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Abstract: We establish in this paper the existence of weak solu-
tions of infinite-dimensional shift invariant stochastic differential
equations driven by a Brownian term. The drift function is very
general, in the sense that it is supposed to be neither small or
continuous, nor Markov. On the initial law we only assume that
it admits a finite specific entropy.
Our result strongly improves the previous ones obtained for free
dynamics with a small perturbative drift. The originality of our
method leads in the use of the specific entropy as a tightness tool
and on a description of such stochastic differential equation as
solution of a variational problem on the path space.
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1 Introduction

The main object of this paper is the infinite-dimensional stochastic differen-
tial equation (SDE)

dXi(t) = bt(θiX) dt+ dBi(t) , i ∈ Z
d, (1)

on the configuration space Ω = C([0, T ],R)Zd
, where the drift b : [0, T ] × Ω

is an adapted functional, θi denotes the space-shift on Ω by vector −i and
(Bi)i∈Zd is a sequence of independent real-valued Brownian motions.

Our aim is to prove the existence of a weak solution of the SDE (1) on
the finite time-interval [0, T ], where the drift b is supposed to be as general
as possible, in particular non-Markov and non-regular. Indeed, in Theorem
2.1, we solve the SDE (1) for a path-dependent drift which is supposed to be
only uniformly bounded and local, that is

‖b‖∞ := sup
t∈[0,T ],ω∈Ω

|bt(ω)| < +∞ (2)

and bt(ω) = bt(ωΔ(s), s ∈ [0, t]), for t ∈ [0, T ], (3)

where Δ is a fixed finite subset of Zd and ωΔ = (ωi)i∈Δ denotes the coor-
dinates of the path ω indexed by Δ. The initial condition is assumed to
be shift-invariant with finite specific entropy. In Section 5 we extend our
existence result to drifts b containing also a Lipschitz unbounded part.

Let us illustrate our main result by a typical example. Let β+ �= β− be
two real numbers and Δ ⊂ Z

d be a set with cardinality N . Define first the
function b on R

Zd
by

b(x) := β+ 1l{
x0≥ 1

N

∑
i∈Δ xi

} + β− 1l{
x0<

1
N

∑
i∈Δ xi

}. (4)

It takes the value β+ (respectively β−) if the 0-coordinate x0 is larger (re-
spectively smaller) than the barycentre of the Δ-coordinates xΔ. Introducing
a δ-delay (with 0 < δ < T ) consider now the drift bt(ω) := b(ω(0∨(t−δ)). It
leads to a stochastic differential delay equation (1) whose discontinuous drift
satisfies assumptions (2) and (3). In the above example the time memory
of the drift is bounded (by δ), but our approach also allows to deal with
path-dependent drift with long-term memory like bt(ω) :=

∫ t

0
b(s, ω(s))ds.

Note that SDE with non-Markov and non-regular drifts are relevant in
many fields of applications like mathematical finance, biomathematics or
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physics, see e.g. [M97], [AHMP07] or [TP01].

Let us briefly recall some results concerning infinite-dimensional SDEs. In
the very special Markovian case, when the drift only depends on the present
time bt(ω) = bt(ω(t)), and the functions x 	→ bt(x) satisfy certain growth
condition at infinity, (strong) solutions of (1) with values in a weighted �2-
space were constructed in [SS80] and [F82]; the particular case of gradient
drift (i.e. the function b is the gradient of a smooth Hamilton function)
was treated earlier in detail in [DR78] and [R99]. For the existence of weak
solutions of a Markov SDE with unbounded linear term the theory of Dirich-
let forms can also be used fruitfully, see e.g. [AR91]. Very recently, for
SDEs with values in Hilbert spaces with non-regular Markovian drift, strong
uniqueness results were obtained in several frameworks, see [DPFPR13] and
[DPFRV14].
If the drift is non-Markov but satisfies a Lipschitz assumption (see Section
5 for precise definitions), extending straightforwardly the results in [SS80]
would provide the existence and uniqueness of a strong solution of (1). For
general non-Markov and non-regular drifts b, to our knowledge, till now
only particular perturbative cases were treated, see [DPR06] and [RR14].
They correspond to the perturbation of a free dynamics (involving only a
self-interaction term) by a sufficiently small drift. Thus, for example, the
existence and uniqueness of solutions of (1) for the drift (4) is known when
parameters β± are small enough.

A fruitful approach to construct solutions of infinite-dimensional SDEs
is to describe them as Gibbs measures on a path space. This point of view
was initiated for gradient diffusions on a finite time interval in [D87] and
developed later in [CRZ96]. The procedure includes here two steps:
i) the construction of Gibbs measures on the path space associated to a suit-
able Hamiltonian H (depending on the drift b and on the initial law)
ii) the identification of (some of) them as weak solutions of SDE (1).
When the uniform norm of the drift b is small enough, step i) can be done via
the perturbative techniques of cluster expansion, as in [DPR06] and [RR14].
But recently a more general approach, first appeared in [GH96] and based
on the compactness of the level sets of the specific entropy density, allowed
to construct directly infinite-volume Gibbs measures associated to strong in-
teraction [D09, DDG12]. This entropic method will be our first major tool.
When the drift is Markov and regular (i.e. Malliavin-differentiable), step ii)
can be done via an integration by parts formula on the path space, as in
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[CRZ96]. In the general case, a variational principle, which characterizes the
shift invariant Gibbs measures as the minimizers of a so-called free energy
functional, is more suitable. So, we will here identify the Gibbs measure
using the variational approach, as in [DPRZ02]: It will be our second major
tool.

Our approach underlines to what extent tools from statistical mechanics
can be powerful in the framework of stochastic analysis. Let us mention that
this strategy has just been applied fruitfully in the framework of stochastic
geometry to construct infinite branching tessellations with interaction, see
[GST14].

The paper is divided into the following sections. Section 2 contains the
framework and first results. In section 3, the proof of the main theorem is
given, consisting in the construction of a weak solution of (1) for a bounded
drift b. In section 4, we will point out some structural properties satisfied
by this solution. We present in the last section the extension of the existence
result in the setting of unbounded drifts b including a bounded non-regular
term and an unbounded Lipschitz continuous one.

2 Framework and main result

2.1 State spaces

From now on, without loss of generality, we fix T = 1, i.e. the time interval
is equal to [0, 1]. So the configuration space of the SDE (1) is the canonical
space Ω = C([0, 1],R)Zd

equipped with the uniform norm, endowed with the
canonical Borel σ-field F generated by the cylinders. The canonical process
on Ω is denoted by X = (Xi(t))i∈Zd,t∈[0,1].

For any i ∈ Z
d, we denote by θi the space shift by vector −i which acts

on R
Zd

or on Ω. With P(E) we denote the space of probability measures on
any measurable space (E, E). Moreover,

Ps(Ω) := {P ∈ P(Ω), P ◦ θ−1
i = P ∀i ∈ Z

d}

is the set of probability measures on Ω which are space-shift invariant.
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Similarly,

Ps(R
Zd

) := {P ∈ P(RZd

), P ◦ θ−1
i = P ∀i ∈ Z

d}.

In a natural way, we take as reference measure on Ω the lawW of the non-
interacting infinite system corresponding to b = 0 with a product measure
as initial law, i.e.

W =
(∫

R

W z m(dz)
)⊗Zd

∈ Ps(Ω).

Here W z denotes the Wiener measure on C([0, 1],R) with fixed initial condi-
tion z and m ∈ P(R) is a given probability measure on R.

For any subset Λ ⊂ Z
d we denote by XΛ = (Xi)i∈Λ the projection from

Ω on C([0, 1],R)Λ. We also define the σ-field

FΛ = σ(XΛ(t), t ∈ [0, 1]), (5)

and the projection by XΛ of a probability measure P ∈ P(Ω):

PΛ := P ◦X−1
Λ ∈ P(C([0, 1],R)Λ).

Similarly, for any μ ∈ P(RZd
), its Λ-marginal law is denoted by μΛ ∈ P(RΛ).

2.2 Specific entropy

For μ, ν probability measures on a measurable space (E, E), we denote by
I(μ; ν) their relative entropy defined as usual by:

I(μ; ν) =
{ ∫

E
ln(f) dμ if μ  ν with density f

+∞ otherwise
.

When the underlying space has a product structure, one localises the entropy
in the following way: for any subset Λ ⊂ Z

d and μ, ν ∈ P(RZd
), IΛ(μ; ν) :=

I(μΛ; νΛ). Now, we recall the definition of the specific entropy of a shift
invariant probability measure μ on R

Zd
(with respect to m⊗Zd

):

I(μ) := lim
Λ↗Zd

1

|Λ| IΛ(μ;m
⊗Zd

), (6)
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where the limit above is taken for any increasing sequence (Λn)n of finite
sets converging to Z

d and |Λ| denotes the cardinal of Λ. Similarly, at the
path level, the specific entropy of any shift invariant probability measure
Q ∈ Ps(Ω) with respect to W is given by:

I(Q) := lim
Λ↗Zd

1

|Λ| IΛ(Q;W). (7)

The concept of specific entropy appeared first in [RR67] and we advice for
instance Chapter 15, [G11] for a general presentation.

2.3 Results

Our main result is the following theorem.

Theorem 2.1 Fix an initial probability measure μ ∈ Ps(R
Zd
) with finite

specific entropy I(μ) and assume that the drift b is uniformly bounded and
local, that is satisfies (2) and (3). Then the infinite-dimensional SDE (1)
admits, at least, one shift-invariant weak solution P with marginal law at
initial time μ. Moreover its specific entropy I(P ) is finite .

In other words, there exists a probability measure P ∈ Ps(Ω) with μ as

marginal at time 0 such that the process
(
Xi(t)−Xi(0)−

∫ t

0
bs(θiX)ds

)
i∈Zd,t∈[0,1]

is a family of P -independent Brownian motions. Moreover the finiteness of
the specific entropy of μ propagates at the path level:

I(μ) < +∞ ⇒ I(P ) < +∞.

In section 5, an extension of Theorem 2.1 is given in the setting of unbounded
drifts.

We now give a more precise description of the set Sol of solutions of the
SDE (1) without prescribing the initial condition.

Sol := {P ∈ Ps(Ω) weak solution of (1) with I(P ) < +∞}.

Theorem 2.2 The set Sol is convex and its extremal points are ergodic so-
lutions. In particular, for any ergodic probability measure μ ∈ Ps(R

Zd
) with

I(μ) < +∞ there exists an ergodic weak solution P of the SDE (1) which
admits μ as marginal law at time 0.
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More precisely, each probability measure P in Sol admits a unique rep-
resentation in the following way:

P =

∫
Θ

π(u, .)ϑ(du),

where (Θ, T , ϑ) is an auxiliary probability space and π is a kernel on (Θ,F)
such that
(i) for each F ∈ F , π(., F ) is T -measurable and
(ii) for each u ∈ Θ, π(u, .) is an ergodic solution in Sol.
This theorem is proved in Section 4 which is devoted to the Gibbs structure
of the solutions of (1). The proof involves the representation of Gibbs mea-
sures by extremal ones.

Let us note that our approach leads to the explicit construction of a
particular solution but do not allow to obtain a uniqueness result. For sake
of completeness, let us recall a recent result answering this question, obtained
via the cluster expansion method, see [RR14] Corollary 2.4. It only concerns
the perturbative regime, since the dynamics has to be close to a free dynamics.

Proposition 2.1 Consider the infinite-dimensional SDE (1) with a drift of
the form

bt(ω) := −1

2
ϕ′(ω0(t)) + b̃t(ωΔ(s), s ∈ [0, t]))

where ϕ is a smooth ultracontractive self-potential (i.e. the semi group of
the associated one-dimensional gradient diffusion maps L2(m) into L∞(m)).
Take as initial condition the stationary measure of the free dynamics: μ(dx) =
⊗i∈Zde−ϕ(xi)dxi. If the interaction term b̃ admits a uniform norm which is
sufficiently small, then (1) admits a unique weak solution.

3 Proof of the main Theorem 2.1

In this section, we present the proof of Theorem 2.1 divided in several steps.
The approximate solution of (1) is defined in section 3.1 as a finite volume
solution with vanishing fixed external configuration. In section 3.2, we show
that a well chosen sequence of approximate solutions is tight for the topology
of local convergence on Ω since their specific entropies are uniformly bounded.
Then, the identification of any limit point as a Brownian semimartingale with
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appropriate kernels as local specifications is done in Section 3.3. In Section
3.4, using the preceding sections, we prove that any limit point is a zero of
the free energy functional, which is computed as the difference between the
specific entropy and the specific energy. Thus, in Section 3.5, we complete
the proof by identifying the zeros of the free energy as solutions of (1).

3.1 A sequence of approximate solution.

We define the finite volume approximation of the SDE (1) on Λ, finite subset
of Zd, by

{
dXi(t) = bt(θi(XΛ0Λc)) dt+ dBi(t) , i ∈ Λ, t ∈ [0, 1]
XΛ(0) ∼ μΛ,

(8)

where the configuration XΛ0Λc is a concatenation of the configuration X on
Λ and the constant function 0 outside Λ. With other words, we freeze the
external configuration outside Λ to be equal to 0.

Take the increasing sequence of finite cubic volume Λn = {−n, . . . , n −
1}d ⊂ Z

d. By Girsanov Theorem, for any n, there exists a unique probability
measure called Pn ∈ P(C([0, 1],R)Λn), weak solution of the SDE (8) on Λn.
Since μ admits a finite specific entropy, μΛn is absolutely continuous with
respect to m⊗Λn (with density denoted by fΛn) and so

dPn

dW⊗Λn
(XΛn) = fΛn(XΛn(0)) exp−HΛn(XΛn0Λc

n
)

where HΛ(X) = −
∑
i∈Λ

(∫ 1

0

bt(θiX) dXi(t)−
1

2

∫ 1

0

b2
t (θiX) dt

)
. (9)

Note that, due to the boundedness of b, the functional HΛn is well-defined
W⊗Λn-a.s..

Since we aim at constructing a shift invariant solution of (1), we first
introduce a space-periodisation of Pn. Let P per

n ∈ P(Ω) be the probability
measure under which the restrictions of the configurations on disjoint blocks
((θ2knX)Λn)k∈Zd are independent and identically distributed like Pn. Thus
we consider the space-averaged probability measure on Ω

P̄n :=
1

|Λn|
∑
i∈Λn

P per
n ◦ θ−1

i ∈ Ps(Ω). (10)
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P̄n is shift invariant by construction. It can be interpreted as the shift in-
variant extension of the solution of (8) on Λn.

3.2 Tightness

We now show that the sequence (P̄n)n has an accumulation point for the
L-topology of local convergence on P(Ω). This topology is defined as the
coarsest one such that the maps P 	→ P (A), from P(Ω) to R, are continuous
for any local event A ∈ F . The key argument is the following tightness
criterium based on the specific entropy I and proved in [G11], Proposition
15.14.

Proposition 3.1 For any constant M > 0, the level set

{P ∈ Ps(Ω), I(P ) ≤ M}

is sequentially compact for the L-topology.

Therefore, we have to prove such a uniform upper bound for the sequence
(P̄n)n.

Proposition 3.2 The specific entropy of the sequence (P̄n)n is uniformly
bounded:

sup
n≥1

I(P̄n) < +∞.

Proof. First, it is straightforward that

I(P̄n) =
1

|Λn|
I(Pn;W

⊗Λn). (11)

(for details, see e.g. the arguments of Proposition 15.52 in [G11]). From (9)

I(Pn;W
⊗Λn) =

∫
ln(fΛn)dμΛn − EPn

(
HΛn(XΛn0Λc

n
)
)

= I(μΛn ;m
⊗Λn)

+
∑
i∈Λn

EPn

(∫ 1

0

bt(θi(XΛn0Λc
n
))
(
dXi(t)− bt(θi(XΛn0Λc

n
))dt

))

+
1

2

∑
i∈Λn

EPn

(∫ 1

0

b2
t (θi(XΛn0Λc

n
))dt

)
. (12)
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Since Pn is a weak solution of (8), the process
(
Xi(t)−

∫ t

0
bt(θi(XΛn0Λc

n
))dt

)
i∈Λn, t∈[0,1]

is a random vector of independent Pn-Brownian motions. Therefore the sec-
ond term in the right hand side of (12) vanishes. Due to the finiteness of the
specific entropy of μ, we obtain

1

|Λn|
I(Pn;W

⊗Λn) ≤ sup
n≥1

1

|Λn|
I(μΛn ;m

⊗Λn) +
1

2
‖b‖2∞ < +∞. (13)

With (11), this completes the proof of Proposition 3.2.

As corollary we get the

Proposition 3.3 There exists a subsequence (P̄nk
)k of the sequence (P̄n)n

which converges for the L-topology to some P̄ ∈ Ps(Ω).

From now on we write for simplicity P̄ = limn P̄n instead of P̄ = limk P̄nk
.

The rest of Section 3 is devoted to the analysis of this limit point P̄ .

3.3 Structure of the limit point P̄

The class of Brownian semimartingales with bounded specific entropy is
closed by L-limits, as we will see in what follows.

3.3.1 P̄ is a Brownian semimartingale

Recall first the following important structural result for which we give the
main lines of the proof.

Lemma 3.1 Let Q ∈ Ps(Ω) be a probability measure with finite specific en-
tropy I(Q). Then there exists an adapted process (β̃t)t∈[0,1] on Ω such that
the family of processes

Mi(t) = Xi(t)−Xi(0)−
∫ t

0

β̃t(θiX)ds, i ∈ Z
d, t ∈ [0, 1],

are independent Brownian motions under Q. Moreover, the map (t, ω) 	→
β̃t(ω) is L

2(dt⊗ dQ)-integrable and

I(Q ◦X(0)−1) +
1

2
EQ

(∫ 1

0

β̃2
t dt

)
≤ I(Q). (14)
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Proof.
First let us notice that the specific entropy I(Q) admits the following

representation as mean of the relative entropy of a conditional probability:

I(Q) = EQ

(
I{0}

(
Q(·|F−)|W

))
,

where F− := σ(Xi, i < 0) (here < denotes the lexicographic order). This
result is a version of McMillan theorem, which goes back to the work of
Robinson and Ruelle [RR67] and can be proved as in [DP93], Proposition
4.1. Define now F0 := σ(Xi, i �= 0). Since F− ⊂ F0, by Jensen inequality,

EQ

(
I{0}

(
Q(·|F0)|W

))
≤ EQ

(
I{0}

(
Q(·|F−)|W

))
< +∞. (15)

The left hand side in (15), also called local entropy in [FW86] , is then
finite. Thus, by [FW86] Theorem 2.4, there exists an adapted process β̃ in
L2(dt⊗ dQ) such that

Mi(t) = Xi(t)−Xi(0)−
∫ t

0

β̃t(θiX)ds, i ∈ Z
d, t ∈ [0, 1],

are independent Q-Brownian motions.
It remains to show (14) in following essentially the proof of Lemma 8 in
[DPRZ02].

Since P̄ has finite specific entropy, applying Lemma 3.1 we deduce that
it is a Brownian semimartingale characterized by its drift β. The proof of
Theorem 2.1 is complete provided we show that βt(ω) = bt(ω) for dt ⊗ P̄ -
almost all t and ω, and that P̄ ◦X(0)−1 is equal to μ. These identifications
will be completed in Section 3.5. The identification of the drift requires
sophisticated tools, which we now develop.

3.3.2 Local structure of P̄

Define, for ξ ∈ Ω and Λ ⊂ Z
d, a reference probability kernel on Ω,

Π0
Λ(ξ, dω) := ⊗i∈ΛW ξi(0)(dωi)⊗ δξΛc (dωΛc). (16)

It corresponds to a Brownian dynamics with fixed initial position inside Λ
and frozen path outside Λ. Next we perturb it via the functional defined in
(9):

ΠH
Λ (ξ, dω) := e−HΛ(ω) Π0

Λ(ξ, dω). (17)
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Note that ΠH
Λ is a probability kernel since e−HΛ(ω) is a Π0

Λ-martingale. It
corresponds to a solution of (1) on Λ with fixed initial condition ξΛ(0) and
frozen path outside ξΛc . We also define a probability kernel with a wider
interaction range, which will be useful in the sequel:

ΠH,+
Λ (ξ, dω) :=

1

ZΛ(ξ)
e−HΛ+ (ω) Π0

Λ(ξ, dω), (18)

where the set Λ+ = {i ∈ Z
d : (Δ + i) ∩ Λ �= ∅} is a Δ-enlarged ver-

sion of the set Λ (recall that Δ is the interaction range of b). ZΛ(ξ) =∫
e−HΛ+ (ω)Π0

Λ(ξ, dω) is the normalising constant, usually called partition func-
tion in Statistical Mechanics.
Notice that this kernel contains a stochastic integral which is not a priori
meaningful. Moreover, it is not trivial why ZΛ(ξ) belongs to ]0,+∞[. How-
ever, it is the case in our framework, as we show in the next lemma.

Lemma 3.2 The map ξ 	→ ΠH,+
Λ (ξ, ·) is well-defined for W-almost all ξ. In

particular, it is also P -almost surely defined for any probability measure P
which is locally absolutely continuous with respect to W.

Proof. The stochastic integrals with respect to (ξi)i∈Λ+�Λ appearing in
ΠH,+

Λ (ξ, .) are clearly meaningful W-almost surely. Moreover, by Girsanov
theorem, EW(ZΛ) = 1 which ensures that ZΛ is W-a.s. finite. Since HΛ is
W-almost surely finite, ZΛ is W-a.s. positive and the lemma is proved.

The measurability property of the kernels ΠH
Λ and ΠH,+

Λ is the subject of
the following remark.

Remark 3.1 Define, for Λ ⊂ Z
d, the σ-field GΛ = σ(XΛc , X(0)). It builds

a decreasing family when Λ increases and Π0
Λ = W( |GΛ) a.s.. Moreover,

ξ 	→ ΠH
Λ (ξ, ·) is GΛ ∩ FΛ+ = σ{XΛ+\Λ, XΛ(0)}-measurable since HΛ is FΛ+-

measurable, and ξ 	→ ΠH,+
Λ (ξ, ·) is ∂FΛ-measurable, where the boundary σ-

fields ∂FΛ are defined by ∂FΛ := GΛ ∩ FΛ++ .

We now present an equilibrium equation - or fixed point property - sat-
isfied by P̄ which in fact determines its local specifications, and therefore
induces some Gibbsian structure, as we will emphasize in Section 4.

Lemma 3.3 For any finite subset Λ of Zd,

P̄ (dω) =

∫
Ω

ΠH,+
Λ (ξ, dω) P̄ (dξ). (20)

12



Proof. First, let us note that the right term in (20) is meaningful. Indeed,
since the specific entropy of P̄ is finite, P̄ is locally absolutely continuous
with respect to W. Therefore, by Lemma 3.2, ΠH,+

Λ (ξ, .) is well defined for
P̄ -almost all ξ.
We have to prove that

∫
g(ω)P̄ (dω) =

∫
g(ω)ΠH,+

Λ (ξ, dω) P̄ (dξ)

holds for any bounded local measurable function g. Denote by Γ a bounded
set of Zd which includes both the support of g and Λ++. Using standard
conditional calculus, it is simple to show that for n large enough assuring
that Λn ⊃ Γ, the probability measure Pn satisfies

∫
g(ω)Pn(dω) =

∫
g(ω)ΠH,+

Λ (ξ, dω)Pn(dξ).

Noting that ξ 	→
∫
g(ω)ΠH,+

Λ (ξ, dω) is local we have

∫
g(ω)P̄ (dω) = lim

n

1

|Λn|
∑
i∈Λn

∫
g(ω)P per

n ◦ θ−1
i (dω)

= lim
n

1

|Λn|
∑

i∈Λn,θiΓ⊂Λn

∫
g(θiω)Pn(dω)

= lim
n

1

|Λn|
∑

i∈Λn,θiΓ⊂Λn

∫
g(θiω)Π

H,+
Λ (ξ, dω)Pn(dξ)

= lim
n

1

|Λn|
∑
i∈Λn

∫
g(ω)ΠH,+

Λ (ξ, dω)P per
n ◦ θ−1

i (dξ)

=

∫
g(ω)ΠH,+

Λ (ξ, dω) P̄ (dξ),

which is the expected identity.

We interpret the identity (20) as follows: Randomizing under P̄ the boundary
condition ξ of the kernel ΠH,+

Λ (ξ, ·) leads back to P̄ . It implies in particular
that

P̄ (· |GΛ) = ΠH,+
Λ a.s..
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3.4 P̄ minimizes the free energy functional.

For any probability measure Q ∈ Ps(Ω) with finite specific entropy, we define
the Q-mixtures of the kernels ΠH

Λ and ΠH,+
Λ by:

ΠH
Λ,Q(dω) =

∫
Ω

ΠH
Λ (ξ, dω)Q(dξ), ΠH,+

Λ,Q (dω) :=

∫
Ω

ΠH,+
Λ (ξ, dω)Q(dξ).

With these notations, the equilibrium equation (20) reads as follows: P̄ is a
fixed point of the map Q 	→ ΠH,+

Λ,Q .

Moreover we define Ib(Q), the so-called free energy of Q, as the difference
between its specific entropy and its specific energy, namely

Ib(Q) := I(Q)− I(Q ◦X(0)−1)− EQ

(∫ 1

0

bt(X)dX0(t)−
1

2

∫ 1

0

b2
t (X)dt

)
.

Note that Ib(Q) is well defined although a stochastic integral term oc-
curs. Since Q has a finite specific entropy, by Lemma 3.1, we have that
EQ(

∫ 1

0
bt(X)dX0(t)) is nothing but EQ(

∫ 1

0
bt(X)βt(X))dt) which is finite be-

cause β is in L2(dt⊗ dQ).
In the proposition below we show that Ib is a thermodynamical functional,
in the sense that it can be also obtained as limit of rescaled finite-volume
relative entropies.

Proposition 3.4 Consider Q ∈ Ps(Ω) with finite specific entropy. Then

Ib(Q) = lim
n

1

|Λn|
IΛ+

n
(Q; ΠH

Λn,Q). (21)

Proof. By definition of the relative entropy we have

IΛ+
n
(Q; ΠH

Λn,Q) = EQ

(
ln
( dQ

dΠH
Λn,Q

∣∣
Λ+
n

))

= EQ

(
ln

dQΛ+
n

dW⊗Λ+
n
+ ln

dW⊗Λ+
n

d(
∫
⊗i∈ΛnW

ξi(0)Q(dξ)⊗W⊗Λ+
n \Λn)

+ ln
d
(∫

⊗i∈ΛnW
ξi(0)Q(dξ)⊗W⊗Λ+

n \Λn

)
dΠ0

Λn,Q

∣∣
Λ+
n

+ ln
dΠ0

Λn,Q

dΠH
Λn,Q

∣∣∣∣
Λ+
n

)

= IΛ+
n
(Q;W)− IΛn(Q ◦X(0)−1;m⊗Zd

)− IΛ+
n \Λn

(Q;W)

+EQ(HΛn) (22)

14



The normalised third term of (22) vanishes: By subadditivity of the relative
entropy (see Proposition 15.10 in [G11]),

0 ≤ IΛ+
n \Λn

(Q;W) ≤ IΛ+
n
(Q;W)− IΛn(Q;W)

and since limn |Λn|/|Λ+
n | = 1 it follows that

lim
n

1

|Λn|
IΛ+

n \Λn
(Q;W) = 0. (23)

Let us compute the fourth term of (22). By stationarity of Q and by the
definition of HΛn , we get

EQ(HΛn) = −|Λn|EQ

(∫ 1

0

bt(X)dX0(t)−
1

2

∫ 1

0

b2
t (X)dt

)
. (24)

From (23), (24) inserted in (22) we obtain

lim
n

1

|Λn|
IΛ+

n
(Q; ΠH

Λn,Q) =

I(Q)− I(Q ◦X(0)−1)− EQ

(∫ 1

0

bt(X)dX0(t)−
1

2

∫ 1

0

b2
t (X)dt

)
.

Now we are ready for proving that the free energy vanishes under P̄ .

Proposition 3.5 The probability measure P̄ is a zero of the free energy:

Ib(P̄ ) = 0.

Proof. The representation (21) implies that the free energy Ib is non nega-
tive. So the proof of Proposition 3.5 is complete as soon as we can show that
Ib(P̄ ) ≤ 0.
Since P̄ is absolutely continuous with respect to ΠH

Λn,P̄
with a FΛ+

n
-measurable

density (see Remark 3.1), for any finite set Γ containing Λ+
n , IΓ(P̄ ; ΠH

Λn,P̄
)

and IΛ+
n
(P̄ ; ΠH

Λn,P̄
) are identical. Taking in particular Γ = Λ++

n , one obtains

Ib(P̄ ) = lim
n

1

|Λn|
IΛ++

n
(P̄ ; ΠH

Λn,P̄
). (25)
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Thanks to Lemma 3.3

IΛ++
n

(P̄ ; ΠH
Λn,P̄

) = EP̄

(
ln

dP̄

dΠ0
Λn,P̄

∣∣∣∣
Λ++
n

+ ln
dΠ0

Λn,P̄

dΠH
Λn,P̄

∣∣∣∣
Λ++
n

)

= EP̄

(
ln

dΠH,+

Λn,P̄

dΠ0
Λn,P̄

∣∣∣∣
Λ++
n

+ ln
dΠ0

Λn,P̄

dΠH
Λn,P̄

∣∣∣∣
Λ++
n

)

= −EP̄ (HΛ+
n
)− EP̄ (ln(ZΛn)) + EP̄ (HΛn)

= |Λ+
n \Λn|EP̄

(∫ 1

0

bt(X)dX0(t)−
1

2

∫ 1

0

b2
t (X)dt

)

−EP̄ (ln(ZΛn)). (26)

By (25) and (26) the proof of Proposition 3.5 is completed provided that we
show that

lim
n

EP̄ (ln(ZΛn))

|Λn|
≥ 0. (27)

Indeed we have

EP̄ (ln(ZΛn)) =

∫
ln

(∫
e
−H

Λ+
n
(ωΛnξΛc

n
) ⊗i∈Λn W ξi(0)(dω)

)
P̄ (dξ)

=

∫
ln

(∫
e
(HΛn−H

Λ+
n
)(ωΛnξΛc

n
)
e−HΛn (ωΛnξΛc

n
) ⊗i∈Λn W ξi(0)(dω)

)
P̄ (dξ)

≥
∫

(HΛn −HΛ+
n
)(ω)ΠH

Λn
(ξ, dω)P̄ (dξ)

=

∫ ∑
i∈Λn

+\Λn

∫ 1

0
bt(θi(ω))

(
dξi(t)−

1

2
bt(θi(ω))dt

)
ΠH

Λn
(ξ, dω)P̄ (dξ).

Since ∫ 1

0

b2
t (θi(ω))dtΠ

H
Λn
(ξ, dω)P̄ (dξ) ≤ ‖b‖2∞ (28)

it remains to prove that

inf
n

inf
i∈Λ+

n \Λn

∫ (∫ 1

0

bt(θi(ω))dξi(t)
)
ΠH

Λn
(ξ, dω)P̄ (dξ) > −∞. (29)

In the following, we show that (29) is a consequence of (28). We use the
decomposition of ξ(t) under P̄ , proved in Section 3.3.1, as a Brownian semi-
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martingale with drift β ∈ L2(dt⊗ dP̄ ). Therefore for any Λ and any i /∈ Λ

∫ ∫ 1

0

bt(θi(ω))dξi(t)Π
H
Λ (ξ, dω)P̄ (dξ)

=

∫ ∫ 1

0

bt(θi(ω))(dξi(t)− βt(θiξ)dt) Π
H
Λ (ξ, dω)P̄ (dξ)

+

∫ ∫ 1

0

bt(θi(ω))βt(θiξ) dtΠ
H
Λ (ξ, dω)P̄ (dξ)

=

∫ ∫ 1

0

bt(θi(ω))βt(θiξ)dtΠ
H
Λ (ξ, dω)P̄ (dξ)

≥ −
(∫ ∫ 1

0

b2
t (θi(ω))dtΠ

H
Λ (ξ, dω)P̄ (dξ)

)1/2

EP̄

(∫ 1

0

β2
t dt

)1/2

≥ −‖b‖∞ EP̄

(∫ 1

0

β2
t dt

)1/2

> −∞

uniformly in Λ.

Therefore the minimum of the free energy is attained on P̄ :

Ib(P̄ ) = 0 = min
{
Ib(Q), Q ∈ P∗

s (Ω) such that I(Q) < +∞
}
,

or, with other words, P̄ solves a variational principle.

3.5 P̄ is a weak solution of the SDE (1)

We have to identify the initial marginal law of P̄ and its drift.

3.5.1 Identification of P̄ ’s marginal law at time 0

Let g be a bounded Γ-local function on R
Zd
, satisfying g(ω) = g(ωΓ) for

all ω ∈ R
Zd
. By shift invariance of μ, for all n ≥ 1 and i ∈ Z

d such that
θ−1
i Γ ⊂ Λn,

μΛn ◦ θ−1
i (g) = μ ◦ θ−1

i (g) = μ(g).

17



So P̄ ◦X(0)−1(g) = lim
n→∞

P̄n ◦X(0)−1(g)

= lim
n→∞

1

|Λn|
∑
i∈Λn

P per
n ◦ θ−1

i ◦X(0)−1(g)

= lim
n→∞

1

|Λn|
∑

i∈Λn,θ
−1
i Γ⊂Λn

μΛn ◦ θ−1
i (g) = μ(g),

which proves that P̄ ◦X(0)−1 = μ.

3.5.2 Identification of the dynamics under P̄

It only remains to identify the unknown drift β of P̄ . Let us rewrite the free
energy functional of P̄ inserting β:

Ib(P̄ ) = I(P̄ )− I(P̄ ◦X(0)−1)− EP̄

(∫ 1

0

bt(X)(dX0(t)− βt(X)dt)

+

∫ 1

0

(
βt(X)bt(X)− 1

2
b2
t (X)

)
dt

)

= I(P̄ )− I(μ)− EP̄

(∫ 1

0

(
βt(X)bt(X)− 1

2
b2
t (X)

)
dt

)
.

By Proposition 3.5, this quantity vanishes. On the other side, due to Lemma
3.1, I(P̄ ) ≥ I(μ) + 1

2
EP̄

( ∫ 1

0
β2
t (X)dt

)
. Therefore,

0 ≥ EP̄

(
1

2

∫ 1

0

βt
2(X)dt−

∫ 1

0

(
βt(X)bt(X) +

1

2
b2
t (X)

)
dt

)

=
1

2
EP̄

(∫ 1

0

(
βt(X)− bt(X)

)2
dt
)
,

which implies that βt(ω) = bt(ω) for dt⊗ P̄ -almost all t and ω.

It completes the proof that P̄ is an infinite-dimensional Brownian motion
with drift b and initial law μ.

4 On the Gibbs property

In this section, we deal with the Gibbsian structure of solutions of the SDE
(1). First recall that the probability measure ΠH,+

Λ (ξ, .) is not always well
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defined, as remarked in Section 3.3.2. To circumvent this difficulty take
ΠH,+

Λ (ξ, .) ≡ 0 when the partition function ZΛ(ξ) is not finite or when the
stochastic integral with respect to ξ inH+

Λ is not defined. In this way the fam-
ily of kernels (ΠH,+

Λ )Λ⊂Zd builds a local specification as introduced by Preston
in [Pr76] (2.10)-(2.14), which allows to define associated Gibbs measures.

Definition 4.1 A probability measure Q on Ω is a Gibbs measure with re-
spect to the specification (ΠH,+

Λ )Λ⊂Zd if, for all finite subset Λ of Zd,

Q(dω) =

∫
ΠH,+

Λ (ξ, dω)Q(dξ). (30)

Note the similarity with equation (20) where Q appears here in place of
P̄ . It follows that P̄ is a Gibbs measure with respect to the specification
(ΠH,+

Λ )Λ⊂Zd . Actually we obtain a more general result.

Theorem 4.1 Let Q be a probability measure in Ps(Ω) with finite specific en-
tropy. Then Q is a Gibbs measure with respect to the specification (ΠH,+

Λ )Λ⊂Zd

if and only if Q is a weak solution of the SDE (1).

Proof.
“⇐”: it is similar to the proof of Theorem 2.1. Indeed, in Section 3, for

proving that P̄ is a weak solution of the SDE (1), we only used the fact that
P̄ satisfies equation (20) and that its specific entropy is finite.

”⇒”: it is straightforward. A similar detailed proof can be found in
[DPRZ02], Proposition 1.

To complete this section we present the
Proof of Theorem 2.2.
Let us recall that a shift invariant probability measure is ergodic if it is trivial
on the σ-field of shift invariant sets.
By previous Theorem 4.1, the set of weak solutions Sol is exactly the set
of shift invariant Gibbs measures with finite specific entropy. It is known
that the set of stationary Gibbs measure admits a representation by mixing
of its extremal points which are ergodic (Theorem 2.2 and 4.1 in [Pr76]).
Since the specific entropy functional is affine ([G11], Proposition 15.14), this
representation remains valid inside of the set of Gibbs measures with finite
specific entropy and the first part of the theorem is proved.
Now let μ be an ergodic probability measure in Ps(R

Zd
) with finite specific
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entropy. By Theorem 2.1, there exists a weak solution P of the SDE (1) with
initial condition μ. Thanks to the above representation, P is a mixing of er-
godic weak solutions of the s.d.e. (1). Their initial condition is necessarily
μ, by ergodicity. The second part of the theorem is then proved.

5 An unbounded drift setting

In this section, we improve the result presented in Theorem 2.1 by adding to
the bounded non-regular drift considered above an unbounded regular term.
More precisely, the drift decomposes now as follows:

b = b1 + b2

where

• none of b1 or b2 is supposed to be Markov.

• b1 is Δ-local and uniformly bounded (i.e. satisfies (2) and (3) as in
Section 2.3); It is possibly non-regular.

• b2 is possibly unbounded but local and regular in the sense that it
satisfies the following uniform pathwise Lipschitz assumption:

∃L > 0 such that ∀ω, ω′ ∈ Ω,

∀t ∈ [0, 1], |b2,t(ω)− b2,t(ω
′)| ≤ L sup

s≤t,i∈Δ
|ωi(s)− ω′

i(s)|(31)

and |b2,t(0)| ≤ L. (32)

(Without loss of generality, we consider the same Δ-locality for both drifts
b1 and b2). Under these assumptions the drift b has a sublinear growth, or
equivalently

bt(ω)
2 ≤ C

(
1 +

∑
j∈Δ

ω∗
j (t)

2
)

(33)

where C := 2(‖b1‖2∞ + L2) and ω∗(t) =: sup0≤s≤t |ω(s)|.

A typical example of such a drift, dealt in [RRR10] Equation (20), is

b2,t(ω) =

∫ t

0

α(s, ωΔ(s)) ds,
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where α(s, ·) is a Lipschitz function from R
Δ to R.

We can now state our next existence result.

Theorem 5.1 Fix an initial probability measure μ ∈ Ps(R
Zd
) with finite

specific entropy, satisfying the integrability condition
∫
x2
0 μ(dx) < +∞. As-

sume that the drift b admits the decomposition b = b1 + b2 with b1 and b2

as above. Then the infinite-dimensional SDE (1) admits, at least, one shift-
invariant weak solution P with initial marginal law μ. Moreover its specific

entropy I(P ) is finite and EP

(
supt∈[0,1] X0(t)

2
)
< +∞.

Proof.
The proof will have the same structure than the proof of Theorem 2.1.

Nevertheless some technical issues will appear in the computation of the up-
per bounds involved in the tightness and in the minimization of the free
energy. This leads us to construct in (34) an infinite-dimensional approxima-
tion of (1) for general boundary conditions and deterministic initial condition.
In Lemma 5.1 we prove an upper bound for the supremum norm of this ap-
proximating process. In particular, it implies (41) which is a crucial uniform
integrability property of b2 under the kernels ΠH

Λ .

In fact we solve the SDE (1) in the Hilbert subspace of RZd
defined as

weighted �2-space, which we now define, following the framework of [SS80].
Take the summable sequence γi :=

1
(1+|i|)d+1 , i ∈ Z

d. As usual,

�2(γ) := {x ∈ R
Zd

, ‖x‖2γ :=
∑
i∈Zd

γix
2
i < +∞}.

For any finite subset Λ ⊂ Z
d and ξ ∈ Ω a fixed path, we define the

Λ-approximation of the SDE (1) with outside frozen configuration ξΛc and
initial fixed condition ξ(0) as the solution of

⎧⎨
⎩

dXi(t) = bt(θi(XΛξΛc)) dt+ dBi(t) , i ∈ Λ, t ∈ [0, 1],
XΛ(0) = ξΛ(0),
XΛc ≡ ξΛc .

(34)

Note that this SDE depends on ξΛ only via its initial value ξΛ(0).
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Lemma 5.1 For any ξ ∈ Ω, the SDE (34) admits a weak solution P ξ,Λ.
Moreover there exists a constant K > 0 which does not depend on Λ such
that

EP ξ,Λ

(
‖X∗‖2γ

)
≤ K

(
1 + ‖ξΛ(0)‖2γ + ‖ξ∗Λc‖2γ

)
. (35)

Proof. First, if the drift b reduces to its regular part b2, that is if b1 van-
ishes, the Lipschitz continuity (31) and (32) ensures existence and uniqueness
of an (even strong) solution to (34), see [RW87] Theorem 11.2. Now, if the
non-regular term b1 does not vanish, since it is bounded, applying Girsanov
theory, one obtains a weak solution to (34).
To obtain the upper bound (35), we take our inspiration from (4.18) in [SS80]
or Lemma 4.2.9 in [R99] who treated the particular Markovian case. First
fix i ∈ Λ. By Itô formula applied to Xi(t)

2 and (33), one gets

X∗
i (t)

2 ≤ Xi(0)
2+M∗

t +

∫ t

0

(
X∗

i (s)
2+C

(
1+

∑
k∈Λ

X∗
k(s)

21lk∈i+Δ+
∑
k∈Λc

ξ∗k(s)
21lk∈i+Δ

))
ds+t

whereMt is a martingale with quadratic variation 4
∫ t

0
Xi(s)

2ds. Using Doob
inequality,

E(M∗
t ) ≤

√
E((M∗

t )
2) ≤ 2 sup

s≤t

√
E(M2

s ) ≤ 1+sup
s≤t

E(M2
s ) ≤ 1+4

∫ t

0

X∗
i (s)

2ds.

Therefore, denoting by ui(t) the function t 	→ EP ξ,Λ(X∗
i (t)

2), we obtain

ui(t) ≤ ξ2i (0) + 1 + 4

∫ t

0
ui(s)ds

+

∫ t

0

(
ui(s) + C

(
1 +

∑
k∈Λ

uk(s)1lk∈i+Δ +
∑
k∈Λc

ξ∗k(s)
21lk∈i+Δ

))
ds+ t

≤
(
ξ2i (0) + C + 2 + C

∑
k∈Λc

(ξ∗k)
21lk∈i+Δ

)
+

∑
k

Qik

∫ t

0
uk(s)ds (36)

where the matrix Q is given by Qik = (5 + C)1lk∈Λ∩i+Δ for k ∈ Z
d, and

ξ∗ := ξ∗(1) = sup0≤s≤1 |ξ(s)|.
For i ∈ Λc, we consider the rough inequality

ui(t) ≤ (ξ∗i )
2 +

∑
k

Qik

∫ t

0

uk(s)ds. (37)
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Remark now that there exists a real number C ′ > 0 depending only on Δ
but not on Λ, such that

∀k ∈ Z
d,

∑
i

γiQik ≤ C ′γk.

Thus, summing over i the inequalities (36) and (37) weighted by γ, we get

∑
i

γiui(t) ≤ ‖ξΛ(0)‖2γ + (C + 2)
∑
i∈Λ

γi +
C ′

5 + C
‖ξ∗Λ+�Λ‖2γ + ‖ξ∗Λc‖2γ

+C ′
∫ t

0

∑
k

γkuk(s)ds,

where the term ‖ξ∗Λc‖2γ could be equal to +∞ if ξ∗ /∈ �2(γ). This leads by
Gronwall’s lemma to

EP ξ,Λ

(
‖X∗(t)‖2γ

)
≤

(
‖ξΛ(0)‖2γ + (C + 2)

∑
i∈Λ

γi +
C ′

5 + C
‖ξ∗Λ+�Λ‖2γ + ‖ξ∗Λc‖2γ

)
eC

′t

≤ K
(
1 + ‖ξΛ(0)‖2γ + ‖ξ∗Λc‖2γ

)

for a constant K which does not depend on Λ and is uniformly bounded for
t ∈ [0, 1].
In particular, from the upper bound (35) we deduce, under the assumptions
ξ∗ ∈ �2(γ) that, for any j ∈ Z

d,

EP ξ,Λ

(
(X∗

j )
2
)
≤ γ−1

j K
(
1 + ‖ξ∗‖2γ

)
< +∞. (38)

Note that this upper bound is uniform in Λ but not in j. This issue is solved
below thanks to the stationarity.

As in Section 3.1, we define Pn as the marginal law

Pn =

∫
P

ξΛn0Λc
n
,Λn

Λn
μΛn(dξΛn(0)).

With other words, Pn is a weak solution on Λn of SDE (34) with vanishing
outside configuration and random initial condition following the law μΛn .
The definition of the space-averaged P̄n is done by (10) too. The bound (33)
for the growth of the drift together with (38) implies that
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sup
n

sup
i∈Λn

EPn

(∫ 1

0

b2
t (θi(XΛn0Λc

n
)) dt

)

= sup
n

sup
i∈Λn

∫ ∫ 1

0

b2
t (θiω) dtP

ξΛn0Λc
n
,Λn(dω)μΛn(dξΛn(0))

= sup
n

sup
i∈Λn

∫ ∫ 1

0

b2
t (ω) dtP

θi(ξΛn0Λnc ),θiΛn(dω)μΛn(dξΛn(0))

≤ C + CK

(
1 +

∫
RΛn

‖θixΛn)‖2γ μΛn(dxΛn)

)∑
j∈Δ

γ−1
j

≤ C + CK

(
1 + (

∑
j∈Zd

γj)

∫
RZd

x2
0 μ(dx)

)∑
j∈Δ

γ−1
j , (39)

where the last inequality comes from the stationarity of μ. From (39) we
deduce an uniform bound, as in (13) Section 3.2, which implies the tightness
of the sequence (P̄n)n and the existence of an accumulation point, denoted
by P̄ .
The structure of the limit point P̄ is similar as for bounded drift (see Section
3.3). Note that, by the convergence of (P̄n)n to P̄ for the local topology, we
also obtain that

EP̄ (‖X∗‖2γ) < +∞ and EP̄

(∫ 1

0

b2
t (X)dt

)
< +∞, (40)

which means that the finiteness of the second moment and of the specific
entropy propagates through the dynamics.

Some more technical problems appear to generalize the results obtained
in Section 3.4. First, the free energy Ib(Q) is not a priori defined for any Q

with finite specific entropy, but only for Q satisfying EQ(
∫ 1

0
b2
t (X)dt) < +∞.

Thanks to (40), it is the case for Q = P̄ , which is exactly what is needed
in the following. Thus the proof of the variational principle (Proposition 3.5
for bounded drift) works as soon as we gain the following boundedness:

sup
n

sup
i/∈Λn

∫
Ω

∫ 1

0

b2
t (θiω) dtΠ

H
Λn
(ξ, dω)P̄ (dξ) < +∞, (41)

which is the generalization of (28).
Recall that, for any ξ, ΠH

Λn
(ξ, .) defined in (17) corresponds to a weak so-

lution of (34) with fixed initial condition ξΛ(0) and frozen path outside ξΛc .
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Therefore we deduce from the stationarity of P̄ and inequalities (33), (38)
and (40)

supn supi/∈Λn

∫
Ω

∫ 1

0

b2
t (θi(ω)) dtΠ

H
Λn
(ξ, dω)P̄ (dξ)

= sup
n

sup
i/∈Λn

∫
Ω

∫ 1

0

b2
t (ω) dt P

ξ,θiΛn(dω)P̄ (dξ)

≤ sup
n

sup
i/∈Λn

∫
Ω

∫ 1

0

C
(
1 +

∑
j∈Δ

ω∗
j (t)

2
)
dt P ξ,θiΛn(dω)P̄ (dξ)

≤ C + CK
(
1 + EP̄ (‖X∗‖2γ)

)∑
j∈Δ

γ−1
j < +∞.

Now, to complete the proof of Theorem 5.1 we only need to identify the drift
and the initial distribution of P̄ . This can be done in a very similar way as
in Section 3.5.
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