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Introduction

The aim of this work is to describe the motion of bodies consisting of an elastic material
that are deformed by the influence of an external electromagnetic field. In the picture
below, such an electromagnetic field is illustrated by vertical arrows.

This process is called inverse piezo-electric effect.

In the body shown on the left hand side of the next picture, the centers of positive resp.
negative charges coincide. Now suppose, the body is exposed to an external electrical
field as indicated in the picture on the right hand side. Since the positive charges are
attracted by the field’s negative pole and the negative charges are attracted by the field’s
positive pole, the body expands.
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For the description of bodies that are deformed by purely mechanical forces and undergo
temperature changes, there is a well-established physical theory, called thermoelasticity.
The deformation and the temperature development are governed by several balance laws
(conservation of mass, balance of momentum, angular momentum, and energy).

For thermoelastic processes there is a broad agreement on the physically correct setup of
these laws. The balance laws together with so-called constitutive relations, characterizing
the material the body is made of, provide a complete description of the body’s motion
and temperature development. However, it seems that there is no complete differential
geometric description of thermoelasticity. Even the rather geometric book by Marsden
and Hughes [1983] mostly restricts to the case of simple bodies, that is, bodies that are
open subsets of the Euclidean R3.

For the modeling of elastic bodies that are not only deformed by mechanical forces but
also subjected to an electromagnetic field, there exist several approaches that are not
compatible, most prominently the formulation by Ericksen [2008] in contrast to that by
Kovetz [2000]. (Steigmann [2009] claims that these formulations are equivalent, but we
will see that this is not true.)

Moreover, in the physics literature on electroelastic materials only simple bodies are
treated. Shells, i.e. bodies that only consist of a very thin layer of material (and could
thus be modeled by a hypersurface), are then approximated as simple bodies with a
thickness that tends to zero. This situation is not very satisfactory from the differential
geometric point of view.

We will base our considerations on the set of balance laws that Ericksen [2008] (see
also Steigmann [2009]) provided for simple bodies. The form of balance of energy that
Ericksen stated, can easily be generalized to bodies that are described by a Riemannian
manifold. The remaining balance laws will then be obtained by means of our Theorem
3.5.1. It states that, if balance of energy is invariant under the action of arbitrary
diffeomorphisms on the surrounding space, then this already implies the local forms
of conservation of mass, balance of momentum and angular momentum, as well as the
Doyle-Ericksen formula, which here provides a connection between the internal energy and
the deformation. Thus, Theorem 3.5.1 provides a complete set of compatible balance laws
that govern the deformation (and temperature development) of a body in a surrounding
space. Our theorem generalizes a result that can already be found in the book by Marsden
and Hughes [1983, ch. 2 Theorem 4.13] and has more recently been discussed by Kanso
et al. [2007, sec.3]. Both these earlier results only pertain to bodies that have the same
dimension as the surrounding space and do not allow the presence of electromagnetic
fields.

Usually, in works on electroelasticity the entropy inequality is used to decide, which
otherwise allowed deformations are physically admissible and which are not. It is also
employed to derive the above mentioned Doyle-Ericksen formula and restrictions to
the possible forms of constitutive relations describing the material. Unfortunately, the
opinions on the physically correct statement of the entropy inequality diverge when
electromagnetic fields are present [Ericksen, 2008; Kovetz, 2000; Hutter and Pao, 1974].
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A further problem in the formulation of an electroelastic theory on manifolds is that the
entropy inequality, as it relies on the entropy flux to be tangential to the deformed body,
is only applicable to simple bodies. For general bodies, in particular if they are subjected
to an electromagnetic field, this needs not to be the case.

In order to replace the entropy inequality from the outset, we demand that for a given
process, balance of energy is invariant under the action of arbitrary diffeomorphisms on
the surrounding space and under linear rescalings of the temperature (see Theorem 5.3.4).
This generalizes a theorem of Marsden and Hughes [1983]. This time, our result is, like
theirs, only valid for simple bodies, but it could possibly be generalized to arbitrary bodies.
Moreover, in the physics literature one usually starts with quite strong assumptions on
the form of the constitutive relations and deduces a number of further restrictions on
its form by means of the entropy inequality. By means of Theorem 5.3.4 we are able to
deduce the same restrictions using much weaker assumptions.

Finally, we shortly present the partial differential equation that governs the motion of a
simple body that is made from a Neo-electroelastic material.

In the first chapter we reproduce some basic notions and concepts of classical elasticity
theory. We explain what the deformation and the motion of a body are and give geometric
definitions of the body’s velocity and acceleration. For that purpose we have to define
the substantial derivative that provides the time derivative of a moved continuous body.

Moreover, we recall the definition of certain tensors that describe, in what way the
geometry (lengths, angles) of the body is deformed during its motion.

Furthermore we study important general aspects of balance laws.

In the second chapter we recall some basics of electrodynamics that will be needed later
on. We state Maxwell’s equations in terms of vector fields and also in terms of differential
forms. Moreover we discuss Galilei transformations as well as Galilei invariants and
introduce the notions of polarization and magnetization.

The third chapter comprises the formulation of the balance laws for electroelasticity.
We introduce the Cauchy stress tensor that provides a measure for the forces that the
deformation causes inside the body. Some of these laws are formulated at first only for
the case that the surrounding space is the Euclidean R3.

The central theorem of this chapter is Theorem 3.5.1. It provides among other things
local forms of balance of momentum and angular momentum that are also valid if the
body and the surrounding space are arbitrary Riemannian manifolds, as well as the
afore-mentioned Doyle-Ericksen formula. Since the motion of the body is governed by
balance of momentum, Theorem 3.5.1 now provides the means to determine (in principle)
the body’s motion.

In the fourth chapter we reformulate the balance laws and the Doyle-Ericksen formula
that we have obtained in the third chapter in terms of the coordinates on the undeformed
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body. This makes their study much easier.

The fifth chapter discusses certain properties of the material. These are encoded in the
so-called constitutive relations providing a connection between the exterior influences
(for example the electromagnetic field) and material quantities (for example the internal
energy).
We recall the notion of thermoelastic materials, i.e. materials for which the material
quantities only depend on the deformation and the temperature as well as their derivatives
up to a certain order. Then we cite a result of Marsden and Hughes [1983] that provides
some restrictions to the constitutive relations resulting from covariance assumptions and
balance of energy. In contrast to section 3.5 we do not consider all processes, but rather all
transformations of a given process. Next, material symmetries and in particular isotropic
materials are discussed. As particular materials the Mooney-Rivlin and Neo-Hookean
materials are considered.
Then we define thermoelectromagnetoelastic materials and deduce by means of Theorem
5.3.4 quite strong restrictions to the possible forms of constitutive relations for such
materials. This generalizes a result of Marsden and Hughes [1983] that was given for
thermoelastic materials.
After that we discuss constitutive relations for Neo-electroelastic materials, ie. for mate-
rials that can interact with an external electric field. They are defined as a generalization
of the Neo-Hookean materials that are known from classical elasticity theory.

Finally, in the sixth chapter we shortly present the partial differential equation that
governs the motion of a simple body that is made from a Neo-electroelastic material.

4



1 Geometric Setup and Basic Definitions

In this chapter we reproduce some basic notions and concepts of classical elasticity theory.
We explain what the deformation and the motion of a body are and give geometric
definitions of the body’s velocity and acceleration. For that purpose we have to define
the substantial derivative that provides the time derivative of a moved continuous body.

Moreover, we recall the definition of certain tensors that describe in what way the
geometry (length, arcs) of the body is deformed during its motion. Later on, in chapter
3, we will establish a number of balance laws, like for example balance of momentum,
that govern the body’s motion. Since all of these laws have essentially the same form, it
is convenient to study them in general. This is done in section 1.3. In anticipation of
chapter 3, we will already treat conservation of mass, for the treatment of all the other
balance laws will become easier, if conservation of mass is valid. Most of the material for
this introductory chapter is taken from Bär [2014] and Marsden and Hughes [1983].

1.1 Deformations

The body and the surrounding space are modeled by a Riemannian manifold (B, G)
and a Riemannian manifold (S, g), respectively, where dimB ≤ dimS. B respresents
the abstract deformable body, S the surrounding space. The deformation of B is then
described by an embedding:

Definition 1.1.1. A deformation of B is a C2-embedding φ : B → S. B is called ref-
erence configuration.

φ(B) represents the final, deformed state of B, without any regard of how this deformation
took place.

Now imagine that the body is deformed continuously over a certain period of time. We
can describe this situation by ”glueing together” many single deformed states in a regular
way, as is illustrated in the following picture:
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1 Geometric Setup and Basic Definitions

More formally, we define:

Definition 1.1.2. Denote by D(B) the set of all deformations of B in S, and let I ⊂ R
be an open interval. A motion of a body B in S is a curve in D(B), that is, a C2-map

φ : B × I → D(B)

(X, t) 7→ φ(X, t),

such that for each t ∈ I the map φt := φ(·, t) is a deformation.

In particular, the set Bt := φt(B) describes the state of the body at the time t.

If we keep a point X ∈ B fixed and let the time t vary, that is, defining φX(t) := φ(X, t),
we trace the motion of the single point X.

Definition 1.1.3. The material velocity is a vector field along φ, defined by

V (X, t) :=
∂φ

∂t
(X, t).

In general, the vector field Vt := V (·, t) is only a vector field along φt. If the dimensions
of B and S coincide, however, then Vt is tangential to Bt.

We now assign a velocity field vt to the deformed body in the obvious way:

Definition 1.1.4. The spatial velocity of a motion φ is the map vt : Bt → TS, defined
by

vt := Vt ◦ φ−1
t ,

that is, if X and x are related by φt(X) = x, then vt(x) = Vt(X).

6



1.1 Deformations

If the dimensions of B and S coincide, then vt is a vector field on Bt. Otherwise it is just
a vector field along the inclusion Bt ⊂ S.
To express physical laws like Newton’s second law of motion we also need a notion of
acceleration.

Definition 1.1.5. The material acceleration of a motion is a vector field along φ
that is given by the covariant derivative of V along the map φ,

A(X, t) :=
∇S

∂t
V (X, t),

where ∇S denotes the connection on (S, g).
The spatial acceleration of a motion is the map at : Bt → TS, defined by

at := At ◦ φ−1
t .

Like the velocity Vt, the acceleration At := A(·, t) is in general not tangential to Bt, but
only a vector field along φt. Moreover, at is a vector field along the inclusion Bt ⊂ S.
Only if the dimensions of B and S coincide, at is tangential to Bt.

The substantial derivative

We would like to express at directly by vt.
For that purpose we compute ∇∂tWt for an arbitrary vector field Wt along φt. We define

B̃ :=
⋃
t∈I

(
Bt × {t}

)
⊂ S × I =: S̃.

The tangent space of S̃ can be decomposed into

T(x,t)S̃ = TxS ⊕ TtI, (1.1)

and we define a metric on S̃ by gS̃ := g ⊕ dt⊗ dt.

For X ∈ B fix, the velocity field of the curve (see the picture below)

γ : I → B̃
t 7→ (φ(X, t), t)

7



1 Geometric Setup and Basic Definitions

is given by (vt,
∂
∂t) and provides a vector field that is tangential to B̃. 1

Theorem 1.1.6 (Bär [2014, sec. 1.1])
Let Wt be a vector field along φt. Define wt := Wt ◦ φ−1

t . Then

∇S

∂t
Wt = ∇S̃(vt,∂t)wt,

where ∇S̃ denotes the connection on (S̃, gS̃).

Proof. Let wt := Wt ◦φ−1
t , assume X ∈ B and x = φt(X). Then the vector fields (wt,∂t)

and (wt,0) are only defined along B̃, but so is (vt,∂t), thus the following computation
makes sense.

On the one hand, since ∂t is constant,

∇S̃(vt,∂t) (wt,∂t)
∣∣∣
(x,t)

= ∇S̃(vt,∂t) (wt,0)
∣∣∣
(x,t)

+∇S̃(vt,∂t) (0,∂t)
∣∣∣
(x,t)

=

Å
∇S̃(vt,∂t)wt,0

ã ∣∣∣
(x,t)

.

1By contrast, the vector field (at,∂t) is only for dimB = dimS tangential to B̃. If dimB < dimS, then

it is only a vector field along the inclusion B̃ ⊂ S̃.

8



1.1 Deformations

On the other hand, (vt,∂t) is the velocity field of the curve γ and hence

∇S̃(vt,∂t) (wt,∂t)
∣∣∣
(x,t)

=
∇S̃

∂t
(wt,∂t)

∣∣∣
(x,t)

=
∇S̃

∂t
(wt,0)

∣∣∣
(x,t)

+
∇S̃

∂t
(0,∂t)

∣∣∣
(x,t)

=

Ç
∇S

∂t
wt,0

å ∣∣∣
(x,t)

=

Ç
∇S

∂t
Wt(X),0

å
,

where we have used again that ∂t is constant.

Comparing both expressions for ∇S̃(vt,∂t) (wt,∂t)
∣∣∣
(x,t)

, we conclude that

∇S

∂t
Wt = ∇S̃(vt,∂t)wt.

If the dimensions of the body and the surrounding space coincide, then not only (vt,∂t)
is tangential to B̃, but (vt,0) and (0,∂t) are tangential to B̃, too. Then we are allowed

to decompose ∇S̃(vt,∂t)wt into

∇S̃(vt,∂t)wt = ∇S̃(vt,0)wt +∇S̃(0,∂t)wt. (1.2)

Now we can use the decomposition (1.1) and obtain

∇S̃(vt,0)wt = ∇Svtwt

∇S̃(0,∂t)wt =
∇wt

∂t
.

Thus,

∇S

∂t
Wt =

∇wt

∂t
+∇Svtwt.

If dim B < dim S, then (vt,0) and (0,∂t) are not necessarily tangential to B̃. Thus the de-

composition (1.2) does not make sense, since the single summands∇S̃(vt,0)wt and∇S̃(0,∂t)wt

are not defined. In this case, we use the orthogonal projection tan : T(x,t)S̃ → T(x,t)B̃
onto the tangent space T(x,t)B̃ and write

∇S

∂t
Wt = ∇S̃(vt,∂t)wt

= ∇S̃tan(vt,∂t)wt

= ∇S̃tan(vt,0)wt +∇S̃tan(0,∂t)wt.

9



1 Geometric Setup and Basic Definitions

Definition 1.1.7. The vector field

ẇt := ∇S̃(vt,∂t)wt = ∇S̃tan(0,∂t)wt +∇S̃tan(vt,0)wt.

is called substantial (or material) derivative of wt. If the dimensions of B and S
coincide, then the projections are redundant and

ẇt =
∇wt

∂t
+∇Svtwt.

Thus, we have in particular

at =
∇S

∂t
Vt ◦ φ−1

t = v̇t.

Let us consider the directional derivative ∂(vt,∂t)f of a function f ∈ C∞
Ä‹B,Rä. This

derivative is well-defined, since (vt,∂t) is tangential to B̃. If the dimensions of B and
S coincide, then (vt,0) and (0,∂t) are tangential to B̃, too, and we are allowed to
decompose ∂(vt,∂t)f into

∂(vt,∂t)f = ∂(vt,0)f + ∂(0,∂t)f. (1.3)

Again, we can use the decomposition (1.1) and obtain

∂(vt,0)f = g(gradxf,vt)

∂(0,∂t)f =
∂f

∂t
,

where gradxf denotes the spatial gradient of f , that is, gradxf is tangential to Bt.
Thus,

∂(vt,∂t)f =
∂f

∂t
+ g(gradxf,vt). (1.4)

If dim B < dim S, then the decomposition (1.3) does not make sense, since the single
summands ∂(vt,0)f and ∂(0,∂t)f are not defined. Thus, we use again the orthogonal

projection tan : T(x,t)S̃ → T(x,t)B̃ onto the tangent space T(x,t)B̃ and write

∂(vt,∂t)f = ∂tan(vt,∂t)f

= ∂tan(vt,0)f + ∂tan(0,∂t)f.

Definition 1.1.8. For any function f ∈ C∞
Ä
B̃,R

ä
,

ḟ := ∂(vt,∂t)f = ∂tan(0,∂t)f + ∂tan(vt,0)f

10



1.1 Deformations

is called substantial derivative of f . If the dimensions of B and S coincide, then this
simplifies to

ḟ =
∂f

∂t
+ g(gradxf,vt).

Lemma 1.1.9
The substantial derivative satisfies:

1) For any functions f, h ∈ C∞(B̃,R)

·
f̄ · h = ḟ h+ f ḣ.

2) Let Wt and Zt be vector fields along φt. Define wt := Wt ◦φ−1
t and zt := Zt ◦φ−1

t .
Then

·˝�g(wt, zt) = g(ẇt, zt) + g(wt, żt).

Proof.

1) This follows immediately from the definition of the substantial derivative.

·
f̄ · h = ∂(vt,∂t)(f · h)

= (∂(vt,∂t)f) · h+ f · (∂(vt,∂t)h)

= ḟ h+ f ḣ.

2) A direct computation yields

·˝�g(wt, zt) = ∂(vt,∂t)g(wt, zt)

= ∂(vt,∂t)g
S̃(wt ⊕ 0, zt ⊕ 0)

= gS̃
Ä
∇S̃(vt,∂t)(wt ⊕ 0), zt ⊕ 0

ä
+ gS̃

Ä
wt ⊕ 0,∇S̃(vt,∂t)(zt ⊕ 0)

ä
= gS̃

Ä
(∇S̃(vt,∂t)wt)⊕ 0, zt ⊕ 0

ä
+ gS̃

Ä
wt ⊕ 0, (∇S̃(vt,∂t)zt)⊕ 0

ä
= g
Ä
∇S̃(vt,∂t)wt, zt

ä
+ g
Ä
wt,∇S̃(vt,∂t)zt

ä
= g(ẇt, zt) + g(wt, żt).

11



1 Geometric Setup and Basic Definitions

Remark 1.1.10. Assume that f : B̃ → R is differentiable. Let us define a corresponding
function F : B × I → R by

F (X, t) := f(φ(X, t), t).

Let ψ : B × I → B̃ be given by (X, t)
ψ7→ (φ(X, t), t). Then for x = φt(X),

ḟ(x, t) = ∂(vt,∂t)f
∣∣∣
(x,t)

= df
∣∣∣
(x,t)

(vt,∂t)

=

ï
dF
∣∣∣
ψ−1(x,t)

◦ dψ−1
∣∣∣
(x,t)

ò
(vt,∂t)

= dF
∣∣∣
(X,t)

(∂t)

=
∂F

∂t
(X, t).

Thus, the time derivatives of F and f are related by

∂F

∂t
= ḟ ◦ ψ. (1.5)

Notation 1.1.11. In accordance with standard notation of elasticity, points in B or
other geometrical expressions concerning B are denoted by capital letters, whereas quan-
tities concerning S are denoted by small letters. Bold letters are used for vector and
tensors fields, calligraphic letters for tensor fields coming from elasticity theory. Note
that a list of symbols can be found in the index at the end of this work.

Occasionally we will consider bodies for which the substantial derivatives and later the
equations governing the motion of the body are especially simple:

Definition 1.1.12. A simple body is the closure Ω̄ of a bounded, open, connected
subset Ω ⊂ R3.

1.2 Deformation Tensors

The contents of the first part of this section are taken from Marsden and Hughes [1983].

Definition 1.2.1. Let φ : B → S be a deformation. The deformation gradient F of
φ is given by the differential of φ:

F |X := dφ|X .

12



1.2 Deformation Tensors

Remark 1.2.2. Let {XA} and {xa} denote local coordinates on B and S, respectively.
Then in components,

FaA(X) =
∂φa

∂XA
(X).

The coordinates of the transpose, FT , are given byÄ
FT
äA

a(x) = gab(x)FbB(X)GAB(X),

where x = φ(X).

For the deformation φ : B → R3 of a simple body B,

φ(x+ h)− φ(x) = F(h) + o(h)

and hence

‖φ(x+ h)− φ(x)‖2 = ‖F(h)‖2 + o
Ä
‖h‖2

ä
=
¨
h,FTF(h)

∂
+ o
Ä
‖h‖2

ä
.

Thus, we expect FTF to be a measure for local changes of the body’s form. Hence we
make the following definition.

Definition 1.2.3. The tensor

C
∣∣∣
x

: TXB → TXB

V 7→ C|X(V ) := (F |X)TF |X(V ).

is called deformation or (right Cauchy-Green) strain tensor.

Theorem 1.2.4 (Marsden and Hughes [1983, ch.1, Prop. 3.6])
C is symmetric and positive definite and in particular invertible.

Proof. For V ,W ∈ TXB

G(C(V ),W ) = G
Ä
FT F(V ),W

ä
= G

Ä
V ,FT F(W )

ä
= G(V ,C(W )),

so C is symmetric. Since G(C(V ),V ) = g(F(V ),F(V )) ≥ 0, C is non-negative.

Assume now G(C(V ),V ) = 0. Then g(F(V ),F(V )) = 0. Since φ is an embedding, F
is one-to-one, and the last equation implies that V must be zero.

13
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Remark 1.2.5. C can also be defined, if φ is not an embedding, but only smooth. Then
C will still be symmetric, but it will only be non-negative and thus not invertible in
general.

Remark 1.2.6 (Marsden and Hughes [1983], ch.1, Prop. 4.13).
The deformation tensor is related to the metric g by C[ = φ∗g:

C[(W1,W2) = G(C(W1),W2) = G(FTF(W1),W2) = g(F(W1),F(W2))

= (φ∗g)(W1,W2).

If {XA} and {xa} denote local coordinate systems on B and S, respectively, then in
components,

(C[|X)AB = gab|x(F|X)aA (F|X)bB = gab|x
∂φa

∂XA

∂φb

∂XB
.

Recall that the length of a piecewise C1-curve γ : [a, b]→ B is given by

l(γ) =

b∫
a

∥∥γ′(s)∥∥ ds.

Theorem 1.2.7 (Marsden and Hughes [1983, ch.1, Prop. 3.16])
Let γ be a C1-curve in B and let φ be a deformation of B in S. Let γ̃ = φ ◦ γ be the
image of γ under φ. Then

l (γ̃) =

b∫
a

√
G
Ä
γ′(s),C (γ′(s))

ä
ds.

In particular, the length of γ̃ only depends on the deformation tensor C and γ.

Proof. By the chain rule, γ̃′(s) = F |γ(s) (γ′(s)). Thus,∣∣γ̃′(s)∣∣2 = g
Ä
F
(
γ′(s)

)
,F

(
γ′(s)

) ä
= G

Ä
γ′(s),FTF

(
γ′(s)

) ä
= G

Ä
γ′(s),C

(
γ′(s)

) ä
.

This yields

l (γ̃) =

b∫
a

√
G
Ä
γ′(s),C (γ′(s))

ä
ds.
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1.2 Deformation Tensors

We have just seen that for some curve γ on B and some fixed deformation φ the defor-
mation tensor C relates the length of γ with the length of φ(γ). The following tensor
describes how the angle between the images of tangent vectors on B changes during a
motion φ : B × I → S.

Definition 1.2.8. The tensor D|(X,t) : TXB → TXB, defined by

D|(X,t) :=
1

2

∂C
∂t
|(X,t)

is called material rate of deformation tensor.

Theorem 1.2.9 (Marsden and Hughes [1983, ch.1, Prop. 3.30])
D is a measure for the geodesic deviation caused by the deformation φt:
Let W1,W2 ∈ TXB and wi(t) := F |(X,t)(Wi), i = 1, 2. Then

d

dt
g
Ä
w1(t),w2(t)

ä
= G

Ä
W1, 2D|(X,t)(W2)

ä
.

That is, D measures the change of the angle between w1(t) and w2(t) with time.

Proof. Let W1,W2 ∈ TXB and wi(t) := F |(X,t)(Wi), i = 1, 2. Then

d

dt
g
Ä
w1(t),w2(t)

ä
=

d

dt
g
Ä
F |(X,t)(W1),F |(X,t)(W2)

ä
=

d

dt
G
Ä
W1, (F |(X,t))TF |(X,t)(W2)

ä
=

d

dt
G(W1,C|(X,t)(W2))

= G
Ä
W1, 2D|(X,t)(W2)

ä
.

We would like to express D directly in terms of the motion.

Theorem 1.2.10 (Marsden and Hughes [1983, ch. 1, Prop. 5.14])
The rate of deformation tensor satisfies

D[ =
1

2

∂

∂t

Ä
φ∗t g
ä

=
1

2
φ∗t

(
(∇Sv)[ +

î
(∇Sv)[

óT)
.

To prove this theorem we need to compute the time derivative of F t := dφt.
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Lemma 1.2.11
Let us define F t := dφt. Then

d

dt
F t = (∇Sv) ◦F t.

Proof. Assume thatW ∈ TXB. Let γ : (−a, a)→ B be a curve on B, such that γ̇(0) = W .
Then

dF t

dt
(W ) =

∇
∂t

(F t(W ))

=
∇
∂t

(dφt(W ))

=
∇
∂t

Å
d

ds
(φt ◦ γ)|s=0

ã
=
∇
∂s

Å
∂

∂t
(φt ◦ γ)

ã
|s=0

=
∇
∂s

(Vt ◦ γ(s)) |s=0

= ∇WV
= ∇Sdφt(W )v.

Here, ∇WV denotes the covariant derivative of V in the direction of W along the map
φt. Thus, d

dt F t = (∇Sv) ◦F t.

Proof of Theorem 1.2.10. By Remark 1.2.6,

2D[ =
∂

∂t
C[ =

∂

∂t

Ä
φ∗t g
ä
.

Let W1,W2 ∈ TB. Then

∂

∂t

Ä
φ∗t g
ä
(W1,W2) =

∂

∂t
(g(F t(W1),F t(W2)))

= g

Å
dF t

dt
(W1),F t(W2)

ã
+ g

Å
F(W1),

dF t

dt
(W2)

ã
Employing Lemma 1.2.11 we obtain

∂

∂t

Ä
φ∗t g
ä
(W1,W2) = g

Ä
∇Sdφt(W1)v, dφt(W2)

ä
+ g
Ä
dφt(W1),∇Sdφt(W2)v

ä
= φ∗t (∇Sv)[(W1,W2) + φ∗t

î
(∇Sv)[

óT
(W1,W2).
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1.2 Deformation Tensors

Definition 1.2.12. We define the spatial rate of deformation tensor d : T B̃ → T B̃
by

d[ := φ∗D[ =
1

2
Lvg.

Our next aim is to express D directly in terms of the motion. To do this, we decompose
the spatial velocity into its tangent and normal part (with respect to the metric g)

TxS = TxBt ⊕NxBt
v(x, t) = v‖(x, t) + v⊥(x, t).

The proof of the following theorem was originally given by Marsden and Hughes [1983],
but recently a more elaborate proof was given by Grabs [2014].

Theorem 1.2.13 (see Marsden and Hughes [1983, ch.1, Box 5.1, p.92])
The spatial rate of deformation tensor satisfies

d[ =
1

2

ÅÄ
∇Btv‖

ä[
+
[Ä
∇Btv‖

ä[]T − 2 g(v⊥, II(·, ·))
ã
,

where II denotes the second fundamental form of Bt in S.

Proof. By Theorem 1.2.10

D[ =
1

2
φ∗t

(
(∇Sv)[ +

î
(∇Sv)[

óT)
.

We decompose the velocity into its tangential and normal part, v = v‖ + v⊥. For all
W ,Z ∈ TXB,Ä

φ∗t (∇Sv‖)[
ä

(W ,Z) = φ∗t g(∇S(·)v‖, ·)(W ,Z)

= g(∇Sdφt(W )v‖, dφt(Z))

= g
(
∇Btdφt(W )v‖ + II(dφt(W ),v‖), dφt(Z)

)
= g

(
∇Btdφt(W )v‖, dφt(Z)

)
,

where we have used in the last step that the image of II is contained in NxBt, while
dφt(Z) is contained in TxBt. Moreover, since v⊥ is perpendicular to dφt(Z),Ä

φ∗t (∇Sv⊥)[
ä

(W ,Z) = g
Ä
∇Sdφt(W )v⊥, dφt(Z)

ä
= −g

Ä
v⊥,∇Sdφt(W )dφt(Z)

ä
= −g

Ä
v⊥, II(dφt(W ), dφt(Z))

ä
.
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1 Geometric Setup and Basic Definitions

Thus, φ∗t
Ä
(∇Sv)[

ä
: TXB × TXB → R is given by

φ∗t
Ä
(∇Sv)[

ä
= φ∗t

Ä
(∇Btv‖)[ − g(v⊥, II(·, ·))

ä
Hence,

d[ =
1

2

(
(∇Btv‖)[ − g(v⊥, II(·, ·)) +

î
(∇Btv‖)[ − g(v⊥, II(·, ·))

óT)
=

1

2

(
(∇Btv‖)[ +

î
(∇Btv‖)[

óT − 2 g(v⊥, II(·, ·))
)
.

Notation 1.2.14.
Let S be a (p, q) tensor and T be a (r, s) tensor, where p+ q = r + s. Then we define
the scalar product of S and T as the contraction of S] and T [ on all entries. That is, if
E1, . . . , Em is a basis of TXB and E1, . . . , Em is the corresponding dual basis, then

〈S,T 〉 := S](EA1 , . . . , EAp , EB1 , . . . , EBq)T [(EA1 , . . . , EAp , EB1 , . . . , EBq).

In components,

〈S,T 〉 = SA1...ApB1...BqTA1...ApB1...Bq .

This definition is independent of the choice of the basis E1, . . . , Em.
If E1, . . . , Em is an orthonormal basis, then we may also write

〈S,T 〉 = S[(EA1 , . . . , EAp , EB1 , . . . , EBq)T [(EA1 , . . . , EAp , EB1 , . . . , EBq),

or in components,

〈S,T 〉 =
m∑

A1,...,Bs=1

SA1...ApB1...BqTA1...ArB1...Bs .

Moreover, if S and T are (1, 1) tensors, then 〈S,T 〉 coincides with

tr(S ◦ T ) =
m∑
A=1

g(S ◦ T (EA), EA).

If Vt and Wt are vector fields along the deformation φt and x = φt(X), then

〈Vt,Wt〉(X) = (Vt)
a (Wt)a = gab(x) (Vt)

a(X) (Wt)
b(X) = gx(Vt(X),Wt(X)).

For vector fields v and w on S

〈v,w〉 = vawa = gab v
awb = g(v,w).
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1.3 The Master Balance Law

1.3 The Master Balance Law

1.3.1 The Spatial Master Balance Law

Let φt : B → S be a time-dependent deformation. The metric g of S can be restricted to
a metric gt on Bt, which induces the volume element volt on Bt.
For each subset U of B we define Ut := φt(U). We will call a set U ⊂ B nice if it is open
and relatively compact with piecewise C1-boundary.

The motion of B is governed by a system of partial differential equations that consists of
balance laws including the acting forces and exchanged energies. All of these balance
laws are essentially of the following form:

Definition 1.3.1 (Marsden and Hughes [1983]). Let a, b : Bt × I → R be scalar
functions on Bt and c be a scalar function on the unit tangent bundle of Bt × I.

We say that a, b, and c satisfy the (spatial) master balance law, if for any nice set
U ⊂ B

i) the integrals in iii) exist,

ii)
∫
Ut

avolt is differentiable in t,

iii) and
d

dt

∫
Ut

avolt =

∫
Ut

bvolt +

∫
∂Ut

c
Ä
x, t,n

ä
vol∂Ut , (1.6)

where n is the unit outward normal field to ∂Ut.

Remark 1.3.2. Sloppily said, the master balance law states that the rate of increase
of a over the volume Ut is equal to sources b inside of Ut inducing the growth of a and
some inflow c through the boundary of Ut.

If the body is isolated (which means that b = 0 and that c = 0 on ∂Ut), then a is constant
in time.

The following theorem is one of the most fundamental theorems of elasticity theory. It
can be found, for example, in the book of [Marsden and Hughes, 1983, ch.2, Th. 1.9].
Here, we state it in a form that is similar to the one presented in Bär [2014].

Let St ⊂ TBt be the unit tangent bundle. Similar to the construction of B̃ in section 1.1,
we define the sphere bundle SB̃ over B̃ by

SB̃ :=
⋃
t∈I

(
St × {t}

)
→
⋃
t∈I

(
Bt × {t}

)
= B̃

19
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Theorem 1.3.3 (Cauchy’s Theorem, Bär [2014, Satz 2.2.1])
Let a, b : B̃ → R be C2 functions and assume that c : SB̃ → R is C2. Moreover, assume
that a, b, and c satisfy the master balance law, which means for all nice sets U b B

d

dt

∫
Ut

a(x, t) volt =

∫
Ut

b(x, t) volt +

∫
∂Ut

c(x, t,n) vol∂Ut ,

where n is the unit outward normal to ∂Ut. Then for every (x, t) ∈ B̃ the function c is
on TxBt the restriction of a linear function. In particular, there is a unique vector field c
on ∂Ut, such that

c(x, t,n) = gt(c(x, t),n).

Corollary 1.3.4
a, b, and c as defined in Theorem 1.3.3 satisfy the spatial master balance law if and only
if

d

dt

∫
Ut

avolt =

∫
Ut

bvolt +

∫
∂Ut

gt(c(x, t),n) vol∂Ut . (1.7)

To find a local form form of the master balance law, we have to pull the derivative d
dt into

the integral
∫
Ut
a(x, t) volt, keeping in mind that the domain of integration also depends

on t. The Transport Theorem below will explain how this can be done.

The Transport Theorem

Let VOL be the volume element induced on B by G. Let φt : B → S be a time-dependent
configuration, and for each X ∈ B define as usual x ∈ Bt by x = φt(X).

Definition 1.3.5. We define J : B × I → R by

φ∗t (volt|x) = J (X, t) VOL|X .

Then, for every integrable function f : Bt → R and U ⊂ B∫
Ut

f volt =

∫
U

(f ◦ φt)J (·, t) VOL. (1.8)

By the transformation formula from integration theory,

J (X, t) = det(I ◦ dφt
∣∣∣
X

),
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1.3 The Master Balance Law

where I : TxBt → TXB is an arbitrary isometry, such that I ◦ dφt
∣∣∣
X

: TXB → TXB is

orientation-preserving.

Again, we decompose the spatial velocity into its tangential and normal part

TxS = TxBt ⊕NxBt
v(x, t) = v‖(x, t) + v⊥(x, t).

Let II be the second fundamental form of Bt in S and H = 1
m

∑m
a=1 II(ea, ea) be the

mean curvature field, where m := dimBt. Moreover, denote by divt the divergence of
vector fields on Bt.

Theorem 1.3.6 (Bär [2014, Prop. 1.3.1])
In the situation above, we have

∂J
∂t

= J ·
Ä
divt

Ä
v‖
ä
−m · g (v⊥,H)

ä
◦ φt.

Proof. We consider the vector bundle tan ψ∗TS having at the point (X, t) the fiber
TxBt and assign to it the connection ‹∇ := tan ◦ψ∗∇S , where as in Remark 1.1.10,
ψ : B × I → B̃ is given by (X, t) 7→ (φ(X, t), t).
We fix a point (X0, t) ∈ B̃ and choose an isometry A : Tφt(X0)Bt0 → TXB with the correct
orientation. Let It : Tφt(X)Bt → TXB be the parallel transport along the curve t 7→ φt(X)

with respect to the connection ‹∇. Then at the point (X, t0),

1

J
∂J
∂t

= det
Ä
(It0 ◦ dφt0)−1

ä
· ∂
∂t

∣∣∣
t=t0

det (It ◦ dφt)

= tr

Å
(It0 ◦ dφt0)−1 ◦

Å
∂

∂t

∣∣∣
t=t0

(It ◦ dφt)
ãã

= tr

Å
(dφt0)−1 ◦A−1 ◦

Å
∂

∂t

∣∣∣
t=t0

(It ◦ dφt)
ãã

= tr

Å
(dφt0)−1 ◦

Å
∂

∂t

∣∣∣
t=t0

(A−1 ◦ It ◦ dφt)
ãã

= tr

(
(dφt0)−1 ◦

‹∇
∂t

∣∣∣
t=t0

dφt

)

= tr

Å
(dφt0)−1 ◦ ‹∇ ∂φt

∂t

∣∣∣
t=t0

ã
= tr

Ä
(dφt0)−1 ◦ ‹∇V ä

= tr

Å
(dφt0)−1 ◦

Ä
∇Sv

ä
‖ ◦ dφt0

ã
= tr

ÅÄ
∇Sv

ä
‖

ã
◦ φt0 . (1)
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Let ea, a = 1, . . . ,m, be a local orthonormal frame for TBt. Then

tr

ÅÄ
∇Sv

ä
‖

ã
◦ φt0 =

m∑
a=1

g
Ä
∇Seav, ea

ä
◦ φt0

=
m∑
a=1

î
g
Ä
∇Seav‖, ea

ä
+ g
Ä
∇Seav⊥, ea

äó
◦ φt0 (2)

Now we compute

m∑
a=1

g
Ä
∇Seav‖, ea

ä
=

m∑
a=1

Ä
g
Ä
∇Bteav‖, ea

ä
+ g
Ä
II(ea,v‖), ea

ää
= divt v‖ (3)

and

m∑
a=1

g
Ä
∇Seav⊥, ea

ä
=

m∑
a=1

Ä
∂eag(v⊥, ea)− g(v⊥,∇Seaea)

ä
= −

m∑
a=1

g
Ä
v⊥,∇Bteaea + II(ea, ea)

ä
= −mg(v⊥,H). (4)

where we have used in the last step that
m∑
a=1

II(ea, ea) = mH. Thus, by inserting (3) and

(4) into (2) and by use of (1), we obtain

∂J
∂t

= J ·
Ä
divt v‖ −m · g (v⊥,H)

ä
◦ φt0 .

With the knowledge of ∂J
∂t we immediately obtain the variation of the volume of the

deformed body.

Corollary 1.3.7 (Bär [2014, Satz 1.3.2 and Bem. 1.3.3])
Assume that B is compact and that φ : B×I → S is a motion. Then the volume variation
of B is given by

d

dt
vol(Bt) =

∫
Bt

Ä
divt v‖ −m · g (v⊥,H)

ä
volt.
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Proof. Theorem 1.3.6 implies that for each nice subset U of B and its image Ut,

d

dt
vol(Bt) =

d

dt

∫
Bt

volt

=
d

dt

∫
B

J (·, t) VOL

=

∫
B

∂J
∂t

VOL

=

∫
B

îÄ
divt

Ä
v‖
ä
−m · g (v⊥,H)

ä
◦ φt
ó
J (·, t) VOL

=

∫
Bt

Ä
divt

Ä
v‖
ä
−m · g (v⊥,H)

ä
volt.

Theorem 1.3.8 (Transport Theorem, [see Bär, 2014, Kor. 1.3.4])
Let f : B̃ → R be smooth and assume that each f(·, t) is compactly supported. Then for
the image Ut := φt(B) of each nice set U ⊂ B,

d

dt

∫
Ut

f(x, t) volt =

∫
Ut

Ä
ḟ + f · divt v‖ −mf · g (v⊥,H)

ä
volt.

In particular, if dimB = dimS, then

d

dt

∫
Ut

f(x, t) volt =

∫
Ut

Ä
ḟ + f · divt v

ä
volt

=

∫
Ut

Å
∂f

∂t
+ divt(fv)

ã
volt.

Proof.
1) By (1.8) and Theorem 1.3.6,

d

dt

∫
Ut

f(x, t) volt(x) =
d

dt

∫
U

f (φt(X), t) · J (X, t) VOL(X)

=

∫
U

∂

∂t

(
f (φt(X), t) · J (X, t)

)
VOL(X)

=

∫
U

Ä
ḟ + f · divt

Ä
v‖
ä
−mf · g (v⊥,H)

ä
(φt(X)) · J (X, t) VOL(X)
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=

∫
Ut

Ä
ḟ + f · divt

Ä
v‖
ä
−mf · g (v⊥,H)

ä
(x) volt(x).

2) If dimB = dimS, then v = v‖ while v⊥ = 0. In this case

ḟ + f · divt(v) =
∂f

∂t
+ g(gradf,v) + f · divt(v) =

∂f

∂t
+ divt(f · v).

Now we can use the Transport Theorem (Theorem 1.3.8) to obtain a local form of the
Master Balance Law:

Theorem 1.3.9 (Spatial Localization Theorem)
Let a, b : B̃ → R be scalar functions and c a vector field on B̃. Assume that a and c are
C1 and b is C0. Then a, b, and c satisfy the master balance law if and only if

ȧ+ a · divt(v‖)−mag(v⊥,H) = b+ divtc.

In particular, if dimB = dimS, then

∂a

∂t
+ divt(av) = b+ divtc.

Proof. By the Transport Theorem (1.3.8), the master balance law is equivalent to∫
Ut

[
ȧ+ a · divt(v‖)−ma · g (v⊥,H)

]
volt =

∫
Ut

bvolt +

∫
Ut

divtcvolt

for the image Ut of any nice U ⊂ B. Thus, the first asserted formula follows immediately.

If the dimensions of B and S coincide, then v = v‖ and v⊥ is zero. In this case

ȧ+ a · divt(v‖)−ma · g (v⊥,H) =
∂a

∂t
+ g(grad a,v) + a · divt(v)

=
∂a

∂t
+ divt(av).

1.3.2 The Material Master Balance Law

As we have already seen in Remark 1.1.10, it is much easier to compute time derivatives
on the undeformed body. Hence we would like to transform the spatial Master Balance
Law to a balance law that is formulated in terms of functions and vector fields defined
on B × I. That is, we would like to replace

d

dt

∫
Ut

avolt =

∫
Ut

bvolt +

∫
∂Ut

g(c,n) volt (1.9)
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by a balance law

d

dt

∫
U

AVOL =

∫
U

BVOL +

∫
∂U

G(C,N) VOL∂U

on B, where N is the unit normal vector field on ∂U , and A, B, C are somehow connected
with a, b, c, where we still have to determine how exactly they are related.

Because of the relation volt(x) = J (X, t) VOL(X) we can easily see that we could just
define

A(X, t) := J (X, t) a(x, t) and B(X, t) := J(X, t) b(x, t),

where x = φt(X). Then∫
Ut

a(x, t) volt(x) =

∫
U

a(φ(X, t), t)J (X, t) VOL(X) =

∫
U

A(X, t) VOL(X)

and analogously∫
Ut

b(x, t) volt(x) =

∫
U

B(X, t) VOL(X).

But how do we define C in such a way that the last term in (1.9) keeps its form ? We
will see that c and C have to be related by a Piola transformation.

Recall that each φt : B → Bt is a diffeomorphism and that the pull-back of a vector field
w on Bt to a vector field on B is given by

φ∗twt := dφ−1
t ◦wt ◦ φt.

Definition 1.3.10. The vector field

Wt := J (·, t) · (φ∗twt)

is called the Piola transformation of w.

Lemma 1.3.11 (Marsden and Hughes [1983, ch.1, Th. 7.19])
A vector field Wt on B is the Piola transformation of a vector field wt on Bt if and only
if

φ∗t (iwtvolt) = iWtVOL.
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Proof. For each vector field wt that is tangential to Bt,

φ∗t (iwtvolt) = iφ∗twt (φ∗tvolt)

= iφ∗twt (J (·, t) ·VOL)

= iJ (·,t)·φ∗twt
VOL.

Thus, Wt = J (·, t) · (φ∗twt) is equivalent to φ∗t (iwtvolt) = iWtVOL.

Theorem 1.3.12 (Piola Identity, [Marsden and Hughes, 1983, ch. 1, Th. 7.20])
If Wt is the Piola transformation of wt, then

DIV(Wt) = J (·, t) · (divt(wt) ◦ φt).

Proof. For each nice U ⊂ B, ∫
U

DIV(Wt) VOL =

∫
∂U

iWtVOL (1)

and ∫
U

J (·, t) · (divt(wt) ◦ φt) VOL =

∫
Ut

divt(wt) volt

=

∫
∂Ut

iwtvolt

=

∫
∂U

φ∗t (iwtvolt) (2)

If Wt is the Piola transformation of wt, then by Lemma 1.3.11 the right hand sides of
(1) and (2) coincide. Since U is arbitrary, we conclude that

DIV(Wt) = J (·, t) · (divt(wt) ◦ φt).

As an immediate consequence of Theorem 1.3.12 we obtain

Theorem 1.3.13
Let a, b : Bt × I → R be scalar functions and let ct be a vector field on Bt.
Let A,B : B × I → R be scalar functions and let Ct be a vector field on B. Assume that
A, B, Ct and a, b, ct are related by

A(X, t) = J (X, t) a(x, t)

B(X, t) = J (X, t) b(x, t)

Ct(X) = J (X, t)F−1(X, t)ct(x), i.e., Ct is the Piola transformation of ct.
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1.3 The Master Balance Law

Then a, b, ct satisfy the spatial master balance law if and only if A, B, Ct satisfy

d

dt

∫
U

AVOL =

∫
U

BVOL +

∫
∂U

〈Ct,N〉VOL∂U .

Remark 1.3.14. Marsden and Hughes [1983] define the scalar functions A and B
without using the factor J and thus give a slightly different version of this theorem (see
their Prop. 1.6 in ch.2).

Proof. As we have already seen,

d

dt

∫
Ut

avolt =
d

dt

∫
U

AVOL,

∫
Ut

bvolt =

∫
U

BVOL.

Moreover, by Theorem 1.3.12,∫
∂U

〈Ct,N〉VOL∂U =

∫
U

DIVCt VOL =

∫
U

J · (divt ct) ◦ φt VOL

=

∫
Ut

divt ct volt =

∫
∂Ut

〈ct,n〉vol∂Ut .

Thus we define the notion of a master balance law on B as follows:

Definition 1.3.15. Let A,B : B× I → R be scalar functions and Ct a vector field on B.
We say that A, B, and Ct satisfy the material master balance law, if for any nice
set U ∈ B

i) the integrals in the following equation exist,

ii)
∫
U

AVOL is differentiable in t,

iii) and
d

dt

∫
U

AVOL =

∫
U

BVOL +

∫
∂U

〈Ct,N〉VOL∂U ,

where N is the unit outward normal to ∂U .

The local version of the Material Master Balance Law is easily found:
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Theorem 1.3.16 (Material Localization Theorem)
Let A,B : B × I → R be scalar functions and Ct a vector field on B. Assume that A and

B are C0, ∂A
∂t exists, and Ct is C1. Then A, B, and Ct satisfy the master balance law if

and only if
∂A

∂t
= B + DIVCt. (1.10)

Proof. A direct differentiation under the integral sign and the Theorem of Stokes provide
the stated equation.

Remark 1.3.17. The form of the Material Localization Theorem, given by Theorem
1.3.16, slightly differs from the one given by Marsden and Hughes [1983] (see their Th.
1.5 in ch.2).

1.3.3 Consequences of Conservation of Mass

If conservation of mass is given, then the Transport Theorem and the Localization
Theorem can be considerably simplified.

Assume we are given a smooth mass density ρ : B̃ → R.

Definition 1.3.18. The mass M of a nice set Ut ⊂ Bt is given by the integral of the
mass density

M(Ut) =

∫
Ut

ρ(x, t) volt.

We say that ρ obeys conservation of mass, if for all nice Ut ⊂ Bt,

d

dt

∫
Ut

ρ(x, t) volt = 0.

Conservation of mass states that the mass of any nice subset of U ⊂ B is constant in
time.

We get at once from the spatial localization theorem (1.3.9) the local form of conservation
of mass:

Theorem 1.3.19
Conservation of mass is equivalent to the continuity equation

ρ̇+ ρdivt(v‖)−mρg(v⊥,H) = 0,
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1.3 The Master Balance Law

where v denotes the body’s spatial velocity, m is the body’s dimension and H denotes the
mean curvature field.
In particular, if dimB = dimS, then conservation of mass is equivalent to

∂ρ

∂t
+ div (ρv) = 0.

It is now convenient to refer the quantities a and b in the spatial master balance law
(Corollary 1.3.4) to the mass density ρ, that is, to consider instead of

d

dt

∫
Ut

a(x, t) volt =

∫
Ut

b(x, t) volt +

∫
∂Ut

〈ct(x, t),n〉vol∂Ut

the balance law

d

dt

∫
Ut

a(x, t)ρ(x, t) volt =

∫
Ut

b(x, t)ρ(x, t) volt +

∫
∂Ut

〈ct(x, t),n〉vol∂Ut .

Then the assumption of conservation of mass simplifies the Transport and the Localization
Theorem considerably. For simple bodies this has already been discussed by Marsden
and Hughes [1983, p. 124].

Theorem 1.3.20 (Simplified Transport Theorem)
Let f : B̃ → R be smooth and assume that each f(·, t) is compactly supported. If
conservation of mass holds, then

d

dt

∫
Ut

f(x, t) ρ(x, t) volt =

∫
Ut

ḟ(x, t) ρ(x, t) volt.

Proof. By the Transport Theorem (Theorem 1.3.8) and the product rule for the substan-
tial derivative,

d

dt

∫
Ut

f ρvolt =

∫
Ut

Ä
ḟ ρ+ f ρ̇+ f ρ

î
divt(v‖)−mg (v⊥,H)

óä
volt

=

∫
Ut

ḟ ρvolt +

∫
Ut

f ·
î
ρ̇+ ρ divt(v‖)−mρg (v⊥,H)

ó
volt.

If conservation of mass is given, then the second integral in the last line is equal to zero,
and we obtain,

d

dt

∫
Ut

f ρvolt =

∫
Ut

ḟ ρvolt.
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Now we immediately obtain a simpler version of the Spatial Localization Theorem (1.3.9).
A similar proof as the one given for Theorem 1.3.9 shows:

Theorem 1.3.21 (Simplified Spatial Localization Theorem)
Let a, b : Bt × I → R be scalar functions and ct a vector field on Bt. Assume that a and
ct are C1 and that b is C0. Assume that conservation of mass holds.

Then a, b, and ct satisfy the master balance law if and only if

ρ ȧ = ρ b+ divtct.

Definition 1.3.22. We say, that conservation of mass is valid for the subset U of the
undeformed body B if

d

dt

∫
U

ρref(X, t) VOL = 0,

where ρref is the mass density on B.

The local form of conservation of mass on the undeformed body B is simply given by

ρref = const.in t.

By equation (1.8), conservation of mass on Ut is equivalent to balance of mass on U , if
and only if

ρref = J ρ. (1.11)

In the Material Master Balance Law we also refer the quantities A and B to the reference
mass density ρref:

d

dt

∫
U

Aρref VOL =

∫
U

B ρref VOL +

∫
∂U

〈Ct,N〉VOL∂U . (1.12)

If mass is conserved, then the localization of this equation is simply

ρref
∂A

∂t
= ρrefB + DIV(Ct). (1.13)

To connect the quantities a and b with the quantities A and B, respectively, we now
define instead of the relations that were used in Theorem 1.3.13,

A(X, t) := a(x, t) and B(X, t) := b(x, t).

Then, using ρJ = ρref, we obtain
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1.3 The Master Balance Law

Theorem 1.3.23
Let a, b : Bt × I → R be scalar functions and let ct be a vector field on Bt.
Let A,B : B × I → R be scalar functions and let Ct be a vector field on B. Assume that
A, B, Ct and a, b, ct are related by

A(X, t) = a(x, t)

B(X, t) = b(x, t)

Ct(X) = J (X, t)F−1(X, t)ct(x), i.e., Ct is the Piola transformation of ct.

Then a, b, ct satisfy the spatial master balance law in the form

d

dt

∫
Ut

a(x, t)ρ(x, t) volt =

∫
Ut

b(x, t)ρ(x, t) volt +

∫
∂Ut

〈ct(x, t),n〉vol∂Ut ,

if and only if A, B, Ct satisfy

d

dt

∫
U

Aρref VOL =

∫
U

B ρref VOL +

∫
∂U

〈Ct,N〉VOL∂U

Remark 1.3.24. Nevertheless, there are quantities, for example the density of electric
charges, for which it does not make much sense to refer them to the mass density. If
these occur in a balance law on Bt, it is better to use the relations given in Theorem
1.3.13 to define the corresponding quantities on B. Otherwise the law on B will have a
slightly different form than the one on Bt.
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2 Electrodynamics

While in the previous chapter, we discussed the geometrical aspects required for a proper
formulation of elasticity, in this chapter we state some basics of electrodynamics that
we will need later on. We will adhere to the texts of Kovetz [2000], Hehl and Obukhov
[2003, 2006] and Frankel [2006]. A more fundamental description of Maxwell’s equations
can be found in Fleisch [2008].

In the first two sections we state the usual form of Maxwell’s equations in terms of vector
fields and discuss Galilei transformations as well as Galilei invariants. In this context
we recall the definitions of the conductive current density, the electromotive and the
magnetomotive intensity, and the Lorentz force. We also introduce the flux derivative
and state Maxwell’s equations in terms of Galilei invariants.

In the third section Maxwell’s equations are written in terms of differential forms. This
formulation can also be used, if the surrounding space is not the Euclidean R3. In section
2.4 the notions of polarization and magnetization are introduced. This is done in the
same way as they are treated in the book by Kovetz [2000], but here they are expressed
in terms of forms. Kovetz’ definition also works on arbitrary Riemannian manifolds; the
usual definition using dipole and magnetic moments (see e.g. Jackson [2002]) only makes
sense in the Euclidean R3. Moreover, we recall Poynting’s Theorem.

Section 2.5 covers the definition of the electromagnetic quantities as vector fields and
forms along some deformation map φt : B → Bt ⊂ S.

2.1 Maxwell’s equations

In this section we assume that S is the Euclidean R3. Nevertheless, for later purposes it
will be beneficial, to distinguish S and its tangent space.

As in section 1.1, we define

B̃ :=
⋃
t∈I

(
Bt × {t}

)
⊂ S × I =: S̃.

Let ρe : S̃ → R be a charge density describing a 3-dimensional charge distribution and
u : S̃ → TS the velocity density of charge carriers. Then the current density is the vector
field j : S̃ → TS, defined by j := ρe u. We say that balance of charge is satisfied, if for
each compact region Ω ⊂ R3

d

dt

∫
Ω

ρe(x, t) volΩ = −
∫
∂Ω

g(j,n) vol∂Ω, (Balance of charge)
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2 Electrodynamics

where n denotes the (outer) unit normal vector field on ∂Ω.
Let d : S̃ → TS be the electric flux density. Then by Gauss’ Law, for any compact region
Ω ⊂ R3, ∫

∂Ω

〈d,n〉vol∂Ω =

∫
Ω

ρe volΩ. (Gauss’ Law)

Let us denote by b : S̃ → TS the magnetic flux density. Then the conservation law of
magnetic flux states that for each compact oriented region Ω ⊂ R3,∫

∂Ω

〈b,n〉vol∂Ω = 0. (Conservation of magnetic flux)

Moreover, let e : S̃ → TS be the electric field. By Faraday’s Induction Law, for each
compact oriented surface Σ,∫

∂Σ

〈e, ξ〉vol∂Σ = −
∫
Σ

¨∂b
∂t
,n
∂

volΣ. (Faraday’s Induction Law)

Here, ξ denotes the unit tangent vector field to ∂Σ. Furthermore, let us denote by
h : S̃ → TS the magnetic field. Ampère’s Law states that for each compact 2-sided
surface Σ with prescribed normal n,∫

∂Σ

〈h, ξ〉vol∂Σ =

∫
Σ

〈j,n〉volΣ +

∫
Σ

¨∂d
∂t
,n
∂

volΣ. (Ampère’s Law)

It is important to note that the balance of charge as well as Maxwell’s equations are
three-dimensional concepts and that the electromagnetic fields are in a sense a property
of the surrounding space. If one wants to formulate balance of charge for a hypersurface
or a one-dimensional body, one has to work with distributions. But here we will not
need to do that. Our present aim is just the statement of Maxwell’s equations for the
surrounding space.
Later on, we are only interested in what happens inside the deformed body. Thus, we
restrict the charge density and the electromagnetic fields to B̃ and demand that the maps
ρe : B̃ → R, u : B̃ → TS, j : B̃ → TS as well as d : B̃ → TS, b : B̃ → TS, e : B̃ → TS
and h : B̃ → TS are C2. Note that the flux density j is in general not tangential to Bt,
we will discuss that later on.
Then the local form of Maxwell’s equations states that on B̃

divd = ρe (Gauss’ Law)

div b = 0 (Conservation of magnetic flux)

rot e = −∂b
∂t

(Faraday’s Induction Law)

rot h = j +
∂d

∂t
. (Ampère’s Law)
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The local expression for the balance of charge is given by

∂ρe
∂t

+ div j = 0. (Balance of charge)

Remark 2.1.1. In Notation 1.1.11 we have stipulated to denote all quantities that are
defined on Bt or B̃ by small letters, whereas quantities that are defined on B or B × I are
denoted by capital letters. d, b, e and h are vector fields on the surrounding space and
can be evaluated along B̃. Thus, in contrast to the classical literature on electrodynamics,
we denote all the electromagnetic quantities by small letters.

2.2 Galilei-invariants and the Lorentz force

In this section we recall some material on Galilei transformations. Maxwell’s equations
are Lorentz invariant. But in the following chapters we will use notions and concepts from
thermodynamics. Unfortunately, it seems that a generally accepted theory of relativistic
thermodynamics does not (yet) exist (see for instance Nakamura [2012] and Requardt
[2008]).
Moreover, we will need in the proof of Theorem 3.5.1 the splitting of the energy density
into the internal energy density and the (macroscopic) kinetic energy. But relativistically,
this splitting is not covariant.
Thus, we will always restrict our considerations to motions with velocities that are small
compared to the speed of light.

We continue to assume that S is the Euclidean R3. Let Σ′ be a coordinate system that
moves with some constant small (compared to the speed of light) velocity w : S → TS
with respect to a given coordinate system Σ. Then the coordinates x′ and x of some
point of S with respect to the systems Σ′ and Σ, respectively, are related by a Galilei
transformation, usually stated as

x′ = x−w t. (2.1)

Velocities v′ and v that are measured in the primed and unprimed system are therefore
connected by

v′ = v −w. (2.2)

On a deformed body Bt we can at each tangent space TxBt consider a different Galilei
transformation with the velocity wt(x), demanding that these Galilei transformations
depend smoothly on the point x, in other words, demanding that wt : Bt → TS is C∞.
Then velocities in the primed and in the unprimed system are related by

v′(x′, t) = v(x, t)−w(x, t). (2.3)

The charge density, the electric flux density, and the magnetic flux density are invari-
ant under Galilei transformations, that is, ρ′e(x

′, t) = ρe(x, t), d
′(x′, t) = d(x, t), and
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b′(x′, t) = b(x, t), whereas the current density, the electric field e, and the magnetic field
h are not invariant. Recall that for charge carriers with the density ρe moving with the
velocity u : B̃ → TS with respect to Σ, the current density j : B̃ → TS is given by

j = ρe u.

The current densities in the primed and the unprimed system are related by

j′ = ρ′e u
′ = ρe (u−w) = j − ρew.

Assume now that the material moves with the spatial velocity field v : B̃ → TS. We
would like to construct a current density that is Galilei-invariant. The obvious way to do
is to take at each point the current density as it is seen in the system that moves along
with the material in that point. That is, in the co-moved system Σ′ the material has the
velocity v′ = 0. Hence, the velocity of Σ′ with respect to Σ is given by w = v. Thus, we
define the convective current density j̄ : B̃ → TS as

j̄ := j − ρe v.

j̄ is Galilei-invariant. The convective current density can be seen as a more fundamental
notion than the current density j: It gives the current as it is seen from the material’s
point of view. Thus, j̄(·, t) is by definition tangential to Bt, otherwise the charge carriers
would leave the material. The current density j(·, t) = j̄(·, t) + ρe(·, t)v(·, t), however, is
in general not tangential to Bt. It describes the motion of the material’s charge carriers
from the point of view of an external observer, and for this observer the velocity of their
motion inside the material and the motion of the material itself superimpose.

Recall that the electric fields as seen in the primed and the unprimed system, resp., are
connected by

e′ = e+w × b.

Again, we would like to define a quantity that is Galilei-invariant. If the material moves
with the velocity field v, then we take at each point of the material the electric field as
it is seen in the co-moved frame, in which the material is at rest. Then w = v and we
define the electromotive intensity ē : S̃ → TS as

ē := e+ v × b.

Similarly, the magnetic fields in the primed and the unprimed system, resp., are connected
by

h′ = h−w × d,

and we can construct a Galilei-invariant version h̄ : S̃ → TS of h, the magnetomotive
intensity, by

h̄ := h− v × d.
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Up to now we have not specified how electromagnetic fields act upon charged particles
moving with the velocity u. This connection is provided by the Lorentz force. The
Lorentz force fL : B̃ → TS is defined as

fL = ρe e
′′,

where e′′ : B̃ → T S̃ is now the electric field as it is seen from the charge carrier’s point
of view, that is, in a frame Σ′′ that moves with respect to Σ with the velocity w = u.
Thus, e′′ = e+ u× b. Using j = ρe u, we obtain

fL = ρe e+ j × b.

This definition of the Lorentz force is Galilei-invariant. We might also express fL com-
pletely in terms of Galilei-invariants (i.e. give the Lorentz force as it is seen from the
material’s point of view) and write

fL = ρe ē+ j̄ × b.

Of course, one could also exchange the roles of the primed and the unprimed system and
write

x′ = x+w t. (2.4)

Then the velocities, current densities and electric fields measured in the primed and the
unprimed system are related by

v′ = v +w (2.5)

j′ = j + ρew

e′ = e−w × b.

Nevertheless, the definition of the Galilean invariants j̄, ē and fL stays the same: If we
observe the current density and the electric field from the co-moved system, in which
the velocity of the material is v′ = 0, then the velocity of this system is w = −v, and
we obtain again that j̄ = j − ρe v and ē = e + v × b. If we observe the electric field
from the co-moved system Σ′′ of charge carriers moving with the velocity field u, then
the velocity of Σ′′ with respect to Σ is given by w = −u, and we obtain once more that
fL = ρe e+ j × b.

It will turn out to be convenient to express the vectorial form of Maxwell’s equations
completely in terms of the Galilei-invariants d, b, ē, h̄, as well as ρe and j̄:

divd = ρe (Gauss’s Law)

div b = 0 (Conservation of magnetic flux)

rot ē = −
∗
b (Faraday’s Induction Law)

rot h̄ = j̄ +
∗
d. (Ampère’s Law)
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Here, the star denotes the flux derivative [Kovetz, 2000, see sections 25 and 54]. For

any vector field b on S̃, its flux derivative
∗
b : S̃ → TS is defined by

d

dt

∫
∂Ut

〈b,n〉vol∂Ut =

∫
∂Ut

〈
∗
b,n〉vol∂Ut .

It can be shown that
∗
b is given by

∗
b =

∂b

∂t
+ (div b)v − rot (v × b),

where v denotes the spatial velocity of the deformation. Using the identity

rot (v × b) = (div b)v − (div v)b+∇Sbv −∇Svb,

we see that
∗
b and the material derivative ḃ are related by

∗
b = ḃ+ (div v) b−∇Sbv. (2.6)

2.3 Maxwell’s Equations in terms of differential forms

If the body and the surrounding space are arbitrary manifolds, then we regard the
electromagnetic fields as differential forms.

Let us denote the volume form of S by vol and the induced volume form on Bt by volt.
We can think of the charge density as a 3-form σe on B̃, related to the scalar charge
density ρe : S̃ → R by σe(·, t) = ρe(·, t) vol.

The current density can be considered either as a C1 map j : S̃ → Ω2S, or as vector field
j : S̃ → TS, where both notions are related by j = ijvol.

Moreover, the electric flux density and the electric field are regarded as maps d : S̃ → Ω2S
and e : S̃ → Ω1S, respectively. The magnetic flux density and the magnetic field can
be taken as maps b : S̃ → Ω2S and h : S̃ → Ω1S, respectively. (This distinction in the
mathematical structure is usually ignored in the standard vectorial formulation.)

As in section 2.1 we restrict the charge density and the electromagnetic fields to B̃ and
demand that these restrictions are C2.

Then Maxwell’s equations state that on B̃,

dd = σe (Gauss’ Law)

db = 0 (Conservation of magnetic flux)

de = −∂b
∂t

(Faraday’s Induction Law)

dh = j +
∂d

∂t
. (Ampère’s Law)
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The electric flux density and the magnetic flux density are related with the electric and
the magnetic field via the so-called aether relations

d = ε0 ∗ e

h =
1

µ0
∗ b, (Aether relations)

where ∗ denotes the Hodge star operator. ε0 and µ0 are constants, called the vacuum
permittivity and the vacuum permeability, respectively. The local expression for the
balance of charge is given by

∂σe
∂t

+ dj = 0. (Balance of charge)

In the usual vectorial formulation, the electric flux density and the magnetic flux density
are related with the electric and the magnetic field via

d = ε0 e

h =
1

µ0
b. (Aether relations)

This is an extremely awkward situation, since on the level of forms it is obvious that d and
e or b and h, respectively, are completely different objects with a different transformation
behavior. This blurring of their differences is the source of much distress in physical
texts, in particular, when Maxwell’s equations are to be transferred to the undeformed
body.

Assume once more that the material moves with the velocity field v. Then we define the
electromotive intensity as the C2 map e : S̃ → Ω1S that is given by

ē := e− ivb.

while the magnetomotive intensity, seen as a C2 map h̄ : S̃ → Ω1S is defined as

h̄ := h + ivd.

Both these objects are Galilei-invariant. The Lorentz force fL : B̃ → Ω1S is defined by

fL = ρe e− ijb.

or in terms of Galilei-invariants, by

fL = ρe ē− ij̄b.
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2.4 Polarization and Magnetization

In most texts on electrodynamics, balance of charge is seen as a consequence of Gauss’
Law and Ampère’s Law. Alternatively, one might take it as a postulate and deduce from
it the laws of Gauss and Ampère under the additional assumption of covariance. [Kovetz,
2000] Then the charge density σe is seen as the source of the electric flux density d, while
the current density j and the temporal change of the electric flux density generate the
magnetic field h. We adopt the second point of view to define the polarization and the
magnetization of the material:

Experiments have shown that many materials react to an external electromagnetic field
by setting up charge and current distributions. These contributions are usually called
bound charge and current distributions and are denoted by (σe)b and jb, respectively.
But the bound charges and currents not necessarily constitute the total charge that is
contained in the material or the total current passing through it. We call the other
charges and currents free and denote them by (σe)f and jf . Thus the total charge density
and the total current density are given by

σe = (σe)b + (σe)f and j = jb + jf ,

respectively. We now assume that not only the total charges, but also the bound charges
(and hence the free charges, too) are conserved (see [Hehl and Obukhov, 2003]):

∂(σe)b
∂t

+ djb = 0. (2.7)

The total charge σe gave rise to the potential d. Similarly, (σe)b generates the potential
db : B̃ → Ω2S, that is,

ddb = (σe)b. (Gauss Law for bound charges)

By Ampère’s Law, currents and temporal changes of the electric flux density generate a
magnetic field. The bound current density jb and temporal changes of the electric flux
density generated by bound charges induce a magnetic field hb : B̃ → Ω1S, that is,

dhb = jb +
∂db
∂t

(Ampère’s Law for bound charges)

The negative of the bound part of d is called polarization and denoted by p, the bound
part of h is called magnetization and denoted by m,

db =: −p
hb =: m.

We may now define the parts of d and h that are generated by the free charges and
currents. Using the aether relations, we obtain

df := d− db = ε0 ∗ e + p,

hf := h− hb =
1

µ0
∗ b−m. (2.8)
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2.4 Polarization and Magnetization

Then we can write Maxwell’s equations in a way that only uses the free charges and
currents

ddf = (σe)f

db = 0

de = −∂b
∂t

dhf = jf +
∂df
∂t

. (2.9)

but we have to complement them by the relations (2.8).
It is common practice to omit the index f in the relations (2.9), but here we will not do
so.

The polarization is a Galilei-invariant, the magnetization is not. If the body moves with
the velocity v, then we construct a Galilei-invariant version of m by

m̄ := m− ivp.

If S is the Euclidean R3, then we can also give a vectorial formulation of (2.9): Expressed
solely in terms of free charges and currents, Maxwell’s equations take on the form

divdf = (ρe)f (Gauss’ Law)

div b = 0 (Conservation of magnetic flux)

rot e = −∂b
∂t

(Faraday’s Induction Law)

rot hf = jf +
∂df
∂t

. (Ampère’s Law)

The connections between the electric flux density and the polarization and between the
magnetic flux density and the magnetization are then given by

df = ε0 e+ p

hf =
1

µ0
b−m.

Again, this is an awkward situation, since e and p as well as b and m have completely
different properties which can be easily seen if they are considered as differential forms.
This constitutes an extremely annoying source of confusion in the literature. If, for
example (in the case of a simple body), Maxwell’s equations are pulled back to B × I,
then some authors (e.g. Dorfmann and Ogden [2005]) wonder what the correct trans-
formation of p might be. Shall it behave like d, whose counterpart D̃ on B × I is given
by D̃ = J F−1 d, or rather like e, whose counterpart ‹E is given by ‹E = FT (e) ? Of
course, when seen as forms, it is clear that p must behave like d, so its counterpart ‹P on
B × I must be defined by ‹P = J F−1p.
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2 Electrodynamics

Remark 2.4.1. In most textbooks on electrodynamics (e.g. in Jackson [2002]) one finds
another definition of the polarization and the magnetization:

Usually, the polarization is introduced as the dipole moment density: For a charge
distribution consisting of point charges q1, . . . , qn that are placed at the points x1, . . . , xn,

the dipole moment is defined as the vector

n∑
i=1

qi xi.

For example, the charge distribution in the
alongside picture has dipole moment 0.

In the case of a continuous charge distribution, the dipole moment is given by∫
ρ(x, t)xvol.

The integrand of this expression is then called polarization.

In a similar way the magnetization is defined as the density of the magnetic moment,
which is given by ∫

x× j vol.

These definitions of p and m require the surrounding space to be the Euclidean R3.
The definitions we gave in section 2.4, however, are also valid on arbitrary Riemannian
manifolds. If S is the Euclidean R3, both definitions coincide (see Kovetz [2000], p.77).

Lemma 2.4.2 (Poynting’s Theorem)
Let S be the Euclidean R3. Then all solutions (ρe, j,d, b, e,h) of Maxwell’s equations
satisfy

〈j̄, ē〉 = −〈ē,
∗
d〉 − 〈h̄,

∗
b〉 − div(ē× h̄).

For the bound charges and currents alone,

〈j̄b, ē〉 = 〈ē, ∗p〉 − 〈m̄,
∗
b〉 − div(ē× m̄).

Proof. By inserting the laws of Faraday and Ampère, rot ē = −
∗
b and rot h̄ = j̄ +

∗
d,

into the identity

−div(ē× h̄) = −〈rot ē, h̄〉+ 〈ē, rot h̄〉,
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2.5 The electromagnetic fields along the map φt

we immediately obtain the first of the asserted formulas. By inserting the laws of Faraday

and Ampère for bound charges instead, rot ē = −
∗
b and rot m̄ = j̄b −

∗
p, we obtain the

second one.

2.5 The electromagnetic fields along the map φt

In chapter 3, we will establish balance laws (like for instance balance of momentum and
energy) that govern the motion of B. Of course, these laws contain electromagnetic
quantities. For example, balance of momentum contains the Lorentz force fL, and balance
of energy contains the term (j̄, ē), where (·, ·) denotes the dual pairing of vector fields
and 1-forms. As we have already seen in section 1.3.2, it is advisable to express these
laws in terms of the coordinates on the undeformed body. Thus, we will, starting in
chapter 4, regard the electromagnetic quantities as vector fields or forms along the map
φt : B → Bt ⊂ S, defining

ρ̃e(X, t) := J (X, t) ρe(x, t)

J(X, t) := J (X, t) j(x, t)

E(X, t) := e(x, t)

B(X, t) := b(x, t)

P(X, t) := J (X, t) p(x, t).

Then we obtain

J (j, e) = (J ,E), (2.10)

which will be helpful in chapter 4 for expressing balance of energy in terms of the
coordinates on B. Moreover, the vector fields or forms along the map φt : B → Bt ⊂ S,
defined by

J̄ := J − ρ̃e V
Ē := E− iVB

FL := ρ̃e E + iJB

satisfy the following relations, that we will need in chapter 4:

J̄(X, t) = J (X, t) j̄(x, t) (2.11)

Ē(X, t) = ē(x, t) (2.12)

FL(X, t) = J (X, t) fL(x, t), (2.13)

and

J (j̄, ē) = (J̄ , Ē). (2.14)
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3 The Balance Laws on Bt

The motion of B is governed by a system of partial differential equations that consists of
the conservation of mass and the balance laws for momentum, angular momentum, and
energy.

For simple elastic bodies that are not exposed to an electromagnetic field, there is a
broad agreement on how these balance laws must be formulated (see for example Liu
[2002] or Chadwick [1999]). Marsden and Hughes [1983] even discuss the balance laws
for the case that B and S are manifolds, but they mostly restrict to the case, where the
body has the same dimension as the surrounding space.

For electromagnetic fields alone, that is, without any matter that is moved or deformed
under the influence of these fields, there are also statements on balance of momentum
and energy. [Griffiths, 2008]

But for the modeling of elastic bodies that are subjected to an electromagnetic field,
there exist several approaches that are not compatible, most prominently the formulation
by Ericksen [2008] in contrast to that by Kovetz [2000]. Steigmann [2009] claims that
these formulations are equivalent, but we will see that this is not true (see Remark 3.5.3).
Other formulations that also involve so-called surface couples, can be found in Eringen
and Maugin [1990], Hutter et al. [2006], Hutter and Pao [1974], and Maugin [1988].

Moreover, in the physics literature on electroelastic materials only simple bodies are
treated. Shells, i.e. bodies that only consist of a very thin layer of material (and could
thus be modeled by a hypersurface), are then approximated as simple bodies with a
thickness that tends to zero.

Usually, in works on electroelasticity the entropy inequality is used to decide, which
otherwise allowed deformations are physically admissible and which are not. It is also
employed to derive the Doyle-Ericksen formula that provides an important connection
between the free energy density of the material and the deformation. Unfortunately,
the opinions on the physically correct statement of the entropy inequality diverge when
electromagnetic fields are present [Ericksen, 2008; Kovetz, 2000; Hutter and Pao, 1974].
A further problem in the formulation of an electroelastic theory on manifolds is that the
entropy inequality, as it relies on the entropy flux to be tangential to the deformed body,
is only applicable to simple bodies. For general bodies, in particular if they are subjected
to an electromagnetic field, this needs not to be the case.

If the balance laws are to be formulated for general bodies, one has to decide upon
a setup that is physically acceptable and at the same time can be carried over to a
manifold. We will base our considerations on the set of balance laws that Ericksen
[2008](see also Steigmann [2009]) provided for simple bodies. The form of balance of
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3 The Balance Laws on Bt

energy that Ericksen stated, can be easily generalized to bodies that are described by
a Riemannian manifold. The other balance laws will then be obtained by means of
our Theorem 3.5.1. It states that, if balance of energy is invariant under the action of
arbitrary diffeomorphisms on the surrounding space, then this already implies the local
forms of conservation of mass, balance of momentum and angular momentum, as well as
the Doyle-Ericksen formula which here provides a connection between the internal energy
and the deformation. Theorem 3.5.1 generalizes a result that can already be found in
the book by Marsden and Hughes [1983, ch. 2, Th. 4.13], and has more recently been
discussed by Kanso et al. [2007, sec.3]. Both earlier statements of this result only pertain
to bodies that have the same dimension as the surrounding space and do not allow the
presence of electromagnetic fields.
Of course, it is also desirable from the physical point of view to have this invariance
of balance of energy; it meets the demand that physics is independent of the choice of
coordinate system. The proof of Theorem 3.5.1, however, does not work nicely for other
setups of the balance laws that were suggested in the literature.
The formulation by Hutter and Pao [1974] is not suitable, since it uses transformations
of the electromagnetic fields that are neither Galilean nor Lorentzian, but something in
between.
The formulation by Kovetz [2000] is quite elegant, but it does not tell how the single
contributions to the energy density depend on the velocity. But this knowledge is vital
to the proof of Theorem 3.5.1. Furthermore, Kovetz uses the Poynting vector in his
statement of balance of energy. Unfortunately, this vector is in general not tangential
to the deformed body and thus hardly usable if one wants to find a description of the
balance laws that works on a manifold.

As before, we will denote by Bt the state of B at the time t, i.e., Bt := φt(B), and for
some subset U ⊂ B of the undeformed body, Ut := φt(U) denotes the state of U at the
time t.

3.1 Conservation of Mass

Recall from section 1.3.3 that the mass M of a nice set Ut ⊂ Bt is given by the integral
of the (smooth) mass density ρ : B̃ → R,

M(Ut) =

∫
Ut

ρ(x, t) volt,

and that ρ obeys conservation of mass, if for all nice Ut ⊂ Bt,
d

dt

∫
Ut

ρ(x, t) volt = 0.

By Theorem 1.3.19, the local form of conservation of mass is

ρ̇+ ρ divt
Ä
v‖
ä
−mρg(v⊥,H) = 0,

46



3.2 Balance of Momentum

where v denotes the body’s spatial velocity, m is the body’s dimension and H denotes
the mean curvature field. If the dimension of B coincides with the dimension of the
surrounding space (and so in particular for simple bodies), then this simplifies to

∂ρ

∂t
+ div (ρv) = 0.

3.2 Balance of Momentum

By Newton’s second law, the change of momentum P of a point mass is equal to the
applied force F :

dP

dt
= F .

To set up balance of momentum in electroelasticity, we have to define, what momentum
and force are in the case of a continuum.

The formulations of balance of momentum and angular momentum that are used in this
and the following section only make sense if the surrounding space is the Euclidean R3.
Later on in section 3.5 we will justify why the local forms of the laws that we obtain here
are also valid on arbitrary Riemannian manifolds.

Definition 3.2.1. The momentum P of a part Ut ⊂ Bt in the motion φ is given by
the integral of the momentum density ρv,

P(Ut) :=

∫
Ut

ρ(x, t)v volt,

where ρ : B̃ → R denotes the mass density and v : B̃ → S the velocity.

Forces

There are two kinds of forces acting on matter. On the one hand there are long-range
forces (for example gravity and external electromagnetic forces) which decrease slowly
when the distance between the interacting particles grows. If such a force acts from the
outside on a part U of B, it is capable of passing through the interior of U . The total
force is proportional to the size of the concerned volume. Thus, long-range forces are
also called volume or body forces.

On the other hand, there are forces that have only a short range and that decrease
extremely rapidly when the distance between the interacting parts grows. They are
called surface forces or contact forces and are negligible unless there is direct mechanical
contact between the interacting parts. If a part U of B is acted on by short-range forces
arising from reactions with the material outside U , these forces can act only on a thin
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3 The Balance Laws on Bt

layer adjacent to the boundary of U , of thickness corresponding to the penetration depth
of the forces. The total of the short-range forces acting on U is thus determined by the
surface area of U while the volume of U is not directly relevant. That is why they are
also called surface forces or contact forces [Batchelor, 2000; Liu, 2002].

The only long-range forces that we will take into account are a purely mechanical force
with the force density f (referred to the mass density ρ) and the Lorentz force with the
force density fL = ρe e+ j × b. Here ρe : B̃ → R denotes the charge density, j : B̃ → S
the current density, e : B̃ → S the electric field and b : B̃ → S the magnetic field (see
chapter 2).

Definition 3.2.2. The exterior forces acting on a subset Ut ⊂ Bt are given by∫
Ut

f ρvolt +

∫
Ut

fL volt,

where f : B̃ → S is a mechanical force density (referred to the mass density ρ) and
fL = ρe e+ j × b : B̃ → S is the Lorentz force.

Let us consider a subset Ut ⊂ Bt of the de-
formed body. If its complement U ct := Bt \ Ut
is deformed by an exterior force, then Ut will
also be moved or deformed, since it is con-
nected more or less fix with U ct . How exactly
Ut reacts to the deformation of U ct , depends on
the material the body is made of.

By the Euler-Cauchy stress principle, the action of U ct on Ut is equivalent to the interior
forces that act on the boundary ∂Ut of Ut. These forces are characterized by a vector
field t on ∂Ut that represents the force per area element.

Definition 3.2.3. The vector field t : ∂Ut → TUt representing the forces inside Ut is
called Cauchy stress vector field.

The force characterized by the Cauchy stress vector is a short range force.

Axiom 1 (Cauchy’s Postulate, Liu [2002]). For all surfaces passing through the
point x ∈ ∂Ut having the same tangent space at x (and thus the same normal vector at
x), t|x is the same. More precisely: t|x only depends on the surfaces’ (outward pointing)
unit normal n at x.

In particular, the stress acting on x ∈ ∂Ut is independent of the curvature of ∂Ut in Bt.
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3.2 Balance of Momentum

Thus, the interior force or the stress that is caused inside Ut by the deformation of the
body is given by ∫

∂Ut

t(x, t,n) vol∂Ut .

Definition 3.2.4. The total force acting on a part Ut ⊂ Bt is given by

F :=

∫
Ut

(f ρ+ fL) volt +

∫
∂Ut

tvol∂Ut ,

where the Cauchy stress t depends on the unit normal field n of ∂Ut.

Now we can formulate the balance of momentum:

Definition 3.2.5. We say that balance of momentum is satisfied, if for every nice
set U ⊂ B,

d

dt

∫
Ut

ρv volt =

∫
Ut

(f ρ+ fL) volt +

∫
∂Ut

tvol∂Ut , (3.1)

where Ut = φt(U), f : B̃ → S is a mechanical force density (referred to the mass density
ρ), fL = ρe e+ j × b : B̃ → S is the Lorentz force and where the Cauchy stress t depends
on the (outward) unit normal field n of ∂Ut.

Theorem 3.2.6
Let t(x, t,n) be a continuous function of its arguments. Moreover, assume that balance of
momentum holds. Then there is a unique (1, 1)-tensor field σ on Bt, called the Cauchy
stress tensor field, such that

t(x, t,n) = σ(n)(x, t).

That is, in local coordinates on Bt, the components of the vector t are given by

ta = σ(n)a = σab n
b.

Proof. Let ea, a = 1, . . . ,m, be a local frame for the tangent space of Bt, and let Ei,
i = 1, 2, 3, be the Euclidean base of the surrounding R3. Moreover, we denote by gBt the
metric that is induced on Bt by the restriction of g to Bt. The i-th component of (3.1),

d

dt

∫
Ut

vi ρvolt =

∫
Ut

[f i ρ+ f iL]volt +

∫
∂Ut

ti vol∂Ut ,
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is a conservation law for the i-th component of the momentum. By Cauchy’s Theorem
(1.3.3) it follows that there is a vector field σi, such that ti = gBt(σi,n), and hence

t = tiEi = gBt(σi,n)Ei. (1)

Thus, t depends linearly on n. Hence, there must be a (1, 1)-tensor field σ on Bt such
that t = σ(n). By (1)

σ(n) = gBt(σi,n)Ei.

Consider a fixed point x ∈ Bt. For each vector field wt ∈ TxBt we can find a subset
Ut ⊂ Bt, such that wt is a multiple of the outward unit normal vector n of ∂Ut in x.
Thus, we define σ by

σ(wt) = gBt(σi,wt)Ei for all wt ∈ TBt. (2)

Thus, balance of momentum can also be expressed by

d

dt

∫
Ut

ρv volt =

∫
Ut

(f ρ+ fL) volt +

∫
∂Ut

σ(n) vol∂Ut . (3.2)

Theorem 3.2.7 (Equations of Motion)
Assume that conservation of mass and balance of momentum hold. Then

ρa = ρf + fL + divtσ + trIIσ, (3.3)

with a = v̇ and fL = ρe e+ j × b. trIIσ denotes the trace of σ with respect to II, i.e., if
e1, . . . , em is a local orthonormal basis of TxBt, then

trIIσ =
m∑
a=1

II(ea,σ(ea)).

If Bt is a hypersurface in S, then

ρa = ρf + fL + divtσ + tr(Sν ◦ σ)ν,

where ν denotes the (outer) unit normal vector field of Bt and Sν is the corresponding
Weingarten map.

Some parts of the following proof are taken from Grabs [2014].
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Proof. We consider some arbitrary point x ∈ Ut. Let e1(x), . . . , em(x) be an orthonormal
basis of TxBt, and extend it to a synchronous frame e1, . . . , em around x. Let E1, E2, E3

be the standard basis of the surrounding R3. For reasons of clarity we denote by gS the
metric on S and by gBt the metric that is induced on Bt by the restriction of gS to Bt.
Once more, we consider the i-th component of (3.1),

d

dt

∫
Ut

vi ρvolt =

∫
Ut

[f i ρ+ f iL]volt +

∫
∂Ut

ti vol∂Ut . (1)

In the course of the proof of Theorem 3.2.6 we have seen that if balance of momentum is
given, then the i-th component of t can be expressed by

ti = gBt(σi,n).

Hence, according to Theorem 1.3.21, the local form of (1) is given by

ρ
·Ùvi = ρ f i + f iL + divt σ

i, (2)

where
·Ùvi denotes the substantial derivative of vi. Here the surrounding space is the

Euclidean R3, thus the substantial derivative of any vector field wt = wit Ei that is
defined along φt satisfies

·
ŵt =

·ıwit Ei.
(In other words,

·ıwit = ẇt
i, i.e., the substantial derivative of the i-th component of wt is

equal to the i-th component of the substantial derivative of wt.) This can be seen as
follows:
Since the Ei are constant,

ẇt = ∇S̃(vt,∂t)(w
i
t Ei)

=
î
∂(vt,∂t)w

i
t

ó
Ei

=

·ıwit Ei.
(Note that this step really requires S to be Euclidean.) Thus multiplying (2) by Ei and
summing over i yields

ρ v̇ = ρf + fL + (divt σ
i)Ei. (3)

Using the synchronicity of e1, . . . , em, we obtain at the point x

divtσ
i =

m∑
a=1

gBt
Ä
∇Bteaσ

i, ea
ä

=
m∑
a=1

∂ea g
Bt
Ä
σi, ea

ä
.
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Using (2) from the proof of Theorem 3.2.6, we obtain

divtσ
i =

m∑
a=1

∂ea g
S(σ(ea), Ei)

=
m∑
a=1

gS
(
∇Sea
Ä
σ(ea)

ä
, Ei

)
,

where we have used that the Ei are constant. In particular, ∇SeaEi = 0 for all a = 1, . . . ,m
and all i = 1, . . . , 3. Now we can decompose ∇S into its tangent and normal part with
respect to Bt and obtain

divtσ
i =

m∑
a=1

gS
(
∇Btea
Ä
σ(ea)

ä
+ II

Ä
ea,σ(ea)

ä
, Ei

)
=

m∑
a=1

gS
(Ä
∇Bteaσ

ä
(ea) + II

Ä
ea,σ(ea)

ä
, Ei

)
,

where we have used again that the ea are synchronous with respect to x. Thus,

divt(σ
i)Ei = divt σ +

m∑
a=1

II(ea,σ(ea)).

Inserting this into (3) yields

ρ v̇ = ρf + fL + divtσ +
m∑
a=1

II(ea,σ(ea)).

If Bt is a hypersurface in S, then we may write II(ξ,η) = g(Sν(ξ),η)ν, where ξ,η ∈ TBt,
and ν denotes the (outer) unit normal vector field of Bt ⊂ S. Then, using the symmetry
of the Weingarten map Sν , we obtain

m∑
a=1

II
Ä
ea,σ(ea)

ä
=

m∑
a=1

g
Ä
Sν(ea),σ(ea)

ä
ν

=
m∑
a=1

g
Ä
(Sν ◦ σ)(ea), ea

ä
ν

= tr(Sν ◦ σ)ν.

This completes the proof.

3.3 Balance of Angular Momentum

By Newton’s Law for a rigid body the change of angular momentum L0 is equal to the
applied torque M0:

dL0

dt
= M0.
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In the case of a point particle the angular momentum (with respect to a point x0) is
given by (x−x0)×p, where x denotes the position and p the momentum of the particle.
The torque that is caused by a force f is given by (x− x0)× f . For a continuous body
this is replaced by the following definition.

Definition 3.3.1. We define the angular momentum with respect to some point
x0 ∈ Ut of a part Ut ⊂ Bt in the motion φ by

L0(Ut,x0) :=

∫
Ut

(x− x0)× v ρvolt.

and the torque acting on a part Ut by

M0(Ut,x0) :=

∫
Ut

(x− x0)× f ρvolt +

∫
Ut

(x− x0)× fL volt +

∫
∂Ut

(x− x0)× tvol∂Ut .

Here, as usual, f : B̃ → S is a mechanical force density (referred to the mass density ρ),
fL = ρe e+ j × b : B̃ → S is the Lorentz force density, and t is the Cauchy stress vector.

Thus, for a continuous body, balance of angular momentum has the following form.

Definition 3.3.2. We say that balance of angular momentum is satisfied, if for
every nice U ⊂ B,

d

dt

∫
Ut

(x− x0)× v ρvolt =

∫
Ut

(x− x0)× f ρvolt +

∫
Ut

(x− x0)× fL volt

+

∫
∂Ut

(x− x0)× tvol∂Ut , (3.4)

where Ut = φt(U), f : B̃ → S is a mechanical force density (referred to the mass density
ρ), fL = ρe e + j × b : B̃ → S is the Lorentz force density, and t is the Cauchy stress
vector.

In the following we set x0 to 0.

Theorem 3.3.3
Assume that conservation of mass and balance of momentum hold. Then balance of
angular momentum holds if and only if

σ = σT .
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Proof. Let E1, E2, E3 be the Euclidean base of the surrounding R3. Again, for reasons
of clarity, we denote by gS the (Euclidean) metric on S and by gBt the metric that is
induced on Bt by the restriction of gS to Bt.
We consider the i-th component of (3.4):

d

dt

∫
Ut

(x× v)i ρvolt =

∫
Ut

(x× f)i ρvolt +

∫
Ut

(x× fL)i volt +

∫
∂Ut

(x× t)i vol∂Ut . (1)

If balance of momentum is valid, then by Theorem 3.2.6 there is a vector field σk,
tangential to Bt, such that tk = gBt(σk,n). Then

(x× t)i = εijk x
j tk = gBt(εijk x

j σk,n),

where ε denotes the Levi-Civita symbol. Thus, using conservation of mass and

divt(x
j σk) = gBt(gradxj ,σk) + xj divt σ

k,

by Theorem 1.3.21 the localization of (1) is

ρ

·˝�(x× v)i = ρ (x× f)i + (x× fL)i + εijk
î
gBt(gradxj ,σk) + xj divt σ

k
ó
. (2)

For the term on the left hand side of (2) we compute

ρ

·˝�(x× v)i = ρ

·˝�εijk x
j vk

= ρ εijk

[ ·ıxj vk + xj
·ıvk].

xj is a function on B̃. Let us define as in Remark 1.1.10 the function ψ : B × I → B̃ by

(X, t)
ψ7→ (φ(X, t), t). Then

·ıxj ◦ ψ =
∂φj

∂t
= V j = vj ◦ ψ.

Moreover, in the course of the proof of Theorem 3.2.7, we have seen that

·ıvk = v̇k, i.e.,
the substantial derivative of the k-th component of v is equal to the k-th component of
the substantial derivative of v. (Of course, this works only with components with respect
to the standard Euclidean basis.) Thus,

ρ

·˝�(x× v)i = ρ [v × v + x× v̇]i

= ρ [x× v̇]i . (3)
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3.4 Balance of Energy

We have also seen in the same proof that balance of momentum can be formulated as
ρ v̇ = ρf + fL + divt σ

lEl. Inserting this into (3) gives

ρ

·˝�(x× v)i = ρ (x× f)i + (x× fL)i + divtσ
l [x× El]i

= ρ (x× f)i + (x× fL)i + εijk x
j divtσ

k. (4)

Combining (2) and (4), we obtain

εijk g
Bt(gradxj ,σk) = 0. (5)

Let ea, a = 1, . . . ,m, be a local frame for the tangent space of Bt. Then

gradxj = gab ∂ea(xj) eb

= gab (ea)
iEi(x

j) eb

= gab (ea)
i δi

j eb

= gab (ea)
j eb.

We have derived in the proof of Theorem 3.2.6 that gBt(σk,w) = gS(σ(w), Ek) for each
vector w that is tangential to Bt. Thus,

gBt(gradxj ,σk) = gab (ea)
j gBt(σk, eb)

= gab (ea)
j gS(σ(eb), Ek)

= gab (ea)
j σcb (ec)

k

= σba (ea)
j (eb)

k.

Hence, (5) is equivalent to

σba ea × eb = 0.

Using the anti-symmetry of the vector product, we can rewrite this to

1

2
(σba − σab) ea × eb = 0,

from which we conclude that σ is symmetric.

3.4 Balance of Energy

The next balance law, balance of energy, is a scalar law and can be formulated, if B and
S are Riemannian manifolds. But for the computation of its local form we will need
balance of momentum and angular momentum, and up to now we have only established
them for the case that S is the Euclidean R3. Thus, we will at first demand that S is
the Euclidean R3. At the end of this section, we will formulate balance of energy for
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3 The Balance Laws on Bt

the general setting and derive balance of momentum and angular momentum from the
assumption that balance of energy is invariant under arbitrary spatial diffeomorphisms.

The first law of thermodynamics states that the change of energy E equals the power Π
of the work that is done by body and surface forces and the exchanged amount of heat
Q:

dE

dt
= Π + Q + Wdiss,

where E denotes the energy, Π the power, Q the exchanged amount of heat, and Wdiss rep-
resents some dissipative work. The energy is the sum of internal energy and (macroscopic)
kinetic energy. Thus we define in the continuous case:

Definition 3.4.1. The energy E of a part Ut ⊂ Bt in the motion φ is given by

E (Ut) :=

∫
Ut

Å
u+

1

2
g(v,v)

ã
ρvolt.

Here, u : B̃ → R is the internal energy density including among other things the energy
which is stored microscopically inside the body in form of binding energy and the energy
of molecular translations, rotations, and vibrations.

3.4.1 Special case: S = R3 with the Euclidean metric

The power is equal to the scalar product of the applied forces with the velocity field.
Here, as before, the applied forces are a purely mechanical force with the force density f ,
stress forces inside the body, encoded in the stress vector t, and the Lorentz force density
fL.

Definition 3.4.2. The power Π of the forces acting on a part Ut ⊂ Bt in the motion φ
is given by

Π(Ut) :=

∫
Ut

g(ρf + fL,v) volt +

∫
∂Ut

g(t,v) vol∂Ut ,

where as usual, f : B̃ → S is a mechanical force density (referred to the mass density ρ),
fL = ρe e+ j × b : B̃ → S is the Lorentz force, and t is the Cauchy stress vector.

Heat can be exchanged by an external heat supply with the density rθ : B̃ → R, and by
some gain or loss of heat through the boundary of Ut, encoded in some function
h, depending on the outward unit normal vector field n of ∂Ut.
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3.4 Balance of Energy

Definition 3.4.3. We define the exchanged amount of heat Q of a part Ut ⊂ Bt in
the motion φ by

Q(Ut) :=

∫
Ut

rθ ρvolt +

∫
∂Ut

h(x, t,n) vol∂Ut ,

with the heat supply density rθ : B̃ → R and the gain or loss of heat through the boundary
h.

If B does not have the same dimension as the surrounding space, then we could collect
a possible heat flux between the body and its surrounding space into the heat supply
density rθ.

The only dissipative work that we take into account is the Joule heating. It is defined
as g(j̄, ē) where j̄ := j − ρe v is the conduction current density and ē := e + v × b is
the electromotive intensity (see chapter 2). The Joule heating represents the amount of
energy that charge carriers inside the material transfer during collisions to the rest of
the material. For this process only the velocity of the charge carriers with respect to
the material and the electric field as seen from the material’s point of view are relevant.
Hence the expression for the Joule heating involves the Galilei invariants j̄ and ē, i.e.
the current density and the electric field as they are seen from the material’s point of
view and not the corresponding fields that might be perceived by another observer.

Definition 3.4.4. The dissipative work that occurs inside some part Ut ⊂ Bt during
the motion φ is given by

Wdiss(Ut) :=

∫
Ut

g(j̄, ē) volt,

where j̄ : B̃ → S denotes the convective current density and ē : B̃ → S the electromotive
intensity.

Definition 3.4.5 (Balance of Energy). We say that balance of energy holds if for
every nice open set U ⊂ B,

d

dt

∫
Ut

Å
u+

1

2
g(v,v)

ã
ρvolt

=

∫
Ut

(g(f ,v) + rθ)ρvolt +

∫
Ut

g(fL,v) volt +

∫
Ut

g(j̄, ē) volt +

∫
∂Ut

(
g(t,v) + h

)
vol∂Ut ,
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3 The Balance Laws on Bt

where as usual Ut = φt(U), f : B̃ → S is a mechanical force density (referred to the mass
density ρ), fL = ρe e+ j × b : B̃ → S is the Lorentz force, and t is the Cauchy stress
vector. Moreover, u : B̃ → R denotes the internal energy, rθ : B̃ → R the heat supply, h
the gain/loss of heat through the boundary, and j̄ : B̃ → S and ē : B̃ → S denote the
convective current density and the electromotive intensity, respectively. This is equivalent
to

d

dt

∫
Ut

Å
u+

1

2
g(v,v)

ã
ρvolt

=

∫
Ut

Ä
g(f ,v) + rθ

ä
ρvolt +

∫
Ut

g(j, e)volt +

∫
∂Ut

Ä
g(t,v) + h

ä
vol∂Ut ,

with the current density j : B̃ → S and the electric field e : B̃ → S.

Remark 3.4.6. One part of the gained energy, the kinetic energy, is used for the
deformation of the body, while the other part increases the internal energy of the body.

Theorem 3.4.7 (Marsden and Hughes [1983])
Assume that t(x, t,n) = σ(x,t)(n) for a (1, 1) tensor field σ on Bt, where n denotes the
outward unit normal vector field along ∂Ut. (This is given, if balance of momentum
holds.)

Then balance of energy implies the existence of a unique vector field qθ on Bt, such that
for all n,

h(x, t,n) = −g(qθ(x, t),n).

We call qθ the heat flux vector.

Proof. We define c := 〈t,v〉+ h. By Cauchy’s Theorem (1.3.3) there exists a vector field
c on Ut, such that c = g(c,n). Hence,

h = g(c,n)− g(t,v).

If t = σ(n) for a (1, 1) tensor field σ on Bt, then

g(t,v) = gBt(σ(n),v‖) = gBt(σT (v‖),n)

and thus

h = g(c− σT (v‖),n).

Now we can define qθ by −qθ = c− σT (v‖).
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3.4 Balance of Energy

Remark 3.4.8. The minus sign in the definition of qθ is just a matter of convention:
It leads to h = −g(qθ,n) where n is the outward unit normal field to ∂Ut. Thus, if qθ
points into the same direction as −n, then the contribution of the heat flux is positive.

An immediate consequence of Theorem 3.4.7 is

Corollary 3.4.9
If balance of momentum holds, then balance of energy is equivalent to

d

dt

∫
Ut

Å
u+

1

2
g(v,v)

ã
ρvolt =

∫
Ut

Ä
g(f ,v) + rθ

ä
ρvolt +

∫
Ut

g(fL,v) volt

+

∫
Ut

g(j̄, ē) volt +

∫
∂Ut

g
Ä
σT (v‖)− qθ,n

ä
vol∂Ut .

Theorem 3.4.10 (Local spatial form of balance of energy)
Assume that conservation of mass and balance of momentum hold.
Then the local form of balance of energy is given by

ρ u̇ = 〈σ,∇Btv‖〉 − g (trIIσ,v) + ρ rθ + g(j̄, ē)− divt qθ. (3.5)

Here, ∇Bt denotes the Levi-Civita connection on (Bt, gBt) and 〈σ,∇Btv‖〉 the scalar

product of the (1, 1) tensor fields σ and ∇Btv‖ on Bt (see Notation 1.2.14). If moreover,
balance of angular momentum holds, then this simplifies to

ρ u̇ = 〈σ,d〉+ ρ rθ + g(j̄, ē)− divt qθ, (3.6)

where d is the rate of deformation tensor field we defined in section 1.2 (see Definition
1.2.12).

Proof. Since by assumption balance of momentum holds, it is sufficient to localize the
equation from corollary 3.4.9.
Since conservation of mass holds, we can apply Theorem 1.3.21. Thus, balance of energy
is equivalent to

ρ u̇+
1

2
ρ

·˚�g(v,v) = ρ g(f ,v) + ρ rθ + g(fL,v) + g(j̄, ē) + divt
Ä
σT (v‖)

ä
− divt qθ. (1)

By Lemma 1.1.9,

1

2
ρ

·˚�g(v,v) = ρ g(v, v̇) = ρ g(v,a).
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3 The Balance Laws on Bt

Inserting this and balance of momentum (see Theorem 3.2.7),

ρa = ρf + fL + divtσ + trIIσ

into (1) while using that divt σ is tangential, gives

ρ u̇+ g(divtσ,v‖) + g (trIIσ,v) = ρ rθ + g(j̄, ē) + divt
Ä
σT (v‖)

ä
− divt qθ. (1’)

Consider some arbitrary point x ∈ Bt. Let e1(x), . . . , em(x) be an orthonormal basis of
TxBt and extend it to a synchronous frame e1, . . . , em around x. Then in x

divt
Ä
σT (v‖)

ä
= g
Ä
∇Btea
Ä
σT v‖

ä
, ea
ä

= ∂eag
Ä
σT v‖, ea

ä
= ∂eag

Ä
σ(ea),v‖

ä
= g
ÄÄ
∇Bteaσ

ä
(ea),v‖

ä
+ g
Ä
σ(ea),∇Bteav‖

ä
= g(divtσ,v‖) + g

Ä
σT ◦ ∇Btv‖(ea), ea

ä
= g(divtσ,v‖) + trg(σ

T ◦ ∇Btv‖)
= g(divtσ,v‖) + 〈σ,∇Btv‖〉.

Thus, (1’) becomes

ρ u̇ = 〈σ,∇Btv‖〉 − g (trIIσ,v) + ρ rθ + g(j̄, ē)− divt qθ. (1”)

If balance of angular momentum is given, then σ is symmetric and hence,

〈σ,∇Btv‖〉 =
1

2

î
〈σ,∇Btv‖〉+ 〈σT , (∇Btv‖)T 〉

ó
=

1

2
〈σ,∇Btv‖ + (∇Btv‖)T 〉

=
1

2
〈σ, (∇Btv‖)[ +

î
(∇Btv‖)[

óT 〉.
Moreover, the symmetry of σ implies

g(trIIσ,v) =
m∑
a=1

g (II(ea,σ(ea)),v)

=
m∑
a=1

g(σ(ea), eb) g (II(ea, eb),v⊥)

=
m∑
a=1

σ[(ea, eb) g (II(ea, eb),v⊥)

= 〈σ, g(II(·, ·),v⊥)〉.
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3.4 Balance of Energy

Thus, by the definition of the rate of deformation tensor d (see Definition 1.2.12) and
Theorem 1.2.13,

〈σ,∇Btv‖〉 − g(trIIσ,v) =
¨
σ,

1

2

î
(∇Btv‖)[ + ((∇Btv‖)[)T

ó
− g(II(·, ·),v⊥)

∂
= 〈σ,d〉,

and (1”) becomes
ρ u̇ = 〈σ,d〉+ ρ rθ + g(j̄, ē)− divt qθ.

3.4.2 The general case

On general manifolds we regard the mechanical force and the Lorentz force as 1-forms f
and fL and write fL = ρe e− ijb, where e and b denote the electric field 1-form and the
magnetic flux 2-form, respectively.
Then the power Π of the forces acting on a part Ut ⊂ Bt in the motion φ can be expressed
by

Π(Ut) =

∫
Ut

(ρ f + fL,v) volt +

∫
∂Ut

g(t,v) vol∂Ut ,

where (f,v) denotes the dual pairing of the vector field v and the 1-form f.
The scalar product g(j̄, ē) can be replaced by the pairing (j̄, ē) with ē = e− ivb. Then
the dissipative work for a part Ut ⊂ Bt in the motion φ is given by

Wdiss(Ut) :=

∫
Ut

(j̄, ē) volt.

Altogether we formulate balance of energy as follows:

Definition 3.4.11 (Balance of Energy in the general setting). We say that bal-
ance of energy holds if for every nice open set U ⊂ B,

d

dt

∫
Ut

Å
u+

1

2
g(v,v)

ã
ρvolt

=

∫
Ut

Ä
(f,v) + rθ

ä
ρvolt +

∫
Ut

(fL,v) volt +

∫
Ut

(j̄, ē) volt +

∫
∂Ut

(
g(t,v) + h

)
vol∂Ut ,

with fL = ρe e− ijb. This is equivalent to

d

dt

∫
Ut

Å
u+

1

2
g(v,v)

ã
ρvolt

=

∫
Ut

Ä
(f,v) + rθ

ä
ρvolt +

∫
Ut

(j, e) volt +

∫
∂Ut

Ä
g(t,v) + h

ä
vol∂Ut ,
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3 The Balance Laws on Bt

with notation as in Def. 3.4.5 but adapted to forms.

3.5 The balance laws for the general case

Conservation of mass and balance of energy are scalar laws and can be easily formulated
even if the body and the surrounding space are Riemannian manifolds: Conservation of
mass is given if (see section 3.1)

d

dt

∫
Ut

ρvolt = 0,

or locally,

ρ̇+ ρdivt(v‖)−mρg(v⊥,H) = 0. (3.7)

Balance of energy is given, if (see Def. 3.4.11)

d

dt

∫
Ut

(
u+

1

2
g(v,v)

)
ρvolt

=

∫
Ut

((f,v) + rθ) ρvolt +

∫
Ut

(j, e) volt +

∫
∂Ut

g(t,v) vol∂Ut +

∫
∂Ut

hvol∂Ut .

(3.8)

For the balance laws of momentum and angular momentum there is a problem: For the
simple case, where S is the Euclidean R3, we have derived local formulations of these
laws in sections 3.2 and 3.3:

ρa = ρf + fL + divtσ + trIIσ (3.9)

σ = σT . (3.10)

(where we have already used conservation of mass) and with their help a local form of
balance of energy. But to derive these laws we explicitly used the Euclidian structure of
the surrounding space. So why should these laws also be valid if B and S are arbitrary
Riemannian manifolds ?

In this section we will show that the demand that balance of energy is invariant under
the action of arbitrary diffeomorphisms on the surrounding space together with some
physical assumptions already implies (3.9), (3.10), and also (3.7). Then, by use of (3.7),
(3.9), and (3.10) we also obtain the local form of balance of energy as we know it from
Theorem 3.4.10. As a nice by-product we obtain the Doyle-Ericksen formula that provides
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3.5 The balance laws for the general case

a connection between the stress tensor, the internal energy, and the metric.

By Theorem 1.3.8 and Lemma 1.1.9, equation (3.8) is equivalent to∫
Ut

[u̇+ g(v,a)] ρvolt +

∫
Ut

ï
u+

1

2
g(v,v)

ò
ρ̇volt

+

∫
Ut

ï
u+

1

2
g(v,v)

ò
ρ
î
divt(v‖)−mg(v⊥,H)

ó
volt

=

∫
Ut

[(f,v) + rθ] ρvolt +

∫
Ut

(j, e) volt +

∫
∂Ut

g(t,v) vol∂Ut +

∫
∂Ut

hvol∂Ut . (1)

Axiom 2. Balance of energy is invariant under the action of spatial diffeomorphisms
ξt : S → S. That is, on U ′t = ξt(Ut) = φ′t(U), where φ′t := ξt ◦ φt, balance of energy is
given by∫
U ′t

î
u̇′ + g′(v′,a′)

ó
ρ′ vol′t +

∫
U ′t

ï
u′ +

1

2
g′(v′,v′)

ò
ρ̇ ′ vol′t

+

∫
U ′t

ï
u′ +

1

2
g′(v′,v′)

ò
ρ′
î
div′t(v

′
‖)−mg′(v′⊥,H′)

ó
vol′t

=

∫
U ′t

[
(f′,v′) + r′θ

]
ρ′ vol′t +

∫
U ′t

(j′, e′) vol′t +

∫
∂U ′t

g′(t′,v′) vol′∂U ′t
+

∫
∂U ′t

h′ vol′∂U ′t
. (2)

The coordinates in the primed and the unprimed systems are related by x′ = ξt(x). The
corresponding expressions for the metric satisfy

g = ξ∗t g
′,

the volume forms of Ut and U ′t are related by

volt = ξ∗t vol′t.

Let w be the velocity of ξt. Then differentiating φ′t = ξt ◦ φt gives

v′(x′, t) = (ξt)∗v(x, t) +w(x, t).

Let p be an arbitrary point on Bt. Let e′1, . . . , e
′
m be an orthonormal basis of TpBt with

respect to the coordinates x′. Then e1, . . . , em, defined by e′a = ξt∗ea, a = 1, . . . ,m, is a
basis of TpBt with respect to the coordinates x. Thus, in p,

div′t(v
′
‖) =

m∑
a=1

g′(∇Bte′av
′
‖, e
′
a)

=
m∑
a=1

((ξ−1
t )∗g)

(
∇Bt(ξt∗ea)((ξt)∗v‖ +w‖), ξt∗ea

)
.
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3 The Balance Laws on Bt

We make the following assumptions:

1) The mass density, the heat supply density and the heat flow through the boundary
satisfy

ρ′(x′, t) = ρ(x, t)

r′θ(x
′, t) = rθ(x, t)

h′(x′, t,n′) = h(x, t,n).

2) The forces are transformed classically, i.e., they are transformed in the same way
as the accelerations. Thus, f ′ − a′ = (ξt)∗(f − a), or equivalently,

f− a[ = ξ∗t
Ä
f′ − a′ [

ä
.

3) The stress vectors that act along the boundaries of Ut and U ′t, respectively, are
related by

t′(x′, t,n′) = (ξt)∗t(x, t,n).

4) The internal energy contains among other contributions the energy that is stored
inside the material in the form of molecular rotations and vibrations. These energies
depend on the distance of the molecules and thus on the metric of the surrounding
space. Hence, the internal energy density u should depend on the metric g. We
assume the simplest possible transformation

u′(x′, t, g) = u(x, t, ξ∗t g).

This assumption is often called assumption of ”minimal coupling”.

5) If t = t0, the velocities satisfy v′ = v +w. Thus, for t = t0,

j′ = j + ρew

e′ = e + iwb,

(see chapter 2).

We collect the relations between the primed and the unprimed quantitites at t = t0:

vol′t(x
′) = volt(x),

H(x′) = H(x),

h′(x′, t,n′) = h(x, t,n),

t′(x′, t,n′) = t(x, t,n).
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3.5 The balance laws for the general case

Moreover,

v′ = v +w,

div′t(v
′
‖) = divt(v‖) + divt(w‖),

ρ′ = ρ,

r′θ = rθ,

f′ − a′ [ = f− a[,
u′ = u,

j′ = j + ρew,

e′ = e + iwb,

and

〈v′,a′〉 = 〈v +w,a′〉,

u̇′|t=t0 = u̇+
¨ ∂u

∂(ξ∗t g)
,
d

dt
(ξ∗t g)|t=t0

∂
= u̇+

¨∂u
∂g
, Lwg

∂
, (3.11)

where the primed quantities are evaluated at (x′, t) while the unprimed quantities are
evaluated at (x, t).

Now we are ready to state one of the central theorems in this work:

Theorem 3.5.1
Let the body (B, G) and the surrounding space (S, g) be arbitrary Riemannian mani-
folds. Suppose, balance of energy is satisfied and invariant under the action of spatial
diffeomorphisms ξt : S → S (Axiom 2) with the transformations that were stated above.
Then there exists a (1, 1)-tensor field σ on Bt, such that t = σ(n) and a vector field qθ
on Bt, such that h(x, t,n) = −g(qθ,n).
Moreover, conservation of mass is satisfied,

ρ̇+ ρ divt(v‖)−mρg(v⊥,H) = 0,

as well as

ρa[ = ρ f + ρe e− (ijb) + (divtσ)[ + trIIσ
[, (3.12)

σ = σT , (3.13)

and the Doyle-Ericksen formula,

σ] = 2 ρ
∂u

∂g
.

Furthermore, the local form of balance of energy is given by

ρ u̇ = 〈σ,d〉+ ρ rθ + (j̄, ē)− divt qθ.
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3 The Balance Laws on Bt

We identify (3.12) and (3.13) as balance of momentum and angular momentum, since
they coincide with the local expressions (3.9) and (3.10) we had derived for the case that
S is the Euclidean R3.

Remark 3.5.2. Theorem 3.5.1 provides a complete set of compatible balance laws that
govern the deformation (and temperature development) of a body in a surrounding space.
These balance laws are also valid, if the body and the surrounding space are arbitrary
manifolds. Moreover, the Doyle-Ericksen formula states that the internal energy serves
as a potential function for the stress tensor. In classical elasticity theory materials for
which such a potential function exists are called hyperelastic. Thus, we have seen that the
demand that the balance of energy is invariant under arbitrary spatial diffeomorphisms
(together with some reasonable physical assumptions), already implies that the material
the body consists of, must be hyperelastic. This is remarkable since we did not specify
the kind of material yet.

As we have already mentioned, 3.5.1 generalizes a result by Marsden and Hughes [1983,
ch. 2 Theorem 4.13] and Kanso et al. [2007, sec.3]. Both these earlier results only pertain
to bodies that have the same dimension as the surrounding space and do not allow the
presence of electromagnetic fields.

Proof. If t = t0, then by use of the relations (3.11), balance of energy in the primed
coordinates (2) becomes

∫
Ut

Å
u̇+
¨∂u
∂g
, Lwg

∂ã
ρvolt +

∫
Ut

ï
u+

1

2
g(v +w,v +w)

ò î
ρ̇+ ∂(wt,∂t)ρ

ó
volt

+

∫
Ut

ï
u+

1

2
g(v +w,v +w)

ò
ρ
î
divt(v‖ +w‖)−mg(v⊥ +w⊥,H)

ó
volt

=

∫
Ut

Ä
(f− a[,v +w) + rθ

ä
ρvolt +

∫
Ut

[(j, e) + (ρe e− ijb,w)] volt

+

∫
∂Ut

g(t,v +w) vol∂Ut +

∫
∂Ut

hvol∂Ut , (3)

where we also used that

(j′, e′) = (j + ρew, e + iwb)

= (j, e) + (j, iwb) + (ρew, e) + (ρew, iwb)︸ ︷︷ ︸
= 0

= (j, e) + (ρe e− ijb,w).
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3.5 The balance laws for the general case

Substracting (1) from (3) gives∫
Ut

¨∂u
∂g
, Lwg

∂
ρvolt +

∫
Ut

1

2
g(w,w)

î
ρ̇+ ρdivt(v‖)−mρg(v⊥,H)

ó
volt

+

∫
Ut

g(v,w)
î
ρ̇+ ρ divt(v‖)−mρg(v⊥,H)

ó
volt

+

∫
Ut

1

2
g(w,w)

î
∂(wt,∂t)ρ+ ρdivt(w‖)−mρg(w⊥,H)

ó
volt

+

∫
Ut

Å
u+

1

2
g(v,v)

ã î
∂(wt,∂t)ρ+ ρdivt(w‖)−mρg(w⊥,H)

ó
volt

+

∫
Ut

1

2
g(v,v)

î
∂(wt,∂t)ρ+ ρ divt(w‖)−mρg(w⊥,H)

ó
volt

=

∫
Ut

(f− a[,w) ρvolt +

∫
Ut

(ρe e− ijb,w) volt +

∫
∂Ut

g(t,w) vol∂Ut . (4)

The only summand in this equation, in which w occurs in the third order, is the summand
in the third line. Thus, a rescaling argument provides

∂(wt,∂t)ρ+ ρdivt(w‖)−mρg(w⊥,H) = 0.

Hence, (4) simplifies to∫
Ut

¨∂u
∂g
, Lwg

∂
ρvolt +

∫
Ut

1

2
g(w,w)

î
ρ̇+ ρdivt(v‖)−mρg(v⊥,H)

ó
volt

+

∫
Ut

g(v,w)
î
ρ̇+ ρ divt(v‖)−mρg(v⊥,H)

ó
volt

=

∫
Ut

(f− a[,w) ρvolt +

∫
Ut

(ρe e− ijb,w) volt +

∫
∂Ut

g(t,w) vol∂Ut . (4’)

The only summand in (4’), in which w occurs quadratically, is the second summand in
the first line. Thus, we conclude that

ρ̇+ ρ divt(v‖)−mρg(v⊥,H) = 0.

This is the local form of conservation of mass. Hence, (4’) simplifies to∫
Ut

¨∂u
∂g
, Lwg

∂
ρvolt =

∫
Ut

(ρ f− ρa[ + ρe e− ijb,w) volt +

∫
∂Ut

g(t,w) vol∂Ut . (4”)

In a similar way as in the proof of Theorem 3.2.6 we can apply Cauchy’s Theorem to
(4”) and deduce the existence of a vector field ζ that is tangential to Bt and satisfies

g(t,w) = g(ζ,n).
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3 The Balance Laws on Bt

The left hand side of this equation depends linearly on w‖, so the ζ on the right hand
side must also depend linearly on w‖. Thus, there is a (1, 1)-tensor field “σ on Bt, such
that ζ = “σ(w‖) and hence

g(t,w) = g(t,w‖) = g(“σ(w‖),n) = g(“σT (n),w‖).

We now define σ := “σT and obtain t = σ(n). As in the proof of Theorem 3.4.7 it follows
from (1) that h = −g(qθ,n) for a vector field qθ on Ut. Moreover, (4”) can be replaced
by ∫

Ut

¨∂u
∂g
, Lwg

∂
ρvolt =

∫
Ut

(ρ f− ρa[ + ρe e− ijb,w) volt +

∫
Ut

divt(σ
Tw‖) volt,

or, locally,

ρ
¨∂u
∂g
, Lwg

∂
= (ρ f− ρa[ + ρe e− ijb,w) + divt(σ

Tw‖). (5)

We reformulate the last term of (5). We have already computed in the proof of Theorem
3.4.10 that

divt(σ
Tw‖) = g(divtσ,w‖) + 〈σ], (∇Btw‖)[〉.

We can also write this as

divt(σ
Tw‖) = g(divtσ,w‖) +

1

2

¨
σ], (∇Btw‖)[ +

î
(∇Btw‖)[

óT ∂
+ 〈σ],α〉

with

α :=
1

2

[
(∇Btw‖)[ −

î
(∇Btw‖)[

óT ]
.

By Definition 1.2.12 and Theorem 1.2.13,

(∇Btw‖)[ +
î
(∇Btw‖)[

óT
= Lwg + 2 g(w⊥, II(·, ·)),

where Lw denotes the Lie derivative with respect to w. Moreover, divtσ is tangential to
Bt. Hence,

divt(σ
Tw‖) = g(divtσ,w) +

1

2
〈σ], Lwg〉+

¨
σ], g(w⊥, II(·, ·))

∂
+ 〈σ],α〉.

Consider an arbitrary point x ∈ Ut. Let e1(x), . . . , em(x) be an orthonormal basis of
TxUt and extend it to a local frame e1, . . . , em around x. Then at x¨
σ], g(w⊥, II(·, ·))

∂
=

m∑
a,b=1

σ[(ea, eb) g(w⊥, II(ea, eb)) =
m∑

a,b=1

g(σ[(ea, eb) II(ea, eb),w),
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3.5 The balance laws for the general case

since each II(ea, eb) is normal to Bt. Thus,

divt(σ
Tw‖) =

m∑
a,b=1

g
Ä
divtσ + σ[(ea, eb) II(ea, eb),w

ä
+

1

2

¨
σ], Lwg

∂
+ 〈σ],α〉

and (5) becomes¨
ρ
∂u

∂g
− 1

2
σ], Lwg

∂
= (ρ f− ρa[ + ρe e− ijb + (divtσ)[

+
m∑

a,b=1

σ[(ea, eb) (II(ea, eb))
[,w) + 〈σ],α〉. (6)

This equation shall be valid for each diffeomorphism ξt : S → S and hence for each
velocity w.
We now consider (6) in an arbitrary point x ∈ Bt. In the coordinates of the surrounding
space, the Lie derivative of g is given by

(Lwg)ij =
∂gij
∂t

+ gij;k w
k + wi;j + wj;i.

g does not depend on t. From now on we use Riemannian normal coordinates around x.
Then in x all gij;k are 0. In these coordinates,

Lwg = (∇Sw)[ +
î
(∇Sw)[

óT
.

We now choose a ξt, such that w‖ = 0 and ∇Sw⊥ = 0. Then ∇Btw‖ = 0 and

∇Sw = ∇Sw⊥ = 0. Thus, (6) implies

(ρ f⊥ − ρa[⊥ + ρe e⊥ − (ijb)⊥ +
m∑

a,b=1

σ[(ea, eb) (II(ea, eb))
[,w⊥) = 0

and hence

ρa[⊥ = ρ f⊥ + ρe e⊥ − (ijb)⊥ +
m∑

a,b=1

σ[(ea, eb) (II(ea, eb))
[. (7)

On the other hand, if we choose a ξt, such that w⊥ = 0 and ∇Sw‖ = 0, then this implies

∇Sw = 0 and ∇Sηw‖ = ∇Btη w‖ + II(η,w‖) = 0 for each η that is tangential to Bt. Since

∇Btη w‖ is tangential to Bt, while II(η,w‖) is normal, both must be equal to 0. Thus,

∇Btw‖ = 0. Hence, (6) implies,

(ρ f‖ − ρa[‖ + ρe e‖ − (ijb)‖ + (divtσ)[,w‖) = 0,

and thus, since w‖ 6= 0,

ρa[‖ = ρ f‖ + ρe e‖ − (ijb)‖ + (divtσ)[. (8)
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3 The Balance Laws on Bt

Adding (7) and (8) yields

ρa[ = ρ f + ρe e− (ijb) + (divtσ)[ +
m∑

a,b=1

σ[(ea, eb) (II(ea, eb))
[. (9)

Thus, (6) simplifies to ¨
ρ
∂u

∂g
− 1

2
σ], Lwg

∂
= 〈σ],α〉, (10)

Now we choose ξt in such a way that w‖ = 0 while the normal velocity w⊥ is arbitrary.
Then (10) becomes ¨

ρ
∂u

∂g
− 1

2
σ], Lw⊥g

∂
= 0.

By the arbitrariness of w⊥ we deduce that

σ] = 2 ρ
∂u

∂g
. (11)

The only remnant of (6) is 〈σ],α〉 = 0. Since α is skew-symmetric, this implies that σ is
symmetric,

σ = σT . (12)

Thus, we can rewrite the last term of (9) by

m∑
a,b=1

σ[(ea, eb) II(ea, eb) =
m∑

a,b=1

g(σ(ea), eb) II(ea, eb)

=
m∑

a,b=1

II(ea,σ(ea))

= trIIσ.

Hence, (9) becomes

ρa[ = ρ f + ρe e− (ijb) + (divtσ)[ + trIIσ
[. (13)

Using conservation of mass, (13), (12), as well as the relations t = σ(n) and h = −g(qθ,n),
we can compute the local form of (1) as in the proof of Theorem 3.4.10. We obtain

ρ u̇ = 〈σ,d〉+ ρ rθ + (j̄, ē)− divt qθ.
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3.5 The balance laws for the general case

Remark 3.5.3. We have based our formulations of the balance laws on the ansatz by
Ericksen [2008], but we used the reformulation that was provided by Steigmann [2009]
and carried it over to manifolds.

Steigmann [2009] claims that Kovetz’ ansatz for the balance laws can be rephrased to
give the formulation by Ericksen. But this is not true. Their formulations of balance of
energy are different. Ericksen’s ansatz contains an additional term divt(ē× m̄), where
ē denotes the electromotive intensity and m̄ the magnetization that we introduced in
chapter 2. It might be possible that Steigmann has overlooked that Kovetz [2000] starting
from p. 81 solely uses Maxwell’s equations in a form that contains only free charges and
currents, without indicating this by use of the index f .
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4 The Balance Laws on B

In chapter 3 we have found a set of balance laws that govern the deformation of the body
in the surrounding space. All of these laws were formulated on the deformed body, i.e.
they were expressed by functions, vector and tensor fields (or forms) defined on Bt. In
section 1.3.1 we have called such laws spatial balance laws. In section 1.3.2, we have
already seen that it is convenient to transform such spatial balance laws to material
balance laws, i.e. to laws that are formulated in terms of quantities that are defined on
B × I. It is the aim of this chapter to provide a material version of conservation of mass,
balance of momentum, angular momentum, and energy.

For simple bodies that are not exposed to an external electromagnetic field the following
material balance laws were already given by Marsden and Hughes [1983].

4.1 Conservation of mass

Recall from section 1.3.3 that conservation of mass on some subset U of the undeformed
body is given by

d

dt

∫
U

ρref(X, t) VOL = 0,

where ρref is the mass density on B. The local form of conservation of mass is simply

ρref = const. in t. (4.1)

Conservation of mass on Ut is equivalent to conservation of mass on U , if and only if

ρref = J ρ, (4.2)

where J : B × I → R denotes the factor of volume deformation (see Def. 1.3.5) and
ρ : B̃ → R the mass density.

4.2 Balance of Momentum

For simple bodies the integral form of balance of momentum was found to read

d

dt

∫
Ut

ρv volt =

∫
Ut

(f ρ+ fL) volt +

∫
∂Ut

σ(n) vol∂Ut (4.3)

for the image Ut = φt(U) of any nice subset U of B (see section 3.2).

73



4 The Balance Laws on B

In section 3.5 we have seen that the local form of balance of momentum on any body,
simple or not, is given by

ρa[ = ρ f + fL + (divtσ)[ + trIIσ
[, (4.4)

where fL = ρe e− ijb.

The expression σ(x,t)(n) in (4.3) gives the force per unit of deformed area. Now we use
the Piola transformation to define a stress tensor field P on B such that P(N) gives the
force per unit of undeformed area, where N denotes the outer unit normal vector field
on B.

Definition 4.2.1. The first Piola-Kirchhoff stress tensor P : TXB → TxBt, where
x = φt(X), is defined by

P = J σ ◦ (F−1)T . (4.5)

In components, this means

PaA = J σab (F−1)Ab.

The components of the corresponding tensor field P] : T ∗xBt × T ∗XB → R are given by

PaA = J (F−1)Ab σ
ab.

Hence, some authors define the first Piola-Kirchhoff tensor by ”applying a Piola transfor-
mation (see Definition 1.3.10) on the second index of σ”.

By use of the Piola Identity (Theorem 1.3.12), we see that

J divtσ ◦ φt = DIVP . (4.6)

Using the first Piola-Kirchhoff tensor we can rewrite (4.3) to arrive at

d

dt

∫
U

V ρref VOL =

∫
U

F ρref VOL +

∫
U

FLVOL +

∫
∂U

P(N) VOL∂U

for any nice open set, where V (X, t) = v(x, t), F (X, t) = f(x, t), and FL(X, t) =
J (X, t)fL(x, t).

For simple bodies, we could now obtain the local form of this equation with an argumen-
tation similar to the proof of Theorem 3.2.7.

But we would like to have a local form of this law that is valid for arbitrary Riemannian
manifolds. Thus, we multiply the local spatial form (4.4) that we had derived for any
body (under assumption of conservation of mass) by J and express all quantities in
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4.3 Balance of Angular Momentum

terms of the coordinates on the undeformed body: Using

J (X, t) ρ(x, t) = ρref(X, t) (see eq. (4.2))

FL(X, t) = J (X, t) fL(x, t), (see eq. (2.13))

J divtσ ◦ φt = DIVP (see eq. (4.6))

J trIIσ = trII(P ◦FT ) (see eq. (4.5))

as well as V (X, t) = v(x, t) and F(X, t) = f(x, t), we obtain

ρrefA
[ = ρref F + FL + (DIVP)[ +

î
trII(P ◦FT )

ó[ ◦ φ,
where A denotes the material acceleration that we defined in section 1.1 (see Definition
1.1.5). If Bt is a hypersurface with normal unit field ν, then J trIIσ = trg(Sν ◦P ◦FT )
and balance of momentum can be expressed by

ρrefA
[ = ρref F + FL + (DIVP)[ +

î
trg(Sν ◦P ◦FT )

ó[
ν ◦ φ,

where Sν denotes the Weingarten map.

Thus, we have shown

Theorem 4.2.2
The material form of balance of momentum, equivalent to (4.4) is

ρrefA
[ = ρref F + FL + (DIVP)[ +

î
trII(P ◦FT )

ó[ ◦ φ.
For hypersurfaces this becomes

ρrefA
[ = ρref F + FL + (DIVP)[ +

î
trg(Sν ◦P ◦FT )

ó[
ν ◦ φ.

4.3 Balance of Angular Momentum

We can now give a material version of balance of angular momentum. According to
Theorem 1.3.23, for simple bodies it is given by

Theorem 4.3.1 (Material Balance of Angular Momentum)
In material form, the integral formulation of balance of angular momentum for simple
bodies reads

d

dt

∫
U

X×V ρref VOL =

∫
U

X×F ρref VOL+

∫
U

X×FL VOL+

∫
∂U

X×(P(N))VOL∂U

for any nice U ⊂ B, where F (X, t) := f(x, t), FL(X, t) := J fL(x, t), and P is the first
Piola-Kirchhoff tensor.
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4 The Balance Laws on B

Definition 4.3.2. The second Piola-Kirchhoff tensor S : TXB → TXB is defined
by

S = F−1 ◦P = J F−1 ◦ σ ◦ (F−1)T .

In components,

SAB = J (F−1)Aa σ
ab (F−1)Bb.

The components of the corresponding (2, 0) tensor field S] : T ∗XB × T ∗XB → R are given
by

SAB = J (F−1)Aa σ
ab (F−1)Bb.

In other words, S] = J φ∗tσ].

Theorem 4.3.3 (Material Balance of Angular Momentum, Local Form)
Assume that Axiom 2) holds with the transformations that were stated above Theorem
3.5.1. Then balance of angular momentum holds if and only if

S = ST .

Proof. Under the given assumptions by Theorem 3.5.1 the local form of balance of angular
momentum is given by the symmetry of σ. By the definition of S, S is symmetric if and
only if σ is symmetric.

4.4 Balance of Energy

Under the assumption that the spatial form of balance of energy is invariant under the
action of arbitrary spatial diffeomorphisms, we have balance of momentum and angular
momentum at our disposal (see Theorem 3.5.1) and can express the spatial form of
balance of energy by

d

dt

∫
Ut

Å
u+

1

2
g(v,v)

ã
ρvolt

=

∫
Ut

Ä
g(f ,v) + rθ

ä
ρvolt +

∫
Ut

(j, e) volt +

∫
∂Ut

g
Ä
σT (v‖)− qθ,n

ä
vol∂Ut . (4.7)

Theorem 4.4.1 (Material Balance of Energy)
Define U(X, t) := u(x, t), F (X, t) := f(x, t), Rθ(X, t) := rθ(x, t), Qθ(X, t) := J (X, t) ·
F−1(qθ(x, t)), and as in section 2.5, J(X, t) := J (X, t) · j(x, t), E(X, t) = e(x, t).
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4.4 Balance of Energy

Then the material form of balance of energy, equivalent to (4.7), is

d

dt

∫
U

Å
U +

1

2
〈V ,V 〉

ã
ρref VOL

=

∫
U

Ä
〈F ,V 〉+Rθ

ä
ρref VOL +

∫
U

(J ,E)VOL +

∫
∂U

G(PT (V‖)−Qθ,N) VOL∂U .

Proof. We just apply Theorem 1.3.13 to (4.7). To do this, we need to determine the
Piola transformation of σT (v‖). It follows immediately from the definition of the first
Piola-Kirchhoff tensor P that

J F−1σT (v‖) = PT (v‖).

Writing v‖(x, t) = V‖(X, t), we obtain that the Piola transformation of σT (v‖) is

PT (V‖).

Theorem 4.4.2 (Balance of Energy - local material form)
Assume that conservation of mass, balance of momentum and balance of angular momen-
tum hold. Then the local form of balance of energy is given by

ρref
∂U

∂t
= 〈S,D〉+ ρrefRθ + (J̄ , Ē)−DIVQθ,

where as in section 2.5, J̄(X, t) := J (X, t) j̄(x, t) and Ē(X, t) := ē(x, t).

Proof. We immediately obtain from S] = J φ∗tσ] and D[ = φ∗td
[ that

J 〈σ,d〉 = 〈S,D〉.

We multiply the local form of balance of energy

ρ u̇ = 〈σ,d〉+ ρ rθ + (j̄, ē)− divt qθ,

from Theorem 3.5.1 by J and express all terms in dependence on X and t: In Theorem
4.4.1 we have defined U and u by U(X, t) = u(x, t) and Rθ(X, t) = rθ(x, t), respec-
tively. Moreover, Qθ was defined as the Piola transformation of qθ, thus by the Piola
identity (Theorem 1.3.12) J divt qθ = DIVQθ. Furthermore, as in section 2.5 we de-
fine J̄(X, t) := J (X, t) · j̄(x, t) and Ē(X, t) = ē(x, t). By (4.2), J ρ = ρref. Thus we
immediately obtain

ρref
∂U

∂t
= 〈S,D〉+ ρrefRθ + (J̄ , Ē)−DIVQθ.
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4 The Balance Laws on B

4.5 The Equation of motion and the Doyle-Ericksen formula

We can also provide material versions of the Doyle-Ericksen formula σ] = 2 ρ ∂u∂g (see
Theorem 3.5.1) that links the internal energy u and the metric g of the surrounding space
to the stress tensor σ.

Theorem 4.5.1
The Doyle-Ericksen formula σ] = 2 ρ ∂u∂g is equivalent to each of the following relations

S] = 2 ρref
∂U

∂C[
, i.e., SAB = 2ρref

∂U

∂CAB
, (4.8)

P] = 2 ρrefF
∂U

∂C[
PaB = 2ρrefFaA

∂U

∂CAB
(4.9)

P] = g] ρref
∂U

∂F , PaA = gab ρref
∂U

∂FbA
. (4.10)

Here, U is the material expression for the internal energy. P and S denote the first and
the second Piola-Kirchhoff tensor, respectively. Moreover, F is the deformation gradient
(see Def. 1.2.1) and C the deformation tensor (see Def. 1.2.3).

Parts of the proof of this theorem are taken from the proofs of Proposition 2.11 and
Proposition 2.12 in Marsden and Hughes [1983, see ch. 3].

Proof. By use of the chain rule and C[ = φ∗g (Remark 1.2.6), we see thatÅ
∂u

∂g

ãab
=

∂u

∂gab
=

∂U

∂CAB
∂CAB
∂gab

=
∂U

∂CAB
Fa

AF b
B =

Å
φ∗

∂U

∂C[
ãab

,

or short, ∂u
∂g = φ∗

∂U
∂C[ . Thus, the Doyle-Ericksen formula is equivalent to

σ] = 2 ρ φ∗
∂U

∂C[
.

We multiplicate this equation by J and apply φ∗. Since J φ∗σ] = S] and J ρ = ρref,
(see p. 76 and eq. 4.2) we obtain equation (4.8),

S] = 2 ρref
∂U

∂C[
.

Applying now the deformation gradient F to both sides using the definition of S,
immediately provides equation (4.9),

P] = 2 ρrefF
∂U

∂C[
.
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4.5 The Equation of motion and the Doyle-Ericksen formula

To show the equivalence of (4.9) and (4.10), we compute g] ∂U∂F : In components,Å
g]
∂U

∂F

ãaA
= gab

∂U

∂CBC
∂CBC
∂FbA

.

By use of ∂CBC

∂Fb
A

= gbc
Ä
δAB FcC + FcB δAC

ä
and the symmetry of C we obtainÅ

g]
∂U

∂F

ãaA
= FaB

∂U

∂CAB
+ FaB

∂U

∂CBA

= 2FaB
Å
∂U

∂C

ãBA
,

or in short, g] ∂U∂F = 2F ∂U
∂C[ . Thus,

2 ρrefF
∂U

∂C[
= g] ρref

∂U

∂F ,

whence the equivalence of (4.9) and (4.10) is proved.

By use of (4.10) and A = ∇
∂t
∂φ
∂t we can rewrite the material form of balance of momentum

(see Theorem 4.2.2) to

ρref
∇
∂t

∂φ

∂t
= ρref F + FL + DIV

Å
ρref

∂U

∂F

ã
+ ρref trII

Å
∂U

∂F ◦F
T
ã
◦ φ.

If we knew, how the internal energy U depends on the deformation φ and thus on the
deformation gradient F , we could start immediately with the study of the equation of
motion as a partial differential equation. We could make now an ad hoc assumption on
this dependence and get started. But it is advisable, to reflect on how such a connection
between U und F could look like at all and whether it might be restricted by some
reasonable physical demands. This will be the topic of the next chapter.
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5 The Properties of the material:
Constitutive relations

From here on, we always assume that balance of energy is invariant under diffeomorphisms
acting on the surrounding space (see Axiom 2, section 3.5). Only then we have the local
forms of balance of momentum, angular momentum, and energy at our disposal.

5.1 Constitutive relations

In material coordinates, the local forms of conservation of mass, balance of angular
momentum, and balance of energy were given by

ρref = const. in t, (see eq. (4.1))

S = ST , (see Th. 4.3.3)

ρref
∂U

∂t
= 〈S,D〉+ ρrefRθ + (J̄ , Ē)−DIVQθ. (see Th. 4.4.2)

The body’s motion is governed by balance of momentum,

ρrefA
[ = ρref F + FL + (DIVP)[ +

î
trII(P ◦FT )

ó[ ◦ φ, (see Th. 4.2.2)

or in spatial coordinates,

ρa[ = ρ f + fL + (divtσ)[ + trIIσ
[. (see Th. 3.5.1)

Assume we are given the initial values of the mass density, the deformation, and the
velocity

ρref(X, 0), φ(X, 0), and V (X, 0),

as well as the external force F and the electromagnetic fields Ē and B. Can we determine
the motion of B ?

Indeed, the equations that we have summarized above, are not sufficient to determine
the motion of B. There are the following problems:

1) We have more unknowns than relations. According to Theorem 3.5.1 and Theorem
4.5.1, the first Piola-Kirchhoff tensor is related to the motion φ and the internal
energy U by the Doyle-Ericksen formula

P] = g] ρref
∂U

∂F .
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5 The Properties of the material: Constitutive relations

But we do not know yet, how the internal energy depends on F and the external
influences.

2) Up to now, we have not taken the material the body is made of into account. But
we should certainly do so, since we would expect the body to behave differently
according to how elastic or stiff it is.

To solve these problems we introduce constitutive relations that encode the substance
constituting B and its inner structure, and hence specify the materials’ properties. Of
course, only the quantities that actually depend on the kind of material will be given by
a constitutive relation. These are

• the internal energy U , since it encodes the molecular structure of the material,

• the first Piola Kirchhoff tensor P, since it describes how one part of B reacts if
another part of B is moved. This reaction clearly depends on the material,

• and the heat flux vector Qθ which states, how well B can conduct heat.

If we are given a constitutive relation for the internal energy, then by use of the Doyle-
Ericksen formula we can compute the first Piola-Kirchhoff tensor.
The external mechanical force F , the heat supply Rθ and the electromagnetic fields Ē
and B, however, are purely external influences.

Remark 5.1.1.

1) It is easier to formulate constitutive laws on B and not on Bt, since then the domain
of the quantities is fixed.

2) Here we are not interested in the development of the body’s temperature. It is
governed by balance of energy and depends on a constitutive relation for the heat
flux vector Qθ.

Recall that D(B) denotes the set of all deformations of B in S.

Definition 5.1.2 (see Marsden and Hughes [1983, ch.3, Def. 1.3]).
Let F ∈ Cr(B) be a scalar function describing a material property (for instance, the inter-
nal energy density). A thermoelectromagnetoelastic (TEM-elastic) constitutive
relation for F is a map“F : D(B)× Cr(B,R+)× Γk(B, T ∗S)× Γk(B, T ∗S)→ Cr(B̃).

The function F associated to “F , the motion φ, the temperature field Θ, the electric field
Ē, and the magnetic flux B, is then given by

F (X, t) = “FÄφt,Θt, Ēt,Bt

ä
(X), (5.1)
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5.1 Constitutive relations

where φt(X) = φ(X, t), Θt(X) = Θ(X, t), Ēt(X) = Ē(X, t) and Bt(X) = B(X, t).

Materials with such a kind of constitutive relation are called thermoelectromagnetoe-
lastic.

The relation (5.1) means that F depends on the functions and vector fields φt, Θt, Ēt,
and Bt as a whole. For instance, F could depend on spatial or temporal derivatives of
φt, Θt, Ēt, and Bt.

Similar definitions can be given for the TEM-elastic constitutive relations of material
properties characterized by vector fields or tensor fields (e.g. the heat flux Qθ and the
second Piola-Kirchhoff tensor S).

It could be possible that the value of some material property F at the time t not only
depends on the values of φ, Θ, Ē, and B at the time t, but on the values these quantities
had at earlier times. In such a case one says that there are memory effects. Here we have
excluded such a behavior and only consider the simplest possible case: In the constitutive
relations all quantities are evaluated at the same time t. That is, to define the current
value of F , only the current values of the deformation φt, the temperature θt and the
electromagnetic fields Ēt and Bt are necessary, their earlier values are irrelevant.

Remark 5.1.3. In particular the stress tensor σ (and thus P and S) at each point
x ∈ Bt is determined only by the current state of deformation. The stress does not
depend on the path of deformation that was taken to achieve the current state Bt.
Materials with such a simple dependence of the stress on the deformation are called
Cauchy elastic materials [Ogden, 1984, p.175 ff.]. Nevertheless the work done by the
interior forces could still depend on the past states of deformation, i.e. even for these
materials, σ can in general not be derived from a scalar potential function. If, however,
the stress can be computed as the derivative of some potential function with respect
to the deformation, then the material is called hyperelastic. The potential function is
then called strain-energy function, and the corresponding relation between the stress
and the deformation is called stress-deformation relation.

We only want to consider materials for which all balance laws are available on a mani-
fold. But then, according to Theorem 3.5.1, the Doyle-Ericksen formula σ] = 2ρ ∂u∂g or

P = ρref
∂U
∂F , resp., holds, so the internal energy is a potential function for the stress.

Thus, to have a theory of electroelasticity on a manifold, the material under consideration
must be hyperelastic.

In section 5.3 we will set up a particular constitutive relation describing a certain elec-
troelastic material that we want to study. But before we do that we will consider
constitutive relations in general. We will make some (physically) reasonable demands to
these relations and will see that they already restrict the form of the dependence of the
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material quantities on the deformation and the external influences.

5.2 Thermoelasticity

In this section, we recollect some results on thermoelastic materials.

Again we assume that we can always assign a well-defined (absolute) temperature
field θt : Bt → R+ to Bt. Moreover, we define the temperature Θ : B → R+ on the
undeformed body by

Θ(X, t) := θ(x, t).

Definition 5.2.1 (see Marsden and Hughes [1983, ch.3, Def. 1.3]).
Let F ∈ Cr(B) be a scalar function describing a material property (for instance, the
internal energy density). A thermoelastic constitutive relation for F is a map“F : D(B)× Cr(B,R+)→ Cr(B).

The function F associated to “F , the motion φ and the temperature field Θ is then given
by

F (X, t) = “FÄφt,Θt

ä
(X), (5.2)

where φt(X) = φ(X, t) and Θt(X) = Θ(X, t).
Materials with this kind of constitutive relation are called thermoelastic.

Definition 5.2.2 (Locality, Marsden and Hughes [1983], ch.3, Def. 2.1).
Let “F : D(B)× Cr(B,R+)→ F (B) be a constitutive function for thermoelasticity, where
F stands for the scalar functions, the smooth vector fields or the (0, 2) tensor fields on
B, respectively. Let φ1, φ2 ∈ D(B) and Θ1,Θ2 ∈ Cr(B,R+).“F is called local, if for any open set U ⊂ B

φ1 = φ2 on U

Θ1 = Θ2 on U

already implies that “F (φ1,Θ1) = “F (φ2,Θ2) on U.

Definition 5.2.3. Let “F : D(B)× Cr(B,R+)→ F (B) be a constitutive function for
thermoelasticity, where F stands for the scalar functions, the smooth vector fields or the
(0, 2) tensor fields on B, respectively. We say that “F is strongly local, if the value of “F
at X only depends on the values of φ and Θ and their derivatives up to a certain order k
at X.
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5.2 Thermoelasticity

In particular, each strongly local constitutive relation is also local.

Axiom 3 (see Marsden and Hughes [1983, ch.3, p. 202]). For thermoelastic ma-
terials all constitutive functions are strongly local.

Definition 5.2.4. We assume that the entropy S on Ut is given by the integral of
some entropy density s : Bt → R that is referred to the mass density ρ:

S (Ut) =

∫
Ut

s ρvolt.

We define the free energy density ψ on Bt by

ψ := u− θ s.

As before u is the internal energy, θ the temperature, and ρ the mass density.

We also define a corresponding free energy density on the undeformed body: In section
4.4 we have already defined the internal energy on B, by U(X, t) := u(x, t). Analogously
we define the entropy density on the undeformed body by

S(X, t) := s(x, t)

Thus, the free energy density Ψ on B, defined by Ψ(X, t) := ψ(x, t), satisfies

Ψ = U −ΘS. (5.3)

“Ψ is a material property and thus characterized by a constitutive relation.

Definition 5.2.5. A (thermoelastic) process is a tuple (φ,Θ), where φ : B × I → S is
a motion of B in S and Θ : B × I → R a temperature distribution.

Let us denote by Dφ
“Ψ the partial derivative of “Ψ with respect to φ in the Fréchet sense,

see Marsden and Hughes [1983, ch.3, Box 1.1].

We will now deduce some restrictions to the constitutive relations that result from
covariance assumptions and balance of energy. In contrast to section 3.5, we do not
consider all processes, but rather all transformations of a given process.

As before, we consider coordinate changes ξ : S → S of the surrounding space, but here
we additionally use linear temperature rescalings.
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Definition 5.2.6. A linear rescaling of the temperature is a monotone increasing linear
diffeomorphism r : R+ → R+. Moreover, we set

R = {r : R+ → R+ | r is a temperature rescaling}.
C = {ξ : S → S | ξ is a diffeomorphism}.

The following axiom is a reformulation of an axiom that has been given by Marsden and
Hughes [1983].

Axiom 4 (see Marsden and Hughes [1983], ch.3, p. 202).
Let (φ, Θ) be a process, where we assume that φ and Θ are as often continuously
differentiable, as is needed to have the partial derivatives Dφ

“Ψ and DΘ
“Ψ well-defined.

1) For each time t, the tuple (φt, Θt) satisfies balance of energy (see Th. 4.4.2)

ρref
∂U

∂t
= 〈S,D〉+ ρrefRθ −DIVQθ.

2) There is a map
ˆ̂
Ψ : D(B) ×Og × Cr(B) × R+ → Cr(B), such that for any diffeo-

morphism ξ : S → S and any temperature rescaling r : R+ → R+,“Ψ(φt,Θt) =
ˆ̂
Ψ(ξ ◦ φt, ξ∗g, rΘt, r).

3) For curves in C and in R, given by

I → C, t 7→ ξt and I → R, t 7→ rt,

respectively, we assume that φ′t := ξt ◦ φt and Θ′t := rtΘt satisfy balance of energy.
We demand that the primed and unprimed quantities are related by

S′ = S

Ψ′ = Ψ.

(Rθ)
′
t −Θ′t

∂S′t
∂t

= (Rθ)t −Θt
∂St
∂t

(5.4)

(Qθ)′t = rt · (ξt)∗(Qθ)t

t′ = (ξt)∗t.

Formula (5.4) accounts for the apparent heat supply due to some additional entropy
production.
The following theorem was provided by Marsden and Hughes [1983], but we restrict its
assertion to simple bodies to ensure the well-definedness of the partial derivatives Dφ

“Ψ
and DΘ

“Ψ that are needed for its proof.
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5.2 Thermoelasticity

Theorem 5.2.7 (see Marsden and Hughes [1983, ch.3, Theorem 3.6])
Let B be a simple body. Then under the assumptions of axiom 3 and axiom 4 the con-

stitutive function “Ψ for the free energy density depends only on the point values of the
deformation tensor C and the temperature Θ. Moreover, the entropy S and the first
Piola-Kirchhoff tensor P can be obtained from “Ψ by

S = −∂
“Ψ
∂Θ

P] = g] ρref
∂“Ψ
∂F = 2 ρrefF

∂“Ψ
∂C[

.

In section 5.3 we will give a version of this theorem that includes electromagnetic fields.

Remark 5.2.8. Observe that Theorem 5.2.7 provides no information on the dependence
of Qθ on φ and Θ. In the literature on thermoelasticity it is often just assumed that Qθ
depends only on the point values of C, Θ and GRAD Θ at X (Marsden and Hughes
[1983, p. 193]; Kovetz [2000, p. 229]).
A material with such a simple constitutive relation is called grade (1, 1) material.

If the material possesses symmetries, then the constitutive relations can be further
simplified.

Definition 5.2.9 (Marsden and Hughes [1983], ch.3, Def. 5.1).
A material symmetry for the free energy density Ψ at a point X0 ∈ B is a linear
isometry λ : TX0B → TX0B, such that“Ψ(X0,C,Θ) = “Ψ(X0, λ

∗C,Θ),

where C is an arbitrary symmetric positive-definite (0, 2) tensor field on B.
The material symmetry group of “Ψ in X0 consists of all material symmetries of “Ψ in
X0 and is denoted by SX0(“Ψ).

Theorem 5.2.10 (Marsden and Hughes [1983], ch.3, Prop. 5.4)
Assume that “S = 2 ρref

∂Ψ̂
∂C . Then for each material symmetry λ ∈ SX0(“Ψ),“S(X0, λ

∗C,Θ) = λ∗“S(X0,C,Θ).

Definition 5.2.11 (Marsden and Hughes [1983], ch.3, Def. 5.6). Let B be a sim-
ple body. Then the material B is made of, is called isotropic at a point X0 ∈ B, if its

87



5 The Properties of the material: Constitutive relations

constitutive relation for the free energy density in X0 is invariant under the action of
SO(3), that is, if SO(TX0B) = SO(3) ⊂ SX0(“Ψ).

A material is called isotropic, if it is isotropic at every point.

Theorem 5.2.12 (Marsden and Hughes [1983], ch.3, Prop. 5.10)
Let C be an arbitrary symmetric m×m matrix.

Then a scalar function f of C is invariant under orthogonal transformations if and only
if f depends on C only by its elementary symmetric functions Ia, i.e. by

Ia(C) =
∑

1≤i1<i2<...<ia≤m
λi1 · . . . · λia a = 1, . . . ,m = dim B,

where λ1, . . . , λm denote the eigenvalues of C.

Remark 5.2.13. Recall that I1(C) = tr(C) and Im(C) = det(C).

Definition 5.2.14 (Marsden and Hughes [1983], ch.3, p.220). The thermoelastic
constitutive function “Ψ for the free energy density is called materially covariant, if for
all diffeomorphisms Ξ : B → B,

Ξ∗(“Ψ(G,C,Θ)) = “Ψ(Ξ∗G,Ξ∗C,Ξ∗Θ),

where G denotes the Riemannian metric on B.

Theorem 5.2.15 (Marsden and Hughes [1983], ch.3, Prop. 5.7)
Assume that “Ψ is materially covariant. Then for each X0 ∈ B, SO(TX0B) ⊂ SX0(“Ψ).

In particular, any materially covariant body in R3 is isotropic.

Let “Ψ be an thermoelastic constitutive function for the free energy density. If “Ψ is
materially covariant, then, motivated by Theorems 5.2.15 and 5.2.12, we regard it as a
function of I1(C), . . . , Im(C) and Θ.

There are several definitions concerning the constitutive laws of specified elastic materials.
In the following we essentially adhere to the definitions as they are given by Ogden [1984,
ch. 4.3.5], but we rewrite the definitions given there in terms of the elementary symmetric
functions of C and also provide a version of these relations for shells.

In the following we disregard temperature dependencies and consider the purely elastic
case. Assume for the moment that the dimension of the body is three. Since for a
materially covariant material the free energy density only depends on the elementary
symmetric functions of C, we assume that Ψ is smooth with respect to I1(C), I2(C), and
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I3(C), and that we can expand it to an infinite power series

Ψ
î
I1(C), I2(C), I3(C)

ó
=

∞∑
p,q,r=0

cpqr
Ä
I1(C)− 3

äp Ä
I2(C)− 3

äq Ä
I3(C)− 1

är
. (5.5)

The coefficients cpqr are assumed to be independent of the deformation.
If the stress inside the body is zero, then C = Id and thus I1(C) = I2(C) = 3 while
I3(C) = 1. In this case Ψ[I1(C), I2(C), I3(C)] = c000.

Remark 5.2.16. Ogden [1984] considers not explicitly the free energy, but an abstract
function W , called ”stored energy function” that serves as a potential for the first Piola-
Kirchhoff tensor. To Ogden, W is just ”a measure of the energy stored in the material as
a result of deformation”. That is why he demands that c000 = 0, which implies that W
vanishes if there is no deformation.
In our setting this demand does not make sense: If we as above disregard the temperature,
then Ψ coincides with the internal energy. But a vanishing internal energy is only possible
if there is no material at all.
However, keeping a non-vanishing c000 has no impact in the following anyway; in the
following deductions we will only consider the derivative of Ψ with respect to C.
Ogden’s stored energy function W might be characterized as the change of internal
energy due to deformation.

Definition 5.2.17. A material is called incompressible, if the factor of volume defor-
mation J is constant and equal to 1.

For an incompressible material I3(C) = J 2 = 1, and the power series (5.5) simplifies to

Ψ
î
I1(C), I2(C), I3(C)

ó
=

∞∑
p,q=0

cpq
Ä
I1(C)− 3

äp Ä
I2(C)− 3

äq
. (5.6)

The simplest examples of isotropic materials are the Mooney-Rivlin and the Neo-Hookean
materials. Their free energy density is obtained by using only some of the first terms of
the power series (5.6).

Definition 5.2.18. Assume that the body is three-dimensional.
A Mooney-Rivlin material is a material with a constitutive law of the form

Ψ =
µ1

2
(I1(C)− 3) +

µ2

2
(I2(C)− 3) + µ3,

where I1(C) and I2(C) denote the first and the second elementary symmetric functions
of C. µ1, µ2, µ3 are constants, and we demand that µ1 > 0.
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A Neo-Hookean material is a material with the constitutive law

Ψ =
µ

2
(I1(C)− 3) + τ,

where µ > 0 and τ are constants.

Remark 5.2.19.

1) By definition, the Mooney-Rivlin and the Neo-Hookean materials are incompressible.

2) The isotropy of the material is reflected in the fact that µ1 and µ2 are (constant)
functions and not (non-trivial) tensors.

3) µ1 and µ2 (or µ) can be determined experimentally. µ1 is called shear modulus.
and is always positive. Materials with a high shear modulus are harder to deform
than materials with a low shear modulus.

In two dimensions the power series (5.5) has to be replaced by

Ψ
î
I1(C), I2(C)

ó
=

∞∑
p,q=0

cpq
Ä
I1(C)− 2

äp Ä
I2(C)− 1

äq
. (5.7)

If the material is incompressible, then this simplifies to

Ψ
î
I1(C), I2(C)

ó
=
∞∑
p=0

cp
Ä
I1(C)− 2

äp
. (5.8)

In three dimensions we have defined Mooney-Rivlin and Neo-Hookean materials by setting
in (5.6) all coefficients with the exception of c00, c10 and c01 to zero. The analogy here
is to set all coefficients cp equal to zero with the exception of c0 and c1. But then, for
two-dimensional bodies Mooney-Rivlin and Neo-Hookean materials are the same:

Definition 5.2.20. Assume that the body is two-dimensional.
A Mooney-Rivlin material/Neo-Hookean material is a material with a constitutive
law of the form

Ψ =
µ

2
(I1(C)− 2) + τ,

where I1(C) denotes the first elementary symmetric functions of C, that is, I1(C) = tr(C).
µ > 0 and ν are constants.

For one-dimensional bodies C is a scalar, and we write

Ψ[C] =
∞∑
p=0

cp
Ä
C − 1

äp
. (5.9)
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5.3 Thermoelectromagnetoelasticity

But now it makes no sense to assume that the material is incompressible. In particular
there are no one-dimensional Mooney-Rivlin or Neo-Hookean materials. To have a simple
model for a one-dimensional body we can just take the first two summands of the power
series (5.9) and work with

Ψ[C] =
µ

2

Ä
C − 1

ä
+ τ

where µ > 0 and τ are constants.

Remark 5.2.21. If the material is incompressible, then the Transport Theorem (Th.
1.3.8), the Spatial Localization Theorem (1.3.9), and the conservation of mass become
much simpler. The first equation in the Transport Theorem (Theorem 1.3.8) is replaced
by

d

dt

∫
Ut

f(x, t) volt =

∫
Ut

ḟ(x, t) volt(x),

the local form of

d

dt

∫
Ut

a(x, t) volt =

∫
Ut

b(x, t) volt +

∫
∂Ut

g(c(x, t),n) vol∂Ut

becomes (see Theorem 1.3.9)

ȧ = b+ divtc,

and hence conservation of mass (see Th. 1.3.19) simplifies to ρ̇ = 0.

5.3 Thermoelectromagnetoelasticity

We repeat the definition of TEM-elastic materials that was already stated in section 5.1.

Definition 5.3.1 (see Marsden and Hughes [1983, ch. 3, Def. 1.3]).
Let F ∈ Cr(B) be a scalar function describing a material property (for instance, the inter-
nal energy density). A thermoelectromagnetoelastic (TEM-elastic) constitutive
relation for F is a map“F : D(B)× Cr(B,R+)× Γk(B, T ∗S)× Γk(B, T ∗S)→ Cr(B).

The function F associated to “F , a motion φ, a temperature field Θ, an electric field Ē
and a magnetic field B, is then given by

F (X, t) = “FÄφt,Θt, Ēt,Bt

ä
(X), (5.10)
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where φt(X) = φ(X, t), Θt(X) = Θ(X, t), Ēt(X) = Ē(X, t) and Bt(X) = B(X, t).
Materials with such a kind of constitutive relation are called thermoelectromagnetoe-
lastic (TEM-elastic).

We extend the notion of locality as stated in definition 5.2.2 to TEM-elastic materials.

Axiom 5. We assume that for TEM-elastic materials all constitutive functions are
strongly local.

Definition 5.3.2. We define the free energy density ψ on Bt by

ψ := u− θ s− 1

ρ
(ē,p).

ē is the electromotive intensity, p denotes the polarization that we introduced in chapter
2.
Again, we define a corresponding free energy density on the undeformed body: In sec-
tion 4.4 we have already defined the electromotive intensity on B, by Ē(X, t) := ē(x, t).
Analogously we define the polarization on the undeformed body by

P (X, t) := J (X, t)p(x, t).

Thus, the free energy density Ψ on B, defined by Ψ(X, t) := ψ(x, t), satisfies

Ψ = U −ΘS − 1

ρref
〈Ē,P 〉. (5.11)

Definition 5.3.3. A (TEM-elastic) process is a tuple (φ,Θ, Ē,B), where φ : B×I → S
is a motion in S, Θ : B × I → R a temperature distribution, Ē : B × I → T ∗S an
electromotive intensity and B : B × I → T ∗S a magnetic flux density.

Recall that C denotes the set of all diffeomorphisms on S and that R denotes the set of
all linear temperature rescalings r : R+ → R+.

We now generalize axiom 4 to arrive at an axiom that also includes the presence of
electromagnetic fields.

Axiom 6.
Let (φ, Θ, Ē,B) be a given process, where we assume that φ, Θ, Ē, B are as often
continuously differentiable, as is needed to have the partial derivatives DφΨ, DΘΨ, DĒΨ
and DBΨ well-defined.
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1) For each time t, the tuple (φt,Θt, Ēt,Bt) satisfies balance of energy (see Th. 4.4.2)

ρref
∂U

∂t
= 〈S,D〉+ ρrefRθ + (J̄ , Ē)−DIVQθ.

2) There is a map
ˆ̂
Ψ : D(B)×Og×Cr(B)×R+×Γ(B, T ∗S)×Γ(B, T ∗S)→ Cr(B), such

that for any diffeomorphism ξ : S → S and any temperature rescaling r : R+ → R+,“Ψ(φt,Θt, Ēt,Bt) =
ˆ̂
Ψ(ξ ◦ φt, ξ∗g, rΘt, r, ξ∗Ēt, ξ∗Bt).

3) For curves in C and in R, given by

I → C, t 7→ ξt and I → R, t 7→ rt,

respectively, we assume that φ′t := ξt ◦ φt and Θ′t := rtΘt satisfy balance of energy.
We demand that the primed and unprimed quantities are related by

S′ = S

Ψ′ = Ψ.

(Rθ)
′
t −Θ′t

∂S′t
∂t

= (Rθ)t −Θt
∂St
∂t

(Qθ)′t = rt · (ξt)∗(Qθ)t

t′ = (ξt)∗t.

Let us assume that at the time t = t0, ξt and r are the identity. Then for t = t0

J̄ ′ = J̄ ,

Ē′ = Ē,

P ′ = P ,

(see chapter 2).

The following central theorem generalizes Theorem 5.2.7 to TEM-materials.

Theorem 5.3.4
Assume that B is a simple body and suppose that the axioms 5 and 6 hold.

Then the constitutive function “Ψ for the free energy density depends only on the point
values of F , Θ, Ē and B. Moreover, the entropy, the temperature, the polarization, and
the magnetization can be obtained as partial derivatives of “Ψ:

S = −∂Ψ

∂Θ
(5.12)

P = −ρref
∂Ψ

∂Ē
(5.13)

M̄ = −ρref
∂Ψ

∂B
(5.14)
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and

P = ρref
∂“Ψ
∂F +

î
〈M̄ ,B〉 Id− M̄ ⊗B + Ē ⊗ P

ó Ä
FT
ä−1

, (5.15)

that is,

P = ρref
∂“Ψ
∂F + 〈M̄ ,B〉

Ä
FT
ä−1 − 〈B, (FT )−1( · )〉M̄ + 〈P , (FT )−1( · )〉 Ē. (5.16)

Here we have identified vector fields and 1-forms along φt.

If “Ψ depends on Ē and B only by |E|2 and |B|2, then “Ψ depends on φ only be the
deformation tensor C.

Remark 5.3.5. By means of the entropy inequality Kovetz [2000, see p.230] provides a
similar result, but he uses much stronger assumptions: Concerning the electromagnetic
fields he already assumes that “Ψ depends only on the point values of Ē and B. Moreover
he already assumes that the dependence on the deformation φ is at most given by
the point values of the deformation gradient F and the velocity. For the temperature
dependence he assumes that “Ψ only depends on the point values of the temperature
itself and on the temperature gradient. Then he shows that under these assumptions
the free energy density is indeed independent from the velocity and the temperature
gradient. Moreover he derives the same relations for the entropy, the polarization, and
the magnetization that we obtained in Theorem 5.3.4 and also provides a connection for
the Cauchy stress tensor that is similar to eq. (5.15).

Proof of Theorem 5.3.4. We have already seen in the course of the proof of Theorem
4.4.2 that 〈S,D〉 = J 〈σ,d〉. For simple bodies, the spatial rate of deformation tensor d
is given by

d[ =
1

2

ÅÄ
∇Btv

ä[
+
[Ä
∇Btv

ä[]Tã
.

(see Theorem 1.2.13) and thus, 〈S,D〉 = J 〈σ,∇Btv〉. The definition of the first Piola-
Kirchhoff tensor (see 4.2.1) now provides J σ = P ◦FT . Moreover, for simple bodies
∇Bt = ∇S . Thus,

〈S,D〉 = 〈P ◦FT ,∇Sv〉

Using this and the definition of Ψ, (see (5.11)), we express balance of energy in terms of
Ψ:

ρref

Å
dψ

dt
+
∂Θ

∂t
S + Θ

∂S

∂t

ã
+
¨∂Ē
∂t

,P
∂

+
¨
Ē,

∂P

∂t

∂
= ρrefRΘ + 〈P ◦FT ,∇Sv〉+ 〈J̄ , Ē〉 −DIVQθ.

94



5.3 Thermoelectromagnetoelasticity

Assuming Ψ = “Ψ(φ, θ, Ē,B) gives

ρref

Ç
(Dφ
“Ψ)V + (DΘ

“Ψ)
∂Θ

∂t
+ (DĒ

“Ψ)
∂Ē

∂t
+ (DB“Ψ)

∂B

∂t
+ S

∂Θ

∂t
+ Θ

∂S

∂t

å
+
¨
P ,

∂Ē

∂t

∂
+
¨
Ē,

∂P

∂t

∂
= ρrefRΘ + 〈P ◦FT ,∇Sv〉+ 〈J̄ , Ē〉 −DIVQθ. (1)

We rewrite 〈Ē, ∂P∂t 〉. We had defined P (X, t) = J (X, t)p(x, t) and Ē(X, t) = ē(x, t).

Using that for simple bodies ∂J
∂t = J div v (see Th. 1.3.6), the connection (2.6) between

the flux derivative and the substantial derivative as well as Poynting’s Theorem for bound
charges (see Lemma 2.4.2), we obtain¨

Ē,
∂P

∂t

∂
=
∂J
∂t
〈ē,p〉+ J 〈ē, ṗ〉

=
¨
M̄ ,

∂B

∂t

∂
+ 〈J̄b, Ē〉+ J div(ē× m̄) + J div v 〈m̄, b〉 − J 〈m̄,∇Sbv〉

+ J 〈ē,∇Spv〉,

Here we used that B(X, t) = b(x, t) (without the factor J ). Employing div v = 〈Id,∇Sv〉
as well as 〈ē,∇Spv〉 = 〈ē⊗ p,∇Sv〉 and 〈m̄,∇Sbv〉 = 〈m̄⊗ b,∇Sv〉 gives¨

Ē,
∂P

∂t

∂
=
¨
M̄ ,

∂B

∂t

∂
+ 〈J̄b, Ē〉+ J div(ē× m̄)

+ J
¨
〈m̄, b〉 Id− m̄⊗ b+ ē⊗ p,∇Sv

∂
.

Here, ē⊗ p denotes the (1, 1)-tensor field that is defined by (ē⊗ p)(v) = 〈p,v〉 ē for all
v ∈ TBt and 〈ē⊗ p,∇Sv〉 denotes the scalar product of the (1, 1) tensor fields as it was
introduced in Notation 1.2.14. Thus, (1) becomes

ρref

Ç
(Dφ
“Ψ)V + (DΘ

“Ψ)
∂Θ

∂t
+ (DĒ

“Ψ)
∂Ē

∂t
+ (DB“Ψ)

∂B

∂t
+ S

∂Θ

∂t
+ Θ

∂S

∂t

å
+
¨
P ,

∂Ē

∂t

∂
+
¨
M̄ ,

∂B

∂t

∂
+ J div(ē× m̄)

= ρrefRΘ + 〈T FT ,∇Sv〉+ 〈J̄f , Ē〉 −DIVQθ (1’)

with the electromagnetic stress tensor

T := P + J
î
− 〈m̄, b〉 Id + m̄⊗ b− ē⊗ p

ó
◦
Ä
FT
ä−1

, (5.17)

or, equivalently,

T = P − 〈M̄ ,B〉
Ä
FT
ä−1

+ 〈B, (FT )−1( · )〉M̄ − 〈P , (FT )−1( · )〉 Ē.
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5 The Properties of the material: Constitutive relations

After the change of coordinates ξt and the temperature rescaling rt, (1’) becomes

ρref

Ç
(Dφ′

“Ψ′)V ′ + (DΘ′
“Ψ′) ∂Θ′

∂t
+ (DĒ′

“Ψ′) ∂Ē′
∂t

+ (DB′“Ψ′) ∂B′
∂t

+ S′
∂Θ′

∂t
+ Θ′

∂S′

∂t

å
+
¨
P ′,

∂Ē′

∂t

∂
+
¨
M̄ ′,

∂B′

∂t

∂
+ J ′ div′(ē′ × m̄′)

= ρrefR
′
Θ + 〈T ′F ′T ,∇Sv′〉+ 〈J̄ ′f , Ē′〉 −DIV′Q′θ. (2)

Let w be the velocity of ξt. If at the time t = t0, ξt is the identity, then the primed and
the unprimed velocities are related by (see the discussion above Theorem 3.5.1)

v′(x′, t) = v(x, t) +w(x, t) or

V ′(X, t) = V (X, t) +W (X, t),

where W (X, t) := w(x, t). (Since x and x′ are the images under φt and φ′t of the same
point X ∈ B, both the velocities V and V ′ depend on X.) Ē, P , B and J̄ are Galilei
invariants. Thus, for t = t0,

Ē′(X, t) = Ē(X, t),

P ′(X, t) = P (X, t),

B′(X, t) = B(X, t)

J̄ ′(X, t) = J̄(X, t).

But the derivatives of these fields depend on the velocity w. Consider for example the
magnetic field B. Its time derivative along the deformed body is given by ḃ = ∂b

∂t +∇Svb.
In the primed system, at t = t0,

ḃ′(x′, t) =
∂b′

∂t
(x′, t) +∇Sv′b′ (x′, t)

=
∂b

∂t
(x, t) +

î
∇Svb+∇Swb

ó
(x, t)

= ḃ(x, t) +∇Swb (x, t).

In the coordinates of the undeformed body, this can be expressed by

∂B′

∂t
(X, t) =

∂B

∂t
(X, t) +∇Swb (x, t).

Next, we discuss the transformation behavior of the term T FT :

By Def. 4.2.1, P ◦FT = J σ. If t = t0, then by Axiom 6 t′ = t and σ′ = σ. Thus if
t = t0, then

P ′ ◦ (F ′)T (x′, t) = P ′ ◦ (F ′)T (x, t).
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5.3 Thermoelectromagnetoelasticity

Moreover, the second part of T FT , given by

J
î
− 〈m̄, b〉 Id + m̄⊗ b− ē⊗ p

ó
,

involves only Galilei invariants. Thus, if t = t0, then

T ′ ◦ (F ′)T (x, t) = T ◦FT (x, t).

Let u = drt
dt be the velocity of the temperature rescaling rt. If for t = t0 rt is the identity,

then
∂Θ′

∂t
= u ·Θ +

∂Θ

∂t
.

In summary, the above considerations provide that for t = t0, equation (2) becomes

ρref

Ç
(Dφ
“Ψ) (V +w) + (DΘ

“Ψ)

Å
uΘ +

∂Θ

∂t

ã
+ (DĒ

“Ψ)

Ç
∂Ē

∂t
+∇Swē

å
+(DB“Ψ)

Å
∂B

∂t
+∇Swb̄

ã
+ S

Å
uΘ +

∂Θ

∂t

ã
+ Θ

∂S

∂t

ã
+
¨
P ,

∂Ē

∂t

∂
+ 〈p,∇Swē〉+

¨
M̄ ,

∂B

∂t

∂
+ 〈m̄,∇Swb〉+ J div(ē× m̄)

= ρrefRΘ + 〈T FT ,∇S(v +w)〉+ 〈J̄f , Ē〉 −DIVQθ. (3)

Subtracting (1’) from (3) gives

ρref
Ä
(Dφ
“Ψ)w + (DΘ

“Ψ)uΘ + (DĒ
“Ψ)∇Swē+ (DB“Ψ)∇Swb+ S uΘ

ä
+ 〈p,∇Swē〉+ 〈m̄,∇Swb〉

= ρrefRΘ + 〈T FT ,∇Sw〉.

This equation is valid for all diffeomorphisms ξt : S → S and all rescalings rt : R+ → R+.
Since ξt and rt are arbitrary and do not depend on each other, we deduce that indepen-
dently

ρref
Ä
(Dφ
“Ψ)w + (DĒ

“Ψ)∇Swē+ (DB“Ψ)∇Swb
ä

+ 〈p,∇Swē〉+ 〈m̄,∇Swb〉

= 〈T FT ,∇Sw〉 (4)

and

ρref
Ä
(DΘ

“Ψ)uΘ + S uΘ
ä

= 0. (5)

Keep in mind that T also contains the point values of ē and b.
Now consider (4) at an arbitrary point x0 ∈ S. We can change ē and b in such a way
that their values in x0 stay the same, but their derivatives ∇Swē and ∇Swb in the point
x0 are changed independently of each other. Thus, (4) can only hold, if in x0

ρref (Dφ
“Ψ)w = 〈T FT ,∇Sw〉 (4a)

ρref (DĒ
“Ψ)∇Swē+ 〈p,∇Swē〉 = 0 (4b)

ρref (DB“Ψ)∇Swb+ 〈m̄,∇Swb〉 = 0 (4c)
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5 The Properties of the material: Constitutive relations

Since x0 and the diffeomorphism ξt were arbitrarily chosen, the relations (4a)-(4c) must
be valid in each point and for each ξt : S → S.

1) Consider a fix point X0 ∈ B and fix Θ, Ē, and B. Let φ0 and φ1 be two configura-
tions, such that

φ0(X0) = φ1(X0)

F0(X0) = F1(X0).

We define a motion φ by

φ(X, t) := φ0(X) + t(φ1(X)− φ0(X))

for a sufficiently small neighborhood U of X0 and small t. Outside this neighborhood
we continuate φ in a regular but otherwise arbitrary way. By the locality of “Ψ the
choice of continuation does not influence the values of “Ψ inside the neighborhood.

The velocity and deformation gradient of the motion φ satisfy

Vt(X0) = φ1(X0)− φ0(X0) = 0,

∂F
∂t

(X0) = dφ1(X0)− dφ0(X0) = 0.

Now we consider a particular coordinate transformation ξt : S → S that is given
on U by

ξt(x) = φ
Ä
φ−1

1 (x), t
ä

= φ0

Ä
φ−1

1 (x)
ä

+ t
Ä
x− φ0(φ−1

1 (x))
ä

and continuated regularly. Then

wt(x0) = 0 = Vt(X0)

and (see Lemma 1.2.11) ∇Swt(x0) = d
dt dξt(x0) = 0. Hence, (4a) implies that at

the point X0,

ρref (Dφ
“Ψ)V (X0, t) = 0.

Thus,
d

dt
“Ψ[φt,Θ, Ē,B](X0, t) = 0

and “Ψ[φ0,Θ, Ē,B](X0, t) = “Ψ[φ1,Θ, Ē,B](X0, t).

Thus, we have shown: If Θ, Ē, and B are kept fixed and the deformation gradients
of two deformations coincide in X0, then the corresponding free energy densities
coincide in X0, too. In other words, “Ψ depends on φ only by the point values of F .
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5.3 Thermoelectromagnetoelasticity

Hence, using Lemma 1.2.11 we can replace the term (Dφ
“Ψ)V in (1) by

〈 ∂
“Ψ

∂F ,
∂F
∂t
〉 = 〈 ∂

“Ψ
∂F ,∇Sv ◦F〉.

Retracing the steps that led from (1) to (4a), we see that we can replace (4a) by¨
ρref

∂“Ψ
∂F FT − T FT ,∇Sw

∂
= 0

and conclude that T = ρref
∂Ψ̂
∂F . Thus, by the definition of T ,

P = ρref
∂“Ψ
∂F − J

î
− 〈m̄, b〉 Id + m̄⊗ b− ē⊗ p

ó Ä
FT
ä−1

or, in terms of vector fields along φt,

P = ρref
∂“Ψ
∂F +

î
〈M̄ ,B〉 Id− M̄ ⊗B + Ē ⊗ P

ó Ä
FT
ä−1

.

2) Let rt be a rescaling of the temperature, such that in t = t0 the derivative u = 0.
(That is, the rescaling is the identity in a small neighborhood around t = t0. This
is admissible; we had only demanded that for each fix t the rescaling rt : R+ → R+

is a diffeomorphism.) Then in each point of B, S uΘ = 0. Hence, (5) implies that“Ψ depends on Θ only by the point values of Θ, and not by higher derivatives.

Thus, we can replace (5) by

ρref

(
∂“Ψ
∂Θ

+ S

)
uΘ = 0.

Using ρref 6= 0, we conclude that S = −∂Ψ̂
∂Θ .

3) Let x0 ∈ S be fix. We choose a diffeomorphism ξt : S → S, such that ∇Swē (x0) = 0.
Then (4b) implies that “Ψ depends on Ē only by the point values of Ē.

Thus, we can replace (4b) by ¨
ρref

∂“Ψ
∂Ē

+ P ,∇Swē
∂

and conclude that P = −ρref ∂Ψ̂
∂Ē

.

The statements concerning B can be deduced in exactly the same way from (4c).

4) By the items 1)-3) we have established that “Ψ depends only on X, the point values
of Θ, Ē, and B and it depends on φ only by the deformation gradient F . Let us
now assume that “Ψ depends on Ē and B only by |Ē|2 and |B|2. Then the second
assumption in Axiom 6 implies the following:
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5 The Properties of the material: Constitutive relations

Let ξ : S → S be an invertible, orientation-preserving map taking x to x′, such
that dξ|x is an isometry from TxS to Tx′S. Then“Ψ(X,F ,Θ, |Ē|2, |B|2) = “Ψ(X,F ′,Θ, |Ē|2, |B|2), (5.18)

where F : TXB → TxS, F ′ : TXB → Tx′S and F ′ = ξ∗F = dξ ◦F .

x and x′ can be either regarded as different coordinates for one and the same point
of φt(B), or x can be regarded as the image of X by a deformation φ while x′ is
the image of X by a deformation φ′.

Let F : TXB → TxS and F ′ : TXB → Tx′S be deformation gradients such that the
resulting deformation tensors FTF and (F ′)TF ′ coincide:

C := FTF = (F ′)TF ′.

If we can show that this implies “Ψ(X,F ,Θ, Ē,B) = “Ψ(X,F ′,Θ, Ē,B), then “Ψ
follows to depend only on C, but not on the values of F resp. F ′ themselves.

We had assumed our deformations to be diffeomorphisms, so F and F ′ are invert-
ible. Thus, there is a regular map ξ : S → S, with ξ(x) = x′, such that dξ|xF = F ′.
Now we show that dξ|x is an isometry: For all tangent vectors V,W ∈ TXB,¨

dξ|x ·F |X(V ), dξ|x ·F |X(W )
∂

=
¨
F ′|X(V ),F ′|X(W )

∂
=
¨
F ′|TXF ′|X(V ),W

∂
Since we had assumed that FTF = (F ′)TF ′, it follows that¨

dξ|x ·F |X(V ), dξ|x ·F |X(W )
∂

=
¨
F |TXF |X(V ),W

∂
=
¨
F |X(V ),F |X(W )

∂
.

Thus, ξ is an isometry, so by (5.18), “Ψ(X,F ,Θ, |Ē|2, |B|2) = “Ψ(X,F ′,Θ, |Ē|2, |B|2).

Remark 5.3.6. The electromagnetic stress tensor T that we defined in (5.17) also
occurs in other texts on electroelasticity, e.g. in Kovetz [2000, p.221]. Ericksen [2007, see
page 95-96] criticizes the use of this tensor, claiming that it does not vanish outside matter.
T indeed contains the electromotive intensity ē and the magnetic flux density b, both of
which also exist outside matter. But outside matter, the Piola-Kirchhoff tensor vanishes
as do the polarization and the magnetization (at least in classical electrodynamics), so in
vacuum, the electromagnetic stress tensor does vanish.
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5.4 Electroelastic materials

Remark 5.3.7. In physics it is a fundamental demand that at no instant during the
motion φ the entropy inequality is violated. That is, by use of the entropy inequality one
can rule out motions that are not physically possible. Kovetz [2000] and Ericksen [2008]
use disagreeing entropy inequalities, and so obtain different classes of possible motions.
Again Steigmann [2009] claims that the formulations of Kovetz and Ericksen are equivalent,
but again this is not true. Kovetz assumes that

ρ θ ṡ ≥ ρ rθ − θ divt

Å
qθ
θ

ã
,

where s denotes the entropy density, while Ericksen makes the ansatz

ρ θ ṡ ≥ ρ rθ − θ divt

Å
qθ + ē× m̄

θ

ã
.

5.4 Electroelastic materials

Finally, we now consider a setting in which we neglect temperature dependencies and
where the body is only exposed to a pure electric field. We assume that the experimental
setup ensures that all magnetic influences are negligible. Then in particular Ē = E.

Definition 5.4.1. Let F ∈ Cr(B) be a scalar function describing a material property.
An electroelastic constitutive relation for F is a map“F : D(B)× Γk(B, T ∗S)→ Cr(B).

The function F associated to “F , the motion φ and the electric field E, is then given by

F (X, t) = “FÄφt,Etä(X), (5.19)

where φt(X) = φ(X, t) and Et(X) = E(X, t).
Materials with such a kind of constitutive relation are called electroelastic.

We would now like to build a constitutive law for electroelastic materials that generalizes
the Neo-Hookean law we formulated for purely elastic materials. Thus, if the electric
field vanishes, the law to be constructed should simplify to

Ψ =
µ

2
(I1(C)− dim B) + τ, (5.20)

with the shear modulus µ = const. > 0 and some τ = const.

We assume that the free energy density Ψ depends on the electric field only by the trace
of a symmetric (0, 2)-tensor that can be constructed from E. A convenient choice is
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5 The Properties of the material: Constitutive relations

tr(E⊗ E) = |E|2g. Note that for simple bodies, Theorem 5.3.4 then already implies that“Ψ depends on φ only by the point values of C.
To obtain a law that simplifies for E = 0 to the Neo-Hookean law we make the shear
modulus µ dependent on |E|2g and define

Definition 5.4.2. A Neo-electroelastic material is a material with a constitutive law of
the form

Ψ =
µ(|E|2g)

2
(tr(C)− dim B) + ν(|E|2g) + τ, (5.21)

where µ : C0(Bt) → R+, ν : C0(Bt) → R+
0 , and τ ∈ R+ is constant. If E = 0, then

µ is supposed to coincide with the constant shear modulus of a classical Neo-Hookean
material and ν ≡ 0.

Remark 5.4.3. For simple bodies the constitutive law of definition 5.4.2 is a simpli-
fication of a law that also occurs in the physics literature, for instance in the work of
Dorfmann and Ogden [2005, p.177, eq. (76)].
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6 The equation of motion for
Neo-electroelastic materials

In section 4.2 we have obtained as the equation of motion (see Theorem 4.2.2)

ρrefA
[ = ρref F + FL + (DIVP)[ +

î
trII(P ◦FT )

ó[ ◦ φ.
For purely electroelastic problems B = 0 and thus Ē = E and FL = ρ̃e E. If we moreover
express the acceleration by the motion φ, then this equation becomes

ρref

Å∇
∂t

∂φ

∂t

ã[
= ρref F + ρ̃e E + (DIVP)[ +

î
trII(P ◦FT )

ó[ ◦ φ.
The first Piola-Kirchhoff tensor P is characterized by the material the body is made
of. We would now like to set up the equation of motion for Neo-electroelastic materials.
According to Def. 5.4.2 they are characterized by“Ψ =

µ(|E|2g)
2

(tr(C)− dim B) + ν(|E|2g) + τ. (6.1)

To compute the divergence of P and trII(P ◦ FT ) with the help of (6.1), we need to
know how the first Piola-Kirchhoff tensor can be derived from the free energy density.
Unfortunately, our Theorem 5.3.4 provides this knowledge only for simple bodies.

6.1 The initial boundary value problem for simple bodies

For simple bodies, Theorem 5.3.4 provides that

P] = g] ρref
∂“Ψ
∂F +E ⊗ P

Ä
FT
ä−1

= ρref

(
2F ∂“Ψ

∂C[
−E ⊗ ∂“Ψ

∂E

Ä
FT
ä−1

)
,

where we have also used that g] ∂Ψ̂
∂F = 2F ∂Ψ̂

∂C[ . (We have already seen an analogous

statement for the internal energy density in Theorem 4.5.1). Using ∂tr(C)
∂C = Id and (6.1),

we compute that for Neo-electroelastic materials

DIV

(
2 ρrefF

∂“Ψ
∂C[

)
= DIV

(
ρref µ

Ä
|E|2g

ä
F
)
.
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6 The equation of motion for Neo-electroelastic materials

Moreover, for Neo-electroelastic materials

∂“Ψ
∂E

=
1

2
(tr(C)− dimB)

∂µ

∂|E|2
2|E| 〈E, · 〉+ 2

∂ν

∂|E|2
|E| 〈E, · 〉

= 2 |E|
Ç

1

2

Ä
tr(C)− dimB

ä ∂µ

∂|E|2
+

∂ν

∂|E|2

å
〈E, · 〉.

Hence,

DIV

(
ρrefE ⊗

∂“Ψ
∂E

Ä
FT
ä−1

)

= 2 DIV

Ç
ρref |E|

Ç
1

2

Ä
tr(C)− dimB

ä ∂µ

∂|E|2
+

∂ν

∂|E|2

å¨
E,
Ä
FT
ä−1

( · )
∂
E

å
.

Thus, for simple bodies made of a Neo-electroelastic material, the equation of motion
reads

ρref
∂2φ

∂t2
= ρref F + ρ̃eE + DIV

Ä
ρref µ

Ä
|E|2g

ä
F
ä

− 2 DIV

Ç
ρref |E|

Ç
1

2

Ä
tr(C)− dimB

ä ∂µ

∂|E|2
+

∂ν

∂|E|2

å¨
E,
Ä
FT
ä−1

( · )
∂
E

å
,

(6.2)

where F = dφ is the deformation gradient and C = FT F the deformation tensor.

This equation is a system of non-linear inhomogeneous partial differential equations
of second order. Observe that here, for simple bodies, all the single equations for the
components of φ decouple. The mass density ρref and the shear modulus µ are always
positive, so if it were not for the last term, each of these partial differential equations
would be hyperbolic.

Eq. (6.2) has to be supplemented by initial and boundary conditions. As initial conditions
we might prescribe the values of φ and V = ∂φ

∂t for some initial time t = t0. Suitable
boundary conditions can be [Marsden and Hughes, 1983, ch.3, Def. 4.9]

1) displacement - φ is prescribed on ∂B, the boundary of B,

2) traction - the stress vector field T = P(N) is prescribed on ∂B

3) mixed - φ is prescribed on a part ∂BD of ∂B and the stress vector field T = P(N) is
prescribed on the remaining part of ∂B, where ∂BD∪∂BT = ∂B and ∂BD∩∂BT = ∅.

The condition 2) is non-linear: “P depends on C = FTF and is thus a non-linear function
of φ.
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6.1 The initial boundary value problem for simple bodies

Definition 6.1.1. Assume that the exterior mechanical force F , the electric field E and
one of the boundary conditions 1)-3) above are given. Moreover, prescribe the values of
φ and V = ∂φ

∂t for some initial time t = t0.
Then the initial boundary value problem of Neo-electroelasticity consists in
finding φ, such that it satisfies (6.2) and also the boundary and initial conditions.
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(vt,
∂
∂t), 8

∗, 39

< S,T >, 18

A, material acceleration, 7

At, material acceleration, 7

at, spatial acceleration, 7

B, body, 5

b, magnetic flux density, 48

b, magnetic flux 2-form, 61

B̃, 7
∗
b, flux derivative of b, 38

Bt, state of B at the time t, 6

c, 20

C, deformation tensor, 13

D, material rate of deformation tensor,
15

D(B), set of all deformations, 6

d, spatial rate of deformation tensor, 17

df , 41

df , 40

divt, divergence on Bt, 21

e, electric field, 48

e, electric field 1-form, 61

ē, electromotive intensity form, 39

Ē, 77

ē, electromotive intensity, 36, 57

E , energy, 56

E, 43

Ē, 43

f, force 1-form, 61

f , external mechanical force density, 48

fL, Lorentz force, 37

fL, Lorentz force density, 48

fL, Lorentz force 1-form, 61

fL, Lorentz force, 39

F , deformation gradient, 12

F , total force, 49

gS̃ , metric on S̃, 7

h, gain or loss of heat, 56

h̄, magnetomotive intensity, 36

h̄, magnetomotive intensity, 39

hf , 41

H, mean curvature field, 21

hf , 40

II, second fundamental form, 17, 21

J , determinant of det dφ, 20

j, current density, 48

j̄, convective current density, 36

J̄ , 77

J̄ , 43

j̄, conduction current density, 57

L0, angular momentum, 53

m, magnetization, 41

M, mass, 28

m, dimension of B, 21

m̄, magnetization, 41

MO, torque, 53

m, magnetization form, 40

∇S , connection on S, 7

ν, unit normal vector field of Bt, 50

Ω, simple body, 12

p, polarization, 41

Π, power, 56, 61

P , first Piola-Kirchhoff tensor, 74

P, momentum, 47

p, polarization form, 40

φ, deformation, 5, 6

φX , 6
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Index

φt, 6

φ∗t , pull-back, 25

Ψ, free energy on B, 85, 92

ψ, free energy density, 85, 92

Q, amount of heat, 57

qθ, heat flux vector, 58

ρ, mass density on Bt, 28

ρ̃e, 43

ρref, mass density on B, 30

rθ, heat supply density, 56

S, surrounding space, 5

S, second Piola-Kirchhoff tensor, 76

s, entropy density, 85

S, entropy on B, 85

S̃, 7

Sν , Weingarten map, 50, 75

S , entropy, 85

σ, (Cauchy) stress tensor, 49

SB̃, sphere bundle over B̃, 19

T , electromagnetic stress tensor, 95

t, Cauchy stress vector field, 48

Θ, temperature on B, 84

θ, absolute temperature, 84

u, internal energy density, 56

Ut = φt(U), 19

V , material velocity, 6

VOL, volume element on B, 20

v⊥, 17, 21

vt, spatial velocity, 6

volt, volume element on Bt, 19

w, 63

Wdiss, dissipative work, 56, 57

absolute temperature, 84

acceleration

material, 7

spatial, 7

amount of heat, 57

angular momentum, 53

balance of

angular momentum, 53

energy, 55, 57, 59, 61

momentum, 49

body force, 47
body, simple, 12
bound charge, 40
bound current, 40

Cauchy elastic material, 83
Cauchy stress tensor, 49
Cauchy’s Postulate, 48
Cauchy’s Theorem, 20
Cauchy-Green strain tensor, 13
charge, bound, 40
charge, free, 40
conduction current density, 57
constitutive relation, electroelastic, 101
constitutive relation, thermoelastic, 84
constitutive relation, thermoelectromag-

netoelastic, 82, 91
contact force, 48
continuity equation

for conservation of mass, 28
convective current density, 36
covariant, materially, 88
current density, 48
current density, convective, 36
current, bound, 40
current, free, 40

deformation, 5
deformation gradient, 12
deformation tensor, 13
dissipative work, 57
Doyle-Ericksen formula, 65, 66, 83

electric field, 48
electroelastic material, 101
electromagnetic stress tensor, 95
electromotive intensity, 36, 39, 57
elementary symmetric functions, 88
energy, 56
entropy, 85
entropy density, 85
equations of motion, 50
exterior forces, 48

First Law of Thermodynamics, 56

108



Index

force density, external mechanical, 48
force density, Lorentz ∼, 48
force, total, 49
forces, exterior, 48
free charge, 40
free current, 40
free energy density, 85, 92

Galilei transformation, 35

heat flux vector, 58
heat supply, 56
hyperelastic material, 66, 83

incompressible material, 89
isotropic material, 88

Joule heating, 57, 61

local constitutive relation, 84
locality, 84
localization theorem

material, 28
spatial, 24

Lorentz force, 37, 39
Lorentz force density, 48

magnetization, 40
mass density on Bt, 28
master balance law

material, 27
spatial, 19, 20

material
thermoelectromagnetoelastic, 92

material acceleration, 7
material derivative

of a vector field, 10
material localization theorem, 28
material symmetry, 87
material symmetry group, 87
material velocity, 6
materially covariant, 88
materials

electroelastic, 101
thermoelastic, 84

mechanical force density, 48
momentum, 47
momentum density, 47
momentum, angular, 53
Mooney-Rivlin material, 89
Mooney-Rivlin material, in 2 dimensions,

90
motion, 6

Neo-Hookean material, 90
Neo-Hookean material, in 2 dimensions,

90
nice set, 19

Piola Identity, 26
Piola transformation, 25
Piola-Kirchhoff stress tensor, first, 74
Piola-Kirchhoff tensor, second, 76
polarization, 40
pull-back, 25

rate of deformation tensor, material, 15
rate of deformation tensor, spatial, 17
reference configuration, 5

second Piola-Kirchhoff tensor, 76
shear modulus, 90
simple body, 12
simplified spatial localization theorem, 30
simplified transport theorem, 29
spatial acceleration, 7
spatial localization theorem, 24

simplified, 30
spatial velocity, 6
strain tensor, 13
strain-energy function, 83
stress, 49
stress tensor, electromagnetic, 95
stress-deformation relation, 83
strong locality, 84
strongly local constitutive relation, 84
substantial derivative

of a function, 11
of a vector field, 10

surface force, 48
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TEM-elastic material, 83, 92
temperature, 84
thermoelastic, 84
thermoelastic materials, 84
thermoelectromagnetoelastic material, 83,

92
torque, 53
total force, 49
transport theorem, 23

simplified, 29

velocity
material, 6
spatial, 6

volume force, 47
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