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Abstract

In this thesis we consider diverse aspects of existence and correctness of
asymptotic solutions to elliptic differential and pseudodifferential equations.
We begin our studies with the case of a general elliptic boundary value problem
in partial derivatives. A small parameter enters the coefficients of the main
equation as well as into the boundary conditions. Such equations have already
been investigated satisfactory, but there still exist certain theoretical deficiencies.
Our aim is to present the general theory of elliptic problems with a small
parameter. For this purpose we examine in detail the case of a bounded
domain with a smooth boundary. First of all, we construct formal solutions
as power series in the small parameter. Then we examine their asymptotic
properties. It suffices to carry out sharp two-sided a priori estimates for the
operators of boundary value problems which are uniform in the small parameter.
Such estimates are not obtained in functional spaces used in classical elliptic
theory. To circumvent this limitation we exploit norms depending on the small
parameter for the functions defined on a bounded domain. Similar norms
are widely used in literature, but their properties have not been investigated
extensively. Our theoretical investigation shows that the usual elliptic technique
can be correctly carried out in these norms. The obtained results also allow one
to extend the norms to compact manifolds with boundaries. We complete our
investigation by formulating algebraic conditions on the operators and showing
their equivalence to the existence of a priori estimates.

In the second step, we extend the concept of ellipticity with a small parameter
to more general classes of operators. Firstly, we want to compare the difference
in asymptotic patterns between the obtained series and expansions for similar
differential problems. Therefore we investigate the heat equation in a bounded
domain with a small parameter near the time derivative. In this case the
characteristics touch the boundary at a finite number of points. It is known
that the solutions are not regular in a neighbourhood of such points in advance.
We suppose moreover that the boundary at such points can be non-smooth but
have cuspidal singularities. We find a formal asymptotic expansion and show
that when a set of parameters comes through a threshold value, the expansions
fail to be asymptotic.

The last part of the work is devoted to general concept of ellipticity with a
small parameter. Several theoretical extensions to pseudodifferential operators
have already been suggested in previous studies. As a new contribution we



involve the analysis on manifolds with edge singularities which allows us
to consider wider classes of perturbed elliptic operators. We examine that
introduced classes possess a priori estimates of elliptic type. As a further
application we demonstrate how developed tools can be used to reduce singularly
perturbed problems to regular ones.

Keywords: Elliptic problem, Small parameter, Boundary layer
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Introduction

A small parameter occurs regularly in various branches of mathematics and
always plays a key role in Analysis. Although this study is devoted to differential
equations, the statement of a problem with small parameters has much in
common with a great many diverse fields of study. So, if the statement of a
mathematical problem contains a set of parameters, we suppose that one of
them, ε, is a non-negative scalar variable and the value ε = 0 can be critical.
Roughly speaking, this means that some essential properties of the problem
change when ε vanishes. For example, the equation y2 + 2εy + x2 = 0 defines
the unique function y(x) = −ε +

√
ε2 − x2 in the interval (−ε, ε) until the

parameter ε is nonzero. Otherwise the function y(x) is determined non uniquely,
therefore the value ε = 0 is critical.

More specifically, this work is devoted to linear partial differential and
pseudodifferential equations (i.e. PDE and ΨDE, respectively) involving small
parameters. We consider their solvability and the asymptotic behaviour of the
solutions. Our main attention is given to elliptic operators that lose their order
at the critical point, since finding solutions to the corresponding equations
causes certain difficulties.

The elliptic (as well as parabolic and hyperbolic) partial differential equations
for one unknown function has become a mature mathematical subject with
a fairly long history. The corresponding classification for PDE of the second
order is based on properties of the matrices of the coefficients near to the
highest derivatives. The characteristic matrices of elliptic equations have only
positive real eigenvalues. Their solutions are typically regular and have a
priori estimates. The ellipticity for operators of higher orders is defined as the
invertibility of the principle symbols (see for definitions on page 24). The most
characteristic properties of the second order operators are generalised to higher
order (for an introduction to the basic theory of elliptic PDE see [LU68,Mir70,
Hoe63]).
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For linear systems the notion of ellipticity is a finer matter, there exist several
nonequivalent definitions. The class of strongly elliptic systems possesses the
properties closest to elliptic equations with one unknown function. It consists
of systems, whose characteristic matrices are uniformly positive definite. Most
features of elliptic equations with one unknown function allow generalisation
to strongly elliptic systems.

The statement of general boundary elliptic problems caused trouble for
some time. There are basic examples (see [Sche59]) of solvable problems
with non-unique solutions. Therefore, the set of invertible “up to a finite-
dimensional space” operators (i.e. when an operator A and its adjoint A∗

have finite-dimensional kernels, dim KerA < ∞, dim KerA∗ < ∞) could be
treated as a proper class. Such operators are called Fredholm. It is shown
in [Sche59, Bro59, ADN59] that elliptic equations stated for domains with
boundaries have the above-mentioned solvability if the corresponding operators
of boundary value problem satisfy certain a priori estimates in the Sobolev
norms or estimates of Schauder type. These estimates in the general form first
appeared in the paper [ADN59].

As a complement to the a priori estimates, there also exists a condition
for the Fredholm property in the algebraic form. It is known as the Shapiro-
Lopatinskii condition and was first introduced in [Sha53,Lop53].

In the theory of Fredholm operators the so called local principle helps to
reduce boundary value problems to systems with constant coefficients. It is
based on that the Fredholm property of differential operators with coefficients
taken at a fixed point x ∈ Ω (such property is called sometimes local solvability
at x) implies the Fredholm property for equations with coefficients “slightly”
different in a neighbourhood of x. As a result, the Fredholm property for
operators on a bounded domain Ω may be proved using a finite covering for Ω

and elliptic estimates for the equations with “frozen” coefficients. The relation
between the local solvability and the Fredholm property has been used for quite
a long time, but firstly was shaped in the theorems by Simonenko [Sim65].

Elliptic problems involving small parameters attract great attention amongst
mathematicians. It is enough to say that the asymptotic behaviour of the
solution to ε∆ρ = ρ was investigated by Riemann [Rie58]. Parameters in
differential equations frequently originate from physical quantities. Some
physical constants tend to be small or large affecting coefficients in corresponding
differential equations. An analytical investigation of such problems is of special
value because it is often extremely difficult to solve them numerically.
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The theory of differential equations has many places where the presence of
a parameter plays a role. For example: spectral analysis, numerical modelling,
bifurcation theory, index theorems and so on. This study mainly discusses the
matters of convergence and of regular degeneration. Let us explain what is
exactly meant here.

The presence of a small parameter ε is helpful in obtaining a solution for
an equation Aεu = f with some operator Aε. Assuming that ε is variable, the
solution is looked upon as power expansion

uε(x) =
∞∑
i=0

ui(x)εi. (1)

This approach is known as the asymptotic method, which proves itself so ef-
fectively that if an equation does not explicitly involve small parameters,
then often the parameter is introduced artificially. The coefficients ui are
determined as a result of standard procedure of substituting in the equa-
tion. The operator in the left hand side is also expanded in the power series
Aε = A0 + εA1 + ε2A2 + ε3A3 + . . . . The first approximation u0 is a solution
of the equation A0u0 = f . If the resulting series converges it is the true so-
lution for small ε. Otherwise it is desired to be asymptotic at least, i.e. to
approximate the solution in the sense∥∥∥∥uε − N∑

i=0

uiε
i

∥∥∥∥ = o(εN),

for all natural N . In this context the question of a proper norm naturally arises.
The second point is necessary and sufficient conditions on the operator Aε
implying the existence of asymptotic expansions for the solutions. They are
required because not every analytic Aε is analytically invertible with respect
to ε.

The situation when the method of small parameter gives true asymptotic
expansions for the solutions is called regular degeneration. But sometimes, the
equation A0u0 = f is not correctly solvable. In such cases, problems are called
singularly perturbed. In Physics, this usually corresponds to that reaching the
critical point ε = 0 by a system implies a dramatic change of its physical
properties (if the model remains applicable).

The first ideas of asymptotic series go back to Laplace, Euler, Legendre; but
the rigorous theory begins with the works of Poincaré [Poi86] in 1886, where
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he introduced the notion of asymptotic expansion and valid operations on it.
Significant observations were also made by Stokes, Birkhoff, Horn, Wentzel,
Kramers, Brillouin. The subject and historical background are explained
extensively in [Fri55, Cop65]. The asymptotic methods do not only assist
mathematical manipulations, sometimes they help to deduce new equations for
Physics. The formal asymptotic solutions bring up other interesting questions.
For example, one can consider their limits limε→0 uε in comparison with the
solutions of the reduced operator A0u = f . Common sense guides us to seek a
convergence under the strongest possible restrictions on the perturbed operator.
But even very “good” assumptions on regularity do not definitely answer the
question. Simple differential equations already show non-regular behaviour
by degeneration. However, the physical evidence motivates one to seek a
connection between degenerate and perturbed solutions at least for some “good”
class of regular operators. Of course, the convergence may just be postulated
by the usage of a special topology, but it is desirable to find spaces similar to
those which are commonly used.

As was mentioned above sometimes the formal asymptotic series for differ-
ential equations can not be constructed directly. It is hardly observable on
compact manifolds without boundary or singularities, but frequently appears in
boundary value problems. This phenomenon is known as boundary layer effect.
Prandtl [Pra05] was the first to decisively outline a deficiency of the classical
asymptotic expansion near the boundary in 1904. He solved the problem of
the flow around the body in low-viscous fluid and answered the question why
viscous forces appear near the body’s surface and do not significantly affect the
fluid which is far from the body. The study was based on two suggestions. First
of all, he divided the domain into two parts: a small strip near the boundary
and the inner area. For each of the parts the problem was stated separately.
The second finding of Prandtl is concerned with the variable rescaling near the
boundary, which allowed him to derive an equation for remaining part of the
solution. The function inside the domain is called the outer expansion and the
extra function near the boundary is called the inner expansion.

The resulting equations were simply solvable, but the method was based on
physical intuition rather then formal rigor. Although the proposed trick was
very fruitful, its mathematical meaning remained unclear for some time. The
actual establishment of boundary layer theory dates back to 1930 (see [And05]
for the accurate historical background).
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The boundary layer technique was later revised and used very intensively. It
was successfully applied to a wide class of hydro- and aerodynamic problems,
most notably in studies of shock waves, free stream flows, supersonic movement
and so on. Since the problems of boundary layer and small parameters are
tightly connected to turbulence effects and the theory of stability, it is worth
mentioning that there is also a contribution by Reinolds, Rayleigh, Lyapunov,
Birkhoff, whose discoveries influenced the topic (for the details see [Schl04]).

The series of mathematical works of the 1950s turned the ideas of Prandtl
into a powerful tool. One method of matching inner and outer expansion
was initiated by van Dyke, Kaplun, Cole, Lagerstrom and others. In spite of
having significant implementations, primarily in hydrodynamics, the matching
principle has been criticized for its formalism. The main framework of this
technique is performed in the book [Dyke64], for additional applications and
bibliography see [Cole96,Nay73,Schl04,Schw02].

A similar method was developed by Vishik and Lyusternik and presented in
their paper [VL57]. As in the technique of matched asymptotic expansions,
the core of the method also lies in splitting the problem into two parts and
stretching variables. But at the same time, Vishik and Lyusternik proposed
an explicit algorithm on how to construct boundary corrections. In a great
variety of cases it provides an ordinary differential equation which makes
further analytical investigations easier. The scheme works eminently well for
linear problems, although it is also applicable for nonlinear operators (further
development and applications of this method are discussed in the survey of
Trenogin [Tre70]).

The Lyusternik-Vishik method is free from the necessity to solve the equation
directly or to find a fundamental system of solutions. The boundary effect is
explained in [VL57] as a gap between the domain of the perturbed and reduced
operator. The discrepancy inside the domain and near the boundary is handled
independently with a two-iteration process. The first iteration is the ordinary
method of small parameters, the second step offers solving some auxiliary ODE
equation for boundary layer functions. Sufficient number of negative roots of
its characteristic polynomial implies the vanishing of boundary layer inside
the domain. The mathematical clarity of the method allows one to construct
asymptotic expansions conveniently.

Both these methods encouraged to a great extent studies of asymptotics.
It would be a difficult task to itemize all significant papers, discoveries and
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computations which were made since 1960s. One can say that advances in
hypersonic dynamics, wings prediction, compressible flow and shock wave
theory and so on owe much to asymptotic approaches developed during that
period.

It is worth noting that the boundary layer effect is not solely connected
with the presence of a boundary. When one considers a differential equation
on manifolds with singularities, there frequently occur extra correction terms
in asymptotics, which have a structure resembling boundary corrections (for
instance [Kon67, Il86]). Moreover, some effects that can be interpreted as
“inner boundary layer” were found inside the domain [Isa57]. At the present
time such questions form distinct branches of studies for singular problems.
Some investigations are known as the theory of contrast structures (for the
introduction see [BVN70]).

The reduced equation need not be of the same type as the perturbed
are, which is typical for problems with small parameters. Partial differential
equations have its own specifics. When an equation degenerates to a lower
order, the limiting solution cannot satisfy all boundary conditions (that is, the
degenerate equations become overdetermined).

All PDE with small parameters could be classified by types of perturbed and
degenerate operators. The case when an equation changes its type becomes
heavier to deal with, nevertheless other cases turn out to be noteworthy for
detailed investigations. The present study is devoted to elliptic problems which
remain elliptic when the parameter is equal to zero.

By now, many reasonably stated cases of elliptic degeneration have been
considered. The pioneering papers of Lyusternik and Vishik considered op-
erators of the second and higher orders elliptically degenerating into elliptic
operators of the lower order. The domain is suggested to posses a piecewise
smooth boundary and all coefficients of the involved operators are assumed to
be C1-smooth. It was noted, that the smoothness of coefficients and boundary
has an essential impact on the convergence rate of the remainder term. Prior
to Lyusternik and Vishik’s investigations, second order operators were also
touched upon in the works [Ole52,Lev50,Dav56]. For the case of smooth coeffi-
cients, the nonparametric Dirichlet, Neumann and Robin boundary conditions
were considered. Uniform estimates for the remainder and the rate of conver-
gence were obtained. The smallest of the remainders (in some integral sense)
also was studied for problems of elliptic degeneration of 4th order operators.
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The paper [EJ66] presents slightly more general results. Its authors apply the
maximum principle to obtain the rate of convergence for the solution or per-
turbed higher order elliptic problems with a Dirichlet condition to the solution
of reduced non-elliptic operator. The case εAu+u = f with an elliptic operator
A and general boundary conditions was studied in [Fri68] and [Bur66], where
the rate of convergence is obtained in a Sobolev norm. The results are very
close to the ones which were previously obtained with the Lyusternik-Vishik
method, but do not entirely rely on this technique.

Among the remarkable achievements closely related to the considered topic,
there is the study of the 4th order non-linear elliptic operators by Friedrichs
and Stoker [FS41] (this result is also discussed in [Fri55]). In [Dzh65], the
asymptotic method was applied to problems with the domain varying by a
small parameter. Goldenveizer [Gol66] proposed the theory of thin halls based
on the reduced elliptic system of equations. Elliptic degeneration has much in
common with parabolic equations with vanishing elliptic parts, parabolic to
elliptic degeneration (for a description of such issues see [VL57,Tre70]), but
they often require an essentially different technique.

Most of the results mentioned relate to problems on a domain without
singularities. Furthermore, the boundary conditions mainly do not explicitly
involve small parameters. The ellipticity with small parameter, despite all
of mighty achievements, remained patchy as a field of study for some time.
Conditions of the regular degeneration were not expressed in terms of uniform
a priori estimates or another practicable form.

The first definitively systematic approach to parameters in linear equations is
contained in theorems published by Huet [Huet61]. It is shown there that regular
degeneration follows from the ε-dependent estimates for the principal symbol.
In addition, in [Huet61] Huet gave the proof of convergence theorems in a
Hilbert space setting. Then he applied the result to differential problems, which
is opposite to starting directly with differential equations. The idea proved
very elegant in use and it was interpreted later as norms with parameters.
Considering the perturbed problems in the most general form dates back
to [Fife71], where boundary conditions also include small parameters.

Nevertheless, as a chapter of general elliptic theory, singular perturbations
were convincingly discussed in the works of Frank [Fra90,Fra97] and accom-
plished by Volevich [Vol06]. It should be noted that the paper [Vol06] restricts
itself to operators with constant coefficients in the half-space.
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It seems that problems with large and small parameters could be studied
as one because of the relation ε = 1

λ
, but in fact both theories are developed

parallel to each other. Nevertheless, it should be pointed out that a small
parameter can be translated into a large parameter and the choice is based on
practical purposes. The theory of problems with large parameter was motivated
by the study of the resolvent of elliptic operators. In the work [GS95] the
algebra with big parameter is used for operators of the Dirac type with non-
local boundary conditions. Sometimes big and small parameters are taken into
scene simultaneously, the paper [Dem73] deals with such a case.

By now elliptic operators with small parameters are also studied on conic
manifolds. For instance, the Vishik-Lyusternik method is adapted for domains
with conical points in [Naz81]. However, there has only been little discussion
so far about asymptotic expansions for problems on cuspidal domains. Such
problems are heavily solved under common assumptions. At the present time,
only particular cases have been investigated (e.g. [DT13]). Nevertheless, the
obtained results suggest speculations on ways to implement diverse concepts of
the asymptotic expansion. In particular, the asymptotic expansion obtained
in [DT13] fails to converge classically under certain continuous changes of the
problem parameters, however this series can be summed up in some generalised
sense. So, if one needs to research a wider range of perturbations, then a
conceptually different look at a small parameter could help.

This study attempts

(a) to present elliptic problems with small parameters as a part of general
PDE theory, to summarise common properties of singular elliptic problems
with regular degeneration;

(b) to observe connections between singularly perturbed problems and other
types of non-regularity, their distinctions, similarities and interactions;

(c) to treat classic problems for small parameters with new approaches and
tools and propose a way to deal with more general classes of parametric
dependence.

This essay begins with Preliminaries to the theoretical background, the next
three chapters present original results.

Chapter 2. The second chapter deals with an elliptic linear differential equa-
tion on a bounded domain supplemented by boundary conditions. The equation
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and boundary conditions are supposed to depend on a small parameter ε in a
given explicit form. The boundary value problem is elliptic for every ε > 0, but
at point ε = 0 the equation has a lower order and some number of boundary
conditions could disappear. Therefore solutions can not always be constructed
as a formal series (1). To address the issue we introduce boundary corrections.
But the validity of the resulting series requires to be verified. In many particu-
lar cases there are a priori estimates which imply asymptotic property of such
expansions. It gives some idea of how to construct a general theory for the
problems with parameters, that is to obtain necessary and sufficient conditions
on the operator and the boundary conditions to be uniformly invertible.

The earliest such theory was the case of large parameters developed in [Agm62,
AV64]. A large parameter is supposed to enter the equation and boundary
conditions as a covariable. Such equations remain elliptic when the param-
eter is formally replaced by the derivation with respect to a new variable.
The solvability and a priori estimates in the Sobolev spaces with the norms
‖u‖l := ‖u‖l + λl‖u‖0 were obtained under quite simple conditions. Essen-
tially, these restrictions are that A(x, ξ, λ) is elliptic for each λ big enough,
and (A(x, ξ, λ), Bj(x

′, ξ, λ)) has some algebraic property akin to the Shapiro-
Lopatinskii condition.

The task to construct a general theory for a small parameter was initiated in
the series of works [Fra79,Fra90,Fra97]. These works consider ΨDO with small
parameters on the whole space Rn. They include a great number of perturbed
operators investigated earlier. He singles out elliptic operators, proves the
existence of parametrix and its equivalence to a priori estimates of elliptic type
in the specific Sobolev spaces normed under

‖u‖(s1,s2,s3) = ε−s1
∥∥(1 + |ξ|2)s2(1 + ε2|ξ|2)s3Fx→ξu

∥∥
L2(Rn)

. (2)

The similar norms with s1 = 0 was earlier used in the paper [Pok68].

The boundary problems on domains with conical points were considered
in [Naz81]. However, these papers fall short of providing an explicit Shapiro-
Lopatinskii-type condition of ellipticity with a small parameter. Instead, they
assume a priori estimates for corresponding problems for ordinary differential
equations on the half-axis.

Volevich [Vol06] completed the theory by formulating the Shapiro-Lopatinskii
conditions with small parameters and proved that it is equivalent to uniform a
priori estimates in the norms originated from [Pok68]. However, as was already
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noted, he did it for Rn and Rn
+. In Chapter 2 we complete his study with the

case of a bounded domain.

The investigation begins with construction of a formal solution as series
in ε, then the asymptotic properties are studied. We carry out uniform a
priori estimates which are sufficient for convergence and justify the obtained
expansions. The existence of estimates is equivalent to the Shapiro-Lopatinskii
condition with small parameter if the operators are elliptic for every ε.

The investigation is based on general elliptic techniques (see [ADN59]). It
suggests to study Banach spaces of functions defined in bounded domains and
on their boundaries. The local principle enables us to reduce the Fredholm
property of operators with “slowly” varying coefficients to that for operators
with constant coefficients. Then the operators with coefficients “frozen” at
inner and boundary points can be modified to be defined on functions on all of
space Rn or Rn

+, respectively. We prove that these manipulations preserve the
Fredholm property and norms allow local techniques.

In Chapter 2 this technique is adapted to the case of problems with pa-
rameters. Our study uses norms and estimates derived in [Vol06] for model
problems of such types. The resulting estimate justifies the formal asymptotic
solution of stated problem.

Chapter 3. Our next goal is to analyse changes in the asymptotic behaviour
when a differential problem with a small parameter involves other singularities.
Furthermore, we consider interactions between different kinds of singularities.
The discussion is restricted to the Dirichlet problem for the heat equation in a
bounded domain Ω ⊂ Rn × R containing a small parameter ε multiplying the
time derivative.

The points of the boundary at which the tangent is orthogonal to the time
axis are characteristic. The boundary ∂Ω is allowed to have point singularities
and, moreover, they can touch characteristics.

It is well known (see e.g. [Tay96]) that a boundary value problem behaves
pathologically in advance if characteristics meet the boundary. However, if it
is possible to cut off the irregular point with a small neighbourhood from the
boundary, then the solution, in its turn, splits up in the singular part near the
boundary and is regular part far from the boundary. It is similar to looking for
a solution to the singularly perturbed problem when it is considered separately
near the boundary.
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The subject of our interest is the case when the boundary is non-smooth at
such points. More specifically, we assume that the boundary ∂Ω touches the
characteristic at a point (x0, t0) and in some neighbourhood U the boundary is
given by the equation

∂Ω ∩ U = {(x, t) ∈ ∂Ω : t− t0 = |x− x0|p},

where p > 0 is called the contact degree.

The values p = 2, 3, . . . give us the regular case and we will not pay attention
to them. For p = 1 the domain Ω ∩ U is a cone and for p < 1 it is a cusp.
Thereby, the boundary value problem has two types of irregularities at the
characteristic point and typically only one of them becomes a topic for a study.

Solutions of partial differential equations are generally not smooth near a
point like (x0, t0), their asymptotic behaviour depends on the contact degree p.

The case p > 2 defines a weak type of singularity for the heat equation, the
studies go back to Gevree [Gev13], Petrovskii [Pet34,Pet35] and are concerned
with the first boundary value problem. The classical approach is applied
in [Gev13] and rests on the potential theory. For general parabolic equations
the asymptotics near contact points were derived in [Kon66]. The asymptotic
property holds if p = 2, this threshold value is also called “regular singularity.”

In the case p < 2 the singularity is strong, such points are treated in [AT13]
for the heat equation with first boundary value problems to get both a regu-
larity theorem and the Fredholm property in weighted Sobolev spaces. Some
approaches to strong singularities could also be found in [RST00].

Conic and cuspidal points make questions about properties of solutions more
complicated, because local technique is often no longer applicable. In contrast
to the case of regular boundaries, the solutions of elliptic equations fail to
be infinitely smooth in general, even if right-hand sides and coefficients are
infinitely differentiable. Geometrical singularities of the boundary also modify
the set of smooth functions. Asymptotics for solutions of homogeneous elliptic
equation near a conical point were first derived in [Kon67]. Their terms have
the growth rλ logk(r) as the distance r to singularity tends to zero.

Usually, conic and cuspidal points are treated with the blow-up technique.
Through a change of variables the critical neighbourhood is mapped onto a
cylinder, what however adds power or more complicated singularities to the
coefficients. A priori estimates for boundary problems are usually proved in
weighted Sobolev spaces (the explicit constructions could be found in [NP94]).
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If the norms with small parameters control the loss of smoothness, the
weighted norms express that the solution must be smooth far from the sin-
gularity, although its derivatives could have power growth in the critical
neighbourhood. To study the perturbed elliptic equations on conic domains,
in [Naz81] a small parameter is involved also in the weighted Sobolev norm.

In Chapter 3 an explicit asymptotic solution in a neighbourhood of a
characteristic point is constructed and it is shown that the convergence depends
on the geometrical characteristic p of cusps. Asymptotic expansions have the
form of the Puiseux series in fractional powers of t/ε up to an exponential
factor. The series diverges even for points far from the boundary when the
characteristic number p comes through the threshold value, but the formal
series inherits some asymptotic pattern.

Such divergent expansions are not new but a controversial subject in mathe-
matics. The formal divergent series are mighty instrument for approximations
(see [Har49]), and it is a rather common situation that the modern tools of
mathematics are able to give a physical sense to a formal solution (see for
instance [Koz03]).

On the other hand, the ingrained weakness of non-classical asymptotics
explains the absence of unique way for its regularisation. However, some
variety of non-classical approximations have been developed. Namely, to
decompose a function u ∈ H from some functional space H formally we
consider a countable set of subspaces {Hn}∞n=1 ⊂ H named a scale. The formal
asymptotic expansion of an element is defined via u ∼

∑∞
n=0 un, where each

term un ∈ Hn. In such a way the difference u −
∑N

n=0 un belongs to the
“better” functional space HN+1. An illustration of this concept is the expansion
of classical symbols in homogeneous functions in ΨDO algebras. It is clear
that the Poincaré and Erdélyi asymptotic expansions are particular cases of
these more general formal sums, but the latter are poorly investigated, not
useful in numerical computations and used rarely. Further investigations of
formal expansions for PDE could specify honourable classes of expansions and
construct a proper scale.

Chapter 4. The last chapter aims at generalising the concept of ellipticity
with a parameter to pseudodifferential operators, i.e. at defining a calculus
of ΨDO with a small parameter. This operator algebra must include elliptic
differential operators with regular degeneration and be a natural extension of
wider classes of pertubed operators.
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By now there are a great number of constructed ΨDO algebras with specified
properties (see for examples in [CW78,Pla86,Mel90,SS97]). Several algebras
with large and small parameters have been also proposed; they differ in how
parameters are included in definitions of admissible and homogeneous symbols.
These basic definitions prompt the structure of elliptic symbols (some notions
of more general ellipticity with parameter are given in [DV98]). The presence
of a parameter in symbols often modifies calculus of ΨDO. In particular, the
calculation of homogeneous components of a symbol can take into account a
parameter. The following two symbol algebras are mostly used.

Algebra with a large parameter generalises the differential operators inves-
tigated in [AV64] and is described comprehensively in [Shu87]. The large
parameter λ enters into symbols as a covariable. The corresponding operators
act boundedly in the Sobolev spaces with norms depending on λ. More general
algebra is constructed in the book [Agr90].

Typical symbols of algebras with small parameter involve ε as a power factor
near the covariables. When ε is zero the symbols form usual algebra of pseudod-
ifferential operators. The corresponding Sobolev norms where pseudodifferential
operators map continuously are used in papers by Pokrovskii, Demidov, Nazarov,
Frank and others. A symbol a is homogeneous if a(x, tξ, t−1ε) = tνa(x, ξ, ε)

for positive t. This class includes a vast number of differential operators
investigated in classical theory.

Both cases are encompassed by the class of symbols proposed [Fra90]. The
corresponding Sobolev norms are defined by (2). Homogeneous symbols are
defined as those in algebras with small parameters. As was mentioned above,
the treatise of Frank elaborates comprehensively the case of compact manifolds
without boundary.

At the same time, Frank’s approach is of phenomenological nature, which
makes it non-flexible. Being a well developed tool for elliptic linear equations, his
algebra is not suitable for nontypical perturbations. The present study pretends
to enrich the theory of small parameters with a machinery related to similar
problems. In particular, we apply analysis on non-smooth manifolds [SS97,
RST00]. For the edge type singularities, for instance, it consists in the following.
Given a manifoldM with a conic edge, the spaces of smooth functions C∞(M)

and of linear operators L(C∞(M)) can be naturally introduced. Then the
manifold is viewed locally close to the edge as a Cartesian product of a cone
C and the edge E . With some auxiliary constructions it is possible to present
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pseudodifferential operators on the manifoldM as a calculus onM\ E with
symbols defined on the edge E and taking their values in the space of operators
on the cones.

We take into account the idea of operator-valued symbols for algebra with a
small parameter. The aim is to obtain symbols on manifolds, taking their values
in some function spaces depending on a parameter. To this end, the theoretical
scheme established by Karol’ [Kar83] is exploited and two approaches to the
construction of such symbols are proposed. The first one endows spaces with
parameter dependent norms, in the framework of this concept basic algebras
are rediscovered. Another approach states that the variable and parameter
(x, ε) form a cylindric domain X × [0, ε0) with an arbitrary manifold X as a
base. On this cylinder ΨDO are introduced in a usual manner and the symbols
obtained in this way depend naturally on ε. The last point is to specify symbols
within the operator-valued ones defined on T ∗X . In the fourth chapter this idea
is carried out for the so-called Sobolev spaces with a group action described
in [SS97].

The derived symbolic algebras inherit principal properties of regularly per-
turbed elliptic partial differential equations, involve achievements of preceding
studies and are transparently constructed.



Chapter 1

Preliminaries

1.1 Notation

Rn denotes the real coordinate space of n dimensions, x = (x1, x2, . . . , xn),
y = (y1, y2, . . . , yn), etc. are points of this space. The length in Rn is given by
|x| =

√∑n
i=1 x

2
i . We also use the semi-space

Rn
+ = Rn−1 × {xn : xn > 0},

and for x ∈ Rn we write x = (x′, xn) where x′ ∈ Rn−1. Besides the length, we
make use of the notion

〈ξ〉 =
√

1 + |ξ|2, 〈ξ; η〉 =
√

1 + |ξ|2 + |η|2.

The n-tuple α = (α1, α2, . . . , αn), αj ∈ {0} ∪ Nn, is called a multiindex and
its length is equal to |α| = α1 + · · ·+ αn. Given a multiindex α we write

Dα = (−i)|α| ∂|α|

∂xα1
1 ∂x

α2
2 · · · ∂xαnn

.

D(f) stands for the domain of a function or operator f . The support of a
function f is the set

supp f = {x ∈ D(f) : f(x) 6= 0}.

The closure of a set Ω is denoted by Ω. Furthermore, if Ω is a domain, its
boundary is ∂Ω = Ω \ Ω.

Ck(Ω) is the class of functions k times continuously differentiable on the
set Ω (accordingly, C∞(Ω) denotes the class of infinitely differentiable functions).

17
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When it is clear from the context on which set the functions are considered, we
omit Ω in the notation. An excision function χR ∈ C∞(Rn) is such that

0 6 χR(ξ) 6 1 and χR(ξ) =

0, |ξ| 6 R,

1, |ξ| > 2R.

The Fourier transform of function u(x) is defined by∫
e−ixξu(ξ)đξ

and also denoted as Fx→ξu = ũ. The inverse Fourier transform is

Fξ→xũ =

∫
eixξũ(ξ) dξ.

S(Rn
+) and S(Rn) stand for the Schwartz classes; S(Rn

+) is defined as

S(Rn
+) =

{
f ∈ C∞(Rn

+) : sup
x∈Rn+

|xα∂βf(x)| 6 Cα,β with some Cα,β > 0
}

and S(Rn) has an analogous definition.

The constants in estimates are supposed to be positive by default. All
variables in subscripts and superscripts are supposed to be fixed arbitrarily if
it does not cause any misunderstanding that their range is discernible from the
context. Otherwise the appropriate conditions are stated explicitly.

1.2 Historical background

Although classical analysis serves the application’s needs well, PDE theory
got its great breakthrough via implementations of functional analysis. ΨDO
calculus was developed in the middle of the 1960s through the efforts of Kohn,
Nirenberg, Hörmander, Mihlin, Widom, Volevich and others, and originates
from the operator methods and Fourier analysis. The so-called symbols of
differential operators were the subjects of consideration for a long time, but
entered the mainstream only with ΨDO’s approach.

The invertible integral transformations make it possible to connect an
operator with some function and then manipulate of ordinary functions instead
of differential or integral expressions. With that they set a correspondence
between algebraic operations on symbols and the manipulations with operators.
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For such transformations as the Fourier transform, many symbols of linear
integro-differential operators are computable, and the symbols of differential
operators are simply polynomials. In the framework of symbols one can
treat integral and differential equations in the same way, which highlights the
affinity of these two subjects. It is particularly significant that the operator
depends on its symbol continuously. It allows us to use homotopical methods
and theorems of index preservation. The Fredholm theory of elliptic ΨDO
is well-shaped and culminates in the Atiah and Singer index theorem. But
the greatest measurable advantage of ΨDO calculus is that it is possible to
write down the inverse operator in an explicit form. The operations on the
symbol level constitute the micro-local analysis, which is a proper tool for
analysis on manifolds. Symbols of elliptic operators are the simplest to use,
because they are invertible by definition, and elliptic ΨDO have been examined
thoroughly. Many ascertainable facts on compact manifolds without boundary,
such as solvability, follow as direct generalisations from the corresponding facts
about differential operators. The algebra of boundary problems (Boutet de
Monvel’s algebra), introduced in [Bou71], accomplished the case of manifolds
with boundaries.

There is a close resemblance between many properties of pseudodifferential
and differential equations. Naturally, problems and tasks in PDE were elabo-
rated for ΨDE as well, including equations with singularities. Many results were
resumed in the terms of symbolic algebras. For instance, Eskin [VE67] provided
the factorisation of an arbitrary symbol, analogous to properties of polynomials.
As another illustration, let us refer to Pokrovskii [Pok68], who pointed out the
class of ΨDO having boundary layers, although the boundary correction is not
expressed through exponents, and provided the asymptotic expansions. At
the same time, not all theorems for PDE have straightforward extensions to
pseudodifferential equations. For instance, the Shapiro-Lopatinskii condition
fails to be formulated algebraically. Additionally, ΨDO have certain obsta-
cles to apply, because there a special algebraic structure of symbols should be
determined to make analytical calculations fully correct.

Extraneous difficulties occur when a perturbed problem is considered on a
non-smooth domain. The most considerable cases of singularities are conic or,
more generally, cuspidal points. The irregular points at the boundary make
the questions of solvability and correctness more sophisticated, because the
geometrical structure near the singularity has much influence on the set of
solutions of elliptic equations with zero right-hand sides. For example, the
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solutions of homogeneous elliptic equations with constant coefficients increase
as rλ logm(r) near a conical point (where λ is complex and m is a non-negative
number). The innovative studies on singular manifolds date back to the early
1960s and could be found in [Esk63,GK70,Gri85]. But the first systematic
approach was undertaken by Kondrat’ev in [Kon67], where the Fredholm
properties were investigated within the framework of generalized solutions.
Further advances were made in [Mel90,KMR97] and others (see also the full
bibliography in [KMR97]). The calculus on manifolds with conical points
is developed comprehensively in [Mel90, Pla86, Schu91]. Elliptic estimates
and Fredholm property for general boundary value problems are presented
by Bagirov [BF73], Maz’ya and Plamenevskii [MP73]. The paper [RST00]
elaborates the results by Feigin [Fei71] to a general statement of elliptic
problems on manifolds with cuspidal edges. The algebra involved in [RST00]
has operator-valued symbols.

The algebras of ΨDO’s have the advantages to posses symbols. We thus get
an algebra of operators A and algebra of symbols S along with so called quan-
tisation map a 7→ Op(a) for all a ∈ S. This map is surjective and one chooses
a left inverse called the principal symbol mapping (denoted by A 7→ σ(A)).
The map σ : A 7→ S is multiplicative in the sense that σ(AB) = σ(A)σ(B).
Moreover, the symbol σ(A) vanishes σ(B) if and only if A is compact in the
corresponding scale of Sobolev space. Using this property of principal symbol
one introduces the notion of ellipticity in operator algebras with symbolic struc-
ture. Namely, A ∈ A is said to be elliptic if σ(A) is invertible we write σ(A)−1

for the inverse, then a suitable quantisation Op(σ(A)−1) leads to an operator A
satisfying PA = I and AP = I modulo compact operators in the algebra.
Such operator P is called parametrix of A and the existence of a parametrix
just amounts to the Fredholm property of A. The parametrix construction is
especially transparent for polyhomogenuous (or classical) ΨDO.
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1.3 Symbols of pseudodifferential operators

This chapter provides background material on pseudodifferential calculus that
is used throughout the work. These concepts are presented comprehensively
in [Shu87].

Definition 1. We call a smooth function a(x, ξ) on Rn×Rn a symbol of the class
Sm(Rn) if a(x, ξ) = a1(x, ξ) + a2(ξ) where

∣∣∂αx∂βξ a1(x, ξ)
∣∣ 6 C ′α,β(x)〈ξ〉m−|β|,∣∣∂βξ a2(ξ)

∣∣ 6 Cβ〈ξ〉m−|β| for every (x, ξ) ∈ Rn×Rn and multiindices α, β. Here
C ′α,β ∈ S(Rn), and Cβ > 0 are constants independent of (x, ξ).

The pseudodifferential operator corresponding to a ∈ Sm is given by the
formula Op(a)u =

∫
eixξa(x, ξ)ũ(ξ)dξ. The set of operators corresponding

to Sm(Rn) is denoted by Ψm and the complete symbol of a given operator
A ∈ Ψm by σA(x, ξ) = a(x, ξ). The real number m is called the order of the
pseudodifferential operator A.

We also use the notations

S−∞ = ∩mSm, S∞ = ∪mSm, Ψ−∞ = ∩mΨm, Ψ∞ = ∪mΨm.

The operators Ψ∞ map S(Rn) continuously to S(Rn) . The Sobolev space
Hs(Rn) is the completion of S(Rn) with respect to the norm

‖u‖2
s =

∫
〈ξ〉s|ũ|2dξ.

Theorem 1. The operators A ∈ Ψm extend to linear bounded maps

A : Hs(Rn)→ Hs−m(Rn),

i.e. A are defined for each u ∈ Hs(Rn) and satisfy the estimate

‖Au‖s 6 Cs‖u‖s−m.

1.4 Algebra of pseudodifferential operators

In the sequel we deal with algebras of pseudodifferential operators with elements
defined up to smoothing operators.

Definition 2. An operator G : S ′ → S ′ is called smoothing if it maps S ′

continuously into Hs(Rn) for each s.
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For such operators the estimate

‖Gu‖s+N 6 C‖u‖s

holds for every u ∈ Hs(Rn) and N ∈ R. The operators from Ψ−∞ are
smoothing. The converse is false. The class Ψ−∞ defines the equivalence for
every A,B ∈ Ψ∞ naturally so that A is equal to B modulo smoothing operators,
if A−B is a smoothing operator.

Lemma 1. If A = B modulo smoothing operators of Ψ−∞ and A ∈ Ψm, then
B ∈ Ψm.

Now we clarify the idea of asymptotic expansions. Let us consider the
sequence of symbols aj ∈ Sm−j, j = 1, 2, . . . , not necessarily convergent. The
formal series

∑∞
j=1 aj is called an asymptotic expansion of some symbol a if

for each N we have a−
∑N

j=1 aj ∈ Sm−N−1. The asymptotic expansion of a is
denoted as

a ∼
∞∑
j=1

aj

It is clear, that a ∈ Sm. Any sequence of symbols aj of decreasing order defines
an asymptotic expansion for some symbol a, precisely:

Lemma 2. Given a sequence aj ∈ Sm−j there exist a symbol a ∈ Sm such that

a ∼
∞∑
j=1

aj.

The symbol a in this lemma is not uniquely defined, but up to smoothing
operators. The spaces Ψm are obviously linear, the next lemma implies that
they form an algebra.

Lemma 3 (Composition formula). Let A ∈ Ψm1 and B ∈ Ψm2 then their
composition AB is also a pseudodifferential operator of the class Ψm1+m2 with
the symbol

σ(AB) ∼
∑
α

∂αξ σA ·Dα
xσB/α!.

The next two statements allow one to define ΨDO on closed compact
manifolds. Firstly, the composition formula implies the pseudolocal property of
ΨDO. That is, if ζ, θ ∈ C∞0 and θ|supp ζ ≡ 1 then w 7→ ζ · A

(
(1 − θ) · w

)
is a

smoothing operator for every A ∈ Ψ∞.
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Further, let A be a pseudodifferential operator, Ω be some domain in Rn and
κ : Ω→ Ω̃ be a diffeomorphism. Let also ζ, θ ∈ C∞0 (Ω) be such functions that
θ(x) = 1 in a neighbourhood of supp ζ. The operator Ã : C∞0 (Ω̃)→ C∞0 (Ω̃) is
correctly determined by the formula

Ãv(y) = ζA[θu](x), x ∈ Ω,

where u = v ◦ κ.

Lemma 4 (Change of variables in ΨDO). The operator Ã is pseudodifferential
of class Ψm and its symbol σÃ = ã(y, η) is

ã(y, η) ∼ ζ(x)
∑
α

ςα(y, η)∂αξ σA

∣∣∣∣ ξ = tκ′(x)η

x = κ−1(y)

,

where tκ′(x) denotes the transpose of the Jacobi matrix and ςα(y, η) is given by
the formula

ςα(y, η) =
1

α!
Dα
z exp

[
i
(
κ(z)− κ(x)− κ′(x)(z − x)

)]∣∣∣∣ z = x
x = κ−1(y)

.

The next class of symbols has a special meaning and we pay the most
attention to it. They are widely known as classical and favourable for calculus
on manifolds.

Definition 3 (classical symbols). The set of classical symbols Smcl ⊂ Sm consists
of symbols which are asymptotically expanded as

a ∼
m∑

j=−∞

χRaj, aj ∈ C∞(Rn×Rn \{0})

where χR(ξ) is an excision function and aj(x, ξ) are homogeneous in variable ξ of
order j, i.e. for every positive real t and (x, ξ) ∈ R2n, holds a(x, tξ) = tja(x, ξ).
The term am in asymptotic expansion is called the principal symbol of a.

The functions aj in the last definition are known as homogeneous symbols,
but they are not real symbols, i.e. do not belong to S∞. Also not every ΨDO
is classical, but all differential operators belong to Ψ∞cl . The principal symbol
for each operator A ∈ Ψ∞cl is defined uniquely and is designated as σm(A)

or am. The composition AB of two classical operators A ∈ Ψm1

cl , B ∈ Ψm2

cl is
classical as well, and σm1+m2(AB) = σm1(A)σm2(B). A classical operator A
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remains classical under diffeomorphic change of coordinates. Moreover, its
principal symbol σm(A) is invariant with respect to smooth changes of variables.
Indeed, for a symbol a ∈ Smcl and a given diffeomorphism κ : Ω 7→ Ω̃, κ(x) = y,
Lemma 4 implies that for some small neighbourhood of the point y ∈ Ω̃ the
principal symbol ãm(y, η) of the operator κ ◦Op(a) ◦ κ−1 is computed as

ãm(y, η) = am(x, ξ) (1.1)

where on the right-hand side

x = κ−1(y), ξ =
[
t(κ−1)′(y)

]−1
η.

1.5 Ellipticity and regularisers

Definition 4. A classical pseudodifferential operator A ∈ Ψm
cl (R

n) is called
elliptic at a point x ∈ Rn if am(x, ξ) 6= 0 for all ξ 6= 0.

This definition is also equivalent to the estimate

|a(x, ξ)| > Cx|ξ|m for sufficiently large |ξ| > R. (1.2)

An operator A ∈ Ψm
cl is elliptic in a domain Ω ⊂ Rn if it is elliptic at every point

x ∈ Ω. The estimate (1.2) is a characteristic property of elliptic operators.

Definition 5 (Regularisers for an elliptic operator). Let A be a pseudodifferen-
tial operator. Pseudodifferential operators Rleft,Rright ∈ Ψ∞ are called left and
right regularisers for A respectively if

RleftA = I + T1, ARright = I + T2, (1.3)

where I is the unit operator and T1, T2 ∈ Ψ−∞. If an operator R satisfies both
equalities, then it is called a regulariser for A.

If A has left Rleft and right Rright regularisers, then Rleft = Rright modulo
smoothing operators and each of them is a regulariser for A.

Theorem 2. For every elliptic operator A ∈ Ψm there exists an elliptic pseu-
dodifferential operator R ∈ Ψ−m which is a regulariser for A.

The following fact connects ellipticity, the existence of regulariser and a
priori estimates.
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Theorem 3 (A priori estimate). For any elliptic A ∈ Ψm there exists a
constant Cs > 0 such that

‖u‖s 6 Cs(‖Au‖s−m + ‖u‖0)

for all u ∈ Hs(Rn). Conversely, if the above estimate holds then A is elliptic.

It remains to note that the existence of a regulariser for an operator A
implies the estimate above.

1.6 ΨDO on manifolds without boundaries

Hereinafter X stands for smooth n-dimensional, connected, closed compact man-
ifolds. The cotangent bundle to X without the zero section is denoted as T ∗X \0.
We fix a covering O = {Ok}Kk=1 of X and a partition of unity {φk}k=1,2,...,K

subordinate to O. For the points of X we designate by x = (x1, x2, . . . , xn)

their local coordinates given by a chosen chart O.

The scale of Sobolev spaces Hs(X ) is defined through the norm

‖u‖2
s,X =

K∑
i=1

‖φiu‖2
s,

where ‖φiu‖s is computed in local coordinates. Other partitions of unity
determine equivalent norms.

Let us specify pseudodifferential operators among all continuous linear
operators acting on functions on X .

Definition 6. We call an operator A with D(A) ⊃ C∞(X ) a pseudodifferential
operator of class Ψm(X ) if the following conditions are satisfied.

(a) Let ζ, θ be arbitrary chosen functions from C∞(X ) with disjoint supports.
Then the composition ζA(θ · ) extends to a smoothing operator on X .

(b) Let some domain in X be mapped by a chart O onto U ⊂ Rn, and let
Ω ⊂ O−1(U) be a strictly inner subdomain. Then there is a pseudod-
ifferential operator AΩ ∈ Ψm(Rn) such that if ζ and θ are functions
from C∞(X ) with supports contained in Ω, then in the local coordinates
ζA(θu)(x) = ζ(x)(AΩ(θu))(x).
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This definition is correct in the following sense.

Suppose that another system of functions {θk}Kk=1 is subordinated to the
covering O = {Ok} and θk ≡ 1 in a neighbourhood of the support of φk for
each k. Let Ωk be a strictly inner subdomain of Ok such that supp θk ⊂ Ωk,
and let AΩk be a corresponding pseudodifferential operator of Ψm(Rn) given
by the definition. Then

A =
∑
k

φkAΩk(θk · ) + T1 and A =
∑
k

θkAΩk(φk · ) + T2,

where T1 and T2 are smoothing operators on X . Conversely, if such expansions
exist for an operator A : C∞(X ) → C∞(X ), then A is a pseudodifferential
operator.

Operators from Ψm map Hs(X ) continuously into Hs−m(X ) for all s ∈ R,
what is a direct consequence of Theorem 1.

We set Ψ−∞(X ) = ∩mΨm(X ), Ψ∞(X ) = ∪mΨm(X ).

The class Ψm
cl (X ) of classical operators arises naturally when all restrictions

AΩ ∈ Ψm(Rn) from Definition 6 are assumed to be classical operators.

The formula (1.1) allows one to consider the principal symbol am of an
operator A ∈ Ψm

cl as a smooth function defined on the cotangent bundle
T ∗X \ 0. It coincides locally with principal symbols of AΩ.

Definition 7. A pseudodifferential operator A ∈ Ψm
cl (X ) with the principal sym-

bol am : T ∗X \ 0→ R is elliptic on X if am(x, ξ) 6= 0 for every (x, ξ) ∈ T ∗X \ 0.

For pseudodifferential operators on manifolds the concept of regulariser is
introduced in the same way as for Rn. A pseudodifferential operator R is the
regulariser to a pseudodifferential operator A ∈ Ψm(X ) if the equalities (1.3)
hold with smoothing operators T1 and T2 on X . For pseudodifferential operators
on closed compact smooth manifolds any smoothing operator is actually a
compact operator in any Sobolev space. Therefore the regulariser R is a
parametrix of A, i.e., an inverse operator up to compact operators. By the
well-known theorem of Atkinson (1953) an operator A possesses a parametrix
if and only if it is Fredholm. Therefore, ellipticity is an efficient algebraic
characterisation of elliptic operators for compact closed smooth manifolds
indeed. The property to be elliptic is equivalent to the existence of a regulariser
and the a priori estimate. Namely,
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Theorem 4. Let A be a classical elliptic pseudodifferential operator of order m.
Then

(a) there exists an elliptic pseudodifferential operator R ∈ Ψ−mcl (X ) which is
a regulariser for A,

(b) for any s there exists a constant Cs such that

‖u‖s,X 6 Cs(‖Au‖s−m,X + ‖u‖0,X ).

Conversely, if (a) or (b) holds for a classical operator A then it is elliptic.

1.7 Ellipticity for linear differential boundary
value problems

In the work [Bou71] the algebra of boundary value problems is developed for
pseudodifferential operators. Since it has a complicated construction we do not
present the complete theory of elliptic operators on manifolds with boundaries.
The focus of this work is on differential operators in regular situations1 so we
apply the usual definitions.

Let a domain Ω ⊂ Rn, differential operators

A(x,D)u =
∑
|α|6m

aα(x)Dαu,

Bj(x,D)u =
∑
|β|6bj

bj,β(x)Dβu, j = 1, 2, . . . , r

and functions f : Ω→ R, g : ∂Ω→ R be given.

Recall that the complete and principal symbols of differential operators are
polynomials. For the operators A,B the principal symbols look like

σmA (x, ξ) =
∑
|α|=m

aα(x)ξα,

σ
bj
Bj

(x′, ξ) =
∑
|β|=bj

bj,β(x′)ξβ, j = 1, . . . , r.

1Here by regularity we mean that boundary surfaces, all coefficients in operators, given
functions, etc. possess proper smoothness.
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The differential operators corresponding to their principal symbols are called
principal parts.

The boundary value problem consists in finding a function u(x) such that

A(x,D)u = f(x), x ∈ Ω,

Bj(x,D)u
∣∣
∂Ω

= gj(x
′), j = 1, 2, . . . , r, x′ ∈ ∂Ω.

(1.4)

The last r equalities are called boundary conditions. We call the principal parts
σmA (x, ξ), σ

bj
Bj

(x′, ξ) the inner and boundary symbol. To every boundary value
problem (1.4) there corresponds an operator A,B mapping functions C∞(Ω)

to the Cartesian product Hs−m(Ω)×
∏r

j=1H
s−bj− 1

2 (∂Ω).

Definition 8. A differential operator A(x,D)u of order m is called elliptic in
the domain Ω if its principal symbol σmA (x, ξ) does not vanish for all x ∈ Ω and
ξ ∈ Rn \{0}.

In the case of n = 2 we put more restrictive conditions on the inner
symbol. An operator A(x,D) is properly elliptic if its characteristic polynomial
A(x, ξ′+ τξ′′) considered with respect to τ has precisely m/2 roots in the upper
half-plane and m/2 roots in the lower one for every x ∈ Ω, ξ′, ξ′′ ∈ Rn.

The boundary value problem (1.4) is elliptic if (a) A(x,D) is elliptic (is
properly elliptic in the case n = 2) and (b) the condition (I) holds.

(I) Shapiro-Lopatinskii condition: for any point x′ ∈ ∂Ω and any
non-zero vector ξ tangent to ∂Ω at x the polynomials Bj(x

′, ξ + τν),
j = 1, . . . , r in the variable τ are linearly independent modulo the
polynomial

∏m
2
i=1(τ − τ+

i (x′, ξ)), where ν is the outward normal to ∂Ω

at x′ and τ+
i are the roots of the principal symbol A0(x′, ξ + τν) with

positive imaginary parts.

In the simplest case when the elliptic inner symbol A(x′, ξ+τν) has only prime roots
and the coefficients in the boundary symbol Bj(x′, ξ) form a non-singular square
matrix, the ellipticity of boundary value problem means the relation m

2
= r.

The Shapiro-Lopatinskii condition is also equivalent to that for any fixed
x′ ∈ ∂Ω and ξ′ ∈ Rn \ {0} the problem

A(x′, ξ′,Dn)v(ξ
′, xn) = 0,

Bj(x
′, ξ′,Dn)v(xn)

∣∣
xn=0

= g̃j, j = 1,2, . . . , r,

has an unique solution in S(R+).
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The following fact clarifies the connection between the Fredholm property
and a priori estimates for elliptic boundary value problems.

Theorem 5. Suppose that the boundary value problem A,B is elliptic. Then

(a) for r = m
2
and any real s >m the operator

A,B : Hs(Ω) 7→ Hs−m(Ω)×
m
2∏
i=1

Hs−bj−1
2 (∂Ω)

is a Fredholm operator, i.e. has finite-dimensional kernel and cokernel.

(b) for any s >m,s > bj + 1
2
the inequality

‖u‖s 6 C
(
‖A(x,D)u‖s−m +

r∑
j=1

‖Bj(x′,D)u‖s−bj−1
2
,∂Ω + ‖u‖0

)
holds, where the constant C is independent of u.



Chapter 2

Elliptic problems with small
parameters for linear differential
equations

We consider the family of operators depending on a small parameter ε > 0 of
the following form:

ε2m−2µA2m(x,D)u+ ε2m−2µ−1A2m−1(x,D)u

+ · · ·+ εA2µ+1(x,D)u+A2µ(x,D)u = f(x),
(2.1)

supplemented by the boundary conditions

εbj−βjBj,bj(x
′,D)u+ εbj−βj−1Bj,bj−1(x

′,D)u

+ · · ·+Bj,βj(x
′,D)u = gj(x

′), x′ ∈ ∂Ω, j = 1, . . . ,m,
(2.2)

where Am−i(x,D) and Bj,bj−i(x′,D) are differential operators of order m− i and
bj − i, respectively, with smooth variable coefficients.

The domain Ω is supposed to be bounded with smooth boundary ∂Ω. This
family of operators must be elliptic for each ε > 0.

We will construct asymptotic expansions and study their convergence. The
first task is to introduce main spaces for functions on Ω and at the boundary
∂Ω, we denote them as Hr,s(Ω) and Hρ,σ(∂Ω), respectively. These techniques
goes back at least as far as Volevich [Vol06] who developed analysis of function
spaces for the model problem on Rn and Rn+. His results include trace theorem
for the spaces Hr,s(Rn+) and Hρ,σ(Rn−1).

30
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Our main goal is to deduce the estimate

‖u;Hr,s(Ω)‖ 6 C

(∥∥A(x,D, ε)u;Hr−2m,s−2µ(Ω)
∥∥

+
m∑
j=1

∥∥Bj(xD,ε)u;Hr−bj−1/2,s−βj−1/2(∂Ω)
∥∥+

∥∥u;L2(Ω)
∥∥)
(2.3)

with a constant C independent of u and ε. Such estimates are already proved
in [Vol06] for Ω = Rn+ and functions u ∈ S(Rn+).

Here is the scheme of the proof for a bounded Ω. Firstly, using a finite
covering {Ui} of Ω by sufficiently small open sets (e.g. balls) in Rn, we represent
any function u ∈ Hr,s(Ω) as the sum of functions ui ∈ Hr,s(Ω) compactly
supported in Ui ∩Ω, just setting ui = φiu for a suitable partition of unity {φi}
in Ω subordinate to the covering {Ui}. Secondly, for each summand ui we
formulate its own elliptic problem and find a priori estimates for its solutions.
If Ui does not meet the boundary of Ω, then the support of ui is a compact
subset of Ω and the proof of (2.3) reduces to a global analysis in Rn. For those
Ui which intersect the boundary of Ω we choose a change of variables x = h−1

i (z)

to rectify the boundary surface within Ui. To wit, hi(Ui ∩Ω) = Oi ∩Rn+, where
Oi is an open set in Rn, and so in the coordinates y estimate (2.3) reduces to
that in the case Ω = Rn+. Thirdly, we glue together all a priori estimates for
ui, thus obtaining the a priori estimate (2.3) for u. In the next sections all
components of this scheme are accomplished.

Let us make the following convention. In this chapter A0 stands for the
principal part of the operator A, which is understood here as

A0(x,D, ε) := ε2m−2µA2m,0(x,D) + · · ·+ εA2µ+1,0(x,D) +A2µ,0(x,D),

where Aj,0(x, ξ) is the principal homogeneous symbol of the differential operator
Aj(x,D) of order j, with 2µ 6 j 6 2m. The principal symbols Bj,0 for the
operators Bj are defined analogously.

2.1 Formal asymptotic expansions

Our aim here is to construct a formal solution of the equation, i.e. a formal
series uε(x) =

∑∞
k=1 φk(x, ε), where φk(x, ε) belong to some asymptotic scale
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giving a small discrepancy for ε→ 0. To wit for every point x ∈ Ω

A(x,D, ε)

(
uε(x)−

N∑
k=1

φk(x, ε)

)
= o(φN+1(x, ε)),

Bj(x
′,D, ε)

(
uε −

N∑
k=1

φk
)∣∣∣∣
∂Ω

= o(φN+1(x
′, ε)), j = 1,2, . . . ,m,

as ε → 0. The functional spaces for the operators A(x,D, ε), Bj(x′,D, ε) are
not pointed out deliberately.

Here the functions φk(x, ε) are chosen as φk(x)εk. We look for a solution uε(x)

in a bounded domain, a WKB method type expansion might be insufficient and
one requires also a boundary layer construction. Therefore, the solution near
and far from the boundary ∂Ω should be looked separately. For this reason,
near the boundary new coordinates are introduced. Because of boundness,
there is no unified coordinate system, but this obstacle can be avoided if one
considers Ω as a manifold. To make all calculations more transparent we leave
those technical things behind.

So let us introduce new coordinates (y1, y2, . . . , yn−1, z) in Ω, such that y ∈ ∂Ω

is a variable on the surface ∂Ω and z is the distance to ∂Ω. By A′(y, z,Dy,Dz, ε),
B′(y,Dy,Dz, ε) we denote operators A, B in the new variables.

We are looking for a solution of (A,B) in the form

u(x, ε) = U(x, ε) + V (y, z/ε, ε)

where U is the regular part of u and V is the boundary layer. Suppose that
the function V (y, z/ε, ε) satisfies the following three conditions:

(a) V (y, z/ε, ε) is a sufficiently smooth solution of the homogeneous equation
AV = 0;

(b) V (y, z/ε, ε) depends on the “fast” variable t = z/ε;

(c) V (y, z/ε, ε) differs from zero only in a small strip near the boundary ∂Ω.

The outer expansion and the inner expansion are looked for as the formal
asymptotic series

U(x, ε) =
∞∑
k=0

εkuk(x), V (y, z/ε, ε) = εlν
∞∑
k=0

εkvk(y, z/ε). (2.4)
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The role of the factor εlν will be clarified later. To obtain the outer expansion
U(x, ε) the standard procedure of small parameter method is applied. We
substitute the series into the equation A(x,D, ε)u = f and collect the terms
with the same power of ε. It gives us the system

A2µu0 = f,

A2µuk = −
k∑
i=1

A2µ+iuk−i
(2.5)

for unknowns uk. To determine the coefficients vk(y, z/ε) of the inner expansion
we apply the operator A′(y, z,Dy,Dz, ε) to V (y, z/ε, ε). Condition (a) implies

∞∑
k=0

εkA′(y, z,Dy,Dz, ε)(vk(y, z/ε)) = 0.

The operator A′ splits up as

A′(y, z,Dy,Dz, ε) =

m−µ∑
k=µ

(
A′2k(y, z,Dy,Dz, ε)

)
+ Ǎ(y, z,Dy,Dz, ε),

where A′2k(y, z,Dy,Dz, ε) is homogeneous of degree 2k and ε enters A′2k with
degree 2k− 2µ. Let us rewrite the operator A′(y, z,Dy,Dz, ε) in the variables
(y, z/ε = t). For the homogeneous part A′2k of degree 2k we have

A′2k(y, z,Dy,Dz, ε) = ε−2µA′2k(y, εt, εDy,Dt).

On expanding A′2k(y, εt, εDy,Dt) as the Taylor series about the point (y,0,0,Dt)

we obtain

A′2k(y, z,Dy,Dz, ε) = ε−2µ
(
A′′k(y,0,0,Dt) +

∞∑
l=1

εlAk,l(y, t,Dy,Dt)
)
,

where the operators Ak,l have smooth coefficients.

The rest part Ǎ is expanded at (y, t) as

Ǎ(y, t,Dy,Dt, ε) = ε−2µ
∑
s>1

Ǎs(y, t,Dy,Dt)ε
s.

Therefore,

A′(y, z,Dy,Dz, ε) = ε−2µ

(
A′′(y,0,0,Dt) +

∞∑
l=1

εlAl(y, t,Dy,Dt)

)
,
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Al depends on Ak,l and Ǎk linearly.

As a result, we obtain the following equations for vk

A′′(y,0,0,Dt)v0(y, t) = 0;

A′′(y,0,0,Dt)vk(y, t) = −
k∑
l=1

Al(y, t,Dy,Dt)vk−l, k > 1.
(2.6)

This is a recurrent system of (2m)th order. Now we substitute the partial sums

Un =
n∑
k=0

εkuk(x) and Vn = εlν
n∑
k=0

εkvk(y, t)

into the original equation and boundary conditions and find the discrepancy.
For A(x,D, ε), it looks like

A(x,D, ε)(u(x, ε)−Un − Vn)
= f −A2µ(x,D)u0 −

(
A(x,D, ε)Un −A2µ(x,D)u0 +A′(y, z,Dy,Dz, ε)Vn

)
= O(εn+1).

Note, that terms uk, vk are not constrained yet, they are chosen arbitrary from
the space of fundamental solutions of equations (2.5) and (2.6).

Now let us examine the discrepancy at the boundary. The obtained expan-
sions must satisfy the boundary conditions,

B′j(y,Dy,Dz, ε)(U(y, z, ε) + V (y, z/ε, ε)) = gj(y), j = 1, . . . ,m.

The term U(y, z) gives for each j

B′j(y,Dy,Dz, ε)U(y, z, ε) = B′j,βj(y,Dy,Dz)u0(y, z) + o(ε).

Since the equations (2.5) has the order 2µ, we have to exclude m−µ equations
for u0. The inner expansion is responsible for the rest. Rewriting boundary
conditions {Bj} into variables (y, t) and expanding it in the Taylor series
at (y,0,Dt) results in

B′j(y,Dy,Dz, ε) = ε−βj

(
bj−βj∑
k=βj

B′j,k(y,0,Dt) +
∑
s>1

B̌s(y,Dy,Dt)ε
s

)

For convenience, let us suppose that the boundary conditions are ordered so
that β1 6 β2 6 β3 6 · · · 6 βm−1 6 βm. Computing a contribution of V (y, t, ε)
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to the boundary value gives us

B′j(y,Dy,Dt, ε)V (y, t, ε)

= εlν−βj

(
bj∑

k=βj

B′j,k(y,0,Dt)v0 +

bj∑
k=βj

B′j,k(y,0,Dt)
∑
s>1

εsvs(y, t)

+
∑
s>1

εsB̌s(y,Dy,Dt)
∞∑
k=0

εkvk(y, t)

)

= εlν−βj

(
bj∑

k=βj

B′j,k(y,0,Dt)v0 +
∑
s>1

εsB̌s(y,Dy,Dt)v0(y, t)

+
∑
s>1

εsB̌′s(y,Dy,Dt)vs(y, t)

)
,

(2.7)

where the operators B̌′s(y,Dy,Dt) are obtained by collecting terms like εs. Now
we supply the system (2.5) with µ first boundary conditions

(B′j,βj(y,Dy,Dz))u0

∣∣
∂Ω

= gj(y), j = 1, . . . , µ. (2.8)

Further, we wish u0 + v0 to give discrepancy o(ε) in boundary conditions. It
may be done in several ways, however, we choose the following. First we set
lν = βµ+1. If βµ < βµ+1 then (2.7) implies

B′j(y,Dy,Dt, ε)V (y, t, ε) = o(ε) for j 6 µ,

so the choice of vk, k = 0,1, . . . , do not spoil the desired rate of conver-
gence in the first µ boundary conditions. Otherwise there exists such µν that
βµ−µν−1 < βµ−µν = βµ−µν+1 = βµ−µν+2 = · · · = βµ = βµ+1.

Taking the aforesaid into consideration, we state the following boundary
conditions for v0

(B′j(y,0,Dt, ε))v0

∣∣
∂Ω

= gj(y), βj = lν and j > µ+ 1;

(B′j(y,0,Dt, ε))v0

∣∣
∂Ω

= 0, βj > lν;

(B′j(y,0,Dt, ε))v0

∣∣
∂Ω

= gj(y)− (B′j(y,Dy,Dt, ε))u0

∣∣
∂Ω
, βµ−µν 6 j 6 βµ.

(2.9)

Under these conditions, the expansion defined by the boundary value prob-
lem (2.5), (2.8) and by the Cauchy problem (2.6), (2.9) has the discrepancy o(ε).

The last task is to extinguish the negative exponents εlν−βj ; it means to put
appropriate conditions on the next terms of expansions. Namely,

B̌′s(y,Dy,Dt)vs
∣∣
∂Ω

= −B̌s(y,Dy,Dt)v0

∣∣
∂Ω
, s = 1,2, . . . , βj − lν.
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It shows that reducing discrepancy in boundary conditions needs taking into
account more terms of asymptotic expansions.

2.2 A priori estimates

This section is aimed to prove the convergence of formal series (2.4). In
suggestions that formal asymptotic expansions are defined correctly, we start
the investigation with precise restrictions on the problem (2.1)–(2.2). First of all
the diferential operators (2.1) and (2.2) are supposed to have smooth coefficients
and the boundary Ω is also smooth. The operator (A,B) is postulated to be
an elliptic problem with small parameter, i.e. to satisfy two restrictions pointed
below.

(II) Small parameter ellipticity condition: in the case when dimension
of Ω ⊂ Rn is n > 2, the operator A0(x0,D, ε) is called to be small
parameter elliptic if at every point x0 ∈ Ω its principal polynomial
A0(x0, ξ, ε) admits the estimate

|A0(x0, ξ, ε)| > cx0|ξ|2µ(1 + ε|ξ|)2m−2µ

from below.

In the case n = 2 the polynomial A0(x, ξ
′, ξn, ε) considered with respect

to the variable ξn is assumed to possess exactly m roots in the upper
complex half-plane and m roots in the lower half-plane, for every x ∈ Ω,
ε > 0, ξ′ ∈ Rn−1.

(III) Shapiro-Lopatinskii condition with small parameter: boundary
value problem (A(x,D, ε),B(x′,D, ε)) satisfies the usual Shapiro-Lopatin-
skii condition (I) for each fixed x′ ∈ ∂Ω and ε ∈ [0, ε0). This condition
means that the polynomials Bj(x′, ξ, ε) are linearly independent modulo
A(x′, ξ, ε) for each point x′ ∈ ∂Ω and ε > 0.

2.3 The main spaces

On the Sobolev spaces Hr(Rn) and Hρ(Rn−1), where r, ρ > 0, we consider the
norms

‖u‖r,s =
∥∥(1 + |ξ|2)s/2(1 + ε2|ξ|2)(r−s)/2ũ

∥∥
L2 ,

‖u‖ρ,σ,Rn−1 = ‖u‖L2(Rn−1) +
∥∥|η|σ(1 + ε2|η|2)(ρ−σ)/2ũ

∥∥
L2(Rn−1)

.
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Then Hr,s(Rn) consists of all functions u ∈ Hr(Rn) which have the norm
‖u;Hr,s(Rn)‖ := ‖u‖r,s finite, and Hr,s(Rn+) is the factor space Hr,s(Rn)/Hr,s

− (Rn)
where Hr,s

− (Rn) is the subspace of Hr,s(Rn) consisting of all functions with the
support in {x ∈ Rn : xn 6 0}. As usual, the factor space is endowed with the
canonical norm ∥∥[u];Hr,s(Rn+)

∥∥ = inf
u∈[u]
‖u‖r,s.

When it does not cause misunderstanding we denote this norm simply by ‖u‖r,s.
Analogously, given some domain Ω let us introduce the spaces of functions
defined in it. To wit,

Hr,s(Ω) := Hr,s(Rn)/Hr,s
Rn\Ω(Rn)

where functions of Hr,s
Rn\Ω(Rn) are supported outside the domain Ω. This space

is also given the canonical norm ‖u;Hr,s(Ω)‖, which we denote sometimes by
‖u‖r,s for short.

Lemma 5. Let f be a smooth function in Rn, such that f(x) = 1 for x ∈ Ω.
Then ‖u;Hr,s(Ω)‖ = ‖fu;Hr,s(Ω)‖.

Lemma 6. If u ∈ Hr,s(Rn) and suppu ⊂ Ω, then ‖u;Hr,s(Ω)‖ = ‖u;Hr,s(Rn)‖.

For positive integer numbers s and r > s the space Hr,s(Ω) proves to be
the completion of C∞(Ω) with respect to the norm ‖u;Hr,s(Ω)‖r,s. The elliptic
technique used in this chapter includes the “rectification” of the boundary.
Therefore, the invariance of ‖·‖r,s with respect to a change of variables is one of
the key points. For every fixed ε > 0, the norms ‖ ·‖r,s are the ordinary Sobolev
norms and the main question is what kind of coordinate transformations save
the form of the dependence of ‖ · ‖r,s on ε. The following statement displays
how ε enters into the norms ‖ · ‖r,s.

Lemma 7. For natural r and s satisfying r > s, the squared norm ‖u;Hr,s(Ω)‖2

has a representation of the form

r∑
i=0

i is even

ar,s,i(ε)‖∆i/2u‖2L2(Ω) +
r∑
i=1

i is odd

ar,s,i(ε)‖∇iu‖2L2(Ω),

where ar,s,i(ε) are polynomials of degree 2i and ar,s,0(ε) 6= 0.
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Proof. Applying the binomial formula we get

(
1 + |ξ|2

)s
=

s∑
i=0

Ci
s|ξ|2i and

(
1 + ε2|ξ|2

)r−s
=

r−s∑
i=0

Ci
r−sε

2i|ξ|2i.

Hence, on multiplying the left-hand sides of these equalities we obtain

(
1 + |ξ|2

)s (
1 + ε2|ξ|2

)r−s
=

r∑
i=0

ar,s,i(ε)|ξ|2i

where

ar,s,i(ε) =
i∑

j=0

Ci−j
s Cj

r−sε
2j. (2.10)

Here we assume Ck
r = 0 when k > r. If ε = 0 or r = s, then ar,s,i = Ci

s.
Therefore, ar,s,i(ε) 6= 0 for all ε and 0 6 i 6 r. As a consequence, we get

‖u‖2r,s =
r∑
i=0

ar,s,i(ε)
∥∥|ξ|iũ∥∥2

L2 .

Furthermore,

‖|ξ|iũ‖2
L2 =


∥∥∆i/2u

∥∥2

L2 , if i is even,

‖∇iu‖2
L2 , if i is odd,

which establishes the lemma.

Now everything is prepared for proving the invariance of the norm ‖ · ‖r,s
with respect to local changes of variables x = T (y).

Lemma 8. Let r, s ∈ Z>0 satisfy r > s. The norm ‖u;Hr,s(Ω)‖ is invariant
with respect to any local changes of variables in Ω of the form x = T (y), such
that

(a) T : U → U ′ is a Cr-diffeomorphism of domains U and U ′ in Rn, both U
and U ′ intersecting Ω;

(b) T (U ∩ Ω) = U ′ ∩ Ω;

(c) T (U ∩ ∂Ω) = U ′ ∩ ∂Ω.

Our task is to prove that there is a constant C > 0 independent of ε, with
the property that

‖T ∗u;Hr,s(Ω)‖ 6 C ‖u;Hr,s(Ω)‖ (2.11)
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for all smooth functions u in the closure of Ω supported in some compact set
K ⊂ U ′ ∩ Ω. Here, by T ∗u(y) := u(T (y)) is meant the pullback of u by the
diffeomorphism T . If u is supported in K, then T ∗u is supported in T−1(K),
which is a compact subset of U ′ ∩ Ω by the properties of T . Since this applies
to the inverse T−1 : U ′ → U , it follows from (2.11) that the space Hr,s(Ω)

survives under the local Cr -diffeomerphisms of Ω.

Proof. For the proof we make use of another norm in Hr,s(Ω) which is obviously
equivalent to ‖u;Hr,s(Ω)‖ and more convenient here. To wit,

‖u;Hr,s(Ω)‖ ∼=
∑
|α|6r

ar,s,|α|(ε)‖∂αu;L2(Ω)‖ (2.12)

or

‖u;Hr,s(Ω)‖ ∼=
r∑
i=0

ar,s,i(ε) ‖u;H i(Ω)‖,

as is easy to verify, where ar,s,i(ε) are the polynomials of Lemma 7. Fix a
compact set K in U ′∩Ω. As mentioned, if u is a smooth function in Ω with the
support in K, then T ∗u is a smooth function in Ω supported in T−1(K) ⊂ U∩Ω.
Obviously,

‖T ∗u;Hr,s(Ω)‖ = ‖u ◦ T ;Hr,s(U ∩ Ω)‖

=
∑
|α|6r

ar,s,|α|(ε)‖∂α(u ◦ T );L2(U ∩ Ω)‖.

By the chain rule,

∂αy
(
u(T (y))

)
=
∑

0 6=β6α

cα,β(y)
(
∂βxu

)
(T (y))

for any multiindex α with |α| 6 r. Here, the coefficients cα,β(y) are polynomials
of degree |β| of partial derivatives of T (y) up to order |α| − |β|+ 1 6 r. Since
T : U → U ′ is a diffeomorphism of class Cr, all the cα,β(y) are bounded on the
compact set T−1(K) and the Jacobian detT ′(y) does not vanish on T−1(K).
This implies

‖T ∗u;Hr,s(Ω)‖ 6 c
∑
|α|6r

ar,s,|α|(ε)
∑
β6α

‖(∂βxu) ◦ T ;L2(T−1(K))‖

6 c
∑
|α|6r

ar,s,|α|(ε)
∑
β6α

‖∂βxu;L2(K)‖,

where c = c(T, r,K) is a constant independent of u and different in diverse
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applications. Interchanging the sums in α and β yields

‖T ∗u;Hr,s(Ω)‖ 6 c
∑
|β|6r

(∑
|α|6r
α>β

ar,s,|α|(ε)
) ∑

0 6=β6α

‖∂βu;L2(Ω)‖

for all smooth functions u in Ω with the support in K.

Therefore, if there is a constant C > 0 such that∑
|α|6r
α>β

ar,s,|α|(ε) 6 C ar,s,|β|(ε)

for each multiindex β of norm |β| 6 r, then the lemma follows. Since

∑
|α|6r
α>β

ar,s,|α|(ε) 6 c
r∑

i=|β|

ar,s,i(ε)

with c a constant dependent only on r and n, we are left with the task to show
that there is a constant C > 0 independent of ε, such that

r∑
i=i0

ar,s,i(ε) 6 C ar,s,i0(ε)

for all i0 = 0, 1, . . . , r. This latter estimate is in turn fulfilled if we show that

ar,s,i(ε) 6 C ar,s,i−1(ε) (2.13)

for all i = 1, . . . , r, where C is a constant independent of ε ∈ [0, 1]. By the
formula (2.10),

ar,s,i(ε) =
i−s−1∑
j=0

Ci−j
s Cj

r−sε
2j,

hence, the estimate (2.13) is fulfilled for sufficiently small ε > 0 with any
constant C greater than Ci

s/C
i−1
s . Since (2.13) is valid for all ε in any interval

[ε0, 1] with ε0 > 0, the proof is complete.

Further we use the trace theorem proved in [Vol06].

Theorem 6. For r > l + 1/2 and s > 0, s 6= l + 1/2, we have

‖Dl
nu(·, 0);Hr−l−1/2,s−l−1/2(Rn−1)‖ 6 c ‖u;Hr,s(Rn

+)‖

with c a constant independent of ε.
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The spaces Hρ,σ(∂Ω) are defined by locally rectifying the boundary surface.
Since the boundary is compact, there is a finite covering {Ui}Ni=1 of ∂Ω con-
sisting of sufficiently small open subsets Ui of Rn. Let {φi} be a partition of
unity in a neighbourhood of ∂Ω subordinate to this covering. If Ui is small
enough, there is a smooth diffeomorphism hi of Ui onto an open set Oi in
Rn, such that hi(Ui ∩ Ω) = Oi ∩ Rn

+ and hi(Ui ∩ ∂Ω) = Oi ∩ Rn−1, where
Rn−1 = {x ∈ Rn : xn = 0}. The transition mappings Ti,j = h−1

i ◦ hj prove
to be local diffeomorphism of Ω, as explained in Lemma 8. For any smooth
function u on the boundary the norm

∥∥(h−1
i

)∗
(φiu);Hρ,σ (Rn−1)

∥∥ is obviously
well defined and we set

‖u;Hρ,σ(∂Ω)‖ :=
N∑
i=1

∥∥(h−1
i

)∗
(φiu);Hρ,σ(Rn−1)

∥∥ , (2.14)

where
(
h−1
i

)∗
(φiu) = (φiu) ◦ h−1

i . As usual, the space Hρ,σ(∂Ω) is introduced
to be the completion of C∞(∂Ω) with respect to the norm (2.14).

When combined Lemma 8 with the trace theorem 6 for Hr,s(Rn
+) and

Hρ,σ(Rn−1), a familiar trick readily shows that the Banach spaces Hρ,σ(∂Ω)

are actually independent of the particular choice of the covering of ∂Ω by
coordinate patches {Ui} in Rn, the special coordinate system hi : Ui → Rn in
Ui and the partition of unity {φi} in a neighbourhood of ∂Ω subordinate to
the covering {Ui}. Any other choice of these data leads to an equivalent norm
(2.14) in C∞(∂Ω).

2.4 Auxiliary results

Estimates for model problems on Rn and Rn
+. The estimate 2.3 was

derived by Volevich [Vol06] for the half-space Rn
+. More precisely his results

are expressed in

Theorem 7. Let the boundary value problem

A(D, ε)u = ε2m−2µA2m(D)u+ ε2m−2µ−1A2m−1(D)u+ · · ·
+ εA2µ+1(D)u+ A2µ(D)u = f(x), x ∈ Rn

+;

Bj(D, ε)u
∣∣
xn=0

= εbj−βjBj,bj(D)u+ εbj−βj−1Bj,bj−1(D)u+ · · ·

+Bj,βj(D)u
∣∣
xn=0

= gj(x
′), x′ ∈ Rn−1, j = 1, . . . ,m,

where A(D, ε), Bj(D, ε) have constant coefficients. The following statements
are equivalent
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(a) A(D, ε) is a properly elliptic operator, A(D, ε), Bj(D, ε) satisfies Shapiro-
Lopatinskii condition with small parameter;

(b) For each solution u ∈ Hr,s(Rn
+) there is the estimate

‖u;Hr,s(Rn
+)‖

6 C
(∥∥A(D, ε)u;Hr−2m,s−2µ(Rn

+)
∥∥

+
m∑
j=1

∥∥Bj(D, ε)u
∣∣
xn=0

;Hr−bj−1/2,s−βj−1/2(Rn−1)
∥∥+

∥∥u;L2(Rn
+)
∥∥),

where C does not depend on ε.

In the case of Rn the similar fact is

Theorem 8. The solutions u ∈ S(Rn
+) of the elliptic with small parameter

equation A(D, ε)u = f , f ∈ Hr−2m,s−2µ(Rn), satisfy the estimate

‖u;Hr,s(Rn)‖ 6 C
∥∥A(D, ε)u;Hr−2m,s−2µ(Rn)

∥∥
where C does not depend on u and ε. Conversely, if the a priori estimate holds
then operator A(D, ε) is elliptic.

Invariance of norms. According to the usual local techniques of elliptic
theory, the theory of elliptic boundary value problems with small parameter
include only three additional estimates uniform in the parameter. To wit,

(a) the invariance of the norm with respect to local changes of variables on
the compact manifold Ω;

(b) estimates of the form εk ‖∂αu‖r,s 6 c ‖u‖r′,s′ with c independent of ε;

(c) inequalities like ‖u‖r,s 6 δ ‖u‖r′,s′ + C(δ) ‖u‖L2 with r′ > r, s′ > s and
δ > 0 a fixed arbitrary small parameter.

As usual, we write α, β and γ for multiindices. By β 6 α is meant that βi 6 αi

for all i = 1, . . . , n. We first recall several basic inequalities concerning Sobolev
spaces. Directly from the multinomial theorem we obtain

|ξα| 6 1

Cα
n

|ξ||α|/2, (2.15)
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where Cα
n is the multinomial coefficient. This inequality, if combined with the

Plancherel theorem, yields

‖∂αu‖L2 6
1

Cα
n

‖∆|α|/2u‖L2

for all u ∈ H |α| := H |α|(Rn), where ∆|α|/2 is a fractional power of the Laplace
operator in Rn.

Besides, we use the following consequence of the embedding theorem for the
Sobolev spaces (see e.g. [Bur98]).

Theorem 9. Suppose u is a square integrable function with compact support
in Rn and α ∈ Zn>0 is fixed. If, in addition, the weak derivatives ∂βu are square
integrable for all β 6 α, then

‖∂βu‖L2 6 C ‖∂αu‖L2 ,

where C = sup{|x|2 : x ∈ suppu}.

We also need some basic inequalities for the norms ‖ · ‖r,s.

Lemma 9. Let u ∈ Hr,s(Rn) be a function with compact support, k > 1 an
integer and α a multiindex. Then:

(a) We have ε‖u‖r,s 6 c ‖u‖r+1,s, where c depends on the support of u but
not on u and ε.

(b) If k > |α|, then εk‖∂αu‖r,s 6 c ‖u‖r+k,s, with the constant c being inde-
pendent of u and ε.

(c) If k 6 |α|, then εk ‖∂αu‖r,s 6 c ‖u‖r+|α|,s+|α|−k, where c is independent of
u and ε.

Proof. Using the expression for the norm in Hr,s(Rn) we get

ε
∥∥∆1/2u

∥∥
r,s

= ε
∥∥∥|ξ| (1 + |ξ|2

)s/2 (
1 + ε2|ξ|2

)(r−s)/2
ũ
∥∥∥
L2

6 ‖u‖r+1,s.

As ‖u‖r,s 6 c ‖∆1/2u‖r,s, the part (a) is true.

The part (b) is proved in much the same way if one applies k − |α| times
what has already been proved in the part (a).
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To prove the part (c) we split the majorising factor as εk|ξ||α| = (ε|ξ|)k |ξ||α|−k.
The first factor contributes with order k to the terms with ε while the second
one does |α| − k to the others.

The part (b) actually holds for all function in Hr+k,s even if u fails to be of
compact support.

Lemma 10. Let δ be an arbitrary small positive number. Then there is a
constant C(δ), such that

‖u‖r−1,s−1 6 δ ‖u‖r,s + C(δ) ‖u‖L2

for all u ∈ Hr,s(Rn).

Proof. Set 〈ξ〉 =
√

1 + |ξ|2 for ξ ∈ Rn. Given any R > 0, we obtain

‖u‖2
r−1,s−1 =

∫
|ξ|>R

〈ξ〉2s

〈ξ〉2
〈εξ〉2(r−s)|ũ|2dξ +

∫
|ξ|6R
〈ξ〉2(s−1)〈εξ〉2(r−s)|ũ|2dξ

6
1

1 +R2
‖u‖2

r,s +
(
1 +R2

)s−1 (
1 + ε2R2

)r−s ‖u‖2
L2 ,

Choosing R > 0 in such a way that δ2 6 (1 +R2)
−1, we establish the estimate.

2.5 Local estimates in the interior

This following fact stated the a priori estimates for the functions with slowly
varying coefficients.

Theorem 10. For every x0 ∈ Ω there exists a neighbourhood Ux0 in Ω and a
constant C independent of ε, such that

‖u‖r,s 6 C
(
‖A(x,D, ε)u‖r−2m,s−2µ + ‖u‖L2

)
(2.16)

for all functions u ∈ Hr,s(Ω) with compact support in Ux0, where r > 2m,
s > 2µ are integer.

Proof. If u ∈ Hr,s(Ω) is compactly supported in Ω, it can be thought of as an
element of Hr,s(Rn) as well. The norm of u in Hs,r(Ω) just amounts to the
norm of u in Hs,r(Rn). Hence, Theorem 7 applies if A(x,D, ε) has constant
coefficients, as is the case e.g. for A0(x0, D, ε), the principal part of A(x,D, ε)
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with coefficients frozen at x0. According to Theorem 8, there is a constant
C > 0 independent of ε, such that

‖u‖r,s 6 C ‖A0(x0, D, ε)u‖r−2m,s−2µ (2.17)

for all functions u ∈ Hr,s(Ω) of compact support in Ω.

We are thus left with the task to majorise the right-hand side of (2.17) by
that of (2.16) uniformly in ε ∈ [0, 1] on functions with compact support in Ux0 .
To this end, we write

A0(x0, D, ε) =A(x,D, ε)−
(
A(x,D, ε)−A0(x,D, ε)

)
−
(
A0(x,D, ε)−A0(x0, D, ε)

)
whence

‖A0(x0,D,ε)u‖r−2m,s−2µ 6 ‖A(x,D, ε)u‖r−2m,s−2µ

+ ‖(A(x,D,ε)−A0(x,D,ε))u‖r−2m,s−2µ

+ ‖(A0(x,D,ε)−A0(x0,D,ε))u‖r−2m,s−2µ.

(2.18)

Our next concern will be to estimate the last two summands on the right-hand
side of (2.18). We begin with the first of these two. By the very structure of
the operator A(x,D, ε), the difference A(x,D, ε) − A0(x,D, ε) is the sum of
terms of the form

ε2m−2µ−kak,β(x)∂βu,

where k = 0, 1, . . . , 2m− 2µ, |β| 6 2m− k − 1 and ak,β are smooth functions
in the closure of Ω (cf. (2.24)). Hence, the reasoning used in the proof of
Theorem 12 shows that the second summand on the right-hand side of (2.18)
is dominated uniformly in ε ∈ [0, 1] by the norm ‖u‖r−1,s−1. On applying
Lemma 10 we conclude that

‖(A(x,D, ε)−A0(x,D, ε))u‖r−2m,s−2µ 6 δ ‖u‖r,s + C(δ) ‖u‖L2 , (2.19)

where δ > 0 is an arbitrarily small parameter and C(δ) depends only on δ but
not on u and ε.

It remains to estimate the last summand on the right-hand side of (2.18).
Let us write

A0(x,D, ε) =
∑

2µ6|β|62m

ε|β|−2µA0,β(x)∂β,
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where A0,β are smooth functions on the closure of Ω. Then

‖(A0(x,D, ε)− A0(x0, D, ε))u‖r−2m,s−2µ

6
∑

2µ6|β|62m

ε|β|−2µ‖(A0,β(x)− A0,β(x0))∂βu‖r−2m,s−2µ.

To evaluate the summands we invoke the equivalent expression for the norm in
Hr−2m,s−2µ(Ω) given by (2.12). The typical term is

ar−2m,s−2µ,|α|(ε) ε
|β|−2µ ‖∂α

(
(A0,β(x)− A0,β(x0))∂βu

)
‖L2(Ω)

with |α| 6 r− 2m and ar−2m,s−2µ,|α|(ε) are the polynomials defined in of (2.10).
By the Leibniz formula,

∂α
(
(A0,β(x)−A0,β(x0))∂βu

)
= (A0,β(x)−A0,β(x0))∂α+βu+ [∂α, A0,β] ∂βu,

where the commutator [∂α, A0,β] is a differential operator of order |α| − 1 with
coefficients smooth in Ω. Observe that |α| + |β| 6 r. Arguing as above we
derive easily an estimate like (2.19) for the sum∑

|α|6r−2m

ar−2m,s−2µ,|α|(ε) ε
|β|−2µ ‖[∂α, A0,β]u‖L2(Ω)

whenever u ∈ Hr,s(Ω) is of compact support in Ω.

It is the term

ar−2m,s−2µ,|α|(ε) ε
|β|−2µ ‖(A0,β(x)− A0,β(x0))∂α+βu‖L2(Ω)

that admits a desired estimate only in the case if the support of u is small
enough. (Recall that u is required to have compact support in Ux0.) Since
the coefficients A0,β(x) are Lipschitz continuous in Ω, for any arbitrarily small
δ′ > 0 there is a positive % = %(δ′), such that∥∥(A0,β(x)− A0,β(x0))∂α+βu

∥∥
L2(Ω)

6 δ′
∥∥∂α+βu

∥∥
L2(Ω)

for all functions u ∈ Hr,s(Ω) with compact support in B(x0, %), the ball of
radius % with the centre at x0.

Summarising we conclude that for each δ > 0 there is a constant C = C(δ)

independent of ε, such that

‖(A0(x,D, ε)− A0(x0, D, ε))u‖r−2m,s−2µ 6 δ ‖u‖r,s + C(δ) ‖u‖L2 (2.20)
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for all functions u ∈ Hr,s(Ω) with compact support in B(x0, %), provided that
% = %(δ) is sufficiently small. Needless to say that C(δ) need not coincide with
the similar constant of the inequality (2.19). However, we may assume this
without loss of generality.

On gathering estimates (2.18) and (2.19), (2.20) and substituting them into
(2.16) we arrive at

(1− 2Cδ) ‖u‖r,s 6 C
(
‖A(x,D, ε)u‖r−2m,s−2µ + 2C(δ) ‖u‖L2

)
for all u ∈ Hr,s(Ω) with the compact support in B(x0, %). Of course, this latter
inequality does not yield any estimate for ‖u‖r,s unless 1 − 2Cδ > 0. Thus,
choosing δ < 1/2C we get

‖u‖r,s 6
2CC(δ)

1−2Cδ

(
‖A(x,D, ε)u‖r−2m,s−2µ + ‖u‖L2

)
,

if C(δ) > 1/2.

2.6 The case of boundary points

Localisation at a boundary point x0 ∈ ∂Ω requires not only small parameter
ellipticity of the operator A(x,D, ε) but also the Shapiro-Lopatinskii condition
with small parameter.

Theorem 11. For every point x0 ∈ ∂Ω there is a neighbourhood Ux0 in Rn,
such that

‖u‖r,s

6 C
(
‖A(x,D, ε)u‖r−2m,s−2µ +

m∑
j=1

∥∥Bj(x
′, D, ε)u

∣∣
∂Ω

∥∥
r−bj−1/2,s−βj−1/2

+ ‖u‖L2(Ω)

)
(2.21)

for all functions u ∈ Hr,s(Ω) with compact support in Ux0 ∩ Ω, where C is a
constant independent of both u and ε ∈ [0, 1].

Proof. Choose a neighbourhood U of x0 in Rn and a diffeomorphism z = h(x)

of U onto an a neighbourhood O of the origin 0 = h(x0) in Rn with the property
that h(U ∩Ω) = O∩Rn

+ and h(U ∩∂Ω) = {z ∈ O : zn = 0}. If u ∈ Hr,s(Ω) is a
function with compact support in U ∩Ω, then the pullback ũ = (h−1)∗u belongs
to Hr,s(Rn

+) and has compact support in O ∩ Rn
+, which is due to Lemma 8.
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On setting

A] := (h−1)∗Ah∗,

B]
j := (h−1)∗Bjh

∗

for j = 1, . . . ,m, we obtain the pullbacks of the operators A and Bj under
the diffeomorphism h : U ∩ Ω→ O ∩ Rn

+. It is easily seen that A] and B]
j are

differential operators with small parameter ε ∈ [0, 1] on O ∩ Rn
+ in the sense

explained above. We write Ã := A] and B̃j := B]
j for short. Since the spaces

Hr,s(Ω) and Hρ,σ(∂Ω) are invariant under local diffeomorphisms of Ω, it follows
that estimate (2.21) is equivalent to

‖ũ‖r,s

6 C
(
‖Ã(z,D, ε)ũ‖r−2m,s−2µ +

m∑
j=1

‖B̃j(z
′, D, ε)ũ‖r−bj−1/2,s−βj−1/2 + ‖ũ‖L2(Ω)

)
(2.22)

for all functions ũ ∈ Hr,s(Rn
+) with compact support in O ∩ Rn

+, where C is a
constant independent of ũ and ε.

From the transformation formula for principal symbols of differential opera-
tors it follows that the problem{

Ã0(0, D, ε)ũ = f̃ for zn > 0,

B̃j,0(0, D, ε)ũ = ũj for zn = 0,

where j = 1, . . . ,m, satisfies both the ellipticity condition and the Shapiro-
Lopatinskii condition with small parameter in the half-space. We now apply the
main result of [Vol06] which says that there is a constant C > 0 independent
of ε, such that the inequality

‖ũ‖r,s

6 C
(
‖Ã0(0, D, ε)ũ‖r−2m,s−2µ +

m∑
j=1

‖B̃j,0(0, D, ε)ũ‖r−bj−1/2,s−βj−1/2 + ‖ũ‖L2(Rn+)

)
holds true for all functions ũ ∈ Hr,s(Rn

+) with compact support in the closed
half-space.

Estimate (2.22) follows from the latter estimate in much the same way
as estimate (2.16) does from (2.17), see the proof of Theorem 10. The only
difference consists in evaluating the boundary terms. However, estimates on
the boundary are reduced readily to those in the half-space if one exploits the
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embedding theorem, see Theorem 6. Namely,

‖(B̃j(z
′, D, ε)− B̃j,0(0, D, ε))ũ; Hr−bj−1/2,s−βj−1/2(Rn−1)‖

6 c ‖(B̃j(z
′, D, ε)− B̃j,0(0, D, ε))ũ; Hr−bj ,s−βj(Rn

+)‖

with c a constant independent of ũ and ε.

2.7 The a priori elliptic estimate in a bounded
domain

Now we are in a position to present the main result of the present chapter related
to the Fredholm property and a priori estimate for boundary value problems
of the form (2.1)–(2.2). Recall that the problems must satisfy conditions
mentioned in the section 2.2. Let r > 2m and s > 2µ.

Theorem 12. The boundary value problem (2.1)-(2.2) is elliptic with small
parameter if and only if there is the estimate

‖u‖r,s

6 C
(
‖A(x,D, ε)u‖r−2m,s−2µ +

m∑
j=1

‖Bj(x
′, D, ε)u‖r−bj− 1

2
,s−βj− 1

2
+ ‖u‖L2(Ω)

)
(2.23)

with C a constant independent of u and ε.

Proof. Our proof exploits the scheme pointed out in the begin of this chapter.
For each point x0 ∈ Ω we choose a neighbourhood Ux0 in Ω in which the estimate
of Theorem 10 holds. And for each point x0 ∈ ∂Ω we choose a neighbourhood
Ux0 in Rn, such that the estimate of Theorem 11 is valid. Shrinking Ux0, if
necessary, one can assume that the surface Ux0 ∩ ∂Ω can be rectified by some
diffeomorphism hi : Ux0 → Rn, as explained above. The family {Ux0}x0∈Ω is
an open covering of Ω, hence it contains a finite family {Ui} which covers Ω.
Fix a C∞ partition of unity {φi} in a neighbourhood of Ω subordinate to the
covering {Ui}.

Given any u ∈ Hr,s(Ω), we get

u =
∑
i

ui
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in Ω, where ui := φiu belongs to Hs,r(Ω) and suppui ⊂ Ui ∩Ω. By assumption,
for any function ui estimate (2.23) holds with a constant C depending on i.
As the family {Ui} is finite, there is no restriction of generality in assuming
that C does not depend on i. Hence,

‖u‖r,s 6 C

×
∑
i

(
‖A(x,D, ε)ui‖r−2m,s−2µ +

m∑
j=1

‖Bj(x
′, D, ε)ui‖r−bj−1

2
,s−βj−1

2
+ ‖ui‖L2(Ω)

)
.

By the Leibniz formula,

A(x,D, ε)ui = φiA(x,D, ε)u+ [A, φi]u,

Bj(x
′, D, ε)ui = φiBj(x,D, ε)u+ [Bj, φi]u,

where [A, φi]u = A(φiu)− φiAu is the commutator of A and the operator of
multiplication with φi, and similarly for [Bj, φi]. The commutators are known
to be differential operators of order less than that of A and Bj, respectively.
From the structure of the operator A(x,D, ε) we see that the summands of
[A, φi]u are of the form

ε2m−2µ−kak,β(x)∂βu, (2.24)

where k = 0, 1, . . . , 2m− 2µ, |β| 6 2m− k − 1 and ak,β are smooth functions
in the closure of Ω independent of u.

To estimate the norm of (2.24) in Hr−2m,s−2µ, we apply Lemma 9 and
consider separately the cases

2m− 2µ− k > |β|,
2m− 2µ− k 6 |β|.

If e.g. |β| > 2m− 2µ− k, then

ε2m−2µ−k∥∥ak,β∂βu∥∥r−2m,s−2µ
6 c ε2m−2µ−k∥∥ak,β∂βu∥∥r−2m+|β|,s−2m+|β|+k,

where |β| − 2m+ k 6 −1. It follows that

ε2m−2µ−k∥∥ak,β∂βu∥∥r−2m,s−2µ
6 c

∥∥u∥∥
r−1,s−1

with c a constant independent of u and ε. Such terms are handled by Lemma 10.
Analogously we estimate the summands (2.24) with 2m− 2µ− k > |β| and the
commutators [Bj, φi], which establishes (2.23).
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2.8 Conclusions

The Poisson (or stationary heat/diffusion) equation has solutions which are the
stable states in diffusion of matter or energy. Such processes arise in Physics
(e.g. of solid matter) very often, with no exception for the singularly perturbed
case. This fundamental value of the heat\diffusion equation motivated the
study of the second chapter. Let us put forward one example.

Example (The Poisson equation). In a solid homogeneous medium
the stable distribution of temperature T (x), where x = (x1, x2, x3)

is the spatial coordinate, is determined by the Poisson equation

−κ
3∑

k=1

∂2T

∂x2
k

(x) = −κ∆T (x) = ω(x).

Here ω(x) describes sources of heating, and the constant κ denotes
the thermal conductivity of the material. The case of low-conductive
media (κ � 1) and active heat sources (ω(x)� 1 in a neighbour-
hood of some point x0) corresponds to the equation with small
coefficient. That is, the conductivity κ can be accepted as a small
parameter.

Solving more general systems under some special conditions frequently give rise
to elliptic equations of higher order. For example, if we assume that ω(x) in the
example above also satisfies the Poisson equation, we obtain the Sophie Germain
equation, which arises in the theory of small vibrations of thin plates as well as
in the study of the stream functions in 2D flows of viscous incompressible fluid.
Or more generally, if we take ω(x, T,DαT ) = ω0(x) + ε|α|−2A(x,D)T , then the
case of elliptic operator A(x,D) corresponds to equations dependent on small
ε, a particular case of what was investigated above.

In Section 2.1 we have constructed a formal asymptotic solution of the general
elliptic boundary vaule problem (2.1)-(2.2) and the estimate (2.3) proves they
are true asymptotic expansions. The main theoretical result of this chapter is
that the stated Shapiro-Lopatinskii condition (III) and ellipticity with small
parameter (II) are equivalent to the a priori estimate (2.3). The estimate is
more complicated for checking in certain situations.

One of the central points is the study of norms ‖u;Hr,s(Ω)‖ and ‖u;Hρ,σ(∂Ω)‖
in which the estimates are obtained. The most important result is their invari-
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ance with respect to the smooth change of variables given by Lemma 8, which
allows one to define these norms on manifolds.

The results of this chapter are obtained under assumption that all coefficients
in (2.1)–(2.2) and boundary ∂Ω are smooth. A similar investigation was given
in [Naz81] for domains with conic points (the distinctions are pointed on
page 11) and asymptotic expansions are also obtained in the form of a regular
part and boundary layer. Observe that the conditions (II) and (III) determine
the behaviour of the solutions for a small ε, so principally different types of
asymptotics might be discovered when a change of the equation type occurs.
The next chapter investigates the case when a parabolic equation degenerates
into elliptic.



Chapter 3

Asymptotics of solutions to the
heat equation on a bounded
domain

We consider the first boundary value problem for the heat equation in a bounded
domain Ω ⊂ R×Rn

ε
∂u

∂t
−∆u = f in Ω,

u = u0 at ∂Ω.
(3.1)

The boundary of ∂Ω is assumed to be C∞ curve except for a finite number of
points, ε ∈ [0, ε0) is a small parameter, f and u0 are given functions. To begin
with, we specify more precisely the boundary conditions at peculiar points.
The boundary surface is given by zeros of some smooth function Φ(t, x) of two
variables (t, x) ∈ R×Rn, such that ∇Φ(t, x) 6= 0 for all (t, x) ∈ ∂Ω.

By the local principle (see e.g. [Rab69]), the Fredholm property of problem
(3.1) in suitable function spaces is equivalent to the local invertibility of this
problem at each point of the closure of Ω. We restrict our attention to the
points where the boundary touches the characteristics, for the heat equation
they are just horizontal hyperplanes. The set of all such points is designated
as Σ .

The reasoning coming from the theory of singularities for algebraic curves
allows us to consider the boundary ∂Ω near characteristic points as a solution
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of the algebraic equation

Φ(t, x) =
∑

i1+i2+···+in+16p

ai1,i2,...,inx
i1
1 x

i2
2 . . . x

in
n t

in+1 = 0, (3.2)

where ai1,i2,...,in are fixed arbitrary real numbers, (x, t) ∈ Rn×R. This equation
reveals different patterns for the boundary curve near the characteristic. The
examples below illustrate some of them:

-
t

6x

(a) t7−xt3−x2−x2t4 +x3 = 0

-
t

6x

(b) t3 − x2 = 0

-
t

6x

(c) x3 − t2 = 0

Figure 3.1: Some patterns for boundary curve near the characteristic t = 0.

On the page 12 we mentioned several types of singular points which have
already been considered in the literature. Our studies deal with points (x, t) ∈ Σ ,
such that

(a) the equation (3.2) is solvable with respect to t in some small neighbour-
hood U(x,t);

(b) the boundary ∂Ω is described locally in U(x,t) by equation

t =
∑

i1+i2+···+in=p

ai1,i2,...,inx
i1
1 x

i2
2 . . . x

in
n , (3.3)

where the right-hand side preserve the sign close to x = 0.

On the figure 3.1b we show one such curve. The number p is called the touch
degree. Our aim is to construct formal asymptotic series for the solution of (3.1).
The case p < 2 is more interesting since it is poorly investigated. The solution
is supposed to satisfy the heat equation in every inner point of the domain Ω

and be equal u0 at ∂Ω except points of Σ .
Equation (3.1) is first considered for the case Ω ⊂ R2 and then the obtained

asymptotics are generalised to higher dimensions.
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3.1 One dimensional heat equation

To this point we formulate the first boundary value problem for the heat
equation as follows

εu′t − u′′x,x = f in Ω,

u = u0 at ∂Ω \ Σ ,
(3.4)

where ε ∈ (0, ε0) is a small parameter.

Suppose the domain Ω is described in a neighbourhood of a point (x0, t0) ∈ Σ

by the inequality
t− t0 > |x− x0|p, (3.5)

where p is a positive real number. There is no loss of generality in assuming
that (x0, t0) is the origin and |x− x0| 6 1.

We introduce new coordinates (ω, r) with the aid of

x = t1/p ω,

t = εr,
(3.6)

where |ω| < 1 and r ∈ (0, 1/ε). It is clear that the new coordinates are singular
at r = 0, for the entire segment [−1, 1] on the ω -axis is blown down into the
origin by (3.6). The rectangle (−1, 1)× (0, 1/ε) transforms under the change
of coordinates (3.6) into the part of the domain Ω nearby (x0, t0) lying below
the line t = 1. Note that for ε→ 0 the rectangle (−1, 1)× (0, 1/ε) stretches to
the whole half-strip (−1, 1)× (0,∞).

In the domain of coordinates (ω, r) problem (3.4) reduces to an ordinary
differential equation with respect to the variable r with operator-valued coeffi-
cients. More precisely, under transformation (3.6) the derivatives in t and x
change by the formulas

ε
∂u

∂t
=
∂u

∂r
− 1

r

ω

p

∂u

∂ω
,

∂u

∂x
=

1

(εr)1/p

∂u

∂ω
,

and so (3.4) transforms into

rQ U ′r −
1

εQ
U ′′ω,ω − rQ−1ω

p
U ′ω = rQF in (−1, 1)× (0, 1/ε),

U = U0 at {±1} × (0, 1/ε),

(3.7)
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where U(ω, r) and F (ω, r) are pullbacks of u(x, t) and f(x, t) under transfor-
mation (3.6), respectively, and

Q =
2

p
.

We are interested in the local solvability of problem (3.7) near the edge r = 0

in the rectangle (−1, 1)× (0, 1/ε). Note that the ordinary differential equation
degenerates at r = 0, since the coefficient r2/p of the higher order derivative in r
vanishes at r = 0. For the parameter values ε > 0, the exponent Q is of crucial
importance for specifying the ordinary differential equation. If p = 2 then it is
a Fuchs-type equation, these are also called regular singular equations. The
Fuchs-type equations fit well into an algebra of pseudodifferential operators
based on the Mellin transform. If p > 2, then the singularity of the equation at
r = 0 is weak and so regular theory of finite smoothness applies. In the case
p < 2 the degeneracy at r = 0 is strong and the equation can not be treated
except by the theory of slowly varying coefficients [RST00].

3.2 Formal asymptotic solution

To determine appropriate function spaces in which a solution of problem (3.7)
is sought, one constructs formal asymptotic solutions of the corresponding
homogeneous problem. That is

rQ U ′r −
1

εQ
U ′′ω,ω − rQ−1ω

p
U ′ω = 0 in (−1, 1)× (0,∞),

U(±1, r) = 0 on (0,∞).

(3.8)

We first consider the case p 6= 2. We look for a formal solution to (3.8) of
the form

U(ω, r) = eS(r) V (ω, r), (3.9)

where S is a differentiable function of r > 0 and V expands as a formal Puiseux
series with nontrivial principal part

V (ω, r) =
1

reN

∞∑
j=0

Vj−N(ω) rej,

the complex exponent N and real exponent e have to be determined. Perhaps
the factor r−eN might be included into the definition of expS as exp(−eN ln r),
however, we prefer to highlight the key role of Puiseux series. Substituting
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(3.9) into (3.8) yields

rQ (S ′V + V ′r )−
1

εQ
V ′′ω,ω − rQ−1ω

p
V ′ω = 0 in (−1, 1)× (0,∞),

V (±1, r) = 0 on (0,∞).

In order to reduce this boundary value problem to an eigenvalue problem we
require the function S to satisfy the eikonal equation rQS ′ = λ with a complex
constant λ. This implies

S(r) = λ
r1−Q

1−Q
up to an inessential constant to be included into a factor of expS. In this
manner the problem reduces to

rQ V ′r −
1

εQ
V ′′ω,ω − rQ−1ω

p
V ′ω = −λV in (−1, 1)× (0,∞),

V (±1, r) = 0 on (0,∞).

(3.10)

If e =
Q− 1

k
for some natural number k, then

rQ V ′r =
∞∑
j=k

e(j −N − k)Vj−N−kr
e(j−N),

V ′′ω,ω =
∞∑
j=0

V ′′j−Nr
e(j−N),

rQ−1 V ′ω =
∞∑
j=k

V ′j−N−kr
e(j−N),

as is easy to check. On substituting these equalities into (3.10) and equating
the coefficients of the same powers of r we get two collections of Sturm-Liouville
problems

− 1

εQ
V ′′j−N + λVj−N = 0 in (−1, 1),

Vj−N = 0 at ∓ 1,
(3.11)

for j = 0, 1, . . . , k − 1, and

− 1

εQ
V ′′j−N + λVj−N =

ω

p
V ′j−N−k − e(j −N − k)Vj−N−k in (−1, 1),

Vj−N = 0 at ∓ 1,

(3.12)

for j = mk,mk + 1, . . . ,mk + (k − 1), where m takes on all natural values.
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Given any j = 0, 1, . . . , k − 1, the Sturm-Liouville problem (3.11) has
obviously simple eigenvalues

λn = − 1

εQ

(π
2
n
)2

for n = 1, 2, . . ., a nonzero eigenfunction corresponding to λn being sin
π

2
n(ω+1).

It follows that
Vj−N(ω) = cj−N sin

π

2
n(ω + 1),

for j = 0, 1, . . . , k−1, where cj−N are constant. Without restriction of generality
we can assume that the first coefficient V−N in the Puiseux expansion of V is
different from zero. Hence, Vj−N = cj−NV−N for j = 1, . . . , k−1. For simplicity
of notation, we drop the index n.

On having determined the functions V−N , . . . , Vk−1−N , we turn our attention
to problems (3.12) with j = k, . . . , 2k − 1. Set

fj−N =
ω

p
V ′j−N−k − e(j −N − k)Vj−N−k,

then for the inhomogeneous problem (3.12) to possess a nonzero solution Vj−N
it is necessary and sufficient that the right-hand side fj−N be orthogonal to
all solutions of the corresponding homogeneous problem, to wit V−N . The
orthogonality refers to the scalar product in L2(−1, 1). Let us evaluate the
scalar product (fj−N , V−N). We get

(fj−N , V−N) = cj−N−k

(1

p
(ωV ′−N , V−N)− e(j −N − k) (V−N , V−N)

)
and

(ωV ′−N , V−N) = ω |V−N |2
∣∣∣ 1

−1
− (V−N , V−N)− (V−N , ωV

′
−N)

= −(V−N , V−N)− (ωV ′−N , V−N),

the latter equality being due to the fact that V−N is real-valued and vanishes
at ±1. Hence,

(ωV ′−N , V−N) = −1

2
(V−N , V−N)

and

(fj−N , V−N) = −cj−N−k
( 1

2p
+ e(j −N − k)

)
(V−N , V−N) (3.13)

for j = k, . . . , 2k − 1.
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Since V−N 6= 0, the condition (fj−N , V−N ) = 0 fulfills for j = k if and only if

eN =
1

2p
. (3.14)

Under this condition, problem (3.12) with j = k is solvable and its general
solution has the form

Vk−N = Vk−N,0 + ck−NV−N ,

where Vk−N,0 is a particular solution of (3.12) and ck−N an arbitrary constant.
Moreover, for (fj−N , V−N ) = 0 to fulfill for j = k + 1, . . . , 2k − 1 it is necessary
and sufficient that c1−N = · · · = ck−1−N = 0, i.e., all of V1−N , . . . , Vk−1−N vanish.
This in turn implies that fk+1−N = · · · = f2k−1−N = 0, whence Vj−N = cj−NV−N

for all j = k + 1, . . . , 2k − 1, where cj−N are arbitrary constants. We choose
the constants ck−N , . . . , c2k−1 in such a way that the solvability conditions of
the next k problems are fulfilled.

More precisely, we consider the problem (3.12) for j = 2k, the right-hand
side being

f2k−N =
(ω
p
V ′k−N,0 − e(k −N)Vk−N,0

)
+ ck−N

(ω
p
V ′−N − e(k −N)V−N

)
=
(ω
p
V ′k−N,0 − e(k −N)Vk−N,0

)
+ ck−N

(
fk−N − ek V−N

)
.

Combining (3.13) and (3.14) we conclude that

(fk−N − ek V−N , V−N) = −ek (V−N , V−N)

= (1−Q) (V−N , V−N)

is different from zero. Hence, the constant ck−N can be uniquely defined in such
a way that (f2k−N , V−N) = 0. Moreover, the functions f2k+1−N , . . . , f3k−1−N

are orthogonal to V−N if and only if ck+1−N = · · · = c2k−1−N = 0. It follows
that Vj−N vanishes for each j = k + 1, . . . , 2k − 1.

Continuing in this fashion we construct a sequence of functions Vj−N(ω, ε),
for j = 0, 1, . . ., satisfying equations (3.11) and (3.12). The functions Vj−N (ω, ε)

are defined uniquely up to a common constant factor c−N . They depend
smoothly on the parameter εp. Moreover, Vj−N vanishes identically unless
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j = mk with m = 0, 1, . . . . Therefore,

V (ω, r, ε) =
1

reN

∞∑
m=0

Vmk−N(ω, ε) remk

=
1

rQ/4

∞∑
m=0

Ṽm(ω, ε) r(Q−1)m

is a unique (up to a constant factor) formal asymptotic solution of problem
(3.10) corresponding to λ = λn.

Theorem 13. Let p 6= 2. Then an arbitrary formal asymptotic solution of
homogeneous problem (3.8) has the form

U(ω, r, ε) =
c

rQ/4
exp

(
λ
r1−Q

1−Q

) ∞∑
m=0

Ṽm(ω, ε)

r(1−Q)m
,

where λ is one of eigenvalues λn = − 1

εQ

(π
2
n
)2

.

Proof. The theorem follows readily from (3.9).

In the original coordinates (x, t) close to the point (x0, t0) in Ω the formal
asymptotic solution looks like

u(x, t, ε) = c
(ε
t

)Q/4
exp

( λ

1−Q

( t
ε

)1−Q) ∞∑
m=0

Ṽm

( x

t1/p
, ε
)(ε

t

)(1−Q)m

(3.15)

for ε > 0. If 1−Q > 0, i.e. p > 2, expansion (3.15) behaves in much the same
way as boundary layer expansion in singular perturbation problems, since the
eigenvalues are all negative. The threshold value p = 2 is a turning contact
order under which the boundary layer degenerates.

3.3 The exceptional case p = 2

In this section we consider the case p = 2 in detail. For p = 2, problem (3.8)
takes the form

r U ′r −
1

ε
U ′′ω,ω −

ω

2
U ′ω = 0 in (−1, 1)× (0,∞),

U(±1, r) = 0 on (0,∞).
(3.16)
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The problem is specified as Fuchs-type equation on the half-axis with coefficients
in boundary value problems on the interval [−1, 1]. Such equations have been
well understood, see [NP94] and elsewhere.

If one searches for a formal solution to (3.16) of the form U(ω, r)=eS(r)V (ω, r),

then the eikonal equation rS ′ = λ gives S(r) = λ ln r, and so eS(r) = rλ, where
λ is a complex number. It makes therefore no sense to looking for V (ω, r) being
a formal Puiseux series in fractional powers of r. The choice e = (Q − 1)/k

no longer works, and so a good substitute for a fractional power of r is the
function 1/ ln r. Thus,

V (ω, r) =
∞∑
j=0

Vj−N(ω)
( 1

ln r

)j−N
has to be a formal asymptotic solution of

r V ′r −
1

ε
V ′′ω,ω −

ω

2
V ′ω = −λV in (−1, 1)× (0,∞),

V (±1, r) = 0 on (0,∞),

N being a nonnegative integer. Substituting the series for V (ω, r) into these
equations and equating the coefficients of the same powers of ln r yields two
collections of Sturm-Liouville problems

−1

ε
V ′′−N −

ω

2
V ′−N + λV−N = 0 in (−1, 1),

V−N = 0 at ∓ 1,
(3.17)

for j = 0, and

−1

ε
V ′′j−N −

ω

2
V ′j−N + λVj−N = (j−N−1)Vj−N−1 in (−1, 1),

Vj−N = 0 at ∓ 1,
(3.18)

for j > 1.

Problem (3.17) has a nonzero solution V−N if and only if λ is an eigenvalue
of the operator

v 7→ 1

ε
v′′ +

ω

2
v

whose domain consists of all functions v ∈ H2(−1, 1) vanishing at ∓1. Then,
equalities (3.18) for j = 1, . . . , N mean that V−N+1, . . . , V0 are actually root
functions of the operator corresponding to the eigenvalue λ. In other words,
V−N , . . . , V0 is a Jordan chain of length N +1 corresponding to the eigenvalue λ.
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Note that for j = N + 1 the right-hand side of (3.18) vanishes, and so V1, V2, . . .

is also a Jordan chain corresponding to the eigenvalue λ. This suggests that
the series breaks beginning at j = N + 1. Moreover, a familiar argument shows
that problem (3.17) has eigenvalues

λn = −1

ε

(π
2
n
)2

+ o
(1

ε

)
for n = 1, 2, . . ., which are simple if ε is small enough. Hence it follows that
N = 0 and

V0(ω, ε) = c0 sin
π

2
n(ω + 1) + o(1)

for ε→ 0.

Theorem 14. Suppose p = 2. Then an arbitrary formal asymptotic solution
of homogeneous problem (3.8) has the form U(ω, r, ε) = rλ V0(ω, ε), where λ is
one of the eigenvalues λn.

Proof. The theorem follows immediately from the above discussion.

In the original coordinates (x, t) near the point (x0, t0) in Ω the formal
asymptotic solution proves to be

u(x, t, ε) = c
(ε
t

)−λ
V0

( x

t1/2
, ε
)

for ε > 0. This expansion behaves similarly to boundary layer expansion in
singular perturbation problems, since the eigenvalues are negative provided
that ε is sufficiently small.

3.4 Degenerate problem

If ε = 0 then the homogeneous problem corresponding to local problem (3.7)
degenerates to

U ′′ω,ω = 0 in (−1, 1)× (0,∞),

U = 0 at {±1} × (0,∞).
(3.19)

Substituting the general solution U(ω, r) = U1(r)ω + U0(r) of the differential
equation into the boundary conditions implies readily U ≡ 0 in the half-strip,
i.e. (3.19) has only zero solution.
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Corollary 1. If p ≥ 2 then the formal asymptotic solution of (3.8) converges
to zero uniformly in t > 0 bounded away from zero, as ε→ 0. Moreover, for
p > 2 it vanishes exponentially.

Proof. This follows immediately from Theorems 13 and 14.

On the contrary, if p < 2 then the formal asymptotic solution of problem
(3.8) hardly converges, as ε→ 0.

3.5 Generalisation to higher dimensions

The explicit formulas obtained above generalise easily to the evolution equation
related to the b th power of the Laplace operator in Rn, where b is a natural
number. Consider the first boundary value problem for the operator ε∂t+(−iD)b

in a bounded domain Ω ⊂ Rn+1. Note that the choice of sign (−1)b is explained
exceptionally by our wish to deal with parabolic (not backward parabolic)
equation. By ε > 0 is meant a small parameter.

The boundary of Ω is assumed to be C∞ except for a finite number of
characteristic points. These are those points of ∂Ω at which the boundary
touches with a hyperplane in Rn+1 orthogonal to the t -axis. As above, we
restrict our attention to analysis of the Dirichlet problem near a characteristic
point given by condition 3.3. The first boundary value problem for the evolution
equation in Ω is formulated as follows: Let Σ be the set of all characteristic
points of the boundary of Ω. Given any functions f in Ω→ R u0, u1, . . . , ub−1

on ∂Ω \ Σ , find a function u on Ω \ Σ satisfying

εu′t + (−iD)bu = f in Ω,

∂jν u = uj at ∂Ω \ Σ ,
(3.20)

for j = 0, 1, . . . , b− 1, where ∂ν is the derivative along the outward unit normal
vector of the boundary. We focus upon a characteristic point O of the boundary
which is assumed to be the origin in Rn+1.

Suppose the domain Ω is described in a neighbourhood of the origin by the
inequality

t > f(x), (3.21)

where f is a smooth function of x ∈ Rn \0 homogeneous of degree p > 0. We
blow up the domain Ω at O by introducing new coordinates (ω, r) ∈ D×(0, 1/ε)
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with the aid of
x = t1/p ω,

t = εr,
(3.22)

where D is the domain in Rn consisting of those ω ∈ Rn which satisfy f(ω) < 1.
Under this change of variables the domain Ω nearby O transforms into the
half-cylinder D × (0,∞), the cross-section D × {0} blowing down into the
origin by (3.22). Note that for ε→ 0 the cylinder D × (0, 1/ε) stretches into
the whole half-cylinder D × (0,∞).

In the domain of coordinates (ω, r) problem (3.20) reduces to an ordinary
differential equation with respect to the variable r with operator-valued coeffi-
cients. It is easy to see that under transformation (3.22) the derivatives in t
and x change by the formulas

ε u′t = u′r −
1

p

1

r
(ω, u′ω),

u′xk =
1

(εr)1/p
u′ωk

for k = 1, . . . , n, where (ω, u′ω) =
n∑
k=1

ωk
∂u

∂ωk
stands for the Euler derivative.

Thus, (3.20) transforms into

rQ U ′r +
1

εQ
(−iDω)bU − 1

p
rQ−1 (ω, U ′ω) = rQF in D × (0, 1/ε),

∂jν U = Uj at ∂D × (0, 1/ε)

(3.23)

for j = 0, 1, . . . , b− 1, where U(ω, r) and F (ω, r) are pullbacks of u(x, t) and
f(x, t) under transformation (3.22), respectively, and

Q =
2b

p
.

We are interested in the local solvability of problem (3.23) near the base
r = 0 in the cylinder D × (0, 1/ε). Note that the ordinary differential equation
degenerates at r = 0, since the coefficient rQ of the higher order derivative in
r vanishes at r = 0. The theory of [RST00] still applies to characterise those
problems (3.23) which are locally invertible.

To describe function spaces which give the best fit for solutions of prob-
lem (3.23), one constructs formal asymptotic solutions of the corresponding
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homogeneous problem. That is

rQ U ′r +
1

εQ
(−iDω)bU − 1

p
rQ−1 (ω, U ′ω) = 0 in D × (0,∞),

∂αω U = 0 on ∂D × (0,∞)

(3.24)

for all |α| 6 b− 1.

We assume that p 6= 2b. Similar arguments apply to the case p = 2b, the
only difference being in the choice of the Ansatz, see Section 3.3. We look for
a formal solution to (3.24) of the form U(ω, r) = eS(r) V (ω, r), where S is a
differentiable function of r > 0 and V expands as a formal Puiseux series with
nontrivial principal part

V (ω, r) =
1

reN

∞∑
j=0

Vj−N(ω) rej,

where N is a complex number and e a real exponent to be determined.

On substituting U(ω, r) into (3.8) we extract the eikonal equation rQS ′ = λ

for the function S(r), where λ is a (possibly complex) constant to be defined.
For Q 6= 1 this implies

S(r) = λ
r1−Q

1−Q
up to an inessential constant factor. In this way the problem reduces to

rQ V ′r +
1

εQ
(−iDω)bV − 1

p
rQ−1 (ω, V ′ω) = −λV in D × (0,∞),

∂αωV = 0 on ∂D × (0,∞)

(3.25)

for all |α| 6 b− 1.

Analysis similar to that in Section 3.2 shows that a right choice of e is
e = (Q− 1)/k for some natural number k. On substituting the formal series
for V (ω, r) into (3.25) and equating the coefficients of the same powers of r we
get two collections of problems

1

εQ
(−iD)bVj−N + λVj−N = 0 in D,

∂α Vj−N = 0 at ∂D
(3.26)
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for all |α| 6 b− 1, where j = 0, 1, . . . , k − 1, and

1

εQ
(−iD)bVj−N + λVj−N =

1

p
(ω, V ′j−N−k)− e(j −N − k)Vj−N−k in D,

∂α Vj−N = 0 at ∂D

(3.27)
for all |α| 6 b− 1, where j = k, k + 1, . . . , 2k − 1, and so on.

Given any j = 0, 1, . . . , k − 1, problem (3.26) is essentially an eigenvalue
problem for the strongly nonnegative operator (−iD)b in L2(D) whose domain
consists of all functions of H2b(D) vanishing up to order b − 1 at ∂D. The
eigenvalues of the latter operator are known to be all positive and form a
nondecreasing sequence λ′1, λ′2, . . . which converges to ∞. Hence, (3.26) admits
nonzero solutions only for

λn = − 1

εQ
λ′n

where n = 1, 2, . . . .

In general, the eigenvalues {λ′n} fail to be simple. The generic simplicity
of the eigenvalues of the Dirichlet problem for self-adjoint elliptic operators
with respect to variations of the boundary have been investigated by several
authors, see [PP08] and the references given there. We focus on an eigenvalue
λ′n of multiplicity 1, in which case the formal asymptotic solution is especially
simple. By the above, this condition is not particularly restrictive.

If λ = λn, there is a nonzero solution en(ω) of this problem which is
determined uniquely up to a constant factor. This yields

Vj−N(ω) = cj−N en(ω),

for j = 0, 1, . . . , k−1, where cj−N are constant. Without restriction of generality
we can assume that the first coefficient V−N in the Puiseux expansion of V is
different from zero. Hence, Vj−N = cj−NV−N for j = 1, . . . , k−1. For simplicity
of notation, we drop the index n.

On taking the functions V−N , . . . , Vk−1−N for granted, we now turn to prob-
lems (3.12) with j = k, . . . , 2k − 1. Set

fj−N =
1

p
(ω, V ′j−N−k)− e(j −N − k)Vj−N−k,

then for the inhomogeneous problem (3.27) to admit a nonzero solution Vj−N
it is necessary and sufficient that the right-hand side fj−N be orthogonal to
all solutions of the corresponding homogeneous problem, to wit V−N . The
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orthogonality refers to the scalar product in L2(D). Let us evaluate the scalar
product (fj−N , V−N). We get

(fj−N , V−N) = cj−N−k

(1

p
((ω, V ′−N), V−N)− e(j −N − k) (V−N , V−N)

)
and, by Stokes’ formula,

((ω, V ′−N), V−N) =

∫
∂D

|V−N |2(ω, ν) ds−
n∑
k=1

∫
D

V−N
∂

∂ωk
(ωkV−N) dω

= −n‖V−N‖2 − ((ω, V ′−N), V−N),

the latter equality being due to the fact that V−N is real-valued and vanishes
at ∂D. Hence,

((ω, V ′−N), V−N) = −n
2
‖V−N‖2

and
(fj−N , V−N) = −cj−N−k

( n
2p

+ e(j −N − k)
)
‖V−N‖2 (3.28)

for j = k, . . . , 2k − 1.

Since V−N 6= 0, the condition (fj−N , V−N ) = 0 fulfills for j = k if and only if

eN =
n

2p
. (3.29)

Under this condition, problem (3.27) with j = k is solvable and its general
solution has the form

Vk−N = Vk−N,0 + ck−NV−N ,

where Vk−N,0 is a particular solution of (3.27) and ck−N an arbitrary constant.
Moreover, for (fj−N , V−N ) = 0 to fulfill for j = k + 1, . . . , 2k − 1 it is necessary
and sufficient that c1−N = · · · = ck−1−N = 0, i.e. all of V1−N , . . . , Vk−1−N vanish.
This in turn implies that fk+1−N = · · · = f2k−1−N = 0, whence Vj−N = cj−NV−N

for all j = k + 1, . . . , 2k − 1, where cj−N are arbitrary constants. We choose
the constants ck−N , . . . , c2k−1 in such a way that the solvability conditions of
the next k problems are fulfilled.

More precisely, we consider the problem (3.27) for j = 2k, the right-hand
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side being

f2k−N =
(1

p
(ω, V ′k−N,0)− e(k−N)Vk−N,0

)
+ ck−N

(1

p
(ω, V ′−N)− e(k−N)V−N

)
=
(1

p
(ω, V ′k−N,0)− e(k−N)Vk−N,0

)
+ ck−N

(
fk−N − ekV−N

)
.

Combining (3.28) and (3.29) we conclude that

(fk−N − ek V−N , V−N) = −ek (V−N , V−N)

= (1−Q) (V−N , V−N)

is different from zero. Hence, the constant ck−N can be uniquely defined in such
a way that (f2k−N , V−N) = 0. Moreover, the functions f2k+1−N , . . . , f3k−1−N

are orthogonal to V−N if and only if ck+1−N = · · · = c2k−1−N = 0. It follows
that Vj−N vanishes for each j = k + 1, . . . , 2k − 1.

Continuing in this manner we construct a sequence of functions Vj−N(ω, ε),
for j = 0, 1, . . ., satisfying equations (3.26) and (3.27). The functions Vj−N (ω, ε)

are defined uniquely up to a common constant factor c−N . They depend
smoothly on the parameter εp. Moreover, Vj−N vanishes identically unless
j = mk with m = 0, 1, . . . . Therefore,

V (ω, r, ε) =
1

reN

∞∑
m=0

Vmk−N(ω, ε) remk

=
1

rn/2p

∞∑
m=0

Ṽm(ω, ε) r(Q−1)m

is a unique (up to a constant factor) formal asymptotic solution of problem
(3.25) corresponding to λ = λn. Summarising, we arrive at the following
generalisation of Theorem 13.

Theorem 15. Let p 6= 2b. Then an arbitrary formal asymptotic solution of
homogeneous problem (3.24) has the form

U(ω, r, ε) =
c

rn/2p
exp

(
λ
r1−Q

1−Q

) ∞∑
m=0

Ṽm(ω, ε)

r(1−Q)m
,

where λ is one of eigenvalues λn = − 1

εQ
λ′n.

Thus, the construction of formal asymptotic solution U of general problem
(3.20) follows by the same method as in Section 3.2.
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In the original coordinates (x, t) close to the point O in Ω the formal
asymptotic solution looks like

u(x, t, ε) = c
(ε
t

)n/2p
exp

(
− λ′

ε

t1−Q

1−Q

) ∞∑
m=0

Ṽm

( x

t1/p
, ε
)(ε

t

)(1−Q)m

(3.30)

for ε > 0. If 1−Q > 0, i.e. p > 2b, expansion (3.30) behaves in much the same
way as boundary layer expansion in singular perturbation problems, since the
eigenvalues are all negative. The threshold value p = 2b is a turning contact
order under which the boundary layer degenerates.

The computations of this section obviously extend both to eigenvalues λn
of higher multiplicity and arbitrary self-adjoint elliptic operators A(x,D) in
place of (−iD)b. When solving nonhomogeneous equations (3.27), one chooses
the only solution which is orthogonal to all solutions of the corresponding
homogeneous problem (3.26). This special solution actually determines what is
known as the Green operator. However, formula (3.30) becomes less transparent.
And so we omit the details.

3.6 Conclusions

The asymptotic property of derived formal expansions follows from [AT13]. For
p < 2b, expansion (3.30) fails to be asymptotic in small ε > 0, even if (x, t)

is bounded away from the boundary of Ω. An asymptotic character of this
series can only be revealed on using parameter dependent norms. Indeed, if
ε → 0, then the summands on the right-hand side of (3.30) increase unless
the quotient t/ε does not exceed 1. Hence, ε is allowed to tend to zero only
under the condition that t/ε < 1. Then expansion (3.30) still reveals certain
asymptotic character. Within the framework of analysis on manifolds with
singularities one exploits the weighted norms(∫

D

exp
(

2γ
1

tQ
t

ε

)( t
ε

)−2µ

|u(x, t, ε)|2dxdt
)1/2

on functions defined near the singular point, where γ and µ are real numbers.



Chapter 4

Algebra of ΨDO with a small
parameter

This chapter generalises the concept of ellipticity with a small parameter
to pseudodifferential operators on a smooth closed compact manifold X . It
means in turn to specify the symbols of ΨDO depending on small parameters
and algebraic operations on them. This can be done in different ways. For
example, one can treats the symbols a(x, ξ, ε) as functions of one more variable
which is supposed small. Another approach is to consider symbols defined on
the cotangent bundle T ∗X but taking their values in some functional spaces
depending on ε. We use the last idea with the methods going back to [Kar83]
and propose two examples of ΨDO calculus with operator-valued symbols.
However small parameters enter the algebras differently. In the first algebra ε
plays “passive” role, in another construction the small variable is suggested to
be “active”.

The term “passive” comes from analogy with transformation theory. Recall
that a geometrical transformation y = f(x) may be treated either from an
“active” or “passive” point of view. According to the “active” approach the
transformation moves geometrical points x 7→ y = f(x) while in the “passive”
approach the points are fixed and we only change the coordinate system. For
example, a linear change yi = aijx

j (we use the Einstein summation notation)
may be thought of as a linear transformation of the space Rn or as a change of
a basis in this space. Of course, both descriptions are equivalent.

In the sequel we apply both concepts to ΨDO calculus for closed compact
manifolds.

70
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4.1 A passive approach to operator-valued sym-
bols

We describe here the “passive” approach to operator-valued symbols which
allows one to reduce pseudodifferential operators with operator-valued symbols
to the case of integral operators in abstract L2-spaces, so that the calculus of
operator-valued symbols becomes quite similar to that of scalar-valued symbols.

We demonstrate this approach by calculus of pseudodifferential operators
on a product manifold. Consider M = X × Y, where X , Y are smooth
compact closed manifolds with dimX = n and dimY = m. Suppose we
work with the usual symbol classes Sµ on M and corresponding classes of
pseudodifferential operators Lµ acting in Sobolev spaces Hs(M). We are aimed
at describing these objects using a fibering structure. That is, we would like to
introduce appropriate classes of operator-valued symbols on X with values in
pseudodifferential operators on Y to recover the classes Sµ onM. Moreover,
we would like to represent Hs(M) as L2 -spaces L2(X , Hs(Y), ‖ · ‖ξ) to recover
the action of pseudodifferential operators from Lµ in the spaces Hs(M).

A symbol a(x, y, ξ, η) on M is treated as a symbol on the fiber Y with
estimates depending on the base covariable ξ. Our approach consists in
equipping spaces Hs(Y) with a special family of norms. In more detail, consider
the Sobolev space Hs(Y) with the norms ‖·‖ξ depending on a parameter ξ ∈ Rn.

‖u(y)‖2
ξ =

∑
j

∫
Rm
| < ξ, η >s ψ̂ju(η)|2 dη. (4.1)

Here {ψj} is a partition of unity subordinating some coordinate covering Oj .
The norm (4.1) depends, of course, on s but we drop it in the notation.

Next, consider a function u(x) on X with values in Hs(Y) equipped with
the family of norms ‖ · ‖ξ given by (4.1).

Definition 9. By L2(X , Hs(Y), ‖·‖ξ) is meant the completion of C∞(X , Hs(Y))

with respect to the norm

‖u(x)‖2 =
∑
i

∫
Rn
‖φ̂iu(ξ)‖2

ξ dξ. (4.2)

Once again {φj} is a partition of unity on X subordinate to a coordinate
covering {Oj} of this manifold. Roughly speaking, (4.2) is an L2 -norm of the
scalar-valued function ‖φ̂iu(ξ)‖ξ.
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We now are in a position to define the desired symbol classes Σm on X with
values in pseudodifferential operators on Y .

Definition 10. A function a(x, ξ) on Rn×Rn whose values are pseudodifferen-
tial operators on Y is said to belong to Σµ if, for any α, β ∈ Zn≥0, the operators
∂αxD

β
ξ a(x, ξ) : Hs(Y) → Hs−µ+β(Y) are bounded uniformly in ξ with respect

to the norms ‖ · ‖ξ in both spaces Hs(Y) and Hs−µ+β(Y). That is, there are
constants Cα,β independent of ξ, such that

‖∂αxD
β
ξ a(x, ξ)‖ξ 6 Cα,β. (4.3)

Any symbol a(x, y, ξ, η) ∈ Sµ defines a symbol a(x, ξ) ∈ Σµ on X with
values in pseudodifferential operators on Y .

We can actually stop at this point. All of what follows is a simple consequence
of generalization of these definitions. As mentioned, in a more general context
of pseudodifferential operators with operator-valued symbols these techniques
was elaborated in [Kar83].

It is easy to see that the norms ‖ · ‖ξ in Hs(Y) are equivalent for different
values ξ ∈ Rn, but this equivalence is not uniform in ξ. More precisely, on
applying Peetre’s inequality one sees that the norms vary slowly in ξ.

Lemma 11. There are constants C and q such that

‖u‖ξ1
‖u‖ξ2

6 C 〈ξ1 − ξ2〉q (4.4)

for all ξ1, ξ2 ∈ Rk and smooth functions u on Y. (In fact, we get C = 2|s| and
q = |s|.)

On the other hand, the norm ‖ · ‖ξ is independent of the coordinate covering
and partition of unity up to uniform equivalence.

Lemma 12. The embedding ι : Hs2(Y) → Hs1(Y) for s1 6 s2 admits the
following norm estimate

‖ι‖ξ 6 C 〈ξ〉s1−s2 . (4.5)

Proof. Since

‖uj‖2
Hs1 (Y ),ξ =

∫
Rm
|〈ξ, η〉s1ûj(η)|2dη

=

∫
Rm
|〈ξ, η〉s2ûj(η)|2〈ξ, η〉2(s1−s2)dη,
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estimate (4.5) follows readily from the fact that

〈ξ, η〉s1−s2 ∼ (1 + |ξ|2 + |η|2)(s1−s2)/2

6 (1 + |ξ|2)(s1−s2)/2

∼ 〈ξ〉s1−s2 ,

for s1 − s2 6 0.

Theorem 16. Let a(x, ξ) ∈ Σµ. If µ < 0, then a(x, ξ) : Hs(Y)→ Hs(Y) is a
bounded operator and its norm satisfies an estimate

‖a(x, ξ)‖ξ 6 C 〈ξ〉µ.

Proof. By definition, the mapping a(x, ξ) : Hs(Y) → Hs(Y) is bounded uni-
formly in ξ. On applying Lemma 12 we conclude moreover that Hs−µ(Y) is
embedded into Hs(Y) with estimate ‖ι‖ξ 6 C 〈ξ〉µ. This gives the desired
result.

This result plays an important role in parameter-dependent theory of pseu-
dodifferential operators.

Lemma 13. For each s ∈ R, it follows that

L2(X , Hs(Y), ‖ · ‖ξ) ∼= Hs(X × Y).

As usual, the norm in Hs(X × Y) is defined by

‖u(x, y)‖2 =
∑
i,j

∫∫
Rn×Rm

|〈ξ, η〉sφ̂iψju(ξ, η)|2 dξdη.

For symbols a(x, ξ) ∈ Σm, we introduce a quantization map a 7→ A = Q(a)

by setting
Q(a) =

∑
i

φi(x) Op (a(x, ξ)) θi(x).

where θi(x) = 1 for x ∈ suppφi.

Theorem 17. For a(x, ξ) ∈ Σm, the operator A = Q(a) extends to a bounded
mapping

A : L2(X , Hs(Y), ‖ · ‖ξ)→ L2(X , Hs−µ(Y), ‖ · ‖ξ).
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Proof. In Fourier representation f = Au gives

f̂(ξ) =

∫
Rn
â(ξ − ξ′, ξ′)û(ξ′)dξ′

whence

‖f̂(ξ)‖Hs−µ(Y),ξ

6
∫
Rn
‖â(ξ − ξ′, ξ′)û(ξ′)‖Hs−µ(Y),ξdξ

′

6 C

∫
Rn
〈ξ − ξ′〉q‖â(ξ − ξ′, ξ′)û(ξ′)‖Hs−µ(Y),ξ′dξ

′

6 C

∫
Rn
〈ξ − ξ′〉q‖â(ξ − ξ′, ξ′)‖L(Hs(Y),Hs−µ(Y)),ξ′‖û(ξ′)‖Hs(Y),ξ′dξ

′

= C

∫
O(〈ξ − ξ′〉−∞)‖û(ξ′)‖Hs(Y),ξ′dξ

′.

So, we have reduced the problem to the boundedness of integral operators in
L2 with kernels O(〈ξ − ξ′〉−∞). This is evident.

Obviously, the results of this section make sense in much more general
context where the spaces Hs(Y) and Hs−µ(Y) on the fibers of X × Y over X
are replaced by abstract Hilbert spaces V and W endowed with slowly varying
families of norms parameterized by ξ ∈ Rn. In this way we obtain a rough class
of pseudodifferential operators on X whose symbols take their values in L(V,W )

with uniformly bounded norms and which map L2(X , V, ‖ · ‖ξ) continuously
to L2(X ,W, ‖ · ‖ξ). In Section 4.4 we develop this construction for another
well-motivated choice of Hilbert spaces V and W .

4.2 Operators with small parameter

In this section we apply the “passive” approach on the product manifold X ×Y ,
where X is a smooth compact closed manifold of dimension n and Y = {P} is
a one-point manifold.

Our purpose is to describe a calculus involving differential operators of
type (2.1) on X . They are already investigated in norms Hr,s which easily
extend(see 1.6) to the Hr,s(X ) with r, s ∈ R.

One easily recovers the spaces Hr,s(X ) and Hr−m,s−µ(X ) as L2(X , V, ‖ · ‖ξ)
and L2(X ,W, ‖ · ‖ξ), respectively, where V = C and W = C are endowed with
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the families of norms

‖u‖ξ = |〈εξ〉r−s〈ξ〉su|,
‖f‖ξ = |〈εξ〉(r−m)−(s−µ)〈ξ〉s−µf |

parameterized by ξ ∈ Rn.

Definition 10 applies immediately to specify the corresponding spaces Σm,µ of
operator-valued symbols a(x, ξ, ε) on T ∗Rn depending on the small parameter
ε ∈ (0, 1]. We restrict ourselves to those symbols which depend continuously
on ε ∈ (0, 1] up to ε = 0. To wit, let Sm,µ be the space of all functions a(x, ξ, ε)

of (x, ξ) ∈ T ∗Rn and ε ∈ (0, 1], which are C∞ in (x, ξ) and continuous in ε up
to ε = 0, such that

|∂αxD
β
ξ a(x, ξ, ε)| 6 Cα,β 〈εξ〉m−µ〈ξ〉µ−|β| (4.6)

is fulfilled for all multi-indices α, β ∈ Zn≥0, where the constants Cα,β do not
depend on (x, ξ) and ε.

Let us define appropriate homogeneity for symbols a(x, ξ, ε). Our choice is
motivated by corresponding property of operators (2.1)

Definition 11. Suppose that for a ∈ Sm,µ the uniform with respect to ξ ∈ Rn

limit
σµ(a)(x, ξ, ε) = lim

λ→∞
λ−µa(x, λξ, ε/λ),

exists for some x ∈ Rn and ε > 0. Then σµ(a)(x, ξ, ε) is homogeneous of degree
µ in (ξ, ε−1).

It is worth pointing out that σµ(a)(x, ξ, ε) is actually defined on the whole
semiaxis ε > 0. Indeed, let s > 0. Then

σµ(a)(x, sξ, ε/s) = lim
λ→∞

λ−µa(x, λsξ, ε/λs),

and so on setting λ′ = λs we get

σµ(a)(x, sξ, ε/s) = lim
λ′→∞

sµλ′−µa(x, λ′ξ, ε/λ′)

= sµσµ(a)(x, ξ, ε),

as desired.
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Example. By the very origin the complete symbol a(x, ξ, ε) of (2.1)
belongs to the class Sm,µ and

σµ(a)(x, ξ, ε) = lim
λ→∞

λ−µ
( ∑
|α|−j6µ
|α|6m

aα,j(x)ξαεj λ|α|−j
)

=
∑
|α|−j=µ
|α|6m

aα,j(x)ξαεj

is well defined.

In fact, the complete symbol of any differential operator A(x,D, ε) of the form
(2.1) expands as finite sum of homogeneous symbols of decreasing degree with
step 1. More generally, one specifies the subspaces Sm,µcl in Sm,µ consisting of all
classical symbols, i.e. those admitting asymptotic expansions in homogeneous
symbols. To introduce classical symbols more precisely, we need a purely
technical result.

Lemma 14. Let a be a C∞ function of (x, ξ) ∈ T ∗Rn \{0} and ε > 0 satisfying
|∂αxD

β
ξ a(x, ξ, 1)| 6 Cα,β 〈ξ〉m−|β| for |ξ| ≥ 1 and α, β ∈ Zn≥0. If a is homogeneous

of degree µ in (ξ, ε−1), then χa ∈ Sm,µ for any excision function χ = χ(ξ) for
the origin in Rn.

Proof. Since each derivative ∂αxD
β
ξ a is homogeneous of degree µ−|β| in (ξ, ε−1),

it suffices to prove estimate (4.6) only for α = β = 0. We have to show that
there is a constant C > 0, such that

|χ(ξ)a(x, ξ, ε)| 6 C 〈εξ〉m−µ〈ξ〉µ

for all (x, ξ) ∈ T ∗Rn and ε ∈ (0, 1]. Such an estimate is obvious if ξ varies in
a compact subset of Rn, for χ vanishes in a neighbourhood of ξ = 0. Hence,
there is no restriction of generality in assuming that |ξ| ≥ R, where R > 1 is
large enough, so that χ(ξ) ≡ 1 for |ξ| ≥ R.

We distinguish two cases, namely ε 6 〈ξ〉−1 and ε > 〈ξ〉−1. In the first case
we immediately get

|a(x, ξ, ε)| = 〈ξ〉µ|a(x, ξ/〈ξ〉, ε〈ξ〉)|
6 C 〈ξ〉µ,

where C is the supremum of |a(x, ξ′, ε′)| over all x, 1/
√

2 6 |ξ′| 6 1 and
ε′ ∈ [0, 1]. Moreover, 〈εξ〉m−µ is bounded from below by a positive constant
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independent of ξ and ε, for ε|ξ| 6 1. This yields |a(x, ξ, ε)| 6 C ′ 〈εξ〉m−µ〈ξ〉µ

with some new constant C ′, as desired.

Assume that ε > 〈ξ〉−1. Then ε−1 < 〈ξ〉 whence

|a(x, ξ, ε)| = |ε−µ a(x, εξ, 1)|
6 C ε−µ 〈εξ〉m

= C 〈εξ〉m−µ (ε−1〈εξ〉)µ

with C a constant independent of x, ξ and ε. If µ > 0 then the factor (ε−1〈εξ〉)µ

is estimated by
(ε−2 + |ξ|2)µ/2 6 2µ/2 〈ξ〉µ.

If µ < 0 then this estimate is obvious, even without the factor 2µ/2. This
establishes the desired estimate.

The family Sm−j,µ−j with j = 0, 1, . . . is used as usual to define asymptotic
sums of homogeneous symbols. A symbol a ∈ Sm,µ is said to be classical if there
is a sequence {aµ−j}j=0,1,... of smooth function of (x, ξ) ∈ T ∗Rn \{0} and ε > 0

satisfying |∂αxD
β
ξ aµ−j(x, ξ, 1)| 6 Cα,β 〈ξ〉m−j−|β| for |ξ| ≥ 1 and α, β ∈ Zn≥0, such

that every aµ−j is homogeneous of degree µ− j in (ξ, ε−1) and a expands as
asymptotic sum

a(x, ξ, ε) ∼ χ(ξ)
∞∑
j=0

aµ−j(x, ξ, ε) (4.7)

in the sense that a− χ
N∑
j=0

aµ−j ∈ Sm−N−1,µ−N−1 for all N = 0, 1, . . ..

The appropriate concept in abstract algebra to describe expansions like (4.7)
is that of filtration. To wit,

Sm,µcl ∼
∞⊕
j=0

(
Sm−j,µ−jcl 	 Sm−j−1,µ−j−1

cl

)
.

Each symbol a ∈ Sm,µcl possesses a well-defined principal homogeneous symbol
of degree µ, namely σµ(a) := aµ. To construct an algebra of pseudodifferential
operators on X with symbolic structure one need not consider full asymptotic
expansions like (4.7). It suffices to ensure that the limit σµ(a) exists and the
difference a− χσµ(a) belongs to Sm−1,µ−1. For more details we refer to Section
3.3 in [Fra90].
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We may now quantise symbols a ∈ Sm,µ as pseudodifferential operators on
X in just the same way as in Section 4.1. The space of operators A = Q(a)

with symbols a ∈ Sm,µ is denoted by Ψm,µ(X ).

Theorem 18. Let A ∈ Ψm,µ(X ). For any r, s ∈ R, the operator A extends to
a bounded mapping

A : Hr,s(X )→ Hr−m,s−µ(X )

whose norm is independent of ε ∈ [0, 1].

Proof. This is a consequence of Theorem 17.

Let Ψm,µcl (X ) stand for the subspace of Ψm,µ(X ) consisting of those oper-
ators which have classical symbols. For A ∈ Ψm,µcl (X ), the principal homo-
geneous symbol of degree µ is defined by σµ(A) = σµ(a), where A = Q(a).
If σµ(A) = 0 then A belongs actually to Ψm−1,µ−1

cl (X ). Hence, the mapping
A : Hr,s(X ) → Hr−m,s−µ(X ) is compact, for it factors through the compact
embedding

Hr−m+1,s−µ+1(X ) ↪→ Hr−m,s−µ(X ).

Theorem 19. If A ∈ Ψm,µcl (X ) and B ∈ Ψn,νcl (X ), then BA ∈ Ψm+n,µ+ν
cl (X )

and σµ+ν(BA) = σν(B)σµ(A).

Proof. See for instance Proposition 3.3.3 in [Fra90].

As usual, an operatorA ∈ Ψm,µcl (X ) is called elliptic if its symbol σµ(A)(x, ξ, ε)

is invertible for all (x, ξ) ∈ T ∗X \ {0} and ε ∈ [0, 1].

Theorem 20. An operator A ∈ Ψm,µcl (X ) is elliptic if and only if it possesses
a parametrix P ∈ Ψ−m,−µcl (X ), i.e. PA = I and AP = I modulo operators in
Ψ−∞,−∞(X ).

Proof. The necessity of ellipticity follows immediately from Theorem 19, for
the equalities PA = I and AP = I modulo Ψ−∞,−∞(X ) imply that σ−µ(P ) is
the inverse of σµ(A).

Conversely, look for a parametrix P = Q(p) for A = Q(a), where p ∈ S−m,−µcl

has asymptotic expansion p ∼ p−µ + p−µ−1 + · · · . The ellipticity of A just
amounts to saying that

σµ(A)(x, ξ, ε) ≥ c 〈εξ〉m−µ|ξ|µ
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for all (x, ξ) ∈ T ∗X \ {0} and ε ∈ [0, 1], where the constant c > 0 does
not depend on x, ξ and ε. Hence, p−µ := (σµ(A))−1 gives rise to a “soft”
parametrix P (0) = Q(χp−µ) for A. More precisely, P (0) ∈ Ψ−m,−µcl (X ) satisfies
P (0)A = I and AP (0) = I modulo Ψ−1,−1(X ). Now, the standard techniques of
pseudodifferential calculus applies to improve the discrepancies P (0)A− I and
AP (0) − I, see for instance [ST05].

To sum up the homogeneous components p−µ−j with j = 0, 1, . . ., one uses
a trick of L. Hörmander for asymptotic summation of symbols, see Theorem
3.6.3 in [Fra90].

Corollary 2. Assume that A ∈ Ψm,µcl (X ) is an elliptic operator on X . Then,
for any r, s ∈ R and any large R > 0, there is a constant C > 0 independent
of ε, such that

‖u‖r,s 6 C (‖Au‖r−m,s−µ + ‖u‖−R,−R)

whenever u ∈ Hr,s(X ).

Proof. Let P ∈ Ψ−m,−µcl (X ) be a parametrix of A given by Theorem 20. Then
we obtain

‖u‖r,s = ‖P (Au) + (I − PA)u‖r,s
6 ‖P (Au)‖r,s + ‖(I − PA)u‖r,s

for all u ∈ Hr,s(X ). To complete the proof it is now sufficient to use the
mapping properties of pseudodifferential operators P and I − PA formulated
in Theorem 18.

4.3 Ellipticity with large parameter

Setting λ = 1/ε we get a “large” parameter. Substituting ε = 1/λ to (2.1) and
multiplying A by λm−µ yields

Ã(x,D, λ) =
∑
|α|+j6m
j6m−µ

ãα,j(x)λjDα

in local coordinates in X . For this operator the ellipticity with large parameter
leads to the inequality∣∣∣ ∑

|α|+j=m
j6m−µ

ãα,j(x)λjξα
∣∣∣ ≥ c 〈λ, ξ〉m−µ|ξ|µ,



80 4.4. ANOTHER APPROACH TO PARAMETER-DEPENDENT THEORY

which is a generalization of the Agmon-Agranovich-Vishik condition of ellipticity
with parameter corresponding to µ = 0, see [AV64], [Vol06] and the references
given there.

4.4 Another approach to parameter-dependent
theory

In this section we develop another approach to pseudodifferential operators
with small parameter which stems from analysis on manifolds with singularities.
In this ares the role of small parameter is played by the distance to singularities
and it has been usually chosen as a local coordinate. Thus, the small parameter
is included into functions under study as independent variable and the action of
operators include also that in the small parameter. Geometrically this approach
corresponds to analysis on the cylinder C = X × [0, 1] over a compact closed
manifold X of dimension n, see Fig. 4.1. Subject to the problem its base ε = 0

0
�
��	xn−1

-xn

6

ε

1

HH

HH

Figure 4.1: A cylinder C = X × [0, 1) over X

can be thought of as singular point blown up by a singular transformation of
coordinates. In this case one restricts the study to functions which are constant
on the base, taking on the values 0 or ∞. In our problem the base is regarded
as part of the boundary X × {0} of the cylinder C, and so we distinguish
the values of functions on the base. The top X × {1} is actually excluded
from consideration by a particular choice of function spaces on the segment
Y = [0, 1], for we are interested in local analysis at ε = 0.

Basically there are two possibilities to develop a calculus of pseudodifferential
operators on the cylinder C. Either one thinks of them as pseudodifferential
operators on X with symbols taking on their values in an operator algebra on
[0, 1]. Or one treats them as pseudodifferential operators on the segment [0, 1]

whose symbols are pseudodifferential operators on X . Singularly perturbed
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problems require the first approach with symbols taking on their values in
multiplication operators in L(V,W ), where

V = L2([0, 1], ε−2γ),

W = L2([0, 1], ε−2γ)

with γ ∈ R.

Any continuous function a ∈ C[0, 1] induces the multiplication operator
u 7→ au on L2([0, 1], ε−2γ) that is obviously bounded. Moreover, the norm of
this operator is equal to the supremum norm of a in C[0, 1]. Hence, C[0, 1] can
be specified as a closed subspace of L(V,W ).

Pick real numbers µ and s. We endow the spaces V and W with the families
of norms

‖u‖ξ = ‖〈ξ〉sκ−1
〈ξ〉u‖L2([0,1],ε−2γ),

‖f‖ξ = ‖〈ξ〉s−µκ̃−1
〈ξ〉f‖L2([0,1],ε−2γ)

parameterized by ξ ∈ Rn, where

(κλu)(ε) = λ−γ+1/2 u(λε),

(κ̃λf)(ε) = λ−γ+1/2 f(λε)

for λ 6 1.

The space L2(X , V, ‖ · ‖ξ) is defined to be the completion of C∞(X , V ) with
respect to the norm

‖u‖2
s,γ =

∑
i

∫
Rn
‖φ̂iu‖2

ξdξ,

where {φi} is a C∞ partition of unity on X subordinate to a finite coordinate
covering {Ui}.

Remark. The space L2(X , V, ‖ · ‖ξ) is locally identified within abstract edge
spaces Hs(Rn, V,κ) with the group action κ on V = L2([0, 1], ε−2γ) defined
above, see [ST05].

In a similar way one introduces the space L2(X ,W, ‖ · ‖ξ) whose norm is
denoted by ‖ · ‖s−µ,γ. Set

Hs,γ(C) = L2(X , V, ‖ · ‖ξ),
Hs−µ,γ(C) = L2(X ,W, ‖ · ‖ξ),
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which will cause no confusion since the right-hand sides coincide for µ = 0, as
is easy to check. We are thus led to a scale of function spaces on the cylinder
C which are Hilbert.

Our next objective is to describe those pseudodifferential operators on C
which map Hs,γ(C) continuously into Hs−µ,γ(C). To this end we specify the defi-
nition of symbol spaces, see (4.3). If a(x, ξ, ε) is a function of (x, ξ) ∈ T ∗Rn and
ε ∈ [0, 1], which is smooth in (x, ξ) and continuous in ε, then a straightforward
calculation shows that

‖∂αxD
β
ξ a(x, ξ, ε)‖L(V,W ),ξ = 〈ξ〉−µ sup

ε∈[0,1]

|(∂αxD
β
ξ a)(x, ξ, ε/〈ξ〉)|

holds on all of T ∗Rn. We now denote by Sµ the space of all functions a(x, ξ, ε)

of (x, ξ) ∈ T ∗Rn and ε ∈ [0, 1], which are smooth in (x, ξ) and continuous in ε
and satisfy

|(∂αxD
β
ξ a)(x, ξ, ε/〈ξ〉)| 6 Cα,β 〈ξ〉µ−|β| (4.8)

for all multi-indices α, β ∈ Zn≥0, where Cα,β are constants independent of (x, ξ)

and ε.

In terms of group action introduced in Remark 4.4 the symbol estimates (4.8)
take the form

‖κ̃−1
〈ξ〉∂

α
xD

β
ξ a(x, ξ, ε)κ〈ξ〉‖L(L2([0,1],ε−2γ)) 6 Cα,β 〈ξ〉µ−|β|

for all (x, ξ) ∈ T ∗ Rn and α, β ∈ Zn≥0, cf. [ST05]. In particular, the order
of the symbol a is µ. Moreover, using group actions in fibers V and
W gives a direct way to the notion of homogeneity in the calculus of
operator-valued symbols on T ∗ Rn. Namely, a function a(x, ξ, ε), defined for
(x, ξ) ∈ T ∗ Rn \{0} and ε > 0, is said to be homogeneous of degree µ if the
equality a(x, λξ, ε) = λµκ̃λa(x, ξ, ε)κ−1

λ is fulfilled for all λ > 0. It is easily
seen that a is homogeneous of degree µ with respect to the group actions
κ and κ̃ if and only if a(x, λξ, ε/λ) = λµa(x, ξ, ε) for all λ > 0, i.e. a is
homogeneous of degree µ in (ξ, ε−1). Thus, we recover the homogeneity of
symbols invented in Section 4.2.

Lemma 15. Assume that the limit

σµ(a)(x, ξ, ε) = lim
λ→∞

λ−µκ̃−1
λ a(x, λξ, ε)κλ

exists for some x ∈ Rn and all ξ ∈ Rn and ε > 0. Then σµ(a)(x, ξ, ε) is
homogeneous of degree µ.
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Proof. Let s > 0 and let u = u(ε) be an arbitrary function of V . By the
definition of group action, we get

σµ(a)(x, sξ, ε)u = lim
λ→∞

λ−µκ̃−1
λ a(x, λsξ, ε)κλu

= sµκ̃s
(

lim
λ′→∞

(λ′)−µκ̃−1
λ′ a(x, λ′ξ, ε)κλ′

)
κ−1
s u,

the second equality being a consequence of substitution λ′ = λs. Since
the expression in the parentheses just amounts to σµ(a)(x, ξ, ε), the lemma
follows.

The function σµ(a) defined away from the zero section of the cotangent
bundle T ∗C is called the principal homogeneous symbol of degree µ of a. We
also use this designation for the operator A = Q(a) on the cylinder which is a
suitable quantization of a.

Example. As defined above, the principal homogeneous symbol of
differential operator (2.1) is

σµ(A)(x, ξ, ε) = lim
λ→∞

λ−µ
( ∑
|α|−j6µ
|α|6m

aα,j(x)(λξ)α
(
κ̃−1
λ εjκλ

) )
=

∑
|α|−j=µ
|α|6m

aα,j(x)ξαεjκλ.

Now one introduces the subspaces Sµcl in Sµ consisting of all classical symbols,
i.e. those admitting asymptotic expansions in homogeneous symbols. To do
this, we need an auxiliary result.

Lemma 16. Let a be a C∞ function of (x, ξ) ∈ T ∗ Rn \{0} and ε > 0 with
a ≡ 0 for |x| � 1. If a is homogeneous of degree µ, then χa ∈ Sµ for any
excision function χ = χ(ξ) for the origin in Rn.

Proof. Since each derivative ∂αxD
β
ξ a is homogeneous of degree µ−|β |, it suffices

to prove estimate (4.8) only for α = β = 0. We have to show that there is a
constant C > 0, such that

‖κ̃−1
〈ξ〉 (χ(ξ)a(x, ξ, ε)) κ〈ξ〉‖L(L2([0,1],ε−2γ )) 6 C 〈ξ〉µ

for all (x, ξ) ∈ T ∗ Rn and ε ∈ [0, 1]. Such an estimate is obvious if ξ varies in
a compact subset of Rn, for χ near ξ = 0. Hence, we may assume without of
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generality that |ξ| ≥ R, where R > 1 is sufficiently large, so that χ(ξ) ≡ 1 for
|ξ| ≥ R. Then

‖κ̃−1
〈ξ〉 (χ(ξ)a(x, ξ, ε)) κ〈ξ〉‖L(L2([0,1],ε−2γ )) = ‖a(x, ξ, ε/〈ξ〉)‖L(L2([0,1],ε−2γ ))

6 C 〈ξ〉µ,

where
C = sup

(x,ξ)∈T ∗ Rn
‖a(x, ξ/〈ξ〉, ε)‖L(L2([0,1],ε−2γ )).

From conditions imposed on a it follows that the supremum is finite, which
completes the proof.

In contrast to Lemma 14 no additional conditions are imposed here on a
except for homogeneity. This might testify to the fact that the symbol classes
Sµ give the best fit to the study of operators (2.1).

The family Sµ−j with j = 0, 1, . . . is used in the usual way to define
asymptotic sums of homogeneous symbols. A symbol a ∈ Sµ is called classical
if there is a sequence {aµ−j}j=0,1,... of smooth function of (x, ξ) ∈ T ∗ Rn \{0}
and ε > 0, such that every aµ−j is homogeneous of degree µ − j in (ξ, ε−1)

and a expands as asymptotic sum

a(x, ξ, ε) ∼ χ(ξ)
∞∑
j=0

aµ−j(x, ξ, ε) (4.9)

in the sense that a − χ
N∑
j=0

aµ−j ∈ Sµ−N−1 for all N = 0, 1, . . ..

Each symbol a ∈ Sµcl admits a well-defined principal homogeneous symbol
of degree µ, namely σµ(a) := aµ. We quantise symbols a ∈ Sµ as pseudodiffer-
ential operators on X similarly to Section 1.6. Write Ψ µ(C) for the space of all
operators A = Q(a) with a ∈ Sµ.

Theorem 21. Let A ∈ Ψ µ(C). For any s, γ ∈ R, the operator A extends to a
bounded mapping

A : H s,γ(C) → H s−µ,γ(C).

Proof. This is a consequence of Theorem 17.

Let Ψ µcl (C) stand for the subspace of Ψ µ(C) consisting of all operators with
classical symbols. For A = Q(a) of Ψ µcl (C), the principal homogeneous symbol
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of degree µ is defined by σµ(A) = σµ(a). If σµ(A) = 0 then A belongs to
Ψ µ−1

cl (C). When combined with Theorem 22 stated below, this result allows
one to describe those operators A on the cylinder which are invertible modulo
operators of order −∞.

Theorem 22. If A ∈ Ψ µcl (C) and B ∈ Ψ νcl(C), then BA ∈ Ψ µ+ν
cl (C) and

σµ+ν(BA) = σν(B)σµ(A).

Proof. This is a standard fact of calculus of pseudodifferential operators with
operator-valued symbols.

As usual, an operator A ∈ Ψ µcl (C) is called elliptic if σµ(A)(x, ξ, ε) is
invertible for all (x, ξ, ε) away from the zero section of the cotangent bundle
T ∗C of the cylinder.

Theorem 23. An operator A ∈ Ψ µcl (C) is elliptic if and only if there is an
operator P ∈ Ψ−µcl (C), such that both PA = I and AP = I are fulfilled modulo
operators of Ψ−∞(C).

Proof. The necessity of ellipticity follows immediately from Theorem 22, for
the equalities PA = I and AP = I modulo Ψ−∞(C) imply that σ−µ(P ) is the
inverse of σµ(A).

Conversely, look for an inverse P = Q(p) for A = Q(a) modulo Ψ−∞(C),
where p ∈ S−µcl has asymptotic expansion p ∼ p−µ+p−µ−1 + · · · . The ellipticity
of A just amounts to saying that

σµ(A)(x, ξ, ε) ≥ c |ξ|µ

for all (x, ξ) ∈ T ∗X \ {0} and ε ∈ [0, 1], where the constant c > 0 does not
depend on x, ξ and ε. Hence, p−µ := (σµ(A))−1 gives rise to a “soft” inverse
P (0) = Q(χp−µ) for A. More precisely, P (0) ∈ Ψ−µcl (C) satisfies P (0)A = I

and AP (0) = I modulo operators of Ψ−1(C). Now, the standard techniques of
pseudodifferential calculus applies to improve the discrepancies P (0)A − I and
AP (0) − I , see for instance [ST05].

Corollary 3. Assume that A ∈ Ψ µcl (C) is an elliptic operator on C. Then, for
any s, γ ∈ R and any large R > 0, there is a constant C > 0 independent of ε,
such that

‖u‖s,γ 6 C (‖Au‖s−µ,γ + ‖u‖−R,γ)

whenever u ∈ H s,γ(C).
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Proof. Let P ∈ Ψ−µcl (C) be the inverse of A up to operators of Ψ−∞(C) given
by Theorem 20. Then we obtain

‖u‖s,γ = ‖P (Au) + (I − PA)u‖s,γ
6 ‖P (Au)‖s,γ + ‖(I − PA)u‖s,γ

for all u ∈ H s,γ(C). To complete the proof it is now sufficient to use the
mapping properties of pseudodifferential operators P and I − PA formulated
in Theorem 18.

We finish this section by evaluating the local norm in H s,γ(C) to compare
this scale with the scale H r,s(X ) used in Section 4.2. This norm is equivalent
to that in L2(Rn, V, ‖ · ‖ξ), which is

‖u‖2
s,γ =

∫
Rn
〈ξ〉2s‖κ−1

〈ξ〉 û(ξ)‖2
L2([0,1],ε−2γ )dξ

=

∫
Rn
〈ξ〉2s+2γ−1

∫ 1

0

ε−2γ |û(ξ, ε/〈ξ〉)|2dεdξ.

Substituting ε′ = ε/〈ξ〉 yields

‖u‖2
s,γ =

∫
Rn
〈ξ〉2s

( ∫ 1/〈ξ〉

0

(ε′)−2γ |û(ξ, ε′)|2dε′
)
dξ

=

∫ 1

0

(ε′)−2(γ+∆γ)
( ∫
〈ξ〉61/ε′

(ε′〈ξ〉)2∆γ〈ξ〉2(s−∆γ)|û(ξ, ε′)|2dξ
)
dε′,

which is close to
∫ 1

0

ε−2(γ+∆γ)‖u‖2
Hs,s−∆γ (X )dε with any ∆γ ∈ R.

4.5 Regularisation of singularly perturbed prob-
lems

The idea of constructive reduction of elliptic singular perturbations to regular
perturbations goes back at least as far as [FW82]. For the complete bibliography
see [Fra90, p. 531].

The calculus of pseudodifferential operators with small parameter developed
in Section 4.2 allows one to reduce the question of the invertibility of elliptic
operators A ∈ Ψm,µcl (X ) acting from H r,s(X ) into H r−m,s−µ(X ) to that of the
invertibility of their limit operators at ε = 0 acting in usual Sobolev spaces
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H s(X ) → H s−µ(X ). To shorten notation, we write A(ε) instead of A(x, D, ε),
and so A(0) ∈ Ψ µcl (X ) is the reduced operator.

Given any f ∈ Hr−m,s−µ(X ), consider the inhomogeneous equation A(ε)u = f

on X for an unknown function u ∈ Hr,s(X ). We first assume that u ∈ Hr,s(X )

satisfies A(ε)u = f in X .

Since the symbol σµ(A(ε))(x, ξ, ε) is invertible for all (x, ξ) ∈ T ∗X \ 0 and
ε ∈ [0, ε0), it follows that A(0) is an elliptic operator of order µ.

According the Hodge theory, there is an operator G ∈ Ψ−µcl (X ) satisfying

u = H0u+GA(0)u,

f = H1f +A(0)Gf
(4.10)

for all distributions u and f on X , where H0 and H1 are L2(X ) -orthogonal
projections onto the null-spaces of A(0) and A(0)∗, respectively. (Observe that
the null-spaces of A(0) and A(0)∗ are actually finite dimensional and consist of
C∞ functions.)

Acting by the operator G ∈ Ψ−µ,−µcl (X ) to both sides of the equality
A(0)u+ (A(ε)−A(0))u = f on X we obtain

u−H0u = Gf −G (A(ε)−A(0))u (4.11)

for each u ∈ Hr,s(X ). (We have used the first equality of (4.10)). To this
point the existence of composition G (A(ε)−A(0)) is crucial, essentially it is an
analogue to condition II. If (A(ε)−A(0))u converges to zero in Hr−m,s−µ(X )

as ε→ 0 and m ≥ µ then by continuity, G (A(ε)−A(0))u converges to zero in
Hr−(m−µ),s(X ), and so u−H0u ∈ Hr,s(X ) converges to Gf in Hr−(m−µ),s(X ) as
ε→ 0. The case m < µ is analysed in the same manner, but u−H0u converges
to Gf in the spaces Hr,s(X ) while ‖A(ε)u−A(0)u‖r,s → 0 for every u ∈ Hr,s.

The solution u of A(ε)u = f need not converge to the solution Gf of the
reduced equation, for both solutions are not unique. Formula (4.11) describes
the limit of the component u−H0u of u which is orthogonal to the space of
solutions of the homogeneous equation A(0)u = 0. This result gains in interest
if the equation A(0)u = 0 has only zero solution, i.e. H0 = 0. The task is now
to show that from the unique solvability of the reduced equation it follows that
A(ε)u = f is uniquely solvable if ε is small enough.

Theorem 24. Suppose that A(ε) ∈ Ψm,µ(X ) is elliptic. If the reduced oper-
ator A(0) : Hs(X ) → Hs−µ(X ) is an isomorphism uniformly with respect to
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ε ∈ [0, ε0), then A(ε) : Hr,s(X ) → Hr,s−µ(X ) is an isomorphism, too, for all
ε ∈ [0, ε0) with sufficiently small ε0.

Proof. We only clarify the operator theoretic aspects of the proof. For symbol
constructions we refer the reader to Corollary 3.14.10 in [Fra90] and the
comments after its proof given there.

To this end, write I = GA(0) + (I −GA(0)) whence

A(ε) = A(0) + (A(ε)−A(0))GA(0) + (A(ε)−A(0))(I −GA(0))

= (I + (A(ε)−A(0))G)A(0) + (A(ε)−A(0))(I −GA(0))

for all ε ∈ [0, ε0). As mentioned, the difference A(ε)−A(0) is small if ε 6 1 is
small enough. Hence, the operator

Q(ε) = I + (A(ε)−A(0))G

= H1 +A(ε)G

is invertible in the scale Hr,s(X ), provided that ε ∈ [0, ε0) where ε0 6 1 is
sufficiently small.

If the operator A(0) ∈ Ψµ(X ) is invertible in the scale of usual Sobolev
spaces on X , then the product Q(ε)A(0) is invertible for all ε ∈ [0, ε0). Hence,
by decreasing ε0 if necessary, we conclude readily that A(ε) is invertible for all
ε ∈ [0, ε0), as desired.

The proof above gives more, namely

A(ε) = Q(ε)A(0) + S0(ε),

= A(0)Q(ε) + S1(ε),
(4.12)

where S0(ε) and S1(ε) have at most the same order as A(ε) and are infinitesi-
mally small if ε → 0. The obtained relations are regularisation for operator
A(ε), they imply importants properties related to asymptotics behaviour of
solutions. Firstly, it follows immediately that for the operator A(ε) to be
invertible for small ε it is necessary and sufficient that A(0) would be invert-
ible. Secondly, for any gε such that limε→0A(ε)gε = 0 follows limε→0 gε = 0. It
means, in particular, that formal expansions obtained with method of small
parameter are asymptotic indeed.
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