
Hasso–Plattner–Institut für Softwaresystemtechnik
an der Universität Potsdam

A Virtual Machine Architecture for
IT–Security Laboratories

Dissertation
zur Erlangung des akademischen Grades

“doctor rerum naturalium” (Dr. rer. nat.)
in dem Fachgebiet Internet-Technologien und -Systeme

von
Ji Hu

Potsdam 2006

Gutachter:
Prof. Dr. Christoph Meinel, Hasso-Plattner-Institut
Prof. Dr. Claudia Eckert, Technische Universität Darmstadt
Prof. Dr. Huaqing Wang, California State University

Vorsitzender:
Prof. Dr. Werner Zorn, Hasso-Plattner-Institut

Prüfungskommissionsmitglieder:
Prof. Dr. Andreas Polze, Hasso-Plattner-Institut
Prof. Dr. Mathias Weske, Hasso-Plattner-Institut
Prof. Dr. Andreas Schwill, Universität Potsdam
Prof. Dr. Michael Gössel, Universität Potsdam
Prof. Dr. Klaus Denecke, Universität Potsdam
Prof. Dr. Thomas Engel, University of Luxembourg

Datum der Disputation: 14. Juli 2006

i

Die Dissertation wurde am 26.01.2006 an der
Mathematisch–Naturwissenschaftlichen Fakultät der Universität
Potsdam eingereicht und am 14.07.2006 mit “magna cum laude”
angenommen.

c©2006 Ji Hu

ii

To my parents, Daoxian and Dewen

iii

iv

Zusammenfassung

Diese Dissertation beschreibt die Herausforderungen in der IT Sicherheitsausbildung

und weist auf die noch vorhandene Lücke zwischen E-Learning und praktischer Aus-

bildung hin. Sie erklärt einen Ansatz sowie ein System, um diese Lücke zwischen

Theorie und Praxis in der elektronischen Ausbildung zu schließen.

E-Learning ist eine flexible und personalisierte Alternative zu traditionellen Lernme-

thoden. Heutigen E-Learning Systemen mangelt es jedoch an der Fähigkeit, praktische

Erfahrungen über große Distanzen zu ermöglichen. Labor- bzw. Testumgebungen so-

wie praktische Übungen sind jedoch unverzichtbar, wenn es um die Ausbildung von Si-

cherheitsfachkräften geht. Konventionelle Laborumgebungen besitzen allerdings einige

Nachteile wie bspw. hoher Erstellungsaufwand, keine Mobilität, hohe Wartungskosten,

etc. Die Herausforderung heutiger IT Sicherheitsausbildung ist es daher, praktische

Sicherheitslaborumgebungen und Übungen effektiv mittels E-Learning zu unterstüt-

zen.

In dieser Dissertation wird die Architektur von Tele-Lab IT-Security vorgestellt, die

Studenten nicht nur erlaubt theoretische Sicherheitskonzepte zu erlernen, sondern

darüber hinaus Sicherheitsübungen in einer Online-Laborumgebung praktisch zu ab-

solvieren. Die Teilnehmer können auf diese Weise wichtige praktische Erfahrungen

im Umgang mit Sicherheitsprogrammen sammeln. Zur Realisierung einer sicheren

Übungsumgebung, werden virtuelle Maschinen anstatt reale Rechner im Tele-Lab

System verwendet. Mittels virtueller Maschinen können leicht Laborumgebungen ge-

klont, verwaltet und über das Internet zugänglich gemacht werden. Im Vergleich zu

herkömmlichen Offline-Laboren können somit erhebliche Investitions- und Wartungs-

kosten gespart werden.

Das Tele-Lab System bietet eine Reihe von technischen Funktionen, die den effekti-

ven, zuverlässigen und sicheren Betrieb dieses Trainingssystems gewährleistet. Unter

v

Beachtung angemessener Ressourcennutzung, Softwareinstallationen und Systemkon-

figurationen wurden virtuelle Maschinen als Übungsstationen erstellt, die auf einem

einzelnen Rechner betrieben werden. Für ihre Zuverlässigkeit und Verfügbarkeit ist

das Managementsystem der virtuellen Maschinen verantwortlich. Diese Komponen-

te besitzt die notwendigen Überwachungs- und Verwaltungsfunktionen, um kritische

Fehler der virtuellen Maschinen während der Laufzeit zu erkennen und zu beheben.

Damit die Übungsstationen nicht bspw. zur Kompromittierung von Produktivnetz-

werken genutzt werden, beschreibt die Dissertation Sicherheits-Managementlösungen,

die mittels Isolation auf System und Netzwerk Ebene genau dieses Risiko verhindern

sollen.

Diese Arbeit ist der Versuch, die Lücke zwischen E-Learning/Tele-Teaching und prak-

tischer Sicherheitsausbildung zu schließen. Sie verfolgt nicht das Ziel, konventionelle

Ausbildung in Offline Laboren zu ersetzen, sondern auch praktische Erfahrungen via

E-Learning zu unterstützen. Die Dissertation zeigt die Möglichkeit, praktische Er-

fahrungen mittels Sicherheitsübungsumgebungen über das Internet auf zuverlässige,

sichere und wirtschaftliche Weise zu vermitteln.

vi

Abstract

This thesis discusses challenges in IT security education, points out a gap between

e-learning and practical education, and presents a work to fill the gap.

E-learning is a flexible and personalized alternative to traditional education. Nonethe-

less, existing e-learning systems for IT security education have difficulties in delivering

hands-on experience because of the lack of proximity. Laboratory environments and

practical exercises are indispensable instruction tools to IT security education, but

security education in conventional computer laboratories poses particular problems

such as immobility as well as high creation and maintenance costs. Hence, there

is a need to effectively transform security laboratories and practical exercises into

e-learning forms.

In this thesis, we introduce the Tele-Lab IT-Security architecture that allows stu-

dents not only to learn IT security principles, but also to gain hands-on security

experience by exercises in an online laboratory environment. In this architecture,

virtual machines are used to provide safe user work environments instead of real com-

puters. Thus, traditional laboratory environments can be cloned onto the Internet

by software, which increases accessibility to laboratory resources and greatly reduces

investment and maintenance costs.

Under the Tele-Lab IT-Security framework, a set of technical solutions is also proposed

to provide effective functionalities, reliability, security, and performance. The virtual

machines with appropriate resource allocation, software installation, and system con-

figurations are used to build lightweight security laboratories on a hosting computer.

Reliability and availability of laboratory platforms are covered by a virtual machine

management framework. This management framework provides necessary monitoring

and administration services to detect and recover critical failures of virtual machines

at run time. Considering the risk that virtual machines can be misused for compro-

mising production networks, we present a security management solution to prevent

vii

the misuse of laboratory resources by security isolation at the system and network

levels.

This work is an attempt to bridge the gap between e-learning/tele-teaching and practi-

cal IT security education. It is not to substitute conventional teaching in laboratories

but to add practical features to e-learning. This thesis demonstrates the possibility

to implement hands-on security laboratories on the Internet reliably, securely, and

economically.

viii

Acknowledgements

This thesis would not have been possible without encouragement, guidance, and ad-

vice of Prof. Dr. Christoph Meinel. I deeply thank him for providing the opportunity

and financial support for me to pursue my PhD in Germany.

I am grateful to Dr. Michael Schmitt, Dirk Cordel, and Christian Willems for their

friendly discussion and collaboration in this work. I very much enjoy working with

my colleagues at the Institute for Telematics, University of Trier, and Hasso-Plattner-

Institute. I particularly thank Viola Brehmer, Agnes Jacoby, Gennadij Umanskij,

Mingchao Ma, and Volker Schillings. My thanks are also due to Prof. Zhiheng Lu,

Prof. Dr. Huaqing Wang, and Dan Li for their helpful comments on the thesis.

I owe a great debt to my parents, Daoxian Zu and Dewen Hu for their constant love

and support over the years. This thesis is dedicated to them.

ix

x

Contents

1. Introduction 1

1.1. The Challenge in Practical IT Security Education 1

1.2. Tele-Lab IT-Security: The Concept and Architecture 3

1.3. Solutions to Implementation Problems 5

1.4. Related Work . 7

1.4.1. Multimedia Courseware . 8

1.4.2. Demonstration Software . 9

1.4.3. Simulation Systems . 10

1.4.4. Dedicated Computer Laboratories 11

1.5. Thesis Structure . 12

2. Technical Foundations 15

2.1. Virtual Machines . 15

2.1.1. Fundamental Concepts . 15

2.1.2. Classification of Virtual Machines 16

2.1.3. Benefits of Virtual Machines 19

2.1.4. Virtual Machine Implementations 20

2.2. User-Mode Linux (UML) . 23

2.2.1. The UML Principle . 24

2.2.2. System Structure . 25

2.2.3. Useful UML Features . 27

3. Tele-Lab IT-Security Architecture 31

3.1. Architecture Overview . 32

3.2. The Tele-Lab Portal . 33

3.3. The Virtual Laboratory . 33

3.3.1. Virtual Machines . 33

xi

Contents

3.3.2. The Security Tutoring System 33

3.3.3. The User Work Environment 37

3.4. Virtual Machine Management . 37

3.5. Security Management . 38

4. The Virtual Laboratory 39

4.1. Requirements for Virtual Machines 39

4.2. Virtual Machine Installation . 40

4.2.1. The Virtual Operating System 40

4.2.2. The User Work Environment 43

4.2.3. The Security Tutoring System 44

4.3. User Interfaces . 45

4.3.1. Virtual Network Computing (VNC) 46

4.3.2. The VNC Performance . 46

4.4. System Resource Allocation . 48

4.4.1. Processor Resource Allocation 49

4.4.2. Virtual Memory Allocation 49

4.4.3. Virtual Disk Resource Allocation 50

4.5. Virtual Machine Performance . 51

4.5.1. Performance Benchmark . 51

4.5.2. Benchmark Results . 52

5. Virtual Machine Management 57

5.1. Related Work on Virtual Machine Management 57

5.1.1. UML Management Utility: Mconsole 58

5.1.2. UML Management Daemon: UMLd 61

5.2. Requirements for Virtual Machine Management 61

5.3. Virtual Machine Management Framework 62

5.3.1. The Virtual Machine Assignment Table 62

5.3.2. Virtual Machine Administration 63

5.3.3. Virtual Machine Monitoring 65

5.3.4. User Monitoring . 66

5.3.5. User Notification . 67

5.4. Administration Web Interfaces . 67

5.4.1. The Administration Console 67

5.4.2. The System Status Monitor 70

xii

Contents

6. Security Management 73

6.1. Security Policy on Virtual Machines 73

6.2. Security Requirements for Tele-Lab IT-Security 74

6.3. Security Isolation at the System Level 75

6.4. Security Isolation at the Network Level 76

6.4.1. The iptables Packet Filter . 77

6.4.2. IP-address Reuse for Virtual Machines 81

6.4.3. Packet Filtering for Access Control 83

6.5. Secure User Interfaces . 85

7. Application in E-learning 87

7.1. Range of Application . 87

7.2. Learning with Tele-Lab IT-Security 89

7.2.1. User Registration . 90

7.2.2. User Login . 90

7.2.3. User Logout . 91

7.2.4. Learning Processes . 92

7.3. Case Studies . 93

7.3.1. Password-Based Authentication 93

7.3.2. Symmetric Encryption . 97

7.3.3. Secure Email . 97

8. Conclusions 99

8.1. Summary and Contributions . 99

8.2. Future Work . 101

8.3. Closing Remarks . 102

A. Symmetric Encryption Demonstration 103

B. Secure Email Demonstration 107

B.1. The SMIME Exercise . 107

B.2. The Enigmail Exercise . 112

Bibliography 114

xiii

Contents

xiv

List of Figures

1.1. Architecture of Tele-Lab IT-Security 3

1.2. The tele-TASK client end. 8

1.3. Visualization of the Secure Socket Layer (SSL) protocol. 9

1.4. Cryptool: an eLearning Program for Cryptology. 10

1.5. CyberCIEGE: an information assurance training tool. 11

1.6. Portable Electronic Network (PEN). 12

2.1. Structure of a virtual machine system. 16

2.2. Process virtual machines . 17

2.3. Types of the system virtual machine monitors 18

2.4. System structure of IBM VM/370. 21

2.5. System structure of the User-Mode Kernel. 25

2.6. Structure of the User-Mode processes 26

3.1. Organization of Tele-Lab IT-Security. 31

3.2. An overview of Tele-Lab IT-Security architecture. 32

3.3. Configuration of the virtual machine. 34

4.1. Structure of the virtual machine installation. 40

4.2. The booting screen of a UML virtual machine. 42

4.3. Directories of the virtual machine installation. 43

4.4. The VNC interface to the virtual machine. 47

4.5. Total latency of the thin-client systems. 48

4.6. Process creation time of the performance benchmark. 53

4.7. Memory bandwidth of the performance benchmark. 54

4.8. Filesystem latency of the performance benchmark. 55

5.1. A Virtual PC administration web site. 58

xv

List of Figures

5.2. VMware virtual machine management utility. 59

5.3. Virtual machine management framework. 62

5.4. Mode transition of a virtual machine 64

5.5. The message frame and the “new virtual machine” button. 66

5.6. The detection hook in the VNC applet (in VncViewer.java). 68

5.7. The “System Start” page. 69

5.8. The “System Stop” button. 69

5.9. The “Recover Virtual Machine” button. 70

5.10. Structure of the system status monitor 70

5.11. Node configuration of the system status monitor. 72

5.12. Graphical view of the system status monitor. 72

6.1. A packet’s journey through the nat chains. 78

6.2. Packet filtering chains. 80

6.3. Port forwarding for virtual machines. 81

6.4. Structure of the virtual network. 84

6.5. VNC tunnelling over SSH. 86

7.1. A user registration page. 90

7.2. The start page of the IT security tutor. 91

7.3. Introduction to password-based authentication. 93

7.4. The password cracker tutorial created by Flash. 94

7.5. The password cracking exercise. 95

7.6. Content of a Linux “passwd” file. 95

7.7. Downloading the “passwd” file. 95

7.8. Cracking the “passwd” file in a root shell. 96

7.9. Submitting the cracking result. 96

A.1. DES demonstration. 103

A.2. The GnuPG tutorial. 104

A.3. The task of the GPG decryption exercise. 105

A.4. Completion of the GPG decryption exercise. 105

B.1. Working environment of the SMIME exercise 107

B.2. Requesting a personal certificate. 108

B.3. Import and configuration of the personal certificate. 109

B.4. The task to digitally sign a message. 109

B.5. Signing a message. 110

xvi

List of Figures

B.6. Verifying the signature for evaluation. 110

B.7. The working environment of the Enigmail exercise. 112

B.8. Creating a PGP keypair. 113

B.9. Publishing the public key. 113

xvii

List of Figures

xviii

List of Tables

3.1. Structure of the Password-based Authentication chapter 35

4.1. Code of the VNC applet page . 47

4.2. System specification of the performance benchmark. 52

5.1. Mconsole management functions. 60

5.2. An example of the virtual machine assignment table. 63

6.1. Internal VNC access points. 82

6.2. The translation table of the VNC access points. 82

6.3. Enforcement of the port forwarding rules. 83

7.1. Topics integrated into Tele-Lab IT-Security. 88

7.2. Topics being developed in Tele-Lab IT-Security. 89

xix

List of Tables

xx

1. Introduction

Computer has significantly changed our everyday life and also the way to acquire

knowledge and skills. Thanks to information and communication technology, dis-

tance education and traditional classroom education are starting to be transformed

to e-learning or online learning [Hiltz and Turoff, 2005]. E-learning increases accessi-

bility to education, greatly reduces cost and time for offering and accessing lectures,

and therefore is able to reflect rapid updating of knowledge [Neal and Miller, 2004].

E-learning also personalizes education. With access to computers or the Internet,

students are free to learn at home or in the workplace and independent from lecture

schedules. For those who wish to receive further or lifelong education, e-learning pro-

vides a mobile and flexible way for them to continue their studies [Meinel et al., 2003].

E-learning has been prevalently applied in computer science education for decades.

Nevertheless, compared with classroom education, e-learning typically has difficulties

in delivering hands-on experience because of the lack of proximity. Particularly, e-

learning has not been a satisfactory means for teaching practical IT security because

it has failed to deal with laboratory environments and real-life exercises. This thesis

is intended to introduce practical features into e-learning and make it a practical

teaching/learning tool for IT security.

1.1. The Challenge in Practical IT Security Education

With increasing emergence of security threats and system vulnerabilities, IT security

has more and more impact on our daily work and life. In order to strengthen public

awareness of IT security, many universities have integrated security courses into their

curricula. Those courses are taught by traditional measures such as textbooks, slides,

or papers. In most cases, however, only theoretical aspects of IT security are covered

and one essential part of education, i.e. hands-on experience, has been neglected.

In very few cases, students has a chance to learn practical skills or to experiment in

1

CHAPTER 1. INTRODUCTION

production environments. In fact, one of the most important purposes of security

education is to prepare the skillful workforce in response to the future security chal-

lenges [Bishop, 2000]. Practical IT security education must meet the need of training

students to apply security technologies for real environments. In this connection, tra-

ditional teaching measures have been proved to be insufficient. There is a need to

provide hands-on security experiences by exercises in laboratory environments.

The problem in practical IT security education now is that known computer-aided

instruction solutions (see Section 1.4) either have difficulties in offering hands-on ex-

periences or are problematical because of immobility and high costs. Multimedia

courseware only provides experience by video or animations, and no real-life expe-

riences are offered. Demonstration software demonstrates cryptographic algorithms

in detail, but neither production tools nor everyday environments are involved. Sim-

ulation systems are not intuitive since they are simulated in abstract environments

where students have no chance to apply production tools. Although security exercises

in dedicated computer laboratories are ideal for students to gain hands-on experience,

laboratory environments are pitifully geographically limited and financially and labor-

intensively expensive.

From a practical point of view, laboratory environments and hands-on exercises are

indispensable instructional tools for IT security education. We believe that integration

of security laboratories and exercises to e-learning is a promising and economical

solution to the problem of practical security education. I.e. supported by e-learning,

individuals will be able to access laboratory resources and practice security whenever

and wherever they want. Nonetheless, transforming security exercises and laboratory

environments into the e-learning form is a challenging task which poses the following

problems:

• Security experiments imply an insecure environment. In most exercises, students

need privilege rights on the computer to perform security operations, which

introduces a risk that a user might compromise the computer system and related

production networks by misusing his/her right.

• Laboratory platforms become unreliable because of security experiments. Er-

rors or failures caused by users may easily result in system corruption and

interruption of learning processes.

• Because of security concern, accessibility to the laboratories is limited only in

2

1.2. Tele-Lab IT-Security: The Concept and Architecture

Linux

Web
Browser

Shell /
 X-interface

Tutor
(Web Server)

Exercise
Scripts

USER TELE-LAB

Figure 1.1.: Architecture of Tele-Lab IT-Security .

universities or colleges. The need of the learners outside the campus can not be

met.

In response to the challenge, we need an architecture for automating administra-

tion and supervision of laboratory environments to reduce workloads and replace the

roles of instructors and administrators with computers. This architecture should also

be able to mobilize laboratory platforms and enable individuals to exercise security

through more flexible tele-teaching or web tutoring systems. Developing such an

architecture is the motivation of this thesis.

1.2. Tele-Lab IT-Security: The Concept and

Architecture

Tele-Lab IT-Security (“Tele-Lab”) is a novel and evolving concept for practical security

education. Tele-Lab is intended to implement a web tutoring system which allows

students to learn about IT security and to gain hands-on experiences in a lightweight

and safe laboratory environment. The teaching subjects covered by Tele-Lab include

various aspects of cryptography and network security such as encryption, certificates,

secure email, authentication, etc. For each subject, Tele-Lab first presents theoretical

basics about the subject field and then provides related security exercises which offer

students a chance to experiment security in a lightweight Linux laboratory.

Figure 1.1 illustrates the concept of Tele-Lab IT-Security. Tele-Lab features a web

user interface. The user end interacts with a tutor which is a web server by using a

standard browser. The role of the tutor is to organize and present teaching materials,

and to prepare and manage interactive security exercises. User work environment is

3

CHAPTER 1. INTRODUCTION

implemented on a native Linux machine. This machine is pre-configured and equipped

with various opensource security tools so that it can be seen as a small security

laboratory. Security exercises are managed automatically by scripts: they are invoked

by the tutor for preparation of exercise. To perform exercises, the user can operate

in the Linux system and apply system programs and security tools via a shell or X-

Window interface. It is up to the tutor to evaluate the user’s result. If necessary, the

evaluation is done by scripts. In such a way, real-life learning/teaching scenarios are

realized.

Tele-Lab was originally a standalone system intended to support security teaching in

a laboratory [Schmitt et al., 2003b, Hu et al., 2003]. Its tutoring system, exercises,

and user work environment are integrated on a single Linux machine. The problem

of this version is that the computer could be easily corrupted by user errors during

exercises. In case of failure, exercises are interrupted and the whole system has to be

recovered using a partition backup.

The Tele-Lab CD/DVD was developed in order to avoid unnecessary recovery costs

and to improve mobility [Hu and Meinel, 2004b]. The entire Tele-Lab system includ-

ing the Linux system and teaching materials is integrated into a Knoppix CD/DVD

[Knopper, 2000]. It is special bootable CD/DVD which runs a live Linux operating

system on a computer without a hard-disk installation. By this means, a portable

and reliable training CD/DVD has been realized. Students can bring it with them-

selves and easily use it on a general PC at home or any place they want. Failures or

errors during learning would not affect hardware or software installations, and can be

simply recovered by rebooting. Nevertheless, live CDs/DVDs have to reserve a large

size of space for the operating system itself. We can not integrate many materials

and exercises because of the space limit. With similarity to the standalone version, it

is only a single-user system because of its local usability.

From the e-learning/tele-teaching point of view, it would be more desirable if students

are able to learn about security and gain hands-on experience over the Internet. The

Tele-Lab IT-Security server [Hu et al., 2004, Hu et al., 2005] is the next generation

of Tele-Lab systems for e-learning. The motivation to develop the Tele-Lab server is

to transform native Tele-Lab systems into a web-based frame and to make laboratory

resource accessible for remote users. The Tele-Lab server inherits the same concept

and has a similar architecture of the previous Tele-Lab systems. The distinct feature

of the server is that it provides separate user work environments which are built with

4

1.3. Solutions to Implementation Problems

virtual machines1 instead of native Linux systems. Virtual machines are only user-

level applications and can be created on a host and connected to a network. Thus,

the entire laboratory network can be cloned on a computer. On each virtual machine,

privilege rights can be freely assigned to users for finishing security tasks. The crash

of the virtual machine can be easily recovered and will not affect the other parts

of the Tele-Lab server. By introducing virtual machines into Tele-Lab, laboratory

resources can be conveniently and economically simulated by software, which offers a

great possibility to operate Tele-Lab on the Internet.

1.3. Solutions to Implementation Problems

The Tele-Lab IT-Security architecture is a virtual machine architecture for IT secu-

rity laboratories. By applying this architecture in security education, conventional

security laboratory environments and exercises become available over the Internet.

Though Tele-Lab IT-Security is a novel and pragmatic idea, to realize such a real

system, special implementation problems must be addressed:

• Functionality. In order to effectively clone those functions which are normally

provided by real laboratory systems, virtual machines must be carefully installed

and configured with appropriate virtual machine software. The user working on

a virtual machine should not notice obvious functional differences from working

on a real operating system.

• Reliability. Users would feel frustrated if services or virtual machines are

frequently interrupted by failures or following recovery procedures are slow.

Prompt detection of the virtual machine errors and fast recovery from failure

are necessary to guarantee service availability.

• Security. With privileges allowed on virtual machines and Internet connec-

tions, the Tele-Lab virtual machine might be converted by its user to an attack

workstation and endanger production networks. User activities on the virtual

machine must be under control and misuses of laboratory resources should be

prevented by security measures.

1Virtual machines (“VM”) are software applications for simulating a physical computer (see Chapter
2).

5

CHAPTER 1. INTRODUCTION

• Performance. In order to run virtual machines as many as possible, the Tele-

Lab server must provide enough system resources. On the other hand, perfor-

mance is crucial for individual virtual machines. The Tele-Lab server has to

manage simultaneous access and each virtual machine has to possess reasonable

resources for its user.

The main contributions of this thesis include the proposal of the Tele-Lab IT-Security

architectures [Schmitt et al., 2003b, Hu and Meinel, 2004b, Hu et al., 2004] and a set

of solutions for effective implementation of functionality, reliability, security, and per-

formance of security laboratories based on virtual machines [Hu and Meinel, 2004a,

Cordel, 2004, Hu et al., 2005].

The virtual machine approach applied in Tele-Lab IT-Security has proved to be able

to simulate laboratory platforms on a host machine [Hu and Meinel, 2004a]. System

resources (processor, memory, and file-systems), software installation, system config-

uration, and user interface of virtual machines are well organized in Tele-Lab, so that

virtual machines can be used as lightweight laboratories at a reasonable performance

[Hu et al., 2005].

The virtual machine management framework presented in this thesis addresses re-

liability and availability of Tele-Lab IT-Security [Cordel, 2004, Hu et al., 2005]. In

this framework, virtual machine administration and monitoring services are realized.

With those monitoring and recovery services, critical failures of virtual machines dur-

ing learning can be detected and recovered at run time.

This thesis specially addresses the security aspect of Tele-Lab IT-Security architec-

ture [Hu et al., 2005]. Security requirements of the Tele-Lab architecture are analyzed

firstly. Then system security isolation between virtual machines and the host is ex-

amined. Next, a network-level security solution is presented. This solution effectively

enforces access control through the destination Networking Address Translation tech-

nique and firewalls.

Technical solutions described in this thesis offer the possibility to implement the

Tele-Lab IT-Security as practical e-learning systems for security education, and also

provide advanced features which distinguish it from other security teaching/learning

approaches.

• Distinct from multimedia courseware and demonstration software, Tele-Lab IT-

Security not only implements the features of conventional tutoring systems for

6

1.4. Related Work

teaching theoretical facts, but also provides students with realistic laboratory

experience.

• In Tele-Lab IT-Security, user’s laboratory environments are simulated by

lightweight virtual machines. Those virtual machines provide a real operat-

ing system environment with appropriate configurations and opensource secu-

rity software installations. Therefore, differing from those simulation systems,

Tele-Lab IT-Security offers students a real-life laboratory environment instead

of limited simulation; compared with dedicated security laboratories, Tele-Lab

IT-Security implements mobility of learning and economization of cost and ef-

fort.

• Tele-Lab IT-Security has a thin web user interface. With this interface, no

additional software is required to install on the user-end; tools or programs

needed in the security exercise are accessible via a VNC applet2.

• Virtual machine management of Tele-Lab IT-Security provides high reliability

and availability. Critical system errors or failures of the virtual machine can be

detected and recovered automatically. Thus, even though dangerous security

experiments are allowed on the virtual machine, the entire Tele-Lab system still

remains a reliable manner.

• User activities in Tele-Lab are constricted in a safe scope by security man-

agement. Risks of compromising production networks by misuse of laboratory

resources are eliminated by security isolation measures.

1.4. Related Work

Currently, four categories of computer-supported learning/teaching measures are

applied in IT security education [Schmitt et al., 2003a]. They include multimedia

courseware, demonstration software, simulation systems in specific problem areas of

IT security, and dedicated computer laboratories for security experiments.

2Virtual Network Computing (“VNC”) is a remote desktop access system based on the Remote
Frame Buffer (RFB) protocol (See Section 4.3.1).

7

CHAPTER 1. INTRODUCTION

Figure 1.2.: The tele-TASK client end.

1.4.1. Multimedia Courseware

Supported by web and multimedia technologies, e-learning courseware has proved to

be an intuitive way to digitize lectures or to demonstrate security processes. Today,

multimedia courseware has been prevalently applied in web-based tele-teaching or e-

learning. For example, tele-Task [Schillings and Meinel, 2002] is a state-of-the-art e-

learning solution which has offered a variety of online security lectures and seminars3.

All lectures are recorded and encoded as Real or MPEG-4 audio and video streams

which can be viewed synchronously or asynchronously by using a web browser (see

Figure 1.2). The Institute for Telematics at Trier [Institut für Telematik, Trier, 2001]

developed a set of Flash animations to demonstrate security protocols such as en-

cryption and firewalls. Figure 1.3 shows a demonstration for the Secure Socket Layer

protocol (SSL) which visualizes interactions happening in each step of the protocol.

In fact, security courseware for e-learning is a clone of traditional blackboard lectures

by computer visualization or video technologies. Pitifully, no hands-on experiences

are offered.

Parallel to academic e-lectures, there are a lot of web-based security training courses

which are available in industry. E.g. Hill Associates is a big training service provider

in the field of telecommunications and security4. Its virtual classroom training courses

are offered based on voice-over-IP, video presentations, application sharing, and white-

board featured technologies, by which professionals can learn, interact, and collabo-

rate across the Internet. Similar training programs can be also found at RSA Security5

3Tele-TASK http://www.tele-task.de/.
4Hill Associates. “What training should be”. Available at http://www.hill.com/training/.
5RSA Security. “RSA Product Training”. Available at http://www.rsasecurity.com/training/.

8

http://www.tele-task.de/
http://www.hill.com/training/
http://www.rsasecurity.com/training/

1.4. Related Work

Figure 1.3.: Visualization of the Secure Socket Layer (SSL) protocol.

and NetIQ6. Most industrial web courses address the training for particular products

and very often they have to arrange hands-on workshops in the last phase of the course

to offer trainees chances to apply techniques or tools. Therefore, in the practice phase,

industrial online programs still have to resort to traditional face-to-face interaction

which requires manual preparation of working environments and supervision through

exercises.

1.4.2. Demonstration Software

Demonstration tools such as Cryptool [Esslinger, 2002] and CAP (“Cryptographic

Analysis Program”) [Spillman, 2002] are educational software suits which are used

to teach or learn about cryptography and cryptanalysis. Cryptool is a free software

program for demonstrating encryption algorithms and analysis procedures (see Figure

1.4). CAP is used to explore different implementations of the ciphers in a classical

cryptology course. CAP also provides necessary tools for breaking ciphers.

The common feature of security demonstration software is that they provide an in-

teractive user interface through which students are able to test real algorithms with

various parameters. In this sense, demonstration software provides more practical fea-

tures than multimedia courseware. This approach is mainly used to support teaching

academic aspects of information security. But neither production tools nor everyday

environments are involved in the learning or teaching processes.

6NetIQ. “NetIQ Training”. Available at http://www.netiq.com/training/.

9

http://www.netiq.com/training/

CHAPTER 1. INTRODUCTION

Figure 1.4.: Cryptool: an eLearning Program for Cryptology.

1.4.3. Simulation Systems

There are a few simulation systems for training students in specific problem areas of IT

security. E.g. ID-Tutor [Rowe and Schiavo, 1998] and the intelligent tutoring system

in [Woo et al., 2002] are intended to familiarize students with intrusion detection. ID-

Tutor creates audit files with information on user logins and executed commands. A

user has to make a decision about whether an intrusion has occurred, and, in case of an

intrusion, he/she must resolve the problem. The tutoring system in [Woo et al., 2002]

is very similar to ID-Tutor except that it generates security missions from a knowledge

base. Both tools implement a simulation environment where students are able to

apply commands to fulfill their tasks. CyberCIEGE [Irvine and Thompson, 2004] is

a computer simulation game to teach computer security principles. As shown in Figure

1.5, players construct computer networks, and make choices affecting the ability of

these networks and the virtual users to protect valuable assets from attacks.

Simulation systems offer students chances to perform operations for accomplishing

“real” tasks such as identifying intrusion and recovering or cleaning systems. Nonethe-

less, those security operations are not really performed but simulated in an abstract

environment. In fact, real computer systems can be modeled by such simulations only

to a very limited degree. Simulation systems increase interactivity to some degree but

still offer students no chance to apply real world tools and to see what’s going on in

practice.

10

1.4. Related Work

Figure 1.5.: CyberCIEGE: an information assurance training tool.

1.4.4. Dedicated Computer Laboratories

As a part of security education, security laboratories and related exercises have been

developed in many universities. Usually those security exercises are arranged on ded-

icated computer networks which are separated from production networks for security

reasons. E.g. U.S. Military Academy [Ragsdale et al., 2003] developed an isolated

laboratory for information assurance education. In this environment, students are

able to familiarize themselves with various known computer exploits and exercise

to employ technical measures to defend their network against such exploits. The

George Washington University [Hoffman et al., 2003] has built a portable education

network for assisting the study of computer security. This network comprises three

distinct policy domains: attack, target, and administrative domains (see Figure 1.6).

In the attack domain, students can use computers to attack the servers in the tar-

get domain. The administrative domain is concerned with configurations of firewalls

for isolation of domains, and recovery of broken stations of the target domain with

backup images. Other similar laboratory projects include intrusion detection experi-

ments in [Lindskog et al., 1999] and live security exercises (“treasure hunt”, “capture

flag”, etc.) on a testbed network in [Vigna, 2003].

Compared to other approaches, dedicated computer laboratories are ideal environ-

ments for practical security teaching because security exercises are performed by ap-

plication of production software in real systems. However, practical education by

laboratory measures normally results in high costs:

On the one hand, for financial reason, not every institution can afford dedicated net-

11

CHAPTER 1. INTRODUCTION

Figure 1.6.: Portable Electronic Network (PEN).

works which require expensive hardware/software investment and intensive admin-

istration effort to create, configure, and maintain laboratory environments. Besides

administration, extra workforce such as instructors or teaching assistants is needed

to prepare, supervise, and evaluate exercises.

On the other hand, most security exercises require system level access to the oper-

ating system. If students are allowed a privilege right on their computer, misusing

their system becomes possible and easier. This introduces serious security risks and

management inconvenience [Vigna, 2003]. For security reason, dedicated networks are

normally separated from production networks and accessible only from fixed locations

(e.g. instructional laboratories in universities). This implies that security laboratories

pitifully fail to benefit a wider range of user groups such as those who cannot access

university facilities.

1.5. Thesis Structure

The following chapters are organized as follows:

To help explaining the Tele-Lab IT-Security architecture, technical foundations are

provided in Chapter 2. General concepts of virtual machines and the User-Mode

Linux virtual machine monitor are introduced in this chapter. Chapter 3 provides

an overview of the Tele-Lab IT-Security architecture and highlights main functional

components.

The next chapters including Chapter 4, 5 and 6 explain the design and implementation

of the Tele-Lab IT-Security architecture in detail. Chapter 4 introduces methods

and procedures to create a virtual laboratory based on the User-Mode Linux virtual

12

1.5. Thesis Structure

machines and also addresses the user interface and performance issues. Chapter

5 is devoted to virtual machine management. The management system framework,

functionalities, and an administration web interface are described in this chapter.

Chapter 6 addresses security aspect of the Tele-Lab IT-Security architecture. Se-

curity isolation at the system and network levels are discussed and related security

management solutions are proposed in this chapter.

Chapter 7 introduces applications of the Tele-Lab IT-Security architecture in prac-

tical security education and presents typical use processes and case studies. Finally,

Chapter 8 concludes the thesis and figures out future work.

13

CHAPTER 1. INTRODUCTION

14

2. Technical Foundations

In order to explain the Tele-Lab IT-Security architecture, necessary technical founda-

tions are provided in this chapter. The most important technical foundation of this

architecture is virtual machines. We create virtual machines for providing users with

a virtual laboratory environment where they can apply production tools. This chap-

ter first explains general concepts of virtual machines and then introduces User-Mode

Linux which is a concrete virtual machine implementation Tele-Lab relies on.

2.1. Virtual Machines

In fact, virtual machine is not a new computing concept. It has been applied in many

significant aspects from partitioning mainframe computing system, to implementing

cross-platform high-level-language applications, and to designing operating systems

for years [Smith, 2005].

2.1.1. Fundamental Concepts

Virtual machines were first developed and used in the 1960s. A famous example is IBM

VM/370 (see Section 2.1.4). The function of the virtual machines at that time was to

partition a large and expensive framework platform into one or more virtual machines

which were similar to the physical machine. Thus, different user groups could run

different operating systems on the shared hardware [Rosenblum and Garfinkel, 2005].

Goldberg defined a virtual machine as:

A hardware-software duplicate of a real existing computer system in which

a statistically dominant subset of the virtual processors instructions exe-

cute on the host processor in native mode. [Goldberg, 1972]

15

CHAPTER 2. TECHNICAL FOUNDATIONS

Host Platform

Guest OS 1

VM Monitor

Guest OS 2

VM Monitor

Guest
process

Guest
process

Guest
process

Guest
process

Guest
process

Guest
process

Figure 2.1.: Structure of a virtual machine system.

A more general definition is:

A virtual machine is a protected and isolated copy of the underlying phys-

ical machine. By this means, each user on a virtual machine is given the

illusion of having a dedicated physical machine. [Sugerman et al., 2001]

Figure 1 illustrates classic structure of a virtual machine. A virtual machine is simu-

lated by a virtual machine system (VMS). The virtual machine monitor (VM Moni-

tor) is referred to the VMS software which creates a virtual machine [Goldberg, 1974].

The system that runs on a virtual machine called the guest. The underlying physical

machine which supports the VM is called the host [Smith, 2005].

2.1.2. Classification of Virtual Machines

Virtual machines are classified into two categories: process virtual machines and

system virtual machines in general [Smith, 2005]:

Process Virtual Machines

A process virtual machine is a virtual platform which executes an individual process.

The virtual machine is created only if a process is created and terminates when the

process terminates. The VM monitor that implements a process VM is also named

“runtime software” (runtime for short).

Figure 2.2 depicts process virtual machines. The process VM monitor (runtime) lies

on top of an operating system and supports user applications at the Application

Binary Interface or Application Programming Interface level.

16

2.1. Virtual Machines

Host OS

Runtime

Guest
process

Host Hardware

Host
process

Host
process Runtime

Guest
process

Figure 2.2.: Process virtual machines

In various contexts, process virtual machines are used for replication, emulation, and

portability.

• Multiprogramming operating systems provide a replicated process-level virtual

machine for each of the concurrently executing applications. By doing so, a

process has its own address space, registers, and file structure. This gives each

process the illusion of having a complete machine to itself.

• Another role of the process virtual machines is dynamic binary translators that

emulate or interpret program binaries in a guest instruction set to host instruc-

tions at runtime. E.g. the Intel IA32-EL allows Intel IA-32 application binaries

to run on Itanium hardware.

• The process VMs also provide full cross-platform portability. High-Level-

Language (HLL) VMs like the Java VM architecture and the Microsoft .NET

framework do not directly virtualize any real platform. Instead, HLL code is

compiled into general abstract machine code. Each host platform implements

a process virtual machine which is able to interpret abstract machine code into

native code.

System Virtual Machines

A system virtual machine provides a complete, persistent system environment that

supports an operating system along with its many user processes. It provides the guest

operating system with access to virtual hardware resources, including networking,

I/O, and perhaps a graphical user interface along with a processor and memory.

17

CHAPTER 2. TECHNICAL FOUNDATIONS

Hardware

Non-privileged
Modes

Virtual
Machine

VM
Monitor

Privileged
Modes

(a) Native virtual machine
monitors

Hardware

Virtual
Machine

Host
OS

(c) Hybrid virtual machine
monitors

VM
Monitor

VM
Monitor

Hardware

Virtual
Machine

Host
OS

(b) User-mode virtual machine
monitors

VM
Monitor

Non-privileged
Modes

Privileged
Modes

Non-privileged
Modes

Privileged
Modes

Figure 2.3.: Types of the system virtual machine monitors

The system VM monitor is between the host hardware machine and the guest software.

The primary role of the VM monitor is to support multiple, isolated guest operating

system environments simultaneously on a single-host hardware platform.

System virtual machine monitors can be further classified into three types: native

VM monitors, User-Mode VM monitors, and hybrid VM monitors according to the

lower-level platform they are built upon [King et al., 2003, Smith, 2005] (see Figure

2.3).

• Native VM monitors, e.g. IBM VM/3701 and Disco2, are implemented directly

on the machine hardware. This type of the VM monitor is an operating sys-

tem or kernel with virtualization capabilities to simulate machines. It performs

scheduling and resource allocation for all virtual machines in the system and re-

quires drivers for hardware peripherals. The VM monitor runs in the privileged

mode, and the guest OS on a virtual machine runs in the user mode.

• User-Mode VM monitors such as SimOS3, User-Mode Linux4, and UMLinux5

are built completely on top of a host operating system. This type of the VM

monitor runs as a user mode application on a host OS and relies on the host for

memory management, processor scheduling, resource allocation, and hardware

drivers.

1See Section 2.1.4.
2Disco http://www-flash.stanford.edu/Disco/.
3SimOS http://simos.stanford.edu/.
4See Section 2.2.
5See Section 2.1.4.

18

http://www-flash.stanford.edu/Disco/
http://simos.stanford.edu/

2.1. Virtual Machines

• Hybrid VM monitors not only operate on the physical hardware, they also

use the host OS to perform I/O. E.g. VMware workstation6 and Microsoft

virtual PC7 use the host operating system to access some virtual I/O devices.

Therefore, parts of the VM monitor run in the privileged mode and other parts

run in the non-privileged mode. A hybrid VM monitor has the advantages

from both the Native and User-Mode VM monitors and avoids the performance

penalties of User-Mode VM monitors.

2.1.3. Benefits of Virtual Machines

Today, virtual machines have proved to be a successful technology which benefits

many aspects of information technologies [King et al., 2003, Robin and Irvine, 2000,

Chen and Noble, 2001].

• Multiplex of Hardware Resource. Virtual machines allow concurrent execution

of different operating systems on a single host machine. Thus, users can conve-

niently run applications on various operating systems.

• Supporting IT Education. Virtual machines have the same properties of the real

machines and could run various operation systems. This provides a simple and

economical laboratory environment where students are allowed to experiment

with different operating systems. Moreover, virtual machines can be used to

simulate a network of independent computers on a single host. E.g. in or-

der to support practical teaching of data communications, the Virtual Network

Laboratory (VNL) was built by User-Mode Linux servers [McEwan, 2002]. Reg-

ular construction and reconfiguration of complex internets in VNL can be done

easily with virtual machines. Damage or destruction of virtual machines in

experiments would not bring any adverse effect on the underlying host system.

• Improving Software Testing. Virtual machines can provide a software environ-

ment for testing and debugging operating systems or privileged software, which

is more convenient than using a physical machine. For testing particular appli-

cations, it is also possible to create virtual machines with desired configurations

and resource without presence of real resource on the physical machine.

6See Section 2.1.4.
7See Section 2.1.4.

19

CHAPTER 2. TECHNICAL FOUNDATIONS

• Security Isolation. Isolation is the most dominating motivation of developing

VM monitors. The VM monitor provides strong isolation among virtual ma-

chine instances which are running concurrently on the same hardware platform.

If security on a virtual machine is breached or if a failure happens in a virtual

machine, the software running on other virtual machines or the host system is

not affected. Thus, a single server is allowed to run multiple, un-trusted appli-

cations safely. Also, with the isolation, it is possible to operate solid security

services such as security logging and intrusion monitoring systems.

• Performance Isolation. This is another essential isolation offered by virtual

machines. Machine resources, such as CPU time, memory, or disk space, can

be allocated between competing users by VM monitors. A virtual machine can

be given access to a certain amount of machine resources, and it will not exceed

those resources. If a resource-intensive application runs inside a virtual machine,

the performance inside that virtual machine would be poor, but it would not

affect performance of the host or of other virtual machines.

There are many other benefits from virtual machines. Virtual machines have been

applied in virtual hosting service8 and creating virtual distributed or Grids computing

environments with lower costs and reduced complexity [Ruth et al., 2005]. Virtual

machine technology is also used to simulate old machines for historical reasons9.

2.1.4. Virtual Machine Implementations

There are a large variety of commercial and open source virtual machine monitors.

This section will introduce some important implementations.

IBM VM/370

The IBM System/370 mainframes were introduced in the 1960s. A research team of

IBM built a program called Control Program (CP) which gave the illusion of several

standard 370 machines [Canon et al., 1980]. CP could efficiently run a simple single

user operating system called Conversational Monitor System (CMS) on the virtual

machines. Later, CP was developed into VM/370 which can run CMS, DOS/VS,

OS/VS, etc. Today, it has been renamed IBM z/VM10 and runs Linux VMs on an

8“What are people using it for”? http://user-mode-linux.sourceforge.net/uses.html.
9The computer history simulation project http://simh.trailing-edge.com/.

10IBM z/VM http://www.vm.ibm.com/.

20

http://user-mode-linux.sourceforge.net/uses.html
http://simh.trailing-edge.com/
http://www.vm.ibm.com/

2.1. Virtual Machines

Figure 2.4.: System structure of IBM VM/370.

(picture source: [Canon et al., 1980])

IBM mainframe.

Figure 2.4 is a historical picture that depicted VM/370 in the 1970s. CP controls the

real hardware resources, and users interface with the system through virtual machines.

Each virtual machine is a logical replica of a 370 hardware system complete with

virtual processor, memory, channels, devices, clocks, etc. CP is typically run an

operating system in each virtual machine, e.g. CMS, other 370 operating system, and

even a virtual CP, concurrently.

Xen

Xen [Barham et al., 2003] was originally developed at University of Cambridge. It

aims to efficiently partition a single machine to enable multiple independent clients for

providing protection, resource isolation, and accounting. Xen is a native system VM

21

CHAPTER 2. TECHNICAL FOUNDATIONS

monitor or ‘hypervisor’, for the x86 processor architecture. Xen has to partly modify

the hosted guest operating systems instead of virtualization of the whole underlying

hardware. Xen support is available for increasingly many operating systems including

Linux 2.4/2.6, NetBSD, Plan 9, and FreeBSD 5.

An Xen system consists of multiple layers. The lowest and most privileged layer is

Xen itself. Xen then runs multiple secure virtual machines, each of which is running a

guest operating system. A created Xen virtual machine is called a domain. Domains

are scheduled by Xen to make effective use of the available physical CPUs. Each

guest OS manages its own applications, e.g. scheduling processes under the resource

allocated to the virtual machine by Xen.

VMware

VMware is virtualization software from VMware, Inc.11 VMware was originally devel-

oped at the Stanford University for partitioning x86-based workstations and servers

into separate virtual machines, each of which containing its own copy of the OS.

Operating systems currently supported by VMware as a guest include Windows

/2000/NT/XP, FreeBSD, Solaris, Netware, DOS, and Linux. VMware workstation

[Sugerman et al., 2001] is a hybrid VM monitor which allows itself to co-exist with a

host operating system. VMware workstation consists of (1) a VM monitor to virtu-

alize CPU, (2) a VM application that accesses I/O through the host OS, (3) a VM

driver for transitioning between them. Thus, the VM monitor is allowed to deal with

the diversity of PC hardware and to be compatible with legacy software. Currently,

Windows NT/2000/XP and Linux can serve as hosts.

Virtual PC

Microsoft Virtual PC [Microsoft, 2004] was originally developed by Connectix Corp.

It supports various guest operating systems such as Windows 9x/NT/2000/XP, MS-

DOS, OS/2, and Linux. Virtual PC is a hybrid VM monitor and runs as a system

service on the host OS (e.g. a Windows 2003 server). It is a virtualization layer which

manages virtual machines and provides hardware emulation. Each virtual machine

consists of a set of virtual hardware with a guest OS and applications. During virtual

machine operations, the VM monitor kernel takes control over the CPU and hardware,

11VMware http://www.vmware.com/.

22

http://www.vmware.com/

2.2. User-Mode Linux (UML)

creates an isolated environment for the guest applications, and run them at the highest

possible performance.

Opensource Virtual Machine Monitors

Following are some popular opensource virtual machine monitors:

• UMLinux 12 was developed at University of Erlangen-Nuernberg, Germany for

use in fault-injection experiments. UMLinux is a User-Mode VM monitor. That

is, the guest OS and applications run as a single process (the guest machine

process) on a host Linux operating system. UMLinux provides a higher-level

interface to the guest OS that is similar to the host hardware and relies on the

host OS to simulate to virtual hardware.

• Bochs13 is a complete emulation of an x86 CPU. It has been ported to several

operating systems (including Win95, NT, and Linux) and various platforms such

as MAC 68x and PPC). Bochs can also be attached to a network. However, it

emulates every x86 instruction in software which makes it very slow.

• Plex86 14 is an extensible open source PC virtualization software program which

allows users to run multiple operating systems concurrently on the same ma-

chine. Plex86 has the similar concept to VMware workstation.

• Wine15 is an implementation of the Microsoft Win32 APIs on top of X-window

and Unix. It is a process virtual machine which can run Windows binary appli-

cations on the x86 platforms.

2.2. User-Mode Linux (UML)

User-Mode Linux (UML) is an opensource VM monitor developed by Jeff Dike

[Dike, 2000, Dike, 2001]. So far, UML has gained great popularity on the Internet.

We have a particular interest in User-Mode Linux because it can create fast, secure

and manageable virtual machines. UML provides a technical basis for this thesis.

12UMLinux is now renamed FAUmachine http://www.faumachine.org/.
13Bochs http://bochs.sourceforge.net/.
14Plex86 http://www.plex86.org/.
15Wine http://www.winehg.com/.

23

http://www.faumachine.org/
http://bochs.sourceforge.net/
http://www.plex86.org/
http://www.winehg.com/.

CHAPTER 2. TECHNICAL FOUNDATIONS

UML is a User-Mode VM monitor, because its virtual machines run in the user space

of the host. Unlike other virtual machine software, UML is a port of the Linux kernel

to Linux, i.e. implements a Linux virtual machine on a Linux host. The UML kernel

is a modified version of the normal Linux kernel. It constructs virtual hardware from

resources provided by the host kernel and is able to run nearly all of the applications

and services that can run on the host.

2.2.1. The UML Principle

Normally, a Linux kernel provides an interface to the underlying hardware (video card,

keyboard, hard drives, etc). User programs access hardware by placing a system call

to the kernel.

The UML kernel plays a different role. It interfaces to a normal Linux kernel on the

host hardware instead of directly talking to the hardware. User programs in UML run

natively as if they were running on a normal kernel. If they need to access hardware,

their system calls are interpreted and redirected by the UML to the host kernel. In

this way, virtual hardware is cleverly simulated by the system call interface, and there

is no need to emulate user space code. More exactly, UML does not simulate a generic

machine architecture but a specific operating system.

The UML supports nearly all types of devices which are usual present in a normal

host. Those virtualized devices include

• Consoles and serial lines. These devices can be attached to a number of various

interfaces on the host, e.g. file descriptors, ptys, ttys, pts devices, and xterms.

• Block devices. UML block devices are normally associated with a file on the

host. This file contains a filesystem and looks like a block device from inside the

virtual machine. A block device file can also used as a swap or as a raw disk.

Block devices are also used to access devices on the host, such as CD-ROMS,

floppies, partitions, and memory devices (/dev/mem). UML block devices can

be layered by the Copy-On-Write driver which allows multiple machines to share

a filesystem16.

• Network devices. They can be attached to most types of software network inter-

faces on the host, such as TUN/TAP, Ethertap, and slip devices. To exchange

16See also Section 2.2.3.

24

2.2. User-Mode Linux (UML)

Host Hardware

Generic Kernel

Architecture Layer Drivers

Generic Kernel

User-Mode
Architecture DriversMozillalsps

Mozillalsps

Figure 2.5.: System structure of the User-Mode Kernel.

(reproduced based on [Dike, 2000])

network packets within a virtual machine network, UML uses a switch daemon

to forward packets, or use a multicast network to send packets directly to each

other. To access the host and the external network, UML uses either ethertap

or slip interfaces on the host.

UML has also implemented support for many of other devices such as SCSI, USB,

audio, and PCI hardware devices.

2.2.2. System Structure

Figure 2.5 illustrates the system structure of the User-Mode kernel. The bottom

layer is hardware with an operating system controlling it. The OS is separated into

two layers. The higher layer is generic kernel which contains code independent of

specific hardware architecture. The layer underneath the generic kernel consists of an

architecture layer and drivers that implement the hardware-specific functions needed

by the generic kernel. On the top of the OS are the system call layer and user-level

processes like ’ls’, ’ps’, and ’mozilla’.

The User-Mode kernel is running on the top of the host kernel layer as user-level

processes. It is structured exactly like the host kernel. UML kernel also has a

generic kernel layer that implements nearly the same code as in the host kernel.

25

CHAPTER 2. TECHNICAL FOUNDATIONS

Process: bash
Pid: 123

User: user

Process: “linux”
Pid: 1234
User: dike

Process: “linux”
Pid: 1365
User: dike

Tracing
thread

PTRACE_SYSCALL

User-Mode
 Kernel

Host Kernel

Process: init
Pid: 1

User: root

Figure 2.6.: Structure of the User-Mode processes

(reproduced based on [Dike, 2000])

The architecture-specific layer (virtual hardware for user processes inside UML) is

implemented by a user-mode architecture layer and drivers.

The most essential part of the hardware that needs to be virtualized is the processor.

The work to emulate a processor involves process management, memory management,

and fault support.

Hardware Emulation

Normally, a process traps directly into the host kernel when it places a system call.

The User-Mode kernel has to convert such switch to real kernel mode into a switch

to virtual kernel mode and execute it in the virtual kernel.

The port of system calls is depicted in Figure 2.6. Every process in the virtual machine

will get a process in the host kernel. That process is nothing but an execution context.

E.g. the process “init” is owned by “root” and has “pid 1” in the virtual machine, but

is mapped to a completely different process “linux” with “pid 1234” and “uid dike” in

the host.

The tracing thread in the host virtualizes the system calls of the other processes by

intercepting them with ptrace. This thread is notified when a thread is entering or

leaving a system call, and has the ability to arbitrarily modify the system call and its

return value. Thus, we can use it to read out the system call and its arguments, drop

the system call, and divert the process into the user space kernel code to execute it.

26

2.2. User-Mode Linux (UML)

Virtual Memory Emulation

The Linux kernel expects the hardware to provide access to physical memory which

is mapped arbitrarily in the virtual memory area of a process or the kernel. The

emulation of virtual memory is done by creating a file on the host which is the same

size of the physical memory we allocate to the virtual machine. This file is mapped

as a contiguous block into the physical memory area of the UML address space.

When a page is mapped into virtual memory, the page in the underlying file is mapped

into the appropriate position in the virtual address space. By doing so, each page is

treated as a page in the physical memory, and thereby can be mapped into process

or kernel virtual address spaces.

Hardware Fault Emulation

Hardware faults are emulated with Linux signals, i.e. system calls. E.g. SIGSEGV is

used to emulate a memory fault. It is delivered whenever a process accesses invalid

memory. Hardware clock is realized by SIGALRM in the idle thread and SIGV-

TALRM in all other processes. Device interrupts are implemented with SIGIO. A

device operates its IO through a file descriptor. If IO becomes available, SIGIO will

be triggered.

2.2.3. Useful UML Features

Following are several useful features of User-Mode Linux, which have been applied in

Tele-Lab:

• The Copy-On-Write (“COW ”) Block Driver . The Copy-On-Write layering ca-

pability is implemented to UML block devices. It divides a block device into

two files: a read-only shared backing file and a read-write private COW file.

Changes to blocks are stored in the COW file and unmodified blocks remain in

the backing file. Writing is made to the COW file, and reading is made depend-

ing on whether the block to be read has been modified or not. The sparseness of

the COW file helps to reduce the disk space requirement. If a number of virtual

machines are started from the same filesystem and few changes are made, the

overall space consumption is just little more than that of a single UML. There-

fore, the capability of a host machine to run virtual machines is effectively

27

CHAPTER 2. TECHNICAL FOUNDATIONS

improved. This also brings an administration benefit. By using small COW

files, it is much easier to create, copy, and remove filesystem images without

touching the part of a large size. If the virtual machine crashes or important

data missed in the COW file, this can be restored by rolling back the image to

the backing file. In addition, the changes in a COW file can be simply merged

to the backing file by a UML tool.

• The Host File System (“hostfs”) is a virtual filesystem which provides access

to the host filesystems. It turns the “vfs” calls into the equivalent system calls

on the host. Mounted a host file system in the virtual machine is similar to

mounting any usual filesystem. Either the whole host filesystem or individual

directories can be exported to the virtual machine. Accessing a host directory

as root inside UML does not necessarily mean a root access to the host files. If

UML is started as a normal user, accesses by hostfs are under restriction of the

permissions of that user.

• The Management Console (mconsole) allows access into the kernel from the

host. The mconsole provides a simple utility to manage virtual machines. With

mconsole, UML can be shutdown, halted, or re-started, and devices can be

plugged and unplugged. A management client sends requests to the mconsole

driver and receives replies from it through a Unix domain socket. The client is

a simple text-mode command-line client and can be used to build more com-

plicated virtual machine management applications. E.g. this feature has been

integrated to Tele-Lab’s web management interface.

• The Separate Kernel Address Space Mode (the “skas” mode). By default, a

UML process runs under the tracing thread mode (the “tt” mode). That is,

the UML process will get a process on the host. The tracing thread traces

and amends the system calls of the UML processes17. Unfortunately, such a

way to run UML raises security risks and a performance bottleneck. In the tt

mode, the UML kernel space is writeable. By access kernel data, a process can

break out to the host. Also, every system call results in four context switches

(twice than a normal switch), which introduces a performance bottleneck. The

“jail” mode of UML partly fixes this problem by making the kernel data area

readonly. However, the kernel is still be visible and leads to more performance

penalties. The “skas” mode makes the UML kernel run in an entirely different

17See Section 2.2.2.

28

2.2. User-Mode Linux (UML)

host address space from its user processes. This solves the security problems

because the UML kernel is inaccessible to UML processes. It also improves the

performance of UML system calls.

29

CHAPTER 2. TECHNICAL FOUNDATIONS

30

3. Tele-Lab IT-Security Architecture

This chapter presents the design of the Tele-Lab IT-Security architecture. This archi-

tecture is based on the work described in [Hu et al., 2004] and [Hu et al., 2003]. In

fact, virtual machines have already been applied in training for other subjects such

as programming, operating systems, and network technologies. In most cases, how-

ever, those virtual machines are used in laboratories only as supplementary machine

resource. They have not yet been integrated as a component of the online train-

ing/learning systems and included into an automated management frame as Tele-Lab

IT-Security does.

Generally, Tele-Lab is a hierarchical architecture that consists of three layers: the

host layer, the virtual machine layer, and a management layer (see Figure 3.1).

• The Host Layer. The host is the base of Tele-Lab: it is a hosting server for

all Tele-Lab components. The Tele-Lab server provides system resources and

environments for running virtual machines.

• The Virtual Machine Layer. This layer implements full-functional virtual ma-

chines. They are self-contained learning platforms which provide a security tu-

toring system and a well-configured work environment for the user (see Section

1.2).

VIRTUAL MACHINE
MANAGEMENT

HOST

VIRTUAL MACHINES

Figure 3.1.: Organization of Tele-Lab IT-Security.

31

CHAPTER 3. TELE-LAB IT-SECURITY ARCHITECTURE

Browser Virtual Machine
Management

Portal
(Web server)

VM VM

VM VM

Virtual LabUSER

User profileTELE-LAB
SERVER

…
...

Figure 3.2.: An overview of Tele-Lab IT-Security architecture.

• The Virtual Machine Management Layer. The virtual machine management

system is responsible for administration of virtual machines and users. The

management system plays a critical role to make Tele-Lab reliable and secure.

This layered design can effective simplify Tele-Lab management and user interfaces,

and benefit development and maintenance. E.g. virtual machines are self-contained

and changes on them would not affect other layers. It is also possible to apply virtual

machines in different types with appropriate management interfaces.

3.1. Architecture Overview

The Tele-Lab architecture is illustrated in Figure 3.2. There are following main com-

ponents in this architecture:

• The Tele-Lab Portal is the front end of the Tele-Lab server. It provides a web

interfaces through which users can access Tele-Lab and virtual machines via

networks.

• The User Profile defines a user and records his/her performance. It is maintained

by the management system and exported to a virtual machine when a user logs

in.

• The Virtual Laboratory hosts a number of light weight virtual machines which

are connected to a virtual network. Those virtual machines will be assigned to

users as a dedicated learning platform.

• The Virtual Machine Management System manages users and the virtual ma-

chines in the virtual laboratory. Its tasks include assignment, monitoring, and

maintenance of virtual machines.

32

3.2. The Tele-Lab Portal

3.2. The Tele-Lab Portal

The portal is the web interface of the Tele-Lab server. It provides a VNC applet by

which a user can access his/her virtual machine via the browser. This portal is also

the front end of the virtual machine management system. Each time when a user logs

in/out, it contacts the management system to request/release a virtual machine for

the user.

3.3. The Virtual Laboratory

The virtual laboratory is the place where virtual machines are hosted. All the virtual

machines in the laboratory are connected to a virtual network and each of them is

exclusively assigned to a user as a dedicated machine.

3.3.1. Virtual Machines

It is not realistic to apply heavy virtual machine implementations for creating virtual

machines because they need intensive system and administration resources. Instead,

we used those light weight virtual machines built with User-Mode Linux (UML)1.

The virtual machine and host resources are carefully configured so that the Tele-Lab

server is able to host more virtual machines at reasonable performance.

As shown in Figure 3.3, each virtual machine is a self-contained learning and work

platform2 which provides an IT security tutoring system and a well-configured user

work environment. The IT security tutoring system is a local web server on the virtual

machine, which familiarizes users with IT security concepts and techniques. The user

work environment can be seen as a virtual security laboratory in which users are able

to gain hands-on experience from practical exercises.

3.3.2. The Security Tutoring System

The security tutoring system consists of a tutor, a knowledge repository and exercise

scripts, as well as the user profile (see Figure 3.3).

1User-Mode Linux is a software substitution of a real Linux operating system. See Section 2.2.
2Early mentioned in Section 1.2

33

CHAPTER 3. TELE-LAB IT-SECURITY ARCHITECTURE

Knowledge
RepositoryUser Work

Environment

Tutoring System

User
Profile

User-Mode
Linux

Web
Browser

Shell /
 X-Interface

Tutor
(Web Server)

Exercise
Scripts

Figure 3.3.: Configuration of the virtual machine.

The Knowledge Repository

The knowledge repository is a database which stores teaching materials. Those mate-

rials are categorized into the following three types of sections: introduction to security

concepts, tutorials of security tools, and exercises.

1. Concept Sections. Concept sections introduce declarative knowledge of an IT

security subject, e.g. concepts of cryptography or authentication. They are

presented web pages which contain text, figures or animation demonstrations.

2. Tool Sections. For each subject, we selected related security software tools.

The tool sections present short and practically tutorials of those tools. Those

tutorials consist of a series of instruction pages to teach users how to apply them

in real situations. In most case, screenshots or dynamical demos of the tools

are included.

3. Exercise Sections. The exercise sections present the knowledge about how a

security task is performed. They are designed as scenarios in which users must

take step-by-step interaction with the tutoring system. Normally, exercises are

implemented by interactive scripts and users are required to apply the programs

introduced in tools sections on the virtual machine.

Generally a security subject is organized as a chapter which consists of closely related

sections of three types. E.g. as shown in Table 3.1, we have a chapter on password-

based authentication. This chapter includes several sections which cover from basic

password hashing concepts to the real password cracking exercises. The repository

provides Meta information for teaching content organization. Each section has a

34

3.3. The Virtual Laboratory

Table 3.1.: Structure of the Password-based Authentication chapter

Concepts Password hashing (DES and MD5)

The“passwd”file in Linux

Password selection criteria

Tools The passwd command in Linux

The John-the-Ripper Password Cracker

Exercise Cracking random-generated passwords with John-

the-Ripper

description file which tells the profile of the section such as the title, type and pages

it has, etc. Similarly, the description file of a chapter specifies the sections it has.

Thus we can build a hierarchy of the content structure and generate appropriate

links between pages or sections. This feature is helpful for assembling or rearranging

contents without touching individual pages or sections.

The Tutor

The tutor is responsible for presenting teaching contents, navigating users in learning,

and managing exercises execution.

• Content Presentation. The tutor presents materials in the repository. It searches

the repository for the section or chapter description files. Based on those de-

scriptions, the tutor links sections and pages in a structured manner and shows

them as web pages.

• Learning Navigation. The tutor navigates a user in his/her learning. It tells

a user where to start a chapter and where to continue at the end of a section,

and provides help information where necessary. It also records user’s results

into his/her user profile and provides related statistics information about the

performance.

• Exercise Execution. The tutor manages exercises on the virtual machine. It

prepares security tasks and evaluates results of the user by running a series of

exercise scripts.

35

CHAPTER 3. TELE-LAB IT-SECURITY ARCHITECTURE

Exercise Scripts

In implement step-by-step interaction with the user, security exercises contains a num-

ber of interactive scripts which are written in Perl, PHP, or Shell scripting languages.

Those scripts normally apply tools or commands on the virtual machine to prepare

tasks or check results. In an exercise, those scripts are invoked by the tutor in the

following steps:

• The tutor invokes scripts to prepare the laboratory environment and to create

questions or tasks for a user.

• The user applies related security tools and performs exercises on the virtual

machine in order to resolve questions.

• The user creates desired results and submits them to the tutor. The tutor will

use scripts to examine what the user has done and to notify the user of the

evaluation results.

The User Profile

The user profile is used to record user performance, i.e. to keep track of a user’s

knowledge at every stage in a learning process. The user profile is maintained by the

management system and imported into the virtual machine when a user logs in. The

user profile contains two types of information.

• Personal Information. It includes user names, languages, account related infor-

mation, etc3. The user profile is classified into one of three categories (“common

user”, “administrator”, and “IT student”). Different sets of subjects are offered

to those categories, e.g. IT students can take advanced subjects while common

users are only given general subjects which focus on everyday skills or require

less background knowledge.

• Performance Records. Information in performance record includes a list of the

sections the user has finished, time spent on each section, etc. Those data are

used to generate a summary of user performance and to present statistics on

the current status.

3See Figure 7.1 in Chapter 7.

36

3.4. Virtual Machine Management

3.3.3. The User Work Environment

The user work environment is implemented by a virtual machine. The virtual machine

is simulated by the User-Mode Linux and arranged to the baseline installation. Each

virtual machine consists of a virtual operating system kernel and a basic file system

(a Debian installation image), which provide a real and self-contained laboratory

environment for exercises. On the virtual machine, basic system programs, graphical

user interfaces and various open-source security tools are installed and appropriate

configurations such as the user account and various software settings are predefined.

Thus, the user can concentrate on the exercises conveniently and avoid unimportant

setup steps. The local user interface on the virtual machine is simple: a user accesses

the tutoring system by using a local browser; in order to perform exercises, the user

can apply security programs or tools via a shell or an X-window interface. When

necessary, a user is able to switch to a privileged mode and perform system-level

operations.

3.4. Virtual Machine Management

The goal of the virtual machine management system is to ensure the Tele-Lab server

continuously runs in a reliable way. The major management functions include:

• Virtual Machine Administration. The virtual machine management system is

responsible for creation, assignment, and recovery of virtual machines. E.g. it

assigns or reclaims a virtual machine when a user logs in or off.

• Virtual Machine Monitoring. It monitors the system status of each virtual

machine and detect errors or failures. If critical errors are found on a virtual

machine, it will be recovered. The interrupted learning process will be resumed

on a new virtual machine.

• User Monitoring. User activities on a virtual machine are also monitored. If

abnormal use of the virtual machine is found, it will be reclaimed to avoid

unnecessary occupation of virtual machine resources.

• The Tele-Lab Administration Interface. It is a graphical web interface from

which an administrator can operate the Tele-Lab server and monitor the system

performance of the host and virtual machines.

37

CHAPTER 3. TELE-LAB IT-SECURITY ARCHITECTURE

More detailed description of virtual machine management is presented in Chapter 5.

3.5. Security Management

Security is an important factor which we must deal with in every aspect of the Tele-

Lab architecture. Generally, each user is allowed a privilege right on his/her virtual

machine. This situation introduces a serious security problem: users might convert

their virtual machine into an attack station and corrupt the Tele-Lab system or com-

promise production networks. The mission of security management of Tele-Lab is to

implement effective security isolation and to prevent misuse of virtual machines.

• System Security Isolation. Tele-Lab can run the UML virtual machine kernel in

a safe mode. This mode enforces strict access control between a virtual machine

and the host by isolating their processes spaces from each other. System security

isolation can effectively prevent system level attacks from the virtual machine.

• Network Security Isolation. The function of the network security isolation is to

constrain user actions within the scope of his/her virtual machine. Firewalls

can be applied to provide access control and to prevent misuse of the virtual

machines which is intended to attack production systems on the network level.

• Other General Security Protection. Besides hosting virtual machines, the Tele-

Lab host is also a Linux web server. Web security issues such as encryption,

authentication, access control, and availability should be also taken into account.

38

4. The Virtual Laboratory

This chapter describes installation, user interface, resource allocation, and bench-

marks of virtual machines in Tele-Lab IT-Security. Each virtual machine is used as

a learning and laboratory platform in Tele-Lab. The virtual laboratory is a central

place where virtual machines are created, connected to the network, and distributed

to users. As mentioned in Chapter 2, there are many various virtual machine imple-

mentations. All of them differ from each other in functionality, performance, resource

usage, platforms, and so on. To find applicable virtual machine software and create

effective virtual machine installation are challenging and effort-intensive. We need to

investigate mainstream virtual machine software to find a functional and manageable

one. We have to create virtual machines with appropriate configurations and user in-

terfaces. We also need to benchmark those virtual machines and the Tele-Lab system

to determine their performance and usability.

4.1. Requirements for Virtual Machines

The most important goal of the virtual laboratory is to provide substitution of the

real machines by virtual machines. To create virtual machines, we must consider the

following issues:

• Real environments. The user work environments (including operating systems,

accounts, software, and configuration) provided by virtual machines must be as

close to those of real machines as possible.

• Lightweight platforms. Resources of a physical host are fixed. Virtual machines

must be compact and each of them should not demand a large amount of the

CPU, memory, and disk space consumption. Thus, one host could support as

many virtual machines as possible.

39

CHAPTER 4. THE VIRTUAL LABORATORY

Debian Linux Server

Software applications
(Browser, E-mail, Shell,

Security Tools, etc.)

User
Configurations

Virtual OS

Host OS

User Work
Environment

File System
(Debian Linux Installation)

Virtual Kernel
(User-Mode Linux)

Web Software
(Apache server,

scripting language)

Web Content
Security
Tutoring
System

Figure 4.1.: Structure of the virtual machine installation.

• Reasonable performance. We have to make a trade-off between the number of

the virtual machines we desired to run and the performance on each virtual ma-

chine. In general, a virtual machine user should not notice obvious performance

difference from a real machine. Also, we need to examine performance of the

user interface regarding its usability for different bandwidths.

4.2. Virtual Machine Installation

Figure 4.1 depicts the structure of a virtual machine installation which consists of

three main components: a virtual operating system, a user work environment, and

the tutoring system.

4.2.1. The Virtual Operating System

Basically, each of three types of system virtual machine monitors1 can be used to

create virtual machines. There are following reasons which persuade us to choose

User-Mode Linux instead of other types of virtual machine monitors.

• As a user-mode virtual machine monitor, User-Mode Linux simulates a virtual

Linux operating system on a native Linux operating system. This type of vir-

tualization makes virtual machines resource-friendly.

1Native, user-mode, and hybrid system virtual machine monitors (see Section 2.1.2)

40

4.2. Virtual Machine Installation

• User-Mode Linux virtual machines are created as normal processes on the native

operating system. They can be managed and controlled as ordinary software

applications.

• User-Mode Linux is a simple and open implementation. Its virtual machines

can be easily integrated into a special-purpose application (e.g. Tele-Lab IT-

Security) or customized for individual needs.

As shown in Figure 4.1, the host is a standard Debian Linux server which runs a

User-Mode Linux (UML) monitor (version 2.4.26-3um). The virtual machine created

by UML is a virtual operating system which consists of a virtual kernel and at least

one virtual disk partition. We use the following code to start a UML virtual machine

from the command-line:

$ /usr/bin/linux ubd0=/uml/uml rfs file con=xterm mem=

64M eth0=tuntap, , ,192.168.0.1 umid=uml vm 1

/*Options:

ubd0: the file contains a UML root filesystem.

con: the virtual terminal of the UML machine.

mem: pseudo-physical memory allocated for the UML machine.

eth0: the virtual network interface.

umid: the unique identity of the UML machine.

*/

Figure 4.2 shows the booting screen of a UML virtual machine. The booting procedure

of a virtual machine is very similar to that of a native Linux machine. The only

difference between both is that the virtual machine is started from a user terminal

instead of on real hardware.

UML only creates a virtual Linux 2.4.26-3um kernel (see Figure 4.2). Like any native

Linux system which runs on disk partitions, the UML virtual machine needs at least

one disk partition as a root filesystem. The virtual disk device is simulated with a file

in the host OS. The following commands are used to generate a typical “ext2”2 root

filesystem in a file.

2The second extended high performance Linux disk filesystem.

41

CHAPTER 4. THE VIRTUAL LABORATORY

Start of the
UML virtual

machine

Start of the
login

session

Virtual
kernel

Figure 4.2.: The booting screen of a UML virtual machine.

/* create an empty root filesystem file(300MB) */

$ dd if=/dev/zero of=uml rfs file count=300 bs=1M

/* format it as ext2 filesystem */

$ /sbin/mke2fs -Fq uml rfs file

The generated filesystem is empty. We need to create a Debian installation on the

filesystem so that the UML kernel is able to run a basic Debian Linux with necessary

programs (including drivers, shell, essential system and graphical programs). The

Debian installation for virtual machines is special compared with a normal installation

because it must match a virtual kernel instead of a real kernel. The way to make the

installation of this kind is to hack a normal Debian installation procedure:

The first step is to extract an installer, root.bin from the Debian rescue floppy3. The

next step is to boot the UML machine from this installer:

linux mem=64M initrd=root.bin fakehd fake ide

ubd0=uml rfs file con=xterm eth0=tuntap, , ,192.168.0.1

3The floppy image is available from any Debian mirror site, for example:
http://http.us.debian.org/debian/dists/woody/main/disks-i386/current/

images-2.88/rescue.bin.

42

http://http.us.debian.org/debian/dists/woody/main/disks-i386/current/images-2.88/rescue.bin
http://http.us.debian.org/debian/dists/woody/main/disks-i386/current/images-2.88/rescue.bin

4.2. Virtual Machine Installation

Figure 4.3.: Directories of the virtual machine installation.

Then, a normal installation process starts. The special thing with this installer is

we have to insert a UML virtual kernel directory into the kernel library directory

before the installer configures device drivers4. After the installer sets up a basic

system on the filesystem, additional application packages can be installed by an online

package update tool, APT. Figure 4.3 is the screenshot of a virtual machine desktop.

The file manager window shows the directory structure of a typical virtual machine

installation.

Another way to install a root filesystem is to download an archive of the basic Debian

packages5, unpack it, and create a base filesystem installation in the root filesystem

file.

4.2.2. The User Work Environment

The user work environment is the place where a user finishes his/her exercises. It

requires necessary software installation and appropriate configuration.

1. Support Software: Basic system programs include a number of shell programs

such as editors and administration tools. They are normally installed when we

4This is because the UML kernel version is unlikely to match the installer’s standard kernel version,
and the installer is unable to find the modules directory for the current kernel.

5Available from ftp://ftp.debian.org/debian/dists/woody/main/disks-i386/
base-images-current/basedebs.tar.

43

ftp://ftp.debian.org/debian/dists/woody/main/disks-i386/base-images-current/basedebs.tar
ftp://ftp.debian.org/debian/dists/woody/main/disks-i386/base-images-current/basedebs.tar

CHAPTER 4. THE VIRTUAL LABORATORY

create a UML virtual machine installation. For access to the local tutoring

system, a simple graphical user interface (X-window and the XFCE window

manager) and a standard web browser (Mozilla-firefox) are installed on the

virtual machine, so that a user can access the local tutoring server. Other

software applications are installed depending on the requirements of specific

teaching topics and exercises. E.g.

• GunPG6 is an opensource PGP program which is required when teaching

encryption.

• John-the-Ripper is a Linux password cracker which is used in teaching

Password-based Authentication.

• The Exim mail server, OpenSSL, and a Mozilla-thunderbird email client

are applied for teaching Secure Email.

2. Configuration: Appropriate configuration makes the user interface friendly

and convenient. When a virtual machine is assigned to the user, the user account

and related configuration are automatically applied. E.g. “bob” is a default

account on the virtual machine, and using this account is enough in most case.

If privileged operations are needed, the user is able to switch to a root mode

easily by clicking a shortcut icon. Another important configuration is the email

account. Some exercises need it for exchanging email between the tutoring

system and the user. Related account settings for a local mailing server and a

Mozilla-thunderbird client are also prepared in advance, so that the user can

concentrate on the exercise without taking care of unimportant setups.

4.2.3. The Security Tutoring System

The security tutoring system is a local web server on the virtual machine as mentioned

in Section 3.3.2. The web contents of the tutoring system are a series of HTML or

PHP pages and a number of CGI programs such as Perl scripts, shell scripts, and

executable programs. So, web-related tools such as an Apache web server as well as

the PHP4 and Perl interpreters are installed on each virtual machine.

It is not necessary that each virtual machine has a copy of this web directory. In-

stead, web contents are hosted in a directory of the host and shared by each virtual

6The GNU Privacy Guard (GunPG) http://www.gnupg.org/.

44

http://www.gnupg.org/

4.3. User Interfaces

machine through the host filesystem (see Section 2.2.3). Thus, web contents can be

conveniently synchronized without touching the local installation of individual virtual

machines. Also, this directory is used to handle user profiles which are shared between

the portal server (on the host) and the tutoring system (on the virtual machine). The

user profile can be copied to the virtual machine through this directory when a user

session starts and will be copied back to the host when the user session is over.

4.3. User Interfaces

Each virtual machine must provide a local graphical user interface (see Section 4.2.2),

so that the user can access the local tutoring server by using a Mozilla browser and

perform exercises with shell or X-window programs. Meanwhile, the host needs to

provide a user interface for remote access to the virtual machine. Through this inter-

face, the user is able to run programs on the virtual machine. In general, there are

two approaches to implement such a user interface.

1. Special-purpose command interfaces: it is possible to design a special interface

for each security program which a user might apply. Thus, commands from the

user will be sent to an agent on a remote machine via this interface. The agent

interprets and executes commands on behalf of the user. Then the results will

be sent back to the user and displayed in the browser.

2. A thin user interface: it allows a user to access the graphic desktop of a remote

computer and avoids interpreting commands of specific applications. Only the

user’s keystrokes and mouse input will be sent to a server on the remote machine,

and any change on the remote desktop will cause updates of the client view.

The first approach is a widely applied in software training. It can handle

many command-line applications such as database or high-level language programs

[Cao et al., 2002]. However, it can not deal with programs with a graphical interface,

and it is not efficient to design command interpreters for all involved programs. The

advantage of the second approach lies in the fact that it provides a universal interface

for all applications (those of both command-line and graphical kinds) and there is no

necessity to understand the commands of each application. Considering the situation

that various security programs (including graphical ones) will be applied on the vir-

tual machine, we chose to create a thin user interface based on the Virtual Network

Computing technology (see Section 4.3.1).

45

CHAPTER 4. THE VIRTUAL LABORATORY

4.3.1. Virtual Network Computing (VNC)

Virtual Network Computing (VNC) [Richardson et al., 1998] is a remote display sys-

tem. VNC allows its users to view a computing desktop environment not only on

the machine where it is running, but from anywhere on the Internet. VNC uses a

dedicated remote desktop access protocol, the Remote Frame Buffer (RFB) protocol.

Based on the RFB concept, input from a remote client is collected and sent to a VNC

server. Updates of the server are encoded, compressed, and then sent back to the

client. Since it works at the frame buffer level, it can be applicable to all operating

systems, windowing systems, and applications e.g. X-window on Unix and MS Win-

dows. The protocol operates over any reliable transport such as TCP/IP and SSH

tunnels. VNC implements a thin-client interface because it makes very few require-

ments of the viewer. In this way, clients can run on the widest range of platforms.

TightVNC 7 is an enhanced version of the original VNC. It has a better image com-

pression algorithm which can improve the VNC performance over WAN. It also pro-

vides security feature like SSH tunnelling. TightVNC has been used in Tele-Lab

IT-Security for creating the thin interface of the virtual machine.

A TightVNC server is installed on each virtual machine. It exports the X-window

desktop to a client via Port 5900. One important advantage of the thin user inter-

faces is that the client programs can be implemented as simple as possible. So the

TightVNC client can be written in Java and run as an applet in the browser, and the

user end does not need any extra client software. To support the applet client, the

TightVNC server also listens on Port 5800 as a tiny web server. The default page of

that web server contains an applet (See Table 4.1). By visiting this page from Port

5800, a browser can download the applet and run it automatically. Figure 4.4 shows

the VNC interface on the portal page.

4.3.2. The VNC Performance

The VNC performance is crucial to user interfaces. It would not be accepted if

the client cannot smoothly receive desktop updates over networks. Yang et al.

[Yang et al., 2001] reported the benchmarks of main stream thin-client systems such

as Microsoft Terminal service, Critrix MetaFram, Sun Ray, and VNC. Performances

of those systems were measured and compared at ISDN, DSL/T1, and LAN network

7Tight VNC http://www.tightvnc.com/.

46

http://www.tightvnc.com/

4.3. User Interfaces

Table 4.1.: Code of the VNC applet page

<HTML>

<TITLE>

$USER’s $DESKTOP desktop ($DISPLAY)

</TITLE>

<APPLET CODE=VncViewer.class ARCHIVE=VncViewer.jar

WIDTH=$APPLETWIDTH HEIGHT=$APPLETHEIGHT>

<param name=PORT value=$PORT>

<param name=ENCPASSWORD value=1Bffe8343876ae70>

<param name=”Show controls”value=No>

<param name=”Offer Relogin”value=No>

<param name=SERVER value=”tele-lab.hpi-web.de”>

$PARAMS

</APPLET>

</HTML>

Figure 4.4.: The VNC interface to the virtual machine.

47

CHAPTER 4. THE VIRTUAL LABORATORY

Figure 4.5.: Total latency of the thin-client systems.

(Picture source: [Yang et al., 2001])

bandwidths. Their result indicates that thin-client systems can smoothly reflect VNC

updates of most programs, except for video applications, at each bandwidth. Figure

4.5 shows the total latency of those thin-client systems at various bandwidths. The

total latency is the time required to download a certain number of pages from a web

server. It was measured by forcing the browser to continuously load 109 pages. A

per-page latency of less than one second is desirable to ensure that the user’s browsing

experience flow is not interrupted. This figure indicates that VNC performs extremely

well. E.g. it maintains the same low latency across all bandwidths and outperforms

the other systems. VNC is an effective user interface solution for Tele-Lab IT-Security

because most applications running on the virtual machine are general graphical soft-

ware such as consoles, web browser, and email programs.

4.4. System Resource Allocation

The purpose of the system resource allocation is to isolate resource and performance

between competing virtual machines. This can be done by assigning each virtual

machine access to a certain amount of processor, memory and disk resources of the

host when it is started. So its resource consumption will not exceed those resources.

Effective resource allocation is also useful to improve performance of virtual machines

and save system resources.

48

4.4. System Resource Allocation

4.4.1. Processor Resource Allocation

If a hostile user misuses his/her virtual machine by generating a large number of pro-

cesses to exhaust CPU resource, it will cause a denial-of-service attack on the host

and other virtual machines. Isolation of processor resources among virtual machines

and other host processes is very necessary for preventing this kind of attacks. Pro-

cessor resource allocation and isolation are supported by the following ways or their

combinations:

1. Limiting the number of the virtual processors assigned to a virtual machine.

That is, if a virtual machine is given two processors, it has no more than two

processes running on the host no matter how many processes it is trying to

generate.

2. Adjusting nice8 value of virtual machine processes and degrade their priority.

Then virtual machine processes will not be allocated more processor time than

that for the host processes.

3. Enhancing the host processor capability. Powerful processors can effectively

cope with the performance impact of virtual machines and improve the overall

performance. E.g. the Tele-Lab host is equipped with a 2.8 GHz Intel IV

hyperthreading processor and runs a Linux 2.4-smp kernel on it. The SMP

(Symmetric Multiprocessor) kernel provides a high performance dual-processor

computing environment by hyperthreading.

4.4.2. Virtual Memory Allocation

The size of “physical”memory of a virtual machine can be specified when it is booted.

The “physical” memory is not the real size of physical memory space of the host.

Instead, each virtual machine is allocated this amount of memory space from the

virtual memory on the host. The virtual memory is emulated by a temporary file

on the host. The User-Mode Linux kernel creates this file with the same size as the

“physical” memory [Dike, 2000]. It is then mapped into the physical memory address

space of the host. This virtual memory uses physical memory only when it needs,

8“nice” is a Linux command to execute a command with lower priority, i.e. be ”nice” to other users.
Niceness has a range of -20 (highest priority) to 19 (lowest priority). Normally, non-root users
can only have lower priority (higher number)

49

CHAPTER 4. THE VIRTUAL LABORATORY

otherwise it will be swapped out to the disk. Thus, we can provide virtual machines

with enough“physical”memory space by creating a large virtual memory area instead

of using the real size of physical memory of the host.

The directory of the virtual memory files is mounted as a dynamic RAM based filesys-

tem, the temporary filesystem (TMPFS). TMPFS [Snyder, 1990] uses local memory

for filesystem reads and writes, which is typically much faster than reads and writes in

a normal ext3 filesystem. Given enough RAM and swap space, TMPFS can effectively

speed up the access of virtual memory files.

We need to run thirty virtual machines on the Tele-Lab host. Each of them is assigned

64 MB “physical” memory. Intuitively we need 1.8 GB (30 × 64 MB) RAM memory

space for virtual machines. To use the virtual memory scheme, we reserved totally

6 GB virtual memory which consists of 2 GB RAM, 2 GB swap space for the same

size of RAM, and 2 GB swap space for 30 virtual machines. Two separate 2 GB

swap partitions were applied to provide 4 GB space. Then, the virtual memory file

directory (“/tmp”) was mounted as a TMPFS:

mount tmpfs /tmp -t tmpfs -o size=4096M

After starting all thirty virtual machines, we found 1.8 GB swapped virtual memory

was created in“/tmp”. It is exactly the amount of space allocated for virtual machines.

For running those virtual machines, however, only about 809 MB RAM has been

indeed consumed. This amount is only 42% of total space needed by virtual machines.

4.4.3. Virtual Disk Resource Allocation

In order to run virtual machines, we need to give each of them a disk image of

an installed Linux filesystem9. We create this image by using a special file named

“backing file”. Changes to the backing file are stored in a small-sized Copy-On-Write

(COW) file. Each virtual machine is booted from a COW file and all virtual machines

share the same backing file10. COW files can be created, copied or deleted like any

other ordinary file on the host. Therefore, virtual machines can be treated as normal

applications, i.e. they can be easily started, killed, or recovered on demand. Moreover,

sharing the backing file is helpful to reduce memory usage of virtual machines.

9See Section 4.2.1.
10See Section 2.2.3.

50

4.5. Virtual Machine Performance

In Tele-Lab IT-Security, small images are assigned to virtual machines. This helps

reduce the demand of system resources and improve performance. It will also benefit

management procedures of virtual machines. E.g. it is fast to boot or halt a virtual

machine from a small backing file. In the Tele-Lab implementation, the size of the

backing file is only about 300 MB. It contains a typical Linux software installation.

This backing file was also set as “read-only” to prevent crash of the filesystem.

If copy-on-write (COW) files are used, only one copy of the backing file is needed.

Thus, a large number of disk space can be saved. E.g. the COW files used in Tele-Lab

normally are very small (20 B - 200 KB). If we start thirty virtual machines on the

host, we do not necessarily need 9000 MB (30 × 300 MB) disk space. Instead, about

306 MB real disk space (including space of thirty COW files and one backing file) is

actually used. This is merely 3,4% of the total disk space of thirty virtual machines.

4.5. Virtual Machine Performance

Besides functionality, performance is important to usability of virtual machines. In

general, performance difference between virtual machines and ordinary physical com-

puters should be as little as possible. The following benchmark has been done to

determine how effectively a virtual machine simulates a real computer in terms of

system performance.

4.5.1. Performance Benchmark

We used lmbench [McVoy and Staelin, 1996] to measure virtual machine performance.

Lmbench is an open-source software suite for operating system microbenchmarks. It

provides a set of portable programs for use in cross-platform comparisons. Usually,

performance issues are caused by latency problems, bandwidth problems, or their

combinations. The idea of lmbench is to run a set of small microbenchmarks to

measure system latency and bandwidth of data movement among the processor and

memory, network, file system, and disk.

The machines to be benchmarked include the host, virtual machines, and other com-

puters for comparison. Their system specifications are summarized in Table 4.2.

Tele-Lab server (“P IV 2800”) is the host. Its Linux kernel was specially patched to

enable the User-Mode Linux “SKAS” mode, which improves virtual machine kernel

51

CHAPTER 4. THE VIRTUAL LABORATORY

Table 4.2.: System specification of the performance benchmark.

System Hardware Kernel Filesystem

P IV 2800 Pentium IV 2.8GHz (Hyper-

threading)

2 GB RAM

50 GB IDE Hard-disk

Linux 2.4.26/i686-

smp

EXT3

Virtual ma-

chine

Virtual processor

64 MB“physical”memory

300 MB virtual disk partition

User-Mode Linux

2.4.26

EXT2

P II 350 Pentium II 350MHz

64 MB RAM

10 GB Disk

Linux 2.4.18 EXT3

P Pro 167 Pentium Pro 167 MHz Linux1.3/i686 EXT2

P Pro 133 Pentium Pro 133 MHz SunOS 5.5.1 UFS

performance and security. We ran thirty virtual machines on the host. The 64 MB

“physical” memory is simulated by the virtual memory of the host. The virtual disk

partition is provided by a COW file which only stores differences from a shared root

disk image. “P II 350” is a reference machine, i.e. a native PC with decent installa-

tion. The specifications and benchmark data of two native systems (“P Pro 167” and

“P Pro 133”) came from the lmbench database [McVoy and Staelin, 1996].

Lmbench version 3.0-a3 was applied in the benchmark. It was compiled and installed

on each machine. We first started all virtual machines on the host, and then ran

lmbench on the host and on the virtual machine respectively. Depending hardware

conditions, it took lmbench about from 30 minutes to one hour to finish the benchmark

on each machine. It then produced a long list of detailed benchmark results.

4.5.2. Benchmark Results

Among the benchmark output, we are particularly interested in those results related

to the performance of processes, memory, and filesystems. Selected data which are

presented in the following text include process creation time, memory read/write

bandwidth, and file system latency.

52

4.5. Virtual Machine Performance

0

5

10

15

20

25

30

35

40

45

50

P IV 2800 Virtual machine P II 350 P Pro 167 P Pro 133

Pr
oc

es
s

cr
ea

tio
n

tim
e

(m
s)

fork + exit fork, exec + exit fork, exec sh -c + exit

Figure 4.6.: Process creation time of the performance benchmark.

Figure 4.6 shows the time used to create processes on each platform. “process

fork+exit” measures the time it took to split a process into two identical copies and

have one of them exit. “process fork+exec+exit”measures the time it took to create a

new process and have that new process run a new program. “process fork+sh -c+exit”

measures the time it took to create a new process and have it run a new program

by asking the shell to find that program and run it. The process creation time of

the virtual machine is very close to the machine of “P Pro 167”. I.e. the process

performance of virtual machines is nearly at the level of that of an Intel Pentium

Pro 167 computer. This performance looks not so satisfying compared with those

of modern computers because the User-Mode virtual machine (including User-Mode

Linux) has to spend extra time to make system calls for processor simulation. How-

ever, use of User-Mode virtual machines has its positive side. One of the User-Model

Linux features is resource-friendliness. I.e. one host can effectively run more virtual

machines at a relatively low resource expense. Although part of process performance

is sacrificed, we gained efficiency.

Memory read and write rates are shown in Figure 4.7. The memory read bandwidth

was measured by allocating 8 MB memory, filling it with zeros, and then measuring

the times taken to read it as a series of integers. The memory write bandwidth was

measured by allocating 8 MB memory, filling it with zeros, and then measuring time

taken to write that memory as a series of 4 byte integers. The memory performance

of the virtual machine is extremely impressive. Except for the host, it performs much

better than other native machines. The memory bandwidths of virtual machine are

53

CHAPTER 4. THE VIRTUAL LABORATORY

0

500

1000

1500

2000

2500

3000

P IV 2800 Virtual machine P II 350 P Pro 167 P Pro 133

M
em

or
y

ba
nd

w
id

th
 (M

B
/s

)

Memory read Memory write

Figure 4.7.: Memory bandwidth of the performance benchmark.

about 6.6 times higher than those of “P II 350” and nearly equivalent to those of the

host. This is because User-Mode Linux is able to utilize most resources of the host

and therefore inherit a good performance.

Figure 4.8 shows the result of file system latency. Lmbench created 1,000 zero-sized

small files in the current working directory and then removed those files. The time

of the file creation and removal was measured respectively. Similar to the memory

bandwidth, the filesystem performance of the virtual machines is also very satisfying

and its file I/O is one time faster than that of the native computer of “P II 350”.

The benchmark results of virtual machines indicate that high performance host helps

improve performance of the virtual machines. With reasonable configurations, a vir-

tual machine can be seen as a machine between a Pentium II 350 computer and a

Pentium Pro 167 computer. Intuitive experience also shows that virtual machines

can smoothly run most general applications from common system operations to

web browsing. Therefore, virtual machines proved to be an effective and efficient

computing-resource replacement of physical machines for Tele-Lab IT-Security.

54

4.5. Virtual Machine Performance

1

10

100

1000

10000

P IV 2800 Virtual machine P II 350 P Pro 167 P Pro 133

Fi
le

sy
st

em
 la

te
nc

y
(m

ic
ro

se
co

nd
s)

Create Delete

Figure 4.8.: Filesystem latency of the performance benchmark.

55

CHAPTER 4. THE VIRTUAL LABORATORY

56

5. Virtual Machine Management

This chapter is based on the work described in [Cordel, 2004] and [Hu et al., 2005].

Virtual machine management is responsible for assignment and maintenance of the

virtual machines. Virtual machine management has an important role in Tele-Lab

IT-Security because it guarantees virtual machines work in a reliable manner. In fact,

without effective virtual machine management, it is impossible to operate Tele-Lab

IT-Security in practice. User-Mode Linux provides some virtual machine management

functions of its own. But those functions are very limited, and only simple controls

are implemented. On the other hand, existing sophisticated management tools from

other virtual machine software are dedicated to their own products and cannot be

adapted or extended for the virtual machines in Tele-Lab IT-Security. This is the

reason why we need to develop our own management system.

5.1. Related Work on Virtual Machine Management

Mainstream virtual machine software programs such as Virtual PC and VMware have

developed sophisticated management utilities. With those utilities, administrators

can conveniently manage virtual machines through a graphical or web interface.

• Virtual PC provides an administration web site which is used to control a host

system and virtual machines [Microsoft, 2004]. All management operations that

create, configure, and control virtual machines are performed through that site

(see Figure 5.1). The controls provided by the administration web site include

commands to turn on, shutdown, remove, reset, configure, and backup virtual

machines.

• VMware1 also provides a series of management tools that allows an administra-

tor to monitor the state of virtual machines and the host, control the virtual

1VMware GSX Server Administration Guide http://www.vmware.com/support/gsx3/doc/.

57

http://www.vmware.com/support/gsx3/doc/

CHAPTER 5. VIRTUAL MACHINE MANAGEMENT

Figure 5.1.: A Virtual PC administration web site.

machines on that host, modify virtual machine configurations, create and delete

virtual machines, and answer questions and acknowledge messages posed by vir-

tual machines. Figure 5.2 shows a status monitor page. From this page, the

administrator can get high level details about all the virtual machines or de-

tailed information of each virtual machine such as virtual devices, configuration

options, and a summary of recent events. The virtual machine menu provides

control commands such as power on, suspend, resume, reset, power off, config-

ure, and delete a virtual machine.

So far, management utilities provided by User-Mode Linux include mconsole and

UMLd. They are relatively primitive compared with the management utilities above

and only essential control functions are provided. Nevertheless, mconsole and UMLd

are open and low-level interfaces and can be easily integrated into particular appli-

cations. Based on both utilities, we are able to develop dedicated and user-friendly

management utilities for the Tele-Lab IT-Security virtual machines.

5.1.1. UML Management Utility: Mconsole

As early mentioned in Section 2.2.3, mconsole is a low-level management interface. It

allows a client to access User-Mode Linux kernel from the host. Table 5.1 lists main

58

5.1. Related Work on Virtual Machine Management

Figure 5.2.: VMware virtual machine management utility.

commands supported by mconsole and their respective management functions.

Mconsole also provides an event notification interface. Through this interface, pro-

grams inside a virtual machine can send messages to the host. The notification channel

is implemented by Unix sockets. The mconsole client creates a socket on the host.

Then the handle of that socket is passed to the virtual machine as an endpoint of

the channel. The “/proc/mconsole” file acts as the other endpoint inside the virtual

machine. The mconsole client on the host is listening for the message on the socket.

Anything written to that socket will be forwarded to the the mconsole client. When

a virtual machine has booted to a certain stage or a particular event inside happens,

it can send a message out through this channel. The host can proceed depending on

the message. The feature has been effectively used to monitor the state of virtual

machines in Tele-Lab IT-Security.

59

CHAPTER 5. VIRTUAL MACHINE MANAGEMENT

Table 5.1.: Mconsole management functions.

Command Function description

version Read the UML version information. This command can be used to

check that a UML is running.

halt and reboot Shut the machine down by force, with no syncing of disks and no

clean shutdown of user space.

cad This invokes the Ctl-Alt-Del action on init. What exactly this ends

up doing is up to /etc/inittab. Normally, it reboots the machine.

stop/go “stop”puts the UML in a loop waiting for mconsole requests until a

“go”mconsole command is received. “go”resumes a UML after being

paused by a“stop”command.

config/remove “config” adds a new device (e.g. a block or Ethernet device) to the

virtual machine or queries the configuration of an existing device.

“remove”deletes a device from the system.

proc Monitor the runtime state of a virtual machine. It will return the

contents of the corresponding /proc file inside the UML.

60

5.2. Requirements for Virtual Machine Management

5.1.2. UML Management Daemon: UMLd

UMLd2 is a daemon to control and manage User-Mode Linux instances running on

a host system. It provides an interface on a TCP socket and allows simple clients to

manage individual virtual machines. In fact, UMLd is a TCP-wrapper of mconsole.

By this daemon, a client can connect to the host server via networks or the Internet

and control virtual machines remotely.

5.2. Requirements for Virtual Machine Management

To effectively manage virtual machines, we must consider following requirements:

• Performance monitoring. Mconsole only provides controls on virtual machine.

It is necessary to collect the system states of virtual machines and the host in the

real time. Based on their CPU, memory, disk, and network usage information,

we can evaluate performance of each virtual machine and the host, and thus

optimize the resource allocation scheme.

• Reliability. After a virtual machine is assigned to a user, he or she is allowed a

superuser privilege for security exercises. This suggests that a virtual machine

might be corrupted if errors are caused by an unskilled user, or the privilege is

misused by a hostile user. Therefore, one of the requirements of virtual machine

management is to detect and recover failed virtual machines as well as resume

the interrupted learning process in time.

• Security. We must prevent either the attacks on the Tele-Lab system or mis-

use of virtual machines to compromise production networks. Chapter 6 will

particularly discuss security isolation and protection of virtual machines.

• User interfaces. On the one hand, users of virtual machines should be informed

of the latest system states of their virtual machines and be notified when spe-

cial events happens. On the other hand, we need a friendly web management

interface for administrators to monitor and control virtual machines.

2UMLd http://uml.openconsultancy.com/umld/.

61

http://uml.openconsultancy.com/umld/

CHAPTER 5. VIRTUAL MACHINE MANAGEMENT

Browser

VNC
Applet

User
Monitoring

User
Notification

VM VM

VM VM

Virtual
Lab

User End VM
Administration

VM
Monitoring

VM Assignment
Table

...

VM Management

Figure 5.3.: Virtual machine management framework.

5.3. Virtual Machine Management Framework

In order to meet the management requirements above, we developed a virtual ma-

chine management framework and implemented it for Tele-Lab IT-Security. The

management frame consists of five main components. They include a virtual machine

assignment table and the modules for virtual machine administration, virtual machine

monitoring, user monitoring, and user notification (see Figure 5.3). The virtual ma-

chine assignment table is a data structure which records actual states of each virtual

machine. The virtual machine administration module is responsible for starting, stop-

ping, or recovering virtual machines in specific circumstances. The virtual machine

monitoring module detects and reports critical errors of the virtual machines. The

user monitoring module monitors user activities on the virtual machine and detects

abnormal events. The user notification module informs a user about events on his/her

virtual machine.

5.3.1. The Virtual Machine Assignment Table

Information in the VM assignment table indicates which virtual machines have been

assigned and to whom, which are free, and which are found failed and need recovery.

The VM administration module updates this table each time when a virtual machine is

assigned to or reclaimed from a user, or critical errors of the virtual machine are found.

The VM assignment table is important to the management framework, because the

information in the table is the base to assign and manage virtual machine resources.

The structure of the assignment table is simple. As shown in Table 5.2, each active

62

5.3. Virtual Machine Management Framework

Table 5.2.: An example of the virtual machine assignment table.

VM Name VM No. Mode Source IP User

Tele-Lab VM 1 assigned 141.89.224.219 schmitt

Tele-Lab VM 2 recovered non-IP non-user

Tele-Lab VM 3 assigned 136.199.55.8 cordel

Tele-Lab VM 4 free non-IP non-user

.

Tele-Lab VM 30 free non-IP non-user

virtual machine has an entry in this table. The data in the entry include virtual

machine name and number, current mode, source IP, and current user. “VM Name”

and “VM No.” are used to identify a virtual machine. The private IP address of the

virtual machine can be mapped from the virtual machine number. E.g. the third

virtual machine will be assigned an IP address: “192.168.0.102” (see Section 6.4.2).

“Source Address” is referred to the IP address where the user machine connects from.

“User Name” specifies the user, to whom the virtual machine is assigned. “Mode”

indicates the actual state of the virtual machine.

Each virtual machine is running in one of three possible modes: “free”, “assigned”,

and “recovered”. The mode transition of a virtual machine is illustrated in Figure 5.4.

A virtual machine is “free”when it is started and has not assigned to any one. If none

of free virtual machines is available, a user has to wait until free virtual machines are

available. A virtual machine is “assigned” to a user when he or she logs in. Then it

becomes an exclusive workstation for that user. The“recovered”mode is a transitional

state and triggered in two cases: (1) if a virtual machine is found failed, it will be

marked as “recovered” and restarted in the background; (2) if a user logs out, his/her

virtual machine will be immediately reclaimed and recovered. Then, it will change to

“free”mode until recovery finishes and a new virtual machine instance becomes ready.

5.3.2. Virtual Machine Administration

The VM administration module is implemented based on mconsole. Basic control

functions of the VM administration module include assigning, reclaiming, and recov-

ering virtual machines

• Assigning a virtual machine. when a user logs in, the administration module

63

CHAPTER 5. VIRTUAL MACHINE MANAGEMENT

Free Assigned Recovered

VM restarted

Tele

-Lab
started

User
logs in

User

logs out

VM failed

Tele-Lab
stopped

Figure 5.4.: Mode transition of a virtual machine

searches the assignment table for a free virtual machine and assigns one to this

user if possible. Then the mode of the virtual machine changes to “assigned”

and the corresponding entry in the assignment table is updated.

• Reclaiming a virtual machine. When a use logs out, his/her virtual machine is

reclaimed and returns to “free” mode after a recovery procedure (see the next

item).

• Recovering a virtual machine. A virtual machine is recovered to default settings

by killing all processes it possesses and restoring its image with a default COW

copy. Then it is booted again. Recovery is triggered when a user logs out or

exceptional events happen. E.g. in case that the failure of a virtual machine is

detected, it is reclaimed and recovered in order to prevent its user from working

on a defected platform. A new virtual machine is then assigned to this user and

he/she can continue exercises on it in a short time. Besides that, a user can

request a new virtual machine if he/she notices a critical failure but no action

is taken by the administration module.

The administration module is also responsible for preparation and maintenance of the

virtual laboratory environment, e.g. initializing or terminating the virtual laboratory

and setting up network connections, etc.

• Initializing virtual machines. When Tele-Lab IT-Security is started, the ad-

ministration module first creates virtual machine image copies according to the

number of virtual machines which Tele-Lab provides. Each image uses a COW

file of an original backing filesystem. The administration module also deter-

mines the arguments of each virtual machine, such as memory size, network

64

5.3. Virtual Machine Management Framework

interfaces, the mconsole socket, host directories etc. Then all virtual machines

are started as “free” machines and connected to a virtual network in the batch

mode.

• Setting up connections. Virtual machines are plugged in a virtual network.

Each of them is assigned a private address, e.g. 192.168.0.100. By default, the

access to the virtual network from outside is not allowed for security reason. If a

virtual machine is assigned, it will be accessible by mapping its private address

to a public access point by port forwarding3. This access point allows the user

of the virtual machine to access the VNC desktop of the virtual machine.

• Terminating virtual machines. When Tele-Lab IT-Security is stopped, all virtual

machines are forcefully shutdown at one time. The administration module kills

all virtual machine instances, disables their connections, and cleans their COW

files.

5.3.3. Virtual Machine Monitoring

The VM monitoring module monitors the state of each virtual machine and reports

errors of the virtual machine to the administration module. There are two approaches

to implement monitoring:

1. Installing a local monitor on each virtual machine. It sends state information of

the virtual machine to the host in the real time. An advantage of this approach

is that it can report precise and detailed state information, but the problem is

that it can be easily interrupted by the virtual machine user.

2. Periodically polling virtual machines and testing essential services. Those ser-

vices are necessary and any failure of them would prevent the user from con-

tinuing his/her work on the virtual machine. E.g. the VNC is a must to access

the virtual machine and email service is a prerequisite for exercises. Hence, if

any test of those services fails, the virtual machine is proved to be defective.

This approach can effectively find out critical errors in general situations though

some errors might be missed.

Compared with the first approach, the second one is more reliable and simpler to

implement. Therefore, it has been applied in detecting virtual machine failures in

3See Section 6.4.1.

65

CHAPTER 5. VIRTUAL MACHINE MANAGEMENT

Figure 5.5.: The message frame and the “new virtual machine” button.

Tele-Lab IT-Security. Even in some cases, some of critical errors might be missed, a

user can directly request a new virtual machine by clicking a button on his/her web

page (see Figure 5.5).

After a virtual machine is started or recovered, it will notify the host of its readiness.

Hence, another task of the VM monitoring module is to listen on the mconsole notifi-

cation socket for readiness messages of the virtual machines. If one readiness message

comes, the monitoring module will inform the administration module to update the

mode of the matched virtual machine.

5.3.4. User Monitoring

The Tele-Lab IT-Security host can only run certain number of virtual machines be-

cause the system resources are limited. The user monitoring module is used to reduce

unnecessary occupation of the virtual machine resources. The idea of user monitoring

is to monitor user activities on the virtual machine and measure user’s idle time. User

activities are monitored by tracking user’s keyboard and mouse input on the virtual

machine. This can be implemented by either checking the system log of the virtual

machine, or installing a monitor in the VNC client. It is problematic to check the

system log because we need to extract user input events from the log file and we can

not prevent the user from changing its content. We prefer monitoring the VNC client

because it is straight and reliable: we can directly insert desired monitoring functions

based on existing exception procedures of input events in VNC client.

As shown in Figure 5.6, we modified part of the original VNC client code and inserted

a detection hook which records the time of latest keyboard or mouse input events on

the VNC client window. In this way, the user’s idle time on a virtual machine can

be measured. If the value of the idle time exceeds a predefined threshold (e.g. half

hour), we can conclude that the user won’t continue his/her learning on the virtual

66

5.4. Administration Web Interfaces

machine. The administration module will therefore reclaim his/her virtual machine

and let him/her log out.

5.3.5. User Notification

The user notification module is necessary for informing a user of special events in

real time. It reports the user on the latest status of his/her virtual machine. E.g. if

any critical failure is found, the notification module will inform the user that his/her

virtual machine needs recovery and he/she can continue exercises on a new virtual

machine. However, the portal server (a web server) only passively responds to user

requests because the HTTP does not support connection-persistent sessions like Tel-

net. Notification messages would never reach the browser if no requests are raised

by the user. In order to capture messages in time, a small frame is embedded in the

browser window as a message board (see Figure 5.5). It refreshes itself each 15 second

to get the updates of the messages about virtual machine events.

5.4. Administration Web Interfaces

The administration web interfaces provide a friendly management interface to control

virtual machines and monitor their system status. They are also used to test perfor-

mance and determine the optimal number of the virtual machines the host resource

can support. The administration web interfaces include an administration console

and a system status monitor.

5.4.1. The Administration Console

The administration console provides control functions to start/stop the Tele-Lab sys-

tem and to create/recover virtual machines. As shown in Figure 5.7, the “System

Starten” page is used to initialize the Tele-Lab system. On this page, an adminis-

trator can create and start virtual machines with desired name and quantity. The

“System Halten” button is used to stop the Tele-Lab system by halting and cleaning

all virtual machines (see Figure 5.8).

The administration console has a page which shows updates of the virtual machine

assignment table. From this page, we can get information of each virtual machine.

67

CHAPTER 5. VIRTUAL MACHINE MANAGEMENT

// Handle events.
public void keyPressed(KeyEvent evt) {

processLocalKeyEvent(evt);
// insert the detection hook.
tellactivity();

}

public void mousePressed(MouseEvent evt) {
processLocalMouseEvent(evt, false);
// insert the detection hook.
tellactivity();

}
. . .

// definition of the detection hook.
public void tellactivity() {

try {
// create a message
Integer myInt = new Integer (VncViewer.port);
String output = myInt.toString() + ”\n”;

byte[] udpMsg = output.getBytes();
// send the UDP message to the user monitoring
// module of the host.
InetAddress addr = InetAddress.getBy-

Name(VncViewer.server);
DatagramPacket packet = new Datagram-

Packet(udpMsg, udpMsg.length, addr,
VncViewer.udpport);

DatagramSocket datagramSocket = new DatagramSocket();
datagramSocket.send(packet);
datagramSocket.close();

}
. . .

}
. . .

Figure 5.6.: The detection hook in the VNC applet (in VncViewer.java).

68

5.4. Administration Web Interfaces

Figure 5.7.: The “System Start” page.

Figure 5.8.: The “System Stop” button.

69

CHAPTER 5. VIRTUAL MACHINE MANAGEMENT

Figure 5.9.: The “Recover Virtual Machine” button.

VM . . .

RDD
database

RDDToolCacti
Front-end

SNMP
Agent

SNMP
Management

Client

The Host

VM

Figure 5.10.: Structure of the system status monitor .

It is also possible to reboot a questionable virtual machine by clicking the “recover”

button on the right side of its entry (see Figure 5.9).

5.4.2. The System Status Monitor

The system status monitor provides system status information of the host and each

virtual machine. Details about their processor, memory, disks, and network perfor-

mance are presented by graphs. The idea the system status monitor is to periodically

collect status data from the host and virtual machines. Then those status data are

processed and performance-related statistics are generated. Finally a set of graphs is

created from the performance data.

Figure 5.10 illustrates the system structure of the system status monitor. It integrated

three opensource software packages: Net-SNMP, RRDTool, and Cacti.

• The Net-SNMP4 is a program to manage network nodes by the Simple Network

Management Protocol (SNMP).

4Net-SNMP http://net-snmp.sourceforge.net/.

70

http://net-snmp.sourceforge.net/

5.4. Administration Web Interfaces

• RRDTool5 (Round Robin Database Tool). It is a tool to store, retrieve, and

graph time-series data (e.g. SNMP statistics) in a Round Robin Database

(RRD). RRD is a special database technique. It can efficiently store and process

time-related data with a limited size of space6.

• Cacti7 is a web management front-end which works with RRDTool. Cacti pro-

vides a fast poller, advanced graph templating, multiple data acquisition meth-

ods, and user management features.

A SNMP agent is installed on each virtual machine. This agent collects status in-

formation about CPU, memory, and network traffic from the MIB (Management

Information Base8) of the virtual machine. The SNMP management client runs on

the host. It periodically queries MIB data from each agent and saves them into a

RDD database. RDDTool generates statistics reports in both numerical and graph-

ical forms based on the data stored in the RRD database. Cacti provides a web

interface to configure monitored nodes and to present related statistics and graphs

(see Figure 5.11 and 5.12).

5RRDTool http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/.
6Round robin works with a fixed amount of data and a pointer to the current element. The data

space can be seen as a circle. When the current data is read or written, the pointer moves to
the next element. After all the available space is used out, the process automatically reuses old
locations. Thus, the dataset will not grow in size and therefore requires no maintenance.

7Cacti http://www.cacti.net/.
8The management information base stores objects which describe the state of a managed node.

71

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/
http://www.cacti.net/

CHAPTER 5. VIRTUAL MACHINE MANAGEMENT

Figure 5.11.: Node configuration of the system status monitor.

Figure 5.12.: Graphical view of the system status monitor.

72

6. Security Management

Security is important consideration in the design and implementation of the Tele-Lab

IT-Security architecture. Tele-Lab IT-Security has a special security requirements

compared with other online learning or tutoring systems. In many security exercises,

users are allowed a privilege right on the virtual machine. This introduces a security

risk that users might convert their virtual machine into an attack station and corrupt

the Tele-Lab system or compromise production networks. Therefore, on the one

hand, we must prevent misuse of virtual machines and protect the Tele-Lab system;

otherwise it will not be allowed online. On the other hand, we have to tolerate

security risks on the virtual machine for those security exercises that typically need

privileges. Security management must deal with such contradictory needs as well as

guarantee both functionality and security of Tele-Lab IT-Security. In response to

this challenge, we implemented security isolation for virtual machines, which allows

necessary accessibility to virtual machines while constrains risks in a secure scope.

6.1. Security Policy on Virtual Machines

Each virtual machine is a laboratory platform where security experiments are per-

formed. In order to finish security exercises, a user has to operate in a privileged

mode. E.g. he/she needs to change system configurations in some exercises such

as firewall configuration or security scanning, which is normal done by a privileged

user. Some programs applied in the exercises must run in a privileged mode. E.g.

in the “Password Cracking” exercise, the cracker program must be able to access the

“passwd” or “shadow” file which is only accessible by a super user. Therefore, the

security policy on the virtual machine can be stated as:

A user is authorized to access any system resource and to perform any

operation inside his/her virtual machine. The user can switch to a super-

user mode if any privileged operation is needed.

73

CHAPTER 6. SECURITY MANAGEMENT

This policy implies that the virtual machine is an insecure platform and subject to

misuse or damages by its user. This is because given a privilege, unskilled users might

corrupt virtual machines by mis-operation, or it is possible that Tele-Lab IT-Security

or production networks are compromised by misuse of the virtual machines.

6.2. Security Requirements for Tele-Lab IT-Security

The corruption of the virtual machine is not a serious security problem because it can

be handled by the virtual machine management system. What we concern are those

risks which compromise the Tele-Lab system and production networks by misuse of

the virtual machines. Security risk are often caused at the following three interfaces

between a virtual machine and the outside environments.

1. On the system level. Each virtual machine is a software application which

comprises a number of processes which are allocated the host resource and

scheduled by the host operating system. Therefore, virtual machine processes

run inside the same space of the host operating system. Communication between

those processes and the host takes place at the system level. The security

concern at this level is whether the virtual machine monitor (i.e. User-Mode

Linux) is secure. If there is any vulnerability present in User-Mode Linux, it

might be exploited by the virtual machine processes to break out of the virtual

machine space. This is the most critical risk which compromises the security of

the host.

2. On the virtual network level. The second communication interface is the virtual

network. Each virtual machine is plugged in a virtual switch device 1 as a node

of a virtual local area network (LAN). Thus, virtual machines and the host

can access each other by any network communication protocol. The risks at

this level include various network attacks such as sniffing, spoofing, or denial of

service which are launched from one virtual machine on any of the others or the

host.

3. On the production network level. Virtual machines are by default disallowed to

access public networks. After a virtual machine is assigned, it becomes accessible

over the production networks in order to provide a VNC interface for its user.

1See Section 2.2.1

74

6.3. Security Isolation at the System Level

If outgoing connection is misused by a malicious user, theoretically, any form of

network attacks on production systems from a virtual machine could be possible.

To effectively control those security risks and protect the Tele-Lab system, security

management must address the following requirements:

1. System security isolation. The host operating system should be protected from

any intrusion from the virtual machine processes. Strict access control must be

enforced between a virtual machine and the host to isolate their process space

from each other.

2. Network security isolation. All user actions must be constrained within the

scope of his/her virtual machine on the network level. We need effective mech-

anisms to prevent network attacks by access control between a virtual machine

and outside nodes such as other virtual machines and production systems.

3. General security protection. The Tele-Lab host is also a Linux server which

provides web service. Web security issues such as encryption, authenti-

cation, access control, and availability are important as well. However,

we will not discuss those issues in this chapter because general web and

Linux security have been profoundly discussed in various literatures such

as [Garfinkel and Spafford, 2001], [Cheswik et al., 2003], and [Stallings, 2003].

The major focus of the security management is security isolation which is spe-

cially related to the Tele-Lab architecture and virtual machines.

6.3. Security Isolation at the System Level

The idea for security of User-Mode Linux is to use “root jail” [Dike, 2001]. Privilege

right on a virtual machine can be safely assigned to the user if this virtual machine runs

as an ordinary user application on the host. Thus, the root user of the virtual machine

is jailed in the virtual machine and no privileged access from a virtual machine to the

host operating system is allowed. Successful root jailing requisites that the system

calls from the virtual machine on the host must be secure. This is because the

hardware of the virtual machine is emulated by port of system calls and the most

possible way to break out from a virtual machine to the host is to make use of

system calls. Therefore, we must assure the virtual machine processes have no ability

75

CHAPTER 6. SECURITY MANAGEMENT

to execute arbitrary system calls on the host even with a root right on the virtual

machine.

User-Mode Linux virtual machine processes by default run in the tracing thread mode

(the“tt”mode) 2. This mode is problematic because the virtual machine kernel shares

the same address space with its user processes and the kernel space is writable. By

accessing kernel data, a process could possibly break out to the host by forging system

calls. Security isolation requires that the virtual machine kernel memory is protected

against modification by users pace and any critical information of the kernel must

stay inside the kernel. In this way, user processes of the virtual machine have no

possibility to forge system calls that they want and to escape from the jail.

This kind of security isolation can be implemented with the Separate Kernel Address

Space mode (the “skas” mode)3 which is a secure mode to run User-Mode Linux.

It requires to apply a patch on the host kernel. This patch implements a separate

address space scheme: the virtual machine kernel runs in an entirely different host

address space from its user processes. The virtual machine kernel binary and data

are totally invisible to its processes and to anyone logged in to it. This makes virtual

machine kernel data secure from tampering by its processes. Therefore, “root jail”

with support of the“skas”mode can effectively protect the host and implement system

security isolation.

6.4. Security Isolation at the Network Level

The purpose of security isolation on the network level is to constrain all the user

actions within the scope of the virtual machine. This can be achieved by applying

control on the connections between the virtual machine and the outside. Effective

access control must enforce the following policies:

1. Local connections and local network services are allowed on a virtual machine.

2. A virtual machine is not allowed to initialize any network connection to the

other virtual machines on the host.

3. A virtual machine is allowed to accept or respond to the connections for the

VNC service only if it is an assigned machine.

2See Section 2.2.3
3See also Section 2.2.3

76

6.4. Security Isolation at the Network Level

4. Except for those connections mentioned in Policy 3, a virtual machine is not

allowed to launch any forms of connections for the Internet.

The idea of to implement access control is to use a firewall called “iptables”. This

firewall is installed on the host and responsible for two major control functions: IP

address reuse and packet filtering. With appropriate rules, iptables can enforce the

desired control on network traffic of the virtual machines.

6.4.1. The iptables Packet Filter

Iptables is a firewall tool based on Netfilter4. Netfilter is the system compiled into

the Linux kernel, which provides hooks into the IP stack. Iptables is one of loadable

modules which use those hooks to perform operations on packets. In order to perform

packet filtering, network address translation, and other packet mangling, iptables

provides a generic table structure for defining control rule sets. Iptables manages

three kinds of tables:

1. The “filter” table is specifically designed to filter packets.

2. The “nat” table is designed to perform network address translation for packets.

3. The “mangle” table is used mainly for mangling packets, that is, changing the

contents of different packets and that of their headers.

Each table contains a number of chains, each of which defines a set of rules. Those

rules are applied on the packets which traverse the chain. There are several different

chains in iptables. The chains of the nat table and the filter table are the most

important ones to define access control on the virtual machines.

The nat Table and Port Forwarding

Network address translation (“NAT”) is a technique which allows several hosts to

share the same IP address and traffics packets between the Internet and an internal

LAN. The NAT rules are defined in the chains of the nat table. When a packet

reaches a nat chain, the source/destination address of the packet will be changed to a

4Netfilter and iptables http://www.netfilter.org/.

77

http://www.netfilter.org/

CHAPTER 6. SECURITY MANAGEMENT

ROUTING
DECISION

PRE-
ROUTING

D-NAT

OUTPUT
D-NAT

POST-
ROUTING

S-NAT

OUTPUT
D-NAT

Figure 6.1.: A packet’s journey through the nat chains.

different address by the NAT rules. NAT can remember how it altered a packet and

will do the reverse translation on the reply packet when it passes through the other

way [Russell, 2002].

There are three chains in the nat table: the “PREROUTING”, “POSTROUTING”

and “OUTPUT” chains. These three rules chains only apply to certain packets. As

shown in Figure 6.1, packets pass through the PREROUTING chain when they enter

the machine. Those packets can be destined for the local machine or for somewhere

else, but the kernel does not know where they are going before any routing decision

is taken. The OUTPUT chain corresponds to any packet originating from the local

machine. After the routing decision is taken, those packets which leave the local

machine but do not originate locally pass through the POSTROUTING chain.

There are two variants of NAT: source NAT or destination NAT.

• Source NAT works in the POSTROUTING chain and changes the source

address or port of packets. Source NAT is used to hide internal IP addresses

behind public IP addresses. E.g. we can insert the following rule to the

POSTROUTING chain, which have all packets coming from an internal

address (192.168.0.100) to correspond to a specific external IP (141.168.1.2)5:

5Common iptables options include:

-t specifies the name of the table to use.
-A, -I and -D followed by a chain name, to add, insert or delete rules respectively.
-p sets the IP protocol TCP, ICMP, or UDP.
– dport specifies the destination port of the packet.
-s and -d followed by an IP address to set the source and destination IP address.
-i and -o sets the interface where a packet will come in or go out depending on the
routing.
-j is a target or jump to specify the action of the rule.

78

6.4. Security Isolation at the Network Level

iptables -A POSTROUTING -s 192.168.0.100 -o ppp0 -j SNAT –to 141.168.1.2

IP Masquerading is a form of Source NAT, except that it uses the net-

work interface instead of the IP address:

iptables -A POSTROUTING -o ppp0 -j MASQUERADE

• Destination NAT works in the PREROUTING or OUTPUT chains and changes

the destination information of packets. E.g. the following rule will have the

router or firewall forward all SMTP (Port 25) connections from the outside

onto a mail server (192.168.0.1) on the internal LAN:

iptables -A PREROUTING -p tcp –dport 25 -i ppp0 -j DNAT –to 192.168.0.1:25

Port forwarding is a form of the destination NAT. It examines the packet header

and forwards it depending on the destination port number. Port forwarding

allows several servers on the Internal LAN to share a public IP address by

listening on different ports.

The filter Table and Packet Filtering

The filter table has three rule chains: the “INPUT”, “OUTPUT”, and “FORWARD”

chains. The INPUT chain applies to all packets destined for the local machine. The

OUTPUT chain responds to packets which originated locally. The FORWARD chain

applies for packets which pass through the local but are destined for somewhere else.

When a packet reaches a chain, it is examined by rules of the chain rules.

Each rule defines the criteria of packet features. If the coming packet matches the

rule, a predefined action (target or jump) will be taken with the packet. E.g. to block

all TCP connections to Port 23 of the local machine, we can define the following rule:

iptables -A INPUT -p tcp –dport 23 -j DROP

-m state followed by a –state for connection tracking or state matching.

79

CHAPTER 6. SECURITY MANAGEMENT

ROUTING
DECISION

INPUT OUTPUT

FORWARD
INCOME

LOCAL PROCESS

OUTGOING

Figure 6.2.: Packet filtering chains.

If the rule does not match the packet, then the next rule in the chain is applied. The

kernel will DROP the packet in case of no match.

Figure 6.2 illustrates the packet filtering processes. When a packet comes to the

network interface of the local host, the kernel first takes routing decision to decide

where to forward it:

• If this packet is destined for the local host, the packet reaches the INPUT chain.

A local process will receive this packet if it matches any rule of the chain.

• If the coming packet is destined for another host, it will pass through the FOR-

WARD chain. If this packet is accepted by the chain rules, it will be sent out.

If a packet is sent by a program on the local machine, it will immediately pass through

the OUTPUT chain.This packet will continue out to the interface it is destined for if

it matches the rules of the OUTPUT chain.

There are four types of connections which can by identified by iptables:

1. “NEW ” corresponds to packets which are being used to create new connections.

2. “ESTABLISHED” relates to packets from a known connection.

3. “RELATED”applies to packets related to a active connection, such as an ICMP

reply or active FTP sessions.

4. “INVALID” are malformed or unrecognized packets which should be dropped.

All this kind of matching is useful for connection tracking, or state matching. E.g. if

we want to drop all NEW or INVALID packets, the following rule can be applied:

80

6.4. Security Isolation at the Network Level

192.168.0.1

User
Machine VM1 VM2 VM30

INTERNET

. . .

 HOST

 163.158.1.2 141.199.55.40 192.168.0.100 192.168.0.101 192.168.0.129

Firewall

Figure 6.3.: Port forwarding for virtual machines.

iptables -A INPUT -m state –state NEW, INVALID -j DROP

6.4.2. IP-address Reuse for Virtual Machines

Each virtual machine is a node on a private network (the virtual LAN on the host).

Normally, none of those virtual machines is accessible from a public network. However,

if any virtual machine is assigned to a user, the VNC service on that machine must

be allowed over the Internet. This requires several virtual machines must share the

public address of the host. IP address reuse can be implemented by port forwarding

(mentioned in Section 6.4.1). The idea of port forwarding is to assign the VNC server

of each virtual machine unique port numbers. Thus, when VNC packets come to

the public network interface, iptables checks the packet header and forwards them to

right virtual machines depending on their destination port numbers. Access control

can be enforced if we define the rules for port forwarding. E.g. we can define that

only those packets from the user machine are allowed to be forwarded to the virtual

machine which has exactly been assigned to this user.

Figure illustrates the port forwarding scheme. Each virtual machine on the virtual

LAN is assigned a private address which is calculated from the number of the virtual

machine, “192.168.0.99 + number”. E.g. “VM1” has “192.168.0.100”, “VM2” has

“192.168.0.101”, and so forth. The VNC server on each virtual machine is locally

listening on two ports: “5800” and “5900”. The internal access point of a VNC server

can be expressed as: “Private address : (Port 1, Port 2)”. Table 6.1 lists the

internal VNC access points of all virtual machines.

The port forwarding rules translate those internal access points to public access points.

Then, those VNC services are mapped to different ports (“5799 + number” and

“5899 + number”) on the host network interface (“141.199.55.40”). The translation

table is shown in Table 6.2.

81

CHAPTER 6. SECURITY MANAGEMENT

Table 6.1.: Internal VNC access points.

Virtual Machine VNC Access Point

VM1 192.168.0.100 : (5800, 5900)

VM2 192.168.0.101 : (5800, 5900)

VM3 192.168.0.102 : (5800, 5900)

.

VM30 192.168.0.129 : (5800, 5900)

Table 6.2.: The translation table of the VNC access points.

Virtual Machine Internal Access Point Public Access Point

VM1 192.168.0.100 : (5800, 5900) ⇒141.199.55.40 : (5800, 5900)

VM2 192.168.0.101 : (5800, 5900) ⇒141.199.55.40 : (5801, 5901)

VM3 192.168.0.102 : (5800, 5900) ⇒141.199.55.40 : (5802, 5902)

.

VM30 192.168.0.129 : (5800, 5900) ⇒141.199.55.40 : (5829, 5929)

Those translation rules in the nat table are dynamically managed depending on the

assignment situation of the virtual machines. At the beginning, iptables disables any

port forwarding for virtual machines. If a virtual machine is assigned, specific rules

are inserted to the nat chains. When the user logs out, those rules for his/her virtual

machine are immediately abandoned. For example, when a user from “163.158.1.2”

logs in to the Tele-Lab host which publicly runs on the “141.199.55.40”, a virtual

machine must be assigned to this user. Here, we suppose VM3 on “192.168.0.102” is

chosen by the virtual machine management system. Then two rules will be inserted

into the PREROUTING chain in the nat table:

iptables -t nat -A PREROUTING -s 163.158.1.2 -p tcp dport 5802 -j DNAT to

192.168.0.103:5800

and

iptables -t nat -A PREROUTING -s 163.158.1.2 -p tcp dport 5902 -j DNAT to

192.168.0.103:5900

Those rules map the VNC service of VM3 to the public access point: “141.199.55.40

: (5803 and 5903)”. The “-s”, “-p” and “–dport” options are used for access control:

82

6.4. Security Isolation at the Network Level

only VNC connections from the authenticated user (on “163.158.1.2”) are allowed to

be forwarded to that virtual machine. Finally, this public access point will be passed

to the VNC client at the user end, so it knows where to connect the VNC server of

the virtual machine. Table 6.3 shows the enforcement of the port forwarding rules on

the packets in this example.

Table 6.3.: Enforcement of the port forwarding rules.

VNC Packet Original Altered

Client request Source: 163.158.1.2/7890*

Dest: 141.199.55.40/5802

Source: 163.158.1.2/7890

Dest: 192.168.0.102/5800

Server reply Source: 192.168.0.102/5800

Dest: 163.158.1.2/7890

Source: 141.199.55.40/5802

Dest: 163.158.1.2/7890

Client request Source: 163.158.1.2/8335*

Dest: 141.199.55.40/5902

Source: 163.158.1.2/8335

Dest: 192.168.0.102/5900

Server reply Source: 192.168.0.102/5900

Dest: 163.158.1.2/8335

Source: 141.199.55.40/5903

Dest: 163.158.1.2/8335

(* 7890 or 8335 is the local port number of the VNC client.)

6.4.3. Packet Filtering for Access Control

The virtual network of Tele-Lab is different from a conventional “ether” network. It

is created by a virtual switch device from the User-Mode Linux package. As shown

in Figure 6.4, “eth0” is the external interface of the host and “tap0” is the internal

interface created by the virtual switch. This virtual network has a very specially

feature: each virtual machine is attached to a central node (the virtual switch on the

host), and any traffic of virtual machines must be relayed by the host. Therefore, it

is possible to apply a firewall on the host and implement network security isolation

by controlling traffic.

The idea to control traffic is packet filtering by iptables. In order to satisfy control

policies specified at the beginning of Section 6.4, we defined and enforced two cate-

gories of filtering rules on iptables. Before describing those rules, we have to point out

that all filtering rules match packets based on the internal addresses because the NAT

83

CHAPTER 6. SECURITY MANAGEMENT

INTERNET

...

 HOST

 141.199.55.40

192.168.0.100

192.168.0.101

192.168.0.129

VM1

VM2

192.168.0.102

192.168.0.1

Eth0

VM30

User
Machine

VM3

TAP0

Figure 6.4.: Structure of the virtual network.

chains are processed before the route decision in the packet filtering chains. That is,

the source or destination addresses seen by the packet filter are local addresses.

Packet Filtering between Virtual Machines and External Networks

The following rules are defined based on the network structure in Figure 6.4.

Rule 1: external hosts are only allowed to access the VNC service on the virtual

network (on port 5800 and 5900).

iptables -A FORWARD -i eth0 -o tap0 -p tcp –dport 5800,5900 -j ACCEPT

Rule 2: only VNC related packets are allowed to go out of the virtual network to

the outside.

iptables -A FORWARD -i tap0 -o eth0 -m state –state ESTABLISHED, RELATED

-j ACCEPT

Rule 3: any packet from the Tele-Lab host onto the virtual network is allowed (for

virtual machine management).

iptables -A FORWARD -s 141.199.55.40 -o tap0 -j ACCEPT

84

6.5. Secure User Interfaces

Rule 4: only those packets related to the packets in Rule 3 are allowed to reach the

Tele-Lab host from the virtual network.

iptables -A FORWARD -i tap0 -d 141.199.55.40 -m state –state ESTABLISHED,

RELATED -j ACCEPT

Packet Filtering between Virtual Machines

Iptables is able to filter any packets between virtual machines because the Tele-Lab

host is a central node of the virtual network. In order to isolate internal connections

between virtual machines, we can apply a simple rule on the INPUT chain.

Rule 5: a packet will be dropped if both the source and destination addresses of this

packet fall in the same address range of the virtual network.

iptables -A INPUT -i tap0 -o tap0 -j DROP

6.5. Secure User Interfaces

The built-in security feature of the VNC is to authenticate users by one-time pass-

words6. This scheme is relatively safe because it avoids exposing real passwords on the

Internet. However, the VNC session is unencrypted after authentication. Any input

to the viewer is sent to the server in plain text. If the VNC connection is snooped by

someone between the client and the server, it would be possible that this man-in-the-

middle takes over the connection by forging packets which look like the right ones.

Therefore, it is necessary to encrypt VNC sessions if they pass through untrusted

networks. The idea of the VNC session encryption is to use VNC service through a

secure channel, e.g. a VPN (“Virtual Private Network”) [Yuan and Strayer, 2001]. In

case of no VPNs available, we can tunnel the VNC protocol over SSH connections.

SSH (“Secure Shell”) [Ylönen, 1996] is a protocol which allows encrypted and authen-

ticated connections between any two ends. OpenSSH7 is a free SSH suite which sup-

ports various encryption algorithms (such as AES-256 and 3DES), MAC algorithms,

and public-key authentication. Figure 6.5 illustrates a VNC tunnelling scheme based

6One-time password method is also called the challenge-response system. The server sends a
encrypted value. The user must decrypt this value, perform some computing, encrypt the result,
and return it to the server [Haller, 1998].

7OpenSSH http://www.openssh.org/.

85

http://www.openssh.org/

CHAPTER 6. SECURITY MANAGEMENT

CLIENT

163.158.1.2 :

VNC
viewer

192.168.0.1

. . .

 HOST

INTERNET

192.168.0.102 :
SSH

server
SSH
client

FIREWALL

VM3

. . .

5800
5900 163.158.1.2 :

. . .
5802
5902

5800
5900

. . .

VNC server

Figure 6.5.: VNC tunnelling over SSH.

on OpenSSH. A ssh client and ssh server are placed between the VNC client and

server. The ssh client supports secure port forwarding and listens on a local port.

Instead of directly connecting to the VNC server port, the VNC viewer connects to

the ssh client on that local port. Then connections will securely reach to the ssh

server which will forward them on to the destination ports of the VNC server.

For example, “VM3” is a virtual machine of Tele-Lab. Its internal and external access

points are 141.199.55.40 : (5802, 5902) and 192.168.0.102 : (5800, 5900) respectively.

The following commands will set up a ssh client on the user end:

ssh -L 5800:localhost:5802 141.199.55.40

ssh -L 5900:localhost:5902 141.199.55.40

The VNC client connects to the ssh client on local ports (Port 5800 and 5900). Then,

the ssh client forwards the local VNC connections to the host port (5802 or 5902).

After decryption by the ssh server, iptables forwards those connections to the VNC

server of VM3.

The disadvantages of the VNC tunnelling include: (1) it degrades the VNC perfor-

mance because of encryption processes; (2) users need an extra SSH client program

(Putty8 for Windows or OpenSSH for Linux). Therefore, tunnelling over SSH won’t

be used if VNC connections cross trusted networks.

8Putty http://www.chiark.greenend.org.uk/~sgtatham/putty/.

86

http://www.chiark.greenend.org.uk/~sgtatham/putty/

7. Application in E-learning

Tele-Lab IT-Security is a general architecture for teaching or training practical secu-

rity and can be applied for different purposes. This chapter will point out the uses

of Tele-Lab IT-Security and present case studies to demonstrate how it successfully

supports learning and exercises.

7.1. Range of Application

Tele-Lab IT-Security can be used to teach various subjects of cryptography and net-

work security. E.g. we have implemented a web-based tutoring system in the frame-

work of the Tele-Lab architecture, which covers symmetric encryption, secure email,

authentication, etc. Those teaching topics and the arrangement of the their content

are listed in Table 7.1. Like other online training or tutoring systems, Tele-Lab IT-

Security presents theoretical facts about subjects as well as relevant tutorials and

demos. As shown in the “Exercise” column of Table 7.1, the distinction of Tele-Lab

from other systems is that it offers students chances to perform security experiments

in a lightweight and real-life laboratory environment.

In the winter semester 2005/2006, a student group at the Hasso Plattner Institute

of the University of Potsdam is integrating more security topics into Tele-Lab IT-

Security as their practicum work. Those topics will cover a broader range of subjects

such as public key encryption, port scanning, packet sniffing, access control, intrusion

detection, man-in-the-middle and firewalls (See Table 7.2).

With a modularized structure of tutoring contents, Tele-Lab IT-Security can be

adapted for specific teaching purposes or user groups. In general, Tele-Lab IT-Security

can be used in the following ways:

• Supporting security courses. Tele-Lab IT-Security only supplies laboratory ex-

ercises for a specific course. The contents are designed or re-organized according

87

CHAPTER 7. APPLICATION IN E-LEARNING

Table 7.1.: Topics integrated into Tele-Lab IT-Security.

Topic Introduction Tutorial Exercise

Security

Foundations

IT Security components,

threats and goals;

Assurance.

Null. Quizzes on basic security

concepts.

Symmetric

Encryption

Foundations of cryptogra-

phy;

Concepts of symmet-

ric encryption;

Classic and advanced

algorithms (including a

DES demos).

PGP: an encryption

program;

GunPG: an Opensource

PGP program.

Encrypt/decrypt mes-

sages using GnuPG.

Secure Email Security requirements for

Email;

Message encryption and

digital signatures;

Pretty Good Privacy

(PGP);

Secure Multipurpose

Internet Mail Extensions

(SMIME).

GunPG: an Opensource

PGP program;

The Mozilla Thun-

derbird client with both

the SMIME security

feature and Enigmail

security module.

Apply for digital certifi-

cates or create PGP key

pairs;

Sign/encrypt mes-

sages and send/receive

secure email via the

Mozilla Thunderbird

client;

1) Use SMIME func-

tions,

2) Use Enigmail.

Authentication Password-based authenti-

cation;

Password hashing;

Unix “passwd” file

and“shadow”file;

Criteria of strong

passwords.

Unix commands related

to Unix “passwd” and

“shadow” ;

Password cracker,

John-the-Ripple.

User the John-the-Ripple

to crack a randomly-

generated“passwd”file.

88

7.2. Learning with Tele-Lab IT-Security

Table 7.2.: Topics being developed in Tele-Lab IT-Security.

Topic Practical Features

Access Control Demonstrate how access control mechanisms in Linux are breached

by Buffer Overflow.

Public key

encryption

Exercise how to use GunPG and OpenSSL to create key pairs and
certificates;

Exercise encrypting and signing with both tools.

Port Scanning Exercise how to find services on the target host with Nmap and close

unnecessary services.

Firewalls Exercise configuring an iptable packet filter and setting up a firewall

in Linux.

Intrusion

Detection

Exercise setting up the Snort IDS program;

Detecting attacks from the Snort log files.

Security

Scanning

Exercise to scan the target server to find system vulnerabilities;

Patching up systems or close vulnerable services.

Man-in-the-

Middle

Demonstrate how man-in-the-middle attacks compromise the SSL

sessions.

to the course plan. In this circumstance, the Tele-Lab server can be deployed

in a laboratory or accessible from the campus network.

• Online-learning. Tele-Lab is operated as an e-learning service. It is as a com-

plete tutoring system: both theoretical basics and practical exercises are in-

tegrated. With the virtual machine architecture, Tele-Lab is a distinct tele-

teaching tool for delivering hands-on experience through the Internet.

• Industrial training. Tele-Lab is customized for security training in industry.

Contents are developed for specific training topics or products which are inter-

esting to companies or theirs customers.

7.2. Learning with Tele-Lab IT-Security

In this section, we describe main processes of the use of Tele-Lab IT-Security. These

processes include user registration, user login, user logout, and the learning process

on the virtual machine.

89

CHAPTER 7. APPLICATION IN E-LEARNING

Figure 7.1.: A user registration page.

7.2.1. User Registration

Before a user starts learning, he/she must register an account from Tele-Lab IT-

Security. As shown in Figure 7.1, on the registration page, the user can input per-

sonal data and select language settings (“English” or “German”) and user categories

(“admin”, “general user”, or “IT student”). Those data then are processed to create a

user profile in a database.

7.2.2. User Login

As a user logs into Tele-Lab IT-Security from the portal page, the following actions

are taken to set up the user’s learning environment:

1. The portal sends the virtual machine management system a request for a virtual

machine.

2. The virtual machine management system searches the virtual lab for virtual

machines and assigns one to the user.

90

7.2. Learning with Tele-Lab IT-Security

Figure 7.2.: The start page of the IT security tutor.

3. The iptables firewall sets up connections between the user and his/her virtual

machine.

4. The user receives the VNC client (an applet) and the virtual machine’s desktop

will be shown in the browser as a frame embedded on the portal page (see Figure

7.2).

7.2.3. User Logout

A user logs out from Tele-Lab IT-Security by clicking the “logout” link on the portal

page. Following steps will be taken to release system resource of this user.

1. The actual user profile is passed from the user’s virtual machine to the host.

2. Connections between the virtual machine and the user are disabled by the ipt-

ables firewall.

3. The virtual machine is reclaimed by the virtual machine management system.

91

CHAPTER 7. APPLICATION IN E-LEARNING

7.2.4. Learning Processes

The security tutor is by default started when the virtual machine is assigned to the

user. When the user clicks the “Beginnen” on the tutor page, the profile of this user

will be imported from the host and applied in the virtual machine (see Figure 7.2).

Then the tutor presents a list of available chapters from which the user can choose

one. A Tele-Lab chapter consists of several sections:

• In general, theoretical facts in a chapter are introduced first.

• Then tutorials of related security tools are presented.

• Finally practical exercises are prepared and assigned to the user.

Normally, an exercise is performed in three steps:

• Exercise preparation. To configure necessary system settings of the virtual ma-

chine the tutor will invoke particular Perl or shell scripts on the virtual machine.

E.g. for the “Secure Email” exercise, a virtual role and related mail settings are

created so that email can be exchanged in an effective circumstance.

• Task generation. The tutor activates scripts to generate data or materials (e.g.

files or messages) needed in the exercise. Then questions are displayed on the

web page. If possible, those questions are dynamically generated with different

details each time. E.g. in the “Password Cracking” exercise, the “passwd” file

to be decrypted is generated at run time.

• Result evaluation. The user completes tasks on the virtual machine. After

he/she submits results, the tutor evaluates them by scripts. To simulate a real

scenario, evaluation process is often done in an interactive way. For instance,

to finish the Secure Email exercise, the user has to interact with the tutor and

exchange signed or secret messages. In each step, the tutor checks messages and

tells user what to do in the next step. In case of fail, the user can repeat the

exercise until a correct solution is found.

92

7.3. Case Studies

7.3. Case Studies

We will demonstrate the concrete learning process with case studies. They include

three example topics of Tele-Lab IT-Security, which are Password-Based Authenti-

cation, Symmetric Encryption, and Secure Email in Section 7.3.1, 7.3.2, and 7.3.3

respectively.

7.3.1. Password-Based Authentication

In this section, we will show an exercise which requires privileged operations or need

to access to system files. The password-based authentication chapter is about how

users are authenticated through passwords and how passwords are protected in the

Linux systems. In its exercise, a Linux passwd file is generated. The user needs to

crack it with an open-source cracker, “John-the-Ripper”. The learning process of this

chapter is illustrated below:

• In the introduction sections, concepts in password-based authentication are in-

troduced first (see Figure 7.3). These concepts include password hashing (DES

and MD5), the UNIX “passwd” or “shadow” files, and the password selection

criteria.

Figure 7.3.: Introduction to password-based authentication.

93

CHAPTER 7. APPLICATION IN E-LEARNING

• Information of the relevant security tools is presented next. They include the

passwd command1, the PAM2, and the John-the-Ripper password cracker. Some

of tools are introduced with Flash animation clips (see Figure 7.4).

Figure 7.4.: The password cracker tutorial created by Flash.

• Tasks such as creating password hashes and cracking passwords are assigned to

the user. Here we only demonstrate the completion of the password cracking

task. The first step is work environment preparation: the password hashing

configuration is initialized to use the default DES method on the virtual ma-

chine.

• The next step is to assign the user a task to crack several Linux passwords with

John-the-Rippe (see Figure 7.5).

• Each time, a group of random passwords are generated and saved in a “passwd”

file (see Figure 7.6).

• The user downloads the “passwd” file into the local directory of the virtual

machine (see Figure 7.7).

1A Linux command which creates passwords by DES hashing.
2PAM is the “Pluggable Authentication Modules” in Linux, which can be applied to support MD5

password hashing.

94

7.3. Case Studies

Figure 7.5.: The password cracking exercise.

Figure 7.6.: Content of a Linux “passwd” file.

Figure 7.7.: Downloading the “passwd” file.

95

CHAPTER 7. APPLICATION IN E-LEARNING

• Evaluating results. In order to apply John-the-Ripper, the user must have a

privilege right to run this system program. Tele-Lab provides a“Root Terminal”

button on the virtual machine. From that, the user can switch to the root mode

and execute John-the-Ripper to crack passwords (shown in Figure 7.8).

Figure 7.8.: Cracking the “passwd” file in a root shell.

• After passwords are found and the answers are submitted, the tutor compares

them with correct ones (see Figure 7.9). The evaluation result is shown to the

user and recorded in the user profile.

Figure 7.9.: Submitting the cracking result.

96

7.3. Case Studies

7.3.2. Symmetric Encryption

The Tele-Lab chapter, “Symmetric Encryption”, is used to illustrate how Tele-Lab IT-

Security and virtual machines help users understand and apply encryption technolo-

gies. It introduces important concepts on symmetric encryption, illustrates related

algorithms, and provides practical exercises in which a user can apply a production

encryption tool, GnuPG, to encrypt or decrypt messages. The exercises in this ex-

ample do not require a user to have a privilege right on the virtual machine. Instead,

the user is given an ordinary account by default when he/she is assigned a virtual

machine. He/she can directly apply tools with that account. This is also applied to

similar topics in which only ordinary operations are involved.

The detailed description can be found in Appendix A.

7.3.3. Secure Email

This Tele-Lab chapter is intended to familiarize a user with digital certificates so that

he/she can sign and encrypt email. Exercises in this chapter simulate everyday email

communications which need a complicated and interactive user work environment.

The learning process is described as follows:

• The tutor presents concepts of secure email, which include security requirements

for email, measures to protect email such as encryption and digital signatures,

and secure email standards like OpenPGP3 and SMIME 4.

• The Thunderbird email client is introduced. Thunderbird is a popular email tool

used on Linux and Windows. It integrates a SMIME module and an OpenPGP

module called Enigmail. The SMIME module is the default security feature of

Thunderbird and Enigmail is a plug-in which encrypts or digitally signs email

by GnuPG. The tutorials for both email security tools are presented to illustrate

how to apply them to secure email.

• Two sets of tasks are designed for SMIME and Enigmail respectively. In both

tasks, the user is required to securely exchange email with a virtual partner.

Detailed processes can be found in Appendix B.

3“OpenPGP” is an encryption scheme based on PGP for interpreting and sending digitally signed
and encrypted messages.

4“SMIME” (Secure Multipurpose Internet Mail Extensions) is the Internet standard for secure
e-mail attachments based on RSA and MIME (Multipurpose Internet Mail Extensions).

97

CHAPTER 7. APPLICATION IN E-LEARNING

98

8. Conclusions

In this chapter a summary of the work covered in this thesis will be presented. Con-

tributions and advanced features of this work will be highlighted and directions of the

future work will be proposed.

8.1. Summary and Contributions

This thesis has investigated the state-of-the-art in IT security education, pointed out

the gap between e-learning and practical IT security education, as well as presented

a work to fill the gap. E-learning is a flexible and personalized alternative to tradi-

tional education. Nonetheless, existing e-learning systems for IT security education

have difficulties in delivering hands-on experience because of the lack of proximity.

Laboratory environments and practical exercises are indispensable instruction tools

to IT security education, but security education in conventional laboratories poses the

problem of immobility as well as high creation and maintenance costs. Challenges in

current IT security education suggest that there is a need to effectively transform

security laboratories and exercises into e-learning forms.

In response to challenges, this thesis has presented the Tele-Lab IT-Security archi-

tecture. It is a novel virtual machine architecture for creating online IT security

laboratories. Based on the virtual machines, Tele-Lab IT-Security allows students

not only to learn IT security concepts and principles, but also to experiment security

and gain hands-on experiences in a lightweight and safe laboratory environment.

Functionality, reliability, security and performance are realistic needs in the Tele-Lab

implementation. In addition to the architecture itself, a set of technical solutions has

been proposed in this thesis to address the needs above. Those solutions range from

creating real and effective laboratory environments based on the virtual machines, to

managing the virtual machines in a reliable way, and to preventing the misuse of the

virtual machines by security isolation.

99

CHAPTER 8. CONCLUSIONS

Virtual machines lay the foundations of this work. The User-Mode Linux virtual

machines have been proved to be capable of simulating laboratory platforms on a

single host. Through the appropriate resource allocation, software installation, system

configurations, and user interfaces, virtual machines can be converted to lightweight

security laboratories at a reasonable performance.

The reliability and availability of Tele-Lab IT-Security are covered by a virtual ma-

chine management framework. This framework provides the virtual machine admin-

istration and monitoring services. With these services, critical failures of the virtual

machines can be detected and recovered at run time.

Running security experiments at a privileged level on the virtual machines poses

security risks. This thesis has specially addressed the security aspects of Tele-Lab IT-

Security. After identifying Tele-Lab’s security requirements, the thesis has proposed a

security management solution to prevent the misuse of the Tele-Lab virtual machines

through security isolation at the system and network levels.

The applicability of the Tele-Lab IT-Security architecture has been demonstrated in

this thesis. An example chapter on Password-based Authentication has shown that

the security tasks running in the privileged mode can be successfully implemented

based on the Tele-Lab architecture. The other two example chapters on Symmet-

ric Encryption and Secure Email have further demonstrated the capability of the

Tele-Lab IT-Security at supporting those security exercises which need complicated

environments and interactions.

Tele-Lab IT-Security has the following advantages which distinguish it from other

security teaching/learning approaches:

• As a better solution than multimedia courseware and demonstration software,

Tele-Lab IT-Security not only implements a web tutoring systems for learning

theoretical principles, but also offers students hands-on experiences.

• Tele-Lab IT-Security offers users a real-life laboratory environment instead of

limited simulation. Compared with dedicated security laboratories, Tele-Lab

IT-Security mobilizes the access to learning and reduces the costs and efforts

for creation and maintenance of laboratory environments.

• Tele-Lab IT-Security has a thin web user interface through which security tools

100

8.2. Future Work

and programs needed in the security exercise are accessible via a VNC applet1.

This interface avoids installation of additional client software on the user-end.

• With the virtual machine management system, Tele-Lab remains reliable and

available though security experiments may result in critical system failures.

• User activities in the virtual machine are constricted in a safe scope by security

management. Risks of the misuse of laboratory resources are eliminated by

security isolation measures.

8.2. Future Work

The future work will focus on the evaluation of the usability and educational effec-

tiveness of Tele-Lab IT-Security as well as the improvements on the architecture to

extend its application possibilities.

Evaluations

To demonstrate the applicability of the Tele-Lab IT-Security architecture, some of

teaching chapters including cryptography, access control, authentication and secure

email have been implemented on the Tele-Lab IT-Security CD and Server. Prelimi-

nary evaluation was done in the University of Trier in 2004. Two groups of students

from the computer science department (IT) and in other disciplines (non-IT) respec-

tively have joined in the evaluation. All students in both groups have not taken

any network or information security courses before that evaluation. Feedbacks from

the students showed both groups were able to well understand theoretical concepts

and tool tutorials with the layout of the current chapter structure. Non-IT students

were frustrated in security exercises by lack of essential knowledge and skills of Linux

operating environment. For IT students, the situation was much better: since they

already knew about Linux, they were able to follow chapters and finish exercises with-

out support of an instructor. Performance data of the students were collected from

the learning. From that, statistics about user performance and teaching content were

generated, which helps the evaluation and future adjustment of the chapter contents.

1Virtual Network Computing (“VNC”) is a remote desktop access system based on the Remote
Frame Buffer (RFB) protocol (See Section 4.3.1).

101

CHAPTER 8. CONCLUSIONS

The evaluation results indicate the use of open source software and Linux environ-

ment limits the application range of Tele-Lab IT-Security especially for most non-IT

students, but Tele-Lab is still an effective approach for training IT students.

More thorough evaluations must be carried out to test the usability, performance and

education effectiveness of the Tele-Lab architecture. To do this, we plan to develop

a complete on-line course based on Tele-Lab and apply it for teaching the students

at the Hasso-Plattner-Institute (HPI) of the University of Potsdam. In the Winter

Semester 2005/06, a student group (about thirty IT students from HPI) has started

to develop more course chapters as their practicum work.

Improvements on Architecture

The improvements on the Tele-Lab architecture will concentrate on the virtual ma-

chine management and laboratory platforms. Besides the User-Mode Linux virtual

machines, we are considering to extend the management interface for other virtual

machine software such as Xen, VMWare, or Virtual PC. By doing so, we can of-

fer more possibilities to build virtual laboratory environment for students based on

user’s preference and experiences. Security on the Windows platforms has not been

addressed by current development. The future work will attempt to integrate the Win-

dows virtual machines into the Tele-Lab architecture. The concern about Windows

virtual machines is that they are normally non-free and resource-intensive. Neverthe-

less, because of the importance of Windows security, it is still necessary to build the

lightweight Windows virtual machines on a high-performance host platform.

8.3. Closing Remarks

Tele-Lab IT-Security is a research work attempting to bridge the gap between e-

learning/tele-teaching and practical IT security education. Tele-Lab is not going to

completely substitute the conventional laboratory teaching but add practical features

to e-learning. The work in this thesis has demonstrated the possibility to implement

hands-on security laboratories on the Internet reliably, securely, and economically.

102

A. Symmetric Encryption

Demonstration

The Tele-Lab chapter, “Symmetric Encryption”, introduces important concepts on

symmetric encryption, illustrates related algorithms, and provides practical exercises

in which a user can apply a production encryption tool, GnuPG, to encrypt or decrypt

messages. Following contents and exercises are provided by this chapter:

• Essential cryptographic concepts and typical cipher algorithms are introduced in

early sections (see Figure A.1). E.g. in order to explain the DES algorithm1, we

integrate a visual demonstration from which a user can run the real algorithm

program and watch en-/decryption details .

Figure A.1.: DES demonstration.

1DES is a significant symmetric algorithm which includes 16 encryption rounds.

103

APPENDIX A. SYMMETRIC ENCRYPTION DEMONSTRATION

Figure A.2.: The GnuPG tutorial.

• The tutorial section introduces an encryption tool, GPG (“GNU Privacy

Guard”) which is an opensource PGP (“Pretty Good Privacy”) software pro-

gram. From this tutorial, the user learns how to apply encryption technology

and tools to meet everyday needs (see Figure A.2).

• In the exercise sections, encryption and decryption exercises are assigned to the

user. The process of the decryption exercise includes the following steps. First,

the tutor creates four texts and one of the four is randomly chosen. The chosen

text is then encrypted by GPG in the background and the corresponding secret

message is produced (see Figure A.3).

• The task for the user is to select the right plaintext of the list of four possible

plaintexts. In order to finish this task, the user must download the secret

message, find the key from email, and decrypt it with GPG. Then the user has

to submit the plaintext he/she finds (see Figure A.4).

• After submission of the result, the tutor checks it and finds out whether it is

the matched answer to the question. The evaluation result will be shown to the

user and recorded into his/her user profile. In case of fail, the tutor will ask

him or her to have another try.

• The encryption process is relatively simple. The tutor asks the user to encrypt

104

Figure A.3.: The task of the GPG decryption exercise.

Figure A.4.: Completion of the GPG decryption exercise.

105

APPENDIX A. SYMMETRIC ENCRYPTION DEMONSTRATION

a text. The user has to do encryption and submit the secret text with a key

which is used for encryption. Then the tutor tries decrypting the submission.

If it can be successfully decrypted with that key, this means the user has done

a job, otherwise he/she is asked to try again.

106

B. Secure Email Demonstration

B.1. The SMIME Exercise

As shown in Figure B.1, the SMIME exercise requires an interactive laboratory en-

vironment. In this environment, OpenSSL1, a certificate authority (CA), and related

mail services and accounts have to be provided. In order to provide effective interac-

tion, a virtual email partner named “Alice” is also created. This partner account is

necessary because, without it, a user does not know with whom to exchange messages.

In this exercise, the user is asked to manage digital certificates, create/verify signa-

ture of messages, and encrypt/decrypt messages. The procedure that a user creates

signature and sends signed mail to Alice is described below:

Thunderbird
Mail Client

Linux
System

Mail / OpenSSL
Scripts

OpenSSLExim Mail
Server

Certificate
Authority

User Alice

Figure B.1.: Working environment of the SMIME exercise

1. Work Environment Preparation.

• The tutor generates a virtual user, Alice, i.e. creates and configures her

Linux account and email settings.

• The tutor creates a certificate authority by generating a root certificate

and setting up a certificate service.

1OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer (SSL v2/v3) and
Transport Layer Security (TLS v1) network protocols and related cryptography standards (http:
//www.openssl.org/).

107

http://www.openssl.org/
http://www.openssl.org/

APPENDIX B. SECURE EMAIL DEMONSTRATION

• The tutor issues a certificate for Alice and configures her mail account

settings with this certificate.

2. Exercise Execution.

• Importing the certificate. (1) A certificate request page is shown to the

user. He/she can fill out the certificate request form and apply for a certifi-

cate from the CA (see Figure B.2). (2) The user’s private key is created

and a corresponding certificate file (in PKCS12 2 format) is generated. The

user is asked to download his/her certificate file and import it to his/her

mail client. (3) The user opens the Thunderbird’s SMIME certificate man-

ager, imports the certificate, and trusts it for identifying email users (see

Figure B.3). (4) The user also needs to configure his/her mail account to

use the imported certificate.

Figure B.2.: Requesting a personal certificate.

• Signing messages. The user is asked to write to Alice with a digital sig-

nature (shown in Figure B.4). The user must compose a message, sign it

with his/her private key, and send it to Alice (see Figure B.5).

3. Result Evaluation

• To evaluate the result, the tutor behaviors as Alice in the background. It

first checks Alice’s inbox and fetches the message sent by the user.

2PKCS 12 is the RSA personal information exchange syntax standard which describes a portable
format for storage and transportation of user private keys, certificates etc.

108

B.1. The SMIME Exercise

Figure B.3.: Import and configuration of the personal certificate.

Figure B.4.: The task to digitally sign a message.

109

APPENDIX B. SECURE EMAIL DEMONSTRATION

Figure B.5.: Signing a message.

• The tutor verifies its signature by OpenSSL scripts and confirms whether

it has been sent from the student and matches with the origin (see Figure

B.6).

Figure B.6.: Verifying the signature for evaluation.

• If verification succeeds, the user will receive a confirmation message and

the completion of the task will be recorded into the user profile.

The message encryption/decryption task is arranged after the message signing task

and follows a similar procedure:

110

B.1. The SMIME Exercise

• After the user receives the signed message of Alice and imports her certificate,

he/she is asked to decode a message from Alice. The message is encrypted by

Alice with the user’s own public key.

• The user then encrypts a message with Alice’s public key and sends it to Alice.

The tutor will try to decrypt the message with Alice’s private key corresponding

to her certificate and record the (un-)successful completion of the task in the

user profile.

111

APPENDIX B. SECURE EMAIL DEMONSTRATION

B.2. The Enigmail Exercise

The Enigmail exercise includes the tasks to manipulate public-private key pairs, cre-

ate/verify signature of messages, and encrypt/decrypt messages. In fact, the principle

of the Enigmail exercise is very similar to that of SMIME (see Figure B.7). It also

needs a virtual partner, Alice. The only deference between both is that Enigmail

is based on open PGP which uses a trust web model and has no central certificate

authority. Certificates (PGP key pairs) and trust have to be managed manually. The

steps to prepare the key pairs include:

Thunderbird Mail
Client / Enigmail

Linux System
Mail / GPG

ScriptsGPG

User Alice

Exim Mail
Server

Figure B.7.: The working environment of the Enigmail exercise.

• First, the user must create a key pair of his/her own by using the GPG tool

and then configure his/her Enigmail settings of Thunderbird with the created

key pair (see Figure B.8).

• The user publishes his/her public key and obtains those of others. The user

uploads the key to the tutor and the tutor will configure it in Alice’s mail

account. The user can download Alice’s public key from the tutor. Thus, the

user and Alice can exchange public keys with each other (see Figure B.9).

With key pairs available and public key exchanged, the rest tasks of email signing and

encryption follow similar processes to those of the SMIME exercise. The difference is

that the user will use the OpenPGP key pairs instead of certificates, and the tutor

will use the GPG scripts in the background to run interactive tasks.

112

B.2. The Enigmail Exercise

Figure B.8.: Creating a PGP keypair.

Figure B.9.: Publishing the public key.

113

APPENDIX B. SECURE EMAIL DEMONSTRATION

114

Bibliography

[Barham et al., 2003] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,

Ho, A., Neugebauer, R., Pratt, I., and Warfield, A. (2003). Xen and the art

of virtualization. In Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP).

[Bishop, 2000] Bishop, M. (2000). Education in information security. IEEE Concur-

rency, 8(4):4–8.

[Canon et al., 1980] Canon, M. D., Fritz, D. H., Howard, J. H., Howell, T. D., Mit-

oma, M. F., and Rodriquez-Rosell, J. (1980). A virtual machine emulator for

performance evaluation. Communications of the ACM, 23(2):71–80.

[Cao et al., 2002] Cao, J., Chan, A., Cao, W., and Yeung, C. (2002). Virtual pro-

gramming lab for online distance learning. In Proceedings of ICWL 2002, pages

216–227, Hongkong, China.

[Chen and Noble, 2001] Chen, P. M. and Noble, B. D. (2001). When virtual is better

than real. In Proceedings of the 2001 Workshop on Hot Topics in Operating Systems

(HotOS).

[Cheswik et al., 2003] Cheswik, W., Bellovin, S., and Rubin, A. (2003). Firewalls and

Internet Security: Repelling the Wily Hacker. Addison-Wesley, 2nd edition.

[Cordel, 2004] Cordel, D. (2004). Management virtueller Maschinen für Tele-Lab IT-

Security. Diplomarbeit, Universität Trier.

[Dike, 2000] Dike, J. (2000). A user-mode port of the Linux kernel. In Proceedings of

the USENIX Annual Linux Showcase and Conference, Atlanta, GA.

[Dike, 2001] Dike, J. (2001). User-mode Linux. In Proceedings of the 5th Annual

Linux Showcase & Conference, Oakland, California, USA.

115

Bibliography

[Esslinger, 2002] Esslinger, B. (2002). Cryptool - spielerischer einstieg in klassische

und moderne kryptographie: Neue version - fundierte awareness in deutsch und

englisch. Datenschutz und Datensicherheit, 26(10).

[Garfinkel and Spafford, 2001] Garfinkel, S. and Spafford, G. (2001). Web Security,

Privacy & Commerce. O’Reilly & Associates.

[Goldberg, 1972] Goldberg, R. P. (1972). Architectural Principles for Virtual Com-

puter Systems. PhD thesis, Ph.D. thesis, Harvard University, Cambridge, MA.

[Goldberg, 1974] Goldberg, R. P. (1974). Survey of virtual machine research. IEEE

Computer, pages 34–45.

[Haller, 1998] Haller, N. (1998). A One-Time Password System. RFC 2289.

[Hiltz and Turoff, 2005] Hiltz, S. R. and Turoff, M. (2005). Education goes digital:

The evolution of online learning and the revolution in higher education. Commu-

nications of the ACM, 48(10):59–64.

[Hoffman et al., 2003] Hoffman, L., Dodge, R., Rosenberg, T., and Ragsdale, D.

(2003). Information assurance laboratory innovations. In Proceedings of the 7th

Colloquium for Information Systems Security Education, Washington, DC, USA.

[Hu et al., 2005] Hu, J., Cordel, D., and Meinel, C. (2005). Virtual machine manage-

ment for Tele-Lab IT-Security server. In Proceedings of IEEE ISCC 2005, pages

448–453.

[Hu and Meinel, 2004a] Hu, J. and Meinel, C. (2004a). Tele-Lab IT-Security: A

means to build security laboratories on the web. In Proceedings of IEEE AINA

2004, pages 285–288, Fukuoka, Japan.

[Hu and Meinel, 2004b] Hu, J. and Meinel, C. (2004b). Tele-Lab ”IT-Security”on CD:

Portable, reliable and safe IT Security training. Computers & Security, Elsevier,

23(4):282–289.

[Hu et al., 2004] Hu, J., Meinel, C., and Schmitt, M. (2004). Tele-Lab IT Security:

An architecture for interactive lessons for security education. In Proceedings of

ACM SIGCSE 2004, pages 412–416, Norfolk, USA.

[Hu et al., 2003] Hu, J., Schmitt, M., Willems, C., and Meinel, C. (2003). A tutoring

system for IT-Security. In Proceedings of the 3rd World Conference in Information

Security Education, pages 51–60, Monterey, USA.

116

Bibliography

[Institut für Telematik, Trier, 2001] Institut für Telematik, Trier (2001).

Visualization of IT-Security features. http://www.telematik-

institut.org/erklarungen und definitionen/visualisierung.html.de.

[Irvine and Thompson, 2004] Irvine, C. E. and Thompson, M. F. (2004). Expressing

an information security policy within a security simulation game. In Proceedings

of the Sixth Workshop on Education in Computer Security (WECS6), pages 43–49,

Monterey, USA.

[King et al., 2003] King, S. T., Dunlap, G. W., and Chen, P. M. (2003). Operating

system support for virtual machines. In Proceedings of the 2003 Annual USENIX

Technical Conference.

[Knopper, 2000] Knopper, K. (2000). Building a self-contained auto-configuring

Linux system on an Iso9660 filessystem. In Proceedings of the 4th Annual USENIX

Linux Showcase & Conference, Atlanta, Georgia.

[Lindskog et al., 1999] Lindskog, S., Lindqvist, U., and Jonsson, E. (1999). IT secu-

rity research and education in synergy. In Proceedings of the 1st World Conference

on Information Security Education, Stockholm, Sweden.

[McEwan, 2002] McEwan, W. (2002). Virtual machine technologies and their appli-

cation in the delivery of ICT. In Proceedings of the 15th Annual NACCQ, Hamilton,

New Zealand.

[McVoy and Staelin, 1996] McVoy, L. and Staelin, C. (1996). Lmbench: Portable

tools for performance analysis. In Proceedings of the 1996 USENIX Annual Tech-

nical Conference, pages 279–294, Berkeley.

[Meinel et al., 2003] Meinel, C., Schillings, V., and Walser, V. (2003). Overcoming

technical frustrations in distance education: tele-task. In Proceedings of e-Society

2003, pages 34–41, Lisboa, Portugal.

[Microsoft, 2004] Microsoft (2004). Microsoft virtual server 2005 techni-

cal overview white paper. Technical report, Microsoft Corporation.

http://www.microsoft.com/windowsserversystem/virtualserver/.

[Neal and Miller, 2004] Neal, L. and Miller, D. (2004). Handbook of Human Factors

in Web Design, chapter The Basics of E-Learning. Lawrence Erlbaum Associates.

117

Bibliography

[Ragsdale et al., 2003] Ragsdale, D., Lathrop, S., and Dodge, R. (2003). Enhancing

information warfare education through the use of virtual and isolated networks.

Journal of Information Warfare, 2(3):53–65.

[Richardson et al., 1998] Richardson, T., Stafford-Fraser, Q., Wood, K. R., and Hop-

per, A. (1998). Virtual network computing. IEEE Internet Computing, 2(1):33–38.

[Robin and Irvine, 2000] Robin, J. S. and Irvine, C. E. (2000). Analysis of the Intel’s

Pentium ability to support a secure virtual machine monitor. In Proceedings of the

9th USENIX Security Symposium, Denver.

[Rosenblum and Garfinkel, 2005] Rosenblum, M. and Garfinkel, T. (2005). Vir-

tual machine monitors: Current technology and future trends. IEEE Computer,

38(5):39–47.

[Rowe and Schiavo, 1998] Rowe, N. C. and Schiavo, S. (1998). An intelligent tutor for

intrusion detection on computer systems. Computers and Education, 31:395–404.

[Russell, 2002] Russell, R. (2002). Linux 2.4 NAT HOWTO.

http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html.

[Ruth et al., 2005] Ruth, P., Jiang, X., Xu, D., and Goasguen, S. (2005). Virtual

distributed environments in a shared infrastructure. IEEE Computer, 38(5):63–69.

[Schillings and Meinel, 2002] Schillings, V. and Meinel, C. (2002). Tele-TASK - tele-

teaching anywhere solution kit. In Proceedings of ACM SIGUCCS 2002, Provi-

dence, USA.

[Schmitt et al., 2003a] Schmitt, M., Hu, J., and Meinel, C. (2003a). Design and

implementation of a PHP-based web server for the Tele-Lab IT Security. Technical

report, University of Trier.

[Schmitt et al., 2003b] Schmitt, M., Hu, J., and Meinel, C. (2003b). A tutoring sys-

tem for IT security education. Journal of Information Warfare, 2(3):79–85.

[Smith, 2005] Smith, J. E. (2005). The architecture of virtual machines. IEEE Com-

puter, 38(5):32–38.

[Snyder, 1990] Snyder, P. (1990). tmpfs: A virtual memory file system. In Proceedings

of the European UNIX Users Group Conference, pages 241–248.

118

Bibliography

[Spillman, 2002] Spillman, R. (2002). CAP: A software tool for teaching classical

cryptology. In Proceedings of the 6th National Colloquium on Information System

Security Education, Redmond, Washington, USA.

[Stallings, 2003] Stallings, W. (2003). Cryptography and Network Security: Principles

and Practice. Prentice Hall.

[Sugerman et al., 2001] Sugerman, J., Venkitachalam, G., and Lim, B.-H. (2001).

Virtualizing I/O devices on VMware workstation’s hosted virtual machine monitor.

In Proceedings of the 2001 USENIX Annual Technical Conference, Boston, MA.

[Vigna, 2003] Vigna, G. (2003). Teaching hands-on network security: Testbeds and

live exercises. Journal of Information Warfare, 2(3):8–24.

[Woo et al., 2002] Woo, C., Choi, J., and Evens, M. (2002). Web-based ITS for

training system managers on the computer intrusion. In Proceedings of the 6th

International conference on Intelligent Tutoring Systems, pages 311–319, Biarritz,

France and San Sebastian, Spain.

[Yang et al., 2001] Yang, S. J., Nieh, J., and Novik, N. (2001). Measuring thin-client

performance using slow-motion benchmarking. In Proceedings of the 2001 USENIX

Annual Technical Conference, Boston, Massachusetts, USA.

[Ylönen, 1996] Ylönen, T. (1996). SSH - secure login connections over the Internet.

In Proceedings of the 6th USENIX Security Symposium, San Jose, CA.

[Yuan and Strayer, 2001] Yuan, R. and Strayer, W. T. (2001). Virtual Private Net-

works: Technologies and Solutions. Addison-Wesley Professional, 1st edition.

119

	Titlepage
	Zusammenfassung
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables

	Introduction
	The Challenge in Practical IT Security Education
	Tele-Lab IT-Security: The Concept and Architecture
	Solutions to Implementation Problems
	Related Work
	Multimedia Courseware
	Demonstration Software
	Simulation Systems
	Dedicated Computer Laboratories

	Thesis Structure

	Technical Foundations
	Virtual Machines
	Fundamental Concepts
	Classification of Virtual Machines
	Benefits of Virtual Machines
	Virtual Machine Implementations

	User-Mode Linux (UML)
	The UML Principle
	System Structure
	Useful UML Features

	Tele-Lab IT-Security Architecture
	Architecture Overview
	The Tele-Lab Portal
	The Virtual Laboratory
	Virtual Machines
	The Security Tutoring System
	The User Work Environment

	Virtual Machine Management
	Security Management

	The Virtual Laboratory
	Requirements for Virtual Machines
	Virtual Machine Installation
	The Virtual Operating System
	The User Work Environment
	The Security Tutoring System

	User Interfaces
	Virtual Network Computing (VNC)
	The VNC Performance

	System Resource Allocation
	Processor Resource Allocation
	Virtual Memory Allocation
	Virtual Disk Resource Allocation

	Virtual Machine Performance
	Performance Benchmark
	Benchmark Results

	Virtual Machine Management
	Related Work on Virtual Machine Management
	UML Management Utility: Mconsole
	UML Management Daemon: UMLd

	Requirements for Virtual Machine Management
	Virtual Machine Management Framework
	The Virtual Machine Assignment Table
	Virtual Machine Administration
	Virtual Machine Monitoring
	User Monitoring
	User Notification

	Administration Web Interfaces
	The Administration Console
	The System Status Monitor

	Security Management
	Security Policy on Virtual Machines
	Security Requirements for Tele-Lab IT-Security
	Security Isolation at the System Level
	Security Isolation at the Network Level
	The iptables Packet Filter
	IP-address Reuse for Virtual Machines
	Packet Filtering for Access Control

	Secure User Interfaces

	Application in E-learning
	Range of Application
	Learning with Tele-Lab IT-Security
	User Registration
	User Login
	User Logout
	Learning Processes

	Case Studies
	Password-Based Authentication
	Symmetric Encryption
	Secure Email

	Conclusions
	Summary and Contributions
	Future Work
	Closing Remarks

	Appendix
	A Symmetric Encryption Demonstration
	B Secure Email Demonstration
	The SMIME Exercise
	The Enigmail Exercise

	Bibliography

