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A solution selection problem with small stable perturbations

Franco Flandoli, ∗ Michael Högele†

July 14, 2014

Abstract

The zero-noise limit of differential equations with singular coefficients is investigated for the

first time in the case when the noise is a general α-stable process. It is proved that extremal

solutions are selected and the probability of selection is computed. Detailed analysis of the char-

acteristic function of an exit time form the half-line is performed, with a suitable decomposition

in small and large jumps adapted to the singular drift.

Keywords: stochastic differential equations, singular drifts, zero-noise limit, Peano

phenomena, non-uniqueness, α-stable process, persistence probabilities, exit problem,

selection of solutions.

2010 Mathematical Subject Classification: 60H10; 34A12; 60G52; 60G51; 60F99.

1 Introduction

The zero-noise limit of a stochastic differential equation, with drift vector field b and a Wiener

process W , say of the form

Xε
t = x0 +

t∫
0

b (Xε
s ) ds+ εWt, t � 0, ε > 0, (1.1)

is a classical subject of probability, see for instance [10]. When the limit deterministic equation

Xt = x0 +

t∫
0

b (Xs) ds, t � 0, (1.2)

is well posed, usually one has Xε
t → Xt a.s. and typical relevant questions are the speed of

convergence and large deviations. On the contrary, when the Cauchy problem (1.2) has more than
∗Dipartimento di Matematica, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy; flandoli@dma.unipi.it
†Institut für Mathematik, Universität Potsdam, Germany; hoegele@math.uni-potsdam.de
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one solution, the first question concerns the selection, namely which solutions of (1.2) are selected

in the limit and with which probability. This selection problem is still poorly understood and we

aim to contribute with the investigation of the case when the noise is an α-stable process.

The case treated until now in the literature is the noise of Wiener type. All known quantitative

results are restricted to equations in dimension one. The breakthrough on the subject was due to

Bafico and Baldi [1] who solved the selection problem for very general drift b having one point x0

of singularity. The typical example of b to test the theory is

b (x) =

⎧⎨
⎩ B+ |x|β+

for x ≥ 0

−B− |x|β−
for x < 0.

(1.3)

where B± > 0, β± ∈ (0, 1); the deterministic equation (1.2) with x0 = 0 has infinitely many

solutions, which are equal to zero on [0,∞) or on some interval [0, t0] (possibly t0 = 0) and then,

on [t0,∞), they are equal either to C+ (t− t0)
1

1−β+ or to −C− (t− t0)
1

1−β− , with C± given in (3.6)

of Section 3; a central role will be played by the two extremal solution,

x± = ±C±t
1

1−β± .

The paper [1] completely solves the selection problem for this and more general examples, making

use of explicit computations on the differential equations satisfied by suitable exit time probabilities;

such equations are elliptic PDEs, in general, so they are explicitly solvable only in dimension one

(except for particular cases). The final result is that the law PWε , on C ([0, T ] ;R), of the unique

solution Xε
t of equation (1.1) with x0 = 0 and b as in (1.3), satisfies

PWε
w−→ p+δx+ + p−δx−

where p− = 1− p+

p+ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if β+ < β−

(B−)
− 1

1+β

(B+)
− 1

1+β +(B−)
− 1

1+β
if β+ = β− =: β

0 if β+ > β−.

(1.4)

This or part of this result was re-proved later on using other approaches, not based on elliptic PDEs

but only on tools of stochastic analysis and dynamical arguments, see [5], [24]. These investigations

are also motivated by the fact that in dimension greater than one the elliptic PDE approach is not

possible.

The aim of this paper is to investigate these questions when the Wiener process Wt is replaced

by a general α-stable process Lt. This process satisfies for any a > 0 the following self-similarity

condition (Lat)t�0
d
= (a

1
αLt + γ0t)t�0, for a drift γ0 ∈ R which accounts for the asymmetry of the
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law of L. The stochastic differential equation, then, takes the form

Xε
t = x0 +

t∫
0

b (Xε
s ) ds+ εLt, t � 0, ε > 0. (1.5)

Here explicit solution of the elliptic equations for exit time probabilities are not feasible and thus it is

again an example where we need to understand the problem with new tools and ideas. This feature

is similar to the theory of asymptotic first exit times for equations with regular coefficients and

small noise, see [14, 20, 7, 13] for recent progresses in the case of Lévy noise. This requires a careful

understanding of the role of small and large jumps, which is conceptually new and interesting;

technically the more demanding part is the estimate of the Laplace transform of the exit times.

Some ingredients are also inspired by [5].

The final result is the following theorem.

Theorem 1. If α > 1− (β+ ∧ β−), then

PLε
w−→ p+δx+ + p−δx−

where PLε is the law, on Skorohod space D ([0, T ] ;R), of the unique solution Xε
t of equation (1.1)

with x0 = 0 and p+, p− = 1− p+ are given as follows.

1. For strictly α-stable noise with drift γ0 = 0, the probabilities are given by (1.4).

2. For α-stable noise with drift γ0 �= 0, we have the following cases.

(a) For α ∈ (1, 2) the probability takes the values of (1.4).

(b) For α � 1 the probability p+ is given as

p+ =

⎧⎪⎨
⎪⎩
1, if γ0 > 0.

0, if γ0 < 0.

The time interval where this convergence takes place can be chosen to be any bounded interval

[0, T ], but with a suitable reformulation of the result it may also be an interval which increases like[
0, ε−θ∗

]
, for suitable θ∗ > 0, see the technical statements below; this is a novelty compared with

the literature on the Brownian case. For this purpose we solve an asymptotic first exit problem

for the strong solution Xε of (1.5) from a half-interval. This is a problem in its own right. The

proof of this result yields an asymptotic lower bound of Xε for times beyond the occurrence of the

first “large” jump in an appropriate sense as stated in Corollary 5. Before such first large jump,

that is on a time scale up to ε−θ∗ however, the system exhibits the mentioned behavior similar to
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a Brownian perturbation. Among the other technical novelties, there is the use of the linearized

system in order to show that excursions away from the origin are large enough.

In order to understand the role of the drift γ0 we for α � 1 we would like to mention the following

analogous situation. When γ0 > 0 (the argument for γ0 < 0 is symmetric), consider the following

ODE depending on the parameter ε ∈ (0, 1):

x′ (t) = b (x (t)) + εγ0, x (0) = 0.

The solution, call it xε (t), is unique (in spite of the fact that b is not Lipschitz at x = 0) and given

by xε (t) = H−1
ε (t) where

Hε (x) =

x∫
0

dy

b (y) + εγ0
.

When ε→ 0, xε (t) converges to x+ (t). We want to remark that this fact is similar to the the result

of Theorem 1 for α � 1, but not for α ∈ (1, 2) where the fluctuating part of the noise prevails and

the limit is different.

The article is structured as follows. After a brief set of notations, we setup and solve the

previously mentioned first exit problem in Section 3. This is carried out for initial values which

may approach 0 as a function of ε, however only sufficiently slowly, as ε→ 0. Section 4 zooms into

the behavior for very short temporal and spatial scales around the origin and determines the exit

probabilities to each side with the help of the self-similarity of the driving Lévy noise. In Section 5

it is shown that an unstable linearized intermediate regime stabilizes the exit direction from the

small environment of the origin and rapidly enhances the solution until it reaches the area of initial

values for the regime in Section 3. Section 6 concludes the proof of Theorem 1.

2 Preliminaries

For the following notation we refer to Sato [23]. A Lévy process L with values in the real line

over a given probability space (Ω,F ,P) is a stochastic process L = (Lt)t�0 starting in 0 ∈ R with

independent and identically distributed increments.

The Lévy-Khintchine formula establishes the following representation of the characteristic func-

tion of the marginal law of the Lévy process Z. There exists a drift γ ∈ R, σ > 0 and a σ-finite

Borel measure ν on R, the so-called Lévy measure, satisfying

ν{0} = 0, and
∫
R

(1 ∧ |u|)2ν(du) <∞, (2.1)
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such that for any t � 0 the characteristic function reads

E[ei〈z,Lt〉] = etψ(z), z ∈ R,

ψ(z) = i〈γ, z〉 − σ2z2

2
+

∫
R

(ei〈z,y〉 − 1− i〈z, y〉1{|y| � 1})ν(dz). (2.2)

The triplet (γ, σ, ν) determines the law of the process L uniquely.

An α-stable process L for α ∈ (0, 2) is a Lévy process with canonical triplet (γ, 0, ν), where

γ ∈ R and ν is given as

ν(dy) =
c−

yα+1
1{y < 0}+ c+

yα+1
1{y > 0},

where c+, c− � 0.

The family of α-stable processes satisfies the following self-similarity property. For an α-stable

process L with given Lévy measure ν there is a drift γ0 ∈ R, such that for any a > 0

(Lat)t�0
d
= (a

1
αLt + γ0t)t�0. (2.3)

Note that in general γ0 does not coincide with γ in the Lévy-Chinchine representation. This depends

on a chosen cutoff around 0. For details consult [23], Section 14. Instead, for α > 1

γ0 = E[L1] =

∫
R

yν(dy), (2.4)

where for α ∈ (0, 1)

γ0 =

∫
0<|y|�1

yν(dy). (2.5)

In case of the Cauchy distribution α = 1 the drift γ0 is given as the median of the law of L1. In

fact, in this article we will not exploit the concrete shape of γ0, but the self-similarity.

An α-stable process L with γ0 = 0 is called strictly α-stable. The representations (2.4) and (2.5)

show in particular that for any strictly α-stable process, α ∈ (0, 2) with α �= 1, that c+ = c−. For

α = 1 this is a consequence of Theorem 14.7(ii) in [23].

Without loss of generality we shall restrict ourselves to the renormalized case c+ + c− = 1 in

the exposition of this article.

Proposition 2. Let L be an α-stable process α ∈ (0, 2) over a given filtered probability space.

Then equation (1.5) has a unique strong solution, which satisfies the strong Markov property.

The result is not surprising since α-stable distributions are absolutely continuous and the non-

uniqueness of the deterministic flow occurs at a single point {0}, which is a Lebesgue zero set.
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3 An exit problem from a half-interval

Theorem 3. For all β ∈ (0, 1) and α ∈ (0, 2) there are monotonically increasing, continuous

functions δ+· , δ−· : (0, 1) → (0, 1) such that the first exit time

τx,ε := inf{t > 0 | Xε,x
t ∈ [−δ−ε , δ+ε ]}

of the solution Xx,ε of (1.5) satisfies for all functions mε → ∞ with lim supε→0mεε
α <∞, that

sup
x/∈[−5δε,5δε]

lim
ε→0

P(τx,ε � mε) = 0.

Proof. The proof is structured in four parts. After the technical preparation and two essential

observations we derive the main recursion. In the last part we conclude.

1) Setting and notation: Let us denote u(t;x) := Xx,0
t for convenience. The first observation

is the following. Let δ > 0 and x ∈ R an initial value with |x| > δ. Then b
∣∣
R\[−δ,δ] satisfies global

Lipschitz and growth conditions, such that there exists a unique strong local solution, which lives

until to the stopping time

τx,ε,δ := inf{t > 0 | Xx,ε
t ∈ [−δ, δ]}.

Here the Lipschitz constant depends essentially on δ and explodes as δ ↘ 0. As usually in this

situation, we divide the process L = ηε + ξε by a ε-dependent threshold ε−ρ, where ρ ∈ (0, 1) is a

parameter to be made precise in the sequel. More precisely the compound Poisson process with

ηεt =
∞∑
i=1

Wi1{Ti � t}

with arrival times Ti =
∑i

j=1 ti, where ti i.i.d. waiting times and i.i.d. “large” jump increments

(Wi)i∈N with the conditional law

Wi ∼ 1

λε
ν(· ∩ (R \ [−ε−ρ, ε−ρ])) (3.1)

ti ∼ EXP(λε) for i ∈ N, (3.2)

where

λε = ν(R \ [−ε−ρ, ε−ρ]) = 2

∞∫
ε−ρ

dy

yα+1
=

2

α
εαρ, (3.3)

and the remaining semi-martingale

ξε = L− ηε (3.4)
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with uniformly bounded jumps, which implies the existence of exponential moments. Let us denote

by Y x,ε the solution of

Y x,ε
t = x+

t∫
0

b (Y x,ε
s ) ds+ εξεt , (3.5)

which exists uniquely under the same conditions as does Xx,ε. For δ > 0 we fix the notation

Dδ := R \ [−δ, δ]
D+
δ := (δ,∞).

For a function δ· : (0, 1) → (0, 1) with δε ↘ 0 to be specified later we fix

τx,ε := inf{t > 0 | Xε
t,x /∈ Dδε}

τx,ε,− := inf{t > 0 | Xε
t,x /∈ D+

δε
}.

2) Two observations: The following observations reveal the first exit mechanism.

2.1) Up to the first large jump, the deterministic solutions travel sufficiently far:

Separation of variables yields the explicit representation for t � t′ and x � 0

u(t; t′, x) =
(
B(1− β)(t− t′) + x1−β

) 1
1−β

. (3.6)

Hence for z � x and t′ = 0, we obtain

P (u(T1;x) � z) = P
((
B(1− β)T1 + x1−β

) 1
1−β � z

)
= P

(
T1 �

z1−β − x1−β

B(1− β)

)
= exp

(
− (z1−β − x1−β)

λε
B(1− β)

)
= P (Z � z | Z � x).

This is the tail of the distribution function of a Weibull distributed random variable Z with shape

parameter 1− β and scaling parameter

( λε
B(1− β)

) 1
1−β

=
ε

αρ
1−β

B(1− β)
1

1−β

conditioned on the event {Z � x}. We define for Γ > 1 such that Γ < 1
1−β and

γε := (λ
− 1

Γ
ε − (3δε)

1−β)
1

1−β ≈ε ε
−α

Γ
ρ

1−β .
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Hence

lim
ε→0+

sup
x∈D3δε

P(u(T1;x) � γε) → 1, (3.7)

and

sup
2δε�x�γε

P(u(T1;x) � 2γε) ≈ε λ
1− 1

Γ
ε .

2.2) Control the deviation of the small jump solution from the deterministic solution:

For each ρ ∈ (0, 1) there are functions δ· : (0, 1) → (0, 1), r· : (0, 1) → (0,∞) such that

εαρrε → ∞ and
δε

ε1−ρrε
→ ∞.

Put in other terms the first result means rε �ε
1
εαρ . We define

rε :=
| ln(ε)|2
εαρ

. (3.8)

For the second expression we have

∞ ← δε
ε1−ρrε

=
δε

ε1−ρ−αρ
1

εαρrε
. (3.9)

Therefore a necessary condition for (3.9) to be satisfied is δε �ε ε
1−ρ(1+α). We define

δε := ε1−ρ(1+α)| ln(ε)|4. (3.10)

For the right-hand side to tend to 0 is equivalent to

ρ <
1

α+ 1
. (3.11)

In particular for all α ∈ (0, 2)

αρ <
α

1 + α
<

2

3
< 1. (3.12)

Since ξε has exponential moments we can compensate it

ξ̃εt := ξεt − tE[ξε1].

It is a direct consequence of Lemma 2.1 in [15], which treats the same situation, that for any c > 0

P( sup
t∈[0,rε]

|εξ̃ε| > c) � exp(− c

ε1−ρrε
). (3.13)

A small direct calculation or Lemma 3.1 in [15] yields that there is constant h1 > 0 such that

|E[εξε1]| � ε|γ0|+ h1ε
1−ρ.
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The choice of rε in (3.8) and ρ in (3.11) we first obtain that εrεγ0 → 0 as ε→ 0 and also

h1r
εε1−ρ = ε1−(α+1)ρ| ln(ε)|2 �ε ε

1−(α+1)ρ| ln(ε)|4 = δε. (3.14)

Hence for any ε > 0 sufficiently small we have |rεE[εξε1]| � δε and infer

P( sup
t∈[0,T1]

|εξεt | > 2c) = P( sup
t∈[0,T1]

|εξ̃εt − tεγ0| > 2c)

� P( sup
t∈[0,rε]

|εξ̃εt | > c) + P(T1 > rε)

� exp(− c

ε1−ρrε
) + exp(−εαρrε). (3.15)

Denote V x,ε
t = Y x,ε

t − 2c − εξεt . The monotonicity of b on (0,∞) yields on the events {t ∈ [0, T1]}
and {supt∈[0,T1] |εξεs | � 2c} that

V x,ε
t = x− 2c+

t∫
0

b(V x,ε
s + 2c+ εξεs)ds

� x− 2c+

t∫
0

b(V x,ε
s )ds.

By (3.14) we may set c = δε we obtain

V x,ε
t � x− 2δε +

t∫
0

b(V x,ε
s )ds t ∈ [0, T1].

Hence an elementary comparison argument implies under these assumptions

V x,ε
t � u(t;x− 2δε), for all t ∈ [0, T1], x � 2δε.

In particular in the preceding setting we take the supremum over all x � 4δε and obtain

sup
x∈D+

4δε

P( sup
t∈[0,T1]

(Y x,ε
t − (u(t;x− 2δε)− 2δε)) < 0)

� P( sup
t∈[0,T1]

|εξε| > 2δε) � exp(− δε
ε1−ρrε

) + exp(−εαρrε) = 2ε2. (3.16)

With the identical reasoning we obtain

sup
x�(i−1)γε

P( sup
t∈[0,T1]

(Y x,ε
t − (u(t;x− 2δε)− 2δε)) < 0) � P( sup

t∈[0,T1]
|εξε| > iγε)

� exp(− iγε
2ε1−ρrε

) + exp(− iε
αρrε

2
). (3.17)

Remark 3.1. In the light of the observations 2.1) and 2.2) it is clear that the exit behavior is

mainly determined by the behavior of the large jumps εWi.
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3) Estimate of the Laplace transform of the exit time: We estimate the Laplace transform

of the first exit time. Let θ > 0. Then

sup
x∈D+

5δε

E
[
e−θε

ατx,ε,−
]
=

∞∑
k=1

sup
x∈D+

5δε

E
[
e−θε

ατx,ε,−1{τx,ε,− ∈ (Tk−1, Tk]}
]

�
∞∑
k=1

sup
x∈D+

5δε

E
[
e−θε

αTk−11{τx,ε,− ∈ (Tk−1, Tk]}
]

�
nε∑
k=1

sup
x∈D+

5δε

E
[
e−θε

αTk−11{τx,ε,− ∈ (Tk−1, Tk]}
]
+

∞∑
k=nε

E
[
e−θε

αT1
]k

=:

nε∑
k=1

I1(k) + I2 =: I1 + I2.

3.1) The infinite remainder: For the second sum we obtain

I2 =
∞∑

k=nε

( 1

1 + θεα

λε

)k
=

∞∑
k=nε

e
k ln

(
1− θεα

λε

)
�ε

∞∑
k=nε

e−k
2θεα

λε =
e−nε

2θεα

λε

1− e−
2θεα

λε

�ε
e−nε

2θεα

λε

2θεα

λε

= e−nε
2θεα

λε
−ln( 2θε

α

λε
) =: S1(ε). (3.18)

In order to get S1(ε) → 0 as ε→ 0, we need the asymptotics

nεε
α(1−ρ) + ln(ε) → ∞, (3.19)

or for simplicity

nε �ε
1

εα(1−ρ)
+ | ln(ε)|.

If we define

nε :=
| ln(ε)|2
εα(1−ρ)

, (3.20)

we obtain

S1(ε) ≈ε ε
2+α(1−ρ) → 0 as ε→ 0.

3.2) Estimate of the main sum: The rest of the proof is devoted to estimate
∑nε

k=0 I1(k). We

define the following events for y ∈ D+
5δε

and s, t � 0 by

A−
t,s,y := {X ·,ε

r ◦ θs(y) ∈ D+
δε

for all r ∈ [0, t]},
B−
t,s,y := {X ·,ε

r ◦ θs(y) ∈ D+
δε

for all r ∈ [0, t) and X ·,ε
t ◦ θs(y) /∈ D+

δε
}.

Recall the waiting times tk := Tk − Tk−1 and exploit the decomposition

{τx,ε,− ∈ (Tk−1, Tk]} =
k−1⋂
i=1

A−
ti,Ti−1,XTi−1,x

∩
( ⋃
t∈(0,tk]

B−
t,Tk−1,x

)
.
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3.2.1) Derivation of the recursion for the idealized exit from an unstable point 0: We

estimate I1(k) with the help of the strong Markov property

I1(k)

= sup
x∈D+

5δε

E
[
E
[ k−1∏
i=1

e−θλεti1
(
A−
ti,Ti−1,XTi−1,x

)
(
1
{
u(T1;x− 2δε)− 2δε + εW1 > λ

− 1
Γ(1−β)

ε

}
+ (1

{
u(T1;x− 2δε)− 2δε + εW1 � λ

− 1
Γ(1−β)

ε

})
(
1
{

sup
t∈[0,T1]

(Y x,ε,1
t − (u(t;x− 2δε)− 22δε)) � 0

}
+ 1

{
sup

t∈[0,T1]
(Y x,ε,1
t − (u(t;x− 2δε)− 2δε)) < 0

})

1
( ⋃
t∈(0,Tk−Tk−1]

B−
t,Tk−1,x

) | FT1
]]

� sup
y∈D+

5δε

E
[
e−θλεT11

(
A−
T1,0,y

)
1
{

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) � 0

}]

sup
y�γε

E
[ k−1∏
i=1

e−θλεti1
(
A−
ti,Ti−1,XTi−1,y

)
1
( ⋃
t∈(0,Tk−Tk−1]

B−
t,Tk−1,y

)]

+ sup
y∈D+

5δε

E
[
e−θλεT11

{
sup

t∈[0,T1]
(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) < 0

}]

+ sup
y∈D+

5δε

E
[
e−θλεT11

{
u(T1; y − 2δε)− 2δε + εW1 � λ

− 1
Γ(1−β)

ε

}]

where we recall that γε = (λ
− 1

Γ
ε − (5δε)

1−β)
1

1−β . Taking a closer look we may identify the preceding

inequality as the recursive estimate

sup
x∈D+

5δε

E
[
e−θλεTk−11{τx,ε,− ∈ (Tk−1, Tk]}

]

� sup
y�γε

E
[
e−θλεTk−21{τy,ε,− ∈ (Tk−2, Tk−1]}

]
· sup
y∈D+

5δε

E
[
e−θλεT11

(
A−
T1,0,y

)
1
{

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) � 0

}]

+ sup
y∈D+

5δε

E
[
e−θλεT11

{
sup

t∈[0,T1]
(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) < 0

}]

+ sup
y∈D+

5δε

E
[
e−θλεT11

{
u(T1; y − 2δε)− 2δε + εW1 � λ

− 1
Γ(1−β)

ε

}]
. (3.21)
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The same reasoning yields for all 2 � i � k the recursive inequality

sup
x�(i−1)γε

E
[
e−θλεTk−11{τx,ε,− ∈ (Tk−1, Tk]}

]

� sup
y�iγε

E
[
e−θλεTk−21{τy,ε,− ∈ (Tk−2, Tk−1]}

]
· sup
y�(i−1)γε

E
[
e−θλεT11

(
A−
T1,0,y

)
1
{

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) � 0

}]

+ sup
y�(i−1)γε

E
[
e−θλεT11

{
sup

t∈[0,T1]
(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) < 0

}]

+ sup
y�(i−1)γε

E
[
e−θλεT11

{
u(T1; y − 2δε)− 2δε + εW1 � λ

− 1
Γ(1−β)

ε

}]
.

Hence solving the recursion we obtain

I1(k) �
k−1∏
j=1

sup
y�(j−1)γε∨5δε

E
[
e−θλεT11

(
A−
T1,0,y

)
1
{

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) � 0

}]

· sup
y�(k−1)γε∨5δε

P
(
τy,ε,− ∈ (0, T1]

)

+
k−2∑
i=1

sup
y∈(i−1)γε∨5δε

E
[
e−θλεT11

{
sup

t∈[0,T1]
(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) < 0

}]

+
k−2∑
i=1

sup
y�(i−1)γε∨5δε

E
[
e−θλεT11

{
u(T1; y − δε) + εW1 � λ

− 1
Γ(1−β)

ε

}]
. (3.22)

3.2.2) Estimate of the second sum of the recursion (3.22): By (3.16) and (3.17) there

exists ε0 ∈ (0, 1) such that for ε ∈ (0, ε0]

nε∑
k=1

k−2∑
i=1

sup
y∈(i−1)γε∨5δε

E
[
e−θλεT11

{
sup

t∈[0,T1]
(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) < 0

}]

� nε

∞∑
i=1

sup
y�(i−1)γε∨5δε

E
[
e−θλεT11

{
sup

t∈[0,T1]
(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) < 0

}]

� 2nε(exp(− δε
ε1−ρrε

) + exp(−εαρrε)) =: S2(ε) ↘ 0,

with the convention
∑−1 = 0. We determine the order of S2

nε(exp(− δε
ε1−ρrε

) + exp(−εαρrε))

= | ln(ε)|2ε−α(1−ρ) exp(−ε
1−ρ(1+α)| ln(ε)|4
ε1−ρε−αρ| ln(ε)|2 ) + | ln(ε)|2ε−α(1−ρ) exp(−ε−αρ| ln(ε)|2εαρ)

= 2| ln(ε)|2ε2−α+αρ.

12



3.2.3) Estimate of the third sum in the recursion (3.22): For i = 0 and 0 < ε � ε0 we

perform the core calculation of the article. The idea is the following: Xx,ε
t �ε u(t;x − 2δ) − 2δε +

εW11{t = T1} for all t ∈ [0, T1]. For small ε and 5δε < x � γε the solution u(T1, x − 2δε) − 2δε

escapes sufficiently far away from x, that is u(T1, x − 2δε) − 2δε � 2γε, such that the probability

that u(T1, x− 2δε)− 2δε + εW1 < γε decays sufficiently fast.

3.2.3.1) Estimate of the backbone decomposition of the first exit event: Due to the

independence of T1 and W1 we may calculate for γ∗ε (x) =
(2γε+2δε)1−β−(x−δε)1−β

B(1−β)

sup
5δε<x�γε

E
[
e−θλεT11

(
u(T1;x− 2δε)− 2δε + εW1 � γε

)]
� sup

5δε<x�γε
E
[
e−θλεT11

(
u(T1;x− 2δε)− 2δε + εW1 � γε

)
1
(
u(T1;x− 2δε) > 2γε + δε

)]
+ sup

5δε<x�γε
P(u(T1;x− 2δε) � 2γε + 2δε)

= sup
5δε<x�γε

∞∫
γ∗ε (x)

P(u(t;x− 2δε)− 2δε + εW1 � γε)λεe
−λεtdt+ sup

5δε<x�γε
P(u(T1;x− 2δε) � 2γε + 2δε)

(3.23)

The second term is known from (3.7) and tends to 0, hence it remains to calculate the first one.

sup
5δε<x�γε

∞∫
γ∗ε (x)

P(u(t;x− 2δε)− 2δε + εW1 � γε)λεe
−λεtdt

= sup
5δε<x�γε

∞∫
γ∗ε (x)

ν((−∞,
1

ε
(γε − (u(t;x− 2δε)− 2δε)])e

−λεtdt

= sup
5δε<x�γε

∞∫
γ∗ε (x)

ν((−∞,
1

ε
(γε + 2δε − (B(1− β)t+ (x− 2δε)

1−β)
1

1−β )])e−λεtdt

= sup
5δε<x�γε

α

4

εα

λε

∞∫
γ∗ε

1

((B(1− β)t+ (x− 2δε)1−β)
1

1−β − (γε + δε))α
λεe

−λεtdt

� α

4

εα

λε

1

γαε
. (3.24)

The term

εα

λε

1

γαε
≈ε ε

α(1−ρ)+ α2ρ
Γ(1−β) ,

converges to 0 as ε→ 0. This gives an estimate for the last term in (3.21). The last term in (3.22)

deals with initial values (i− 1)γε < x � iγε. We obtain for

γ∗ε (i, x) :=
((i+ 1)γε + δε)

1−β − x1−β

B(1− β)

13



with the analogous calculations the following estimate

sup
(i−1)γε<x�iγε

E
[
e−θλεT11

(
u(T1;x− 2δε)− 2δε + εW1 � γε

)]

= sup
(i−1)γε<x�iγε

α

4

εα

λε

∞∫
γ∗ε (i,x)

1

((B(1− β)t+ (x− 2δε)1−β)
1

1−β − (γε − 2δε))α
λεe

−λεtdt

+ sup
(i−1)γε<x�iγε

P(u(T1;x− 2δε) � (i+ 1)γε + 2δε)

� α

4

εα

λε

1

γαε i
α
+ sup

(i−1)γε<x�iγε
P(u(T1;x− 2δε) � (i+ 1)γε + 2δε). (3.25)

Combining the estimates (3.23), (3.24) and (3.25) we obtain for any C > 1

k−2∑
i=1

sup
y�(i−1)γε∨5δε

E
[
e−θλεT11

{
u(T1; y − 2δε)− 2δε + εW1 � λ

− 1
2(1−β)

ε

}]

=
k−2∑
i=1

sup
j�i

sup
(j−1)γε∨5δε<y�jγε

E
[
e−θλεT11

{
u(T1; y − 2δε)− 2δε + εW1 � λ

− 1
2(1−β)

ε

}]

�ε

k−2∑
i=1

sup
j�i

(α
4

εα

λε

1

γαε j
α
+ sup

(j−1)γε<x�jγε
P(u(T1;x− 2δε) � (j + 1)γε + 2δε)

)

�ε

k−2∑
i=1

(α
4

εα

λε

1

γαε i
α
+ C(1− exp(−[(i+ 1)1−β − i1−β ]

γ1−βε λε
B(1− β)

)
)

�
k−2∑
i=1

(α
4

εα

λε

1

γαε i
α
+ C[(i+ 1)1−β − i1−β ]

γ1−βε λε
B(1− β)

)

�
k−2∑
i=1

(α
4

εα

λε

1

γαε i
α
+
C

B

γ1−βε λε
iβ

)

=
α

4

εα

λε

1

γαε

k−2∑
i=1

1

iα
+
C

B
γ1−βε λε

k−2∑
i=1

1

iβ

� C
α

4

εα

λε

1

γαε
k1−α +

C

B
γ1−βε λεk

1−β . (3.26)

Hence we may sum up

sup
5δε<x�γε

E
[
e−θλεT11

(
u(T1;x− 2δε)− 2δε + εW1 � γε

)]

+

nε∑
k=2

k−2∑
i=1

sup
y�(i−1)γε∨5δε

E
[
e−θλεT11

{
u(T1; y − 2δε)− 2δε + εW1 � λ

− 1
Γ(1−β)

ε

}]

�ε
εα

λε

1

γαε
+ λ

1− 1
Γ

ε +
Cα

4

εα

λε

1

γαε
(nε)

2−α +
C

1− β
γ1−βε λε(nε)

2−β =: S3(ε) (3.27)

3.2.3.2) Conditions on parameters in order to establish the convergence S3(ε) → 0:

14



• We check the order of the second to last expression on the right-hand side

ε
α(1−ρ(1− α

Γ(1−β)
))
n2−αε ≈ε ε

α(1−ρ(1− α
Γ(1−β)

))−α(2−α)(1−ρ)| ln(ε)|2(2−α)

= ε
α[(1−ρ(1− α

Γ(1−β)
))−(2−α)(1−ρ)]| ln(ε)|2(2−α).

The essential sign of the exponent hence is given as the sign of

(1− ρ) +
ρα

Γ(1− β)
− (2− α)(1− ρ) = (α− 1)(1− ρ) +

ρα

Γ(1− β)
. (3.28)

– For 1 � α < 2 the sign is positive, since all terms are nonnegative and the last term is

positive.

– For 0 < α < 1 we calculate that the positivity of (3.28)

0 < −(1− α)(1− ρ) +
ρα

2(1− β)
= −(1− α) + ρ[

α

2(1− β)
+ (1− α)]

is equivalent to

ρ0(α, β) :=
Γ(1− α)(1− β)

Γ(1− α)(1− β) + α
< ρ

where the right-hand side is strictly less than 1. Hence in this case the sign is positive if

we choose ρ0 < ρ < 1.

• For the second expression on the right-hand side we obtain

γ1−βε λε(nε)
2−β ≈ε ε

−(1−β) αρ
Γ(1−β) εαρε−α(1−ρ)(2−β)| ln(ε)|2−β = εαρ(1−

1
Γ
)−α(1−ρ)(1−β)| ln(ε)|2−β .

The positivity of the exponent depends on the sign of

0 < (1− 1

Γ
)ρ− (1− ρ)(1− β) = ρ((1− 1

Γ
) + (1− β))− (1− β),

which is equivalent to

ρ >
(1− 1

Γ)(1− β)

(1− 1
Γ)(1− β) + 1

=: ρ1(β).

Since ρ1(β) < 1 for all ρ1 < ρ < 1 the second exponent is also positive.

3.2.3.3) Verify the compatibility of the choice of convergent parameters: We check

that the parameters β and α are compatible with ρ < 1
1+α in (3.29), which ensures that δε → 0, as

15



ε→ 0. The first convergence in (3.27) yields

ρ0 =
Γ(1− α)(1− β)

Γ(1− α)(1− β) + α
<

1

1 + α

⇔ Γ(1 + α)(1− α)(1− β) < Γ(1− α)(1− β) + α

⇔ Γ(1− β)− Γ(1− β)α2 < Γ(1− β)− Γα(1− β) + α

⇔ − Γ(1− β)α2 < −Γα(1− β) + α

⇔ 0 < Γ(1− β)α2 + Γαβ − (Γ− 1)α = α(Γ(1− β)α− (Γ− 1− Γβ))

⇔ 0 < Γ(1− β)α− (Γ− 1− Γβ)

⇔ 0 < Γα− Γ− 1− Γβ

1− β

⇔ Γ− 1− Γβ

Γ(1− β)
< α,

where the left hand side < 0, since Γ < 1
1−β and it does not impose a restriction on α. The second

condition gives

ρ1 =
(1− 1

Γ)(1− β)

(1− 1
Γ)(1− β) + 1

<
1

1 + α
⇔ (1− 1

Γ)(1− β) + 1

(1− 1
Γ)(1− β)

> 1 + α ⇔ 1

(1− 1
Γ)(1− β)

> α,

In order to get rid of restrictions on α we calculate

2 � 1

(1− 1
Γ)(1− β)

⇔ (1− 1

Γ
) � 1

2(1− β)
⇔ Γ � 2(1− β)

2(1− β)− 1
.

Choosing Γ := 1
2

(
1 + 1

2

(
1

1−β + 2(1−β)
2(1−β)−1

))
we can always choose

ρ :=
1

2

(
ρ1(β) +

1

1 + α

)
, (3.29)

satisfying all conditions required before.

3.2.4) Estimate of the first sum of the recursion (3.22): It remains to estimate the

expression
nε∑
k=1

k−1∏
j=1

sup
y�(j−1)γε∨5δε

E
[
e−θλεT11

(
A−
T1,0,y

)
1
{

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) � 0

}]

· sup
y�(k−1)γε∨5δε

P
(
τy,ε,− ∈ (0, T1]

)
.

3.2.4.1) We estimate the factors one by one: For j � 2

sup
y�(j−1)γε∨5δε

E
[
1
(
A−
T1,0,y

)
1
{

inf
t∈[0,T1]

(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) � 0

}]

�ε 1− (1− C)P(εW1 < −(j − 1)γε)

= 1− (1− C)

2

( ε

(j − 1)γε

)αρ
(3.30)
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and for j = 1

sup
y∈D+

5δε

E
[
1
(
A−
T1,0,y

)
1
{

inf
t∈[0,T1]

(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) � 0

}]

� sup
y∈D+

5δε

E
[
1
(
A−
T1,0,y

)
1
{

inf
t∈[0,T1]

(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) � 0

}
1{u(T1, y − 2δε) � 2γε}

]

+ sup
y∈D+

5δε

P(u(t; y) � 2γε + 2δε)

�ε 1− (1− C)P(εW1 < −γε) + Cλ
1− 1

Γ
ε

�ε 1− (1− C)

2

( ε
γε

)αρ
+ Cεαρ(1+

1
Γ
). (3.31)

We estimate for k � 2 with the help of (3.16)

sup
y�(k−1)γε

P
(
τx,ε,− ∈ (0, T1]

)

� P
(
W1 < −(k − 1)

γε
ε

)
+ sup
y�(k−1)γε

P
(

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y)− 2δε)) > 0

)

� 1

2

( ε
γε

)αρ 1

(k − 1)αρ
+ sup
y∈D+

5δε

P
(

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y)− 2δε)) > 0

)
(3.32)

� 1

2

( ε
γε

)αρ 1

(k − 1)αρ
+ 2ε2 (3.33)

whereas for k = 1

sup
y∈D+

5δε

P
(
τx,ε,− ∈ (0, T1]

)

� 1

2

( ε
γε

)αρ
+ sup
y∈D+

5δε

P
(

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y)− 2δε)) > 0

)
+ sup
y∈D+

5δε

P(u(T1, y) � γε + 2δε)

� 1

2

( ε
γε

)αρ
+ sup
y∈D+

5δε

P
(

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y)− 2δε)) > 0

)
+

2

B(1− β)
λ
1− 1

Γ
ε , (3.34)

where the last term is known from (3.7).
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3.2.4.2) Estimate of the entire sum: Collecting the previous (3.30), (3.31), (3.33), (3.34) and

for the small noise estimate (3.17) together with (3.26) we continue

nε∑
k=1

k−1∏
j=1

sup
y�(j−1)γε∨5δε

E
[
e−θλεT11

(
A−
T1,0,y

)
1
{

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y − 2δε)− 2δε)) � 0

}]

· sup
y�(k−1)γε∨5δε

P
(
τy,ε,− ∈ (0, T1]

)

� 1

2

( ε
γε

)αρ
+ sup
y∈D+

5δε

P
(

sup
t∈[0,T1]

(Y y,ε,1
t − (u(t; y)− 2δε)) > 0

)
+

2

B(1− β)
λ
1− 1

Γ
ε

+
1

2

( ε
γε

)αρ nε∑
k=1

(
1− (1− C)

2

( ε
γε

)αρ)k−1 1

kαρ

+ Cε2
nε∑
k=2

(
1− (1− C)

2

( ε
γε

)αρ)k−2 1

kαρ
.

We identify

1

2

( ε
γε

)αρ nε∑
k=1

(
1− (1− C)

2

( ε
γε

)αρ)k−1 1

kαρ
�ε ε

κ Liαρ

(
1− (1− C)

2
εκ
)
,

where

κ = αρ(1 +
αρ

Γ(1− β)
)

and Lia(x) =
∑∞

k=1
xk

ka is the polylogarithm function with parameter a ∈ R and x ∈ (0, 1), a

well-known analytic extension of the logarithm. Recall that αρ < α
1+α < 1 due to (3.12). By the

following representation [16], Section 25.12, for a �= N and 0 < x < 1, given by

Lia(x) = Γ(1− a)(ln(
1

x
))a−1 +

∞∑
n=0

ζ(a− n)
(ln(x))n

n!
, (3.35)

we obtain that for a ∈ (0, 1)

lim
x↗1

Lia(x)/(1− x)a−1 = Γ(1− a).

Hence there is C > 0 such that for ε ∈ (0, ε0) sufficiently small

1

2

( ε
γε

)αρ nε∑
k=1

(
1− (1− C)

2

( ε
γε

)αρ)k−1 1

kαρ

� εκ Liαρ

(
1− (1− C)

2
εκ
)

� Cεκε−κ(1−αρ) = εκαρ = S4(ε) ↘ 0.
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The same polylogarithmic asymptotics is carried out for

Cε2
nε∑
k=2

(
1− (1− C)

2

( ε
γε

)αρ)k−2 1

kαρ

� Cε2 Liαρ

(
1− (1− C)

2
εκ
)

� Cε2ε−κ(1−αρ) = ε2+καρ−κ = S5(ε) ↘ 0,

since due to Γ(1− β) < 1

2− (
αρ

Γ(1− β)
+ 1)(αρ− 1) � 2− (αρ− 1)(αρ+ 1) = 2− (αρ2 − 1) = 3− (αρ)2 > 0.

4) Estimate of the exit probabilities: For all m > 0

sup
y∈D+

5δε

P(τy,ε � m) � sup
y∈D+

5δε

P(τy,ε,− � m)

= sup
y∈D+

5δε

P(e−θε
ατy,ε,− � eθε

αm)

� sup
y∈D+

5δε

E
[
e−θε

ατy,ε,−
]
eθε

αm

� C(S1(ε) + S2(ε) + S3(ε) + S4(ε) + S5(ε))︸ ︷︷ ︸
=:S(ε)

eθε
αm.

Replacing m by mε with lim supε→0mεε
α <∞ we obtain

sup
y∈D+

5δε

P(τy,ε � mε) �ε S(ε) → 0.

S6 can be chosen to be a monotonic function. This finishes the proof.

Remark 4. In Theorem 3 we have not specified the rates of convergence. For all

ρ2(α, β) < ρ <
1

1 + α
. (3.36)

we have that the upper bound of the desired exit probability is of order

S(ε) ≈ε S1(ε) ∨ S2(ε) ∨ S3(ε) ∨ S4(ε) ∨ S5(ε),

where we collect

S1(ε) ≈ε ε
2+α(1−ρ)

S2(ε) ≈ε ε
2−α+αρ

S3(ε) ≈ε ε
α(1−ρ)+ α2ρ

Γ(1−β) + εαρ(1−
1
Γ
) + ε

α[(1−ρ(1− α
Γ(1−β)

))−(2−α)(1−ρ)]
+ εαρ(1−

1
Γ
)−α(1−ρ)(1−β).
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For convenience we write κ = αρ(1 + αρ
2(1−β)) and further collect

S4(ε) ≈ε ε
καρ

S5(ε) ≈ε ε
3−αρ.

Since S1, S2, S4, S5 are of order greater or equal than (αρ)2, the lowest order is S3(ε).

S(ε) ≈ε S3(ε).

Taking a close look at (3.27) the first term of S3 is of larger order than the third term. In the same

way, the second term of S3 is obviously of larger order than the fourth term and can be neglected

asymptotically. Hence we obtain the polynomial order

S(ε) ≈ε ε
α[(1−ρ(1− α

Γ(1−β)
))−(2−α)(1−ρ)]

+ εαρ(1−
1
Γ
)−α(1−ρ)(1−β). (3.37)

The second term we are interested is δε, which determines the proximity of the initial values to 0,

is of polynomial order

δε ≈ε ε
1−ρ(1+α). (3.38)

Corollary 5. Let the assumptions of the last theorem be satisfied and ρ being chosen according to

(3.36) and lim supε→0mεε
α <∞. Construct recursively

Ux,ε,1t :=
(
u(t;x− δε)− δε +W11{t = T1}

)
∧ γε, t ∈ [0, T1]

Ux,ε,n+1
t :=

(
u(t− Tn;U

x,ε,n
Tn

− δε)− δε +Wn+11{t = Tn+1 − Tn}
)
∧ γε, t ∈ (0, Tn+1 − Tn]

Zx,εt :=

∞∑
n=1

Ux,ε,nt 1{t ∈ (Tn, Tn+1]}, t � 0.

where the arrival times Tn of the large jump increments Wn are defined in (3.1), (3.2) and (3.3).

Then

lim inf
ε→0

inf
x�5δε

P( sup
t∈[0,mε]

Xx,ε
t − Zx,εt � 0) = 1

This is a mere reformulation of the proof of Theorem 3. The process we compare Xε,x to the

deterministic solution u(·;x), starting in x with large heavy-tailed jump increments (T εn,W
ε
n ∧ γε),

where the increments W ε
n are cut-off from below by a value γε. The choice of γε has to satisfy two

things: First, the deterministic trajectory has to overcome it during the waiting time T εn+1 − T εn

with a probability tending to 1. Second, for larger and larger initial values iγε < x � (i+ 1)γε, the

probability that u(t, x)+ εWi � γε has to decrease for growing i and decreasing ε with a sufficiently

large.
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Corollary 6. Let the assumptions of Theorem 3 be satisfied and δε being chosen according to

(3.10). Then for any m· : (0, 1) → (0,∞) satisfying limε→0mεε
αρ = 0. and c > 0 we have

inf
x�5δε

P( sup
t∈[0,mε]

Xx,ε
t − x+t � −c) = 1.

Proof. First we obtain by a comparison argument that for all x � 2δε

u(t;x) � x+t t � 0.

Secondly we observe that Ux,ε1t = u(t;x) for t < T1 and P(T1 � mε) = e−mελε ≈ε e
−mεεαρ → 1.

Hence combining these findings with inequality (3.16) we obtain

lim
ε→0

inf
x�5δε

P( sup
t∈[0,mε]

Xx,ε
t − x+t > −δε) = 0.

Lemma 7. Let the assumptions of the Theorem 3 be satisfied and δε being chosen according to

(3.10). Then for any m· : (0, 1) → (0,∞) satisfying limε→0mεε
αρ = 0. and c > 0 we have

inf
x�5δε

P( sup
t∈[0,mε]

Xx,ε
t − x+t < δ

β2

2
ε ) = 1.

Proof. First choose ρ we choose according to (3.36) and x � 5δε. Recall for t ∈ [0, T1] the notation

Xε,x
t = Y ε,x

t + εW11{t = T1}

and

V x,ε
t = Y x,ε

t − εξεt .

The subadditivity of b(y) = B|y|β on (0,∞) yields on the events {t < T1} and {supt∈[0,T1] |εξεs | � δε}
that

V ε,x
t � x+

t∫
0

b(V x,ε
s )ds+Bδβε t

� x+Bδβε m̃ε +

t∫
0

b(V x,ε
s )ds,

where m̃ε := δ
− 1

2
β

ε ∧ rε with δε = ε1−ρ(1+α)| ln(ε)|4 in (3.10) and rε = ε−αρ| ln(ε)|2 defined in (3.8).

21



Then Bihari’s inequality [19], Theorem 8.3, implies for x = 5δε

sup
t∈[0,m̃ε]

V ε,x
t − x+t

� sup
t∈[0,m̃ε]

[((
1− β)Bt+ (5δε +Bδβε m̃ε

)1−β) 1
1−β − ((1− β)Bt)

1
1−β

]

�
[((

1− β)Bm̃ε + (5δε +Bδβε m̃ε)
)1−β) 1

1−β − ((1− β)Bm̃ε)
1

1−β

]

� 2
1

1−β
−1

(5δε +Bδβε m̃ε)
1−β → 0.

Note that the bound of the right-hand side is of order

(5δε +Bδβε m̃ε)
1−β �ε δ

β(1−β)
2

ε .

Hence for any c > 0 there is ε0 ∈ (0, 1) such that for ε ∈ (0, ε0] we have

inf
x�5δε

P(Xε,x
t − x+t > δ

β2

2
ε ) � 1− P(T1 > rε)− P( sup

t∈[0,rε]
|εξεt | > δε) → 1,

as ε→ 0.

Combining Corollary 6 and Lemma 7 we obtain the main result of this section.

Corollary 8. Let the assumptions of the Theorem 3 be satisfied and δε chosen as in (3.10). Then

there exists θ∗ > 0 such that

lim
ε→0+

sup
x�5δε

P( sup
t∈[0,ε−θ∗ ]

|Xε,x
t − x+t | > δ

β2

2
ε ) = 0.
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4 The solution leaves a small environment of the origin in a short

time

Let us denote by (Xt)t�0 the strong solution (Xε,0
t )t�0 of system (1.5) with initial value x = 0. In

addition we stipulate for r1, r2 > 0

τ ε(r1, r2) := inf {t > 0 : Xt � −r1 or Xt � r2} . (4.1)

and abbreviate for convenience τr1,r2 = τ ε(r1, r2).

4.1 Typical noise induced exit from a neighborhood of the origin

Proposition 9. There are monotonically increasing functions Θ+· ,Θ−· , t· : (0, 1) → (0, 1) with

limε→0+Θ+
ε = limε→0+Θ−

ε = limε→0+ tε = 0, such that for any function t̂· : (0, 1) → (0,∞)

satisfying limε→0 t̂ε/tε = +∞ we have

lim
ε→0

P
(
τΘ−

ε −εtεγ0,Θ+
ε +εtεγ0

> t̂ε

)
= 0.

We omit the iteration argument by Markov property. The key result is the followin.

Lemma 10. Under the previous assumptions and

α > 1− (β+ ∧ β−)

we have the following statement. There are monotonically increasing functions Θ+· ,Θ−· , t· : (0, 1) →
(0, 1) with limε→0+Θ+

ε = limε→0+Θ−
ε = limε→0+ tε = 0, such that we have

lim
ε→0+

P
(
τΘ−

ε −εtεγ0,Θ+
ε +εtεγ0

> tε

)
< 1.

Proof. Assume there are Θ+
ε ,Θ

−
ε , tε as in the statement of the lemma and let us abbreviate for

convenience σ = τΘ−
ε −εtεγ0,Θ+

ε +εtεγ0
. The definition of the event {σ > tε} implies

−Θ−
ε � Xt − εtγ0 � Θ+

ε ∀t ∈ [0, tε].

Therefore, we infer from the event {σ > tε} for t ∈ [0, tε] that

εLt + εtγ0 = Xt −
t∫

0

b(Xs)ds

� Xt +B−
t∫

0

(Xs)
β−
ds

� Θ+
ε +B−tε(Θ−

ε )
β−
.
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Analogously we obtain

εLt + εtγ0 � −Θ−
ε −B+tε(Θ

+
ε )

β+
.

If we now impose that the non-linear term is asymptotically smaller, that is for instance Θβ
ε t1−ϑε ,

ϑ ∈ (0, 1), than the boundary Θε

B+tε(Θ
+
ε )

β+
= Θ−

ε t
1−ϑ
ε

B−tε(Θ−
ε )

β−
= Θ+

ε t
1−ϑ
ε (4.2)

it follows

−(1 + t1−ϑε )Θ−
ε � εLt + εtγ0 � (1 + t1−ϑε )Θ+

ε , t ∈ [0, tε],

and in particular −(1 + t1−ϑε )Θ−
ε � εLtε + εtεγ0 � (1 + t1−ϑε )Θ+

ε . As a first case we may assume

that Θ+
ε /Θ

−
ε → 0 as ε→ 0.

Case A: If we stipulate for ϑ ∈ (0, 1)

Θ◦
ε =

εt
1
α
ε

1 + t1−ϑε

(4.3)

this yields

P
(
− (1 + t1−ϑε )Θ−

ε � εLtε + εtεγ0 � (1 + t1−ϑε )Θ+
ε

)
= P

(
− (1 + t1−ϑε )Θ−

ε � εt
1
α
ε L1 � (1 + t1−ϑε )Θ+

ε

)
= P

(
− (1 + t1−ϑε )

Θ−
ε

Θ+
ε

Θ+
ε

εt
1
α
ε

� L1 � (1 + t1−ϑε )
Θ+
ε

εt
1/α
ε

)

= P
(
− Θ−

ε

Θ+
ε

� L1 � 1
)
ε→0−→ P

(
−∞ < L1 � 1

)
> 0.

Case B: If we stipulate for ϑ ∈ (0, 1)

Θ∗
ε =

εt
1
α
ε

1 + t1−ϑε

(4.4)

we obtain

P
(
− (1 + t1−ϑε )Θ−

ε � εLtε + εtεγ0 � (1 + t1−ϑε )Θ+
ε

)
= P

(
− (1 + t1−ϑε )Θ−

ε � εt
1
α
ε L1 � (1 + t1−ϑε )Θ+

ε

)
= P

(
− (1 + t1−ϑε )

Θ−
ε

εt
1
α
ε

� L1 � (1 + t1−ϑε )
Θ+
ε

Θ−
ε

Θ−
ε

εt
1/α
ε

)

= P
(
− 1 � L1 �

Θ+
ε

Θ−
ε

)
ε→0−→ P

(
− 1 � L1 � 0

)
> 0.
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The case when Θ+
ε /Θ

−
ε → c ∈ (0,∞) is treated analogously. The proof concludes with the following

remark which shows that for any exponent α ∈ (0, 2), any powers β+, β− ∈ (0, 1) satisfying α �
1− (β+∧β−) and ε ∈ (0, 1) the system (4.2) together either with (4.3) or (4.4) as a unique solution

(Θ+
ε ,Θ

−
ε , tε).

Remark 11. We solve the equations for tε, Θ+
ε and Θ−

ε in the previous lemma for any ϑ ∈ (0, 1).

We start with the system (4.2) which implies by reinsertion

Θ−
ε = tϑεB

+(Θ+
ε )

β+

= tϑεB
+(tϑεB

−(Θ−
ε )

β−
)β

+

= B+(B−)β
+
tϑ(1+β

+)
ε (Θ−

ε )
β+β−

,

and

(Θ−
ε )

1−β+β−
= B+(B−)β

+
tϑ(1+β

+)
ε

⇔ Θ−
ε =

(
B+(B−)β

+
tϑ(1+β

+)
ε

) 1
1−β+β− = (B+)

1
1−β+β− (B−)

β+

1−β+β− t
ϑ(1+β+)

1−β+β−
ε

and by symmetry

(Θ+
ε )

1−β+β−
= B−(B+)β

−
tϑ(1+β

−)
ε

⇔ Θ+
ε =

(
B−(B+)β

−
tϑ(1+β

−)
ε

) 1
1−β+β− = (B−)

1
1−β+β− (B+)

β−
1−β+β− t

ϑ(1+β−)

1−β+β−
ε .

Denote by β◦ := β+ ∧ β− and β∗ := β+ ∨ β−. The last two formulas yield

Θ∗
ε := Θ+

ε ∨Θ−
ε = (B◦)

1
1−β◦β∗ (B∗)

β◦
1−β◦β∗ t

ϑ(1+β◦)
1−β◦β∗
ε

Θ◦
ε := Θ+

ε ∧Θ−
ε = (B∗)

1
1−β◦β∗ (B◦)

β∗
1−β◦β∗ t

ϑ(1+β∗)
1−β◦β∗
ε

As a consequence, we obtain for β◦ < β∗

lim
ε→0+

Θ◦
ε/Θ

∗
ε = 0. (4.5)

and for β = β∗ = β◦

Θ◦
ε

Θ∗
ε

=
(B∗)

1
1−β2 (B◦)

β

1−β2

(B◦)
1

1−β2 (B∗)
β

1−β2

=
(B◦

B∗
)− 1

1+β
. (4.6)

Case A: Minimum complement: We first complement the system (4.2) by equation (4.3). In-

serting in

⇔ ε = (B∗)
1

1−β∗β◦ (B◦)
β∗

1−β∗β◦ t
ϑ(1+β∗)
1−β∗β◦ − 1

α
ε .
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We examine the exponent

ϑ(1 + β∗)
1− β∗β◦

− 1

α
=
ϑα(1 + β∗)− 1 + β∗β◦

α(1− β∗β◦)
=
ϑα− 1 + ϑαβ∗ + β∗β◦

α(1− β∗β◦)

=
ϑα− 1 + β∗(ϑα+ β◦)

α(1− β∗β◦)
� ϑα− 1 + β∗

α(1− β∗β◦)
> 0,

since ϑα+ β◦ > 1 and therefore ϑα+ β∗ > 1 we have

ε = (B∗)
1

1−β∗β◦ (B◦)
β∗

1−β∗β◦ t
ϑα+β∗(ϑα+β◦)−1

α(1−β∗β◦)
ε

⇔ tε =
ε

α(1−β∗β◦)
ϑα+β∗(ϑα+β◦)−1

(B◦)
αβ∗

α+β∗(α+β◦)−1 (B∗)
α

α+β∗(α+β◦)−1

= C̄ε
α(1−β∗β◦)

ϑα+β∗(ϑα+β◦)−1 . (4.7)

We obtain

Θ+
ε = (B−)

1
1−β◦β∗ (B+)

β−
1−β◦β∗ t

ϑ(1+β−)
1−β◦β∗
ε =

(B−)
1

1−β◦β∗ (B+)
β−

1−β◦β∗

(B◦)
αβ∗

α+β∗(α+β◦)−1 (B∗)
α

α+β∗(α+β◦)−1

ε
ϑα(1+β−)

ϑα+β∗(ϑα+β◦)−1

=: C+ε
ϑα(1+β−)

ϑα+β∗(ϑα+β◦)−1

and

Θ−
ε =

(B+)
1

1−β◦β∗ (B−)
β+

1−β◦β∗

(B◦)
αβ∗

α+β∗(α+β◦)−1 (B∗)
α

α+β∗(α+β◦)−1

ε
ϑα(1+β+)

ϑα+β∗(ϑα+β◦)−1 =: C−ε
ϑα(1+β+)

ϑα+β∗(ϑα+β◦)−1 .

Case B: Maximum We set ϑ = 1 and complement (4.2) by (4.4) we may insert again

ε = (B◦)
1

1−β◦β∗ (B∗)
β◦

1−β◦β∗ t
1+β◦

1−β◦β∗− 1
α

ε

We examine the exponent

1 + β◦

1− β∗β◦
− 1

α
=
α(1 + β◦)− 1 + β∗β◦

α(1− β∗β◦)
=
α− 1 + αβ◦ + β∗β◦

α(1− β∗β◦)

=
α− 1 + β◦(α+ β∗)

α(1− β∗β◦)
� α− 1 + β◦

α(1− β∗β◦)
> 0,

since α+ β◦ > 1. Analogously we have

ε = (B∗)
1

1−β∗β◦ (B◦)
β∗

1−β∗β◦ t
α+β◦(α+β∗)−1

α(1−β∗β◦)
ε

⇔ tε =
ε

α(1−β∗β◦)
α+β◦(α+β∗)−1

(B◦)
αβ∗

α+β◦(α+β∗)−1 (B∗)
α

α+β◦(α+β∗)−1

= C̄ε
α(1−β∗β◦)

α+β◦(α+β∗)−1 . (4.8)

We obtain

Θ+
ε = (B−)

1
1−β◦β∗ (B+)

β−
1−β◦β∗ t

1+β−
1−β◦β∗
ε =

(B−)
1

1−β◦β∗ (B+)
β−

1−β◦β∗

(B◦)
αβ∗

α+β◦(α+β∗)−1 (B∗)
α

α+β◦(α+β∗)−1

ε
α(1+β−)

α+β◦(α+β∗)−1

=: C+ε
α(1+β−)

α+β◦(α+β∗)−1
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and

Θ−
ε =

(B+)
1

1−β◦β∗ (B−)
β+

1−β◦β∗

(B◦)
αβ∗

α+β◦(α+β∗)−1 (B∗)
α

α+β◦(α+β∗)−1

ε
α(1+β+)

α+β◦(α+β∗)−1 =: C−ε
α(1+β+)

α+β◦(α+β∗)−1 .

These calculations establish the existence and uniqueness of (Θ+
ε ,Θ

−
ε , tε) as claimed in Lemma 10

for any ε > 0.

Definition 12. Let α ∈ (0, 2) and β+, β− ∈ (0, 1) given satisfying α > 1− (β+ ∧ β−).

1. For strictly α-stable noise L, that is γ0 = 0, we define the family (Θ+
ε,ϑ,Θ

−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1) as

in Case A.

2. For stable, but not strictly α-stable noise L, that is γ0 �= 0, and

(a) α > 1 we define we define (Θ+
ε,ϑ,Θ

−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1) as in Case A,

whereas for additional

(b) 1− (β+ ∧ β−) < α < 1 we define (Θ+
ε,ϑ,Θ

−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1) as in Case B.

For notational convenience we will immediately drop once and for all the dependence on ϑ, whenever

possible.

27



4.2 The exit locations from a neighborhood of the origin

Assume a parameter ϑ fixed and denote by χ := χε := τΘ+
ε ,Θ

−
ε

as defined in (4.1) and (Θ+
ε ,Θ

−
ε , tε)ε∈(0,1)

defined by Definition 12 and Lemma 10. In this subsection we determine the asymptotic probabili-

ties

P(Xε
χ � Θ+

ε ) and P(Xε
χ � −Θ−

ε )

in the limit of small ε.

4.2.1 Strictly α-stable perturbations, γ0 = 0

Proposition 13. Consider the case of symmetric roots β = β+ = β− and

α > 1− β

and the parametrized family of functions (Θ+
ε,ϑ,Θ

−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1] determined in Definition 12. Then

there is ϑ∗ such that (Θ+
ε,ϑ∗ ,Θ

−
ε,ϑ∗ , tε,ϑ∗)ε∈(0,1)

lim
ε→0

P(Xε
χ � Θ+

ε ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 if β+ < β−(
1 +

(
B+

B−

)− 1
1+β

)−1
if β = β+ = β−

0 if β+ < β−.

The proof is concluded after the following two lemmas at the end of this subsection.

We decompose Xε into the sum of V ε and εL, where V ε
t := Xε

t − εLt. It satisfies

V ε
t =

t∫
0

b(V ε
s + εLs)ds, t � 0.

Lemma 14. Consider the case of symmetric roots β = β+ = β− and

α > 1− β

and the parametrized family of functions (Θ+
ε,ϑ,Θ

−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1] determined in Definition 12. Then

there is ϑ∗ such that (Θ+
ε,ϑ∗ ,Θ

−
ε,ϑ∗ , tε,ϑ∗)ε∈(0,1)

lim
ε→0+

|P(Xε
χ � Θ+

ε )− P(εLχ � Θ+
ε )| = 0

lim
ε→0+

|P(Xε
χ � −Θ−

ε )− P(εLχ � −Θ−
ε )| = 0.

Proof. By symmetry of the argument it is enough to treat the first statement. For convenience we

drop all superscripts and leave ϑ unspecified for the moment. By decomposition Yt = Vt + εLt we

obtain for any g > 0

P(Xε
χ � Θ+

ε , χ � t̂ε) � P(εLχ � Θ+
ε (1− εγ)) + P( sup

t∈[0,t̂ε]
|V ε
s | > Θ◦

εε
g) + P(χ > t̂ε).
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Proposition 9 send the last term tends to 0 as ε → 0. We define t̂ε = tε| ln(ε)|. It is therefore

enough to show that there exists ϑ ∈ (0, 1) such that

lim
ε→0+

P( sup
t∈[0,t̂ε]

|V ε
t | > Θ+

ε ∧Θ−
ε ) → 0.

It is enough to show that for tε determined in in Proposition 9 that there is γ > 0

P( sup
t∈[0,tε]

|V ε
t | > Θ◦

εε
g) → 0, as ε→ 0.

Note that V ε is continuous and V ε
0 = 0. Recall from (4.8) tε ≈ ε

ϑα(1−β2)
ϑα+β−1+β(ϑα+β−1) . The first order

approximation of V ε
t

·
= εLt for t ∈ [0, t̂ε] and the self-similarity

sup
t∈[0,t̂ε]

|εL|β d
= εβ ε̂

β
α sup
t∈[0,1]

|Lt|β d
= εβ t̂

β
α
ε |L1|β

yields

P( sup
t∈[0,t̂ε]

|εLt| > Θ◦
εε
g)

� P(2(B+ ∨B−)εβ
◦
t̂
1+β◦

α
ε |L1|β > Θ◦

εε
g).

That is, we check if there is a parameter ϑ ∈ (0, 1) which allows for the choice of g = g(ϑ) > 0 such

that

εβ t̂
α+β
α

ε �ε t
ϑ

1−β
ε .

In other words, since the logarithm is dominated by any polynomial order, we check if

εβt
α+β
α

− ϑ
1−β

ε → 0.

Please note that tε also depends on ϑ. We check the positivity of the exponent

2g := β +
ϑα(1− β2)

ϑα+ β − 1 + β(ϑα+ β − 1)

(α+ β

α
− ϑ(1 + β)

1− β2

)
.

We calculate

β +
ϑ(α+ β)(1− β2)− ϑ2α(1 + β)

ϑα+ β − 1 + β(ϑα+ β − 1)

=
ϑαβ + β2 − β + ϑαβ2 + β3 − β2 + ϑα+ ϑβ − ϑαβ2 − ϑβ3 − ϑ2α− ϑ2αβ

ϑα+ β − 1 + β(ϑα+ β − 1)
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Under the positivity assumption ϑα + β − 1 > 0 for the denominator we check the sign of the

enumerator

ϑαβ + β2 − β + ϑαβ2 + β3 − β2 + ϑα+ ϑβ − ϑαβ2 − ϑβ3 − ϑ2α− ϑ2αβ

= ϑαβ − β + β3 + ϑα+ ϑβ − ϑβ3 − ϑ2α− ϑ2αβ

= (1− ϑ)β3 − (1− ϑ)β + ϑ(1− ϑ)αβ + ϑ(1− ϑ)α

= −α(1 + β)ϑ2 + (β − β3 + αβ + α)ϑ+ β3 − β

= −α(1 + β)(ϑ− 1)(ϑ− β(1− β2)

α(1 + β)
).

The assumption β(1−β)
α � 1 is satisfied for α > β(1− β), which is true since α > 1− β. Hence for

any β(1−β)
α < ϑ∗ < 1 we have g > 0.

Lemma 15. Assume β+ > β− the parametrized family of functions (Θ+
ε,1,Θ

−
ε,1, tε,1)ε∈(0,1] deter-

mined in Definition 12. Then there exists g > 0 such that for t̂ε := tε| ln(ε)|, ε ∈ (0, 1) we have

P( sup
t∈[0,t̂ε]

(V ε
t )+ > Θ+

ε ε
g) → 0.

Proof. β∗ = β+. The self-similarity

sup
t∈[0,t̂ε]

(εLt)
β∗
+

d
= εβ

∗
t̂
β∗
α
ε (L1)

β∗
+

yields

P( sup
t∈[0,t̂ε]

(εLt)
β∗
+ > Θ∗

εε
g) � P( sup

t∈[0,t̂ε]
εβ

∗
t̂
β∗
α
ε (L1)

β∗
+ > Θ∗

εε
g)

We check whether

εβ
∗
t
α+β∗

α
− 1+β◦

1−β∗β◦
ε → 0, as ε→ 0.

Check the exponent

β∗ +
α(1− β◦β∗)

α+ β∗ − 1 + β∗(α+ β◦ − 1)

(α+ β∗

α
− 1 + β◦

1− β∗β◦
)

=
β∗(α+ β∗ − 1 + β∗(α+ β◦ − 1)) + (α+ β∗)(1− β∗β◦)− α(1 + β◦)

α+ β∗ − 1 + β∗(α+ β◦ − 1)
(4.9)

By assumption the denominator is positive. The enumerator behaves as

β∗(α+ β∗ − 1 + β∗(α+ β◦ − 1)) + (α+ β∗)(1− β∗β◦)− α(1 + β◦)

= αβ∗ + (β∗)2 − β∗ + α(β∗)2 + β◦(β∗)2 − (β∗)2 + α+ β∗ − αβ◦β∗ − β◦(β∗)2 − α− αβ◦

= αβ∗ + α(β∗)2 − αβ◦β∗ − αβ◦

= α(β∗ − β◦) + αβ∗(β∗ − β◦) > 0.

30



We set 2g equal to the expression in (4.9).

In the sequel we determine limε→0+ P(Lχ � Θ+
ε ). The exit problem of εξκ from (−Θ−

ε ,Θ
+
ε ) will

be treated in the spirit of the Brownian case as for instance in the book of Revuz and Yor [22]. For

this purpose denote by κ ∈ R and ξκ the Lévy process driven by ν
∣∣
(−ε−κ,ε−κ)

. Note that for

τκ := inf{t > 0 | |ΔtL| > ε−κ},

we have ξκt = Lt on the event At := {t � τκ} for any t � 0. Furthermore we have Xε
t = Y ε

t on At,

where Y ε is the original system driven by ξκ instead of L, that is

Y ε
t =

t∫
0

b(Y ε
s )ds+ εξκt .

We fix the constant

κ = − 4

α+ β◦ − 1
(4.10)

and consider the Lévy martingale (ξκt )t�0. This choice allows to verify that jumps beyond the

threshold εκ occurr after tε, with a probability mass which tends to 1. More precisely, since

∞∫
ε−κ

dy

yα+1
=

−1

α
y−α

∣∣∣∞
ε−κ

=
1

α
εκα

we have

P(τκ(ε) > tε) = exp(− 1

α
ε−καtε) → 1, as ε→ 0.

As a second crucial feature we obtain

ε1−κ/Θ◦
ε = ε

3+α+β∗
α+β∗−1

− α+αβ∗
α+β∗−1+β∗(α+β◦−1) → 0, as ε→ 0 + .

We define the for r+, r− > 0 and ε > 0 the hitting times of R \ (−Θ−
ε ,Θ

+
ε )

σ+
r+

:= inf{t > 0 | εξκt � r},
σ−
r− := inf{t > 0 | εξκt � −r},

σr+,r− := σ+
r+

∧ σ−
r− . (4.11)

Lemma 16. Under these assumptions we obtain

lim
ε→0

P(σ+
Θ+

ε
< σ−

Θ−
ε
) = lim

ε→0

Θ−
ε

Θ+
ε +Θ−

ε
.
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Proof. For r1, r2 > 0 and n ∈ N given we fix

σ̄+ε := σ+
r+

∧ n,
σ̄−ε := σ−

r− ∧ n,
σ̄ε := σr+,r− .

This yields the estimates

εξεσ̄+ � r+ + ε1−κ and εξεσ̄+− > r+ a.s. on the event {σ̄+ � n}
εξεσ̄− � −(r− + ε1−κ) and εξεσ̄−− < −r− a.s. on the event {σ̄− � n}.

Applying the optional stopping theorem we obtain

0 = E[εξεσr1,r2 ]

= E[εξεσr+,r−
(1{σ+

r+
< σ−

r−} ∩ {σε � n}+ 1{σ+
r+

� σ−
r−} ∩ {σε � n})]

= E[εξε
σ+

r+
1{σ+

r+
< σ−

r−} ∩ {σε � n}+ εξε
σ−
r−

1{σ+
r+

� σ−
r−} ∩ {σε � n}]

and estimate

0 = E[εξε
σ+

r+
1{σ+

r+
< σ−

r−} ∩ {σε � n}+ εξε
σ−
r−

1{σ−
r− � σ+

r+
} ∩ {σε � n}]

� (r+ + ε1−κ)P(σ+
r+
< σ−

r−)− r−P({σ−
r− � σ+

r+
} ∩ {σε � n})

and analogously

0 = E[εξε
σ+

r+
1{σ+

r+
< σ−

r−} ∩ {σε � n}+ εξε
σ−
r−

1{σ−
r− � σ+

r+
} ∩ {σε � n}]

� r+P({σ+
r+
< σ−

r−} ∩ {σε � n})− (r− + ε1−κ)P(σ−
r− � σ+

r+
).

Letting n tend to ∞ we obtain

0 � (r+ + ε1−κ)P(σ+
r+
< σ−

r−)− r−P(σ−
r− � σ+

r+
)

0 � r+P(σ+
r+
< σ−

r−)− (r− + ε1−κ)P(σ−
r− � σ+

r+
).

The choice of κ entails that r+ replaced by Θ+
ε leads to

ε1−κ �ε Θ
+
ε = C+ε

ϑα(1+β−)
ϑα+β∗(ϑα+β◦)−1 ,

and analogously for r− being replaced by Θ−
ε . Hence

0 � (Θ+
ε + ε1−κ)P(σ+

Θ+
ε
< σ−

Θ−
ε
)−Θ−

ε (1− P(σ+
Θ+

ε
< σ−

Θ−
ε
))

0 � Θ+
ε P(σ+

Θ+
ε
< σ−

Θ−
ε
)− (Θ−

ε + ε1−κ)(1− P(σ+
Θ+

ε
< σ−

Θ−
ε
))
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eventually leading to
Θ−
ε

Θ+
ε +Θ−

ε + ε1−κ
�ε P(σ+

Θ+
ε
< σ−

Θ−
ε
) �ε

Θ−
ε + ε1−κ

Θ+
ε +Θ−

ε + ε1−κ
.

Proof. of Proposition 13: We start with the case β = β+ = β−. The result is a direct combination

of Lemma 19, and Lemma 16. We calculate the limit

lim
ε→0

P(Xε
χ � Θ+

ε ) = lim
ε→0

Θ−
ε

Θ−
ε +Θ+

ε
=

(B+)
1

1−β2 (B−)
β

1−β2

(B+)
1

1−β2 (B−)
β

1−β2 + (B+)
β

1−β2 (B−)
1

1−β2

=
(
1 +

(B−

B+

) 1
1+β

)−1
.

For β+ > β− and t̂ε| ln(ε)| Lemma 20 guarantees the existence of a constant g > 0 such that

P(Xε
χ � Θ+

ε ) � P(Xε
χ � Θ+

ε , χ � t̂ε) + P(χ > t̂ε)

� P( sup
t∈[0,t̂ε]

(V ε
t )

β+

+ + εLχ � Θ+
ε ) + P(χ > t̂ε)

� P( sup
t∈[0,t̂ε]

(V ε
t )

β+

+ � Θ+
ε ε

g) + P(εLχ � Θ+
ε (1− εg)) → 0,

as ε→ 0+. Eventually the relation limε→0+ P(Xε
χ � −Θ−

ε ) = 1− limε→0+ P(Xε
χ � Θ+

ε ) finishes the

proof.

4.2.2 The general α-stable case γ0 �= 0

We decompose Xε given as the strong solution of (1.5) into the sum of V ε and εL, where

V ε
t := Xε

t − εLt − εtγ0.

It satisfies P-a.s.

V ε
t =

t∫
0

b(V ε
s + εLs + εtγ0)ds, t � 0.

The main result of this subsection is determines the limε→0+ P(Lχ � Θ+
ε ).

Proposition 17. For γ0 �= 0, α ∈ (0, 2), β+, β− ∈ (0, 1) satisfying α �= 1 and α > 1− β+ ∧ β◦ we

consider the parametrized family of functions (Θ+
ε,ϑ,Θ

−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1] determined in Definition 12.

Then there is ϑ∗ such that (Θ+
ε,ϑ∗ ,Θ

−
ε,ϑ∗ , tε,ϑ∗)ε∈(0,1) such that

lim
ε→0

P(Xε
χ � Θ+

ε ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1, if β+ < β−(
1 +

(
B+

B−

)− 1
1+β

)−1
, β = β+ = β−

0, if β+ > β−

and α ∈ (1, 2).

⎧⎪⎨
⎪⎩
1, if γ0 > 0

0, if γ0 < 0
and α ∈ (0, 1].
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The proof will be completed at the end of this subsection after a sequence of lemmas. The

appearance of the drift γ0 changes the picture dramatically if α � 1.

We treat the case α � 1:

Lemma 18. Under the assumptions of Proposition 17 and 1− β◦ < α < 1 and ϑ = 1 we have the

following

lim
ε→0+

P(Xε
χ � Θ+

ε ) =

⎧⎪⎨
⎪⎩
1, if γ0 > 0,

0 if γ0 < 0.

Proof. Recall that for t̂ε = tε| ln(ε)|

Θ±
ε � Θ∗

ε = εt
1
α
ε �ε εtε. (4.12)

Without loss of generality we assume γ0 > 0. Then for Θ+
ε = Θ∗

ε we have

lim
ε→0

P(Xε
χ � Θ+

ε ) = lim
ε→0

P(Xε
χ � Θ+

ε and χ � t̂ε)

� lim
ε→0

P(Xε
χ − εχγ0 � Θ+

ε − εtεγ0 and χ � t̂ε)

= lim
ε→0

P(Xε
χ − εχγ0 � εtε − εt̂εγ0 and χ � t̂ε)

= lim
ε→0

P(Xε
χ − εχγ0 � −Θ−

ε and χ � tε) = 1,

since εt̂εγ0/Θ−
ε → ∞ as ε→ 0+ by Remark 11. The last equality of the preceding display is due to

Lemma 10. Due to relation (4.12) the case Θ+
ε = Θ◦

ε yields the same result.

We treat the case α > 1: In the following lemma we will not exclude α = 1. Since α � 1 we

main present a proof only based on the self-similarity of L.

Keeping in mind that Xt = Vt + εtγ0 + εLt. First note that for α > 1 the upper bound for the

drift satisfies

|γ0|εt̂ε �ε εt
1
α
ε = Θ◦

ε

by Definition 12, Case A, if t̂ε = tε| ln(ε)|, ε ∈ (0, 1). By the virtually the same proofs as in the

strictly stable case we obtain the symmetric situation of the general stable case.

Lemma 19. Consider the case of symmetric roots β = β+ = β− and the parametrized family of

functions (Θ+
ε,ϑ,Θ

−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1] determined in Definition 12, Case A. Then there is ϑ∗ such that

(Θ+
ε,ϑ∗ ,Θ

−
ε,ϑ∗ , tε,ϑ∗)ε∈(0,1) with

lim
ε→0+

|P(Xε
χ � Θ+

ε + εtεγ0)− P(εLχ � Θ+
ε )| = 0

lim
ε→0+

|P(Xε
χ � −Θ−

ε − εtεγ0)− P(εLχ � −Θ−
ε )| = 0.
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In the same way we obtain.

Lemma 20. Assume β+ > β− for the parametrized family of functions (Θ+
ε,1,Θ

−
ε,1, tε,1)ε∈(0,1] de-

termined in Definition 12. Then there exists g > 0 such that for t̂ε := tε| ln(ε)|, ε ∈ (0, 1) we

have

P( sup
t∈[0,t̂ε]

(V ε
t )+ > Θ+

ε ε
g) → 0.

In the sequel we determine the remaining question. We identify for α > 1 the limit limε→0 P(Lχ � Θ+).

Lemma 21. Under the assumptions of Lemma 16 we obtain

lim
ε→0

P(σ+
Θ+

ε
< σ−

Θ−
ε
) = lim

ε→0

Θ−
ε

Θ+
ε +Θ−

ε
, as ε→ 0.

A word about the proof. Again it is virtually identical to the proof of Lemma 16, only replacing

the εξκt by εξ̃κ, where

ξ̃κt := ξκt − E[ξκt ], t � 0, ε > 0,

is the protagonist martingale. The drift is of order ε

|E[εξκt ]| �ε ε �ε ε
1−κ �ε Θ

◦
ε,

and can be treated as an additional perturbation of higher order, eventually leading to the bounds

Θ−
ε + εtεγ0 + E[εξε]

Θ+
ε +Θ−

ε + 2εtεγ0 + 2E[εξε] + ε1−κ
�ε P(σ+

Θ+
ε
< σ−

Θ−
ε
) �ε

Θ−
ε + εtεγ0 + E[εξε] + ε1−κ

Θ+
ε +Θ−

ε + 2tεγ0 + 2E[εξε] + ε1−κ
,

which leave the asymptotic behavior intact.
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5 The linearized dynamics enhances the regime close to the origin

We already know by Section 3 that for initial values x � −5δε the law P ◦ Xε,x → δx+ uniformly

on larger and larger time scales. Section 4.2 establishes for the parametrized family of functions

(Θ+
ε,ϑ,Θ

−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1] for appropriate ϑ ∈ (0, 1] that for initial values x ∈ (−Θ−

ε ,Θ
+
ε ) the solution

Xx,ε exits the interval (−Θ−
ε ,Θ

+
ε ) in time t̃ε almost surely as long as limε→0 t̃ε/tε → 0. In order to

fill the gap between

Θ±
ε = ε

α(1+β±)
α+β◦−1+β∗(α+β◦−1) �ε 3ε

1−ρ(1+α) = 3δε,

we consider the linearized dynamics. Due to monotonicity we may restrict ourselves to the case

ϑ = 1. The main result tells us that with a probability tending to 1, the solution exits on the

outer boundary of [−6δε,−Θ−
ε ] ∪ [Θ+

ε , 6δε]. We treat each subinterval individually with out loss of

generality [Θ+
ε , 6δε]. Again by an elementary comparison principle it is enough to consider the case

when the drift γ0 < 0 acts against the repulsive force of the root. The case of γ0 � 0 follow then

automatically.

For ε > 0 and x ∈ [Θ+
ε , 5δε] denote

υx,ε := inf{t > 0 | Xε,x
t � 6δε}.

Proposition 22. For β = β◦ = β+ � β− and γ0 < 0 we consider the parametrized family of

functions (Θ+
ε,ϑ,Θ

−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1] determined in Definition 12. Then for any ϑ ∈ (0, 1] there is an

increasing, continuous function s· : (0, 1) → (0, 1) with sε → 0 as ε→ 0, such that

lim
ε→0

sup
x�Θ+

ε

P(υx,ε > sε) = 0.

Proof. 1. We introduce the time sε with sε → 0, as ε → 0, which will be determined below. For

an appropriate choice of a parameter π ∈ R we denote the time

T̃π = T̃π(ε) := inf{t > 0 | |ΔtL| > ε−π}.

For convenience we write shorthand Θε for Θ+
ε and β,B for β+, B+. Then on the events {T̃π > sε}

and {supt∈[0,sε] |εLt − εtγ0| � B+

2 Θβ+

ε sε} we have for t ∈ [0, sε]

Xε,x
t = x+

t∫
0

b(Xε,x
s )ds+ εLt

� Θε +B

t∫
0

[
Θβ
ε + (Xε,x

s −Θε)
(6δε)

β −Θβ
ε

6δε −Θε

]
ds+ ε(Lt − tγ0) + εtγ0.
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Hence for Wt :=W ε,x
t := Xε,x

t −Θε − εtγ0 and τ0 := inf{t > 0 | Wt < 0}

Wt � B

t∫
0

[
Θβ
ε + (Ws + εsγ0)

(6δε)
β −Θβ

ε

6δε −Θε

]
ds+ ε(Lt − tγ0)

� BΘβ
ε t− sup

s∈[0,t]
|ε(Ls − γ0s)|+B

t∫
0

Ws

[(6δε)β −Θβ
ε

6δε −Θε

]
ds+

γ0B

2

[(6δε)β −Θβ
ε

6δε −Θε

]
εt2

� B

2
Θβ
ε t+B

t∫
0

Ws

[(6δε)β −Θβ
ε

6δε −Θε

]
ds+

γ0B

2

[(6δε)β −Θβ
ε

6δε −Θε

]
εt2

�ε
B

2
Θβ
ε t+

γ0B

12

εt2

δ1−βε

+
B

6

1

δ1−βε

t∫
0

Wsds.

Note that W is a (random) continuous function with W0 > 0 such that W0 > 0 in a small neigh-

borhood of 0, that is τ0 > 0. A classical non-autonomous Gronwall inequality from below yields for

t < τ0 that

Wt �
B

2
Θβ
ε t+

γ0B

6

εt2

δ1−βε

+
B

2
Θβ
ε exp

(B
6

t

δ1−βε

) t∫
0

s exp
(
− B

6

s

δ1−βε

)
ds

+
γ0B

12

ε

δ1−βε

exp
(B
6

t

δ1−βε

) t∫
0

s2 exp
(
− B

6

s

δ1−βε

)
ds

and by direct calculation

Wt �
B

2
Θβ
ε t−

|γ0|B
6

εt2

δ1−βε

+
18

B
Θβ
ε δ

2(1−β)
ε exp

(B
6

t

δ1−βε

)(
1− (1 +

B

6

t

δ1−βε

) exp
(− B

6

t

δ1−βε

))
− |γ0| 18

B2
εδ3(1−β)ε exp

(B
6

t

δ1−βε

)(
2− (2 +

B

6

t

δ1−βε

)
B

6

t

δ1−βε

exp
(− B

6

t

δ1−βε

))
.

We set sε = 6
B δ

1−β
2

ε . This choice yields for any C > 0 a constant ε0 ∈ (0, 1) such that 0 < ε � ε0

max{(1 + B

6

sε

δ1−βε

) exp
(− B

6

sε

δ1−βε

)
, (2 +

B

6

sε

δ1−βε

)
B

6

sε

δ1−βε

exp
(− B

6

sε

δ1−βε

)} � C.

Therefore for ε ∈ (0, ε0]

Xε,x
sε � Θε − εsε|γ0|+ B

2
Θβ
ε sε −

|γ0|B
6

εs2ε

δ1−βε

+
[(

1− C
)18
B

Θβ
ε δ

2(1−β)
ε −

(
2− C

)18|γ0|
B2

εδ3(1−β)ε

]
exp

(B
6

sε

δ1−βε

)
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and

Xε,x
sε � Θε − εsε|γ0|+ B

2
Θβ
ε sε −

|γ0|B
6

εs2ε

δ1−βε

+ δ2(1−β)ε Θβ
ε

[18
B

(
1− C

)
− 18|γ0|

B2

(
2− C

)εδε
Θβ
ε

]
exp

(B
6

sε

δ1−βε

)
�ε exp

(
δ
− 1−β

3
ε

)
�ε 6δε.

This implies for π < 0 sufficiently small that

P(υε,x > sε) � P( sup
t∈[0,sε]

|εξ̃ε(t)| > B

2
Θβ
ε sε) + P(T̃π > sε)

� exp(−B
2

Θβ
ε

ε1−π
) + exp(−εαπsε)

�ε exp
(− B

2
ε

2β
1+β

(1+ 2
α+β−1

((1−α
2
)+ln(1−α

2
)))−1−(−π))

)− ε−α(−π)δ
1−β
2

ε

)
.

A particular choice of π is given by

π = −| 2β

1 + β
(1 +

2

α+ β − 1
((1− α

2
) + ln(1− α

2
)))|,

which is finite since 1− β < α < 2.
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6 The solution selection problem: Proof of the main theorem

By Corollary 8 the time scale of convergence is bounded by δ−
β2

2
ε ∧rε. By definition (3.10) and (3.8)

there is θ∗ > 0 such that ε−θ∗/(δ−
β2

2
ε ∧ rε) → 0 as ε→ 0. Recall (Θ+

ε,ϑ,Θ
−
ε,ϑ, tε,ϑ)ε,ϑ∈(0,1] defined by

Definition 12 and Lemma 10 and the respective hitting times as defined by (4.1)

τΘ+
ε ,Θ

−
ε
(ε, x) = inf{t > 0 | Xε,x

t < −Θ−
ε or Xε,x

t � Θ+
ε }

σδ+ε ,δ−ε (ε, x) = inf{t > 0 | Xx,ε
t < −6δ−ε or Xx,ε

t > 6δ+ε },

where we dropped the dependence on ϑ. Fix a time scale t̂ε = tε| ln(ε)| chosen according to

Proposition 9 with respect to tε and sε determined by Proposition 22.

Since all other dependencies are clear we shall write shorthand τ = τΘ+
ε ,Θ

−
ε
(ε, 0) and σx =

σδ+ε ,δ−ε (ε, x) and Xx = Xε,x. We use the strong Markov property of Xx to control the exit from the

neighborhood (−Θ−
ε ,Θ

+
ε ) of the origin.

E[f((X0
t )t∈[0,ε−θ∗ ])]

= E[E[f((X0
t )t∈[0,ε−θ∗ ])1{τ � ε−θ

∗}(1{X0
τ � Θ+

ε }+ 1{X0
τ � −Θ−

ε }
) | Fτ ]]

+ P(τ > ε−θ
∗
)

� P(X0
τ � Θ+

ε ) sup
x�Θ+

ε

E[f((Xx)t∈[0,ε−θ∗−τ ])1{τ � ε−θ
∗}]

+ P(X0
τ � −Θ−

ε ) sup
x�−Θ−

ε

E[f((Xx)t∈[0,ε−θ∗−τ ])1{τ � ε−θ
∗}]

+ P(τ > ε−θ
∗
).

Proposition 13 and Proposition 17 choose for the strictly α-stable case, γ0 = 0 and the general

α-stable case, γ0 �= 0 an appropriate ϑ, that the probability P(X0
τ � Θ+

ε ) tends to p+ as ε → 0 as

given the statement of Theorem 1. The last term tends to 0 due to Proposition 9. We first consider

the positive branch.

sup
x�Θ+

ε

E[f((Xx)t∈[0,ε−θ∗−τ ])1{τ � ε−θ
∗}]

� sup
x�Θ+

ε

E[f((Xx)t∈[0,ε−θ∗ ])]

� max{ sup
Θ+

ε �x<6δ+ε

E[f((Xx)t∈[0,ε−θ∗ ])], sup
x�6δ+ε

E[f((Xx)t∈[0,ε−θ∗ ])]}
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We treat the first term

sup
Θ+

ε �x<6δ+ε

E[f((Xx)t∈[0,ε−θ∗ ])]

� sup
Θ+

ε �x<6δ+ε

E[f((Xε,x)t∈[0,ε−θ∗ ])1{σx � ε−θ
∗}1{Xx

σx � 6δε}]

+ sup
Θ+

ε �x<6δ+ε

P(Xx
σx < Θ+

ε ) + sup
Θ+

ε �x<6δ+ε

P(σx > ε−θ
∗
),

where the last two terms tend to 0 as ε → 0. We continue once again with the help of the strong

Markov property

sup
Θ+

ε �x<6δ+ε

E[f((Xx)t∈[0,ε−θ∗ ])1{σx � ε−θ
∗}1{Xx

σε � 6δ+ε }]

� sup
x�6δ+ε

E[f((Xx)t∈[0,ε−θ∗−σx])]

� sup
x�6δ+ε

E[f((Xx)t∈[0,ε−θ∗ ])].

First let f be uniformly continuous with respect to D([0,∞);R) equipped with the uniform norm.

We denote by Ξ the uniform module of continuity of f . By Corollary 8 for θ∗ = κ defined there we

have

sup
x�6δ+ε

E[f((Xx)t∈[0,ε−θ∗ ]){ sup
t∈[0,ε−θ]

|Xx
t − x+t | � (δ+ε )

(β+)2

2 }] + sup
x�6δ+ε

P( sup
t∈[0,ε−θ]

|Xx
t − x+t | > (δ+ε )

(β+)2

2 )

� f((x+t )t∈[0,ε−θ∗ ]) + Ξ(δ
(β+)2

2
ε ) + sup

x�6δ+ε

P( sup
t∈[0,ε−θ]

|Xx
t − x+t | > (δ+ε )

(β+)2

2 ).

Corollary 8 yields that the last term converges to 0. For the case of general case of f not uniformly

continuous, we define the cutoff function fm(x) := f(x)1{−m � x � m}, which is uniformly

continuous and finally send m to infinity, which is justified by the Beppo-Levi theorem.

We prove the lower bound. Let f be uniformly continuous.

E[f((X0
t )t∈[0,ε−θ∗ ])]

E[f((X0
t )t∈[0,ε−θ∗ ])(1{τ � t̂ε}+ 1{τ > t̂ε})]

= E[E[f((Xε,0
t )t∈[0,ε−θ∗ ])1{τ � t̂ε}

(
1{X0

τ � Θ+
ε }+ 1{X0

τ � −Θ−
ε }

) | Fτ ]]
� P(X0

τ � Θ+
ε ) sup

x�Θ+
ε

E[f((Xε,x)t∈[0,ε−θ∗−τ ])1{τ � t̂ε}]

+ P(X0
τ � −Θ−

ε ) sup
x�−Θ−

ε

E[f((Xx)t∈[0,ε−θ∗−τ ])1{τ � t̂ε}]

� p+ sup
x�Θ+

ε

E[f((Xε,x)t∈[0,ε−θ∗−t̂ε])] + p− sup
x�−Θ−

ε

E[f((Xε,x)t∈[0,ε−θ∗−t̂ε])].
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We continue with the positive branch

sup
x�Θ+

ε

E[f((Xx)t∈[0,ε−θ∗−t̂ε])]

� sup
x�Θ+

ε

E[f((Xε,x)t∈[0,ε−θ∗−t̂ε])1{Xx
σx � 6δ+ε }1{σx � sε}]

� sup
x�6δ+ε

E[f((Xx)t∈[0,ε−θ∗−t̂ε−sε])1{ sup
t∈[0,ε−θ∗ ]

|Xx
t − x+t | � δ

(β+)2

2
ε }]

� f((x+t )t∈[0,ε−θ∗−t̂ε−sε])− Ξ((δ+ε )
(β+)2

2 ).

The negative branch is treated analogously. For a function f not uniformly continuous we use the

same truncation argument as before. This proves the desired result.
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