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Abstract

Despite remarkable progress made in the past century, which has revolutionized our understanding
of the universe, there are numerous open questions left in theoretical physics. Particularly important
is the fact that the theories describing the fundamental interactions of nature are incompatible.
Einstein’s theory of general relative describes gravity as a dynamical spacetime, which is curved
by matter and whose curvature determines the motion of matter. On the other hand we have
quantum field theory, in form of the standard model of particle physics, where particles interact
via the remaining interactions – electromagnetic, weak and strong interaction – on a flat, static
spacetime without gravity.

A theory of quantum gravity is hoped to cure this incompatibility by heuristically replacing
classical spacetime by ‘quantum spacetime’. Several approaches exist attempting to define such a
theory with differing underlying premises and ideas, where it is not clear which is to be preferred.
Yet a minimal requirement is the compatibility with the classical theory, they attempt to generalize.

Interestingly many of these models rely on discrete structures in their definition or postulate
discreteness of spacetime to be fundamental. Besides the direct advantages discretisations provide,
e.g. permitting numerical simulations, they come with serious caveats requiring thorough investi-
gation: In general discretisations break fundamental diffeomorphism symmetry of gravity and are
generically not unique. Both complicates establishing the connection to the classical continuum
theory.

The main focus of this thesis lies in the investigation of this relation for spin foam models. This
is done on different levels of the discretisation / triangulation, ranging from few simplices up to the
continuum limit. In the regime of very few simplices we confirm and deepen the connection of spin
foam models to discrete gravity. Moreover, we discuss dynamical, e.g. diffeomorphism invariance in
the discrete, to fix the ambiguities of the models. In order to satisfy these conditions, the discrete
models have to be improved in a renormalisation procedure, which also allows us to study their
continuum dynamics. Applied to simplified spin foam models, we uncover a rich, non–trivial fixed
point structure, which we summarize in a phase diagram. Inspired by these methods, we propose a
method to consistently construct the continuum theory, which comes with a unique vacuum state.
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Abstrakt

Trotz bemerkenswerter Fortschritte im vergangenen Jahrhundert, die unser Verständnis des Uni-
versums revolutioniert haben, gibt es noch zahlreiche ungeklärte Fragen in der theoretischen Phy-
sik. Besondere Bedeutung kommt der Tatsache zu, dass die Theorien, welche die fundamentalen
Wechselwirkungen der Natur beschreiben, inkompatibel sind. Nach Einsteins allgemeiner Relati-
vitätstheorie wird die Gravitation durch eine dynamische Raumzeit dargestellt, die von Materie
gekrümmt wird und ihrerseits durch die Krümmung die Bewegung der Materie bestimmt. Dem
gegenüber steht die Quantenfeldtheorie, die die verbliebenen Wechselwirkungen – elektromagneti-
sche, schwache und starke Wechselwirkung – im Standardmodell der Teilchenphysik beschreibt, in
dem Teilchen auf einer statischen Raumzeit – ohne Gravitation – miteinander interagieren.

Die Hoffnung ist, dass eine Theorie der Quantengravitation diese Inkompatibilität beheben kann,
indem, heuristisch, die klassische Raumzeit durch eine

’
Quantenraumzeit‘ ersetzt wird. Es gibt

zahlreiche Ansätze eine solche Theorie zu definieren, die auf unterschiedlichen Prämissen und Ideen
beruhen, wobei a priori nicht klar ist, welche zu bevorzugen sind. Eine Minimalanforderung an diese
Theorien ist Kompatibilität mit der klassischen Theorie, die sie verallgemeinern sollen.

Interessanterweise basieren zahlreiche Modelle in ihrer Definition auf Diskretisierungen oder pos-
tulieren eine fundamentale Diskretheit der Raumzeit. Neben den unmittelbaren Vorteilen, die Dis-
kretisierungen bieten, z.B. das Ermöglichen numerischer Simulationen, gibt es auch gravierende
Nachteile, die einer ausführlichen Untersuchung bedürfen: Im Allgemeinen brechen Diskretisierun-
gen die fundamentale Diffeomorphismensymmetrie der Gravitation und sind in der Regel nicht
eindeutig definiert. Beides erschwert die Wiederherstellung der Verbindung zur klassischen, konti-
nuierlichen Theorie.

Das Hauptaugenmerk dieser Doktorarbeit liegt darin diese Verbindung insbesondere für Spin–
Schaum–Modelle (spin foam models) zu untersuchen. Dies geschieht auf sehr verschiedenen Ebenen
der Diskretisierung / Triangulierung, angefangen bei wenigen Simplizes bis hin zum Kontinuums-
limes. Im Regime weniger Simplizes wird die bekannte Verbindung von Spin–Schaum–Modellen zu
diskreter Gravitation bestätigt und vertieft. Außerdem diskutieren wir dynamische Prinzipien, z.B.
Diffeomorphismeninvarianz im Diskreten, um die Ambiguitäten der Modelle zu fixieren. Um diese
Bedingungen zu erfüllen, müssen die diskreten Modelle durch Renormierungsverfahren verbessert
werden, wodurch wir auch ihre Kontinuumsdynamik untersuchen können. Angewandt auf verein-
fachte Spin–Schaum–Modelle finden wir eine reichhaltige, nicht–triviale Fixpunkt–Struktur, die wir
in einem Phasendiagramm zusammenfassen. Inspiriert von diesen Methoden schlagen wir zu guter
Letzt eine konsistente Konstruktionsmethode für die Kontinuumstheorie vor, die einen eindeutigen
Vakuumszustand definiert.
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für ihre Freundschaft, Unterstützung und Gastfreundschaft bedanken.

Zu guter Letzt gilt mein besonderer Dank meinen Eltern, Gottfried und Marita Steinhaus, für
ihre bedingungslose und uneingeschränkte Unterstützung in unzähligen Situationen, insbesondere
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1 Introduction

Many technological advances achieved in the last one hundred years, which have greatly changed
and influenced human life, go back to the discovery of two fundamental physical theories: on the
one hand, we have quantum theory, i.e. quantum mechanics and quantum field theory, describing
nature on small scales, e.g. subatomic particles interacting via the electromagnetic, strong and
weak forces encoded in the so–called Standard Model. Quantum theories not only solved long
lasting problems, e.g. the ultraviolet catastrophe of electromagnetism, and explained the stability
of atoms, they stimulated condensed matter physics, which lead to the development of computers
and with it our modern communication society with all of its opportunities and perils. Additionally,
it gave rise to classically unknown effects such as entanglement, which opened up completely new
fields of research and may spark another revolution of its own, namely quantum computing.

On the other hand, we have general relativity, the classical theory of gravity, the last and com-
parably weakest of the known fundamental interactions in nature. Thus it is mostly associated to
interactions at very large scales to describe the dynamics of celestial bodies. General relativity,
together with special relativity, revolutionized our understanding of space and time: In contrast to
Newton’s theory of gravity, it does not consider an absolute space and time as a given background
structure on which gravitational interactions take place. Instead space and time are tied together
into a dynamical spacetime, whose curvature, induced by matter, describes then again the univer-
sal gravitational interaction between massive objects. In short, the gravitational interactions are
encoded into the dynamical geometry of spacetime. Hence, there exists no preferential choice of
spacetime or coordinate system, which gives rise to the fundamental symmetry of general relativ-
ity, namely diffeomorphism symmetry, also known as general covariance. In brief, the dynamics of
gravity are invariant under all smooth bijective maps from the underlying manifold to itself, such
that only diffeomorphism invariant quantities are physically relevant. Of course general relativity
can claim its personal share in novel physical predictions, to name a few such as the perihelion
precession of Mercury and bending of light rays by heavy objects in the sky, known as gravitational
lensing. From a technological perspective, it contributed the necessary corrections to Newtonian
gravity for the Global Positioning System (GPS) to work flawlessly. An inquiring phenomenon dis-
covered as a particular solution to Einstein’s equations are black holes, special regions in spacetime
characterized by mass, angular momentum, etc. that causally disconnect their interior from the
surrounding spacetime by an event horizon. These objects, whose existence still has to be confirmed
directly, e.g. by the direct detection of gravitational waves, are a topic of active research.

Remarkably, both theories are very well tested and still mark the most predictive theories de-
veloped in theoretical physics. To mention a very recent result at the LHC, the highly celebrated
detection of (probably) the Higgs boson experimentally [1, 2] confirms the last missing piece in
the Standard Model of particle physics, whereas, up to now, no indication of supersymmetry, ex-
tra dimensions or a fifth force have been observed. On the gravitational side, experiments rather
appear to put more and more strict bounds onto alternative theories of gravity or (conjectured)
quantum gravity effects, yet new experiments might uncover novel effects challenging general rela-
tivity, see [3] for a recent review. Very recent results from cosmological experiments, such as the
BICEP2 experiment [4], which detected an imprint of primordial gravitational waves in the cosmic
microwave background, appear promising to blaze the trail towards new insights in cosmology,
which will hopefully affect quantum gravity.

Indeed, quantum field theory and classical gravity are physically well established theories that
describe the phenomena currently experimentally accessible to us very well. However, this neither
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1 Introduction

implies that no new physical effects will be uncovered at higher energy scales nor does it mean that
our understanding of the theories are complete, e.g this can concern the values of the parameters
of the theories, their interpretation and origin: the cosmological constant is a prime example.
Originally introduced by Einstein in 1917 to model a static universe, it has been measured to be
positive, yet very small, and it is a vital parameter in modern models of cosmology [5,6]. However
we are lacking a convincing explanation of its origin and value; an attempt well–known for its
obvious failure is the explanation of the cosmological constant as the zero–point energy of quantum
fields, cut–off at the Planck scale, which gives a result roughly 120 orders of magnitude too large.
This is usually referred to as the ‘Cosmological constant problem’ [7].

In fact, it is frequently argued that many of the current shortcomings in our understanding
of nature is rooted in the fact that we do not have a theory of quantum gravity. Indeed, such
a theory is necessary for two reasons: First, general relativity is not a complete theory, since
it exhibits singularities, e.g. at the origin of our universe or other cosmological scenarios like
black holes, where either curvature or energy density diverges and the theory loses its validity.
Generically, this is expected to happen at energies close to the Planck scale. Second, and even
more troubling, classical gravity is incompatible with quantum theories: indeed, the two most
tested and predictive theories are very well understood on scales, where either one of the two is
negligible. On scales of the size of a nucleus, gravity is insignificantly weak in comparison to strong,
weak and electromagnetic force, whereas on scales of the solar system (and beyond), the weak and
strong force are non–relevant and the electromagnetic interactions are well approximated by the
classical theory (or semi–classical approximations). However in cosmological situations like the
Big Bang, the cosmological singularity at the beginning of the universe, matter and gravitational
interactions (and backreactions) are crucial and require compatible theories.

The incompatibility between general relativity and quantum field theory is caused by opposing
initial assumptions and different technical ingredients: In general relativity, spacetime itself, i.e.
the metric on a (differential) manifold, is dynamical and determined by the Einstein equations
of motion, in which matter is universally coupled to gravity. As a result, it is not reasonable to
distinguish one particular spacetime as a special background, nor should physics depend on the
special choice of spacetime coordinates. This is encoded as diffeomorphism invariance in GR,
implemented as a symmetry of the Einstein–Hilbert action, which is deeply intertwined with the
dynamics of gravity: e.g. in the canonical formalism, gravity is totally constrained, i.e. the
Hamiltonian governing time evolution is a constraint itself and forced to vanish. That means that
time evolution, generated by the constraint, itself is a gauge transformation, which is often referred
to as the ‘problem of time’ or ‘frozen time formalism’ [8–11]. Hence, diffeomorphism symmetry is
an essential ingredient of the classical theory of gravity and can serve as a test or guiding principle
in the construction of a quantum theory of gravity. Indeed, as we will see the fate of diffeomorphism
symmetry plays an important role in the definition of non–perturbative quantum gravity theories.

In contrast to general relativity, quantum field theory is defined on one particular spacetime,
which can be seen as the ‘stage’ on which the dynamics of quantum fields takes place. This
background spacetime, frequently chosen to be flat Minkowski space, is fixed and not dynamical,
i.e. spacetime is not interacting with the matter content. In other words, (full) gravity is excluded
from the dynamics by construction. In many scenarios, like collider experiments on earth, this is
a very good approximation, since the involved energies and particle masses are too small to get
non–negligible backreaction effects. Gravity can be partially, or rather passively, incorporated by
choosing a curved background spacetime, an essential generalization to derive Hawking radiation of
black holes1. Indeed fixing a background spacetime is essential in providing the technical tools for

1Since a black hole emits thermal radiation, it will eventually evaporate due to energy conservation. However, this
process is far from understood and a very active, and controversially discussed, area of research. In particular
the information paradox is investigated: Information that is hidden behind the event horizon of the black hole,
e.g. matter that has fallen in, gives rise to an entanglement entropy of the black hole. Under evaporation, this
information should be released, however, if only thermal radiation is emitted, how can this thermal radiation
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1.1 Non–perturbative quantum gravity

the (perturbative) (Fock–)quantization of fields and computing scattering processes of excitations
of the quantum fields.

Hence, the most straightforward idea to define a quantum field theory of gravity and matter is to
drop background independence of gravity: Instead of quantizing the full gravitational field, i.e. the
metric, one quantizes the (weak) fluctuations around a fixed background, e.g. Minkowski space,
as a typical quantum field theory in a perturbative expansion in Feynman diagrams. Classically
this approach is known as linearized gravity and describes gravitational waves. The quantum
excitations of gravitational waves are particles of spin 2, called gravitons, that interact universally
with all other matter fields and, more importantly, with themselves. However this theory, also for
pure gravity, is not predictive: As for any quantum field theory, there exist Feynman diagrams that
diverge, however these divergences can be absorbed by renormalizing the theory and performing a
measurement for each independent parameter of the theory. Yet in perturbative quantum gravity,
the divergences cannot be absorbed into a finite number of independent couplings, e.g. the first
non–renormalizable term has been identified at the two–loop level [12, 13]. This can either be
inferred from the dimensionality of the gravitational coupling constant, which comes with a positive
mass dimension. As a result, this form of perturbative quantum gravity is called perturbatively
non–renormalizable.

There exist several research fields that explore possible non–perturbative theories of quantum
gravity to circumvent or solve this issue. Roughly these can be split into two categories: the first
relies on the idea that gravity cannot be consistently quantized just by itself, but should rather
be contained in a unified theory with all other interactions. String theory typically falls into this
category, which however relies on a background spacetime (or sometimes a background boundary
spacetime in the AdS / CFT correspondence). The second one, which we will focus on in this
thesis, deals with the non–perturbative quantization of pure gravity, characterized by preserving
the dynamical nature of spacetime, to which the matter content and interactions are coupled.
Tentatively, one might be tempted to call this approach ‘constructing quantum spacetime’.

1.1 Non–perturbative quantum gravity

The term ‘non–perturbative quantum gravity’ joins several different approaches, which can be well
distinguished by considering their main underlying ideas. Asymptotic safety [14, 15] assumes that
gravity can be formulated as a quantum field theory, since it is expected that the renormalization
group flow, i.e. the change of the fundamental coupling constants of the theory under integration
of higher momentum–modes, has a non–trivial (non–Gaussian) fixed point in the ultraviolet, which
is also called the UV completion of the theory. Or take causal dynamical triangulations [16],
a numerical approach simulating quantum spacetime by summing over all possible (equilateral)
triangulations weighted by the Regge action [17, 18], a form of discrete gravity, which exhibits a
phase (in parameter space) in which the three–volume of spatial slices (on average) resembles a de
Sitter spacetime.

One of the best–known approaches is loop quantum gravity [19, 20], a background independent
attempt to canonically quantize gravity, in which the spin–network states, i.e. states in the kine-
matical Hilbert space, live on discrete graphs embedded in a 3D hypersurface. Physical information
is contained in the physical states, i.e. all states that are annihilated by the quantum constraint
operators. The covariant approach related to loop quantum gravity is known as spin foam mod-
els [21, 22], which are defined on a 2–complex and can be understood as discrete versions of the
gravitational path integral. E.g. they give the transition amplitudes between two 3–geometries
by assigning amplitudes to the connecting discrete 4–geometry, where it has been shown that the
amplitudes assigned to (one of the) basic building blocks are proportional to the discrete Regge
action in a semi–classical limit [23–29], see also the papers [30, 31] presented in chapters 2 and 3.

contain this information? What is the process that reduces the entanglement entropy under evaporation?
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A related approach is group field theory (GFT) [32, 33], which defines a field theory on a group,
generating pre–geometric complexes via its perturbative expansion in Feynman diagrams. Group
field theories are related to spin foam models, since their Feynman diagrams actually resemble spin
foam amplitudes.

This little excursion is meant to illustrate the variety of different approaches that can be sum-
marized under the topic ‘quantum gravity’. Interestingly, several approaches listed above have
common ideas, at least at the conceptual level: As quantum field theories, asymptotic safety and
group field theory explicitly examine the renormalization group flow of the theory, namely whether
the theory is renormalizable, i.e. there exists a scheme to absorb the divergences of the theory,
and how the dynamics of the theory changes at different energy scales. On the other hand, loop
quantum gravity2, spin foam models, causal dynamical triangulations and group field theories rely
on discrete structures in their construction, which serve as a truncation of the number of degrees
of freedom and allow to non–perturbatively define the dynamics. In some approaches to quantum
gravity the discreteness of spacetime is postulated to be fundamental, take for example causal set
theory [36].

One goal of this thesis is to define and develop a renormalization group method for discrete
approaches, to be more concrete for (analogue) spin foam models, so–called spin nets [37–39], in
order to examine the (effective) dynamics of the theory depending on the number of discrete building
blocks involved. The hopes are on the one hand that this scheme helps to fix the ambiguities (and
pathologies) involved in the definition of the discrete theory, while on the other hand it allows us to
explore the different phases of the theory and, furthermore, give a consistent construction method
for the associated continuum theory.

This goal is very ambitious, but a crucial point if we consider discretisations, in particular in
gravitational theories. Despite their desirable properties, the introduction of discretisations (in
both classical and quantum theories) has serious repercussions:

• Discretisations of a continuous action are usually not uniquely defined, that means one can
define a plethora of different discrete actions that all converge to the same continuum action
in an appropriate continuum limit. This is particularly troubling if one considers (this form
of) discreteness to be fundamental.

• Generically, discretisations break the fundamental diffeomorphism symmetry of general rel-
ativity [40–43]; in the discrete this symmetry is associated with an invariance under vertex
translations [40–46]. As a consequence, former gauge degrees of freedom are ‘promoted’ to
physical degrees of freedom and are a priori indistinguishable from the ‘true’ physical ones,
thus called pseudo–gauge degrees of freedom [41, 42]. This can have serious repercussions
e.g. in a path integral formulation, where a naive integration would lead to (additional)
divergences once the diffeomorphism symmetry is restored in a continuum limit.

• An issue related to the breaking of diffeomorphism symmetry is the (unphysical) dependence
of the theory on the choice of the discretisation / regulator. There exist several proposals to
remove this regulator, where it is a priori unclear which one is to be preferred. Should one some
over all possible triangulations as in spin foam models and causal dynamical triangulations,
or also all topologies as suggested by group field theory? Or should one rather consider a
refinement limit, in which the theory is defined on finer and finer triangulations? Under
certain conditions in spin foam models, summing over all foams and refining a single foam

2Even though loop quantum gravity uses graphs to define (kinematical) states, it is a continuum theory: two states
defined on two different graphs can be compared by embedding them into a common refinement, i.e. a graph,
which is a refinement of both previous graphs. For this to work consistently, the embedding maps have to satisfy
cylindrical consistency conditions. In an inductive / projective limit, one can then construct the continuum
Hilbert space [20,34,35].
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1.1 Non–perturbative quantum gravity

may be identical [47]. In a canonical formulation, for broken diffeomorphism symmetry, the
constraints of the theory rather occur as pseudo–constraints [41,42,48–50].

• Covariant approaches to quantum gravity have the goal to give meaning to the (formal)
gravitational path integral ∫

∂M
Dg exp{i SE–H[g]} , (1.1.1)

where Dg is the measure on the space of geometries, i.e. the space of metrics modulo diffeo-
morphisms. In the discrete setting, one not only has to replace the Einstein–Hilbert action
SE–H[g] by a discrete action, but also choose a measure on the set of discrete geometries,
which will directly translate into a choice on the measure on the space of geometries. Since
diffeomorphism symmetry is generically broken, this raises the question whether the measure
factor is anomaly free with respect to diffeomorphisms [51]. Additionally, choices on the
measure in spin foam models influence the divergent behaviour of the model [46,52–55].

• Lorentz invariance is generically broken by the introduction of a discretisation, e.g. in Regge
calculus [17], yet its fate in quantum gravity is not clear. It has been frequently argued
that quantum gravity effects at the Planck scale may result in a breaking or modification /
deformation of Lorentz symmetry, which could be potentially observed as modified disper-
sion relations of matter propagating on this quantum gravitational background. A possible
experimental test could be by observing highly energetic particles, which travelled over long,
i.e. cosmological, distances, e.g. emitted in a gamma ray burst [56,57].

The various issues stated above are very much related to one another and are rooted in the lack
of good understanding of the relation between the discrete and the continuous description of grav-
ity, which even arises on the classical level. This particularly affects the fate of diffeomorphism
symmetry in the discrete setting. See also [58] for a review on the interplay between discretiza-
tions, diffeomorphism symmetry and constraints in various models of quantum gravity and how
discretizations can be constructed to circumvent some of the issues.

However, exactly this understanding is crucial in making the case for any of the discrete quantum
gravity approaches above. Due to the lack of observational evidence and data indicating quantum
gravity effects, the least a quantum gravity theory must achieve is consistency with the classical
theory it intends to generalize. This can already be explored on the discrete level, where one would
compare the candidate theory to discrete gravity, e.g. Regge calculus [17], yet the full consistency
can only be checked for a continuum formulation. Hence the overarching question is, whether
quantum gravity models defined in the discrete possess a phase, in which the collective dynamics
of many building blocks exhibits a smooth description consistent with general relativity. This
consistency certainly should also include (a realization of) diffeomorphism symmetry. In case such
a scenario is realized one might be able to predict quantum gravity corrections to general relativity
that motivate new experiments and tests, which might eventually verify or falsify the theory.

1.1.1 Introduction to Regge calculus

To get a better understanding of this, let us concretely discuss a discretisation of classical general
relativity, namely Regge calculus [17, 59]. Regge calculus is defined on a triangulation of a d–
dimensional manifold, where the geometric information is encoded into the distance between the
vertices, i.e. the length of the edges of the triangulation. Thus the edge lengths are the dynamical
variables of the theory. Note that this formulation is inherently coordinate independent, since only
the relative distances between the vertices determine the theory. The Regge action SR is given as
follows:

SR := −
∑

h⊂bulk

Vh

2π −
∑
σd⊃h

θ
(σd)
h

− ∑
h⊂bdry

Vh

π − ∑
σd⊃h

θ
(σd)
h

 , (1.1.2)
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where σd denotes a d–simplex and Vh is the volume of a (d− 2)–simplex, also called a ‘hinge’. The

d–dim. (interior) dihedral angle of the d–simplex σd located at the hinge h is denoted by θ
(σd)
h and

is determined by the edge lengths of the simplex. The terms in brackets resemble the bulk and
boundary deficit angles respectively:

ω
(bulk)
h := 2π −

∑
σd3h

θ
(σd)
h , (1.1.3)

ω
(bdry)
h := kπ −

∑
σd3h

θ
(σd)
h , (1.1.4)

where k depends on the number of pieces one is glueing together at this boundary. If there are

only two pieces we have k = 1. The deficit angles ω
(bulk)
h define a notion of distributional curvature

in Regge calculus: If the dihedral angles located at a hinge shared by several simplices do not sum
up to 2π, then the geometry is locally curved.

Since the edge lengths are the dynamical variables of Regge calculus, one obtains an equation of
motion for each bulk edge by varying the action with respect to this edge length le

3:

∂SR
∂le

= −
∑
h⊃e

∂Vh
∂le

ωh = 0 . (1.1.5)

To provide an intuitive example, in 3D, this formula simplifies notably because the edges are the
hinges of the triangulation. Each bulk edge carries one bulk deficit angle, for which the equations
of motion state that it has to vanish. Hence 3D Regge calculus is locally flat, which is consistent
with the 3D continuous theory: Regge calculus ‘perfectly’ matches a flat geometry by glueing
intrinsically flat simplices in a flat way, i.e. with vanishing deficit angles.

In fact, this example can help us to better understand the issues mentioned above, since it
illustrates a particular discretisation with an intact diffeomorphism symmetry in the discrete, i.e.
a vertex translation invariance [40–46]. Another example is 3D Regge calculus with a cosmological
constant [42,60], where the flat tetrahedra are replaced by constantly curved ones. Similar examples
also exist in non–topological theories, for instance in 4D Regge calculus, in case the boundary data
allow for a flat solution in the bulk [44,45]. The key point in these examples is that the continuum
dynamics are ‘perfectly’ represented in the discretisation; these approaches are thus called ‘perfect
discretisations’ [61–63]. In more general situations, their construction becomes highly non–trivial:
In order to pull back the continuum dynamics onto the discretisation, one first has to solve the
continuum dynamics. On the other hand, one can observe that the symmetry is ‘less’ broken
the finer the discretisation is. Thus one can attempt to improve the discretisation [42, 64, 65] by
combining, i.e. coarse graining, building blocks of the discretisation into a new (effective) building
block, such that the dynamics are endowed onto the discretisation in steps and eventually, in the
limit of infinite refinement, diffeomorphism symmetry gets restored.

For interacting systems, such as quantum gravity, the perfect realization of a diffeomorphism
symmetry in the discrete is highly non–trivial and may not be possible, however, a suitable coarse
graining algorithm should be able to at least approximately restore diffeomorphism symmetry. The
hope is that given such a good approximation one can draw conclusions on the issues explained
above and eventually uncover the relation of the (improved) quantum gravity model and general
relativity. Indeed, building this connection between discrete quantum gravity models and general
relativity is the main topic of this thesis, which will be mainly discussed for spin foam models.
Therefore we will present a brief introduction into spin foams in the next section with particular
focus on the current status of these models with respect to the issues discussed above.

3Note the Schläfli identity:
∑
h⊂σd Vh δθ

(σd)
h = 0.
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1.2 Spin foam models

1.2 Spin foam models

The modern spin foam models are usually constructed as follows. Consider the Plebanski formula-
tion of gravity [66]:

SPleb =

∫
M
B ∧ F (A) + φB ∧B , (1.2.1)

where B is a Lie–algebra valued 2–form and F is the curvature 2–form of the gauge connection
(1–form) A. If we just consider the first part of this action, i.e. B ∧ F (A), this gives a topological
theory, called BF theory [67]. Topological means that there are no local degrees of freedom and
the global ones are completely fixed by the topology of the manifold M4. In order to get a theory
of gravity, constraints have to be imposed that break the (too many) symmetries of this action.
These constraints are called simplicity constraints and are imposed via the Lagrange multipliers φ;
if satisfied one returns to Palatini’s first order formulation of gravity.

To construct a spin foam model, one usually starts with topological BF theory, for which it is
rather well–known how to discretize and quantize it [67, 70], see also [46, 71, 72] for discussions on
the issues in this construction. In many cases the chosen discretization is (dual to) a triangulation,
but it can be generalized to arbitrary 2–complexes, i.e. a collection of vertices, edges and faces.
Then, in order to break the symmetries of BF theory, one has to impose simplicity constraints
in the discrete, quantized theory: the question, which constraints to impose and how is the key
difference between the currently proposed spin foam models for 4D gravity, see e.g. the Barrett–
Crane model [73], the EPRL–model [74] and the FK–model [75]. We would also like to mention
the KKL–model [76], which generalizes the EPRL–model to arbitrary 2–complexes. In general, the
dynamical ingredients of spin foam models can be summarized as follows:

Spin foam models defined on 2–complexes assign an amplitude to this complex, if it connects
e.g. two (discrete) 3–geometries on its boundaries, then this amplitude can be interpreted as
a transition amplitude. The 2–complex itself is coloured with additional data: the faces carry
irreducible representations of the symmetry group the spin foam is defined on, e.g. SO(4) in
4D Riemannian gravity or SL(2,C) in Lorentzian 4D gravity, whereas the edges carry projectors
onto (a subspace of) the invariant subspace of the tensor product of irreducible representations
meeting at this edge. Which subspace the projectors project on depends on the imposition of the
simplicity constraints. If no constraints are imposed at all, we have the usual Haar projectors on
the edges, which project onto the full invariant subspace. Then this prescription coincides with the
strong coupling expansion of lattice gauge theories5. Thus spin foam models can be regarded as
generalized lattice gauge theories, which is nicely explained in the holonomy representation of spin
foam models [69]. The entire amplitude of the complex (or foam) is then computed by summing
over all the colourings on the faces6.

The overlying issue of spin foam models are their complexity, which greatly hinders the explo-
ration of their dynamics. In fact, most of our knowledge and confidence for the validity of spin
foam models comes from calculations involving only one simplex, i.e. one of the basic building
blocks: A highly celebrated result is the asymptotic expansion of the vertex–amplitude, essentially
the amplitude assigned to (the dual of) a simplex [23–29]. By scaling up the areas (of the tri-
angles) of this simplex, which is frequently interpreted as a semi–classical limit, one can identify

4The Plebanski formulation of gravity is strikingly similar to the action of Yang–Mills theory: SYM =
∫
B ∧ F +

g2B ∧ (?B) [68]. This action explicitly depends on a background, encoded in the Hodge dual ?. As one can see,
if g → 0 one obtains BF theory as the weak coupling limit of Yang–Mills theory. We will argue below that one
can understand spin foam models as generalized lattice gauge theories [69].

5This formulation can be obtained by performing a group Fourier transform of the functions associated to the faces
/ plaquettes of the lattice.

6A prescription more commonly used in the literature is by directly assigning amplitudes to the vertices, edges and
faces of the foam. This prescription is equivalent to the one discussed here. The vertex amplitude is directly
constructed by a contraction of intertwiners, i.e. the basis elements of the invariant subspace, associated to the
edges meeting at the vertex. See the review [77] for a nice explanation.
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the dominating phase of the amplitude by a stationary phase approximation. This dominating
phase (in the geometric sector) turns out to be the Regge action [17] associated to the simplex.
Hence for the simplest possible triangulation, one obtains discrete gravity (in the geometric sector
of) spin foam models in this particular limit. Note also that the amplitude is proportional to
cos(SR) = 1

2(eiSR + e−iSR) instead of just eiSR as for ‘ordinary’ path integrals. This is due to the
fact that in a spin foam model one has to sum over both orientations of the simplex7.

Unfortunately, similar results relating spin foams and discrete gravity are rare for larger triangu-
lations / foams, not to mention the continuum theory. In [78], the asymptotic geometry of arbitrary
triangulations in the large spin limit of the boundary variables has been examined (without addi-
tional assumptions on the bulk triangulation), where one found that the amplitude is suppressed
unless the geometry in the bulk satisfies accidental curvature constraints. This indicates that the
large spin limit by itself might not be sufficient to explore the semi–classical geometry of spin foams,
but also a refinement of the bulk (and the boundary) might be necessary, see e.g. [79]. Additionally
even the asymptotics of one vertex amplitude are not completely understood, e.g. the measure
factor, which is a possible indicator for the measure on the space of geometries chosen in spin foam
models, is unknown.

The work bundled in this thesis can be generally seen as the attempt to extend and deepen our
understanding of the connection between spin foams and discrete / continuous general relativity.
We explore this relation at very diverse numbers of involved building blocks, with particular focus
on dynamical principles either to determine the theory or to improve the theory / discretisation,
e.g. via coarse graining. At the lowest level, namely a single simplex / vertex amplitude, we
revisit the asymptotic expansion of vertex amplitudes of the Ponzano–Regge model (in 3D) [23,80]
and the Barrett–Crane model (in 4D) [73] in chapters 2 / [30] and 3 / [31] with particular focus
on deriving the measure factor from a coherent state approach (see [81] for a nice introduction);
the result in [31] for the Barrett–Crane model is indeed the first of its kind. Starting from a
conjecture derived in [43] relating discrete diffeomorphism invariance to triangulation independence,
we investigate whether triangulation independence can be used as a dynamical principle to fix
ambiguities in discrete gravity theories, e.g. define the path integral measure unambiguously.
Invoking the relation between spin foams and Regge calculus from asymptotic expansions of vertex
amplitudes, we study invariance of the (linearized) Regge path integral under local changes of the
triangulation, so–called Pachner moves [82, 83], in chapters 4 / [59] and 5 / [84]. In 4D such a
measure can almost be constructed, but turns out to be non–local, motivating more general coarse
graining schemes that also affect the boundary of the discretisation. Such methods were invented
in condensed matter theory, e.g. tensor network renormalization [85,86], in order to study effective
dynamics of many degrees of freedom by only truncating the least relevant degrees of freedom.
We apply these methods to (analogue) spin foam models (defined on quantum groups) in chapter
6 / [87] and uncover a rich fixed point structure with extended phases and phase transitions.
Remarkably, the truncation scheme can also be understood as a tool to dynamically relate Hilbert
spaces associated to fine or coarse boundaries. In chapter 7 / [88] we argue that such dynamical
embedding maps can be interpreted as time evolution maps that allow us to define a consistent
continuum theory from the discrete one, if these embedding maps satisfy so–called cylindrical
consistency conditions [20,34,35,89].

Before including the manuscripts in the order described above, we would like to give a brief
introduction to them and elaborate on their context to the overarching question of this thesis.

7This can be interpreted as a feature instead of an issue, since one can argue that in a gravitational path integral
one has to integrate over all values of lapse and shift in order to impose the constraints of the theory, which can
be seen as an evolution ‘back and forth in time’.
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1.3 Overview of presented manuscripts

1.3.1 Coherent states, 6j symbols and properties of the next to leading order
asymptotic expansions

In chapter 2, we present the paper [30], which directly deals with the question of how to compute
asymptotic expansions of spin foam models, to be more precise the vertex amplitude / the amplitude
associated to a simplex. In this particular paper we revisit the Ponzano–Regge model [23, 80], a
theory for 3D (Riemannian) quantum gravity defined on a triangulation.

The Ponzano–Regge model is actually the very first spin foam model. Its partition function Z is
defined as follows:

Z =
∑
j

∏
edges

(−1)2j(2j + 1)
∏

triangles

(−1)j1+j2+j3
∏

tetrahedra

{
j1 j2 j3
j4 j5 j6

}
, (1.3.1)

where ji denote spins, i.e. irreducible representations of SU(2), which are attached to the edges
of the triangulation. This can be understood as assigning a length to the edge. In the partition
function then, each edge is weighted with the dimension (of the vector space) of the representation
j, whereas each tetrahedron is weighted by the 6j symbol made up of the six spins assigned to the
six edges of the tetrahedron.

One way to check the relation between spin foam models and classical (discrete) gravity is to
extract a semi–classical geometry and action via an asymptotic expansion from the spin foam
amplitude. To do so one identifies the dominating phase of the spin foam, which is then usually
interpreted as the effective action of this system. One method to achieve this, which proved to be
very useful in the examination of modern spin foam models [28, 29], is a coherent state approach.
This concept is nicely explained in [81], here we will briefly discuss the idea in 3D:

In a given representation j of SU(2) coherent states [90] are labelled by a vector ~n ∈ S2, denoted
as |αj(~n)〉. This state is defined up to a phase by the following equations:

~n · ~Ljαj(~n) = i j αj(~n) , (1.3.2)〈
αj(~n)

∣∣∣(~Lj)m∣∣∣αj(~n)
〉

= i j (~n)m . (1.3.3)

~Lj denotes the generator of rotations, represented in the representation j. The first equation states
that αj(~n) is an eigenstate of the rotation operator pointing in direction ~n, whereas the second one

gives the expectation value of the m component of ~Lj , which basically is the m component of ~n
times the spin j. In short, the coherent state is peaked on the vector pointing in the direction ~n.

From these coherent states one can construct so–called coherent intertwiners, i.e. basis elements
in the invariant subspace of the vector space of the tensor product of irreducible representations,
by taking the group averaged tensor product of several coherent states. For a 3–valent intertwiner,
basically a Clebsch–Gordan coefficient, this is a tensor product of three coherent states, which can
be regarded as a ‘quantized triangle’. The vector associated to the coherent state is then interpreted
as the edge vector. Remarkably, the amplitude for a Clebsch–Gordan coefficient is dominated by
geometries for which

∑3
i=1 ji~ni = 0, which is known as the closure constraint. Such a triangle is

also referred to as a coherent triangle, since it is peaked on a classical geometry.
From these basic intertwiners, one can construct larger spin networks by contracting these inter-

twiners according to the combinatorics of the network. One particular example is the 6j symbol,
the central building block of the Ponzano–Regge model, which is a contraction of four 3–valent
intertwiners, i.e. a distinct glueing of four triangles forming a tetrahedron. Using the coherent
states defined above, one performs a stationary phase approximation of the group integrations by
uniformly scaling up the spins on the edges; the tetrahedron is ‘blown up’ to a macroscopic size.
Remarkably, the stationary point conditions allow for a clear geometric interpretation. First, all
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four triangles have to close, i.e. their edge vectors have to sum to zero. Second, one can define
normal vectors to the triangles, which have to sum to zero as well, i.e. the tetrahedron constructed
from the triangles has to close, too. The angles enclosed by the normal vectors of the triangles are
the (exterior) dihedral angles of this tetrahedron. Eventually, one finds that the dominating phase
of the 6j symbol is given by the Regge action [17] associated to the tetrahedron, a result known
for about 45 years [23] and derived in a plethora of ways [91–95].

However, despite the nice geometric interpretation the coherent state approach generically fails
to produce the complete asymptotic expansion. While it is straightforward to obtain the dom-
inating phase via a stationary phase approximation, the latter cannot be completed, since the
determinant of the Hessian matrix, sometimes called the measure factor8, cannot be computed.
This also troubles the calculations for 4D spin foam models, where the measure factor is generically
unknown. Furthermore, even for the 6j symbol, where the measure factor is known, the coherent
state approach fails and only numerical results are available [96].

To overcome this drawback, we introduce modified coherent states in [30], see also chapter 2,
which allow for the same geometric interpretation as the usual ones, yet come with an additional
smearing angle φ. The major advantage of these coherent states is that the stationary phase
approximation can be performed in steps, first with respect to the smearing angles and then with
respect to the group elements. The new effective action obtained after the first one turns out to
be the first order Regge action [97], which already establishes the connection to discrete gravity
and actually is the first derivation of this action from the asymptotics of spin foam models. Given
the geometric interpretation of Regge calculus, we complete the asymptotic expansion by deriving
several identities from curved Regge calculus [98] and derive properties of higher order corrections
[99–102].

The main purpose of this work has been to develop important tools and ideas that might help in
also extracting measure factors for 4D spin foam models. Indeed, we succeeded in this endeavour,
as we will explain in the next section.

1.3.2 The Barrett-Crane model: asymptotic measure factor

The paper [31] presented in chapter 3 can be seen as a direct continuation of [30] in chapter 2 and
deals with the asymptotic expansion of the vertex amplitude of the so–called Barrett–Crane model,
i.e. the amplitude assigned to a 4–simplex of the triangulation.

The Barrett–Crane model is the very first, and arguably the simplest, spin foam model for 4D
(Riemannian) gravity. In fact, the construction of the modern spin foam models is very similar
as it is nicely illustrated in [69]: Starting from discretized and quantized BF theory, they differ
in the implementation (and choice) of the simplicity constraints. In case of the Barrett–Crane
model, these constraints are imposed ‘strongly’, such that they are generically satisfied. Indeed,
this choice is very constricting, which is reflected in the fact that the 4–valent intertwiner (also
called Barrett–Crane intertwiner), dual to a tetrahedron, is unique [73]. Thus, the Barrett–Crane
model has no intertwiner degrees of freedom, in contrast to the other 4D spin foam models.

Actually, the Barrett–Crane model is nowadays commonly disregarded as a viable theory of
quantum gravity, for a recent discussion see [103]. One of the issues is the presence of non–geometric
sectors, for example a BF sector, in the asymptotic expansion, i.e. the semi–classical limit of the
model contains contributions that do not allow for a geometric (gravitational) interpretation. In
fact this is also a feature shared by the other spin foam models. Additionally, the Barrett–Crane
model lacks glueing constraints, that is the tetrahedra along which the simplices are glued together
are made up of triangles with the same areas, yet the shapes of these triangles are not matching.
Thus, in a semi–classical limit, the Barrett–Crane model rather gives area Regge calculus [104], a
theory in which areas, instead of edge lengths, are the dynamical variables. This theory is troubled

8This term is not to be confused with ‘measure’ in spin foam literature, which refers to edge and face amplitudes.

10



1.3 Overview of presented manuscripts

by vanishing deficit angles, such that it is locally flat, and, due to the non–matching of the shapes
of the faces, the metric, locally defined for each 4–simplex, is discontinuous [105,106].

Despite the comparable simplicity of the Barrett–Crane model to the other 4D spin foam models,
the asymptotic expansion of the vertex amplitude, i.e. the 10j symbol, is still incomplete, even
when only the geometric contributions are considered. Remarkably, starting from a nice identity of
the 10j symbol derived in [27], the tools and identities for Regge calculus developed in [30], see also
chapter 2, can be almost analogously applied to the Barrett–Crane vertex amplitude. Surprisingly,
the result, which is the first of its kind, has a nice geometric interpretation and is almost completely
explicit; the only implicit contribution is a Jacobian from a variable transformation from areas
to edge lengths. Indeed, this Jacobian can be absorbed by considering a peculiar triangulation.
Instead of examining only one 4–simplex, we discuss two 4–simplices glued together along all of
their tetrahedra, which is the simplest possible triangulation of a 4–sphere. Then the Jacobian
can be absorbed by introducing shape–matching constraints, i.e. constraints that enforce that the
areas (triangles) are constructed from edge lengths and thus have matching shapes.

1.3.3 Path integral measure and triangulation independence in discrete gravity

Chapter 4 includes paper [59], in which we address the choice of the path integral measure in
(linearized) Regge calculus. Regge calculus [17,18] is a discretization of classical general relativity
defined on a triangulation, see also chapter 1.1.1 for a brief introduction.

Asymptotic expansions in spin foam models indicate, as discussed above, that one obtains Regge
gravity in a semi–classical limit. Since the measure factors for spin foam models are hardly known,
one can invert the logic and ask, whether one can derive and define a suitable measure factor for
quantum Regge calculus, which then presents a ‘blueprint’ spin foams can be compared to. Indeed,
many different measure factors have been proposed for Regge calculus [107–109], yet none has been
derived from a dynamical principle.

In chapter 4, see also [59], we propose to use triangulation independence as the determin-
ing property for the measure. This is motivated by the work [43], in which perfect discretisa-
tions [41, 42, 61, 62], i.e. discretisations with intact discrete diffeomorphism symmetry, have been
constructed using a coarse graining scheme. There it has been conjectured that having a discrete
diffeomorphism invariant theory is equivalent to the fact that this theory is triangulation / dis-
cretisation independent. This conjecture is explained in more detail in the discussion (see chapter
8.2).

Let us emphasize that this is a desirable feature: A theory being both discretisation independent
and equipped with a discrete (remnant of) diffeomorphism symmetry fixes many ambiguities in the
choices of possible discretisations. Additionally, due to discretisation independence the continuum
limit can be performed trivially, which allows to check consistency with the continuum theory, while
calculations, such as expectation values of observables, can be performed in the discrete, even on the
simplest triangulation possible. Most importantly, the discrete version of diffeomorphism symmetry
ensures the realization of diffeomorphism symmetry in the continuum.

Clearly, satisfying these conditions is highly non–trivial. Thus, instead of applying a full fledged
coarse graining scheme to (quantum) Regge calculus, we approach the problem from the opposite
direction, namely triangulation independence. For a triangulation, this can be tackled on a local
level: A triangulation of a manifold can be converted into any other triangulation of the same man-
ifold by a consecutive application of Pachner moves [82,83], i.e. local changes of the triangulation.
A theory is triangulation independent, if it gives the same result for any triangulation of the same
manifold, which is equivalent to invariance of the theory under Pachner moves.

On the classical level, it is well–known that the discrete Regge action is fully triangulation
invariant in 3D, where gravity is topological, and almost invariant in 4D [59]. Hence we examine,
whether one can derive a measure for quantum Regge calculus that renders the path integral
triangulation independent, i.e. invariant under Pachner moves. Instead of discussing the full
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theory, we instead perturb the Regge action around a flat background solution, i.e. vanishing
deficit angles, up to quadratic order and perform the path integral for the perturbations. The
resulting path integral measure only depends on the background variables.

To sum up, in chapter 4, see also [59], we use triangulation independence, i.e. invariance under
Pachner moves, as a dynamical principle to construct the path integral measure in quantum Regge
calculus. In 3D, this construction is successful and consistent with the asymptotics of the Ponzano–
Regge model [23]. However in 4D, already the Regge action is not invariant under all Pachner moves
and the construction of a triangulation invariant measure (for the remaining moves) is complicated
by the appearance of an overall factor in the Hessian matrix, which is the topic of the paper briefly
introduced in the next section.

1.3.4 Discretization independence implies non–locality in 4D discrete quantum
gravity

The work [84] presented in chapter 5 is the direct continuation of the attempt in [59], see also
chapter 4, to construct a triangulation invariant path integral measure in 4D (linearized) Regge
calculus. While the calculation is strikingly similar to the 3D case, the Hessian matrix in 4D
additionally possesses an overall factor, which resisted a geometric interpretation and has been
conjectured in [59] to be non–local. Indeed this factor troubles the construction of a triangulation
invariant measure in 4D, such that the purpose of the paper [84] is to derive its geometric meaning
and actually prove its non–local nature.

Interestingly, this overall factor turns out to be a criterion determining whether the six vertices
involved in the 4D Pachner move lie on the same 3–sphere [110], see also [111]; if this is the case,
the factor vanishes. Therefore we carefully analyse the situations, in which this can happen, which
includes a careful examination of the relative orientation of simplices in simplicial complexes, see
also [112]. Indeed, we identify configurations in which the factor vanishes, yet all involved simplices
are non–degenerate. Thus we show that the factor necessarily is non–local and cannot be written
as a product of amplitudes associated to (sub)simplices. The result is surprising since one might
have hoped for the existence of a topological sector in 4D gravity, which describes flat geometries.
Whereas this is the case for the classical theory, it does not exist in the quantum theory.

In fact, non–localities are expected to appear under coarse graining of interacting theories, which
generically complicates the calculations and demands the implementation of approximations to keep
the scheme feasible, e.g. the truncation scheme invented by Migdal [113] and Kadanoff [114] outright
removes the non–local interactions, but is remarkably predicting a phase transition for the 2D Ising
model. Yet the error made by such ad hoc truncations is difficult to estimate, such that more
efficient truncation schemes are desirable, which are capable of treating the non–local excitations
effectively, e.g. by also changing the boundary data in the process. Such coarse graining schemes,
e.g. tensor network renormalization [85, 86], originally developed in condensed matter theory, are
applied to (analogue) spin foam models defined on quantum groups in the paper [87] in chapter 6,
which is briefly introduced in the next section.

1.3.5 Quantum group spin nets: refinement limit and relation to spin foams

Up to this point of the thesis, we have not addressed the elephant in the room: how can we
extract the collective dynamics of many building blocks of spin foam models? This questions is
very difficult to answer due to the complexity of spin foam models. An idea to make progress
is employing numerical simulations, yet quantum Monte Carlo simulations are already out of the
game, since they cannot handle complex amplitudes appearing in spin foam models.

Surprisingly the initial setup of spin foam models is not too different from the initial starting point
in condensed matter theory: given a discretisation with (locally) interacting degrees of freedom
placed e.g. on the vertices of the discretisation, one intends to extract the macroscopic behaviour
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from the many–body dynamics, e.g. ground states and the spectrum of the Hamiltonian. Tools
to study effective dynamics are summarized under the term real space renormalization techniques
[115], in contrast to momentum space renormalization in quantum field theories, of which many can
be seen as coarse graining schemes, i.e. mechanisms to combine finer degrees of freedom into new,
coarser ones. Generically, this leads to non–localities namely the coarser degrees of freedom start
to interact (more) non–locally in comparison to the finer ones. However in the past twenty years
many new renormalization schemes have been developed, which are much more suited to effectively
deal with non–local interactions, e.g. density matrix renormalization group (DMRG) [116, 117],
matrix product states (MPS) and Projected Entangled Pair States (PEPS) [118, 119] and tensor
network renormalization [85,86] in different flavours [120].

The idea of the latter is to encode the dynamics of the system into a tensor network, where each
tensor carries the dynamics of the local degrees of freedom. Then the partition function is rewritten
as a contraction of this tensor network. Since this is only a rewriting of the initial problem, tensor
network renormalization attempts to approximate the partition function of the original system by
a contraction of a coarser network by (locally) combining tensors into a new, locally interacting
tensor. However under consecutive application of this coarse graining method, the boundary data
of the tensor grow exponentially, such that one has to employ truncations. In order to still provide a
good approximation to the initial system, it is thus vital to identify the relevant degrees of freedom:
this is achieved by employing a singular value decomposition (of a recombination of the tensors),
which transforms the fine degrees of freedom into an orthogonal basis, ordered according to their
relevance indicated by the associated singular value. On the one hand this particular variable
transformation allows to employ good approximations by only keeping the most relevant degrees
of freedom, i.e. with the largest singular values, while on the other hand it serves as a direct
translation between the degrees of freedom on the fine and the coarser discretisation. If interpreted
the other way around, this variable transformation can be seen as an embedding map, computed
directly from the dynamical ingredients of the system, embedding the coarse boundary data into
the fine data. To be more precise, such an embedding map relates the Hilbert spaces associated to
the coarser and finer boundaries. This is a crucial feature which partially motivated the conceptual
work [88] in chapter 7, in which we describe how to construct a consistent continuum theory using
these embedding maps.

Remarkably, the dynamical ingredients of spin foam models, i.e. the projectors (onto invariant
subspaces of the tensor product of irreducible representations) located on the edges, fit very well
into the language of tensors. For each face meeting the edge, the tensor carries an index, which
runs over all labellings assigned to the pair (edge, face)9, usually representation labels (magnetic
indices). Instead of coarse graining such networks, which is currently work in progress, we consider
simplified versions, so–called spin nets, in [87], see also [39].

Spin nets are dimensionally reduced spin foams, so instead of a 2–complex they are defined on a
1–complex, a graph, yet we keep the main dynamical ingredients of spin foams, i.e. the projectors,
which are now located on vertices. In fact, one can assign the entire dynamical ingredients to
the vertices of the lattice, such that these models are also known as vertex models. Then the
corresponding tensor network is straightforward to construct and consists only of one type of
tensors. Crucially, the projectors permit an interpretation in terms of simplicity constraints. A
second simplification is the replacement of the underlying Lie group e.g. by a finite group, in
order to only have finitely many representation labels to sum over in the partition function, which
allows for efficient numerical simulations. In [87], see also chapter 6, we instead define spin nets
on the quantum groups SU(2)k, which on the one hand also contains a natural cut–off on the
representation labels (depending on the level k), yet on the other hand is the full ‘group’10 used

9To write a spin foam as a tensor network, one has to additionally introduce auxiliary tensors on the faces that
ensure that the face carries the same irreducible representation [37]. This is also necessary in order to rewrite
lattice gauge theories as tensor networks [121].

10Despite their name, quantum groups are no groups, but quasi-triangular Hopf algebras [122, 123]. Here we
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in spin foam models describing gravity with a non–vanishing cosmological constant. This intuition
originates from the Turaev–Viro spin foam model [124] describing 3D quantum gravity with a non–
vanishing, positive cosmological constant, which essentially resembles a q–deformed version of the
Ponzano–Regge model. In recent years it has also been explored to define loop quantum gravity
with a non–vanishing cosmological constant, in particular in (2+1)D to establish the connection
to the Turaev–Viro model [125–129], and similarly to extend 4D spin foam models to quantum
groups [130–132].

To these quantum group spin nets we apply a symmetry preserving version of tensor network
renormalization, see also [39] for this method, to examine their many–body dynamics. We put
special focus on the projectors, now located on the vertices: In the modern spin foam model
construction, these are not projectors onto the full invariant subspace (of the tensor product of
irreducible representations), but only a smaller subspace via the implementation of simplicity con-
straints. The question is how these projectors change under coarse graining, or to put it differently,
how the simplicity constraints change: does the additional structure, added by allowing smaller
invariant subspaces, survive under coarse graining or does the system flow back to the standard
(analogue) lattice gauge theory phases, namely either the weak coupling, ordered BF phase or the
degenerate, strong coupling phase? In a refinement limit, reached once the system has arrived at
a fixed point of the coarse graining procedure, we thus examine whether spin nets allow for more
structure, e.g. more fixed points than lattice gauge theories or even extended phases (with phase
transitions). Indeed we find a rich fixed point structure beyond the standard phases equipped with
extended phases in parameter space with phase transitions that show tentative indications to be of
second order. This is very encouraging evidence that also spin foam models possess more structure
than standard lattice gauge theories and may potentially have a phase with effective dynamics
consistent with general relativity.

1.3.6 Time evolution as refining, coarse graining and entangling

As briefly mentioned in the previous section, tensor network renormalization provides a scheme to
compute embedding maps from the dynamics of the theory relating fine to coarse boundary data.
Such dynamical embedding maps possess a greater potential than merely providing a truncation
scheme under coarse graining: If we use them to refine the discretisations, we should eventually
arrive at a continuum description from the discrete theory.

To improve our understanding in this direction, we tackle the conceptual issues in defining a
continuum theory from a discrete one in [88], see also chapter 7. As the title of the paper suggests,
the key idea is to understand time evolution in discrete systems as a map that relates different
discretisations, in particular discretisations that are variably coarse (or fine), i.e. discretisations
that are capable to capture differing numbers of degrees of freedom. This idea is in fact motivated
from local time evolution moves in (canonical) Regge calculus [133–135], which time evolve a
triangulated hypersurface to another one, where the latter can capture more, less or the same
number of degrees of freedom, possibly organized in a different way. On the classical level, this
is captured by phase spaces of differing dimension associated to the hypersurfaces. Remarkably,
if the number of degrees of freedom change under local time evolution, this always results in the
appearance of constraints, even if one does not model gravity or diffeomorphism symmetry is broken.
The occurring constraints are called pre– and post–constraints: the pre–constraints are conditions
that have to be satisfied in order for time evolution to take place, while the post–constraints are
automatically satisfied once time evolution has taken place. Notably for gravity, in the example
of a refining time evolution, the post–constraints also contain diffeomorphism and Hamiltonian
constraints. In a quantum theory one assigns Hilbert spaces to the triangulated hypersurfaces.

understand SU(2)k as the q-deformation of the universal enveloping algebra of SU(2), denoted as Uq(su(2)).
q = exp{i π

k+2
} is a root of unity, k denotes the level of the quantum group.
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Then local time evolution acts as an embedding map of the initial into a different Hilbert space.
See also [136,137] for discussions of the quantum case.

The observant reader may immediately object that time evolution generated by local moves
may depend on the particular choice and order of the moves, which may render this approach
to be unphysical. Indeed, to avoid such pathologies, time–evolution has to be path–independent
[138], which translates into consistency conditions called (dynamical) cylindrical consistency for
the embedding maps, a concept well–known (on the kinematical level) in loop quantum gravity
[20, 34, 35]. The extension of the concept towards dynamical embedding maps has already been
explored in [89], a viewpoint we extend upon in chapter 7, see also [88]. The important feature of
dynamical cylindrical consistency is that, if realized, states represented on different discretisations
can be compared to one another and identified as describing the same physical situation, i.e. physics
should not depend on which discretisation it is represented on. As a consequence, the state of the
system only implicitly depends on the specific discretisation, in fact it can already be represented
in the continuum. Furthermore, in gravity the interpretation of embedding maps as time evolution
is particularly appealing, since in gravity, as a totally constrained system, time evolution is a gauge
transformation. Thus, the physical state of the system does not change under time evolution;
indeed if cylindrical consistency is satisfied, time evolving the state means embedding it into a
different discretisation, which by definition lies in the same equivalence class. The physical state
therefore does not change, it is simply expressed on a different discretisation.

Candidate’s contribution to the presented manuscripts

Before including the manuscripts representing the bulk of this thesis, we have to clarify and outline
the candidate’s contribution to the multi–authored papers:

In the projects concerning the asymptotic expansions of vertex amplitudes in spin foam models
[30, 31] the author of this thesis was involved in all major steps, yet his main contribution was
for the calculations on the partial approximations of stationary phase, i.e. first with respect to
the smearing angles and afterwards for the dihedral angles. To complete the latter the candidate
derived several non–trivial identities for first order Regge calculus crucial for the extraction of
the asymptotic measure factor in both papers [30, 31]. Also, the calculations in [30] were quite
involved: The candidate’s knowledge of numerical methods were crucial for finishing the project,
even though they are not directly visible in the final version of the paper. The papers were written
collaboratively, yet the candidate wrote significant portions of the introduction and discussion in
both papers, and is mainly responsible for the organisation of the paper [30].

The papers [59, 84] concerning triangulation independence of the linearized Regge path integral
were mainly developed and authored by the author of this thesis, of course with several discussions
and consultations with the co–authors.

The project on coarse graining quantum group spin nets [87] was a joint effort by all three
authors. Again the candidate was involved in all main steps of the work, including the definition of
the model and dealing with the intricacies of quantum groups in the development of the algorithm.
Most of the candidate’s efforts were invested in coding and optimizing the algorithm, in particular
the higher accuracy version, running of the simulations and analyzing the data. The paper was
written collaboratively, where the candidate wrote the parts on diagrammatic calculus, the coarse
graining algorithm and the results of the simulations.

Finally, the conceptual paper on interpreting embedding maps as time evolution maps [88] was
a result of long contemplation on fundamental and conceptual issues in quantum gravity. As a
result the paper is mostly conceptual and many points arose in discussions between the candidate
and Bianca Dittrich clarifying the direction and interpretation of our research. Concurring the
explicit writing, the candidate contributed the sections on topological theories and the geometric
interpretation.
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Abstract

We present the first complete derivation of the well-known asymptotic expansion of the SU(2) 6j
symbol using a coherent state approach, in particular we succeed in computing the determinant of
the Hessian matrix. To do so, we smear the coherent states and perform a partial stationary point
analysis with respect to the smearing parameters. This allows us to transform the variables from
group elements to dihedral angles of a tetrahedron resulting in an effective action, which coincides
with the action of first order Regge calculus associated to a tetrahedron. To perform the remaining
stationary point analysis, we compute its Hessian matrix and obtain the correct measure factor.
Furthermore, we expand the discussion of the asymptotic formula to next to leading order terms,
prove some of their properties and derive a recursion relation for the full 6j symbol.
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

2.1 Introduction

Spin foam models [A1–A4] are candidate models for quantum gravity invented as a generalization
of Feynman diagrams to higher dimensional objects. Their popularity is rooted in the fact that they
were well adapted to descibe 3D Quantum Gravity theories such as the Ponzano-Regge [A5,A6] or
the Turaev-Viro model [A7]. To examine whether these models are a quantum theory of 4D General
Relativity, in particular whether one obtains Gravity in a semi-classical limit is an active area of
topical research. One of the strongest positive implications comes from the asymptotic analysis of
single simplices in spin foam models: A first attempt to compute the asymptotic expansion of the
amplitude associated to a 4-simplex in the Barrett-Crane model [A8] can be found in [A9,A10]. This
was continued for the square of (the Euclidean and Lorentzian) 6j and 10j symbols in [A11], whereas
the most recent asymptotic results for modern spin foam models, i.e. the EPRL-model [A12] or
the FK-model [A13], were obtained using a coherent state approach [A14–A19]:

The basic amplitudes of the spin foam model are their vertex amplitudes (SU(2) 6j symbols in
the 3D Ponzano Regge model). They are defined in a representation theoretic way and can be
constructed from coherent states of the underlying Lie group [A20] as a multidimensional integral
to which the stationary point approximation is applicable [A21]. This method has proven to be very
efficient in determining the dominating phase in the asymptotic formula as well as the geometric
interpretation of the contributions to the asymptotic expansion in spin foam models [A14–A19]. In
3D, on the points of stationary phase, 6j symbols are geometrically interpreted as tetrahedra, their
dominating phase given by the Regge action [A22,A23], a discrete version of General Relativity on
a triangulation. Similar results were proven by this method for the 4-simplex [A9,A14–A18] in spin
foam models. Until today, this is still one of the most promising evidences that spin foam models
are viable Quantum Gravity theories.

Despite this success, the coherent state approach fails to produce the full amplitude. It has not
yet been possible to compute the so-called measure factor, a proportionality constant (depending
on the representation labels) in the asymptotic expansion, which is given by the determinant of
the matrix of second derivatives, i.e. the Hessian matrix, evaluated on the stationary point. This
failure even applies to the simplest spin foam model in 3D, the Ponzano-Regge model [A6], whose
vertex amplitude is the SU(2) 6j symbol. To the authors’ best knowledge the Ponzano and Regge
formula [A5] has not yet been obtained this way; we can only refer to numerical results in [A19]. This
is particularly troubling for the coherent state approach, since the full asymptotic formula for SU(2)
6j symbols introduced in [A5] has been proven in many different ways, for example, by geometric
quantization [A24], Bohr-Sommerfeld approach [A25], Euler-MacLaurin approximation [A26] or
the character integration method [A11].

The source of the problem is the size of the Hessian matrix and the lack of immediate geometric
formulas for its determinant. For the 6j symbol, for example, this matrix is 9 dimensional and its
entries are basis dependent. This is a major drawback of the coherent state approach, in particular,
since the full expansion is necessary to discuss and examine the properties of spin foams models of
Quantum Gravity. To obtain this measure factor and compare it to other approaches [A27, A28],
the complete asymptotic expansion is indispensable. This is an important open issue for 4D spin
foam models.

Our approach to overcome this problem can be seen (as we will show in Appendix 2.H) as a
combination of the coherent state approach [A14–A19] and the propagator kernel method [A29].
It inherits nice geometric properties from the coherent state analysis with a similar geometric
interpretation of the points of stationary phase. Moreover, the Hessian matrix is always described
in terms of geometrical quantities and, most importantly, its determinant can be computed for the
6j symbol.

In addition to the computation of the asymptotic formula of the 6j symbol [A5], our approach
allows us to propose a new way to compute higher order corrections to the asymptotic expansion.
These corrections have already been discussed in [A30,A31]: it was conjectured that the asymptotic
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expansion has an alternating form

{6j} = A0 cos

(∑(
ji +

1

2

)
θi +

π

4

)
+A1 sin

(∑(
ji +

1

2

)
θi +

π

4

)
+ . . . , (2.1.1)

where An are consecutive higher order corrections and homogeneous functions in j+ 1
2 . Our method

allows us to prove this conjecture to any order in the asymptotic expansion.

2.1.1 Coherent states and integration kernels

The coherent state approach is based on the following principle: Invariants (under the action of
the group) can be constructed by integration of a tensor product of vectors (living in the tensor
product of vector spaces of irreducible representations) over the group, i.e. group averaging. Since
the invariant subspace of the tensor product of three representations of SU(2) is one-dimensional,
the invariant is uniquely defined up to normalization. However, in order to apply the stationary
point analysis the vectors in the construction above cannot be chosen arbitrarily. The choice, from
which the method takes its name, is the coherent states class, which consists of eigenvectors of
the generators of rotations with highest eigenvalues [A20]. Although these states are very effective
in obtaining the dominating phase of the amplitude, the associated Hessian matrix turns out to
be very complicated. This problem occurs since the action is not purely imaginary, which is also
related to the problem of choice of phase for the coherent states which has not yet been fully
understood.

Both latter problems disappear if, instead of eigenstates with maximal eigenvalues, we take null
eigenvectors for a generator of rotations L. Since this vector is trivially invariant with respect to
rotations generated by L, the phase problem disappears. Similarly the contraction of invariants
can be expanded in terms of an action that actually is purely imaginary. There is a trade-off,
though: The quantity of stationary points increases and their geometric interpretation becomes
more complicated. Moreover, frequently there exist no such eigenvectors for certain representations,
(half-integer spins for SU(2)) and their tensor product gives thus vanishing invariants.

The solution to these issues comes from the simple observation that null eigenvectors can be
obtained by the integration of a coherent state, pointing in direction perpendicular to the axis of
L, over the rotations generated by L. Like that the geometric interpretation usually obtained when
using coherent states is restored. Furthermore, if we first perform the partial stationary phase
approximation with respect to the additional circle variables, we obtain a purely imaginary action.
In the special case of the 6j symbol, our construction allows us to write the invariant purely in
terms of edge lengths and dihedral angles of a tetrahedron, in particular we perform a variable
transformation from group elements to dihedral angles of the tetrahedron. The resulting phase of
the integral is given be the first order Regge action [A32].

2.1.2 Relation to discrete Gravity

Regge calculus [A22, A23] is a discrete version of General Relativity defined upon a triangulation
of the manifold. Influenced by Palatini’s formulation, a first order Regge calculus was derived
in [A32], in which both edge lengths and dihedral angles are considered as independent variables
and their respective equations of motion are first order differential equations. Additional constraints
on the angles have to be imposed in order to reobtain their geometric interpretation. These consist
of the vanishing of the angle Gram matrix that implies the existence of the flat n-simplex with
the given angles. Our derivation of the Ponzano-Regge formula shows astonishing similarity to
this procedure. Moreover, from our calculation one can deduce a suitable measure for first order
(linearized) Quantum Regge calculus, such that the expected Ponzano-Regge factor 1√

V
appears,

which naturally leads to a triangulation invariant measure [A27].
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

Another version of 4D Regge calculus was explored in [A33] with areas of triangles and (a class
of) dihedral angles as fundamental and independent variables. Several local constraints guarantee
that the geometry of a 4-simplex is uniquely determined. These variables were chosen in the pursuit
to better understand the relation between discrete gravity and 4D spin foam models. The latter
are based on a similar paradigm as the Ponzano-Regge or the Turaev-Viro models [A5,A7] in 3D,
yet enhanced by the implementation of the simplicity constraints from the Plebanski formulation of
General Relativity [A34]. Area-angle variables as a discretization of Plebanski rather than Einstein-
Hilbert formulation were conjectured to be more suitable to describe the semi-classical limit of those
models.

Although it is known that the asymptotic limit of the amplitude of a 4-simplex for 4D gravity
models is proportional to the cosine of the Regge action [A15–A17], the proportionality factor still
remains unknown. We hope that the method presented in this work can help in filling the gap.

2.1.3 Problem of the next to leading order (NLO) and complete asymptotic
expansion

The asymptotic expansion for the SU(2) 6j symbol, in particular for the next to leading order
(NLO), is still a scarcely examined issue, since it is very non-trivial to write the (NLO) contributions
in a compact form. Steps forward in this direction can be found in [A30,A31,A35], where the latter
gives the complete expansion in the isosceles case of the 6j symbol.

The stationary point analysis applied in this work allows for a natural extension in a Feynman
diagrammatic approach. From this approach the full expansion can be computed in principle,
however in a very lengthy way. We derive a recursion relations of the Ward-Takesaki type, which
is surprisingly similar to the one invented in [A36, A37] however in very different context, that,
basically can be used in the asymptotic expansion to derive the NLO in a more concise way.
Moreover, we can show explicitly that the consecutive terms in the expansion (2.1.1) are of the
conjectured ‘sin/cos’ form.

2.1.4 Organization of the paper

This paper is organized as follows: In section 2.2 we will present our modified coherent states,
how to use them to construct invariants and how to contract these invariants to compute spin
network amplitudes. The contracted invariants will be used to define an action for the stationary
point analysis, which will be examined whether it allows for the same geometric interpretation on
its stationary points as other coherent state approaches [A14–A19]. Its symmetries as well as the
group generated by the symmetry transformations will be discussed. Section 2.3 deals with the
partial stationary point analysis with respect to the introduced circle variables. This will allow us
to write the amplitude, after a variable transformation, purely in terms of angle variables, which
will be identified as exterior dihedral angles of a polyhedron. In section 2.4 we focus on the example
of the 6j symbol. After another variable transformation, we obtain the action of first order Regge
calculus and perform the remaining stationary point analysis. Eventually we obtain the asymptotic
formula from [A5]. In section 2.5 we prove the conjecture from [A30,A31] that the full asymptotic
expansion is of alternating form (2.1.1) and derive the recursion relations for the full 6j symbol.
We conclude with a discussion of the results and an outlook in section 2.6.

We would like to point out that several results of this paper have been obtained by tedious
calculations which we did not include in its main part to improve readability. Interested readers
are welcome to look them up in the appendices.
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2.2 Modified coherent states, spin-network evaluations and symmetries

2.2 Modified coherent states, spin-network evaluations and
symmetries

In this section we are going to present the modified coherent states, how to construct the spin-
network evaluation from them and that they allow for the same geometric interpretation in the
stationary point analysis as similar coherent state approaches. Furthermore the symmetries of the
action will be investigated.

Consider a three-valent spin network, i.e. a graph with three-valent nodes carrying SU(2) inter-
twiners and edges carrying irreducible representations of SU(2). For each edge of the spin network
we introduce a (fiducial) orientation such that each node of the network can be denoted as the
‘source’ s(e) or the ‘target’ t(e) of the edge e. Later in this work we intend to give a geometrical
meaning to the spin network, in terms of polyhedra, triangles, etc. so we denote the set of nodes
by F and the set of edges by E, which will become the set of triangles / faces and set of edges of
the triangulation respectively. This dual identification is not always possible but we restrict our
attention to the case of planar (spherical) graphs, where such notions are natural.

2.2.1 Intertwiners from modified coherent states

Intertwiners are invariant vectors (with respect to the action of the group) in the tensor product
of vector spaces associated to irreducible representations of that group. In the case of 3 irreducible
representations of SU(2) the space of invariants is one dimensional and, moreover, there is a unique
choice for the invariant for a given cyclic order of representations [A38,A39].

Suppose ξ ∈ Vj1 ⊗ · · · ⊗ Vjn is a vector in the tensor product of vector spaces of representations,
then ∫

SU(2)
dU Uξ (2.2.1)

is invariant under the action of SU(2). If ξ is chosen in a clever way, such an invariant is non-
trivial. In the case of three representations it must be proportional to the unique invariant defined
in [A38, A39]. In the following we present a choice which has the advantage that the method of
stationary phase can be directly applied.

For every face f , which is bounded by three edges, we choose a cyclic order of these edges
(jfe1 , jfe2 , jfe3), labelled by the carried representations. These choices influence the orientation of
the spin network [A38,A39] and are used to define and determine the sign of its amplitude, see also
appendix 2.A. We introduce the following intertwiners for every face f :

Cf =

∫
SU(2)

dUf Uf

∫ ∏
j

dφji
2π

ff ({φfe}e∈F )
∏
e∈F

(
Oφfe |1/2〉

)2je , (2.2.2)

where ff is a function of the three angles φfe, e ⊂ f , |1/2〉 is the basic state of the fundamental
representation and Oφ is a rotation matrix on R2:

Oφ =

(
cosφ sinφ
− sinφ cosφ

)
. (2.2.3)

As mentioned above, (2.2.2) is invariant under the action of SU(2).
Before moving on, we would like to outline the key differences between the approach described

above and the usual coherent state approach [A15–A17,A19].

• Coherent states of SU(2) are labelled by vectors in R3. On the stationary point with satisfied
reality conditions, one obtains the geometric interpretation that for every face these three
vectors form the edge vectors of a triangle. Later on we will prove the same geometric
interpretation for the invariant Cf .
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

• Furthermore we smear the coherent state by a rotation, which is the key ingredient of our
approach. In addition to the stationary point analysis with respect to the {Uf}, we will also
perform a stationary point analysis for the smearing angles {φfe}. Clearly, this will result in
more stationary points contributing to the final amplitude. To suppress their contributions,
we introduce modifiers ff which will be described in the next section.

Prescription of the modifiers

In order to make (2.2.2) complete, we have to describe the function ff .

For every face f we choose three vectors ve (e ⊂ f) on R2 with norms je such that
∑

e⊂f ve = 0,
i.e. they form a triangle with edge lengths je. The vectors are ordered anti-clockwise, their choice
is unique up to Euclidean transformations, i.e rotations and translations.

Let us denote the edges (in cyclic order) by 1, 2, 3. The angles (counted clockwise) between the
vectors vk and vj are denoted by 2(ψkj − π), where 2(ψkj − π) is the SO(3) angle taking values
in (0, π) for (k, j) ∈ {(2, 1), (3, 2), (1, 3)}. Due to the ordering, the SU(2) angles ψ21, ψ32 and ψ13

f

1
v

2v

3v

2(ψ
12

-π)

Figure 2.1: The choice of vectors vi.

are positive and smaller than 2π, in fact, one can also check that ψkj is in (π, 2π). This choice
contributes an overall sign to the invariant, to be more precise, there are two different choices of
cyclic order giving two invariants that may differ by a sign factor. This will be discussed in more
detail in appendix 2.A.2. In particular we compare them to the intertwiner introduced in [A38,A39].
The angles ψkj satisfy the relation

ψ21 + ψ32 + ψ13 = 4π . (2.2.4)

We introduce a function f(x mod 2π, y mod 2π) such that

• it is equal to 1 in the neighbourhood of x = ψ21, y = ψ32,

• it is equal to zero in the neighbourhood of points

(x, y) = ±(ψ21 + π, ψ32),±(ψ21, ψ32 + π),±(ψ21 + π, ψ32 + π), (−ψ21,−ψ32) . (2.2.5)

Hence, we define

ff (φf1, φf2, φf3) = f(φf2 − φf1, φf3 − φf2) . (2.2.6)

The spin network evaluation

Given the definition of invariants in (2.2.2) it is straightforward to define the evaluation of a given
spin network: The intertwiners are contracted with each other according to the combinatorics of
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2.2 Modified coherent states, spin-network evaluations and symmetries

the network. The resulting amplitude has to be normalized, i.e. divided by the product of norms of
our intertwiners, see section 2.3.4. It is, however, not sufficient in order to agree with the canonical
definition [A38,A39]. The remaining sign ambiguity will be resolved in Appendix 2.A.

As in the standard coherent state approach the amplitude (contraction of intertwiners) then
reads:

(−1)s
∫ ∏

f∈F
dUf

∏
e⊂f

dφfe
2π

∏
f

ff ({φfe}e⊂f )

∏
e∈E

ε
(
Us(e)Oφs(e)e |1/2〉 , Ut(e)Oφt(e)e |1/2〉

)2je

︸ ︷︷ ︸
eS

, (2.2.7)

where s is the sign factor as prescribed in [A38,A39] (see Appendix 2.A), and ε(·, ·) is an invariant
bilinear form defined by

ε(|1/2〉, |1/2〉) = ε(| − 1/2〉, | − 1/2〉) = 0, ε(|1/2〉, | − 1/2〉) = −ε(| − 1/2〉, |1/2〉) = 1 . (2.2.8)

The choice of the orientation of edges, faces and the sign factor prescription will be described in
appendix 2.A.1. To perform the stationary point analysis we rewrite (part of) the integral kernel
as an exponential function and define the ‘action’ S. From (2.2.7) one can deduce that

S =
∑
e

Se , (2.2.9)

where the action Se (labelled by the edge e) is given by:

Se = 2je ln ε
(
Us(e)Oφs(e)e |1/2〉 , Ut(e)Oφt(e)e |1/2〉

)
. (2.2.10)

2.2.2 The action

In order to examine the geometric meaning of the action on its points of stationary phase, let us
introduce the following geometric quantities. For each face f ∈ F we introduce vectors nf (as
traceless Hermitian matrices, which can be naturally identified with vectors in R3) defined by:

nf = UfHU
−1
f , (2.2.11)

where

H =

(
0 i
−i 0

)
. (2.2.12)

For each pair {f, e} with e ⊂ f , we define vectors Bfe (also as traceless matrices):

Bfe = je(2UfOφfe |1/2〉〈1/2|O−1
φfe
U−1
f − I)

= UfOφfe

[
je

(
1 0
0 −1

)]
O−1
φfe
U−1
f .

(2.2.13)

Note that the length of Bfe is equal to je.
We can already deduce that <S ≤ 0. The stationary point analysis contains the conditions

∂S = 0 and <S = 0. These are as follows

• The reality condition is satisfied if and only if

Us(e)Oφs(e)e |1/2〉 ⊥ Ut(e)Oφt(e)e |1/2〉 , (2.2.14)

where ⊥ means perpendicular in the SU(2) invariant scalar product. This is equivalent to
Bs(e)e = −Bt(e)e.
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

• Using both the reality condition and the definition of Bfe we obtain from the variation of S
with respect to Uf :

X
∂Se
∂Uf

=

{
TrXBfe e ⊂ f
0 e 6⊂ f , (2.2.15)

where X is a generator of the Lie algebra. Hence the action is stationary with respect to Uf
if: ∑

e⊂f
Bfe = 0 . (2.2.16)

• Similarly we obtain for the variation of S with respect to φfe (again using the reality condi-
tion):

∂Se
∂φfe′

=

{
TrnfBfe e = e′ ⊂ f
0 otherwise

. (2.2.17)

So the condition from variation with respect to φ is

∀e⊂f nf ⊥ Bfe . (2.2.18)

n

n
Bfe

f

f'

Bf'e

Figure 2.2: Stationary point condition.

Before we discuss the geometric meaning of the just derived conditions, we first have to examine
the symmetries of the action to determine the amount of stationary points and their relations.

2.2.3 Symmetry transformations of the action

There exist several variable transformations that only change eS by a sign such that a stationary
point is transformed into another stationary point. Some of the transformations below are contin-
uous so the stationary points form submanifolds of orbits under the action of these symmetries.
We will explain the geometric interpretation of these orbits in section 2.2.5, and show that these
orbits are isolated for many spin networks, e.g. the 6j symbol.

The above mentioned transformations are as follows:

• u-symmetry:
∀u ∈ SU(2),

∀f∈F , Uf → uUf (2.2.19)

applied to all Uf simultaneously preserves eS . This is the only symmetry which has to be
applied to all group elements simultaneously showing that one of the SU(2) integrations in
(2.2.7) is redundant (gauge).
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2.2 Modified coherent states, spin-network evaluations and symmetries

• of -rotation:
For a chosen face f and φ,

Uf → UfOφ, ∀e⊂fφfe → φfe − φ (2.2.20)

preserves eS , in fact, each eSe is preserved.

• −uf -symmetry:
For any chosen face f ∈ F ,

Uf → (−1)Uf (2.2.21)

preserves eS because for every face
∑

e⊂f je is an integer.

• rf -reversal transformation:
For any chosen face f ,

Uf → Uf

(
i 0
0 −i

)
︸ ︷︷ ︸

D

, ∀e⊂f φfe → −φfe . (2.2.22)

Because
D−1OφD = O−φ, D|1/2〉 = i|1/2〉 , (2.2.23)

eS is multiplied by
i2
∑
e⊂f je = (−1)

∑
e⊂f je . (2.2.24)

Let us notice that 2je ∈ Z and
∑

e⊂f je is an integer,

• −ofe transformation:
For any chosen pair e ⊂ f

φfe → φfe + π (2.2.25)

This multiplies the integrated term by (−1)2je .

Note that the transformations of , −uf −ofe, rf are restricted to variables associated to one face.
They transform the functions ff as follows:

• of shifts all angles φfe on f by an angle φ:

f ′f ({φfe}) = ff ({φfe + φ}) = ff ({φfe}) , (2.2.26)

since ff only depends on differences of angles.

• −ofe
f ′f ({φfe′}) = ff ({φfe′ + δee′π}) . (2.2.27)

• rf
f ′f ({φfe}) = ff ({−φfe}) . (2.2.28)

To sum up, the functions ff are preserved by u-, −uf - and of -transformations, since the first two
do not affect the angles φ and the last one translates all angles by a constant.

In addition to that, let us also define an additional transformation c, which we call parity trans-
formation:

∀f : Uf → Uf

(
0 1
−1 0

)
. (2.2.29)

It transforms the integral into its complex conjugate due to the fact that

Ū =

(
0 1
−1 0

)−1

U

(
0 1
−1 0

)
, (2.2.30)

and the ff , the matrix Oφ and the vectors | ± 1/2〉 are real.
In the next section we will examine which group is generated by the transformations, i.e. the

symmetry group of the action.
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

2.2.4 Groups generated by symmetry transformations

The transformations described in 2.2.3 generate a group G̃ with the following relations:

u(−1) =
∏
f

(−uf ),

∀f , r2
f = (−uf ), (−uf )2 = 1, of (2π) = 1,

∀e⊂f , (−ofe)2 = 1,

∀f , of (π)
∏
e⊂f

(−ofe) = 1 .

(2.2.31)

and all its elements commute besides u (that form SU(2)) and

∀f, rfof (α)r−1
f = of (−α) . (2.2.32)

The group generated by all transformations except u is denoted by G.

In G̃ (resp. G ), there is a normal subgroup generated by the transformations u, of , −uf (resp.
of , −uf ), which preserves the modifiers ff . We denote these subgroups by H̃ (and H respectively);
their quotient groups are given by

K = G̃/H̃ = G/H . (2.2.33)

This is an Abelian group generated by

∀e⊂f [rf ], [−ofe] (2.2.34)

with relations

∀f
∏
e⊂f

[−ofe] = 1, [rf ]2 = [−ofe]2 = 1 , (2.2.35)

which show that K is isomorphic to Z3|F |
2 .

In the next two sections, we will discuss the geometric interpretation of the points of stationary
phase.

2.2.5 Geometric lemma

Our goal in this section is to describe the geometric interpretation of the stationary point orbits
introduced in section 2.2.2. In particular, we will show how these points are related to the standard
stationary point interpretation in the coherent state method.

Lemma 1. For every set of vectors Bfe of length je satisfying

∀eBs(e)e = −Bt(e)e ,

∀f
∑
e⊂f

Bfe = 0 , (2.2.36)

there exist φfe and Uf being a point of stationary phase with vectors Bfe. Moreover, all these points
are related via G transformations.

Proof. For every f we can choose the unit vector nf perpendicular to all Bfe (for all e ⊂ f). Such
a normal is only determined up to a sign. Let us choose Uf such that

nf = UfHU
−1
f . (2.2.37)
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2.2 Modified coherent states, spin-network evaluations and symmetries

Such a choice always exists, but it is not unique. Uf is only determined up to the transformation

Uf → UfDOφ (2.2.38)

since D, defined in (2.2.22), stabilizes H up to a sign:

DHD−1 = −H . (2.2.39)

This is called the D∞ group.

The vectors U−1
f BfeUf are orthogonal to H. The operators U−1

f BfeUf are thus real and we can
choose their eigenvectors with positive eigenvalues as(

cosφfe
sinφfe

)
. (2.2.40)

Hence φfe is fixed (up to π).

It is straightforward to check that this construction gives a stationary point, in fact, each sta-
tionary point with vectors Bfe must be constructed in this way. The ambiguities in the choices
above are all related by of -, −uf -, −of - and rf -transformations, i.e. G-transformations.

For every face f on the stationary point
∑

e⊂f Bfe = 0 and given the definition of ff in section
2.2.1, there is a unique choice (up to of transformations) of the stationary point angles φfe such
that ff is nonzero. In the neighbourhood of those stationary point ff = 1, whereas around all
remaining ones at least one of the functions ff is zero:

Lemma 2. For given vectors Bfe satisfying (2.2.36), there exists only one orbit (orbit of the action
of the group H̃) of stationary points of the action, such that∏

ff ({φfe}) 6= 0 , (2.2.41)

and in the neighbourhood of this orbit ∏
ff ({φfe}) = 1 . (2.2.42)

Note that the normals to the faces change sign under rf transformations:

nf → −nf . (2.2.43)

Under the c-transformation, the Bfe are inverted, but the normals to the faces are not affected, i.e.
they behave as pseudovectors.

Bfe → −Bfe ,

nf → nf .
(2.2.44)

In the next section we will specify the definition of the normals nf .

2.2.6 Normal vectors to the faces

We will now give a precise geometric definition of nf (normal to the face). To simplify notation we
will omit the subscript φ in Oφfe . Note that

nf = UfOfeHO
−1
fe U

−1
f (2.2.45)

for any edge e ⊂ f , since Ofe and H commute.
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

Take two consecutive edges e1, e2 ⊂ f and their respective edge vectors Bfei :

Bfe1 = UfOfe1

[
je1

(
1 0
0 −1

)]
O−1
fe1
U−1
f , (2.2.46)

Bfe2 = UfOfe1(O−1
fe1
Ofe2)

[
je2

(
1 0
0 −1

)]
(O−1

fe1
Ofe2)−1O−1

fe1
U−1
f . (2.2.47)

Rotating all three vectors by UfOfe1 one obtains (the rotated vectors are denoted by B′fei , n
′
f ):

n′f = H, B′fe1 = je1

(
1 0
0 −1

)
, Bfe2 = O−1

fe1
Ofe2

[
je2

(
1 0
0 −1

)]
(O−1

fe1
Ofe2)−1 . (2.2.48)

For a stationary point with non-vanishing modifier ff , O−1
fe1
Ofe2 describes the rotation by the

SO(3) angle 0 < 2(ψ12 − π) < π. We thus conclude:

nf · (Bfe1 ×Bfe2) = n′f · (B′fe1 ×B′fe2) > 0 , (2.2.49)

where we regard nf and Bfei as vectors using the natural identification of hermitian matrices with
R3 (tracial scalar product). Condition (2.2.49) fixes the sign of nf and also completes the geometric
interpretation of the points of stationary phase.

2.2.7 Interpretation of planar (spherical) spin-networks as polyhedra

In the last section we obtained an interpretation of the stationary points in terms of a set of vectors
Bfe satisfying closure conditions for every face f∑

e

Bfe = 0 . (2.2.50)

However, these conditions do not specify a unique reconstruction of the according surface dual
to the spin network. In fact, already each triangle allows for two different configurations of Bfe
vectors. Therefore, we will here describe a method to reconstruct the surface from Bfe vectors for
the spherical case:

Let us draw the graph on the sphere (on the plane) as described in appendix 2.A.1. From the
possible ways of drawing it, which in the case of 2-edge irreducible spin networks is in one-to-one
correspondence with the orientation of the spin network, we have to choose one. In the case of
2-edge irreducible graphs the polyhedra obtained from different choices only differ by orientation.
In addition to nodes and edges, there is also a natural notion of two-cells. The latter are defined
as areas bounded by loops of edges. We are mainly interested in the dual picture that in this case
is a triangulation of the sphere. Thus there is a unique identification of the vertices in the dual
picture. A cyclic ordering of the edges for each f is inherited from the orientation of the sphere.

In the following, we will construct an immersion (not an embedding) of this triangulation of the
sphere into R3, such that every edge e is given by Bt(e)e (with the right orientation).

Let us choose one vertex v0. Every other vertex v′ can be connected to v0 by a path

v0, e0, v1, e1, . . . , v
′ . (2.2.51)

Every edge ei in the sequence belongs to two faces. Exactly one of these faces is such that vi, vi+1

are the consecutive vertices w.r.t the cyclic order of the face. We denote this face by fi (see figure
2.3). We introduce the vector

ṽ′ =
∑
i

Bfiei . (2.2.52)
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2.2 Modified coherent states, spin-network evaluations and symmetries

One can prove that this vector does not depend on the chosen path. To see this, let us consider a
basic move that consists of replacing vi, ei, vi+1 by vi, e, v, e

′, vi+1 where all three vertices belong to
the same face f . Using the property ∑

e⊂f
Bfe = 0 (2.2.53)

and the proper orientation, one can show that the vector ṽ′ is invariant with respect to this move.
In fact any two paths can be transformed into one another by a sequence of these basic moves (or
their inverses) due to the fact that the graph is spherical. A different choice of v0 gives a translated
surface. It is straightforward to check that

v0

v1v2
e1

f 1

e0

Figure 2.3: Reconstruction of the surface

ṽb − ṽa = Bfe , (2.2.54)

where va and vb are vertices joint by the edge e and f is the face such that (va, vb) is the pair of
consecutive vertices in the cyclic order of f .

Let us notice that from three vectors Bfe satisfying the closure condition one can form a triangle
in two ways (see figure 2.4), but only that one depicted on the left appears in the reconstruction
discussed here. Moreover the direction of the normal to the face coincides with the orientation

B
fe1

B
fe2

B
fe3

B
fe1B

fe2

B
fe3

Figure 2.4: Two possible triangles formed by Bfe satisfying closure condition.

inherited by the face from the cyclic order of its edges.

For non-planar graphs, in general, we can only reconstruct the universal cover of the surface.

Before we continue with the stationary point analysis for the angles φfe in the next section, let
us briefly summarize the results of section 2.2: We have introduced a class of modified coherent
states for irreducible representations of SU(2), which contain an additional smearing parameter,
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

and presented how to construct invariants from them. From the contraction of these invariants
(according to the spin network) an effective action has been derived, whose points of stationary
phase allow for the same geometrical interpretation as the standard coherent states [A19, A20].
The amount of stationary points is significantly increased by the smearing parameters, yet they are
all related by symmetry transformations of the action; a certain set of them can be suppressed by
the prescribed modifiers. Eventually, we have depicted a way to reconstruct a triangulation from
planar spin networks.

2.3 Variable transformation and final form of the integral

In this section we focus on the stationary point analysis with respect to the angles φfe, which is
the key modification in comparison to previously used coherent state approaches, see also section
2.2.1. This analysis allows us to obtain an effective action for Se associated to the edge e in terms
of a phase, which we will identify as the angle between the normals of the faces sharing the edge
e. Furthermore we are able to expand the effective action for Se in orders of 1

j and initiate the
discussion of next-to-leading order contributions.

2.3.1 Partial integration over φ and the new action

Suppose that we have a non-degenerate configuration, i.e.

∀ens(e) · nt(e) 6= ±1 . (2.3.1)

Then the partial stationary point analysis with respect to all φfe can be performed. Its result
will be the sum over the contribution from all stationary points with respect to φfe for a given
configuration of Bfe vectors, but for fixed Uf (so also fixed nf ).

Stationary points for Se

In this section we will explain the contribution to the integral from the stationary point of the
action Se with respect to φs(e)e, φt(e)e. The fs(e), ft(e) terms can be ignored, since they are equal to
1 around the stationary point.

We can separately consider terms corresponding to each edge

1

4π2

∫
dφs(e)edφt(e)e ε

(
Us(e)Os(e)e|1/2〉 , Ut(e)Ot(e)e|1/2〉

)2je , (2.3.2)

and perform the stationary point analysis that gives the asymptotic result of the integration over
φs(e)e, φt(e)e. The stationary point with respect to φt(e)e and φs(e)e is given by the conditions

Us(e)Os(e)e|1/2〉 ⊥ Ut(e)Ot(e)e|1/2〉 , (2.3.3)

which is equivalent to

U = O−1
s(e)eU

−1
s(e)Ut(e)Ot(e)e = (−1)s̃e

−iθ̃

1 0
0 −1

(
0 −1
1 0

)
, (2.3.4)

where θ̃ ∈
(
−π

2 ,
π
2

)
and s̃ ∈ {0, 1} are uniquely determined by this equation. In section 2.3.1 we

will show that 2θ̃ can be interpreted as the angle enclosed by the normal vectors ns(e) and nt(e)
(w.r.t. the axis Bt(e)e). Hence, Se on the stationary point is of the following form:

Se = 2je ln ε(· · · ) = 2jeθ̃ + i 2jeπs̃ . (2.3.5)
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2.3 Variable transformation and final form of the integral

As already discussed in section 2.2.5, each stationary point is characterized by the existence of
Bt(e)e = −Bs(e)e orthogonal to both ns(e) and nt(e) (see also stationary point conditions in section
2.2.2). There exist two such configurations that differ by a sign of Bs(e)e.

For every configuration one has 4 stationary points that can be obtained from one another by
−os(e)- and −ot(e)-transformations. In case je is an integer the contributions from the two stationary
points are equal, see also section 2.2.3.

Contributions from Bfe configurations with opposite signs are related by complex conjugation.

Geometric interpretation of the angle θ̃

The missing piece of the description above is the exact value of the angle θ̃. Here we will provide
a geometric interpretation of this angle and its relation to the angle between faces. Let us recall:

Bs(e)e = jeUs(e)Os(e)e

(
1 0
0 −1

)
O−1
s(e)eU

−1
s(e) (2.3.6)

ns(e) = Us(e)Os(e)eHO
−1
s(e)eU

−1
s(e) (2.3.7)

nt(e) = Ut(e)Ot(e)eHO
−1
t(e)eU

−1
t(e) = e

iθ̃
Bt(e)e
|Bt(e)e|ns(e)e

−iθ̃
Bt(e)e
|Bt(e)e| (2.3.8)

The angle 2θ̃ is the angle by which one needs to rotate ns(e) around the axis Bt(e)e to obtain nt(e).
We will denote this SO(3) angle by

θ = 2θ̃, θ ∈ (−π, π) . (2.3.9)

This remaining ambiguity of the sign factor s̃ will be resolved in appendix 2.A.

2.3.2 Partial integration over φ

We introduce new variables

φ1 = φs(e) − φ0
s(e), φ2 = φt(e) − φ0

t(e) , (2.3.10)

where φ0
s(e) and φ0

t(e) denote the stationary points. Then using (2.3.4), we can write the action as:

1

4π2

∫
dφ1 dφ2(−1)2jes̃

(
eiθ̃ cosφ1 cosφ2 + e−iθ̃ sinφ1 sinφ2

)2j
, (2.3.11)

where we integrate over φi. By splitting the terms in the bracket in real and imaginary part, we
obtain:

cos θ̃ (cosφ1 cosφ2 + sinφ1 sinφ2)︸ ︷︷ ︸
cos(φ1−φ2)

+i sin θ̃ (cosφ1 cosφ2 − sinφ1 sinφ2)︸ ︷︷ ︸
cos(φ1+φ2)

. (2.3.12)

We define new variables

α := φ1 − φ2, β := φ1 + φ2 , (2.3.13)

and the Jacobian for this transformation is given by:∣∣∣∣ ∂α∂β∂φ1∂φ2

∣∣∣∣ =

∣∣∣∣ 1 −1
1 1

∣∣∣∣ = 2 . (2.3.14)
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

Hence equation (2.3.11) becomes:

1

8π2

∫
dαdβ (−1)2jes̃

(
cos θ̃ cosα+ i sin θ̃ cosβ

)2je
=

=
1

8π2

∫
dαdβ (−1)2jes̃ exp

2je ln
(

cos θ̃ cosα+ i sin θ̃ cosβ
)

︸ ︷︷ ︸
=:S′e

 , (2.3.15)

where Se = S′e + i 2jeπs̃.

Expansion around stationary points

Given the definitions from the previous section, we compute the expansion of the following expres-
sion:

1

8π2

∫
dα dβ (−1)2js̃eS

′
e . (2.3.16)

The stationary point is given by α = β = 0, which corresponds to φi = 0, i.e. φs(e) = φ0
s(e),

φt(e) = φ0
t(e). In this point the action associated to the edge e becomes:

S′e = 2je ln
(
eiθ̃e
)

= i2jeθ̃e (2.3.17)

In order to compute the first order contribution, one has to consider the matrix of second derivatives
(evaluated on the point of stationary phase):

∂2S′e
∂α2

=− 2je
cos θ̃ cosα

cos θ̃ cosα+ i sin θ̃ cosβ
, (2.3.18)

∂2S′e
∂α∂β

=0 =
∂2S′e
∂β∂α

, (2.3.19)

∂2S′e
∂β2

=− 2ije
sin θ̃ cosβ

cos θ̃ cosα+ i sin θ̃ cosβ
. (2.3.20)

Around the stationary point the action can be expanded (up to second order in the variables α, β):

S′e = i2jeθ̃ +
1

2

(
α β

)(−2je cos θ̃e−iθ̃ 0

0 −2ije sin θ̃e−iθ̃

)(
α
β

)
+ · · · . (2.3.21)

In order to correctly perform the stationary phase approximation, it is indispensable to state the
right branch of the square root, here for θ̃ ∈

(
−π

2 ,
π
2

)
:√

cos θ̃e−iθ̃ =

√
| cos θ̃|e−i 1

2
θ̃√

i sin θ̃e−iθ̃ =

√
| sin θ̃|e−i 1

2
θ̃

{
e−i

π
4 θ̃ ∈

(
−π

2 , 0
)

ei
π
4 θ̃ ∈

(
0, π2

) .
(2.3.22)

Let us notice that
sgn sin θ = sgn sin θ̃ for θ̃ ∈

(
−π

2
,
π

2

)
. (2.3.23)

Hence, the leading order contribution from the stationary point is:

1

8π2

2π(−1)2jes̃√
2j2
∣∣∣sin 2θ̃

∣∣∣e
i2θ̃(j+ 1

2)−iπ4 sign(sin 2θ̃)

(
1 +O

(
1

j

))
. (2.3.24)

In the next section we will show an improvement of this result.
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2.3 Variable transformation and final form of the integral

The total expansion of the edge integral

Let us introduce a number (see appendix 2.H for a motivation of its origin)

Cj =
1

4j
Γ(2j + 1)

Γ(j + 1)2
. (2.3.25)

We can multiply (2.3.24) by
Cj
Cj

= 1 and use the expansion 1
Cj

=
√
πj
(

1 +O(1
j )
)

derived in

appendix 2.D.2 to write the result as

Cje
(−1)se

4
√

2πje |sin θ|
ei(θ(je+

1
2)−π4 sign(sin θ))

(
1 +O

(
1

je

))
. (2.3.26)

By se we denoted the sign factor

se =


0 je integer,
0 je half-integer and s̃ = 0
1 je half-integer and s̃ = 1 .

(2.3.27)

We will determine the sign se in appendix 2.A.
We introduce new ‘length’ parameters

le := je +
1

2
, (2.3.28)

and using the fact that (−1)se

4
√

2πle|sin θ|
= (−1)se

4
√

2πje|sin θ|

(
1 +O(j−1)

)
we can express (2.3.26) in terms of le.

Before we move on, we would like to present a first glimpse at the next-to-leading order contribution:
As it will be shown in section 2.5.2 by application of the stationary point analysis (2.3.26) and
the recursion relation (2.5.29), the contribution (including next-to-leading order (NLO)) from the
integral of eSe over φs(e)e, φt(e)e is given by

Cje
(−1)se

4
√

2πle |sin θ|
ei(leθ−

π
4

sign(sin θ)− 1
8le

cot θ)

(
1 +O

(
1

l2e

))
, (2.3.29)

where θ ∈ (−π, π) is the angle by which one has to rotate ns(e) around Bt(e)e to obtain nt(e).

2.3.3 New form of the action

In the previous sections we have computed the contribution of one point of stationary phase with
respect to the angles φfe. From section 2.3.2 we can also conclude that having one stationary point
all others are obtained by application of transformations from G̃ that keep Uf fixed. These are
given by compositions of

(−uf )of (π), −ofe ∀f . (2.3.30)

However, only the orbit generated by the group of (−uf )of (π) from a non-trivial stationary point
contributes, since all other stationary points are suppressed by the modifiers ff . Therefore it is
sufficient to compute the number of these stationary points. The group generated by (−uf )of (π)

is equal to Z
|F |
2 and acts freely on the stationary points; the countability of the orbit is thus 2|F |.

Around the stationary orbit, the integral is hence of the form:

(−1)s2|F |
∫ ∏

dUf
∏
e

(−1)seCje
1

4
√

2π
(
je + 1

2

)
| sin θe|

e−i
π
4

sgn sin θe e
i(je+ 1

2)θe− 1

8(je+ 1
2 )

cot θe
,

(2.3.31)
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

where θe is the angle between ns(e) and nt(e) with the sign determined by left hand rule with respect
to Bt(e)e. In the neighbourhood of the stationary point this definition is meaningful. The value of
the product

∏
e(−1)se is discussed in appendix 2.A.2. We use new ‘length’ parameters introduced

in section 2.3.2

le := je +
1

2
(2.3.32)

and perform a change of variables
Uf → nf , (2.3.33)

which is worked out in appendix 2.B.1. The correct integral measure is given by:

µ =
1

2π
δ(|n|2 − 1) dn1 dn2 dn3 . (2.3.34)

Thus, we can write the integral (integrating out of and −uf gauges) as:

(−1)s(−1)
∑
e see−i

π
4

∑
e sgne

∏
eCje

2
5
2
|E|π|F |+

1
2
|E|∫ ∏

f∈F
δ(|nf |2 − 1) d3nf

1√∏
e le| sin θe|

ei
∑
e(leθe+S

le
1 (θe)) .

(2.3.35)

where from 2.3.2 we know

Sle1 (θe) = − 1

8le
cot θe + . . . . (2.3.36)

The only present symmetry that has to be discussed is a u-symmetry, which is implemented by
SO(3) rotations:

nf → unfu
−1 (2.3.37)

If the configurations of the vectors Bfe is rigid, i.e. the only deformations of the configuration of
the edges with given lengths are rotations, then the stationary u-orbit is isolated, i.e. there exists
a neighbourhood of the orbit that does not intersect any other orbit.

c transformation as parity transformation

Furthermore, we would like to point out that given one orbit of stationary phase, we can always
construct a different one via parity transformation of the Bfe vectors (see also section 2.2.5 about
c transformations). After integrating out gauges these two points are related by

n′f = nf ,

B′fe = −Bfe ,
(2.3.38)

so also the angles are related by θ′e = −θe (nf are preserved as pseudovectors). Finally, we see that
the asymptotic contribution from the parity related stationary orbits is just the complex conjugate
of the original one, such that the complete expansion is real.

In order to provide the correct expression of the action before performing the remaining stationary
point analysis, it is necessary to compute the normalization of the intertwiners, the so-called ‘Theta’
graph.

2.3.4 Normalization - ‘Theta’ graph

We need to compute the self-contraction of the invariants Cf using the (in this case) symmetric
bilinear form ε (as a generalization of the anti-symmetric form ε of spin 1/2 to arbitrary represen-
tations). Its special properties allow us to relate the ε product ((·, ·)) to the scalar product on
SU(2):

(Cf , Cf ) =

〈
Cf ,

(
0 1
−1 0

)
Cf

〉
= 〈Cf , Cf 〉 , (2.3.39)
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2.3 Variable transformation and final form of the integral

since Cf is real and SU(2) invariant. The integral of the contraction of the intertwiner with itself
is given by:∫

SU(2)2×S6
1

dU1dU2

∏
i

dφi1
2π

∏
i

dφi2
2π

f1({φi1})f2({φi2})
∏
i

(
1/2|, O−1

φi1
U−1

1 U2Oφi2 |1/2

)2ji
.

(2.3.40)

Its stationary point conditions are:

• Bi1 = −Bi2 .

• ∑iBi1 =
∑

iBi2 = 0 .

As the ‘Theta’ graph itself is an evaluation of a spin network its effective action have the same
transformations on the action as described in 2.2.3.

The u symmetry can be ruled out just by dropping the integration over U1. Then one is left with
the group G generated by the transformations

rf1, rf2, −u2, of1, of2, −of1,i, −of2,i . (2.3.41)

On the stationary H orbits, i.e. the normal subgroup of G generated by {of ,−uf}, these transfor-
mations act as the group K = G/H, which gives Z3

2 × Z3
2.

This group acts freely on the stationary H orbits and as before the modifiers suppress all but one
of the H orbits. If we take f1 = f2 = 1 and restrict ourselves to the case where

∑
i ji is even (all ji

integer) then the action is invariant with respect to all transformations, thus every stationary orbit
contribute the same 1

26 of the overall result. In the case when
∑
je is not even, or some je are not

integer, this choice leads to a vanishing invariant.
The computation of the full expansion of the theta graph in the even case also gives an expansion

on the stationary orbit in the presence of fi. This is briefly discussed in the next section.

Theta graph for integer spins and
∑
j even

We will derive the complete expansion for
∑
j even. We need to compute∏

i

Cji(C
j1j2j3
000 )2 (2.3.42)

where Cji (see also appendix 2.D.2) is the normalization of the |0〉 vector.

In appendix 2.D.3 we show (following [A40]) that the theta graph (Cj1j2j3000 )2 is equal to

1

2πS

(
1 +O

(
1

l2

))
, (2.3.43)

where S is the area of the triangle with edges ji + 1
2 .

2.3.5 Final formula

Let us state the final formula normalized by the square roots of the ‘Theta’ diagrams. Those are
equal to:

(−1)sf 2−7/2

√∏
e⊂f Cje

πSf

(
1 +O

(
1

l2

))
, (2.3.44)

where sf is a sign factor necessary to be consistent with [A38,A39] that will be derived in 2.A.2.
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

To summarize the various calculations of this chapter, the contraction of normalized intertwiners
has the following asymptotic expansion after the stationary phase approximation for the angles φfe
has been performed and the asymptotic expansion from (2.3.44) has been inserted:

(−1)s+
∑
f sf+

∑
e see−i

π
4

∑
e sgne

2
5
2
|E|− 7

2
|F |π

1
2
|F |+ 1

2
|E|

∏
f∈F S

1/2
f∏

e∈E l
1/2
e∫ ∏

f∈F
δ(|nf |2 − 1) d3nf

1√∏
e | sin θe|

e
i
∑
e

(
leθe− 1

8le
cot θe

)
.

(2.3.45)

As it will be shown in appendix 2.A, s+
∑

f sf +
∑

e se = 0 mod 2 and thus the term

(−1)s+
∑
f sf+

∑
e se (2.3.46)

in the integral can be omitted.
This is the contribution up to next-to-leading order. It is straightforward to generalize it to higher

order due to the complete expansion of the edge amplitude (section 2.5.2) and the expansion of
‘Theta’ diagrams (appendix 2.D.3).

In the next section we will focus our attention on the specific example of the 6j symbol. After
another variable transformation to the set of exterior dihedral angles of the tetrahedron has been
performed, we obtain the action of flat first order Regge Calculus , i.e. Regge Calculus in which
both edge lengths and dihedral angles are considered as independent variables. The stationary
point conditions (with respect to the dihedral angles) will reduce the action to ordinary Regge
calculus, such that the geometry is entirely described by the set of edge lengths, where angles on
the stationary point agree with the angles given for a tetrahedron built from the lengths. We will
perform the stationary point analysis, in particular compute the determinant of the Hessian matrix,
and obtain the correct asymptotic expression for the SU(2) 6j symbol [A5].

2.4 Analysis of 6j symbol and first order Regge Calculus

In this section, we will perform the remaining integrations via stationary phase approximation
starting from (2.3.45) in the case of the 6j symbol. As we are restricting the discussion to a specific
spin network, we introduce the following notations:

This spin network consists of 4 faces f , which we will simply count by i ∈ {1, . . . , 4}, and 6 edges
e, which we will denote by ij, i < j, i.e. the faces sharing it. On the stationary point with respect
to {φfe}, we have two configurations of Bfe, which we will label accordingly as Bij and similarly
θij using the convention that θij is the angle at the edge lij .

In [A19] it has been shown that the 6j symbol can be interpreted as a tetrahedron on the points
of stationary phase (for non-degenerate configurations). In section 2.2.2 we have shown that our
approach gives the same interpretation. Hence, we can assume that for one stationary point, the
normals to the faces ni of the tetrahedron are outward pointing and the Bij vectors are oriented
such that θij ∈ (0, π). For the second stationary orbit, described by B′ij = −Bij , the angles are
negative, hence this contributes the complex conjugate.

In order to perform the remaining stationary point analysis, it is necessary to perform another
variable transformations from normals of faces ni to angles between these normals θij followed by
integrating out gauge degrees of freedom corresponding to u transformations:

ni → θij . (2.4.1)

This transformation is performed in appendix 2.B.2 in great detail, and we obtain the following
relation: ∏

i

d3niδ(|ni|2 − 1)→
∏
ij

dθij
∏
ij

| sin θij |δ(det G̃) , (2.4.2)
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2.4 Analysis of 6j symbol and first order Regge Calculus

where G̃ denotes the angle Gram matrix (for exterior dihedral angles) of a tetrahedron with com-
ponents Gij = cos(θij), with θii = 0. Using (2.4.2) and simplifying (2.3.45) for the case of the 6j
symbol, we obtain in the neighbourhood of the stationary point:

e−i
6
4
π∏

i S
1/2
i

2π3
∏
i<j l

1/2
ij

∫ ∏
i<j

d θij
∏
i<j

| sin θij |δ(det G̃)︸ ︷︷ ︸
Jacobian

1∏
i<j

√
| sin θij |

e
i
∑
i<j

(
lijθij− 1

8lij
cot θij

)
. (2.4.3)

Let us consider one of the stationary points for which sin θij > 0. The second one contributes the
complex conjugate of the first because two points (orbits) are related by c (parity) transformations:

i

4π4

|l|∏i S
1/2
i∏

i<j l
1/2
ij

∫
d ρ
∏
i<j

d θij
∏
i<j

√
sin θije

i

(∑
i<j

(
lijθij− 1

8lij
cot θij

)
−|l|ρ det G̃

)
, (2.4.4)

where |l|2 :=
∑

i<j l
2
ij and ρ is a Lagrange multiplier.

It is worth to examine the action in (2.4.4) in more detail: This function of edge lengths lij and
angles θij is known as the action for ‘first order’ Regge Calculus [A32]. We will comment on this
further in section 2.4.4.

In the next section we will perform a stationary phase approximation for the integrations over the
angles θij . We will use the improved action

∑
i<j lijθij , where we regard higher order corrections

as the vertices of a Feynman diagram expansion, and the resulting points of stationary phase will
correspond to perturbed stationary points obtained previously from the stationary point analysis
w.r.t. the SU(2) group elements Uf in section 2.2.

2.4.1 Stationary point analysis

The stationary point conditions for the action (2.4.4) are:

• Derivative with respect to θij :

lij − |l|ρ
∂ det G̃

∂θij
= 0 . (2.4.5)

• Derivative with respect to ρ:

− |l| det G̃ = 0 . (2.4.6)

Equations (2.4.5) and (2.4.6) are exactly those equations stating that θij are the exterior dihedral
angles of a tetrahedron formed by edges of length lij (see appendix 2.C and [A41]). From the
stationary point analysis w.r.t. group elements Uf we know that all normals ni to the faces are
outward directed. The point of stationary phase w.r.t. the angles θij is only a small perturbation
in comparison to the stationary point w.r.t. group elements. The areas of the respective face are
denoted by Si. For a flat tetrahedron, the following relation holds (see for example [A41,A42]):

lij =
2

3

1

V
SiSj sin θij . (2.4.7)

On the other hand det G̃ = 0 holds, where a (single) null eigenvector of G̃ is given by the vector
of areas of the triangles (S1, . . . , S4) (of the tetrahedron) as det G̃ = 0 imposes the closure of the
flat tetrahedron. Thus follows:

∂ det G̃

∂θij
= −2

det′G̃∑
k S

2
k

SiSj sin θij
(2.4.7)

= −3
V det′G̃∑

k S
2
k

lij , (2.4.8)

37



2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

where det′ G̃ =
∑

i G̃
∗
ii and G̃∗ii is the (i, i)th minor of G̃. det′ G̃ is computed in appendix 2.C.1:

det′G̃ =
34

22
(
∑
i

S2
i )

V 4∏
S2
i

. (2.4.9)

Using (2.4.8) and (2.4.9), we solve (2.4.5) for the Lagrange multiplier ρ:

ρ = −22
∏
S2
i

35V 5|l| . (2.4.10)

The quadratic order in the expansion around the stationary point, which we also call the kinetic
term, i.e. the Hessian matrix of the action, is given by:

H := −i|l|
(

0 ∂ det G̃
∂θij

∂ det G̃
∂θkm

ρ ∂ det G̃
∂θij∂θkm

)
. (2.4.11)

To complete the stationary point analysis, we have to compute the determinant of its inverse
evaluated on the stationary point.

2.4.2 Propagator and Hessian

Let us introduce a function of lengths l:

λ = |l|ρ = −22
∏
S2
i

35V 5
. (2.4.12)

It is of scaling dimension 1 with respect to l.

Propagator

We will prove that the inverse of the kinetic term is equal to

H−1 = i

(
c
|l|2

1
|l|

∂λ
∂lij

1
|l|

∂λ
∂lkl

∂θij
∂lkl

)
, (2.4.13)

where c is a constant (defined in Lemma 7 in appendix 2.C). Let us compute

i

(
c
|l|2

1
|l|

∂λ
∂lij

1
|l|

∂λ
∂lmn

∂θij
∂lmn

)
(−i)|l|

(
0 ∂ det G̃

∂θkl
∂ det G̃
∂θmn

ρ ∂ det G̃
∂θkl∂θmn

)
. (2.4.14)

This gives

|l|
(

1
|l|

∂λ
∂lmn

∂ det G̃
∂θmn

∂ det G̃
∂θij

c
|l|2 + 1

|l|
∂λ
∂lmn

ρ ∂ det G̃
∂θmn∂θij

∂ det G̃
∂θmn

∂θmn
∂lij

1
|l|

∂λ
∂lij

∂ det G̃
∂θkl

+
∂θij
∂lmn

ρ ∂2 det G̃
∂θmn∂θkl

)
, (2.4.15)

using the results of appendix 2.C.2, we see that (2.4.15) is equal to the identity.

Hessian

Similar to the angle Gram matrix discussed in the previous section, det
∂θij
∂lkl

= 0 in the case of a
flat tetrahedron. This is due to the fact that given a set of dihedral angles of a flat tetrahedron,
the tetrahedron is only defined up to rotations and uniform scaling of its edge lengths. Hence, the
null eigenvector of the matrix

∂θij
∂lkl

is given by the edge vector ~l := (l12, . . . , l34). This is equivalent

to the Schläfli identity in 3D:
∑

ij lijdθij = 0. We rewrite the matrix H−1 in the basis in which its

second row is parallel to ~l and the next ones are perpendicular to ~l:
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i


c
|l|2

1
|l|
∂λ
∂l · · · · · ·

1
|l|
∂λ
∂l 0 0 0
... 0

∂θij
∂lkl

...
... 0

...
...

 . (2.4.16)

The determinant of (−H−1) is thus equal to

det(−H−1) = −(−i)7
( 1

|l|
∂λ

∂l︸ ︷︷ ︸
= λ
|l|2

)2
det′

∂θij
∂lkl

. (2.4.17)

Since λ is of scaling dimension 1 (with respect to edge lengths), lij
∂λ
∂lij

= λ. More details and the

tedious calculation of det′
∂θij
∂lkl

can be found in appendix 2.C:

det′
∂θij
∂lkl

=
33

25

|l|2∏
S2
i

V 3 . (2.4.18)

Combining all these results, we obtain:

det(−H−1) = −i 1

|l|4
(
−22

∏
S2
i

35V 5

)2
33

25

|l|2∏
S2
i

V 3 = −i 1

2 37

∏
i S

2
i

|l|2V 7
, (2.4.19)

and hence √
| detH−1| = 1

√
2 3

7
2

∏
i Si

|l|V 7
2

. (2.4.20)

Since H−1 is antihermitian, it has only imaginary (and nonzero) eigenvalues. Therefore it is im-
portant to count the number of +iR and −iR eigenvalues in order to pick the right branch of√

det(−H−1). The number of positive and negative imaginary eigenvalues is constant on the con-
nected components of parameter spaces. For oriented tetrahedra (one of the two components) it
can be computed in the equilateral case, i.e. all lij are equal. This was done in appendix 2.D.4,
then H−1 has 4 iR eigenvalues and 3 −iR. Finally, we conclude:

1√
det(−H)

= e−4iπ
4 e3iπ

4

√
|detH−1| = 1

√
2 3

7
2

e−i
π
4

∏
Si

|l|V 7
2

. (2.4.21)

The last step is to combine all the previous results to obtain the final formula for the asymptotics
of the 6j symbol.

2.4.3 Final Result

In this section, we will combine the results of the previous calculations step by step. First we
perform the stationary point analysis for (2.4.4):

i

4π4

|l|∏i S
1/2
i∏

i<j l
1/2
ij

∏
i<j

√
sin θij

(2π)
7
2√

det(−H)
e
i

(∑
ij

(
lijθij− 1

8lij
cot θij

)
+S̃1

)

= i
2

3
2

π
1
2

|l|∏i S
1/2
i

∏
i<j

√
sin θij√

det(−H)
∏
i<j l

1/2
ij

ei(
∑
ij lijθij+S1) ,

(2.4.22)
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

where S1 is the NLO contribution. As a next step, we substitute sin θij = 3
2
lijV
SiSj

(for sin θij > 0)

and (2.4.21) in (2.4.22):

2
3
2

π
1
2

|l|∏S
1/2
i∏

l
1/2
ij

(
3

2

)3
∏
l
1/2
ij V

3∏
S

3
2
i

ei
π
4

∏
Si√

2 3
7
2 |l|V 7

2

ei(
∑
ij lijθij+S1)

=
1

2

1√
12π V

ei
π
4 ei(

∑
ij lijθij+S1)

(2.4.23)

As previously discussed, the full contribution comes from two stationary points, which are related
by parity transformations. Eventually, we obtain:

1√
12πV

cos

∑
ij

lijθij +
π

4
+ S1

+O
(
|l|−2

) , (2.4.24)

as in [A5]. In the formula above, we implicitly assumed that S1 is real. This property will be
proven in section 2.5.

2.4.4 First order Regge calculus

A first order formulation of Regge Calculus [A32, A43] is a discretization of General Relativity
defined on the triangulation of the manifold in which both edge lengths and dihedral angles are
considered as independent variables. Its introduction was motivated by Palatini’s formulation of
Relativity where equations of motion are first order differential equations. Its action in 3D is given
by

SR[le] =
∑
e

leεe, εe = 2π −
∑
τ⊃e

θ(τ)
e (2.4.25)

where le denotes the length of the edge e, θ
(τ)
e denotes the dihedral angle at edge e in the tetrahedron

τ . By εe we denote the deficit angle at edge e. For every tetrahedron an additional constraint is
imposed, namely

det G̃ = 0 (2.4.26)

that enter the action via a Lagrange multiplier [A32]. G̃ is the angle Gram matrix of the tetrahedron.
One can eliminate the θτe variables by partially solving the equations of motion (given by variations
with respect to θτe ), then

θτe = θτe (l) (2.4.27)

turns out to be the dihedral angle at the edge e for a discrete geometry determined by the edge
lengths {le}.

Our derivation of the 6j symbol asymptotics follows the same idea. It also suggests a suitable
measure in the path integral quantization for (linearized) first order Regge calculus in order to
reobtain the factor 1√

V
from Ponzano-Regge asymptotics. We also hope that our methods might

be applied in the 4D case, where a similar action, motivated by the construction of modern spin
foam models, was proposed in [A33]. Furthermore, the present results could naturally provide and
motivate a triangulation independent measure for first order Regge calculus following the approach
in [A27]. Examining first order and area-angle (quantum) Regge calculus in 4D might also give
new insights into possible measures for 4D spin foam models.

2.5 Properties of the next to leading order and complete
asymptotic expansion

So far, we dealt with the asymptotic expansion of a spherical spin network evaluation in the
leading order approximation and managed to work out the example of the 6j symbol. However,
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our method allows us to derive, in principle, the full asymptotic expansion of the evaluation by the
higher order stationary point analysis, e.g. we have already mentioned the next-to-leading order
(NLO) corrections to the contribution from edges of the spin network (on the stationary points)
in section 2.3.2. Such corrections improve the asymptotic behaviour in particular for small spins.
Therefore we will apply our formalism in this section to derive new insights on the NLO corrections
(to the 6j symbol).

NLO order corrections to the asymptotic formula of the SU(2) 6j symbol have been thoroughly
discussed in [A30, A31]. In particular, the authors found evidence that the leading contributions
in the expansion in 1

l are purely real and oscillating as cos(SR + π
4 ), whereas the next order term

(also purely real) behaves like sin(SR+ π
4 ), where SR denotes the Regge action for the tetrahedron.

Furthermore, this behaviour is conjectured to be alternating for consecutive orders.

We will refer to this behaviour introduced in [A30, A31] as “Dupuis-Livine” (DL) property and
we will show that it holds for the full expansion of the asymptotics of any evaluation of spin
networks, satisfying certain generic conditions, for example the 6j symbol in the non-degenerate
case. Furthermore we will derive a new recursion relation for the 6j symbol which can be applied
to obtain a simpler form of the next to leading order correction to the Ponzano-Regge formula.

2.5.1 Properties of the Dupuis-Livine form

In this section we will give a definition to the Dupuis-Livine form and also discuss some of its basic
properties.

Consider an asymptotic expansion in the variables {j} of the following form∑
i

Ak({j})ei
∑
jiθi , (2.5.1)

where Ak is a homogeneous function in all variables j of degree k+ β. It can be rewritten in terms
of the variables {l} (with l = j + 1

2): ∑
i

Ãk({l})ei
∑
liθi , (2.5.2)

where Ã0 = e−
i
2

∑
θiA0.

We will say that it has the Dupuis-Livine (DL) property, if it can be written as

Ã0({l})ei
∑
liθi
∑
k

Bk , (2.5.3)

where ikBk is a real and homogeneous function of degree k. Note that if we write this expansion
in the form

Ã0(l)ei
∑
liθi+S (2.5.4)

then S also has DL form (and starts with degree 1). Furthermore, suppose that two asymptotic
series f1 and f2 have the DL property then also

f1 f2 ,
1

fi
(2.5.5)

have this property. In particular the last two relations are very useful for our discussion, since
they allow us to examine the full expansion of the evaluation of the spin network in steps: first
we examine the contributions from the edges, i.e. the partial integrations over the φfe, then the
normalization factors until we eventually discuss the full expansion.

41



2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

2.5.2 Partial integration over φ

In this subsection, we will examine whether the contributions from the partial integration over φ
have the DL property. We will prove it by using a recurrence relation similar to Bonnet’s formula
for Legendre polynomials. Therefore, it will be necessary to introduce some technical definitions,
from which we are able to derive recursion relations.

Weak equivalence

Let ψi = fie
S , where S = kS−1 + . . ., <S−1 ≤ 0 and fi grows at most polynomially in k and admits

a power series expansion in k.

Definition 1. ψ1 is weakly equivalent to ψ2 around the point x0,

ψ1 ≡ ψ2 , (2.5.6)

if the expansion in k of the integral of both around x0 is the same.

If ψ = feS then
L∗ψ ≡ 0 (2.5.7)

where
L∗ψ = Lψ + (divL)ψ (2.5.8)

and L is a vector field.

Equivalences and recursion relations

Let us introduce

L± = cos θ̃ sinα
∂

∂α
± i sin θ̃ sinβ

∂

∂β
, (2.5.9)

A± = cos θ̃ cosα± i sin θ̃ cosβ (2.5.10)

that we regard as vector fields and functions of the variables α, β. It is straightforward to calculate

divL± = A± , (2.5.11)

and

L+A+ = L−A− =
1

2
A2

+ +
1

2
A2
− − cos 2θ̃

L−A+ = L+A− = A+A− − 1 .
(2.5.12)

Starting from L∗±A
k
+ ≡ 0 and using the above identities, we derive the following relation (see

appendix 2.D.1 for more details):

− (k + 2)2

k + 1
(A+)k+2 + 2(k + 1) cos 2θ̃ Ak+ − (k − 1)Ak−2

+ ≡ 0 . (2.5.13)

Therefore we introduce the following quantity:

P̃l =
1

Cj
A2j

+ , (2.5.14)

where l = j + 1
2 and Cj is given by (2.3.25):

Cj =
1

4j
Γ(2j + 1)

Γ(j + 1)2
. (2.5.15)
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Furthermore Cj admits a complete expansion in j, see also appendix 2.D.2:

Cj =
1√
πj

(
1 +O

(
1

j

))
. (2.5.16)

Moreover, one can show that

Cj+1 =
2j + 1

2j + 2
Cj , Cj−1 =

2j

2j − 1
Cj . (2.5.17)

Combining (2.5.14), (2.5.15) and (2.5.17) with (2.5.13) and substituting k = 2j in (2.5.13) we
obtain:

0 ≡2Cj

[
−(2j + 2)(j + 1)

2j + 1

2j + 1

2j + 2
P̃l+1 + (2j + 1) cos 2θ̃P̃l −

2j − 1

2

2j

2j − 1
P̃l−1

]
=

=2Cj

[
−
(
l +

1

2

)
P̃l+1 + 2l cos 2θ̃P̃l −

(
l − 1

2

)
P̃l−1

]
.

(2.5.18)

But Cj admits a nonzero asymptotic expansion, thus

−
(
l +

1

2

)
P̃l+1 + 2l cos 2θ̃P̃l −

(
l − 1

2

)
P̃l−1 ≡ 0 (2.5.19)

around any stationary point. With the definitions given here, (2.3.15), i.e. the amplitude associated
to one edge, becomes:

1

8π2

∫
dαdβA2j

+ =
Cj
8π2

∫
dαdβP̃l , (2.5.20)

which establishes the connection to our previous calculations.
Let us notice that (2.5.19) is exactly Bonnet’s recursion formula for Legendre polynomials.

Total expansion and DL property

Over any stationary point we have shown that the integral of P̃l can be expanded as

(−1)s
∑
k≥0

eilθ

lk+ 1
2

Ak(θ) +O(l−∞) , (2.5.21)

where θ = 2θ̃ is now the SO(3) angle and s is a sign factor that comes from the SU(2) angle.
Values of the integral for θ̃ and θ̃+π differ by the factor (−1)s. This restricts Ak to be of the form
described above. Moreover we know from the previous section that

−
(
l +

1

2

)
P̃l+1 + 2l cos θP̃l −

(
l − 1

2

)
P̃l−1 ≡ 0 . (2.5.22)

Applying the asymptotic form to the recursion relations, we obtain:

Lemma 3. For every m ≥ 0∑
k≤m

(2βkm+1−k + βkm−k)Aki
m+1−k sin

(
θ − π

2
(m− k)

)
= 0 , (2.5.23)

where

βkm =
(−k − 1

2)m

m!
∈ R , (2.5.24)

and
(a)m = a · (a− 1) · . . . · (a−m+ 1), (a)0 = 1 . (2.5.25)
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

We will prove the lemma in appendix 2.D.2.
Consider the case where k = m in (2.5.23). For any m ≥ 0 one obtains that

2βm1 + βm0 = −2

(
m+

1

2

)
+ 1 = −2m , (2.5.26)

such that (2.5.23) can be rewritten in the following way:

2mAmi sin(θ) =
∑
k<m

(2βkm+1−k + βkm−k)Aki
m+1−k sin

(
θ − π

2
(m− k)

)
. (2.5.27)

Let us introduce
Bm := Ami

−mei
π
4

sign sin θ . (2.5.28)

From the asymptotics of the integrations over P̃l follows that B0 ∈ R and (2.5.27) can be rewritten
as

2mAmi
−mei

π
4

sign sin(θ)︸ ︷︷ ︸
=Bm

sin(θ) =
∑
k<m

(
2βkm+1−k + βkm−k

)
Aki

−kei
π
4

sign sin(θ)︸ ︷︷ ︸
=Bk

sin
(
θ − π

2
(m− k)

)
⇐⇒ 2mBm sin(θ) =

∑
k<m

(
2βkm+1−k + βkm−k

)
Bk sin

(
θ − π

2
(m− k)

)
. (2.5.29)

This implies that all Bk ∈ R and it proves that the asymptotic terms (in the connected component
expansion - eS) are of the form

Ãk ∈ ikR for k > 0 . (2.5.30)

This proves that the contributions from the integration over φ evaluated on the points of stationary
phase are of DL form.

The total expansion of the original integral

We know that the total expansion of the original integral around the stationary point is of the form
given in (2.3.26). Using the recurrence relation (2.5.29) we can compute its next-to-leading order:

Cj
(−1)s

4
√

2πl |sin θ|
ei(lθ−

π
4

sign(sin θ)− 1
8l

cot θ)

(
1 +O

(
1

l2

))
. (2.5.31)

As a next step, we will examine whether the normalization factors computed from the self-contraction
of intertwiners is of DL form as well.

2.5.3 Different forms of intertwiners and DL property

To examine whether the normalization factors satisfy the DL property, we will construct differ-
ent forms of invariants. Since the (three-valent) intertwiner is unique, all new constructions are
proportional to the original one.

Let Ui be distinct group elements from a sufficiently small neighbourhood of the identity. Let

CUi,f =

∫
dU

∫ ∏ dφi
2π

f(φ1, φ2, φ3)

UU1Oφ1 |1/2〉2je1 ⊗ UU2Oφ2 |1/2〉2je2 ⊗ UU3Oφ3 |1/2〉2je3
(2.5.32)

be the new invariant, where f is such a function that it is constant in the neighbourhood of the
angles, which satisfy the stationary phase conditions, i.e. where all

Bi = jeiUU1Oφ1

(
1 0
0 −1

)
(UU1Oφ1)−1 (2.5.33)
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sum to zero. We will choose Ui in such a way (described below) that such points are separated. In
such a case we can choose f to be nonzero around only one of them.

Let us now describe Ui. For given three vectors Bi in the plane perpendicular to H =

(
0 i
−i 0

)
(see also section 2.2 for more details) such that∑

Bi = 0 , (2.5.34)

we choose Ui in the neighborhood of identity such that UiHU
−1
i ⊥ Bi. There are many such choices

which will be used in the sequel.

Let us take contraction of such a CUi,f with the intertwiner Cf ′ obtained with the help of
modifiers. (

CUi,f , Cf ′
)

(2.5.35)

Due to the definition of CUi,f , there is only one −u and of orbit of stationary points on which f
and f ′ are nonzero. These are given by the conditions

Bfei = −Bi ,

nf ⊥ Bfei ,

UUiHU
−1
i U−1︸ ︷︷ ︸

nf ′

⊥ Bfei .
(2.5.36)

Hence, on the stationary point U is of the form

U =

(
cosα sinα
− sinα cosα

)
. (2.5.37)

If we choose Ui in such a way that

UiHU
−1
i ·H 6= ±1 , (2.5.38)

i.e. the two normal vectors are not (anti)parallel, then also

UUiHU
−1
i U−1 ·H 6= ±1 . (2.5.39)

This guarantees that this configuration is non-degenerate, such that the partial integration over φ
(see section 2.5.2) and the fixing of the of and uf symmetry can be performed. Following the same
method as presented in section 2.5.2 we prove that the asymptotic expansion of

(
CUi,f , Cf ′

)
has

the DL property. Similar considerations apply to(
CU1

i ,f
1 , CU2

i ,f
2

)
(2.5.40)

if U1
i H(U1

i )−1 · U2
i H(U2

i )−1 6= ±1.

Finally, using the uniqueness of the intertwiner, we obtain

(Cf , Cf ) = ±

(
Cf , CU2

i ,f
2

)(
CU1

i ,f
1 , Cf

)
(
CU1

i ,f
1 , CU2

i ,f
2

) . (2.5.41)

As a product of functions whose asymptotic expansion is of DL form, it follows directly that (2.5.41)
is of DL form, too.
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

2.5.4 Leading order expansion and a recursion relation for the 6j symbol

In the two previous sections we have shown that both the contributions from partial integrations
over φ and the normalization factors satisfy the DL property. Hence using properties explained in
appendix 2.E we have proven the conjecture from [A30,A31].

In this section we will discuss the next-to-leading order expansion for the 6j-symbol. Therefore
we do a brief recap of the results of section 2.4.

From the stationary point (with outward pointing normals) we have contributions from the
Hessian, i.e. the kinetic term, and higher order terms, which are computed using a Feynman
diagrammatic approach:

∝ 1√
det(−H)

ei
∑
lijθij+S1 , (2.5.42)

where S1 are the evaluations of the connected Feynman diagrams of the expansion in {θ, ρ} evalu-
ated on the stationary point of the action i

∑
lijθij , using −H−1 as the propagator of this theory.

We are interested only in |l|−1 contributions, the respective Feynman rules are briefly discussed in
appendix 2.G.

The expansion up to the next to leading order is of the form (see also section 2.4.3):

1

2

1√
12πV

e
i

(∑
ij

(
lijθij− 1

8lij
cot θij

)
+S̃1

)
=

1

2

1√
12πV

ei(
∑
ij lijθij+S1) (2.5.43)

where S1 is of order |l|−1. The full contribution comes from two stationary point that are related via
parity transformation, see also section 2.3.3; their contributions are related by complex conjugation.
Hence, we obtain up to |l|−1:

1√
12πV

cos

∑
ij

lijθij +
π

4
+ S1

+O
(
|l|−2

) (2.5.44)

The next to leading order expansion is briefly described in appendix 2.G. Although, this method is
algorithmically more involved than the method proposed in [A30,A31], the final expression is also
more geometric. We will now derive a recursion relation for the full 6j symbol using a similar idea
as in [A36,A37] that, we hope, can serve to compute the NLO expansion in more concise way.

Recursion relation for 6j symbols

In this section we derive a recursion relation for the whole 6j symbol. First, let us introduce a
multiplication operator

N(l) =

√∏
i

Θi(l) (2.5.45)

where Θi is normalization (of a three-valent intertwiner) computed from the Theta graph. Fur-
thermore we define the operator T vij via its action on a function of edge lengths {l}:

T vij C(l) =

(
1 + v

1

2lij

)
C({lkm + vδ(ij)(km)}) . (2.5.46)

We assume that T vii = 1.
As a next step, recall the definition of P̃l (2.5.14) and its recursion relation (2.5.19). The latter

can be written as follows:

cos θP̃l ≡
(

1

2
+

1

4l

)
P̃l+1 +

(
1

2
− 1

4l

)
P̃l−1 . (2.5.47)
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and we can write the non-normalized 6j amplitude as

Z ′′(l) =

∫ ∏
d θij

∏
(ij)

sin θij
∏
(ij)

P̃lij (θij)δ(det G̃) . (2.5.48)

In order to derive the recursion relation, we insert an additional det G̃ into (2.5.48):∫ ∏
d θij det G̃

∏
(ij)

sin θij
∏
(ij)

P̃lij (θij)δ(det G̃) = 0, (2.5.49)

since det G̃ is constrained to vanish. Similar to [A36, A37], det G̃ can be expanded as a sum over
perturbations:

det G̃ =
∑
σ∈S4

sgnσ
1

16

∑
~v∈{−1,1}4

eiviθiσi , (2.5.50)

with the convention that θij = θji and θii = 0. Using (2.5.50), equation (2.5.49) can be rewritten
as: ∑

σ∈S4

sgnσ
1

16

∑
~v∈{−1,1}4

∏
i

T viiσiZ
′′(l) = 0 . (2.5.51)

On the other hand, we know from previous calculations that

{6j} ≡ N−1Z ′′(l) + c.c+O(l−∞) , (2.5.52)

such that we can summarize both (2.5.51) and (2.5.52) into the following recursion relation for the
6j symbol that has been verified numerically for several 6j symbols:

det

[
T 1
ij + T−1

ij

2

]
N{6j} ≡ 0 , (2.5.53)

where T vij is defined as in (2.5.46).
Another useful form is the following

∑
σ∈S4

sgnσ
1

16

∑
~v∈{−1,1}4

N(l + viσi)

N(l)

(∏
i

T viiσi

)
{6j} ≡ 0 , (2.5.54)

since the expansion of
N(l+viσi )

N(l) is straightforward to compute. We have to point out though that
the coefficients in this formula are not rational, yet they allow for nice a asymptotic expansion.
Thus they should in principle allow for the computation of the higher order expansions of the 6j
symbol.

2.6 Discussion and outlook

Coherent state approaches are the only available tools so far to successfully compute the asymptotic
expansion of spin foam models [A14–A19], which gives us a first, and yet, very incomplete under-
standing of the relation of spin foam models to gravity. The strength and beauty of this approach
is its clear geometrical interpretation and straightforward computation of the dominating phase of
the expansion, which is identified as the Regge action of the examined triangulation. Despite these
successes, the approach usually fails in the computation of the determinant of the Hessian matrix,
which provides the normalization to the path integral and, more importantly, a measure on the
space of geometries.
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

To overcome this drawback, we have introduced modified coherent states, i.e. states labelled
by null eigenvectors with respect to a generator of rotations, smeared perpendicular to the axis of
rotation. We have shown that these states allow for the same geometrical interpretation as the usual
SU(2) coherent states and presented a method to deal with the (due to the smearing) increased
number of stationary points. This allowed us to derive the well-known asymptotic expansion of the
SU(2) 6j symbol [A5] entirely, by computing its amplitude in the stationary phase approximation,
first with respect to the smearing parameters and second, after a variable transformation, with
respect to the dihedral angles of the tetrahedron. In the process, we have discovered that the
resulting amplitude is proportional to the action of the first order formulation of Regge calculus,
a result that supports the conjecture given in [A33] that 4D spin foam models can be better
described by angle and area variables instead of only edge lengths, the fundamental variables of
ordinary Regge calculus. This result could also stimulate new work following the ideas of [A27] to
obtain an invariant path integral measure (under Pachner moves [A44, A45]) for first order Regge
calculus and to compare it to spin foam models.

In addition to this result, we also extended the calculation to the next to leading order correction
for the 6j symbol. We have been able to prove the conjecture presented in [A30,A31] that the higher
order corrections are alternatingly oscillating with the cosine or the sine of the Regge action, and
furthermore we can, in principle, calculate the asymptotic expansion up to arbitrary order. Despite
this success, we are not able to present the next-to-leading order in a short and concise way. This is
a nuisance of all known derivations of next-to-leading order expansion, see for example [A30,A31].
However, we derived a recursion relation for the 6j symbol, very similar in nature to the one
in [A36,A37], that can in principle be used to obtain more concise form of the next to leading order
term.

The main goal of this work was not the derivation of known results, but to develop and advertise
a new coherent state method, which is capable of challenging the determination of the measure in
spin foam models [A14–A18]. The computation of the full asymptotic expansion (even only up to
leading order) would not only increase the understanding of spin foam models, but could also give
a measure on the space of geometries, which could be compared to the proposed measure in [A27].
Given such a measure, one would be able to examine which geometries dominate the spin foam
transition amplitudes in the various models, which could also be used to exclude some of them. Our
successful and complete derivation of the asymptotic expansion of the SU(2) 6j symbol is a good
start, however the method still has to prove itself by tackling more complicated models. Therefore,
two issues have to be overcome:

The first problem is to extend the presented coherent state approach to groups with non-unique
intertwiners. Our calculations are heavily based on the fact that the intertwiner of three irreducible
representations of SU(2) is unique, which simplified the construction of our model. The only 4D
spin foam model with unique intertwiners is the Barrett-Crane model [A8], which has already been
ruled out as a viable quantum gravity theory. Nevertheless, our calculations presented in this work
can be applied and can lead to interesting new insights [A46].

The second problem is common to all coherent state approaches to spin foam models so far; all the
known calculations are restricted to one simplex of the triangulation. To extract the asymptotic
expansion for larger triangulations and to examine possible invariances under (local) changes of
the triangulation like Pachner moves is still an open issue. In this work, before computing the
asymptotic expansion of the 6j symbol, we have kept the discussion as general as possible. It
would be interesting to examine, whether the relation to the first order formulation of Regge
calculus can also be found in larger triangulations or whether one obtains modifications, which
could be understood as quantum gravity effects.

At the end we would like to point out that the application of our method to the case of the
non-compact group SL(2,R) is rather straightforward and we leave the determination of the 3D
Lorentzian 6j symbol for future investigations.
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2.A Spin network evaluation and sign convention

This appendix is devoted to the sign issue. We will show how one can determine the total sign of
our formula using the prescription of [A38,A39].

2.A.1 Penrose prescription for spherical graph

In this section we will describe a canonical way to evaluate spherical (planar) spin networks. Let us
draw it on the 2-sphere such that no edges intersect; if the spin network is 2-line irreducible there
are two distinct ways to do so, which differ by orientation. The result of the evaluation does not
depend on this choice. For every node of the graph (a face in the dual picture) we have a natural

j
121

2

3

4
j

13

j
14

j
34

j
24

j
23

Figure 2.5: Orientation of intertwiners inherited from orientation of the sphere (plane). Half-integer
spins colored red.

cyclic order inherited from the orientation of the sphere. In the second step we choose any ordering
of nodes (faces). This gives a natural orientation of the edges; they start in nodes lower in the
order and end in nodes higher in the order. We draw the graph on the plane as shown on figure
2.5 such that the order of the nodes is preserved and the order of legs in every node is consistent
with the cyclic order obtained above.

In the third step we count the number of crossings s of half-integer edges with each other. The
spin network is evaluated by contracting invariants, given for every node, by using the ε bilinear
form oriented according to the edge orientation inherited from the nodes. The ordering of the legs
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

1 2 3 4

Figure 2.6: Nodes are in the right order and for each intertwiner the legs are in the right cyclic
order. The number of crossings for half-integer edges is s = 2.

is as in figure 2.6: ∏
e

εjeAs(e)eAt(e)e

∏
v

I
Ave1Ave2Ave3
v . (2.A.1)

These invariants are described in [A38,A39] (see also section 2.3.4). One can show that the result
does not depend on the made choices.

2.A.2 Sign factors and spin structure

In this section we will show how to compute the sign factor for spherical graphs. First of all, let us
notice that in the case that all j are integers, the sign disappears completely. We will prove now
that this is also the case in general. Explicitly we will prove that (see 2.3.5 for the definitions)

s+
∑
f

sf +
∑

se = 0 mod 2 . (2.A.2)

Sign factor in the intertwiner

In this section we compute the sign sf . In order to do this, we compare our invariant with the
one from [A38,A39] (given for a fixed order of j1, j2, j3). The dual of the latter is given on vectors
ξ2j1

1 ⊗ ξ2j2
2 ⊗ ξ2j3

3 by the formula

(−1)j1+j3−j2 C ε(ξ1, ξ2)j1+j2−j3ε(ξ2, ξ3)j2+j3−j1ε(ξ3, ξ1)j1+j3−j2 (2.A.3)

with normalization C > 0 [A38,A39].

The contraction of (2.A.3) with our invariant is given by:

(−1)j1+j3−j2C

∫
dφ1 dφ2 dφ3

(2π)3
ε(vφ1 , vφ2)j1+j2−j3ε(vφ2 , vφ3)j2+j3−j1ε(vφ3 , vφ1)j1+j3−j2 , (2.A.4)

where

vφ =

(
cosφ
sinφ

)
, ε(vφ, vφ′) = sin(φ′ − φ) , (2.A.5)

and we skipped the integration over U , since (2.A.3) is invariant. Let us recall our notation:

ψij = φi − φj . (2.A.6)

After a change of variables

(φ1, φ2, φ3)→ (ψ21, ψ32, φ1) (2.A.7)
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2.A Spin network evaluation and sign convention

and performing one trivial integration over φ1, (2.A.4) is equal to

(−1)j1+j3−j2C

∫
dψ21 dψ32

(2π)2
(sinψ21)j1+j2−j3(sinψ32)j2+j3−j1(sinψ13)j1+j3−j2 , (2.A.8)

with the constraint ψ21 + ψ32 + ψ13 = 0.

As the expression is real (since ji + jk − jl is an integer), in the asymptotic limit it is dominated
by the stationary point (maxima of the integral) of the action

(j1 + j2− j3) ln | sinψ21|+ (j2 + j3− j1) ln | sinψ32|+ (j1 + j3− j2) ln | sinψ13|+ρ(ψ21 +ψ32 +ψ13) ,
(2.A.9)

where ρ is a Lagrange multiplier and ψ21, ψ32, ψ13 are treated as independent variables. The
stationary point condition reads

(ji + jk − jl) cotψij = ρ . (2.A.10)

Now we can use the fact that

cotψ32 cotψ21 + cotψ13 cotψ32 + cotψ21 cotψ13 = 1 (2.A.11)

to obtain

ρ2 =
(j1 + j2 − j3)(j2 + j3 − j1)(j1 + j3 − j2)

j1 + j2 + j3
. (2.A.12)

Furthermore, we see that

cot2 ψ32 =
(j1 + j2 − j3)(j1 + j3 − j2)

(j2 + j3 − j1)(j1 + j2 + j3)
=
j2
1 − (j2 − j3)2

(j2 + j3)2 − j2
1

. (2.A.13)

Hence, we compute that

cos 2ψ32 =
cot2 ψ32 − 1

cot2 ψ32 + 1
=
j2
1 − j2

2 − j2
3

2j2j3
, (2.A.14)

sin 2ψ32 =
2 cotψ32

cot2 ψ32 + 1
= ± A

j2j3
, (2.A.15)

where A is the area of the triangle with edge lengths j1, j2, j3. Thus ±2ψ32 modulo 2π is the angle
in this triangle opposite to the edge j1. Similar relations hold for ψ21 and ψ13. Together with the
relation ψ21 + ψ32 + ψ13 = 0, it gives the condition that

2ψ21, 2ψ32, 2ψ13 mod 2π (2.A.16)

are oriented (i.e. incorporate sign) angles of the triangle on the plane with edges (j1, j2, j3).

In the presence of a function ff , only one of those stationary points contributes. Since the
Jacobian is real, the only contribution to the sign is given by the value of the integral in the
stationary point. We know that ψij ∈ (π, 2π) for consecutive pair of edges (ij) (see 2.2.1), thus
sinψij < 0 and the total sign is

(−1)j1+j3−j2 (−1)j1+j2−j3(−1)j2+j3−j1(−1)j1+j3−j2 = (−1)2j2 (2.A.17)

As already discussed above, this is a relative sign of our invariant with respect to the invariant
described in [A38,A39].
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

The sign
∑
se

In the stationary point we can write (see 2.3.1 and 2.3.1 for the derivation)

U−1
s(e)Ut(e) = (−1)s̃eOs(e)ee

−iθ̃s(e)t(e)

1 0
0 −1

(
0 −1
1 0

)
O−1
t(e)e , (2.A.18)

where we assumed that θ̃s(e)t(e) ∈
(
−π

2 ,
π
2

)
. It is straightforward to check that

U−1
t(e)Us(e) = (−1)s̃e+1Ot(e)ee

−iθ̃t(e)s(e)

1 0
0 −1

(
0 −1
1 0

)
O−1
s(e)e , (2.A.19)

where θ̃t(e)s(e) = −θ̃s(e)t(e) ∈
(
−π

2 ,
π
2

)
. Thus in general we have

U−1
f Uf ′ = (−1)s̃e+ceOfee

−iθ̃ff ′

1 0
0 −1

(
0 −1
1 0

)
O−1
f ′e , (2.A.20)

where

ce =

{
0 f = s(e) and f ′ = t(e)
1 f = t(e) and f ′ = s(e)

. (2.A.21)

By a cycle we denote an assignment of a number {0, 1} to every edge such that

∀f
∑
e⊂f

ce = 0 mod 2 . (2.A.22)

The set of cycles is denoted by Z1. Abusing the notation, we will also say that the cycle is formed
by edges with ce = 1. Let us notice that such edges form a disjoint sum of loops that we will denote
by ci.

For every cycle c holds ∏
i

∏
j

U−1
f ij
Uf ij+1

 = 1 , (2.A.23)

where {f ijf ij+1} are consequtive pair of faces in the cycle ci (in the correctly chosen order).
Thus, we can write

(−1)s̃(c) =
∏

e=[ff ′]⊂c

(−1)ceOfee
−iθ̃ff ′

1 0
0 −1

(
0 −1
1 0

)
O−1
f ′e , (2.A.24)

where we used the same order of multiplications as before. The equations (2.A.23) translate into
the set of equations satisfied by s̃e:

∀ c ∈ Z1

∑
e∈c

s̃ec(e) = s̃(c) mod 2 . (2.A.25)

Given a solution for the s̃e, Uf can be reconstructed up to a U transformation. The solutions {s̃e}
are not completely determined, but the residual symmetry is given by Ran ∂ where

∂ : C0 → C1, (2.A.26)

is a boundary operator because C1 = ker ∂∗ ⊕ Ran ∂. Those correspond exactly to −Uf transfor-
mations.

We are interested in 2.3.5 ∑
se =

∑
e∈c

s̃ec(e) , (2.A.27)

where c is the cycle formed by all edges that are half-integer.
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Sign of basic cycles in spherical case

In this section we will compute the sign factor s̃(c) for cycles consisting of only a single loop. Every
other cycle can be uniquely written as a sum (as the Z2 module) of such disjoint cycles.

Let us take such a cycle. The cycle is described by the sequence of consecutive faces and edges.
The value of (−1)s̃(c) is thus equal to

∏
{ff ′}∈c

Ofee
−iθ̃ff ′

1 0
0 −1

(
0 −1
1 0

)
O−1
f ′e . (2.A.28)

All parameters (i.e φfe and θ̃ff ′) can be continuously deformed, i.e. there exists a map

[0, 1] 3 t→ {φtfe, θ̃tff ′} (2.A.29)

such that

∀e⊂f φ0
fe = φfe, ∀ff ′ θ̃0

ff ′ = θ̃ff ′ , (2.A.30)

that satisfies the following conditions:

• the image of (2.A.28) in SO(3) is always the identity,

• at the end all deformed SU(2) angles θ̃1
ff ′ are equal to 0

• for every face f with ordered pair of edges e, e′ (neighbours in the cycle), the difference
φtfe − φtfe′ ∈

(
π
2 ,

3π
2

)
modulo 2π during the whole deformation process. In fact, it is larger

than π if order of edges agrees with the orientation of the face and smaller if it does not.

The final stage of the deformation will be denoted by

∀e⊂f θ̃′ff ′ = θ̃1
ff ′ , ∀ff ′ φ′fe = φ1

fe . (2.A.31)

Up to 2-dimensional homotopies, there are two possible final stages of such deformations. They
differ by orientation of the cycle (loop) drawn on the plane. We assume that the faces are ordered
in agreement with total orientation.

The cycle before and after the deformation is shown in figure 2.7. The proces is shown on the

e1
f1f2

e2

f3

e3

(A) (B)

Figure 2.7: (A) Cycle before deformation. (B) Cycle after deformation.

figure 2.8 on example of a single-loop cycle around the vertex. In the end we obtain
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A

B
θθ

θ'=0

Figure 2.8: Example of the single-loop cycle around a vertex. (A) Cycle before deformation: angle
θ between two faces depicted. (B) Cycle after deformation θ′ = 0, the faces are parallel.

∏
{ff ′}∈c

(−1)ceOfee
−iθ̃′

ff ′

1 0
0 −1

(
0 −1
1 0

)
O−1
f ′e = (−1)Ce

∏
{ff ′}

O′feO
′−1
f ′e

∏
e

(
0 −1
1 0

)
,

(2.A.32)

where Ce is the number of edges with ce = 1 because O′fe commutes with

(
0 −1
1 0

)
. The images

of O′fe (and related SO(3) angles π(φ′fe)) satisfy (see figure 2.9)

∑
e

π(φ′fe)− π(φ′f ′e) = −
∑
{ee′}⊂f

π(φ′fe)− π(φ′fe′) = −(n− 2)π , (2.A.33)

where n is the number of faces meeting in the cycle c.

f

e

e'

A

B

f

e

e'

-
fe

π(φ )
fe'

π(φ )

α

Figure 2.9: (A) example of the cycle with orientations shown, (B) π(φ′fe) − π(φ′fe′) and α = π −
(π(φ′fe)− π(φ′fe′))

Using prescription 2.2.1 for φfe − φfe′ , the fact that SU(2) is the double cover of SO(3) and
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continuity of the deformation we obtain (modulo 2π)

∑
f

φ′fe − φ′fe′ =
∑
f

π(φ′fe)− π(φ′fe′)

2
− π =

(
−n+

n

2
+ 1
)
π . (2.A.34)

Thus ∏
{ff ′}

O′feO
′−1
f ′e

∏
e

(
0 −1
1 0

)
=

(
0 1
−1 0

)n−2(
0 −1
1 0

)n
= −1 . (2.A.35)

To sum up, we obtained for a given cycle c∑
e

c(e)s̃e = Ce + 1 mod 2 . (2.A.36)

Since the cycle is oriented in the same way as the faces, Ce is the number of edges oriented according
to the cycle.

Other nethod of computation

Let us consider an arbitrary cycle c. Let us draw it on the graph G as in figure 2.6. We will denote
by s(c) the number of crossings in the cycle. For any node (face) f we also denote

f(c) =

{
0 if the middle leg edge of f does not belong to c
1 if the middle leg edge of f belongs to c

(2.A.37)

In the following, we will present another method of how to compute
∑

e cv(e)s̃e for a basic cycle c.
First we will prove:

Lemma 4. For a single loop cycle c in a spherical network, the quantity

Ce +
∑
f

f(c) + s(e) mod 2 (2.A.38)

does not depend on the choice of a graph G.

Proof. Any two graphs can be transformed into one another by a sequence of basic moves

• One of the Reidemeister moves [A47,A48] for the edge (see figure 2.10 for example). It only
changes s(c) by an even number.

(A) (B)

Figure 2.10: Part of the graph changed by the move. Example of a Reidemeister move.
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

• Transposition of two consecutive nodes belonging to the cycle (see figure 2.11). In the move
shown in the figure

C ′e = Ce ± 1, s(c)′ = s(c) + 3 , (2.A.39)

and all f(c) remain unchanged.

2 11 2

(A) (B)

Figure 2.11: Part of the graph changed by the move (edges not belonging to the cycle are not
drawn). Two consecutive nodes in the cycle transposed.

• Cyclic permutation of the legs of a node f (figure 2.12). In this case

f(c) + s(c) (2.A.40)

is preserved.

(A) (B)

1
2

3 3

1
2

Figure 2.12: Part of the graph changed by the move. Cyclic change of the order of legs.

Thus Ce +
∑

f f(c) + s(c) mod 2 is invariant.

We see that (Ce + 1) +
∑

f f(c) + s(c) does not depend on the chosen graph G, hence, we can
choose the most convenient one (see figure 2.13). For this particular choice

Ce = 1, ∀f⊂cf(c) = 0, s(c) = 0 , (2.A.41)

and thus (Ce + 1) +
∑

f f(c) + s(c) = (1 + 1) + 0 = 0 mod 2 and∑
e

c(e)s̃e = Ce + 1 =
∑
f

f(c) + s(c) mod 2 . (2.A.42)
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1 2 3 n

n

1

2

3

Figure 2.13: Convenient choice for the graph G

Sign of the general cycle in spherical case

Let us state now a few properties of f(c) and s(c) useful in the sequel.
For two cycles c and c′ we denote a cycle by c+ c′ if it satisfies the following property:

∀e, (c+ c′)(e) = c(e) + c′(e) mod 2 . (2.A.43)

We have for two disjoint cycles c and c′

s(c+ c′) = s(c) + s(c′) mod 2 , (2.A.44)

∀f f(c+ c′) = f(c) + f(c′) mod 2 . (2.A.45)

We can now write every cycle c in the spherical case as a sum of disjoint single-loop cycles cα, such
that c =

∑
α cα:

∑
e

c(e)s̃e =
∑
e

(∑
α

cα(e)

)
s̃e =

∑
α

∑
f

f(cα) + s(cα)

 =

=
∑
f

f

(∑
α

cα

)
+ s

(∑
α

cα

)
=
∑
f

f(c) + s(c) mod 2 .

(2.A.46)

Final sign formula

Let us notice that in the case when c is the cycle of all half-integer spins we have

s = s(c), ∀fsf = f(c),
∑

se =
∑
e

c(e)s̃e , (2.A.47)

since if we denote the spin of the middle leg edge of f by jf2 then f(c) = 2jf2 mod 2. Finally

s+
∑
f

sf +
∑

se = 2

∑
f

f(c) + s(c)

 = 0 mod 2 . (2.A.48)

2.B Changes of variables and their Jacobians

Let the Lie group G act transitively on the manifold S and let

χ : G→ R (2.B.1)
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

be a homomorphism. There exists at most one measure µ (up to scaling) on S such that

g∗µ = χ(g)µ . (2.B.2)

Let

H � S1 → S2 , (2.B.3)

where S1 is a principal Lie group bundle with the structure group H and the base space S2. Any
(pseudo-)k-form µ2 on S2 can be uniquely represented by a (pseudo-) k-form µ1 on S1 that satisfies

h∗µ1 = µ1 ∀h ∈ H (2.B.4)

µ1 ⊥ ∂ξ = 0 ∀ ∂ξ ∈ h , (2.B.5)

where h is the Lie algebra of H and ⊥ is contraction of the (pseudo-) form with the vector on the
first site. Any form µ1 determines the form µ2 on S2. The integration over S2 is the integration
over any section of the projection map S1 → S2.

Such a form satisfying conditions (2.B.4) and (2.B.5) can be obtained from the H invariant form
µ on S1 via the formula

µ2 = µ ⊥
∧

ξ basis h

∂ξ . (2.B.6)

In case of a compact group H it is related to the measure obtained by integration over the fibers,
called µ∫ H , as follows

µ2 = (µH ⊥
∧
∂ξ)µ

∫
H , (2.B.7)

where µH is the normalized Haar measure on H.

Let M ⊂ S be a submanifold described locally by a set of independent equations fa. For any
measure (form) µ on S we can define a measure (form) µfa on M by the following integration
prescription: Let g ∈ C0(M) and g̃ be any continuous extension to S, then∫

M
µfag =

∫
M

∏
δ(fa)g̃µ . (2.B.8)

Let M be a section of the bundle H ⊂ S1 → S2 described by equations fa, then we can compare
the just described measures on M and S2 since M → S2 is a diffeomorphism of M onto S2:

µfa = (det ∂ξifa)
−1 µ ⊥

∧
∂ξ . (2.B.9)

Indeed, we can choose local coordinates such that S1 = M ×H and the zero section is described
by fa = 0. We have

µ = (µ ⊥
∧
∂ξ) ∧

∧
dξ . (2.B.10)

By extending the function g constantly along fibers from the zero section, we obtain:∫
M
gµfa =

∫
S1

∏
δ(fa)g̃µ =

∫
M
g̃

(∫
H

∏
δ(fa)

∧
dξ

)
(µ ⊥

∧
∂ξ)

=

∫
S2

g (det ∂ξifa)
−1 (µ ⊥

∧
∂ξ) .

(2.B.11)
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2.B.1 Change of variables ui → ni (integrating out gauge)

Let us remind from section 2.3.3 that

S2 = SU(2)/S1 , (2.B.12)

given by the right action of S1 on SU(2). The sphere S2 can either be represented by unit vectors
|ni|2 = 1 or traceless 2× 2 matrices ni with the condition

1

2
Trnini = 1 . (2.B.13)

Then the quotient map is given by
ni(u) = uHu−1 , (2.B.14)

where H =

(
0 i
−i 0

)
. The group SU(2) acts on S2 (as a left action on the quotient) by

ni → uni u
−1 . (2.B.15)

The Haar measure from SU(2) can be integrated over the fibers giving the invariant measure µ on
the sphere with total volume 1.

Another invariant measure is

δ(|n|2 − 1) dn1 dn2 dn3 . (2.B.16)

Since there is only one invariant measure up to scale, both are related by a scaling transformation:

µ = cδ(|n|2 − 1) dn1 dn2 dn3 . (2.B.17)

The constant is fixed by requiring:

1
!

=

∫
S2

µ = c

∫ 2π

0
dφ

∫ π

0
sin θ d θ

∫ ∞
0

r2δ(r2 − 1) d r = 2πc , (2.B.18)

thus

µ =
1

2π
δ(|n|2 − 1) dn1 dn2 dn3 . (2.B.19)

2.B.2 Variables θ in the flat tetrahedron

Let us consider two sets of variables

N = (~n1, . . . , ~nm+1) , (2.B.20)

where ~ni are m vectors with exactly one dependency, i.e. every subset of m vectors forms a basis.
Let

M = NTN, mij = ~ni~nj , i ≤ j , (2.B.21)

where M is a symmetric positive (m+ 1)× (m+ 1) matrix, which is degenerate with exactly one
null eigenvector, whose entries are all non vanishing.

On N there exists a left action of O(m), ~ni → O~ni. The matrix M is O(m) invariant, so the
parameters of this action can be regarded as supplementary to M . The vector fields of this action
will be denoted by Lab. The map N →M is an O(m) principal bundle.

In the following, our goal is to compare the pseudo-form

µ1 =

∣∣∣∣∣∣
∧

i=1...m+1,a=1..m

dnai ⊥
∧
a<b

Lab

∣∣∣∣∣∣ (2.B.22)
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

with the form

µ2 =

∣∣∣∣∣∣δ(detM)
∧
i≤j

dmij

∣∣∣∣∣∣ . (2.B.23)

Let us notice that both µ1 and µ2 are measures on M .
There are additional transformations parametrized by U ∈ GL(m+ 1)

Ñ = NU, M̃ = UTMU , (2.B.24)

which commute with the O(m) action on N . The measure µ1 is χ covariant with respect to this
action, where

χ(U) = |detm|(U) := |det(U)|m ∀U ∈ GL(m+ 1) (2.B.25)

Furthermore, we have

• µ2 is invariant for U ∈ O(m+ 1),

• for transformations of the form U = diag λi (diagonal matrix) the measure µ2 transforms as∣∣∣ 1∏
i λi︸ ︷︷ ︸

from detM

∏
i≤j

λiλj︸ ︷︷ ︸
=
∏
i λ
m+1
i

∣∣∣µ2 , (2.B.26)

so it is also χ covariant as rotations and scaling generate the whole group.
Hence the two measures µ1 and µ2 differ by a constant c as GL(m+ 1) acts transitively on M .

This constant can be computed for a special value of N :

nai =

{
δai , i ≤ m
0, i = m+ 1

. (2.B.27)

In this choice

dmij =


dnji + dnij , i, j ≤ m
dnim+1, j = m+ 1
0, i = j = m+ 1

. (2.B.28)

Moreover
dnai ⊥ Lcd = (Lcd~ni)

a = δacδid − δadδic . (2.B.29)

The following equalities hold:

2m

∣∣∣∣∣∣
∧

i=1...m+1,a=1..m

dnai

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∧

1≤j≤i≤m+1,j 6=m+1

dnji + dnij︸ ︷︷ ︸
dmij

∧
∧

1≤j<i≤m+1

dnji

∣∣∣∣∣∣∣ , (2.B.30)

but since dmij ⊥ Lab = 0:

2m

∣∣∣∣∣∣
∧

i=1...m+1,a=1..m

dnai ⊥
∧
a<b

Lab

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∧

1≤j≤i≤m+1,j 6=m+1

dmij

∣∣∣∣∣∣ = δ(mm+1,m+1)

∣∣∣∣∣∣
∧

(i,j) : i≤j

dmij

∣∣∣∣∣∣ .

(2.B.31)
Moreover in this case

Mij =

{
δij , i ≤ m
0, i = m+ 1

(2.B.32)

and so ∂ detM
∂mm+1,m+1

= 1. Eventually

2m

∣∣∣∣∣∣
∧

i=1...m+1,a=1..m

dnai ⊥
∧
a<b

Lab

∣∣∣∣∣∣ = δ(detM)

∣∣∣∣∣∣
∧
i≤j

dmij

∣∣∣∣∣∣ . (2.B.33)
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Integration over the SO(3) fiber

In the case m = 3 we are interested in integrating over the fiber, however not the whole O(3) but
only over one connected component with respect to SO(3). This is due to the u transformation
symmetry corresponds to SO(3) not O(3) (see also section 2.2.3).

In this section we continue to compute the correct constant in front of the measure. We will
now consider a fibration with the group SO(m) that can still be described locally by a projection
N 7→M . This is, however, enough because we are only interested in local variables.

In general we have [A49] ∫
SO(m)

∣∣∣∣∣∧
a<b

L∗ab

∣∣∣∣∣ =

n∏
k=2

2π
k
2

Γ
(
k
2

) , (2.B.34)

so from (2.B.7) our measure integrated over the fibre is equal to∫
SO(m)

∣∣∣∣∣∣
∧

i=1...m+1,a=1..m

dnai

∣∣∣∣∣∣ =
1

2m

m∏
k=2

2π
k
2

Γ
(
k
2

)δ(detM)

∣∣∣∣∣∣
∧
i≤j

dmij

∣∣∣∣∣∣ . (2.B.35)

If we impose the condition |~ni| = 1, we integrate over a set of unit vectors. This implies for M that
we have to skip dmii in the measure and we define mij = cos θij . In these new angle variables the
measure takes the form

1

2m

m∏
k=2

2π
k
2

Γ
(
k
2

)δ(det G̃)
∏
i<j

| sin θij |
∧
i<j

|d θij | , (2.B.36)

where G̃ is the Gram matrix with the convention

G̃ij = cos θij , θii = 0 . (2.B.37)

In case n = 3 we have
π2δ(det G̃)

∏
i<j

| sin θij |
∧
i<j

d θij . (2.B.38)

2.B.3 Variables θ/ l in the spherical constantly curved tetrahedron

Let us consider the spaces of matrices

Ñ = {N ∈Mn(R) : detN > 0} (2.B.39)

and
M̃ = {M ∈Mn(R) : M > 0} . (2.B.40)

We have a fibration with the group SO(n) (via left action on Ñ)

Ñ → M̃, M = NTN . (2.B.41)

We can compare forms

µ1 =
∣∣∣∧dnai ⊥

∧
∂ξ

∣∣∣ ,

µ2 = (detM)−
1/2

∣∣∣∣∣∣
∧
i<j

dmij

∣∣∣∣∣∣ .
(2.B.42)

As in section 2.B.2 there is an action of SL(n) by

N → NU, M → UTMU . (2.B.43)
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We can check that both measures are χ = |detn| covariant. Since SL(n) acts transitively on
matrices with positive determinant, we have

µ1 = cµ2 . (2.B.44)

Checking for N = I gives c = 1.

Let us notice that ni · ni = mii. On the surface mii = 1 we can introduce angle variables
cos θij = mij and obtain

(det G̃)−
1/2
∏

sin θij
∧

d θij = ±
∏

δ(nini − 1)
∧

dnai . (2.B.45)

2.B.4 Determinant det ∂θ
∂l

for constantly curved simplices

We denote the length Gram matrix by G and the angle Gram matrix by G̃. The dimension is equal
to n− 1 and we are working in Rn on the sphere with radius 1.

Our goal is to prove the following formulas for the n − 1-dimensional curved simplex. It was
first proposed in [A41] and checked using an algebraic manipulator. Now we are presenting the
complete derivation.

Lemma 5. The following formulas hold for a spherical (n− 1)-simplex:

det
∂θij
∂l′km

= (−1)n
∏

sin l′ij∏
sin θij

(
det G̃

detG

)n+1
2

, (2.B.46)

and for n = 4

det
∂θij
∂lkm

= −det
∂θij
∂l′km

= −det G̃

detG
. (2.B.47)

Where we used standard convention that the angle θij is the angle on the hinge obtained by
leaving out indices i and j. The length of the opposite edge, i.e. the edge connecting vertices i and
j, is denoted by l′ij and in 3D, lij is the length of the edge at which the angle sits.

Outline of the proof

We compute how the measure
∧
dl′ij transforms under the the change of variables

θij → l′ij . (2.B.48)

In fact, introducing variables mij = cos θij and m′ij = cos lij , we have (in the right order)∏
sin θij

∧
i<j

dθij =
∏
i

δ(mii − 1)
∧
i≤j

dmij , (2.B.49)

∏
sin l′ij

∧
i<j

dl′ij =
∏
i

δ(m′ii − 1)
∧
i≤j

dm′ij . (2.B.50)

Both measures on the left hand side are on

M̃1 = {M ∈ M̃ : ∀imii = 1} , (2.B.51)

where we introduced the notation M̃ = GL+(n) for simplicity.
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Computation

There is an action of the group of diagonal matrices

D = {d ∈ GL+(n) : dij = λiδij , λi > 0} (2.B.52)

on M̃ given by
M → dTMd . (2.B.53)

A basis for the Lie algebra d of the group D is given by ∂ξi = Eii (matrices with only one nonzero
entry being the i-th element on the diagonal equal to 1).

We have a fibration
M̃ → M̃/D (2.B.54)

and let M̃1 ⊂ M̃ be a cross section given by the equations

∀i mii = 1 . (2.B.55)

Let us introduce maps

ψ1 : M̃1 → M̃/D, M 7→ [M ] ,

ψ2 : M̃ → M̃, M 7→M−1 .
(2.B.56)

Acting with ψ2 on matrix transformed as in (2.B.53), we have

ψ2(dTMd) = (d−1)Tψ2(M)(d−1) , (2.B.57)

such that there is a map
[ψ2] : M̃/D → M̃/D . (2.B.58)

Let us notice that the composition ψ := ψ−1
1 [ψ2]ψ1 transforms M̃1 into M̃1.

We define measures

µ1 =
∏

δ(mii − 1)
∧
i≤j

dmij =
∧
i<j

dmij ,

µ = (detM)−
n+1

2

∧
i≤j

dmij ,

µM̃/D = µ ⊥
∧
i

∂ξi ,

(2.B.59)

where ∂ξi is the basis of the Lie algebra d

∂ξimkl = (δik + δil)mkl . (2.B.60)

Let us notice that according to section 2.B.2 µ is SL(n) invariant (where it acts as D) thus the
pullback

ψ∗2µ = cµ , (2.B.61)

since SL(n) acts transitively on M̃ . We can check that c = 1 by computing the measures for
M = M−1 = I.

We have ψ2∂ξi = −∂ξi so
[ψ2]∗µM̃/D = (−1)nµM̃/D . (2.B.62)

From basic facts explained in the appendix 2.B we know that (in the right order)

ψ∗1µM̃/D = [det ∂ξi(mjj − 1)] (detM)
n+1

2 µ1 = 2n(detM)
n+1

2 µ1 . (2.B.63)
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Combining all transformations we obtain

µ1 = (−1)n
(

detM

detψ(M)

)n+1
2

ψ∗µ1 . (2.B.64)

Finally, we obtain ∧
dθij = (−1)n

∏
sin l′ij∏
sin θij

(
det G̃

detG

)n+1
2 ∧

dl′ij . (2.B.65)

So eventually

det
∂θij
∂l′km

= (−1)n
∏

sin lij∏
sin θij

(
det G̃

detG

)n+1
2

. (2.B.66)

Further simplifications for n = 4

We can simplify the above formula using equalities from [A42]:

det G̃ =
(detG)n−1∏

G∗ii
, (sin θij)

2 =
detG detG(ij)

G∗iiG
∗
jj

, (2.B.67)

where G∗ii is the ii-element of the minor matrix, G(ij) is the G matrix without ith and jth rows
and columns. Eventually we obtain

det
∂θij
∂l′km

= (−1)n
∏

sin l′ij
∏

(G∗kk)
n−1

2

(detG)
n(n−1)

4
∏√

detG(ij)

(detG)
(n−1)(n+1)

2∏
(G∗kk)

n+1
2

1

(detG)
n+1

2

. (2.B.68)

After simplification it is equal to

det
∂θij
∂l′km

=

(∏ sin l′ij√
detG(ij)

)
︸ ︷︷ ︸

=1

det G̃

detG
. (2.B.69)

Note that this simplification only holds for n = 4. Since

det
∂lij
∂l′km

= −1 (2.B.70)

we obtain

det
∂θij
∂lkm

= −det
∂θij
∂l′km

. (2.B.71)

2.C Technical computations of determinants

In this section we will prove several technical results.

Let us introduce the notation

det′M =
∑
i

M∗ii . (2.C.1)

It is an invariant of the matrix and, moreover, in the case when the matrix is symmetric and has
one null eigenvector, it is the determinant of the matrix restricted to the space perpendicular to
that null eigenvector.
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Let us also remind some general facts

lij
∂θij
∂lkl

= lkl
∂θij
∂lkl

= 0 ,
∂θij
∂lkl

=
∂θkl
∂lij

, (2.C.2)

lij = λ
∂ det G̃

∂θij
, λ = −22

∏
S2
i

35V 5
, (2.C.3)

det′G̃ =
34

22
(
∑
i

S2
i )

V 4∏
S2
i

, (2.C.4)

which are proven for completeness in appendix 2.C.1. Our results are (see appendix 2.C.3):

Lemma 6. For the flat tetrahedron holds

det′
∂θij
∂lkl

=
33

25

|l|2∏
S2
i

V 3 . (2.C.5)

Moreover, in appendix 2.C.2 we prove:

Lemma 7. Let

λ = −22
∏
S2
i

35V 5
. (2.C.6)

For the flat tetrahedron holds

∂λ

∂lij

∂ det G̃

∂θkl
+
∂θij
∂lmn

λ
∂2 det G̃

∂θmn∂θkl
= δ(ij),(kl) , (2.C.7)

∃c
∂ det G̃

∂θkl
c+ λ

∂λ

∂lij

∂2 det G̃

∂θij∂θkl
= 0 , (2.C.8)

∂λ

∂lmn

∂ det G̃

∂θmn
= 1 . (2.C.9)

2.C.1 General knowledge

We know that det G̃ = 0 for a geometric set of θ’s. Moreover, the null eigenvector is given by

(S1, S2, S3, S4) , (2.C.10)

where Si denote the areas of the triangles of the tetrahedron. The computation of det′G̃ can be
found in appendix 2.C.1. We have

∂ det G̃

∂θij
= −2det′G̃

SiSj sin θij∑
k S

2
k

= −35

22
(
∑
k

S2
k)

V 4∏
S2
k

V lij∑
k S

2
k

= −35

22

V 5∏
S2
k

lij = λ−1lij . (2.C.11)

In addition to that, we also have

0 =
∂ det G̃

∂lkl
=
∂ det G̃

∂θij

∂θij
∂lkl

= λlij
∂θij
∂lkl

. (2.C.12)

We know that θ has scaling dimension 0, thus

lkl
∂θij
∂lkl

= 0 . (2.C.13)
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

Expressing
∂θij
∂lkl

in terms of lij

Here we recall several well-known facts for flat simplices of arbitrary dimension using the notation
of l′ij from appendix 2.B.4, see also [A41,A50] for more details. Let M be the following matrix

M =


0 1 . . . 1

1 l′211 . . . l′21n
...

...
. . .

...

1 l′2n1 . . . l′2nn

 , (2.C.14)

where l′11 = . . . = l′nn = 0 and l′ij = l′ji. Then we have:

V 2 =
(−1)n−1

2n(n− 1)!2
detM , S2

i =
(−1)n−2

2n−1(n− 2)!2
M∗ii , (2.C.15)

cos θij =
M∗ij√
M∗iiM

∗
jj

. (2.C.16)

In three dimension we also have

sin2 θij =

(
3

2

)2 V 2l2ij
S2
i S

2
j

, (2.C.17)

so in the case θij ∈ (0, π) we can write:

∂θij
∂lkl

= − 1

sin θij

∂ cos θij
∂lkl

= −2

3

SiSj
V lij

∂

∂lkl

M∗ij√
M∗iiM

∗
jj

. (2.C.18)

This, in principle, allows us to compute
∂θij
∂lkl

and all other derivatives in terms of lengths.

Computation of det′G̃

Let us start with the spherical case, i.e. a tetrahedron with constant non vanishing (positive)
curvature – a curved tetrahedron on the unit sphere. In this case we define l̃ij := εlij and θεij :=
θ(εlkl) and take the limit ε→ 0 in order to reobtain the flat case. The angles (θεij) have a limit as
the angles of flat tetrahedron (θij) with lengths lij .

First, let us notice that

detG = det

 1 0 · · ·
1 G · · ·
... · · · · · ·

 = det

 1 0 · · ·
1 1− 1

2ε
2l2ij +O(ε4) · · ·

... · · · · · ·

 (2.C.19)

=
1

8
ε6 det

 0 1 · · ·
1 l2ij · · ·
... · · · · · ·


︸ ︷︷ ︸

C

+O(ε8) . (2.C.20)

We can compute det′G̃ =
∑

i G̃
∗
ii using the following identity from [A42] (n = 4, i.e. D = 3):

G̃∗ii
G∗ii

=
(detG)n−2∏

G∗ii
, (2.C.21)
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2.C Technical computations of determinants

obtaining

det′G̃ =
∑
i

G̃∗ii =

(∑
i

G∗ii

)
(detG)n−2∏

G∗ii
=

34

22

(∑
i

S2
i

)
V 4∏
S2
i

+O(ε2) . (2.C.22)

So in the flat case

det′G̃ =
34

22

(∑
i

S2
i

)
V 4∏
S2
i

. (2.C.23)

2.C.2 Collection of results

Let us prove the following useful formulas:

∂λ

∂lij

∂ det G̃

∂θkl
+
∑
m<n

∂θij
∂lmn

λ
∂2 det G̃

∂θmn∂θkl
=

∂

∂lij

(
λ
∂ det G̃

∂θkl

)
= δ(ij),(kl) , (2.C.24)

since we know, due to the Schläfli identity, that
∂θij
∂lkl

= ∂θkl
∂lij

. This also implies that

∑
m<n

∂θmn
∂lij

λ
∂2 det G̃

∂θmn∂θkl
= δ(ij),(kl) −

∂λ

∂lij

lkl
λ

. (2.C.25)

We will now prove that there exists such a c that

∂ det G̃

∂θkl
c+ λ

∂λ

∂lij

∂2 det G̃

∂θij∂θkl
= 0 . (2.C.26)

Because the range of the matrix
∂θij
∂lkl

is the whole space perpendicular to the vector ~l = (lij) and

the vector ∂ det G̃
∂θkl

is proportional to ~l, it is enough to compute(
∂ det G̃

∂θkl
c+ λ

∂λ

∂lij

∂2 det G̃

∂θij∂θkl

)
∂θkl
∂lmn

= λ
∂λ

∂lij

∂

∂lmn

∂ det G̃

∂θij
=

= λ
∂λ

∂lij

∂

∂lmn

lij
λ

= λ
∂λ

∂lij

(
δ(ij)(mn)

λ
− lij

∂λ

∂lmn

1

(λ)2

)
.

(2.C.27)

On the other hand we know that, since λ is of scaling dimension 1, lij
∂λ
∂lij

= λ, and thus

λ
∂λ

∂lij

(
δ(ij)(mn)

λ
− lij

∂λ

∂lmn

1

(λ)2

)
=

∂λ

∂lmn
− ∂λ

∂lmn
= 0 . (2.C.28)

Let us also remind that:
∂λ

∂lmn

∂ det G̃

∂θmn
=

∂λ

∂lmn

lmn
λ

= 1 . (2.C.29)

2.C.3 Computation of det′
∂θij
∂lij

In this section we will prove that

det′
∂θij
∂lij

=
33

25

|l|2∏
S2
i

V 3 . (2.C.30)

We will start from the formula valid for a spherical tetrahedron (Lemma 5):

det
∂θij

∂l̃ij
= −det G̃

detG
. (2.C.31)
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

As mentioned above we set l̃ij = εlij and θεij = θ(εlkl) and take the limit ε→ 0 in the end. In this
limit the angles converge to the angles of a flat tetrahedron with lengths lij .

Let us remind that

detG =
1

8
ε6 det

 0 1 · · ·
1 l2ij · · ·
... · · · · · ·


︸ ︷︷ ︸

C

+O(ε8) . (2.C.32)

Let us notice that because G (in the spherical case) is a function of cos εlij , its expansion around
ε = 0 is an analytic function in ε2 and not only in ε. The same holds for the matrix G̃ since it is

G̃ij =
1√
G∗ii

G∗ij
1√
G∗jj

, (2.C.33)

where G∗ij is the cofactor matrix of G and
√
G∗ii is ε3 times an analytic function in ε2.

Hence we know that for the vector ~S = (S1, S2, S3, S4) (the single null eigenvector in the limit
ε = 0)

G̃~S = O(ε2) , (~S, G̃~S) = O(ε2) , (2.C.34)

then also det G̃ = O(ε2) and

det G̃ = det′G̃
(~S, G̃~S)

|S|2 +O(ε4) . (2.C.35)

Moreover

ε
∂

∂ε

(~S, G̃~S)

|S|2 = 2
(~S, G̃~S)

|S|2 +O(ε3) . (2.C.36)

We have

ε
∂

∂ε

(~S, G̃~S)

|S|2 =
∑
(ij)

lij∂lij
(~S, G̃~S)

|S|2 =
(~S,
∑

(ij) lij∂lij G̃
~S)

|S|2 = (2.C.37)

= −2

∑
(km)(ij) SkSm sin θkmlij

∂θεkm
∂lij

|S|2 = −3
V

|S|2
∑

(km)(ij)

lkmlij
∂θεkm
∂lij

. (2.C.38)

Similarly, we know that
∑

ij
∂θεkm
∂lij

lij = O(ε2) and
∑

ijkm lkm
∂θεkm
∂lij

lij = O(ε2), so

det
∂θkm

∂l̃ij
= ε−6 det

∂θεkm
∂lij

= ε−6det′
∂θεkm
∂lij

∑
(ij)(km) lkm

∂θεkm
∂lij

lij

|l|2 . (2.C.39)

Eventually, we have

ε−6det′
∂θεkm
∂lij

∑
ijkm lkm

∂θεkm
∂lij

lij

|l|2 = 12ε−6 det′G̃

detC

V

|S|2
∑
kmij

lkmlij
∂θεkm
∂lij

+O(ε−3) . (2.C.40)

and so

det′
∂θεkm
∂lij

=
12|l|2
|S|2

V

detC
det′G̃+O(ε) . (2.C.41)

Now we can use the identities from appendix 2.C.1

det′G̃ =
34

22

(∑
i

S2
i

)
V 4∏
S2
i

, detC = 8(3!)2V 2 . (2.C.42)
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Finally, in the limit ε→ 0, (θij = lim θεij):

det′
∂θkm
∂lij

=
33

25

|l|2∏
S2
i

V 3 . (2.C.43)

2.D Technical computations

In this appendix we give some explicit computations needed in the main body of the paper.

2.D.1 Weak equivalences

In the following we will use the notation introduced in section 2.5.2. We can compute

0 ≡ L+A
k
+ = k(L+A+)Ak−1

+ +Ak+1
+

=

(
k

2
+ 1

)
Ak+1

+ +
k

2
A2
−A

k−1
+ − k cos 2θ̃ Ak−1

+ ,
(2.D.1)

such that

A2
−A

k−1
+ ≡ −k + 2

k
Ak+1

+ + 2 cos 2θ̃ Ak−1
+ . (2.D.2)

Similarly, we can derive an identity by acting on Ak+ with L∗−:

0 ≡ L∗−Ak+ = (k + 1)A−A
k
+ − kAk−1

+ , (2.D.3)

=⇒ A−A
k
+ ≡

k

k + 1
Ak−1

+ . (2.D.4)

By acting again on (2.D.4) we obtain:

L∗−(A−A
k
+) =

1

2
Ak+2

+ +

(
k +

3

2

)
A2
−A

k
+ − kA−Ak−1

+ − cos 2θ̃ Ak+ ≡ 0 . (2.D.5)

Hence using (2.D.2) and (2.D.4) we have

0 ≡ 1

2
Ak+2

+ +

(
k +

3

2

)(
−k + 3

k + 1
Ak+2

+ + 2 cos 2θ̃ Ak+

)
− kk + 1

k
Ak+ − cos 2θ Ak+

= −(k + 2)2

k + 1
Ak+2

+ + 2(k + 1) cos 2θ̃ Ak+ − (k − 1)Ak−2
+ .

(2.D.6)

2.D.2 Proof of the lemma

In this section we will prove the following lemma:

Lemma 3. For every m ≥ 0∑
k≤m

(2βkm+1−k + βkm−k)Aki
m+1−k sin

(
θ − π

2
(m− k)

)
= 0 , (2.D.7)

where

βkm =
(−k − 1

2)m

m!
∈ R , (2.D.8)

and
(a)m = a · (a− 1) · . . . · (a−m+ 1), (a)0 = 1 . (2.D.9)

To do so, we need:
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

Lemma 8. The following equality holds:

1

(l ± 1)k+ 1
2

=
∑
m≥k

(±1)m−kβkm−k

lm+ 1
2

. (2.D.10)

Proof.

1

(l ± 1)k+ 1
2

=
∞∑
n=0

(−k − 1
2

n

)
l−k−

1
2
−n(±1)n =

∞∑
n=0

(−k − 1
2)n

n!

1

lk+n+ 1
2

(±1)n

m:=k+n
=

∑
m≥k

(±1)m−k
(−k − 1

2)m−k

(m− k)!
=
∑
m≥k

(±1)m−k
βkm−k

lm+ 1
2

.

In the following we will use Lemma 8 to prove Lemma 3:

Proof of Lemma 3. In any stationary point we have by Lemma 8

P̃l±1 ≡
∑
k≥0

ei(l±1)θ

(l ± 1)k+ 1
2

Ak(θ) ≡
∑
k≥0

eilθ
∑
m≥k

(±1)m−k

lm+ 1
2

βkm−kAk(θ)e
±iθ . (2.D.11)

We thus have

l(P̃l+1 + P̃l−1 − 2 cos θP̃l) ≡
∑
k≥0

eilθ

lk−
1
2

Ak

∑
m≥k

βkm−k
lm−k

(eiθ + (−1)m−ke−iθ)− 2 cos θ

 . (2.D.12)

A simple algebraic manipulation gives

eiθ + (−1)m−ke−iθ =

{
2 cos θ if m = k
2im−k cos

(
θ − π

2 (m− k)
)

if m > k
, (2.D.13)

such that we obtain:

l(P̃l+1 + P̃l−1 − 2 cos θPl) ≡
∑
k≥0

eilθAk
∑
m≥k

2βkm+1−k

lm+ 1
2

im+1−k cos
(
θ − π

2
(m− k + 1)

)
︸ ︷︷ ︸

sin(θ−π2 (m−k))

. (2.D.14)

We also have

1

2
(P̃l+1 − P̃l−1) =

∑
k≥0

eilθAk
∑
m≥k

βkm−k

lm+ 1
2

im+1−k sin
(
θ − π

2
(m− k)

)
. (2.D.15)

By combining (2.D.14) and (2.D.15), we obtain for the full recursion relation (2.5.22):

∑
k≥0

eilθAk

∑
m≥k

2βkm+1−k + βkm−k

lm+ 1
2

im+1−k sin
(
θ − π

2
(m− k)

)
=
∑
m≥0

eilθ

lm+ 1
2

∑
k≤m

(
2βkm+1−k + βkm−k

)
im+1−k Ak sin

(
θ − π

2
(m− k)

) = O(l−∞) . (2.D.16)

Thus every single term must be zero. That ends the proof.
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2.D Technical computations

Expanding Cj

In the following we will expand the normalization factor Cj = 1
4j

(
2j
j

)
up to O(1

j ). Therefore we use
Stirling’s series for the logarithm of the factorial:

lnn! = n lnn− n+
1

2
ln(2πn) +O

(
1

n

)
. (2.D.17)

Hence

ln(Cj) = ln

(
1√
πj

)
+O

(
1

j

)
. (2.D.18)

Therefore we obtain:

Cj =
1√
πj
e
O
(

1
j

)
=

1√
πj

(
1 +O

(
1

j

))
. (2.D.19)

Moreover, since lnn! admits a complete expansion (neglecting the first terms) in powers of 1
n , also

Cj can be completely expanded in powers of 1
j . The same is true for an expansion in l.

2.D.3 Theta graph

In this section we explain the result that the theta graph (Cj1j2j3000 )2 is equal to

1

2πS

(
1 +O

(
1

l2

))
. (2.D.20)

From [A40] we have

Cj1j2j3000 = (−1)g
g!

(g − j1)!(g − j2)!(g − j3)!

√
(2g − 2j1)!(2g − 2j2)!(2g − 2j3)!

(2g + 1)!
, (2.D.21)

where 2g = j1 + j2 + j3. We compute the expansion of lnCj1j2j3000 using the Stirling’s formula:

ln(n!) = n lnn− n+
1

2
lnn+

1

2
ln 2π +

1

12n
+O(n−2) , (2.D.22)

obtaining

ln
(

(−1)gCj1j2j3000

)
= −1

4
ln

(
(2π)2

16
(l1 + l2 + l3)(−l1 + l2 + l3)(l1 − l2 + l3)(l1 + l2 − l3)

)
+ O(l−2) .

(2.D.23)

This is exactly

− 1

4
ln 4π2S2 +O(l−2) , (2.D.24)

where S is the area of the triangle with edge lengths li. We conclude that the theta graph (Cj1j2j3000 )2

is equal to

1

2πS

(
1 +O

(
1

l2

))
. (2.D.25)
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2.D.4 Kinetic term in equilateral case

Let us introduce

Mλ =



0 a a a a a a
a b− λ c− λ c− λ c− λ c− λ −λ
a c− λ b− λ c− λ c− λ −λ c− λ
a c− λ c− λ b− λ −λ c− λ c− λ
a c− λ c− λ −λ b− λ c− λ c− λ
a c− λ −λ c− λ c− λ b− λ c− λ
a −λ c− λ c− λ c− λ c− λ b− λ


, (2.D.26)

where a = −
√

264
81 , b =

√
3

4 and c = 1
2
√

3
. In the equilateral case (all l equal to 1) the kinetic term

is of the form

− iM0 . (2.D.27)

Let us note that

detMλ = detM0 6= 0 , (2.D.28)

and all Mλ are symmetric. Thus all of them have the same number of positive and negative eigen-
values. Matrix Mλ for λ = c is similar (have the same determinant) by simultaneous permutation
of rows and columns to the matrix

M ′ =



b− c −c 0 0 0 0 a
−c b− c 0 0 0 0 a
0 0 b− c −c 0 0 a
0 0 −c b− c 0 0 a
0 0 0 0 b− c −c a
0 0 0 0 −c b− c a
a a a a a a 0


. (2.D.29)

The matrix M ′ restricted to its first 6 rows and columns has 3 positive and 3 negative eigenvalues.
Applying the min-max principle [A51] to M ′ and −M ′ shows that M ′ has at least three positive
and three negative eigenvalues. Together with the fact that determinant is positive it shows that
there are 4 positive and 3 negative eigenvalues.

Hence, the matrix of kinetic term has 4 −iR+ eigenvalues and 3 iR+ and the same is true for
matrix (−H−1).

2.E Dupuis-Livine form and stationary points

In this section we will prove the following lemma:

Lemma 9. Suppose that the integral is of the form as∫
dθ
eiη

lλ
eS , (2.E.1)

where S(θi) has an asymptotic expansion around the isolated stationary point of S−1(θ) of the form

S = S−1 + S0 + S1 + . . . , (2.E.2)

and ikSk ∈ R is a homogeneous function of order −k in l. Then the contribution to the expansion
of the integral from this stationary point has the DL property.
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2.F Stationary point analysis

Proof. Let us consider the contribution from the isolated stationary point of S−1. They are of the
form

1√
H
eS̃ , (2.E.3)

where S̃ is given by the contraction of all connected Feynman diagrams. They are made up of
vertices, given by the derivatives of S≥0, connected by the propagator H, which is the inverse to
(−1) times the matrix of second derivatives of S−1.

H =
(
−∂2S−1

)−1
, H = det

(
−∂2S−1

)
. (2.E.4)

Their contribution is computed by contracting the vertices Vk with propagators H. Since vertices
are obtained from derivatives of Sm, m ≥ 0, the homogeneous degree deg Vk of this vertex is thus
m and the matrix elements of ideg VkVk are real. Similarly iH is a real matrix and is of degree 1.

To conclude, the total contraction is thus of degree∑
k

deg Vk + n , (2.E.5)

where n is the number of propagators in the diagram. Moreover, the complete contraction multiplied
by

i
∑
k deg Vk+n (2.E.6)

is again real as a contraction of real matrices. This proves that expansion is still of DL form.

2.F Stationary point analysis

In the paper we use an advanced version of the stationary point analysis. This appendix is intended
to explain the details of this method.

Lemma 10. Let S(x) = i(S−1 +S0) +S′0 +
∑

i>0 Si be an asymptotic expansion of the action such
that

• Si is of homogeneous degree −i in j,

• S0 and S−1 are real

• S−1 + S0 is homogeneous in l = j + 1
2

and let x0 be an isolated stationary point of S−1. Then there is an asymptotic expansion of the
contribution to the integral ∫

dxeS (2.F.1)

from the neighbourhood of x0 given as follows:
We can write the asymptotic expansion of S in homogeneous terms in l as

S = iS̃−1 + S′0 +
∑
i>0

S̃i , (2.F.2)

where S̃−1 = S−1 + S0. Let x1 be the stationary point of S̃−1 obtained by perturbation of x0 (there
is exactly one such stationary point if the matrix of second derivatives of S−1 is non-degenerate).
The asymptotic expansion of the integral is equal to

1√
det(−H)

e
∑
i≥−1 Ai (2.F.3)
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2 Coherent states, 6j symbols and properties of the next to leading order asymptotic expansions

where H is the matrix of second derivatives of S̃−1 and A−1 = S̃−1 evaluated on x1. The terms
Ai for i ≥ 0 are homogeneous functions of order −i in l and can be obtained from the Feynman
diagram expansion with the propagator (−H)−1 and interaction vertices given by derivatives of S̃i
for i ≥ 0.

The same fact applies when the isolated point is replaced by the isolated orbit of the symmetry
group of the action.

The second fact concerns with integration over only a part of the variables:

Lemma 11. Let S(x, y) = iS−1(x, y) +
∑

i≥0 Si has an isolated stationary point (x0, y0) with a
non-degenerate matrix of second derivatives H with the property

H =

(
Hxx Hxy

Hxy Hyy

)
, Hyy invertible . (2.F.4)

Then there exists a function y(x) such that (in the neighbourhood of stationary point)

∇xS−1 +
∂y

∂x
∇yS−1 = 0 (2.F.5)

and the asymptotic expansion of
∫
dxdy eS is equal to asymptotic expansion of∫

dx eS̄ , (2.F.6)

where S̄ is obtained by asymptotic expansion of the integral eS̄ =
∫
dy eS.

2.G Feynman diagrams

In this subsection we are interested in the next to leading order in the expansion of the 6j symbol.
We will derive expressions for S1 in terms of Feynman diagrams. Vertices in this expansion consist
of derivatives of

−
∑
i

1

2
ln sin θij ,

−i
8lij

cot θij , (2.G.1)

and higher than second derivatives of |l|ρ det G̃ with respect to ρ and θij . Each propagator con-
tributes a weight |l|−1.

We only evaluate closed diagrams, so if the diagram is made up of vertices of valency nk, i.e. the
nk-th derivative of a function with weight |l|αk , then the scaling behaviour of the whole diagram is
as

|l|
∑
k(αk−

nk
2 ) . (2.G.2)

The only vertices that can contribute up to order |l|−1 are thus

Vertex −1
2 ln sin θij −1

2 cot θij −1
2

∂
∂θij

cot θij − i
8lij

cot θij i|l|∂3ρ det G̃ i|l|∂4ρdet G̃

Valency 0 1(ij) 2(ij)(ij) 0 3 4

Order |l|0 |l|−1/2 |l|−1 |l|−1 |l|−1/2 |l|−1

Note that the only diagram that is real (up to the order |l|−1) is just the first vertex (being of
order 0). Furthermore, this is also the only contribution of order |l|0. All other diagrams are purely
imaginary and of order |l|−1.
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2.H Relation to spin-network kernel formula

We will prove that (for j ∈ Z)∫ π

0

dφ1

π

(
eiθ cosφ1 cosφ2 + e−iθ sinφ1 sinφ2

)2j
=

1

4j

(
2j

j

)(
ei2θ cos2 φ2 + e−i2θ sin2 φ2

)j
.

(2.H.1)
It is straightforward to check that

ei2θ cos2 φ2 + e−i2θ sin2 φ2 = cos 2θ + i sin 2θ cos 2φ2 . (2.H.2)

In this way we obtain the formula from [A29].
To prove (2.H.1), we use the following formulas:

2

∫ π/2

0
dφ sin2α φ cos2β φ =

Γ
(
α+ 1

2

)
Γ
(
β + 1

2

)
Γ(α+ β + 1)

, (2.H.3)

Γ(n+ 1) = n!, Γ

(
n+

1

2

)
=

(2n)!

4nn!

√
π . (2.H.4)

In the case that k, l ∈ N, these formulas can be simplified to:∫ π

0
dφ sin2k φ cos2l φ =

(2k)!(2l)!π

4k+lk!l!(k + l)!
, (2.H.5)

∫ π

0
dφ sin2k+1 φ cos2l+1 φ = 0 . (2.H.6)

Expanding the left hand side of (2.H.1) and using these formulas we have:∫ π

0

dφ1

π

(
eiθ cosφ1 cosφ2 + e−iθ sinφ1 sinφ2

)2j
= (2.H.7)

2j∑
n=0

(
2j

n

)
ei(2j−2n)θ cos2j−n φ2 sinn φ2

∫ π

0

dφ1

π
cos2j−n φ sinn φ . (2.H.8)

This is equal to (k := 2n)

j∑
k=0

(
2j

2k

)
ei(j−2k)2θ cos2j−2k φ2 sin2k φ2

1

π

(2k)!(2j − 2k)!π

4jk!(j − k)!j!
. (2.H.9)

The factors in j and k can be rewritten in terms of binomial coefficients(
2j

2k

)
(2k)!(2j − 2k)!

4jk!(j − k)!j!
=

(2j)!

4jk!(j − k)!j!
=

1

4j

(
2j

j

) (
j

k

)
, (2.H.10)

such that we obtain the final result:

1

4j

(
2j

j

) j∑
k=0

(
j

k

)(
ei2θ cos2 φ2

)j−k (
e−i2θ sin2 φ2

)k
=

=
1

4j

(
2j

j

)
︸ ︷︷ ︸

Cj

(
ei2θ cos2 φ2 + e−i2θ sin2 φ2

)j
.

(2.H.11)

This explains the occurrence of Cj in our formulas, which is absent in integral kernel approach
[A29].
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Abstract

The original spin foam model construction for 4D gravity by Barrett and Crane suffers from a few
troubling issues. In the simple examples of the vertex amplitude they can be summarized as the
existence of contributions to the asymptotics from non geometric configurations. Even restricted
to geometric contributions the amplitude is not completely worked out. While the phase is known
to be the Regge action, the so called measure factor has remained mysterious for a decade. In the
toy model case of the 6j symbol this measure factor has a nice geometric interpretation of V −1/2

leading to speculations that a similar interpretation should be possible also in the 4D case. In this
paper we provide the first geometric interpretation of the geometric part of the asymptotic for the
spin foam consisting of two glued 4-simplices (decomposition of the 4-sphere) in the Barrett-Crane
model in the large internal spin regime.
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3 The Barrett-Crane model: asymptotic measure factor

3.1 Introduction

In spin foam models [B1–B5] the asymptotic expansion of the vertex amplitude in the large spin
limit is an important test for their connection to (discrete) gravity. The expansion of the known
vertex amplitudes can be written in the form∑

α

Aα({ji})eiSα({ji})
(
1 +O

(
|j|−1

))
, (3.1.1)

where O(|j|−1) denotes more suppressed terms in the expansion. The sum over indices α indicates
that the asymptotic expansion usually contains contributions from different sectors, which differ
in their geometric and physical interpretation. According to common terminology we call Sα the
phase or the action and Aα the measure factor1.

The value of the asymptotic expansion lies in its geometric interpretation, for example, in the
case of the 6j symbol, the expansion consists of two terms (see for example [B6–B9] for derivations).
For both the phase is equal to the Regge action (up to a sign) associated to tetrahedra built from
the spin labels. This strongly supports the claim that the Ponzano-Regge model [B10,B11], which
utilizes SU(2) 6j symbols as its basic building block, is a model of 3D quantum gravity. The modern
4D spin foam models, such as the Barrett-Crane- [B12], EPRL- [B13] or FK-model [B14], were
invented as generalizations of this case adapted to incorporate the so-called simplicity constraints.
Similar results as for the 3D model were obtained for the action of these models [B8, B15–B20],
which is a significant support of the relation of these models to Quantum Gravity.

However, the understanding of the asymptotic expansion is far from complete: Besides the
troubling fact that non-geometric configurations are contributing, even for geometric contributions
the measure factors, which play an important role in asymptotic expansions, pose a challenge. From
the simple example of the 6j symbol, one expects that they should be given in simple geometric
terms. However, known spin foam amplitudes resist attempts to find such formulas. Whereas the
phase contribution to the asymptotics is well known, the measure factor has remained mysterious
so far. In this paper we are considering the simplest model introduced by Barrett and Crane (BC
model) in the case of two glued 4-simplices.

It is known that this model suffers from several issues: One of them is the presence of the
topological BF sector common to all spin foams [B8,B16,B17,B21], but in addition it lacks gluing
constraints [B14, B22, B23]. The faces along which the simplices are glued have the same area
yet their shapes differ in general. The theory obtained in a semiclassical limit, called area Regge
calculus [B24], is troubled by metric discontinuities and vanishing deficit angles [B25,B26]. For this
reason the model is now commonly disregarded as a viable model for Quantum Gravity, for a recent
discussion on this see [B27] and [B28]. This naturally raises the question why we are considering
it at all. The simple yet honest answer would be that this is the only model we can cope with,
but there is a more profound reason: It is known that the geometric sector of the BC model is
supported on the same configurations as the flipped Freidel-Krasnov model (FK model in [B29]).
In the latter the γ-flatness property [B29] takes its extreme form as complete SO(4) flatness: The
deficit angles on all bulk faces have to vanish like in the BC model. Recently this led to hopes that
a semiclassical limit exists, for which this property can assure large scale geometricity, i.e. small
curvature on small scales (see [B30] for discussion of a double-scaling limit for the EPRL model
in which the representation labels diverge, but curvature goes to zero) 2. In this context the BC
model appears to be a nice ‘test and proving ground’ [B35]. We hope that this result can provide
some insight for more physical models.

1 Here we refer to the asymptotic measure factor of the vertex amplitude. This is not to be confused with the face
and edge amplitudes (also called measure factors) of the spin foam model.

2To reach this regime one needs, however, more refined tools. For first steps in this direction using coarse-graining
techniques see [B31–B34].
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3.2 Main result

In this work we mainly focus on the amplitude of the BC model associated to the geometry of
two 4–simplices glued along all of their tetrahedra, forming a triangulation of the 4-dimensional
sphere that is given by the product of two vertex amplitudes. The asymptotic behaviour of the
latter were analysed in [B15,B16] and finally in [B8]. For simplicity we assume that both face and
edge amplitudes are equal to one, even though their importance for the geometric interpretation
has been emphasized in [B28]. Our result is only slightly affected by this choice.

As a starting point for our derivation, we will use formula (125) from ref. [B8] for the 10j symbol,
i.e. the BC amplitude of a single 4-simplex (see [B9] for the derivation of the change of measure,

the normalisation factor is equal to 24|O(4)|
|S3|5 = 2

π6 ):

2

π6

∫
[0,π]10∩{G̃≥0}

∏
i<j

dθij δ(det G̃)
∏
ij

sin θij
∏
i<j

χjij (θij) . (3.1.2)

Let us briefly explain the notation: Each tetrahedron of the 4–simplex is labelled by an integer
i ∈ {1, 2, . . . , 5}. Each face is shared by two tetrahedra and is hence labelled by a pair of indices
i, j. Attached to the faces are both the spins jij , denoting irreducible representations of SU(2), and
the exterior dihedral angles θij . The function χj(θ) denotes the SU(2) character function (3.3.1)
and G̃ denotes the angle Gram matrix defined in appendix 3.A.1.

Under the necessary assumption that ∀i
∑

j jij ∈ N, the integral (3.1.2) is invariant under the

action of the symmetry group Z4
2, which has the following mutually commuting generators of order

2:
gi : ∀j θij → π − θij . (3.1.3)

with the relation
∏
i gi = 1. Several regions of the domain of integration contribute to the asymp-

totics:

• Certain values of θij on the boundary of the integration domain form the degenerate sector.
The contribution from this region may be even dominating in the amplitude, yet it does
not correspond to a 4-geometry, but to a so-called vector geometry or the Hodge dual of
that [B21].

• θij are the angles between the normals in R4, such that the 4-simplex with tetrahedra perpen-
dicular to the normals (that is determined uniquely up to a scale) has face areas Aij = 2jij+1.
Given only the set of areas {Aij}, there might be several configurations of angles {θij} con-
tributing.

Since we are considering two 4-simplices, we have the same distinction for each of them. However,
even if we restrict to non-degenerate configurations, the shapes (of the glued tetrahedra) do not need
to match; this is a known problem of the BC model. From now on, we will denote the configurations
with matching shapes as geometric and neglect all other, i.e. non-geometric, contributions to the
amplitude, even though we are aware of their existence.

We will now proceed to present our result and its derivation in the next sections.

3.2 Main result

Our main result can be formulated as follows. The geometric part of the leading asymptotic
expansion of the spin foam built from two glued 4-simplices with faces Aij = 2jij + 1 is given by
the formula3

33

223π3

∫
C

∏
i<j

dl2ij
∏
i<j

δ(Aij(l)
2 −A2

ij)

∏
iW

′
i
2

V ′7
cos2

∑
i<j

Aij(l)θij(l)−
π

4

 , (3.2.1)

3 We integrate over all sets of lengths lij that form a 4-simplex.
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3 The Barrett-Crane model: asymptotic measure factor

where W ′i is the volume of ith tetrahedron, and V ′ is the volume of the 4-simplex. The integration
region C consists of all geometric lengths (see appendix 3.A.2). The formula is valid for generic
configurations Aij such that the map from length variables {lij} → {Aij} is locally invertible
for all lij with given face areas constructed from them4, and the reconstructed 4-simplices are
non degenerate. If the maps {lij} → {Aij} are not locally invertible, this contribution to the
total amplitude is less suppressed as the Hessian has an additional null eigenvector. We leave the
investigation of these cases for future research.

Although this expression appears to be complicated at first sight, it is possible to perform the
integration:

33

223π3

∑
det

(
∂l2ij
∂A2

ij

) ∏
iW

′
i
2

V ′7
cos2

∑
i<j

Aij(l)θij(l)−
π

4

 , (3.2.2)

where the summation is with respect to all possible configurations of lengths lij , from which the

given areas can be constructed. Please note that the only non explicit factor is det
∂l2ij
∂A2

ij
, which

corresponds to the change of variables.

The result in the form (3.2.2) can be simply translated into the geometric contribution to the
asymptotic expansion for a single 4-simplex amplitude

3
3
2

2
23
2 π

3
2

∑
±

√√√√det

(
∂l2ij
∂A2

ij

)∏
iW

′
i

V ′
7
2

cos

∑
i<j

Aij(l)θij(l)−
π

4

 , (3.2.3)

The apparent sign ambiguity needs further research.

3.2.1 Comments

Before we discuss the derivation of this result, we would like to briefly comment on two subjects:
first the choice of the examined triangulation and second the omittance of other contributing sectors.

The natural question arising is why we are considering a triangulation of the sphere and not a
single 4-simplex. In fact, the latter can be deduced from the second version of our result (3.2.2)

(with a sign ambiguity). Then the only non-explicit term is the Jacobian det
∂l2ij
∂A2

ij
. Surprisingly in

the case of the 4-sphere this Jacobian can be absorbed by imposing area data as constraints, such
that the asymptotic formula can be simply stated in terms of length variables.

The origin of the phenomenon that the asymptotic formula for the triangulated 4–sphere is
simpler than the one for a single 4–simplex is obscure to us. For general spin foam models it is well
known that the measure factors, contrary to the phase amplitudes, are inflicted by the spread of the
boundary states. Thus one would expect to find nicer results for closed triangulations. Of course,
this argument does not apply to the BC model, because its boundary space structure is trivial,
i.e. the intertwiner space is 1–dimensional and there is no choice of the spread of the boundary
state. Instead, we rather expect the imposition of the area data as constraints to be the root of
this property.

The second issue we would like to address is that our result concerns only a part of the contri-
bution to the asymptotic behaviour, yet it has a clear numerical meaning at least in the case of
nondegenerate geometries. Precisely, if the asymptotic formula (to leading order) is given by∑

α

Aα({ji})eiSα({ji}) , (3.2.4)

4Please note the subtlety in the notation: Aij denotes the area of the triangle obtained from one 4-simplex by
removing the vertices i and j, whereas lij actually is the edge connecting i and j.
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3.3 Derivation

where all phases Sα are different functions of the data, then every term has a separate meaning
and is interesting by itself.

In the case of the Barrett-Crane model, the additional contributions omitted in our derivation
are known to some extent. They can be treated by the method of coherent states or by the Kirillov
character formula [B21]. For the case of a single simplex, their phase turns out to be zero. Thus
the additional contributions to our asymptotic formula are indeed of the form (3.2.4) with:

• Sα = ±SRegge ± S′Regge for non–matching configurations and thus differing Regge actions,

• Sα = 0 for matching configurations, but opposite signs or non–geometric configurations and
finally

• Sα = ±SRegge if one of the simplices is in a non–geometric configuration.

Our result can thus be regarded as a derivation of the measure factors for the terms in the asymptotic
formula with phases ±2SRegge.

Before we discuss this result further, we will briefly present its derivation in the following two
sections.

3.3 Derivation

In this section we sketch our proof, leaving technical details to the next section. In order to simplify
notation and to avoid keeping track of numerical factors, we absorb the combinatorial factors into
the definition of the volume of simplices, e.g. V is 4! times the volume of a 4-simplex and Wi is
3! times the volume of the ith tetrahedron, Aij denotes the area of the face. Faces are labelled by
two vertices, i.e. those which do not belong to the face. From now on, we use the convention that
~l, ~A, ~W denote vectors consisting of all lengths, areas and tetrahedra respectively. For any vector
~m, |m| denotes its Cartesian length. Since the dihedral angles of a 4-simplex sit on the faces of the
simplex, i.e. the triangles, they carry the same labels as the faces.

3.3.1 Stationary point conditions

Starting from (3.1.2), we use the character formula (θ is the SU(2) angle)

χj(θ) =
sin(2j + 1)θ

sin θ
=
ei(2j+1)θ − e−i(2j+1)θ

2i sin θ
(3.3.1)

to divide the integral into several parts (the sines from (3.1.2) cancel with the sines from the
integral)

±1

210

2

π6

∫
[0,π]10

∏
i<j

dθij δ(det G̃) ei
∑
±(2jij+1)θij = ± |A|

210π7

∫
[0,π]10

∏
i<j

dθij

∫
dρei(

∑
±Aijθij−|A|ρ det G̃)

(3.3.2)
to which stationary point method can be applied – boundary terms contribute non geometric
asymptotics as shown in [B8] and will be omitted. The stationary phase conditions are:

• For ∂S
∂θij

= 0:

±Aij = λ
∂ det G̃

∂θij
, (3.3.3)

where we introduced notation λ := |A|ρ.

• For ∂S
∂ρ = 0:

det G̃ = 0 . (3.3.4)
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3 The Barrett-Crane model: asymptotic measure factor

The latter condition ensures that θij are geometric angles. In fact, the vanishing of the determinant
of the angle Gram matrix ensures that the flat 4-simplex with the given angles between normals
(associated to tetrahedra) exists. This simplex is determined uniquely up to rotations, parity
transformations and scaling. However these normals are not necessarily outward pointing. The
before mentioned generators of the Z4

2 symmetry correspond to the change of normals 5

g̃i : ni → −ni . (3.3.5)

Using this symmetry we can restrict our consideration to the case where all normals are outward
pointing. The contribution from the other stationary points are the same and are taken into account
by multiplication of the result by 24.

Under the restriction that the normals to the tetrahedra should be outward pointing, every
4–simplex determined by the normals (that is unique up to a scale) satisfies:

A′ij = λ′
∂ det G̃

∂θij
, λ′ = −

∏
W 2
i

4V 7
. (3.3.6)

The details of the derivation are similar to [B9] and are also briefly discussed in section 3.4. It turns
out [B8] that under such restriction only two of the integrals actually have a point of stationary
phase, namely if all signs are either ‘+’ or ‘−’; then the action in (3.3.2) is the first order Regge
action [B36]. Their respective contributions are related by complex conjugation, such that the final
result is purely real. Hence, we will consider only the ‘+’ sign case. The calculation for the ‘−’ sign
case works analogously. In this case the stationary point conditions (3.3.3) and (3.3.4) are solved
by the angles θij between outward pointing normals to the 4-simplex with face areas {Aij} and the
Lagrange multiplier λ′.

3.3.2 The hessian

Most of the calculations following in the remaining sections of this work were derived in great detail
for the 3D case [B9] and can be performed almost analogously in the situation under discussion.
Even though the calculations are presented in a self-consistent way, we highly recommend that
interested readers also study [B9] to better understand the crucial ideas and background information
of this approach.

The matrix of second derivatives has the form

H := −i|A|
(

0 ∂ det G̃
∂θij

∂ det G̃
∂θkm

ρ ∂ det G̃
∂θij∂θkm

)
(3.3.7)

and its inverse is given by (c is a constant)

H−1 = i

(
c
|A|2

1
|A|

∂λ
∂Aij

1
|A|

∂λ
∂Akl

∂θij
∂Akl

)
. (3.3.8)

We know that
∂θij
∂Akl

is symmetric and has exactly one null eigenvector ~A, since given the dihedral
angles, the 4-simplex is determined up to scale: We can scale all edges by ξ (then all areas are
scaled by ξ2) to obtain a 4-simplex with the same dihedral angles. In fact, this is the only remaining

freedom, once all θij are fixed. We can write the matrix in the basis with
~A
|A| as a basis vector

i


c
|A|2

1
|A|

∂λ
∂A · · · · · ·

1
|A|

∂λ
∂A 0 0 0
... 0

∂θij
∂Akl

...
... 0 · · · . . .

 , (3.3.9)

5 Notice that
∏
g̃i acts as an element of O(4) and vectors ni are determined only up to O(4) transformations.
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3.3 Derivation

where ∂
∂A :=

Aij
|A|

∂
∂Aij

6. The determinant of (−H−1) is thus equal to

det(−H−1) = −(−i)11
( 1

|A|
∂λ

∂A︸ ︷︷ ︸
= λ
|A|2

)2
det′

∂θij
∂Akl

, (3.3.10)

where det′
∂θij
∂Akl

is the determinant of the matrix
∂θij
∂Akl

restricted to the subspace orthogonal to the

vector ~A (the only null eigenvector of this symmetric matrix)7. Now we will expand

∂θij
∂Akl

=
∂θij
∂lmn

∂lmn
∂Akl

. (3.3.11)

Scaling symmetry (see appendix 3.A.3) ensures that Akl
∂lij
∂Akl

= 1
2 lij . A similar argument of scaling

shows that ~l is a null eigenvector of
(
∂θij
∂lkl

)
. As before, we write the matrix

∂lij
∂Akl

in the adapted

basis (with the normalized vectors
~l
|l| and

~A
|A|)

|l|
2|A| 0 · · · 0

0
...

∂lij
∂Akl

0

 . (3.3.12)

Notice moreover that8

Aij
∂θij
∂lkl

= lkl
∂θij
∂lkl

= 0 , (3.3.13)

thus working in the bases with vectors
~l
|l| and

~A
|A| we can prove (using (3.3.11)) that

det′
∂θij
∂Akl

= det′
∂θij
∂lkl

2|A|
|l| det

∂lij
∂Akl

. (3.3.14)

Together with the formula

det′
∂θij
∂lkl

= 2−10 |A||l|∏
W 2
i

V 7

∏
lij∏
Aij

, (3.3.15)

which is calculated in section 3.4, we get

det(−H−1) = −i 2−9(
∏

W 2
i )

∏
lij∏
Aij

V −7 1

|A|2 det
∂lij
∂Akl

. (3.3.16)

The combined contribution from two (conjugated) stationary points for a single 4–simplex is thus

± |A|
2

7
2π

3
2

√
| det(−H−1)| cos

(∑
Aijθij −

π

4

)
. (3.3.17)

Inserting the determinant of the Hessian matrix (3.3.16), one obtains the result (3.2.3) with a sign

ambiguity and the Jacobian
∂lij
∂Aij

as the only implicit term.

6We are using Einstein’s summing convention for the index pair (ij) with i ≤ j.
7Consider a symmetric matrix M with exactly one null eigenvector. The determinant of this matrix restricted to

the subspace orthogonal to that eigenvector is given by det′M :=
∑
iM
∗
ii, where M∗ii denotes the (i, i)th minor of

the matrix M . See [B9] for more details.
8The first relation is the well-known Schläfli identity.
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3 The Barrett-Crane model: asymptotic measure factor

Precisely this Jacobian can be ‘absorbed’ in the case of two 4–simplices, glued together via all of
their tetrahedra, i.e. a triangulation of the 4–sphere. However this only works if the shapes of the
two 4–simplices match; we call this a geometric configuration. This contribution can be written as
a sum over the stationary points for one integral of the square of the amplitude. We obtain

∑ |A|2|det(−H−1)|
27π3

cos2
(∑

Aijθij −
π

4

)
, (3.3.18)

where the summation is over all angles for which the areas Aij match. We rewrite this summation
by an integral over the edge lengths (squared), where we impose the area matching as a constraint:∫ ∏

dl2ij

∏
Aij∏
lij

det
∂Aij
∂lkl

∏
δ(Aij(l)

2 −A2
ij) . (3.3.19)

Thus the result, after counting also the contributions from stationary points related by the Z4
2

symmetry, is

1

212π3

∫ ∏
dl2ij

∏
δ(Aij(l)

2 −A2
ij)

∏
W 2
i

V 7
cos2

(∑
Aijθij −

π

4

)
. (3.3.20)

In order to arrive at the result (3.2.1), one just has to extract the combinatorial factors out of
V and Wi as described at the beginning of section 3.3. In the following section we will provide all
the necessary technical details to fill the gaps on the presented derivation. An even more thorough
discussion can be found in [B9].

3.4 Technical details

3.4.1 General facts

Let us also remind some general facts (we assume that {Aij} locally constitute a good coordinate
system)

Aij
∂θij
∂lkl

= lkl
∂θij
∂lkl

= 0 , Aij
∂θij
∂Akl

= Akl
∂θij
∂Akl

= 0 ,
∂θij
∂Akl

=
∂θkl
∂Aij

, (3.4.1)

Aij = λ
∂ det G̃

∂θij
, λ = −

∏
W 2
i

4V 7
, 2AijV = WiWj sin θij , (3.4.2)

which can be proven analogously as in [B9]. For the flat 4-simplex holds

∂λ

∂Aij

∂ det G̃

∂θkl
+

∂θij
∂Amn

λ
∂2 det G̃

∂θmn∂θkl
= δ(ij),(kl) , (3.4.3)

∃c
∂ det G̃

∂θkl
c+ λ

∂λ

∂Aij

∂2 det G̃

∂θij∂θkl
= 0 , (3.4.4)

∂λ

∂Amn

∂ det G̃

∂θmn
= 1 . (3.4.5)

Interested reader should consult appendix C in [B9] for more details.

3.4.2 Limits from curved simplex

In the following two subsections we will consider a curved 4-simplex with edge lengths ε lij from
which we will derive several quantities for the flat simplex. To do so we will heavily rely on the
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duality relations of length and angle Gram matrices in the curved case, which are nicely presented
in [B37]. The desired quantities will be obtained in the limit ε→ 0. For any dimension d holds

detG(d) = ε2d(V (d))2 +O(ε2d+2) , (3.4.6)

where G(d) is the length Gram matrix and V (d) is d! times the volume of d dimensional simplex 9.
We denote

V (3) = W, V (4) = V, V (2) = 2A. (3.4.7)

Using the results of [B37] we arrive at the following identity for det′ G̃ (for d = n− 1 = 4)

det′G̃ε =
∑
i

G̃∗ii =

(∑
i

G∗ii

)
(detG)3∏

G∗ii
=

(
ε6
∑
i

W 2
i

)
ε24 V 6

ε30
∏
W 2
i

+O(ε2) = |W |2 V 6∏
W 2
i

+O(ε2) .

(3.4.8)
and, moreover, also using [B37], we have

det G̃ε =
(detG)4∏

detGi
= −

(
ε8V 2

)4∏
ε6W 2

i

+O(ε4) = ε2
V 8∏
W 2
i

+O(ε4) . (3.4.9)

We will use the latter identity in the following formula for a curved 4-simplex, which has been
stated in [B38] (for derivation see [B9]):

det
∂θεij
∂lεkm

= (−1)

∏
sin lεij∏
sin θεij

(
det G̃

detG

)3

, (3.4.10)

where lεij = εlij . Thus

ε−10 det
∂θεij
∂lkm

= det
∂θεij
∂lεkm

= −ε10

∏
lij∏

sin θij

ε6 V 24∏
W 6
i

ε24V 6
+O(ε−6) (3.4.11)

and finally substituting sin θij =
2AijV
WiWj

det
∂θεij
∂lkm

= − ε2

210

∏
lij∏
Aij

V 8∏
W 2
i

+O(ε4) . (3.4.12)

3.4.3 Limits of determinant with one null eigenvector

If the matrix Mη has in the limit η → 0 one null eigenvector ~m and is holomorphic in η then the
following expansion around η = 0 holds:

detMη = det′M
(~m,Mη ~m)

|m|2 +O(η2) . (3.4.13)

This expansion can be immediately applied to det G̃, since G̃ (and thus also det G̃) is holomorphic
in ε2 and G̃ has one null eigenvector ~W in the flat case

det G̃ε = det′G̃
( ~W, G̃ε ~W )

|W |2 +O(ε4) . (3.4.14)

Furthermore
(
~W, G̃ε ~W

)
= O(ε2) and can be expanded as follows:

2
(
~W, G̃ε ~W

)
= ε

∂

∂ε

(
~W, G̃ε ~W

)
+O(ε3) =

(
~W, lij

∂G̃ε

∂lij
~W

)
+O(ε3) , (3.4.15)

9Please note that our convention affects only tetrahedra and 4-simplices, but not areas and edge lengths.
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3 The Barrett-Crane model: asymptotic measure factor

and (
~W, lij

∂G̃ε

∂lij
~W

)
= lijWkWl sin θ

ε
kl

∂θεkl
∂lij

= 2V lijAkl
∂θεkl
∂lij

+O(ε3) . (3.4.16)

Eventually we can summarize these results in a concise form:

lijAkl
∂θεkl
∂lij

=
|W |2
V

det G̃ε

det′G̃
+O(ε3) = ε2V +O(ε3) . (3.4.17)

On the other hand, we can apply the same argument to
∂θεij
∂lkm

, since it also is holomorphic in ε2 and

has exactly one null eigenvector in the flat case, namely ~l and respectively ~A (it is not symmetric).
Thus

det
∂θεij
∂lkm

= det′
∂θij
∂lkm

(
~A,

∂θεij
∂lkm

~l
)

|A||l| +O(ε3) (3.4.18)

Substituting det
∂θεij
∂lkm

and
(
~A,

∂θεij
∂lkm

~l
)

= lijAkl
∂θεkl
∂lij

we obtain

det′
∂θij
∂lkm

= 2−10 |A||l|∏
W 2
i

V 7

∏
lij∏
Aij

. (3.4.19)

3.5 Conclusions

In this work we have derived a first asymptotic formula for the Barrett-Crane spin foam model,
expressed completely in terms of simple geometric quantities, which sheds new light on the possible
asymptotic behaviour of more complicated spin foam models. In fact it suggests that edge lengths
are the more suitable variables to be used in the asymptotic limit than area variables. Exactly this
might be a root of the problem to derive a measure factor in the asymptotic limit of modern spin
foam models.

Let us put our derivation in a geometric but heuristic context. Expanding the SU(2) characters
in (3.1.2) into exponentials one can obtain the so-called bare action for arbitrary foams. Putting
aside the troubling fact that we sum over spins instead of integrating, we can regard the models
as a Feynman path integral. The action turns out to be the action of first order (area) Regge
calculus, where both areas and 4D dihedral angles are independent variables. One can then argue
that the semiclassical expansion of the integral is governed by the expansion of this action around
the solutions to the classical equations of motion, which differ from standard Regge calculus [B22,
B25, B39, B40]. If we restrict ourselves to geometric solutions for which the shapes of tetrahedra
match then there are only flat solutions, but with arbitrary non-matching orientations. Flatness is
imposed by the equations of motion originating from the variation over areas. In our asymptotic
analysis, however, the areas are fixed and uniformly large. As the suppression of non-flat solutions
is related to summing (integrating) over spins (see [B29,B41]), and we do not sum over spins, this
part of the equations of motion is absent in our asymptotics. In our case non-flat solutions are not
suppressed.

The results of [B41] show that the modern spin foam models correspond to (area, coherent states)-
Regge calculus. This is yet another version of Regge calculus, also leading to the flatness problem,
yet with matching area shapes [B41]. It is not clear how to extend our result in this setting,
nevertheless it suggests new types of factors that might appear in the asymptotic expansion, as the
just derived formula can also be stated for a single 4-simplex, although with an additional factor√

det
∂Aij
∂lij

.

It is also worth to speculate about the suggestions from our work for measure factors [B42] in
(linearized) Regge calculus due to its close relation to spin foams in the asymptotic limit. One
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of the typical constraints for such measures derived in [B43] is triangulation independence, i.e.
invariance under Pachner moves. It can be shown (see [B44]) that a product (or fraction) of simple
geometric quantities (like volumes, areas or edge lengths) cannot be invariant. However, if the
non-local change of variables plays a role in larger simplicial complexes, then the invariance might
be restored.

Finally, in the case when the map {lij} → {Aij} is not locally invertible, the Hessian has
an additional null eigenvector and the asymptotic contribution is less suppressed. If a similar
phenomenon exists in the Lorentzian EPRL–FK model it would directly influence the result of [B45],
which is derived under the assumption of a certain scaling behaviour of the measure factor. Our
result suggests, which configurations might show such an anomalous scaling behaviour and are thus
crucial for research in this direction.

As we have shown in this work there still exist new insights that can be drawn from the Barrett-
Crane model. Let us notice, that the derivation is restricted only to a very specific example and
it is not clear how to extend it to more general situation. We hope however that our methods
presented here and in [B9] can be expanded to the more advanced spin foam models and might
shed some new light on the pressing questions such as the measure factor, the flatness issue or the
suitable choice of variables and semi-classical limits.
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3.A Auxiliary definitions and computations

3.A.1 Definition of the Gram matrix

For the set of numbers {θij ∈ (0, π)}, the angle Gram matrix G̃ is defined as

G̃ = [cos θij ] =


1 cos θ12 · · · cos θ15

cos θ12 1 · · · cos θ25
...

...
. . .

...
cos θ15 cos θ25 · · · 1

 , (3.A.1)

with the convention that θii = 0. It is well–known that for {θij} satisfying det G̃ = 0 (G̃ is semi–
positive definite with exactly one null eigenvector) we can associate normals ni to the tetrahedra
forming a 4–simplex, such that ni·nj = cos θij (see for example [B9]). In the case when these normals
are all outward (or inward) pointing we will call θij an exterior dihedral angle. In such a case the
4–simplex is uniquely determined up to a scale and G̃ has one null eigenvector (W1, · · · ,W5). Using
this fact we can compute

∂ det G̃

∂θij
= −2det′G̃

WiWj sin θij
|W |2 , (3.A.2)
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3 The Barrett-Crane model: asymptotic measure factor

but 2AijV = WiWj sin θij and thus

∂ det G̃

∂θij
= −2det′G̃

|W |2 V︸ ︷︷ ︸
λ−1

Aij (3.A.3)

but we also have (see also [B9])

det′G̃ =

(∑
i

W 2
i

)
V 6∏
W 2
i

. (3.A.4)

Thus we conclude λ = −
∏
W 2
i

4V 7 .

3.A.2 Geometric values of lij

In any dimension d in order for the set of numbers {lij} ∈ [0,∞]
(d+1)d

2 to be a set of lengths of a
d-simplex the following Menger condition [B46] must hold: The Cayley- Menger matrix

C =


0 1 1 · · · 1
1 0 l212 · · · l21(d+1)

1 l212 0 · · · l22(d+1)
...

...
...

. . .
...

1 l21(d+1) l22(d+1) · · · 0

 (3.A.5)

must have 1 positive and d+ 1 negative eigenvalues. This is equivalent to the following conditions
on the determinants of the upper left corner n× n submatrices Cn of the matrix C:

∀2≤n≤d+1 : (−1)n detCn < 0 . (3.A.6)

We denote the closure of the region of such lij by C.

3.A.3 Scaling

By applying the field lij
∂
∂lij

on any function of {l}, we can deduce the scaling of the respective

function, e.g. the scaling of areas:

lij
∂

∂lij
= lij

∂Akl
∂lij

∂

∂Akl
, (3.A.7)

but since lij
∂Akl
∂lij

= 2Akl (areas are two dimensional), it follows:

Akl
∂

∂Akl
=

1

2
lij

∂

∂lij
. (3.A.8)
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Abstract

A path integral measure for gravity should also preserve the fundamental symmetry of general
relativity, which is diffeomorphism symmetry. In previous work, we argued that a successful im-
plementation of this symmetry into discrete quantum gravity models would imply discretization
independence. We therefore consider the requirement of triangulation independence for the mea-
sure in (linearized) Regge calculus, which is a discrete model for quantum gravity, appearing in
the semi–classical limit of spin foam models. To this end we develop a technique to evaluate the
linearized Regge action associated to Pachner moves in 3D and 4D and show that it has a simple,
factorized structure. We succeed in finding a local measure for 3D (linearized) Regge calculus
that leads to triangulation independence. This measure factor coincides with the asymptotics of
the Ponzano Regge Model, a 3D spin foam model for gravity. We furthermore discuss to which
extent one can find a triangulation independent measure for 4D Regge calculus and how such a
measure would be related to a quantum model for 4D flat space. To this end, we also determine
the dependence of classical Regge calculus on the choice of triangulation in 3D and 4D.
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4 Path integral measure and triangulation independence in discrete gravity

4.1 Introduction

Many approaches to quantum gravity, such as spin foams [C1–C3], group field theories [C4, C5],
(causal) dynamical triangulations [C6–C8] and Regge quantum gravity [C9, C10], rely on a path
integral approach. A (non–perturbative) path integral has to be regularized to make it well defined.
In the process of this regularization, several choices have to be made, that differ in the various
approaches. Broadly one can understand these choices as deciding on a measure on the space
of all geometries. This includes various aspects, such as to define the space of geometries, for
example the space of all triangulations with fixed edge lengths in dynamical triangulations versus
the space defined by allowing all possible edge lengths (satisfying generalized triangle inequalities)
in a fixed triangulation such as in Regge calculus, or some generalized discrete geometric spaces,
as appearing in loop quantum gravity [C11–C13]. A related question is whether to include a sum
over triangulations, such as in (causal) dynamical triangulations and group field theories, or even
over two–complexes as suggested for spin foam models [C14–C16]. Alternatively the path integral
may just include an integration over geometric data associated to a given, fixed, discretization. For
discussions on the relation between these approaches, see [C17–C19].

One reason for this many different suggestions, is that the space of all (discrete) geometries and
its relation to the corresponding continuum space needs to be better understood [C20,C21]. Many
difficulties are rooted in the role of diffeomorphism symmetry, by which the space of metrics has to
be quotiened to obtain the space of geometries. Discretizations obscure the role of diffeomorphisms,
see [C18,C22] for a discussion. In particular, for a precise notion of diffeomorphism symmetry in the
discrete [C18], one can show that this symmetry is broken for 4D Regge gravity [C23,C24]. However,
if this symmetry would hold in discrete gravity, one could hope for a unique anomaly–free (with
repsect to diffeomorphisms) measure [C25]. As is also argued in [C25,C26], the implementation of
this symmetry into discrete gravity (of Regge type, i.e. with geometric data on a fixed triangulation
or discretization), would make such a theory triangulation or discretization independent. In this
case there would also be no need of summing over triangulations, which is often employed to obtain
a triangulation independent theory.

One can expect to find such a discretization independent theory for 3D gravity, which is a
topological theory, i.e. there are no local physical (propagating) degrees of freedom. In fact we
will succeed to find a triangulation invariant path integral description for 3D (linearized) Regge
calculus. 4D gravity features local propagating degrees of freedom and a discretization independent
model will require a non–local structure and moreover control over the solutions of the system
[C27]. Nevertheless, as argued in [C25] the choice of path integral measure is important for the
convergence of the model, also under a renormalization flow, which might be employed to find
improved discretizations [C28]. Moreover 4D classical Regge gravity is invariant under a set of
certain local changes of the triangulation. One might therefore ask also for invariance of the path
integral under this set of local changes.

In this work we will concentrate on finding a measure in a (Euclidean) Regge calculus set up,
that is as much triangulation independent, as possible. Before explaining this in more detail we
will shortly review different measures suggested so far in the literature [C29]. One method would
be to discretize the (formal) continuum path integral

Icont =

∫ ∏
x, ρ≥τ

dgρτ (x)
∏
x

(√
det(gµν)

)α
exp (−SEH) . (4.1.1)

Here SEH is the (Euclidean) Einstein Hilbert continuum action and
(√

det(gµν)
)α

is a factor which
can be obtained from the DeWitt metric on (geometric) superspace [C30]. More specifically the
DeWitt measure [C30] prescribes α = 0 in 4D and α = −1 in 3D. However also other values of α
have been suggested [C29], for instance α = −(D + 1) for the Misner measure [C31], where D is
the dimension of space time. A priori it is not clear which choice to prefer [C29].
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4.1 Introduction

Regge calculus [C9,C10] provides a discretization SR of the Einstein Hilbert action SEH , defined
on a triangulation. The metric data are replaced by edge lengths le associated to the edges of
the triangulation. As

√
det(gµν) gives the local space time volume a natural discretization of

this factor is given by the volumes V∆ of the top–dimensional simplices ∆, i.e. 4–simplices in 4D
and tetrahedra in 3D. A straightforward discretization of (4.1.1) is then given by [C29] (modulo
numerical constants)

Idiscr =

∫ ∏
e

dl2e
∏
∆

V α
∆ exp (−SR) . (4.1.2)

Concerning the range of integration it will always be understood that the generalized triangle
inequalities are satisfied. These require positive volume for all (sub-) simplices and are therefore
equivalent to restricting the integration in the continuum path integral (4.1.1) to positive definite
metrics. Apart from this requirement of triangle inequalities (which are technically very difficult to
implement) the measure used in(4.1.2) has the advantage of being especially simple, in particular
local.1 The simplicity is also a reason why α = 0 in 4D seems to be preferred [C29].

In this paper we will consider a requirement of triangulation independence for the path inte-
gral measure. This requirement is also connected [C25] with a discrete notion of diffeomorphism
invariance [C26]. Hence asking for triangulation independence amounts to requiring an anomaly
free measure with respect to the diffeomorphisms, see also [C32] for a discussion in the spin foam
context.

Specifically we ask for invariance of the (linearized) model defined by (4.1.2) under Pachner moves
[C33,C34]. These are local changes of the triangulation, that act ergodically, i. e. two topologically
equivalent triangulations can always be transformed into each other by a sequence of Pachner
moves. Restricting the measure to the local ansatz (4.1.2) we will find that our results suggest
to fix the parameter α to α = −1

2 both in 3D and in 4D. Interestingly this conforms completely
with the semi–classical analysis [C35, C36] of the Ponzano–Regge model [C37] in 3D. This is a
triangulation independent (spin foam) model for 3D quantum gravity, based on discrete variables.
The case of 4D is much more involved. Firstly, being an interacting theory with propagating
degrees of freedom, one cannot expect to obtain a triangulation independent model, with just
local interactions, as in the Regge action [C27]. Indeed, we will precisely show in which sense
the (linearized) 4D Regge action fails to be triangulation independent. Although the semiclassical
analysis of the 4D models [C38–C40] could show that the Regge action appears in a ~ → 0 limit
of the amplitudes, the corresponding measure factor has not been specified yet as a function of the
geometric variables. For future work it will be interesting to compare in more detail the spin foam
results with Regge gravity. Also a measure ambiguity shows up in choosing so called edge and face
amplitudes [C14–C16,C32,C41]. These ambiguities could also be restricted by asking for as much
triangulation independence as possible, similar to the method proposed here. Hence it would be
very interesting to study the behavior of spin foam amplitudes under Pachner moves [C42].

There are also other suggestions for the Regge measure, which are non–local. As these are far
more complicated explicit computations they have mostly been restricted to 2D. The Regge–Lund
measure [C29, C43, C44] is obtained by discretizing first the deWitt super metric and then taking
the determinant (whereas in (4.1.2) this is performed the other way around). The result is given
by

IRL =

∫ ∏
e

dl2e
∏
∆

√
det(Gee′) exp (−SR) , (4.1.3)

1Another suggestion is to use a measure of the form
∏
e l
−1
e dle, which is scale invariant. (The Regge action without

cosmological constant term is invariant -up to an overall factor- under global rescaling of the edge lengths.)
However, this measure did not lead to satisfying results in numerical simulations, see [C21] and references therein.
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where

Gee′ = −D!
∑
∆

1

V β
∆

∂V∆

∂lele′
(4.1.4)

and β is another ambiguous parameter. As the determinant has to be taken of a matrix, which
is indexed by all the edges of the triangulation, the result is potentially quite non–local. Further
discussion of this measure can be found in [C29,C44].

In 3D, where gravity is a topological theory, we will find that a local measure is sufficient to
guarantee triangulation independence of the (linearized) theory. In 4D, as previously mentioned
one cannot expect to find complete triangulation independence for the path integral as already the
action is not triangulation independent. (More precisely it is the Hamilton–Jacobi function as a
functional of the boundary data, that is not invariant under the change of the bulk triangulation.)
One can however ask for invariance under a restricted set of Pachner moves, under which the action
happens to be invariant. These are the 4−2 and 5−1 moves (but not the 3−3 move). Nevertheless
also for these moves we will find that a factor appears that features a certain non-local structure.
At this stage it seems however more promising to construct improved measures and actions directly
by coarse graining and the method of perfect discretizations [C25,C27,C28].

Ultimately, another criterion that any quantum gravity model has to satisfy, is to display the
correct large scale limit. Also here a measure term could be essential. For investigations in 2D Regge
see for instance [C45], for discussion of the influence of the measure in the context of dynamical
triangulations see [C46, C47]. Another suggestion for constructing a measure for Regge gravity, is
to mod out a certain subgroup of the continuum diffeomorphism group [C48]. This results again
in a highly non–local measure, where explicit results are mostly restricted to 2D.

In the next section we introduce the Regge action and its expansion up to second order. This
requires the calculation of its Hessian matrix, which will be one of the main subjects of this work.
Furthermore we discuss the concept of Pachner moves and briefly present the Pachner moves in 3D
and 4D. Section 4.3 deals with a general method to compute the Hessian matrix in 3D and presents
the application of this method to the Regge actions associated to the Pachner moves. Then we
examine invariance of the path integral under Pachner moves and define a suitable measure factor.
The results for 3D will be summarized in section 4.4. In section 4.5 we extend our method to
compute the Hessian matrix in 4D, examine invariance of the path integral under Pachner moves
and discuss a suitable measure. The results in 4D are then summarized in section 4.6. We conclude
this work with a discussion of our results in section 4.7.

4.2 Linearized Regge Calculus

The Regge action (which we will denote by S in the following) provides a discretization of the
Einstein Hilbert action for gravity. It is defined on a triangulation, the geometry is a piecewise
flat one, and the geometric data are encoded in the lengths of the edges in this triangulation. For
Regge type actions based on different geometric variables nearer to spin foams, specifically areas
and angles, see [C49,C50].

In the following we will consider the Euclidean path integral for the Regge discretization of
gravity on a given 3D or 4D triangulation∫

le|e⊂∂M

∏
e⊂bulk

dle µ(le) exp{−S} . (4.2.1)

Here le|e⊂∂M denotes the boundary conditions, which we take to be fixed length variables for
the edges in the boundary triangulation. µ(le) is a suitable measure factor. In (4.2.1) not all
edge lengths combinations are allowed since the edge lengths have to satisfy generalized triangle
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4.2 Linearized Regge Calculus

inequalities, i.e. all the (2D, 3D and, in case, 4D) volumes have to be positive. The (Euclidean)
Regge action in arbitrary dimension D can be written in the following form

S := −
∑

h⊂bulk

Vh

2π −
∑
σD⊃h

θ
(σD)
h

− ∑
h⊂bdry

Vh

π − ∑
σD⊃h

θ
(σD)
h

 , (4.2.2)

where σD denotes D-simplices, i.e. D-dimensional simplices with D+1 vertices, h denotes ‘hinges’,

i.e. D − 2-simplices, Vh is the volume of a hinge and θ
(σD)
h denotes the internal dihedral angle in

the D-simplex σD at the hinge h. The terms in brackets in (4.2.2) define the bulk and boundary
deficit angles

ω
(bulk)
h := 2π −

∑
σD3h

θ
(σD)
h , (4.2.3)

ω
(bdry)
h := kπ −

∑
σD3h

θ
(σD)
h , (4.2.4)

where k depends on the number of pieces one is glueing together at this boundary. If there are
only two pieces we have k = 1.

The dihedral angles are complicated functions of the lengths variables, so that the integral in
(4.2.1) cannot be computed analytically. Additionally one has to take the generalized triangle
inequalities for the range of integration into account.

To circumvent this issue, we consider linearized Regge Calculus in which one chooses a classical

background solution (for the edge lengths) l
(0)
e satisfying the triangle inequalities and one quantizes,

i.e. integrates over, the perturbations λe around it.
Therefore consider a small perturbation around a background solution

le = l(0)
e + λe (4.2.5)

and expand the Regge action up to second order in the perturbation variables λe:

S = S(0)
∣∣∣
le=l

(0)
e

+
∂S

∂le

∣∣∣
le=l

(0)
e

λe +
1

2

∂2S

∂le∂le′

∣∣∣
le=l

(0)
e

λeλe′ . (4.2.6)

The background edge lengths l
(0)
e are defined as the solution to the Regge equations,

∂S

∂le
= −

∑
h⊃e

∂Vh
∂le

ωh = 0 (4.2.7)

such that the first order term in (4.2.6) vanishes for the bulk edges. More specifically we take the

background solution to be (locally) flat, that is ω
(bulk)
h = 0. (This is exactly the equation of motion

in 3D.) The second order term is defined by the matrix of second derivatives, that is the Hessian.
In three dimension one obtains due to the Schläfli identity2

∂2S

∂le∂le′
= −∂ωe

∂le′
. (4.2.8)

In four dimensions we obtain (using again the Schläfli identity):

∂2S

∂le∂le′
= −

∑
h

∂Ah
∂le′

∂ωh
∂le
−
∑

h⊂bulk

∂2Ah
∂le∂le′

ω
(bulk)
h −

∑
h⊂bdry

∂2Ah
∂le∂le′

ω
(bdry)
h . (4.2.9)

2The Schläfli identity
∑
h⊂∆(D) Vh δθ

(∆(D))
h = 0 ensures that terms with second derivatives of the dihedral angles

vanish.

101



4 Path integral measure and triangulation independence in discrete gravity

The bulk deficit angles ω
(bulk)
h vanish on a flat (background) solution.

For the evaluation of these Hessian matrices, we will need the first derivatives of the dihedral
angles with respect to the length variables. A formula valid for simplices of arbitrary dimension D
can be found in [C51]:

∂θ̃kl
∂lhm

=
1

D2

lhm

sin(θ̃kl)

VhVm
V 2

(
cos(θ̃kh) cos(θ̃ml) + cos(θ̃km) cos(θ̃hl)+

+ cos(θ̃kl)
(

cos(θ̃kh) cos(θ̃km) + cos(θ̃lh) cos(θ̃lm)
))

. (4.2.10)

In (4.2.10) θ̃kl denotes the dihedral angle (in a D-simplex) between the two D−1-simplices formed
without the vertices k and l respectively. lhm is the length of the edge between vertices h and m.
Vh denotes the volume of the (D− 1) simplex formed without vertex h in the D-simplex. V is the
volume of the respective D-simplex.

In case the dihedral angle θ̃kl and the edge lhm do not share a vertex, which implies that (kl) =
(hm), i.e. the hinge is formed without the vertices h and m in the D-simplex, equation (4.2.10)
simplifies using the convention cos θ̃ll = −1:

∂θ̃hm
∂lhm

=
1

D2

lhm

sin θ̃hm

VhVm
V 2

(
1− cos2 θ̃hm

)
=

1

D2

lhmVhVm
V 2

sin θ̃hm =
1

D(D − 1)

lhmVhm
V

. (4.2.11)

This result (4.2.11) will be crucial for an alternative derivation of the matrix elements of the Hessian
(4.2.11) in section 4.3. This alternative derivation applies to configurations defining Pachner moves,
which we will discuss in the next section.

4.2.1 Pachner Moves

Pachner moves are local changes of the triangulation which, if applied consecutively, allow to go
from any triangulation of a given manifold to any other triangulation of that manifold [C33,C34]. In
quantum Regge calculus one usually fixes the triangulation and just integrates over the edge lengths
in this given triangulation. Given this definition the question arises of how the result depends on the
choice of triangulation. Note that the triangulation is only an auxiliary structure, which is put in
in order to regularize the (continuum) path integral. Hence it would be advantageous, if the path
integral (with or without given boundary triangulation and condition) would depend minimally
on the choice of (bulk) triangulation. In case the path integral does not depend at all on the
triangulation, we do not even need to take any refinement limit (here of the bulk triangulation only),
as the result will not change under refinement. Such a strong version of discretization independence
can actually be expected in 3D, in which gravity is a topological theory, describing the dynamics of
only global (topological) variables. Indeed we will find a measure that will render the path integral
discretization independent in this sense. (That the linearized action is invariant under refinements
has been shown in [C27].) Locally this discretization independence implies that the path integral is
form invariant ‘under Pachner moves’. More precisely, we will consider here Pachner moves arising
by integrating out certain edges in the triangulation, so that the remaining edges still define a
triangulation. The form of the (discretized) path integral should then be invariant.

We will consider a similar requirement in 4D. This defines however, a theory with local degrees
of freedom, where not even the (linearized) action is invariant under change of triangulation [C27,
C52–C54]. This broken invariance can however be isolated into one of the Pachner moves, the 3−3
move. Hence we can at least ask whether it is possible to define a measure that would render the
path integral invariant under the remaining Pachner moves.
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4.2 Linearized Regge Calculus

A x− y Pachner move changes a complex of x D–simplices into one with y D–simplices without
changing the boundary triangulation. Here the parameters x, y are related by x+y = D+ 2. Since
the boundary is not changed, the Pachner moves act locally in the triangulation. This also allows
us (for the cases with x > y) to consider the initial configuration of x D simplices, to integrate out
the bulk edges and to re–interpret the resulting partition function as one for the complex with y
simplices. Note also that the x− y and the y − x move are inverse to each other.

In the following sections we will introduce the Pachner moves in 3D and 4D and shortly point
out some points pertaining to the dynamics defined by Regge calculus.

4.2.2 Pachner moves in 3D

Here we have two Pachner moves 3 − 2 and 4 − 1 (and their inverses). Note that the equation of
motion for 3D Regge calculus require flatness, i.e. vanishing deficit angles.

3–2 move

The first Pachner move we will consider is the 3− 2 move, see Fig. 4.1. In the initial configuration
three tetrahedra (0123), (0124) and (0134) share an edge (01). This is the only bulk edge. Removing
(i.e. integrating out) this edge and introducing a triangle (123) we obtain a configuration of two
tetrahedra (0234) and (1234) sharing this triangle.

As there is only one bulk edge in the initial configuration, we will also have only one equation
of motion. This equation of motion requires the vanishing of the bulk deficit angle ω01 and in this
way fixes the length l01 of the edge (01) as a function of the boundary edge lengths.

2

3

4

0

1

2

3

4

0

1

(01)

Figure 4.1: 3− 2 move. The two tetrahedra can be split into three by connecting the two vertices
separated by the shared triangle. The dashed line in the three tetrahedra configuration
is the dynamical edge.

4–1 move

The other Pachner move in 3D we are going to discuss is the 4 − 1 move. Here in the initial
configuration four tetrahedra share one vertex. This configuration can be obtained by subdividing a
tetrahedron (1234) into four tetrahedra by placing one vertex 0 into the tetrahedron and connecting
0 with the other four vertices. In the 4− 1 move this vertex 0 and the adjacent edges are removed,
leaving us with one tetrahedron (1234), see also Fig. 4.2.

In the initial configuration with four tetrahedra, there are four bulk edges, and hence four equa-
tions of motion. These, again require that the (four) bulk deficit angles have to vanish, i.e. that the
complex has to be flat. We know that we can easily construct such solutions by placing a vertex
into the (flat) tetrahedron (1234) and determining the lengths of the four bulk edges. There is, of
course, a three–dimensional parameter space of where to place the inner vertex exactly, hence the
solutions are not uniquely determined. This is the well known gauge freedom in Regge calculus
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4 Path integral measure and triangulation independence in discrete gravity

on flat solutions [C18, C51, C55–C58], a discrete remnant of the diffeomorphism symmetry in the
continuum. From this it follows that of the four equations of motions only one is independent and
that we have to expect three null modes in the Hessian matrix of the system, signifying three gauge
degrees of freedom. Further discussions and extensions to the case with cosmological constant can
be found in [C18,C23,C24,C28].

1

2

3

4

1

2

3

4

0

Figure 4.2: 4 − 1 move. The tetrahedron is split into four by placing one additional vertex inside
the tetrahedron and connecting it to the remaining vertices in the boundary giving four
internal edges (dashed).

4.2.3 Pachner moves in 4D

4–2 move

This Pachner move is very similar to the 3− 2 move in 3D, see Fig. 4.3. The initial configuration
is one with four 4–simplices, (01234), (01235), (01245) and (01345), sharing one edge (01). All the
other edges are boundary edges. Removing this edge and introducing a tetrahedron (2345), we
obtain a configuration with two 4-simplices (02345) and (12345) sharing this tetrahedron.

As there is only one bulk edge we again have only one equation of motion for the initial configura-
tion. A (flat) solution can always be constructed in the following way: The boundary triangulation
is the same as for two 4–simplices sharing one tetrahedron. Such a configuration can always (i.e.
for all boundary edge lengths satisfying the appropriate inequalities) be embedded into flat 4D
space. We can hence straightforwardly determine the distance between the vertices 0 and 1 in the
induced metric, which defines the length of the edge (01).

In some exceptional cases there might be also solutions with curvature [C23,C24], however this
seems to be rather a discretization artifact. For the perturbative solutions around flat space we are
interested in, we can note that the linearized equations of motion have a unique (flat) solution for
all (linearized) boundary perturbations.

0 1

2

3 4

5

0 1

2

3 4

5

(01)

Figure 4.3: 4 − 2 move. By connecting the vertices (0) and (1) the two 4-simplices are split into
four with one bulk edge, here drawn dashed.
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4.2 Linearized Regge Calculus

5–1 move

The 5− 1 is again analogous to the 4− 1 move in 3D. In the initial configuration five 4–simplices
share one vertex (0) which is adjacent to five bulk edges. Removing this vertex and the adjacent
edges we are left with just one simplex (12345), see also Fig. 4.4.

Also here, we can construct for all boundary configurations flat solutions to the equations of
motion. These can be found by placing the vertex (0) into the (flat) 4–simplex (12345) and
determining the induced lengths of the edges (0x), where x = 1, . . . , 5. For given boundary data
there is a four–parameter space of such solutions, according to the four parameters describing the
position of the vertex inside the 4–simplex. Hence we can expect four null modes for the Hessian
of this configuration.

1

2

3 4

5

1

2

3 4

5

0

Figure 4.4: 5− 1 move. The 4-simplex is split into five 4-simplices by placing one vertex inside the
4-simplex and connecting it to the boundary vertices, hence obtaining five bulk edges
(dashed lines).

3–3 move

We are left with the 3 − 3 move, which is significantly different from all the other Pachner moves
discussed so far.

Assume three 4-simplices (01234), (01235) and (01245) sharing one triangle (012). Note that
this configuration does not include a triangle (345), as neither of the three 4–simplices contains the
three vertices (3), (4), (5).

The 3 − 3 move rebuilds this configuration into three 4–simplices (01345), (02345) and (12345)
which share the triangle (345) and do not include the triangle (012), see also Fig. 4.5.

0

1

23

4

5 0

1

23

4

5

(012) (345)

Figure 4.5: 3− 3 move. Three 4–simplices sharing the triangle (012) and not containing (345) are
rebuilt into three 4–simplices sharing the triangle (345) and not including triangle (012).
The shared triangles are drawn dashed in this figure. Note that all edges are boundary
edges and are contained in both configurations, so the configurations are determined
by the shared triangle.

In contrast to all other Pachner moves discussed so far the 3−3 move does not involve dynamical
edges, i.e. all edges are in the boundary and therefore included in both configurations. We therefore
do not have an equation of motion. Note however that, again in contrast to the other Pachner
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4 Path integral measure and triangulation independence in discrete gravity

moves, not all boundary configurations define a flat geometry. That is, in both configurations we
have only one bulk triangle. The vanishing of the deficit angle for this bulk triangle gives one
condition for the length of the boundary edges. In case this condition is violated we do have a
curved configuration. In particular, even on a flat background, we can have a curvature excitation,
if the boundary perturbations do not satisfy the linearized flatness condition.

In the following section we will specify the Hessian matrix of the Regge action associated to the
various configurations appearing in the Pachner moves. We could start with the formula (4.2.10)
for the derivatives of the dihedral angles to obtain the derivatives of the deficit angles, so that these
can be combined to give the entries in the Hessian. This procedure would however result in very
lengthy formulas and not use the flatness of the background solution. We will use an alternative
strategy, which will produce a quite enlightening structure for the Hessian, and for which we present
some auxiliary formulas in the next section.

4.3 Computation of the Hessian matrix in 3D

In this section we will compute the matrix elements of the Hessian matrix. To do so one has to
compute terms of the form ∂ω

∂l for which we will present a general strategy, similar to [C59, C60].
We need to extend the ideas in [C59,C60] in order to also obtain the matrix elements of the Hessian
indexed by edges in the boundary. First we will derive two auxiliary formulas, which is the subject
of the next section.

4.3.1 Auxiliary formulas

For concreteness we will derive the auxiliary formulas for the initial configuration of the 3 − 2
move (see Fig. 4.1) with the bulk edge (01) as described in the previous section. Assume that
this configuration can be embedded into flat (3-dimensional) space, i.e. R3. This implies that for
instance l01, the edge length of the dynamical edge (01), is fixed as a function of all other edge
lengths. Hence there is one relation which all edge lenghts have to satisfy, which is ω01 = 0, i.e.
the deficit angle at the edge (01) vanishes. (Note that this relation can also be derived by requiring
that the Cayley-Menger determinant of this configuration, giving the square of the 4D volume,
vanishes.) As there is one condition, at least two edge lenghts have to be varied in order to preserve
this relation. Therefore consider variations of exactly two edge lenghts, l and l′. Alternatively one
can interpret l′ as a function of l, where all other edge lengths are (fixed) parameters. We will
derive a relation between the edge variations δl and δl′ or alternatively the partial derivative ∂l′

∂l .

For example, consider l′ = l23 and l = l34. We vary l23 and l34 such that ω01 = 0, i.e. the
triangulation is still embeddable in flat space. This implies:

0 = δω01 =− δθ(0123)
01 − δθ(0124)

01 − δθ(0134)
01

=− δθ(0123)
01 − δθ(0134)

01 (4.3.1)

where θ
(01xy)
01 is the dihedral angle at edge (01) in the tetrahedron (01xy). δθ

(0124)
01 = 0 since it

neither depends on l23 nor on l34, as these edges are not part of the tetrahedron (0124).

Using equation (4.2.11), we obtain:

∂θ
(0123)
01

∂l23
=

l01l23

6V4̄

,
∂θ

(0134)
01

∂l34
=

l01l34

6V2̄

(4.3.2)

where Vī denotes the volume of the tetrahedron formed by all vertices except i, e.g. 4̄ → (0123),

such that V4̄ = V(0123). Since δθ
(0123)
01 (δθ

(0134)
01 ) can only depend on l23 (l34 respectively), we can
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use equations (4.3.2) in (4.3.1) and obtain:

∂l23

∂l34
= − l34

l23

V4̄

V2̄

. (4.3.3)

In general one finds (for a five vertex configuration with vanishing Cayley-Menger determinant)
[C59,C60]: ∣∣∣∣ ∂lij∂ljk

∣∣∣∣ =

∣∣∣∣ ljkVk̄lijVī

∣∣∣∣ . (4.3.4)

The actual sign depends on the geometric configuration under consideration.
In addition to relation (4.3.4) we need an analogous relation between deviations of edges not

sharing a vertex. This can be derived from (4.3.4): Consider variations of three edge lengths lij ,
ljk and lkm such that ω01 = 0. That is, lij can be understood as a function of ljk and lkm. Then

δlij =
∂lij
∂ljk

δljk +
∂lij
∂lkm

δlkm . (4.3.5)

Now we restrict the variations further by requiring δlij = 0, such that we have to additionally

understand ljk as a function of lkm, that is lij = lij

(
ljk(lkm), lkm

)
. Thus one obtains for (4.3.5):

0 =
∂lij
∂ljk

∂ljk
∂lkm

δlkm +
∂lij
∂lkm

δlkm (4.3.6)

=⇒ ∂lij
∂lkm

= − lij
ljk

ljk
lkm

. (4.3.7)

With (4.3.4) we find (see also [C60]): ∣∣∣∣ ∂lij∂lkm

∣∣∣∣ =

∣∣∣∣ lkmVk̄Vm̄lijVīVj̄

∣∣∣∣ . (4.3.8)

To summarize (4.3.4), (4.3.8):∣∣∣∣ ∂lij∂ljk

∣∣∣∣ =

∣∣∣∣ ljkVk̄lijVī

∣∣∣∣ ,

∣∣∣∣ ∂lij∂lkm

∣∣∣∣ =

∣∣∣∣ lkmVk̄Vm̄lijVīVj̄

∣∣∣∣
where in fact (4.3.4) is a special case of (4.3.8).

In the following section we will use relations (4.2.11), (4.3.4) and (4.3.8) to compute terms of the
form ∂ω

∂l .

4.3.2 Computation of ∂ω
∂l

The Hessian of the Regge action has entries of the form ∂ω
∂l , which we have to evaluate on config-

urations where ω(bulk) = 0. As in the previous section we consider the initial configuration of the
3 − 2 move. We will start with the calculation of ∂ω01

∂l01
, which is the derivative of the bulk deficit

angle with respect to the bulk edge length.

The equation of motion for the perturbations λ01 around the flat solution l
(0)
01 is given by

0 =
∑
b

∂2S

∂lb∂l01
λb +

∂2S

∂l01∂l01
λ01 = −

∑
b

∂ω01

∂lb
λb −

∂ω01

∂l01
λ01 . (4.3.9)

Here b indicates edges in the boundary triangulation, and the sum is over all such edges.
Now we know that these equation of motion specify λ01, such that the linearized deficit angle

at (01) is still flat. That is, if we choose the boundary perturbations, such that for instance only
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λ23 ∼ δl23 is non–vanishing, we know that the ration of λ01 ∼ δl01 and λ23 ∼ δl23 has to satisfy
(4.3.8). This specifies the ratio of the derivatives ∂ω01/∂l01 and ∂ω01/∂l23. For the latter derivative,
as l23 is only included in one of the three tetrahedra we have via (4.2.11)

∂ω01

∂l23
= −∂θ

(0123)
01

∂l23
= − l01l23

6V4̄

. (4.3.10)

This finally gives ∣∣∣∣∂ω01

∂l01

∣∣∣∣ =

∣∣∣∣ l01l23

6V4̄

δl23

δl01

∣∣∣∣ =
(4.3.8)

∣∣∣∣ l201

6

V0̄V1̄

V2̄V3̄V4̄

∣∣∣∣ . (4.3.11)

The actual sign is determined by the geometry and discussed in the next section. Note that we
could have also used the lengths l24 or l34 instead of l23, which would have however all lead to the
same result.

Next we consider terms of the form ∂ω01
∂lb

, i.e. derivatives of the deficit angle at the bulk edge
with respect to a boundary edge length. Note that for b = 23, 24, 34 the result is already given by
(the analogue of) (4.3.10).

To find the derivative with respect to the remaining boundary lengths consider again (4.3.9) with
all boundary perturbations vanishing except, say λ0i ∼ δl0i. Then, with the same line of arguments
as used previously we can conclude

∂ω01

∂l0i
= −∂ω01

∂l01

δl01

δ0i
(4.3.12)

and hence ∣∣∣∣∂ω01

∂l0i

∣∣∣∣ =
(4.3.4)

∣∣∣∣ l01l0i
6

V0̄

Vj̄Vk̄

∣∣∣∣ (4.3.13)

where i ∈ {2, 3, 4} and j, k are such that i, j, k = 2, 3, 4. Again, the sign is determined by the
geometry under consideration.

Note that due to the symmetry of second derivatives of the Regge action we have

∂ωe
∂le′

=
∂ωe′

∂le
. (4.3.14)

Hence we can deduce terms of the form ∂ωb
∂l01

from ∂ω01
∂lb

. Thus only terms of the form ∂ωb
∂lb′

remain to

be computed, i.e. derivatives of exterior angles with respect to boundary edge lengths.
To this end, remember that the initial configuration of the 3 − 2 Pachner move is flat. During

the Pachner move the edge (01) is removed and replaced by a triangle (234), such that neither the
intrinsic geometry (i. e. flatness) nor the extrinsic geometry (the embedding into flat space) of the

boundary changes. In particular we will have that the extrinsic curvature angles ω
(3)
b (lb′ , l01(lb′)) =

ω
(2)
b coincide in the initial and finial configuration of the Pachner moves, involving three or two

tetrahedra respectively. Here we understand l01 as a function of the boundary lengths lb′ as it is
determined by the requirement of flatness.

Now varying just one boundary edge lengths lb′ , together with l01 = l01(lb′) as function of this
lengths we obtain:

dω
(2)
b

dlb′
=
dω

(3)
b

dlb′
=
∂ω

(3)
b

∂lb′
+
∂ω

(3)
b

∂l01

∂l01

∂lb′
(4.3.15)

=⇒ ∂ω
(3)
b

∂lb′
=
dω

(2)
b

dlb′︸ ︷︷ ︸
∂ω

(2)
b

∂lb′

− ∂ω
(3)
b

∂l01︸ ︷︷ ︸
∂ω01
∂lb′

∂l01

∂lb′
. (4.3.16)
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This gives finally

∂ω
(3)
b

∂lb′
=
∂ω

(2)
b

∂lb′
+ s

lblb′

6

VīVj̄Vm̄Vn̄∏
n Vn̄

(4.3.17)

for b = (ij) and b′ = (mn). Here s = ±1 denotes a sign, that will be determined in the next section.

Determining the sign of ∂le
∂le′

In the previous section we have seen that in order to compute the full expression for the matrix
elements of the Hessian, the actual sign of the derivatives of the form ∂le

∂le′
has to be determined.

To be more precise, one only needs to determine the signs of ∂l01
∂lb

, where one has to treat the cases
in which lb shares a vertex with l01 and where it does not share a vertex separately.

We start with the case where lb shares a vertex with l01, e.g. l0i with i ∈ {2, 3, 4}. In the
derivation of the formula for ∂ω01

∂l0i
, we considered variations of the edge lengths l01 and l0i, while

keeping all other edge lengths fixed, under the condition that the triangulation is supposed to
remain flat. This allowed us to understand l01 as a function of l0i, l01 = l01(l0i). To determine the
sign of this dependence, consider Fig. 4.6:

0
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2

3

4

0

1

2

3

4

Figure 4.6: As one increases the edge lengths l03, one also has to increase l01 in order to keep the
triangulation flat, i.e. ω01 = 0

Assume that we enlarge l0i slightly, i.e. δl0i > 0. If we do not change l01 as well, the condition
ω01 = 0 will be violated since all other edge lengths are fixed. However, if one allows l01 to vary as
well, the vertex (0) will be ‘pushed’ away from the vertex i, but since the edge lengths l0j and l0k
are fixed, l01 has to be increased, i.e. δl01 > 0. Hence:

δl0i > 0 =⇒ δl01 > 0 =⇒
(4.3.4)

δl01

δl0i
=
l0iVī
l01V1̄

. (4.3.18)

We follow a similar line of argumentation for terms of the form
∂lij
∂l01

, with i, j ∈ {2, 3, 4}. Consider
Fig. 4.7:

Assume that we slightly increase lij , i.e. δlij > 0. Since the edge lenghts lik and ljk are fixed,
the vertex k is being ‘pulled’ towards the edge (ij). Furthermore the edge lengths l0i, l0j and l0k
are fixed, such that the vertex (0) is ‘dragged’ towards the edge (ij). This configuration can only
remain flat, if l01 is decreased, i.e. δl01 < 0. Hence:

δlij > 0 =⇒ δl01 < 0 =⇒
(4.3.8)

δl01

δlij
= −

lijVīVj̄
l01V0̄V1̄

. (4.3.19)

This is also consistent with (4.3.10).
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Figure 4.7: As one increases the edge lengths l23, one has to decrease l01 in order to keep the
triangulation flat, i.e. ω01 = 0

4.3.3 Summary for the 3–2 move

Let us summarize the results of the previous paragraphs.

• In case either edge (ij) or the edge (km) is in the bulk, one obtains:

H
(3)
(ij),(km) :=

∂2S

∂lkm∂lij
= − ∂ωij

∂lkm
= (−1)si+sj+sk+sm lijlkm

6

VīVj̄Vk̄Vm̄∏
n Vn̄

(4.3.20)

where

si =

{
1 if i ∈ {0, 1}
0 else

(4.3.21)

and the product in the denominator runs over all vertices in the triangulation.

• In case both the edges (ij) and (km) are in the boundary, one obtains:

H
(3)
(ij),(km) :=

∂2S

∂lkm∂lij
= −

∂ω
(3)
ij

∂lkm
= (−1)si+sj+sk+sm lijlkm

6

VīVj̄Vk̄Vm̄∏
n Vn̄

−
ω

(2)
ij

∂lkm
(4.3.22)

where ω
(i)
km denotes the exterior angle at the (boundary) edge (km) in the i tetrahedra con-

figuration, si is defined as above.

Notice the simple form of the Hessian,

H
(3)
(ij),(km) = H

(2)
(ij),(km) + c h(ij) h(km) , (4.3.23)

in particular that the second summand in (4.3.23) factorizes. (Here H
(2)
(ij),(km) = 0 if either (ij) of

(km) equals (01).)
We have now all the prerequisites to discuss the (form-) invariance of the path integral associated

to the 3− 2 move.

4.3.4 Invariance of the path integral

For the 3− 2 move we have to consider an expression of the following form:

P3−2 =

∫
dλ01 µ(l) exp

− ∑
(ij),(km)

1

2
H

(3)
(ij),(km) λij λkm

 (4.3.24)

where:
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4.3 Computation of the Hessian matrix in 3D

• µ(l) is a measure factor, which we assume to only depend on the background variables l, such
that the configuration is flat.

• H(3)
(ij),(km) is the (ij),(km)-matrix element of the Hessian in the three tetrahedra configuration,

which we computed in the previous section, see (4.3.20), (4.3.22).

• Since λ01 is the only dynamical edge (variation) in the configuration under discussion, the

sign of H
(3)
(01),(01) is crucial for the convergence of (4.3.24). In the sign convention introduces

in equation (4.2.2) H
(3)
(01),(01) > 0, such that (4.3.24) converges.

We can easily perform the integral in (4.3.24) as it is a (partial) Gaussian integration. For an
integral of the form

I =

∫
dq1 . . . dqr exp

{
−1

2
~qT M ~q

}
(4.3.25)

where M is a real, symmetric, positive-definite n × n-matrix and ~q = (qi) denotes a vector with
i = 1, . . . , r, r + 1, . . . n. Splitting the matrix M accordingly into submatrices

M =

(
W0 V
V T U0

)
(4.3.26)

we can write

I =
(2π)

r
2√

det(W0)
exp

{
−1

2
~uT U ~u

}
with U := U0 − V T W−1

0 V . (4.3.27)

Using this result for the 3− 2 move (4.3.24), we identify:

W0 = H
(3)
(01),(01) = − ∂ω01

∂l01
(4.3.28)

(U0)b,b′ = −∂ω
(2)
b

∂lb′︸ ︷︷ ︸
H

(2)

b,b′

+
∂ω01

∂lb

∂l01

∂lb′
(4.3.29)

(V )(01),b = − ∂ω01

∂lb
. (4.3.30)

Furthermore requiring form invariance of (4.3.24) implies

P3−2 ∝ exp

− ∑
(ij)6=(01),(km)6=(01)

1

2
H

(2)
(ij)(km) λij λkm

 (4.3.31)

such that in order to show that (4.3.24) is invariant (on the level of the action), one has to show
that U = H(2), which implies

− ∂ω01

∂lb

∂l01

∂lb′
=

[
∂ω01

∂l01

]−1 ∂ω01

∂lb

∂ω01

∂lb′
. (4.3.32)

Note that we have already proven that (4.3.32) holds due to the identity (4.3.12). This shows form
invariance of the action.

For the invariance of the measure µ(l) in (4.3.24) we examine the contribution from the Gaussian
integral: √

2π√
det(W0)

=

√
2π√

H
(3)
(01),(01)

=

√
2π√
−∂ω01
∂l01

=

√
12π

l01

√
V2̄V3̄V4̄

V0̄V1̄

(4.3.33)
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4 Path integral measure and triangulation independence in discrete gravity

Hence, choosing the measure factor as

µ(l) =

∏
e

le√
12π∏

τ

√
Vτ

(4.3.34)

we obtain a partition function, invariant under 3− 2 Pachner moves. Here e denotes the edges and
τ the tetrahedra in the triangulation.

4.3.5 4–1 move

For 3D gravity, in addition to the 3 − 2 move, we have also to consider the 4 − 1 move. This
move amounts to the subdivision of one tetrahedron, denoted by (1234), into four by adding one
additional vertex (0), placing it inside the original tetrahedron and connecting it with all of the
remaining vertices, see section 4.2.2.

In contrast to the 3 − 2 move, the edge lengths of the new edges, i.e. the position of the new
vertex inside the original tetrahedron, is not uniquely fixed. In fact the action is invariant under
translations of the vertex (0) inside the tetrahedron (1234), such that one expects the Hessian
matrix to have three null eigenvectors. In order to compute this matrix, terms of the form ∂ωe

∂le′

have to be evaluated just as in the 3 − 2 move. Following a similar derivation as in the previous
section, one arrives at the following terms:

• In case either the edge e = (ij) or edge e′ = (km) are in the bulk, one obtains:

∂2S

∂lkm∂lij
= (−1)si+sj+sk+sm+1 lijlkm

6

VīVj̄Vk̄Vm̄∏
n Vn̄

(4.3.35)

where

si =

{
1 if i = 0
0 else

. (4.3.36)

• In case both edges are in the boundary, one obtains:

∂2S

∂lkm∂lij
= (−1)si+sj+sk+sm+1 lijlkm

6

VīVj̄Vk̄Vm̄∏
n Vn̄

−
∂ω

(1)
ij

∂lkm
(4.3.37)

where ω(1) denotes an exterior dihedral angle in the one tetrahedron configuration.

Again, notice the simple form of the Hessian,

H
(4)
(ij),(km) = H

(1)
(ij),(km) + c h(ij) h(km) , (4.3.38)

with a factorizing summand. This form of the Hessian makes the appearance of null vectors obvious.

Null eigenvectors

Since the pure bulk part H
(4)
(0i),(0j) of the Hessian matrix factorizes, we can easily examine the

condition for null vectors ~v: ∑
j

H(0i),(0j)vj = ch0i

∑
j

h0jvj
!

= 0 (4.3.39)

Hence, due to the factorizing form of the Hessian, we just have one condition for the null vectors.
Therefore the Hessian has three null eigenvectors and of the four bulk degrees of freedom three are
gauge.
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4.3 Computation of the Hessian matrix in 3D

Furthermore we have to discuss the sign of the Hessian. The only non–vanishing eigenvalue of the
submatrix H(0i),(0j) can also easily be determined due to the factorizing form to be

∑
j H(0j),(0j).

This gives a negative eigenvalue, hence the Gaussian integral would not be convergent. This is a
trace of the conformal mode problem in Euclidean gravity: the kinematic term of the conformal
mode comes with the ‘wrong’ sign, so that the Euclidean action is not bounded from below. We see
that the Pachner moves allow a nice isolation of this mode problem into the 4− 1 moves. We will
change the global sign for the action of the 4 − 1 move, such that the integral (over the one non-
gauge mode) converges. This can be understood as selecting a complex contour for the integration
for the conformal and the other modes separately, see [C61] for a discussion in the continuum.

Invariance of the path integral

Similar to the 3− 2 move, we have to consider

P4→1 =

∫ ∏
i

dλ0i µ(l) exp

− ∑
(ij),(km)

1

2
H

(4)
(ij),(km) λij λkm

 (4.3.40)

where µ(l) is again a measure factor, which we assume to depend only on background variables l,
which have to make up a flat configuration. (4.3.40) is again a partial Gaussian integral but with
three gauge degrees of freedom, for which we will modify the general method of section 4.3.4.

Again the general form for the Gaussian integral is:

I =

∫
dq1 . . . dqr exp

{
−1

2
~qTM~q

}
. (4.3.41)

Since there are gauge degrees of freedom one integrates over the matrix M is singular. Assume
that there are m gauge degrees of freedom such that we can split ~q in the following way:

~q = (q1, . . . , qr−m︸ ︷︷ ︸
=:~w

, qr−m+1, . . . , qr︸ ︷︷ ︸
=:~g

, qr+1, . . . , qn︸ ︷︷ ︸
=:~u

) . (4.3.42)

(Here we assume that the transformation between qr−m+1, . . . , qr and the m gauge parameters is
not singular.) This implies the following split for the matrix M

M =

 W0 Vg V
V T
g G0 Z0

V T ZT0 U0

 (4.3.43)

where W0 is non-singular. Integrating out the degrees of freedom summarized in ~w one obtains:

I =
(2π)

(r−m)
2√

det(W0)
exp

{
−1

2

(
~gTG~g + ~gTZ~u+ ~uTZT~g + ~uTU~u

)}
(4.3.44)

with

G =G0 − V T
g W

−1
0 Vg , (4.3.45)

Z =Z0 − V T
g W

−1
0 V , (4.3.46)

U =U0 − V TW−1
0 V . (4.3.47)

Applying this formalism to the problem under discussion, one identifies (here i, j 6= 0, 1):

(W0)(01),(01) = H
(4)
(01),(01) = −∂ω01

∂l01
, (G0)(0i),(0j) =

∂ω01

∂l0i

∂l01

∂l0j
,

(U0)b,b′ = H
(1)
b,b′ +

∂ω01

∂lb

∂l01

∂lb′
, (Vg)(01),(0i) = −∂ω01

∂l0i
,

(V )(01),b = −∂ω01

∂lb
, (Z0)(0i),b =

∂ω01

∂l0i

∂l0i
∂lb

. (4.3.48)
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4 Path integral measure and triangulation independence in discrete gravity

We therefore obtain:

(G)(0i),(0j) =
∂ω01

∂l0i

∂l01

∂l0j
+

[
∂ω01

∂l01

]−1 ∂ω01

∂l0i

∂ω01

∂l0j

(4.3.12)
= 0 (4.3.49)

(Z)(0i),b =
∂ω01

∂l0i

∂l01

∂lb
+

[
∂ω01

∂l01

]−1 ∂ω01

∂l0i

∂ω01

∂lb

(4.3.12)
= 0 (4.3.50)

(U)b,b′ = H
(1)
b,b′ +

∂ω01

∂lb

∂l01

∂lb′
+

[
∂ω01

∂l01

]−1 ∂ω01

∂lb

∂ω01

∂lb′

(4.3.12)
= H

(1)
b,b′ . (4.3.51)

This proves form invariance of the action, as the remaining term in the exponential corresponds to
the action of the tetrahedron (1234) (after we have rotated back the global sign of the action).

Note that after having only integrated over λ01 the other bulk variables λ0i, i = 2, 3, 4 do not
appear anymore in the exponential.

Let us first consider how the measure factor is modified by the Gaussian integration over λ01.
The additional factor is given by

√
2π√

det(W0)
=

√
12π

l01

√
V2̄V3̄V4̄

V0̄V1̄

. (4.3.52)

If we consider µ(l) in (4.3.40) to be the same measure which gives an invariant amplitude under
the 3− 2 move, namely

µ(l) =

∏
e

le√
12π∏

τ

√
Vτ

(4.3.53)

where e includes all boundary and bulk edges and τ the four tetrahedra of the initial configuration,
we obtain:

P4−1 =

∏
b lb√

12πV0̄

exp

−∑
b,b′

1

2
H

(1)
b,b′ λb λb′


∫ ∏

i 6=1
l0i√
12π

dλ0i

V1̄

. (4.3.54)

The remaining integral over the variables λ02, . . . , λ04 can be identified with an integration over
the gauge orbit, which is given by the displacement of the inner vertex (0). As one can show
[C60,C62], see also appendix 4.A, the following identity between integration measures holds

d3xα0 =

∏
i=2,3,4 l0i dl0i

6V1̄

. (4.3.55)

Here d3xα0 is the integration measure of the Euclidean coordinates xα0 , α = 1, 2, 3 of the vertex (0).
The displacement of this vertex corresponds exactly to the gauge action of the discrete remnant of
the diffeomorphisms [C18,C58,C63]. Hence we will replace the last factor in (4.3.54) by 1. This can
be understood as resulting from a gauge fixing procedure, including the appropriate Faddeev-Popov
determinant. (The numerical factors are chosen to conform with the integration measure found for
the 3− 2 move, however it is not possible to fix them uniquely.)

4.4 Summary for 3D gravity

For a general 3D triangulation we define the path integral for linearized Regge calculus by

P :=

∫ ∏
e

le√
12π∏

τ

√
Vτ

∏
e⊂bulk

dλe exp

−1

2

∑
e,e′

He,e′λeλe′

 . (4.4.1)

le is the length of the edge e, Vτ is the volume of the tetrahedron τ , λe is the edge length perturbation
of the edge e and He,e′ is the e-e′ matrix element of the Hessian matrix of the Regge action. The
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considerations conducted in the previous section show that (4.4.1) is invariant under Pachner moves,
in case one follows the gauge fixing and sign rotation procedure for the 4−1 move discussed above.
Hence (4.4.1) does not depend on the choice of bulk triangulation and in this sense it is discretization
independent.

Here we assigned the numerical pre–factor (12π)−1/2 to the edges of the triangulation (as the
π factors result from integration over edges). Another possibility would be to associate this pre–
factor to the tetrahedra of the triangulation, in which case one needs to appropriately adjust the
numerical constant in the gauge fixing prescription for the 4− 1 move.

Amazingly, the path integral measure which we found for linearized Regge calculus, coincides
with the semi-classical limit of the Ponzano–Regge model [C35–C37]. This is a triangulation inde-
pendent3 spin foam model for 3D quantum gravity. Here the numerical pre–factors (also given by
(12π)−1/2) are associated to the tetrahedra.

It would be interesting to see, whether this correspondence can be extended to 3D Regge cal-
culus with a cosmological constant. This theory can be (classically) formulated in a triangulation
independent way, by using curved tetrahedra [C28,C50]. The corresponding quantization is given
by the Turaev-Viro model [C64], for which the semi–classical limit has been obtained [C65]. Hence
(4.4.1) should give a triangulation independent amplitude for linearized Regge calculus with a (pos-
itive) cosmological constant by replacing le and Vτ by their respective counterparts on the sphere,
i.e. sin(le), where le ∈ [0, π], and Vτ , the determinant of the Gram matrix.

4.5 Computation of the Hessian matrix in 4D

We are now going to discuss the 4D case. We will proceed as for 3D, that is first determine the
matrix elements of the Hessian and then consider the path integral for the Pachner moves. It will
turn out that the 4 − 2 and 5 − 1 moves behave very similarly to the 3 − 2 and the 4 − 1 move,
respectively, in 3D. There is however an additional Pachner move in 4D, namely the 3 − 3, which
is significantly different, and thus responsible for the non–trivial dynamics of 4D Regge gravity.

The Hessian of the Regge action is given by

∂2S

∂lij∂lmn
= −

∑
stu

∂Astu
∂lmn

∂ωstu
∂lij

−
∑

stu∈bulk

∂2Astu
∂lij∂lmn

ω
(bulk)
stu −

∑
stu∈bdry

∂2Astu
∂lij∂lmn

ω
(bdry)
stu (4.5.1)

where ωstu is the deficit angle at the (bulk or boundary) triangle (stu). In the following we will
not discuss the last two terms in (4.5.1) because we will consider flat background solutions, i.e.
ω(bulk) = 0. That is the second term in (4.5.1) vanishes and the third term is unaffected by Pachner
moves, since the extrinsic geometry, defined by the embedding into flat space, is not changed.
(Furthermore this term is only multiplied by boundary perturbations, which are not integrated
over in the path integrals.)

Hence we define a reduced Hessian matrix:

H(ij),(km) := −
∑
∆

∂A∆

∂lij

∂ω∆

∂lkm
(4.5.2)

which can be rewritten as the product of the following two matrices:

H = −


∂A∆1
∂l01

∂A∆2
∂l01

. . .
∂A∆1
∂l02

. . .
...




∂ω∆1
∂l01

∂ω∆1
∂l02

. . .
∂ω∆2
∂l01

. . .
...

.

 (4.5.3)

3also requiring a gauge fixing procedure for the 4− 1 moves
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4 Path integral measure and triangulation independence in discrete gravity

Here the index summation is over all triangles in the triangulation. So as in 3D we have to compute
terms of the form ∂ω∆

∂le
. To this end we will proceed similarly as in the 3D case, as described in the

next sections.

4.5.1 4–2 move

Auxiliary formulas

As in 3D we will need additional formulas to derive all entries of the Hessian matrix in a compact
way. We start with the derivatives of the dihedral angles at a given triangle with respect to the
length of the opposite edge (4.2.11)

∂θ
(ijkmn)
ijk

∂lmn
=
lmnAijk

12V

where Aijk denotes the area of the triangle (ijk), lmn is the lengths of the edge (mn) and V is the
volume of the 4-simplex (ijkmn).

Now given a flat triangulation with six, i.e. D+2, vertices, we will consider edge lengths variations
of at least two edges under the condition that the triagulation remains flat, i.e. the deficit angles
are vanishing, ω = 0. Then, along the same line of arguments as in 3D, we obtain [C66]:

• In case the varied edges share a vertex:∣∣∣∣ ∂lij∂ljk

∣∣∣∣ =

∣∣∣∣ ljklij Vk̄Vī
∣∣∣∣ (4.5.4)

• In case the varied edges do not share a vertex:∣∣∣∣ ∂lij∂lkm

∣∣∣∣ =

∣∣∣∣ lkmlij Vk̄Vm̄
VīVj̄

∣∣∣∣ (4.5.5)

where Vk̄ denotes the volume of the 4-simplex formed without the vertex k. To determine the sign
of the derivatives in (4.5.4,4.5.5) one has to consider the geometric set–up in detail. Note that
(4.5.4) and (4.5.5) are the exact 4D analogues of (4.3.4) and (4.3.8) respectively.

Computation of ∂ω
∂l

Consider the 4 − 2 move, that is two 4-simplices (02345) and (12345), which share one common
tetrahedron (2345). By connecting vertices (0) and (1), the two 4-simplices are split into four,
namely (01ijk). This edge is the only bulk edge in the configuration with 4 simplices. As for the
3 − 2 move we can use two facts, to specify the matrix elements of the Hessian. Namely on the
one hand, that the equations of motions for the perturbation variable λ01 require flatness, on the
other hand that lengths perturbations around flat space have to satisfy equations (4.5.4,4.5.5). The
equation of motion is given by∑

e6=(01)

H(01),eλe +H(01)(01)λ01 = 0 . (4.5.6)

But as the perturbative solutions are also flat, the perturbation variables λe have to satisfy the
relations (4.5.4,4.5.5). Hence considering boundary data, such that only one λe 6= 0 for e = (km) 6=
(01) and λ01 6= 0 we can deduce∣∣∣∣H(01),(km)

H(01),(01)

∣∣∣∣ =

∣∣∣∣ δl01

δlkm

∣∣∣∣ =

∣∣∣∣ lkml01

Vk̄Vm̄
V0̄V1̄

∣∣∣∣ . (4.5.7)
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To specify the (reduced) Hessian even further, we can use that the linearized deficit angles also
have to vanish. That is consider variations of two edge lengths, here δl01 = λ01 and δl34 = λ34.
Using that the linearized deficit angle δω012 has to vanish we obtain

0 = δω012 =− ∂θ
(01234)
012

∂l34
δl34 +

∂ω012

∂l01
δl01 (4.5.8)

(4.2.11)
= − l34A012

12V5̄

δl34 +
∂ω012

∂l01
δl01 (4.5.9)

=⇒
∣∣∣∣∂ω012

∂l01

∣∣∣∣ =

∣∣∣∣ l01A012

12V5̄

δl34

δl01

∣∣∣∣ (4.5.5)
=

∣∣∣∣ l01A012

12

V0̄V1̄

V3̄V4̄V5̄

∣∣∣∣ . (4.5.10)

This can be repeated for all bulk deficit angles:∣∣∣∣∂ω01i

∂l01

∣∣∣∣ =

∣∣∣∣∣ l01A01i

12

V 2
0̄
V 2

1̄
Vī∏

n Vn̄

∣∣∣∣∣ . (4.5.11)

The sign is again determined by the geometry under consideration.

The rest of the derivations proceeds in the same way as for the 3 − 2 move. That is for the
derivation of the bulk deficit angle with respect to a boundary edge length lb we obtain

∂ω01i

∂lb
= −∂ω01i

∂l01

∂l01

∂lb
. (4.5.12)

To determine the derivatives of the (boundary) exterior angles one again uses that these angles
agree in both configurations of the 4− 2 move. This results in∣∣∣∣∣∣∂ω

(4)
ijk

∂l01

∣∣∣∣∣∣ =

∣∣∣∣ l01Aijk
12

V0̄V1̄VīVj̄Vk̄∏
n Vn̄

∣∣∣∣ (4.5.13)

and furthermore in
∂ω

(4)
ijk

∂lb
=
∂ω

(2)
ijk

∂lb
−
∂ω

(4)
ijk

∂l01

∂l01

∂lb
. (4.5.14)

The missing signs are dependent on the geometry under discussion and determined by similar
considerations as in section 4.3.2. To summarize the results for the 4− 2 move:

• In the case that either the triangle or the edge is in the bulk:

∂ω
(4)
ijk

∂lmn
= (−1)si+sj+sk+sm+sn+1 lmnAijk

12

VīVj̄Vk̄Vm̄Vn̄∏
p Vp̄

(4.5.15)

where

si =

{
1 if i ∈ {0, 1}
0 else

. (4.5.16)

• In the case that both triangle and edge are in the boundary:

∂ω
(4)
ijk

∂lmn
= (−1)si+sj+sk+sm+sn+1 lmnAijk

12

VīVj̄Vk̄Vm̄Vn̄∏
p Vp̄

+
∂ω

(2)
ijk

∂lmn
(4.5.17)

Note that as in 3D the formulas for ∂ω
∂l factorize.
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4 Path integral measure and triangulation independence in discrete gravity

Hessian matrix

In order to complete the calculation for the (reduced) Hessian matrix, the terms ∂A∆
∂lij

∂ω∆
∂lkm

have to

be summed up, where
∂Aijk
∂lij

=
lij

8Aijk
(l2ik + l2jk − l2ij)︸ ︷︷ ︸

=:Fij;k

. (4.5.18)

Note that (4.5.18) is only non-vanishing for four triangles in the triangulation for a given edge (ij).
This implies (in case either (op) or (mn) are in the bulk):

H
(4)
(op),(mn) =−

∑
(ijk)

∂Aijk
∂lop

∂ωijk
∂lmn

= −
∑
k 6=o,p

∂Aopk
∂lop

∂ωopk
∂lmn

(4.5.19)

=
∑
k 6=o,p

1

8

loplmn
12

(−1)so+sp+sk+sm+sn VōVp̄Vm̄Vn̄∏
l Vl̄

Vk̄Fop;k

= (−1)so+sp+sm+sn loplmn
96

VōVp̄Vm̄Vn̄∏
l Vl̄︸ ︷︷ ︸

symmetric in (op)↔ (mn)

∑
k 6=o,p

(−1)skVk̄Fop;k︸ ︷︷ ︸
=:Dop

(4.5.20)

where Dop is a factor independent of the choice of (mn). In case (op) and (mn) are in the boundary,
we obtain:

H
(4)
(op),(mn) = Dop (−1)so+sp+sm+sn loplmn

96

VōVp̄Vm̄Vn̄∏
l Vl̄

−
∑
k 6=o,p

lop
8Aopk

Fop;k
∂ω

(2)
opk

∂lmn︸ ︷︷ ︸
=H

(2)
(op),(mn)

. (4.5.21)

H(4) and H(2) are equal to matrices of second derivatives of the Regge action up to symmetric
terms. Hence H(4) and H(2) are also symmetric matrices. From this it follows that the factor Dop

is the same for all choices of op:

D := Dop = Dmn . (4.5.22)

Note that the elements H4
(ij),(01) satisfy the relation (4.5.7).

Invariance of the path integral

We have to consider:

P4−2 =

∫
dλ01 µ(l) exp

− ∑
(ij),(km)

1

2
H

(4)
(ij),(km) λij λkm

 (4.5.23)

where the measure factor µ(l) is supposed to depend only on the background edge lengths l. Note

that H
(4)
(01),(01) > 0 such that (4.5.23) converges. (Note that in (4.5.23) we did not include boundary

terms which only depend on the boundary perturbations.)

The computation is analogous to section 4.3.4. That is to show (form) invariance of the action,
i. e.

P4−2 ∝ exp

− ∑
(ij)6=(01),(km)6=(01)

1

2
H

(2)
(ij)(km) λij λkm

 (4.5.24)
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we have to proof that

H
(4)
(ij),(mn) =

[
H

(4)
(01),(01)

]−1
H

(4)
(ij),(01)H

(4)
(01),(mn) + H

(2)
(ij),(mn)

(4.5.14)⇐⇒ −
∑
k 6=i,j

∂Aijk
∂lij

∂ωijk
∂l01

∂l01

∂lmn

=

∑
k 6=0,1

∂A01k

∂l01

∂ω01

∂l01

−1∑
k 6=i,j

∂Aijk
∂lij

∂ωijk
∂l01

∑
k 6=0,1

∂A01k

∂l01

∂ω01k

∂lmn

 . (4.5.25)

(ij) and (mn) denote two boundary edges. Applying (4.5.14) to the last term on the right hand
side of (4.5.25) gives:∑

k 6=0,1

∂A01k

∂l01

∂ω01k

∂lmn

 (4.5.14)
= −

∑
k 6=0,1

∂A01k

∂l01

∂ω01k

∂l01

 ∂l01

∂lmn
, (4.5.26)

which shows that (4.5.25) holds.
For the measure factor we examine the contribution from the Gaussian integral:

√
2π√

H
(4)
(01),(01)

=

√
2π√

−∑k 6=0,1
∂A01k
∂l01

∂ω01k
∂l01

=

√
192π

l01

√
V2̄V3̄V4̄V5̄

V0̄V1̄

1√
D

(4.5.27)

Apart from the additional factor 1√
D

, (4.5.27) is of a similar form as (4.3.33) for the 3− 2 move in

3D. Hence the invariant measure factor µ(l) should be proportional to:

µ(l) =

∏
e

le√
192π∏

∆

√
V∆

(4.5.28)

where e denotes the edges and ∆ the 4–simplices in the triangulation. However, with this form, we
will still get factors of 1√

D
by applying 4− 2 Pachner moves. The factor D does not factorize into

contributions that could be associated to 4–simplices or other subsimplices. It is rather a sum of
terms involving the edge lengths of the entire triangulation associated to the 4− 2 move. We will
therefore defer the discussion of this factor D until after we have considered all the Pachner moves
in 4D.

4.5.2 5–1 move

Let us now consider the 5− 1 move in 4D. Again, many derivations will be similar to the ones for
the 4− 1 move in 3D. The 5− 1 move corresponds to the subdivision of one 4–simplex, denoted by
(12345), into five by adding one additional vertex (0), placing it inside the original 4–simplex and
connecting it with all of the remaining vertices, see section 4.2.3.

Here, the edge lengths of the new edges, i.e. the position of the new vertex inside the original
4–simplex, are not uniquely fixed. Accordingly there is a 4–parameter set of solutions and we
expect to find four null modes in the Hessian.

The derivation of the matrix elements for the Hessian proceeds as for the 4− 2 move. We arrive
at the following terms:

• In case either the edge e = (op) or edge e′ = (mn) are in the bulk, one obtains:

H
(5)
(mn),(op) = (−1)so+sp+sm+sn+1 loplmn

96

VōVp̄Vm̄Vn̄∏
l Vl̄

∑
k 6=o,p

(−1)skFop;kVk̄︸ ︷︷ ︸
:=D(5)

(4.5.29)
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4 Path integral measure and triangulation independence in discrete gravity

where

si =

{
1 if i = 0
0 else

(4.5.30)

and Fop;k is defined as in the previous section. Note, that as for the 4 − 2 move the factor
D(5) does not depend on the choice of indices (op) in (4.5.29).

• In case both edges are in the boundary, one obtains:

H
(5)
(mn),(op) = (−1)so+sp+sm+sn+1 loplmn

96

VōVp̄Vm̄Vn̄∏
l Vl̄

D(5) +H
(1)
(op),(mn) (4.5.31)

where H
(1)
(op),(mn) denotes the (op)-(mn) matrix element of the Hessian of the one 4–simplex

configuration.

This gives all matrix elements of the Hessian of the 5− 1 move. In the next section we will discuss
the pure bulk terms more closely, in particular with respect to null eigenvectors.

Null eigenvectors

In this section we examine the pure bulk terms of the Hessian matrix, i.e. equation (4.5.29) for
edges (0i) and (0j) for arbitrary i, j. Then (4.5.29) can be rewritten as:

H
(5)
(0i),(0j) = − l0il0j

96

V 2
0̄
VīVj̄∏
l Vl̄

D(5) = l0iVī︸︷︷︸
h0i

l0jVj̄︸ ︷︷ ︸
h0j

(−1)D(5) V0̄

96V1̄V2̄V3̄V4̄V5̄︸ ︷︷ ︸
c

(4.5.32)

So, as in 3D, the bulk terms in the Hessian H
(5)
(0i),(0j) factorize:

H
(5)
(0i),(0j) = c h0ih0j . (4.5.33)

Hence, following the argument in section 4.3.5, we can conclude that H
(5)
(0i),(0j) features four null

vectors. The one non-vanishing eigenvalue is again given by
∑

j H(0j),(0j), which amounts to a
negative value. We will proceed as for the 4 − 1 move and change the global sign for the action
associated to the 5− 1 move. This can again be interpreted as taking care of the conformal factor
problem in Euclidean gravity [C61].

Invariance of the path integral

Similar to the 4− 2 move, we have to consider

P5−1 =

∫ ∏
i

dλ0i µ(l) exp

− ∑
(ij),(km)

1

2
H

(4)
(ij),(km) λij λkm

 (4.5.34)

where µ(l) is a measure factor, which we assume to depend only on the background variables l,
making up a flat configuration. (4.5.34) is again a partial Gaussian integral but with four gauge
degrees of freedom. The treatment of this integral will be completely analogous to the 4− 1 move.
Due to the gauge modes we will first integrate only over λ01.

This integration will result in an exponential that is independent of the other variables λ0i, i =
2, 3, 4, 5. To show that we obtain the action associated to the one remaining simplex (12345) we
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need to invoke the identities

H
(5)
(ij),(mn) =

[
H

(5)
(01),(01)

]−1
H

(5)
(ij),(01)H

(5)
(01),(mn) + H

(1)
(ij),(mn)

(4.5.14)⇐⇒ −
∑
k 6=i,j

∂Aijk
∂lij

∂ωijk
∂l01

∂l01

∂lmn

=

∑
k 6=0,1

∂A01k

∂l01

∂ω01k

∂l01

−1∑
k 6=i,j

∂Aijk
∂lij

∂ωijk
∂l01

∑
k 6=0,1

∂A01k

∂l01

∂ω01k

∂lmn

 (4.5.35)

Similar to (4.5.25), we apply (4.5.14) to the last term in (4.5.35), which gives:∑
k 6=0,1

∂A01k

∂l01

∂ω01k

∂lmn
= −

∑
k 6=0,1

∂A01k

∂l01

∂ω01k

∂l01

∂l01

∂lmn
. (4.5.36)

This proves (4.5.35) and hence form invariance of the linearized action under the 5− 1 move.
The measure factor µ(l) in (4.5.34) changes by the λ01 integration by a factor

√
2π√

H(01),(01)

=

√
192π

l01

√
V2̄V3̄V4̄V5̄

V0̄V1̄

1√
D(5)

(4.5.37)

which turns out to be of a similar form as the contribution in the 4− 2 move. If we consider µ(l)
in (4.5.34) to be given by

µ(l) =

∏
e

le√
192π∏

∆

√
V∆

(4.5.38)

we obtain for the path integral

P5−1 =

∏
b

lb√
192π√
V0̄

1√
D(5)

exp

−∑
b,b′

1

2
H

(1)
b,b′ λb λb′


∫ ∏

i 6=1
l0i√
192π

dλ0i

V1̄

(4.5.39)

Also here the remaining integral can be identified with an integration over the gauge orbit, which
is again given by the displacement of the inner vertex (0). In 4D we have the identity

d4xα0 =

∏
i=2,3,4,5 l0i dl0i

24V1̄

(4.5.40)

where d4xα0 is the integration measure for the Euclidean coordinates xα0 , α = 1, 2, 3, 4 of the vertex
(0). Hence we will replace the remaining integral in (4.5.39) by 1.

4.5.3 3–3 move

In addition to the 5− 1 and 4− 2 moves, the set of Pachner moves in 4D includes the 3− 3 move.
Here a complex of three 4–simplices is replaced with another complex of 3 4–simplices, such that the
boundary triangulation is not changed. This move does not involve any bulk edge, hence, differing
from all the other moves considered so far, we do not have an equation of motion associated to this
move.

There is another essential difference to the other Pachner moves, namely that the action is not
invariant under 3 − 3 moves. Evaluating the (full) Regge action for the two configurations of the
3 − 3 move, one finds a difference, that grows quadratically with the deficit angle of the (only)
bulk triangle [C52]. Hence the action is not invariant in general under 3-3 moves, in fact, such an
invariance applies only on flat configurations. This violation of the invariance of the action holds
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4 Path integral measure and triangulation independence in discrete gravity

also for the quadratic action of the linearized theory, as can be expected from the behavior in
the full theory and as can be checked explicitly on configurations with non–vanishing (linearized)
curvature.

The derivation of the (reduced) Hessian matrix for the 3−3 move proceeds in a slightly different
way, as we now have to take into account that the boundary perturbations might describe curvature.
The result will however have the same structure as for the other Pachner moves.

To start the derivation note that in both configurations A (with simplices (01234), (01235),
(01245)) and B (with simplices (01345), (02345), (12345) there is only one bulk triangle, namely
(012) and (345) respectively in A and B. The vanishing of the linearized deficit angles defines
boundary perturbations in flat directions:

∑
(ij)

∂ωA012

∂lij
λij = 0 =

∑
(ij)

∂ωB345

∂lij
λij . (4.5.41)

For such flat variations λij we can again derive, along the same arguments as in section 4.5.1,
the relations (4.5.5) ∣∣∣∣ λijλkm

∣∣∣∣ =

∣∣∣∣ lkmlij Vk̄Vm̄
VīVj̄

∣∣∣∣ . (4.5.42)

Note that equation (4.5.41) also implies that the gradients of the deficit angles in the two config-
urations are parallel to each other. That is the space of flat boundary perturbations λij in both
configurations is the same, the linearized curvature will however have different values in the general
case, if evaluated on the same set of (non–flat) boundary perturbations λij .

Now, starting with the derivatives

∂ωA012

∂l34
= −∂θ

01234
012

∂l34
= − l45A123

12V5̄

,
∂ωB345

∂l12
= −∂θ

12345
345

∂l12
= − l12A345

12V0̄

(4.5.43)

and using (4.5.41) and (4.5.42), assuming that only two appropriately chosen length perturbations
λij , λmn are not vanishing, we can obtain all other derivatives of the bulk deficit angle in both
configurations. The signs can again be determined as in section 4.3.2.

The result is given by

∂ωA012

∂lij
= (−1)s

A
i +sAj +1 lijA012

12

V0̄V1̄V2̄VīVj̄∏
p Vp̄

∂ωB345

∂lij
= (−1)s

B
i +sBj +1 lijA345

12

V3̄V4̄V5̄VīVj̄∏
p Vp̄

(4.5.44)

Here we defined the sign factors as

sAi =

{
1 if i ∈ {0, 1, 2}
0 else

, sBi =

{
1 if i ∈ {3, 4, 5}
0 else

. (4.5.45)

With the understanding that ωA345 ≡ 0 = ωB012 we can write the relation between the derivatives
as

∂ωAopk
∂lij

−
∂ωBopk
∂lij

= (−1)s
A
i +sAj +sAo +sAp +sAk︸ ︷︷ ︸

=(−1)
sB
i

+...+sB
k

+1

lijAopk
12

VōVp̄Vk̄VīVj̄∏
p Vp̄

(4.5.46)

where (opk) is either the set (012) or (345). Note that (4.5.46) is consistent with (4.5.45) under
change A↔ B, i.e. change of sign.
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4.6 Summary for 4D gravity

We will soon discover that (4.5.46) holds also for the other (boundary) angles. To this end we
use that the linearized boundary extrinsic curvature angles coincide in both configurations A and
B, if evaluated on flat boundary perturbations. Hence we can conclude that the difference of the
gradients of a given boundary angle has to be proportional to the gradient of one of the bulk angles,
i. e.

∂ωAmnl
∂lij

− ∂ωBmnl
∂lij

= cAmnl
∂ωA012

∂lij
. (4.5.47)

Again we can start with an especially simple derivative, i.e.

∂ωA345

∂l12
= − l12A345

12

V3̄V4̄V5̄V1̄V2̄∏
p Vp̄

,
∂ωB345

∂l12
= 0 (4.5.48)

to get hold of all the other derivatives of this exterior curvature angle. In this way we obtain

∂ωAopk
∂lij

−
∂ωBopk
∂lij

= (−1)s
A
i +sAj +sAo +sAp +sAk

lijAopk
12

VōVp̄Vk̄VīVj̄∏
p Vp̄

(4.5.49)

for all the boundary and bulk angles.
To finally arrive at the (reduced) Hessian, we have to multiply this result (4.5.49) with the area

derivatives as in (4.5.19). This allows us to express the difference of the (reduced) Hessians in the
A and B configurations as

HA
(op),(mn) −HB

(op),(mn) = (−1)s
A
o +sAp +sAm+sAn︸ ︷︷ ︸

=(−1)s
B
i

+...+sBp

loplmn
96

VōVp̄Vm̄Vn̄∏
l Vl̄

∑
k 6=o,p

(−1)s
A
k +1︸ ︷︷ ︸

=(−1)
sB
k

Fop;kVk̄

︸ ︷︷ ︸
:=DA

(4.5.50)

Also here D does not depend on the choice of indices o, p in (4.5.50). Note that DA = −DB.
Unless DA = DB = 0, the (quadratic) action of the linearized theory is different in the A and
the B configuration. This equality DA = DB = 0 does not hold on general (flat) background
configurations, but might hold in very symmetric cases.

Furthermore, a measure of the form

µ(l) =

∏
e

le√
192π√∏
l Vl̄

(4.5.51)

is only invariant under the 3− 3 move in the case that

V0̄V1̄V2̄ = V3̄V4̄V5̄ . (4.5.52)

Again, this equality does not hold for generic cases.

4.6 Summary for 4D gravity

4D classical Regge calculus is invariant under the 4− 2 and 5− 1 moves, but not under the 3− 3
moves. Our calculations provided the evidence for the linearized theory, in particular isolating the
invariance breaking term for the 3− 3 move.

But this invariance behavior also holds for the full theory: there is always a flat solution to the
equation of motions associated to the 4− 2 and 5− 1 Pachner moves. Hence the contribution from
the bulk to the Hamilton-Jacobi function is vanishing. The Hamilton-Jacobi function is therefore
just given by the boundary terms, which do not change under the 4− 2 and 5− 1 moves.
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4 Path integral measure and triangulation independence in discrete gravity

Concerning the quantum theory for linearized Regge Calculus in 4D, we define the path integral
for general triangulations as

P :=

∫ ∏
e

le√
192π∏

∆

√
V∆

∏
e⊂bulk

dλe exp

{
−1

2
He,e′λeλe′

}
. (4.6.1)

le denotes the length of edge e, V∆ the volume of 4–simplex ∆, λe is the edge length perturbation
of edge e and He,e′ is the e-e′ matrix element of the Hessian matrix of the Regge action.

In the previous section we have shown that (4.6.1) is invariant – modulo the factor D – under
4− 2 and 5− 1 Pachner moves (using the gauge fixing conventions discussed above), but in general
not under the 3− 3 Pachner move. The non-invariance under 3− 3 moves is already present in the
classical theory and should be overcome by constructing a perfect discretization [C22–C25, C27,
C28].

It might be possible to implement a full invariance of the path integral under either the 4 − 2
or the 5 − 1 move, that is by including the factor

√
D into the measure. For the 4 − 2 moves one

would need to associate a corresponding factor to the edges of the triangulation, for the 5−1 move
rather to the vertices. (Alternatively, one would have to change the gauge fixing procedure for the
5 − 1 move, i.e. the factor associated to the gauge orbit, but this seems to be rather unnatural.)
Still there are several open questions left to address, as how to generalize the definition of the D
factors to more complicated triangulations ( the bulk edges in the Pachner moves are always shared
by four triangles) and how the D factors associated to boundary edges or vertices will interfere.
Furthermore, the factor D is slightly non-local, but its actual form might be due to the linearized
theory.

Here it might be helpful to reconsider the topological BF theory, from which gravity can be
obtained by implementing (simplicity) constraints. This is the route followed by spin foams. The
advantage of this approach is, that a triangulation invariant path integral can be constructed for
BF theory. To apply this to Regge calculus one would need a formulation based on the same
geometric variables as used in 4D BF theory. Such a formulation is provided by area-angle Regge
calculus [C49]. The corresponding action can also be split into a piece describing a topological
theory and constraints acting in the same way as the simplicity constraints. Studying this action
might help to construct a triangulation independent quantum theory describing flat space dynamics.
For other work in this direction, related to BF theory see [C67–C71].

Despite all these subtleties and drawbacks, the simple form of the Hessian matrix for all Pachner
moves and its similar form to the 3D case are remarkable. Therefore it will be very interesting
to compare our results to spin foam asymptotics and possibly help to fix measure ambiguities (by
requiring invariance under Pachner moves) there.

4.7 Discussion

In this work we provided extensive analytical calculations for linearized Regge calculus, very much
enlightening the structure of the theory. In particular we obtained the linearized Regge actions
associated to all the Pachner moves in 3D and 4D, explicitly showing that the Regge action4 is
invariant under all Pachner moves, with the exception of the 3 − 3 move. We isolated the gauge
symmetries and the conformal factor problem, which both are potential sources for divergencies.
Amazingly the structure of the linearized Regge actions associated to the Pachner moves lead in all
cases to a very transparent factorizing structure, similar in 3D and in 4D. These formulae might be
also helpful in other contexts, for instance in a canonical formulation of Regge calculus [C53,C54]
or in numerical larger scale calculations.

4This invariance result holds also for the full theory.
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4.7 Discussion

Furthermore we proposed a dynamical principle to fix the measure for Regge calculus, namely to
consider the behavior of the theory under Pachner moves. Restricting to a local ansatz as in (4.1.2)
this fixes the measure uniquely. Indeed the invariance under change of triangulation is related to
an implementation of diffeomorphism symmetry [C18,C22,C25,C28]. This condition can therefore
be understood as requiring an anomaly–free measure, which can be expected to be unique. A
simple reason for this is that for a theory completely invariant under changes of the triangulation,
there is also no (bulk) discretization scale. That is the only discretization scale is provided by
the boundary data. For compact manifolds without boundary the continuum limit is even trivial,
as such a limit would be obtained via a refinement of the triangulation [C26]. In other words a
triangulation independent path integral provides already the continuum result.

This is the reason why we cannot expect to obtain a fully triangulation independent local theory
in 4D. However one might ask for invariance of the quantum theory under the same set of local
triangulation changes under which the local classical theory is invariant. Such a set can be under-
stood as trivial subdivisions of the triangulation, as the associated equations of motions lead to
flat space–time. The question therefore is, whether one can define a topological sub–sector of the
theory [C11, C12, C69, C70], which would provide a quantum description of flat space dynamics,
see also [C71]. Such an invariance of the theory under trivial subdivisions seems also be crucial to
realize scenarios as proposed in [C26], i. e. the convergence of the theory to a topological sector,
under refinement.

We found a path integral measure for linearized Regge calculus, which provides such an invari-
ance, in 4D modulo a factor, which features a certain non–local structure. In 3D we found an exactly
invariant measure, which also coincides with the asymptotics of the (triangulation independent)
Ponzano Regge model. This is quite astonishing, as we performed a calculation in the linearized
theory. Furthermore the Ponzano Regge model includes in addition also a sum over orientations,
which we do not consider here5. The question arises, whether this result can be extended to the
full non-linear theory and shed light on the problem, whether to include a sum over orientations
into a quantum gravity path integral or not [C72,C73].

The factor appearing in 4D, disturbing invariance at least under the 5 − 1 and 4 − 2 moves, is
related to a transformation from area to length variables. It might therefore be helpful, in order
to further enlighten this issue, to consider area-angle Regge calculus [C49, C50]. This formulation
allows a split into a topological theory, which would be triangulation independent, and constraints.
Another possibility to obtain path integral measures is a derivation from the canonical theory, which
has recently became available for Regge calculus [C53, C54]. Indeed the path integral measure is
important to obtain correlation functions, which are annihilated by the Hamiltonian constraints
[C25].

A fully triangulation independent theory can be constructed via the method of perfect dis-
cretizations [C23–C25,C27,C28], which is based on a Wilsonian renormalization flow. This has the
advantage of providing at the same time informations on the continuum limit of the theory. Here
two different strategies can be thought of. One is based on local considerations, namely to study the
behavior of a given theory under local refinements, e. g. Pachner moves, see for instance [C42] for
related studies in (topological) spin foam models. This can result in recursion relations, whose fixed
points provide the continuum limit (and perfect discretization) of the path integral, see [C25] for
an example in 1D. Another strategy is to extract the large scale behavior, which might depend on
the choice of measure [C21,C74]. First steps towards extracting large scale behavior of (simplified)
spin foam models via real space renormalization can be found in [C75,C76].

5In this work we considered a background triangulation with positive orientation. The results can however be
extended to Pachner moves leading to negatively oriented simplices. In this case the Regge action has to be
adjusted to take the negative orientation of these simplices into account, the measure does not need to be changed
however.
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4.A Euclidean integration measure

The usual Lebesgue measure of D-dimensional Euclidean space can be rewritten with respect to
the edge lengths of a (non-degenerate) D-simplex [C62].

Assume D + 1 vertices making up a D-simplex embedded in RD, their positions given by
{~xi}i=0,...,D, such that the D-simplex is not degenerate, i.e. its D-volume is non-vanishing. Next,
we define the position of the vertices of the D-simplex with respect to one of its vertices by defin-
ing ~li := ~xi − ~x0. Since the D-simplex is non-degenerate, the set of vectors {~li}i=1,...,D form a

(non-orthonormal) basis of RD, where the lengths of the vectors ~li give the edge lengths l0i of the
D-simplex. To write the Lebesgue measure in these coordinates, one has to compute the Jacobian
of the linear function which maps the orthonormal basis {~ei} to {~li}. To simplify notation, we will
denote ~y := ~x0.

D∏
i=1

l0i dl0i =

D∏
i=1

d

(
l20i
2

)
=

D∏
i=1

d

(
(~y − ~xi)2

2

)
=

D∏
i=1

dyi

∣∣∣∣det

[
∂

∂yj
(~y − ~xi)2

2

]∣∣∣∣ (4.A.1)

where the determinant in the last term is the Jacobian of the coordinate transformation. For the
matrix elements of the Jacobian one obtains:

∂

∂yj
(~y − ~xi)2

2
= ~ej · (~y − ~xi) . (4.A.2)

Given (4.A.2), the Jacobian can be rewritten in terms of the volume of the D-simplex:

|det (~ej · (~y − ~xi))| =
√

det ((~y − ~xj) · (~y − ~xi)) = D!V . (4.A.3)

Using (4.A.2,4.A.3) in (4.A.1) gives:

D∏
i=1

l0i dl0i =
D∏
i=1

dyi D!V (4.A.4)

=⇒
D∏
i=1

dyi =

∏D
i=1 l0i dl0i
D!V

. (4.A.5)

From (4.A.5) one obtains (4.3.55) in 3D and (4.5.40) in 4D.

4.B Determinant formula for D

In the calculations of the Hessian matrix in 4D, see section 4.5, we have encountered the factors Dop

(see for instance (4.5.19)) which are slightly non-local. In this section we will present a different
way to compute these factors in terms of a determinant of a matrix which will additionally allow
us to show that (some) factors Dop are equal without using that the Hessian matrix is symmetric.

Consider six vertices embedded in R4 making up a triangulation which can be modified by one
of the Pachner moves discussed in section 4.2.3. We define the position vectors of the vertices with
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4.B Determinant formula for D

respect to vertex (0), which we place in the origin of the coordinate system for simplicity. Hence
the position vector of vertex (i) is defined by ~xi ≡ ~xi − ~x0, its components are denoted by xia with
a = 1, 2, 3, 4. Given this definition, consider the following determinant:

det


x1

1 x2
1 . . . x5

1

x1
2 x2

2 . . .
...

. . .

x1
4 x2

4 . . . x5
4

(~x1)2 (~x2)2 . . . (~x5)2

 . (4.B.1)

We will show that this determinant is proportional to the factors D0i, for i = 1, . . . , 5.
The determinant of a matrix remains unchanged if a scalar multiple of one of its rows / columns

is added to one of its rows / columns respectively. Hence we will subtract xia times the ath row
from the last for 1 ≤ a < 5. Then one obtains for instance for i = 1:

det


x1

1 x2
1 . . . x5

1

x1
2 x2

2 . . .
...

. . .

x1
4 x2

4 . . . x5
4

0 (~x2)2 − ~x2 · ~x1 . . . (~x5)2 − ~x5 · ~x1

 . (4.B.2)

The terms in the last row can be rewritten as

(~xk)2 − ~xk · ~x1 =
1

2
((~xk)2 − (~x1)2 + (~xk − ~x1)2︸ ︷︷ ︸

=l20k−l
2
01+l21k

) =
1

2
F01;k , (4.B.3)

where F01;k is the same factor as in (4.5.18). Expanding (4.B.2) with respect to the last row, the
subdeterminants of the matrix correspond to (oriented) volumes of 4-simplices (see (4.A.3)). Hence
one obtains:

det[. . .]︸ ︷︷ ︸
(4.B.2)

= 4!
5∑
i=2

(−1)i−1 si F01;i Vī ∝ D01 (4.B.4)

where si are appropriate sign factors taking into account the orientation of the volumes. By analo-
gous considerations, one computes the other factors D0j , j = 2, 3, 4, 5, from the same determinant,
which implies that these factors are all equal (although the symmetry of the Hessian matrix has
not been used). The signs si depend on the relative orientation of the vectors ~xi of the respective
4-simplex and hence they depend on the geometry under discussion. We would like to demonstrate
that explicitly with the example of the 4− 2 move.

Consider the D01 for the 4− 2 move, see (4.5.19). Four of the five edge vectors ~xi of the vertices,
defined with respect to the vertex (0), form a basis of R4 since the 4-simplices are not degenerated.
In the following we assume that ~x2, . . . , ~x5 is a positively oriented orthonormal basis. Hence, we
can rewrite the determinant (4.B.2) as

det

[ ∑5
i=2 vi~xi ~x2 ~x3 ~x4 ~x5

0 F01;2 F01;3 F01;4 F01;5

]
(4.B.5)

where the vi are the coefficients of ~x1 in the basis formed by ~x2, . . . , ~x5. Note that the configuration
of the 4 − 2 move can be chosen such that vi > 0. If (4.B.5) is expanded with respect to the last
row, the submatrices are of the following form:

det

[
5∑
i=2

vi~xi ~xj ~xk ~xl

]
= εijkl vi , (4.B.6)

where εijkl is the Levi-Cevita symbol in 4D. Hence the signs si in (4.B.4) are alternating, which,
together with the alternating signs (−1)i−1 verifies formula (4.B.4).
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Abstract

The 4D Regge action is invariant under 5–1 and 4–2 Pachner moves, which define a subset of (local)
changes of the triangulation. Given this fact one might hope to find a local path integral measure
that makes the quantum theory invariant under these moves and hence makes the theory partially
triangulation invariant. We show that such a local invariant path integral measure does not exist
for the 4D linearized Regge theory.

To this end we uncover an interesting geometric interpretation for the Hessian of the 4D Regge
action. This geometric interpretation will allow us to prove that the determinant of the Hessian
of the 4D Regge action does not factorize over 4–simplices or subsimplices. It furthermore allows
to determine configurations where this Hessian vanishes, which only appears to be the case in
degenerate backgrounds or if one allows for different orientations of the simplices.

We suggest a non–local measure factor that absorbs the non–local part of the determinant of
the Hessian under 5–1 moves as well as a local measure factor that is preserved for very special
configurations.
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5 Discretization independence implies non–locality in 4D discrete quantum gravity

5.1 Introduction

Many quantum gravity approaches rely on a path integral construction as their foundation, for
example spin foam models [D1, D2], group and tensorial field theory [D3, D4], (causal) dynamical
triangulations [D5] or quantum Regge calculus [D6–D9]. These approaches have the same goal,
namely to provide a way to compute (and give meaning to) the gravitational path integral, i.e.
the sum over all histories between two 3–dimensional boundary geometries, where each history is a
4–geometry describing a possible transition weighted by the (exponential of the) Einstein–Hilbert
action. An essential part in this path integral is the measure over the space of geometries, i.e. the
space of all metrics modulo diffeomorphisms.

To propose a well–defined path integral, one generically has to introduce a regulator to truncate
the degrees of freedom of the theory. In gravitational theories mentioned above this is achieved by
discretizing the theory, e.g. on a triangulation. However, the introduction of discretizations comes
with a caveat: In general, a discretization of the classical theory cannot be chosen uniquely, if the
only requirement is that this discretization leads to the correct continuum action. Whereas some
agreement has been reached on the Regge action as a preferred discrete action [D10], at least for
the theory without cosmological constant, the debate on the measure in Regge calculus [D11–D14]
and spin foams [D15,D16] is not settled.

Even more troubling in the context of gravity, discretizations generically break diffeomorphism
symmetry [D17–D19], which is deeply intertwined with the dynamics of general relativity. Further-
more, this might induce an unphysical dependency of this theory on the choice of the discretization.
Different approaches to quantum gravity differ in how they deal with these problems, e.g. in Regge
calculus one considers only one triangulation with varying edge lengths, whereas in causal dynam-
ical triangulations one keeps equilateral simplices and sums over all triangulations. Group field
theories additionally sum over all topologies. Which of these schemes leads to a sensible theory of
quantum gravity cannot be determined a priori.

These intricacies are deeply rooted in the fact that diffeomorphism symmetry is broken by the
discretisation and that the relation between discrete and continuous gravity is still hardly under-
stood. This particularly affects the choice of measure in quantum gravity theories, which is crucially
important for the dynamics in the continuum limit, since it also resembles a choice of the measure
on the space of geometries.

For spin foam models, arguments that link diffeomorphism symmetry, choice of (anomaly free)
measure and divergence structure due to having non–compact gauge orbits from the diffeomorphism
group have been made in [D15, D20]. This led also to the suggestion to choose a measure which
has a certain (weak) notion of discretization independence, e.g. such that the amplitudes become
independent under ‘trivial’ edge and face subdivisions [D16, D21–D23]. As mentioned the choice
of measure heavily influences the divergence structure of the models [D23–D25]. Thus one can
adjust the measure to obtain the divergence structure that fits the divergences one expects from
diffeomorphism symmetry. This of course does not fully guarantee diffeomorphism symmetry or
triangulation independence, as divergences might also arise due to other reasons.

In Regge calculus, several measures have been proposed: in [D11] Hamber and Williams propose
a discretization of the formal continuum path integral, with a local discretization of the (DeWitt)
measure [D11, D12], conflicting with the proposal by Menotti and Peirano [D13], who mod out a
subgroup of the continuum diffeomorphisms resulting in a highly non–local measure. A different
discretization, also leading to a non–local measure due to discretizing first the DeWitt super metric
[D26] and then forming the determinant, was proposed in [D14].

In this work we will pick up the suggestion in [D27], to choose a measure that, at least for the lin-
earized (Regge) theory, leads to as much discretization invariance as possible. These considerations
require to actually integrate out degrees of freedom and thus take the dynamics into account.

The requirement of discretisation independence seems to be at odds with interacting theories,
which possess local / propagating degrees of freedom. This apparent contradiction can be resolved
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by allowing a non–local action or non–local amplitudes for the quantum theory – which in fact
are unavoidable if one coarse grains the theory. Non–local amplitudes are however difficult to deal
with. We therefore ask in this paper the question, whether in the quantum theory we can retain as
much symmetry as in the classical theory, with a choice of local measure. The classical 4D Regge
action is known to be invariant under 5−1 moves and 4−2 moves, but not under 3−3 moves [D27].
Here the non–invariance under the 3 − 3 moves – in fact the only move involving bulk curvature
for the solution – allows the local Regge action to nevertheless lead to a theory with propagating
degrees of freedom. We therefore ask whether it is possible to have a local measure for linearized
Regge calculus that leads to invariance under 5 − 1 and / or 4 − 2 moves. Such a measure would
therefore reproduce the symmetry properties of the Regge action. We will however show that such
a local path integral measure does not exist.

Our requirement of (maximal) discretisation independence is motivated by the ‘perfect action
/ discretisation’ approach [D28, D29] that targets to construct a discretisation, which ‘perfectly’
encodes the continuum dynamics and has a discrete remnant of the continuum diffeomorphism
symmetry. Examples of such ‘perfect discretisations’ are 3D Regge calculus with and without
a cosmological constant [D30] and also 4D Regge calculus, if the boundary data impose a flat
solution in the bulk. In these examples, the basic building blocks mimic the continuum dynamics,
e.g. one takes constantly curved tetrahedra for 3D gravity with a cosmological constant. Such
perfect discretisations can be constructed as the fixed point of a coarse graining scheme, see for
instance [D30–D32].

Once such a discretisation is constructed, the predictions of the theory become independent of
the fineness of the discretisation. On the one hand one can compute observables for the coarsest
discretisation, while on the other hand one can straightforwardly define the continuum limit and
return to a description with local degrees of freedom. Indeed, the examples that have been con-
sidered so far lead to the conjecture that diffeomorphism symmetry is equivalent to discretisation
independence. For quantum mechanical systems (with time discretization), it has been proven
in [D32] that diffeomorphism symmetry implies discretization invariance. Recently, the relation-
ship between diffeomorphism symmetry and discretization independence has been strengthened in
the principle of dynamical cylindrical consistency [D33] for time–evolving discrete systems [D34],
see also [D35–D38].

This conjecture has been the main motivation of [D27]: the question has been, whether requiring
triangulation independence, i.e. invariance under Pachner moves [D39, D40], can be used as a
dynamical determination of the path integral measure in (linearized) Regge calculus. One would
expect that this requirement would also single out a unique measure. In 3D this lead to a simple
measure factor invariant under all Pachner moves, which is consistent with the asymptotics of
the Ponzano–Regge (spin foam) model [D41–D46]. The 4D case, that is the expressions for the
determinants of the Hessians of the action evaluated on the solution, turned out to be astonishingly
similar to the 3D one, yet these expressions were modified by an overall factor, which appears to
be non–factorising with respect to the (sub)simplices of the triangulation and resisted so far a
geometric interpretation. More importantly, it has been conjectured in [D27] to be non–local and,
thus, effectively hindering a construction of a local path integral invariant under a subset of Pachner
moves in 4D [D27].

This factor will be the main focus of this paper, in which we will derive a geometric interpretation,
namely as a criterion determining whether d + 2 vertices (in d dimensions) lie on a (d − 1)–
sphere [D47] (see also [D48]). This interpretation allows us to prove that this intricate factor is
non–factorising, i.e. it cannot be expressed as a simple product of amplitudes associated to the
(sub)simplices of the triangulation. (We will refer to this property as ‘non–local’.)

This paper is organized as follows: In section 5.2 we review the setup and main results of [D27].
Section 5.3 deals with the derivation of the new interpretation of the non–factorising factor, namely
as a criterion determining whether six vertices lie on a 3–sphere, uncovering the factor’s non–local
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nature. To examine the general cases, we have to generalize the study of [D27] to more general
orientations in section 5.4. We discuss different choices for the measure (see also appendix 5.B).
The paper is concluded by a discussion of the result in section 5.5. In appendix 5.A we discuss
some particular cases of the non–local factor.

5.2 Linearized Regge calculus and previous results

In the work [D27] it has been examined whether one can define a triangulation invariant path
integral measure for (linearized) length Regge calculus. Let us briefly recap the setup: Consider the
Euclidean path integral for the Regge discretization of gravity given on a 3D or a 4D triangulation:∫

le|e⊂∂M

∏
e

dle µ(le)e
−SR[le] , (5.2.1)

where le|e ⊂ ∂M denotes the fixed edge lengths on the boundary of the triangulated manifold M .
SR[le] is called the Regge action and is given by the following expression in d dimensions:

SR[le] := −
∑

h⊂bulk

Vh ω
(bulk)
h −

∑
h⊂bdry

Vh ω
(bdry)
h , (5.2.2)

where Vh is the volume of the (d− 2)–simplex h, also called ‘hinge’, and ω
(bulk)
h and ω

(bdry)
h denote

the deficit angle or the exterior boundary angle respectively, located at the hinge h in the d–
dimensional simplex σd. The deficit angles at a hinge are defined as a sum of the dihedral angles
of the d–simplices sharing the hinge modulo 2π and relative orientation of the simplices. The
definition for matching orientations of the simplices, also considered in [D27], is:

ω
(bulk)
h := 2π −

∑
σd⊃h

θ
(d)
h , (5.2.3)

ω
(bdry)
h := kπ −

∑
σd⊃h

θ
(d)
h , (5.2.4)

where θ
(d)
h is the d-dimensional dihedral angle at the hinge h in the d–simplex σd. k depends on the

number of pieces glued together at this boundary. In case only two pieces are put together k = 1.
This action (5.2.2) has been linearized, i.e. expanded (up to quadratic order) around a flat

background solution, denoted by edge lengths l
(0)
e , that is a solution of the equations of motion

∂SR
∂le

= 0 with vanishing deficit angles ω
(bulk)
h

1:

le = l(0)
e + λe . (5.2.5)

The integration is then performed over the perturbations λe, such that the Hessian matrix of
the Regge action, i.e. ∂2SR

∂le∂le′
, becomes the (inverse) ‘propagator’ of the theory. The motivating

question of [D27] has been whether it is possible to define a measure factor µ(l
(0)
e ), as a function

of the background edge lengths, that allows for a triangulation invariant Regge path integral. To
examine triangulation independence, it is enough to only consider local changes of the triangulation,
so–called Pachner moves [D39,D40]: a consecutive application of these transfers a triangulation of
a manifold into any other possible triangulation of the same manifold.

In [D27] exact formulas for the Hessian matrix in 3D and 4D have been derived in great detail
from which one concludes a very specific form of measure factors. In the following, we will restrict
ourselves to just recalling the main results:

1In 3D, the solution to the Regge equations of motion (for positive orientation) always implies vanishing deficit
angles, however in 4D this is only possible if the boundary data admit a flat solution.
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The Hessian matrices one has to compute are of the following form. In 3D we have

∂2SR
∂le∂le′

= −∂ωe
∂le′

, (5.2.6)

where the dihedral angles are associated to the edges. In 4D the situation is more complicated

∂2SR
∂le∂le′

= −
∑
h

∂Ah
∂le

∂ωh
∂le′
−
∑
h

∂2Ah
∂le∂le′

ωh −
∑
h

∂2Ah
∂le∂le′

ω
(bdry)
h , (5.2.7)

yet only the first term survives, since we are considering a flat background solution (ωh = 0) and
only local changes of the triangulation, which leave the boundary unchanged. Thus for both cases
of 3D and 4D Regge calculus, the main task is to compute the first derivatives of the deficit angles.

Although these first derivatives of the deficit angles can be computed explicitly [D49], it is much
more effective to use techniques of [D50,D51], see also [D52]. This utilizes the flat background (for
the linearized Regge action) and hence the fact that the simplicial complex is embeddable into Rd.
One then considers small deviations in the edge lengths so that the complex remains embeddable,
i.e. the deficit angles ωh are unchanged, δωh ≡ 0. This requirement automatically translates into
a requirement on the variations of the dihedral angles δθh, which are part of the respective deficit
angle. Then one computes the derivatives of the dihedral angles [D49] under the assumption that
only two edge lengths are varied at the same time [D50,D51]; starting from the simplest case, one
derives all other derivatives of the deficit angles by considering the relative change of edge lengths
under infinitesimal deviations. Eventually, one finds in 3D:

∂2SR
∂lij∂lkm

= − ∂ωij
∂lkm

= (−1)si+sj+sk+sm lijlkm
6

VīVj̄Vk̄Vm̄∏
n Vn̄

+ bdry terms , (5.2.8)

where lij is the edge lengths between the vertices i and j, ωij is the deficit angle at the edge (ij)
and Vī is the volume of the tetrahedron obtained by removing the vertex i 2. The signs si depend
on the orientation and the considered Pachner move. We provide a different derivation of them
in section 5.3. In this work we will neglect the boundary terms, since they are not relevant for
the main argument of this paper, yet they are essential to show that the classical Regge action is
invariant under Pachner moves [D27].

Indeed, the idea to construct a triangulation invariant measure factor, relies crucially on the
invariance of the classical Regge action under Pachner moves. In 3D this is the case for all Pachner
moves, such that we were able to derive an invariant measure factor, which is factorising, and hence
local, with a straightforward geometrical interpretation:

µ({l}) =

∏
e

1√
12π

le∏
τ

√
Vτ

. (5.2.9)

To each edge e of the triangulation one associates the edge length le and a numerical factor of
(12π)−

1
2 , to each tetrahedron τ one associates the inverse (square root) of its volume Vτ . This

measure factor is consistent, even up to the numerical factor3, with the asymptotic expansion of
the SU(2) 6j symbol [D41–D46], the amplitude associated to a tetrahedron in the Ponzano Regge
model, which is triangulation invariant (and topological) as well.

In 4D Regge calculus the situation is more complicated, as one might expect: First the Regge
action itself is in general not invariant under the 3–3 Pachner move [D27]. It is a peculiar move,
since both possible configurations only differ by the triangle shared by all three 4–simplices of this

2This assignment is unique in subsets of the triangulation, which are subject to a Pachner move. These subsets
consist of d+ 2 vertices in d dimensions; by removing one vertex, d+ 1 vertices remain, which span a d–simplex.

3The association of the factor (
√

12π)−1 is not unambiguous. It can either be assigned to edges or tetrahedra.
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configuration, no dynamical edge is involved. Hence the configurations are solely determined by
the boundary data, which might be chosen such that the deficit angle on the bulk triangle does not
vanish, i.e. the configuration is not flat. However as soon as this is the case, the Regge action is
not invariant under this Pachner move any more. Thus the Regge action is not a suitable starting
point to define an invariant measure under all 4D Pachner moves.

Nevertheless the 4D Regge action is invariant under the 5–1 and 4–2 Pachner moves (and their
inverses), so it has been examined whether one can define a measure factor that is at least invariant
under these two local changes of the triangulation. Surprisingly, the (considered part of the) Hessian
matrix is very similar to the 3D case:

∂2SR
∂lop∂lmn

= −
∑
k 6=o,p

∂Aopk
∂lop

∂ωopk
∂lmn

= Dop (−1)so+sp+sm+sn loplmn
96

VōVp̄Vm̄Vn̄∏
l Vl̄

+ bdry terms ,

(5.2.10)
where the factor Dop is the only difference to the 3D case, besides the fact that the Vī now denote
volumes of 4–simplices. Note that for the 5–1 move in 4D (and similarly the 4–1 move in 3D), the
Hessian matrix possesses four null eigenvectors, which correspond to a vertex translation invariance
of the subdividing vertex. The divergent part of the integral is then identified as an integral over
a 4D volume and is gauge fixed to 1. We also provide a brief derivation of (5.2.10) in section 5.4
for more general orientations.

The emphasis of this paper lies on this factor Dop, which is given by the following expression:

Dop :=
∑
k 6=o,p

(−1)sk
(
l2ok + l2pk − l2op

)
Vk̄ . (5.2.11)

Since the Hessian matrix is symmetric, one concludes that Dop actually does not depend on the
vertices o and p, such that it turns into an overall factor of the Hessian matrix. Thus we will only
refer to it as D in the following.

Ignoring D for the time being, one can construct an ‘almost’ triangulation invariant measure,
very similar to the 3D case:

µ({l}) =

∏
e

1√
192π

le∏
∆

√
V∆

, (5.2.12)

where V∆ now denotes the volume of the 4–simplex ∆. The numerical factors are again assigned
to the edges4.

Despite the concise expression (5.2.11) of D, it both impedes the construction of a triangulation
invariant measure and resists a nice geometric interpretation, since it is not obvious, whether it can
be written as a product of amplitudes associated to (sub)simplices. Hence it has been conjectured
in [D27] that D is non–local and cannot be written in a factorising way. The purpose of this paper
is to provide a geometric interpretation for the factor D, namely it is a criterion that determines
whether the 6 vertices, that make up the simplicial complex (in 4D) to which the Pachner move
is applied, lie on a 3–sphere. We will use this to prove that the factor D generically cannot be
accommodated by a local measure factor, in particular not by simple product (or quotient) of
volumes of (sub)simplices.

5.3 A geometric interpretation for D

In this section we will derive a geometric interpretation for the factor D mentioned above. Actually,
the definition (5.2.11) of D is valid in any dimension d ≥ 3, such that we will derive its geometric
interpretation for arbitrary dimensions5.

4As in 3D, the assignment of numerical factors is not unambiguous.
5Note that it is not clear whether D will also arise in higher dimensions in the framework of linearized Regge

calculus. We can only confirm this for d = 4 [D27].
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In the following we will discuss a simplicial complex in d dimensions, to which a Pachner move
will be applied. Consider d + 2 vertices embedded in Rd, such that they form non–degenerate
d–simplices. The geometry can be completely characterized by the set of the edge lengths {lij},
describing the Euclidean distances between the vertices. Given a set of vertices and the edge lengths
between them, one can define the associated Cayley–Menger matrix C [D47,D50,D51,D53]. In the
case we consider here, this is a (d+ 3)× (d+ 3)–dim. matrix given by:

C :=


0 1 1 1 · · · 1
1 0 l201 l202 · · · l20(d+1)

1 l201 0 l212 · · · l21(d+1)
...

...
...

...
. . .

...
1 l20(d+1) l21(d+1) l22(d+1) · · · 0

 . (5.3.1)

In general, the determinant of the Cayley–Menger matrix, detC, associated to a d–simplex is
proportional to the square of its d–volume. However, in the example at hand, the d + 2 vertices
are embedded in Rd, such that they form a degenerate (d + 1)–simplex, hence detC = 0. Since
we have required that the d–simplices are non–degenerate, C has exactly one null eigenvector,
corresponding to changes of the edge lengths, such that the d+ 2 vertices remain (embeddable) in
Rd. To describe this null eigenvector, let us introduce some notation.

By Cij we denote the submatrix of C obtained by deleting its i’th column and its j’th row with
i, j ∈ {0, 1, 2, . . . , d+ 2}. The determinant of the submatrix, i.e. the (i, j)th minor of C, is denoted

by
∣∣∣Cij∣∣∣ := detCij . To simplify notation we simply call the diagonal minors |Ci|. In fact, since

detC = 0, all off-diagonal minors can be expressed in terms of the diagonal ones [D54]:

∣∣Cij∣∣ =
√
|Ci|
√
|Cj | . (5.3.2)

Before we construct the null eigenvector of C, it is instructive to examine the minors C0 and Ci for
i > 0 in more detail and discuss their geometric interpretation.

The matrix C0, obtained by deleting the ‘0’th column and row of C is particularly important in
this paper. It is given by:

C0 =


0 (l01)2 . . . (l0(d+1))

2

(l01)2 0 . . . (l1(d+1))
2

...
... . . .

...
(l0(d+1))

2 (l1(d+1))
2 . . . 0

 . (5.3.3)

It has been shown in [D47] (see also [D48]) that |C0| has a very specific geometric meaning. In case
|C0| = 0 the d+ 2 vertices lie on a (d− 1)–dimensional sphere, see fig. 5.1 for an example in d = 2.
In a sense, this is a non–local statement, since it can only be deduced if the positions of all d + 2
vertices are known; it cannot be inferred from just d+ 1 vertices. From the construction of the null
eigenvector, we will show that D ∼

√
|C0|. Hence we argue that D is non–local in section 5.3.1.

The second interesting minor we want to discuss is |Ci| for i ∈ {1, 2, . . . , d+1}. If one takes a look
at the definition of C in (5.3.1) again, then one realizes that by removing the i’th row and column,
one removes all edge lengths with the index i− 1. The remaining matrix is again a Cayley-Menger
matrix, yet for a d–simplex. Hence

|Ci| = (−1)d+12d(d!)2
(
Vi−1

)2
. (5.3.4)
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Figure 5.1: The situation in 2D: Four vertices on a 1–sphere.

The single null eigenvector of C is given by6

~vc :=
(

(−1)s
√
|C0|, (−1)s0

√
|C1|, . . . , (−1)sd+1

√
|Cd+2|

)
(5.3.5)

=
(

(−1)s
√
|C0|, (−1)s0 2d/2d!V0̄, . . . , (−1)sd+1 2d/2d!Vd+1

)
. (5.3.6)

The signs s and si are determined only up to an overall sign ambiguity. We will show below that
we can choose si to be the same signs that appear also in (5.2.10) and (5.2.11). The action of the
matrix C on ~vc gives the following relations:

d+1∑
i=0

(−1)siVī = 0 , (5.3.7)

∀j≥0 (−1)s
√
|C0|+

d+1∑
i=0

(−1)si 2d/2d! l2ijVī = 0 . (5.3.8)

The first condition fixes the relative signs si and is straightforward to interpret if one recalls the
change of the triangulation under the Pachner move. Take a 1− (d+ 1) move for example, where
the new vertex 0 is added inside to the d + 1 vertices forming the d–simplex. The relation shows
that the volume before and after the Pachner move is the same:

V0̄ =
d+1∑
i=1

Vī , (5.3.9)

which fixes the signs s0 = 1 and si = 0∀ i ≥ 1, consistent with the results of [D27]. Similar relations
also hold for the other Pachner moves. For different (relative) orientations (see section 5.4), one
or more signs get flipped such that such a clear separation between volumes ‘before’ and ‘after’
the Pachner move is not possible any more. In fact, since we mainly discuss the 5–1 move in this
paper, we fix s0 = 1, i.e. the orientation of the coarse simplex, because it is determined by the
boundary data and is thus not affected by moving the vertex 0. This singles out the coarse simplex
as a particular reference frame with respect to which the relative orientation of the other simplices
is defined.

At this point we can also determine the sign s using equation (5.3.8) for j = 0

(−1)s
√
|C0| = −2d/2d!

d+1∑
i=1

(−1)si l2i0Vī = −2d/2d!

d+1∑
i=1

l2i0Vī < 0 . (5.3.10)

Thus we conclude s = 1.

6The null eigenvector can be deduced from the expansion of detC with respect to different rows.
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The relations (5.3.7) can be used to derive a relation between the non–local factor D and the
criterion |C0| determining whether (d+ 2) vertices lie on a (d−1)–sphere. Recall that for arbitrary
i 6= j, D was defined as:

Dij =
∑
k 6=i,j

(−1)sk(l2ik + l2jk − l2ij)Vk̄ . (5.3.11)

Let us expand Dij as follows:

Dij =
∑
k

(−1)sk(l2ik + l2jk)Vk̄︸ ︷︷ ︸
(5.3.7)

= −2(−1)s2−d/2(d!)−1
√
|C0|

−
(
(−1)sj lijVj̄ + (−1)si lijVī

)
−
∑
k 6=i,j

(−1)sk l2ijVk̄︸ ︷︷ ︸
=−l2ij

∑
k(−1)skVk̄

(5.3.7)
= 0

= − 21−d/2(d!)−1(−1)s
√
|C0| . (5.3.12)

This proves the relation between the non–local measure D and the criterion |C0|.
This automatically gives a new interpretation to the non–factorising factor D ∼

√
|C0| appearing

in the 4D Pachner moves. If it vanishes7 all six vertices of the 4–simplices involved in the Pachner
move lie on a 3–sphere. To determine whether this is the case or not, one has to know the positions
of all six vertices with respect to each other, it cannot be inferred from a subset. Thus it is already
implied that the factor D has to be non–local, since its geometric meaning can only be deduced if
the relative positions of all six vertices are known. We will use this fact in section 5.3.1 to show
that D does not factorise.

This geometric interpretation is even more pronounced if we express the factor D in affine
coordinates. To this end we specialize to the (d + 1) − 1 move, in which we integrate out d
edge lengths, that start from a subdividing vertex 0, which lies inside the final simplex.

An efficient way to describe the coordinate of the subdividing vertex 0 with respect to the final
simplex 0̄ is by using affine coordinates. The idea is to write the position vector ~x0 of the new vertex
as a weighted sum of the position vectors ~xi, i 6= 0, with weights αi. The condition

∑
i 6=0 αi = 1

ensures that this prescription is well–defined. If one additionally requires that αi ≥ 0, ∀i 6= 0, then
the new vertex is inside the final simplex. As soon as one of the αi is negative, the vertex 0 is
located outside.

Hence, the position vector ~x0 is given by

~x0 =
∑
i 6=0

αi~xi , (5.3.13)

thus

~xk − ~x0 =

∑
i 6=0

αi

 ~xk −
∑
i 6=0

αi~xi =
∑
i 6=0

αi(~xk − ~xi) . (5.3.14)

The (square of the) new edge lengths is given by l20k = (~xk − ~x0)2:

l20k =
∑

i 6=0,j 6=0

αiαj(~xk − ~xi) · (~xk − ~xj)

=
1

2

∑
i 6=0,j 6=0

αiαj

(
(~xk − ~xi)2 + (~xk − ~xj)2 − ((~xk − ~xi)− (~xk − ~xj))2

)

=
1

2

∑
i 6=0,j 6=0

αiαj
(
l2ik + l2jk − l2ij

)
=
∑
i 6=0

αil
2
ik

∑
j 6=0

αj


︸ ︷︷ ︸

=1

−
∑

0<i<j

αiαjl
2
ij︸ ︷︷ ︸

=:b2

=
∑
i 6=0

αil
2
ik − b2 .

(5.3.15)

7The result is that the quadratic part of the action vanishes and the integral diverges.
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Recalling the determinant expression of D2, i.e. (5.3.12) and (5.3.3), l20k are the entries of the first
row and column of the matrix C0. Without changing the determinant we subtract αi times the
(i+ 1)’th row from the first one for all i 6= 0 and obtain:

D2 =

(
1

48

)2

det


−b2 −b2 −b2 · · · −b2∑

i 6=0 αil
2
i1 − b2 0 l212 · · · l215∑

i 6=0 αil
2
i2 − b2 l212 0 · · · l225

...
...

...
. . .

...∑
i 6=0 αil

2
i5 − b2 l215 l225 · · · 0

 , (5.3.16)

where it is straightforward to derive that
∑

j 6=0 αj

(∑
i 6=0 αil

2
ij − b2

)
= b2. Again, we repeat the

procedure for the columns by subtracting αi times the (i+ 1)’th column from the first one for all
i 6= 0. Then the result can be written as

D2 =

(
1

48

)2

det


0 −b2 −b2 · · · −b2
−b2 0 l212 · · · l215

−b2 l212 0 · · · l225
...

...
...

. . .
...

−b2 l215 l225 · · · 0

 = 4b4 V 2
0̄ = 4

 ∑
0<i<j

αiαjl
2
ij

2

V 2
0̄ . (5.3.17)

Indeed, (5.3.17) is a remarkable identity for D (in the 5–1 move8): The non–locality of D here
is encoded in the choice of reference frame, namely the final simplex. In particular from the
perspective of the five simplex configuration, this is not obvious. Moreover, the dependence on the
position of the new vertex only enters into the factor b2 through the weights αi.

Let us describe the geometric meaning of b2 =
∑

0<i<j αiαjl
2
ij . Let ~x denote the position vector

of the circumcenter of the 4–simplex 0̄, i.e. the circumcenter of the 3–sphere circumscribing the
4–simplex. Then the distance between this point and the vertex 0 is given by:

(~x0 − ~x)2 =
∑

i 6=0,j 6=0

αiαj(~xi − ~x)(~xj − ~x) =
1

2

∑
i 6=0,j 6=0

αiαj
(
(~xi − ~x)2 + (~xi − ~x)2 − (~xi − ~xj)2

)
,

(5.3.18)
yet, by definition of ~x, (~xi − ~x)2 = r2 ∀i 6= 0. Thus

(~x0 − ~x)2 = r2 −
∑

0<i<j

αiαjl
2
ij (5.3.19)

and finally
b2 = r2 − (~x0 − ~x)2 . (5.3.20)

From this fact and (5.3.17) we can simply deduce several properties of D: First of all, since V0̄ 6= 0
(by assumption), we conclude that D = 0 exactly if b2 = 0. From identity (5.3.20) it is clear
that this happens only if the vertex 0 lies on the circumscribing sphere of the 4–simplex 0̄, namely
(~x− ~x0)2 = r2. On the other hand, we can directly consider the definition of b2:

b2 =
∑

0<i<j

αiαjl
2
ij . (5.3.21)

It is straightforward to recognize that if we restrict the vertex 0 to stay inside the 4–simplex, i.e.
αi ≥ 0 ∀i, then b2 = 0 is only possible if all αi except one vanish.

8 As discussed in section 5.4, it is also possible to describe D in a similar way for the 4–2 move. However, there
one has to choose one of the two 4–simplices (in the 2 simplex configuration) as a reference frame to describe the
fixed position of the additional vertex. Clearly, this is not unambiguous.
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5.3 A geometric interpretation for D

This is exactly the case when the vertex 0 is moved on top one of the vertices of the final (coarser)
simplex. See fig. 5.2 for the 2D case. In 4D four of the initial five simplices become degenerate and
from the limits

lim
(0)→(1)

l01 = 0 , lim
(0)→(1)

l0k = l1k, ∀k 6= 0, 1 , (5.3.22)

lim
(0)→(1)

V1̄ = V0̄ , lim
(0)→(1)

Vk̄ = 0, ∀k 6= 0, 1 , (5.3.23)

for the volumes and the length variables it is clear that lim(0)→(1)D = 0. This limit, in which one
vertex is moved on top of another plays a crucial role in the relation between diffeomorphism sym-
metry and triangulation independence [D32]: in the discrete diffeomorphism symmetry is realized
as an invariance with respect to moving vertices. Indeed finding a triangulation invariant measure
for the 5 − 1 move would also imply invariance of the path integral under changing the position
of the subdividing vertex 0. The classical action (or rather Hamilton–Jacobi functional, i.e. the
action evaluated on the solution) already has this symmetry.

An extreme case is given by moving vertices to on top of other vertices, which effectively coarse
grains the triangulation. One would expect a singular behaviour in this case, as the lengths variables
one integrates over become redundant (we are in the linearized theory, and moving the vertex
actually affects the background variables).

Apart from these degenerate cases it can happen that D vanishes, if we move the subdividing
vertex outside the coarser simplex. In this case some some αi < 0. Indeed, the conditions b2 = 0
and

∑
i αi = 1 fix three of the five αi, parametrising a 3–sphere, thus explaining the previous

geometric interpretation. Yet these cases involve a change of orientation, which will be reflected in
the definition of the deficit angle and hence the action. One might be concerned that the formulas
derived in [D27] are no longer valid, but we will show in section 5.4 that the same arguments work
also in this case.

Figure 5.2: The degenerate limit in 2D, in which the inner vertex 0 is moved on top of one of the
vertices, here 1, of the original triangle. Clearly, once the limit is reached the areas of
the triangles (012) and (013) vanish.

5.3.1 Non–locality of the measure

The geometric interpretation of the factorD reveals its non–local structure, that it does not factorize
over (sub)simplices of the triangulation. Assuming that it would factorize, i.e. D is of the form

D =
∏
σ

Aσ(l) , (5.3.24)

where the product is over the 4–simplices and all the other lower dimensional simplices in the
complex under consideration. Note that factors in (5.3.24) are allowed to be constant. A factor
Aσ(l) depends only on the length variables of the edges contained in this simplex (which completely
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5 Discretization independence implies non–locality in 4D discrete quantum gravity

specify the geometry of this simplex). The zeros of D would be given by the union of the zeros of all
its subfactors. However each subfactor can only depend on the lengths of the edges connecting these
five vertices of the simplicial complex in question (which has six vertices), whereas the vanishing
of D is equivalent to a condition involving all six vertices.

Assume that D, and hence at least one of the factors in (5.3.24) is vanishing. Thus the six vertices
of the simplicial complex in question lie on one 3–sphere. Choose one of the vanishing factors, say
Aσ′ . As σ′ does not include all vertices, we can change the position of one of the vertices not in
σ′ so that the six vertices do not lie on a 3–sphere any more. In this case D still vanishes due to
the factorizing nature assumed in (5.3.24), which contradicts that D is only vanishing if the six
vertices are on the 3–sphere. Thus D cannot be of the factorizing form (5.3.24).

5.4 Orientation

In this section we will discuss the changes of orientation that occur once the additional vertex is
moved outside the coarser 4–simplex. As we will explain below, this will only result in the change
of certain signs; the entire derivation performed in [D27] works analogously.

Before we move the vertex outside, let us first consider how the null eigenvector ~vc of C (see
eq. (5.3.5)) is affected, when we move the vertex toward the boundary of the coarser simplex
along a straight line. As we will see, one or more entries of ~vc will vanish once the boundary is
reached; which ones and how many depends on the dimension of the subsimplex the internal vertex
is placed upon. The vanishing entries will change sign once the boundary is crossed (through this
subsimplex), which corresponds to a change of orientation of the d–simplices, which share the before
mentioned subsimplex.

To illustrate this point, let us revisit the simple 2D example. Consider again the triangle (123)
spanned by three vertices, which is subdivided in a 1–3 move by the vertex 0 placed in its center. If
one intends to move the vertex 0 outside the triangle (123), one has two options: either one crosses
through an edge or a vertex, i.e. a 1–dim. or a 0–dim. subsimplex. If one moves 0 closer to the
edge (12) as illustrated in fig. 5.3, the volume of the triangle (012), V3̄ → 0. Once the vertex is
moved across the boundary, the component ∼ V3̄ in ~vc changes its sign, here s3.

Figure 5.3: Approaching the boundary of the triangle (123) with vertex 0 via the edge (12). If the
vertex 0 reaches the edge, the area of the triangle (012), i.e. V3̄, vanishes.

The other situation, when the vertex 0 is moved on top of one of the other vertices has been
already discussed in section 5.3 and illustrated in figure 5.2: The vertex 0 is moved towards the
vertex 1, such that, once they are on top of each other, the areas of the triangles (012) and (013)
vanish, i.e. V2̄ = V3̄ = 0. Additionally, since all four vertices lie on the same 1–sphere, C0 = 0.
Hence, three signs in ~vc change, namely s, s2 and s3.

It is straightforward to generalize these ideas to arbitrary dimensions d: The relative signs s, si
depend on the position of the subdividing vertex 0 with respect to (d− 1)–dim. hypersurfaces: In
the case of the sign s, it is the (d − 1)–sphere circumscribing the initial d–simplex. For the sign
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si, it is the hypersurface orthogonal to the normal vector associated to one (d− 1)–simplex formed
without the vertex i. We illustrate this in 2D in fig. 5.4.

Figure 5.4: The triangle (123) and the 1–dim. hypersurfaces determining the change of sign. A
region with si inside denotes that the sign si is changed, if the vertex is moved 0 is
moved from inside the triangle into this labelled region.

To be more concrete, let us examine all possible situations in 4D: Consider the initial 4–simplex
(12345) formed by five vertices. The vertex 0 can ‘leave’ the initial 4–simplex either through a
tetrahedron, a triangle, an edge or a vertex. We have summarized the respective changes of signs
in the following table:

Approached / crossed subsimplex: Vanishing entries of ~vc Changes of signs

Tetrahedron (1234) V5̄ = 0 s5

Triangle (123) V4̄ = V5̄ = 0 s4, s5

Edge (12) V3̄ = V4̄ = V5̄ = 0 s3, s4, s5

Vertex 1 C0 = V2̄ = · · · = V5̄ = 0 s and s2, · · · s5

Let us now focus on the change of deficit angles in the action that occurs when we cross the
boundary of the initial simplex. To explain our point and provide an intuitive example, let us
consider the two different orientations drawn in fig. 5.5 for the 1–3 Pachner move in 2D. On the
left, we show the well–known configuration, in which the original triangle gets subdivided by an
additional vertex 0 into the three triangles (012), (013) and (023). There are three triangles meeting
at this new vertex and in order to form a flat triangulation, the dihedral angles located at vertex

0, called θ
(0ij)
0 for i, j ∈ {1, 2, 3} with i 6= j, have to sum up to 2π. On the right, the same new

triangles are created by adding the vertex 0, but this new vertex is now located outside the triangle,
which corresponds to a change of orientation. Let us discuss this further.

To be more precise, moving the vertex 0 outside the triangle (123) through the edge (12) changes
the relative orientation of the triangle (012) with respect to the triangles (013) and (023). This
results into one sign swap in the definition of the deficit angle at the vertex 0 (modulo 2π):

ω0 = θ
(013)
0 + θ

(023)
0 − θ(012)

0 =
∑
t

εtθ
t
0 . (5.4.1)

The last part of equation (5.4.1) denotes the formal sum over all triangles t meeting at the vertex
0, where each triangle now carries a colouring εt ∈ {±1} denoting its relative orientation, see
also [D52]. This simplicial complex is embeddable into R2, if the deficit angle ω0 at vertex 0 vanishes
modulo 2π9. This condition can be automatically translated into the fact that the dihedral angles

9Due to the peculiar relative orientation of simplices one can argue [D55] that the curvature does not vanish at this
vertex.
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Figure 5.5: We consider here the 1–3 Pachner, in which the triangle (123), formed by the vertices
1, 2 and 3, is subdivided into three triangles (012), (013) and (023) by adding a new
vertex 0 and connecting it to all old vertices. On the left the ‘usual’ configuration after
the 1–3 Pachner move with the vertex 0 inside the triangle is depicted, on the right the
vertex 0 is outside the triangle, which results here in the opposite orientation of the
triangle (012).

(at vertex 0) in the triangles (013) and (023) have to sum up to the one in the triangle (012), which
can be nicely seen in fig. 5.5.

Let us return to the 4D case. As the argument above shows, the change of relative signs in the
definition of the deficit angle coincides with the change of relative signs of the 4–simplices, i.e. the
signs sk. From that we deduce

εk̄ = (−1)sk . (5.4.2)

Finally the general definition of the deficit angle (modulo 2π) located at the triangle (ijk) is:

ωijk =
∑
l

(−1)slθl̄ijk mod 2π . (5.4.3)

Naturally the questions arises, how this affects the derivation of the Hessian matrix of the Regge
action. As it turns out, it hardly does. Let us prove it now:

The starting point of the derivation remains the same, namely we consider a simplicial complex
made up of d + 2 points embedded in Rd with non–degenerate d–simplices. Hence the Cayley–
Menger determinant detC is vanishing and the Cayley–Menger matrix C has exactly one null
eigenvector. The embeddebility into Rd and also the vanishing of the Cayley–Menger determinant
is due to the vanishing of the deficit angles ωh (modulo 2π), such that we require that the deficit
angles do not change under deviations of the edge lengths, i.e. δωh ≡ 0.

To put it differently, the condition detC = 0, where C only has one null eigenvector, ensures
that the given lengths form geometric d–dim. flat configurations. Thus, independent of the details
of the definition of the deficit angles, we have:

δωh 6= 0 =⇒ δ detC 6= 0 . (5.4.4)

As a consequence, the variations of the deficit angles ωh and detC are related. This shows that
under the condition detC = 0, we conclude for the 4D deficit angles ωijk:

δωijk = Bijk δ detC,
∂ωijk
∂lmn

= Bijk
∂ detC

∂lmn
, (5.4.5)

where Bijk denote some implicit functions. It turns out that the bulk part of the Hessian satisfies
(5.2.7)

∂2SR
∂lop∂lmn

= −
∑
h

∂Ah
∂lop

∂ωh
∂lmn

+ bdry terms = Eop
∂ detC

∂lmn
+ bdry terms , (5.4.6)
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where Eop again are some implicit functions. Since the Hessian matrix is symmetric, we can
determine it up to an overall factor F :

δ2SR = F δ detC ⊗ δ detC + bdry terms . (5.4.7)

Since we only consider variations on the surface defined by detC = 0, δ detC is straightforward to
determine:

∂ detC

∂lmn
= Tr|detC=0

(
adj(C)

∂C

∂lmn

)
=

(
~vc

∣∣∣ ∂C
∂lmn

~vc

)
= 2−2(4!)−2 lmn(−1)smVm̄(−1)snVn̄ .

(5.4.8)
Finally,

δ2SR = F
(−1)si+sj+sm+sn

482
lijlmn VīVj̄Vm̄Vn̄ δlij ⊗ δlmn + bdry terms . (5.4.9)

In order to identify F , let us repeat the reasoning from [D27]. Let us denote by {ijkmno} a

permutation of the vertices {012345}. It is straightforward to compute
∂ωijk
∂lmn

, since it only depends

on the dihedral angle in the 4–simplex (ijkmn). Using a formula from [D49] for
∂ωijk
∂lmn

, we get:

∂ωijk
∂lmn

= (−1)so
lmnAijk

12Vō

⇒ δωijk = (−1)
∑
l sl

(−1)siVī (−1)sjVj̄ (−1)skVk̄ Aijk

12
∏
l Vl̄

(−1)smVm̄ (−1)snVn̄ lmn δlmn︸ ︷︷ ︸
482δ detC

.

(5.4.10)

Thus in any case we have (for edge lengths not on the boundary)

∂2SR
∂lmn∂lij

= −
∑ ∂Aijk

∂lij

∂ωijk
∂lmn

= −

(∑
k(l

2
ik + l2jk − l2ij)(−1)skVk̄

)
96
∏
l Vl̄

(−1)siVī(−1)sjVj̄lij︸ ︷︷ ︸
482 ∂ detC

∂lij

(−1)smVm̄(−1)snVn̄lmn︸ ︷︷ ︸
482 ∂ detC

∂lmn

,

(5.4.11)

where we used the fact that
∂Aijk
∂lij

=
lij

8Aijk
(l2ik + l2jk − l2ij) . (5.4.12)

We can thus identify F = −24 D∏
l Vl̄

.

In this section, we have thoroughly discussed the changes of orientation that occur, if one moves
the subdividing vertex outside the coarser 4–simplex. This vertex can be moved outside in different
ways, which can be summarized by stating through which subsimplex it has ‘left’ the coarser 4–
simplex. Then all 4–simplices sharing this subsimplex change their relative orientation, which
directly translates into a change of sign in the definition of the deficit angles for all dihedral angles
stemming from these 4–simplices. Yet these intricacies of the deficit angles do not interfere with
the derivations of [D27] as long as the configuration is embeddable in R4, which is equivalent to
stating that the Cayley–Menger determinant detC = 0 or the deficit angles ωh = 0 modulo 2π.

We have the same factor D appearing in the Hessian of the action, which is vanishing if the
subdividing vertex is moved onto the 3–sphere defined by the five vertices of the coarser 4–simplex.
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5 Discretization independence implies non–locality in 4D discrete quantum gravity

In this case the fluctuation matrix δ2SR becomes singular10. Interestingly there is a recent conjec-
ture, that not including the sum over orientations (and thus avoiding this situation), would avoid
divergences in spin foams [D55]. The findings here support this conjecture in a further way: not
only may the sum over orientations lead to non–compact (potential) gauge orbits. Additionally
there is a submanifold of configurations, on which the fluctuation matrix becomes singular, which
only appears if the subdividing vertex is moved outside the coarser simplex (and if one adds up the
actions for the different simplices with their correct orientations).

5.4.1 A D factor absorbing measure for the 5–1 move

Given the concise version of D in affine coordinates, see (5.3.17), one may ask whether one can
construct a measure factor that absorbs the D factor under the 5–1 move. That is one needs to
know which five simplices are coarse grained to one simplex σ0̄ as the factor D refers to this simplex
σ0̄. The measure one has to choose is then

µ({l})5−1 = 2b
√
V0̄

∏
e

1√
192π

le∏
i

√
Vī

, with b2 =
∑

0<i<j

αiαjl
2
ij , (5.4.13)

where the αi can be expressed in terms of the lengths li0 and the lengths of the simplex σ0̄. Again,
‘non–locality’ arises because it is impossible to rewrite this expression into factors that would only
refer to the initial five 4–simplices (or other subsimplices). Instead we have one factor referring to
a complex of five simplices.

Here the modifications to the measure due to the non–local factor are specifically made to absorb
these contributions, which still requires to identify (and specify) the complexes to which a 5–1 move
can (and will) be applied. Thus subdividing one 4–simplex arbitrary many times by 1–5 moves
and integrating out again by 1–5 moves with the measure above we will finally end up with an
amplitude for the one final simplex, which of course will be ‘local’, i.e. only refer to the geometry
of this simplex.

One can nevertheless ask whether there exists a local measure invariant under a 5–1 move,
restricted to special configurations. An example of such a restriction is to consider only barycentric
subdivisions. The ansatz of a local measure (factorizing over (sub)simplices) leads to a functional
equation that has to be solved, yet whether a solution exists is an open question. In appendix 5.B,
we present a measure

µ({l}) =

∏
e

2
1
10 5

1
8√

192π
l
6/5
e∏

∆ V
3/8

∆

(5.4.14)

that is preserved under a single barycentric 5–1 move, if the coarse simplex is equilateral. This
local factor should be taken with a grain of salt: Although it gives invariance for a subdivided
equilateral simplex, it will not be invariant under repeated subdivisions, as equilateral simplices do
not stay equilateral under subdivisions.

5.5 Discussion

In this note we have revisted the work in [D27], in which it has been examined whether one can
construct a triangulation invariant path integral measure for (linearized) Regge calculus. While
this is possible for the 3–dimensional topological theory, the 4–dimensional case is complicated by
the appearance of an overall non–trivial factor D, see (5.2.11), which cannot be factorized over

10In case of the 5–1 move the Hessian matrix is singular, since it possesses four null eigenvectors corresponding to the
vertex translation symmetry of the subdividing vertex. If additionally the factor D vanishes, the whole Hessian
matrix vanishes.
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(sub)simplices of the triangulation. As we have shown in this paper, this factor has a peculiar
geometric interpretation, which is the key ingredient to uncover its non–factorising and, therefore,
non–local nature.

This result was derived for the linearized theory. It however also excludes a local measure both
invariant under 5− 1 moves and gauge invariant in the sense described in the following for the full
theory. The classical equation of motions for this move, which determine the solutions to be flat,
display diffeomorphism symmetry as the position of the subdividing vertex can be anywhere (if it
is outside the coarser simplex one needs to take the change of (relative) orientation into account).
One thus needs to gauge fix (as in the linearized theory). If we assume that a local gauge invariant
measure exists that leads to invariance under 5−1 moves we could use this to define a local measure
for the linearized theory, which however does not exist.

We suggested a non–local measure that would absorb the non–local D factor under 5− 1 moves.
Alternatively one can devise measure factors that are local and lead to an approximate invariance
near very symmetric configurations. Such measure factors could be taken as a hint for choosing the
measure for spin foams, see for instance [D56] for a first geometric interpretation of the measure
factor for a 4D model.

We additionally found that allowing for a sum over orientations (in our case having simplices of
different orientations as background), can lead to more singular Hessians11 for the linearized Regge
action. This resonates with the conjecture in [D55], that not summing over orientations might
avoid divergences in spin foams, see however the discussion in [D34], pointing out the significance
of summing over orientations for refining boundary states in gravity.

One could have hoped to find a measure that makes the path integral for the linearized theory
invariant under 5 − 1 moves (and also 4 − 2 moves) and is local [D57]. After all this kind of
invariance holds for the Regge action and it was the initial motivation for the work [D27]. This
work indeed turned out to reproduce successfully the measure factor found in the Ponzano–Regge
asymptotics [D41–D46], the (topological) spin foam model for 3D gravity. We see that a theory
with propagating degrees of freedom can have quite different properties in this respect even for a
sector that leads to only flat solutions as is the case for the 5−1 and 4−2 move. Such a flat sector
was also discussed in [D58, D59] from a canonical viewpoint where the flatness indeed allows for
anomaly free discretizations of the constraint algebra for a special class of boundaries. That is the
Hamiltonian and diffeomorphism constraints can be defined, are local and are first class, which so
far is not possible to achieve for the general 4D (discrete) case. The results in the work at hand
question the possibility to find an anomaly free quantization for this flat (in a sense topological, as
the boundaries do not allow for propagating degrees of freedom) sector with only local constraints.

We now have to expect that it is not possible to find a local invariant measure (i.e. a one–loop
effective action), even if one just wants to achieve invariance under 5 − 1 moves. In fact the con-
cept of ‘invariance’ under local moves involving non–local amplitudes is rather hard to define: the
amplitude for the initial complex in the 5–1 move is non–local, as it can be non–factorizing over
the 5 simplices, however the final amplitude only refers to the final, coarser simplex. We there-
fore suggested a measure that would absorb the non–local part, which results from the Hessian
of the action (where ’non–local part’ is not without ambiguities). The difficulties of formulating
invariance conditions for non–local amplitudes arise also because one is keeping simplices as fun-
damental building blocks and the principle that these simplices are ‘glued’ together by integrating
over boundary variables. This can be taken as a hint that an alternative formulation, as presented
in [D34], is worthwhile: This formulation replaces simplices by building blocks with arbitrarily
complicated boundaries and focuses on the amplitudes associated to these boundaries. The re-
quirement of triangulation invariance (which has become empty as it refers to the bulk, whereas
in this formulation everything is defined via boundary geometries) is replaced by the condition of
cylindrical consistency for the amplitudes associated to these boundaries [D33]. Such a formulation

11In fact, the Hessian vanishes entirely if D = 0.

151



5 Discretization independence implies non–locality in 4D discrete quantum gravity

is much better suited for situations where non–local amplitudes arise and moreover does not refer
to bulk triangulations at all.

On the level of the (classical) action, this non–locality has already to be expected if one wants to
achieve full triangulation invariance [D60], i.e. under all Pachner moves, as is the case with other
perfect actions [D28,D29].

Our arguments relied on the Regge action, using length variables. An interesting question is
whether these findings would change if one would use other variables, e.g. involving angles and / or
areas [D61–D63]. A first order formulation with length and (4D dihedral) angles as in [D61] would
also lead to a non–local measure, as the angles can be integrated out in each simplex locally, and
a local measure in first order variables would lead to a local measure in length variables. Area–
Regge calculus itself has non–local constraints [D64,D65], thus one would even expect a non–local
measure (for the associated Lagrange multipliers) for this reason. In contrast, area–angle Regge
calculus [D62,D63] has local constraints, which become non–local (reducing to the area constraints)
after integrating out the angles. Here the question of non–locality might depend on whether to
impose the gluing (or shape matching) constraints, which are part of the constraints reducing
are–angle Regge calculus to length Regge calculus [D62, D63]. The status of these constraints in
spin foams (or loop quantum gravity) is debated, see [D66, D67] for a discussion. Let us also
mention [D68], which finds a local measure for a 4D model with a Regge like (first order) action.
This model is however topological, and hence it is not surprising that one can find a local measure
factor in this case. It also shows that the issue of imposing gluing constraints, that are essential in
regaining standard Regge calculus with propagating degrees of freedom, might be crucial.

The encountered non–localities are characteristic of interacting theories and unavoidable, but
might be more effectively handled if other degrees of freedom are used. One possibility are dynam-
ically determined recombinations of the initial degrees of freedom to obtain new effective degrees of
freedom, which can be non–local in terms of the initial triangulation, but may interact only locally
among each other. This can also be interpreted as combining the initial basic building blocks into
new effective ones, which may require transformations that are more general than Pachner moves.
These transformations can be for example be given by dynamical embedding maps [D33,D34], which
relate the Hilbert spaces of finer and coarser boundary data. In fact the idea is to use these em-
bedding maps to define the physical (continuum) Hilbert space via an inductive limit and requiring
cylindrical consistency. Interestingly, these ideas naturally translate to ideas and real–space renor-
malization schemes in condensed matter physics, such as tensor network renormalization [D69,D70],
which recently have been applied to analogue spin foam models [D71,D72].
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5.A Special cases of D

5.A.1 Placing the subdividing vertex far outside

In special situations it is possible to derive simpler expressions for the factor D. Assume for example
that the inner vertex 0 in the 5–1 move is moved very far outside the original simplex as sketched
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5.B Measure for barycentric subdivision

in fig. 5.6. These configurations, called ‘spikes’, are important in determining the divergence
behaviour of spin foam models [D23–D25] and hence it is interesting to look for a simpler form of
the factor D in this limit. If sufficiently far out, we can approximate the new edge lengths l0i ≈ l.
Inserting this into (5.3.12), we get:

D2 ≈
(

1

48

)2

l4 det


0 1 . . . 1
1 0 . . . (l1(d+1))

2

...
... . . .

...
1 (l1(d+1))

2 . . . 0

 = 4l4V 2
0̄ . (5.A.1)

Figure 5.6: A schematic picture of the limit, in which the vertex 0 is moved far away from the
initial 4–simplex.

5.A.2 Circumcentric subdivision

The same argument works out exactly in a circumcentric subdivision of the initial 4–simplex. In
this subdivision, the subdividing vertex has the same distance to all vertices of the initial 4–simplex,
i.e. it is placed in the center of circumscribing sphere of the initial simplex. Depending on the
shape of the initial simplex, this can mean that the new vertex is inside or outside the simplex, yet
by definition, it cannot be on the circumscribing sphere. In the following we denote the radius of
the sphere as r, thus l0i = r:

D2 =

(
1

48

)2

det


0 r2 r2 · · · r2

r2 0 l212 · · · l215

r2 l212 0 · · · l225
...

...
...

. . .
...

r2 l215 · · · · · · 0

 = 4r4V 2
0̄ (5.A.2)

In both these cases the non–locality of D is rather hidden in the simplicity of the considered
geometry.

5.B Measure for barycentric subdivision

Here, we will consider a barycentric subdivision, which in affine coordinates is given by choosing
all αi to be equal. In 4D, αi = 1

5 and many equations given above are simplified:

b2 =
1

25

∑
0<i<j

l2ij , l20k =
1

25

4
∑
i 6=k

l2ik −
∑
m,n 6=k

l2mn

 . (5.B.1)

In case one considers an equilateral initial 4–simplex, i.e. all edge lengths lij = l, ∀i, j 6= 0, the
factor D simplifies even further. In fact, for this 4–simplex, the circumcentric subdivision coincides
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5 Discretization independence implies non–locality in 4D discrete quantum gravity

with the barycentric subdivision, b2 = r2. Then the subdividing edges also have the same length
l′, with (l′)2 := b2 = 2

5 l
2 and each of the five 4–simplices ī, i 6= 0, has the same volume V ′, namely

V ′ := Vī = 1
5V0̄ ∀i 6= 0. We consider again D01:

D01 =
5∑

k=2

(−1)sk︸ ︷︷ ︸
=1

(l20k + l21k − l201)Vk̄ =
4

5
l2V0̄ = 10 (l′)2 V ′ . (5.B.2)

Thus we can construct a local measure, which is (approximately) invariant for integrating out
subdivided (approximately) equilateral simplices.

Consider the following measure12

µ({l}) =

∏
e

2
1
10 5

1
8√

192π
l
6/5
e∏

∆ V
3/8

∆

(5.B.3)

for the initial complex of five simplices in the (equilateral, barycentric) 5 − 1 move. From this
5 − 1 move integration we obtain the following factors from the (square root of the inverse of the
determinant of the) Hessian and the gauge fixing procedure described in [D27], by which the initial
measure factor is multiplied:

F5−1 = (192π)
5
2

1√
D

√
V1̄ · · ·V5̄

V0̄

1

l01 · · · l05
. (5.B.4)

For the equilateral barycentric 5− 1 move we thus obtain

µinitialF5−1 =
2

3
2 5

15
8

(192π)
15
2

(192π)
5
2

1

5
5
8

1

2
1
2

l
6
5
·10

V
3
8

0̄

= µfinal (5.B.5)

and hence invariance for this highly symmetric configuration. Note that this procedure is not
without ambiguities, apart from the question of how to distribute numerical coefficients, we could
have also exchanged length variables for volumina and vice versa using the relation V0̄ =

√
5 (23 ·

3)−1l4 for the equilateral 4–simplex.

5.C Radius of circumscribing sphere

The radius r of the (d − 1)–sphere S circumscribing the d–simplex ∆ can be computed from the
Cayley–Menger matrix C of ∆ [D47] (see also [D48]):

r(S) = −1

2

|C0(∆)|
detC(∆)

, (5.C.1)

where the numerator |C0(∆)| is the determinant of the ‘(0, 0)’ minor of C(∆), see also (5.3.3), and
the denominator is simply the Caley–Menger determinant of ∆. See section 5.4 for the notation.

12Here we choose to assign numerical factors to the edges as in [D27]. Other choices are possible as well.
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Abstract

So far spin foam models are hardly understood beyond a few of their basic building blocks. To make
progress on this question, we define analogue spin foam models, so called spin nets, for quantum
groups SU(2)k and examine their effective continuum dynamics via tensor network renormalization.
In the refinement limit of this coarse graining procedure, we find a vast non-trivial fixed point
structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed
point intertwiners, inspired by Reisenberger’s construction principle [E1] and the recent work [E2],
as the initial parametrization. In this new parametrization fine tuning is not required in order
to flow to these new fixed points. Encouragingly, each fixed point has an associated extended
phase, which allows for the study of phase transitions in the future. Finally we also present an
interpretation of spin nets in terms of melonic spin foams. The coarse graining flow of spin nets
can thus be interpreted as describing the effective coupling between two spin foam vertices or space
time atoms.
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6 Quantum group spin nets: refinement limit and relation to spin foams

6.1 Introduction

The aim of spin foam quantization is to provide a non–pertubative and background–independent
quantization of gravity via an auxiliary discretization. A key outstanding question for these models
is to show that they reproduce familiar low energy physics, in particular a phase describing a smooth
manifold, in a limit in which the scale of the discretization is much smaller than other relevant length
scales in the system [E3].

In this work we will provide first conjectures on the possible large scale behaviour of spin foams.
These are based on the investigation of the coarse graining or renormalization flow of spin net
models, which, as we will show in this work, can be interpreted as a coarse graining flow of (melonic)
spin foams and as describing the effective coupling between two spin foam vertices.

To lay out the context of this work, explicit investigations of the coarse graining and renormal-
ization flow of spin foam models [E3–E8], have been hindered by the overwhelming complexity of
the models, apart from an incomplete understanding of possible infinities [E9–E13] and a num-
ber of conceptual questions [E14–E16], for instance the meaning of scale in coarse graining back-
ground independent systems. Regarding these questions a conceptual understanding was reached
in [E17,E18], that allows to interpret the coarse graining flow as the construction of the continuum
limit of the theory via the concept of dynamical cylindrical consistency and embedding or refine-
ment maps. To tackle the concrete implementation of this coarse graining flow, after establishing
the importance of coarse graining for the recovery of diffeomorphism symmetries in discrete sys-
tems and therefore the recovery of a correct continuum dynamics [E19–E24], a program was started
in [E25–E27], which considers the corresponding question in simplified systems, that keep however
key dynamical principles, in particular the imposition of so–called simplicity constraints [E3–E8],
of spin foams.

The simplifications considered can be summarized into three types: (a) the replacement of the
structure group SU(2)×SU(2) of the full gravitational models by a finite group [E25,E28,E29], (b)
a dimensional reduction of spin foams to so–called spin nets [E25–E27], and (c) the consideration
of a regular lattice [E26,E27,E30].

In this work we lift the simplification (a), regarding (b) we show that spin net coarse graining can
be interpreted as a coarse graining of (melonic) spin foams and confirm again [E19–E24,E30] that
(c) does lead to triangulation invariant models, at least for the non–critical fixed points. This latter
fact is deeply related to the restoration of a notion of diffeomorphism symmetry [E19–E24] at the
fixed points. In fact the recovery of a sensible continuum limit and the regaining of diffeomorphism
symmetry might even be only possible if certain regularity conditions on the coarse graining process
are satisfied [E18,E31].

For these reasons we will be able to present for the first time1 the coarse graining flow in a
non–trivial spin foam system and investigate the fixed points it leads to. This allows us to draw
first conclusions about the possible phases that might describe the continuum limit of spin foams.

To be more precise, we introduce here spin net models with structure group SU(2)k, the quantum
deformation (at the root of unity) of the group SU(2). This makes a numerical investigation of
the models possible, as in the quantum group only finitely many representations appear. On the
technical level this requires the introduction of the Haar projector for the quantum group which we
construct in this work. Models based on the quantum deformation of the rotation group describe
gravitational systems with a cosmological constant [E35–E42]. For the 4D systems one would
need SU(2)k × SU(2)k, however also an effective description in terms of SU(2)k alone might be
possible [E43]. Thus we lift the simplification, considered in [E26,E27,E44], of the structure group
almost completely. Moreover considering the behaviour of the models for growing level k allows to

1An exception is [E28,E29,E32] which considered a sequence of 4−1 and 5−1 Pachner moves for spin foam models
based on finite groups. However, as mentioned, the question arises whether such a flow, based on coarse graining
moves [E18] only, allows to make definite conclusions about the continuum limit. In contrast the tensor network
algorithm [E33,E34] considered here includes, in a sense, refining, coarse graining, and entangling moves [E18].
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6.1 Introduction

make conjectures on the limit k →∞, which gives back the classical group SU(2).

As in previous work [E26,E27,E44] we will employ tensor network techniques [E33,E34] to derive
a coarse graining flow equation, which is then investigated numerically. This flow equation describes
the change of intertwiner degrees of freedom under coarse graining, as exemplified for the first time
in [E44]. As is outlined in [E17,E18] these tensor network techniques are particularly suited for the
construction of the continuum limit for spin nets and spin foams. In [E26, E27] a tensor network
representation of spin foams appeared which might allow to derive similar coarse graining flow
equations directly for spin foams. Also [E18] points out, that the geometric building blocks of spin
foams, the simplices, allow to be interpreted as coarse graining, refining or entangling moves, in
dependence of how these are glued together. Such moves are the basic ingredients of tensor network
renormalization. This might lead to an even more geometric way to derive such coarse graining
flow equations.

Another innovation that we present in this work is a change in the parametrization for the (phase)
space of spin net and spin foam models. This new parametrization takes the lesson from [E44] se-
riously, that the relevant degrees of freedom are given by intertwiners. We thus introduce a new
parametrization, based on Reisenberger’s construction principle [E1], that leads us to employ so–
called fixed point intertwiners [E2, E45], which encode the simplicity constraints. Reisenberger’s
principle ensures that the models so obtained are physically reasonable, i.e. that the simplic-
ity constraints they encode appear to be the same in (physically equivalent) different recoupling
schemes.

We will find that this new parametrization is highly advantageous: in contrast to the parametriza-
tion introduced in [E28, E29] and employed in [E44], models flow generically to non–trivial fixed
points (in particular different from the degenerate fixed point, in which only the spin representa-
tion j = 0 appears). We conjecture that this behaviour is due to the projector property that is
satisfied for models based on fixed point intertwiners. Modern spin foams are rather based on a
parametrization like that employed in [E28,E29], and the reconstruction of the projector property
is rather complicated [E46]. The findings here therefore suggest to reconsider Reisenberger’s con-
struction principle, in particular since it allows the construction of vertices of arbitrary valence [E1],
as was also later realized for the EPRL model [E5–E8] in [E47,E48]. Similar to the arguments on
the uniqueness of the Barrett–Crane model [E49] in [E1], it is even possible to find a parametriza-
tion of all physically sensible models, by finding all fixed point intertwiners for a given structure
group [E2,E45].

The outline of the paper is the following: The next section 6.2 introduces the basic ingredients of
spin foam and spin net models that we need for the work here. It will also explain the parametriza-
tion for the models based on Reisenberger’s construction principle, for which we need the fixed
point intertwiners. In section 6.3 we introduce the essential notions and tools related with the
quantum group SU(2)k that will be needed to define spin net models based on this group. Using
these tools we introduce the general structure of our models in section 6.4. In section 6.5 we adapt
to the quantum group case the symmetry preserving coarse graining algorithm introduced in [E44].
This will lead to a flow equation describing the behaviour of intertwiner degrees of freedom under
coarse graining. We will give a (3D) geometrical interpretation of the flow equation which might
lead to a more intuitive understanding of the coarse graining flow. Section 6.6 contains the explicit
definition of the weights for the initial models. We then investigate the behaviour under coarse
graining of these models and analyze and describe the results obtained. We comment on the inter-
pretation of spin net coarse graining in the context of spin foam coarse graining in section 6.7. We
discuss our main findings in Section 6.8. Finally appendix 6.A includes technical (diagrammatic)
calculations that might help the understanding of some equations in the main text, in particular
those appearing in sections 6.3 and 6.5.
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6.2 Reisenberger’s principle and intertwiner models

Spin foam models are generalization of lattice gauge theories and as such are defined on 2–
complexes, i.e. generalizations of graphs, in which in addition to vertices and edges, also faces
are specified. There is an important difference though: whereas for lattice gauge theories the main
dynamical ingredient are weights on the faces, these weights are not as essential for the dynamics
of spin foams (they are crucial for the divergence properties of the model [E9–E13], but are not
supposed to include i.e. a coupling constant). Rather for the dynamics of spin foams the choice of
an intertwiner for the edges is crucial – equivalent to choosing a certain implementation of the so
called simplicity constraints.

To be more specific, consider lattice gauge theory based on a gauge (or structure) group G, which
we assume to be either a compact semi–simple Lie group or a finite group.2 The variables are given
as group elements associated to oriented edges of a graph. The dynamics is encoded into face
weights ωf , which are class functions on the group. These face weights are evaluated on the face
holonomies hf , i.e. the (oriented) product of group elements ge associated to the edges e around
a face hf =

∏
e⊂f ge. Let us assume that all edges agree in their orientation with the orientation

induced from the face.
The partition function is then given as

Z =

∫ ∏
e

dge
∏
f

ωf (hf ) . (6.2.1)

Here dg denotes the (normalized) Haar measure on G. We can change to a dual description
by applying a group Fourier transform. Due to the invariance of the face weight under group
conjugation we can expand the face weights as a linear combination of characters

ωf (h) =
∑
ρ

ω̃f (ρ)χρ(h) , (6.2.2)

where χρ = ρm
m and ρ(·)mn denotes a matrix element of a irreducible unitary representation ρ

(irreps) of the group G. In (6.2.2) we sum over a complete set of (equivalence classes) of irreps.
Expanding hf into the product of group elements and using the representation property ρ(g1g2) =

ρ(g1) · ρ(g2) one finds that the partition function is now given as

Z =
∑
ρf

∏
f

ω̃f (ρf )
∏
e

(PeHaar)
nf1nf2 ···nfNe
mf1mf2 ···mfNe

. (6.2.3)

Here PeHaar is the so–called Haar projector, which absorbs the integrations over the group elements
g in (6.2.1). For an edge whose Ne adjacent faces agree in orientation with the one of the edge the
Haar projector is given as

(PeHaar)
nf1nf2 ···nfNe
mf1mf2 ···mfNe

=

∫
dg

∏
f⊃e

ρf (ge)mf
nf . (6.2.4)

The group integration or averaging enforces gauge invariance. Indeed the Haar projector is an
intertwining map between the group invariant (singlet) subspace of the tensor product of represen-
tations

PHaar : Inv(Vρ1 · · ·VρNe )→ Inv(Vρ1 · · ·VρNe ) (6.2.5)

or, if seen as a map on Vρ1 · · ·VρNe it acts as a projector onto Inv(Vρ1 · · ·VρNe ).

2For a basic introduction into spin foams as statistical systems see [E25].
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Choosing any orthonormal basis3 {|ιd〉}d in Inv(Vρ1 · · ·VρNe ) we can write the Haar intertwiner
as

PHaar =
∑
d

|ιd〉 〈ιd| , (6.2.6)

which makes the projection property P · P = P of PHaar obvious.
As mentioned the important dynamical ingredient in spin foams are intertwiners, whereas the

face weights are rather chosen due to kinematical considerations, for instance as delta functions
on the group in the group representation. For non–trivial spin foam models, that is models which
cannot be rewritten into standard lattice gauge theories, one replaces PHaar by a smaller projector
P, selecting a smaller subspace of Inv(Vρ1 · · ·VρNe ).

With an appropriate choice of orthonormal basis of intertwiners we can write

P(N) =
∑
d∈SN

|ιd〉 〈ιd| , (6.2.7)

where SN denotes a subset of intertwiner labels specified by the choice of simplicity constraints.
Again the form (6.2.7) makes the projector property P ·P = P explicit. In the context of spin foams
this projector property ensures a notion of (weak) independence of the underlying two–complex,
namely invariance under edge subdivisions [E28,E29,E46,E50–E52].

On the other hand the form (6.2.7) makes it non–obvious how to relate the sets SN for differ-
ent valencies N (i.e. number of faces sharing the edge e) of the edges. To solve this problem,
Reisenberger proposed the following principle in [E1]:

Reisenberger’s construction: We consider multiplicity free representation categories, where in
the reduction of the tensor product of any two irreps each irrep can only appear once. In this
case, by choosing a recoupling scheme, intertwiners can be labelled by sets of representation labels:
an intertwiner for valency N is characterized by the N representation labels plus (N − 3) further
representation labels. Note that the choice of recoupling scheme can be encoded in a three–valent
graph with N outer edges, and that the representation labels are attached to the edges of this graph.
We will denote with S1 the set of allowed representations implied by the simplicity constraints.

In Reisenberger’s construction this set S1 then determines all the other sets SN via the following
principle: For every possible choice of recoupling scheme, i.e. three–valent graph, only representa-
tions in S1 should appear.

Reisenberger applies this to the Barret-Crane model [E49] and shows that choosing S1 accordingly
the intertwiners P(N) are uniquely determined. It actually turns out that if we take the intertwiner
as a model for a partition function, as introduced in [E2] (with boundary data given by the n
representation and summing over all the intertwiner labels) the Barrett-Crane model leads even to
a triangulation invariant model.4

In [E2] so–called intertwiner models were introduced, which are 2D statistical models determining
an intertwining map between representation spaces associated to the boundary components of the
2D bulk. The models are defined on three–valent graphs. Dualizing these graphs we obtain a
triangulation (under certain regularity assumptions). It turns out that intertwiner models whose
partition function are invariant under the change of (2D) triangulation, are also – at least in the
planar case – a realization of Reisenberger’s conditions. In particular each triangulation invariant
model is characterized by a set S1 of representations that are allowed to appear as intertwiner labels
and as boundary data.

3Often the elements of Inv(Vρ1 · · ·VρNe
) themselves are referred to as intertwiners.

4Indeed it can be seen as a re–interpretaion of an analogue BF spin net model [E25–E27], which is also topological.
Related, the Barrett-Crane intertwiner is given as a square of the BF intertwiner [E25].

163



6 Quantum group spin nets: refinement limit and relation to spin foams

Let us explain this statement in more detail, restricting to four–valent intertwiners, i.e. N = 4.
Fixing the 4 outer representations ρ1, . . . , ρ4, a choice of intertwiner basis, labeled by ρ5, can then
be represented graphically by the following three graphs Γ:

A =

ρ3 ρ4

ρ1ρ2

ρ5 ; B =

ρ3

ρ2 ρ1

ρ4

ρ5 ; C =

ρ3

ρ2 ρ1

ρ4

ρ5
. (6.2.8)

A specific intertwiner is then specified by the basis coefficients aΓ(ρ1, . . . , ρ4; ρ5). Here one has
to make one choice of basis Γ = A,B or C. Once the intertwiner coefficients are fixed in one basis,
say A, it can of course be re–expressed in the two other bases B and C. Reisenberger’s principle
demands that aA has to vanish if any of the arguments ρ1, . . . , ρ4 is not in S1 or if ρ5 is not in S1.
Additionally the coefficients aA have to be chosen so that also aB and aC vanish as soon as ρ5 is
not in S1.

The triangulation invariant intertwiners constructed in [E2, E45] are characterized by a certain
set S1 of allowed representations. Additionally the basis coefficients are invariant under changes
which keep the graph planar, i.e. we even have aA = aB. As for a graph with crossing (note that for
a quantum group one has to specify whether this is a over or under–crossing), only a certain subset
of the fixed point intertwiners satisfies aA = aB = aC . However, using the braiding operation for
quantum groups, see for instance [E2], one can find for the change of basis from C to B

∑
ρ5

aC(ρ1, ρ2, ρ3, ρ4; ρ5)

ρ3

ρ2 ρ1

ρ4

ρ5 =
∑
ρ5

aC(ρ1, ρ2, ρ3, ρ4; ρ5)

ρ3

ρ2 ρ1

ρ4

ρ5

=
∑
ρ5

aC(ρ1, ρ2, ρ3, ρ4; ρ5)

ρ3 ρ4

ρ1ρ2

ρ5 b(ρ3, ρ4, ρ5) , (6.2.9)

where in the first step we used the triangulation invariance, i.e. invariance under a planar change
of graph, and in the second step we resolved the braiding, described by non–vanishing coefficients
b(ρ3, ρ4, ρ5). For a certain set of triangulation invariant models these coefficients b can be replaced
by 1 in the sum over ρ5. For most models (for instance the family described in section 6.6.1) this is
however not the case. Nevertheless Reisenberger’s principle still holds: if aC vanishes for a certain
representation ρ5 this will also hold for the A basis coefficient, given by aC×b. Thus Reisenberger’s
principle is satisfied at least for four–valent intertwiners, relevant for simplicial lattices in 4D. For
3D spin foams (also on non–simplicial lattices) one could even restrict to planar graph changes
only, as the intertwiners are attached to edges and so the expansion might be argued to take place
in a plane orthogonal to this edge.

There exists a rich structure of these triangulation invariant models [E2, E45]. These models
define in particular fixed points for the renormalization flow in the space of intertwiner models.
This suggest to indeed use these particular fixed point models for defining intertwiners for spin
foams. We will call such an intertwiner coming from a fixed point model a fixed point intertwiner.
Such a fixed point intertwiner, characterized by a set S1 of irreps, leads to a family of intertwiners
|ιNS1
〉, labelled by the valency N of the edge, so that we can define a projector just as

P(N)
S1

= |ιNS1
〉 〈ιNS1

| . (6.2.10)
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6.2 Reisenberger’s principle and intertwiner models

Assuming normalization the projector property is obviously satisfied.
Note that a spin foam model defined via such a fixed point intertwiner does in general not define

a fixed point of the renormalization flow in the space of spin foam models. The same holds for spin
nets, that we will define as lower dimensional analogues of spin foams further below.

Alternatively we can also consider linear combinations of different fixed point intertwiners

P(N)

αNi
=
∑
i

αNi |ιNSi1〉 〈ι
N
Si1
| . (6.2.11)

These also satisfy Reisenberger’s principle (at least for N = 4) , as now only representations in
∪iSi1 appear in any possible recoupling scheme. However as the |ιNSi1〉 are not necessarily orthogonal

to each other5, the projector property will be only satisfied for specific choices of the coefficients
αNi . Nevertheless it is interesting to consider (6.2.11) for general coefficients, as it allows to obtain
phase diagrams and in this way to determine phase transitions. The latter might allow to define a
continuum limit theory with propagating degrees of freedom.

The main result of this paper is the following: Using these fixed point intertwiners to define
(2D) spin net models, these spin nets flow in general to ‘non–trivial’ triangulation invariant models
without the necessity of fine tuning.

Here we mean with ‘trivial’ fixed points, those in which no simplicity constraints occur, and
which can be expressed as standard lattice gauge theories. E.g. for the so–called degenerate fixed
point only the representation j = 0 is excited (appearing as high temperature fixed point in the
statistical physics interpretation). Another example are fixed points which can be understood as
analogues of BF theories. In these cases the models can all be described by the Haar projector
and a choice of edge weights (the analogues of spin foam face weights for the spin nets).

Furthermore we have to explain the notion of fine tuning, as this depends highly on the parametriza-
tion that one chooses for the initial models, which are then subjected to the coarse graining flow. To
compare the parametrization (6.2.11) introduced here and another parametrization used in [E44]
let us explain the latter. It is based on so–called E–functions, introduced in [E28,E29]. These E–
functions encode the simplicity constraints. This parametrization covers all the standard models
for spin foams [E3,E5–E8,E49]. In this case the Haar projector is replaced by operators of the form

P(N) = PHaar · Eρ1 ⊗ · · · ⊗ EρN · PHaar (6.2.12)

where EρI denotes a (non–intertwining) map: VρI → VρI on a representation space associated
to one of the faces adjacent to the edge in question. This gives another possibility to define
consistently spin foam models for vertices or edges with arbitrary valency [E47, E48]. However,
for instance for the EPRL model [E5–E8] the projector property needs to be implemented by an
additional construction [E46], in which the factorizing structure of the operators (6.2.12) over the
representation spaces VρI is a priori changed.

Indeed the form (6.2.12) can be expanded in an intertwiner basis again

P(n) =
∑
d,d′

|ιd〉〈ιd| PHaar · Eρ1 ⊗ · · · ⊗ Eρn · PHaar |ιd′〉〈ιd′ | (6.2.13)

where now in general non–diagonal terms proportional to |ιd〉〈ιd′ | appear. The question whether
this is a projector turns then into the question whether a diagonaliztion leads to eigenvalues 0 and
1 only.

[E44] used the E–function parametrization for models based on the structure group S3. (The
fusion categories of the permutation group S3 and SO(3)k=4 are actually gauge equivalent as fusion
categories6, hence we can compare the coarse graining results of [E44] with the examples considered

5Of course the intertwiners can in principle be orthogonalized with the Gram Schmidt procedure.
6We thank Oliver Buerschaper for pointing this out.
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6 Quantum group spin nets: refinement limit and relation to spin foams

here.) A phase space diagram based on this parametrization leads to the following picture: Basically
all models given by this parametrization flow either to the high temperature phase or to a ‘trivial’
S3 or Z2 ordered phase, analogous to either BF theory on S3 or BF theory on the subgroup Z2 for
spin foams. Only by fine tuning to a phase transition, in the case of [E44] between high temperature
and S3 ordered phase, one might flow to a non–trivial fixed point. It was this instance of a non–
trivial fixed point, which motivated the investigations in [E2], which revealed the possibility of
a very rich structure of non–trivial fixed points in spin net models. However a posteriori it was
rather a case of good fortune to have seen this fixed point at all, as it appeared (a) only for a tiny
subset of initial models in the parametrization used, and (b) only for a certain truncation, as higher
truncations turned on couplings that would lead to a flow away from this fixed point.

The picture that we will find for the parametrization (6.2.11) introduced in this work will be very
different. Rather models flow generically to non–trivial fixed points. Thus with the parametrization
of the phase diagram here, the fixed points define a phase, i.e. an extended region in our phase
diagram7. We will work with quantum groups SO(3)k which makes a systematic investigation for
different choices of k possible (bounded by the available computer power of course). This allows us
to conjecture that the essential picture will not change in the limit k →∞ and therefore holds for
general (quantum) groups.

These results give new weight to the point suggested in [E46,E50–E52], which is to build models
and select measure factors such that invariance under certain subdivisions of edges and faces is
guaranteed. For edge subdivisions this leads to the projector property for the ‘edge operators’ P.
The investigations here show that models which implement this property (or are in a certain sense
near such models) flow rather to non–trivial fixed points. Whereas for models of the form (6.2.12)
the implementation of the projector property is rather involved [E46] and as [E44] shows for the
structure group S3, most of these models flow to trivial fixed points.

Finally let us explain spin net models. Very simply whereas for spin foams the P(N) are based
on edges, for spin nets the P(N) are based on vertices and define the vertex weights. The edges are
labelled by the representation labels ρ, as well as two magnetic indices, labelling a basis in Vρ and
Vρ∗ (the dual representation space) respectively. Thus every edge carries a Hilbert space

He = ⊕ρVρ ⊗ Vρ∗ , (6.2.14)

where the sum is over all irreducible representations. The contraction of indices of vertex weights
P(N) and the sum over representation labels j corresponds then to integrating out all degrees of
freedom associated to the edges.

Thus the partition function for a spin net is defined as

Z =
∑

ρe,me,ne

∏
v

P(Nv)
v ({ρe}e⊃v, {me}e⊃v, {ne}e⊃v) (6.2.15)

where we made the index structure of the intertwiners explicit.
Spin nets can be imagined as dimensional reductions to spin foams, in the sense that one considers

a cut orthogonal to a spin foam edge, which now will appear as vertex. Objects which are based
on faces in spin foams, are based on edges in spin nets. Spin nets were introduced in [E26, E27]
to allow numerical coarse graining investigations for 2D models, which is naturally much simpler
than considering 4D models. In addition, for (standard) lattice gauge theory, a certain duality exist

7A parametrization independent definition of a stable phase would require stability with respect to all possible
perturbations of the fixed point (or all possible perturbations respecting a given symmetry [E53–E55]), that is
loosely said an extended region in the infinite dimensional phase space encoding all possible models. For practical
reasons we will use the parametrization dependent definition of ‘phases’ here and investigate stability properties
of the phases in future work.
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between 2D ‘Ising type’ models and 4D lattice gauge theory models. In many examples statistical
properties are similar between a given 4D lattice gauge model and the corresponding Ising type
analogue 2D model. Spin net models have been defined based on the same principle, therefore we
can hope that some of the findings on the phase structure of spin nets hold also for the 4D spin
foam models.

In section 6.7 we will show that the partition function for a spin net can be understood as the
partition function for a melonic spin foam with only two vertices and a large number of edges and
faces (with two edges). This will allow us to interpret the renormalization flow of spin nets as a
renormalization flow of spin foams.

6.3 Quantum group SU(2)k

6.3.1 Basic ingredients

Before defining our quantum group spin net models, based on the quantum deformation of the
rotation group, we need some basic tools that we summarize in this section. We follow [E56] in
notation and conventions, where the interested reader can find a thorough introduction to SU(2)k,
see also [E57].

Following [E56] we understand the quantum group SU(2)k as the q-deformation Uq(su(2)) of the
universal enveloping algebra U(su(2)) of the Lie algebra su(2). The algebra Uq(su(2)) is generated
by three operators J±, Jz with commutation relations

[Jz, J±] = ±J±

[J+, J−] =
qJz − q−Jz
q1/2 − q−1/2

. (6.3.1)

As for the classical case, the finite dimensional representations of SU(2)k are labelled by half
integers j and can be defined on (2j + 1) dimensional representation spaces Vj . The so–called
quantum dimensions are given by

dj = [2j + 1] , (6.3.2)

where

[n] =
q
n
2 − q−n2
q

1
2 − q− 1

2

(6.3.3)

are the so–called quantum numbers. Here q can be a root of unity or q ∈ R/{0}. For q a root of
unity, q = exp( 2π

(k+2) i), the quantum numbers are periodic

[n] =
sin( 2πin

2k+4)

sin( 2πi
2k+4)

, (6.3.4)

having zeros at n = 0 and n = k + 2. Thus j = k
2 with dk/2 = 1 is the ‘last’ representation

with a strictly positive quantum dimension. Representations j = 0, 1
2 , . . . ,

k
2 are called admissible,

representations j > k
2 are of so–called quantum trace zero. The number k ∈ N is referred to as

level.
Assuming two representations Vj1 , Vj2 the tensor product is defined via the co–product ∆. The

action of the SU(2)k algebra on Vj1 ⊗ Vj2 is defined as

∆(J±) = q−Jz/2 ⊗ J± + J± ⊗ qJz/2
∆(Jz) = I⊗ Jz + Jz ⊗ I . (6.3.5)
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As in the classical case we can reduce the tensor product Vj1 ⊗ Vj2 into a direct sum of irreducible
representations and a part consisting of trace zero representations (which will be modded out).
Assuming orthogonal bases |j,m〉 in the representation spaces, we can describe this by Clebsch-
Gordan coefficients

|j,m〉 =
∑
m1,m2

qC
j1j2j
m1m2m |j1m1〉 ⊗ |j2,m2〉 . (6.3.6)

When coupling three admissible representations jI , jK and jL in this way, the coupling coefficients
are only non–vanishing if the following conditions hold:

jI + jK ≥ jL for all permutations {J,K,L} of {1, 2, 3} ,

j1 + j2 + j3 = 0 mod 1 ,

j1 + j2 + j3 ≤ k . (6.3.7)

Note the last condition in (6.3.7), that is special to the quantum deformed case at root of unity.
This condition signifies that Vj1 ⊗ Vj2 can include trace zero parts. These trace zero parts can be
modded out [E57]. Some equations (for instance the one defining the [6j] symbol) will however
hold only modulo such trace zero parts [E57].

In particular we have the completeness relation∑
m3, j3 admiss.

qC
j1j2j3
m1m2m3 qC

j1j2j3
m′1m

′
2m3

= Πj1j2
m1m2 ,m′1m

′
2

(6.3.8)

where Πj1j2
m1m2 ,m′1m

′
2

projects out the trace zero part in Vj1 ⊗Vj2 . The orthogonality relation for the

Clebsch-Gordan coefficients is given as∑
m1,m2

qC
j1j2j
m1m2m qC

j1j2j′

m1m2m′
= δjj′δmm′θj1j2j (6.3.9)

where θj1j2j = 1 if the coupling conditions (6.3.7) are satisfied and vanishing otherwise.
When defining our spin net models we will restrict to integer j, that is to SO(3)k representations.

6.3.2 Diagrammatic Calculus

The quantum group introduces certain subtleties into the definition, for instance the notion of dual
needs to be specified. To this end we will use diagrammatic calculus, which is just a convenient
form of representing combinations of Clebsch-Gordan coefficients. This can indeed be seen as an
embellished form of tensor network calculus. The quantum group requires to specify a special
direction, which we will take as the vertical direction. All graphs can then be interpreted as
representing maps from a tensor product of representation spaces of SU(2)k, represented by lines
coming in from below, to a tensor product of representation spaces, drawn as lines going out on top.
Each of these lines carries a representation label j and a magnetic index m. One basic example of
such a map are the Clebsch-Gordan coefficients, denoted by qCj1 j2 j3m1m2m3

8. They are interpreted as a
map Vj1 ⊗ Vj2 → Vj3 , symbolizing how the spins j1 and j2 (with their respective magnetic indices)
couple to j3. We represent them graphically as follows:

j1 j2

j3
:= qCj1 j2 j3m1 m2 m3

. (6.3.10)

8This is not the standard Clebsch-Gordan coefficient defined in [E56], but it is modified by the quantum dimension:

qCj1 j2 j3m1m2m3
= qC

j1 j2 j3
m1m2m3

(√
dj3

)−1

.
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A particular version of this Clebsch-Gordan coefficient will be important later on: If we choose
j1 = j2 = j and take j3 = 0, we define the ‘cap’ as a map: Vj ⊗ Vj → C, namely

m

j

m′

:= qCj j 0
mm′ 0

√
dj = (−1)j−mq

m
2 δm,−m′ . (6.3.11)

From this ‘cap’ we can similarly define a ‘cup’ by requiring that they give the identity if we
concatenate them:

m

m′′

=

m

m′′

= δm
′′

m , (6.3.12)

which gives:
m

j

m′

= (−1)j+mq
m
2 δm,−m′ . (6.3.13)

Using these ‘cups’ and ‘caps’, we can construct the Clebsch-Gordan coefficients for the quantum
group with inverse (here: complex conjugate) deformation parameter q̄ by ‘bending up’ one of the
lower legs of the Clebsch-Gordan in (6.3.10).

q̄Cj1 j2 j3m1m2m3
=

j3

j2 j1
=

j3

j2 j1

=

j2 j1

j3

. (6.3.14)

This map can hence be interpreted as mapping Vj3 → Vj1 ⊗ Vj2 , thus it is dual to (6.3.10). With a
‘cap’ we can ‘pull down’ one of the legs again and arrive back at (6.3.10):

j5

j3 j4

=

j3 j4

j5

=

j3 j4

j5
. (6.3.15)

Concatenating these two maps, we obtain a map Vj3 → Vj3 proportional to the identity.

j3

j1 j2

j3

=

j3

j1 j2

j3

= (−1)j1+j2−j3d−1
j3
δm3m′3

. (6.3.16)

Now we have all the necessary graphical ingredients to express the SU(2)k 6j symbol graphically:
As for SU(2), the 6j symbol is a particular contraction of four Clebsch-Gordan coefficients, which
gives a purely real number. Graphically this is expressed in a closed diagram as follows:

j1
j2

j3

j4

j5
j6 =

j1
j2

j4

j3

j5
j6 =

{
j1 j2 j5
j4 j3 j6

}
=

(−1)j1+j2+j3+j4√
dj5dj6

[
j1 j2 j5
j4 j3 j6

]
.

(6.3.17)
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j1
m1

n1

j2

m2n2

j3m3

n3

j4

m4n4

Figure 6.1: Vertex in the square lattice. Edges are ordered anticlockwise and have fixed orientation:
edges 1 and 2 are outgoing, and edges 3 and 4 are incoming.

6.4 Structure of quantum group spin net models

A spin net model can be understood as a vertex model or as a tensor network model. In both
cases weights are associated to the vertices of a graph – in the case of the tensor network model
the weights, which depend on variables attached to edges, are given as tensors where the variables
are now indices of these tensors. The partition function is expressed as a sum over the variables
attached to the edges. For the tensor network this amounts to contracting tensors with each other
according to the connectivity of the underlying graph.

We will consider a regular 4–valent graph here. As proposed in [E19–E24, E26, E27], and the
results in [E2,E30,E44] show, coarse graining on a regular lattice might be sufficient to regain fully
triangulation invariant models.9

We will introduce here spin net models with quantum group symmetry, i.e. the vertex weights
will be invariant under a certain quantum group symmetry. These are much easier to deal with in
the spin representation, where the (oriented) edges carry labels j,m, n which corresponds to the
association of a Hilbert space

He = ⊕jVj ⊗ Vj∗ (6.4.1)

to a given edge e.

Here

• j denotes an irrep of the quantum group SO(3)k and m,n are labelling elements of a basis in
the representation space Vj ⊗ Vj∗ .
• For a representation in SO(3)k we have j ∈ N. Additionally, we will restrict to admissible

representations, namely j ≤ k/2 for k even and j ≤ (k − 1)/2 for k odd.

• j∗ denotes the dual representation to j, which for SO(3)k is unitarily equivalent to j.

• An orientation of the edges is needed as the action of the symmetry on a vertex depends on
whether edges are ingoing or outgoing. We will choose an orientation and labelling of edges
as in figure 6.1.

As said before, the quantum group requires to specify a special direction, which we have taken
as vertical direction. For the horizontal direction we will assume an infinitely extended lattice.
Alternatively one can consider periodic boundary conditions, however this requires braiding, see

9Coarse graining on a regular square lattice in a very regular way might lead to so–called CDL fixed points of the
renormalization flow, that are non–isolated [E34,E58]. As pointed out in [E2] these do not define fully triangulation
invariant models– however each of the non–isolated families of fixed points defines one triangulation invariant
model. As is noted in [E34, E59], changing the renormalization procedure, to include a so–called entanglement
filtering, would reduce these families automatically to the triangulation invariant fixed point. This could be
obtained by including apart from refining and coarse graining moves also entangling moves into the renormalization
algorithm [E18,E60].
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[E2,E61,E62]. It turns out that due to the specification of the vertical direction as special, we have
to amend the gluing rule for the horizontal direction. This will be explained further below in section
6.5. Modulo this subtlety the tensor network contraction can be understood as concatenation of
(intertwiner) maps.

As mentioned, to implement the (quantum) group symmetry, the vertex weights have to be
intertwining maps with respect to the representations involved. Such intertwining maps can be
obtained by projecting an arbitrary tensor with the appropriate index structure from the ‘left’ and
the ‘right’ with the Haar projector, which in the case of groups is given by (6.2.4). This can be
expanded into Clebsch-Gordan coefficients, see [E44]. As then no group elements appear, this form
is also the appropriate one for quantum groups. Indeed we will be defining a Haar projector with
the help of diagrammatic calculus. This will in particular help to resolve subtleties regarding the
definition of the dual representation j∗ for the quantum group. The technical difficulties are due
to the fact that the dual of a dual is actually not given by the identity, but by a phase factor. A
clean definition of ’dual’ is therefore crucial for a consistent definition of the models.

6.4.1 Haar projector

The four–valent Haar projector naturally splits into two three–valent Haar projectors, which are
connected by a sum over a representation j5. This index actually gives the intertwiner label d in
(6.2.6), which for the four–valent projector under consideration reads

P({m},{m′})(j1, j2, j3, j4) =
∑
j5

ιj5{m}(j1, j2, j3, j4)ι∗j5{m′}(j1, j2, j3, j4) . (6.4.2)

The following contraction of Clebsch-Gordan coefficients, associated to the recoupling scheme j1⊗
j2 3 j5 ∈ j3 ⊗ j4, gives the intertwiner ιj5{m}(j1, j2, j3, j4) up to normalization:

j3 j4

j1j2

j5 =
∑
m5

q̄Cj1 j2 j5m1m2m5 qCj3 j4 j5m3m4m5
. (6.4.3)

Now, with the help of the previously defined ‘cups’ and ‘caps’, we can define its dual:

j1j2

j4j3
j5 =

j1j2

j4j3
j5 = (−1)2j5

∑
m5

qm5
q̄Cj1 j2 j5m1 m2m5 qCj3 j4 j5m3m4m5

, (6.4.4)

which is equal to ι∗j5{m′}(j1, j2, j3, j4), again up to normalization. Substituting in Eq. (6.4.2) and

demanding that P is a projector, namely P2 = P, we fix the normalization. The result is (see the
proof in Appendix 6.A.1)10

P({m},{m′})(j1, j2, j3, j4) =
∑
j5

(−1)j1+j2+j3+j4dj5

j3 j4

j1j2

j5 ⊗ j1j2

j4j3
j5 . (6.4.5)

10To alleviate the notation we have omitted the magnetic indices attached to the diagrams. Here the left diagram
carries {m} indices and the right diagram carries {m′} indices.
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Note that for the Haar projector (6.4.5) we have the same intertwiner label j5 appearing for the left
and right (dualized) copy. This will actually change for the spin net models introduced in (6.4.12).
There basis elements j5 6= j′5 appear in the recoupling scheme.

The definition of this Haar projector corresponds to a particular recoupling scheme: j1⊗j2 3 j5 ∈
j3 ⊗ j4, associated to a vertical splitting of the 4–valent vertex in two three–valent ones. Similarly
we can define the Haar projector for the recoupling scheme: j2⊗ j3 3 j6 ∈ j4⊗ j1, which leads to a
horizontal splitting of the 4–valent vertex. Instead of repeating the same procedure, we can derive
it from the previous Haar projector. First we define:

j3

j2

j4

j1

j6 =

j3 j4

j2 j1

j6 =:

j3

j2 j1

j4

j6 . (6.4.6)

These two different splittings (or recoupling schemes) are not independent. It is straightforward to
realize that (see proof in Appendix 6.A.2)

j3

j2 j1

j4

j6 =
∑
j5

√
dj5
dj6

[
j1 j2 j5
j3 j4 j6

]
j3 j4

j1j2

j5 . (6.4.7)

Similarly one can derive an analogue relation to arrive back at the previous splitting.

j3 j4

j1j2

j5 =
∑
j6

√
dj6
dj5

[
j1 j2 j5
j3 j4 j6

]
j3

j2 j1

j4

j6 , (6.4.8)

because of the orthogonality relation of the [6j] symbol:

∑
j5

[
j1 j2 j5
j3 j4 j6

] [
j1 j2 j5
j3 j4 j′6

]
= δj6,j′6 · (admissibility cond.) . (6.4.9)

Now by dualizing (6.4.6), one can analogously define a Haar projector for the horizontal splitting:

P({m},{m′})(j1, j2, j3, j4) =
∑
j6

(−1)j1+j2+j3+j4dj6

j3

j2 j1

j4

j6 ⊗
j4
j1j2

j3
j6 . (6.4.10)

6.4.2 Vertex weights

Attached to each vertex, we consider weights t({j}, {m}, {n}). The partition function for the
model is then (basically) defined by summing over all indices attached to the edges. As mentioned
previously, there is a subtlety of how to contract the horizontal edges – here one has to include a
certain phase. This will be explained in detail in section 6.5.

With the Haar projector P at hand it is straightforward to characterize the vertex weights, by
the condition

t({j}, {m}, {n}) =
∑

{m′},{n′}

P({m},{m′})({j}) t({j}, {m′}, {n′}) P({n′},{n})({j}) , (6.4.11)
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6.5 The coarse graining algorithm

namely t({j}, {m}, {n}) is invariant under the action of P from the left and from the right. This
gauge invariance is the quantum group symmetry we referred to at the beginning of this section.
It implies that if j1 ⊗ j2 ⊗ j3 ⊗ j4 does not couple to the identity, then the tensor t({j}, {m}, {n})
vanishes. To exploit this quantum group symmetry and avoid redundancies in the representation
(6.4.11), we will reexpress the vertex weights in the intertwiner basis. As we will see this is
advantageous for the coarse graining algorithm.

Indeed, by using the intertwiner basis, we can write 11

t({j}, {m}, {n}) =
∑
j5,j′5

t̂
(j5,j′5)
1 (j1, j2; j3, j4) dj5dj′5

j3 j4

j1j2

j5 ⊗ j1j2

j4j3
j′5

(6.4.12)

=
∑
j6,j′6

t̂
(j6,j′6)
2 (j1, j4; j2, j3) dj6dj′6

j3

j2 j1

j4

j6 ⊗
j4
j1j2

j3
j′6 . (6.4.13)

These equations are actually two different changes of basis according with the two recoupling
schemes. Let us look e.g. at the first equation: On the right hand side the only relevant information

is the tensor t̂
(j5,j′5)
1 (j1, j2; j3, j4), which describes how the representations j1 and j2 couple to (the

pair) (j5, j
′
5) and how j3 and j4 also couple to that pair 12. Note that t̂1 does not depend on the

magnetic indices, but only on the representation labels and their recoupling into the representations
(j5, j

′
5); hence t̂1 provides the vertex weight expressed in the intertwiner basis. In the same way, t̂2

is the vertex weight expressed in the intertwiner basis associated with the other recoupling scheme,
in which the pairs j1 and j4, and j2 and j3, both couple to the pair (j6, j

′
6) .

Using the relations (6.4.7) it is straightforward to get the relation between the tensors in the two
recoupling schemes:

t̂
(j6,j′6)
2 (j1, j4; j2, j3) =

∑
j5,j′5

t̂
(j5,j′5)
1 (j1, j2; j3, j4)

√
[2j5 + 1][2j′5 + 1]

[2j6 + 1][2j′6 + 1]

[
j1 j2 j5
j3 j4 j6

] [
j1 j2 j′5
j3 j4 j′6

]
.

(6.4.14)

Via the inverse transformation any choice of tensor t̂ leads to a vertex weight t satisfying (6.4.11).
Additionally one might want to demand certain symmetries, for instance under a reflection of the
underlying four–valent vertex, etc.. This translates into certain conditions on the form of t̂1. In
section 6.6 we will explicitly define the models that we will analyze, and we will discus the extra
symmetries that they enjoy.

6.5 The coarse graining algorithm

As we have motivated in the previous section, the previously introduced quantum group spin net
models can be cast into a tensor network form, to which one can apply tensor network renormal-
ization [E33,E34] as a coarse graining procedure. In the following we will describe this algorithm.

11Recall that, for the sake of clarity in the notation, we have omitted the magnetic indices in the diagrams. In Eqs.
(6.4.12)-(6.4.13), the diagrams on the left carry {m} indices, while the diagrams on the right carry {n} indices.

12Recall that every edge carries two representations, j and j∗. Here we explicitly allow them to couple to different
representations j′5 6= j∗5 .
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6 Quantum group spin nets: refinement limit and relation to spin foams

Figure 6.2: Rewriting of the four–valent tensor network as a three–valent tensor network.

Figure 6.3: The contraction of the three–valent tensor network yields a coarser (rotated) square
lattice.

We consider our quantum group spin net models defined on the square lattice. To each four-valent
vertex of the lattice we attach the tensors

t({j}, {m}, {n}) = j1

m1n1

j2

m2n2

j3
m3n3

j4
m4n4

. (6.5.1)

To complete the definition of our models, we require an additional ingredient in the horizontal
edges: to every horizontal edge, with labels {ja,ma, na}, we attach the ‘swirl’

(−1)2jaq−naδna,n′a =
na
n′a

ja . (6.5.2)

This extra factor will be justified when explaining the contraction scheme. We will see that,
thanks to it, under coarse graining the contributions coming from the {n} indices (which undergo
a dualization) will behave in the same way as those coming from the indices {m}. As a result, the
contraction carried out to coarse grain will lead to a flow equation with a very nice compact form,
which will be given in terms of the recoupling symbols of the group.

The partition function for the model then reads

Z =
∑
a,...

. . . t({j}, {m}, {n})abcd (−1)2jaq−na t({j}, {m}, {n})b′c′ad′ . . . , (6.5.3)

namely it is given by the contraction, according with the connectivity of the lattice, of all the
tensors and the extra factors in the horizontal edges.

In order to coarse grain this tensor network we consider the algorithm employed in [E34], which
is the adaptation to the square lattice of the original algorithm introduced in [E33] for a hexagonal
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6.5 The coarse graining algorithm

lattice. The idea is simple: we first rewrite the four–valent tensor network into a three–valent
tensor network as depicted in Figure 6.2. In this way we can contract the three-valent tensors into
new effective four–valent tensors forming a coarser rotated lattice, as in Figure 6.3.

The splitting carried out in Figure 6.2 is achieved by regarding the four–valent tensors as matrices
and employing a singular value decomposition. We adapt this singular value decomposition to the
recoupling schemes that we discussed in previous section, obtaining an algorithm that preserves
the group symmetry properties of our tensors. This symmetry preserving algorithm was already
introduced in [E44], where we discussed its advantages. Let us describe how it works for the current
quantum group spin net models.

6.5.1 Symmetry preserving algorithm

As explained in the previous section (see Eqs (6.4.12)-(6.4.13)), given the tensor t({j}, {m}, {n}) we

can perform a change of basis to the recoupling basis, defining either t̂
(j5,j′5)
1 (j1, j2; j3, j4), associated

to the recoupling scheme j1 ⊗ j2 3 {j5, j′5} ∈ j3 ⊗ j4, or t̂
(j6,j′6)
2 (j1, j2; j3, j4), associated to the

recoupling scheme j2 ⊗ j3 3 {j6, j′6} ∈ j4 ⊗ j1. In the recoupling basis the tensor is then block-
diagonal, where blocks are labelled by pairs of representations (j, j′) associated to the recoupling
scheme. We can regard these blocks as matrices and perform a singular value decomposition, that
we truncate to certain cut-off µ:

t̂
(j5,j′5)
1 (j1, j2; j3, j4) ≡ (M1)

(j5,j′5)

A={j1,j2},B={j3,j4} '
µ(j5,j′5)∑
i=1

(U1)
(j5,j′5)

A={j1,j2},i(λ1)
(j5,j′5)
ii (V1)

(j5,j′5)

i,B={j3,j4} ,

(6.5.4)

t̂
(j6,j′6)
2 (j1, j2; j3, j4) ≡ (M2)

(j6,j′6)

A={j2,j3},B={j4,j1} '
µ(j6,j′6)∑
i=1

(U2)
(j6,j′6)

A={j2,j3},i(λ2)
(j6,j′6)
ii (V2)

(j6,j′6)

i,B={j4,j1} .

(6.5.5)

Without the cut–off the dimension of the effective index i, the so–called bond dimension, would
grow exponentially when iterating the coarse graining procedure. Thanks to this cut–off we render
the coarse graining procedure a feasible task. Note that we have control on the error made by
imposing this truncation: The larger the cut–off the better the approximation.

The above singular value decompositions allow us to split the four–valent tensors t({j}, {m}, {n})
in two three–valent tensors. We can carry out two different splittings, according with the two
different recoupling schemes. For vertices located in odd positions (blue circles in Fig. 6.2) we
write

t({j}, {m}, {n}) =
∑
j5,j′5

∑
m5,n5

µ(j5,j′5)∑
i=1

(S1)
j5,j′5
m5,n5({I}{1,2}, i)(S2)

j5,j′5
m5,n5({I}{3,4}, i) , (6.5.6)

while for vertices located in even positions (green squares in Fig. 6.2) we have

t({j}, {m}, {n}) =
∑
j6,j′6

∑
m6,n6

µ(j6,j′6)∑
i=1

(S3)
j6,j′6
m6,n6({I}{2,3}, i)(S4)

j6,j′6
m6,n6({I}{4,1}, i) . (6.5.7)

Here we have have simplified the notation by introducing {I}{a,b} = {ja,ma, na, jb,mb, nb}. In the
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1

4

3

2

t
1

2

3

4

(S1){1,2}, i

i5

(S2){3,4}, i

1

2

3

4

(S4){4,1}, i

i 6

(S3){2,3}, i

Figure 6.4: Splitting of the tensor t({j}, {m}, {n}) according with the two different recoupling
schemes, as expressed in equations (6.5.6)-(6.5.7).

above splittings, which are sketched in Figure 6.4, we have defined the following objects

(S1)
j5,j′5
m5,n5({I}{1,2}, i) =

√
dj5dj′5(λ1)

(j5,j′5)
ii (U1)

(j5,j′5)

{j1,j2},i

j1j2

j5

⊗ j1j2
j′5

, (6.5.8)

(S2)
j5,j′5
m5,n5({I}{3,4}, i) =

√
dj5dj′5(λ1)

(j5,j′5)
ii (V1)

(j5,j′5)

i,{j3,j4}

j3 j4

j5 ⊗ j4j3
j′5 , (6.5.9)

(S3)
j6,j′6
m6,n6({I}{2,3}, i) =

√
dj6dj′6(λ2)

(j6,j′6)
ii (U2)

(j6,j′6)

{j2,j3},i

j3

j2
j6 ⊗ j2

j3 j′6
, (6.5.10)

(S4)
j6,j′6
m6,n6({I}{4,1}, i) =

√
dj6dj′6(λ2)

(j6,j′6)
ii (V2)

(j6,j′6)

i,{j4,j1}

j1

j4

j6
⊗

j4
j1 j′6 . (6.5.11)

In the next section we will use these expressions when computing the contraction that yields the
new effective tensor. For that purpose it is convenient to use the following identities, which can be
easily proven with the help of the identity qCj1 j2 j3m1 m2 m3 = (−1)j1+j2−j3

q̄C j1 j2 j3
−m1−m2−m3

:

j1j2
j′5

=
j2 j1

j′5
; j4j3

j′5 =
j4j3

j′5

, (6.5.12)

j2
j3 j′6

=

j2j′6

j3 ;
j4
j1 j′6 =

j4j′6

j1

. (6.5.13)

In view of expression (6.5.13), we can already clarify why we need the extra factor (6.5.2) associated
with the horizontal edges, here labeled by 1 and 3, namely the factors (−1)2j1q−n1 (−1)2j3q−n3 :
Their role is to remove the swirl (double arc) that is attached in the equalties (6.5.13) to the edges
with labels j1 and j3.

6.5.2 Derivation of the flow equation

With the splitting of the four–valent tensors into three-valent ones, it is now straightforward to
get the new effective four–valent tensor by contraction, as depicted in Figure 6.5. We note that
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a

b

c

d

(−1)2jbq−nb

(−1)2jdq−nd

12

3 4

S2S4

S1 S3

12

3 4

Figure 6.5: The new tensor t({j}, {m}, {j′}, {n}, {i})1,2,3,4 is the result of contract-

ing (S1)
j3,j′3
m3,n3({I}{d,c}, i3), (S2)

j1,j′1
m1,n1({I}{b,a}, i1), (S3)

j4,j′4
m4,n4({I}{a,d}, i4), and

(S4)
j2,j′2
m2,n2({I}{b,c}, i2), together with the factors (−1)2jbq−nb (−1)2jdq−nd associ-

ated to horizontal edges.

the effective edges now carry labels I ′ = {j,m, j′, n, i}, with i running from 1 to µ(j, j′), so that
the Hilbert space associated to every edge gets a more general structure than that of the original
Hilbert space (6.4.1), namely

He = ⊕j,j′µ(j, j′)Vj ⊗ Vj′ . (6.5.14)

In consequence, the effective tensor also gets more general than (6.5.1), as its structure is of the
form

t({j}, {m}, {j′}, {n}, {i}) =
I ′1I ′2

I ′3 I ′4

; I ′a = {ja,ma, j
′
a, na, ia} . (6.5.15)

Thus we have in particular now the possibility j 6= j′ also for the ‘outer’ edges. In addition
multiplicity labels i (whose range can depend on the representation labels (j, j′)) can appear.

This new tensor possesses the quantum group symmetry of the original vertex weight, namely it
is invariant under the left action of P({m},{m′})({j}) and under the right action of P({n′},{n})({j′}).
Our symmetry preserving algorithm gives us directly the tensor in the recoupling basis. Let us

compute the new block t̂
(j5,j′5)
1 (J1, J2; J3, J4), with Ja = {ja, j′a, ia}, :

t̂
(j5,j′5)
1 (J1, J2; J3, J4) =

∑
a,b,c,d

∑
{m}

∑
{n}

(−1)j1+j2,+j3,+j4(−1)j
′
1+j′2,+j

′
3,+j

′
4

j1j2

j4j3
j5 ⊗

j′3 j′4

j′1j′2

j′5

× (−1)2jbq−nb(S2)
j1,j′1
m1,n1({I}{b,a}, i1)(S4)

j2,j′2
m2,n2({I}{b,c}, i2)

× (−1)2jdq−nd(S1)
j3,j′3
m3,n3({I}{d,c}, i3)(S3)

j4,j′4
m4,n4({I}{a,d}, i4) . (6.5.16)

Substituting in this equation the expressions (6.5.8)-(6.5.11), we can contract the involved Clebsch-
Gordan coefficients. It is straightforward to check that the contraction of those coefficients carrying
indices {j,m} (left part of the diagrams) gives the following 9j-symbol:

jd

jc ja

jb

j3 j4

j1j2

j5 =
(−1)jc+ja+j5(−1)j1+j2+j3+j4

dj5
√
djbdjd

[
jc ja j5
j1 j2 jb

] [
jc ja j5
j4 j3 jd

]
. (6.5.17)
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6 Quantum group spin nets: refinement limit and relation to spin foams

This equality is shown in Appendix 6.A.3.

As for the right side of the diagrams, which come from a dualization and that are formed by
Clebsch-Gordan coefficients that carry indices {j′, n}, they also contract to the 9j-symbol, which
is obvious once we consider the identities (6.5.12)-(6.5.13), and we remove the swirls with the extra
factors (−1)2jbq−nb (−1)2jdq−nd . As we anticipated before, without the introduction of these extra
factors for the horizontal edges, we would not get the 9j-symbol when contracting the Clebsch-
Gordan coefficients that come from the dual contributions.

In conclusion, the new effective tensor in the recoupling scheme 1 reads

t̂
(j5,j′5)
1 (J1, J2; J3, J4) =

∑
a,b,c,d

∑
{m}

∑
{n}

(−1)jc+ja+j5(−1)j
′
c+j
′
a+j′5

dj5dj′5

√
djbdj′bdjddj

′
d

√
dj1dj′1dj2dj′2dj3dj′3dj4dj′4

×
√

(λ1)
(j1,j′1)
i1i1

(λ2)
(j2,j′2)
i2i2

(λ1)
(j3,j′3)
i3i3

(λ2)
(j4,j′4)
i4i4

× (V1)
(j1,j′1)

i1,{jb,j′b,ja,j′a}
(V2)

(j2,j′2)

i2,{jb,j′b,jc,j′c}
(U1)

(j3,j′3)

{jd,j′d,jc,j′c},i3
(U2)

(j4,j′4)

{ja,j′a,jd,j′d},i4

×
[
jc ja j5
j1 j2 jb

] [
jc ja j5
j4 j3 jd

] [
j′c j′a j′5
j′1 j′2 j′b

] [
j′c j′a j′5
j′4 j′3 j′d

]
, (6.5.18)

where ji = j′i with i ∈ {a, b, c, d} for the first iteration, while they are a priori independent for

subsequent iterations. The blocks t̂
(j6,j′6)
2 (J1, J4; J2, J3) for the second splitting can in general be

obtained from t̂
(j5,j′5)
1 (J1, J2; J3, J4) by convoluting it with 6j-symbols, as in equation (6.4.14).

Nevertheless, as we will further comment in section 6.6, the models that we will consider have the

symmetry t̂
(j6,j′6)
2 (J1, J4; J2, J3) = t̂

(j6,j′6)
1 (J1, J4; J2, J3), which is preserved under coarse graining,

hence this step of computing t̂2 is actually not necessary.

The above equation (6.5.18) can be regarded as the coarse graining flow equation for t̂1, in the
sense that the factors {λ,U, V } are determined by the tensor in the previous step of the iteration
procedure. By choosing initial data, we can analyze the behaviour of the vertex weights under this
coarse-graining flow. In the next section we carry out this analysis for a particular set of models,
determining the fixed points and phases of this flow, as well as phase transitions.

Note that this flow equation is still quite challenging numerically. The coarse grained tensor t̂ will
have in general χ5 components where even in the simplest (useful) approximation χ = (jmax + 1)2,
with jmax = k/2 for k even and jmax = (k − 1)/2 for k odd. To save and compute more efficiently
with these tensors we developed the method of super indices. These super indices summarize
combinations of indices, and keep only those that actually lead to non–vanishing entries due to
the coupling rule. This leads already to a huge saving for the [6j] symbol – instead of (jmax + 1)6

entries one only saves the components non–vanishing due to coupling rules.

6.5.3 Geometric interpretation of the flow equation

Here we wish to point out that the flow equation (6.5.18) for the 2D spin nets has an interesting
3D geometric interpretation. A similar 3D interpretation of the 2D models has also been noticed
in [E2]. The 3D geometrical interpretation is due to the [6j] symbols appearing in (6.5.18). The
3D spin foam models without and with (positive) cosmological constant are given by the Ponzano–
Regge [E63] and the Turaev–Viro model [E64] respectively. These models are topological, that
is triangulation invariant, and built by associating [6j] symbols to the tetrahedra. Similarly we
can associate tetrahedra to the [6j] symbols appearing in (6.5.18). The edges of the tetrahedra
are labelled by the spins appearing in the [6j] symbol, so that the coupling conditions of the [6j]
symbol reflect the triangle inequalities for the tetrahedron. The summation over common j and j′

is then interpreted as gluing of edges.

This gluing of tetrahedra appears in stages:
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6.5 The coarse graining algorithm

• For the left and right copy separately (i.e. for unprimed and primed spins) we have the
gluing of two tetrahedra to a double pyramid. Here the gluing is along the triangle with
edges labelled by ja, jc and j5 (and similarly for the primed indices).

• The triangles of the double pyramid, i.e. for the left copy, are given by T1 = {(j1, j2, j5), (j3, j4, j5)}
as well as T2 = {(j1, ja, jb), (j2, jb, jc), (j3, jc, jd), (j4, ja, jd)}, as shown in Figure 6.6. One will
notice that T1 corresponds to the indices of the new effective tensor, whereas the triangles
in T2 are glued with the appropriate U and V ’s from the singular value decomposition. This
singular value decomposition results in three–valent tensors, dual to triangles, and we can
indeed interpret this as gluing triangle amplitudes onto the pyramides. Note, that for some
families of intertwiner fixed point models described in the next section 6.6 these amplitudes
themselves are given by [6j] symbols. Hence we can interpret this case as gluing further
tetrahedra onto the pyramids.

The gluing of the triangle amplitudes is also the place where a coupling between the left and
right copy, i.e. primed and unprimed spins occur. We can interpret this as a gluing of the
two double pyramids via the triangle amplitudes, that depend on both primed and unprimed
indices. However, in the case of factorizing models, described in section 6.6, all quantities
factorize with respect to primed and unprimed spins, and so does the coarse graining flow.

jc

j2

j3

j5

j1

ja

jb

jd

j4

Figure 6.6: Double pyramid with triangles T1 = {(j1, j2, j5), (j3, j4, j5)}, those filled with doted
lines, and triangles T2 = {(j1, ja, jb), (j2, jb, jc), (j3, jc, jd), (j4, ja, jd)}.

This geometric interpretation, in particular in the case that the ‘triangle amplitudes’ themselves
correspond to geometric objects, might help to obtain an intuition about the coarse graining flow.
For instance, if only [6j] symbols (with appropriate face and edge factors and signs) are involved, the
complex will describe a Turaev–Viro model. This is invariant under changes of the triangulation,
which will explain some of the occurring fixed points.

This geometric interpretation might also help to approximate the coarse graining flow equation
by a simpler equation. For instance it seems possible to consider instead of the flow equation related
to the double pyramid a flow equation related to just one tetrahedron. This applies if t̂1 = t̂2 in
the sense explained below equation (6.6.3), which is preserved under coarse graining. Preliminary
numerical investigations have shown that this leads indeed to the same phase diagram as the more
complicated flow equation. We will investigate this possibility further as it will allow us to consider
more easily the replacement of the structure group SU(2)k with i.e. SU(2)k × SU(2)k, as appear
for the 4D gravitational models.
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6 Quantum group spin nets: refinement limit and relation to spin foams

6.6 Fixed point intertwiners as initial data and coarse graining
results

The space of possible tensors t̂1, and therefore spin net models is huge. One therefore needs to add
further selection principles to arrive at a suitable phase space. For instance [E28, E29, E44] intro-
duces and uses the so–called E–function parametrization, which for the spin foams encompasses
all current models. It also allows an interpretation as imposing simplicity constraints, which are
encoded in the choice of the E–function. However there are several problems with this parametriza-
tion. First of all, it turns out that for a quantum group, models based on E–functions have not
the expected13 symmetries, for instance under changing the recoupling scheme, via a 2–2 move.
Furthermore, the models mostly flow to trivial phases and a fine tuning is necessary to arrive at a
non–trivial fixed point, i.e. for which simplicity constraints are realized.

Here we will introduce another parametrization, which can be understood as an application of
Reisenberger’s construction outlined in section 6.2. This parametrization is based on fixed points
(i.e. triangulation invariant instances) of so–called intertwiner models, that have been introduced
and constructed in [E2,E45].

We will use specific families of these fixed points for intertwiner models here, for a specification
of all possible fixed points, see [E2,E45]. In this section we will describe them briefly and explain
that they do not define fixed points of the here considered spin net models, but, moreover, flow to
non trivial fixed points, i.e. fixed points beyond the degenerate or analogue BF phase. Hence they
define new phases and by linear combination we can additionally study phase diagrams.

6.6.1 Description of the fixed point intertwiners

The fixed point intertwiners can be written as a modification of the Clebsch-Gordan coefficients14,
which we diagrammatically denote as ‘fat’ vertices introduced in [E2]:

j1 j2

j3
:= a(j1, j2, j3) qCj1 j2 j3m1 m2 m3

,

j3

j2 j1
= a′(j1, j2, j3) q̄Cj1 j2 j3m1m2m3

. (6.6.1)

At first sight such a modification appears to be an arbitrary choice and indeed without further
requirements it allows for a parametrization with a plethora of parameters. Nevertheless, as it has
been shown in [E2], one can uniquely fix these factors by (a) requiring invariance under planar (i.e.
2 − 2, 3 − 1 and 1 − 3) Pachner moves, i.e. triangulation independence with respect to the dual
triangulation, and (b) specifying the allowed representations, i.e. the set of labels j which do not
lead to vanishing weights a(j, ·, ·) and a′(j, ·, ·). These special factors define the before mentioned
fixed point intertwiners, of which we will present a few in the following subsections.

Note that this class of tensors leads in general to complex weights. Fortunately this is not a
problem at all for the tensor network algorithm that we will be using. To our knowledge it gives
a first example where the tensor network algorithm is applied to a statistical system with complex
weights.

13Such symmetries are realized in the S3 group case [E44].
14This modification only depends on the triple of representation labels, not on the magnetic indices m. The vertices

define therefore still SU(2)k intertwining maps.
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6.6 Fixed point intertwiners as initial data and coarse graining results

Thus the models that we will analyze have initial tensors of the form

t({j}, {m}, {n}) =
∑
j5,j′5

1

dj5dj′5

j3 j4

j1j2

j5 ⊗ j1j2

j4j3
j′5

=
∑
j6,j′6

1

dj6dj′6
j3

j2 j1

j4
j6

⊗
j4
j1j2

j3 j′6
. (6.6.2)

We note that

t̂
(j5,j′5)
1 (j1, j2; j3, j4) =

a′(j1,j2,j5)a(j3,j4,j5)a(j2,j1,j′5)a′(j4,j3,j′5)
(dj5dj′5

)2 , (6.6.3)

t̂
(j6,j′6)
2 (j2, j3; j1, j4) =

a′(j1,j6,j4)a(j3,j6,j2)a(j4,j′6,j1)a′(j2,j′6,j3)
(dj6dj′6

)2 . (6.6.4)

As indicated already, due to the fixed point property of the intertwiners, the amplitudes for initial
tensor (and as it happens also for the coarse grained tensors) are the same in the two recoupling

bases, namely the tensors verify the symmetry property t̂
(j5,j′5)
1 (j1, j2; j3, j4) = t̂

(j5,j′5)
2 (j1, j2; j3, j4).

This is indeed a very physical requirement, imposing that the weights are the same if expanded
in the two possible (planar) recoupling schemes. A asymmetry would specify a special direction,
which we avoid by choosing the fixed point intertwiners as initial data. This equality of the tensor
components in the two recoupling schemes will be preserved under the coarse graining flow.

Further symmetries that our tensors verify are

t̂
(j5,j′5)
1 (j1, j2; j3, j4) = t̂

(j5,j′5)
1 (j3, j4; j1, j2) = t̂

(j5,j′5)
1 (j2, j1; j4, j3) ,

t̂
(j5,j′5)
1 (j1, j2; j3, j4) = t̂

(j′5,j5)
1 (j1, j2; j3, j4) , (6.6.5)

which represent discrete rotation and reflection symmetries.
Note that in (6.6.2) the spin labels at the outer edges are the same in the left and right copy,

whereas the intertwiner labels j5, j
′
5 or j6, j

′
6 can a priori differ. (They do not for models analogous

to standard gauge theories, which are based on the Haar intertwiner.) This might actually change
under the renormalization flow: we allow generalized tensors carrying two spin labels j, j′ per
edge. As we will see, in the extreme case we will obtain factorizing models as fixed points of the
renormalization flow. In this case the sum over j and j′ can be performed independently and the
partition function is equal to a square of an intertwiner model partition function. In cases in which
that happens, we do regain the square of the model associated to the intertwiner we started with.

To characterize the fixed points we will give the non–vanishing intertwiner channels. I.e. an
intertwiner channel (j, j′) means that there are non–vanishing tensor components with j5 = j and
j′5 = j′. Due to the symmetry under changing the recoupling scheme this holds also for j6 = j
and j′6 = j′. We will speak of an ‘excited’ representation, if this representation is allowed by the
simplicity constraints encoded in the model, that is if j ∈ S1 in the sense of section 6.2. I.e. the
representation does not lead to a vanishing weight for the initial model.

Only j = 0 and jmax excited

A straightforward but exceptional example, which can be defined for even k, is to require that only
representations j = 0 and jmax = k

2 are excited. There are only two non–vanishing a-factors (and
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6 Quantum group spin nets: refinement limit and relation to spin foams

permutations) appearing, namely:

a(0, 0, 0) = a′(0, 0, 0) = 1 , a(jmax, jmax, 0) = a′(jmax, jmax, 0) = 1 . (6.6.6)

This is because jmax is of quantum dimension one and additionally has to satisfy the coupling rule
jmax⊗ jmax ≡ 0. Also note that the factors a are invariant under permutations of their arguments.

If we plug in these fixed point intertwiners as initial data of our spin net models, we do not
observe a flow; these initial data already define a fixed point. It only has two excited intertwiner
channels, namely (0, 0) and (jmax, jmax). In fact one can easily see that the model is equivalent to
the Ising model at zero temperature, but in a ‘spin representation’, equivalent to a (analogue) BF
spin net model on Z2 [E25–E27]. That is jmax corresponds to the non–trivial representation of Z2

and there has always to meet an even number of such non–trivial representations at every vertex.

Only j = 0 and j = j1 < jmax excited

We study here two examples of models based on fixed point intertwiners that have only two repre-
sentations excited, the trivial representation and a j = j1 different from jmax. The two examples
are the following:

• k = 6, j1 = 2

The fixed point intertwiner is defined by the amplitudes

a(0, 0, 0) = a′(0, 0, 0) = 1 , a(2, 2, 2) = a′(2, 2, 2) =
√
d2(d2 − 1) , a(2, 2, 0) = a′(2, 2, 0) =

√
d2,

(6.6.7)
and permutations of them, with a being invariant under permutations of its arguments.

• k = 10, j1 = 3

The fixed point intertwiner is defined by the amplitudes

a(0, 0, 0) = a′(0, 0, 0) = 1 , a(3, 3, 3) = a′(3, 3, 3) = i
√
d3(d3 − 1) , a(3, 3, 0) = a′(3, 3, 0) =

√
d3,

(6.6.8)
and permutations of them, with a being invariant under permutations of its arguments.

Taking these amplitudes as initial data for our spin net models, the resulting model flows to a
fixed point with only contributing intertwiner channels (0, 0), (0, j1), (j1, 0) and (j1, j1). This fixed
point is factorizing: the partition function is the product of two partition functions, where each
factor corresponds to the partition function of the intertwiner model we started with.

Only even representations excited

For a quantum group with k multiple of 4, one can construct fixed point intertwiners by only
allowing representation with even j excited [E45]. This fixed point intertwiners are characterized
by the following amplitudes:

a(j1, j2, j3) = a′(j1, j2, j3) =
√

(−)J−j1
√

(−)J−j2
√

(−)J−j3(−)2J−j1−j2×

×
√

[2j1 + 1][2j2 + 1]

[J + 1]

[
j1 j2 j3
k
4

k
4

k
4

]
, (6.6.9)

if j1, j2 and j3 are all even, otherwise the amplitude vanishes.
Starting with these intertwiners, we analyzed cases k = 8 and k = 12.
For k = 8 we obtain the following fixed point under coarse graining: only intertwiner channels

(0, 0), (0, 4), (4, 0), (4, 4), and (2, 2) are excited. This fixed point is not factorizing, as the channels
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6.6 Fixed point intertwiners as initial data and coarse graining results

(0, 0) and (2, 2) appear, but not for instance the channel (0, 2). This constitutes an example of a so-
called ‘mixed’ fixed point. I.e. non–diagonal entries appear but the fixed point is not of factorizing
type. These type of fixed points will play a crucial role in the interpretation of the fixed points as
phases for spin foams.

In contrast, for k = 12 we do find the expected factorizing fixed point with all the intertwiner
channels labeled by two even representations excited.

Maximal spin J

At last we introduce a whole family of fixed point intertwiners for each level k. A member of this
family is labelled by an integer spin J ≤ k/2. For a given J all representations j ≤ J are excited,
where J is independent (apart from the bound) of the maximal spin k

2 of the quantum group. In
fact these fixed points generalize to the classical group SU(2) and provide a cut–off in spins there.
(The coarse graining flow could still lead to arbitrary large spins.) Here the simplicity constraints
can be interpreted as forbidding spins larger than J .

The a factors are given by:

aJCDL(j1, j2, j3) = a′JCDL(j1, j2, j3) =
√

(−)J−j1
√

(−)J−j2
√

(−)J−j3(−)2J−j1−j2×

×
√

[2j1 + 1][2j2 + 1]

[J + 1]

[
j1 j2 j3
J
2

J
2

J
2

]
, (6.6.10)

Note that when J = k/2, and j1, j2 and j3 are all even, the amplitudes coincide with those of case
6.6.1, but now also odd representations are allowed.

To understand why the aJCDL define fixed points intertwiner models it is instructive to interpret
them diagrammatically [E2]. Ignoring normalization (edge) factors, one three–valent intertiner is
given as

j1 j2

j3

J
2

J
2

J
2

. (6.6.11)

If one glues several of these vertices together, one can sum over the intermediate spins and replace
the single line by a double line (see identity (6.A.8)). This explains our notation aJCDL denoting
these tensors as ‘corner double line’, see also figure 6.7; for such tensor networks it is straightforward
to see that they are fixed points of the coarse graining algorithm for intertwiner models [E2].

The initial tensor for the spin net model can then be represented as (again modulo edge normal-
ization factors)

t({j}, {m}, {n}) ∼
∑
J

J
2

J
2

J
2

J
2

j1j2

j3 j4

⊗
J
2

J
2

J
2

J
2

j1 j2

j3j4

. (6.6.12)

The symmetry of the graphical representation under rotations of π
2 explains the invariance of the

tensor under change of recoupling basis from (j5, j
′
5) to (j6, j

′
6).

At this point the thoughtful reader may wonder, why we choose ‘fixed points’ as the initial data
of a statistical system, which we intend to coarse grain. In order to guard against confusion we
strongly stress that the previously defined aJCDL do not define fixed points of the here considered
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6 Quantum group spin nets: refinement limit and relation to spin foams

=

Figure 6.7: Diagrammatic explanation of the ‘CDL’ structure. With identity (6.A.8) one can replace
the intermediate edges by double lines (we ignore normalization factors associated to
the edges), which turn the tensor network into a ribbon graph. This ribbon graph
structure gives a fixed point under renormalization flow, as the strands going around
inner faces form closed loops, which just give constant factors and hence drop out. The
remaining graph gives a rescaled version of the original graph.

J k even k odd

J = 0 degenerate degenerate

J = 1 factorizing J = 1 factorizing J = 1

J = 2 factorizing J = 2 factorizing J = 2
...

...
...

J = k
2 − 2 even / J = k−1

2 − 1 odd factorizing J = k
2 − 2 factorizing J = k−1

2 − 1

J = k
2 − 1 even / J = k−1

2 odd analogue BF analogue BF

J = k
2 “mixed” −

Table 6.1: Table of the fixed points obtained from the initial intertwiners labelled by the maximal
spin J . For odd k there is no model for J = k

2 since the initial model is only defined for
even J .

spin net models. To explain why, consider the definition of the initial tensor given in Eq. (6.6.2).
Even though it is written in this product form, the intertwiners for one copy and its dual do not
decouple: During the contraction of the outer edges in the coarse graining algorithm (6.5.18),
the summations over the primed and unprimed representation labels cannot be taken individually.
Thus already the first coarse graining step will result in a different model from the initial one and
the system ‘flows’ away from the initial condition.

There are however fixed points of the full spin net models, for which both copies indeed decouple
and are thus denoted as ‘factorizing’. As we will explain below, most of the initial aJCDL models
actually flow to their ‘corresponding’ factorizing fixed point, meaning that the fixed point shares
the same maximal spin J with the initial models. We have seen such a behaviour already for the
k = 12 example in section 6.6.1.

After the introduction and justification of the initial data let us focus on the results: Remarkably
every single initial fixed point intertwiner model flows to a different fixed point and furthermore
the flow in different quantum groups follows a clear pattern, which we summarize in table 6.115.
Let us briefly describe the different types of fixed points:

As we have commented in the introduction (see also [E44]) the intertwiner channels are the rele-
vant degrees of freedom in spin net models, such that it is sufficient to know the excited intertwiner
channels (and the associated singular values) to identify the phase / fixed point. Thus we will not

15The pattern is confirmed for quantum groups SU(2)k with k = {4, 5, . . . , 10}. For k = 4, the initial model for J = 1
flows to the factorizing fixed point, not the analogue BF one.
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6.6 Fixed point intertwiners as initial data and coarse graining results

state the final fixed point tensor but focus on the description of the excited intertwiner channels.
Since for all discovered fixed points the excited intertwiner channels are just excited once, they can
be characterized by a matrix of singular values, where rows and columns are labelled by the repre-
sentation label of the ‘left’ and the ‘right’ copy: A non–vanishing entry mjj′ of this matrix indicates
a contributing intertwiner channel (j, j′). For the fixed points the non–vanishing singular values
are all equal to one, which is intwined with the triangulation independence of the corresponding
three–valent models, obtained from splitting the four–valent vertices into three–valent ones [E18].
The following fixed points appear as a result of the coarse graining flow:

• Degenerate:
On the degenerate fixed point, which coincides with the initial model with J = 0, only the
trivial representation j = 0 is allowed.

• Analogue BF:
In the topological (analogue) BF theory all ‘diagonal’ intertwiner channels allowed by the
quantum group are excited, i.e. channels with j′ = j. The matrix of singular values is just
the identity matrix.

• Factorizing with spin J :
In the factorizing model all intertwiner channels (j, j′), j, j′ ≤ J are excited with the same
singular value. In particular j′ 6= j is allowed. As a matrix of singular values, this model has
a quadratic upper left block matrix of size J × J with all entries 1. The other entries vanish.

• Mixed:
For k even and the fixed point intertwiners with maximal spin J = k

2 , i.e. the maximal spin
of the quantum group, the system flows to a peculiar fixed point. It is described by exciting
all intertwiner channels (j, j′) for which the sum j + j′ is even. E.g. for k = 4 one finds the
following matrix of singular values:  1 0 1

0 1 0
1 0 1

 . (6.6.13)

Note that the difference in the even/odd behaviour originates from the fixed point intertwiner
weights a(j1, j2, j5) = a′(j1, j2, j5), that vanish if the sum j1 + j2 + j5 is odd, see [E2]. This
initial condition, which involves the left copy and the right copy of the model separately,
results under the coarse graining flow in a non–trivial coupling condition between the left and
right copy, namely that j1 + j′1 has to be even and j2 + j′2 has to be even.

This is a fixed points of mixed type as also occurring for the k = 8 example in section 6.6.1.
Here the ‘left and right copy’ of the model do not decouple completely as is the case for the
factorizing fixed points.

The results are remarkable in two ways: Alone the mere existence of the additional fixed points
(with respect to the degenerate and the analogue BF phase) is positive evidence that spin net
models possess interesting phases. More importantly we have specified initial data in form of the
fixed point intertwiners for which these models actually flow to these fixed points, thus we can state
that these phases exist indeed.

At this point we would like to add a comment on the accuracy applied in our simulations. For
most of our simulations we used a particular approximation: For each intertwiner channel we picked
its largest singular value, namely µ(j, j′) = 1 for all j and j′. This truncation is suggested by the
investigations in [E44] which put forward the intertwiner degrees of freedom as relevant degrees
of freedom. We will name this truncation ‘one–singular–value per intertwiner channel algorithm’.
Note that for k = 12, for which jmax = 6 this already results in a necessary bond dimension
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6 Quantum group spin nets: refinement limit and relation to spin foams

of χ = 49 = (6 + 1)2 (not even taken into account the large number of magnetic indices, that
have been absorbed into the recoupling symbols appearing in the flow equation (6.5.18)). Thus
such a truncation might be unavoidable if considering more complicated structure groups, i.e.
SU(2)k × SU(2)k.

By comparison, the full algorithm takes all singular values in all intertwiner channels and picks
the largest χ ones, where χ is the fixed bond-dimension. Thus it may happen that some intertwiner
channels obtain multiplicity three, whereas others do not appear at all.

In what we have presented so far, the results of both algorithms16 are consistent, which indicates
that already the ‘one–singular–value per intertwiner channel’ algorithm is a very well suited ap-
proximation to study the intertwiner dynamics. (Additionally it avoids the appearance of so–called
non–isolated CDL fixed points [E34], which slow down the algorithm very much and are argued
to not contain essential information [E59].) This confirms the ‘one–singular–value per intertwiner
channel’ truncation, and the conjecture that the intertwiner degrees of freedom are the relevant
ones, i.e. determine the large scale behaviour of the system.

As a next step it is worthwhile to study phase diagrams for these models and phase transitions
between these new phases. To do so one can linearly combine the fixed point intertwiners to give
new initial data and vary their respective coefficients to tune the system towards a phase transition.

6.6.2 Superposition of intertwiners

As already pointed out in (6.2.11) in section 6.2, one can additionally consider a linear combination
of fixed point intertwiners as initial data. Here we will consider linear combinations of models based
on the CDL fixed point intertwiners, defined in section 6.6.1, whose amplitudes are characterized
by a maximal representation J ≤ jmax excited:

t({j}, {m}, {n}) =
∑
J

αJ


∑
j5,j′5

j3 j4

j1j2

j5
J

J ⊗ j1j2

j4j3
j′5

J

J

 , (6.6.14)

where we have used the notation

j1 j2

j3

J := aJCDL(j1, j2, j3) qCj1 j2 j3m1m2m3
,

j3

j2 j1

J = a′JCDL(j1, j2, j3) q̄Cj1 j2 j3m1 m2 m3
. (6.6.15)

Also these initial tensors satisfy Reisenberger’s principle, at least with respect to the 2–2 move
recoupling (j5, j

′
5) → (j6, j

′
6). As already mentioned before, these intertwiners are not necessarily

orthonormal, hence they only satisfy the projector property for particular choices of the parameters
αJ . Nevertheless to plot the phase diagram we will choose the parameter αJ rather freely, we only
require that

∑
J αJ = 1.

To obtain the phase diagrams we used the ‘one-singular-value per intertwiner channel’ algorithm,
described above. Although it is very well suited for our models, as we argued above, it is not as
accurate as the full algorithm with equal or larger bond dimension. This means, e.g. that possible
phase transition lines might change in position and shape if we would employ the more accurate
version, however, it will not change the qualitative behaviour of the phase diagram, i.e. the phases
will also exist in the full algorithm.

16We can confirm this up to bond dimension χ = 22.
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6.6 Fixed point intertwiners as initial data and coarse graining results

Phase diagram for k = 5

For k = 5, we have three fixed point intertwiners that we can linearly combine: J = 0, which is
identical to the degenerate fixed point, J = 1, which flows to the factorizing model with maximal
spin J = 1 and J = 2, which flows to the analogue BF fixed point. This gives us two parameters,
α0 and α1, to tune, α2 is fixed by the requirement that

∑
J αJ = 1. The phase diagram is shown

in figure 6.8.
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Figure 6.8: The phase diagram for k = 5. The red area (in the right corner of the diagram) shows
the set of parameters for which the model flows to the degenerate fixed point, which
is also located in the bottom right corner. For parameteres in the green area (upper
corner), the system flows to the factorizing model with maximal spin J = 1 and the
blue area (bottom left corner) covers the models that flow to the analogue BF fixed
point. Note that neither the factorizing nor the BF fixed point itself can be described
by the chosen parametrization.

From the phase diagram we can readily see that we find an extended phase for each fixed point
associated to an (initial) fixed point intertwiner. This is an important difference to the results
in [E44], where also a factorizing fixed point has been found, however no choice of initial parameters
has led to a flow (for high accuracy) to this fixed point and thus it has no associated phase. The
second important observation is the relative size of the phases: The two dominating phases are
the factorizing and the analogue BF one whereas the degenerate one is the smallest17. This is
an indication that the chosen fixed point intertwiners define initial models ‘far away’ from the
degenerate fixed point. Since the degenerate phase is not of our major interest, we will thus neglect
it in the next phase diagram.

Phase diagram for k = 8

For the quantum group with k = 8, we discuss the linear combintation of four fixed point inter-
twiners, each labelled with a maximal (even) spin 1 ≤ J ≤ 4, where we neglect J = 0 as argued
above. Together with the requirement that

∑
J αJ = 1, we have three free parameters. In figure

6.9 we show the full parameter space, with a raster of coloured points indicating the fixed point
they flow to. In figure 6.10 we show the interesting slice, where α3 = 0.

As in the previous diagram, we find extended phases for all fixed points, here the two factorizing
fixed points for J = 1 and J = 2, a phase for analogue BF theory and one for the ‘mixed’ fixed
point. Again, the two dominating phases are analogue BF theory and the factorizing fixed point

17As mentioned above the shape of the phases is likely to change for higher accuracy.
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Figure 6.9: Phase diagram for k = 8 with α0 = 0. The coloured dots indicate to which fixed point
the respective initial models flow to: The green dots show the factorizing models, lighter
green for J = 1 (area that starts at the vertex (α1, α2, α3) = (1, 0, 0)), darker for J = 2
(area that starts at the vertex (0,1,0)). Analogue BF theory is blue (area that starts
at the vertex (0,0,1)). The so-called ‘mixed’ fixed point is orange (area that starts at
the vertex (0,0,0)).
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Figure 6.10: Slice of the phase diagram for k = 8 with α0 = α3 = 0. The colouring is the same
as in the previous diagram, namely the right corner corresponds to models flowing to
the factorizing fixed point with J = 1, the upper left corner corresponds to models
that flow to the factorizing fixed point with J = 2, the models at the bottom left
corner flow to the ‘mixed’ fixed point, and the phase in between these three phases
corresponds to analogue BF.

with J = 1. Of particular interest is the special slice that we picked in figure 6.10 because of the
following two observations: First this slice shows clearly that the analogue BF fixed point is very
attractive, since in this slice its associated fixed point intertwiner is not excited, α3 = 0. Even if
we stay on the line given by α1 + α2 = 1, i.e. the diagonal boundary in figure 6.10, the system
flows to BF for an intermediate region between the two phases and spoils a direct phase transition
between the two factorizing phases. Second we want to emphasize the ‘mixed’ fixed point in the
bottom left corner because it is a highly non-trivial fixed point and might allow for a direct phase
transition to one of the factorizing models18.

18It might happen that the system flows to analogue BF theory for an intermediate region if the accuracy of the
algorithm is increased.
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(Pe)
···nf ···
···mf ··· (Pe)

···n′
f ···

···m′
f
···

δmf ,m
′
f

δnf ,n′
f

f

Figure 6.11: To each vertical face of the considered row of cubes, we attach Pe to the vertical edges
and δ’s to the horizontal edges. These δ’s contract the vertical projectors Pe.

6.7 Spin foam interpretation of spin nets and fixed points

As explained shortly in section 6.2 spin nets can be understood as dimensional reductions of spin
foams. Here we will make this picture more concrete, which will enable us to provide an interpre-
tation of the coarse graining flow and the fixed points in terms of spin foams.

Let us consider a 3D spin foam defined on a cubical regular lattice. We will actually just need
to consider ‘one slice of cubes’. In (6.2.3) we gave the partition function of a general spin foam as

Z =
∑
jf

∏
f

ω̃f (jf )
∏
e

(Pe)nf1nf2nf3nf4mf1mf2mf3mf4
(6.7.1)

where we already specialized to the case of four–valent edges. To obtain a spin net model we
choose the edge intertwiners anisotropically. That is for the vertical edges we take the original Pe
of the spin foam model. However for the horizontal edges we replace the intertwining operators
with (Phor)n1n2

m1m2
= δn1,n2δ

m1,m2 . Here we consider just a two–valent intertwining operator – this
can be understood as imposing j = 0 on all horizontal faces. Thus the magnetic indices for these
horizontal faces can be omitted. Furthermore Phor is chosen such that the contributions from
different horizontal rows of cubes factorize. Then, as anticipated before, we just need to consider
one row of cubes.

The contraction of indices among the vertical edge operators Pe proceeds as indicated in Figure
6.11. That is given a face f the δ’s from the horizontal edges contract the n and m indices of this
face from the two vertical edge operators Pe. Hence we can replace the face by an edge with indices
j,m, n connecting now vertices, which represent the former edges.

Thus the spin net model is given by

Znet =
∑
je

∏
e

ω̃e(je)
∏
v

(Pv)ne1ne2ne3ne4me1me2me3me4
, (6.7.2)

where the edge weights ω̃e can be absorbed into the vertex weights (Pv).
In this sense we can understand a spin net as a spin foam with just two vertices and a very large

number of faces, all of which have only two edges. All edges and faces share the same two vertices,
which leads to a (super) melon in the sense of [E65,E66], see Figure 6.12. The fact that there are
only two vertices explains why the local gauge symmetry of spin foams is converted into a global
symmetry for the spin net. This is given by a left and right action of the group (on the m and on
the n indices) corresponding to the two vertices.

Such melons play a crucial role in the investigation of coloured tensor models [E65, E66]. Note
however that the renormalization flow considered here is quite different from the one usually consid-
ered (which rather integrates out complete melons). In this work a (super) melon with many edges
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6 Quantum group spin nets: refinement limit and relation to spin foams

Figure 6.12: Given a spinfoam model defined in the cubic lattice, for the corresponding spin net
model we just need to consider one row of cubes. The spin net model is then defined
on the 1-dimensional reduction of the row of cubes, namely the square lattice, here
distinguished by thick red lines. We can understand this reduction as making all the
horizontal edges of the spinfoam belonging to the same slice to collapse in a single
vertex. For the slice of cubes we then get two vertices linked by all the vertical edges,
like the super melon spinfoam of the right.

is coarse grained into another melon with fewer (effective) edges. For the spin net this corresponds
to blocking a number of vertices into effective vertices.

We can therefore interpret spin net coarse graining as a highly anisotropic way of coarse graining
(anisotropic) spin foams. (In this case the analogue BF phase is indeed the BF phase for spin
foams.) It focusses on the change of coupling between two spin foam vertices with the coarse
graining flow. Following this interpretation, we see that the models that flow to factorizing fixed
points lead in the spin foam interpretation to a factorization of vertex amplitudes. That is the
contribution of the two vertices decouples into two parts associated to the upper and lower vertex
of the super melon. That is gluing two spin foam vertices with many edges and blocking these into
effective edges, we actually end up with two decoupled vertices, that is the melon is cut into two
halves.

The decoupling of vertices is certainly a possible scenario of spin foams, of course not a very at-
tractive one. It will be interesting to see whether this also occurs for Barrett–Crane like models with
SU(2)k × SU(2)k structure group. For these models concerns have been voiced, that neighbouring
tetrahedra are not sufficiently glued with each other, see the discussion in [E5–E8,E67–E71].

Of course we cannot be certain whether the corresponding spin foam models will really flow to the
corresponding factorizing fixed points, as we are considering a very anisotropic situation. Here an
investigation at least into 3D spin foams seems to be in reach employing a coarse graining algorithm
proposed in [E26, E27], which has been already tested for Abelian models [E72]. Alternatively it
may be possible to devise a coarse graining scheme in which the coarse graining in equatorial
direction of the melons, and integrating out entire melons, alternate.

From the spin foam point of view the ‘mixed fixed points’ seems to be particular interesting and
encouraging, as here the vertices do not decouple. It has to be investigated whether these (spin
net) fixed points give also triangulation invariant spin foam models.

Such mixed fixed points seem to result from a subtle interplay between the two different sources
of the spin foam models: On the one hand spin foams can be understood as generalized lattice
gauge theories. However, as noticed in [E44], the phases of standard lattice gauge theory seem to
be dominating. The BF phase can be understood as leading to a maximal gluing between the ‘two
spin foam vertices’ in the spin net model. Simplicity constraints indeed weaken this gluing (alone
by restricting the sum over intertwiner degrees of freedom) and allow to flow out of the standard
lattice gauge theory phases. However if this effect is too strong the two spin foam vertices (in the
spin net model) decouple. In this sense the mixed fixed point represents a balance between these
two effects.
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We think that it will be very worthwhile to push and test such an interpretation, as it could
reveal the effect that the imposition of simplicity constraints has on the large scale limit of spin
foams and in this way possibly resolve the question whether these have to imposed more strongly
or not, see for instance [E5–E8,E67–E71].

6.8 Discussion

In this work we have taken several important steps towards a full understanding of the continuum
limit of spin foam models. We in particular introduced and defined models based on the structure
group SU(2)k that can encode the dynamics of the full gravitational models, but are still feasible
to investigate numerically. Note that apart from certain technical subtleties (e.g. the definition
of the duals) for the quantum group coarse graining, that we resolved, this nevertheless requires
very efficient numerical algorithms19. For this the symmetry protected tensor network algorithm
developed here and in [E44] is absolutely crucial.

We considered mainly spin nets, as dimensional reductions of spin foams, in this work. However,
we point out that the spin net coarse graining flow is equivalent to a coarse graining flow of spin foam
melons into spin foam melons. It particular focusses on the coupling of (two) spin foam vertices
with each other – which is of course crucial to understand the macroscopic behaviour of spin foams.
Indeed it allows us to describe the properties of the fixed points found via coarse graining in terms
of this coupling. Note that this question cannot even be considered if one performs coarse graining
only by 5− 1 Pachner moves [E28,E29,E32].

The coarse graining of the spin net models is encoded in a flow equation (6.5.18), which describes
the behaviour of the intertwiner degrees of freedom. We believe that spin foam coarse graining
(including non–melonic spin foams of course) will lead to quite similar coarse graining equations.
Thus one might speculate whether the phases we find are already the ones one will encounter for
spin foam models.

The coarse graining flow equation describes that the effective intertwiner degrees of freedom are
obtained from the old intertwiner degrees of freedom basically by two operations: the first is a
contraction of the tensors encoding the intertwiners, the second is a convolution with recoupling
symbols. This convolution leads to a non–trivial flow of intertwiner degrees of freedom, i.e. in-
tertwiner channels which are not excited initially, can become excited by the coarse graining flow.
This is again not the case, if considering coarse graining via 5− 1 Pachner moves only [E32].

Here again two effects seem to compete with each other: without simplicity constraints, i.e.
models described by the Haar intertwiner where we have a restriction to j5 = j′5, the recoupling
symbols appearing in the flow equation, contract with each other (approximately) to a Kronecker
Delta. In this case one can indeed approximate the flow by a Migdal Kadanoff recursion [E73–E75],
see also [E26,E27], where recoupling symbols do not appear. The flow is (approximately) restricted
to the phase space where the spins of left and right copy agree, i.e. j5 = j′5 throughout the coarse
graining. In the case of BF fixed points it leads to a gluing/coupling of the (two) spin foam
vertices. This however only allows to reach the degenerate fixed point or a BF theory, either of
the full structure group or of a normal subgroup (in the case that one actually deals with a proper
group).

Simplicity constraints, which lead to components with j5 6= j′5 in the tensor t̂1, do change this
picture in an essential way: now the convolution with the recoupling symbols appearing in the
flow equation (6.5.18) becomes crucial and leads to a large set of additional fixed points. Indeed an

19Even the one–singular value algorithm leads to a bond dimension of e.g. χ = 49 for k = 12. The tensors we are
employing have five such indices, which run from 1 to 49. Thus already for saving these tensors one needs to
employ an efficient scheme, not speaking off contracting indices of several such tensors. A technique we developed
for this work are ‘super indices’ which allow to save and deal only with entries not–vanishing as given by the
coupling rules. This leads already to a huge reduction of components from (49)5 to (2359)2.
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6 Quantum group spin nets: refinement limit and relation to spin foams

open issue is the understanding of all possible fixed points, which might be possible with techniques
developed in [E2,E45] which allows already the understanding of all factorizing fixed points.

As we have seen for a number of examples the flow can now lead to factorizing fixed points,
where the copy labelled by j indices and the copy labelled by j′ indices decouple. In terms of
(melonic) spin foams this means a decoupling of the two spin foam vertices involved. For reasons
discussed below it would be interesting to see whether such a decoupling appears in the Barrett
Crane model [E49] with a quantum group [E76].

However we have also examples which flow to so–called mixed fixed points, in which both a
coupling between the two spin foam vertices persists and nevertheless simplicity constraints persists.
It will therefore be very interesting to investigate these fixed points further and in particular study
whether these can be lifted to fixed points for (non–melonic) spin foam models. Furthermore a full
classification of these fixed points, along the lines of [E2,E45], would reveal further possible phases
for spin nets and spin foams.

Both cases constitute non–trivial possible phases for spin nets and for spin foams (at least the
factorizing models lead to phases for spin foams as all vertices decouple). As discussed in section
6.7 a decoupling of spin foam vertices might indeed be related to concerns that tetrahedra are not
properly glued to each other, e.g. in the Barrett Crane model [E5–E8,E67–E71]. It would therefore
help and potentially resolve the discussions on the correct way to impose simplicity constraints, to
study coarse graining for other geometric configurations. Starting from a coarse graining of melons,
it might be possible to alternate the coarse graining considered here – in equatorial direction of the
melon – with a coarse graining in vertical direction. This might already lead to a less anisotropic
coarse graining, which takes also the blocking of spin foam vertices (and not only edges as happens
for the melonic flow considered here) into account.

Apart from the identification of possible phases for spin foams we can draw another important
lesson from the work here, in particular compared to [E44]. This is related to the introduction
of a new parametrization of the space of models, based on Reisenberger’s construction principle
and fixed point intertwiners [E2, E45]. We have argued that this parametrization makes it much
easier to satisfy the projector property, which guarantees invariance under edge subdivisions in spin
foams.

Indeed the picture that this parametrization gives is quite different from the one based on E–
functions in [E44], in which the projector property is quite complicated to implement [E46]. The
parametrization in [E44] requires a fine tuning between the degenerate and BF phase, to flow to a
non–trivial (actually factorizing) model. This is not the case for the fixed point intertwiner based
parametrization, which leads to a rich spectrum of non–trivial fixed points, of both factorizing
and non–factorizing type. We conjecture that this is due to the projector property, which itself
can be interpreted as a very weak imposition of diffeomorphism symmetry [E50–E52]. The fine
tuning in [E44] can thus be understood as satisfying this weak requirement of diffeomorphism
invariance, as already argued in [E44]. The results here therefore stresses the importance of this
concept [E19–E24,E77].

Interestingly the phase diagrams, obtained by considering linear combinations of fixed point
intertwiners, support this conclusion even more. Non–trivial fixed points appear in particular
around the fixed point intertwiners itself. In the intermediate regions the models flow typically to
the BF fixed point. Although there seem to occur phase transition between non–trivial phases,
e.g. in figure 6.10, this might disappear if a higher accuracy is employed: It might happen, that all
non–trivial phases are separated by models flowing to the BF fixed point. We leave the falsification
or verification of this picture for future work.

Apart from the open questions mentioned so far there are numerous other directions for further
work, some of which we outline here:

• Given the results we have found here, i.e. that fixed point intertwiner models flow to inter-
esting fixed points, it would be of high interest to classify such fixed points for intertwiner
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models, for SU(2)k × SU(2)k, as is performed in [E2, E45] for SU(2)k. The Barrett–Crane
model constitutes one such fixed point, the question is, whether a Barbero–Immirzi parame-
ter, as appearing in the EPRL, FK and BO models20 [E5–E8] can be accommodated by such
a fixed point.

• Further approximations and therefore simplifications of the flow equation (6.5.18) will be
useful to allow the treatment of SU(2)k × SU(2)k and similar structure groups.

• Coarse graining involving non–melonic spin foams should be developed along the lines of spin
net coarse graining. As is discussed in [E18] the tensor network algorithm might be adaptable
to the case of spin foams in a more straightforward way then envisaged in [E26,E27], which
presented a tensor network formulation of spin foams.

• It would be interesting to investigate in further detail the phase transitions. Indeed one would
expect that an interacting theory, such as 4D gravity, can only occur there. Here the first
question is, whether the models along the phase transition carry ‘only’ conformal symmetry,
or lead to a fully (cylindrically) consistent continuum limit as outlined in [E17, E18]. As is
argued in [E18] such a cylindrically consistent continuum limit is deeply entangled with the
restoration of diffeomorphism symmetry, which is typically broken by the discretization itself
[E19–E24]. From a more tensor network renormalization point of view [E34, E75] discusses
the investigation of fixed point tensors at critical fixed points and the extraction of critical
exponents.

In summary, we hope to have convinced the reader, that the tensor network coarse graining
methods [E33,E34] and the many refinements thereof developed here and in [E26,E27,E44], together
with the conceptual understanding of how to construct the continuum limit in [E17,E18], put the
understanding of the possible phases of spin foam models within the very near future.
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6.A Additional diagrammatic calculations

6.A.1 Normalization of Haar projector

The Haar projector P reads

P({m},{m′})(j1, j2, j3, j4) :=
∑
j5

c(j5)

j3 j4

j1j2

j5 ⊗ j1j2

j4j3
j5 , (6.A.1)

20i.e. Engle-Pereira-Rovelli-Livine, Freidel-Krasnov and Baratin-Oriti models.
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where c(j5) is the normalization constant that we want to determine. For P to be a projector, it
has to satisfy the relation P2 = P, namely

P · P =
∑
j5,j′5

c(j5) c(j′5)

j3 j4

j1j2

j′5
⊗ j5 j′5

j1

j3

j2

j4︸ ︷︷ ︸
(−1)j1+j2+j3+j4(dj5)

−1
δj5j′5

⊗ j1j2

j4j3
j5

!
= P . (6.A.2)

We therefore deduce that
c(j5) = (−1)j1+j2+j3+j4dj5 , (6.A.3)

as we wanted to proof.

6.A.2 Relation between the two different recoupling schemes

We are looking for the relation

j3

j2 j1

j4

j6 =
∑
j5

c(j5, j6)

j3 j4

j1j2

j5 . (6.A.4)

In order to find the coefficient c(j5, j6) we contract the above expression with the diagram (6.4.4):

j3

j2 j1

j4

j6 j′5
=
∑
j5

c(j5, j6)

j3 j4

j1j2

j5 j′5
(6.A.5)

The evaluation of both sides of this equation gives

(−1)j1+j2+j3+j4 (dj5dj6)−
1
2

[
j1 j2 j′5
j3 j4 j6

]
= (−1)j1+j2+j3+j4

∑
j5

c(j5, j6) (dj5)−1 δj5,j′5 , (6.A.6)

from which we deduce

j3

j2 j1

j4

j6 =
∑
j5

√
dj5
dj6

[
j1 j2 j′5
j3 j4 j6

]
j3 j4

j1j2

j5 . (6.A.7)

6.A.3 Splitting of the 9j-symbol into two 6j-symbols

Let us prove the equality (6.5.17). By using the identities

j2 j4 = j9

j2 j4

j2 j4

(−1)j2+j4−j9dj9 ,

j9

j9

= j9
(−1)2j9

dj9
j9 , (6.A.8)
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we can manipulate the 9j-symbol in the following fashion,

j3

j2 j4

j1

j7 j8

j5j6

j9 = (−1)j2+j4−j9dj9
j3

j1
j6 j5

j4j2

j4j2

j7 j8

j9 j9 = (−1)j2+j4−j9

j3

j1

j6 j5

j4j2

j4j2

j7 j8
j9

j9

. (6.A.9)

The diagrams of the right are the 6j-symbols defined in Eq. (6.3.17), and then we get

j3

j2 j4

j1

j7 j8

j5j6

j9 = (−1)j2+j4+j9

{
j2 j4 j9
j5 j6 j1

}{
j2 j4 j9
j8 j7 j3

}

=
(−1)j2+j4+j9(−1)j5+j6+j7+j8

dj9
√
dj1dj3

[
j2 j4 j9
j5 j6 j1

] [
j2 j4 j9
j8 j7 j3

]
, (6.A.10)

as we wanted to proof.

195





References

[E1] M. P. Reisenberger, “On relativistic spin network vertices,” J.Math.Phys. 40 (1999)
2046–2054, arXiv:gr-qc/9809067 [gr-qc].

[E2] B. Dittrich and W. Kaminski, “Topological lattice field theories from intertwiner
dynamics,” arXiv:1311.1798 [gr-qc].

[E3] A. Perez, “The Spin Foam Approach to Quantum Gravity,” Living Rev.Rel. 16 (2013) 3,
arXiv:1205.2019 [gr-qc].

[E4] C. Rovelli, Quantum gravity. Cambridge University Press, Cambridge, 2004.

[E5] J. Engle, E. Livine, R. Pereira, and C. Rovelli, “LQG vertex with finite Immirzi
parameter,” Nucl. Phys. B 799 (2008) 136–149, arXiv:0711.0146 [gr-qc].

[E6] E. R. Livine and S. Speziale, “A New spinfoam vertex for quantum gravity,” Phys. Rev. D
76 (2007) 084028, arXiv:0705.0674 [gr-qc].

[E7] L. Freidel and K. Krasnov, “A New Spin Foam Model for 4d Gravity,” Class. Quant. Grav.
25 (2008) 125018, arXiv:0708.1595 [gr-qc].

[E8] A. Baratin and D. Oriti, “Quantum simplicial geometry in the group field theory
formalism: reconsidering the Barrett-Crane model,” New J. Phys. 13 (2011) 125011,
arXiv:1108.1178 [gr-qc].

[E9] L. Freidel and D. Louapre, “Diffeomorphisms and spin foam models,” Nucl.Phys. B662
(2003) 279–298, arXiv:gr-qc/0212001 [gr-qc].

[E10] C. Perini, C. Rovelli, and S. Speziale, “Self-energy and vertex radiative corrections in
LQG,” Phys.Lett. B682 (2009) 78–84, arXiv:0810.1714 [gr-qc].

[E11] V. Bonzom and M. Smerlak, “Bubble divergences from cellular cohomology,”
Lett.Math.Phys. 93 (2010) 295–305, arXiv:1004.5196 [gr-qc].

[E12] A. Riello, “Self-energy of the Lorentzian Engle-Pereira-Rovelli-Livine and Freidel-Krasnov
model of quantum gravity,” Phys.Rev. D88 no. 2, (2013) 024011, arXiv:1302.1781
[gr-qc].

[E13] V. Bonzom and B. Dittrich, “Bubble divergences and gauge symmetries in spin foams,”
Phys.Rev. D88 (2013) 124021, arXiv:1304.6632 [gr-qc].

[E14] F. Markopoulou, “An Algebraic approach to coarse graining,” arXiv:hep-th/0006199

[hep-th].

[E15] R. Oeckl, “Renormalization of discrete models without background,” Nucl.Phys. B657
(2003) 107–138, arXiv:gr-qc/0212047 [gr-qc].

[E16] J. A. Zapata, “Loop quantization from a lattice gauge theory perspective,”
Class.Quant.Grav. 21 (2004) L115–L122, arXiv:gr-qc/0401109 [gr-qc].

197

http://dx.doi.org/10.1063/1.532850
http://dx.doi.org/10.1063/1.532850
http://arxiv.org/abs/gr-qc/9809067
http://arxiv.org/abs/1311.1798
http://dx.doi.org/10.12942/lrr-2013-3
http://arxiv.org/abs/1205.2019
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.018
http://arxiv.org/abs/0711.0146
http://dx.doi.org/10.1103/PhysRevD.76.084028
http://dx.doi.org/10.1103/PhysRevD.76.084028
http://arxiv.org/abs/0705.0674
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://dx.doi.org/10.1088/0264-9381/25/12/125018
http://arxiv.org/abs/0708.1595
http://dx.doi.org/10.1088/1367-2630/13/12/125011
http://arxiv.org/abs/1108.1178
http://dx.doi.org/10.1016/S0550-3213(03)00306-7
http://dx.doi.org/10.1016/S0550-3213(03)00306-7
http://arxiv.org/abs/gr-qc/0212001
http://dx.doi.org/10.1016/j.physletb.2009.10.076
http://arxiv.org/abs/0810.1714
http://dx.doi.org/10.1007/s11005-010-0414-4
http://arxiv.org/abs/1004.5196
http://dx.doi.org/10.1103/PhysRevD.88.024011
http://arxiv.org/abs/1302.1781
http://arxiv.org/abs/1302.1781
http://dx.doi.org/10.1103/PhysRevD.88.124021
http://arxiv.org/abs/1304.6632
http://arxiv.org/abs/hep-th/0006199
http://arxiv.org/abs/hep-th/0006199
http://dx.doi.org/10.1016/S0550-3213(03)00145-7
http://dx.doi.org/10.1016/S0550-3213(03)00145-7
http://arxiv.org/abs/gr-qc/0212047
http://dx.doi.org/10.1088/0264-9381/21/17/L01
http://arxiv.org/abs/gr-qc/0401109


References

[E17] B. Dittrich, “From the discrete to the continuous: Towards a cylindrically consistent
dynamics,” New J. Phys. 14 (2012) 123004, arXiv:1205.6127 [gr-qc].

[E18] B. Dittrich and S. Steinhaus, “Time evolution as refining, coarse graining and entangling,”
New J. Phys. 16 (2014) 123041, arXiv:1311.7565 [gr-qc].

[E19] B. Dittrich, “Diffeomorphism symmetry in quantum gravity models,” Adv. Sci. Lett. 2
(2009) 151, arXiv:0810.3594 [gr-qc].

[E20] B. Bahr and B. Dittrich, “(Broken) Gauge Symmetries and Constraints in Regge Calculus,”
Class. Quant. Grav. 26 (2009) 225011, arXiv:0905.1670 [gr-qc].

[E21] B. Bahr and B. Dittrich, “Improved and Perfect Actions in Discrete Gravity,” Phys. Rev. D
80 (2009) 124030, arXiv:0907.4323 [gr-qc].

[E22] B. Bahr and B. Dittrich, “Breaking and restoring of diffeomorphism symmetry in discrete
gravity,” AIP Conf. Proc. 1196 (2009) 10–17, arXiv:0909.5688 [gr-qc].

[E23] B. Bahr, B. Dittrich, and S. Steinhaus, “Perfect discretization of reparametrization
invariant path integrals,” Phys. Rev. D 83 (2011) 105026, arXiv:1101.4775 [gr-qc].

[E24] B. Dittrich, “How to construct diffeomorphism symmetry on the lattice,” PoS
QGQGS2011 (2011) 012, arXiv:1201.3840 [gr-qc].

[E25] B. Bahr, B. Dittrich, and J. P. Ryan, “Spin foam models with finite groups,” J. Grav. 2013
(2013) 549824, arXiv:1103.6264 [gr-qc].

[E26] B. Dittrich, F. C. Eckert, and M. Martin-Benito, “Coarse graining methods for spin net
and spin foam models,” New J. Phys. 14 (2012) 035008, arXiv:1109.4927 [gr-qc].

[E27] B. Dittrich and F. C. Eckert, “Towards computational insights into the large-scale structure
of spin foams,” J. Phys. Conf. Ser. 360 (2012) 012004, arXiv:1111.0967 [gr-qc].

[E28] B. Bahr, B. Dittrich, F. Hellmann, and W. Kaminski, “Holonomy Spin Foam Models:
Definition and Coarse Graining,” Phys. Rev. D 87 (2013) Phys.Rev. D87 (2013) 044048,
arXiv:1208.3388 [gr-qc].

[E29] B. Dittrich, F. Hellmann, and W. Kaminski, “Holonomy Spin Foam Models: Boundary
Hilbert spaces and Time Evolution Operators,” Class. Quant. Grav. 30 (2013) 085005,
arXiv:1209.4539 [gr-qc].

[E30] B. Bahr, B. Dittrich, and S. He, “Coarse graining free theories with gauge symmetries: the
linearized case,” New J. Phys. 13 (2011) 045009, arXiv:1011.3667 [gr-qc].

[E31] P. A. Morse, “Approximate diffeomorphism invariance in near-flat simplicial geometries,”
Class. Quant. Grav. 9 (1992) 2489.

[E32] B. Bahr and B. Dittrich unpublished, 2012.

[E33] M. Levin and C. P. Nave, “Tensor renormalization group approach to 2d classical lattice
models,” Phys. Rev. Lett. 99 (2007) 120601, arXiv:cond-mat/0611687 [cond-mat].

[E34] Z.-C. Gu and X.-G. Wen, “Tensor-Entanglement-Filtering Renormalization Approach and
Symmetry Protected Topological Order,” Phys. Rev. B 80 (2009) 155131,
arXiv:0903.1069 [cond-mat.str-el].

198

http://dx.doi.org/10.1088/1367-2630/14/12/123004
http://arxiv.org/abs/1205.6127
http://dx.doi.org/10.1088/1367-2630/16/12/123041
http://arxiv.org/abs/1311.7565
http://arxiv.org/abs/0810.3594
http://dx.doi.org/10.1088/0264-9381/26/22/225011
http://arxiv.org/abs/0905.1670
http://dx.doi.org/10.1103/PhysRevD.80.124030
http://dx.doi.org/10.1103/PhysRevD.80.124030
http://arxiv.org/abs/0907.4323
http://dx.doi.org/10.1063/1.3284371
http://arxiv.org/abs/0909.5688
http://dx.doi.org/10.1103/PhysRevD.83.105026
http://arxiv.org/abs/1101.4775
http://arxiv.org/abs/1201.3840
http://dx.doi.org/10.1155/2013/549824
http://dx.doi.org/10.1155/2013/549824
http://arxiv.org/abs/1103.6264
http://dx.doi.org/10.1088/1367-2630/14/3/035008
http://arxiv.org/abs/1109.4927
http://dx.doi.org/10.1088/1742-6596/360/1/012004
http://arxiv.org/abs/1111.0967
http://dx.doi.org/10.1103/PhysRevD.87.044048
http://arxiv.org/abs/1208.3388
http://dx.doi.org/10.1088/0264-9381/30/8/085005
http://arxiv.org/abs/1209.4539
http://dx.doi.org/10.1088/1367-2630/13/4/045009
http://arxiv.org/abs/1011.3667
http://dx.doi.org/10.1088/0264-9381/9/11/014
http://dx.doi.org/10.1103/PhysRevLett.99.120601
http://arxiv.org/abs/cond-mat/0611687
http://dx.doi.org/10.1103/PhysRevB.80.155131
http://arxiv.org/abs/0903.1069


References

[E35] L. Smolin, “Linking topological quantum field theory and nonperturbative quantum
gravity,” J.Math.Phys. 36 (1995) 6417–6455, arXiv:gr-qc/9505028 [gr-qc].

[E36] S. Major and L. Smolin, “Quantum deformation of quantum gravity,” Nucl.Phys. B473
(1996) 267–290, arXiv:gr-qc/9512020 [gr-qc].

[E37] R. Borissov, S. Major, and L. Smolin, “The Geometry of quantum spin networks,”
Class.Quant.Grav. 13 (1996) 3183–3196, arXiv:gr-qc/9512043 [gr-qc].

[E38] K. Noui and P. Roche, “Cosmological deformation of Lorentzian spin foam models,”
Class.Quant.Grav. 20 (2003) 3175–3214, arXiv:gr-qc/0211109 [gr-qc].

[E39] W. J. Fairbairn and C. Meusburger, “Quantum deformation of two four-dimensional spin
foam models,” J.Math.Phys. 53 (2012) 022501, arXiv:1012.4784 [gr-qc].

[E40] M. Han, “4-dimensional Spin-foam Model with Quantum Lorentz Group,” J.Math.Phys. 52
(2011) 072501, arXiv:1012.4216 [gr-qc].

[E41] M. Dupuis and F. Girelli, “Quantum hyperbolic geometry in loop quantum gravity with
cosmological constant,” Phys.Rev. D87 no. 12, (2013) 121502, arXiv:1307.5461 [gr-qc].

[E42] M. Dupuis and F. Girelli, “Observables in Loop Quantum Gravity with a cosmological
constant,” Phys.Rev. D90 (2014) 104037, arXiv:1311.6841 [gr-qc].

[E43] J. Hnybida private communication.

[E44] B. Dittrich, M. Mart́ın-Benito, and E. Schnetter, “Coarse graining of spin net models:
dynamics of intertwiners,” New J. Phys. 15 (2013) 103004, arXiv:1306.2987 [gr-qc].

[E45] B. Dittrich and W. Kaminski, “Ground states in fusion categories,”. in preparation.

[E46] W. Kaminski, M. Kisielowski, and J. Lewandowski, “The EPRL intertwiners and corrected
partition function,” Class.Quant.Grav. 27 (2010) 165020, arXiv:0912.0540 [gr-qc].

[E47] W. Kaminski, M. Kisielowski, and J. Lewandowski, “Spin-Foams for All Loop Quantum
Gravity,” Class.Quant.Grav. 27 (2010) 095006, arXiv:0909.0939 [gr-qc].

[E48] B. Bahr, F. Hellmann, W. Kaminski, M. Kisielowski, and J. Lewandowski, “Operator Spin
Foam Models,” Class.Quant.Grav. 28 (2011) 105003, arXiv:1010.4787 [gr-qc].

[E49] J. W. Barrett and L. Crane, “Relativistic spin networks and quantum gravity,” J. Math.
Phys. 39 (1998) 3296–3302, gr-qc/9709028.

[E50] M. Bojowald and A. Perez, “Spin foam quantization and anomalies,” Gen.Rel.Grav. 42
(2010) 877–907, arXiv:gr-qc/0303026 [gr-qc].

[E51] B. Bahr, “On knottings in the physical Hilbert space of LQG as given by the EPRL
model,” Class.Quant.Grav. 28 (2011) 045002, arXiv:1006.0700 [gr-qc].

[E52] B. Dittrich and S. Steinhaus, “Path integral measure and triangulation independence in
discrete gravity,” Phys.Rev. D85 (2012) 044032, arXiv:1110.6866 [gr-qc].

[E53] X. Chen, Z.-C. Gu, and X.-G. Wen, “Classification of Gapped Symmetric Phases in 1D
Spin Systems,” Phys. Rev. B 83 (2011) 035107, arXiv:1008.3745 [cond-mat.str-el].

[E54] N. Schuch, I. Cirac, and D. Perez-Garcia, “PEPS as ground states: degeneracy and
topology,” Annals of Physics 325 (2010) 2153, arXiv:1001.3807 [quant-ph].

199

http://dx.doi.org/10.1063/1.531251
http://arxiv.org/abs/gr-qc/9505028
http://dx.doi.org/10.1016/0550-3213(96)00259-3
http://dx.doi.org/10.1016/0550-3213(96)00259-3
http://arxiv.org/abs/gr-qc/9512020
http://dx.doi.org/10.1088/0264-9381/13/12/009
http://arxiv.org/abs/gr-qc/9512043
http://dx.doi.org/10.1088/0264-9381/20/14/318
http://arxiv.org/abs/gr-qc/0211109
http://dx.doi.org/10.1063/1.3675898
http://arxiv.org/abs/1012.4784
http://dx.doi.org/10.1063/1.3606592
http://dx.doi.org/10.1063/1.3606592
http://arxiv.org/abs/1012.4216
http://dx.doi.org/10.1103/PhysRevD.87.121502
http://arxiv.org/abs/1307.5461
http://dx.doi.org/10.1103/PhysRevD.90.104037
http://arxiv.org/abs/1311.6841
http://dx.doi.org/10.1088/1367-2630/15/10/103004
http://arxiv.org/abs/1306.2987
http://dx.doi.org/10.1088/0264-9381/27/16/165020, 10.1088/0264-9381/29/4/049501
http://arxiv.org/abs/0912.0540
http://dx.doi.org/10.1088/0264-9381/29/4/049502, 10.1088/0264-9381/27/9/095006
http://arxiv.org/abs/0909.0939
http://dx.doi.org/10.1088/0264-9381/28/10/105003
http://arxiv.org/abs/1010.4787
http://dx.doi.org/10.1063/1.532254
http://dx.doi.org/10.1063/1.532254
http://arxiv.org/abs/gr-qc/9709028
http://dx.doi.org/10.1007/s10714-009-0892-9
http://dx.doi.org/10.1007/s10714-009-0892-9
http://arxiv.org/abs/gr-qc/0303026
http://dx.doi.org/10.1088/0264-9381/28/4/045002
http://arxiv.org/abs/1006.0700
http://dx.doi.org/10.1103/PhysRevD.85.044032
http://arxiv.org/abs/1110.6866
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://arxiv.org/abs/1008.3745
http://dx.doi.org/10.1016/j.aop.2010.05.008
http://arxiv.org/abs/1001.3807


References

[E55] N. Schuch, D. Perez-Garcia, and I. Cirac, “Classifying quantum phases using matrix
product states and PEPS,” Phys. Rev. B 84 (2011) 165139, arXiv:1010.3732
[cond-mat.str-el].

[E56] L. C. Biedenharn and M. A. Lohe, Quantum Group Symmetries and q-Tensor Algebras.
World Scientific, Singapore, 1995.

[E57] J. S. Carter, D. E. Flath, and M. Saito, The Classical and Quantum 6j–symbols. Princeton
University Press, Princeton, 1995.

[E58] M. Levin. https://www.ipam.ucla.edu/publications/tqc2007/tqc20076595.ppt, 2007.

[E59] A. J. Ferris, “The area law and real-space renormalization,” Phys. Rev. B 87 (2013)
125139, arXiv:1301.2608 [cond-mat.str-el].

[E60] G. Vidal, “Entanglement Renormalization,” Phys. Rev. Lett. 99 (2007) 220405,
arXiv:cond-mat/0512165 [cond-mat].

[E61] R. N. C. Pfeifer, P. Corboz, O. Buerschaper, M. Aguado, M. Troyer, and G. Vidal,
“Simulation of anyons with tensor network algorithms,” Phys. Rev. B 82 (2010) 115126,
arXiv:1006.3532 [cond-mat.str-el].

[E62] S. Singh and G. Vidal, “Tensor network states and algorithms in the presence of a global
SU(2) symmetry,” Phys.Rev. B86 (2012) 195114, arXiv:1208.3919 [cond-mat.str-el].

[E63] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in: Spectroscopy and
group theoretical methods in physics. North Holland Publ. Co., Amsterdam, 1968.

[E64] V. Turaev and O. Viro, “State sum invariants of 3 manifolds and quantum 6j symbols,”
Topology 31 (1992) 865–902.

[E65] V. Bonzom, R. Gurau, A. Riello, and V. Rivasseau, “Critical behavior of colored tensor
models in the large N limit,” Nucl. Phys. B 853 (2011) 174–195, arXiv:1105.3122
[hep-th].

[E66] A. Baratin, S. Carrozza, D. Oriti, J. Ryan, and M. Smerlak, “Melonic phase transition in
group field theory,” Lett.Math.Phys. 104 (2014) 1003–1017, arXiv:1307.5026 [hep-th].

[E67] B. Dittrich and J. P. Ryan, “Phase space descriptions for simplicial 4d geometries,” Class.
Quant. Grav. 28 (2011) 065006, arXiv:0807.2806 [gr-qc].

[E68] B. Dittrich and J. P. Ryan, “Simplicity in simplicial phase space,” Phys.Rev. D82 (2010)
064026, arXiv:1006.4295 [gr-qc].

[E69] B. Dittrich and J. P. Ryan, “On the role of the Barbero-Immirzi parameter in discrete
quantum gravity,” Class.Quant.Grav. 30 (2013) 095015, arXiv:1209.4892 [gr-qc].

[E70] S. Alexandrov, M. Geiller, and K. Noui, “Spin Foams and Canonical Quantization,”
SIGMA 8 (2012) 055, arXiv:1112.1961 [gr-qc].

[E71] M. Geiller and K. Noui, “Testing the imposition of the Spin Foam Simplicity Constraints,”
Class.Quant.Grav. 29 (2012) 135008, arXiv:1112.1965 [gr-qc].

[E72] B. Dittrich and S. Steinhaus. w.i.p.

[E73] A. A. Migdal, “Recursion Equations in Gauge Theories,” Sov.Phys.JETP 42 (1975) 413.

200

http://dx.doi.org/10.1103/PhysRevB.84.165139
http://arxiv.org/abs/1010.3732
http://arxiv.org/abs/1010.3732
https://www.ipam.ucla.edu /publications/tqc2007/tqc2007 6595.ppt
http://dx.doi.org/10.1103/PhysRevB.87.125139
http://dx.doi.org/10.1103/PhysRevB.87.125139
http://arxiv.org/abs/1301.2608
http://dx.doi.org/10.1103/PhysRevLett.99.220405
http://arxiv.org/abs/cond-mat/0512165
http://dx.doi.org/10.1103/PhysRevB.82.115126
http://arxiv.org/abs/1006.3532
http://dx.doi.org/10.1103/PhysRevB.86.195114
http://arxiv.org/abs/1208.3919
http://dx.doi.org/10.1016/0040-9383(92)90015-A
http://dx.doi.org/10.1016/j.nuclphysb.2011.07.022
http://arxiv.org/abs/1105.3122
http://arxiv.org/abs/1105.3122
http://dx.doi.org/10.1007/s11005-014-0699-9
http://arxiv.org/abs/1307.5026
http://dx.doi.org/10.1088/0264-9381/28/6/065006
http://dx.doi.org/10.1088/0264-9381/28/6/065006
http://arxiv.org/abs/0807.2806
http://dx.doi.org/10.1103/PhysRevD.82.064026
http://dx.doi.org/10.1103/PhysRevD.82.064026
http://arxiv.org/abs/1006.4295
http://dx.doi.org/10.1088/0264-9381/30/9/095015
http://arxiv.org/abs/1209.4892
http://dx.doi.org/10.3842/SIGMA.2012.055
http://arxiv.org/abs/1112.1961
http://dx.doi.org/10.1088/0264-9381/29/13/135008
http://arxiv.org/abs/1112.1965


References

[E74] L. Kadanoff, “Notes on Migdal’s Recursion Formulas,” Annals Phys. 100 (1976) 359–394.

[E75] E. Efrati, Z. Wang, A. Kolan, and L. P. Kadanoff, “Real Space Renormalization in
Statistical Mechanics,” Rev. Mod. Phys. 86 (2014) 647, arXiv:1301.6323
[cond-mat.stat-mech].

[E76] I. Khavkine and J. D. Christensen, “q-Deformed spin foam models of quantum gravity,”
Class.Quant.Grav. 24 (2007) 3271–3290, arXiv:0704.0278 [gr-qc].

[E77] C. Rovelli, “Discretizing parametrized systems: The M agic of Ditt-invariance,”
arXiv:1107.2310 [hep-lat].

201

http://dx.doi.org/10.1016/0003-4916(76)90066-X
http://dx.doi.org/10.1103/RevModPhys.86.647
http://arxiv.org/abs/1301.6323
http://arxiv.org/abs/1301.6323
http://dx.doi.org/10.1088/0264-9381/24/13/009
http://arxiv.org/abs/0704.0278
http://arxiv.org/abs/1107.2310




7 Time evolution as refining, coarse graining
and entangling

Bianca Dittrich and Sebastian Steinhaus

Perimeter Institute for Theoretical Physics,

31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5

published in: New J. Phys. 16 (2014) 123041, [arXiv:1311.7565 [gr-qc]].

Copyright 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
http://dx.doi.org/10.1088/1367-2630/16/12/123041

Abstract

We argue that refining, coarse graining and entangling operators can be obtained from time evo-
lution operators. This applies in particular to geometric theories, such as spin foams. We point
out that this provides a construction principle for the physical vacuum in quantum gravity theories
and more generally allows to construct a (cylindrically) consistent continuum limit of the theory.
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7 Time evolution as refining, coarse graining and entangling

7.1 Introduction

Renormalization and coarse graining have become powerful tools to connect microscopic and macro-
scopic regimes of a given theory. In particular many approaches to quantum gravity postulate or
aim to derive macroscopic space time as arising from the collective dynamics of basic building
blocks [F1–F5]. To validate such a picture one has to show that the many body dynamics of such
systems gives indeed a smooth space time if sufficiently coarse grained.

To this end coarse graining techniques [F6] need to be employed. The question of how to coarse
grain or block fine degrees of freedom into coarser ones is essential for determining good truncations
for the coarse graining schemes. Coarse graining maps are dual to refining maps, in fact tensor
network renormalization schemes [F7,F8] put the emphasis rather on refining maps, that then also
determine the properties of the truncation in these schemes [F9].

In this document we point out that time evolution maps, which appear in simplicial discretizations
[F10,F11], can also be interpreted as refining and coarse graining maps. As we will argue here this
applies in particular to gravitational dynamics, e.g. spin foams [F12–F20].

One reason why the appearance of time evolution as coarse graining or refining maps applies in
particular to gravitational or other diffeomorphism invariant systems is the following: As argued
in [F21–F27] diffeomorphism symmetry in discrete systems translates to a symmetry, which can
be interpreted as moving vertices in the discrete space time described by the dynamical variables
of the theory. These vertex translations can also be understood as time evolution. Now, vertices
can be even moved on top of each other, which gives a coarse graining of the underlying state.
Alternatively vertices can split into two and in this way give a refinement. Indeed this argument
was used in [F27] to show that diffeomorphism symmetry implies discretization independence.

More generally diffeomorphism invariant systems are totally constrained, i.e. the Hamiltonian
is given by a combination of constraints. In the case of a totally constrained system the time
evolution operator should be a projection operator [F28–F30], projecting onto so–called physical
states. Thus physical states should not evolve.1

For discrete time evolutions that change the number of degrees of freedom, this leads to the
puzzle of how to identify states from Hilbert spaces of ‘different size’.2 We will argue that such
states describe indeed the same physical state, however expressed on two different discretizations.
The equivalence relation is provided by the refining time evolution operator. We will explain
how this notion can be formalized into the construction of an inductive limit Hilbert space. Such
an inductive limit construction is also used for the (kinematical) Hilbert space of loop quantum
gravity [F35–F37].

The inductive limit Hilbert spaces, which are defined via an equivalence relation between states
from Hilbert spaces based on different discretizations, require however (so called cylindrical) con-
sistency conditions: physical observables should not depend on which representative they have
been determined on. Indeed we will connect these consistency conditions with a notion of path
independence for (refining) time evolution. This relates then to the requirement of diffeomorphism
invariance.

Discrete (non–topological) theories typically break the diffeomorphism symmetry [F25,F26]. The
hope however is that diffeomorphism symmetry can be recovered in the continuum limit. We will
explain how to formulate the continuum limit of the dynamics of a given quantum gravity theory

1Introducing relational observables, a notion of relational time evolution can be reconstructed [F31–F34]. In this
paper we mean with time evolution always evolution with respect to (unphysical) coordinate time, which just acts
as gauge transformation and hence acts as an identity on physical states.

2This assumes finite dimensional Hilbert spaces. Even for infinite dimensional Hilbert spaces we can make ‘size’
more precise: In a discrete dynamics, Hilbert spaces carrying the degrees of freedom, are associated to sites, edges
or other geometrical objects. The Hilbert space describing the states at a given time is then (typically) given as a
tensor product of these basic Hilbert spaces. ‘Size’ then refers to the complexity of the underlying discretization,
that is the number of sites, edges etc.
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7.1 Introduction

and how such a continuum limit can be constructed by an iterative coarse graining procedure akin
to tensor network renormalization schemes.

Topological theories can be often discretized without breaking diffeomorphism symmetry. In this
case refining time evolution maps indeed satisfy the consistency conditions. We point out that this
provides a construction principle for inductive limit Hilbert spaces, that can for instance be applied
to find new quantum representations for loop quantum gravity [F38].

The idea that time evolution can be interpreted as coarse graining, refining or entangling occurs in
many approaches. Tensor network coarse graining algorithms can be easily seen as time evolution
in radial direction (in an Euclidean space time), which itself leads to holographic renormaliza-
tion [F39]. Entanglement renormalization [F40], which is also based on tensor network techniques,
can be interpreted in a space time picture, again involving holographic renormalization, see for
instance [F41–F43]. Here the tensor network and the entanglement it encodes are interpreted as
a (background) AdS space time. Although such geometrical interpretations appear very naturally,
the interpretation of the underlying geometry as a background geometry might not apply straight-
forwardly to gravity. The reason is that the dynamical variables include the geometric degrees of
freedom. Hence the geometry is encoded in the boundary state itself, and has to be extracted from
it.

A main point of this paper is to bring together coarse graining tools developed in condensed
matter with methods developed in loop quantum gravity and to point out the many peculiarities
that arise if one considers totally constrained systems such as general relativity. This leads to our
proposal of how to construct the continuum limit of a given quantum gravity theory, together with
a notion of a physical vacuum state. Furthermore we point out a general construction principle for
inductive limit Hilbert spaces based on time evolution maps of topological theories.

7.1.1 Overview

In this paper we will employ a generalized meaning of time evolution, which will be explained in
sections 7.2 and 7.3.2. The first generalization applies in particular to discretized field theories,
where we allow for a time evolution, which changes the number of variables, that is phase space or
Hilbert space dimension, from one time step to the next. The second issue we will discuss, is the
meaning of time evolution in a totally constrained system, such as general relativity.

Usually one considers a discretization that does not change in time, and thus the number of
degrees of freedom stays also constant. However, for theories involving a curved background, or
gravity as a dynamical theory, one often uses an irregular lattice, where the discretization and the
number of variables do change in time.

In section 7.2 we will discuss time evolution in simplicial discretizations, where in general the
number of degrees of freedom change. Such simplicial discretizations are in particular used for (the
quantization of) gravity, for instance in Regge calculus [F44] or spin foams [F15].

The quantization of the Hamiltonian constraint in loop quantum gravity [F45–F47] also involves
a change of the underlying discretization (in the form of a graph). The interpretation of this graph
changing Hamiltonian is an open issue. In this work we will suggest an interpretation for a graph or
discretization changing time evolution. On the other hand this interpretation will help to actually
design reasonable discrete dynamics involving a change of phase or Hilbert space.

In sections 7.2 and 7.3 we will also explain how to formulate such a dynamics with varying
number of degrees of freedom in the classical and quantum realm respectively and propose that
such a dynamics can be interpreted to refine or coarse grain a given state. This is underlined with
a number of examples in section 7.2.

This interpretation is strengthened if we consider totally constrained systems, such as general
relativity or topological field theories. In a totally constrained system the Hamiltonian is given
as a combination of constraints Ci, that generate gauge transformations. Thus time evolution is
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7 Time evolution as refining, coarse graining and entangling

equivalent to a gauge transformation, realizing the fact that in such systems the choice of time
coordinate is arbitrary.

The classical evolution of such systems does not change the states, as these are defined as gauge
equivalence classes. The quantum evolution in the form of a path integral∫

Xini,Xfin

DX exp

(
i

~
S(X)

)
(7.1.1)

is supposed to act as a projector onto physical states ψphys(X) annihilated by the quantized con-

straints Ĉiψphys = 0 [F28,F29]. Thus evolution with respect to (coordinate) time is ‘frozen’.

Consider a discretization of a totally constrained system and allow for the number of degrees of
freedom to change during time evolution. Here we will understand time evolution in the sense of
(7.1.1), that is we consider a discretized path integral. How should we interpret this time evolution,
which is supposed to be ‘frozen’, in the case that the number of variables involved (including physical
and gauge degrees of freedom) does change?

We will propose in section 7.3 that in this case time evolution is equivalent to a refining or coarse
graining of a state. (In case the initial state is not physical, unphysical degrees of freedom might
be also projected out.) We will connect the case of refining time evolution to the construction
of a continuum Hilbert space via an inductive limit, explained in section 7.3.1, as is used in loop
quantum gravity [F35, F36]. Such a construction provides a precise sense in which states from
Hilbert spaces of ‘different size’ can be equivalent. Note that this inductive limit construction for
the continuum Hilbert space has so far been used only for the kinematical Hilbert space in loop
quantum gravity. We propose here a construction which involves the dynamics. Thus the dynamics
defines which states are equivalent, as one would expect for the physical Hilbert space, i.e. the
space of states, satisfying the constraints.

Considering a time evolution where the number of degrees of freedom change, we can go to the
extreme, and start from an ‘empty’ discretization, supporting no variables at all. This will be
discussed in section 7.3.2. A state resulting from such a refining time evolution with such initial
conditions defines the (Hartle–Hawking) no–boundary state. The different stages of evolution just
represent this state on different discretizations, which is consistent with the construction of a Hilbert
space via an inductive limit. We will propose that refining a given state via time evolution, means
to put the additional degrees of freedom into a state, that resembles this Hartle–Hawking state in
some localized form. It is thus natural to see the Hartle–Hawking state as the vacuum state of the
system. (Note that in constrained systems the definition of vacuum via minimal energy is usually
not available - all states satisfy the Hamiltonian constraints and have therefore zero energy, at least
in systems without a boundary.)

Often discretizations provide the only method to make sense of the formal continuum path inte-
gral. However for (non–topological) systems the continuum diffeomorphism symmetry is typically
broken by the discretization [F25, F26]. But without a realization of diffeomorphism invariance
in the path integral (7.1.1), it cannot act as a projector onto the physical states. To deal with
this issue one attempts to restore diffeomorphism invariance via refining the building blocks and
finding effective amplitudes for the coarser building blocks by integrating out the finer degrees of
freedom [F48, F49]. This we usually refer to as coarse graining flow (although the initial step is a
refining). We will explain how this defines a continuum limit of (7.1.1), which can be expressed
as a cylindrically consistent amplitude map on an inductive limit Hilbert space in section 7.4. For
such an inductive limit Hilbert space one needs to again define refinement maps, which we propose
to be given by (effective) time evolution maps. This holds in particular if one wants to express the
physical Hilbert space as an inductive limit.

Thus what has been said above about equivalence of time evolution and refining and coarse
graining will hold in general only in some approximate sense. In fact, one can now attempt to
construct discretizations for which this holds to a good approximation. This will also provide the
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7.2 Time evolving phase spaces

means to define the continuum limit via a coarse graining flow. In this continuum limit one then
expects this equivalence to hold exactly.

Section 7.5 will explain that tensor network renormalization schemes provide a means to construct
cylindrically consistent amplitude maps and an inductive limit physical Hilbert space. On the other
hand the insight that time evolution maps provide refining maps might help to develop new tensor
network renormalization schemes.

The breaking of diffeomorphism symmetry by discretizations can often be avoided in topological
theories, such as three–dimensional gravity. Here the relation between time evolution and refining
or coarse graining can be made exact. We will therefore illustrate our claims with examples from
topological field theories in section 7.6. In particular the (refining) time evolution maps can be
taken as refinement maps for the construction of an inductive limit Hilbert space. Note that
the applicability of this idea is not exclusive to topological field theories: one can also use the
time evolution maps of topological field theories to define inductive limit Hilbert spaces for other
theories. Based on this idea a new representation for loop quantum gravity has been recently
defined in [F38], based on the time evolution maps for BF–theory. We will explain in section
7.6.4 that this construction can be generalized to other (discretized) topological field theories. It
provides a method to find Hilbert space representations for non–topological theories based on vacua
provided by the topological theories.

Section 7.7 will comment more on the peculiarities in gravitational theories, where the geometric
scale is part of the dynamical variables. It will provide a geometric interpretation of the refining
time evolution maps and make clear that these should indeed be rather seen as refining than time
evolution. Furthermore the properties of these maps are related to the appearance of (bubble)
divergences in spin foams [F23,F50–F52].

7.2 Time evolving phase spaces

Here we are going to explain, how to understand discrete time evolution in systems where the
phase space dimension (or the ‘size’ of the Hilbert space) can change from one time step to the
next. We will consider theories which assume a notion of equal time states, which indeed is the
case is many discrete theories, such as Regge calculus [F44] or loop quantum gravity restricted to
discrete graphs [F53–F55].

First let us illustrate that the need for such a time evolution scheme appears naturally in simplicial
discretizations, i.e triangulations. Assume a triangulated hypersurface. The configuration space of
the theory is given by an association of variables to certain type(s) of simplices or combinations of
simplices. For instance in (length) Regge calculus [F44] one associates lengths to the edges of the
triangulations, other formulations work also with areas [F56] or areas and angles [F57, F58] and
references therein. Scalar fields can be associated to vertices, discrete n–forms to n–simplices or
their n–duals, etc. [F59].

Time evolution in a d–dimensional theory is given by gluing d–simplices to the triangulated
(d − 1)–dimensional theory. This discrete time evolution appears as a change of triangulation
– indeed a Pachner move [F60, F61] – in the triangulated hypersurface, see also [F62]. One can
understand Pachner moves as the most elementary change of a triangulation, Pachner moves divide
time evolution into basic steps.

’Gluing’ a d–simplex to the hypersurface, means identifying the variables on the (sub)–simplices
that are now shared between this d–simplex and the hypersurface as well as solving for (integrating
over) the variables that are now in the bulk, i.e. not associated to the hypersurface any more.

The d–simplices can be glued to the hypersurface in different ways. Depending on how many faces
((d − 1)–subsimplices) of a d–simplex are identified with (d − 1) subsimplices of the triangulated
hypersurface, the number of variables associated to the hypersurface might either increase, decrease
or stay constant. Accordingly we will interpret these Pachner moves as refining, coarse graining, or
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Figure 7.1: A 1−3 move in the 2D hypersurface can be obtained by gluing a tetrahedron with one
of its triangles to the hypersurface.

of ‘mixed type’.3 These ‘mixed type’ Pachner moves can be seen as entangling moves, appearing
in the entanglement renormalization approach [F40,F63], see the discussion in section 7.6.

For example in (1 + 1) dimensions, gluing triangles to a triangulated line can be done in two
ways, which are named 1−2 and 2−1 Pachner move. For the 1−2 Pachner move we glue a triangle
with its base to an edge of the 1D line. This edge is mapped to two edges under time evolution
– which alternatively can be interpreted as refining the state. Indeed we will later see that this is
exactly the case in topological theories. In the 2− 1 move we glue a triangle with two edges to two
neighbouring edges of the 1D line.

In 3D one can reproduce the coarse graining 3 − 1 and refining 1 − 3 Pachner moves by gluing
a tetrahedron with three triangles and one triangle respectively, to the triangulated hypersurface,
see figure 7.1.

However if one wants to produce a very refined state and uses only 1 − 3 Pachner moves one
will end up with a very peculiar geometry, known as stacked sphere. Even in 4D, where gravity is
non–topological and interacting, such stacked sphere geometries are not dynamical (do not allow
for curvature) and span the flat sector of the theory as defined in [F53]. Thus, to arrive at more
interesting spatial geometries one needs to include other Pachner moves. For (2 + 1) dimensions
these are the 2 − 2 moves which can also be obtained by gluing a tetrahedron with two triangles
to the hypersurface, see figure 7.2. Such 2− 2 moves can be used as entangling moves to produce
the long range entanglement in topological phases [F63]. For (3 + 1) dimensions one can generate
analogously 4− 1 and 1− 4 as well as 3− 2 and 2− 3 Pachner moves by gluing a 4–simplex to the
3D triangulated hypersurface.

These moves can be described via canonical evolution equations, despite the change in phase
space dimension [F10,F11,F64]. Generalizing work of [F65–F70] such discrete time evolution maps
can be understood as canonical transformations generated by an action. This action is associated to
the d–simplices and can be understood as Hamilton’s principal function depending on the boundary
data of this simplex.4 Hamilton’s principal function is a generating function for the momenta, that

3Such moves of ‘mixed type’ can be avoided, if one considers so called Alexander moves instead of Pachner moves.
These Alexander moves can be understood as combinations of Pachner moves, thus they will both refine the
hypersurface and entangle certain degrees of freedom of this hypersurface.

4The advantage of such a formulation is that it reflects how simplicial path integrals are defined. There, i.e. in spin
foams, one associates an amplitude to a d–simplex, which in the semi–classical limit does indeed give the Regge
action for the simplex [F71–F74]. The path integral (say with boundary) is then defined by summing the product
of all simplex amplitudes over all bulk variables. Thus changing the boundary state by gluing a simplex to the
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Figure 7.2: A 2 − 2 move in the 2D hypersurface can be obtained by gluing a tetrahedron with
two of its triangles to the hypersurface.

is we use the action associated to a simplex Ss to define old momenta p and new momenta p′.
Schematically we have

p = ∂S(q,q′)
∂q , p′ = −∂S(q,q′)

∂q , (7.2.1)

where we denote old and new configuration data by q and q′ respectively.5

How can the equations (7.2.1) describe a canonical, i.e. symplectic, transformation, if the number
of old and new variables differ? The answer is that pre– and/or post– constraints appear on the
initial or final phase space respectively. One has to reduce the phase spaces with respect to these
constraints and finds a symplectic transformation on these reduced phase spaces.

The constraints have to appear for a simple reason from the equations (7.2.1). There one would
have to solve the first set of equations for the new configurations in terms of the old configurations
and old momenta. However, if we have Nold > Nnew variables, the first set of equations will give Nold

relations for Nnew unknowns. Thus, if the equations are independent, they will give the solutions
q′(q, p) but also (Nold−Nnew) pre–constraints Ci(q, p), i = 1, . . . , (Nold−Nnew), that is constraints on
the initial phase space. Similarly we obtain post–constraints, if Nnew > Nold. (Constraints can also
appear independently of this mechanism, that is Nnew = Nold does not guarantee that constraints
will not appear.) As the pre– or post–constraints are defined via a generating function, they are
first class. Thus the evolution equations (7.2.1) leave a number of configurations undetermined
(’pre–and post gauge degrees of freedom), corresponding to the number of constraints that appear.
The status of these gauge degrees of freedom might change under further evolution: constraints
appearing in the future might lead to a gauge fixing. The pre–constraints have to be satisfied for an
evolution move to take place. The post–constraints are automatically satisfied, after an evolution
move has taken place.

We should point out that the pre– and post–constraints include constraints which might arise
due to gauge symmetries, including Hamiltonian and diffeomorphism constraints. For instance the
4− 1 Pachner move in 4D leads to Hamiltonian and diffeomorphism constraints [F10,F53]. In this
case the post–constraints exactly coincide with the Hamiltonian and diffeomorphism constraints, no
new truly physical degree of freedom is added by such a refinement move. There are however also
the 2−3 moves that add degrees of freedom and therefore lead to constraints, which do however not

boundary (i.e. multiplying the state with the simplex amplitude and summing over the variables which are now
bulk variables), we automatically obtain the amplitude for the evolved state. Hence one would expect that the
semi–classical limit reproduces the equation of motion as obtained from the canonical transformation generated
by the action associated to this simplex.

5Some configuration variables are neither old or new, as these are represented in the hypersurface before and after
the move. Such variables count as (non–dynamical) parameters in this move. Here we will only need this schematic
discussion, for explicit discussion of all Pachner moves see [F10].

209



7 Time evolution as refining, coarse graining and entangling

coincide with the Hamiltonian and diffeomorphism constraints. As noted further evolution might
fix the gauge degrees of freedom implied by the Hamiltonian and diffeomorphism constraints. This
is due to the breaking of diffeomorphism symmetry in discretization of 4D gravity [F25,F26]

Post– and pre– constraints also appear for theories without any a priori gauge symmetries, such
as a scalar field theory. We propose here that such constraints can be interpreted as describing the
state of finer degrees of freedom. We will motivate this proposal with examples.

7.2.1 Example: evolution of a scalar field on an extending triangulation

As a first example we consider a massless scalar field on a 2D (Euclidean) equilateral triangulation.
The action associated to one triangle is given as

S∆ =
1

4

∑
e⊂∆

(φs(e) − φt(e))2 , (7.2.2)

where s(e), t(e) denote the source and target vertex of an oriented edge respectively. We now
consider a time evolution between two spatial periodically identified 1D triangulations, i.e. circles
subdivided into edges. We assume that the earlier equal time hypersurface has N edges and the
later one N ′ edges and we connect these two hypersurfaces by “one slice of triangles”, see figure
7.3. The triangulation can be described by an adjacency matrix Avv′ , where Avv′ = 1 if the vertex
v at the earlier time is connected to the vertex v′ at the later time, and Avv′ = 0 if this is not
the case. The canonical time evolution map can be easily computed in this case. In particular the
momenta π′v′ at the later time step are given by

π′v′ =
∂S

∂φv
=

(∑
v

Avv′(φ
′
v′ − φv)

)
+ φ′v′ − 1

2φ
′
v′+1 − 1

2φ
′
v′−1 , (7.2.3)

where S is the action associated to the interpolating triangulation obtained by summing the action
contributions (7.2.2) of the triangles. If Avv′ has right null vectors Rv

′
r , i.e. such that Avv′R

v′
r = 0,

we obtain constraints by contracting (7.2.3) with these null vectors. These constraints are of the
form

Cr =
∑
v′

Rv
′
r π
′
v′ + fr(φ

′) (7.2.4)

with some specific functions fr of the fields φ′v′ at the later time step. Coming from a generating
function the constraints are Abelian. They generate gauge transformations in the sense that the
evolution step leaves indeed certain combinations of field values unspecified. Assuming an orthog-
onal basis of the null vectors, these combinations are given as λr =

∑
v′ R

v′
r ψ
′
v′ . For a refining

evolution step we have a larger number N ′ of vertices at the later time than the number of vertices
N at the earlier time, N ′ > N . In this case there are at least N ′ −N right null vectors Rr, with
r = 1, . . . , N ′ −N . We want to argue that these gauge degrees of freedom correspond to the finer
degrees of the field.

Consider specifically a regular refinement as in figure 7.3, with N ′ = 2N . The corresponding
adjacency matrix is given by

Avv′ = δ2v−1,v′ + δ2v,v′ + δ2v+1,v′ . (7.2.5)

The matrix can be ‘diagonalized’ by a Fourier transform. Let us formally introduce the notation

|k〉 =
∑N

v=1 e
−2πi kv

N |v〉 , |v〉 =
1

N

N−1∑
k=0

e2πi kv
N |k〉

|k′〉 =
∑2N

v′=1 e
−2πi k

′v′
2N |v′〉 , |v′〉 =

1

2N

2N−1∑
k′=0

e2πi k
′v′

2N |k′〉 , (7.2.6)
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Figure 7.3: The scalar field on a circle and its time evolution. The circle is drawn as an interval
with periodic boundary conditions indicated by the dashed lines.

so that we can write

〈k|A|k′〉,=
∑
vv′

〈k|v〉Avv′〈v′|k′〉 =
(

1 + eπi
k′
N + e−πi

k′
N

)
δ(N)(k, k′)

=

(
1 + 2 cos

(
kπ

N

))
δ(k, k′) +

(
1− 2 cos

(
kπ

N

))
δ(k +N, k′) .(7.2.7)

We thus have N right null vectors Rk
′
k (here k labels the null vectors) given by

∑
k′

Rk
′
k |k′〉 :=

(
1− 2 cos

(
kπ

N

))
|k〉 −

(
1 + 2 cos

(
kπ

N

))
|k +N〉 . (7.2.8)

In general the coefficient in front of the higher momentum |k + N〉 is non–vanishing (it only
vanishes for k = 2N/3). Thus we can say that (almost) all momenta π′k′ associated to finer degrees
of freedom, i.e. with momenta k′ > N are determined by the constraints (7.2.4). The same holds
if we add a potential V to the scalar field, and discretize this in a local manner, i.e. as a term∑

v∈∆Ar(∆, v)V (φv) added to the action (7.2.2) with Ar(∆, v) denoting some association of an
area to the vertex–triangle pair.

The post–constraints signify in particular that no new information is added, the physical phase
space cannot be enlarged during evolution.6 In fact, we can interpret this in the following way:
given a state with a certain coarse graining, i.e. discretization scale, we can apply refining time
evolution steps. This will lead to a state with the same coarse graining scale, however represented
on a finer discretization.

It is preferable that the finer degrees of freedom that are added during refining time evolution are
in a vacuum state. In the case of a scalar field we have a notion of energy, thus the statement is that
the refining time evolution should not increase the energy as defined by some energy functional on
the two different discretizations. See also the discussion in [F75], which considers this issue however
in a covariant quantization scheme. Whether this is actually the case will depend on the quality of
the discretization.

This is particularly true because the degrees of freedom that are added are typically defined on
scales near the discretization scale. Typical discretizations will rather give unreliable results on
this scale. A way out is to design discretizations, so that the added degrees of freedom are in fact
in a vacuum state.

6For a complete discussion on how these constraints propagate and a classification of the constraints, see [F11].
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7 Time evolution as refining, coarse graining and entangling

7.2.2 Refinement as adding degrees of freedom in the vacuum state

In the last section 7.2.1 we have used the Fourier transform to identify finer degrees of freedom
(higher modes) and coarser degrees of freedom (lower modes). In fact in a free theory the Fourier
modes decouple and allow us to assign an energy per mode.

We can thus make the argument that refining time evolution should add degrees of freedom in a
vacuum state and design a discretization for which this is the case. This will in general result in a
non–local (in space) discretization – as can be already suspected if one uses the Fourier transform.

The general idea is to match for a set of Fourier modes up to a cut–off K exactly the dynamics
of the continuum, see also the related arguments in [F76,F77].

The construction is as follows: We consider the canonical data of a continuum scalar field on a
1D circle, representing the spatial hypersurface. We only consider fields that include Fourier modes
φ̃(k1) up to a cut-off K ∈ N on the spatial momentum component |k1| ≤ K, so that the fields are
superpositions of N = 2K+ 1 modes. Such fields can therefore be parametrized one–to–one (in the
general case) by the set of N values of the field at pre–specified positions along the circle.

We thus have a mapping MK from the phase space describing continuum field configurations
with a cut-off K to a phase space describing a discretized scalar field on N = 2K + 1 vertices.

We have now to decide on an embedding map CK,K′ from the phase space with cut–off K to a
phase space with K ′ ≥ K. Once such a map is chosen we can construct the corresponding map
DK,K′ =MK′ ◦ CK,K′ ◦ (MK)−1 for the phase spaces describing the discretized fields.

As an example, one can choose CK,K′ such that in a mode expansion the coefficients of the
additional modes are vanishing. This minimizes the energy of the additional modes for a free
theory. For interacting theories one can choose more generally EK,K′ such that the energy of the
refined configurations (in the space of fields with a mode cut-off K ′) is minimized, keeping the
coarser modes fixed.

Note also that one can attempt to define an embedding CK,K′ such that it includes some proper
time evolution step T . However a time evolution will entangle the modes up to the cut-off K, with
(possibly) all continuum degrees of freedom, that is the image of T applied to a phase space given
by modes with cut–off K will in general include modes K ′ → ∞. We therefore face a problem
in pulling back the evolved continuum configuration to a discrete one, as the evolved continuum
configuration might be infinitely refined with respect to the embedding maps chosen.

Thus one must find an (embedding) map of discrete configurations into continuous ones, where
this is not the case. In this sense the choice of the (generalized) maps MK should be informed by
the dynamics. We believe however that such examples are rare, see section 7.2.3 for one of these
cases. Alternatively, one chooses a truncation of the image of T back to the phase space describing
modes with a cut–off K ′. This introduces an approximation to the continuum dynamics. However
for sufficiently refined configurations, one would of course expect, that these errors do not affect
sufficiently coarse grained observables.

In general the discrete embedding maps DK,K′ will be highly non–local, but this will be necessary
to obtain a good approximation also for modes near the discretization scale. This construction will
be very involved for an interacting theory, as it basically requires the solution of the dynamics.

However it can serve as a guide line of what to expect from ‘good’ discretizations, that also involve
a possible change of degrees of freedom. Thus even if one has a discretization that does not exactly
mirror this behaviour (i.e. is not ‘perfect’) one can hope that via coarse graining one reaches
an effective theory, that actually does so. This is the philosophy behind perfect discretization,
which can be constructed as fixed points of renormalization flows [F49,F78–F80] or by pulling back
continuum physics to the lattice (‘blocking from the continuum’) [F81]. A more abstract approach
is to select as observables spectra of geometric operators [F82].

The construction described in this section allows a more explicit choice of the (post)–constraints,
than in the discussion in section 7.2, where the post–constraints are determined by the chosen
discretization of the action. Here the post–constraints are determined by the choice of vacuum
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state, given by the minimization of an energy functional. Note that the constraints are second
class. For instance for a free theory these are given by the vanishing of all higher modes in the
fields and momenta. Thus in comparison with the discussion in section 7.2 one has gauge fixed the
first class post–constraints appearing there with additional constraints.

This is what one would however expect also from the quantization of a (free) scalar field: the
vacuum functional in a given mode is given as a Gaussian of the field variable. Such a Gaussian
can also be found by minimizing the ‘master constraint’ M(k1) = ω2(k)φ̃2(k1) + π̃(k1), given as
sum of (weighted) squares of the individual constraints [F83–F85]. For gravity the situation is less
clear what kind of vacuum to expect. On the one hand (continuum) gravity constitutes a first
class constrained system, so all physical states have to satisfy these constraints. Thus, physical
states are squeezed states in the conjugated degrees of freedom describing the gauge choice and
the constraints. In 4D we of course have additional physical degrees of freedom, however the
characterization of a vacuum state (without a background and boundary) is an open issue. We will
discuss in section 7.3.2 the Hartle Hawking no–boundary proposal [F86] for a vacuum state, that
can be naturally implemented with a refining time evolution.

7.2.3 Massless scalar field in a 2D Lorentzian space time

Here we will discuss an example of a perfect discretization with local embedding maps, namely
the discretization of a massless scalar field in 2D Minkowskian space time. Note that this is the
only such example of a non–topological theory that we are aware of, and that the locality of
the embedding maps might actually change in the quantum theory. We will consider equal time
hypersurfaces given by piecewise null lines, akin to characteristic evolution schemes [F87].

We will identify a given discrete configuration of field values with a continuous configuration
by assuming the continuum field to be piecewise linear. Such a piecewise linear field can be
parametrized by a discrete set of scalar field values at points where the derivative of continuum
field is not continuous.

One motivation for this example is to provide an interpretation for graph changing Hamiltonians
appearing in loop quantum gravity [F45–F47, F88, F89] or for the parametrized scalar field [F90–
F92]. This example will illustrate that indeed refining evolution splits into an embedding map and
a proper evolution.

The example is furthermore interesting as it introduces the concept of piecewise null hypersur-
faces, that on ‘larger scales’ can be either put together to a spatial hypersurface, or alternatively to
a null hypersurface. Thus problems involving a null boundary can be easily treated, with a natural
specification of ‘boundary conditions’ at the null hypersurface (or null line). For a discussion of
issues related to holography involving such discretizations, see [F93], which very much inspired
the development of this example. Null surface formulations also attracted recent interest in (loop)
gravity [F94–F97].

To be concrete we consider a 2D cylinder space time endowed with the Minkowski metric. We
consider piecewise null ‘hyperlines’ that close around the cylinder. Thus we will have null edges
connected via kinks.

For every such kink we have to introduce a vertex ν. We allow furthermore vertices ν on the null
edges themselves. We will associate scalar field values φν to these vertices ν.

As we will show in the following, such a configuration of scalar fields φν specifies a piecewise
linear solution to the continuum dynamics.

Let us start with the set of continuum solutions to �φ = 0, which are given by

φ(u, v) = f(u) + g(v) (7.2.9)

where (u = t + x, v = t − x) are light cone coordinates7. We will consider functions of the form
(7.2.9) with f and g piecewise linear (continuous) functions. Thus φ(u, v) will be smooth (even

7Choosing x ∈ [0, 2π) we have 1
2
(u− v) ∈ [0, 2π).
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Figure 7.4: The time evolution proceeds by moving the null edge (ν1, ν2) to (ν ′1, ν
′
2).

linear) everywhere except at a set of null lines u = cI or v = c′J , where {cI , c′J} are a set of constants.
Such a solution induces a scalar field configuration on any piecewise null line in the following way:

As outlined above, we have a vertex at every kink of the piecewise null line. Additionally we
introduce vertices for every null line u = cI or v = c′J that cuts our ‘equal time hypersurface’
transversally. The values of the scalar field at these vertices are now just given by the values of the
solution (7.2.9) at the position of the vertices.

This gives a configuration of scalar field values on a piecewise null hyperline. From this con-
figuration we can re–construct the solution. We basically do the inverse of the above procedure:
For every kink we draw two null lines u = cI and v = c′J emanating from this kink. Furthermore
we draw from every vertex on a null edge a transversal null line. These null lines give the possi-
ble non–smooth behaviour of the solution. We can reconstruct the solution everywhere by linear
extrapolation.

A concrete way of constructing such a solution is given by a time evolution of the scalar field
configuration on a piecewise null line, by pushing the null line forward in time.

Note that the scalar field values on a given piecewise null line are sufficient to reconstruct the full
space time solution. There are no additional momenta needed. Intuitively this can be imagined the
following way: drawing a null zigzag line we obtain a set of initial fields at two consecutive time
steps. Thus the fields themselves provide the momenta.

To describe the time evolution consider a piecewise null line with a vertex ν1 at a kink. We wish
to evolve this vertex by an amount ε in say the direction of u, see figure 7.4. (Note that there is
no absolute length attached to ε as it is an affine parameter. The time evolution itself can only be
characterized by the area of the rectangular diamond that will be glued to the hypersurface.) Let
us assume (for simplicity) that the next vertex ν2 to the right of ν1 is also a kink. If we want to
move the vertex ν1 and keep the hypersurface null we have to also move the vertex ν2 to a new
vertex ν ′2. Thus we move an entire null edge of the hyperline.

Note however that although we move the vertex ν1 to a new vertex ν ′1 we actually have to keep
the vertex ν1 as a vertex in our hypersurface. This is due to the possible non–smooth behaviour in
the field that might still occur at ν1. Thus the new hypersurface will have one additional vertex.
In this way time evolution is necessarily8 refining.

Thus we have to determine the values of the scalar field at the new vertices ν ′1 and ν ′2. We
construct the field φ(ν ′2) by linearly interpolating between φ(ν2) and the field φ(ν3) at the next
vertex ν3 to the right of ν2:

φ(ν ′2) = φ(ν2) +
φ(ν3)− φ(ν2)

u(ν3)− u(ν2)
(u(ν ′2)− u(ν2)) . (7.2.10)

(One might consider this step to be somewhat non–local.) Having constructed the field φ(ν ′2) we
now know three fields at the vertices of the diamond formed by ν1, ν

′
1, ν2, ν

′
2. The field at the tip

8One can also time evolve by gluing diamonds that fit into the zigzag null line. This would keep the number of
vertices constant, but would also pre–define the size of the time evolution step.
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ν ′

ν ′′

Figure 7.5: Time evolution can also proceed by gluing small diamonds to the hypersurface, which
will however produce past directed null edges. Note that in this case φ(ν ′′) will be
constrained and determined by the fields at the other vertices on the ‘equal time’
hypersurface.

ν ′1 of this diamond is imposed by the form of the solution (7.2.9) to be

φ(ν ′1) = φ(ν1) + φ(ν ′2) − φ(ν2) . (7.2.11)

This description can be easily generalized to other situations. In the end time evolution proceeds
by gluing rectangular diamonds to the null hypersurface. Allowing the side length of these diamonds
to vary, we do not pick out a Lorentz frame, thus we have a Lorentz independent cut–off.

Here we have a situation very similar to loop quantum gravity [F45–F47], or parametrized and
polymerized scalar field theory [F90–F92], with a ‘graph changing’ Hamiltonian. One can choose
ε (or the area of the diamond if one generalizes the framework to allow also ’past directed’ null
edges, see figure 7.5) arbitrarily small – there remains a discontinuous action of the time evolution,
which is to produce new vertices.

The time evolution map can be also split into two parts: one is a pure refining part, introducing
the vertex ν ′2 and the associated field value (7.2.10). The second part is the ‘proper’ time evolution
step, in which a diamond with vertices ν1, ν

′
1, ν2, ν

′
2 is glued to the hypersurface. This part keeps

the number of vertices constant, as the new vertex ν ′1 is compensated by the loss of the old vertex
ν2.

The scheme we have described is a perfect discretization, that exactly mirrors the continuum
solutions. We can also embed any discrete configuration into a refined configuration, where the
new field values are given by linear interpolation as in (7.2.10). This allows to identify discrete and
continuum configurations, which can be formalized into an inductive limit construction, which we
will explain in section 7.3.1 for the quantum theory. See [F98, F99] for an alternative proposal to
identify discrete and continuous phase space configurations, based on gauge fixing infinitely many
degrees of freedom of the continuum theory.

7.2.4 Refinement moves in simplicial gravity: adding gauge and vacuum
degrees of freedom

The examples discussed here involved scalar field theories, for which a notion of energy and hence
vacuum is available. In section 7.2.1 we proposed to use directly an energy functional to characterize
the state of the additional degrees of freedom. For the massless scalar field on null lines we determine
the values of additional ‘finer’ fields by demanding piecewise linearity of the field.

In case of gravitational theories the notion of energy is less clear, in particular if one considers
compact spatial slices.9 Time evolution itself is rather understood as a gauge transformation and
energy is constrained to vanish (on space times with compact spatial slices). Indeed as mentioned
in section 7.2, part of the degrees of freedom added in a refining time evolution will be gauge (or

9 However one can attempt to proceed similar to the examples in the previous sections: For instance for simplicial
(Regge) gravity one can construct, similar to the massless field, a refining based on piecewise flat geometry, at
least on the classical level. Another possibility is to use some quasi-local notion of energy and to minimize this
energy for the region that is being refined, in analogy to the procedure described in section 7.2.1.
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pseudo gauge if diffeomorphism symmetry is broken [F25, F26, F66–F69]). But in general refining
time evolution also adds physical (non–gauge) degrees of freedom. Thus refining time evolution
leads to states that are supposed to be gauge equivalent, but seem to be based on different number
of degrees of freedom.

To resolve this puzzle, we need to understand states resulting from a refining time evolution as
equivalent – they represent the same state on different discretizations. We will discuss quantum
theory in section 7.3.1 in which this notion can be indeed made precise. For this interpretation
it is important that the refined degrees of freedom are indeed in a state, that can be interpreted
as vacuum. For instance in loop quantum gravity one uses the so–called Ashtekar–Lewandowski
vacuum [F35, F36], in which spatial geometry is sharply peaked to be totally degenerate. An
alternative vacuum state has been recently introduced [F38], in which the vacuum is rather peaked
on flat connections. In both cases these vacua are used to define a notion of refining, in the second
case this refining origins indeed from a time evolution of BF theory, a topological theory that
describes flat connections.

However both these choices are rather kinematical vacua, at least in 4D gravity ( [F38] gives
actually the physical vacuum for 3D gravity). The interpretation as vacua is not tied to an energy
functional, but rather to the fact that these states are the simplest possible ones from different
viewpoints. The Ashtekar–Lewandowski vacuum can be understood as the state giving a constant
value to all connection fields, whereas the BF vacuum [F38] gives a constant value to the conjugated
variables, the flux fields describing spatial geometry.

Thus, although these vacua are not physical, they show an important property of vacua (in
homogeneous systems), namely to be homogeneous. We expect a physical vacuum to be given by
a state satisfying the constraints and carrying a notion of homogeneity. Again the peculiarities of
general relativity make this description of homogeneity non–trivial. Physical observables have to be
invariant under space–time diffeomorphisms. To nevertheless allow for local observables one can use
relation observables [F31–F34] , that often use a reference system built from matter (fields). Such a
reference system requires, however, an inhomogeneity in these matter fields, which are used as rods
and clocks. An alternative are reference systems built out of gravitational degrees of freedom, such
as in [F100, F101]. There physical observables are constructed that describe perturbations away
from homogeneity, thus a vacuum state can be described via a prescription for the expectation
values and fluctuations of these observables.

A different characterization of vacuum uses the notion of path integral as a projector on physical
states. Assuming one can construct such a (consistent) projector we can define the image of any
of the kinematical vacua under this projector as a physical vacuum. The kinematical vacua are
homogeneous states – therefore one would expect the physical vacuum obtained by projection
(assuming it can be constructed) also to be homogeneous. A priori it is not clear whether e.g. the
Ashtekar–Lewandowski vacuum [F35,F36] and the vacuum, based on BF theory [F38] would lead
to the same physical vacuum. As we will describe later, if we construct the projector on physical
states via a refining time evolution operator (i.e. a path integral) such vacua can be also understood
to realize the Hartle–Hawking no–boundary proposal for a vacuum [F86].

7.3 Refining in quantum theory

Here we will discuss some aspects of refining time evolution in quantum theory. See also [F102,
F103], which introduces a framework for time evolving Hilbert spaces, in which the number of
degrees of freedom can increase and decrease. In this work we will base our discussion more on
inductive limit Hilbert spaces and rather see refining time evolution as a means to define embedding
maps needed for the construction of these inductive limit Hilbert spaces. We will explain this
construction shortly in section 7.3.1.

So far, this framework has been used on the kinematical level in loop quantum gravity. The main
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proposal of this work is that one should actually use the dynamics, that is time evolution, to define
the embedding maps needed for this framework. With this proposal one adopts a no–boundary
Hartle Hawking state as vacuum state, thus the vacuum (and a notion of equivalence between states
of different refinement degree) is determined by the dynamics of the theory. This will be lined out
in section 7.3.2.

7.3.1 Inductive limit construction of a continuum Hilbert space

The inductive limit construction allows to define a continuum Hilbert space from a family of Hilbert
spaces associated to discretizations (for instance graphs as in the Ashtekar Lewandowski represen-
tation [F35,F36] or triangulations as in the BF vacuum introduced in [F38]). The discretizations
need to be organized into a directed partially ordered set, denoted by ({b},≺). The ordering pro-
vides a notion of coarser and finer discretizations, that is b ≺ b′ denotes that b′ is a refinement
of b. In a directed partially ordered set one can always find a common refinement b′′ for two
discretizations b and b′.

We associate to each such discretization b a Hilbert space of states Hb. For any two Hilbert
spaces Hb and Hb′ with b ≺ b′, we need to define an embedding map

ιbb′ : Hb → Hb′ . (7.3.1)

These embedding maps have to satisfy consistency conditions: For any b ≺ b′ ≺ b′′ we demand

ιb′b′′ ◦ ιbb′ = ιbb′′ . (7.3.2)

As we will see, these conditions encode, under the identification of the embedding maps with time
evolution maps, a path independence requirement of the time evolution maps.

Given such a system, we can define the continuum limit of the theory, as an inductive limit.
This limit is defined as the space of equivalence classes H := ∪bHb/ ∼. The equivalence relation is
defined as follows: two states ψb and ψ′b′ are equivalent, if there exist a b′′ with b ≺ b′′ and b′ ≺ b′′,
i.e. a discretization b′′ refining both b and b′, such that ιbb′′(ψb) = ιb′b′′(ψ

′
b).

In words, two states on different discretizations b, b′ are equivalent, if they can be refined to
the same state. This notion of inductive limit allows to embed any ‘discrete state’ ψb into the
continuum Hilbert space H via an embedding ιb.

As mentioned this construction is used in loop quantum gravity on the kinematical level, that is
the choice of embedding maps is not tied to a dynamics. Indeed, in a theory with a proper time
evolution one would need to separate the refining time evolution steps into a ‘purely refining’ part
and a ‘proper evolution’ part, as in the example in section 7.2.3. Otherwise one would identify time
evolved states as equivalent.

However, in gravitational theories, time evolution is a gauge transformation. In the quantum
theory, the time evolution operator (7.1.1) is supposed to act as a projector onto physical states
and thus as an identity on physical states. Hence one can indeed attempt to use refining time
evolution, to define the embedding maps ιbb′ between different discretizations. As we will discuss,
the difficulty is that refining time evolution maps based on ‘naive’ discretizations, will not satisfy
the consistency conditions (7.3.2). Here coarse graining provides a means to reach theories in which
the consistency conditions are actually satisfied.

7.3.2 Refining time evolution and no–boundary vacuum

Let us return to the time evolution operator (kernel) defined from the path integral (7.1.1)

K(Xini, Xfin) =

∫
Xini,Xfinfixed

DX exp

(
i

~
S(X)

)
. (7.3.3)
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Here we denote by Xini and Xfin initial and final configuration data. In, for instance simplicial,
discretizations of the path integral (7.3.3) the wave functions ψi(Xi) and ψf (Xfin) might be from
two Hilbert spaces Hbi and Hbf associated to two different discretizations bi and bf .

Even if we consider a system with proper time evolution the path integral (7.3.3) will project
onto states satisfying the pre– and post constraints discussed in section 7.2. The reason is similar
to the mechanism turning path integrals for gauge theories into projectors [F28, F29], we will
sketch an argument here, valid for linearized theories [F104]: Consider for instance the case of
post–constraints Ci(X,P ), where P are the momentum variables conjugated to X.

We discussed in section 7.2 that these post–constraints are first class and lead to post–gauge
degrees of freedom, that is part of the configuration data X at final time remain undetermined.
On the other hand there will be also post–Dirac observables, i.e. functions on phase space that
Poisson commute with the post–constraints C(X,P ). The structure of the constraints allows to
make a canonical variable transformation such that the configuration variables separate into post
gauge XG and post–Dirac XD degrees of freedom. The constraints then involve only variables
conjugated to the post–gauge variables XG and the variables XG themselves.

By integrating over all bulk variables in (7.3.3) we can define an effective action that only depends
on initial and final configuration variables:

K(Xini, Xfin) = exp

(
i

~
Seff (Xini, Xfin)

)
(7.3.4)

We can use the canonical variable transformation for the final configuration data Xfin. The fact
that the classical action leads to post–constraints means that the effective action decouples gauge
and Dirac degrees of freedom

Seff = SD(Xini, X
D
fin) + SG(XG

fin) . (7.3.5)

This makes the appearance of constraints C(XG
fin, P

G
fin) obvious

PGfin = − ∂Seff
∂XG

fin

= −
∂SG(XG

fin)

∂XG
fin

. (7.3.6)

The time evolution kernel (7.3.4) is therefore of the form

K(Xini, Xfin) = exp

(
i

~
SG(XG

fin)

)
× exp

(
i

~
SD(Xini, X

D
fin)

)
. (7.3.7)

All states resulting from a time evolution

ψf (Xfin) =

∫
dXini exp

(
i

~
SG(XG

fin)

)
× exp

(
i

~
SD(Xini, X

D
fin)

)
ψi(Xini) (7.3.8)

have a prescribed factor exp
(
i
~S

G(XG
fin)

)
determining the dependence of the wave function in the

gauge variables. Adopting a Schroedinger quantization scheme, with the momenta quantized as
derivative operators P̂ = ∂/∂X and configurations as multiplication operators, the states (7.3.8)
satisfy the quantized constraints

Ĉ = −i~ ∂

∂XG
fin

+
∂SG(XG

fin)

∂XG
fin

. (7.3.9)

In summary the choice of discrete action for a refining time evolution leads to constraints that
determine the behaviour of the resulting wave functions in the ‘finer’ degrees of freedom, which
here are characterized as post-gauge degrees of freedom.
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As mentioned this mechanism holds also for theories which a priori do not show any gauge
symmetries and thus we deal with a proper time evolution operator. General relativity is a totally
constraint system. Formal arguments show that the path integral (7.3.3) is equivalent to a projector
onto the Hamiltonian and diffeomorphism constraints CI of the theory [F28,F29]∫

DN I exp

(
i

~
N IĈI

)
. (7.3.10)

Here N I denote Lagrange multiplier, known as lapse and shift. The integration over these multi-
pliers induces a averaging over the action of the Hamiltonian and diffeomorphism constraints. For
a discussion of the many subtleties involving this proposal see for instance [F30, F37, F83–F85].)
The averaging would therefore project onto states that satisfy the constraints.

In our discrete context, allowing for the possibility of discretizations changing in time, one expects
that the Hamiltonian and diffeomorphism constraints will be part of the post– or pre– constraints.
As mentioned this issue is however involved, as discretizations typically break diffeomorphism
symmetry, which leads to the constraints. For the moment we will ignore this issue and comment
later how to deal with it.

Thus we can hope10 that a simplicial discretization of a path integral describing refining time
evolution will lead to states which (a) satisfy the Hamiltonian and diffeomorphism constraints and
(b) in which the finer (Dirac) degrees of freedom are also put into a specific state, characterized by
the remaining post– constraints.

With a simplicial path integral, we can in particular consider the extreme case of a refining time
evolution; that is, we can start with zero-dimensional configuration space and evolve to a large
triangulated spherical hypersurface [F10]. That is the first evolution step evolves from a vertex
to the boundary of a d–dimensional simplex, where d denotes the space time dimension. The
wave function will be just given as the (path integral) amplitude associated to this simplex. The
following evolution steps can be understood as gluing further simplices to the one we started with,
by multiplying the wave function with the corresponding simplex amplitudes and integrating over
all variables that become bulk.

In this case we will have at every step as many post constraints as (configuration) variables,
i.e. the reduced phase space is zero–dimensional. Indeed all momenta Pb are generated by Hamil-
ton’s principal function SH , i.e. the action evaluated on a solution prescribed by the boundary
configurations X:

P =
∂SH
∂X

(X) . (7.3.11)

We thus have constraints C = P − ∂SH
∂X . These are Abelian, as the momenta are coming from a

generating function. The phase space is foliated by gauge orbits, generated by the constraints, i.e.
all configurations X are post–gauge degrees of freedom.

In the quantum theory this corresponds to a unique physical wave function11, given by a (Hartle
Hawking) no–boundary vacuum [F86]. In the semi–classical approximation we have

ψHH(X) ∼ exp

(
i

~
SH

)
. (7.3.12)

Here one would indeed expect the appearance of the standard vacuum, at least in the limit of
infinitely large regions [F105]. Gravitational theories play a special role here, as the size of the

10In fact, a naive discretization will break diffeomorphism symmetry and thus the statement regarding (a) can hold
only in some approximate sense.

11In fact, this wave function will in general depend on the underlying discretization, which can be interpreted as a
choice of order for refining time evolution maps. Thus proper ‘uniqueness’ requires a notion of path independence,
as will be explained in section 7.3.3
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region is encoded in the state itself, thus the wave function gives rather a probability distribution
for the geometrical volume of the hypersurface. ‘Radial’ evolution, as described here should not
change physical states as it is just another form of time evolution. Thus we can hope that a vacuum
is reached for degrees of freedom describing scales (much) larger than the discretization scale of the
boundary.

We note that a framework, which permits time evolution with phase spaces or Hilbert spaces
that change in time, allows to define a notion of vacuum. For instance starting with a very
coarse state and refining this state in an homogeneous manner should result into a state describing
homogeneous geometries. This allows for applications for cosmology based on lattice treatments,
for instance [F106–F108].

An interesting question for future research will be to investigate which simplicial quantum gravity
models will lead to an acceptable (Hartle Hawking) vacuum and to investigate the properties of
this vacuum.

Apart from defining a no–boundary wave function, the refining time evolution can of course also
be used to refine states – and thus to provide the embedding maps needed for the construction
of inductive limit Hilbert spaces, as discussed in section 7.3.1. Such (dynamical) embedding maps
are therefore selected by taking the dynamics of the theory into account, which is particularly
advised for coarse graining [F9]. Here one has however to address the issue that discretized path
integrals will in general break diffeomorphism symmetry and, related to this fact, be triangulation
dependent. This will be subject of the next sections.

7.3.3 Path independence of evolution and consistent embedding maps

We argued that a discrete evolution starting from a zero–dimensional phase space or a one dimen-
sional Hilbert space produces a vacuum state. However this vacuum state will in general depend
on the order of the time evolution steps, which for a simplicial discretization determines the tri-
angulation of the bulk that is bounded by the triangulated hypersurface on which the vacuum is
defined.

Similarly, if we aim to use the refining time evolution defined by the path integral as embedding
maps, the consistency conditions (7.3.2) will in general not be satisfied. These consistency con-
ditions can now be interpreted as demanding independence of the evolved state from the chosen
evolution path. It can be understood as a discrete version of implementing the Dirac algebra of
(Hamiltonian and spatial diffeomorphism) constraints. As pointed out in [F109, F110] the Dirac
algebra implies path independence, with respect to evolving through arbitrary choices of spatial
hypersurfaces. This constitutes a further12 relation between diffeomorphism symmetry, that yields
the constraints, and triangulation independence [F27].

So far we discussed only consistency for the embedding maps, which is needed to make the
projective limit Hilbert space well defined. Observables on this Hilbert space need also to satisfy
conditions known as cylindrically consistency: Observables Ob defined on the family of Hilbert
spaces Hb need to commute with the embedding maps ιbb′ :

ιbb′(Ob ψb) = Ob′ ιbb′(ψb) (7.3.13)

for all states ψb ∈ Hb and all pairs b ≺ b′. This ensures that the observables are well defined
on the continuum Hilbert space, i.e. do not depend on the representative ψb chosen. In the case
that ιbb′ is given by a refining time evolution consistent observables have therefore to be ‘refining

12 In cases where diffeomorphism symmetry is realized, for instance in 3D discrete gravity, 4D gravity restricted to the
‘flat’ sector [F53], or 4D linearized gravity [F64], one can also introduce a continuum time evolution generated by
Hamiltonian constraints [F24–F26,F111,F112] and define a (first class) Dirac algebra of these constraints [F113].
This continuum time evolution reproduces the discrete time evolution [F10,F24], if one integrates the infinitesimal
evolution to one with a finite time.
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Dirac observables’. The algebra of refining Dirac observables characterizes the resulting continuum
Hilbert space, as it provides a representation of this algebra.

Topological theories can often be discretized such that partition functions and physical observ-
ables are triangulation independent. This also includes 3D gravity, which is topological. Due to the
triangulation invariance the refining time evolution maps defined via the discretized path integral
do satisfy the consistency conditions (7.3.2). We will illustrate this situation in section 7.6. As we
will comment there, the set of ‘refining Dirac observables’ is much bigger than the set of (standard)
Dirac observables given by the topological theory. This allows to use refining time evolution maps
stemming from topological theories to define (kinematical) Hilbert spaces for other theories. They
can also be used to construct a new Hilbert space for loop quantum gravity, based on the time
evolution map of BF–theory [F38].

We believe that the application of refining time evolution maps is however not restricted to
topological theories, despite the challenges posed by the triangulation dependence of the path
integral. The strategy to attack this issue is to improve a given discretization by coarse graining.
The fixed point of the coarse graining flow is hoped to show enhanced symmetry properties, in
particular diffeomorphism symmetry which is tied to triangulation dependence [F27,F114].

Such a coarse graining flow leads however to non–local couplings13, which are difficult to control.
One would then also expect the embedding maps, if defined via refining time evolution, to be highly
non–local. In section 7.4 we will discuss a coarse graining framework which avoids this issue, and
moreover is based on the concepts introduced so far.

Let us comment on the appearance of discretization changing time evolution in loop quantum
gravity. There graph changing (actually graph refining) Hamiltonian constraints have been defined
by Thiemann [F45–F47]. These constraints are anomaly free, in the sense that the commutator
of two Hamiltonians vanishes if evaluated on the Hilbert space of diffeomorphism invariant states,
see [F45–F47,F88,F89,F116,F117] for discussions.

What is missing is a concrete geometric interpretation of the action of these constraints and a
concrete connection to the path integral. (The notion of graph changing Hamiltonians inspired the
development of spin foams, as time evolved spin networks [F118].) This discussion here suggest a
possible interpretation for the graph changing Hamiltonians, the exponentiation of which should
lead to a (refining) time evolution. Thus one could attempt to extract a notion of vacuum from
the Hamiltonian constraints.

7.3.4 Pre–constraints and coarse graining

We suggested to use the refining time evolution to define embedding maps for the inductive Hilbert
space construction. Refining time evolution leads to post–constraints, which we argued characterize
the (vacuum) state, into which the finer degrees of freedom are put. Here we want to comment
shortly on the role of pre–constraints.

These appear for coarse graining time evolution steps, that is the number of variables decreases.
Classically these constraints demand that a state needs to satisfy certain conditions, so that the
time evolution move can be applied. By time inversion symmetry we can understand this condition
in the following way: the state has to be equivalent to a refining of a coarser state. Although the
state is represented on a fine triangulation it does only include degrees of freedom in non–vacuum
states on a coarser scale.

Although for classical evolution one has to satisfy these constraints, quantum mechanical evolu-
tion is always possible. This also holds for standard gauge systems: a priori a quantum state does
not need to satisfy any constraints to serve as a boundary condition in a path integral. Rather
the path integral itself will project out non–physical degrees of freedom [F28,F29]. Thus, one can
indeed expect that in a quantum evolution, the degrees of freedom which are too fine to be evolved

13Triangulation invariant theories with local couplings are always topological theories, see for instance [F11,F115].
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classically (as identified by the constraints) will be projected to the vacuum. In this sense the
quantum mechanical evolution is automatically providing a coarse graining. Note that this will be
a non–unitary evolution as it includes a projective part. A unitary description can only be obtained
if one restricts to the subspace of the Hilbert space describing only sufficiently coarse degrees of
freedom, i.e. the physical Hilbert space with respect to the pre–constraints, see also [F102,F103].

Thus time evolution cannot be inverted: Concatenating coarse graining and refining we isolate
the projective part, that can be understood as projecting fine degrees of freedom to the vacuum
state, that is the state obtained will automatically satisfy the initial pre–constraints. This provides
an interesting asymmetry in time evolution that might serve as an arrow of time. See [F119] for
another proposal on the origin of the arrow of time, in which also the notion of complexity of the
state is crucial.

7.4 How to define a continuum theory of quantum gravity

The investigation of time evolution with changing phase space or Hilbert space dimension is moti-
vated by the simplicial discretization of gravity [F10,F11,F64]. However, such discretizations break
diffeomorphism symmetry for the 4D theory [F24]. This appears both at the classical level [F25,F26]
, and even in more severe form on the quantum level. For instance, the classical 4D Regge action,
is invariant under 5-1 moves, but not under 3-3 moves. The latter fact can be related to a break-
ing of diffeomorphism symmetry on the classical level. Moreover on the quantum level one can
show that no local path integral measure factor exists that makes the theory invariant under 5?1
moves [F120,F121], implying even a breaking of the residual classical symmetry.

This implies in particular that the consistency conditions formulated in (7.3.2) are violated. A
way out is to improve the discretization by coarse graining, see [F27, F49] for examples. At fixed
points of the coarse graining flow one might arrive at perfect discretizations [F78, F79], for which
consistency conditions of the form (7.3.2) are satisfied. These fixed points represent the continuum
limit of the theory one started with, however expressed on a discretization.

There are different ways to proceed with the coarse graining. One is to keep basic building blocks
but to allow highly non–local couplings, which are naturally induced by the coarse graining [F80,
F81]. As was pointed out in [F9], there is an alternative inspired by tensor network renormalization
(which we will explain in section 7.5) and the generalized boundary proposal [F122].

This alternative construction of a consistent theory would not put basic building blocks (with
simplest possible boundary discretizations) with their amplitudes in the centre but instead am-
plitude maps for space time regions, with arbitrarily complicated discretization of the boundary.
These amplitude maps are built from the basic amplitudes, and agree basically with the (dual
of the) Hartle Hawking no boundary wave function. The amplitude maps are defined on Hilbert
spaces Hb associated to the discretized boundaries b of a space time region: Ab : Hb → C as

Ab(ψb) :=

∫
DXDXb exp

(
i

~
S(X,Xb)

)
ψb(Xb)

= 〈ψ∅|(K∅b)†|ψb〉 =: 〈ψ∅|ψb〉phys (7.4.1)

where we denote the bulk configuration variables with X and the boundary variables with Xb. Thus
the amplitude map applied to the wave function ψb is given by the inner product between this wave
function ψb and the no–boundary wave function. This no–boundary wave function is here expressed
as time evolution operator K∅b applied to the one–dimensional wave function ψ∅ associated to the
empty discretization. The second line in (7.4.1) defines the physical inner product, between the
projections onto physical states of the two (kinematical) states ψ∅ and ψb.

As usual the path integral in (7.4.1) is a discretized one. Thus the first task is to arrive at
amplitude functionals Ab for fixed boundaries b that are independent of the bulk triangulation.
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One way to reach such amplitudes is by coarse graining, as will be explained in the next section
7.5.

For a very coarse boundary b we can triangulate the bulk with very few simplices. For instance
the boundary of a simplex can be triangulated with just this simplex and thus the amplitude
functional Ab, discretized in this way, would be just given by the pairing of the simplex amplitude
with the boundary wave function. However there are infinitely many ways to subdivide this simplex
(keeping the boundary), and thus one would have to find a method to determine the actual Ab.
Indeed we will specify a further criterion for these amplitudes, which will actually help to construct
the coarse graining flow of these amplitudes.

It is important to note that bulk triangulation independence of the amplitude maps Ab is not
sufficient for the construction of the continuum limit. (Indeed one could just declare some rule for
selecting a particular bulk triangulation for each boundary.) We rather need to demand a condition
that connects the amplitude maps Ab for different boundaries b.

Thus we need first to choose embedding maps ιbb′ that connect the different boundary Hilbert
spaces, as explained in section 7.3.1. As we explained, there might be different sets of embedding
maps, leading to different continuum Hilbert spaces. We will see that some choices are preferred
over others. With a given choice of embedding map we require that the amplitude maps are
cylindrically consistent functionals, that is

Ab′(ιbb′(ψb)) = Ab(ψb) . (7.4.2)

In words, if we take a coarse state and evaluate the corresponding amplitude map Ab on it, we
should get the same result as first embedding the state into the ‘finer’ Hilbert space Hb and then
evaluating with the ‘finer’ amplitude map Ab′ . Thus, the result should not depend on which
boundary we choose to represent the equivalence class of states [ψb] under the equivalence relations
of the inductive limit. This allows to actually define the amplitude map as a functional on the
inductive (i.e. continuum) limit Hilbert space H defined in section 7.3.1. Such a requirement was
proposed in [F123] with regard to the (kinematical) embedding maps of the Ashtekar Lewandowski
Hilbert space. We will argue here that the construction of cylindrically consistent amplitudes is
facilitated by the adoption of dynamical embedding maps, as provided by refining time evolution.

The amplitude map A[b] is technically not any more labelled by a discretization as such, but by
equivalence classes of discretizations. Here two discretizations are equivalent if they can be refined
to the same discretization. Thus, the information that is left over could just carry topological
information (for gravitational theories where metric variables are dynamical) of the boundary.

In our case we assumed spherical topology, thus a cylindrical consistent family of amplitude
maps defines a continuum amplitude A. This amplitude A replaces the basic amplitude for, say
the boundary of a simplex, one starts with in the regularization of the path integral. We can recover
a ‘perfect’ amplitude, by evaluating A on states that are equivalent to states defined on a simplex
boundary under the chosen embedding map.

The cylindrically consistency requirement for the amplitude maps is a very strong requirement – it
basically encodes the solution of the theory. We can hope to build such amplitude maps iteratively,
for more and more refined boundaries, as will be the subject of the next section. To this end
it is important to choose embedding maps that are adapted to the dynamics of the system [F9].
In particular we suggested that refining time evolution should give good embedding maps. A
priori these will typically fail to satisfy the consistency requirement (7.3.2). However the improved
amplitude maps Ab also allow to define an improved discretization of the path integral and thus
to define a (refining) time evolution, that will satisfy the consistency requirement to a better
approximations14. In an iterative process one therefore improves both the amplitude maps and the

14The consistency equations can be tested if one considers the equations on matrix elements 〈ψb′′ |ιbb′′(ψb)〉
!
=

〈ψb′′ |ιb′b′′ ◦ ιbb′(ψb)〉. Under an iterative improvement the equations will be satisfied for a larger and larger
class of states involving finer and finer boundaries.
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embeddings, if these are defined by refining time evolution.
The reason why such embeddings are particularly apt to define cylindrically consistent amplitudes

is in the definition of the amplitudes in (7.4.1). If ιbb′ = Kbb′ we will have

Ab′(ιbb′ψb) = 〈ψ∅|(K∅b′)†|Kbb′ψb〉 ∼ 〈ψ∅|(K∅b)†|ψb〉 = Ab(ψb) . (7.4.3)

Here we wrote ∼ in the second equation as (K∅b′)
† ◦Kbb′ ∼ (K∅b)

† holds only approximately in the
discretization. However we see that embedding maps defined via refining time evolution simplify
the task of constructing cylindrically consistent amplitudes. Indeed the consistency condition for
these embedding maps are tied to the cylindrical consistency of the amplitudes.

We want to remark that we do not require a consistent gluing between the cylindrically consistent
amplitude maps as long as this gluing is performed on a discrete boundary b. (That is the gluing
involves integration only over the variables Xb.) One could for instance require that the amplitude
for a region with a more complicated boundary Ab3 arises as the gluing between two amplitudes
with less refined boundaries Ab1 and Ab2 , similar to the way one would glue simplices together. We
expect that such a relation might indeed hold, however only if one preforms a continuum limit for
the piece of boundary that is glued over.

Let us emphasize that the amplitude maps A[b] are the end point of a construction to reach the
continuum limit of the theory. Of course one hopes that the ‘initial’ theory defined via basic building
blocks and local couplings, provide the basis for the construction of such a theory. This implies
that this ‘initial’ theory can nevertheless be used to extract sufficiently coarse grained observables
from sufficiently refined discretizations.

As mentioned we aim at constructing both, cylindrically consistent amplitudes and consistent
embedding maps given by refining time evolution. In the next section 7.5 we will explain that
tensor network coarse graining tools provide methods to construct these.

7.5 Tensor network coarse graining: time evolution in radial
direction

Tensor network renormalization group methods [F7,F8,F124–F127] can be understood to implement
an iterative method to construct cylindrically consistent amplitudes. Coming back to equation
(7.4.3)

Ab′(ιbb′ψb) = 〈ψ∅|(K∅b′)†|Kbb′ψb〉 ∼ 〈ψ∅|(K∅b)†|ψb〉 = Ab(ψb) . (7.5.1)

we can understand the second term to consist of two parts: the first is the computation of
〈ψ∅|(K∅b′)†, that is the basically the amplitude functional Ab′ for a more refined boundary. One
would build such an amplitude functional from gluing amplitudes Ab for less refined boundaries b.

However we want to define an iterative process that improves the amplitude maps Ab, which are
functionals on Hb. We thus have to find a way to pull back the amplitudes Ab′ to Hb, which is
done by using the embedding map ιbb′ = Kbb′ . Thus one defines the improved amplitudes Aimpb as

Aimpb (ψb) = 〈ψ∅|(K∅b′)†|Kbb′ψb〉 . (7.5.2)

Here both (K∅b′)
† and Kbb′ are built from using the initial Ab as basic amplitudes.

The process is repeated for the improved amplitudes Aimpb until the procedure converges to a

fixed point Afixb . This fixed point amplitude can be used to proceed to a more refined pair of

boundaries (b′, b′′) with b ≺ b′′ to find the next fixed point amplitude Afixb′ and so on.
There are many tensor network renormalization algorithms [F7, F8, F124–F127], which differ in

their geometric setup and the details of how to define (K∅b′)
† and the embedding ιbb′ . We will

shortly explain a method that can be interpreted as radial evolution, as this also matches nicely
with amplitudes being defined via the no–boundary wave function, as in (7.4.1).
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Figure 7.6: Illustration of radial time evolution in tensor networks: By adding eight additional
tensors (in gray) we perform one time evolution step. The boundary data grows expo-
nentially from χ4 to χ48.

The name tensor networks refers to the fact that the amplitudes of a space time region are
encoded in tensor of a given rank n, associated to an n–valent vertex, which we can imagine to sit
inside this space time region. The indices of this tensor encode the boundary data of the space time
region, hence contracting tensors of two neighbouring regions corresponds to gluing the associated
amplitudes. The rank n and the bond dimension χ (equal to the number of values the index can
take) determines the amount of boundary data and hence the fineness of the boundary in question.
Note that one can redefine higher rank tensors to tensors of lower rank by summarizing for instance
two indices (i, j) with χi, χj into effective indices I = (i, j) with bond dimension χI = χi · χj .

This interpretation matches nicely with spin nets [F128] and spin foams describing gravitational
dynamics. The former can be naturally understood as tensor networks [F2, F3, F129, F130]. A
tensor network description of spin foams can be found in [F2,F3].

7.5.1 Radial evolution

As we will see tensor network algorithms are related to transfer matrix methods in which the (Wick
rotated) time evolution operator is diagonalized. For the latter, Wick rotation is essential, as the
the eigenvalues of the transfer operator need to be ordered in size; in this way we can distinguish
relevant from irrelevant degrees of freedom. However one can understand tensor networks to replace
the time evolution operator with a radial evolution operator. Even if the (standard) time evolution
operator might be unitary, and hence all eigenvalues with absolute value equal to one, the radial
evolution operator will include a projective part, that – as we have argued will project out finer
degrees of freedom. This can then be used for the construction of an embedding map.

An evolution in radial direction is also expected to project onto the vacuum state [F7,F105], see
also the discussion in section 7.3.2 which involves the non–Wick rotated amplitudes.15

Consider a radial evolution as in figure 7.6. Here the amplitude / tensor for a larger region is built
from the amplitude/ tensor of a basic building block, represented by a (dual) vertex. One would
now like to treat the amplitude for the new region as an effective tensor and repeat the procedure.
However one has to face the problem, that the number of boundary data, grows exponentially
during this procedure, making it impossible to implement in practise.

We thus have to find a method to project back the amplitudes to a boundary with less data,
i.e. to coarser boundaries. The radial time evolution can be split into steps with time evolution
operators

T (R1, R2) = exp(−
∫ R2

R1

Hrdr) . (7.5.3)

This is a refining time evolution in the sense that the Hilbert space H2 at R2 will have more

15For a (Wick rotated) time evolution operator exp(−
∫ R

0
Hrdr) acts as a projector on the ground states of the

Hamiltonian H for R going to infinity. Here Hr denotes the Hamiltonian for radial evolution at the radius r.
For large radius, we will have small dr/r, and hence Hr approaches the Hamiltonian H for the time evolution of
constant volume hypersurfaces.
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Figure 7.7: Left: Two regions in a tensor network, encoded in the matrices M , are sharing two
edges with labels {α, β}, which have a total range of χ2. Right: From the singular
value decomposition we can define the map V depicted as a three–valent vertex, where
we restrict the label i of the singular values to be ≤ χ.

kinematical degrees of freedom than the Hilbert space H1 at R1. Thus T (R1, R2) will have a
projective part (even if we would not have Wick rotated), which can be identified by a singular
value decomposition. This would give a maximal number of dim(H1) singular values. Hence
T (R1, R2) will have a non–trivial co–image in H2, which can be projected out. A new amplitude
can therefore be defined on a dim(H1) subspace, which can be identified as the subspace carrying
coarse boundary data.

Such a scheme might be indeed worthwhile to investigate further (for statistical systems), in order
to obtain an intuition about the truncations. One would however expect that the reorganization
of the degrees of freedom via the singular value decomposition will be highly non–local, as we have
seen for the example in section 7.2.1. The time evolution considered there exactly corresponds to
T (R1, R2). This non–locality makes it however difficult to turn this into an iterative procedure.
The new amplitudes will be expressed with respect to data spread over the entire boundary, which
makes a local gluing of these amplitudes difficult.

7.5.2 Truncations via singular value decomposition

In practice one therefore employs schemes which involve more local truncations. The basic idea is
as follows. Imagine two space time regions or effective vertices connected with each other by two
edges, representing the summation over a certain set of variables, see figure 7.7. We would like to
replace these edges carrying an index pair {α, β} of size χ2 with an effective edge carrying only
a number χ of indices. We choose an optimal truncation for the summation over the index pair
{α, β}, which is given by the singular value decomposition of MAαβ:

MAαβ =

χ2∑
i=1

UAiλiVi αβ (7.5.4)

where λ1 ≥ λ2 ≥ . . . ≥ λχ2 ≥ 0 are positive, and U, V are unitary matrices. The truncation consists
then in dropping the smaller set of singular values λi with i > χ. Pictorially Viαβ restricted to
i ≤ χ defines a three–valent vertex and we can use these three–valent vertices as in figure 7.7 to
arrive at a coarse grained region with less boundary data.

7.5.3 Embedding maps and truncations

We can understand the tensors V as coarse graining maps. Alternatively, if read in the other
direction, these maps provide the embeddings ιbb′ from a coarser to a finer discretization. This
interpretation comes from seeing the partition function (with boundary) as a functional (or am-
plitude map) Ab on a ‘boundary’ Hilbert space Hb. Gluing several space time regions together we
obtain a partition functional A′b′ which a priori acts on a Hilbert space Hb′ with finer boundary,
see figure 7.8. We can however pull back this functional with the embedding map defined via the
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7.5 Tensor network coarse graining: time evolution in radial direction

tensors V and in this way obtain an effective amplitude map A′b:

A′b(ψb) := A′b′(ιbb′(ψb)) . (7.5.5)

This gives a renormalization flow for the amplitude maps, and a fixed point is reached if A′b = Ab.

A′b′ ψb′ A′b ψb

Figure 7.8: To obtain an effective amplitude map A′b on the coarser boundary b one can pull back
the amplitude A′b′ from the finer boundary b′ via the previously defined embedding
maps.

We see that it is essential to construct three–valent vertices (with its associated tensors), which
we can see as special cases of coarse graining or refining maps. These three–valent vertices should
be adapted to the four–valent ones giving the ‘regular’ dynamics. They can be understood to give
a coarse graining or refining version of the regular evolution defined by the four–valent vertices.
Note that this adaptation has to happen after each of the coarse graining steps, as the four–valent
tensors flow under coarse graining.

The singular value decomposition (or generalizations as in [F125–F127]) provides one method to
construct such three–valent tensors. Interestingly, geometric theories such as, spin foams [F14] or
spin nets [F2, F3, F128] provide already descriptions for vertices of arbitrary valence [F131–F133].
Thus one can imagine a lattice of say four–valent and three–valent vertices, which automatically
implements the coarse graining procedure. However, if one believes that these vertices provide good
truncations, in the sense of approximating the summation over an index pair well by a summation
over just one index, one needs to adapt the three–valent vertices to the dynamics encoded in the
four–valent vertices. That is the embedding maps have to flow together with the effective amplitude
maps. Such a relation is provided by the singular value decomposition in (7.5.4). Alternatively,
spin foam construction tools [F130–F133] provide methods of how to build vertices of arbitrary
valency out of a given vertex. This construction has also to be performed at every step of the
coarse graining. It will be interesting to see, whether such a method gives a good truncation. The
advantage of such a method is that it might be far easier to implement for spin foams, than the
singular value decomposition, and might lead to a closed flow equation.

7.5.4 Embedding maps for the fixed points

Ultimately one would expect that the relation between vertices of different valencies is just given
by gluing, i.e. a four–valent vertex is given as a gluing of two three–valent vertices. Indeed this
relation can be obtained from the singular value decomposition (7.5.4) in case that (a) all non–
vanishing singular values are equal to one and (b) if one is working in a truncation, the number
of non–vanishing singular values needs to be smaller than χ. These conditions are satisfied at the
stable fixed points of the renormalization flow (describing the phases of a given system), see for
instance [F129].

Condition (a) is expected to arise in theories with diffeomorphism symmetry – where time evo-
lution is a projector. (Again the problem is that diffeomorphism symmetry is broken under dis-
cretization, so the projector property does not hold exactly and might be rather expected to emerge
after sufficient coarse graining. For a computation of the transfer matrix in spin foam theories and
a discussion whether these are projectors, see [F128,F134,F135].)
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7 Time evolution as refining, coarse graining and entangling

Condition (b), in case that one is working with a cut–off, basically imposes a topological theory
for fixed points that are triangulation invariant16. For instance fixed points identified in [F2, F3,
F129, F130] via a tensor network coarse graining describe triangulation invariant and therefore
topological models and χ gives the maximal number of propagating degrees of freedom. Indeed we
will see in section 7.6 that all the proposals outlined here are explicitly realized. For an interacting
theory, such as 4D gravity, one would expect to need an infinite bond dimension χ, as indeed
arises around phase transitions. With a fixed χ one can however approach the phase transition
up to a certain precision, and, as the method is designed to keep the variables describing coarse
excitations, one can hope to obtain reliable predictions for sufficiently coarse observables. In light
of the previous discussion this means to obtain amplitude functionals, which satisfy the cylindrical
consistency conditions sufficiently well for coarse boundaries.

7.6 Topological theories

The previously introduced and discussed concepts of time evolution via coarse graining / refining
and the concept of cylindrically consistent amplitudes are perfectly realized in topological field
theories. In the following we would like to emphasize a few key points. In the first part of this
section, we will mainly refer to topological lattice field theories in 2D, for instance [F136]. For
theories with a geometric interpretation, see for instance [F115,F130].

Consider a 2D lattice topological field theory with partition functions defined on three–valent
graphs. As for a three–valent tensor network we have weights or tensors associated to the vertices
and variables and hence Hilbert spaces associated to the edges. The partition function is then
defined by summing the variables associated to bulk edges. In case of a boundary, we keep the
corresponding variables fixed, thus obtaining a partition function depending on these boundary val-
ues. Alternatively we can understand the partition function as an operator (between two boundary
Hilbert spaces) or a function (on one boundary Hilbert space).

In this vain a three–valent graph

(7.6.1)

represents the simplest graph and the associated partition function, interpolating between a two–
site boundary Hilbert space on the lower boundary and a one–site boundary Hilbert space on the
upper boundary. In this case we can understand this partition function as a (coarse graining) time
evolution map, not involving any bulk summation. The same holds for the time inverted vertex.

Topological lattice theories are triangulation invariant (referring to the triangulation dual to the
graph). Thus the partition function does only depend on the topology of the manifold and not on
the choice of the triangulation. (We will later show that this also holds in a certain sense for the
boundary triangulation, due to the cylindrical consistency of the partition function.) Pictorially
this corresponds to the following equalities

= c , = c , = . (7.6.2)

Here we assume always a summation over the variables or indices associated to the bulk edges.
The equations have to hold for all possible choices of the boundary variables. In this section we
will assume that the constant c is actually finite and hence can be adjusted to c = 1 by a rescaling
of the amplitudes.

16Rank three tensors can be found from a (singular value) decomposition of the rank four ones. These tensors are
associated to three–valent vertices dual to triangles, we can therefore consider models on irregular triangulations.
The fixed point condition for coarse graining on a regular lattice are then weaker than requiring triangulation
invariance.
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Given the 2− 2 move invariance, we can replace the 3− 1 move by the so–called bubble move

j

j

= c j . (7.6.3)

The equivalence of bubble and 3−1 move (given the 2−2 move holds) follows from the following
calculation

= = c . (7.6.4)

7.6.1 Time evolution as coarse graining and refining

Using this pictorial representation we can symbolize a local time evolution operator or transfer
matrix acting on a two site boundary Hilbert space as follows:

T = =
∑
i

λi

∣∣∣ι(i)〉〈ι(i)∣∣∣ . (7.6.5)

Time is flowing upward. From the bubble move we see that the time evolution operator is actually
a projector:

T 2 = =
∑
i,j

λiλj

〈
ι(i)
∣∣∣ι(j)〉︸ ︷︷ ︸

=δi,j

∣∣∣ι(i)〉〈ι(j)∣∣∣ =
∑
i

λ2
i

∣∣∣ι(i)〉〈ι(i)∣∣∣ = = T . (7.6.6)

Hence the eigenvalues are λi = 1 ∨ λi = 0. The construction of dynamical embedding maps via
a singular value decomposition is trivial and it is straightforward to split the projector into two
maps, one that can be interpreted as a coarse graining, the other in terms of a refining:

C := , R := . (7.6.7)

Each of these maps can be interpreted as maps between Hilbert spaces of different dimension.
Concatenating the two gives either the time evolution operator back or is just the identity: This
tells us both that the refined state does not carry additional information and that no (physical)
information is lost under coarse graining. We will extend this to arbitrarily large triangulations
below.

The time evolution operator acts locally, such that it is possible to only locally evolve a state in
time, e.g.:

. (7.6.8)

However in which order one time evolves pairs of lattice sites is an arbitrary choice, one which
should not influence the results of the theory such as the partition function. Therefore we impose
the following consistency condition, which is satisfied in topological field theories and allows us to
define the transfer matrix for three discretization sites uniquely:

= = . (7.6.9)

229



7 Time evolution as refining, coarse graining and entangling

This construction can be generalised to arbitrarily many discretization sites. In all cases we can
replace the time evolution map with a graph of the form on the right hand side of equation (7.6.9).
Thus the maximal rank of this time evolution map (which is a projector) is given by the bond
dimension of the kink in the middle, i.e. the bond dimension of one edge. This gives also the
maximal number of physical degrees of freedom.

7.6.2 Consistent embedding maps and inductive limit

Furthermore if one cuts this diagram into two pieces at the kink, one obtains both more general
coarse graining and refining maps. Hence the consistency conditions naturally translate to both
the coarse graining and refining maps, as we demonstrate for the refinement map R:

= = . (7.6.10)

Thus these refinement maps satisfy the path independence conditions as outlined in section 7.3.3,
and therefore allow the construction of an inductive limit of Hilbert spaces as described in section
7.3.1. This gives the continuum limit of this theory. Furthermore, understanding the partition
function Ab (with boundary b) as a functional on the boundary Hilbert space

Ab : Hb → C , (7.6.11)

we also obtain that the partition function is a cylindrically consistent operator [F115]:

Ab′(ιbb′(ψb)) = Ab(ψb) (7.6.12)

(which coincides with the fixed point condition (7.5.5)). Here ιbb′ is built from the refinement
maps R, in the way described above. Given a boundary b we choose a triangulation (or dual
three–valent graph) interpolating this boundary. As long as we choose a fixed topology for this
interpolating triangulation, the partition function will not depend on this choice and hence is a
well defined functional on the boundary Hilbert space. Additionally we can refine the boundary
via a refinement move. An interpolating triangulation can be obtained by just including a coarse
graining move at the appropriate dual edge. This will give a ‘bubble’ that can be removed due to
the bubble move invariance, and we arrive at the previous partition function acting on the unrefined
Hilbert space.

Hence the partition function (actually a family of functionals labelled by the boundaries b) is
cylindrically consistent with respect to the embeddings provided by the refining time evolution.
That automatically allows to define from the (so far) discrete partition functions a continuum limit
on the projective limit Hilbert space. This is to our knowledge a new insight, as topological theories
are often only discussed with regard to the invariance of the bulk triangulation.

The refinement maps can also be used to construct the Hartle Hawking vacuum states mentioned
in section 7.2. To this end one has either to dualize one edge (graphically a bent or cup). Alterna-
tively in examples where the edges are labelled by (SU(2)) spins, we start with a refining map for
which we fix on the incoming edge j = 0, which gives the Hilbert space C associated to this edge.
The (two–site) Hilbert space can then be refined further in an arbitrary way, giving the Hartle
Hawking vacuum state on boundaries with different numbers of sites.

Doing this in a linear way, i.e. as for the graph on the right in equation (7.6.10) gives matrix
product states (MPS) [F137,F138]. MPS provide ansätze for ground state wave functions of Hamil-
tonians. The projectors T defined above correspond to exponentiated Hamiltonians and the type
of MPS defined in (7.6.10) is the ground state to the following Hamiltonian:

H =
N−1∑
I=1

(
I−

I

)
, (7.6.13)
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where I denotes the index pair the projector is acting on for a total of N outgoing legs. Thus Hartle
Hawking vacuum states appear here as the ground states of the Hamiltonians (7.6.13), justifying
again the notion of these states as vacuum states.

7.6.3 3D topological theories and entangling moves

Similar statements hold for higher dimensional theories, for instance BF theories. There are
however interesting differences pertaining to the role of Pachner moves in discrete topological
theories based on triangulations, such as the Turaev–Viro models [F139]. The physical states of
these models can be described as string net states [F140].

For a canonical time evolution in (2+1)D we will have 3 − 1, 1 − 3 and 2 − 2 moves as time
evolution moves as described in section 7.2. These allow to build an arbitrary complex triangulated
hypersurface from a simple one. In this way one can build up an analogous MPS representation
of a string net state on arbitrary complex 2D triangulations or on the corresponding dual graphs.
The 3 − 1 and 1 − 3 moves serve as (purely) coarse graining or refining moves, whereas the 2 − 2
moves (dis–)entangle the degrees of freedom. The latter play an important role in entanglement
renormalization [F40,F63].

Interestingly MPS states in one (spatial) dimensions do not lead to long range entanglement
[F141, F142], whereas the example just described gives a phase with long range entanglement in
two (spatial) dimensions [F63]. This might be due to the necessity of the 2 − 2 move to obtain
triangulations not equivalent to a stacked sphere (which would not support long range entangle-
ment). In the case of the stacked sphere the consecutive 1− 3 moves can be represented by a tree
graph. In (1+1)D all triangulations of a circle can be obtained as ‘stacked spheres’, which are dual
to trees.

In (3 + 1)D we have similarly 1 − 4 and 4 − 1 moves as refining and coarse graining moves
respectively. As mentioned before the 4 − 1 move does not add physical degrees of freedom, as
all additional degrees of freedom are associated to Hamiltonian and diffeomorphism constraints
[F10,F25,F26]. Additionally we have 2−3 and 3−2 moves, which can be interpreted as entangling
moves, similarly to the 2− 2 move in (2 + 1)D.

7.6.4 Constructing inductive limit Hilbert spaces for non–topological theories

We discussed that the embedding maps provided by the refining time evolution of topological
theories satisfy the consistency conditions (7.3.2). Thus one can use these embeddings to construct
an inductive limit Hilbert space as outlined in section 7.3.1.

Note that this Hilbert space will support a much bigger class of observables than just the Dirac,
i.e. topological observables of the topological theory. The set of observables supported by this
Hilbert space is determined by the cylindrical consistency conditions (7.3.13) for observables. The
cylindrical consistent observables then describe excitations from the vacuum state, which is given
by the no–boundary wave function of the topological theory. Thus the excitations in particular
violate the constraints (implementing the equations of motion) of the topological theory.

This is a general proposal for the construction of inductive Hilbert spaces. It will be interesting
to explore more in detail the relation between the set of cylindrical observables which characterize
the inductive Hilbert space and the topological theory which provides the embedding maps.

This strategy to construct an inductive limit Hilbert space has been realized recently [F38] for
the topological BF theory, which describes the moduli space of flat connections. In this case
the excitations are parametrized by curvature observables. The set of cylindrically consistent
observables is given by a holonomy–flux algebra underlying the formulation of loop quantum gravity
and (lattice) gauge theories. This method therefore resulted in an alternative representation and a
new vacuum for loop quantum gravity.
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7 Time evolution as refining, coarse graining and entangling

7.7 Geometric interpretation of the refining maps

Here we wish to point out that geometric theories are very special with regards to coarse graining
and refining.17 This is due to the fact that the geometry itself is included into the set of dynamical
variables. The (say semi–classical) state on the boundary of a region determines a geometry for
the bulk, defined as solution of the Einstein equations for the given boundary data the state is
peaked on. (This of course assumes that one has a sensible theory of quantum gravity, which would
result in a semi–classical state for the Hartle Hawking state.) Thus setting (geometric) scale and
number of coarse graining steps as equal is, at least a priori, senseless in such theories. Rather, a
renormalization scale is given by the coarseness or fineness of the boundary data, that is, the scale
on which geometric properties, such as curvature, vary.

Even if one peaks the boundary state on a given geometry with a fixed (hypersurface) volume
one cannot expect to find that the partition functions peaks on some regular bulk geometry such
that the bulk volumes are bounded by the hypersurface volume.

The reason is that one expects diffeomorphism symmetry to emerge in the form of vertex transla-
tion invariance. This symmetry even allows to move the vertices such that orientations of building
blocks are inverted. This corresponds to ‘spikes’ in the geometry, see for instance [F51, F144].
These spikes give rise to divergences [F23,F50–F52], related to the non–compactness of the diffeo-
morphism gauge orbits. As we will argue below this mechanism allows the appearance of arbitrarily
large spins even in a region bounded by a small boundary geometry. This might make even a the-
ory describing flat geometry, such as 3D BF , appear as highly fluctuating. However (almost) all
these fluctuations are gauge fluctuations [F50], due to the diffeomorphism gauge symmetry. We
will illustrate this with a 2D example below.

The relation between the sum of orientations and divergences has been pointed out in [F144]
which also argues that allowing only one orientation could cure the problem of divergences. How-
ever, we will show here, that from the perspective of time evolution as a refining and coarse graining
map, the appearance of two orientations is very natural. (It is also natural as the gravitational
constraints are quadratic in the momenta describing time symmetric evolution. The two solutions
of the quadratic equation correspond to the two orientations.)

7.7.1 2D example

Let us illustrate this with the intertwiner models introduced in [F115]. These host families of
topological theories, which have all the properties discussed in section 7.6. Moreover the theories
allow for a natural geometric interpretation, as they are defined on three–valent graphs. The edges
carry a spin j (SU(2) representation) and a magnetic quantum number. The spin can be interpreted
as a length variable – indeed at the three–valent vertices triangle inequalities have to be satisfied
arising from SU(2) recoupling theory.

Consider one upward pointing line as in the examples before: This line can be interpreted as a
line in a (2D) space with a length given by the spin j. Using our previously defined refining maps
R, we can map it to a different state, which is now labelled by two spins j′ and j′′:

j →
∑
j

j

j′ j′′

(7.7.1)

→ , (7.7.2)

17See also the discussion in [F143], which argues that in reparametrization invariant theories all couplings are dimen-
sionless.
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where the spins j′ and j′′ have to satisfy triangle inequalities. However this picture is indistinguish-
able from adding a triangle with opposite orientation and hence ‘removing’ it:

j →
j′ j′′

. (7.7.3)

Thus for a quantum theory this means that both possible orientations have to be taken into account
in a superposition:

∼ ⊕ . (7.7.4)

This picture conforms with refining the edge and adding a vacuum degree of freedom (this degree
of freedom is not physical, as we are considering a topological theory here): This vacuum degree
of freedom allows fluctuations of the edge geometry around a flat subdivision – in the sense that
the refined edge can bend upwards or downwards. Any asymmetry would appear as proper time
evolution, which we do not expect for a topological or gravitational theory. In this case time
evolution is generated by constraints and hence gauge – and as explained before realized as a
projector in the quantum theory.

Note that the fluctuation can be arbitrarily large, as argued below. In this case this can be linked
to diffeomorphism symmetry realized by a vertex translation symmetry. The middle vertex can be
translated an arbitrary large distance forward or backward (or sideways) in ‘time’. Moreover, as
this is a gauge symmetry, all such configurations have to be gauge equivalent, i.e. come with the
same amplitude (and a diffeomorphism invariant measure18).

7.7.2 Spin foams

A similar picture applies to spin foams, where gluing a simplex to a boundary can be done with
two orientations. From the semi–classical expressions for the simplex amplitude we again obtain a
geometric picture: i.e. with a 1− 4 move (from gluing a 4–simplex to one boundary tetrahedron)
we replace a boundary tetrahedron with a complex of four tetrahedra, that now allows the inner
geometry of the original tetrahedra to fluctuate around a flat subdivision. Note that also in this
case one did actually not add a physical degree of freedom, at least not if one deals with Regge
geometries [F10,F53,F64]. The reason is that the new kinematical degrees of freedom (the four new
edge lengths) are accompanied by four (Hamiltonian and diffeomorphism) constraints, associated to
the new vertex. These allow to move the additional vertex arbitrarily forward or backward in time,
explaining the appearance of the two orientations. As before the diffeomorphism or vertex transla-
tion symmetry also means that configurations with arbitrarily large length of the four inner edges
have equal amplitude to those describing a ’flat’ subdivision, thus one would expect divergences
to appear for every inner vertex, for a discussion in spin foams see [F23, F50–F52, F145]. Thus
one should be very careful with treating the spin j variable, which encode the length or area vari-
ables in 3D or 4D respectively, as an order parameter. (Indeed one should consider diffeomorphism
invariant observables as order parameters, which are however hard to come by [F31–F34].)

We can provide here an interpretation of the divergences as coming from (extremely) squeezed
states: As mentioned we add only degrees of freedom in the vacuum state (including gauge degrees
of freedom), in the case of 4− 1 moves these have to satisfy the Hamiltonian and diffeomorphism
constraints. Thus, fluctuations in the ‘constraint’ directions are completely suppressed, whereas
fluctuations in the conjugated (i.e. gauge) directions become infinitely large, represented as a non–
compact gauge orbit of configurations with equal weight.

18This actually allows to determine the path integral measure, see [F120].
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7.8 Discussion

We pointed out that gravitational theories in a simplicial description, provide with their time
evolution maps automatically refining, coarse graining and entangling maps. More generally we
interpret the degrees of freedom added during refining time evolution moves as degrees of freedom in
the vacuum state (or gauge degrees of freedom). This suggests the construction of a global vacuum
state as a state evolved from a one–dimensional Hilbert space C, see also [F10,F102,F103], which
gives a simplicial realization of the no–boundary proposal [F86]. Indeed via the notion of dynamical
cylindrical consistency [F9], we can identify the vacuum states as representing the equivalence class
which includes the unique state in the ‘no–boundary’ Hilbert space C on different discretizations.

We argued that the time evolution maps provide embedding maps for the construction of the
continuum limit via projective techniques. In section 7.4 we outlined how to define and arrive at
a consistent continuum dynamics for quantum gravity. This is based on the dynamical embedding
maps and proposes to construct the amplitude maps as cylindrically consistent maps based on these
embeddings. This allows to define the amplitude maps as objects of the continuum theory on the
continuum Hilbert space.

Such (dynamical) embedding maps have however to satisfy stringent path independence con-
ditions, which we related to the path independence under different choices of interpolating hy-
persurfaces [F109, F110] and an anomaly free representation of the Dirac algebra of constraints
[F45–F47, F113]. These conditions are indeed hard to satisfy exactly for interacting theories but
should be valid in some approximate sense if considering sufficiently coarse grained observables.

We explained that tensor network renormalization algorithms provide a method to construct
dynamical embedding maps that do satisfy the consistency conditions to a better approximation
and the related (approximately) cylindrically consistent amplitudes. An important ingredient in
these algorithms are truncations. Good truncations are basically good reorganizations of the degrees
of freedom into coarser ones and finer ones. We argued that such a splitting can be found by
employing radial, that is refining, evolution.

In topological theories the refining time evolution maps typically satisfy the path independence
conditions. This allows the construction of projective limit Hilbert spaces using refining time evolu-
tion as embedding maps. This will realize the physical state of the topological theory (satisfying the
constraints of the topological theory) as a vacuum in this projective limit Hilbert space. This vac-
uum coincides with the no–boundary wave functions. Excitations can be produced by cylindrically
consistent observables. An example of this construction has been recently provided in [F38].

For non–topological theories, such as 4D gravity, we suggest that an exact satisfaction of the
path independence conditions for the embedding maps would rather involve non–local dynamics,
as is indicated by the discussion in section 7.2.3. The construction of the continuum limit in
section 7.4 allows for such non–local embeddings. The necessity of a non–local dynamics has been
recently argued for in [F121], which points out that linearized 4D quantum Regge calculus requires
a non–local path integral measure in order to show invariance under 5− 1 moves.

From a statistical physics point of view one would expect that a second order phase transition
is needed for the continuum limit, leading to long range (in terms of number of lattice cites)
correlations and a conformal theory at the boundary. Indeed in the context of tensor network
algorithms and radial evolution the appearance of a conformal theory at the fixed point leads to an
interpretation in terms of AdS geometries and holographic renormalization, for instance [F41–F43].
For the case of non–perturbative gravity such an interpretation might not apply straightforwardly.
Here one would expect that the boundary variables or the quantum state defined on the boundary
encodes the geometry of the boundary and – via the equations of motion – of the bulk.

There are still many puzzling features to explore in the context of discretization changing time
evolution. This in particular applies to interacting theories, such as 4D gravity. As we outlined here
such discretization changing evolution might however provide a definition of the physical vacuum
and more generally allow the construction of the continuum limit of the theory. This makes the
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7.8 Discussion

explorations of these issues very worthwhile.

Acknowledgements
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8 Discussion

The overarching question of this thesis concerns the intricate relation between discrete models of
quantum gravity and the classical continuum theory of general relativity, which we explore at very
different levels of the discretisations. Some presented results only deal with one building block, while
in others we develop and apply tools to study the collective behaviour of literally infinitely many
building blocks and discuss how to consistently construct a continuum theory from the discrete one.
At first sight, these results appear to be partially disconnected or isolated. Therefore, the purpose
of this discussion is not only to discuss their significance with respect to the overarching questions
and how they fit into the already existing knowledge in quantum gravity, but to link them together
to form a consistent line of argument. As a guiding principle we will order the discussion of the
results by the number of involved fundamental building blocks, starting only from a few moving
towards the limit of infinite refinement. Furthermore this ordering is (partially) chronological with
respect to insights derived in quantum gravity, such that we can regard the results at few building
blocks as a guidance how to explore the dynamics of many building blocks.

8.1 Microscopic building blocks: asymptotic expansion and the
measure factor

In this spirit one may ask what one can learn about discrete quantum gravity models, when one
considers only one fundamental building block, e.g. one simplex. In spin foam models [21, 22]
this corresponds to a single vertex amplitude, the amplitude dual to the simplex, for which one is
interested in its relation to other discrete (classical) models of gravity like Regge calculus [17, 18].
A very popular tool to extract geometric information from the vertex amplitude is by considering
asymptotic expansions by uniformly scaling up the geometric data, frequently SU(2) spins, to
macroscopic sizes and identifying the dominant contribution in terms of an effective action. The
scaling of the spins can also be understood as the limit ~ → 0, such that asymptotic limits are
frequently called semi–classical.

The prototype of this idea is the Ponzano–Regge model [23,80], a spin foam model of 3D quantum
gravity, which has the SU(2) 6j symbol as its vertex amplitude. The famous formula by Ponzano and
Regge [23], which has been derived since then by a plethora of other methods [27, 91–96, 99, 100],
shows that the 6j symbol is proportional to the (cosine of the) discrete Regge gravity action
associated to a tetrahedron constructed from SU(2) spins.

Similar results [24–27] also exist for the modern 4D spin foam models [73–75], of which many are
obtained via a coherent state approach [28,29]. The vertex amplitudes are usually constructed via
a specific contraction of invariants (under the action of the group) in the tensor product of vector
spaces of irreducible representations of the group [77]. In case of the 6j symbol, this accounts for a
particular contraction of four Clebsch–Gordan coefficients. One way to construct these invariants is
by group averaging a tensor product of states (living in the vector space associated to the irreducible
representation); for specific choices, namely the eponymous coherent states [90], this leads to non–
trivial invariants. Furthermore, the coherent states are peaked on classical geometric notions, e.g.
for SU(2) they are labelled by a vector ~n ∈ S2.

In the asymptotic expansion of the vertex amplitude one scales up the representation labels
associated to the simplex and evaluates the amplitude on the points of stationary phase of the
group integrations. Due to the geometric data carried by the coherent states, the stationary point
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8 Discussion

conditions allow for a clear geometric interpretation, e.g. in 3D, the three vectors labelling a 3–
valent invariant, which is unique in SU(2) up to normalisation, form a (coherent) triangle [81] if the
vectors sum to zero, i.e.

∑
i ji~ni = 0. This is also known as the closure constraint of the triangle.

Then these vectors are interpreted as the edge vectors of the triangle. This geometric interpretation
makes it straight–forward to identify the dominating phase as the Regge action associated to the
simplex, yet again as for the 6j symbol, the amplitude oscillates with the cosine of the Regge action.

Despite these successes and positive indications underlining the relation of spin foam models to
discrete gravity, it is generically not possible to derive the entire leading order contribution of the
asymptotic expansion using the coherent state approach. This missing part, sometimes referred to
as the ‘measure’, which one obtains from the determinant of the Hessian matrix, should not be
underrated: Essentially it gives us a very first glance at the measure on the space of geometries
chosen in spin foam models. Furthermore, it is the most directly accessible, yet naive, quantum
correction. The inability to compute these measure factors, besides numerical results [26,96], even
for the well–known SU(2) 6j symbol, is rather troubling for the coherent state approach, but can
be overcome by introducing modified coherent states.

8.1.1 Modified coherent states and the relation to first order Regge calculus

To solve the issue illustrated above for the SU(2) 6j symbol, we introduce new ‘smeared’ coherent
states in [30], see also chapter 2. We would like to emphasize that the purpose of this work is not
to invent yet another method to derive the Ponzano–Regge formula [23], which is known for over
40 years, but to test the idea of new coherent states in the context of a well–examined example.

These new coherent states can be understood as follows: Normally, the familiar SU(2) coherent
states are eigenstates of highest weight of a generator of rotations. Thus, this state is labelled by a
vector ~n ∈ S2, which labels the axis of rotation. Generically these states are only defined up to a
phase, an issue which is not entirely understood in spin foam asymptotics and usually circumvented
by choosing a canonical choice of phase [139]. For our smeared coherent states, we circumvent this
issue by picking a coherent state orthogonal to the considered generator of rotations and smearing
it over the circle of vectors on S2 orthogonal to the respective generator, expressed as an integration
over the smearing angle φ. In short, we construct a null eigenvector, with respect to the considered
generator of rotations, defined for all representations of SU(2).

The immediate advantage, which eventually allows us to compute the complete expansion (up
to leading order) of the 6j symbol, is that we can split the stationary phase approximation into
two steps, one with respect to the group elements and one with respect to the (artificially) added
smearing angles. However, this modification comes with a caveat: due to the smearing, one gener-
ically obtains many more points of stationary phase, whose geometric interpretation is less clear
and have to be suppressed. Thus, it is a priori not clear whether the new coherent states actually
allow for the same geometric interpretation as the familiar ones.

To clarify these two points, we first introduce modifiers for each 3–valent invariant that suppress
additional stationary points. Furthermore we carefully examine the stationary phase conditions,
the symmetry properties of their solutions and their geometric interpretation, which fortunately
coincides with the standard coherent state construction, see e.g. [96]. This property is actually
deeply rooted in the fact that the invariant subspace of the tensor product of three SU(2) repre-
sentations is one–dimensional. Indeed, this agreement with the familiar coherent state approach
allows us to perform the stationary phase analysis by parts, that is first with respect to the smear-
ing angles and afterwards with respect to the group elements. This computation can actually be
performed for arbitrary planar 3–valent graphs. Interestingly, after a variable transformation from
group elements to (exterior) dihedral angles, the resulting effective action for the 6j symbol turns
out to be the first order Regge action [97] associated to one tetrahedron1. This already establishes

1In first order Regge calculus, both edge lengths {l} and dihedral angles {θ} are independent variables. In order

248



8.1 Microscopic building blocks: asymptotic expansion and the measure factor

the connection to discrete gravity, which is essential to perform the remaining stationary phase
approximation with respect to the angles: The geometric interpretation inherited from Regge cal-
culus allows us to explicitly calculate the determinant of the Hessian matrix by employing several
identities of the angle Gram matrix adopted from constantly–curved simplices [98] and rederive the
well–known Ponzano–Regge formula [23].

Additionally, our formalism allows to study higher order corrections (in principle). In particular
we prove a conjecture in [99,100] on the oscillatory behaviour of higher order corrections that states
that sequent orders in the asymptotic expansion alternate between oscillating like a cosine and a
sine, e.g. the leading order, i.e. the Ponzano–Regge formula, oscillates like a cosine, while the
next–to–leading order oscillates like a sine. Moreover, we derive a recursion relation for the full 6j
symbol similar to [101,102].

For future applications of the methods developed here, the hope is that one can apply the modified
coherent state idea e.g. to the SL(2,R) 6j symbol, which corresponds to a Lorentzian version of
the Ponzano–Regge model, see also [27, 140]. In comparison to the SU(2) case, one certainly faces
the complication of a more intricate representation theory and non–trivial invariant subspaces of
the tensor product of three irreducible representations. Fortunately, the tools developed for first
order Regge calculus [97] can be readily applied to the 4D spin foam model introduced by Barrett
and Crane [73], such that we can derive the measure factor for the vertex amplitude of a modern
spin foam model for the first time.

8.1.2 Measure factor for a 4D spin foam model

Falling into the same category, the paper [31] in chapter 3 can be seen as a direct follow up of [30]:
moving away from 3D, we consider the simplest, yet non–trivial, 4D spin foam model, the Barrett–
Crane model [73]. Starting from a nice identity of its vertex amplitude, the 10j symbol, in [27]
we restrict our attention to strictly geometric contributions to the amplitude. By ‘geometric’ we
refer to two facts: first, the asymptotic expansions of most 4D spin foam models not only contain
geometric sectors, but also non–geometric ones, like a BF sector. See [141] for a discussion in
the EPRL–model [74]. Second, in the Barrett–Crane model, the tetrahedra along which two 4–
simplices are glued together have the same areas (of triangles) yet their shapes generically do not
match. Because of such issues this model is nowadays disclaimed to be a viable theory for quantum
gravity. For a recent discussion on these issues and a more positive view, see [103].

If we restrict the identity of the 10j symbol from [27] to the geometric sector, it exhibits a nice
interpretation as first order (area) Regge calculus [104–106], a theory in which areas and 4D dihedral
angles are independent variables2. Its equations of motion with respect to the areas (of triangles)
impose local flatness, i.e. the deficit angles are required to vanish, while the non–matching of
tetrahedra gives rise to metric discontinuities [105,106].

In the asymptotic expansion of the 10j symbol however, the areas of triangles are uniformly
large and fixed, and one computes the stationary phase approximation of the integration over
dihedral angles: On the points of stationary phase one obtains the action of standard area Regge
calculus, while the determinant of the Hessian can be straightforwardly computed by applying the
methods developed in [30], inspired from curved Regge calculus [98]. Remarkably, the so–found
measure factor has a nice geometric interpretation as it mostly consists of products of volumes of
(sub)simplices of the 4–simplex. The only non–explicit factor appearing is a Jacobian describing
the change of variables from areas to edge lengths. If we consider a peculiar triangulation, namely

to arrive back at ordinary length Regge calculus, in which the dihedral angles are given as functions of the edge
length, the constraint det G̃({θ}) = 0 is imposed via a Lagrange multiplier. G̃ij = cos(θij) is called the angle
Gram matrix. For exterior dihedral angles, as discussed in [30], one uses the convention G̃ii = 1.

2This theory clearly differs from ordinary length Regge calculus [17, 18, 97] in 4D, in which the areas of triangles
is given by the edge lengths, and should also not be confused with other formulations like area–angle Regge
calculus [60,142]
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two 4–simplices glued along all of their tetrahedra, giving the simplest triangulation of a 4–sphere
as a product of two identical vertex amplitudes, we can absorb the implicit Jacobian into so–called
glueing constraints, i.e. conditions that enforce the triangles of the shared tetrahedra to match in
shape, not just in areas.

8.1.3 What is the interpretation of the asymptotic expansion?

With the results derived in [30, 31], we reconfirm that the (geometric part of the) asymptotic
expansion oscillates like the cosine of the Regge action and also give a first glance at the measure
on the space of geometries. However, these encouraging results have to be taken with a grain of
salt: even if ignoring the contributions from non–geometric sectors, the physical interpretation of
the asymptotics is doubtful. A quantized simplex, blown up to a macroscopic size, asymptotically
behaves like a classical simplex, i.e. a basic building block of a triangulation endowed with a discrete
gravity action. Indeed, this is only the very first step in establishing the connection between spin
foam models and discrete gravity, a relation that has to be generalized to larger triangulations.
Unfortunately, due to the complexity of spin foam models, calculations for larger triangulations
have proven to be difficult, even Pachner moves, i.e. local changes of the triangulation, have not
yet been computed in the full models.

In recent years doubts on the viability of the large spin limit for larger triangulations have been
raised in [78]. If one scales up the boundary spins without additional assumptions on the spins
in the bulk, one obtains accidental curvature constraints in the bulk forcing the deficit angles
to vanish excluding a large class of Regge geometries3. Similar constraints have also been found
in [143]. Therefore it has been argued that the large spin limit by itself is not semi–classical and
should be performed together with a limit, in which the number of building blocks goes to infinity,
see e.g. [79]. Later on we will also argue in favour of a refinement limit, yet we do not consider spins
to be suitable order parameters, since they do not represent a diffeomorphism invariant quantity,
see also chapter 7 (or [88]). Instead we will also consider refinement (and coarse graining) of
the boundary itself, relating the states on different boundaries by embedding maps. By imposing
cylindrical consistency conditions we propose a construction scheme for the continuum theory from
the discrete model.

Another, at first site troubling fact is the oscillation behaviour of spin foams. Instead of oscillating
like ei SR , which one would understand as a usual behaviour of a path integral, the vertex amplitude
asymptotically oscillates (to leading order) like 1

2(ei SR +e−i SR) = cos(SR). This can be understood
as a sum over orientations: In the asymptotic expansion, two conjugated stationary points are
contributing that correspond to two different orientations of the simplex. There exist several
attempts to suppress this sum over orientations by introducing a notion of causality in spin foam
models [144, 145] and it has been argued in [146] that the sum over orientations is a cause of
divergences in spin foam models. On the other hand there are important reasons why one should
sum over orientations: in gravity, the dynamics (and time evolution) is generated by constraints,
such that time evolution itself is a gauge transformation. A path integral should therefore act as a
projector onto physical states, i.e. states satisfying the constraints. To realize this property, it is
heuristically necessary to integrate over positive and negative values of lapse and shift, which one
can understand as evolving forwards and backwards in time or, on the discrete level, as summing
over orientations. Of course, these statements are controversial and heuristic, and ignore several
subtleties involved in this [20,147–150].

Still one can also see the asymptotic expansions of spin foam models as a starting point to a
different consideration. Assuming the connection between spin foam models and Regge calculus
also generalizes to larger triangulations, namely also larger spin foams oscillate as the Regge action

3Such a feature cannot be observed for asymptotic expansion of a single simplex, since there all spins are on the
boundary.
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of the underlying triangulation does, one can ask what one can learn about spin foam models
from the perspective of Regge calculus. This can indeed be insightful, e.g. it might be used to fix
ambiguities in the definition of spin foam models. For example, the edge and face amplitudes in spin
foam models, in the literature often referred to as the spin foam measure, are not uniquely defined
and are frequently determined by kinematical considerations, e.g. invariance under subdivision
of an edge or a face [76, 151, 152], which one can understand as a weak notion of diffeomorphism
symmetry. These choices influence the degree of divergence of the model [52–55]. Instead we would
like to advocate dynamical principles to fix the ambiguities of the models, where the most desirable,
and yet most difficult to achieve, is (discrete) diffeomorphism invariance.

8.2 Lectures from triangulation independence: Regge calculus

As explored in previous work, diffeomorphism invariance is generically broken by discretisations
[41–43], hence also in most spin foam models4, but one can try to resurrect it by consecutively
improving the discretisation by a renormalization / coarse graining procedure. The heuristic idea
is the following [43]: By infinitely refining and improving the discretisation, one reaches a fixed
point, where the system is, by definition of the fixed point, triangulation independent, at which
diffeomorphism symmetry is restored. On the other hand, starting with a system that is diffeo-
morphism invariant in the discrete, i.e. invariant under vertex translations, one can, e.g. move a
vertex on top of another one; this induces triangulation independence as well. This relationship
can be understood as follows: the consecutive coarse graining and thus improving of the discreti-
sation can be interpreted as ‘pulling back’ the continuum dynamics onto the discretisation. Once
achieved, the dynamics, in its entirety, is represented on the discretisation and with it the entwined
symmetry. Thus it is irrelevant how fine or coarse the discretisation is, since it already captures
the full dynamical information.

Such discretisations are called ‘perfect discretisations’ [61, 62]: a demonstrative example is 3D
(classical) gravity, whose equations of motion tell us that spacetime is locally flat. 3D Regge calculus
captures this perfectly, since it is built up out of intrinsically flat tetrahedra, which are glued
together in a flat way, i.e. the deficit angles vanish. Furthermore, the associated discrete Regge
action is invariant under vertex translations. However, this symmetry is broken if one considers
3D gravity with a non–vanishing cosmological constant [41,42], which describes constantly curved
spacetime. Then Regge calculus with flat tetrahedra does not capture the continuum dynamics
and the deficit angles (on the edges) no longer vanish. However, if one refines the triangulation,
one realizes that the deficit angles decrease and the approximation is improved. In the infinite
refinement limit, the symmetry gets restored. Alternatively, one can also iteratively improve the
tetrahedra to capture the dynamics, which eventually leads to constantly curved building blocks
described by the action for (constantly) curved Regge calculus [60]. Again the deficit angles vanish
and the action is invariant under vertex translations. Certainly, the construction of such a perfect
discretisation for non–topological theories is much more difficult. We will comment on this later
on.

The previously mentioned conjecture relating diffeomorphism symmetry and triangulation in-
dependence in [43], which also appears in a slightly different form in [88], allows us to interpret
triangulation independence as a dynamical principle. Since the modern spin foam models are
deliberately constructed not to be triangulation independent5, we instead examine triangulation
independence in (linearized) Regge calculus in chapter 4, see also [59], to determine whether it can
be used to fix the ambiguities in the definition of the path integral, in particular the path integral

4The role of diffeomorphisms in spin foam models has been discussed in [46], where their action has been identified
as vertex translations. This concept is realized in the 3D topological models, such as the Ponzano–Regge [23,80]
or the Turaev–Viro model [124].

5This is partially rooted in the prejudice that any triangulation invariant theory must be topological.
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measure. Indeed, in this context, by requiring triangulation independence one might hope for an
anomaly–free path integral measure with respect to diffeomorphisms, see also [51] for a discussion
in spin foam models. In contrast to the various other proposals for measures in Regge calculus, see
e.g. [107–109], this is the first one to be based on a dynamical principle and, due to the relation to
spin foam models, may serve as a blueprint for possible measures in spin foam models.

In this context we study triangulation independence in chapter 4, see also [59], on the local level
of Pachner moves [82,83]: Pachner moves are local changes of the triangulation, whose consecutive
application can transfer a triangulation of a manifold into any other triangulation of the same
manifold. Therefore it is sufficient to consider just the simplicial complex subject to the Pachner
move. By linearisation we mean that the Regge action is expanded (up to quadratic order) around
a flat background solution, here vanishing deficit angles. The perturbations around the background
are then considered to be the new dynamical variables, whereas we regard the path integral measure
to be a function of the background edge lengths. In fact, the flat background structure allows us
to explicitly compute the Hessian matrix, i.e. the new ‘propagator’ of the theory, which can be
straightforwardly written in an almost factorising form of geometric quantities, like volumes of
simplices. The calculations themselves use and extend identities and results from [153] and [154–
156], see also [112, 157]. Furthermore, in case of the 4–1 and 5–1 move in 3D and 4D respectively,
we identify the null eigenvectors associated to the vertex translation symmetry of the vertex inside
the (coarse) simplex.

Unsurprisingly, full triangulation independence is only achieved in 3D, where the theory is topo-
logical and the action itself is fully invariant under all Pachner moves. As a result, the path integral
measure is (almost) uniquely determined in a local ansatz, which factorises with respect to the
(sub)simplices of the triangulation. Remarkably, this result is compatible with the Ponzano–Regge
asymptotics [23], even for the assignment of the numerical constants. No doubt, this is to a large
degree due to the topological nature of 3D gravity, but it shows that triangulation independence is
indeed a useful requirement to fix the ambiguities of a theory.

Naturally in 4D, full triangulation independence cannot be achieved due to several reasons. The
first one, derived in [59, 158], is the fact that the Regge action is not invariant under all Pachner
moves, to be more precise the 3–3 Pachner move. The calculations in [59] are performed around a
flat background solution, which can be guaranteed for most Pachner move, since there is at least
one dynamical edge, which can be chosen such that the deficit angles vanish and the solution is flat.
In the 3–3 move however, all edges are in the boundary and thus the deficit angle located at the
single bulk triangle is completely determined by this boundary data. Unless these allow for a flat
geometry in the bulk, even the linearized Regge action is not invariant under this Pachner move6.
Indeed, in such a situation the intrinsically flat simplices cannot capture the curvature, which as a
consequence leads to a broken diffeomorphism symmetry in larger triangulations. Again, only if the
boundary data allow for flat solutions in the bulk, the Regge action possesses a vertex translation
invariance [44,45]. In particular since we intend to study quantum gravity in regions with possibly
large curvature, the Regge action – and presumably also spin foams – on a coarse triangulation is
not a good approximation in these regions and has to be improved [41,42].

Nevertheless, it is still instructive to discuss invariance under the two remaining Pachner moves,
namely the 5–1 and 4–2 Pachner move. In both cases one can define flat background solutions and
we show explicitly that the (linearized) Regge action actually is invariant under both these moves.
Surprisingly, the Hessian matrix is strikingly similar to the 3D case, namely highly factorising with
respect to (sub)simplices, such that one can define a measure factor analogous to the 3D case that
is ‘almost’ invariant. However, despite these nice properties, full triangulation invariance of the
path integral cannot be achieved due to the appearance of an overall factor in the Hessian matrix
that at first glance appears to be non–factorising.

6The two configurations in the 3–3 move differ in the triangle that is shared by all three 4–simplices. The Regge action
is only invariant under this move, if the deficit angle at the single bulk triangle vanishes in both configurations.
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8.2.1 Triangulation independence implies non–locality

This overall factor is the main focus of the paper [84] presented in chapter 5, in which we derive its
geometric interpretation: This factor vanishes if the six vertices involved in the 4D Pachner move
lie on a 3–sphere [110], see also [111]. For the 3–3 and the 4–2 Pachner moves, this can only happen
if the boundary data is chosen in such a way that all vertices can lie on the same 3–sphere. Yet
in case of the 5–1 move, for which the classical action is invariant under translations of the inner
vertex, see e.g. [59], such situations can always be constructed by moving the inner vertex onto
the circumscribing sphere of the coarse simplex. This can either mean moving the vertex on top
of another one, resulting in degenerate simplices, or moving it outside the coarse simplex, which
corresponds to a change of relative orientation of one or more simplices [112]. Indeed, if this occurs
the entire Hessian matrix vanishes and the integral diverges, which concurs with the thesis in [146]
that the change of orientation, by moving the inner vertex outside the coarse simplex, is the cause
of divergences in spin foam models. On the other hand we argue below that in spin foams, similar
to the asymptotic expansion discussed above, one in fact has to sum over orientations in order to
impose Hamiltonian and diffeomorphism constraints.

More importantly, in case the vertex is outside the coarse simplex and at the same time on its
circumscribing sphere, the overall factor vanishes, but none of the involved 4–simplices is degenerate,
i.e. their volume is non–zero. From this fact we show that this overall factor is non–factorising, i.e. it
cannot be written as a product of amplitudes associated to (sub)simplices, and it is necessarily non–
local (with respect to the simplices of the triangulation), since its properties can only be inferred
if the relative positions of all six vertices are known. Therefore, triangulation independence in 4D
Regge calculus implies non–locality. Furthermore, it shows that the factorising measure derived for
the Barrett–Crane model in chapter 3, see also [31], is not invariant under Pachner moves, yet the
(non–local) change of variables from areas to edge lengths might change this statement for larger
simplicial complexes.

In fact, the appearance of non–local couplings is not surprising: since 4D (discrete) gravity is a
theory with propagating degrees of freedom and both the 4–2 and the 5–1 Pachner move are coarse
graining moves, in the sense that they decimate degrees of freedom, one expects non–localities to
occur. Take for example the 2D Ising model [159]: the initial theory defined on a 2D lattice just
describes nearest neighbour interactions between the spins located on the lattice sites, encoded in
the Hamiltonian of the system. One way to coarse grain this is by a decimation procedure: every
second Ising spin is summed over and absorbed into a new effective Hamiltonian. However, already
after the first step, this new Hamiltonian describes not only nearest neighbour interactions with
respect to the new lattice, but also next–to–nearest neighbour and multiple spin interactions; the
theory has left the initial space of models, now containing non–local interactions.

Coarse graining techniques as the one sketched above are called real space renormalization tech-
niques [115], in contrast to momentum space renormalization. Frequently, unless one is dealing with
a topological theory, these approaches are troubled with the appearance of non–local interactions
enlarging the theory space, which can be naively tamed by introducing ad hoc approximations and
restrictions on the allowed couplings. However, it is often not clear how good these approximations
are and the non–localities effectively reduced the amount of available real space renormalization
methods. One of the most prominent, yet brutal in the approximation, is the Migdal–Kadanoff
scheme [113,114] that outright removes non–local interactions, yet is still able to predict the phase
transition for the Ising model qualitatively.

At first sight, this seems to diminish the possibilities of improving Regge calculus or even spin
foam models in this manner. This is partially due to a particular perspective of these models
and the coarse graining scheme: the initial setup of the models is building an amplitude out of
basic building blocks that interact locally. In spin foam models these are the vertex, edge and face
amplitudes as functions of representation labels, in Regge calculus it is the additive Regge action
as a functional of edge lengths. Now the coarse graining schemes, e.g. Pachner moves, intend to
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locally manipulate the discretisation, yet at the same time keep the basic building blocks, and the
degrees of freedom describing them, as the fundamental ingredients. In particular Pachner moves,
as local transformations, keep the boundary data unchanged. However, these data, while suitable
to describe physics on the smaller scale, may be very inefficient to capture the dynamics at coarser
scales, apparent in the appearance of non–local couplings for interacting theories.

Therefore the question arises whether one can choose more appropriate degrees of freedom to
avoid non–local interactions. One suggestion in Regge calculus would be to use area–angle variables
[60, 142], since they are more closely related to the construction methods of spin foam models,
yet it is not clear whether one can avoid non–localities in this framework. However in practice,
it appears to be impossible to circumvent non–localities entirely, such that it is imperative to
employ approximations. Indeed, it would be desirable to have a coarse graining scheme capable of
controlling both the degree of non–locality and the quality of the approximation. To do so it is
indispensable to isolate the relevant degrees of freedom from the less relevant ones, which in most
cases will be recombinations of the finer degrees of freedom into coarser, collective ones. Thus we
argue that a coarse graining scheme should necessarily affect the boundary data as well.

8.3 A change of perspective: Tensor network renormalization

A possible solution to these issues lies in a change of perspective: instead of keeping the initial
basic building blocks fixed and changing the discretisation only locally, one can employ more non–
local changes, which modify the building blocks and also affect the boundary data. Essentially, the
idea is to replace several locally interacting building blocks by an effective building block, which
again interacts locally with the surrounding building blocks. In general, one can construct such a
new building block by integrating out / summing over internal degrees of freedom, such that the
new object depends on more boundary data than the initial one did. In a way, one ‘stores’ the
non–localities inside the new object by paying the prize of an increasing amount of boundary data.

This increase of the boundary data causes two complementary issues. The first one affects
numerical realizations of such a coarse graining scheme. Consecutively performing this procedure
gives an exponential growth of the boundary data, which requires the introduction of a truncation.
The second one, even more severe, is the question of interpretation of the new building blocks and
their comparability to the previous ones. In general, the larger boundary of the new building block
is endowed with a ‘larger’ Hilbert space7, such that it is not straightforward to compare the two
amplitudes and interpret them, i.e. the essential task of any renormalization group approach.

In this particular example of coarse graining, one would like to kill two birds with one stone by
suitably ‘reducing’ the boundary data of the new building block, thus restoring the relation to the
previous building block (and the interpretation) and at the same time truncating the boundary
data to enable efficient numerical algorithms. To put it differently, one has to define embedding
maps between Hilbert spaces of different size / complexity, which redefine the fine data in terms of
the coarser ones and also provide an approximation. A priori these embedding maps can be chosen
arbitrarily, but their choice determines the quality of the approximation and also the interpretation
of the new model. The last two conditions are complementary and essentially require the embedding
maps to be compatible with the dynamics of the system, i.e. the dynamics should determine the
embedding maps. Therefore, the embedding maps should combine the fine degrees of freedom into
coarse ones in such a way that the symmetries of the system are preserved to allow for an intuitive
interpretation. Among these collective degrees of freedom, it has to identify and retain the most
relevant ones, such that a good approximation can be achieved.

Interestingly, although working in a very different context, condensed matter theory faces similar
issues in the quest to describe many body quantum physics. Even though starting from a simple
lattice system equipped with a Hamiltonian describing local interactions, the systems are generically

7For an infinite dimensional Hilbert space, ‘size’ refers to the complexity of the discretisation.
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not solvable, yet one would like to extract the collective dynamics of many degrees of freedom via a
real space renormalization method. Indeed, there exist several new methods tackling these issues,
which can be summarized as providing ansätze for groundstates of the Hamiltonians, see e.g. matrix
product states (MPS) [118, 119]. In this context, we are particularly interested in tensor network
renormalization [85,86], since it is a proper realization of the ideas illustrated above.

A tensor network can be understood as a reformulation of the lattice system: The local degrees
of freedom on the lattice are locally encoded into a tensor Tabcd..., where the rank of the tensor
encodes the valency of the vertices of the lattice. The partition function Z of the system is then
computed by contracting all tensors

Z =
∑

a,b,c,d,...

TabcdTb′c′ad′ . . . (8.3.1)

according to the combinatorics of the network, here for 4–valent tensors. Thus, the tensors T
encode the dynamics of the system. Yet the task to compute the partition function Z is still as
difficult as in the original setup, such that one would like to introduce a coarse graining scheme that
can approximate Z by a contraction of a coarser tensor network made up out of effective tensors T ′,
which possess a maximum index range χ8. To do so, tensor network algorithms aim to iteratively
combine a certain amount of tensors into a new tensor, which naively suffers from an exponentially
growing index range. Furthermore, since the tensor contains the dynamical information of the
system, the new tensor should also be comparable to the previous one in order to observe the
change of dynamics at different scales.

In fact there exist many different implementations of tensor network renormalization differing in
the way how they construct the embedding maps, relating fine to coarse boundary data, from the
tensors, yet all of these algorithms employ singular value decompositions, in short SVD. To do so
one rewrites a collection of tensors as a (possibly asymmetric) matrix by an appropriate grouping
of tensor indices, to which the SVD can be applied. Then, the SVD can be understood as redefining
the variables and ordering them according to their relevance, which can be readily read off from
the size of the associated singular value. This allows us to employ a truncation scheme, e.g. by
keeping only the χ most relevant degrees of freedom, i.e. the χ largest singular values. The new
effective tensor T ′, labelled by the new degrees of freedom, is the starting point for the next coarse
graining step.

Thus the idea is to use this particular approach as a coarse graining scheme for spin foam
models. Interestingly, spin foams fit quite naturally into the language of tensor networks as it has
been described in [37]: the projectors onto invariant subspaces associated to the edges, can be
directly written as a tensor of the same rank as the valency of the edge, i.e. the number of faces
sharing the edge. Similarly, one can also absorb the face amplitudes into the tensor. A complication
exists however for spin foams, as well as for lattice gauge theories [37,121]: one has to ensure that
each face carries the same representation label and thus, also all tensors on the edges sharing this
face must carry the same label in their respective index. Therefore one has to introduce auxiliary
tensors on the faces that fix the labels of the adjacent dynamical tensors to be identical.

Yet, even though spin foam models exhibit a nice translation into tensor networks, one faces two
obstacles if one intends to apply tensor network renormalization to them:

• Most tensor network renormalization algorithms are defined for spin systems defined on a
1–complex, e.g. a 2D lattice. By spin system we mean a system with a global symmetry, like
the Ising model (without external magnetic field), instead of a local gauge symmetry, like
Z2 lattice gauge theory. On the lattice, these systems can be modelled as a vertex model,
e.g. with the tensors of the network associated to the vertices. Here no auxiliary tensor are
required on the faces, such that the whole network only consists of one type of tensors. Thus,

8This χ is frequently called the bond dimension.
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in order to apply these methods to spin foams, one has to generalize the algorithms to higher
dimensional complexes and modify them to deal with the more complicated networks.

• The second, equally troubling issue lies in the underlying symmetry group of spin foam
models. Whether one examines Riemannian or Lorentzian gravity, one picks either SO(4) or
SL(2,C) as the underlying symmetry groups. These groups generically come with infinitely
many representation labels, which would result into tensors with equally ranging indices. At
first sight, this appears to doom feasible numerical simulations.

Indeed, each of this issues is very difficult to tackle in full generality: the first one requires the
development of a new coarse graining scheme within the tensor network formalism (currently work
in progress), while the implementation of the full symmetry group leads to infinities in the partition
function. A solution to circumvent this issue is unknown to the author of this thesis.

Thus, instead of tackling these issues head on, it is better to come up with suitable approximations
that make currently available methods applicable, while still learning something new about spin
foams in the process, e.g. whether tensor network renormalization is (or can be) a useful tool to
study the collective dynamics of spin foams. This idea lead to the development of analogue spin
foam models, called spin nets [37–39], which can be directly understood as a dimensional reduction
of spin foams: the model is defined on a 1–complex, i.e. a graph, e.g. a 2D (regular) lattice,
where the dynamical ingredients of spin foams, face weights and projectors (on the edges), are
associated to lower dimensional objects, i.e. weights on the edges and projectors on the vertices.
Such systems can be readily translated into tensor networks and tensor network renormalization
is applicable in principle. Yet due to the infinite number of representation labels one has to sum
over for the Lie groups of interest, the index range of the tensors is infinite as well, which poses a
serious challenge for numerical simulations. This can be circumvented by replacing the Lie group
by a finite group [37–39], which naturally come with only finitely many representation labels. See
also [160] for a definition of spin nets and foams for finite groups. Another option are quantum
groups like SU(2)k [87], see also chapter 6, which are equipped with a cut–off on the representation
labels depending on the level k [122,123].

The dimensional reduction might appear ad hoc and is mainly motivated by the restrictions of the
coarse graining method, which would be dishonest to neglect. Therefore, we would like to motivate
further, why we think even these simplified models can teach us something about the many–body
behaviour of spin foams. Actually, it is known that 2D lattice gauge theories are equivalent to
1D spin systems, and also 4D lattice gauge theories have several properties in common with 2D
spin systems [161], e.g. one noticed similarities between the 2D Ising model and the 4D Z2 gauge
theory. Similarly, we would like to interpret the results for spin nets as indications for spin foams.
Furthermore, as we also show in [87] (see also chapter 6), spin nets can be interpreted as highly
anisotropic spin foams, taking the form of a ‘melon’, similar to [54]: Such a spin foam consists
of two vertices connected by many 4–valent edges, which are basically dual to tetrahedra. Then
coarse graining of spin nets can be interpreted as defining new effective tetrahedra, which might
actually also appear in simplicial 4D spin foam models. Certainly, this does not imply that the
same fixed points emerging from spin net simulations also occur in spin foam models, yet this is
supportive nonetheless.

Before discussing the results of this approach, we would like to emphasize, what we are looking
for and why: As thoroughly discussed above, the intent is to extract effective dynamics of many
building blocks from spin net models via tensor network renormalization. Therefore we start the
simulation with an initial tensor that encodes the full dynamics of the model. Under coarse graining,
we approximate the partition function of a regular, square 2D tensor network by coarse graining
the tensors into new effective ones as prescribed above. The tensors will generically change under
this procedure until they eventually reach a fixed point, i.e. the tensors remain unchanged under
further coarse graining steps. This final tensor resembles the refinement limit of the specific initial
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model and encodes its continuum dynamics. Interestingly, these different continuum dynamics can
be distinguished by their excited singular values.

8.3.1 Coarse graining spin nets: finite groups

In order to demonstrate the progress in coarse graining spin net models over the past three years,
let us briefly summarize previous results. The very first work [37, 38] is based on Abelian finite
groups Zn, and asks the question, in the spirit of related work [41–43], whether broken symmetries
get restored under coarse graining. In this context, not (discrete) diffeomorphism symmetry (or
reparametrization invariance) is of interest, but rather the global BF symmetry of the system,
which is also called the ordered phase. This phase is parametrized by assigning exactly a constant
weight to all representation labels; in the dual picture for the Ising model, this corresponds to the
state in which all spins are equal. Since this state already defines a fixed point of the renormalization
scheme, one has to break this symmetry, e.g. by introducing a cut–off on the representation labels,
and study the flow of these ‘Abelian cut–off’ models under coarse graining. Indeed, [37] already
gives a glance at the power of tensor network renormalization, by providing the first phase diagrams
for spin foam related models. Depending on the initially chosen cut–off on the representation labels,
the models mainly flow to the (analogue) BF phase or to the degenerate phase, in which only the
trivial representation is excited. The latter phase is also called disordered or high–temperature
phase.

The next logical step is to extend this approach towards non–Abelian finite groups, the simplest
of which is S3, the permutation group of three elements, in [39]. In fact, this work is remarkable
in several ways: it is the first study of the effective dynamics of an (analogue) spin foam model
that possesses similar features to modern spin foam models [73–75], namely a notion of simplicity
constraints [66], which are implemented by special functions analogous to the holonomy formulation
of spin foams in [69]. In fact, these simplicity constraints get encoded into the projectors associated
to the vertices, which, in comparison to lattice gauge theories, project onto a smaller invariant
subspace (of the tensor product of irreducible representations meeting at the vertex). Naturally,
the question arises, whether the simplicity constraints persist under coarse graining or whether the
model flows back to the standard lattice gauge theory phases, such as the BF or the degenerate
phase9. In order to answer this question, the coarse graining mechanism has to be adapted in such
a way that it preserves the symmetries of the model, in this particular case the group symmetry
encoded in the tensors. Therefore a symmetry protecting algorithm has been invented in [39] that
works as follows: before performing the SVD, the system is rewritten into the so–called ‘recoupling
basis’, a transformation in the representation theory of the group that brings the tensor into a block
diagonal form10, where each block is then labelled by a pair of representations (ρ, ρ′). Then the
SVD is performed for each of the blocks (ρ, ρ′), which is not only computationally more efficient,
but also preserves the interpretation of the variables: The representation labels of the blocks, called
intertwiner channels, are the new labels of the effective tensor.

The work [39] uncovered several remarkable results. First of all, one can determine the phase
of the system from the excited intertwiner channels and, moreover, determine directly whether
the system is in a standard lattice gauge theory phase. If it is not, one will observe excitations
in channels (ρ, ρ′), where ρ′ 6= ρ∗. This is not only a generalization of the initial model, which
started with (ρ, ρ∗), but sheds a new light on the interpretation of spin foams: for spin foams
the excited intertwiner channels are the relevant degrees of freedom, specifying the model and the

9In lattice gauge theory, BF theory is also known as the weak coupling limit, whereas the degenerate phase is also
known as the strong coupling limit. In condensed matter, one would refer to these phases, in analogy to the Ising
model, as the low temperature or ordered phase or the high temperature, disordered phase respectively.

10In fact, [37] already possessed a similar scheme in its algorithm, by preserving the Gauß constraints (at each
vertex) under coarse graining. Similarly this protected the interpretation of the labels in the edges in terms of
representation labels, yet for a much simpler system.
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dynamics. Additionally, as soon as channels with ρ′ 6= ρ∗ are excited, one can interpret this as an
implementation of simplicity constraints.

Despite these interesting insights, the results [39] are mixed: On the one hand one has been able
to find one non–trivial fixed point, i.e. with channels (ρ, ρ′) and ρ′ 6= ρ∗ excited, yet in order to flow
to it required a high level of fine–tuning and rather low accuracy of the numerical algorithm. As
soon as a higher accuracy of the algorithm has been used, i.e. more degrees of freedom were stored
in each coarse graining step, the system either flowed to the BF phase, the degenerate phase or
BF theory on a normal subgroup, i.e. (analogue) phases known from lattice gauge theories. Thus,
even though additional structure in form of the new fixed point has been found, the phase diagram
only showed extended phases for the standard lattice gauge theory phases.

8.3.2 Quantum group spin nets

Keeping the results of [39] in mind, the paper [87] presented in chapter 6 extends them in a
seminal way. The first, non–trivial change is the definition of spin net models on the quantum
group SU(2)k [122, 123], which raises these models to a higher level of plausibility: instead of
considering finite groups, which are difficult to relate to gravity, quantum groups are expected to
model gravity with a non–vanishing cosmological constant. The heuristic argument is that the level
k of the quantum group determining the cut–off on the representation labels, here the maximal
allowed spin, is anti–proportional to the size of the cosmological constant. Indeed, the very first
spin foam model defined on quantum groups is the Turaev–Viro model [124], which describes 3D
gravity with a cosmological constant11. In recent years, also the modern 4D spin foam models
have been defined on quantum groups [130–132] and the possibility to link (2+1)D loop quantum
gravity to the Turaev–Viro model has been explored as well [125–129]. Indeed, SU(2)k combines
the advantages of providing a natural cut–off onto the representation labels with a much more
realistic applicability to physics. Furthermore, in contrast to finite groups, quantum groups for
different levels k almost have the same representation theory, which makes the study of ‘larger’
quantum groups straightforward (neglecting the increase of computational cost).

Of course, quantum groups, which are quasi–triangular Hopf–algebras [122], are much more com-
plicated objects than groups. These complications force us to use a different initial parametriza-
tion in comparison to [39]. There, simplicity constraint enforcing functions have been used to
parametrize the initial tensor, which in the quantum group models however lead to a violation of
the quantum group symmetries. Instead we choose initial data lifted from so–called ‘intertwiner
models’ defined in [162], which can be understood as simpler versions of spin nets, since their edges
carry only one irreducible representation and thus a simpler Hilbert space. Remarkably, by re-
quiring triangulation independence and certain restrictions on the allowed representations, one can
construct a plethora of ‘fixed–point intertwiners’ of these models, i.e. topological theories, which we
use as a new parametrization for our quantum group spin nets12. In order to lift these intertwiners
to the full spin nets, we revisit Reisenberger’s principle [163], a concept prescribing how to uniquely
construct higher valent intertwiners from three–valent ones. Additionally, in order to define the
dual representation we invent a graphical calculus, which considerably simplifies the calculations
and allows us to adapt the symmetry preserving algorithm, and thus the notion of intertwiner chan-
nels, invented in [39] to quantum groups. Indeed, as it turns out, this new parametrization, which
also permits us to study linear combinations of initial intertwiners, reveals a very rich structure:

The first remarkable difference with respect to [39] is that for each different choice of initial inter-
twiner (without superposing it with other intertwiners), the system flows (under coarse graining)
to a different fixed point, in fact one discovers a whole family of non–trivial fixed points, which

11In fact, it is closely related to the Ponzano–Regge model, with the difference that the vertex amplitude is the
q–deformed 6j symbol instead of the standard SU(2) 6j symbol. In discrete, classical gravity this corresponds to
replacing flat tetrahedra by constantly curved ones [42,60].

12Ironically, the work [162] has been motivated by the single non–trivial fixed point in [39].
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form an interesting pattern for different levels k of the quantum group. More importantly, this
behaviour is stable for high accuracy of the simulations, i.e. high number of stored degrees of
freedom, and requires no fine–tuning13. In fact, most of the fixed points are non–trivial, i.e. they
have excited intertwiner channels (j, j′), where j′ 6= j∗. Even more interesting, if one considers
linear combinations of the initial intertwiners, one finds extended phases (in the parameter space)
for all fixed points with phase transitions. So, what is the meaning of the fixed points?

As it turns out, all of the fixed points, also the non–trivial ones, describe topological and thus
fully triangulation invariant14 theories. This can actually be deduced from the fact that they
can be described by finitely many, locally interacting degrees of freedom, which are all equipped
with a singular value equal to one. Of the non–trivial fixed points, most fall into the category of
factorising fixed points; the two representations (j, j′) assigned to each edge completely decouple. In
the ‘melonic spin foam’ interpretation of spin nets discussed above, this actually implies a complete
decoupling of the two spin foam vertices, a rather pessimistic scenario, should these fixed points
also occur for the full theory. On the other hand, one finds (analogue) BF theory, which could be
understood as maximally ‘glueing’ the two vertices together. Thus one is tempted to conclude that
the factorizing case occurs because the simplicity constraints are too strongly imposed, leading to a
complete decoupling of the basic building blocks, whereas introducing them too weakly, the system
inevitably returns to analogue BF theory. Interestingly, there exist an intermediate fixed point,
called ‘mixed’, which is not factorising, but also not BF . To better understand this interplay is an
interesting prospect for future research.

The observing reader will certainly object that these fixed points describe topological theories
and wonder how one might get propagating degrees of freedom back. A preliminary way to ‘escape’
topological theories is by tuning the system towards a phase transition, where one makes the
following observations: The very first peculiarity that attracts attention is that the simulations
take considerably longer, the closer the system is tuned towards the phase transition. If one plots
for example the singular values against the number of iterations, see e.g. in [164], one notices
indications of scale invariance: For many iterations the singular values remain almost constant
before eventually converging towards their final value. Actually, the closer the system is tuned
towards the transition the longer it takes the system to ‘decide’ where to flow to. This behaviour
can also be spotted at the phase transition of the Ising model (in a tensor network formulation),
which is known to be of second order. Another observation worth discussing is the overall list of
singular values, concerning the viability of the truncation: in many situations, the singular values
drop off reasonably quick, such that one can truncate at a singular value, which is not only much
smaller than the largest one, but also considerably smaller than the next larger one. Close to the
phase transition however, the choice where to cut off is much more intricate, since the singular
values drop off much more slowly, such that one may truncate degrees of freedom that, while being
much smaller than the largest one, are of similar size as the smallest considered one. In short, in
these cases it would be best not to truncate any degrees of freedom, which indicates that the phase
transition probably is of second order and the continuum theory ‘on’ the phase transition possesses
propagating degrees of freedom.

In short, [87] provides a lot of positive implications for spin foams, in particular the vast amount
of additional fixed points with extended phases, where the phase transitions appear to provide a
possible door towards a theory with propagating degrees of freedom and implemented simplicity
constraints. Yet, so far we have only glimpsed at the role of the embedding maps described above,
which mainly appear in this context as providing a truncation. In the next section, we will stress
the importance of embedding maps, relating coarser to finer boundary data, for the consistent

13Of course, the term fine–tuning has to be taken with a grain of salt, since it is highly dependent on the employed
parametrization. Nevertheless, it is insightful, since it indicates that the parametrization in terms of intertwiners
is more suitable for spin foams.

14In order to check this statement, the 4–valent tensors have to be split into 3–valent ones, which is part of the
particular coarse graining procedure [86].
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construction of a continuum theory from the discrete one.

8.4 Embedding maps as time evolution

In this discussion so far, one might get the impression that the main purpose of the dynamical
embedding maps, e.g. obtained from tensor network renormalization, is to provide a convenient
and good approximation of the dynamics, from which one can obtain an effective macroscopic
description of the microscopically defined system. Indeed, as we argue in [88] presented in chapter
7, this viewpoint is too narrow and can be dramatically generalized.

To do so, let us consider a spin foam giving the transition between two boundary states, each
represented on a discretisation. On the one hand, this spin foam can be interpreted as one par-
ticular time evolution of the initial state to the final state. On the other hand, the two boundary
discretisations can be different, e.g. the final state can be finer or coarser than the initial one, such
that the spin foam provides an embedding of the initial Hilbert space into the final one. Further-
more, since spin foams implement a dynamics, this embedding is indeed dynamical. Therefore, we
argue that dynamical embedding maps can be interpreted as time evolution maps.

To make this idea more clear and concrete, let us elaborate on its origin: the main inspira-
tion comes from work on the canonical formulation of classical Regge calculus [133, 134], or more
general, the definition of a canonical formalism for phase spaces of different dimension at differ-
ent time steps [135]. See also [136, 137] for an extension of the formalism to quantum systems.
Imagine a triangulated hypersurface, for concreteness in two dimensions. This hypersurface can
be locally evolved in time by glueing a tetrahedron onto it, which results in a new hypersurface
at the next time step. From the perspective of the 2D hypersurface, this resembles a 2D Pachner
move, depending of how the tetrahedron is glued to the initial hypersurface, either a 2–2 or a 1–3
move. The inverse moves can be understood by removing a tetrahedron (glueing a tetrahedron with
opposite orientation). Remarkably, even for non–gravitational systems, this formalism always re-
sults in the appearance of constraints, namely so–called pre– and post–constraints. Pre–constraints
are basically conditions that have to be fulfilled for time evolution to take place, whereas post–
constraints are automatically fulfilled once time evolution has taken place. For a concrete example,
consider a refining move, e.g. a 1–3 move in Regge calculus: The final phase space contains three
more edges, i.e. three more degrees of freedom. To accommodate them, one has to artificially
enlarge the initial phase space to describe this evolution move. As a consequence one obtains three
post–constraints, essentially restricting the fictitiously added degrees of freedom. Furthermore, in
the gravitational context, these post–constraints implement both diffeomorphism and Hamiltonian
constraints [134, 165], where the associated gauge symmetry is interpreted as vertex translations.
To put it differently, at first sight the new hypersurface has three more degrees of freedom, which
however turn out to only be gauge degrees of freedom15.

For a quantum system, we argue that something similar happens if one time evolves from a
coarser to a finer state. The newly added degrees of freedom are either gauge degrees of freedom
or added in a vacuum state. Therefore, similar to the classical case, the refined state does not
contain more information than the initial one, but represents the same information on a finer
discretisation, possibly arranged in a different way. However, the issue of uniqueness forces itself into
the discussion. Given one initial state on a particular discretisation, there exist many different ways
to (locally) time evolve this state towards the same final discretisation, where it is a priori not clear
that these different embeddings give the same final state. Therefore, one has to discuss consistency

15From this insight, one can already deduce that refining a hypersurface by purely refining Pachner moves, i.e.
1–(d + 1) moves in (d + 1) dimensions is insufficient. Such a refining procedure leads to geometries known as
stacked spheres, which are not dynamical and do not allow curvature. These stacked spheres appear e.g. in the
weak coupling phase of simplicial gravity in dynamical triangulations [166] or in the melonic phase in coloured
tensor models [167]. On the other hand, one can interpret them to resemble degenerate geometries with a lower
Hausdorff dimension [168].
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conditions for the embedding maps, which naturally translate into consistency conditions for time
evolution.

8.4.1 Cylindrical consistency and the physical vacuum

It is straightforward to outline the immediate conflict between an ambiguous (local) time evolution
and time reversibility: assume a particular time evolution of an initial state to a final one. Then one
can time evolve the final state back in a different way, which results in the same initial discretisation,
yet a different initial state. To avoid this troubling property, one has to require path independence
under time evolution: no matter how one chooses to locally time evolve a state to a particular final
discretisation, the final state represented on this discretisation is always the same.

Invoking the interpretation of time evolution as embedding maps, this leads to the following
consistency conditions the embedding maps have to satisfy: Consider three boundaries b, b′ and
b′′ satisfying the relation b ≺ b′ ≺ b′′, i.e. b′ is a refinement of b and b′′ is a refinement of both
b and b′. Then the embedding map ιbb′′ should not depend on the intermediate boundary b′, for
any choice of b′. In other words, first evolving from b to b′ and then from b′ to b′′ should give the
same embedding map as directly evolving from b to b′′, i.e. ιbb′′ = ιb′b′′ ◦ ιbb′ . Indeed, this is an
essential feature, because it allows the unambiguous comparison of two states, for concreteness ψb
and φb′ , which are represented on different boundaries b and b′. If these two boundaries have a
common refinement, e.g. b′′ with b ≺ b′′ and b′ ≺ b′′, then both states can be embedded into the
Hilbert space Hb′′ and compared. If ιbb′′(ψb) = ιb′b′′(φb′), then one identifies ψb ∼ φb′ and defines
an equivalence class for these states. The continuum Hilbert space can then be defined via an
inductive limit, i.e. as the disjoint union of all boundary Hilbert spaces Hb modulo the equivalence
relation ∼, in short H =

⋃
bHb/ ∼. In fact, by embedding the states into the continuum (via the

inductive limit), one can represent a state on a given discretisation in the continuum Hilbert space,
such that the (equivalence classes of) states only implicitly depend on the discretisation they are
represented on.

These consistency conditions are called cylindrical consistency conditions, a concept also used
in loop quantum gravity in order to relate states, more precisely spin network states, a convenient
basis of the Hilbert space of loop quantum gravity [20], defined on different graphs. A spin network
defined on a graph γ can be embedded into a graph γ′, if γ is a subset of γ′, denoted as γ ≺ γ′,
by setting the SU(2) spins on all edges added to γ to obtain γ′ equal to the trivial representation,
j = 0. No restrictions on the valency of the vertices of the graph are imposed. Following our
previous line of argumentation, the new degrees of freedom available in the larger graph, are added
in the vacuum state, here the Ashtekar–Lewandowski vacuum [34,35], which represents degenerate
geometries. Imposing several conditions, e.g. a certain representation of the holonomy–flux algebra
of loop quantum gravity and (spatial) diffeomorphism invariance of the vacuum, the F/LOST
theorem [169,170] proves that this representation of loop quantum gravity is unique.

However, there is a key difference between our proposal in chapter 7 [88] and the loop quantum
gravity construction: the latter is based on the kinematical states and thus employs kinematical
embedding maps to relate these states across different boundaries, while we intend to use dynamical
embedding maps to compute ‘transition amplitudes’ between (kinematical) states, where dynamical
means that the embedding maps are supposed to impose the constraints of the theory. Let us
elaborate on this further.

Formulating general relativity in a canonical formalism reveals it to be totally constrained: Due
to diffeomorphism symmetry of the Einstein–Hilbert action, the solutions of the equations of mo-
tion, given initial conditions, are not unique, but one can always obtain a new solution by applying
a diffeomorphism. In the canonical formulation this leads to the appearance of constraints, es-
sentially restrictions on the phase space, since one cannot solve the first time derivatives of the
configuration variables in terms of their canonical momenta. These constraints are the generators
of infinitesimal gauge transformations and form an algebra, in gravity this is known as Dirac’s hy-

261



8 Discussion

persurface deformation algebra [171]. For totally constrained systems like gravity, the Hamiltonian
itself is a linear combination of constraints and is thus forced to vanish. This implies that time
evolution itself is a gauge transformation.

There exist several different methods to canonically quantize constrained systems in principle,
where we will here focus on the quantization method by Dirac [171], see also [172] for a nice
explanation, which is also employed in loop quantum gravity. Essentially the idea is to quantize
the unconstrained system, i.e. the system before constraints are imposed. The associated Hilbert
space is called kinematical and the challenge is to define constraint operators on this space, that
realize a quantum version of the Poisson algebra of constraints [173]. A physical state is then
defined to be annihilated by all constraint operators. In this context, time evolution governed by
the exponential of the constraints implies that the physical state should not change, since a physical
state, by definition, is annihilated by all generators of gauge transformations, i.e. the constraints.
Thus, heuristically, time evolution in quantum gravity should act as a projector onto the physical
Hilbert space, leaving physical states unchanged.

This brief, sketchy recollection of the canonical quantization procedure of systems with con-
straints reveals the crucial difference between the kinematical embedding maps of loop quantum
gravity and the dynamical embedding maps we propose in [88]. The kinematical embedding maps
relate the kinematical spin network states, defined on a graph, to spin network states defined on a
different graph. In the inductive / projective limit [34,35], these embedding maps allow for the con-
struction of the continuum kinematical Hilbert space with a unique kinematical vacuum [169,170],
but contain no information on the dynamics. Following our arguments from the previous para-
graph, a dynamical embedding map on the other hand, responsible to generate time evolution of
the discrete system, must act as a projector onto the physical Hilbert space and therefore impose
the (Hamiltonian and diffeomorphism) constraints of the theory. Remarkably, this heuristic picture
is in nice agreement with time evolution in canonical quantum gravity: If the (dynamical) embed-
ding maps satisfy cylindrical consistency conditions and one identifies physical states on different
boundary discretisations, then the time evolved physical state remains in the same equivalence
class as the original one. In fact both physical states describe the same physical situation, such
that the physical state of the system is not changed under time evolution, but merely represented
on a different discretisation.

Similar to the kinematical construction, the dynamical embedding maps give rise to a notion of
a physical vacuum; the unique Hartle–Hawking vacuum [174] of the theory. Consider an ‘evolution
from nothing’, namely starting from an ‘empty’ universe encoded in the one–dimensional Hilbert
spaceH0 = C. Time evolving this state by adding simplices, i.e. embedding it into the larger Hilbert
spaces associated to the larger boundary, represents this vacuum on finer and finer discretisations
up to the continuum. Yet by definition, the state remains in the same equivalence class as the
unique initial one, thus uniquely representing the physical vacuum of the theory, which can be
represented on any discretisation and the continuum.

Indeed, this construction principle introduced in [88] has been successfully used to construct a
new representation of (2+1)–dimensional loop quantum gravity [175] based on the physical vacuum
(in (2 + 1)D): Instead of considering arbitrary graphs and embeddings of those into finer graphs,
one restricts the boundaries to be dual to triangulations, which restricts the vertices of the graph to
be 3–valent. These dual triangulations are then refined by Pachner moves instead of (in principle)
arbitrary refinements. Then the uniqueness theorem of the loop quantum gravity [169,170] vacuum
is circumvented by constructing a different holonomy–flux algebra, which is cylindrically consistent
with respect to the new refinement procedure. In a way, this new vacuum can be seen as the dual
version of the Ashtekar–Lewandowski vacuum [34,35], since it is peaked on flat closed holonomies,
thus also called the BF vacuum. Indeed, this is the physical vacuum of the 3D gravity, since it
describes locally flat geometries. Note that this BF vacuum is not the first attempt to construct
a vacuum for loop quantum gravity, which is not peaked on completely degenerate geometries, see
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also [176] for a review on alternate representations of loop quantum gravity with non–vanishing
vacuum expectation values of geometric operators, which are more suited as vacuum states for
effective theories.

Nevertheless, a serious word of caution is due: the dynamical cylindrical consistency conditions,
and equivalently the path independence of time evolution, are highly non–trivial requirements
to satisfy. Indeed, it is very unlikely to readily write down a (family of) embedding maps that
can (perfectly) impose Hamiltonian and diffeomorphism constraints, since, very similar to the
construction of perfect discretizations [41–43], it requires to solve the dynamics. In fact, as we also
describe in [88], the examples in which it is realized all resemble topological theories including the
new vacuum for (2+1)D loop quantum gravity [175] or the (non–trivial) fixed points obtained from
coarse graining quantum group spin nets [87], see chapter 6.

However, we would like to argue that achieving cylindrical consistency might not be necessary
in any situation, e.g. consider a kinematical spin network state as the initial state. This state
can be time evolved by glueing spin foam amplitudes, dual to simplices, to it, which should at
least approximately impose diffeomorphism and Hamiltonian constraints, similar to the description
in the classical case [133, 134]. If one stops after a finite number of time evolution steps, this
may already suffice to compute good approximations to expectation values of sufficiently coarse
grained observables, that is observables sensitive to geometric degrees of freedom on the scale of
the discretisation. On the other hand, once sufficiently fine grained, the spin foam should behave
as a proper projector onto the physical Hilbert space16, i.e. in the refinement limit. To put it
differently, the spin foam amplitudes have to be improved in order to act as proper projectors onto
the physical Hilbert space thus closing the circle back to perfect discretisations [42, 43] and also
tensor network renormalization [39, 85–87]. See also [177] for a definition of the transfer matrix
from spin foams as a sum over all 2–complexes.

8.4.2 Constructing quantum space time

After these very conceptual considerations, we would like to emphasize more, how one can tackle
the construction of a consistent continuum theory of gravity in practise, e.g. via the previously
described tensor network renormalization. Therefore, it is instructive to explain in more detail, how
these coarse graining methods fit into the scheme of cylindrical consistency and how this affects
their interpretation. To be more concrete, we will focus on the tensor network formulation, which
also includes spin foams.

Consider a single tensor for now, which we interpret to be dual to a ‘chunk’ of spacetime.
Analogous to our ideas expressed above, the boundary of this chunk carries boundary data, more
precisely a state in the Hilbert space associated to that boundary. The legs of the dual tensor pierce
the boundary of this chunk and are thus labelled by this data, actually expressing the dependency
of the tensor on this data. To put it differently, the tensor is a map from the Hilbert space
associated to its boundary into the complex numbers, thus assigning an amplitude to this ‘piece
of quantum spacetime’. This interpretation is fundamentally inspired by the general boundary
formulation [178], a formalism invented to describe quantum mechanics, quantum field theory and
quantum gravity in general regions of spacetime by assigning Hilbert spaces to the boundaries
of these regions and amplitude maps to the regions itself. Given this interpretation, one might
be tempted to tentatively call the tensor, or alternatively the underlying spin foam, an ‘atom of
spacetime’17.

16Another remark on unitarity: The time evolution depicted here is not unitary, since under time evolution, kine-
matical degrees of freedom get projected out and cannot be recovered by time evolving backwards. Instead, one
would time evolve back to the physical state ‘hidden’ in the kinematical initial state.

17The notion of ‘atom’ must be taken with a pinch of salt: Since we are discussing background independent approaches
to quantum gravity, there exists no background scale to compare this atom to. Hence, it is also fuzzy to talk
about ‘larger’ and ‘smaller’ regions; only relational statements are well–defined.
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Of course, a tensor network does not only consist of one tensor, but of a collection of many
connected ones, forming a ‘large’ region of spacetime built up by many ‘small’ building blocks. This
network then gives a fine grained amplitude map by summing over the bulk degrees of freedom and
keeping the fine grained boundary data, where so far no approximation has been employed. While
this finer amplitude map contains the entire dynamical information, it is also defined on a larger
Hilbert space than the previous one. In order to relate this new amplitude map back to the original
one and thus define a renormalization group flow for the tensor / the amplitude map, the boundary
cannot be left unaffected: one has to define an embedding map, embedding (or rather blocking)
the highly fine grained state back into a Hilbert space assigned to a coarser boundary18. Thus, we
can compare the amplitude maps, i.e. the dynamics, before and after the coarse graining, which
one could interpret as different (relative) ‘scales’. Tensor network renormalization fits nicely into
these ideas, since it provides a clear method to compute the embedding maps: the singular value
decomposition applied to the tensor(s), i.e. the ingredients carrying the dynamics of the system,
rearranges the degrees of freedom into an orthogonal basis, ordered in their significance by the size
of their associated singular value. Therefore, the embedding maps here are essentially convenient
variable redefinitions together with a cut–off, the bond dimension, truncating the less important
degrees of freedom.

Therefore, we would like to stress again the crucial difference between the embedding maps
obtained via tensor network renormalization (TNR) and e.g. the kinematical embedding maps in
loop quantum gravity. In TNR the embedding maps themselves are computed from the amplitude
maps, i.e. the tensors. Since these amplitude maps define the dynamics of the system, this implies
that the so obtained embedding maps are constructed consistent with the dynamics, here explicitly
explaining how the effective degrees of freedom on a ‘larger’ scale arise from the degrees of freedom
on a ‘smaller’ scale. As a consequence, the non–triviality of the cylindrical consistency conditions
for dynamical embedding maps becomes apparent in chapter 7 [88]: on the one hand, one has to
determine the embedding maps consistent with the dynamics, i.e. the amplitude maps, relating
the (partially ordered) boundary Hilbert spaces up to the continuum. Yet on the other hand, one
requires the amplitude maps to be cylindrically consistent, i.e. it should not matter whether one
evaluates a state on the coarse boundary with the coarse amplitude map or whether one embeds
the coarse state into a finer boundary (Hilbert space) and then evaluates it with the finer amplitude
map. The vital (and very difficult) feature here is that both embedding and amplitude maps have
to be mutually consistent with one another.

As already emphasized above, these consistency conditions are very difficult to realize, unless
one has solved the dynamics of the continuum theory already and can ‘pull it back’ onto the
discretisation. Indeed, this is a challenge very similar to perfect discretisations [41–43], which aim
at constructing a discretisation without breaking diffeomorphism symmetry. In both cases, the
idea is to start with a theory, here a particular choice of amplitude maps given by a spin foam
model, that is generically not cylindrically consistent, but can be iteratively improved via coarse
graining techniques. Concretely, one constructs improved amplitude maps by combining finer
ones and dynamically embedding / blocking them back into the previous boundary Hilbert space.
Hence, one may wonder whether one can find positive indications that cylindrical consistency can
be achieved, e.g. via TNR in the results of [87]. Similar to other coarse graining approaches, e.g.
in [43], we observe that the renormalization group flow converges and ceases in a fixed point, where
fixed point means that the tensors, the amplitude maps, are not changed under the coarse graining
procedure. Indeed, since in TNR the embedding maps are directly computed from the amplitude
maps, on the fixed points both the amplitude and the embedding maps do not change under further

18It may turn out that the previous / initial Hilbert space is just a subspace of the ‘full’ Hilbert space assigned to that
boundary. This actually occurs e.g. in the quantum group spin nets [87]: The initial model has the restriction
that only channels (j, j∗) are excited, while under coarse graining (depending on the initial data) also channels
(j, j′) with j′ 6= j∗ get (and stay) excited. Just restricting to channels (j, j∗) under coarse graining would be too
limited. In principle, one can also permit more general initial data with channels (j, j′) excited.
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8.4 Embedding maps as time evolution

coarse graining transformations, thus they perfectly satisfy the cylindrical consistency conditions.
Then, if we interpret the embedding maps again as time evolution maps, they also realize the path
independence condition and act as projectors onto the ‘fixed point theory’.

Actually, these features are not surprising, since the found (non–trivial) fixed points in [87]
all resemble topological field theories. This fact of the fixed points can be read off from the
singular value decomposition: In the specific tensor network algorithm used in [87], the singular
value decomposition is employed to split the 4–valent tensors into two 3–valent ones; the SVD
itself can then be understood as a variable redefinition performed in a symmetry preserving way,
retaining an interpretation of the new variables as SU(2)k representations. On the fixed points of
the coarse graining procedure, one realizes that the system actually possesses only a finite number
of degrees of freedom, recognizable in the finite number of non–vanishing singular values, which are
additionally equal to one. Therefore, these embedding maps clearly satisfy the projector conditions.
Combining these properties with the local interactions of the tensors implies that these fixed points
describe topological theories. In fact, cylindrical consistency conditions can always be satisfied for
topological theories as also discussed in chapter 7, [88]. As already mentioned this is used in the
construction of the BF vacuum in (2+1)D loop quantum gravity in [175].

8.4.3 How to (possibly) get propagating degrees of freedom

Despite these encouraging examples and the rich fixed point structure found in [87], we are well
aware of the fact that gravity in 4D is not topological and one requires a way to arrive at a theory
with propagating degrees of freedom under coarse graining. The frequently uttered route away
from these topological theories is to tune the system towards a second order phase transition: at
such a transition, one expects that infinitely many degrees of freedom become relevant (or can
be reorganized in a non–local way). In a standard lattice approach (with a background lattice
constant) one would understand this as a diverging correlation length19.

The observation that infinitely many degrees of freedom are relevant at the phase transition is
in clear conflict with the truncation necessary in tensor network renormalization. To illustrate this
issue and why this method necessarily has to break down at the phase transition, let us discuss
the situation in quantum group spin nets. Note that these examinations are preliminary and were
presented in [164], yet a much more careful analysis of the phase transitions of the systems studied
in [87] is required.

Despite the preliminary status of the analysis, one can make two clear observations: The first
observation is that the system requires significantly more iterations for the coarse graining procedure
to converge to the fixed point the closer it is fine–tuned towards the phase transition. This behaviour
becomes visible if one plots a singular value over the number of iterations that can distinguish the
two phases meeting at the transition: The closer the system is tuned towards the transition the
longer the singular value remains (almost) constant, forming a ‘plateau’, before either flowing to
one or zero depending on to which topological theory the system flows to (see also [164] for a plot).
The reason why this has to happen can be drawn from the list of non–vanishing singular values, i.e.
the number of relevant degrees of freedom, whose size quickly exceeds the computationally feasible
bond dimension, where additionally the singular values slowly decrease in size. This immediately
poses an issue to the truncation scheme, which can only provide a reasonable approximation if
only irrelevant degrees of freedom are dropped. To determine whether a degree of freedom is
irrelevant, the most important criterion is the size of its associated singular value compared to
the most important degrees of freedom, e.g. if a singular value is several orders of magnitude
smaller than the largest one. Additionally, it is advisable not to neglect the relative sizes of the
smallest singular value kept and the largest truncated one. If these are very close together, one

19The correlation function in a spin system between two spins separated by the distance r usually falls off exponen-
tially with − r

ξ
, where ξ is the correlation length. At a second order phase transition ξ →∞, which implies that

all spins of the system become correlated.

265



8 Discussion

would actually truncate a degree of freedom of similar significance as the kept one. Indeed, if
both these conditions are satisfied during the whole coarse graining process, the result is consistent
under increasing the accuracy of the simulations, i.e. the bond dimension of the simulation. Yet
close to the phase transition, neither of these conditions can be fulfilled, in fact, no truncation
can be employed without significantly altering the dynamics of the system. Hence, the necessarily
employed truncation enforces a finite a number of degrees of freedom and together with local
embedding maps, the system eventually flows towards a topological theory. As a side remark one
can make similar observations if applying the TNR to the Ising model, which indicates that the
phase transitions for the quantum group spin net models might be of second order.

In condensed matter physics one is aware of this issue: Methods similar to TNR, e.g. the originally
invented density matrix renormalization [116,117] method or matrix product states [118,119], were
invented to (efficiently) obtain ground states for many–body quantum systems. As it turns out TNR
is a well–suited approach to identify these states for ‘gapped’ systems, i.e. systems with an energy
gap between the ground and the first excited state. However close to a second order phase transition,
this gap disappears and the tensor network description would require an infinite bond dimension
to capture the vastly spread correlation of the microscopic degrees of freedom. This behaviour is
referred to as long range entanglement, which requires different methods to efficiently describe these
states. One example is called multi–scale entanglement renormalization ansatz (MERA) [179] and
is surprisingly analogical to the described ‘evolution from nothing’ in [88]: One degree of freedom,
e.g. a qubit, is embedded via an isometry into a Hilbert space of two qubits. Then one acts with a
unitary transformation, called (dis)entangler, on this two–site state, effectively entangling the two
degrees of freedom. Afterwards the procedure is iteratively applied until the desired N–site state
is generated, which is fully characterized by the chosen isometries and disentanglers. These maps
are then specified in a variational scheme such that the expectation value of the Hamiltonian (of
the system under discussion) with respect to the just constructed state is minimized. Furthermore,
the locally applied entangling maps allow for an long–range entangled many–particle state20.

Therefore, methods that allow for long–range entanglement may provide a way to escape the
topological fixed points encountered in [87]. In fact the importance of entangling maps has been
emphasized in [88]21 as well. While tensor network renormalization does entangle the finer degrees
of freedom, this only happens in a local way: In order to consecutively apply the algorithm one
has to restrict the network to be regular (in terms of combinatorial information) and choose the
embedding maps such that the coarse lattice has the same regular combinatorics as the fine one.
Then the numerical feasibility of the algorithms dictates the introduction of a cut–off on the degrees
of freedom, which in many situations is a reasonable approximation of the dynamics (and the
partition function), but inevitably breaks down at a second order phase transition. Hence, non–
local embedding maps, e.g. similar to MERA or the radial time–evolution sketched in chapter
7, [88], may constitute the necessary improvement to study the dynamics on the phase transition.

In fact, the idea of radial time evolution in tensor networks is also related to entanglement
renormalization [180], which also relies on tensor network techniques and attempts to interpret the
network and the encoded entanglement as a background anti de Sitter (AdS) spacetime [181–183],
related to holographic renormalization [184]. Even though this idea may appear to be fitting for
gravitational theories, it may not be suitable for a dynamical theory of gravity, where one rather
expects that the dynamical variables of the tensor network encode the geometric degrees of freedom,
which encode a geometry in the boundary state. If one can extract this geometric information from
this state, one should be able to fully reconstruct the geometry in the bulk.

20In condensed matter, this construction scheme is usually seen from the opposite point of view: one starts with an
N–site state, where the N sites are entangled on different scales. The (dis)entanglers then remove short–range
entanglement between two sites, which is considered not to be universal.

21There we particularly discuss the case of trivial refining maps, e.g. 1–4 moves in 4D Regge calculus. In that case
one can show that no new physical degrees of freedom are added but gauge degrees of freedom. Thus only refining
by these Pachner moves lead to configurations known as ‘stacked spheres’, which are flat and non–dynamical.
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9 Summary and conclusion

In this thesis we have explored the relation between discrete approaches of quantum gravity and
classical, continuous general relativity in very different situations and with very different tools,
ranging from only a few basic building blocks up to literally infinitely many. While the introduced
discretisation constitutes a useful tool to define and examine the dynamics of the quantum theory,
it is in general not unique and obscures the relation to the classical continuum theory, e.g. by
breaking diffeomorphism symmetry of general relativity [41,42], which is deeply entwined with the
dynamics of the theory. We attempt to clarify this relation by employing dynamical principles,
e.g. coarse graining procedures improving the discrete theory. As we have argued in the discussion
above, one can regard the results at the level of only a few simplices as guiding principles how to
explore the collective dynamics of many building blocks in spin foam models. Let us summarize
this line of argumentation again:

At the lowest level, namely a single simplex (or vertex amplitude), we have confirmed and
extended the results of previous asymptotic expansions in spin foam models [23, 25, 27–29, 99, 100]
in chapters 2 and 3, see also [30] and [31]: The geometric part of the amplitude oscillates as the
cosine of the discrete Regge gravity action [17, 18] associated to the simplex, constructed from
representation labels of the foam. We modified the frequently used coherent state approach [29,81,
90] to also derive the complete expansion (up to leading order), in particular the missing measure
factor, and derived the very first result of such a factor for the 4D Barrett–Crane spin foam
model [73]. In fact, this connection between spin foams and Regge calculus at the level of one
simplex is a positive direct indication that spin foam models are viable candidate quantum gravity
theories.

However, extensions of these results to larger triangulations are rare, see e.g. [78], even simple
local changes of the underlying triangulation, so–called Pachner moves [82,83], have not been com-
puted for 4D spin foam models (yet). Also the status of (broken) diffeomorphism symmetry in
spin foam models has not been sufficiently analysed, in particular with respect to the ambiguities
involved in the definition of these models. Therefore, the conjecture found in [43], stating that
discrete diffeomorphism symmetry is equivalent to discretisation independence, together with the
connection of spin foams and Regge calculus has motivated us to investigate triangulation indepen-
dence of the (linearized) Regge path integral in chapters 4 and 5, see also [59, 84], with particular
focus on the construction of a suitable path integral measure, which one might hope to be anomaly
free with respect to diffeomorphisms [51]. Furthermore, the hope is to use such a measure factor
as a ‘blueprint’ for spin foams.

In topological 3D gravity, where the classical Regge action is triangulation independent, an
almost unique path integral measure can be constructed, which is furthermore consistent with the
asymptotics of the Ponzano–Regge model [23,80]. In 4D, the situation is more complicated and also
more interesting: First of all, we show that even the linearized Regge action is not invariant under
all Pachner moves, such that full triangulation independence cannot be achieved. Secondly, even
though the calculations and Hessian matrix are strikingly similar to the 3D case, independence
under the remaining subset of moves cannot be achieved either. This is due to the appearance
of non–localities in the action, which do not factorise as a product of amplitudes associated to
(sub)simplices.

These results have several important implications: First and foremost, the (linearized) Regge
action itself must necessarily be improved in order to realize a diffeomorphism symmetry in the
discrete for any choice of boundary data. It has been known that the discrete diffeomorphism
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symmetry is only preserved if the boundary data allow for flat solutions in the bulk [44,45], yet it
surprisingly also applies to the linearized scenario. If one then attempts to improve the Regge action
by a coarse graining scheme, e.g. via Pachner moves, one obtains non–local interactions already
after one step, which complicates the consecutive application of the procedure. This indeed raises
the question whether one can invent / apply different real space renormalization techniques [115]
to spin foams that are better suited to handle non–local interactions, e.g. by using different degrees
of freedom, e.g. area–angle variables [60, 142], or allowing changes on the boundary in contrast to
Pachner moves, which leave the boundary unchanged.

Suitable tools can be found in condensed matter theory, in particular tensor network renormal-
ization [85, 86], which can be understood as a tool combining a collection of basic building blocks
into a new effective building block; the appearance of non–localities is ‘absorbed’ into the building
block itself, but is instead accompanied by an exponential growth of the boundary data under
consecutive application of this method. To solve this issue in tensor network renormalization one
identifies the relevant degrees of freedom of the systems (by a singular value decomposition), which
allows to truncate less relevant ones and to run efficient numerical simulations. In fact, this iden-
tification of relevant degrees of freedom can be understood as a variable redefinition, dynamically
relating boundary data on the fine discretisation to effective boundary data on the coarser discreti-
sation, thus serving as an embedding map. Therefore, this tool is capable of studying the effective
dynamics of the system and approximately compute the partition function and expectation values.

To test the feasibility of this approach with respect to spin foam models, we have studied it on
analogue spin foam models, so–called spin nets [37–39], which can be understood as dimensionally
reduced spin foams, defined on the quantum group SU(2)k [122,123] in chapter 6, see also [87]. Note
that these simplified models still capture the important dynamical ingredients of spin foam models,
which in principle allows for more structure (by the imposition of simplicity constraints [66]) than
in the related lattice gauge theories. Remarkably, we have uncovered a very rich, non–trivial fixed
point structure in the spin net models, which form a regular pattern at different levels k of the
quantum group, and are characterized by their excited intertwiner channels, see also [39]. Yet
in contrast to [39], each of these fixed points exhibits an extended phase (in parameter space)
due to the new parametrization of the initial data introduced in [87], which has been inspired
by so–called intertwiner models [162]. Furthermore, the theories on the fixed points show an
interesting interplay between imposing the constraints too strongly or too weakly. Yet the fixed
points themselves resemble topological theories, an accompaniment of the coarse graining scheme:
By enforcing a finite number of local interactions between the building blocks, the system naturally
flows to a topological theory. Fortunately, close to the phase transition, one realizes that more
and more degrees of freedom become relevant and the truncation scheme inevitably breaks down.
Therefore we tentatively interpret this behaviour as indications that these phase transitions are
of second order [164], which should lead to a theory with propagating degrees of freedom on the
transition.

Besides these very encouraging results for the spin foam approach, the idea of the embedding
maps relating coarser and finer boundaries can be extended further (see chapter 7 and [88]): If
these dynamical embedding maps satisfy so–called cylindrical consistency conditions, which are
well–known in loop quantum gravity [20], one can unambiguously relate any pair of boundaries to
one another. Then these tools allow us to compare states defined on different boundary Hilbert
spaces by embedding them into a common refinement, e.g. the continuum, and identify them if they
are identical (on this common refinement). In an inductive limit, one can thus consistently define
the continuum Hilbert space of this theory. For gravitational, i.e. totally constrained, theories, this
is particularly appealing, since one can then understand these embedding maps as time evolution,
which do not change the physical state of the system. In this context, the physical state is merely
represented on a different discretisation. Naturally, these are highly non–trivial conditions, which
are very difficult to satisfy. One example, in which this is realized are topological theories, e.g. the
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previously discussed fixed points of spin net models [87].

Therefore we propose how to use these embedding maps to construct a continuum theory of quan-
tum gravity in principle and approximately, e.g. by a coarse graining scheme like tensor network
renormalization. One positive example implementing this idea has already been developed in form
of the physical vacuum in (2+1)D loop quantum gravity, called the BF vacuum [175]. Of course,
3D gravity is a topological theory, but nevertheless it proves the potential of this idea. Similarly
we expect this to provide the unique Hartle–Hawking vacuum [174] of the theory by starting with
an ‘evolution from nothing’. Such a construction may require more non–local embedding maps
that allow for long range entanglement, which might be the necessary change to escape topological
theories. Again, similar tools have also been developed in condensed matter theory in the form
of the ‘multi–scale entanglement renormalization ansatz’ (MERA) [179] that might prove useful in
future research.

To conclude this thesis, we would like to emphasize that we have made substantial progress to-
wards defining a continuum / refinement limit of spin foam models and with it towards answering
the question whether spin foam models are compatible with general relativity: we have developed
new tools that help us to get a better understanding of the basic spin foam amplitudes in terms of
discrete gravity, here we get a first glimpse at the chosen measure on the space of geometries. We
demonstrate that in 4D discrete gravity, triangulation independence inevitably implies non–local
interactions and that the Regge action and spin foam models necessarily have to be improved in
order to be diffeomorphism invariant in the discrete. To effectively deal with these non–local inter-
actions, we explore coarse graining methods developed in condensed matter theory and successfully
apply them to (analogue) spin foam models, revealing a rich, interesting phase structure that in-
dicates that spin foam models might possess intriguing continuum phases, possibly equipped with
dynamics consistent with general relativity. Eventually, we extend the idea of embedding maps,
which represent the key ingredients of the coarse graining procedure, to a general consistent con-
struction scheme of the physical continuum theory from spin foam models; a ‘user guide’ how to
construct quantum spacetime.

Beyond doubt, there is still a long road ahead before we can confidently state that spin foam
models provide a dynamics consistent with general relativity. In this thesis we provide a suggestion
how this question can be investigated with positive evidence underlining the usability of the pro-
posed tools. Following this line of thought it is necessary to extend the coarse graining methods to
the full spin foam models and identify their phases. This includes computing expectation values of
observables, correlation functions etc. necessary to characterize the systems. We also feel obliged
to mention that the systems under discussion in the entirety of this thesis describe pure gravity and
in order to check consistency with general relativity also includes coupling matter to the quantum
gravity theory.

As a closing remark, let us emphasize again the importance of checking the consistency with the
classical theory: Due to the lack of experimental data and therefore a lack of guidance concerning
what a theory of quantum gravity must capture, e.g. what are the physical degrees of freedom to
quantize, several different approaches to quantum gravity have been developed, each of them with
their own premises, advantages and disadvantages. A priori the question which of these research
programs is to be favoured cannot be answered and relies heavily on personal opinion. Therefore it
is indispensable to make an effort to derive predictions, check consistency with the classical theory,
in short, establish a connection to physical reality, such that the theory can be verified or falsified.
To accomplish such a task is profoundly ambitious, yet progress might be in reach if one broadens
one’s horizon and adopts ideas developed in different fields. To be more concrete, we have been
able to investigate spin foam models in a novel way, uncovering new insights by using condensed
matter techniques; future developments may prove to be mutually beneficial. Therefore, one should
not be afraid to reach out for new methods and testable predictions, since even if the outcome is
negative, the knowledge that an approach does not work and why is a substantial contribution to
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science that should not be underestimated.
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