same length as 9(t), sort it and rearrange it
according to the rank series r(d(t)). This way, a time series
3(t) is generated that is a rescaled time series of ¢(t) with the
property that the amplitude samples are normal distributed.

3. Transform d(t) to the Fourier space: (F9)(t) = §(w).

4. Randomize the phase: 8,,,4(w) = ¥(w) ¢9(@) The series
¢(w) contains equally distributed random numbers between
—rmt and 7 with identical values for positive and negative
frequency.

5. Calculate the inverse of the Fourier transform:
(Fil grand)(‘”) = gmnd(t)'

6. Obtain a rank series of 8,,,4(t) and rearrange 9(t) according
to the new rank series.

To again achieve a position-time series, the velocities, each divided
by the sampling frequency, are summed up. In the following, I will
refer to the obtained position-time series as surrogates or surrogate
data of fixational eye movements. All 682 trials of surrogates are
included and the wavelet method is applied the same way as for
the original time series of fixational eye movements. The results for
the detected singularities are shown in Table 2.2. The rates of binoc-
ular singularities significantly differ from the results on fixational
eye movements and surrogates (two-sided f-test for independent
samples, p < 1077).

High velocity epochs in the data of fixational eye movements
that correspond to microsaccades can be split into more than one
interval containing a singularity. But this is true only for monocular
singularities. However, a high number of binocular singularities
is observed, an average of 10 detections per trial. To explain this
high number, a short calculation on the probability of randomly co-
occurring extended events of length 27 is to be performed. Here, co-
occurrence is defined as: A singularity is detected in one eye within
the time window of T milliseconds before or after a singularity

50



Detection of saccades and microsaccades

Table 2.2: Rates for the detected monocular and binocular singularities in the
surrogates of horizontal fixational eye movement data sets. The total rates are given
as mean=standard deviation.

Detected Binocular
Participant Number singularities singularities
of trials rate of [%] rate of [%]
L R
1 30 2.5 2.6 0.4
2 29 3.1 3.1 0.6
3 30 2.8 2.7 0.4
4 30 2.4 2.2 0.4
5 22 2.7 25 0.5
6 30 29 29 0.5
7 30 31 3.0 0.6
8 30 32 3.2 0.7
9 30 2.5 2.5 0.4
10 17 2.7 2.6 0.4
11 28 31 3.0 0.6
12 30 3.0 3.2 0.6
13 29 2.3 2.3 0.3
14 30 2.8 24 0.5
15 29 31 3.0 0.6
16 30 2.7 25 0.4
17 29 24 2.3 0.4
18 23 3.3 3.3 0.7
20 29 32 3.2 0.7
21 29 3.4 3.3 0.7
22 30 2.5 24 0.4
23 29 33 33 0.7
24 30 2.8 2.7 0.4
25 29 34 3.3 0.7
Total 682 29+03 2.8+04 0.5+0.1

in the other eye. To estimate the probability of this co-occurrence,
I will refer to the length of a monocular time series as T and
number of monocular singularities as N. As each 27 millisecond
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time window frames the singularity in the center and singularities
are at least At apart, a significant number of samples in the time
series remain that can cause the co-occurrence of singularities.
The probability of observing an event at approximately the same
time in two time series by chance, i.e., two events satisfying the
binocularity criterion, is given by

p(E) = w (2.25)

which is the ratio of time, belonging to points of possible co-
occurring candidates in the full trajectory.

For the presented data the values are: T = 0.03s, At = 0.002s,
T = 205, and as average number for detected monocular singu-
larities from all surrogates N = 57. Thus, the average number of
events, co-occurring in both surrogate time series is p(E) - N ~ 10
and agrees with the numbers of observed binocular events in the
surrogates: 10 binocular events (cf. Table 2.2) on average. I can close
the analysis on surrogates by stating that the detected number of
binocular events mainly depends on the probability p(E) of ran-
dom co-occurrence. This probability is given by the parameter used
in the binocularity criterion.

In the next chapter, I will analyze the shapes occurring in the
time series at the time points of detected singularities in order to
tackle the problem of false-detections by the continuous wavelet
transform and the binocularity criterion, and to understand the
shape relation between saccades and microsaccades as well as to
verify possibly significant properties of saccade or microsaccade
shapes if compared to surrogates.
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3 A mathematical model for
microsaccade shapes

The ballistic, jump-like event occurring in both eyes at almost the
same time, is often described the following way: having a trajectory
over time, the eye — after an initial period of rest — starts to accelerate
to its maximum velocity and rapidly decelerates to attain its future
(steady) position (J. M. Findlay & Gilchrist, 2003). A microsaccade,
as already mentioned in Chapter 1.3, is often referred to as a small-
amplitude saccade during visual fixation. The structural properties,
the shape of saccades and microsaccades, are usually observed in
studies but lack a detailed, statistical investigation.

In this chapter, I will propose a model for saccade and mi-
crosaccade shapes. Using this model, the suggested pattern of
single-saccadic and double-saccadic pulse (cf. Chapter 1.3) can be
completely parameterized. Furthermore, the model allows for the
study of microsaccades, describing the events through individual
parameter sets, and to get closer to a general model for fixational
eye movements.

After a brief review of existing characterization approaches for
(micro)saccades, I will introduce a method from multivariate statis-
tics used in this chapter, the principal component analysis (Jolliffe,
2002), and propose a shape model. Then, using this data-based
shape model, the prominent properties of saccades and microsac-
cades can easily be evaluated. An investigation on surrogate data
(Chapter 2.5) will reveal that the presented shape properties are
linked between saccades and microsaccades, which both have been
detected with the wavelet method. Additionally, I will present an
iris lens experiment whose analysis reveals that the video-based
eye tracking device indeed — as often hypothesized (Collewijn
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& Kowler, 2008) — overestimates the overshoot for saccades dur-
ing visual fixation. The chapter closes with the application of the
proposed shape model to examine important saccade and mi-
crosaccade properties. Parts of the results have been published
in Bettenbiihl et al. (2010) during the preparation of this thesis.

3.1 Existing concepts

Although the main sequence and different types of saccade patterns
can be found in literature to vaguely parameterize saccades and
microsaccades, no statistical model for the shape of saccades and
microsaccades exists. I will briefly review two of the most-used
characterization attempts for saccades and microsaccades before I
present a statistical model in this thesis.

3.1.1 Characterization through the main sequence

Since the ground-breaking work of Zuber et al. (1965), a well-
known concept for astronomers (Hertzsprung, 1911; Russell, 1913)
has explained the nonlinear relationship between the velocity of a
saccadic eye movement, its amplitude, and its duration: the main
sequence. The amplitude and peak velocities of saccades of all am-
plitude scales are plotted against each other in a log-log-scatter
plot. They show a power law relation, i. e., the points are located on
a line in log-log presentation, showing their nonlinear dependence
between duration, average velocity, peak velocity and saccade sizes
(Bahill et al., 1975). In the work by Zuber et al. (1965), microsaccades
have been demonstrated to share this characteristic relationship
between peak velocity and amplitude, though in another range of
the logarithmic scale than large-amplitude saccades which separate
fixations. This shared aspect of saccades of all amplitudes and mi-
crosaccades allows them to conclude that a common physiological
system produces both, the voluntary saccadic and involuntary mi-
crosaccadic eye movements, with the latter occurring in fixational
eye movements. Other results also have suggested a common gener-
ator for saccades and microsaccades (Otero-Millan et al., 2008; Rolfs
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et al., 2006, 2008). Additionally, the results suggested a common
shape for both saccades and microsaccades.

3.1.2 Saccadic intrusions

With the beginning of the last decade and growing interest in
microsaccades, Abadi et al. (2000) investigated the so-called saccadic
intrusions (SI) in fixational eye movements as — with regard to
the three components reviewed in Chapter 1.1 — an additional
class of involuntary eye movements. The term SIs originates from
studies on large-scale saccadic eye movements. This pattern of
saccadic eye movement has been of interest in ophthalmology and
medicine (Dell’Osso & Daroff, 1975; Dell’Osso, Abel & Daroff, 1977;
Doslak, Dell’Osso & Daroff, 1983; Feldon & Langston, 1977; Jung
& Kornhuber, 1964; Shallo-Hoffmann, Petersen & Miihlendyck,
1989). We already saw the classification scheme in Chapter 1.3. Two
classes exist for single-standing microsaccades: Single Saccadic Pulse
(SSP) and Double Saccadic Pulse (DSP). Whether these shapes are
part of the proposed fourth type — the saccadic intrusions — or can
be considered a specific shape of microsaccades, is a reasonable
question that has to be answered.

3.2 Mathematical background

To investigate the main features of a shape or structure in a time
series, a multivariate statistics tool, the principal component analysis
(Pearson, 1901) can be used. Different observations of the same
kind of structure, for example, the interval around a singularity
in a time series can be averaged to obtain a “mean-value based
structure”. But the observations may, and will usually, deviate from
the expected mean. Then the question arises regarding the measure
of these differences. The principal component analysis determines
the principal dimension or, in this case, the principal structural
variations or principal shape of the observed structures. Additionally,
it offers the possibility of breaking the number of microsaccade-
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describing shapes down to the essential, most important ones. I
will review in the following the mathematical basis of this analysis.

3.2.1 Principal component analysis

For N different observations Y7, Y», ..., Yy of possibly interrelated
variables, each observation of length m, the general purpose of
using the principal component analysis (Jolliffe, 2002; Smith, 2002)
is the transformation to a new, linearly uncorrelated set of variables
through the orthogonal transformation to a new coordinate system
with dimensions which explain most of the observed variance. The
unbiased sample variance of two observations Yj and Y; is given
by
1 & - -
Cov(Yp, V1) = —— Y (Y — YY) (V5 = Y)) (3.1)

_11':1

and Y; and Y] are the mean of the m values for Yy and Y;, respec-
tively. The autocovariance or variance is Var(Yy) = Cov(Yg, Yx).

Now, the dimension which contains the most variance of all N
observations is of interest. Any observation Y} can be represented
by its m-dimensional vector y; for k = 1,...,N. A vector py is
sought which maximizes

N
Var((po, i) = 37 L (Poyi) = (pod))? fori=1,..,N
k=1
(3.2)
under the constraint that (po, pg) = 1 and 7 denoting the mean of
all vectors. The term (u,v) expresses the vector scalar product of
two vectors u and v. Doing the subtraction

i =y — 7 forallk=1,...,N (3.3)

the value 7 will equal 0 and the product (pg, 7) will vanish. Now,
taking the (m x m)-sized covariance matrix C which contains in its
elements c;; for i # j all covariances between different vectors y; and
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gj and which contains in its diagonal elements ¢;; fori =1,...,m
the variances, one can rewrite Equation (3.2) as:

Var((po,yi)) = po C po (3.4)

with p{j denoting the row transpose of py. Now, the vector py
that maximizes the sample variance, is the eigenvector of C, corre-
sponding to the largest eigenvalue A (Jolliffe, 2002). For this pair of
eigenvalue and eigenvector, the sample variance is maximized. If ar-
ranged in descending order, the eigenvector p; of the second largest
eigenvalue A1 maximizes the remaining sample variance of the data
and so forth. Repeating this, we obtain m descendingly-ordered,
different eigenvectors corresponding to m different eigenvalues de-
scribing the sample variance in m dimensions. These eigenvectors
aligned in descending order are called principal components and are
also empirical orthogonal functions. Under the given constraint of
unit length, the obtained components are even empirical orthonormal
functions.

The importance or score of every single principal component
is measured as the amount of sample variance described by this
principal component, which can then be calculated as

~ Ak
)\ =
YA

(3.5)

with A; € [0,1]. In Figure 3.1, the principal component analysis
was performed on a dataset of two random normal distributed
sets which were brought into linear relation. The resulting prin-
cipal components represent a new orthogonal coordinate system,
along which the first dimension accounts for the highest amount
of variance, the second for the highest amount of variance of the
remaining and so on.
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=Y

Figure 3.1: Illustration of the principal component analysis for two linearly de-
pendent sets of numbers drawn from normal distribution. The two dimensions pg
and py explain the most variance in the data.

3.3 Characterization of saccade shapes

In Chapter 2.3, we have seen how to detect saccades of all ampli-
tude scales in a time series recorded for the horizontal and vertical
eye movements for both eyes. The saccades and microsaccades
were defined as singularities in the time series. Both show a strik-
ingly common property: their high velocity. To obtain a statistical
model for the shape of saccades, the principal component analysis
is performed for a 120 ms time interval (corresponding to 61 data
samples at 500 Hz sampling rate) around the center of the detected
singularity. I selected this time interval according to reported dura-
tions for large- and small-scale saccadic eye movements (Collins,
Semroud, Orriols & Doré-Mazars, 2008). Furthermore, using such
an interval, I accounted for possible detected positions of singulari-
ties which might, due to numerical computation errors, not be in
the center of the interval every time. The detected time point of a
singularity could, in principle, be detected at the start or end point
of the saccade. Each single time period is taken as one indepen-
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dent observation of the same natural phenomenon: a saccadic eye
movement.

Before performing the principal component analysis, the time
intervals need to be preprocessed to account for Equation (3.3).
A set of time points is obtained which refers to the position of
singularities for every participant, every trial and each eye. The
interval around the /th singularity will be denoted with the vector
m!). First, the mean value is subtracted from every vector

i) =m0 -~y (3.6)

0
1
m!). The vector m!), representing the 120 ms interval around the
singularity, is 61-dimensional (the sampling rate of the eye tracking
device in the Landolt-C-maze experiment was 500 Hz, cf. Chap-
ter 1.5 and 2.3). The subtraction of the mean is needed to center the
observations around the origin. In a second step, the vectors m)
of all trials and all participants were used to perform the principal
component analysis, separately for each eye. This way, the main
shapes for a shape model will be based on major variations. In
a third step, before the application of the principal component
analysis, the overall mean was subtracted, compared to Equation
(3.2), then 7 = 0.

with m;’ for i = 1,...,61 denoting the ith element of the vector

Table 3.1: Scores of the principal shapes for both eyes and movement direc-
tions. The first two principal components can explain at least 94 % of the variance in
the observations.

direction Xéef ! 7\llef ! )N\Slght X;Ight

horizontal 0.93 0.05 09 0.04
vertical 094 0.04 092 0.04
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Figure 3.2: The first two principal components for both eyes and both movement
directions. The shapes of po and py are plotted as results of the principal component
analysis of saccadic eye movements. (a) Presents pg for both movement directions and
(b) the vertical movement. The step-like p presents itself as sigmoidal for the highlighted
part of the trajectory whereas pi is a bump with a tiny oscillation at the right tail. The
highlighted part will be used to compare the shapes versus results from the fixational eye
movements.

Figure 3.2 shows the results for py and p; for both eyes and
both directions. Their scores are presented in Table 3.1. A 60 ms
time interval around the center of the singularity is emphasized
by bold lines. To describe above 94 % of the observed variance, I
selected the first two principal components for the shape model. To
obtain the minimal set of shapes for the shape model of saccadic
eye movements, it is sufficient to use only pg and p;. This model
is able to represent the shape of saccades of all amplitude scales.
But this model might not be representative of saccades during
fixations — microsaccades — because most detected saccades in the
Landolt-C-maze experiment have been of large amplitude scale, as
a result of the task performed in this experiment. A shape model
for the saccades during fixations might differ. With the data at
hand from the fixation task experiment (cf. Chapter 2.4), another
analysis can be performed for saccades during fixation.
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3.4 A microsaccade shape model

The previous section closed with the shape model for saccades of all
scales. For fixational eye movements, the saccades that are expected
to be detected, are microsaccades, the saccades during fixation (cf.
Chapter 1.3). The typical minimum duration of microsaccades is
reported to be of 6 ms (Engbert & Mergenthaler, 2006) and 12 ms
duration (Engbert & Kliegl, 2003b). I use these results to define the
time period around the time points of singularities. These periods
are the set of observations for the principal component analysis.
As with saccades, the detected time point of the singularity could
be at the start or end of a microsaccadic eye movement. Thus, I
selected a time interval of 30 ms before and after the time point
of the Ith singularity for the vector of observations, denoting it
again with m(!). Differently than for the saccades detected in the
Landolt-C-maze experiment, I used only the time points of those
singularities which occurred in both eyes at approximately the
same time (binocularity criterion, cf. Chapter 2.4). In doing so, I
accounted for results regarding microsaccades, which are described
as binocular events (Rolfs et al., 2008).

The vectors m(!) are preprocessed as described in Chapter 3.3.
One typical shape of a time interval around the binocular singular-
ity is presented in Figure 3.3, together with its representation by
the linear combination of the principal components. Importantly,
I used all binocular singularities of all participants in all trials to

Figure 3.3: Illustration of the 60 ms time interval around a binocular singularity
as linear combination of the computed principal components. The shape on the left
presents one typical 60 ms horizontal trajectory of one participant around the time point of a
singularity. The shapes on the right present the results of the principal component analysis.
The factors c; for i =0, ...,30 are factors that present the contribution of every shape to the
variance of the original trajectory.
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Table 3.2: Scores of the principal shapes, analyzed for the microsaccades in fixa-
tional eye movements. For both eyes, the first two principal componets can explain at
least 94 % of the variance in the observations.

Ao A
lefteye 0.82 0.12
righteye 0.80 0.14

(a) (b)
0.4
0.2
=
2 0.0
‘@
o
Qo
.0.2 Py p1
— horizontal left — horizontal left
horizontal right === horizontal right
0.0 0.02 0.04 0.06 0.0 0.02 0.04 0.06
time [s]

Figure 3.4: The first two principal components in the left and right eye, obtained
for the fixation task experiment. (a) Shows a steplike shape as first principal component
Ppo, which has the tendency to return after it reaches the maximum amplitude. This overshoot,
typical for microsaccades, dominates together with the almost linearly increasing part of
this shape. (b) The shape of the second component py is bump-like. It identifies how much
overshoot each microsaccade has. The left (blue solid line) and right (red dashed line) eyes
agree in the shape of the first two principal components. The scores are Ay = 0.82 and
Ao = 0.8 as well as Ay = 0.12 and Ay = 0.14 for the analysis done for the left and right
eye, respectively.

perform the principal component analysis of the time intervals ()
separately for the left and right eye.

The principal component analysis of time intervals m(!) revealed
that the first two principal components pg and p;, presented in
Figure 3.4, account for more than 94 % of the variability of mi-
crosaccadic shapes. The scores are reported in Table 3.2. For further
analyses, it is therefore sufficient to restrict analyses to these first
two principal shapes.
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A single microsaccade m!) is decomposed into the following five
terms:

e a first principal shape po,
e a second principal shape py,

e a scalar () returning the mean of the observations in the
time interval around the singularity,

e a vector ey, to represent the mean of all vectors M for one
eye,

e a small residual vector { to account for numerical errors.

All these components are directly computed from the observations
(except the residual vector which enters through the numerical com-
putation). A model for a typical microsaccade shape can therefore
be expressed as

m) = c(()l)po + cgl)pl +m) 4 Veye + ¢ (3.7)

with c(()l) and cgl) the shape coefficients of every individual mi-
crosaccade ', obtained through projection, i. e., the scalar products
(po,m\V)) = c(()l) and (py, pgl)> = cgl). Clearly, for the saccades in the
Landolt-C-maze experiment, a shape model can be constructed as
well. In that model, the principal shapes obtained in the analysis of
the saccades in the Landolt-C-maze experiments have to be chosen.
But it cannot present a generally-applicable shape model for sac-
cades because saccades in different tasks might also differ in their
shapes. Comparing the results of the principal component analysis
for saccades in the Landolt-C-experiment — being of all scales — and
for microsaccades in the fixation task experiment, clear similarities
are revealed. Both present a step-like first and bump-like second
component. In fixational eye movements, the horizontal dominates
the vertical direction for microsaccades such that a shape model for
the horizontal eye movements during microsaccades is sufficient.
In contrast, in the Landolt-C-experiment, the principal shapes for
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horizontal and vertical saccades are similar in that the shape model
must account for the possibility of oblique directions. However, it
seems that the overshoot is more prominent in microsaccades.

3.5 Comparison of the model with
simulations

The overshoot in the shape of microsaccades is quite prominent. It
does not prominently emerge in the experiment, which contains
saccades of all amplitude scales. To determine if the difference
which is obtained for the shapes of microsaccades and saccades in
their overshoot behavior is due to the detection and characterization
method proposed, I performed a principal component analysis for
the detected singularities in a surrogate dataset (cf. Chapter 2.5).
Applying the binocularity criterion as described in Chapter 2.4,
the time intervals around the singularities are preprocessed as
explained in Chapter 3.3 and the data is analyzed for its principal
components. Again, the first two components explain more than
95 % of the variance in the data. The principal components pg; and
p1s will get chosen in order to obtain a representative shape model.
Presented in Figure 3.5, the principal component pys is a sigmoidal
function and does not show any overshoot. The second component
p1s is a very smooth peak-like bell curve. Both pgs and p;, are
smoothed versions of singularities that could be represented by
Equation (2.3) in Chapter 2.2.1, the local cusp.

Importantly, the pg and p; of the original data show a direction-
ality in time: They cannot be time-reversed. The principal compo-
nents pgs and py, for the surrogate data can be reversed. Both of the
latter satisfy the condition of symmetry such that f(—t) = —f(t)
for a function f € R and do not show any directionality.

One can conclude that the observed binocular singularities in the
time series of fixational eye movement and in the time series of the
Landolt-C-experiment have a distinct shape and that the strongly
pronounced overshoot in the microsaccade shape model is part of
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Figure 3.5: The first two principal components obtained for surrogate data vs.
experimental data. (a) Presents the py and pos for fixational eye movement and surrogate
data and (b) the py and p1s of the same datasets is shown. Analyses for both eyes result in
the same shapes.

microsaccades that were recorded with a video-based eye tracking
device.

3.6 Iris test lens experiment

We have seen that the overshoot is a prominent property of mi-
crosaccades in the shape model for saccades during fixational eye
movements. In literature, these overshoot components of microsac-
cades are often questioned and assumed to be artifacts which
are caused by the video-based eye tracking method (Collewijn
& Kowler, 2008; Drewes, Montagnini & Masson, 2011; Mammo,
Kimmel & Newsome, 2011). In video-based eye tracking, one pos-
sible source for an artifact could be the dilation of the pupil. As
explained in Chapter 1.5, video-based eye tracking devices calcu-
late the position of the eye as center of the recorded disk which
represents the eye pupil. A change in size of this disk affects the
accuracy of the calculated eye position. Together with Petra Sinn,
we designed an experiment to examine this possible artifact. To in-
vestigate the influence of the pupil dilation and fluctuations on the
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recorded eye movement trajectories in the fixation task experiment,
we set up the fixation task experiment as explained in Chapter 2.4,
without the presentation of a photograph between subsequent fixa-
tion screen. During two sessions of 4 x 30 trials each, participants
wore an iris lens in one of their eyes, changing the eye to wear the
lens between the two different sessions.

Iris lenses are used by opticians for cosmetic or medical corrections
of an injured or diseased eye ball. For humans with, for example,
cataract (Spencer & Mamalis, 2010), they allow the covering of
the eye’s opacification through a printed or hand-painted iris lens
around a transparent center. To adjust iris lenses for the radius of
the eye ball and lens size, opticians use a white opaque iris lens
with a clear and transparent center. Like the iris lens, the test lenses
adhere more strongly to the eye ball than normal contact lenses
because they need to stay in position to cover the opacificated
eye, even after the occurrence of a blink. For our experiment, this
induces less floating on the eye ball and the recordings of the
disk are not affected by “lens floating”. In Figure 3.6, I present an
illustration of the test lens on the eye, showing those parts visible
to the video-camera. The iris is covered by the white part of the test
lens and the size of the eye’s pupil is slightly reduced if compared
to the other eye. The radius of the clear part for the pupil can be of
different sizes. We used test lenses from Galifa Contactlinsen AG,
St. Gallen, Switzerland for our experiments.

Figure 3.6: Illustration of the both eyes, the right one wearing the test lens. Record-
ings of fixational eye movements might get influenced by small fluctuations of the pupil size.
Omne eye wears a test lens which allows eye-tracking through a static, stable disc.
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The iris lens experiment was recorded with the EyeLink 1000

system at 1000 Hz for both eyes. Possible head movements have
been significantly reduced through a chin rest. Participants were re-
quired to perform the same experiment as explained in Chapter 2.4,
except for the presentation of the photograph for 10s. The experi-
ment was carried out by Petra Sinn at the University of Potsdam
with the EyeLink 1000 device (cf. Chapter 1.5), using the corneal
reflex if possible.
Performing a singularity detection with the wavelet method, time
intervals m(!) of 60 ms duration around the singularities were used
for the principal component analysis (Chapter 3.4). This analysis
is performed for all singularities — regardless of the binocularity
criterion — and for binocular singularities to account for possible
influences by that criterion.

Again, the first two principal components pg and p; were suf-
ficient to explain the variance in the observed time intervals m()
to above 94 %. In Figure 3.7, the resulting principal components
are presented in four different graphs, allowing investigation of all
possible combinations of

¢ all singularities in the eye with the test lens,

e all singularities in the eye without the test lens,

e binocular singularities in the eye with the test lens,

e binocular singularities in the eye without the test lens.

This allowed for an investigation of possibly existing effects of
selecting all or only binocular singularities and furthermore study
the hypothesized effect of pupil dilation on the precision in the
video-based eye tracking device. In this thesis, I focus only on
the effect of pupil dilation on the overshoot component of the
microsaccades.

From now on, I will refer to the eye, wearing the lens as lens-eye
and for the eye without lens as the normal-eye. The principal shapes
for the normal-eye will be referred to as pp and p; and for the
lens-eye with pg and p1. The superscripts a and b will denote if they
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Figure 3.7: The results of the principal component analysis obtained for different
data sets. Shown are py and py for the data of measurements in the following setups and
criterion: (a) all and without lens, (b) binocular and without lens, (c) all and with
lens, (d) binocular and with lens. For each particular setup, no difference between the
PCA performance on monocular or binocular singularities exists. But the overshoot is not
prominent in the principal shapes obtained for the trajectories, which have been recorded for
the eye which was wearing the test lens.

are obtained by the analysis of all singularities or only binocular
singularities, respectively. All vectors are normalized. Performing
the analysis on all singularities or only binocular singularities re-
vealed no differences between lens- and normal-eye. Additionally,
with regard to the normal eye, the components remained the same
if either all or only binocular singularities were chosen for the prin-
cipal component analysis such that the selection of all singularities
or binocular singularities for the principal component analysis does
not alter the results for the shape model. This becomes clear if con-
sidering their projections (pg, p}) &~ 1 and (p4, p}) ~ 1. The same
result is obtained for the lens-eye. Thus, I can refer to the principal
components for the normal-eye as py and p; and for the lens-eye
as pg and p; without differentiation in the superscript a or b.
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Secondly, by visual inspection of the trajectories obtained for pg
and pg, the overshoot does not present a prominent characteristic
for the lens-eye. The second components, p; and p;, only differ
slightly in the slope of their right tail. The distinctiveness between
the principal components for the lens- and normal-eye is a first
hint that pupil dilation might indeed lead to the appearance of
more pronounced overshoots for microsaccades in fixation task
experiments if recorded with a video-based eye tracking system.

3.7 A (micro)saccade catalog

The previously-obtained shape model for microsaccades in fixa-
tional eye movements provides us an easy access to microsaccade
properties which are of interest to study (cf. e. g., Zuber et al., 1965;
Otero-Millan, Serra et al., 2011). The wavelet method used the defi-
nition of saccades and microsaccades as singularities in the time
series of (fixational) eye movements. Now, with the shape model
one further step allows us to refine this definition by the two shape
factors

)

ey = (i), po)
and l
M = (m®, pr)
with )
) M
T o)

and i1(!) the time interval around a singularity in the eye movement
experiments.

Now, the shape model can easily represent single saccadic and
double saccadic pulse with a certain parameter set {co, c; }. Both
can be considered as microsaccades, only under different parame-
terization in the shape model. Regarding all analyses, a refinement
of the definition of microsaccades as singularities in the time series
can be done. With respect to the shape factors, the time periods
around binocular singularities whose variance can to be described
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(COvcl)
=== ¢l +cf =08
— ¢+l =1

Figure 3.8: Representation of microsaccade candidates in the feature space
spanned by po and p1. Every pair (co,c1) represents the contribution of the dimen-
sion to the microsaccade shape.

by the first two principal components to at least 80 %, should be
defined as microsaccade. In terms, it is

(&) + (") 2 O-Si@(”,mz (38)

and illustrated in Figure 3.8 by the blue-dashed and green-solid
line. I will refer to this criterion as energy criterion.

For further analyses, [ used only the trajectories around binocular
singularities that fulfilled the binocularity and energy criterion. I
will refer to these time periods as microsaccades .

Because of its smooth estimation of the trajectory of a microsac-
cade, the model allows a simplified estimation of all important
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microsaccade shape-related properties. A microsaccade property
catalog will then contain for every microsaccade:

e time point of occurrence,

e direction,

amplitude,

overshoot,

displacement,
e shape factors cg and cy.

Having this catalog, I investigated the amplitudes for microsac-
cades and estimated the probability density for the distribution of
measured amplitudes by Gaussian kernel density estimation, using
the Silverman rule for bandwidth selection (Silverman, 1986). The
results are, together with a plot of the amplitudes in the lower plot,
presented in Figure 3.9. The result of 0.16° visual angle as max-
imum of this unimodal distribution is in strong agreement with
the reported value of 0.15° by Mergenthaler (2009), who detected
microsaccades with the velocity threshold method and estimated
the amplitude without any model for the microsaccade shape.

— Gaussian kernel density estimate

w
o

probability density

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.16 amplitude [°]

Figure 3.9: Probability density of the microsaccade amplitudes in the fixation
task experiment. The probability density was estimated by Gaussian kernel density esti-
mation, using Silverman’s rule for bandwidth selection. The position at 0.16° returns the
most probable amplitude for the measured microsaccades.
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Figure 3.10: Probability density of amplitudes for all saccades detected in the
Landolt-C-maze experiment. The probability density was estimated by Gaussian kernel
density estimation, using Silverman’s rule for bandwidth selection. The two local maxima
are at 0.45° and 3°.

For saccades of all amplitudes as detected in the Landolt-C-maze
experiment, an estimate of the amplitude distribution is presented
in Figure 3.10. It is a bimodal distribution with maxima at 3°
and 0.45° visual angle. The stimuli were 3° apart, which explains
the one maximum. The other maximum is in a typical range of
microsaccade amplitudes in non-fixation task experiments (Engbert,
2006b; Otero-Millan et al., 2008).

Having arrived at a straight-forward and computable catalog of
saccade and microsaccade properties, I will continue to investigate
their dynamics with a focus on microsaccades by studying saccadic
dynamics during fixation. In a fixation task, no external stimuli
drives the eye movements and we can hope to understand the
baseline of microsaccadic dynamics to gather a deeper insight into
saccade dynamics.
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4 Dynamics in microsaccade
sequences

In the previous chapters, I presented a method for scale-free de-
tection of saccades in different experiments and characterization
of their shapes, with respect to their different behavior at different
scales. Here, I want to focus on the dynamics within sequences of
microsaccades.

In this chapter of my thesis, a stochastic model for symbols of
discrete-events in time series, such as microsaccades in fixational
eye movements, is proposed. In the last 15 years, studies started to
separate certain patterns of successive saccades and single-standing
saccades during fixation (Abadi et al., 2000; Abadi & Gowen, 2004;
Otero-Millan, Serra et al., 2011). Again, fixation task experiments
are the most controlled framework in which to investigate the
underlying mechanisms of the oculomotor system. Trajectories
of the eye movements indirectly allow the study of the rotation
and movement of the eye (J. M. Findlay & Gilchrist, 2003). Thus,
understanding the dynamics of microsaccades will broaden the
knowledge for modeling eye movements in general.

I will abridge the most prominent works by Abadi and Gowen
(2004) and Otero-Millan, Serra et al. (2011) before introducing
definitions and background from stochastic modeling, discrete-
time Markov chains, and Bayesian modeling. To select a model
from a family of models that are alike, I will use the analysis of the
Bayes factor. We will see how describing a sequence of symbols by
Markov chains provides the best model for microsaccade sequence
dynamics. I will finish the chapter by investigating the role of
“continuous time”. I will show its importance to distinguish in a
time-dynamic Markov chain model to generate microsaccades. All
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analyses and results of fixational eye movements in this chapter
are obtained from the left eye. For the right eye, the analyses and
results are the same.

4.1 Existing concepts

Searching for results on microsaccade sequence dynamics, I found
two prominent approaches, which were communicated in different
contexts. I will briefly review the main results and bring them into
the context of my analysis on microsaccade sequence dynamics.
Both results use many adjustable parameters to describe or distin-
guish microsaccade sequence patterns. We will later see that the
study in this thesis does not approach sequences on this basis.

4.1.1 Saccadic intrusions

Besides the single events classified as Single Saccadic Pulse (SSP) or
Double Saccadic Pulse (DSP), Abadi and Gowen (2004) introduced
two types of SIs in fixational eye movements, which consist of
two or three subsequent (micro)saccadic events, called Monophasic
Square Wave Intrusion (MSWI) and Biphasic Square Wave Intrusion
(BSWI).

Numerous definitions of MSWI for normal, large-scale saccades,
exist (Jung & Kornhuber, 1964; Dell’Osso & Daroff, 1999). I will
outline the definition’s ambiguity. Starting from here, I will call a
MSWI a pattern that is a sequence of two subsequent microsaccades
in fixational eye movements, separated by a short interval of drift
movement and oppositely directed in the horizontal trajectory of an
eye’s recording. Abadi and Gowen (2004) reported this major type
of SI found in 94 % of their subjects, collected in an experiment of
two 50-second binocular eye recordings during fixation of a static
target. They hand-picked the events from the original raw time
series. Important characteristics of the MSWI are the amplitude
which ranged from 0.1° to 4.1° and the mean duration of 255 +
147 ms between the subsequent events.
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The sequence of three subsequent microsaccadic events, called
BSWI, was found in 40 % of the subjects in the same experiment.
The pattern was less prominent and less frequent than the MSWIL.
A typical duration of the set of three events was between 85 to
267 ms (calculated from Table 1, Abadi & Gowen, 2004). For both
patterns, MSWI and BSWI, the direction and amplitude of the
last microsaccade depend on the first event or first two events,
respectively.

In another study, Gowen, Abadi, Poliakoff, Hansen and Miall
(2007) investigated the influence of exogenous and endogenous
attention on SIs or, more specifically, the modulation of MSWI by
the former. Furthermore, they compared MSWI and microsaccades
at different experimental target cues. Gowen et al. (2007, pp. 162)
proposed that “the above similarities between microsaccades and
SI support the conjecture that the two saccadic behaviors relate to
the same phenomena” (in this context, SI refers to MSWI).

4.1.2 Square-wave jerks

Not only do microsaccades often have different names (compare
Chapter 1.3) but the saccadic intrusion or, moreover, its most promi-
nent type, the monophasic square wave intrusion, also has different
names in the literature, and is often referred to as square-wave
jerks1 (Otero-Millan, Serra et al., 2011).

Recently, Otero-Millan, Serra et al. (2011) introduced an ad-
vanced treatment of microsaccade sequences. Based on the velocity-
threshold algorithm by Engbert and Kliegl (2003b), they used direc-
tion dissimilarity, magnitude dissimilarity, and temporal proximity
to calculate an index to decide whether a pair of microsaccadic
events is a SWJ or not. Already in Chapter 1.3, I illustrated the
properties and measurements they used to decide whether a pair
of subsequent microsaccades presents a SWJ or two independent
single-standing microsaccades.

In the following, I will use the name square-wave jerk (SWJ) to avoid confusion
MSWI, the other, for larger saccades, widely-accepted term.
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In their calculation, an ideal intermicrosaccadic interval (IMSI)
of 200ms was reported, estimated by the fit of an ex-Gaussian
distribution function of all subject IMSIs. After separation of single-
standing microsaccades and SW]Js by the SW] index, the intra-SWJ
time interval averaged to 280 + 10ms for the control group, i.e,,
healthy subjects. Compared to the study of Abadi and Gowen
(2004), this value is larger but it is based on an automated detection
routine for microsaccades and SWJs. Studying the relationship be-
tween microsaccades and SW]Js in healthy subjects and Progressive
Supranuclear Palsy (PSP) patients, Otero-Millan, Serra et al. (2011,
pp- 4386) concluded “that microsaccades and SIs are essentially
the same phenomena and that SW]Js are generated by a common
coupling mechanism in PSP patients and healthy observers”.

I will propose a statistical model which will support the previous
assumption and go beyond the proposal to deliver a model for
microsaccade generation which includes direction and the intermi-
crosaccade interval distribution.

4.2 Mathematical background

Before I will present microsaccades as symbols in fixational eye
movements, I will briefly review definitions from Markov chains,
symbolic dynamics and the Bayes factor for model selection that
contribute to the understanding of this chapter. A detailed treat-
ment of definitions would go beyond the scope of this work. For
further reading, I recommend, for example, Taylor and Karlin (1984)
for reference.

4.2.1 Markov chains

Given a process X in the state space S, S = {0,1} and assuming that
the process is an uncorrelated random process, then a sequence of
states Xt for T =1,...,k,..., N is obtained by randomly assigning
each time point Xy one state s € S. For the state space S = {0,1},
probabilities for each state are given by Pr{X; = 0} = p; and
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Pr{X; = 1} = 1 — p; such that p; parameterizes the probability
distribution of that uncorrelated random process.

Now, lets consider a discrete-time stochastic process with state
space S = {0,1} where the probability of the next state j € S at
the next time point X depends only on the current state i € S at
time point Xj, or in mathematical terms:

PriXpy1 = jlXk =1, X1 = sk-1,---, X1 = 51}
= Pr{Xy1 = j| Xk = i} (4.1)

with sq,...,5,_1 € S. Every stochastic process with a countable
set as state space S and this so-called Markov property is called
a Markov process (Markov, 1971). A discrete-time Markov process is
also referred to as Markov chain. The conditional probability in
Equation (4.1) is called one-step transition probability and will be
denoted by

Pj = Pr{Xgy1 = j|Xx =i} . (4.2)

If this probability does not depend on time such that Equation (4.1)
is true for 1 < k < N, then the probabilities are called stationary tran-
sition probabilities. They affiliate with a stationary or time-homogeneous
Markov chain. Now, lets expand the state space to S = {s1,...,s5m},
containing M different states, then the transition probabilities in
Equation (4.2) can be arranged into a transition matrix T of size
M x M, given by

Pnp Pp ... Pim
Py Pn ... Py

T= : ) : (4.3)
Pyi Pvz2 oo Pvm

with, for example, Pj; as a change from state s; to sp and the others
accordingly. Clearly, all P;; > 0 fori,j € S and

Y pi=1 (4.4)

jes
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for eachi € S. For a time-homogeneous Markov chain, its stationary
probability distribution can be identified. With the transition matrix T,
the vector 7t contains the nonnegative probabilities of the stationary
distribution of the Markov chain. A vector 7t solving the equation

nT=mn (4.5)

is the left-handed or Perron-Frobenius eigenvector (Perron, 1907;
Frobenius, 1912) with ||| = 1 and all M entries 7r; > 0 for
j=1,...,M. Here, 7/ defines the transpose of column vector 7.
Once the process is in its stationary distribution, another transi-
tion does not alter the distribution anymore. This is expressed in
Equation (4.5) in which another multiplication with T onto vector
7t does not change the vector 7.

Under consideration of Equation (4.1), the probability measure
is called an nth-order Markov measure if it satisfies

Pr{XkJrl = ]|Xk = i, kal = Sk—1,-- .,X1 = Sl}
= PF{Xk+1 = ]‘Xk = i,. . -erfn = Skfn} (46)

with i,7,51,...,5¢_1 € S. Now, the probability of a certain state at
time point k depends only on the sequence of the previous n time
points. A discrete-time process is called an n-order Markov chain
if its probabilities have this kind of memory.

4.2.2 Symbolic dynamics

From symbolic dynamics, I will only review some basic definitions
which will add to the understanding of the following sections.
For a more detailed introduction, see Lind and Marcus (1995).
Above, the sequence of states was considered through Xt € S with
state space S = {s1,...,5m}. Now, observing events in discrete
time, these events might be mapped onto symbols or letters in an
alphabet S. Under consideration of the framework of this thesis,
let the alphabet or symbol space be S = {l,r} with | for an eye
movement to the left and r to the right. A compound symbol, for
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example, Ir or Irl is called a word or block. Then, a sequence of
symbols can be separated into words of different lengths.

4.2.3 Model selection using Bayes factor

A set of events that represents the recorded outcomes of an experi-
ment, can be called a data set D. For an observed data set D, often
a collection of parameterized stochastic models can be proposed and
the question arises regarding which model should be selected as
the best descriptor. The selection criteria should not only take into
account how well the data is described but also the complexity of
the model that describes it. The goal is not to optimally fit existing
data but to minimize the prediction error when new, unobserved
data comes at hand. Optimizing only the fit leads to poor prediction
performance, a phenomenon known as overfitting. In the Bayesian
setting, the model selection is done by analyzing the Bayes factor
(Kass & Raftery, 1995).

The likelihood that a hypothesized model M under parameter-
ization @ can describe the data D, is denoted by Pr{D|M, 6}. In
Bayesian statistics, the degree of belief in a hypothesized model
M under the parameterization 0 is measured by the prior proba-
bility Pr{@|M}. Under consideration of the data set D, the prior
probability for a model will then be updated through

Pr{D|M,0}Pr{0|M}
[ Pr{D|M,0}Pr{6|M}do

Pr{0|D, M} = (4.7)

and Pr{6|D, M} is called posterior probability. The denominator is
called evidence or integrated posterior.

Having competing models M; and M;, parameterized by param-
eter sets 0, and 0]-, to describe a data set D, the Bayes factor for
comparison between the alternative models M; and M; is then

defined by

. — J Pr{DIM;,6;} Pr{6;|M;} db;
1] -
[ Pr{D|M;, 6;} Pr{6;|M;} do;

(4.8)

79



Dynamics in microsaccade sequences

which is the ratio of the integrated posteriors (Kass & Raftery,
1995).

To discriminate even smaller differences between hypotheses of
different models, Equation (4.8) is log-transformed to deciban scale:

J Pr{D|M;,6;} Pr{6;|M;} de;
fPF{D|M]', 9]} PI’{9]|M]} d9]

Bij =10 loglo (4.9)
The value of Bj; provides evidence in favor of one model against the
other. For consistency, I will put the model under null hypothesis
in the denominator. Values of B;; < 0 will support the model M;
under null hypothesis; otherwise, values for B;; in the range 0 — 5,
5—10, 10 — 15, 15 — 20, and larger than 20 provide weak, substan-
tial, strong, very strong, and decisive evidence against model M;,
respectively (cf. Jeffreys, 1998).

4.3 Estimating the order of Markov chains
with Bayes factor

Motivated by the knowledge about Markov chains, probabilities,
symbolic dynamics and Bayesian model comparison, I will present
an approach for estimating the order of a Markov chain that is
proposed for describing a countable sequence of symbols Xt with
T =1,...,N in this section. The outcomes of an experiment are
mapped on symbols and time-ordered in Xt. In Chapter 4.2.1, I
introduced the state space S and in Chapter 4.2.2 the alphabet
S. Again, the alphabet S = {I,r} is taken for the symbols in the
sequence of symbols X. To allow for an estimation of the order
of the Markov chain by the Bayes factor analysis and estimate the
order that best describes this sequence of symbols, I introduce a

state space
Sp= SxS5xS5x...x8§

n-times

with
So =8 ={Lr} (4.10)
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of compound symbols, representing all possible permutations of
the symbols in the alphabet S = {I,r} as words of length 7.

Now, proposing that the model for describing the sequences
of symbols is a Markov chain model, the order of the Markov
chains, i.e. the length of the memory horizon 7, is unknown. In the
following, I will consider Markov chains up to second-order — a
memory horizon of two. But I will show how to present even nth
order Markov chain as first-order Markov chain by using words of
length n.

In case of the uncorrelated random process — also called zeroth-
order Markov chain in the following — the current state has ab-
solutely no influence on the future state, the next symbol in the
sequence. Therefore, this process is described by a single number
P = qgo) € [0,1], which is the probability to draw I as next sym-
bol. Examining the Markov chain as a zeroth-order and first-order
Markov chain, the alphabet or symbol space equals the state space
(cf. Equation 4.10).

A transition from [/ to r in a time step k to k + 1 is then written by

Py = Pr{Xpp1 =1|Xp =1} = qi” (4.11)

and the transition matrix T; for a first-order Markov chain is
Py Py )
T =
! ( Py P
(1) 1
l1—q q
= ( (1)1 1 ) > . (4.12)
q2 I—9q

It is important to note that everything is parameterized in terms of
the 2! numbers qgl),qél) € [0,1].

For a second-order Markov chain, all transitions from the last
two symbols to the new symbol have to be considered. To fix this
idea, consider a transition from Ir to ¥ which then is, according to
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Equation (4.6), represented by
Py = Pri{Xpp1 = 1| Xk =1, X1 =1} (4.13)

This defines 2 x 22 numbers of which only 22 are independent,
since, e.g., Pj;, + P;,; = 1. This process is equivalent to a first-
order process in the space of words of length 2 by identifying the
transition from ab to ¢ with the compound transition ab to bc and
a,b,c € {l,r} for all a,b, c. The state space is then S, = {I1,Ir,rl,rr}.
It is impossible that a transition from ! to rI occurs — last letter of
first word and first letter of second word have to be equal — such
that entries equal zero in the transition matrix of the Markov chain,
representing a second-order Markov chain. The transition matrix is
then given by

2 2
Py Py 00 1-q" g ?2) 0 o
T, = 0 0 Plrl Plrr _ 0 @) ?2) P 1- p)
Prll Prlr 0 0 1- 93 q3 0 0
0 0 Prrl Py 0 0 qf) 1-— qf)
(4.14)

where the second-order Markov chain is parameterized by the 22
numbers qu),qu),qg) ,qf) € [0,1]. The transition matrices and
parameters for higher-order Markov chains can be obtained in an
equal manner such that an nth-order Markov chain can be exam-
ined as a first-order Markov chain with the state space S;,. Every
time, the rows of the transition matrices have only two non-zero
entries. Thus, an nth-order Markov chain will be parameterized by
2" numbers.

Now, the calculation of the Bayes factor, as introduced in Chap-
ter 4.2.3, is based on the prior probability of a model and parame-
terization as well as the likelihood of the model, given the observed
sequences of symbols. Under the assumption that a sequence of
symbols can be described by an nth order stationary Markov chain
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model M,, with ("), the likelihood of a sequence Xt given the
transition probabilities q}n) €fo,1],i=1,...,2"is

PT{Xl,.. XN|Mn,q1 s /"72” }_

A (Xq,..., Xalg\, . ,q;:znn(qgm)“f" (1- “”) (415)
i=1

Here, 7r(Xr|0(") is the probability of finding the first n symbols
as the initial word. This probability is taken from the stationary
distribution which can be calculated for every transition matrix
T, through computation of the Perron-Frobenius eigenvector as
described in Equation (4.5). Through the calculation as left-handed
eigenvector of the transition matrix, the stationary distribution also

depends on qgn), cee, qéﬁ). On the remaining symbols X;,11,..., XN,

the exponents ocl(n) fori =1,...,2" count for each word (or com-
pound symbol), enumerated by i, the number of transitions for
which the new symbol that is added to the sequence was different

from the last symbol in the word, whereas ‘Bl(-n) fori=1,...,2"
counts transitions from state i which preserve the last symbol. For
example, for a second-order Markov chain, a transition from Ir to
rl would increase ay by the value of 1, whereas a transition /I to
Il would increase B1. Since the likelihood function of the whole

sequence X7 depends only on the numbers vci(”), /31('")' and the first
n symbols, these numbers represent a sufficient statistic.

Now, after developing the method steps to determine the or-
der of the Markov chain using Bayes factor and to describe the
sequences of symbols by Markov chain models, the applicability of
the proposed method for estimating the order of Markov chains is
shown. A first validation approach is the estimation of the orders
of simulated Markov chains, whose orders are given. Sequences
of symbols X7 with a two-element symbol space S = {I,r} were
simulated through Monte Carlo Markov chains (MCMC) of zeroth-,
first-, and second-order. A number of 532 sequences of symbols
were generated for each different order, using 19 different random
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transition matrices. The sequences were of random lengths between
20 and 60 symbols.? First, 30,000 iterates were computed to remove
transients of the process, before sequences of different lengths were
chosen.

Under the assumption that a given sequence Xr, T =1,..., N

of symbols S = {I,r} can be described by a discrete-time, sta-
tionary nth-order Markov chain, the likelihood is calculated for
zeroth-, first-, second-, and third-order Markov chains through
Equation (4.15). The sufficient statistics le(n) and ,Bl(n) are cumulated
for the different sequences, generated for each individual transition
matrix and the order of the Markov chain is estimated.
This was done by evaluating the Bayes factor, defined in Equation
(4.9), using a flat prior, and evaluating the likelihood (Equation 4.15).
Due to the hierarchical structure of the Markov models, this ap-
proach is an application of Occam’s razor in ambiguous conditions:
When the Bayes factor supports two alternative hypotheses with
equivalent strengths, the most parsimonious model (the lowest
order) would be selected. In Figure 4.1, I present the results of the
Bayes factor analysis — by means of the Monte Carlo simulation —
for sequences of (a) zeroth-, (b) first-, and (c) second-order Markov
chains.

As mentioned in the beginning of this section, I chose a zeroth-
order Markov chain as the model under null hypothesis. For sim-
ulated uncorrelated random processes, the estimation returned a
zeroth-order Markov chain as best descriptor for the data. None of
the higher-order Markov chain models showed evidence against
the model under null hypothesis (compare Figure 4.1a), i.e., in this
case all Bjy for i = 1,2,3 are negative. For sequences simulated
from a first-order Markov chain, the estimator returned the highest
evidence against the null model for the first-order Markov chain.
The Bjy for i = 1,2,3 are all positive, yet the first-order Markov
chain presents the highest evidence against the zeroth-order. Due
to nesting of the Markov chains, a second- or third-order Markov

SHow these numbers agree with the estimation performed for the real data,
sequences of microsaccades, will be shown later.
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Figure 4.1: Order estimation for sequences of simulated different order Markov
chains. Using a zeroth-order Markov chain as the model under null hypothesis, the Bayes
factor compares the evidences against first-, second-, and third-order Markov chain models.
The sequences are generated from (a) an uncorrelated random process, (b) a first-order
Markov chain, and (c) a second-order Markov chain, each for a two-element symbol space.
In (a), support for zeroth-order parameterization is obtained. In (b), evidence against the
model under null hypothesis exists for all orders. But it is highest for a first-order Markov
chain. A first-order Markov chain model would be estimated. (c) Also for a simulated
sequences from a second-order Markov chain, the second-order Markov chain would be
estimated as best descriptor.

chain has evidence against the null, as well. But the scale of inter-
pretation of the Bayes factor allows the separation of the first-order
Markov chain from the others. The Bayes factor analysis estimated
the first-order Markov chain (compare Figure 4.1b). A similar result
is obtained for the simulated sequences of second-order Markov
chains. Here, the highest evidence against the null is given for a
second-order Markov chain model (compare Figure 4.1c). Thus,
here the estimator returned the correct order as well. The validity
of the estimator has been shown with the simulation results. Now,
I will apply the estimator on the microsaccades, detected in fixa-
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tional eye movements and represented as symbols in a discrete-time
sequence.

4.4 Markov chains for sequences of
microsaccades

In Chapter 2, the scale-free detection method for microsaccades
in the time series of fixational eye movements was introduced. In
Chapter 3, I proposed a model for the microsaccade shape that lets
us access major microsaccade properties. Using the catalog derived
in Chapter 3.7, the direction of the microsaccadic horizontal eye
movements can easily be accessed. The mapping of the directions
of Left and Right movements on the symbols L and R is illustrated
in Figure 4.2.

Under the assumption that microsaccade symbol sequences of an
individual participant can be evaluated as realizations of a single

(a) : — slow movement
5 0.4 — microsaccades
= H»f wl{ 4 al }

7] 4,
o il A~ ; | | ‘ N
S o0.0f v i "'UW “‘*N Ml u!‘,‘{ "J’ ,‘/A)' 1% } M, ‘Vw”\m" N N}, (L ””J *Mm |
o] N A R i r [
c W o
1<}
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<
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continuous time [sl1
(b) R L L R L L R L R R R L L R L R R L L L R L L R R

1 3 5 7 9 1 13 15 17 19 21 23 25

discrete time ¢

Figure 4.2: Sequences of microsaccades, detected with the wavelet method, are
mapped on sequences of symbols. (a) Only those microsaccades which fulfill the
binocularity and energy criterion are marked in red in the horizontal trajectory of a sample
fixational eye movements trial. Then, they are mapped on symbols Left and Right in
continuous time. (b) The continuous time is then neglected and microsaccades are represented
as symbols in fixational eye movements.
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Figure 4.3: Order estimation for microsaccade sequences of nineteen participants
in a fixation task experiment. Using the zeroth-order parameterization of the Markov
chain model as null, the Bayes factor is calculated to estimate the order of the Markov chain
that best describes the sequences of microsaccade symbols. (a) Thirteen participants show
evidence of different strengths against the null hypothesis. Through parsimony, a first-order
parameterization of the Markov chain would be estimated as best descriptor. (b) For six
participants, support for zeroth- (left column) or second-order (right column) is estimated.
For visualization purposes, the y-scale gets broken at values > 20 or < 0 as they deliver
either decisive evidence against or support for the null hypothesis. Differences above or below
these values inside one subplot are marked with a proportion of their original value.

Markov process, I summed up the counts al(n) and ﬁl(”) from all
different trials of one participant and estimated the order of the
Markov chain as described in the previous section.

Again, the model under null hypothesis is the zeroth-order
Markov chain, an uncorrelated random process. Higher-order
Markov chains are compared by the Bayes factor (cf. Equation 4.9)
against the zeroth-order Markov chain. For thirteen out of 19 par-

ticipants, the estimator suggests that the sequences of symbols, are
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best described by a first-order Markov chain if compared against
zeroth-order. Evidence against the model under null hypothesis is
shown for all thirteen cases (compare Figure 4.3a). The first-order
Markov chain presents the highest evidence against the model
under null hypothesis such that, through the scale of interpretation
of the Bayes factor, the estimator identifies the first-order Markov
chain as the best describing model. In Figure 4.3b, the analysis is
presented for the remaining six participants. For three subjects, no
evidence against the null hypothesis was found (Figure 4.3b, left
column). The microsaccade symbol sequences for the remaining
three subjects can best be described by a second-order Markov
chain (Figure 4.3b, right column).

For thirteen participants, a first-order Markov chain returns
the best fitting stochastic process for the microsaccade sequences.
Nevertheless, for six participants, the support for zeroth- or second-
order Markov chain is very close in their evidences supporting a
first-order Markov chain.

Table 4.1 summarizes the estimated orders of Markov chains for
all participants and the characteristic properties of microsaccades.
The amplitude and displacement were evaluated for the horizontal
component of microsaccades. The average rate and intermicrosac-
cade interval (IMSI) were calculated for binocular microsaccades.
Estimated order of Markov chain and microsaccade-related proper-
ties do not show any connections.

In Figure 4.4, I illustrate the one-step transition matrices for all
participants for the first-order Markov model in color code. The
transition probabilities, presented in the 4 quarters of each graphic
to represent one 2 X 2 matrix, are calculated on the maximum
likelihood estimates by
Ny

g\

1
S (4.16)
“51) +'81(1)

The transition matrices across participants show interindividual
differences. A few participants have almost equal probabilities to
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Subject Rate Ampl. Displ. order IMSI

[MS/s] [°] [°] of MC [s]
01 0.74 0.21 0.10 first 1.35
02 1.12 0.34 024 second 0.88
03 042 0.2 0.15 zeroth 229
04 1.26 0.23 0.15 first 0.78
05 1.34 0.24 0.16 first 0.75
06 1.48 0.37 029 second 0.70
07 0.73 0.16 0.12 first 1.35
08 0.84 0.40 0.34 first 1.24
09 0.60 0.51 0.34 first 1.46
10 0.72 0.13 0.08 first 1.33
11 1.37 0.22 0.16 first 0.79
12 0.78 0.16 0.11 first 1.34
13 0.37 0.17 0.11 first 2.67
14 0.99 0.39 0.21 zeroth  1.01
15 1.31 0.27 0.16 first 0.79
16 1.70 0.27 0.22 first 0.58
17 0.84 0.32 0.22 zeroth 1.23
18 1.20 0.14 0.09 second 0.82
19 0.87 0.56 0.44 first 1.01
total 0.98 0.28 0.19 first 1.17
+036 +0.12 +0.1 4+0.52

Table 4.1: Microsaccade properties and estimated order of Markov chain. Mi-
crosaccade and microsaccade sequence properties for microsaccades in the left eye of nineteen
participants in a fixation task experiment. The order of the Markov chain (order of MC),
amplitude (Ampl.), displacement (Displ.), rate and IMSI are given as average over all trials
of each participant. A microsaccade was defined as binocular singularity, fulfilling the energy
criterion (cf. Chapter 3.7).

change from one symbol to another or stay with the same symbol.
Although the probabilities are close to those in an uncorrelated ran-
dom process, the first-order Markov chain describes their sequences
the best. Furthermore, evidences against higher- or lower-order
Markov chains (cf. Figure 4.3) does not imply that the transition
matrices have to be similar, as well (cf. Figure 4.4b). Therefore, an
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Figure 4.4: First-order Markov chain transition matrix for all participants. The
transition matrices of the participants are arranged as in Figure 4.3. The values are color-
coded to facilitate reading. Only the transition matrix for a first-order Markov chain is
reported.

exclusive analysis of the transition matrices to determine the order
of the Markov chain would not return correct orders.

At the end of the analysis, the data of most participants are
best described by a first-order Markov chain (Bettenbiihl, Rus-
coni, Engbert & Holschneider, 2012). A model is returned which
presents microsaccades in fixational eye movements as symbols in
sequences. This is compatible with recent findings of a statistical
coupling of subsequent microsaccade orientations (Otero-Millan,
Serra et al., 2011). It is important to note that I neglected any tempo-
ral proximity for the sequences. To investigate the effect of time for
subsequent events, I continue in the next section with an analysis
of the factor related to intermicrosaccade interval.
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4.5 A model for sequences of
microsaccade

Neglecting temporal proximity between microsaccadic events, I
could show that a first-order Markov chain model delivers an
appropriate description for the symbols I and r, representing left-
and rightward directed microsaccades. In section 4.1.2, we have
seen that the waiting time between first and second microsaccade
played a key role in separating square-wave jerks from single-
standing microsaccades.

In order to investigate the waiting times, I computed the in-
termicrosaccade intervals (IMSIs) for all microsaccades that are
collected in the microsaccade catalog (cf. Chapter 3.7). In Figure 4.5,
the probability density function of the IMSIs is estimated by the
Gaussian kernel density estimation and plotted on top of the nor-
malized histogram with 200 bins. The probability density function

0.0016| Gaussian kernel density estimate

ity

0.0012

= 0.0008

probability dens

0.0004

0.0

0.0 0.271 0.5 1.0 1.5 2.0
time [s]

Figure 4.5: Distribution of IMSIs in the fixation task experiment. Using Gaussian
kernel density estimation, the probability density is presented in red on top of the normalized
histogram of IMSIs in blue. The bottom graphic presents every single IMSI as point. The
green marked time denotes the maximum of the probability density. The IMSIs exhibit a
broad peak around the maximum, which seems to have two different slopes.
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of the IMSIs which are for i = 1,...,n denoted by A;, is estimated
through
1

Tlh\/ 27 i

with A; the observed IMSIs, i. e., each single dot in the bottom of
Figure 4.5, and h the bandwidth, given by

Q75— Q.zs) ,1/5

1275
2 h

A=A )2

Pr{a} = » (4.17)
=1

(4.18)

=1. i
h 06 min (0’, 13

with ¢ the variance of the IMSIs A;, n the number of IMSIs, Q 75
and Q 75 the 75 % and 25 % quartile, respectively (Silverman, 1986).
IMSIs between 0 and 0.5s are most probable as seen by the broad
peak in Figure 4.5. Two different slopes seem to be present at either
side of the maximum of the distribution (compare also Engbert
& Mergenthaler, 2006). Otero-Millan, Serra et al. (2011) suggested
using an ideal threshold time of around 0.2 s for the separation of
single-standing microsaccades and square-wave jerks — oppositely
directed pairs of microsaccades that depend upon each other.
Now, I propose a stochastic model for the generation of microsac-
cades, which switches between two different probability distribu-
tions, dependent upon the waiting time of each single microsaccade.
The microsaccades are represented for each trial in a sequence Xt
with T =1,..., N by the symbols [ and r for left- and rightward
directed microsaccades, respectively. The symbol space is again
={lr}.

In this model, the probability distribution for the next symbol in
the sequence changes according to the waiting time, drawn from
Pr{A}. Now suppose that, with waiting time A; = 0, the start
symbol s; € S of the sequence X7 is known such that

p1=Pr{(X;=s1)} =1 (4.19)
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for s; € {l,r}. The waiting time Ay, for the k + 1st symbol is
drawn from Pr{A}, and the probability for the k + 1st symbol with
k+1 > 2 is determined by

Pr{X = sg1} for Ap1 > 1
Pr{Xys1 = sk1} = {

Pr{Xji1 = sp41| X = sy for A <t

(4.20)

for a threshold time T > 0 and s, sx.1 € {I,r}. The probability
Pr{X = sy,1} of symbol s, is drawn from the probability distri-
bution of a random uncorrelated process, parameterized by qgo).
The probability Pr{Xy,1 = sg.1|Xx = s} is a transition probabil-
ity of a first-order Markov chain, parameterized by qgl) and qgl).
Thus, the probability of the next symbol — the next microsaccade
direction — is drawn from the probabilities of a zeroth- or first-
order Markov chain, depending upon the waiting time. Under the
assumption that every symbol is independently drawn, respecting
Equation (4.20), the probability of a sequence Xt of N symbols
from S = {I,r}, given the parameters qgo), qgl), and qél), to rep-
resent the N microsaccade directions of one trial is then given
by

Pr{Xl =51,Xp=53,..., XN = SN‘pl/qg())/qgl)/qgl)} —

" (qgo)yi (1 - qgo))vé Zli (qlgl))w? (1 B ql(l))ﬁ;
(4.21)

and with p; = 1 (cf. Equation 4.19), the likelihood can be rewritten
as

c(q&"%#%@” 1X1,...,XN) =

= ()" (1)

4.22)

/

(ql@)“,’- (1 3 qi(l)):Bi

2
11
=1

1
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with
Y1+7 =

the number 1y of waiting times at which Ay, > tfor1 <k < N
and

2
Yoai+pi=m
i=1

the number 17 of waiting times at which Ay, < tforl1 <k <N
and ng + n; = N — 1. The numbers 7} and 7} count the different
symbols | and r, which have been drawn for Ay, > 7. For first-
order transitions, for Ay 1 < T, the numbers &/, &), B}, B5 count the
transitions as in Chapter 4.3. All six numbers represent a sufficient
statistic for the sequence of symbols. For different trials of one
participant, i. e., different sequences of symbols, these counts can
once again be summarized.

The Bayes factor as introduced in Chapter 4.2.3 can be used to
select a proper model. Neglecting time, the first-order Markov chain
best describes the sequences of microsaccade directions. Under the
assumption that the probability of the initial state Pr{X; = s1} =1
is known, the likelihood for the parameters qgl),qél) of the first-
order Markov chain model is given by

2 &; Bi
lXﬁfXQS”XL-~/XN)=:1'Il(qpn (1—q?)) (4.23)
i=1

with &;, B; counting the transitions as in Chapter 4.3. To compare
both models with the Bayes factor (Equation 4.9), the time-dynamic
model, which switches between an uncorrelated random process
and a first-order Markov chain, i.e., it loses memory over time,
is used as numerator and the first-order Markov chain model as
denumerator. Their likelihood functions are given in Equation (4.22)
and Equation (4.23); the Bayes factor is calculated again using a
flat prior. The Bayes factor reduces to be the ratio of integrated
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likelihoods. The integrals are given for the time-dynamic model by

£@”,q", ¢V 1xy,..., xn)dq\” dg") agd) =

o .

]

o

B(vi+1,7+71) B} +1,8,+1) B(aj+1,p5+1)

(4.24)
and pure first-order Markov chain model by
P (1 (1) 1) 5 (1)
Of{£(”’1 492 |X1/"-IXN>dq1 qu = (4.25)
8(061 + 1,‘31 + 1) 8(062 + 1,‘32 + 1)
with the Beta function B(x,y) given by
T (y)
B(x,y) = =———=— 4.26
) =ty (4.26)

and the gamma function I'(x) = (x — 1)! for x € N*.

The Bayes factor (Equation 4.8) for comparing both models with a
flat prior is then given by the ratio of the results of Equation (4.24) in
the nominator and Equation (4.25) in the denominator. I will denote
it with Bp; Varying the threshold parameter T in Equation (4.20)
such that T = x - 5ms for k = 1,...,200 and calculating the Bayes
factor for every single 7, a function Bp(T) is obtained over the
threshold time t. The value for the first-order Markov chain, i.e.
the model in the denominator, remains constant because no time
memory is present.

In Figure 4.6, I present Bp 1(7) for the participants. For small
threshold times, the probabilities for new symbols are only drawn
from the distribution of the uncorrelated random process of the
time-dynamic model. As already shown in Chapter 4.4, the first-
order Markov chain presents evidence against the model of an
uncorrelated random process for the sequences of symbols. This is
once again the case for small threshold times 7. The time-dynamic
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Figure 4.6: Time-dynamic model for microsaccade direction sequences. The value
of Bp,1 is presented for 19 participants, arranged as in Figure 4.3. At the first zero-crossing,
the time-dynamic model, which is a mixture between an uncorrelated random process and
first-order Markov chain, presents evidence against the pure first-order Markov chain models.

process is then actually driven by the uncorrelated random pro-
cess. If the time-dynamic model better describes the sequences
of symbols, then evidence against the first-order Markov chain
without time memory should be present. For three participants,
no clear evidence against the pure first-order Markov chain model
exists, i. e., the temporal proximity is neglectable for the description
of their sequences. For three participants in Figure 4.6b, left column,
a zeroth-order Markov chain model is directly estimated. If neglect-
ing temporal proximity, the same results occurred (cf. Figure 4.3b,
left column). For participants whose estimation of Markov order
resulted in a second-order Markov chain (cf. Figure 4.3b, right
column), the estimator favors the time-dynamic model.
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For those participants where evidence against the first-order
Markov chain is present, the zero-crossing of the threshold time
occurs between 130ms and 390 ms, with a mean of 214 + 84 ms
(mean =+ standard deviation). In the tail, the evidence of the mixed
model converges asymptotically to the evidence of the first-order
Markov chain model. The meaning of the time point at which the
time-dynamic model does not have any more memory effect will
be part of the discussion.
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5 Discussion

Eye movements and especially saccadic eye movements of small-
and large-amplitudes are studied under various aspects. Starting at
the source, neuroscientists investigate the coding of saccades and
microsaccades in the brain structures in neurophysiological studies
(Van Horn & Cullen, 2012). Neural mechanisms for microsaccade
generation have been reported based on studies on the level of
single neurons (Van Gisbergen et al., 1981; Hafed et al., 2009). Par-
tially developed from this, models for the triggering mechanisms
for microsaccades were proposed (Hafed, 2011; Otero-Millan, Serra
et al., 2011) that lend support to existing models for saccade gen-
erations (Schall & Thompson, 1999; Sparks & Mays, 1990; Wurtz
& Optican, 1994). Investigations in cognitive science include the
study of eye movements at the highest level, as well as the output
of the neurophysiological and oculomotor system. Psychophysi-
cal data studying microsaccade inhibitions (Rolfs et al., 2008) is
used to model the generation of microsaccades. For fixational eye
movements, modeling approaches taken from physics include the
stochastic simulation of the eye’s retina as a swamp under a po-
tential (Engbert et al., 2011). The stochastic modeling benefits from
the results obtained in both the study of eye movement generation
and the trajectory of the movements.

In this thesis, a stochastic model for microsaccade shapes is
proposed. This model may be of importance for studies of the
executed saccadic eye movements. It allows for a well-estimated
set of properties — including amplitude, duration, overshoot, shape
factors — the representation of the saccadic eye movements on
all amplitude scales. In contrast, the time-dynamic model of a
stochastic process with memory for microsaccades adds knowledge
to the understanding of microsaccade generation. Additionally, it
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yields the possibility of predicting microsaccade directions under
different experimental paradigms.

5.1 Detection of saccades and
microsaccades

In vision research, it is important to differentiate fixations and sac-
cades in many tasks and experiments. When studying how a person
is reading a text, for example, saccades and fixations have to be
separated, to understand why a certain word is skipped (Drieghe,
Rayner & Pollatsek, 2005) or re-fixated (McConkie, Kerr, Reddix,
Zola & Jacobs, 1989). When presenting a photograph to a partici-
pant, saccades and fixations describe dynamics present during the
perception of details or of the complete image (Otero-Millan et al.,
2008; Rucci, 2008). When studying saccades and microsaccades in
scene perception, descriptive measures and functional character-
istics lead to proposals of generating processes and comparison
with pure fixation task microsaccades (Mergenthaler & Engbert,
2010). Possibly, eye movements may even be related to perceived
emotions, which could be used in marketing studies of specific ad-
vertisements (Rayner, Miller & Rotello, 2008; Bannerman, Milders
& Sahraie, 2009).

Studies of activity-related brain potentials with EEG, co-
registered with eye movements, open another realm in which the
separation of eye movements into fixations and saccades is of major
interest for evaluating measured brain potentials (Dambacher &
Kliegl, 2007; Dimigen, Sommer, Hohlfeld, Jacobs & Kliegl, 2011;
Kliegl, Dambacher, Dimigen, Jacobs & Sommer, 2011). Furthermore,
fixations and saccades need to be separated to examine behavioral
characteristics of the participants not only under laboratory condi-
tions but also with head-mounted, video-based eye tracking while
walking outside ('t Hart & Einhduser, 2011) or while driving a
car (Cohen & Studach, 1977; Omori, Sato, Yamauchi, Ishikawa &
Wakita, 2009). All these research fields show the importance of
being able to properly distinguish saccades and fixations. The fixa-

100



Discussion

tions yield another challenge because they contain microsaccades.
These small, involuntary saccades during fixation are related to
various functions in vision (compare Chapter 1.3 and Rolfs, 2009).
Therefore, it would be of great benefit to detect both saccades
and microsaccades at the same time, using a tool that does not
require long computation times and has a parameter space that is
independent of the different tasks or different subjects.

In this thesis, I investigated the hypothesis that saccades and mi-
crosaccades can be modeled as singularities in time series. The con-
tinuous wavelet transform is a tool for the vision research commu-
nity and detects saccades of all amplitudes (Chapter 2.3), including
microsaccades (Chapter 2.4). The method is used on a predefined
minimal set of parameters: Frequency range (Chapter 2.3), length
of maximum modulus line over frequencies (Chapter 2.2.3), and,
especially for the collection of microsaccades into a microsaccade
catalog, the binocularity (Chapter 2.4) and energy criterion (Chap-
ter 3.7). All these parameters are independent of subject and task.
The widely-used method to detect saccades and microsaccades in
the velocity space (Engbert & Kliegl, 2003b) requires knowledge
about an optimal threshold or the recording of secondary data
in order to determine it. The wavelet method has proven to not
require any tuning because the same parameter set is used for
every experiment under investigation.

When performing a simple comparison of rates for binocular
microsaccades detected by the velocity threshold (using a dynami-
cal threshold multiplier as described in Mergenthaler, 2009) and
wavelet method for the time series of the fixation task experiment,
the rates are significantly correlated (r=0.96, p<0.0001). Rates are
reported in Table 5.1 and a short time interval of a representative
trajectory with detected microsaccade positions is presented in
Figure 5.1.

Performing an analysis on amplitude-adjusted surrogate data
for fixational eye movements (Chapter 2.5) strictly suggests that
almost simultaneously occurring structures of low regularity in
the trajectories of fixational eye movements cannot be explained by
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Figure 5.1: Illustration of the microsaccade detections in fixational eye move-
ments by the velocity threshold and wavelet method. The velocity threshold method
used a dynamical threshold multiplier to detect microsaccades (Mergenthaler, 2009). The
wavelet method also detects smallest microsaccades, for example, at time ~ 1.3s.

randomly co-occurring autocorrelated samples in the slow move-
ments, or drift, in both eyes. Thus, having validated the method
through the analysis of simulated data, the mathematical approach
to define saccades and microsaccades as singularities proves to be
a successful method for the detection of these movements. Using
structural properties rather than the characteristic of high-velocity
to identify time positions has two advantages: Primarily, it “verifies”
the already existing approach to be a successful detection method
because both methods have nearly the same results. Secondly, it
presents an alternative detection approach that has less parameters
to be optimized. Additionally, the proposed method might be use-
ful for researchers who consider eye movements to only be artifacts
in the measurements of their primary data source, for example in
EEG studies. They can profit from the performance of this novel
method because it can be used to detect artifacts such as saccadic
eye movements without a priori knowledge about them.
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Table 5.1: Detection of microsaccadic events with the continuous wavelet trans-
form (WT) and velocity threshold (VT) method (with dynamical threshold mul-
tiplier) in the fixation task experiment. Results are compared after application of the
individual settings for both methods. The VT algorithm detects 5 % less binocular events.
The total rates are given as mean = standard deviation.

Participant Number  Binocular events

of trials rate of [1]
wavelet  velocity
1 30 15 1.1
2 29 24 24
3 30 14 14
4 30 0.3 0.1
5 22 0.6 0.5
6 30 1.8 1.9
7 30 1.7 2.0
8 30 1.7 2.0
9 30 0.5 0.2
10 17 1.0 0.7
11 28 1.0 0.9
12 30 0.8 0.9
13 29 0.6 0.2
14 30 1.2 0.8
15 29 1.8 1.9
16 30 1.2 1.4
17 29 0.8 0.3
18 23 1.4 1.5
20 29 1.7 1.9
21 29 1.9 1.9
22 30 0.3 0.2
23 29 1.2 1.2
24 30 1.7 1.7
25 29 1.2 1.1
Total 682 12+05 12+07
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5.2 Shape model for saccadic eye
movements

Saccades and microsaccades are often only described by their
shared property of high velocity. Since the work of Zuber et al.
(1965), the relationship between saccades and microsaccades is
commonly presented in the main sequence (cf. Chapter 3.1.1). Con-
cerning the classification as single- and double-saccadic pulse (SSP
and DSP), which exists for saccades and microsaccades as well
(Abadi & Gowen, 2004), it would be beneficial to have a shape
model that can not only separate different patterns but also return
a measure of, for example, overshoot width.

To arrive at a shape model that allows the simple collection
of typical saccade and microsaccade properties (Chapter 3.7), the
main shapes have been identified through principal component
analysis, yielding two components whose linear combinations al-
most completely describe the shapes of microsaccades as well as
saccades. The established linear model for microsaccade shapes in
Chapter 3.4 agrees with studies by Zuber et al. (1965), which re-
ported the overshoot as a typical property of microsaccades. More
recently, by using electromagnetic induction technique with rhesus
monkeys, eye movement trajectories of Hafed et al. (2009) also
reveal an overshoot in the horizontal and vertical directions, identi-
fied as microsaccadic events. Often doubts exist that video-based
eye tracking (Chapter 1.5) presents the correct overshoot width,
caused by influences of the pupil dilation onto the internal position
detection procedure of the device. Performing an experiment with
an iris test lens, in which the pupil size remains constant to the
camera of the eye tracker, the analysis showed that the overshoot
might be overestimated by the video-based eye tracking system.
Yet, it still remains a part of the microsaccade (cf. Figures 3.2, 3.4,
3.5, and 3.7). Hence, overshoot cannot be neglected as an artifact
though its impact is smaller than thought.

Through the shape coefficients, the saccade and microsaccade
shape model can distinguish not only between SSP and DSP but
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can also describe intrinsic properties of either event. The model
allows simulations of these jump-like events in the eye movement
trajectories once the distribution of the shape coefficients is known
for different experimental setups.

Properties like amplitude, durations, or velocities have been
investigated during the performance, for example, of tasks with
different stimuli to affect saccades (for a review, see Weaver, Lauw-
ereyns & Theeuwes, 2011). The novel shape model for saccadic
eye movements deviations allows for statistical treatments of the
curvature, obtaining shape coefficients to measure differences.
Together with the microsaccade shape model, a microsaccade cata-
log is established and allows for direct access for any subsequent
analysis because microsaccades are described by and restorable
from these seven parameters.

5.3 Markov models for sequences of
microsaccades

Previous studies aimed for a description of microsaccade sequences
as patterns in fixational eye movements. Abadi and Gowen (2004)
detected and identified them by subjective valuation. Otero-Millan,
Serra et al. (2011) separated microsaccades that were aligned in a
sequence of two or three subsequent events from single-standing
microsaccades. In this thesis, my attempt was not to deliver a
neurophysiological model for the generation of microsaccades but
to arrive at a stochastic model, the Markov chain. It presents a well-
defined framework for the sequences of microsaccades as symbols
in fixational eye movements.

Using the microsaccade catalog (Chapter 3.7), microsaccades
detected with the scale-invariant wavelet method, were mapped
onto symbols, representing their direction. The only assumption
made for the stochastic process to generate these sequences was
the Markov chain, a process with a certain memory horizon. Using
symbolic dynamics (Chapter 4.3) and Bayesian factor model selec-
tion, a straight-forward estimator for the Markov order for states of
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compound symbols could be proposed and successfully validated
(Chapter 4.4).

Earlier findings in the analysis of microsaccades postulate the
existence of a statistical coupling of subsequent microsaccade orien-
tations, the square-wave jerks (Chapter 4.1.2) and biphasic square
wave intrusions (Chapter 4.1.1). Both have been proposed to co-
exist between isolated microsaccades. In contrast to these previous
works on patterns of subsequent microsaccadic events, I neglected
the temporal proximity between the events. According to the Bayes
factor analysis (Chapter 4.4), the first-order Markov chain is the best
description of most of the experimentally observed microsaccade
sequences. Evidence was obtained that both, microsaccades and
SWJ, are generated by the same stochastic process. This statistical
treatment lends support to the conclusion “that microsaccades and
SIs are essentially the same phenomena” (Otero-Millan, Serra et al.,
2011, pp. 4386), since they were found to be generated by the same
stochastic process.

In the next step, I investigated the loss of memory over time with
a time-dynamic model. Here, the Markov chain model changes
from first- to zeroth-order; the generating process loses memory
over time. The change point from a first- to zeroth-order Markov
chain, i. e., the time point around which the memory has faded, is
in a range of 214 + 82ms across all subjects. Otero-Millan, Serra
et al. (2011) reported intra square-wave jerks (SWJ]) intervals of
280 ms and 290 ms for healthy and progressive supranuclear palsy
patients, However, square-wave jerks consist of two oppositely
directed microsaccades in a sequence. Now, with the proposed
time-dynamic model, the time interval between two subsequent
microsaccades, which are dependent on each other, remains shorter
but also includes, for a first-order Markov chain, the probabilities
for symbol changes and symbol conservation: for example, to
have a word L(eft)-Right or Left-Left. The computation of the SW]-
intervals is based on a symbol change.

In their analysis of the saccadic system, Becker and Jiirgens
(1979) proposed that goal-directed saccades are prepared in two
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steps: The direction is decided, requiring a random time delay, and
subsequently the calculation of the amplitude. Their conceptual
model for the total delay time of the saccadic system included the
following components (adapted from Becker & Jiirgens, 1979):

e an afferent time delay T4 needed to signal a new target
position to the decision-making structure,

e a decision and computing time Tp + Ty as the time for the
decision-making structure to decide on a saccade triggering
and its amplitude,

o an efferent time delay Tr to transmit the motor signal through
the end of the neural pathway to the eye muscles,

e the duration of the saccade fg.

Additionally, they reported values of Tp = 100ms and
Tw = 120ms, which together give the computation time in
the central decision and computing stage, and T4 = 40ms and
Tr = 35ms. They also proposed that, around this stage, an
outcome can be memorized and directly enter the stage again,
while the command for a saccade already travels to the motor
system. Holding fixation on a target, the superior colliculus (SC)
has been proposed to be the key generator for microsaccadic
eye movements. Furthermore, the SC plays a role in the central
direction and amplitude computation stage (Hafed et al., 2009;
Otero-Millan, Serra et al., 2011; Rolfs et al., 2008).

To further the understanding of the time point at which the
Markov chain model switches from first- to zeroth-order, I might
assume that for microsaccades the afferent time T4 equals Oms
because no new target position has to be selected. If a microsac-
cade were triggered in the SC, then the signal left the SC to the
motor neuronal pathway and at the same time, the memory (a
copy of the command signal) re-enters the SC. Another run of
the decision-computation stage would follow, possibly leading to
another saccadic movement — of any amplitude. Each computation
in the SC takes around Tsc = Ty + Tp = 220 ms. This time would

107



Discussion

Memory
TA TD + TW = TSC . TE
40ms 100ms+120ms = 220ms 35ms

Saccade
execution

Figure 5.2: Conceptual model of saccade generation in the neural pathway. The
central decision and computing stage is represented by the superior colliculus (SC) in the
neural pathway of saccade generation. For microsaccade generation models, the SC plays a
key role to trigger microsaccades. The afferent time Ty, decision time Tp, computation time
Tp, the sum TsC = Tp + T¢ as time interval for a signal in the SC, and the efferent time
Tg are provided. Adapted from (Becker & Jiirgens, 1979).

agree with the estimated threshold time for the time-dynamic
model which therefore might provide an explanation for the exis-
tence and loss of memory in this time window. An illustration of
the proposed pathway and delay times is presented in Figure 5.2.

5.4 Outlook

The detection method for saccades of all amplitude scales should
be applied to further experimental data, especially considering the
existence of data from primates (Hafed et al., 2009). For monkeys,
the horizontal does not dominate the vertical eye movement direc-
tion and fixational eye movement data should be analyzed with
the wavelet transform method for complex-valued time series. In-
vestigating the selected frequency range, or the zoom, might allow
for a decrease of the number of false detections, if only monocular
detections are considered. Using the data from the iris test lens
experiment, it might be possible to eliminate the effect of pupil
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dilation and provide a method for handling the overestimation of
the overshoot widths.

Couplings between physiological drift and microsaccades
(Engbert et al., 2011; Engbert, 2006b; Poletti, Listorti & Rucci, 2010)
could potentially lead to more detailed process assumptions than
what is presented here with the Markov chain model for microsac-
cade directions. This also includes the consideration of amplitudes
and displacements. Further experiments, including involuntary and
voluntary small amplitude saccades, might allow for investigations
of the triggering mechanisms. Furthermore, neurophysiological
aspects in the proposed model of memory effects in microsaccades
might lead to a more profound model.

While the method for Markov order estimation was demon-
strated on examples from fixational eye movements, the Bayesian
estimation of the Markov order of a stochastic process underlying
the generation of symbol sequences might turn out to be a powerful
tool for a broad range of biological systems and could be applied
to different systems whose events can be mapped on symbols in a
similar manner.

5.5 Final remark

A novel tool for the detection of saccades and microsaccades has
been shown to be a well-founded alternative to the already exist-
ing methods. A statistical treatment of saccade and microsaccade
shapes showed good agreement in both shapes and dissimilari-
ties in the overshoot height. An iris test lens experiment revealed
the limitations of video-based eye tracking for investigations of
the overshoot, which is prominent for microsaccades. Bayesian
inference, stochastic modeling and symbolic dynamics have been
combined to present a Markov chain model as a microsaccade-
generating process with limited memory of the previous microsac-
cade symbols in the fixational eye movements.
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The first thing we do upon waking is open our eyes. Rotating them in our
eye sockets, we scan our surroundings and collect the information into a
picture in our head. Eye movements can be split into saccades and fixational
eye movements, which occur when we attempt to fixate our gaze. The latter
consists of microsaccades, drift and tremor. Before we even lift our eye lids,
eye movements —such as saccades and microsaccades that let the eyes jump
from one to another position — have partially been prepared in the brain stem.
Saccades and microsaccades are often assumed to be generated by the same
mechanisms. But how saccades and microsaccades can be classified accor-
ding to shape has not yet been reported in a statistical manner. Research
has put more effort into the investigations of microsaccades’ properties and
generation only since the last decade. Consequently, we are only beginning to
understand the dynamic processes governing microsaccadic eye movements.
Within this thesis, the dynamics governing the generation of microsaccades
is assessed and the development of a model for the underlying processes.
Eye movement trajectories from different experiments are used, recorded
with a video-based eye tracking technique, and a novel method is proposed
for the scale-invariant detection of saccades (events of large amplitude)
and microsaccades (events of small amplitude). Using a time-frequency
approach, the method is examined with different experiments and validated
against simulated data. A shape model is suggested that allows for a simple
estimation of saccade- and microsaccade related properties. For sequences
of microsaccades, in this thesis a time-dynamic Markov model is proposed,
with a memory horizon that changes over time and which can best describe
sequences of microsaccades.
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