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Abstract

Nowadays, software systems are getting more and more complex. To tackle this challenge most diverse
techniques, such as design patterns, service oriented architectures (SOA), software development pro-
cesses, and model-driven engineering (MDE), are used to improve productivity, while time to market
and quality of the products stay stable. Multiple of these techniques are used in parallel to profit from
their benefits. While the use of sophisticated software development processes is standard, today, MDE
is just adopted in practice.

However, research has shown that the application of MDE is not always successful. It is not fully
understood when advantages of MDE can be used and to what degree MDE can also be disadvantageous
for productivity. Further, when combining different techniques that aim to affect the same factor (e.g.
productivity) the question arises whether these techniques really complement each other or, in contrast,
compensate their effects. Due to that, there is the concrete question how MDE and other techniques,
such as software development process, are interrelated. Both aspects (advantages and disadvantages for
productivity as well as the interrelation to other techniques) need to be understood to identify risks
relating to the productivity impact of MDE.

Before studying MDE’s impact on productivity, it is necessary to investigate the range of validity that
can be reached for the results. This includes two questions. First, there is the question whether MDE’s
impact on productivity is similar for all approaches of adopting MDE in practice. Second, there is the
question whether MDE’s impact on productivity for an approach of using MDE in practice remains
stable over time. The answers for both questions are crucial for handling risks of MDE, but also for the
design of future studies on MDE success.

This thesis addresses these questions with the goal to support adoption of MDE in future. To enable
a differentiated discussion about MDE, the term “MDE setting” is introduced. MDE setting refers to
the applied technical setting, i.e. the employed manual and automated activities, artifacts, languages,
and tools. An MDE setting’s possible impact on productivity is studied with a focus on changeability
and the interrelation to software development processes. This is done by introducing a taxonomy of
changeability concerns that might be affected by an MDE setting. Further, three MDE traits are
identified and it is studied for which manifestations of these MDE traits software development processes
are impacted. To enable the assessment and evaluation of an MDE setting’s impacts, the Software
Manufacture Model language is introduced. This is a process modeling language that allows to reason
about how relations between (modeling) artifacts (e.g. models or code files) change during application
of manual or automated development activities. On that basis, risk analysis techniques are provided.
These techniques allow identifying changeability risks and assessing the manifestations of the MDE traits
(and with it an MDE setting’s impact on software development processes).

To address the range of validity, MDE settings from practice and their evolution histories were capture
in context of this thesis. First, this data is used to show that MDE settings cover the whole spectrum
concerning their impact on changeability or interrelation to software development processes. Neither it
is seldom that MDE settings are neutral for processes nor is it seldom that MDE settings have impact
on processes. Similarly, the impact on changeability differs relevantly. Second, a taxonomy of evolution
of MDE settings is introduced. In that context it is discussed to what extent different types of changes
on an MDE setting can influence this MDE setting’s impact on changeability and the interrelation
to processes. The category of structural evolution, which can change these characteristics of an MDE
setting, is identified. The captured MDE settings from practice are used to show that structural evolution
exists and is common. In addition, some examples of structural evolution steps are collected that actually
led to a change in the characteristics of the respective MDE settings. Two implications are: First, the
assessed diversity of MDE settings evaluates the need for the analysis techniques that shall be presented
in this thesis. Second, evolution is one explanation for the diversity of MDE settings in practice.

To summarize, this thesis studies the nature and evolution of MDE settings in practice. As a result
support for the adoption of MDE settings is provided in form of techniques for the identification of risks
relating to productivity impacts.
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Zusammenfassung

Um die steigende Komplexität von Softwaresystemen beherrschen zu können, werden heutzutage un-
terschiedlichste Techniken gemeinsam eingesetzt. Beispiele sind, Design Pattern, Serviceorientierte Ar-
chitekturen, Softwareentwicklungsprozesse oder modellgetriebene Entwicklung (MDE). Ziel dabei ist die
Erhöhung der Produktivität, so dass Entwicklungsdauer und Qualität stabil bleiben können. Während
hoch entwickelte Softwareentwicklungsprozesse heute schon standardmäßig genutzt werden, fangen Fir-
men gerade erst an MDE einzusetzen.

Jedoch zeigen Studien, dass der erhoffte Erfolg von MDE nicht jedes Mal eintritt. So scheint es, dass
noch kein ausreichendes Verständnis dafür existiert, inwiefern MDE auch Nachteile für die Produktivität
bergen kann. Zusätzlich ist bei der Kombination von unterschiedlichen Techniken damit zu rechnen,
dass die erreichten Effekte sich gegenseitig negieren anstatt sich zu ergänzen. Hier entsteht die Frage
wie MDE und andere Techniken, wie Softwareentwicklungsprozesse, zusammenwirken. Beide Aspekte,
der direkte Einfluss auf Produktivität und die Wechselwirkung mit anderen Techniken, müssen aber
verstanden werden um den Risiken für den Produktivitätseinfluss von MDE zu identifizieren. Außerdem,
muss auch die Generalisierbarkeit dieser Aspekte untersucht werden. Das betrifft die Fragen, ob der
Produktivitätseinfluss bei jedem Einsatz von MDE gleich ist und ob der Produktivitätseinfluss über die
Zeit stabil bleibt. Beide Fragen sind entscheidend, will man geeignete Risikobehandlung ermöglichen
oder künftige Studien zum Erfolg von MDE planen.

Diese Dissertation widmet sich der genannten Fragen. Dafür wird zuerst der Begriff “MDE Setting”
eingeführt um eine differenzierte Betrachtung von MDE-Verwendungen zu ermöglichen. Ein MDE Set-
ting ist dabei der technische Aufbau, inklusive manueller und automatische Aktivitäten, Artefakten,
Sprachen und Werkzeugen. Welche Produktivitätseinflüsse von MDE Settings möglich sind, wird in der
Dissertation mit Fokus auf Änderbarkeit und die Wechselwirkung mit Softwareentwicklungsprozessen
betrachtet. Dafür wird einerseits eine Taxonomie von “Changeability Concerns” (potentiell betroffene
Aspekte von Änderbarkeit) vorgestellt. Zusätzlich, werden drei “MDE Traits” (Charakteristika von
MDE Settings die unterschiedlich ausgeprägt sein können) identifiziert. Es wird untersucht welche
Ausprägungen dieser MDE Traits Einfluss auf Softwareentwicklungsprozesse haben können. Um die
Erfassung und Bewertung dieser Einflüsse zu ermöglichen wird die Software Manufaktur Modell Sprache
eingeführt. Diese Prozessmodellierungssprache ermöglicht eine Beschreibung, der Veränderungen von
Artefaktbeziehungen während der Anwendung von Aktivitäten (z.B. Codegenerierung). Weiter werden
auf Basis dieser Modelle, Analysetechniken eingeführt. Diese Analysetechniken erlauben es Risiken für
bestimmte Changeability Concerns aufzudecken sowie die Ausprägung von MDE Traits zu erfassen (und
damit den Einfluss auf Softwareentwicklungsprozesse).

Um die Generalisierbarkeit der Ergebnisse zu studieren, wurden im Rahmen der Arbeit mehrere MDE
Settings aus der Praxis sowie teilweise deren Evolutionshistorien erhoben. Daran wird gezeigt, dass MDE
Settings sich in einem breiten Spektrum von Einflüssen auf Änderbarkeit und Prozesse bewegen. So ist es
weder selten, dass ein MDE Setting neutral für Prozesse ist, noch, dass ein MDE Setting Einschränkungen
für einen Prozess impliziert. Ähnlich breit gestreut ist der Einfluss auf die Änderbarkeit. Zusätzlich, wird
diskutiert, inwiefern unterschiedliche Evolutionstypen den Einfluss eines MDE Settings auf Änderbarkeit
und Prozesse verändern können. Diese Diskussion führt zur Identifikation der “strukturellen Evolution”,
die sich stark auf die genannten Charakteristika eines MDE Settings auswirken kann. Mithilfe der
erfassten MDE Settings, wird gezeigt, dass strukturelle Evolution in der Praxis üblich ist. Schließlich,
werden Beispiele aufgedeckt bei denen strukturelle Evolutionsschritte tatsächlich zu einer Änderung der
Charakteristika des betreffenden MDE Settings geführt haben. Einerseits bestärkt die ermittelte Vielfalt
den Bedarf nach Analysetechniken, wie sie in dieser Dissertation eingeführt werden. Zum Anderen
erscheint es nun, dass Evolution zumindest zum Teil die unterschiedlichen Ausprägungen von MDE
Settings erklärt.

Zusammenfassend wird studiert wie MDE Settings und deren Evolution in der Praxis ausgeprägt sind.
Als Ergebnis, werden Techniken zur Identifikation von Risiken für Produktivitätseinflüsse bereitgestellt
um den Einsatz von MDE Settings zu unterstützen.
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“Science is organized knowledge.”
Immanuel Kant

German philosopher (1724 - 1804)
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1. Introduction

Today, software is ubiquitous as part of automotive systems, aviation systems, mobile devices, telecom-
munication systems, or enterprise management systems. Software systems within the same domain often
have commonalities in functionality and are confronted with similar challenges. For example, embedded
systems usually need to deal with resources constraints. Between the domains, requirements on software
systems functionality and quality can differ considerably. However, what is common to all domains is
that associated software systems are getting more and more complex. In consequence, there is a growing
need to tackle complexity of software and to improve productivity of development without decreasing
the quality of the resulting system. To reach this goal, diverse approaches and techniques are in use.

One of these approaches is to base software development on modeling languages (e.g. UML [156]) in
addition to (or even instead of) traditional programming languages. The core motivation for the use
of models is to provide a more abstract view of the required software system. This more abstract view
supports communication as well as documentation or even automated analysis of systems in context of
quality assurance. Often this approach is accompanied by the use of tools that automatically consume
models in order to generate source code or other models (which is often called model transformation).
Techniques that implement this approach to use models and automation have various names, e.g. model-
driven engineering (MDE), model-based software engineering (MBSE), model-driven design (MDD), or
model-driven architecture (MDA) [154]. The different names partly refer to the spectrum of goals
that are targeted. While the term “model-based” is mainly used to refer to the aim of improving
communication through the use of models, the term “model-driven” often refers to the additional aim
of saving effort through the generation of code from models. The vision behind these techniques is to
disburden developers from recurring and possibly error-prone coding tasks [79], [111].

In this thesis, the term model-driven engineering (MDE) is used to refer to each technique that
implements a facet of the approach to use models and automation. To be able to reason about differences
between applications of MDE, the more detailed term MDE setting is defined as

the set of manual, semi-automated, and automated activities that are employed during development, the
set of artifacts that are consumed or produced by these activities, the set of languages used to describe
the artifacts, as well as the set of tools that allow the editing of used languages or that implement

automated activities.

Artifacts can be models or code files. Examples for automated activities are transformations or
generation steps, while examples for manual activities are modeling and coding. MDE tools, which
automate development activities, capture crucial knowhow and domain knowledge and are consequently
a valuable asset of a company [179]. Further, manual and automated are often intermixed (e.g. as in
[52, 72, 103, 116, 171]).

To allow developers to focus on domain aspects during development it is possible to create domain-
specific languages (DSLs) [110, 200]. Due to the restrictions on the domain, it is then often possible to
completely generate the source code or even interpret the specification directly. Often, most computation
specific aspects are encapsulated in generators, compilers and interpreters. If a DSL is a modeling
language such approaches are called domain-specific modeling (DSM) (e.g. [50] or [73], further examples
for DSMs are listed at the website of the tool MetaCase1). DSMs that allow specification of a system
completely within the domain-specific modeling language (DSML) are examples for the most extreme
vision of MDE. In this facet of MDE it is no longer necessary to manipulate program code. Further, in
extreme cases the DSML is designed in a way that only few software engineering skills are required to
specify the system. This ultimate vision of MDE is that software can be developed in close collaboration
with domain experts or even by domain experts themselves.

However, conclusive evidence that MDE improves productivity is missing. On the contrary, there
are indications that there are strong differences in the degree of success of MDE in practice. While
there are some reports on projects that showed large productivity gains, other reports document a

1http://www.metacase.com/cases/ (last access at November 9th, 2013)
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loss of productivity. So far, explanations for these differences are rare. A main part of this problem
is that there is only partial knowledge about how MDE influences productivity. As described above,
this knowledge focuses mainly on potential positive effects of MDE. However, there is little research on
potential negative effects of MDE. Similarly, the interplay of MDE and other productivity influencing
factors can lead to variations in the productivity impact. While literature on the interplay of MDE
and organizational factors exists, research on the interplay of MDE and other factors, such as software
development processes, is still rare. A second part of the problem is the lack of knowledge about how
the structures of MDE settings differ in practice. As a consequence, there is often a focus on the quality
of single tools when searching for explanations for the differences in the degree of success of MDE in
practice. However, it is unclear whether these differences might also be explained by differences in the
structure of MDE settings. A final part of this problem is that there is little knowledge about whether
the productivity impact of an MDE setting stays stable over time or can change (e.g. in the context of
evolution of this MDE setting).

In this chapter, an overview is given of factors that can influence productivity and might interfere with
MDE. In addition, a focus is defined for this thesis. Subsequently, the goals of this thesis are introduced
in detail. Finally, an overview of the contributions of this thesis is provided, followed by an outline of
the structure of this thesis.

1.1. Focus

One goal of research in software engineering is to enable software engineers to build complex systems with
a high quality. If the quality of the software and the time to produce the software should stay stable while
handling an increasing size and complexity of software, it is necessary to apply techniques that increase
the productivity. Consequently, research focuses on the question how productivity can be influenced.
A detailed list of factors that can influence productivity is provided by Balzert in [17] (referred to as
productivity influencing factors in the following). This list splits the productivity influencing factors into
five groups: organization, management, employees, product influences, and process influences. Process
influences can be restrictions on development time, duration of the project, stability of requirements,
technological support, methods or process quality, the programming languages used, or reuse [31, 134,
187].

Figure 1.1.: Groups of techniques and practices that are used to affect productivity via process influences.

The different process influences can be affected with various techniques and practices. As summarized
in Figure 1.1, such techniques and practices can be split into different groups. First, there are software
development processes that coordinate development (e.g. Rational Unified Process (RUP) [100], V-
Modell XT [82], or Scrum [176]). Processes often build on practices like rapid prototyping or incremental
development [31, 148]. Second, there is the technical setting that is used to develop the software. This
technical setting includes used languages and tools, like compilers or interpreters. Research on more
productive languages for the development of software focuses on domain specific languages (DSLs)
or modeling languages, amongst others. Further, model-driven engineering (MDE) and DSLs aim at
enhancing reuse, by providing techniques for automation of code creation, documentation, or quality
assurance [92, 206]. Finally, there are modern programming practices and paradigms. Such practices aim
for example at eliminating rework. This can include the use of design patterns [86] or service-oriented
architecture (SOA) [127]. Software product lines (SPLs) [163] are an example of a technique that aims
at supporting massive reuse of software components. The development of software product lines is often
supported by the chosen technical setting (e.g. feature trees might be used to model a planned SPL).
Still, SPLs are, comparable to SOAs, considered as (architectural) paradigm here.
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1.1. Focus

All these techniques and practices are not used in isolation, but may be employed simultaneously.
Thus, it is possible that they interfere with each other. This multitude of techniques and possible
interferences between these techniques makes it difficult to study all influences on productivity at once.

Techniques and Practices

From Balzert’s five groups of productivity influencing factors (organization, management, employees,
product influences, and process influences), process influences, which concern how development tech-
niques and practices can affect productivity (as summarized in Figure 1.1), are considered in this thesis.
Within the range of techniques and practices that address process influences on productivity, the main
object of this thesis is model-driven engineering (MDE) as technical setting for development. As ex-
plained above, the aspects of an MDE approach that constitute the technical setting are referred to as
MDE setting in this thesis.

An MDE setting affects productivity directly, but also by interrelation with the software development
process used as well as the paradigms and programming practices that are applied. While the application
of different paradigms and programming practices, such as SOAs or SPLs, is not necessarily part of
each software project, some kind of software development process is always applied (whether explicitly
specified or not). Thus, MDE is always used in combination with a software development process.
Therefore, the interrelation between MDE and software development processes is in focus of this thesis,
too, while the interrelation between MDE and paradigms and programming practices remains a topic for
future research.

To summarize, the productivity influencing factors studied in this work include MDE settings as well
as their interrelation to software development processes.

Software Quality Attributes

Productivity manifests in several aspects of development. Internal software quality attributes, like
reusability, maintainability, portability, changeability, or interoperability, can be seen as perspectives
that cover productivity for different use cases [1]. For example, changeability can be considered as
productivity when changing a software system. Consequently, techniques that affect productivity can
also affect these internal software quality attributes.

Similar to the multitude of productivity influencing factors, the way in which the different internal
software quality attributes are affected can vary strongly. For this reason, one internal software quality
attribute will be studied. This is changeability, i.e. “the amount of effort necessary to change a system”
[1], since it plays an important role at all phases of the software life cycle. For example, changeability
is required, when developing a system in an iterative manner, during maintenance, and when a system
is subject to extensive changes.

Focus Summary

To summarize, as shown in Figure 1.2, this thesis focuses on how MDE as well as the interrelation of
MDE and software development processes can affect productivity (especially changeability).

Figure 1.2.: The focus of this research is on the influence of model-driven engineering on productivity,
especially changeability, as well as on the interrelation and potential interferences of MDE
with software development processes.
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1. Introduction

1.2. Challenges and Thesis’ Goals

The question under which conditions improvements can be achieved by adopting MDE is still open and
subject to research (e.g. in [146, 213]). While in some domains the application of MDE is established,
the industry in other domains is only just beginning to adopt MDE in practice. However, there is so
far no proof that MDE always improves productivity. In fact, there are reports of successful MDE
applications as well as reports on fruitless MDE applications [143].

For this motivation this thesis addresses three challenges that are summarized in Figure 1.3. First, in
order to study the characteristics on MDE settings it is necessary to capture examples from practice.
Second, it a challenge to identify risks relating to the productivity impacts of MDE settings. Therefore,
it needs to be understood how MDE settings affect changeability and whether they define constraints
on the used software development processes.

Finally, a risk analysis implies additional effort for a company. Consequently, the question arises
whether such evaluations are necessary for all MDE settings. For example, when specific strengths and
weaknesses are similar for all MDE settings used in practice, there is no need to analyze risks of a specific
MDE setting. Therefore, the second challenge is to determine the generalizability of knowledge about
risks for the productivity impact of MDE settings.

Figure 1.3.: Overview of challenges that are addressed in this thesis.

Capture MDE Settings

A precondition for studying MDE settings is the ability to capture examples of them. Modeling languages
to capture MDE development either aim at documenting the process of development activities (e.g. [2,
24, 25, 26, 40, 51, 58, 117, 129, 164], or [183]) or at documenting and maintaining the set of development
artifacts and their interrelation ([P5], e.g. [65, 66], or [204]).

However, a connection of both views is missing. Thus, current modeling techniques do not allow doc-
umenting how the set of artifacts and their relations change, when development activities are performed.
This lack makes it difficult to reason about the characteristics of MDE settings. Therefore the following
goal is formulated for this thesis:

Thesis’ Goal 1 It is a goal of this thesis to provide a modeling approach that enables capturing of
MDE settings, such that the effects of activities on artifacts and their interrelations can be documented.

Identify Risks Relating to Productivity Impact of MDE Settings

As already discussed above in Section 1.1, the question howMDE affects productivity has various aspects.
In order to develop risk analysis techniques for the productivity impact of MDE settings, two questions
will be addressed: Firstly, how MDE settings directly affect changeability, and secondly whether an
MDE setting can imply constraints on software development processes.
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So far, the main effort in understanding why MDE supports productivity has gone into in understand-
ing why generation of code can help to reduce development effort (e.g. [110]) and in understanding how
models and modeling languages support developers in working more productivly (e.g. [206]). For exam-
ple, Heijstek et al. [95] investigated how model size and complexity influence the development effort and
quality of software. Existing studies on MDE in practice only seldom focus on the structure of MDE
settings [15, 37, 41, 71, 77, 94, 95, 99, 107, 114, 119, 133, 135, 136, 143, 145, 146, 152, 190, 195, 196,
205, 210, 211]. However, there is little knowledge about the effect that the structure of an MDE setting
as a whole (e.g. the interplay of manual and automated activities with different artifacts) can have on
productivity (as illustrated in Figure 1.4). As a consequence, it is difficult to exclude negative effects on
productivity when an MDE setting is established. More knowledge on an MDE setting’s effects would
be a prerequisite for the creation of appropriate analysis techniques to identify risks for productivity. As
described in Section 1.1, the perspective on productivity that is in focus of this thesis is changeability.
Therefore, the following goal is formulated for this thesis:

Figure 1.4.: The first focus of this thesis is the question how an MDE setting can influence changeability.

Thesis’ Goal 2 A goal of this thesis is to enhance the knowledge about how an MDE setting can
influence the changeability of the software that is built with that MDE setting.

Different studies have shown that software development processes and MDE settings can define con-
straints on each other (e.g. [8, 96, 190]). For example, Mahe et al. [130] highlight that short iteration
cycles have to be supported by an MDE approach when it is applied with an agile development process.
However, the interrelation of MDE settings and software development processes (as illustrated in Figure
1.5) has not yet been investigated in full depth. Consequently, it is not clear whether and how MDE
settings and software development processes can complement or interfere with each other. More knowl-
edge on the interrelations of MDE settings and software development processes would be prerequisite
for educated decisions on how to combine both techniques, when introducing MDE within a company.
Therefore, the following goal is formulated:

Figure 1.5.: The second focus of this thesis is the question whether MDE settings can interfere with
software development processes.

Thesis’ Goal 3 It is a goal of this thesis to enhance the knowledge about how an MDE setting can
interfere with a software development process.

Gaining knowledge about how MDE settings can influence changeability and interrelate with software
development processes is the precondition for the development of risk analysis techniques. Such tech-
niques can make it possible to identify and handle risks for changeability during development. Similarly,
an analysis of the interrelation to software development processes can help to tailor the process appropri-
ately. Such analysis techniques are still rare. In consequence, there are no systematic methods to make
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1. Introduction

developers aware of changeability risks or a disadvantageous combination with a software development
process. For this reason a next goal is formulated for this thesis:

Thesis’ Goal 4 A goal of this thesis is to provide analysis techniques for MDE settings that support
the identification of risks for changeability as well as constraints on software development processes.

Determine Generalizability of Knowledge about Productivity Impact of MDE Settings

An analysis of the question whether MDE settings can imply risks on productivity can be expensive. The
question arises whether it is possible to generalize knowledge that is gained during such an analysis. It
might turn out that MDE settings in practice have differing characteristics. This leads to the additional
question wether the knowledge gained about an MDE setting remains valid when this MDE setting
changes over time and evolves.
As mentioned above, some applications of MDE in practice are successful and others not. In theory, it

is possible that this difference is partly caused by the way MDE settings affect productivity (directly or
indirectly via their interrelation with software development processes). In practice, this might only be
the case when MDE settings differ in their productivity impact. However, it is not known whether MDE
settings that include risks on changeability occur in practice. Similarly, it is not clear how often MDE
settings in practice affect software development processes if at all. If MDE settings in practice do not
differ in their influence on changeability and processes, these influences cannot be candidates to explain
the diversity of the degree of success of MDE applications. However, if MDE settings in practice do
differ in their influence on changeability and processes, a need arises for analysis techniques to identify
whether the trait manifestations and changeability risks occur in a given MDE settings. This leads to
following goal for this thesis:

Thesis’ Goal 5 A goal of this thesis is to evaluate whether the way an MDE setting influences the
changeability and the way an MDE setting interferes with a software development process are potential
explanations for the differences in the degree of success of applications of MDE in practice. Note that
it is not a goal to prove that these characteristics of an MDE setting explain the differences in the
degree of success. Instead, it shall be tested whether it is plausible that these characteristics can lead
to differences in the degree of success in practice.

There are several reports about the direct introduction of specific MDE approaches created in research
(e.g. as summarized in [94]). However, after being introduced in practice, MDE settings might be
subject to change. This evolution of modeling languages or model transformations has been studied
in research (e.g. in [12, 97, 87, 126, 150, 203, 216]). However, there is a lack of knowledge about
what kind of evolution MDE settings actually undergo in practice. Consequently, it is also not known
whether evolution can change an MDE setting, so that its impact on changeability or its interrelation to
software development processes changes, too. Thus, it is not understood whether evolution can invalidate
knowledge about these characteristics of an MDE setting. Therefore a final goal is formulated for this
thesis:

Thesis’ Goal 6 A goal of this thesis is to understand whether evolution in practice might change an
MDE setting’s impact on changeability and software development processes.

1.3. Contributions

There are three groups of contributions in this thesis: insights that result from a systematic analysis of
the problem domain, insights that result from empirical data, and a modeling language with analysis
methods for MDE settings. Based on systematic analyses of the problem domain, i.e. the definitions of
MDE settings, changeability, and software development processes, several analytical insights on MDE
are presented in Chapter 3.
First, three traits of MDE settings are identified that can be manifested, such that they imply con-

straints on the software development process that is used. These traits are phases, which influence how

8



1.3. Contributions

developers coordinate their work, manual information propagation, which influences for which artifacts
additional quality assurance is required, and complex activity chains, which can make an MDE setting
inappropriate for the application within an agile process. Second, it is established that MDE settings
can include risks for changeability. MDE settings can lead to unexpected loss or preservation of content
within artifacts and relations between artifacts, when changes are applied.

A taxonomy of possible types of changes that can occur to an MDE setting during evolution is
introduced (as illustrated in Figure 1.6). The identified class of structural changes affects the number of
artifacts, tools, languages, as well as the number of automated and manual activities in the MDE setting
or the order of manual and automated activities) are distinguished from non-structural changes (i.e.
evolution of languages, transformations, or generators). Evolution that consists of structural changes is
referred to as structural evolution. This taxonomy of change types is accompanied by an analysis of how
each change type affects an MDE setting’s influence on different aspects of productivity. It is shown
that there are change types that can alter how an MDE setting influences changeability. Similarly,
it is analyzed how each change type alters how an MDE setting interferes with software development
processes.

Figure 1.6.: Part of this thesis is the question what forms of evolution occurs on MDE setting in practice
and how does this influence the characteristics of the MDE setting.

To improve the knowledge base about MDE settings in practice, three studies were performed (de-
scribed in Chapter 4). First, an exploratory observational field study was performed to capture MDE
settings from practice. In addition to the six case studies captured, the exploratory character of this
field study made it possible to capture some additional observations. One of these was that most of the
MDE settings considered are the result of evolution of older MDE settings that were in use before. To
gain more data about this evolution, a meta study was performed to identify whether reports on MDE
settings in practice include hints on structural evolution, too.

Structural evolution is studied in Chapter 5, based on these two data sets (the records from the MDE
settings that were captured in the observational field study, on the one hand and the literature reports
on the other hand). The insight is that structural evolution exists in practice and seems to be common.
Thus, it is shown that types of evolution that can alter an MDE setting’s influence on changeability
actually do occur in practice. To gain more information about the reasons for the occurrence of structural
evolution, the observational descriptive field study was extended to capture additional MDE settings
in practice together with their evolution history. As a result this thesis contributes observations on
the combination of change types within an evolution step as well as on the motivations, trade-offs, and
triggers for structural evolution in practice.

The analytical insights reveal that MDE settings can lead to risks for changeability. In addition, MDE
settings can imply constraints on the software development process. Further the empirical insights show
that structures that cause these risks and constraints might be introduced into the MDE setting through
evolution. To support developers in identifying these properties, this thesis introduces techniques for
modeling and analyzing MDE settings (in Chapters 6 and 7).

First, the Software Manufacture Model language is introduced, to better capture processes of activities
from MDE settings. This modeling language is an extended process modeling language that can be used
to capture how the relations between artifacts (i.e. overlaps in content or references), change when
manual or automated activities are applied. Further, the applicability of the language to practical MDE
settings is evaluated by using it to capture the case studies that were collected in the context of this
thesis. Second, the Software Manufacture Model Pattern language is introduced, which makes it possible
to formulate patterns of one or more Software Manufacture Model activity. This can be used to capture
knowledge about structures in MDE settings that lead to risks for changeability or other concerns.
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For the analysis, simple methods are introduced in Chapter 7. These make it possible to identify MDE
traits that can imply constraints on software development processes. Based on the Software Manufacture
Model Pattern language, four proto-patterns are introduced (i.e. prospective patterns for which a regular
occurrence in practice is not yet shown [7]). Two of these proto-patterns describe structures that can
lead to risks for changeability, while the other two describe solutions to prevent or remove risks for
changeability.
Modeling and analysis techniques are supported by tools, as described in Chapter 8. To use the mod-

eling language, an editor for Software Manufacture Models is provided. In addition, an editor for the
Software Manufacture Model Pattern language and an automated pattern matcher are also provided.
The pattern matcher automatically identifies occurrences of patterns within Software Manufacture Mod-
els. Further, the thesis provides tool support for the assessment of the manifestation of an MDE setting’s
traits and thus on the potential to affect software development processes.
To gain further knowledge on the characteristics of MDE settings in practice, the analysis methods are

applied to the case studies that were collected in the context of this thesis (see Chapter 9). As a result
this thesis provides the additional insight that manifestations of MDE traits that imply constraints on
software development processes occur in MDE settings in practice. However, these manifestations of
MDE traits do not occur in all MDE settings. Similarly, occurrences of the proto-patterns are identified
within these case studies. This shows that risks on changeability occur in practice as well as solutions
to prevent these risks. Both results show that MDE settings in practice differ strongly in their impact
on changeability and in the constraints they imply on software development processes.Subsequently, the
Software Manufacture Model language and the analysis methods are evaluated on the basis of their
application to the case studies from practice (see Chapter 10).
These analysis techniques can be applied during the set up of a software development projects. When

different MDE settings are available, the results of the analysis can help to decide which MDE setting
should be used. Further, if only one MDE setting is available the analysis might help to decide whether
and how to evolve an MDE setting. Such an analysis can also influence the choice or tailoring of the
software development process. Finally, the analysis of how an MDE setting influences changeability can
be used during development or maintenance to make developers aware of risks.

1.4. Structure

The chapters of this thesis are now briefly outlined:

Chapter 2 This chapter provides foundations on concepts of model-driven engineering, model man-
agement, software development processes and productivity in software development. Literature that
explains how MDE influences productivity is summarized. Further research methods are discussed.
This chapter is partially based on [P3, P5], [P2], and [P4].

Chapter 3 In this chapter the conceptual domain of MDE settings is analyzed. A set of MDE traits
is presented that can imply constraints of software development processes. Additional changeability
concerns are presented which are associated with MDE settings. Finally, a taxonomy of possible changes
and evolution steps of MDE settings is introduced. For each change type it is discussed how productivity
aspects like changeability might be altered. This chapter is partially based on [P2], and [P4].

Chapter 4 This chapter introduces the studies that were performed in the context of this thesis, gives
an overview about the captured data, and discusses threats to validity. This chapter is partially based
on [P3], [P6], [P2], and [P4].

Chapter 5 In this chapter results from the studies are presented. This includes insights on the structure
of MDE settings in practice, insights on the evolution of MDE settings in practice, as well as observations
on the motivations and triggers of this evolution. This chapter is partially based on [P3] and [P4].

Chapter 6 This chapter discusses requirements for a modeling language to capture MDE settings,
introduces the Software Manufacture Model language as well as the Software Manufacture Model Pattern
language. This chapter is partially based on [P2] and [P6].
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Chapter 7 This chapter discusses requirements for an analysis of MDE settings. Following, analysis
methods to identify the MDE traits presented in Chapter 3 are presented. Further, four proto-patterns
on changeability risks and evolution are presented. This chapter is partially based on [P2].

Chapter 8 This chapter introduces tool support for the modeling languages and analysis methods.
This chapter is partially based on [P2].

Chapter 9 In this chapter the analysis techniques are applied to the case studies from the examples.
It is discussed to what extent the analyzed MDE traits and proto-patterns can be found in these case
studies. This chapter is partially based on [P2], [P6], [P4] and [P3].

Chapter 10 In this chapter the modeling language and the analysis techniques are evaluated on the
basis of their application to the case studies. This chapter is partially based on [P6].

Chapter 11 In this chapter related work is summarized and discussed. This chapter is partially based
on [P3], [P2], [P6], and [P4].

Chapter 12 Finally, the results of this thesis are summarized and directions for future work are outlined.
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2. Preliminaries

In this chapter preliminaries and foundations that are used during this thesis are described. This includes
following topics: model-driven engineering, software development processes, productivity, pattern, and
empirical research methods. Further, a running example for this thesis is introduced. This chapter is
partially based on [P5].

2.1. Model-Driven Engineering

One approach to cope with complexity of software is to use models to represent abstract views on a
system. Depending on the captured aspect of the system under study, a model can be used to support
different engineering tasks.

First, models can be used to support communication between different stakeholders and developers
of the system. Therefore, implementation specific aspects of the system are abstracted away. This
way the tasks of requirements engineering and validation can be supported by models. Second, models
can be used as a basis for creation and verification of a system design. Model that are used for this
purpose reflect different aspects of the structural and behavioral system design. Through the concept
of abstraction, models can provide overviews on large and complex systems. In addition, different
techniques, such as model checking, model-based testing, model simulation, and formal methods can be
used to support quality assurance (e.g. to verify whether a system will meet required safety properties
[80]). This way some errors in system design can be identified and corrected before the implementation
starts. Finally, models that are used for system design can be a basis to support coordination and
division of work within teams. Using these two benefits from models during software development is the
basic idea of “Model-Based Software Engineering” (MBSE) [175].

When models are created to design and verify a system, they often already include design decisions.
Thus, the third benefit from using models is that they can be basis for the (partial or complete) generation
of source code. In some approaches program execution is even directly done by interpreting models. The
main benefit when generating source code out of models is reuse. First a manual translation of the design
from the models to the code might be an error prone task. When generating source code, this manual task
is no longer necessary. This has the additional benefit that, assuming that the generator works correctly,
model verifications results remain valid for the code. Second, generators can encapsulate knowledge on
how specific system aspects can be implemented optimally. This, knowledge is then reused as a side
effect of generation. In contrast to MBSE, techniques like “Model-Driven Architecture” (MDA)[154]
and “Model-Driven Engineering” (MDE)[111] include the possibility to use models for generation of
code. MDA is an OMG1 standard and specifies three model types (computation independent model
(CIM), platform independent model (PIM), and platform specific model (PSM)). The CIM is created
first and then transformed (manually or automatically) into the PIM. The PIM is enriched with details
for implementation of the system. Finally, the PIM is transformed to the PSM, which can be used for
code generation. The transformation from PIM to PSM enriches the PSM with platform specific aspects
of the implementation.

As introduced in [111], MDE has a wider scope than MDA. Thus, MDE does not specify what
combination of models will be used during development. Although, the automation of code creation on
the basis of models is sometimes seen as the core property of MDE [206], the terms MBE and MDE
are often used as synonyms (e.g. as in [180]). Other common synonyms are “Model-Driven Software
Engineering” (MDSE) (e.g. in [192]) and “Model-Driven Development” (MDD). Throughout this thesis,
“Model-Driven Engineering” (MDE) refers to all these facets. Also MDA is seen a special form of MDE.

How the use of models within practice might differ is illustrated by Brown’s spectrum of model use
(shown in Figure 2.1, the illustration bases on a diagram originally drawn by John Daniels [37]). On one
end of the spectrum no models are used (code only). Alternatively, models might be used to visualize
the structure of code, which can be beneficial for verification reasons (code visualization). In round

1http://www.omg.org/ (last access at November 9th, 2013)
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trip engineering changes are propagated between models and code. Then, code might be created out
of models (model centric). Finally, at the other end of the spectrum only models are used during
development (model only).

Figure 2.1.: Brown’s spectrum of model use [37]

Languages MDE approaches often combine diverse languages, such as modeling languages (e.g. Uni-
fied Modeling Language (UML)[156], Business Process Model and Notation (BPMN) [157], and Systems
Modeling Language (SysML) [3]), domain specific languages (DSLs) and domain specific modeling lan-
guages (DSMs) ([110], e.g. the DSM for development of Inventory Tracking Systems presented in [50];
an overview of different DSLs and DSMs in given in [200]), general purpose languages (GPLs) (e.g.
Java [90]), scripting languages (e.g. JavaScript [212] or Python [165]), languages to support interface
and protocol descriptions (e.g. SOAP [36] or WSDL [42]), languages to manage data base systems (e.g.
structured query language (SQL) [35]), configuration files languages (often based on XML [215]), build
script languages (e.g. Make [67] or Ant [14]), languages for layouts (e.g. style sheet languages like CSS
[207]), languages for the specification of transformations (e.g. ATL [105] or XSLT [44]) languages for the
specification of other languages (e.g. MOF [153], some XML schema languages as summarized in [149],
or Backus-Naur Form (BNF) [13]) unstructured or structured natural languages (e.g. English within a
requirements documentation), or simple ad hoc notations (e.g. sketches).
Two categorizations for these languages are interesting, when reasoning about MDE settings. First,

languages differ in their expressiveness. On the one hand, there are general purpose languages, which can
be used for specification of arbitrary programs. On the other hand, there are domain specific languages
(DSL). The expressiveness of a DSL is restricted to a specific domain in favor of the ability to implement
solutions for this domain in a more efficient manner (e.g. less effort for the description of the solution is
required). These domains can be chosen with a focus on technical aspects (e.g. SQL) or with focus on
the application domain. Although there is a multitude of languages in the first group (e.g. Make, CSS,
ATL, or WSDL), the term DSL is sometimes used to refer to languages of the second group, only.
Second, it is differentiated between programming languages and modeling languages. Although most

languages can be clearly assigned to the one or the other group, there is no ultimate differentiation of both
groups. In most cases programming languages base on a grammar that describes the concrete syntax and
is basis for parsing program files. In contrast, the abstract syntax of most modeling languages is specified
using metamodels. The characteristic of models that is often used as distinction to program code is their
graphical syntax. This graphical syntax should support a more intuitive recognition of complex problem
and program structures, compared to the textual syntax of code. Although this differentiation between
graphical and textual character fits for the most languages, there are also textual modeling languages
(e.g. efactory2).
Similarly, there are further characteristics that differentiate most programming languages from most

modeling languages. However, for each characteristic also exceptions exist. For example, the use of

2http://code.google.com/a/eclipselabs.org/p/efactory/ (last access at November 9th, 2013)
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models is most often motivated by the desire to gain a more abstract view on a system compared to
code. However, declarative programming languages (especially declarative DSLs) can provide a very
abstract view on the system, while UML class diagrams are sometimes used on a very low level of ab-
straction, e.g. to reflect the structure of object oriented program code. While programming languages
are most often prescriptive, modeling languages can be descriptive and prescriptive. Similarly, while
programming languages are most often executable (i.e. a compiler or interpreter is provided), there are
modeling languages that are executable as well as modeling languages that are not executable. Often
behavioral and structural aspects are split clearly between different diagram types in modeling languages
(e.g. UML activity diagrams describe behavior, while UML class diagrams describe a structure). While
in object oriented programming languages structure and behavior are intermixed within the same docu-
ments. However, there are also programming languages that abstract from behavior (e.g. in declarative
languages, such as Prolog [45], only the problems are described). Finally, many of the languages listed
above are neither clearly associated to the group of programming languages nor clearly associated to
the group of modeling languages (e.g. WSDL).

To summarize, there are general purpose languages, general purpose modeling languages, domain
specific languages, and domain specific modeling languages. All of these languages can occur within
MDE settings. It can be expected that different languages have significantly different potential to
support development of different systems and system aspects.

Automation Automation of development is in its different forms an important part of MDE. In [138]
and [48] classifications of model transformations are presented. The terms model transformation and
model operation are used to describe a multitude of automated operations, such as code generation
(out of models), model-to-model transformations, model merge, or synchronization of models (e.g. to
preserve consistency between two models). Following, a short introduction is given into the categories
that are relevant for this thesis.

Amongst other categories, Mens et al. differentiates between endogenous transformations (between
artifacts of the same language) and exogenous transformations (between artifacts of different languages)
[138]. Further, Mens et al. differentiate between horizontal and vertical transformations. Input and
output artifacts of a horizontal transformation are on the same level of abstraction. Such transformation
might be used for refactoring. In contrast, input and output artifacts of a vertical transformation are
on different levels of abstraction, i.e. the output artifact contains more details than the input artifact,
or the other way around [138].

Czarnecki et al. further differentiate transformations, according to the output artifact. The output
artifact might be created when the transformation is executed (new target), the output artifact might be
one of input artifacts (in-place), a former version of the output artifact might be overwritten (destructive
update), or a former version of the output artifact might be extended (extension only) [48]. Finally,
Czarnecki et al. differentiate between unidirectional and bidirectional transformations. Unidirectional
transformations can only transform the input artifacts into the output artifacts. In comparison, bidi-
rectional transformations can be executed in both directions (i.e. the role of input and output artifacts
can be exchanged) [48].

Such automations of development might be implemented with a GPL like Java or with a DSL that is
specifically created for the implementation of model transformations (e.g. XPand3 (for code generation
out of models), Triple-Graph Grammars (TGGs) for model to model transformations [89], ATLAS
Transformation Language (ATL) [105], or Query View Transformation (MOF QVT) [155]).

Transformations and generators can be very complex. This is especially the case when they are
implemented, such that they can handle all possible valid instances on one or more languages as input. To
support a more modular design of transformations, frameworks like UniTI [202] support the definitions
and automated execution of transformation chains. These transformation chains can be compared to pipe
and filter systems. The output artifacts of one transformation are input for the next transformation.
Other approaches allow in addition so called context compositions [A11]. There, a transformation
between two artifacts is a composition of multiple transformations that focus on different specific parts
of the input and output artifact. Also the QVT standard supports context compositions [155]. Most of
these approaches allow that the composed transformations are implemented in different languages.

3http://wiki.eclipse.org/Xpand (last access at November 9th, 2013)
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Evolution Lehman’s laws [124] as well as taxonomies on software change [139] led to a common under-
standing that software is subject to change and evolution.
However, as Favre stated in [63] languages are subject to evolution, too. This does not only hold

for, metamodels, but also for metametamodels such as MOF. Since then, many forms of evolution were
studied. For example, it was studies how languages evolve (e.g. [87]), how language evolution affects
evolution of software, including the topic of co-evolution of metamodels and models (e.g. [39] or [43]),
or how evolution of languages entails evolution of automations, like transformations or generations (e.g.
[126] or [216]).

2.1.1. Comparing Development with and without MDE

To investigate the benefits of MDE it is necessary to understand its differences and commonalities with
traditional code-centric software development. Therefore, the automation of implementation tasks (e.g.
through generation of code) as well as the use of languages is discussed in the following.

Automation of Development

As mentioned above, one of the core ideas of MDE is to generate code on the basis of models. However,
the idea to automatically create code has a long history. Already in 1958 the vision of automatic
programming was established. In this vision, end users create a brief description of their requirements
on a system and the automatic programming system generates an effective program that fulfills these
requirements. An automatic programming system has three features: it can be used by the end users,
it is general purpose, and it is fully automated [167].
Twenty years later, in 1988, Rich et al. summarize what has been achieved so far and discuss to

what extent the vision of automatic programming is reachable [167]. They argue that the three features
cannot be reached together and found that each successful automated programming system focuses on
two of the three features, only. Consequently, Rich et al. split automated programming systems into
three groups. Bottom up approaches neglect the goal to be usable by end-users. These approaches
aim at increasing the degree of automation (e.g. substituting machine-level languages by high-level
languages). Narrow domain approaches neglect the goal that the automatic programming system is
general purpose (e.g. database query systems). Finally, assistant approaches neglect the goal that the
programming system is fully automated. Tools provide support for e.g. high level design manipulation,
without subsequent automated generation of code (e.g. the tool Excelerator from Index Technology
Corporation that supported structured analysis and design methodologies).

When comparing automated programming with MDE, the similarities are obvious. The three features
of automated programming (end users as developers, general purpose, and full automation) are also part
of the MDE vision. Similar to automated programming also MDE approaches might be characterized
by what features are in focus and what features are neglected. For example, general purpose modeling
languages, like UML [156], focus on being general purpose. Especially, UML is in between a bottom up
and an assistant approach in automated programming. On the one hand, UML is meant to support
high-level system design, but (without using the concept of UML profiles) does not reach a level, where
it can be used by end users to specify the required system. On the other hand, UML is used for partial
generation of code frames, but cannot be used for automatic generation of the whole code (again, without
using the concept of UML profiles). When using UML profiles, both features can be improved, on the
costs that the UML profile is no longer general purpose.
DSLs and DSMs explicitly neglect the goal to be general purpose and are therefore comparable to

narrow domain approaches in automatic programming. In fact, narrow domain approaches like database
query systems are often considered as examples for DSLs, today. Finally, the idea of “Model-Based
Software Engineering” (MBSE) as introduced in [175] is comparable to assistant approaches in automatic
programming, where the automated creation of code is not in focus.
As indicated above, also high-level programming languages base on automation (bottom up approach),

which is well known as the process of compilation and linking. This process, to automatically translate
high-level programming languages to machine-level code, is also called software manufacture ([123, 34]).
Although this term fell into oblivion, the most used software manufacture tool, Make [67], is still known
by nearly every software developer, today. Software manufacture tools are often replaced by build script
languages like Ant [14].
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Build script languages as well as software manufacture tools fulfill a similar role like transformation
chains in MDE. Although in some MDE approaches the results of a transformation chain are further
manipulated by developers, researchers from both areas become aware of the similarities, nowadays. For
example, Jezequel et al. discuss what both communities might learn from each other [102].

Use of Languages

Besides a comparison of the automation aspects, it is also worth to have a more detailed comparison of
the language use. As discussed above in MDE often a combination of multiple languages is used. These
languages are not necessarily only modeling languages, but often also normal programming languages
or XML-based DSLs. Actually, “non-MDE development” today is not necessarily much different. Often
different languages are combined and often these languages are not only traditional code languages.

Hutchinson et al. provide in [99] a transcript, where such a development setting is shortly described.
Languages that need to be handled in this setting include B+ trees, HTML, and Java. In addition, parts
of the user interface seem to be implemented with a help of a graphical tool. Also Pfeiffer et al. [162]
collected a set of amazing practical examples how language combinations in software development can
look like. For example, they report that for the development of the open-source ERP system OFBiz4

more than 30 languages are in use. This includes GPLs and DSLs as well. They also extract a simpler
example from the open-source bug-tracking system JTrac. This example shows that development with
multiple languages even happens, when no modeling language is involved. The three languages used
for JTrac are HTML, Java, and a simple properties file. Pfeiffer et al. [162] call software systems
that are developed using different languages “multi-language software systems” (MLSS). They further
substantiate the commonness of MLSS by citing a survey performed by Zend Technologies Ltd. [220],
where it was found that PHP developers often use languages like JavaScript, Java, or C along with PHP.
Thus, there are many development settings that are – from the perspective of used languages – neither
pure MDE nor code-centric.

Summary

Considering both aspects, automation and used languages, it becomes clear that MDE and non-MDE
approaches have much in common. Whether developers call their approach model-driven or not, often
seems to be a subjective decision. Obviously there are many approaches that are clearly code-centric
(e.g. when only java is used) or clearly model-driven (e.g. when different models are used generate
parts of the source code). However, there is a broad spectrum of approaches between code-centric and
model-driven, like the example that is discussed in [99]. Concluding, MDE can be seen as a part of an
ongoing process towards a simpler and more productive software development.

However, there is also an aspect that is special to MDE and only seldom in non-MDE approaches.
This is the fact that, within MDE, manual and automated tasks can be intermixed, i.e. automatically
created artifacts are manipulated manually. Further, due to the graphical nature of models, they have,
compared to code, a greater potential to support communication.

Due to the commonalties, many techniques to improve development that are developed within the
MDE community, aim at supporting non-MDE development, too. For example, research in model
management on megamodels [19] and MLSS [162] is not exclusively motivated with MDE. Similarly,
in this thesis the term model-driven engineering is used to refer to the whole spectrum of forms of
development, where multiple (modeling) languages or automation of development tasks are used.

2.1.2. Model Management and Megamodels

Although MDE approaches can be simple for small DSMs as described in the example above, they can
get very complex for other examples. In such cases, developers have to deal with a multitude of artifacts
that are formulated in different languages and have the most different relations among each other.

The aim of model management is to support developers in coping with this additional complexity.
The main tool of model management is the megamodel or the related concept “macromodel”.

As summarized in [P5], the definitions of megamodels and macromodels differ slightly. For example,
Bézivin is one of the first founders of the term megamodel. His view of the term megamodel grew

4http://ofbiz.apache.org (last access at November 9th, 2013)
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during the recent years. The first definition was given in the year 2003: “A megamodel is a model with
other models as elements” [27]. In 2007 this definition is further complemented: “A megamodel contains
relationships between models” [18].

In contrast, Salay introduces macromodels, which fit the definition of megamodels, but have a different
intention. A first definition is provided in 2007: “A macromodel is a graphical model whose elements
denote models and whose edges denote model relations” [173]. Later, he defines the term macromodel as:
“A macromodel consists of elements denoting models and links denoting intended relationships between
these models with their internal details abstracted away” [174].

Though definitions of Bézivin, Salay, and many other authors differ slightly, they have a common
core. This core definition was extracted in [P5]: A megamodel is “a model that contains models and
relations between them”. In some approaches megamodels are hierarchical, e.g. models can contain
models and relations can be context of other relations. In a broader sense, models that are contained
by a megamodel can be of all kinds of artifacts, such as requirements specification that are written in
structured natural language, models of the system design, or even source code files.

In Figure 2.2 an extensible metamodel for megamodels is shown [P5].

Figure 2.2.: Core metamodel for megamodels introduced in [P5] (as UML class diagram [156]).

There are basically three types of relations that are captured only within megamodels. First, there
is the “overlap”-relation that indicates that two models have overlapping content. This relation is, for
example, used by Salay [173, 174] and Perovich [160] to indicate that two models show different views
of the same system. Seibel [178] uses this relation as basis for identifying consistency and inconsistency
between two models. Bézivin uses “overlap”-relations in [18], where megamodels are used to handle for
traceability issues. Second, the “model operation”-relation is a representative of a model operation that
was, can be, or will be performed with models as input and output. For example, Favre [62, 64, 66]
introduces the “isTransformedIn” relation, which indicates that one model was transformed to another
model. Similarly, Bézivin [27] and Perovich [160] support this relation type. Seibel [178] uses the “model
operation”-relation for automatically restoring the consistency between two models.

The last type of relation is called “static”-relation. Examples, for “static”-relations are “conformsTo”,
which represents the relation between a model and a reference model, or “contains”, which indicates
that a model is contained by another model. Another example is the “represents” relation between a
models and the represented system, which is used by Favre [62, 64, 66]. Most approaches, like Bézivin
[27] and Perovich [160], work with the “conformsTo” relation. Seibel [178] uses the “isOfType” relation
for links. Also Salay [173, 174] uses to show the “instanceOf” relation in his example models.

Reasons for the use of megamodels in model management are diverse. The first motivation is to make
the relations between existing artifacts explicit, such that developers can get and maintain an overview
during a project (e.g. in [27, 160], or [178]). A megamodel helps to trace, which artifacts are created on
the basis of which other artifacts. Second, megamodels are used to declare what artifacts and artifact
relations should be created during development. In such cases the megamodel of the current situation
is compared to the target megamodel (e.g. in [173, 174]). A third motivation is to support automatic
execution of transformation chains (e.g. in [52]), or to automatically maintain consistency between
artifacts (e.g. in [178]).

2.2. Productivity

In this section, different general and MDE specific perspectives on productivity are introduced. Subse-
quently, the interrelation of the different perspectives is shortly discussed.
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2.2.1. Influences on Productivity

A main motivation in research on software development techniques, technologies, and languages is the
desire to enhance the productivity of a software company. As collected in [16, 17] Balzert’s Lehrbuch
der Softwaretechnik much research was done to understand and define the term productivity. This
includes the exploration of attributes, such as quality and quantity of software, development effort, and
development time.

In [185] Sneed presents his devil’s square (Figure 2.3) to illustrate that it is hard to enhance productiv-
ity in the short term. The devil’s square illustrates productivity as a plane, spanned by the parameters
quality, quantity, costs, and time. Sneed assumes that the surface area of the plane does not change
easily. For example, actions applied to enhance quantity of the produced software with stable time and
costs will reduce quality of the product. Enhancing quantity of the software without decreasing quality
can – in short term – only be reached by adding costs and/or time.

Figure 2.3.: Sneed’s devil’s square after [185]

Consequently, further work was done, to determine how productivity can be enhanced, i.e. how one
of the four parameters can be optimized, while keeping the others stable. As cited in [17], Maxwell et
al. sums up that intensive use of tools and modern methods can increase productivity [134]. Further,
research was done on whether reuse of software can reduce required time and resources without reducing
quality and quantity of produced software [91]. Boehm presents several actions to enhance productivity
in [31]. Finally, Balzert subsumes that process improvements might improve productivity [16].

As indicated with Sneed’s devil’s square, productivity is influenced by other factors, which are pre-
sented in [17] on the basis of Basili (see Figure 2.4). Productivity is influenced by value of the produced
software (i.e. quality and quantity or the software) and costs of the software (which is among other
things influenced by development time and personnel costs). Further, complexity of the software to be
build influences the level of difficulty, which further influences the costs.

Figure 2.4.: Influencing factors on productivity after Basili (cited from Balzert [17]).
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Balzert provides a more detailed list of factors that can influence productivity (referred to as productiv-
ity influencing factors in the following) and splits them into five groups [17]: organization (e.g. corporate
culture), management (e.g. working environment or team size), employees (e.g. salary, professional ex-
perience, or experience in application domain), product influences (e.g. quality, size, requirements on
operating times, memory limitations, or complexity of the product), and process influences. Process
influences are restrictions on development time (or time to market) [134], duration of the project [134],
stable requirements [31], technological support [187] (addressed by, e.g. tool integration [31]), methods
or process quality [187], amount of rework (addressed by, e.g. front-end aids, information hiding, and
modern programming practices [31]), used programming languages, and, finally, reuse (addressed by,
e.g. libraries, generators, automated documentation and quality assurance, or automated programming
[31]).

As already mentioned in the introduction, different techniques and practices can be applied to affect
these productivity influencing factors. For illustration, techniques and practices that can be used to
affect factors in the group of process influences can be split into three groups here: the technical setting,
which covers used languages (including DSLs), compilers, interpreters, or model-driven engineering, the
software development process (e.g. RUP [100]), and the applied paradigms and programming practices
(e.g. Service-Oriented Architecture or Design Pattern) (summarized in Figure 2.5).

Figure 2.5.: Groups of techniques and practices that are used to affect productivity via process influences.

2.2.2. Internal Quality Attributes

Software quality attributes represent another perspective on productivity. The ISO standard defines
diverse software quality attributes, for example, reliability or changeability [1].

It is differentiated between external software quality attributes and internal software quality attributes.
While external software quality attributes, such as reliability and efficiency describe the quality of a
software product that can be experienced by the customers and users, internal software quality attributes
are independent of the software execution.

Important internal quality attributes are reusability, maintainability, changeability, and portability.

As McIlroy’s law tells us: “Software reuse reduces cycle time and increases productivity and quality”
[56]. Thus, reuse mainly helps to reduce development time, without reducing quality, quantity, or
enhancing costs. Further, reuse can help to improve quality, since each reuse increases the probability
that faults in reused models or code parts are discovered. Consequently, reused model and code parts
are more mature.

Due to the need that software can be used over a long time, main aspects of productivity are main-
tainability and changeability. Thus, reducing time and costs for changes and maintenance is important
for productivity. Further, maintenance helps to preserve quality of a software product. In addition,
customizability, a special form of changeability, helps to enhance the validity of the software for different
customers. Portability enhances productivity, if the same system has to be built on different platforms,
since costs and time can be saved.

2.2.3. MDE Mechanisms

The structure of MDE approaches are in main focus within this thesis. The introduction of MDE was
associated with many well founded hopes concerning improvement of quality, quantity, costs, or time
and thus improvement of productivity. There are different arguments why MDE (or MDA in particular)
should break through the devil’s square, by improving one parameter without worsen the others.
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Model-driven engineering comes up with three mechanisms, which are separation of concerns, au-
tomation, and abstraction. For example, in the OMG’s MDA standard [154] the separated concerns are
business aspects, computational aspects, and platform aspects. Separation of concerns is reached by
using different models/artifacts for expressing the different concerns. Abstraction is often associated
with easing the definition of certain aspects. These three concepts influence productivity by influencing
internal software quality attributes, e.g. reusability, maintainability, changeability, and portability. In
literature theoretical considerations to argue why the MDE concepts separation of concerns, automation,
and abstraction influence software quality attributes can be found. In the following, some examples are
given.

Stahl et al. [188] argue that reusability can be supported by a meaningful separation of concerns,
since a model that is separated from certain aspects can be reused if these aspects change. For example,
a main motivation of OMG’s MDA [154] is the reuse of the platform independent model (PIM) for
building the software for multiple different platforms, since platform aspects are not specified in the
PIM. They further argue that automation leads to reuse, since implementation knowledge is reused in
automated transformations or generations. Gruhn [92] argues that raising the level of abstraction on a
domain specific layer leads, in addition to reuse of technical knowledge, to reuse of domain knowledge.

Portability is one of the main declared goals of OMG’s MDA [154]. Kleppe et al. [115] argue that
separation of concerns and automation enable changes of the underlying platform.

A declared goal of OMG’s MDA [154] is interoperability. Kleppe et al. [115] argue that this is
addressed in MDA since platform aspects are automatically generated by transformations, and thus
automated generation of platform bridges, such as “PSM bridges” or “Code bridges”, is possible on the
same information.

Further, Kleppe et al. [115] and Stahl et al. [188] argue that abstraction directly helps to handle
complexity and they argue that automation has a direct influence on the time required, as each generated
part of code, does not need to be written by hand [115, 188]. Finally, as Kelley et al. [110] argue, quality
is supported, since DSLs reduce through abstraction the possible mistakes that can be made during
implementation.

2.2.4. Interrelation of Productivity Terminologies used in this Thesis

Following, it is introduces how the different perspectives on productivity are interrelated from the
viewpoint of this thesis.

Figure 2.6.: Influencing factors after Basili (after Balzert [17]), extended here with exemplary additional
productivity influencing factors that become relevant when MDE is applied (extension em-
phasized in green).

First of all, the influencing factors sketched by Basili (Figure 2.4) might be supplemented by further
factors that become important when studying MDE settings. In Figure 2.6 some examples are shown.
MDE comes with a more complex tool setting. Especially, in the case of DSLs, transformations and
generators need to be maintained. Thus, the costs of the infrastructure (the initial outlay and the costs
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of ownership) become important. Further, the combined use of different languages makes the effort
to maintain consistency between different artifacts important. Finally, the complexity of the technical
setting (i.e. of the concrete MDE approach) is a factor that influences the daily work of developers and
with it the difficulty of development. Techniques and practices, such as the used MDE setting or process
affect these productivity influencing factors.
Internal software quality attributes are considered in this thesis as views on productivity. These

views represent manifestations of productivity for different use cases (e.g. changeability can be seen as
the productivity in case of changes). Thus, internal software quality attributes, such as changeability,
are impacted by the productivity influencing factors, too. Consequently, MDE settings and the used
software development process affect the internal software quality attributes, too.
In literature, all these perspectives (productivity influencing factors, mechanisms of the technical

setting, like abstraction and automation, and internal software quality attributes) are used to describe
effects on the productivity. For example, these effects are not always traced back to or discussed on
the level of the corresponding productivity influencing factors. Instead, effects are often described more
abstractly as effects on different internal software quality attributes. For example, as summarized in
Section 2.2.3 the effects of MDE are often described as effects on changeability or portability. Sometimes
it is even considered as sufficient, when it is described how the manifestation of an MDE mechanism
changes. For example, it is common sense that an increased degree of automation is associated to a
positive tendency for the productivity.

Figure 2.7.: The introduced term “productivity dimensions” covers productivity influencing factors,
MDE mechanisms or mechanisms of the technical setting, and internal software quality
attributes.

To capture this diversity, the term productivity dimension is introduced here as embracing concept.
A productivity dimension is a property whose concrete manifestation can be associated to a positive or
negative impact on productivity. Thus, as summarized in Figure 2.7, all productivity influencing factors,
the MDE mechanisms or mechanisms of the technical setting, and internal software quality attributes
are referred to as productivity dimensions within this thesis .

2.3. Software Development Processes

Software development processes are used to organize development of software. Processes focus on spec-
ifying an order of development activities or phases. Further, documents and artifacts that are used and
produced in these phases are specified. Additional aspects that are addressed by software development
processes are, for example, the way teams interact (e.g. division of labor or frequency of team meet-
ings) or what quality assurance activities are performed. For example, an explicit goal of RUP [118] is
to “direct the tasks of individual developers and the team as a whole”, whereas Scrum [176] limits the
scrum master’s authority concerning the question how members of the development team should interact.
Likewise, the V-Modell XT [82] and RUP [118] prescribe and schedule quality assurance activities.
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Most modern software development processes define iterations of evolution cycles for the development
of the software. These cycles have diverse names (e.g. sprint or iteration) and are of different durations.
For example, iterations in the spiral model [32] usually last longer than a sprint in Scrum [176].

In general, it is differentiated between agile and “rich” software development processes. Following the
manifesto for agile software development5, agile processes often base on shorter cycles and smaller teams.
The main focus of the processes is to support customer collaboration, the ability to respond to changes,
and to provide working software in early stages of development, already. In addition, these processes are
often accompanied by techniques that aim at guiding interaction of developers, e.g. pair-programming.
Examples for agile processes are Scrum [176] or XP [23]. Processes that are not agile (sometimes also
called “rich” processes) often have a stronger focus on planning and documentation. Examples for rich
processes are V-Modell XT [82] or the Rational Unified Process (RUP) [100]. As Sommerville concludes
in [186] the question what process is best depends on the organization, the character of the developed
software, and the skills of the developers. For example, agile processes are often not appropriate in
safety critical projects or when a huge team of developers needs to be coordinated. In contrast, many
small projects can benefit from agile approaches.

Processes, as they are described in the specification, are often not directly applied. First, processes
are most often tailored. Process tailoring is the adaptation of a process to the specific needs of an
organization, the environment, or project needs [21]. As collected in a survey of literature about software
process tailoring by Kalus and Kuhrmann, process tailoring can affect the emphasis that is put on
different actions in the project, such as integration and testing [106]. Other tailoring activities can
concern the organization of the project (including communication and the number of iterations) or the
knowledge management. However, in the survey the authors conclude that is not yet understood what
concrete tailoring actions can be applied when certain tailoring criteria are fulfilled.

Further, processes of a company – even if no standard process is applied – change over time, are
refined, and can mature [84]. The Capability Maturity Model (CMM [159]) specifies five levels of process
maturity, from the use of ad hoc processes to a level, where the process is continuously improved. More
mature processes come along with a better predictability of performance of development.

2.4. Patterns

Patterns are a commonly use tool to capture and communicate knowledge, experiences, and solutions
in software engineering. The probably best known examples for patterns are the design patterns on
software architecture that were presented by Gamma et al. [86]. However, there are not only patterns
that concern the architecture of software, but also patterns for many other areas of software development
and maintenance. Some of them are collected in a pattern almanac [169]. For example, a pattern that
concerns the handling of automation during development is the generation gap pattern [78].

Besides “positive” patterns that describe solutions, there are also so called anti-patterns that capture
situations that are known to be risky or problematic [7, 38]. For example, a well known anti-pattern is
the god class (as discussed in [54]).

Since patterns are meant to represent experience and praxis relevant situations, the creation of a
pattern does not only consist of describing a structure and the associated solutions or risks. It is necessary
that a pattern is recurring. Consequently, there is a rule-of-thumb that at least three occurrences of
a pattern should be documented, before this pattern can be called a pattern. As long as this rule is
not fulfilled a pattern is called proto-pattern [7]. Sometimes, even more rigorous rules are applied. For
example, in some communities there are complex review processes, before a proto-pattern is accepted
as pattern. For this reason, this thesis only introduced proto-patterns and discusses their potential to
be accepted as patterns, on the basis of the identified occurrences.

2.5. Empirical Research Methods

The process of knowledge building requires data from practice to recognize phenomena, to build hypoth-
esis to explain phenomena, or to evaluate such hypotheses. The required data is captured in empirical
studies. In this section, a short overview about different techniques and categorizations of empirical
studies is given. It is described which techniques are used within this thesis.

5http://www.agilemanifesto.org (last access at November 9th, 2013)
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Experiments vs. observational studies Basically, there are experiments and observational studies
[20]. Within experiments researchers manipulate specific variables in order to measure the effects of
these manipulations. In contrast, during observational study, the researchers do not apply treatments
or manipulations, but derive their insights based on what can be observed. Observational studies that
capture one or multiple projects from practice are called case study or field study [219][20]. Yin defines
a case study as “an empirical inquiry that investigates a contemporary phenomenon within its real-life
context, especially when the boundaries between phenomenon and context are not clearly evident” [217].
Within this thesis case study research is applied.

Qualitative vs. quantitative data The second important differentiation is made between qualitative
and quantitative data. While, quantitative data can be used to reason about frequencies of phenomena
or to prove cause-effect relationships, qualitative data is rather useful to study complex phenomena
or to build hypotheses. Studies can contain qualitative as well as quantitative aspects at once [22].
Seaman states that the question whether data is qualitative or quantitative, can neither be answered
based on the method that was used to capture the data, nor on the objectivity or subjectivity of the
data. Instead, these terms describe the representation of data (mainly numerical in case of quantitative
data and mainly textual in case of qualitative data) and with it the possible kinds of analyses that can
be done [177]. Also other opinions on this differentiation can be found. For example, in [20] Basili
describes quantitative data as objective and qualitative data as subjective. However, this thesis bases
on Seaman’s understanding, since this view fits to the fact that qualitative as well as quantitative can
be captured in semi-structured interviews.

Data collection The collection of data can happen in different forms. While questionnaires allow
capturing and analyzing big amounts of data, interviews are more costly. However, it is difficult to
capture qualitative data within questionnaires, since only open text fields might be used for that. In
contrast, interviews can be used for capturing both qualitative and quantitative data. Interviews can
be structured, semi-structured, or unstructured [177]. While structured interviews allow capturing
quantitative data, unstructured interviews are most appropriate to capture qualitative data. In practice,
often semi-structured interviews are used to combine advantages of both approaches [177]. This makes
it feasible to capture quantitative data about the parts of the phenomena that are already understood,
while maintaining the possibility to collect qualitative insights.
Consequently, interviews are the appropriate choice when complex phenomena need to be studied

[214]. Since this is the case in this thesis, interviews were used.

Study results Depending on the type of results that are aim of a study, the data is analyzed differently.
There are different classifications for study goals and results. For example, Basili distinguished between
three aims for a study: a study can be descriptive (i.e. describe observed phenomena), correlational
(in order to identify correlations between different variables), or focus on cause-effect relations between
variables [20]. Seaman presents a classification that is orthogonal to Basili’s and simply distinguishes
between two goals for empirical studies: generation of a theory or hypothesis and confirmation of a
hypothesis [177].
In contrast to this focus on study goals, Shaw transfers a classification for study results from human

computer interaction research in [181]. She differentiates between findings, observations, and rules of
thumb: findings are “well-established scientific truths, judges by truthfulness and rigor”, observations
are “reports on actual phenomena, judged by interestingness”, and rules of thumb are “generalizations,
signed by their author but perhaps incompletely supported by data, judged by usefulness” [181].
Within this thesis the classification from Shaw is used to categorize results.

Data analysis Techniques to create hypothesis or systematically collect observations on the basis of
empirical data are similar. Two methods that can be applied to gain hypothesis or observations are
the constant comparison method [177] and grounded theory [46]. The constant comparison method is
applied by a systematic annotation of interview records with codes. These codes might stem from an
initial list of codes (preformed codes) or are created during the examination of the records [177]. After
the annotation, parts of records with the same codes can be compared. Codes might be further refined.
Finally, the comparison of the annotated code parts can lead to the identification of phenomena that

24



2.5. Empirical Research Methods

are partly described by multiple interviewees. Grounded theory is similar to the constant comparison
method, but includes an additional round of feedback with interviewees or experts. These interviewees
or experts are asked to confirm or refuse the made observations. Both techniques are used in this thesis.

In order to increase the probability that interesting observations can be made or new hypothesis can be
formulated, studies with exploratory character can be applied. Such exploratory studies allow learning
about a problem domain that is not well known. Mostly, exploratory studies are descriptive case studies
or field studies. The researcher does not only focus on capturing a predefined set of data, only. For
example, within interviews open questions are used to create an opportunity for interviewees to report
on phenomena and experiences of which the interviewer is not aware. For this reason most studies that
aim on hypothesis finding or collecting of observations collect and work with qualitative data. Within
this thesis the first study was executed as exploratory study, which led to the motivation for the further
research on evolution of MDE settings.

In contrast to studies that aim at formulation of hypothesis or observation making, quantitative data
is used to confirm hypotheses or establish and evaluate findings. It is possible to prepare aspects of
qualitative data for quantitative analysis. Seaman calls this process coding [177]. For example, for a
textual list of tools that are used within a project coding can be used to extract the number of tools,
which is quantitative data. Within this thesis this quantification shall be applied to extract information
about the frequency of structural evolution steps on the basis of literature reports.

Validity discussion When performing studies or experiments, threats to validity need to be taken into
account. Depending on the categorization, two or four types of threats to validity are distinguished.
The simple categorization is a distinction between internal and external validity (as in [132]). Internal
validity deals with whether the research design can be used to exclude alternative explanations or at
least make them implausible [132]. In contrast, external validity concerns whether and to which degree
the results can be generalized to other conditions [132].

An alternative categorization is presented by Wohlin et al. [214]. Internal validity is split into
conclusion validity and internal validity, while external validity is split into construct validity and external
validity. In this case, conclusion validity deals with the statistical significance of the relationship between
a treatment and the outcome, while internal validity deals with the causal relationship between treatment
and outcome (e.g. unobserved factors might influence the outcome) [214]. Further, construct validity
deals with the question whether the results can be generalized to the concepts of the experiment [214].
For example, this concerns whether the participants in a study behave as they would normally (e.g.
whether the behavior that is intended to be observed can actually be observed). Another question is
whether sufficient characteristics of a concept are measured or implemented to represent it appropriately.
Finally, external validity deals with whether and how far the results can be generalized to industrial
practice [214]. However, typically, not all threats to the different types of validity are applicable to each
study. For example, threats to internal validity are specific for experiments, but not for the studies
presented in Chapter 4.

Within this thesis the forms of validity that are introduced by Wohlin et al. [214] are used to discuss
and design validity of the study and the results. Since observational studies are performed within this
thesis, only the three forms construction validity, external validity, and conclusion validity shall be
discussed in this thesis.

Perry et al. [161] list different techniques to increase the validity of study results. One example is
the meta-analysis [161]. The basic idea of this approach is to combine data from different studies. The
more general principle of combining different evidences is also called triangulation.

Within this thesis a meta study is performed to gain information about the existence of structural
evolution. To gain further information about the commonness of this phenomenon, the results of the
meta study and records from case studies shall be triangulated.

Summary Subsuming there are diverse forms of empirical studies that can be used for different reasons
in research. In Chapter 4 the studies that were performed in context of this thesis are introduced in
detail.
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2.6. Example MDE setting

Within this thesis mainly examples from practice are used to demonstrate the introduced classifications,
modeling language, and analysis techniques. For example the analysis techniques in Chapter 7 will
partially be explained on the example of one of the collected case studies from SAP.
The example of the generation of java code with EMF is used in multiple chapters within this thesis as

a running example (e.g. in Chapters 3, 6, 8, and 9). This EMF example is chosen, since it represents
a relatively simple MDE setting and is, as an open source project, a commonly accessible case study6.
In this section, the EMF example is introduced. As summarized in Figure 2.8, there is the activity

“create ecore model”, which is a manual activity to create an “ecore model”. This “ecore model” is
consumed by the automated activity “create EMF generator model”, which generates an “EMF generator
model”. This artifact can be manipulated in the manual activity “manipulate genmodel”. Together
with the “ecore model” the “EMF generator model” is consumed by the automated activity “generate
java code”. This activity produces “interface”s, “adapter factories”, and “interface implementations”.
Activity “generate java code” takes old versions from “interface implementations” into account, when
the activity is executed a second time. Each generated “interface implementation” can be further
manipulated in the manual activity “manipulate implementation”.

Figure 2.8.: Activities within the EMF example, illustrated as simple UML activity diagram [156].

The EMF example is mainly used in this original form and partly in a simplified version. However, in
order to explain the automated derivation of activity orders in Section 8.3 the example is enriched with
three further activities.
As illustrated in Figure 2.9, these activities are “create genmodel”, as an alternative activity to create

the artifact “EMF generator model”, “create documentation”, is a manual activity for the creation of
a documentation, and “merge into” is a semi-automated activity that can be used to insert the “ecore
model” into the documentation.

Figure 2.9.: Activities of the extended EMF example, illustrated as simple UML activity diagram [156].

6For a description of the EMF generation, see the Tutorial: http://www.vogella.de/articles/EclipseEMF/

article.html (last access at November 9th, 2013)
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As summarized in Figure 3.1 this research focus of this thesis concerns three aspects: the question how
MDE settings influence changeability, the question how MDE settings are interrelated with software
development processes, and the question whether and how MDE settings evolve in practice.

In this chapter, these three questions are theoretically approached by analyzing the respective problem
domains. As a first step, the concept “MDE setting” is introduced in Section 3.1. Afterwards the three
aspects are examined successively. It is analyzed how MDE settings can impact changeability. Then, the
interrelation between MDE settings and software development processes is investigated. Subsequently, it
is theoretically examined how MDE settings might evolve and how this evolution can influence an MDE
setting’s characteristics (i.e. the impact on changeability and the interrelation to software development
processes). Based on this theoretical analysis, hypotheses on the actual manifestation of MDE settings
in practice are formulated in Section 3.5.

This chapter is partially based on [P2] and [P4].

Figure 3.1.: Overview of research focus on MDE settings

3.1. MDE Settings

Brown’s modeling spectrum (introduced in Section 2.1) provides a useful taxonomy to understand mo-
tivations for the use of models. However, within a project multiple or all of the different uses of models
can occur. For example, one model might be used to support communication with a stakeholder, while
the code is created manually and an additional model is used for code visualization (e.g. to support code
reviews). Further, different models might be used on different levels of abstraction (e.g. as specified in
the MDA standard [154]). Thus, MDE can manifest in a multitude of the most diverse combinations of
languages, tools, and automations.

To differentiate more clearly between the concrete technical aspects of manifestations of MDE, the
term MDE setting is introduced for this thesis as

the set of manual, semi-automated, and automated activities that are employed during development,
the set of artifacts that are consumed or produced by these activities, the set of languages used to
describe the artifacts, as well as the set of tools that allow editing used languages or implement
automated activities.

Thus, an MDE setting can include artifacts that are expressed in different languages. Since models
are often used in combination with other languages, the set of languages in an MDE setting can include
all kinds of formats.

Similarly, an MDE setting can include multiple automated activities. Examples for automated activ-
ities within an MDE setting are code generation, model transformation, model synchronization, com-
pilation and interpretation. Compilation and interpretation are the lasts steps to gain an executable
program or execute the program. Examples for manual activities are modeling and coding, but also
quality assurance activities, like code reviews. A special form of modeling and coding are manual
transformations, where a major part of the created content was already part of an input artifact. Like
automated transformations, also manual transformations, might be endogenous or exogenous, horizontal
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or vertical, and can either lead to the creation of a new artifact or adaptation of an existing artifact.
Tools build the framework for the execution of the automated activities (e.g. model checkers like PRISM
[122] or the TGG interpreter [113]) and provide editors (e.g. Visio1 is used for the DSM in [50]) and
support for manipulation of artifacts during manual activities.
Each activity consumes, manipulates, and produces a set of artifacts, which can be specified using

different languages. Different artifacts that are used as input of an activity might specify different aspects
(e.g. behavioral and structural aspects) or parts (e.g. different components) of a system. Artifacts can
be interrelated in different ways as summarized in [P5]. First, an artifact can explicitly reference another
artifact. Second artifacts can overlap in the described content. On the one hand, this happens, when
artifacts describe complementary aspects of a system. In this case an overlap reflects how the content
of both artifacts needs to be assembled. For example, a UML class diagram describes what classes
are available in a system. A UML sequence diagram reflects parts of this information, since modeled
objects and their communication need to be conforming to classes and their associations within the class
diagram. On the other hand, an overlap can be the result of a model transformation that created one
artifact on the basis of the other one.
The definition of the term MDE setting introduced above in Section 3.1, allows to capture all forms

of technical settings from code-centric development to DSLs to MDE. For example, an MDE setting
for code-centric development with Java includes artifacts formulated in Java and artifacts formulated as
Java-Bytecode. Manual activities are coding of artifacts formulated in Java [90], while the two automated
activities are compilation (with Java artifacts as input and Java-Bytecode artifacts as output) and
interpretation (with Java-Bytecode artifacts (consisting of the translated program and libraries from
the Java API) as input). Tools in such an MDE setting can be Eclipse as integrated development
environment (IDE) with an editor and compiler for Java, as well as a Java Virtual Machine (e.g. the
Mac OS Runtime for Java) for the desired platform [128].
Another simple example is the MDE setting for the DSM for inventory tracking systems presented

in [50]. Here the used artifacts are formulated in the presented DSM and interpreted afterwards. Thus
there is the manual activity to model the inventory tracking systems and the automated activity to
interpret the model. The tool Visio is used as editor, while the interpreter is implemented bases on
Visual Basic.

3.2. Analytical Insights: Changeability

Changeability is a software quality attribute that describes the amount of effort necessary to change a
system [1]. There are two reasons why this internal quality attribute is especially important in software
development. First, as stated by Lehman et al. [124], most successful software systems are subject to
permanent change. For example, systems need to be adapted to new business needs. Second, most
software development processes rely on incremental or agile development, where the software system is
changed and revised several times during development.
In this section, it is discussed how changeability can be influenced by MDE (i.e. what change-

ability concerns are affected by MDE settings). Subsequently, a hypothesis on the relevance of these
changeability concerns in practice is formulated. To better discuss the effects of changeability the term
changeability concern is introduced here to refer to a specific dimension of changeability. MDE settings
or other techniques can affect changeability concerns to different extents.

3.2.1. Basic Influences on Changeability

As in Fricke et al. [81] the system’s architecture is often in focus when changeability is discussed. Also
most work on changeability analysis in literature focuses on design patterns. For example, Garzas et al.
measure changeability in terms of the number of indirections introduced through design patterns into
code [88]. Other approaches focus on a direct analysis of the source code changes (e.g. [85]).
A mechanism that is used to improve changeability on level of system’s architecture is separation of

concerns [194]. The main changeability concern is the number of system parts that have to be touched
to apply a change. This includes the fraction of the system the needs to be understood, as well as the
fraction of the system that needs to be modified. The goal is to reduce this fraction.

1http://msdn.microsoft.com/de-de/office/aa905478 (last access at November 9th, 2013)
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To reach this goal several rules and techniques are applied in system’s architecture. For example in
[191] the concepts cohesion (i.e. the degree to which elements of a module belong together [218]) and
coupling (i.e. the degree to which modules rely on each other) are introduced. Until today, it is a widely
used rule of thumb to reach a loose coupling and a strong cohesion, when splitting up software into
modules or components. The concept of polymorphism that is used in object oriented programming
allows that objects of different subtypes can be accessed via the interfaces of a common super type.
This allows exchanging these objects. The use of well defined and standardized interfaces improves
changeability, too. This concept is for example extensively used in service oriented architectures, where
systems are built as composition of services that interact via specified interfaces. Finally, there is much
work done in supporting identification and removing of code clones, such that changes do not need to
be applied to all clones individually. Like these examples, all techniques that are applied to improve
changeability at level of the system’s architecture can be seen as ways to separate concerns.

Besides architectural aspects also the choice of the language has influence on changeability. The
main mechanism that works here is abstraction. This abstraction influences intuitiveness and effort
to describe certain software parts. The influence of the language is often unattended in literature on
changeability, which might be a result of three reasons. First, the abstraction is not only relevant for
changeability, but also for the performance of the initially implementing a version of the system. Second,
the changeability concern “intuitiveness and description effort” it is even harder to measure or rate than
the changeability concern “number of system parts to be touched”. Third, the choice of a language is
often constraint by many traditions and factors, like available skills. Thus, an explanation that the focus
of changeability research is often on architecture might be that – in contrast to the language choice –
the architecture provides developers with the concrete option to improve changeability within a running
project. However, there is a second indirect mechanism how the language influences changeability, which
shall be mentioned here. This mechanism is the influence of the language’s structure (i.e. modularization
concepts within the language) on the options to design and manipulate the system’s architecture. For
example, object oriented programming and the use of polymorphism depends on the choice of an object
oriented language (e.g. instead of an imperative language).

Subsuming, changeability in “classical” software development (i.e. use of a single main language and
no code generation) can be influences by the choice of the language and the design of the architecture.
The changeability concerns that are affected are “intuitiveness and description effort” as well as the
“number of system parts to be touched”.

3.2.2. MDE’s Influence on Changeability

In the following it is analyzed how an MDE setting can influence changeability of the software that is built
with that MDE setting. It will be shown that MDE settings can affect the two identified changeability
concerns via additional mechanisms. More importantly, MDE settings can affect further changeability
concerns. As described in Section 2.1 MDE settings can include a combination of multiple artifacts and
languages as well as a combination of potentially intermixed manual and automated activities. Remind
that the term MDE setting is used in this context also when no modeling language is used.

Here, the different characteristics of MDE are systematically analyzed in detail to identify how they can
influence changeability. For each characteristic of MDE settings, it is discussed which already identified
changeability concern can be affected. Further, it is examined whether additional changeability concerns
are affected by a characteristic. As a result this section comes up with a list of changeability concerns
that can be affected by an MDE setting.

Combination of Languages

First, the fact that MDE settings can include a combination of different languages amplifies the effect
that the choice of a language already can imply. While a single language can improve intuitiveness
and description effort for specific types of changes (e.g. changes of structural aspects), other types of
changes (e.g. changes of behavioral aspects) might be less well supported. Consequently, a meaningful
combination of different languages can help to improve intuitiveness and description effort for different
types of changes at once. For example, the language SQL is used in combination with other programming
languages. In consequence, changes in the way a database is accessed can be implemented with less
effort than with the combined programming language. Another example is the use of “Status & Action
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Models” (S&AM) in combination with ABAP code in the development of Business Objects for the
Feature Package 2.0 at SAP [P3]. The S&AMs are specialized for describing behavior.

Similar, to a single language also the way how languages are combined can define conditions for the
design of the system’s architecture (and the resulting separation of concerns). For example, the combi-
nation of Hypertext Markup Language (HTML) and Cascading Style Sheets (CSS) allows separating the
specifications of structure and layout, while the single use of HTML does not. A simple manipulation
of the layout of a website that is specified by a combination of HTML and CSS might be applied by
changing a single part of a single CSS file. In contrast, the implementation of the same change on a
website that is specified by HTML, only, might require the manipulation of multiple elements throughout
multiple HTML files.

Besides these additional influences to the already identified changeability concerns, the combination
of different languages can also add to the complexity for the developer. Similar to the question “how
many system parts have to be touched to apply a change?” that can be asked for the changeability
concern “number of system parts to be touched”, the use of a combination of languages instead of a single
language lead to the question “how many languages have to be understood to apply a change?”. Thus,
the combination of different languages in MDE affects the additional changeability concern “number of
languages to be understood”. For example, for the implementation of a change in the EMF example
(Section 2.6) artifacts up to three languages need to be understood: Ecore, EMF Generator Model and
Java.

Combination of Artifacts

MDE settings are characterized by a combination of different artifacts. On the one hand, the combination
of different artifacts during development can be system specific, as in “classical” development (e.g. the
number of classes in a Java program leads to the number of Java code files). Further, the combination of
different languages implies the use of different artifacts. However, MDE settings might also define further
expectations on the combination of artifacts. This is due to the different artifacts that are required as
preconditions and postconditions of (automated) activities.

The combination of artifacts depends for example on the question whether automated activities do
allow that multiple artifacts of one role and type are consumed (e.g. a Java interpreter usually can
consume an arbitrary number of Java-Bytecode files). Further, several input artifacts of same type
might have different predefined roles (e.g. artifacts that are reused from previous projects, artifacts that
are provided by the customer, and artifacts that are created during the project might be formulated in
the same language).

Thus, what artifacts are necessary to implement a concrete change depends also on the automated
activities of the MDE setting. The other way around, the languages that are necessary for a concrete
change, depends on the set of artifacts that are necessary for this concrete change. This combination
of artifacts lifts the level of the changeability concern “number of system parts to be touched” to the
changeability concern “number of system parts or artifacts to be touched”. For example, in the EMF
example (Section 2.6) the generation of Java code from an “ecore model” and an “emf generator model”
results in different artifacts such as “interfaces” and “interface implementations”. Thus, the automated
activity “generate java code” predefines the separation of Java artifacts.

Combination of Automated and Manual Activities

Finally, an MDE setting defines a combination of automated and manual activities, which might form
activity chains. Automated activities define what artifacts are consumed together to produce other
artifacts, which might be consumed by manual activities. Via this propagation of changes to other
artifacts, which might need to be adapted further, the concrete combination of manual and automated
activities influences the changeability concern “number of system parts or artifacts to be touched”. For
example, for the MDE setting of the EMF example (Section 2.6) different changes are possible. Changes
that affect the “metamodel” need to be applied on the “ecore model” and lead to subsequent adaptation
of the “emf generator model” and of one or more “interface implementations”. In contrast, changes that
affect aspects of the system that are not specified in the “ecore model” or the “emf generator model”
can be directly applied to the “interface implementations”.
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Besides the additional influence on already identified changeability concerns the combination of man-
ual and automated activities lead to additional changeability concerns. First, changes that are applied
to an artifact might need to be propagated to other artifacts, through a chain of manual and automated
transformations. Comparable to the question “how many system parts have to be touched to apply a
change?” the additional question “how many activities have to be applied?” arises. Thus, the combi-
nation of manual and automated activities leads to the changeability concern “number of activities that
have to be applied”. For example, changes that are applied to the Ecore model within the EMF example
(Section 2.6) require the subsequent new application of the automated activities “create EMF generator
model” and “generate java code” to propagate the changes into the system. Further, additional manual
activities might be necessary to adapt the “emf generator model” and the “interface implementations”
accordingly.

Second, it is well known that automated activities might lead to problems when they are used to
implement changes. For example, the repeated application of a code generator to generate source code
from a changed model can overwrite parts of the source code. This leads to loss of information when
these code parts were added manually after the previous generation of the code file. Similarly also other
automated activities might cause problems, when they are applied to implement a change. This leads to
two additional change concerns that are affected by MDE settings. First, the application of automated
activities might lead to “unexpected loss or preservation of content” within artifacts. Some generators
are able to deal with protected regions. Content within such protected regions is preserved during new
application of the generation. Second, not only the content of single artifacts might be affected, but
also references between artifacts. Thus, there is the additional changeability concern “unexpected loss
or preservation of references” between artifacts.

Figure 3.2.: Changeability concerns are affected by single languages, the architecture of a system, as well
as the MDE setting via abstraction, separation of concerns, and automation.

Classification of Changeability Concerns

In Figure 3.2 the changeability concerns are summarized. The changeability concerns can be split into
two groups: soft changeability concerns and hard changeability concerns.

Hard changeability concerns (i.e. “unexpected loss or preservation of content” of artifacts and “unex-
pected loss or preservation of references” between artifacts) can cause that the actual system implemen-
tation deviates from the developer’s expectation, when a change is implemented. Parts of the system
implementation can get lost or remain in the system without being expected to. It is possible that an
MDE setting does not affect a hard changeability concern at all. Apart from that, hard changeability
concerns can be affected to different extents, e.g. depending on the number of artifacts of which content
can get lost or is preserved unexpectedly, depending on the amount of content that can get lost or is
preserved unexpectedly, or depending on the number of references in an MDE setting that can get lost
or is preserved unexpectedly. If there is only one artifact of which content can get lost and the amount
of content is small (e.g. only a configuration is affected), the hard changeability concerns “unexpected
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loss or preservation of content” is affected weakly. In contrast, the same hard changeability concern is
affected strongly, when the amount of content is not small or when multiple artifacts in an MDE setting
can be subject of the loss of content.
In contrast, soft changeability concerns, describe the effort that is necessary to consistently include a

change into a system. Thus, soft changeability concerns are the “number of system parts or artifacts to be
touched”, the “number of activities that have to be applied”, the “number of languages to be understood”,
and the “intuitiveness and description effort” to describe a change within an artifact. In contrast to hard
changeability concerns, soft changeability concerns are always affected to a certain extent. For example,
if only a single artifact needs to be touched to implement a change the soft changeability concern “number
of system parts or artifacts to be touched” is affected weakly. The same soft changeability concern is
affected strongly if the number of artifacts that need to be touched exceeds 10.

Subsuming, both, soft changeability concerns and hard changeability concerns, can be affected strongly
or weakly by an MDE setting.

3.2.3. Interrelation of Influences on Changeability

Looking upon the identified changeability concerns, it becomes clear that much of the mechanisms
driving changeability on architectural level between different system parts, work also on MDE level
between different artifacts.
For example, separation of concerns and the use of indirections enable on architectural level that

certain parts of a system can be exchanged easily by applying only local changes. This separation is
propagated to the artifacts and affects automated and manual activities. If parts of an artifact cannot be
separated clearly, it will be difficult to apply techniques that aim at dealing with changeability concerns
like “unexpected loss of content”, such as protected regions. Also a missing clear separation between the
artifacts influences changeability, as multiple artifacts might have to be touched for one change.
It is important to notice that decision how concerns are separated can be moved between architec-

tural level and the design of an MDE setting. Automated activities might be designed to weave artifacts
that specify different aspects of the system. Alternatively, reused parts that are separated on archi-
tectural level might become part of a transformation. For example, in OMG’s MDA [154] parts of the
implementation that are specific for the platform might be part of the transformation between plat-
form independent model and platform specific model. This way, the platform specific aspects can be
exchanged by substituting the transformation that is used.
Whether such a decision is better located at architectural level or at the level of the MDE setting

is a trade-off. Separation of concerns that is created on architectural level can benefit from product
specific characteristics. However, the decisions need to be done and justified for each single product. In
contrast, separation of concerns that is created by the MDE setting can be reused for several projects.
Thus, separation of concerns is a built-in part of the MDE setting and does not need to be discussed
for every new project. However, on level of the MDE setting the decisions cannot benefit from product
specific characteristics. The decisions have to fit the whole domain of products that is built with the
setting. Naturally, separation of concerns that is created on both levels can be combined to reach an
optimal effect for changeability.
Furthermore, MDE has influences on changeability that go beyond the separation of concerns. The

design of automated activities and their combination with manual activities in MDE settings matter.
Consequently, to understand how MDE settings in practice affect changeability, it is important to un-
derstand how MDE settings look like in practice.

3.2.4. Obstacles for Creating a Global Measure for Changeability

Developing a global metric for changeability that takes all identified changeability concerns into account
is difficult for several reasons. In the following, these obstacles are discussed.

Measuring single changeability concerns: First, there are currently single changeability concerns
for which it is hardly possible to develop a metric. For example, intuitiveness and description effort to
specify a change in different languages cannot be measured today. The high number of poorly understood
influences, such as culture and education, makes the development of metrics difficult.

Weighting changeability concerns: Second, it is difficult to decide how different changeability
concerns have to be weighted. For a global metric of changeability it has to be decided, e.g. whether
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hard changeability concerns are more important than soft changeability concerns.

Scope: Third, architecture and MDE setting have different scopes. An MDE setting might be reused
by several projects for different products. Thus, a metric for changeability that measures effects of the
MDE setting or the used languages has the potential to be independent of the concrete product. In
contrast, the architecture is specific for a product (or a product line). Thus a metric for changeability
that measures effects of the architecture holds for the specific product, only.

Need for change: Finally, the actual changeability depends on the need for change. All techniques
that aim at improving changeability improve changeability for specific parts of the system or artifacts
in the MDE setting. When there is a bigger need to change other parts of the system, there is not much
benefit. Thus, the appropriateness of an MDE setting depends strongly on the question which artifacts
will probably change. This need for changes can be domain specific, but might also change over time.

As a consequence a global metric for changeability is difficult to achieve. Nonetheless, focusing on
single changeability concerns can support improvement of the overall changeability. This thesis focuses
on the hard changeability concerns, as well as on the number of activities that have to be performed.

3.3. Analytical Insights: Process Interrelation

In literature, the combination of MDE approaches and software development processes is often realized
by adapting one of them to the other (e.g. [120, 130, 221]). Consequently, the question arises why MDE
settings can imply constraints on software development processes.

This section aims at identifying traits of MDE settings that can lead to constraints on software
development processes. Therefore, first a reference model for the combination of MDE settings and
software development processes is introduced. Afterwards, the need for this investigation of the process
interrelation is motivated by a summary of assumptions on MDE settings and adaptations of processes
within existing proposals for the combination of MDE and processes.

Subsequently, candidates for relevant traits of MDE settings are identified. It is discussed how these
candidate traits can – depending on their manifestation – constrain software development processes.

3.3.1. Reference Model for Combinations of MDE Settings and Software Development Processes

Since the combination of MDE settings and software development processes happens quite differently
in literature, a generic reference model of the interface between both is introduced in this section. The
discussions on interrelation of MDE and software development processes in the remainder of this thesis,
refers to this generic reference model.

Combinations in Literature

In literature several approaches for concrete combinations exist. In Table 3.1 some examples are sum-
marized. For example, Pietrek et al. present ideas how RUP and the V-Modell XT can be combined
with MDE, in order to improve automation [197]. The mapping to RUP is defined, such that different
automated activities are spread over the process phases. Similarly, the mapping to an adapted version
of the V-Modell XT (which is an extension of an approach by Fieber and Petrasch [70]) is specified
by assigning different MDE activities to the phases of the process. Another approach to combine the
V-Modell XT with MDE is proposed by Rausch et al. [166]. This short proposal focuses on the map-
ping of MDE artifacts to process documents, especially the documentation. Documentation should be
automatically generated as a by-product of system modeling.

Sindico et al. present an industrial system engineering process (ELT from Elettronica SpA) that
integrates Simulink, SysML, and EMF models into a process [184]. The MDE activities are spread
over the different phases of the process. Also MDE artifacts are explicitly mapped to documents of the
process. For example, a “System Subsystem Design Description” is semi-automatically created on the
basis of the “Solution Definition”.

Approaches that aim at combining agile processes with MDE techniques most often assume that the
MDE techniques are applied as substitution of the pure manual implementation activity within the
iterations. An example for such a combination is Ambler’s Agile Model-Driven Development (AMDD)
[6], which is also discussed by Pietrek et al. in [197]. AMDD is not a standard process, but specifically
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created for MDE. Here iterations are implemented with a modeling activity and a subsequent imple-
mentation activity, each. In addition, an initial modeling cycle is implemented with two more extensive
modeling activities. Mahé et al. [130] discuss the challenges for a combination of agile techniques and
MDE more generally. Oriented on AMDD, the mapping idea from Mahé et al. focuses on filling im-
plementation cycles of the desired agile process with modeling activities. Also Zhang et al. [221, 222]
combine different agile processes with MDE techniques. Here the MDD iterations and activities are
mapped to process sprints. Finally, Fernandez et al. present an MDD-based web development process
in [68] that includes a distinct modeling as well as a coding phase.
Experience on applying agile techniques to a given MDE approach is reported by Kulkarni et al.

[120]. Here the MDE activities are spread over two types of process sprints. In addition, some MDE
artifacts are mapped to documents of the process. For example, meta-sprint deliverables can be design
documents. Final an approach that should be mentioned here is presented by Fondement et al. [74]. In
this approach no existing software development process is combined with MDE, but a framework for the
creation of a process for a given MDE approach is presented. A concrete case study of an MDE approach
and the correspondingly used process is documented by Melleg̊ard et al. [135]. Here a mapping between
MDE artifacts and process documents, such as “function description”, is described.

Table 3.1.: Summary of the proposed combinations of software development processes with MDE (min.
=minimum mapping: the only MDE artifacts that are mapped to “documents” of the process
are models and code files that are mapped to the software product; MDE Process = specific
process for MDE approaches)

Approach Process Mapping

to process

documents

Mapping to process phases

(single phase, iteration,

multiple phases)

Pietrek et al. 2007 [197] RUP min. spread over phases

Pietrek et al. 2007 [197] (based
on Fieber and Petrasch [70])

V-Modell XT min. spread over phases

Rausch et al. 2005 [166] V-Modell XT X (implicitly) spread over phases

Sindico et al. 2012 [184] ELT X spread over phases

Ambler 2004 [6] AMDD: agile MDE pro-

cess

min. mapped to (2 types of) cycles

Pietrek et al. 2007 [197] AMDD agile MDE pro-

cess

min. mapped to (2 types of) cycles

Mahé et al. 2010 [130] agile MDE process min. mapped to cycle

Zhang et al. 2004/2011 [221]
and [222]

agile processes min. mapped to sprint

Kulkarni et al. 2011 [120] SCRUM (agile) X spread over (2) types of sprints

Fernandez et al. [68] MDE process min. spread over phases

Reference Model

First of all it can be seen that a described MDE setting might not support the whole software develop-
ment process. Parts of the process (e.g. concerning requirements engineering or testing) might not be
considered in the MDE setting (as also experienced by Kuhrmann et al. [4]).
While most of the concrete approaches focus on the question how different phases, cycles, or sprints of

a process are implemented with or supported by MDE activities, some of the approaches include or even
base on a description of how MDE artifacts are mapped to documents of the process. Consequently, the
reference model for the interface between a software development process and an MDE setting consists
of two mappings as illustrated in Figure 3.3. On the one hand, artifacts (or groups of artifacts) in the
MDE setting might be mapped to documents that are specified by the software development process.
Not all documents from the software development process need to be mapped to artifacts in the MDE
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setting (e.g. the creation of artifacts for documentation reasons might or might not be supported by the
MDE setting). Similarly, not all artifacts from the MDE setting need to be mapped to documents in the
software development process (e.g. many artifacts in the MDE setting are intermediate products that
depend on the used MDE techniques, languages, and tools). The set of artifacts in the MDE setting
that are actually mapped to documents in the software development process might even be limited to
the resulting software, only.

More important is the second mapping, which is a mapping of activities in the MDE setting to
activities, phases, or iterations in the software development process. An activity, phase, or iteration of
a software development process can be implemented via one or more activities from the MDE setting
(for example, multiple modeling, transformation, and coding activities might be part of a scrum sprint).
Further, different activities in the MDE setting might be reused in multiple phases of the software
development process or product life cycle (e.g. during implementation and maintenance). Note that
activities in the MDE setting might remain unused and therefore are not mapped. Similarly, the MDE
setting does not necessarily cover the whole process.

Figure 3.3.: Illustration of the general mapping idea of the reference model.

For example, in Figure 3.4 it is illustrated how an excerpt of activities from the MDE setting BO
(that will be introduced in Chapter 4) might be embedded in an agile process, inspired by Ambler’s
AMDD [6]. An initial modeling activity is mapped to an initial modeling phase. The following cycles
in the agile process are implemented by the remaining manual and automated MDE activities. Thus, in
each iteration of the cycle these activities are performed.

Figure 3.4.: Example how activities from the MDE setting in case study BO (see Chapter 4) might
be used to implement iterations within a simple agile process (the used notation based
on activity diagrams: the rectangles illustrate phases and repeating iteration cycles of a
process).

These mappings of activities and phases is the interrelation, via which properties of an MDE setting
might constraint the software development process, and the other way around. This, concerns on the
one hand the order of activities. The order of activities or phases in the software development process
must be compatible to the possible orders of activities in an MDE setting that is used to implement the
process. On the other hand, non-functional properties like effort, risk, and complexity of activities in
an MDE setting need to be compatible with the software development process that is implemented with
these MDE activities.
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3.3.2. Assumptions and Adaptation within Literature Combinations

Above several concrete proposals for the combination of MDE settings and software development pro-
posals were mentioned. Before possible constraints and effects that arise from the interrelation of both
technologies are studied in the next sections, this section motivates the need for this investigation. There-
fore it is summarized whether the combination proposals rely on assumptions on the MDE settings or
adaptations of the used processes. Table 3.2 summarizes information whether and how the processes
are adapted in literature combinations. In addition, it is summarized whether and what assumptions
are made on the MDE approach.

For the combination of RUP with MDE presented in [197], Pietrek et al. assume that the underlying
MDE setting is an MDA approach. Some of the manual tasks in RUP should be substituted by automated
activities. For the process, Pietrek et al. expect a shift of effort from the implementation phase to
analysis and design phases. In addition only small changes on the process are proposed. For example,
roles should be refined.

For the combination of the V-Modell XT with MDE, Pietrek et al. assume an underlying MDA
approach, which comes along with a fixed set of required MDE artifacts and activities. The process is
adapted, such that process phases are exchanged, additionally introduced, and partly merged. This is
done in way that the different MDA abstraction levels (PIM and PSM) are reflected by the different
phases. In contrast, the combination of the V-Modell XT with MDE that is proposed by Rausch et al.
requires no adaption of the process. However, for the MDE setting this combination proposal assumes
that code generation is part of the MDE setting and that an additional automated generation activity
for the documentation is available [166].

Sindico’s combination of the ELT process with MDE bases on concrete assumptions on the technolo-
gies, activities, and tools that are used for the MDE setting. In addition, they report on positive effects
from automation: due to removed manual information propagation, expensive manual reviews could be
removed from the process, too [184].

Ambler’s Agile Model-Driven Development (AMDD) process is not introduced as a direct adaption of a
standard process, but specifies an own MDE specific process. Nonetheless, constraints on the used MDE
approach are formulated. First, AMDD bases on a fixed set of MDE activities (modeling and coding)
and artifact roles (models and code files). This way more complex MDE settings, but also simpler MDE
settings (e.g. with model interpreters) are excluded for AMDD. In addition, strict constraints on the
time that can be used for these activities (e.g. minutes for the modeling activity and a few hours for the
coding activity) are defined in [6]. In contrast Pietrek et al. discuss that OMG’s MDA is “too heavy”
for a combination with AMDD, only [197].

The proposal of Mahé et al. includes a process that is specifically created for MDE, too. Due to
the similarity to AMDD, also this proposal makes concrete assumptions on the used MDE artifacts
and activities. In addition, this proposal includes the option to use executable models [130]. As in [6],
assumptions on the time required to run through a cycle of the process are made in [130]. Zhang et
al. make the assumption that an MDE approach that is used within an agile process fulfills certain
ideals like a high degree of automation and code generation [222]. The MDE specific process proposed
by Fernandez et al. is specific to MDA [68]. Finally, Kulkarni et al. [120] start with a given MDE
approach. The SCRUM process is adapted, such that additional meta sprints are introduced, in order
to handle more time consuming tasks. In addition, the team structure is changed, such that module
ownerships are substituted by feature ownerships.

The examination of the combination proposals supports the assumption that MDE and software de-
velopment processes influence each other: in all approaches and reports either the software development
process is adapted or there are assumptions on the design of the MDE setting (or both).

It is noticeable that assumptions on design of the employed MDE setting are actually defined in all
proposals. This includes concrete assumptions on the set of artifacts, activities, and tools in the MDE
setting, but also assumptions on the time required for activities (including effort that is put into modeling
or coding) and the degree of automation. On the one hand, only one of the discussions (Pietrek et al.
on AMDD) does without assumptions of the concrete structure of the MDE artifacts and activities. On
the other hand, some assumptions are defined on the time required for different MDE activities.

In addition, the most approaches come along with changes to the process (or even define specific MDE
processes). Proposed changes to processes affect the phases and sprints of the process, the number of
manual quality assurance activities, the roles, and team structure (e.g. in Sindico’s approach [184]).
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Table 3.2.: Summary of the proposed changes and assumptions on software development processes and
MDE (MDE Process = specific process for MDE approaches)

Approach Process Assumptions on the MDE

Setting

Changes of the process

Pietrek et al. 2007 [197] RUP X (only limited structures of
MDE setting)

(X) (small changes, e.g. re-
fined roles)

Pietrek et al. 2007 [197] (based
on Fieber and Petrasch [70])

V-Modell XT X (specified MDE artifacts and
activities)

X (changed process
phases)

Rausch et al. 2005 [166] V-Modell XT X (code generation; documen-
tation generation)

-

Sindico et al. 2012 [184] ELT X (concrete technologies and
tools)

X (removed manual QA ac-
tivities)

Ambler 2004 [6] AMDD: agile
MDE process

X (specified MDE artifacts and
activities; time constraints)

no standard process

Pietrek et al. 2007 [197] AMDD agileMDE

process

X (MDA is “too heavy”) no standard process

Mahé et al. 2010 [130] agile MDE pro-

cess

X (specified MDE artifacts and
activities; executable models;
short cycles)

no standard process

Zhang et al. 2004/2011 [221]
and [222]

agile processes X (high degree of automation;
code generation)

-

Kulkarni et al. 2011 [120] SCRUM (agile) X (given MDE approach) X (changed team struc-
ture; added meta sprints)

Fernandez et al. [68] MDE process X (specified MDE artifacts and
activities - oriented on MDA)

no standard process

3.3.3. MDE Traits

The discussion above in Section 3.3.2 supports the assumption that there seems to be an interrelation that
can affect diverse aspects of software development processes. However, while these examples illustrate
possible effects of the interrelation of MDE settings and software development processes, only some of
them contain vague explanations for the interrelation (e.g. that an MDE setting should allow short
cycles). General predictions what characteristics or traits of an MDE setting lead to the effects is rare.
Similarly, there is only rare literature that explicitly investigates the interrelation between MDE settings
and software development processes [8, 96, 106, 190].

Therefore, this section aims at identifying traits of MDE settings as candidates to explain constraints
on software development processes. The examples examined above are not used as a starting point for
the investigation for three reasons. First, this is the fact that the number of combination proposals that
actually work with (adapted) standard processes is quite small (only 6 of the 10 proposals listed in Table
3.2). Second, these combination proposals mainly stem from research. Thus, they were not necessarily
applied in practice (which holds for at least three of the 6 combinations with standard processes) and
do not represent practitioners’ solutions. Third, while these proposals reveal how broad the spectrum of
possible effects on processes can be, it remains unclear whether the chosen adaptations were necessary
and good solutions.

Thus, instead of trying to extract and generalize cause-effect relationships from the few eligible com-
bination proposals, the nature of the process interrelation will be approached from another direction
here. It is theoretically examined, why and how MDE settings can lead to constraints on software
development processes. So far it is clear, that some artifacts in MDE settings can fulfill the roles of
artifacts or documents that are specified in software development processes. More important, activities
from software development processes are implemented using a set of MDE activities. In the following,
this later connection of MDE settings and software development processes is used as basis to identify
relevant traits of MDE settings. Such MDE traits are structural characteristics of an MDE setting
and can have diverse manifestations. This thesis focuses on MDE traits, where some of the theoret-
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ically possible manifestations of this trait can imply constraints on software development processes.
Such a manifestation is referred to as process-relevant manifestation of an MDE trait. Correspondingly,
a manifestation that does not imply constraints on software development processes is referred to as
process-neutral manifestation of an MDE trait.
To search for promising candidates for relevant MDE traits, the role of activities of within MDE

settings is systematically examined. It is considered whether extreme manifestations of these roles
might have impact on software development processes. When examining activities in an MDE setting,
two aspects can be taken into account. First, MDE traits can concern the order of activities. Here, an
extreme situation is an activity for which a relative order to each other activity is predefined by the MDE
setting. Thus, no other activity might be performed in parallel to this activity, with the consequence
that the development is split into phases. Such phases are the first trait that will be discussed further.
Second, MDE traits can concern effort, risk, and complexity associated with activities. Considering
single activities, manual activities are in most cases associated with more effort and risk than automated
activities (assuming that these automated activities are well tested and mature). Further, from all types
of manual activities, one is associated with high effort and risk to lead to inconsistencies between artifacts,
on the one hand and simultaneously has a very low overall benefit concerning the content of the system
specification, on the other hand. This is the trait manual information propagation, which is chosen to
be discussed further. Further an MDE trait can concern a characteristic on the complexity of a set of
activities. The focus here is on a typical characteristic of MDE settings. These are the chains of activities
that need to be performed to propagate a newly introduced change to the artifacts that represent the
system under construction (i.e. artifacts that are compiled or interpreted). Such chains will be discussed
as the trait complexity of activity chains.
In the following, the three identified candidates for MDE traits are investigated more in detail.

Phases

The first MDE trait results from the occurrence of activities for which a relative order to each other
activity is defined (i.e. an activity that is not executed in parallel to any other activity). Such activities
are called synchronization point. A global synchronization point is a synchronization point, where all
other activities in the MDE setting either succeed or precede, but are not executable in parallel to
this activity. Note that the considered order of activities excludes cycles for error correction or the
application of changes. For example, in case of an error correction a code generation is followed by the
test and error detection, which might then be followed by the correction of the change in the model.
However, for the order of activities, the code generation is not considered as an activity that precedes
the adaptation of the model.
Depending on their location synchronization points can split the other activities in the MDE setting

into phases. These phases are sets of activities (or extensive manual activities) that partly can be
executed in parallel or without a fixed order.
Phases and synchronization points affect how developers interact. First, developers who provide dif-

ferent consumed artifacts of a synchronization point have to wait for each other until the synchronization
point can be triggered and artifacts that are created by the synchronization point are available to con-
tinue with the work in the next phase. As a side effect, the synchronization can affect the apportionment
of work between developers, since they will try to decrease waiting times. This can decrease the freedom
given by process, e.g. a development team in Scrum [176] should be free of external constraints on the
way of interaction. Second, the resulting set of phases can affect the whole work. Developers working
in a team on the same release are enforced to work in the same phase (e.g. before or after a specific
synchronization point). As a consequence, phases can drive the tailoring of the team structure and the
software development process for implementing new releases. Subsuming, an MDE setting that includes
multiple phases that result from synchronization points can enforce developers to synchronize their work
and wait for each other.

Manual Information Propagation

In MDE approaches artifacts on different levels of abstraction are used to describe a system. Content
is moved from more abstract to less abstract artifacts and enriched further. Further, artifacts on the
same level of abstraction might share common content, which has to be hold consistent. Such move-
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ment of content (called transformation in the following) is not always automated. However, manual
transformations are an additional source for errors.

The MDE trait manual information propagation leads to additional potential for human errors and
thus the need for additional quality assurance. This additional quality assurance is theoretically neces-
sary for each pair of artifacts between which content was propagated manually. Thus, an MDE setting
defines constraints on necessary quality assurance activities. Since affected artifacts are in most cases
used as input for further activities and it is beneficial to prevent that working effort is invested on the
basis of faulty documents, there is the need to apply these quality assurance activities already within
the implementation phase. Consequently, the manual information propagation can enforce a mixture of
quality assurance activities and development activities. For example, Sindico et al. observe the effect
that the addition of automation to decrease manual transformations in Sindico’s approach ([184]) leads
to saving of manual quality activities. Thus, a software development process needs to allow for time and
human resources to perform such additional quality assurance activities (e.g. reviews).

Complexity of Activity Chains

Finally, the MDE setting determines how many activities have to be applied successively to define and
propagate a change into the artifacts that are compiled or interpreted. These activity chains are of
different complexity. This complexity consists of two parts: the effort and time that is required for the
different activities and the number of context switches that a developer has to deal with.

While the required effort and time are difficult to measure and depend strongly on the actual system
under construction, the number of context switches can be assessed with a measure that actually reflects
a soft changeability concern, too: the number of activities that have to be applied.

Whether, a long activity chain means a long time until the activities are performed depends also on
the activities themselves. For example, a short activity chain with complex manual tasks can lead to a
long duration for the implementation of a change. However, activities in an MDE setting differ in the
consumed and produced artifacts and with it in the languages that need to be understood. Also the use
of different tools and automation technologies maps to the activities in the MDE setting. Consequently,
the length of an activity chain can be used to describe the number of context switches that a developer
has to deal with. Thus, the length of activity chains is used within this thesis as the measure for the
complexity of activity chains.

An aspect that is affected by the complexity of an activity chain is an MDE setting’s applicability to
agile processes. For example, when ten activities need to be performed for the application of a specific
change, the application of an agile process, which requires short iterations, most probably decreases in
its effectiveness. Subsuming, a software development process defines assumptions on the frequency of
iterations and indirectly also on the possible complexity of work within these iterations. If the complexity
of activity chains does not fit to these assumptions the applicability of the process as defined is restricted.

3.4. Analytical Insights: Structural Evolution

Above it was discussed how an MDE setting can affect changeability and what traits in MDE settings
can have an impact on the software development processes that are combined with that MDE setting.
It is possible that MDE settings have negative or disadvantageous impacts.

Consequently, it is a question where process-relevant manifestations of MDE traits stem from.

An MDE setting might be designed from scratch by experts and introduced in on step into a company.
In this case, the existence of negative impacts on changeability or process interrelation seems to be rather
unlikely and easy to correct.

However, there is an alternative scenario. MDE settings might also result from changes of former
MDE settings. Thus, MDE settings might be the result of an evolution process. This leads to the
question whether MDE settings can in practice evolve in a way that negative impacts of changeability
or process conformance can occur. To approach this question, possible types of changes of MDE settings
will be identified in the following. Then it is systematically analyzed how each of these change types
can affect the characteristics of an MDE setting.
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3.4.1. Types of Changes in Evolution of MDE Settings

What types of changes are possible for MDE settings can relatively straight forward be derived from the
definition of an MDE setting. The considered change types are summarized in Table 3.3.

Implementations of automated activities, the used (modeling) languages, and supporting tools are the
technical assets of the MDE setting. All three can be exchanged without affecting the order of activities
or the number of elements in an MDE setting. Therefore, these changes are called non-structural changes
here. Consequently exchange or evolution of an automated activity (e.g. any model operation or code
generation) is referred to as change type C1 in the following. Similarly exchange or evolution of a
used language is referred to as change type C2 and exchange or evolution of a used tool is referred to
as change type C3 . Further, changes can affect the number of elements in an MDE setting. Possible
changes concern the number of artifacts (referred to as C4 ), the number of languages (referred to as
C5 ), the number of manual activities (referred to as C6 ), the number of automated activities (referred
to as C8 ), as well as the number of tools (referred to as C7 ).
Each change in the number of automated (C8 ) or manual activities (C6 ) leads to a change in the

order of activities. The relative positioning of automated activities within (and behind) the manual
activities is called order of manual and automated activities here. Only some changes in the number
of manual or automated activities also change this order of manual and automated activities (e.g. an
automated activity might be introduced between two manual activities). Therefore, this special case is
referred to as change type C9 in the following. Changes that affect the order of activities or the number
of elements in an MDE setting (C4 -C9 ) are called structural changes here.

For a clear terminology it is distinguished between the terms change, evolution step and MDE evolu-
tion. A change is a local modification of an MDE setting. The term evolution step is used to refer to
the combination of all changes leading from one MDE setting that was in practical use to a next one.
Finally, the term MDE evolution (also simply referred to as evolution within this thesis) describes how
MDE settings evolve over time due to evolution steps. An evolution step is a structural evolution step,
if the set of changes contains at least one structural change.

Table 3.3.: Summary of change types

Number Change type

Non-structural changes
C1 exchange or evolution of an automated activity
C2 exchange or evolution of a language
C3 exchange or evolution of a tool

Structural changes
C4 change of the number of artifacts
C5 change of the number of languages
C6 change of the number of manual activities
C7 change of the number of tools
C8 change of the number of automated activities
C9 change of the order of manual and automated activities

3.4.2. Possible Impact of Evolution on Changeability

In the following, it is discussed how different types of evolution can change how an MDE setting affects
changeability. To gain an impression how multiplex effects of evolution types are, their impact on how
an MDE setting affects other productivity dimensions is discussed, too. Changing an MDE setting leads
to changes for developers and a company. This can affect the degree of automation of development, the
complexity of working with the MDE setting, and the changeability and maintainability of the software
that is built with the MDE setting. Further, the effort for consistency maintenance and integration is
affected when working with different tools. Finally, tools and automated activities that are used in an
MDE setting need to be maintained and therefore affect the cost of ownership for a company. These
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aspects imply potentials and risks for the productivity of developers or the overall productivity of a
company, respectively. Consequently they are called productivity dimensions here.

In the following, it is discussed how these productivity dimensions can be impacted by different types
of changes on MDE settings. Changes in an automated activity (C1 ) and changes in the number of
automated activities (C8 ) can affect the degree of automation. Changing a used (modeling) language
(C2 ) or the number of used languages (C5 ) can have benefits concerning the degree of abstraction, but
yields the risk that the developers lack the know how to use that language (affecting the complexity of
the MDE setting) [15]. Also an exchanged or evolved tool (C3 ) can affect the complexity of work for
developers, since the intuitiveness tool handling might change. Similarly, a growing number of models
(C4 ), necessary manual activities (C6 ), or tools (C7 ) increases complexity for developers. In addition,
a change in the number of models affects the need to maintain the consistency of different models
[99]. Further, new tools can lead to additional activities to move artifacts between them (increasing
the integration effort). As tools and implementations of automated activities have to be maintained,
changes in either number of tools C7 or automated activities C8 can affect the cost of ownership. Of
course, exchanging a tool or automated activity (C3 and C1 ) can to a smaller extent also affect the cost
of ownership.

Finally, risk results from the addition of automated or manual activities if this leads to a change of
the order of manual and automated activities (C6 , C8 , and C9 ). This can introduce constellations,
where automatically created artifacts are touched manually (which imply risks for changeability and
maintainability). Figure 3.5 provides an overview about the affected productivity dimensions.

To sum up, the main risks and potentials for non-structural changes concern the degree of automation
and the complexity of the MDE settings. In contrast, structural changes imply some important additional
risk and potentials, like changes in the effort required to maintain consistency of all required artifacts or
changes in the cost of ownership. Further, structural changes can have stronger effects on the different
domains of productivity than non-structural changes. For example, increasing the number of used
languages (C5 ) has a worse impact on the required know how than just applying changes to a used
language (C2 ) in most cases. Finally, there is a group of structural changes (C6 , C8 , and C9 ) that can
affect the changeability and maintainability of the software that is built with the MDE settings. This
group of changes has the potential to introduce or eliminate risky constellations from MDE settings. For
example, whether or to what extent a hard changeability concern is affected might change. Therefore,
these structural changes are called substantial structural changes in the following.

Consequently, an evolution step is called substantial structural evolution step if the set of changes
contains at least one substantial structural change. Similarly the evolution of an MDE setting that
contains a least one (substantial) structural evolution step is called (substantial) structural evolution.

Figure 3.5.: Overview of change types and affected productivity dimensions.
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3.4.3. Possible Impact of Evolution on the Manifestation of MDE Traits

Besides the possible effects on different productivity dimensions, the different change types can also affect
the manifestations of the different MDE traits. In the following, these possible effects are discussed.

The number of synchronization points and with it the number of phases depends on the activities
within an MDE setting and their order. Consequently, changes in the set of activities and changes in
the order of manual and automated activities (change types C6 , C8 , and C9 ) can lead to new synchro-
nization points (e.g. when the only activity that can be executed in parallel to the later synchronization
point is removed) and to the removal of synchronization points (e.g. when an activity is added that can
be executed parallel to a synchronization point). The manifestation of manual information propagation
depends on the number of manual activities that lead to the propagation of content between artifacts.
Consequently changes in the set of manual activities (change type C6 ) can affect the manifestation of
manual information propagation. Similar to the number of synchronization points, the lengths of activ-
ity chains depend on the activities within an MDE setting and their order. Thus, the manifestation of
the MDE trait complex activity chains can be affected by changes in the set of activities and changes
in the order of manual and automated activities (change types C6 , C8 , and C9 ). Subsuming, the
manifestations of the three MDE traits that are considered in this thesis can be affected by substantial
structural changes.

3.5. Hypotheses

Above different theoretical characteristics of MDE setting in practice were discussed. This includes
the possible impact of MDE settings on changeability (especially how hard changeability concerns are
affected), the possible manifestations of the three MDE traits, and possible forms of evolution of MDE
settings. However, it is a claim of this thesis that these characteristics do not only make a theoretically,
but also an actual difference for MDE settings in practice. On the one hand, the actual manifestations
of MDE traits and the effect on changeability can only be considered as possible reasons for the diverse
degree of success of MDE in practice, if MDE settings actually differ in these characteristics. Further, in
order to consider structural evolution as one reason for the characteristics on MDE settings in practice,
it is necessary to show that structural evolution exists. To investigate the practical roles of changeability
impact, MDE traits, and structural evolution, the following hypotheses are introduced in this section.

3.5.1. Hypotheses on Changeability

The analysis of the “problem domain” showed that MDE settings can affect various changeability con-
cerns. However, it is still an open question whether these changeability concerns are relevant for MDE
settings in practice. For example, all MDE settings in practice might only weakly or not at all affect
the changeability concerns. In this case, there would be no need to develop changeability metrics or
analysis methods to assess how changeability concerns are affected. Alternatively, all MDE settings that
occur in practice might strongly affect changeability concerns. In this case, the questions arise whether
MDE settings that do not affect changeability concerns are possible at all and whether the benefits of
MDE can compensate the impact on changeability concerns. Finally, it is possible that MDE settings in
practice vary strongly in the way they affect single changeability concerns. This case would motivate the
introduction of changeability metrics and corresponding analysis methods. Further, only when existing
MDE settings differ in their influence on changeability concerns, this influence can be a candidate for
explanations for the different degree of success of MDE in practice.

To examine the diversity within MDE settings, this thesis mainly focuses on the hard changeability
concern unexpected loss of content. The assumption is made that a phenomenon that exists in more
than 5% of all MDE settings is no exception.

Since there are reports of both, successful and less successful applications of MDE in practice, the
following hypothesis is formulated:

Hchangeability: MDE settings in practice vary considerably in their influences on changeability. Thus,
there are MDE settings that strongly affect the hard changeability concern unexpected loss of content
(in more than 5% of all MDE settings) and also MDE settings that do not affect the hard changeability

concern unexpected loss of content (in more than 5% of all MDE settings).
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In case the hypothesis can be rejected, the additional influence of MDE settings on the hard change-
ability concern unexpected loss of content is most probably not the cause for the differences in the degree
of success of MDE in practice. However, in case the hypothesis can be accepted, research on the analysis
of the different changeability concerns is strongly motivated.

3.5.2. Hypotheses on Process Interrelation

The analysis above shows that MDE settings can theoretically include traits that can – depending on
their concrete manifestation – lead to constraints on software development processes. As mentioned,
the term process-relevant manifestation is used to refer to manifestations of an MDE trait that lead
to constraints on software development processes, while the term process-neutral manifestation is used
to refer to manifestations of an MDE trait that does not lead to constraints on software development
processes.

The next question is whether process-relevant manifestations of the identified MDE traits occur in
MDE settings from practice at all, and if so whether these process-relevant manifestations occur for
all MDE settings from practice. In case a process-relevant manifestation of the MDE traits can be
found in all MDE settings from practice in a similar way, the question arises whether certain software
development processes (e.g. agile processes) are not compatible with MDE in general. However, MDE
settings in practice might cover a broad spectrum concerning the manifestations of the MDE traits
(i.e. MDE settings with a process-relevant manifestation of MDE traits as well as MDE settings with
a process-neutral manifestation of MDE traits are not seldom). In this case, the interrelation of MDE
settings and software development processes is a candidate to explain differences in the degree of success
of MDE in practice. Further, a need for analysis techniques to assess the actual manifestations of the
MDE traits arises. Such analysis techniques would for example support practitioners in choosing and
tailoring a software development process, when an MDE setting is given.

Since this thesis aims at investigating whether the interrelation of MDE settings and software devel-
opment processes can explain the varying degree of success of MDE in practice, following hypothesis is
formulated:

Htraits: In practice the identified MDE traits occur within a spectrum that includes process-relevant
manifestations as well as process-neutral manifestations. Thus, there are MDE settings with

process-relevant manifestations for some or all of the MDE traits, but there are also MDE settings with
process-neutral manifestations for some or all MDE traits.

From this abstract hypothesis a concrete hypothesis for each of the identified MDE traits can be
formulated. The assumption is made that a phenomenon is not seldom if it exists in more than 5% of
all MDE settings.

Hphases In practice there are MDE settings with a process-neutral manifestation and MDE settings with
a process-relevant manifestation of MDE trait phases, in more than 5% of all MDE settings, each.

HmanualInformationPropagation In practice there are MDE settings with a process-neutral manifestation
and MDE settings with a process-relevant manifestation of MDE trait manual information

propagation, in more than 5% of all MDE settings, each.

HcomplexActivityChains In practice there are MDE settings with a process-neutral manifestation and
MDE settings with a process-relevant manifestation of MDE trait complexity of activity chains, in

more than 5% of all MDE settings, each.

In case the hypotheses can be rejected, the manifestations of MDE traits are most probably not the
cause for the differences in the degree of success of MDE in practice. However, in case one or more of
the hypotheses can be accepted, research on analysis techniques that allow assessing the manifestations
of MDE traits is strongly motivated.

3.5.3. Hypotheses on Evolution

Above possible changes to MDE settings are categorized. The discussion of the different change types
showed that some structural changes can indeed lead to a different changeability or change the man-
ifestation of MDE traits. There is currently little knowledge whether the structural and substantial
structural changes actually occur in practice.
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However, only when structural evolution steps are common they are candidates to explain the char-
acteristics of MDE settings in practice. It is assumed here that a phenomenon is common if it occurs in
more than 25% of all cases. Therefore, the following hypotheses are formulated here:

Hexistence: Structural evolution and substantial structural evolution occur in practice.

Hcommon: Structural evolution and substantial structural evolution are common in practice (i.e. it
happens for more than 25% of the MDE settings).

In case the hypotheses can be rejected, structural evolution is most probably no cause for the diversity
of MDE settings in practice. However, in case the hypotheses can be accepted, future research on reasons
for structural evolution is strongly motivated.
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In Chapter 3 the potential effects of MDE settings on changeability and software development processes
were discussed. Further, it was analyzed how MDE settings might evolve over time. However, data
about MDE settings in practice is required to evaluate the hypotheses that were formulated in Chapter
3.5. To gain appropriate data, three studies were performed in context of this thesis.

The first study took two years (2010 and 2011). The focus of this initial study was on capturing
examples for MDE settings that are applied in practice. The study was performed in cooperation with
SAP AG and six MDE settings were collected. There were two further outcomes of this initial study.
First, it became clear that state of the art techniques for modeling development approaches (especially
existing process modeling languages) are insufficient to express differences between MDE activities.
Second, the interviews revealed several hints that the current MDE settings are a result of changes to
MDE settings formerly used. Thus, it was this initial study that led to the suspicion that evolution
might help to explain why MDE settings in practice are so complex and diverse. As a consequence, this
first study motivates the investigation of possible changes in MDE settings and the formulation of the
hypotheses Hexistence and Hcommon.

The second study was performed in early 2012. Motivated by the outcomes of the first study, the aim
was to collect data on the existence of evolution of MDE settings. A goal was to investigate what types
of changes occur, and in particular whether structural evolution or even substantial structural evolution
happens in practice. An investigation of the question whether a specific phenomenon exists in practice,
naturally runs the risk that the phenomenon may not be detected. Given this risk, this second study
was performed as a meta study. The approach was to systematically search the literature in order to
identify reports on the application of MDE in practice. This avoided the expensive process of collecting
data within companies. A further advantage was that the meta study provided access to reports from a
broad spectrum of domains. The meta study showed that structural evolution does indeed play a role in
practice (as will be discussed in Chapter 5). However, although the reports which were identified include
enough hints on the existence of structural evolution, they do not include enough details to reason about
motivations and triggers that caused this evolution.

To fill this gap a third study was performed from early 2012 to the beginning of 2013. The focus
of this study was to collect data about MDE settings in practice and their evolution history. As a
result, five MDE settings in practice and their evolution history could be collected in cooperation with
Capgemini, Carmeq, and VCat. In addition, the history of one of the SAP case studies captured during
the first study could be collected. Further a single evolution step could be documented in cooperation
with Ableton AG.

In the following, the three studies are introduced in detail. The study design is described and an
overview about the collected data is provided. Finally, threats to validity of the studies are discussed.

This chapter is partially based on [P3, P6, P2], and [P4].

4.1. Initial Study of MDE Settings in Practice

When the first study started, only occasional reports existed about the actual use and combination of
MDE techniques in practice. In this context, a goal was to explore the diversity of the subject and
provide space for unexpected insights. Therefore this first study was designed as a descriptive and
exploratory field study to gain insights into how MDE techniques are applied in practice. Two forms
of data were collected using semi-structured interviews. The main aim was to collect data about the
concrete structure of MDE settings in practice (i.e. how are technologies and languages combined). In
addition, data were to be collected to explore motivations for and use of the MDE settings.
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4.1.1. Study Design

This first study was performed in cooperation with SAP AG1. In the following the design of the study
is described. Therefore, it is first described how the concepts of MDE settings map to the context of
SAP. Then it is described how the case studies were chosen. Finally, the applied research method and
the method how the resulting data was analyzed are described.

Conceptual Context

When performing an exploratory study about the practical manifestation and variety of a concept from
theory, side issues might turn out to provide relevant insights. Therefore, it is helpful to provide a
definition of used terminology in a way broad enough to include such side issues.
For this study, the following definition of the term MDE setting was presented to the interview

partners: “a setting of MDE techniques that bases on different languages and tools, implementing
different transformations and code generation or supporting the developers”. A defined goal was to
capture manual and automated activities, such as model transformation or code generation applied
during development.
In addition, a simple role model (as illustrated in Figure 4.1) was used to understand an interviewee’s

view on the MDE setting under study. In this role model, tools, transformations and languages of the
MDE setting are provided by tool developers and are used by developers to create software, which is
further used by users.

MDE settings were captured and scoped from one of two perspectives. The first is that of the creation
of an important intermediate product or a part of the software (e.g. “creating a business object”). The
second perspective is that of a development tool within the MDE setting that supports specific parts
of an implementation process. An example for the latter case is the perspective of the tool Service
Implementation Workbench (SIW), which supports developers in generating a web service on the basis
of a WSDL file (Web Service Description Language) and existing components.

Figure 4.1.: Roles using and creating an MDE setting for the creation of software

Further, there are differences between the terminology used in practice and in theory. Two such
differences played a role in most interviews. First, the term MDE is not necessarily used by interview
partners to describe their MDE settings.
Second, the terminology of the roles changed. When the MDE setting was used internally, users were

usually referred to as customers. However, when the MDE settings are products of SAP, the developers
were often referred to as customers, while tool developers were simply called developers.

Choice of Cases

To identify appropriate MDE settings for the study, two contact persons within SAP provided a list of
case studies. They chose MDE settings which are known within SAP for including the use of models
and MDE techniques.
As a next step, the contact persons introduced the interviewer for each MDE setting to one or two

interview partners. The interview partners chosen for their experience in development using the re-
spective MDE setting, were SAP developers or consultants preparing SAP software for the customer.
Otherwise, for some case studies from the development tool perspective (i.e. with a focus on the part of
the MDE setting that is supported by a specific tool), the interview partners were tool developers (or

1http://www.sap.com/ (last access at November 9th, 2013)
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software architects) who built the relevant tool. In case one or two interview partners agreed to support
the study, the corresponding case study was included in the study. Initially, a set of seven case studies
could be included in this study. Due to cancellation of one case study after the initial interview, six case
studies were captured in the end.

Research Method

Interviews were used to capture case studies of MDE settings. This is relatively expensive in compar-
ison with questionnaires, for example. In addition, a too low number of case studies does not allow
empirical reasoning. However, this form of research has some important advantages when it comes to
understanding complex phenomena and their drivers.

Focusing on case studies makes it possible to gain coherent pictures of complex MDE settings. This
includes the different ways in which artifacts are used or reused in automated and manual activities, the
order of activities, and the tools used for supporting the activities. This is even more important since
MDE settings had not been captured explicitly within the cooperating company before.

Semi-structured telephone interviews were used to capture the case studies. Interviews have the
advantage that misunderstandings can be resolved directly [214], which is beneficial when capturing
complex phenomena. The structure of the interviews provided the basis to capture the MDE settings
systematically. The semi-structured character of the interviews also supports the exploratory mode of
the study.

Figure 4.2.: Design of the study

The investigation of each case study started with an initial telephone interview with the main interview
partner (as illustrated in Figure 4.2). All telephone interviews lasted between thirty and sixty minutes.
They were performed by one interviewer who also took notes during the interview. To provide a frame,
the initial interviews started with a short introduction of the goals of the study. As recommended for
semi-structured interviews a set of question groups was prepared and used as capturing aids during the
interviews. These question groups cover the following key topics (considering artifacts as models or
source code):

❼ Used tools as well as modeling and programming languages

❼ Artifacts that are used and created during development

❼ Existing and created relations between artifacts

❼ Activities used to change, enrich, translate, generate, merge, compile, or interpret artifacts

❼ Degree of automation of individual activities

❼ Order of activities
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❼ Performed (semi-) automated quality assurance activities on artifacts

❼ Responsible roles for different activities

In addition to the interviews the interview partners provided documentation material for four of
the case study, such as application scenarios. In a next step, the information was structured and
UML activity diagrams ([156]) were used to model a process of the captured activities. The activities
were annotated with required input artifacts and produced output artifacts. In addition, a textual
description of the results was created, to capture information about how relations between artifacts
change, the degree of automation of the activities, responsible roles, and which tools and languages are
used. Analyzing, structuring, capturing, and modeling the information took between one and one-and-
a-half days work.
For various reasons, captured information always contains ambiguities and insufficiencies. One reason

is that not for each case study the role of the developer (as shown in Figure 4.1) is fulfilled by an SAP
member. In some cases the tool in the MDE setting is marketed through SAP. Consequently, terms
like “developer” or “product” can be misleading. To handle such ambiguities and insufficiencies, the
findings were provided to the interview partners for feedback. All in all, between four and ten rounds
of feedback were performed per case study. Each round of feedback required formulating appropriate
questions to tackle the ambiguities. Subsuming each round of feedback took approximately one day of
work for formulating questions and adapting the models according to the feedback.
To evaluate the results for each project, a report was provided to the interview partners. In a further

telephone interview, the findings (especially the captured models) were discussed. In three cases this
led to some further small changes in the models. Preparing the final report together with the closing
interview took another day of work. On average, a total of nine days of work were spend on the
investigation of one case study.

Analysis of Data

After the elicitation, the data from the six captured MDE settings was analyzed. The quantitative goal
of the study was to gain information about the structure of MDE settings in practice. This quantitative
information was mainly captured within the models. After the study, the Software Manufacture Model
language (which will be introduced in Chapter 6) was developed, in order to appropriately model the
differences between the activities in MDE settings. After this language was introduced, models and
transcripts from this first study were reconsidered. As a result, Software Manufacture Models could be
reconstructed to model the whole MDE settings from the six SAP studies. From the models, it was
possible to extract information like the number of automated activities or the number of languages that
were used in combination. Further, it was possible to examine where different languages are combined to
reach a separation of concerns (i.e. where different system aspects are specified using different languages).
Based on the models it was also possible to identify where transformations are used to move content
between artifacts of different levels of abstraction.
Inspired by grounded theory [46], transcripts and models of the different case studies were compared

for the qualitative part of the study. This led to some general insights. Afterwards, the interview
partners were asked to validate these general insights . In addition, a small questionnaire was used to
ask for motivations of the introduction of the different case studies and for the software quality attributes
that are aspired to be supported by the MDE settings.
Some time after the study was performed, the transcripts and the answers of the questionnaire were

systematically revised to search for hints on evolution that happened to the captured MDE settings.
Hints or concrete information on evolution were searched and categorized according to the change types
that are introduced in Section 3.4.

4.1.2. Overview of Case Studies from SAP

The six captured objects of study are summarized in Tables 4.1 and 4.2.
First, there is the MDE setting used to develop business objects (an SAP specific type of components

that captures functionality specific to a corresponding business need) for the feature package 2.0. This
object of study (referred to as BO in the following) describes an old development approach, which was
used some 100 times in nine teams from 2004 onwards. Today BO is substituted by a new development
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Table 4.1.: Summary on captured case studies from first study

Case Study Full Name

BO Development of Business Objects for the feature package 2.0

BRF Personalization of business processes using the tool business rule
framework

BW Definition and automated execution of reporting with the tool BW

Oberon Development of a user interface and application based on business
objects using the tool Oberon

SIW Development of web services using the tool service implementation
workbench

VC Development of a user interface for SAP Net Weaver applications
using the tool visual composer

approach, through substitution of tools. Motivation for the initial introduction of BO was to enhance
quality, but also to reach transparency and a unified procedure for business object development. For
this object of study 19 activities were captured.

The second object of study is the MDE setting for the development of web services with the tool
service implementation workbench (referred to as SIW in the following). Since about 2003, the tool
has allowed the development of a service on the basis of a web service description (formulated in web
service description language (WSDL) [42]) supporting reuse of existing functionality. The introduction
was intended to avoid redundant implementations and the resulting effort for maintenance. SIW is used
throughout the SAP Business Suite. SIW has since been partially redesigned. For this object of study
16 activities were captured.

Further objects of study describe the development of user interfaces and there coupling to services or
business objects. First, there is the development of a user interface for SAP Net Weaver applications
using the tool visual composer [33]. This object of study is referred to as VC in the following. VC is
used since 2006 ca. four times at the consulting company FIVE1 GmbH & Co. KG. Motivation for its
introduction was a faster development as well as the ability to create prototypes. Between the different
versions VC was often extended. For this object of study 30 activities were captured.

Then there is the development of a user interface and application based on business objects using
the Oberon tool. Oberon has been used some 120 times since 2008. Motivation for the introduction of
Oberon was the simplification of user interface technologies that are used in context of By-Design. In
addition, the flexibility was enhanced through the use of similar models at design time and runtime. In
this context, the number of tools was reduced and different areas of development were integrated into
one tool. For this object of study 25 activities were captured.

The fifth object of study deals with configuration of business processes using the tool “business rule
framework” (BRF+). This object of study is referred to as BRF in the following. The customer specific
configuration can be seen as part of development of software systems, too. However, BRF can be applied
by experts on the customer’ side. Since 2008, BRF has been used at least 70 times within SAP standard
applications and adapted many times. Motivation for the introduction was cost reduction and increased
transparency and agility of development. For this object of study 23 activities were captured.

The last object of study allows the definition of a mapping between data from different tools. The
extraction of data, mapping, and generation of a HTML report is then performed automatically and
periodically during runtime. The tool that supports this definition and automated execution is Business
Warehouse, which is referred to as BW in the following. Since 1996, BW had some 19 000 customers
(or users). BW was introduced to substitute the predecessor EIS (Execution Information System)
to enhance performance and to enable consolidation of data from multiple systems. BW has since
undergone various changes, due to changes of the underlying language (ABAP) or to integrate different
transformations. For this object of study 19 activities were captured.

51



4. Studies

More details about the case studies can be found in [P3].

Table 4.2.: Key data on captured case studies from first study

Case Study Approximate number of applica-

tions

Number of captured

activities

Years in use

BO ca. 100 times in nine teams 19 > 2

BRF at least 70 times within SAP
standard applications

23 > 3

BW ca. 19 000 customers 19 > 14

Oberon ca. 120 times 25 > 3

SIW used throughout whole SAP
Business Suite

16 > 8

VC ca. 4 times at FIVE1 GmbH &
Co. KG

30 > 5

4.2. Meta Study of Evolution

The meta study was performed to figure out whether structural evolution plays a role in MDE settings
from practice. The literature was searched for reports on MDE in practice.

4.2.1. Review Process

In this section the process of the meta study is described.

Conceptual Context

The aim of the study was to identify reports on the application of MDE in practice. For this reason, sev-
eral publication media were examined. Publication media that are specialized to MDE and DSL related
topics were chosen, namely the proceedings of the MODELS (International Conference on Model Driven
Engineering Languages and Systems) conferences from 2007 to 2011, ECMFA (European Conference on
Modelling Foundations and Applications) and ECMDA-FA conferences from 2007 to 2012, the proceed-
ings of the Workshop on Models and Evolution (ME), as well as its predecessors MCCM (Workshop on
Model Co-Evolution and Consistency Management) and MoDSE (Workshop on Model-Driven Software
Evolution) from 2007 to 2011, the proceedings of the OOPSLA Workshops on Domain-Specific Modeling
from 2007 to 2011, as well as the Software and Systems Modeling journal (SoSyM) from 2007 to 2012,
including papers published online until the end of July 2012. In addition, an online key word search
was performed and references in reviewed papers were used to identify further reports. In addition, the
ACM digital library was used for keyword search in the proceedings of the ICSE conference.
The search was for reports on the application of model-driven techniques or domain-specific modeling

languages in practice. Note that there was a focus on no-purchase tool chains. As a result, it was
possible to identify fourteen reports that describe MDE introduction or use ([10, 15, 50, 72, 108, 131,
146, 172, 182, 198, 205] and three case studies in [98] as summarized in Table 4.3). Cases where different
aspects of the same application are described in multiple papers are counted as one report.

Choice of Cases

Evolution requires time. Therefore the reports were filtered to ensure that the reported period of time
is long enough to allow the observation of evolution. Reports that focus on the initial introduction of
MDE or on settings that were used for a single project only were not suitable. Therefore, six reports
had to be excluded ([10, 50, 131, 172, 198, 205] as well as the telecom case study in [98], where the
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Table 4.3.: Identified reports within the meta study

Publication medium identified pa-

pers

ICSE (International Conference on Software Engineering) [198](2007)
[10](2010)
[98](2011)

Journal on Software and Systems Modeling [146](2011)

UML Modeling Languages and Applications [131](2004)

MoDELS (International Conference on Model Driven Engineering Languages
and Systems)

[15](2005),
[72](2007)

ME (Joint MODELS’09 Workshop on Model-Driven Software Evolution
(MoDSE) and Model Co-Evolution and Consistency Management (MCCM))

[205](2009)

Proceedings of the ACM OOPSLA 2003 Workshop on Domain-Specific Mod-
eling Languages

[50](2003),
[108](2009)

ECMDA-FA (European Conference on Model Driven Architecture-Foundations
and Applications)

[182](2007),
[172](2009)

described example was only used during one project). The remaining seven reports were chosen for the
inclusion in the dataset ([146](CsTe), [72](CsBA), [182](CsFO), [108](CsFBL), [15](CsMo), as well as
the case studies of the printer company (CsPC) and the car company (CsCC) [98]).

Analysis of Data

The reports taken from literature are written for a wide range of reasons, and therefore differ in focus
from the meta study. Due to this diversity, the reports cannot be an appropriate source for qualitative
insights. However, it is this diversity of underlying motivation that makes the reports suitable for
quantitative evaluation of hypotheses on existence of structural evolution (Hexistence and Hcommon).

To extract the required quantitative information from the reports, they were systematically examined.
Indicators of or concrete information about evolution were extracted. Where possible, these collected
hints were assigned to concrete change types and rated as structural or non-structural (according to
Section 3.4). However, due to the character of the data source, the information about evolution is not
necessarily complete. Further, it is not possible to determine whether all changes are part of a single
evolution step or of multiple steps.

4.2.2. Overview of Cases Studies

The seven case studies from the chosen reports are summarized in Table 4.4. The reports stem from
different domains, such as the telecommunication industry, financial organizations, and development of
control systems.

The case study of financial organization (CsFO) [182], reports on the adoption of MDE in a financial
organization. The report was published in 2007 and the described adoption of MDE started around
2005. During the pilot phase, the setting was used in different projects by 60 people. The adoption
was envisioned by the QA department2 of the financial organization to produce high quality software
“efficiently and effectively” ([182]).

The tool vendor case study of Function Block Language (FBL) (CsFBL) is presented in [108]. Here
a tool vendor reports how the language FBL changed together with its engineering environment. The
report was published in 2009 and describes changes to the FBL setting over a period of 20 years. FBL
supports “development of real-time control programs for distributed environments”[108].

2assumption of the author: “QA department” refers to a department that is responsible for quality assurance
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The case study of migration of a banking application (CsBA) stems from [72]. Here Fleurey et al.
present a process for the migration of systems to new platforms. To apply the process, it is proposed to
substitute the transformations such that they fit the current use case. In addition, they describe how
they actually adapted the process to apply it for the migration of a banking application. The report was
published in 2007. The banking company decided to apply that approach because of quality assurance
capabilities and because of the low proposed price.

The Telefónica case study (CsTe) is presented in [146]. The use of a DSML for the generation of
configuration files is reported. The report was published in 2011.

The Motorola case study (CsMo) is described in [15]. Here Baker et al. describe the use of MDE
within Motorola. The report was published in 2005 and describes experience over more than 15 years.
Motivation for the introduction of MDE was the increasing complexity of systems.

The case study of the printer company (CsPC) is described in [98]. The report was published in 2011.
The first pilot project that used model driven design started in 1998.

Finally, the case study of car company (CsCC) is also presented in [98]. The report was published in
2011. The motivation was to handle an increasing share of software during development.

Table 4.4.: Summary of case studies from meta study

Case Study Full Name Source

CsFO Case study of financial organization Shirtz et al. [182]

CsFBL Tool vendor case study of Function Block Lan-
guage (FBL)

Karaila et al. [108]

CsBA Case study of migration of a banking applica-
tion

Fleurey et al. [72]

CsTe Telefónica case study Mohagheghi et al. [146]

CsMo Motorola case study Baker et al. [15]

CsPC Case study of printer company Hutchinson et al. [98]

CsCC Case study of car company Hutchinson et al. [98]

4.3. Follow-up Study of MDE Settings in Practice and their Evolution

When the third study started, it was already known from the second study that structural evolution
exists and is common in practice. However, there was still a lack of knowledge about structural evolution
and motivations that drive structural evolution. To address these issues, the third study was started
as an extension of the first study. It was the main goal to capture not only MDE settings, but also
information about the evolution history of these MDE settings. While the first study was exclusively
performed in cooperation with SAP, it was an additional goal of this third study to get also data from
a more diverse set of companies.

As in the first study, quantitative data and qualitative data was captured. Additional MDE settings
were modeled and the evolution history was documented. Also qualitative data about motivations and
triggers for the evolution steps was collected.

4.3.1. Study Design

Since the third and the first study have a similar character and partly similar goals, the design of this
first study was mainly adopted. A description follows of how the design of the third study was adapted
to fit the new needs.

54



4.3. Follow-up Study of MDE Settings in Practice and their Evolution

Conceptual Context

The conceptual context remained mostly the same as in the first study. At the start it seemed that
the topic of the evolution of MDE settings might become an additional challenge for the communi-
cation. Fortunately, it turned out that it is relatively easy to inquire about the evolution history by
asking question like: “Did you always use tool X?” or “How did you develop artifact Y before
transformation Z was introduced?”.

Choice of Cases

Since a goal was to collect MDE settings from different companies, the process of choosing case studies
had to be adapted. First, most companies are very cautious about providing detailed data to external
researchers (as is necessary for case studies). This problem was approached in this study by contacting
alumni students of the Hasso Plattner Institute and using personal contacts in different companies. The
request was accompanied by a short description of the project and the data to be captured. Eventually
the contacted persons passed the request on to colleagues. When the persons in charge of such a project
were interested in the study they answered the request.

All in all, this led to responses from six projects (from five companies). Unfortunately, in two compa-
nies the management did not agree to the participation due to confidentiality reasons. However, three
companies agreed to participate in the study: Capgemini (2 projects with 3 MDE settings), VCat, and
Carmeq. In addition, one of the contact persons of the first study at SAP agreed to resume the partici-
pation in the study and helped to document the evolution history for one of the captured MDE settings.
Finally, it was possible to document a single evolution step of an MDE setting from Ableton. However,
in this case the corresponding MDE setting was not captured in detail.

Research Method

As in the first study, the goal was to collect detailed case studies. Again semi-structured interviews
were used. To address the new issues, the method of eliciting the MDE settings was changed. The
feedback process was augmented with a third interview (substituting the email contact). Further, the
MDE settings were directly modeled using Software Manufacture Models. In addition, new questions
were included about how the MDE settings evolved over time. This includes questions for motivations
and triggers for the captured evolution steps. Finally, for the last two case studies a couple of students
accompanied the interviewer during the interviews and were encouraged to ask questions, too. All
evolution steps were planned and/or performed before they were captured for the study. As a result,
models of the MDE settings and evolution steps were captured together with records from the interviews.

The more direct form of communication in this adapted research method, together with the direct
use of Software Manufacture Models, and the experience the interviewer gained during the first study,
reduced the effort for elicitation of an MDE setting to five work days per MDE setting.

Analysis of Data

The records from the interviews were systematically inspected and coded following the constant com-
parison method described in [177]. At the start, a set of preformed codes was used. These referred to
the motivation for an evolution step, the institution or role that triggered the evolution step, and the
institution or role that implemented the evolution step. During the inspection of the records, codes
were added when necessary (e.g. for external influences on the evolution). Based on these codes it was
possible to derive several observations.

The collected quantitative data (i.e. the models) were analyzed similar to the models from the first
study (except that the models were already Software Manufacture Models). Further, the collected
information about the evolution history was analyzed. The evolution steps were further categorized
according to the change types presented in Section 3.4.

4.3.2. Overview of Cases Studies

In the context of this third study, five new MDE settings were captured together with their evolution
history. In addition, the evolution history of the BO case study and an evolution step of a case study
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from Ableton were documented. This third study has a focus on structural evolution which reflects in
the questions that were used. In most cases, non-structural evolution steps (e.g. language evolution)
were not captured. Consequently, this data cannot be used to make quantitative statements about
distribution of structural compared to non-structural evolution steps. In the following, an overview in
given about the captured case studies is given (summarized in Tables 4.5 and 4.6)3.

Table 4.5.: Summary on captured case studies from third study

Case

Study

Company Full Name

Cap1 Capgemini Capgemini case study 1

Cap2a Capgemini Capgemini case study 2

Cap2b Capgemini Capgemini case study 3

VCat VCat Consulting
GmbH

Development of TYPO3 based websites

Carmeq Carmeq GmbH Development of AUTOSAR standard documents Carmeq

Ableton Ableton AG Development of sound libraries for users of the software
Live

Capgemini First Case Study (Cap1)

The first case study (Cap1) was captured in cooperation with Capgemini4 and is used in a project
that has run for four years. In this project Capgemini builds software for a customer. There are two
interacting MDE settings involved. The first MDE setting is used by the customer to collect requirements
and create or prepare parts of the specification. The second MDE setting is applied within Capgemini to
create prototypes, generate the specification, and to implement the software. This second MDE setting
and its history were captured. The MDE setting is specific for the project, which holds especially for the
generator that is used. Initially, a Capgemini internal standard generator was in use, which was soon
substituted by the project specific generator. In consequence, the generator can be flexibly changed or
extended. The case study was captured in summer 2012. Sixteen activities and eight historic versions
of this MDE setting were documented (including the MDE setting that was in use at the time of the
interviews. Seven structural evolution steps were identified.

Table 4.6.: Key information on captured case studies from third study

Case Study Cap1 Cap2a Cap2b VCat Carmeq Ableton BO

Number of modeled
activities

16 18 27 10 25 – 19

Years in use 4 3 5 7 8 2 >2

Number of captured
evolution steps

7 5 6 2 5 1 7

Capgemini Second and Third Case Studies (Cap2a and Cap2b)

Also the second and third case studies (Cap2a and Cap2b) were captured in summer 2012 in cooperation
with Capgemini. The two MDE settings are parts of the same project. This project aims at providing

3Due to a request, names of artifacts and activities from the Capgemini case studies are partially substituted within this
thesis, in order to ensure confidentiality of the actually investigated projects.

4http://www.capgemini.com/ (last access at November 9th, 2013)
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two MDE settings that are used by a customer of Capgemini. Both settings can be applied in the same
customer projects. They aim at reaching similar goals for different use cases.

MDE setting Cap2a has been in use for three years. The team that developed the MDE setting Cap2a
consisted initially of one person and later three to four people. For Cap2a, 18 activities were documented
as well as six historic versions of the MDE setting (including the MDE setting that was in use at the time
of the interviews). Five evolution steps were identified. Three of these evolution steps are structural.

MDE setting Cap2b has been in use for five years. The team that developed the MDE setting Cap2b
consisted initially of one person and grew for a short phase of about half a year to four to five members.
For Cap2b, 27 activities were documented as well as seven historic versions of the MDE setting (including
the MDE setting that was in use at the time of the interviews). Six evolution steps were identified. Five
of these evolution steps are structural.

Development of TYPO3 based Websites (VCat)

The fourth case study was collected in cooperation with VCat Consulting GmbH5. The documented
MDE setting supports development of websites that rely on TYPO3 as underlying content management
systems (CMS). Motivation for that MDE setting was to improve productivity through automation and
standardization. The case study was captured in winter 2012/2013. At VCat the MDE setting has been
developed and used for seven years (one year in its current version). For this case study, 10 activities
were documented as well as three historic versions of the MDE setting: the current version, a historic
version, and a planned version. Two evolution steps were identified.

Development of AUTOSAR Standard Documents (Carmeq)

The fifth case study was captured in cooperation with Carmeq GmbH6. The captured MDE setting is
used to create documents of the AUTOSAR standard7, including models and tables. The case study
was captured at the start of 2013. Various versions of the MDE setting have been in use since 2004.
For this case study, 25 activities were documented as well as six historic versions of the MDE setting
(including the MDE setting that was in use at the time of the interviews). Five evolution steps were
identified.

Development of Sound Libraries for Users of the Software Live (Ableton)

The major product of Ableton AG8 is a system called Live, which provides artists and musicians with an
environment for musical compositions and productions. An important part of the business of Ableton
is the development of libraries, which provide users with a collection of presets for instruments included
in Live.

The case study that was captured covers the changes that are currently applied to this development
of libraries. The actual MDE setting of this development could not be captured in detail. The captured
evolution step was documented at the start of 2012.

Development of Business Objects for the Feature Package 2.0 (BO)

The MDE setting of the case study BO was already captured during the first study and is described in
Section 4.1.2. In the context of this third study, the evolution history of BO was documented. Seven
evolution steps were collected.

Summary

As summarized in Table 4.6, the captured MDE settings were in use for between two and eight years.
Each captured model includes between 10 and 30 activities. For each of the different cases studies
between one and seven evolution steps were captured (33 evolution steps overall).

5http://www.vcat.de/ (last access at November 9th, 2013)
6http://www.carmeq.de/ (last access at November 9th, 2013)
7http://www.autosar.org/ (last access at November 9th, 2013)
8https://www.ableton.com/ (last access at November 9th, 2013)
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4.4. Threats to Validity

As discussed in Section 2.5, the categorization of validity that was introduced by Wohlin et al. [214] is
applied. To address the observational character of the three studies, threats to validity are discussed
under the following viewpoints: Construction validity is discussed in terms of the question: “Are data
and effects captured appropriately?”. External validity is discussed in terms of the question: “To what
extent can the results be generalized?”. Finally, conclusion validity is discussed in terms of the question:
“Are the conclusions that are drawn correct?”. The fourth category – internal validity – is not discussed,
since it is specific to experiments.

In the following, the validity of the studies is discussed. Threats that concern the collection of data
are discussed with respect to the three different studies. Correspondingly, threats that concern the use
and analysis of the data are discussed with respect to the five empirical research aims of this thesis:
first, to learn about the structure of MDE settings in practice; second, to evaluate the hypothesis Htraits;
and third, to evaluate the hypothesis Hchangeability. For these three aims, data on the collected MDE
settings from the first and third study are used (i.e. 11 case studies: six from SAP, three from Capgemini,
one from VCat, and one from Carmeq). The fourth aim is to evaluate the hypotheses Hexistence and
Hcommon. For this, records from the first study are used as well as reports collected in the second study
(i.e. 2 datasets with 6 and 7 cases, respectively). The final aim is to learn more about motivations and
triggers of structural evolution. For this, mainly data on documented evolution histories from the third
study are used (i.e. 7 case studies: one from SAP, three from Capgemini, one from VCat, one from
Carmeq, and one from Ableton).

4.4.1. Construction Validity

Construction validity (i.e. “Are data and effects captured appropriately?”) can be affected by design
threats as well as social threats.

Design Threats

The main challenge in the design of the studies is to ensure that the data is captured correctly and
completely. Due to restrictions, e.g. the time that was available for the interviews, it is always necessary
to make a trade-off between correctness and completeness.

The information that is captured is the first and third study is rather complex, which concerns
especially the details about how the relations between artifacts change. Therefore, it cannot be excluded
that there are faults in the captured models. To minimize the numbers of faults, the design of the
studies includes rounds of feedback. In addition, the approach was improved in the third study by an
additional interview instead of email feedback. As a consequence it can be expected that the correctness
is appropriate to use the models as a data basis for further reasoning.

Further, there are two possible sources for incorrectness or incompleteness in the evolution histories
that were captured during the third study. The interviews had a focus on structural evolution, and as
a consequence it cannot be estimated how often non-structural evolution steps occurred between the
captured structural evolution steps. This drawback could be taken into account when designing the
study, because there is no plan to use the data to reason about the relative share of structural evolution
compared to non-structural evolution.

Secondly, two types of data were captured: quantitative data on the MDE setting as well as quantita-
tive and qualitative data on the evolution history. Thus, it has to be considered whether capturing one
type of data has influence on the quality that can be reached for the other type of data. Indeed there
was the challenge to split the interview time such that an appropriate correctness and completeness of
both data types can be reached. Apart from this trade-off in time, a good quality of the captured data
on the MDE setting is a precondition for targeted questions on the evolution history. Due to this inter-
connection it was decided to focus first on a high correctness of the captured data on the MDE setting.
This led to the benefit that questions on the evolution history could be asked quite intuitively. Further,
it was ensured that there is still enough scope for capturing qualitative data about the motivations and
triggers for the evolution. Based on the feedback from the last interviews of each case study, it can be
assumed that the captured data is sufficiently correct and complete.
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Due to the character of the data sources in the second study, the information about change types is
most probably incomplete. It is thus probable that the amount of occurrences of structural evolution
in practice is even underrepresented in the results of the second study. A similar tendency towards an
underrepresentation of structural evolution holds for the hints on evolution that can be found in the
records of the first study. This is due to the fact that evolution was not the focus of this first study.
However, it is the aim to use these data to study the existence and commonness of structural evolution.
Here it even adds to the validity that the underrepresentation cannot lead to a wrong acceptance of the
hypotheses Hexistence and Hcommon.

Social Threats

In addition to the design of a study, social threats to the correctness and completeness of the captured
data also have to be taken into account. Such social threats might play a role in the first and third
study, but not in the second study, which was a meta study. One social threat is that the interviewee
might filter information that he provides during the interview for various reasons.

The first reason is hypothesis guessing [214], which means that a participant in a study might base
her behavior on her guesses about the hypothesis of the study. This can be a threat for the correctness
and completeness of results. During an interview, the interviewee might be eager on presenting specific
information he expects to be important for the study, or equally might omit information, threating the
completeness of the data. To compensate this effect, capturing aids in the form of question groups where
used during the interviews. This way the interviewer was supported in following a systematic approach
when asking questions.

The second reason is evaluation apprehension [214], which means that interviewees might be afraid
of being evaluated. In the studies here, the interviewees might fear that their MDE settings, projects,
or company could be evaluated negatively. As a consequence they might leave out information about
failure. In the first and third study this can lead to an underrepresentation of reports on problems
with changeability concerns or effects of disadvantageous combinations of MDE settings and processes.
During the interviews, the questions were focused on the MDE setting. Thus, the quantitative data
might reveal that a hard changeability concern is strongly affected or that the manifestation of an MDE
trait is process-relevant. However, amongst other issues, this threat prevents the data from the studies
being used to judge the actual extent of negative effects that might arise by hard changeability concerns
or disadvantageous combinations of MDE settings and processes.

Within the third study, a further effect of the evaluation apprehension might concern the data on
motivations and triggers for the different evolution steps. As motivations for changes are often dis-
advantages of or problems with the preceding MDE setting, it is possible that interviewees underplay
corresponding information. For the same reason it is probable that existing plans for further evolution
are omitted. This problem was approached by targeted and positively formulated questions about what
improved after an evolution step and whether there were plans for future improvements.

In general it cannot be ruled out that information about evolution is incomplete. However, the
quantitative data of the third study is not used for reasoning on distribution or frequency of evolution
steps. Further, within the qualitative data possible incompleteness can be accepted. Nonetheless, the
qualitative data that can be collected provides valuable insights into existing motivations for evolution.

A social threat to the construction validity are the experimenter expectations [214]. This means that
questions formulated by an interviewer with strong expectations about the results might lead to a bias
in the results. Since all interviews of the first and the third study were performed by the same main
interviewer, this threat will be discussed here.

All research aims that are pursued on the basis of the captured data are potential reasons for such
experimenter expectations. First, data on MDE settings of the first and third study were collected with
the research aim of learning about the structure of MDE settings in practice. Possible expectations
of the researcher might concern the complexity of the structure of the MDE settings. For example, a
large number of languages might be expected. Alternatively, an academic interviewer, might expect an
extensive use of transformation technologies, such as ATL. Thus there is a risk that the questions are
too focused on established MDE technologies. This might lead to the omission of other tools within
the interview. To tackle this risk the capturing aids (i.e. the question groups for the semi-structured
interview) are formulated independently of technology. For example, the interviewer was reminded to
ask open questions concerning existing automated steps.
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Second, the same data on MDE settings is used to approach whether manifestations of MDE traits
occur in a board spectrum and whether the hard changeability concern unexpected loss of content is
affected. Only one of the MDE traits (length of activity chain) was already discussed at the time when
the interviews of the third study were being conducted. Hard changeability concerns were already partly
identified when the last interviews of the first study were performed. Consequently, it is possible that the
interviewer inquires more explicitly about structures in the MDE setting that might affect MDE traits
or hard changeability concerns. However, this only increases the probability that existing structures are
identified and thus does not lead to a bias (i.e. no identification of phenomena that do not exist is to
be expected).
Third, data from the first study was used to evaluate whether structural evolution exists. This led to

no bias in the elicitation of the data, since structural evolution was not expected when the interviews
were performed. The hypothesis Hexistence was rather a result of the exploratory part of the first study.
Finally, data from the third study was used to approach motivations for structural evolution. However,

the interviewer had no expectations about such motivations and the corresponding part of the study
was designed to be exploratory. Therefore, little bias is expected here.

4.4.2. External Validity

There are two main threats for the external validity of the studies (i.e. “To what extent can the results
be generalized?”).

Interaction of History and Treatment

One threat to external validity is the interaction of history and treatment [214], which means that
external events might influence the measured results. For the research aims of this thesis, possible
effects of this threat on the extent to which the results can be generalized can be neglected. The reason
is that the interviews for the various case studies were spread over a long period of time. Thus, the same
external event would only have had influence on interviews of one or two case studies.

Interaction of Selection and Treatment

The other threat to external validity is the interaction of selection and treatment [214], which refers to
whether the selection of cases in the study is representative such that the results can be generalized to
other cases.
As mentioned above, for the investigation of an MDE setting’s influence on changeability and processes,

data from the first and third study is used. This includes 11 MDE settings from four companies.
In general, four companies are not sufficient to generalize the results for all domains of software

development. Despite these limitations, the eleven case studies can provide an adequate initial insight
on the structure of MDE settings in practice as well as the variance of manifestations of MDE traits
and the way hard changeability concerns are affected in MDE settings within and between different
companies.
Further, the focus of the third study was extended to capture information about the evolution history

of the MDE settings. Due to this changed focus it cannot be excluded that there is a selection bias
(towards MDE settings with a longer evolution history) for the case studies that were collected after the
focus changed (which are the Capgemini, Carmeq and VCat case studies). Thus, in the event that a
longer evolution history promotes the occurrence of manifestations of MDE traits and hard changeability
concerns, this selection bias increases the probability that process-relevant manifestations of MDE traits
can be found in the case studies. Fortunately, this affects only five of eleven case studies. Nonetheless,
the observed extent to which hard changeability concerns are affected cannot necessarily be generalized
to MDE settings that rarely change.
The investigation of structural evolution will be approached in this thesis on the basis of data from

the first and second study. This includes records from the 6 SAP case studies. These case studies have
no selection bias concerning the topic of evolution. However, all six case studies stem from the same
company. On the other hand there are 7 case studies collected during the meta study to learn more
about the occurrence of evolution steps. Although a systematic selection method was applied, a small
selection bias towards case studies with evolution cannot be excluded. In exchange, these seven case
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studies stem from different countries, companies, and domains. However, the fact that data from two
different sources is used helps to minimize selection bias as well as biases due to corporate culture.

It is questionable whether the results about existence of structural evolution can be generalized to all
domains of software engineering. Without having data about multiple MDE settings for each domain,
it is not possible to say, whether observed differences are specific to the setting or to the whole domain.
However, thanks to the data from literature reports, which stem from different domains, it is possible
to draw conclusions that are not specific to a single domain.

Finally, the aim to gain insights about motivations for structural evolution is approached on the basis
of data from the third study. This includes seven evolution histories from five companies (Capgemini,
SAP, Carmeq, Ableton, and VCat).

It is always difficult to draw general conclusions from a few case studies. Thus, a broader set of data
that captures more domains of software engineering and different companies would be helpful to further
substantiate the observations made in this study.

Despite the small number of case studies, it is fortunate that different companies are under study.
Further, all observations that will be presented in Section 5.2.2 are based on at least two of the case
studies. Thus, there are strong indications that the observations are not specific to a single domain.

As mentioned above a selection bias towards case studies with long evolution histories cannot be
excluded for the third study. It is possible that motivations and triggers for evolution are different in
projects where MDE settings often change compared to projects where MDE settings rarely change.
Consequently, it is not necessarily possible to generalize the observations to MDE settings that change
rarely.

4.4.3. Conclusion Validity

Finally, the conclusion validity (i.e. “Are the conclusions that are drawn correct?”) deals with whether
the conclusions are statistically correct, i.e. whether the data is sufficient to accept or reject the hy-
potheses correctly. Therefore, this type of validity will be discussed separately for the different study
insights in the Chapters 5 and 9.
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5. Study Results: MDE in Practice

Based on the data from the three studies (see in Chapter 4), the nature of MDE in practice is examined
in this chapter. First the collected data on MDE settings from the first and third study is used to explore
characteristics of MDE settings. Afterwards, insights on the nature of structural evolution in practice
are presented and discussed, as summarized in Figure 5.1.

This chapter is partially based on [P3] and [P4].

Figure 5.1.: Overview of this chapter: investigated aspects of MDE are the structure of MDE settings
and their structural evolution.

5.1. MDE Settings in Practice

In this section data on the captured MDE settings is summarized. Subsequently, some observations on
MDE settings that have been made on the basis of the first study are described.

5.1.1. General Results

In this section it is examined how different languages and automation activities are combined in MDE
settings that were captured and modeled in the first and third study. Further, it is discussed how the
data fits together with results from previously published studies and the validity conclusions that might
be drawn from this data is discussed.

Languages

In the captured MDE settings different types of models and artifacts are used. In the following the
languages that are used in the case studies are summarized. The languages are clustered in four cate-
gories: general purpose and programming languages, DSLs, modeling languages, and languages without
a category. During the first study (i.e. for the SAP case studies) the interviewees have been asked to
rate the categories for languages used in their projects. However, it turned out that the gained results
are often ambiguous. Therefore, no time of the interviews of the third study was invested for asking
the interviewees to rate the types of the used languages. Instead, a short rating was made during the
analysis of the data, based on the records. Note that these ratings (as shown in Table A.1) shall help
to orientate, only. For many of the languages and data formats other options for rating exist.

All in all 56 different languages were identified for the 11 captured MDE settings (as summarized
in Table A.1). The captured MDE settings include five general purpose languages or programming
languages, e.g. ABAP or Excel (which was in one case rated as GPL and in one case not). 21 domain
specific languages (DSLs) can be identified, e.g. HTML or status and action models (S&A Models). In
addition, the captured MDE settings include 14 modeling languages, e.g. BPMN. Finally, 15 further
artifact types can be identified, e.g. WSDL artifacts (web service description language), or rulesets
(Regelsprache und Modellierungssprache). Each MDE setting combines on average 6.36 languages. Of
the eleven MDE settings, seven included between 3 and 6 languages, while four included between 7 and
18 languages. It is worth mentioning here that the case study VCat, which is not called “model-driven”
by the corresponding developers, was one of the case studies with the most combined languages (11
languages). All languages are summarized in Appendix A.
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Activities

Per case study between 10 and 30 activities were captured. During this elicitation, activities of different
degrees of detail were captured. It can be differentiated between minimal changes or transitions and
complex changes or transitions. Within a minimal change or transition only one or a hand full of
connected model elements are changed or transcribed to another artifact, respectively. In contrast,
within a complex change or transition a potentially big part of the model is changed or transcribed
to another artifact, respectively. Activities that represent minimal changes and transitions are often
described in manuals and tutorials, e.g. for learning to handle a tool. However, for getting an overview
and analyze an MDE setting they might be too fine granular. An example for such minimal activities in
the study is the creation of a “floorplan” using Oberon. Here, a standard “floorplan” is automatically
initialized in form of a template that can later be filled with information.

Degree of automation Considering the more complex activities 38 fully automatically supported gen-
eration and transformation activities are captured. This contains automated activities, where a complex
change is performed on a model (or artifact), or automated activities, where on the basis of one or more
input models (artifacts) at least one output model (artifact) is created or manipulated with a complex
transition from the input models to the created/manipulated model. Variants of an automated transfor-
mation or generation are counted as one activity in this statistic. Further, 12 complex semi-automated
generation or transformation activities are captured, e.g. the generation of a proxy using the Service
Implementation Workbench (SIW), and one complex semiautomated template instantiation.
Many automated activities do not interfere with the work of developers, since they are not followed

by further manual activities. However, there in only three of the captured MDE settings no automated
activities have succeeding manual activities. For example, in VC the generation of a UI model on the
basis of a BPMN model is followed by manual activities. The same holds for the generation of code and
the generation of a WSDL file in SIW. Similarly, in BO the generation of code and the instantiation
of templates are followed by manual activities. Also in VCat, Carmeq, Cap1, Cap2a, and Cap2b some
automated activities are located before further manual activities, as summarized in Table 5.1.

Verification activities In addition, seven of the case studies contain – aside from tests on code level –
fully automated and semi-automated verification activities. In SIW it is verified that a mapping between
service descriptions in different languages is complete. In BO a set of checks is applied on the business
object model. Further, in BRF certain analysis steps are applied of the rule sets. In addition, the BRF
rule sets can be simulated. Carmeq includes 6 fully automated activities that support verification in
combination with 3 manual verification activities. Finally, for each of the case studies Cap1, Cap2a, and
Cap2b a fully automated verification activity could be identified.

Compilation vs. Interpretation Where applicable, the interviewees were asked whether the resulting
system implementations are compiled or interpreted (results shown in Table 5.1). Interestingly, the
answer was only in two cases clearly “compiled” (SIW) or “interpreted” (Oberon). Within the object of
study BO the ABAP code is compiled, but the additionally used S&A models are interpreted.
For the user interface in VC it depends on the use case whether interpretation is sufficient or compi-

lation has to be performed. For BW it was reported that a mix of both, compilation and interpretation,
is used. The share of interpretation grows over time, as the dynamic parts of the underlying ABAP
increased. Similarly, for BRF the answer was that a mix is used for the created ABAP code as well as
for the created rules. In Cap1, the resulting Java code is compiled to Java-Bytecode, which is further
interpreted. The TYPO3 system created in case study VCat is directly executed. Finally, case studies
Carmeq, Cap2a, and Cap2b do not result in software, but in documents that are meant to be read by
humans.

Separation of Concerns

The principle of separation of concerns [194] is inbuilt in some of the case studies. Five of the settings
base this separation on the use of different languages. For example, in BO behavioral parts of the business
object can be defined separately in S&A models, while the rest of the system in implemented in ABAP
code. The separation is used to enable that certain parts of the business object can be implemented at a
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Table 5.1.: Distribution of automated generation and transformation activities as well as distribution of
compilation and interpretation

Object of

Study

# modeled auto-

mated generation

and transformation

activities

# automated gen-

eration and trans-

formation activities

without succeeding

manual activities

compilation / interpretation

BO 1 1 ABAP code is compiled ;
S&A models are interpreted

SIW 3 2 compiled

VC 2 1 mixed (depends on the use
case)

Oberon 0 0 interpreted

BRF 2 0 mixed

BW 1 0 mixed

VCat 5 5 executed

Carmeq 4 4 -

Cap1 3 3 mixed

Cap2a 5 4 -

Cap2b 12 6 -

higher layer of abstraction (i.e. the parts that can be implemented using S&A models are separated from
the parts that have to be implemented in ABAP). In the SIW the development of a service is separated
from holding the corresponding web service description consistent in the enterprise service repository
(ESR). Thus, service description is separated from the code. BRF separates the rule definition from the
process definition. Further, in VCat the design specifications are formulated using a different language.
Finally, behavioral and structural parts of the specification are separated in the “construction models”
in case study Cap1.

Four of the case studies explicitly specify separation of artifacts. In Oberon the basic UI model is
separated from change transactions that define changes on the UI model. In BW the info source is
separated from the transformation description for the data, which is further separated from the layout
definition. Here the separated artifacts reference each other. In VCat the configuration extension is
a separated artifact that includes reused aspects. Finally, in case study Cap1 the “UI-Specification”,
which specified user interface aspects is separated from the specification. Similarly, in VC and Oberon
the user interface models are separated from the functionality which is during execution accessed using
the service concept.

Discussion of Compliance with Results from Related Studies

In the last years several studies on MDE were performed. In this section it is discussed how the results
of the study presented here fit into the findings of these other studies. In [99] Hutchinson et al. present
insights into practically applied MDE collected in a large empirical assessment. Among other things
they subsume that “a lot of MDE success is hidden”, since often automation and modeling is used in a
pragmatic way (“much of MDE in industry is the kind of modeling and/or automation that represents
pragmatism in the face of an otherwise tedious or intractable problem.”). The results of this study lead
to a similar impression. Only one of the captured objects of study follows an approach that can be
compared to MDA [154]: the case study Cap1. Even so, most approaches work with far more abstract
views of the system than plain code or gain important benefits based on automation (e.g. as in case
study VCat).
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In their review paper [143], Mohaghegi et al. subsume that “Combining MDE with domain-specific
approaches and in-house developed tools has played a key role in successful adoption of the approach in
several cases.” The results presented in this section support this impression. Most objects of this study,
which are successfully used in practice, combine models and domain specific languages and work with
in-house developed automated activities.
In addition, Mohaghegi et al. [143] reveal two lacks in the reviewed reports. First, they state that

portability to multiple platforms has often not been feasible. Here the case studies include an example
that clearly allows portability: The user interfaces models within Oberon can be interpreted using
different interpreters, which allows porting the application to desktop PCs as well as mobile devices.
The second lack identified in [143] is the lack of examples for executable models. Their development
is in [143] discussed to be still a challenge. However, the tool Oberon in case study Oberon is also a
positive example for executable models. A second example, that this study revealed, is the use of S&A
models in case study BO, which are interpreted, too. Thus, it seems that portability and execution of
models is possible for use cases with a very clear focus on a specific domain.
In [145], Mohagheghi et al. state that “There is no tool chain at the moment and companies must

integrate several tools and perform adaptation themselves.” This fits to the impressions of this study,
too. In none of the 11 case studies an external tool chain was adopted. BW might be seen as a tool
chain that is provided by SAP and adopted by the customers. However, the interviewee reported, that
often only a part of the BW setting is adopted.
In [135], a situation is reported, where model are used fragmented without a “controlled sequence of

models and transformations in the process”. In contrast, the case studies in this study come along with
a sequence of activities, which is applied similarly in several projects. This different result might be
explained with the different domain focused by the study presented here.
Finally, Weigert et al. [211] report that “MDE encompasses all phases of the software-development

life cycle”. The captured case studies support this result. For example, personalization of software after
deployment is supported by the case study Oberon. Also the MDE setting in Carmeq is applied since
several releases.

Threats to Validity

In the following, threats to conclusion validity are discussed for the presented data (for the discussion
of other threats to validity see Section 4.4). The data set that was used in this section is with 11 MDE
settings quite small. From the viewpoint of statistical evaluations, a greater number of case studies on
MDE settings would be necessary to draw conclusions on the usual structure of MDE settings in practice.
However, the data is sufficient to provide a first impression of the possible complexity of combinations
of different languages or the used number of automation steps within an MDE setting.

5.1.2. Observations on MDE Settings

The qualitative analysis of the records of the first study (i.e. the six SAP case studies) revealed four
observations that are worth mentioning here.

Observations on Reuse

Two of the observations concern the reuse of MDE settings and activities within an MDE setting.

OM1 An MDE setting is reused over multiple projects.

Although MDE settings change over time, they are often reused. This holds also for company specific
settings. For example, the MDE setting BO was long time a standard procedure and used in around
100 projects, while the SIW was built to build services for approximately three hundred BOR/Bapi
functionalities. None of the case studies was used only once or even only a hand full of times (note that
the use numbers given for VC are only the uses attended by the consulting company FIVE1 GmbH &
Co. KG).

OM2 Single MDE activities are partly used in multiple phases of the software development life cycle.
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Going a step further than [211], the observation is made here that several MDE activities are used in
multiple phases of the software development life cycle. For example, models of the user interface design
in Oberon are partly already used during design phase, before the actual implementation starts. Another
example is BW, where the interpretation of the reporting (i.e. the generation of HTML) is performed
during runtime. Also change transactions in Oberon can be defined and added to the system at runtime.

To evaluate this result six of the interviewees were asked whether they agree with the statement
“Several activities (such as changing a model or generating an artifact) are used in multiple phases of
the software development life cycle.” Fife of the interview partners agreed. The other one disagreed,
whereas this answer was not given generally, but with the specific case study in mind.

Observations on Understanding of the Concept “Language”

During the interviews of the first study it turned out that it is difficult to count the number of used
languages. The qualitative analysis of the records revealed two observations on the reasons for that
difficulty.

OM3 It is not in each case easy to determine whether something is a language.

For example, there are languages that have no explicit meta model, such as the rule set definition
language of BRF. One of the interview partners get to the heart of it by asking whether something that
is only supported by a single tool is a language. Another example is a setting where specific artifacts
are called “models” explicitly, but interview partner would not call the formal definition of the artifacts
structure a language definition. In consequence, some languages have no explicit name (e.g. the user
interface models in Oberon, the internal meta models in Cap2a, and the error messages in Cap2b have
no official name).

OM4 It is not easy to determine what category a language is of (i.e. general purpose language (GPL),
domain specific language (DSL), textual or graphical modeling language).

During the first study the interviewees were asked to rate the language categories for the languages
or artifact formats that are used. For example, one of the interview partners rated Excel as GPL,
while another did not. One answer just explicitly excluded DSL. Another language was described as a
textual modeling language which is graphically modeled. WSDL (web service description language) was
not rated as belonging to one of the above mentioned categories (“WSDL defines messages, not their
content (objects)” (transcription translated from German)). ABAP was rated as programming language
or GPL. In one case the answer was “neither of them [GPL, DSL, or modeling language], programming
language; most likely GPL” (transcription translated from German). This illustrates that the usually
used terms are not sufficient to express differences that developers experience. Often clear definitions
seem to be missing. Finally, HTML was barely rated as DSL (“can be called a DSL (reluctantly)”
(transcription translated from German)) by an interview partner, who communicated that he rather
would call HTML a rendering technology.

Threats to Validity

In the following, threats to conclusion validity are discussed for the presented observations (for the
discussion of other threats to validity see Section 4.4). The four observations are a result of a qualitative
examination of 6 SAP case studies. To generalize these observations for more than one company, it
would be desirable to substantiate the data with observations from other companies with different sizes.
Nonetheless, the observations are included here since they already provide interesting insights that can
support researchers when preparing for future studies on MDE settings.

5.2. Nature of Structural Evolution

In this section, data from the first and second study is used to evaluate the hypotheses about structural
evolution Hexistence and Hcommon. Subsequently, data about the evolution histories from the third study
is used to gain further insights into motivations behind structural evolution.
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5.2.1. Existence and Relevance

In Section 3.5.3 the hypotheses Hexistence and Hcommon are introduced. To evaluate these hypotheses
(i.e. to evaluate whether structural evolution and substantial structural evolution exist and are common
in practice) despite the fact that data on evolution is rare, the concept of triangulation (as described in
[177]) is applied.

The data from two independent sources, each with its own advantages and disadvantages, are com-
bined. The first data source are data records from the first study (see Section 4.1), which was performed
with the focus on capturing the structure of MDE settings in practice. The observed cases were not
chosen with the topic of evolution in mind, which reduces the selection bias. However, the disadvantage
of this first data set is that all case studies stem from a single company and that all data was collected
by the same interviewer. As second data source reports from literature were collected in the second
study (see Section 4.2). Although a selection bias cannot be excluded for literature studies, the advan-
tage of this data source is that it provides a broader spectrum of companies and domains and that the
reports were captured by different research teams. Thus, the second data source does not suffer from
the problems of the first data source and vice versa.

Data

Following, an overview about the changes identified for MDE settings from the SAP case studies and
the literature reports is given.

SAP Case Studies For the case study VC, no hints about evolution could be found in the records. In
contrast, for the case studies SIW, Oberon, and BRF, hints on evolution were identified in the records.
Such hints are often part of descriptions of the improvements reached by the introduction of the current
setting. For example, one record from case study Oberon included the statement that the development
functionality that is now provided by one tool was split between several tools before. From this record
it can be concluded that the number of tools changed (C7).

For the case studies BO and BW, more precise information is available. On the one hand, the evolution
history of the case study BO was covered in detail in context of the third study (as described in Section
4.3) afterwards. On the other hand, the records for case study BW included a more detailed description
of a former version of this MDE setting. Therefore, the difference to this former MDE setting is used to
derive information about the evolution that happened. In these two cases, additional information about
non-structural evolution could be captured.

The change types for which hints could be identified are summarized in Table 5.2. It is illustrated
whether there is a more precise documentation of the changes or whether there are hints on a change
type, only.

Literature Reports In the following, the change types that can be identified for the different case
studies from literature reports are presented and summarized in Table 5.4.
The report of the case study CsFO ([182]) ends with a note that better integration of different tools

(C7 ) and more automation of the construction phase (C8 ) are planned in future.
The report for case study CsFBL ([108]) describes several changes that happened to the tool support

for the language FBL. The tool vendor started with providing the visual programming language FBL
together with an editor and a code generator. The use interface of the editor was later on extended
(C3 ). Over time they introduced the tool function test to enable developers to debug FBL (C7 ).
The introduction of automated verification or debugging operations changes the order of manual and
automated tasks. As a result manual programming is followed by automated debugging and further
manual correction before the automated generation is applied (C8 ,C9 ). Further they report on the
introduction of templates to allow programming on a higher level of abstraction. Developers have to
choose and configure templates by specifying parameters. A chosen template with parameters is then
automatically translated to FBL and from there code is generated. Thus, language (templates instead
of FBL) and generation implementation (transformation plus generation) changed (C1 ,C2 ).

Fleurey et al. [72] present an approach to adapt a migration process towards the specific needs of
the current application. A case study of the actual application of this migration process to migrate
a banking application is also presented (CsBA). Interestingly, the changes that are actually applied
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Table 5.2.: Identified change types for SAP cases studies (◦ = hints on changes; • = documented changes)

SAP Case Studies

SIW Oberon BO BW BRF VC

Changes in general ◦ ◦ • • ◦

Non-Structural Changes • •

C1 exchange automated activity • •

C2 exchange language •

C3 exchange tool ◦

Structural Changes ◦ ◦ • • ◦

C4 change number of artifacts • ◦

C5 change number of languages • ◦

C6 change number of manual activ-
ities

• • ◦

C7 change number of tools ◦ ◦ • ◦

C8 change number of automated ac-
tivities

◦ ◦ • • ◦

C9 change order of manual / auto-
mated activities

◦ •

in CsBA differ strongly from the proposed changes. For example, it was necessary that the resulting
system conforms to the development standards of the customer. Thus, it was not sufficient to produce
code, but to provide corresponding models that were synchronized with the code, such that round-trip
engineering on the migrated system was possible. Therefore, they replaced the code generation with an
automated UML extraction. They integrated the Rational Rose code generator used by the customer
to generate code skeletons out of the models (C7 ). Further, they added a generation to migrate the
remaining code from the platform-independent model (extracted from the original code) into the code
skeletons (C1 , C2 , C4 ,C5 ). Conforming to the round trip engineering, some manual migration tasks
have to be applied to the models (C6 ). The corresponding reapplication of the Rational Rose code
generation adds an additional automated step to the MDE settings (C8 ). Thus, instead of being only
followed by manual migration, the automated migration is followed by manual migration activities on
the Rational Rose model, a generation of code and further manual migration activities on the code. The
order of manual and automated tasks change, as manual migration is intermixed with automated code
generation (C9 ).

In [146] a DSML for the generation of configuration files in telecommunication industry is presented
(case study CsTe). It is also reported that the DSML was changed later on. The verification language
EVL to incrementally check the correctness of the models during development was integrated. This
intermixes manual modeling activities with an added automated analysis for correctness (C8 ,C9 ). Fur-
ther, the generation of the configuration files was exchanged, by an implementation that is based on a
composition system conforming to the approach reported in [104]. Motivation for this change was the
wish to be flexible to reach higher levels of abstraction. The number of input models and languages
changed from one to a flexible number (C4 ,C5 ). Also the number of manual modeling activities changes
for the developer, who has to create a number of different DSL models (C6 ).

In [15], Baker et al. described how the use of MDE within Motorola changed over time (case study
CsMo). This includes reports about changing tools (C7 ) and a changing number of languages and
used models (C4 ,C5 ) with the introduction of Message Sequence Charts (MSC) and SDL. Further, it
is reported about changes in MSC (C2 ) that enabled the introduction of automated generation of test
cases (C8 ).
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Although the report about the printer company (CsPC) in [98] includes hints that the MDE setting
under study changed, the information is not sufficient to make assumption about the actual type of
change. Similarly, the report about the car company (CsCC) in [98] includes not much detailed infor-
mation about the actual change. At least this report explicitly includes the information that the used
modeling language changed.

Table 5.3.: Identified change types in literature reports (◦ = hints on changes; • = documented changes)

Meta-Study
CsFO

[182]
CsFBL

[108]
CsBA

[72]
CsTe

[146]
CsMo

[15]
CsPC

[98]
CsCC

[98]

Changes in general ◦ • • • • ◦ •

Non-Structural Changes • • • •

C1 exchange automated activ-
ity

• • •

C2 exchange language • • • •

C3 exchange tool •

Structural Changes ◦ • • • •

C4 change number of artifacts • • •

C5 change number of languages • • •

C6 change number of manual
activities

• •

C7 change number of tools ◦ • • •

C8 change number of auto-
mated activities

◦ • • • •

C9 change order of manual /
automated activities

• • •

Summary on Hypotheses

As summarized in Tables 5.2 and 5.4, all types of structural evolution that were identified in Section 3.4
actually occur in practice. This validates the first hypothesis Hexistence.

The evaluation of the second hypothesis Hcommon requires a statistical test. In each of the two
data sets 5 cases with structural evolution have been identified and in each of these cases also hints for
substantial structural have been found. As defined in hypothesisHcommon, the phenomenon of structural
evolution is considered to be common if it exists in more than 25% of all MDE settings.

The null hypothesis h0 all is that the percentage of MDE settings that are subject to structural
evolution in practice is below or equal to 40%. Correspondingly, the alternative hypothesis h1 all is
that the percentage of MDE settings that are subject to structural evolution in practice exceeds 40%.
The tested percentage of 40% substitutes the required 25% here, in the interest to approach the actual
percentage. When h0 all can be rejected this is an even stronger confirmation of Hcommon.

To enable a comparison, the probable percentage is also tested for the two single data sets. Since
both data sets are very small, only the minimal percentage of 25% is tested. The corresponding null
hypotheses are as follows: h0 smallSet is that the percentage of MDE settings that are subject to structural
evolution in practice is below or equal to 25%. The corresponding alternative hypothesis h1 smallSet is
that the percentage of MDE settings that are subject to structural evolution in practice exceeds 25%.
The hypothesis h0 smallSet will be tested separately for both data sets.
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For the test of the hypotheses the binomial test is used as a test that can be applied to small samples,
in order to test for two categories whether data points that conform to one of the two categories occur
to a certain percentage within the data set. The two studies categories are MDE setting that underlie
structural evolution vs. MDE setting that do not. For the test a significance level of 5% is chosen.

In Table 5.4 the results of the test results are summarized. The hypothesis h0 all can be rejected.
The probability that 10 MDE setting that underlie structural evolution are identified for a sample size
of 13, while the percentage of such MDE settings is below or equal to 40%, is less than 5% (p-value =
0.007793). Thus, h0 all is not plausible.

For both single case studies the hypothesis h0 smallSet can be rejected, too. Here, the probability that
5 MDE setting that underlie structural evolution are identified for a sample size of 6 or 7, respectively,
while the percentage of such MDE settings is below or equal to 25%, is in both cases less than 5%
(p-values = 0.004639 and 0.01288). Thus, h0 smallSet is not plausible. This adds to the validity, since it
shows that the commonness of structural evolution is not specific for one of the data sets.

The same test was applied to identify the probable percentage of the substantial structural evolution
step C9 , which occurred in 5 of the 13 MDE settings. Therefore, the used null hypotheses are: h0 that
the percentage of MDE settings that are subject to structural evolution in practice is below or equal
to 15%. The corresponding alternative hypothesis h1 is that the percentage of MDE settings that are
subject to structural evolution in practice exceeds 15%.

Here the test leads to the rejection of the null hypothesis, too. Thus, change type C9 is with more
than 15% percentage of the MDE settings in practice not seldom. Again the application of the test to
the single data sets, supports the assumption that the effect in not specific to one of them.

Table 5.4.: Results of binomial test to check whether probabilities for structural changes (and change
C9 ) exceed 40% (or 15% respectively)

Date #

occur-

rences

sample

size

h0 h1 p-value 95% con-

fidence in-

terval

Result

SAP 5 6 p ≤ 25% p > 25% 0.004639 0.4182 - 1 h0 smallSet
is rejected

Meta study 5 7 p ≤ 25% p > 25% 0.01288 0.3413 - 1 h0 smallSet
is rejected

All 10 13 p ≤ 40% p > 40% 0.007793 0.5053 - 1 h0 all is
rejected

SAP C9 2 6 p ≤ 5% p > 5% 0.03277 0.0628 - 1 h0 is re-
jected

Meta study
C9

3 7 p ≤ 5% p > 5% 0.003757 0.1288 - 1 h0 is re-
jected

All C9 5 13 p ≤ 15% p > 15% 0.03416 0.1657 - 1 h0 is re-
jected

Subsuming, the results of examination of both data sources supports the hypothesis that structural
evolution is common in practice (Hcommon). Table 5.5 summarizes the hypotheses.

Threats to Validity

In the following, threats to conclusion validity are discussed for the presented evaluation of hypotheses
Hexistence and Hcommon (for the discussion of other threats to validity see Section 4.4). The two data
sources that are used in this section to evaluate the hypotheses Hexistence and Hcommon provide us with
information about 13 MDE settings, only. Of course a bigger number of cases would allow making more
accurate statements how often structural changes occur in practice. However, as described above, the
use of two different data sources minimizes selection bias as well as biases due to corporate culture. In
fact, the observed frequencies of structural evolution are comparable for both data sets. Thus, although
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Table 5.5.: Summary of hypotheses on structural evolution

Hypotheses SAP records Meta study All

Hexistence Structural evolution and substantial
structural evolution occur in practice.

X X X

Hcommon Structural evolution and substantial
structural evolution are common in practice
(i.e. it happens for more than 25% of the
MDE settings).

> 25% > 25% > 40% X

larger scaled empirical studies may help to get more accurate information in future, the data used here
is sufficient to determine whether structural changes are sufficiently common in practice to be a relevant
object for further research.

5.2.2. Observations on Structural Evolution

The investigation described in Section 5.2.1 revealed that structural and even substantial structural evo-
lution occurs and is common in practice. However, there is still not much knowledge about motivations
and triggers behind this structural evolution.

Data on Evolution

To address these issues, the third study (presented in Section 4.3) was performed.
In context of this third study seven evolution histories were captured in cooperation with SAP AG,

Ableton AG, Capgemini, Carmeq GmbH, and VCat Consulting GmbH. All in all, the seven case studies
span 33 evolution steps. The observed structural changes are summarized in the Tables 5.6, 5.7, and
5.8. Details to all evolution histories can be found in Appendix B. In the following an overview of the
collected evolution steps is given.
The case study BO was already subject to seven substantial structural evolution steps in a period of

around six years. The MDE setting started as almost classical code centric approach with some activities
to ensure tracing between code and data model. Later on a modeling tool was introduced followed by
further tools that supported partial generation of the code and eventually, one of these generation
tools was adopted company wide as standard (evolution step S1 ). To improve quality of behavioral
implementation an interpretable modeling language was introduced in addition to the code (evolution
step S2 ). The introduction of an additional modeling tool was motivated by the aim to introduce
further quality assurance (evolution step S3 ). A next improvement was reached by introducing a semi-
automated support for data migration between the modeling tools (evolution step S4 ). In order to
reduce the number of tools the three modeling tools were integrated into a single new modeling tool
(evolution step S5 ). A variant of the MDE setting was created to enable simple use at the cost of a
reduced set of supported features (evolution step S6 ). Finally, the generation functionality was moved
to this new modeling tool (evolution step S7 ). Details on this evolution and the underlying decisions
can be found in Appendix B.1.

For the case study Ableton, one substantial structural evolution step was captured. In this case study
a fully automated generation process was subject to refactoring (evolution step S1 ). As a side effect
of this refactoring parts of the automated quality assurance are separated from the generation process.
Details on the trade-offs behind this decision can be found in Appendix B.2.

For the case study Cap1 seven substantial structural evolution steps from a period of around four
years are captured. The project started with a standard code generator, which was soon substituted by
a project specific generator. In addition, a semi-automated support for the export of the data between
two modeling tools was added (evolution step S1 ). To improve merge of the old version of the model
and the version that is result of the semi-automated export, a first version of a diff-tool was introduced
(evolution step S2 ). Due to changes the MDE setting of the customer the support for the export as
well as the diff-tool were taken out of operation (evolution step S3 ). Further the automation of the
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Table 5.6.: Identified structural changes in evolution steps of the case studies BO, Ableton, and VCat
(• = documented change)

SAP (BO) Ableton VCat

S1 S2 S3 S4 S5 S6 S7 S1 S1 S2

Structural Changes

C4 change number of arti-
facts

• • • • • • • •

C5 change number of lan-
guages

• • • • • • •

C6 change number of manual
activities

• • • • • • • •

C7 change number of tools • • • • • • • • •

C8 change number of auto-
mated activities

• • • • • • • • • •

C9 change order of manual /
automated activities

• • • • • •

export between the main modeling tool and the code generator was improved (evolution step S4 ). Later
on automated support for the implementation of a user interface based on mock-ups was introduced
(evolution step S5 ). A change in the development process led to a situation that modified versions of
the model are created by different teams and need to be merged. To support this merge a second version
of the diff-tool was reintroduced (evolution step S6 ). Finally, to address a new need on additional
documentation an additional generator was introduced (evolution step S7 ).

For the case study Cap2a five evolution steps from a period of around three years are captured. Three
of the five evolution steps are structural evolution steps (and two of them are substantial structural
evolution steps). The project started with a first generator that was substituted later on by a more
flexible version (evolution step S1 ). This substitution was planed from the beginning and was motivated
by the need to rapidly provide a working MDE setting to the customer. The underlying meta model
was permanently changed over the time. To create new output artifacts the generator implementation
was extended (evolution step S2 ). Later on a part of the generator was reimplemented, such that
independence of the formerly used implementation technology is reached (evolution step S3 ). Finally,
checks have been optimized over time, such that they can be applied automatically and regular (evolution
steps S4 and S5 ).

For the case study Cap2a six evolution steps from a period of around five years are captured. Five of
the six evolution steps are substantial structural evolution steps. The first version of the MDE setting
included a generator for the creation of the documentation. To improve the usability, the generator
was integrated to a modeling tool and adapted the meta model that was already used in case study
Cap2a (evolution step S1 ). In order to support creation of additional resulting documents three further
generation activities were embedded into the existing generator over the time (evolution steps S2, S4, and
S6 ). Addressing quality assurance, basic consistency checks for the models were introduced (evolution
step S3 ) and the introduction of further consistency checks (following the example of case study Cap2a)
is planned. Finally, the output format had to be changed at least one time (evolution step S5 ).

For the case study VCat two substantial structural evolution steps from a period of around seven
years are captured. The first version of the MDE setting included a manual task to copy and clean
TYPO3 instances from old projects, such that configurations could be reused. To improve this process
and decrease the probability that content from old projects is preserved in the copied TYPO3 instance
without notice, an automated instantiation and configuration of new TYPO3 instances was introduced
(evolution step S1 ). Further the use of open source TYPO3 extensions should be improved in future.
For several reasons, extensions need to be adapted before they are used. To support reuse of these
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Table 5.7.: Identified structural changes in evolution steps of the case studies Carmeq and Cap1 (• =
documented change)

Carmeq Cap1

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S6 S7

Structural Changes

C4 change number of
artifacts

• • • • • •

C5 change number of
languages

• • • • •

C6 change number of
manual activities

• • •

C7 change number of
tools

• • • • • • • • • • •

C8 change number of
automated activities

• • • • • • • • •

C9 change order of
manual / automated
activities

• • • • • • • • • •

adaption among the different projects at VCat, there are concrete plans to introduce an internal extension
repository within VCat (evolution step S2 ).
For the case study Carmeq five structural evolution steps from a period of around eight years are

captured. Three of the five evolution steps are substantial structural evolution steps. Initially, the
AUTOSAR documentation was created without explicit modeling. To deal with inconsistencies between
documents, a central model of the standardized software as well as an UML profile for AUTOSAR
were introduced (evolution step S1 ). An automated generation of figures and tables on the basis of
the central model was introduced. Later on macros were implemented to support the integration of
figures and tables into the standard documents (evolution step S2 ). To support quality assurance for
the generated figures and tables the modelers started to use diff-tools for comparison between old and
new versions of the artifacts (evolution step S3 ). Further, a CI server was introduced, such that the
generator is executed centrally (evolution step S4 ). Finally, an alternative implementation for some
parts of the generator (e.g. the automated import between two of the modeling tools) was introduced
(evolution step S5 ).

Combination of Changes

Based on the data described above, some observations on the occurrence and combination of evolution
steps can be made.

O01 Structural evolution steps are not necessarily exceptions, but can occur in sequence several times

In four of the seven case studies from the third study (Section 4.3) five or more evolution steps could
be captured. For example, the case studies BO and Cap1 were subject to seven structural changes, each.
Only for one case study (Ableton) a single structural evolution step was captured.

O02 Substantial structural changes occur in most of the observed structural evolution steps.

In each of the captured case studies substantial structural evolution steps (including change type
C9 ) occurred. Substantial structural changes occurred in 27 of the 30 (90%) structural evolution steps
that were captured in the third study. The change type C9 occurred in 18 of the 30 (60%) structural
evolution steps (i.e. in two thirds of the substantial structural evolution steps).
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Table 5.8.: Identified structural changes in evolution steps of the case studies Cap2a and Cap2b (• =
documented change)

Cap2a Cap2b

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S6

Non-Structural Changes

C1 exchange automated ac-
tivity

• • • • •

C2 exchange language •

C3 exchange tool

Structural Changes

C4 change number of arti-
facts

• • • • • • •

C5 change number of lan-
guages

• • • • • • • •

C6 change number of manual
activities

• • •

C7 change number of tools • •

C8 change number of auto-
mated activities

• • • • •

C9 change order of manual /
automated activities

• •

O03 Structural evolution steps are most often combinations of multiple different structural changes.

Only two of the 30 observed structural evolution steps contained only one type of structural change.
In contrast, 26 of the structural evolution steps consisted of 3 or more types of structural changes.
Amongst these 26 structural evolution steps 4 included all 6 types of structural changes. The different
changes often do not only coexist but reflect the same change or even cause each other.

O04 A minor observation in that context is that only seldom a change in the order of manual and
automated activities (C9) is caused by improving an existing automated activity such that a manual

activity is no longer necessary (C6).

This happened in the fourth evolution step in case study Cap1. However, in most cases C9 was caused
by the introduction of additional automated activities (C8 ).

Trade-Offs

Based on the records of the third study, following observation on evolution decisions could be made:

O05 Structural changes are often trade-offs, e.g. with respect to costs and manageability.

For example, implementing a smaller new generation step is easier to manage than applying a change
to an existing automated activity. A further factor in such a trade-off is the weight that is given to
the different productivity dimensions. An example is the evolution step S3 in case study BO. In favor
of better consistency and quality assurance, it was taken into account that links, between model and
implementation, are no longer maintained during development.

Another example is the case study Ableton, where the initial MDE setting was successfully in use.
Nonetheless, organizational change led to the need to adapt the setting in a way that understandability
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and flexibility was improved. For reaching this overall improvement a small reduction in the degree of
automation was taken into account.
Part of such trade-offs are also decisions against changes of the MDE setting. For example, in case

study Ableton the introduction of automated support for the migration of data during the regular
changes of the DSL was not done, since it was not rated as profitable.
In other cases, such trade-offs lead to a delay of MDE evolution, only. For example, the third evolution

step in case study Cap2a included a complete new development of a generator on the basis of a new
technology. The corresponding idea existed for a while and was only implemented when a number of
other big changes to the generator became necessary.
As observation O04 suggests, in many of the observed cases it was decided to increase the degree of

automation or tool support by adding new automated activities instead of adapting existing automated
activities like transformation steps. For example, in case study Carmeq additional importers were added,
instead of adapting the existing importer. Thus, a substantial structural change that has the potential
to cause drawbacks for the changeability is accepted in favor of costs and manageability of the structural
evolution step.
Changing weights: The factors involved in such trade-offs change over time. Costs that can be

invested in an evolution step can change strongly. For example, the evolution step S4 in case study Cap1
was implemented by a developer in his leisure time. The weight that is given to different productivity
dimensions can also change. For example, evolution step S1 in case study BO was mainly driven by the
desire to increase the degree of automation. For a long time explicit conceptual modeling had a priority.
Later on the priorities change, such that efficiency and total cost of ownership became more important.
As a consequence, evolution step S5 led to reduction of the number of tools and inconsistencies at the
cost of a loss of graphical modeling capabilities, the loss of functionality to simulate status models, as
well as loss of the ability to model design alternatives.

Software Requirements

A couple of evolution steps are motivated by the need to address new requirements for the software
under construction (i.e. for the software that is usually built with an MDE setting).
For example, several evolution steps are motivated by the need for better quality.

O06 Automated checks on models to improve quality were introduced at different points in time.

Only in the case studies Cap1 and Ableton checks were part of the MDE settings from begin on.
In the other five case studies checks were introduced later on. For example, in case study BO three
evolution steps are motivated by quality issues. These evolution steps are S2, where the introduction
of S&AM enabled automated checks of behavioral constraints, S3, which enabled additional validation
activities and eliminated some potential for inconsistencies, and S4, which enabled cross checking between
models in ARIS ad the service repository. In the first evolution step in case study Carmeq the machine
readable version of models was introduced to tackle inconsistencies, too. Similarly, the introduction of
the installation script in the first evolution step in case study VCat was motivated by the need to reduce
unexpected preservation of content from former projects. Finally, the evolution steps S4 and S5 of case
study Cap2a as well as the evolution steps S3 and S7 of case study Cap2b introduced additional checks
into the respective MDE settings.

O07 Sometimes requirements on additional results of the MDE setting are motivated by the possibility
to reuse models that are already part of an MDE setting for generation of additional artifacts, such as

code or documentations.

An example for such a change is the evolution step S5 in the case study Carmeq. Here an additional
importer was implemented to extract more of the existing information from the EA models. This
enabled the generation of BSW service interfaces. Similar examples can be found in the case studies
Cap1 (evolution step S7 introduced the automated generation of specifications), Cap2a (evolution step
S2 introduced the generation of an HTML catalog), and Cap2b, where even three such evolution steps
can be found (S2, S4, and S6).
Simplification of options: Besides the two mentioned observations on new requirements on the

software under construction, a single case could be identified, where the motivation for an evolution step
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was a simplification of options for the implementation of the software under construction. In evolution
step S6 of case study BO this reduction is used to create a simplified version of the MDE setting, such
that a new target group of developers is enabled to create business objects. Thus, this evolution step
leads to the introduction of a setting that can be compared to a DSL.

Environment

Sometimes structural evolution is caused by changes in the environment of the MDE setting.

O08 A first observation in that context is that changes in an MDE setting can be driven by the need to
take other MDE settings into account.

Changes in an MDE setting that is used in a cooperating project or company can lead to new oppor-
tunities for the integration of both MDE settings. For example, in Cap1 the customer’s MDE settings
was changed, such that it based on the same framework (Enterprise Architect) as the MDE setting of
Capgemini, afterwards. As a consequence the automation and support for merging and export could
be removed in evolution step S3. A similar mechanism worked, when the MDE setting of the customer
changed, such that mock-up were modeled in the Enterprise Architect, too. As a consequence evolution
step S5 was enabled, where a partial generation of user interfaces on the basis of the mock-up model
was introduced.

Another example can be found in case study Cap2b. Here, functionality to generate an HTML
catalog was introduced in evolution step S2 of Cap2a. After that, an HTML generator was introduced
in evolution step S4 of case study Cap2b. The resulting HTML catalog is an extension of the HTML
catalog that can be generated with Cap2a for a same project. Thus, both MDE settings can be combined
to create a common result.

Interestingly the case study CsBA [72] from the second study is an example for a similar intercon-
nection of two MDE settings. Here the MDE setting for the platform migration needed to be adapted,
such that the MDE setting that is used to develop the migrated system further can be applied later on.

O09 An additional mechanism that can be observed is that changes of MDE settings are sometimes
inspired by other MDE settings.

For example, the first evolution step in Cap2b adopted the meta models and the use of the tool Power
Designer as basis for generation from Cap2a. Further, the introduction of consistency checks in evolution
step S4 from case study Cap2a is reproduced in evolution step S7 in case study Cap2b. Two further
examples can be found in case study Carmeq. The introduction of macros for the integration of figures
and tables in evolution step S2 was inspired by already available macros that were used for layout
reasons. Further, the approach to create an additional importer (instead of adapting an existing one)
during evolution step S5 was already applied in an MDE setting that is used for the generation of figures
from the AUTOSAR meta model.

Organizational change: Not only other MDE settings, but also the structure on teams can motivate
evolution of an MDE setting. For example, the introduction of a diff-tool to support merges of different
versions of a model (evolution step S6) in case study Cap1 was motivated by a change in the way how
the Capgemini team cooperated with the customer team. Before the organizational change a central
model was manipulated by the Capgemini team, only. Afterwards both teams got access to the model
and applied changes.

Interestingly, a similar situation (different teams manipulate a model and the versions cannot be
merged automatically without conflict), was approached in case study Carmeq differently. Here not the
MDE setting was changed, but the organizational structure. As a consequence only a restricted set of
people (one team) is allowed to manipulate the model. Thus, the same mismatch between development
process and MDE setting was once solved by adapting the MDE setting and once solve by adapting the
development process.

Pragmatic Developer’s Decision

Following observation on the motivation behind structural evolution steps concerns the persons who
trigger the evolution:
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O10 Some evolution steps are not planned centrally, but are caused by developers who add automation
steps to ease their daily work.

Examples, where developers evolved the MDE setting that they used themselves, can be found in the
four of the case studies. In the first evolution step in BO similar automations of the same implementation
aspects were introduced independently by developer teams that worked on different projects. Eventually,
one of the automations was chosen as standard. In case study Cap1 even four evolution steps (S2, S4, S6,
and S7) are triggered this way. As already mentioned above, the introduction of the model distillation
tool to automatically correct typical errors in an output format (S4) was even performed by a developer
in his leisure time. Finally, in case study Carmeq the macros and diff-tools (S2 and S3) were introduced
by developers and in case study VCat the planned introduction of the new repository for reuse was
triggered by the developers (and finds supported by the management).
Apart from evolution that is triggered and implemented by developers, developers might also propose

changes to the MDE setting that are then implemented by the tool vendor. For example, in Cap2b
the use of HTML generation to gain a new possibility for navigating through the model was an idea of
developers that use the MDE setting.
There are also introductions of automation steps that are not triggered by developers. For example,

the first evolution step in case study VCat and the first and fifth evolution step in the case study Cap1
were requested by the management or customers, respectively. However, it seems that developers have
relevant insights into potentials for further automation of development. More important, it seems that
developers even have an own interest in automating parts of the development.

Manage the MDE Setting

Finally, structural evolution might be motivated by the need to manage the MDE setting:

O11 The motivation of some evolution steps is to reduce the complexity of MDE settings, which can be
considered as “refactoring”.

An example of this is the introduction of the new repository (MDRS) in business object development
(evolution step S5 in case study BO). This refactoring was completed in evolution step S6, were also
the status and action management was integrated into the MDRS.
In case study Cap1 a less obvious clean-up occurs. Here the evolution steps S3 and S5 succeed changes

in the MDE setting of the customer, which can be rated as clean-up. In both cases development activities
that are performed by the customer were moved to the development tool that is used at Capgemini.
Consequently a better integration of both MDE settings was reached.
A Note on Preparation Evolution: While clean-up evolution reintegrates MDE settings that are

already complex, it is possible to find rare examples for evolution steps that prepare an MDE setting,
such that following evolution steps can be applied more easily or even without structural changes. For
example, in case study Ableton the build process is split up as a preparation for future evolution (i.e. the
goal to move process to central build server). Also in the Telefónica case study in [146] (from the second
study) the fixed DSML was substituted by a composition system for DSLs to gain better flexibility for
changing the combination of DSLs used during development.

Discussion

Subsuming, the data from the third study could be used to make eleven observations on how structural
evolution steps occur, on trade-offs that are involved and on motivations behind the structural evolution
steps. Combining these observations to a coherent picture of structural evolution, two rules of thumb
can be formulated.

Rule of thumb on trade-offs In Section 3.4 it was discussed that structural changes can affect multiple
productivity dimensions (e.g. the degree of abstraction, the complexity, or changeability). This makes
it difficult to change an MDE setting by only causing positive effects, especially when the budget is
restricted. Considering that structural evolution steps are often trade-offs (O05), it can be expected
that structural evolution steps, although leading to an overall improvement, will often also lead to
drawbacks for less prioritized productivity dimensions.
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Karaila [108] already identified a connection between Lehman’s laws [124] of software evolution and the
evolution of the DSL sold by Metso Automation. In the context of continuously changing environments
and requirements, structural evolution, which can be motivated by these factors (see O06 to O09), has to
be expected, too. This fits to the observation that structural evolution steps occur frequently on single
MDE settings (O01). Combining these observations, the following rule of thumb can be formulated:

Even if an MDE settings is already successfully used, structural evolution steps, in particular
substantial evolution steps, may occur that lead to drawbacks for productivity dimensions that are rated

with less weight.

Evolution does not equal a steady improvement towards a fixed point. There will always be reasons
for changes, such as changing technologies or new demands on the products. Even if the development is
based on a well chosen DSML with complete code generation, a (non-structural) language evolution to
fit the new demand might be very costly and thus not always possible [61]. For that reason, engineers
might decide to apply structural changes even if there are drawbacks. In practice, a first workaround
might be the decision to manually adapt generated code.

An example for this rule of thumb is the case study Ableton, which is described in detail in Appendix
B.2. There, the initial setting was adapted with small drawbacks for the degree of automation, although
it was successfully in use, before.

Rule of thumb on evolution and introduction of MDE The rule of thumb on trade-offs was formulated
on the bases of the observation that structural changes are trade-off solutions that take weights that are
associated to different productivity dimensions into account (O05). Considering that structural changes,
especially substantial structural changes, have bigger impacts than non-structural changes and therefore
can be used for significant improvements, following second rule of thumb can be formulated:

In some cases the introduction of MDE can be characterized as a result of a sequence of structural
evolution steps, in particular substantial structural evolution steps.

The idea that MDE is introduced in multiple stages is not new. However, proposals for a stepwise
introduction of MDE or MDA have often the underlying assumption that all involved evolution steps
directly contribute to the introduction of MDE. The data presented here raises the question whether
this straight-forwardness is always present under changing weights and trade-offs.

There are arguments for an introduction of MDE by evolution. First, there is the potential for better
developer acceptance, especially when developers propose the evolution steps or participate in their
implementation. Further, a stepwise introduction gives developers the chance to grow with the MDE
settings instead of being confronted with completely new requirements on their skills [15]. As Selic
noticed in [179], the previous investments have to be taken into account, as well as the fact that major
assets lie in legacy code, tools, and libraries. This is also the reason why the initially used DSML in the
Telefónica case study in [146] was the Common Information Model, which laid the foundation for the
more abstract DSMLs in later evolution steps.

An example for an MDE setting that evolved from a rather code centric approach to a model-driven
approach is case study BO, which is described in detail in Appendix B.1.

Threats to Validity

In the following, threats to conclusion validity are discussed for the presented observations on structural
evolution (for the discussion of other threats to validity see Section 4.4). This, section presents a mainly
qualitative examination of 6 evolution histories (including 33 evolution steps). Since these case studies
were selected with the aim to study structural evolution, a selection bias towards evolution histories
with structural evolution is expected. Further, structural evolution was in focus during elicitation of
the evolution steps. Consequently, conclusions on frequencies of structural evolution steps compared
to non-structural evolution steps cannot be drawn. Similarly, statements on the number of structural
evolution steps that can be expected per year should not be made on the basis of this data.

Fortunately, the data on the 33 evolution steps stems from four different companies. The fact that
all observations are based on examples of at least two companies, allows concluding that they are not
company specific.
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To enable capturing and analyzing MDE settings, the Software Manufacture Model modeling language
is introduced in this chapter.

The Software Manufacture Model language was designed, such that it allows identifying how an
MDE setting influences changeability and how MDE traits are manifested. For this design, it was first
necessary to identify required concepts. It has to be decided to which level of detail information will be
specified within the model. On the one hand, nuances in modeling concepts can turn out to be essential
to differentiate between diverse situations. On the other hand, details make the models more complex.
This, however, complicates the tasks to create and analyze models and thus decreases the applicability.
In Section 6.1 it is described how expressiveness and applicability are balanced in the language design.

The actual process of balancing included the creation of an initial design of the language, which
was published in [P6] (referred to as “initial Software Manufacture Model language” in the following).
For most concepts it was already possible to choose the appropriate level of detail. Basis for such
decisions was the question what information is required for the analysis. However, at the time of the
initial language design only rare knowledge about actual MDE settings was available. Consequently,
it was for some concepts not possible to predict whether details turn out to be relevant to distinguish
different approaches from practice. To tackle this uncertainty, the initial language design resulted in a
rich expressiveness. This concerned especially language concepts to express the extent to which content
is moved between artifacts. Another example is concepts that allow expressing in detail how sets of
artifacts are interrelated.

In a next step, this initial Software Manufacture Model language was applied to model the six already
captured MDE settings from the first study. Further the initial version of the language was used to
capture the three case studies Cap1, Cap2a, and Cap2b in context of the third study. As a result 9
models were created that altogether included 193 activities. These 193 activities from practice were
examined to identify what language concepts were used and to which degree details were modeled.

On the basis of these data the Software Manufacture Model language was designed as a simplified
version of the initial Software Manufacture Model language. Besides a couple of simplifications that
concern the syntax of the language, two main simplifications concern also the expressiveness. First, it
turned out that it is not necessary to describe detailed relations between subsets of sets of artifacts.
Here it is sufficient to express whether relations hold for all artifacts or only for a subset of artifacts of
a set. Further, not all possibilities to model nuances of overlaps in content of two artifacts were used.
Consequently, the expressiveness was reduced here, too. A detailed description of the reduction decisions
can be found in Appendix C, where also the metamodels of the initial and final language design are
compared.

The resulting Software Manufacture Model language was applied to again model the MDE settings of
the 9 case studies mentioned above. Further, the Software Manufacture Model language was used during
elicitation of the case studies Carmeq and VCat. The simplified language design proved to be sufficient
to capture the different aspects of the case studies.

The design decisions are discussed in Section 6.1. Afterwards, the Software Manufacture Model
language is introduced in Section 6.2. The use of patterns can help to capture experience that can
be associated with certain structures in the model. As an additional prerequisite for the analysis, the
Software Manufacture Model pattern language is introduced in Section 6.3.

This chapter is partially based on [P2] and [P6].

6.1. Language Design Concepts

In the following, design decisions for the Software Manufacture Model language are discussed.
First, it needs to be decided whether behavioral aspects or structural aspects should be captured.

Other modeling approaches for the investigation of MDE (e.g. megamodels) most often address the
structural aspects, i.e. the question how artifacts are interrelated [P5]. However, information about a
specific state of artifact relations is not sufficient for an investigation of changeability support or the
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interrelation to software development processes. For these tasks, it is rather important to know how
the artifacts and their relations can be changed when activities are performed. Therefore, the Software
Manufacture Model language is designed as behavioral language, more precisely as process language.

In the following, the main concept of the language introduced and discussed.

6.1.1. Object Flow

For an investigation of the process interrelations and changeability the complete set of technically possible
activity orders needs to be considered. Process languages focus either on control flow or on object flow.
In seldom cases a language (e.g. UML activity diagrams [156] or BPMN [157]) can be used to express
both – either simultaneously or alternatively. In the following, both possibilities are compared and it is
explained, why the language for MDE settings was designed with a focus on object flow.

This decision shall be illustrated on the EMF example (Section 2.6).

Example 1

Figure 6.1 shows an object flow of the involved activities as they are described in Section 2.6.

Figure 6.1.: Object flow of EMF example (Section 2.6). Notation based on UML activity diagrams [156].

A simple and intuitive control flow for this example is shown in Figure 6.2. Here activities are ordered
and the last activity “manipulate implementation” can be performed multiple times. This loop in
the control flow reflects the differences in the cardinality of artifacts that are handled in the different
activities. While “generate java code” produces multiple “ interface implementations”, “manipulate
implementation” represents manipulation of a single “ interface implementations”, only.

Figure 6.2.: Intuitive simple control flow of EMF example (Section 2.6). Notation based on UML activity
diagrams [156].

The shown intuitive control flow is easy to perceive. However, it reflects a small subset of all possible
orders of the activities, only. Besides differences in the cardinality other reasons for branches and loops
in the control flow exist. Figure 6.3 illustrates different control flow edges that have to be added for
different reasons. The edge that is cause by the difference in cardinality of the consumed and produced
artifacts is illustrated in blue. Another reason is the fact that activities can be optional (referred to
as optionality in the following). For example, the activities “manipulate genmodel” and “manipulate
implementation” are optional, since they are not necessary to create a running system (e.g. for some use
cases it is possible to build or manipulate a system without these activities). The edges that represent
this optionality in the control flow are illustrated in brown. A third reason is a change of the system.
Thus, an already completed system might be changed due to new requirements. The control flow might
restart at every manual activity in the process. Edges that represent this change are illustrated in red.
Finally, implementation of systems is always an error-prone activity. Therefore, many options in control
flow result from error correction activities (illustrated in green). Such edges might originate from every
point in development, where new or changed artifacts become available or are used for further activities.
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Similar to changes of the system, correction activities might restart at every manual activity that was
performed before the need for the correction was identified.

Figure 6.3.: Control flow edges that are introduced to represent orders of activities that are caused by
different reasons (distinguished by color). Notation based on UML activity diagrams [156].

A closer look at the resulting control flow from Figure 6.3 reveals that some edges that are introduced
for different reasons are duplicates. Therefore, in Figure 6.4 the control flow without these duplicates is
shown. The edges that are illustrated in purple represent control flow that can be caused by different
reasons. For example, the repetition of activity “manipulate implementation” can represents that the
activity is performed on multiple artifacts, that the activity is performed again to correct an error, or
that the activity is performed to implement a new requirement.

Figure 6.4.: Complete control flow for EMF example (Section 2.6). Notation based on UML activity
diagrams [156].

This example shows that an illustration of the complete control flow (i.e. all technically possible orders
of activities) can result in a complex model, even if only few activities are considered. In addition to
optionality, changes of the system and correction activities, which can be observed in this example, also
alternative activity chains can become relevant in other cases.

However, when approaching analysis goals like the identification of the lengths of activity chains
or synchronization points, it is necessary to identify what orders of activities are possible and what
orders are not. For example, based on the intuitive control flow shown in Figure 6.2, the minimum
number of activities to introduce a change in activity “create ecore model” would be rated to high,
since “manipulate genmodel” might not be required. In addition, it is relevant to differentiate between
different causes for activity orders (e.g. whether an order represents one of the alternative activity chains
or results from a correction loop). For example, in context of a change or correction after “manipulate
implementation”, this activity can be followed by “manipulate genmodel” and “Generate Java Code”.
This kind of order between “manipulate implementation” and “Generate Java Code”, however, needs
to be differentiated from the order between “manipulate genmodel” and “Generate Java Code”, when
reasoning about whether activity “Generate Java Code” is a synchronization point (see Section 3.3.3).

Subsuming, it is difficult to create control flow models that reflect all possible control flows (or all
control flows excluding cycles for changes and error correction). In contrast, it is relatively easy to create
object flow models (e.g. as shown in Figure 6.1), which include constraints on the order of activities.
Since these object flow models can be used to derive the required information about control flow, the
language design of Software Manufacture Models focuses on object flow.

To enable reasoning about the possible control flows, the Software Manufacture Model language will
allow to model cardinalities for consumed and produced artifacts. Therefore, the concept artifact role
is introduced. Instead of modeling artifacts, only artifact roles are modeled. During development one
or more artifacts can have the same artifact role. An artifact role can be illustrated multiple times in a
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model. This can enhance readability, since an artifact role might be used in multiple activities. Figure
6.5 illustrates how this can look like for the EMF generation example.

Figure 6.5.: Activities of the EMF example (Section 2.6). Notation based on UML activity diagrams
[156].

6.1.2. Pre und Postconditions

The language should be a basis for the analysis of an MDE setting’s influence on changeability concerns.
The hard changeability concerns “unexpected loss or preservation of content of artifacts” and “unexpected
loss or preservation of references between artifacts” deal with changes in the content of artifacts as well
as references between artifacts (see Section 3.2.2). Consequently, the language requires concepts that
allow expressing how content and references change when activities are applied.
Therefore, a concept is introduced to express preconditions and postconditions on relations between

consumed and produced artifacts. Such relations can be information about content overlaps (i.e. how
is the content of two artifacts related) or information on the existence of explicit references from one
artifact to the other. Without information about changes in the content relations and references between
artifacts, it is barely possible to reason about the actual character of an activity.

Example 2

For example, the activity shown in Figure 6.6 can have quite different consequences. Three examples
are the following:

Figure 6.6.: Example activity “configure test application” with two input artifacts, where one of them is
also output artifact of the activity. Notation based on UML activity diagrams [156].

❼ “Build configuration” is completely overwritten by a generation based on “tests”. This might
happen, when the activity “configure test application” is an automated activity that was imple-
mented to support developers in creating the “build configuration”. However, such an activity
can lead to problems, when the generated “build configuration” is not complete and needs to be
finished manually. Thus, when the activity is performed a second time to address changes in the
“tests”, the hard changeability concern unexpected loss of content is affected.

❼ “Build configuration” and “tests” are merged and the result is written to “build configuration”.
This version of the activity might be applied to prevent the problem of the previous version. How-
ever, in this case another hard changeability concern might be affected: unexpected preservation
of content. When “tests” are changed and the activity is executed again, the full content of “build
configuration” is preserved – including the content of the previous version of tests, which might
still be part of “build configuration” (if it was not removed by another activity).
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❼ “Build configuration” is changed, so that it has a reference to “tests”. This reference can be a
precondition for the later execution of the “tests” or even the whole execution of the system (if the
corresponding interpreter refused to execute “build configuration”, when a reference to “tests” is
missing).

This example illustrates that the impact of an activity on changeability cannot be predicted only
on the information about consumed and produced artifacts. However, this prediction can be improved
when information is available about created references and moving content. Another reason for the
introduction of these concepts is that they allow excluding impossible or useless orders of activities.
This shall be illustrated on an example here.

Example 3

In Figure 6.7 two activities are shown: “adapt configuration” and “ interpret”. Figure 6.7 provides only
some information about the possible orders of these two activities.

Figure 6.7.: Example of two activities with unclear order. Notation based on UML activity diagrams
[156].

Both consume the same artifacts and none of them initially creates an artifact that is consumed
by the other. The only hint for a possible order is the fact that “configuration” is adapted in “adapt
configuration”. Thus, it might be desired that the results of this adaption are available when “ interpret”
is executed. However, this might not be necessary. The activity “adapt configuration” might be used
for a readjustment, e.g. to enter a mode where logging is more detailed. In this case it is possible to
perform activity “ interpret” without a preceding execution of activity “adapt configuration”. Thus,
given Figure 6.7, only, it is barely possible to exclude orders of these two activities.

Figure 6.8.: Example of two activities with more clear order. Notation based on UML activity diagrams
[156].

However as shown in Figure 6.8 information about preconditions and postconditions, concerning
explicit references between artifacts, helps to exclude orders of activities. Here, the activity “ interpret”
has the precondition that the “system” is referenced by the “configuration”. Further, activity “adapt
configuration” creates such a reference. Given a situation where activity “adapt configuration” is the
only activity in the MDE setting that creates this reference, it can be excluded that activity “adapt
configuration” is not executed before activity “ interpret”.

The example illustrates how important information about the discussed pre- and postconditions can
be for excluding impossible orders of activities. When it is not possible to exclude enough wrong orders
of activities this can have impact on the evaluation of the length of activity chains or on the ability
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to identify synchronization points. For example, when the necessity to execute some activities is not
visible on the basis of input and output artifacts, only, the minimum length of an activity chain might be
estimated too short. Further, if it is not possible to identify that certain activities can only be executed
after an activity under study, the identification of this activity as synchronization point might be missed.
When introducing a concept to express how the content between two artifacts is related, the question

arises, to which level of detail such content relations should be expressed. For example, it is possible
to distinguish between an overlap of the contents of both artifacts and a situation where the content
of one artifact is completely included in the content of the other artifact. Here, the application of the
initial Software Manufacture Model language to MDE settings from practice helped to balance the level
of detail according to what was actually used (the resulting supported level of detail is described in
Section 6.2.1).

6.1.3. Degree of Automation

In order to evaluate what manual effort is required during development and to identify manual infor-
mation propagation, information about the degree of automation of activities is required. Further, the
information about the degree of automation is necessary to identify situations, where hard changeability
concerns might be affected. Consequently, the Software Manufacture Model language should include a
concept to explicitly express the degree of automation for activities.

Figure 6.9.: Example for two activities where the hard changeability concern unexpected loss of content
might be affected, depending on the degree of automation. Notation based on UML activity
diagrams [156].

Example 4

Consider, for example, the two activities that are shown in Figure 6.9. The first activity “generate
system” can be used to create a system implementation in Java on the basis of a “system specification”
that is formulated in a DSL (“aDSL”). The second activity “configure system” manipulates a system
implementation and consumes therefore a “specification of the target-platform”. While the name of the
first activity allows guessing that this activity is automated, it is not clear whether the second activity
is automated or not.

Consider the following situation: “system” was initially built (e.g. both activities were executed
once) and, subsequently, the “system specification” is adapted due to the changing requirements. To
propagate the changes into the “system”, both activities might be executed again. Activity “generate
system” creates a new “system specification” and might even overwrite the old system specification. In
this situation the cases that “configure system” is a manual activity or completely automated need to
be distinguished. If “configure system” is a manual activity all manual effort that was put in the initial
configuration of the system has to be invested again. Thus, the hard changeability concern unexpected
loss of content might be affected here. However, the situation changes immensely, when “configure
system” is completely automated. In this case no manual effort has to be invested at all. Instead the
automated configuration is just executed again.

This example illustrates that absence of information about the degree of automation prevents an
automated identification of some harmless situations (i.e. exclusion of risks). As a consequence, more
situations with a potential to be problematic need to be investigated manually, when analyzing an MDE
setting. Thus, it becomes clear that an explicit inclusion of information about the degree of automation is
important. Theoretically, this information can be provided at different levels of detail. For example, the
initial Software Manufacture Model language did allow a distinction which artifact relations in a semi-
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automated activity are established manually, semi-automatically, or fully automated. However, this
option was barely used. In most cases all artifact relations in a semi-automated activity are established
semi-automatically, too. Therefore, the degree of automation will be expressed per activity.

6.1.4. Hierarchy

Many technologies for automated generation, transformation, or synchronization of software artifacts
take advantage of separation of concerns within artifacts. On this basis the technologies can support
changeability by preserving parts of artifacts (e.g. protected regions) or by working incrementally. To
make such local access to artifacts visible, the language shall include a concept to illustrate hierarchy
of artifacts. Similar to the degree of automation, the ability to model hierarchically encapsulated arti-
facts can help to exclude risks to changeability for some situations, without the need to examine them
manually.

Figure 6.10.: Example for two activities, where it cannot be excluded that the hard changeability concern
unexpected loss of content is affected. Notation based on UML activity diagrams [156].

Example 5

Let’s consider another variant of the example from Section 6.1.3. For this example (shown in Figure 6.10)
time it is known that activity “configure system” is a manual activity. In addition, activity “generate
system parts” does not only produce the “system” artifacts, but also considers their former versions
during execution. Based on the model in Figure 6.10 it is not possible to say whether both activities
lead to a manipulation of the same parts of the artifact or not. As a consequence it cannot be excluded
that the hard changeability concern unexpected loss of content is affected.

However, the introduction of hierarchy into the models can help to identify situations where different
parts of an artifact are accessed. In Figure 6.11 one such example is shown. In this case it is shown that
the automated activity “generate system parts” manipulates the “main-method” of the class, while
the manual activity “manually configure system” is restricted to the “class attributes”. Given the
knowledge that both parts of the artifact, “main-method” and “class attributes”, do not overlap, it is
possible to exclude the risk that the hard changeability concern unexpected loss of content is affected in
this example.

Figure 6.11.: Example for two activities, where the knowledge about the artifact hierarchy allows to
exclude that the hard changeability concern unexpected loss of content is affected. Notation
based on UML activity diagrams [156].

The language will not include a restriction concerning the depth of the nesting. Further, the nesting is
for now not checked for conformance to the language specification of the exterior artifact. This is on the
one hand a pragmatic decision, since such a check would require knowledge of language specifications,
like grammars or meta models, of all languages and artifact types used in the modeled MDE setting.
On the other hand, the separation within the artifact is not necessarily attached to elements of the
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language, but is often marked in form of special comments. For example, protected regions within the
EMF generation of models are marked with the comment “@generated NOT”.

6.2. Software Manufacture Models

As a modeling language for capturing MDE settings the Software Manufacture Model language is intro-
duced in this section. A Software Manufacture Model is defined here as

a special process model, where the characterization of MDE activities captures how artifact
relations change.

Thus, Software Manufacture Models combine software process models with information how process
activities change or can change the megamodel of the system (i.e. the relations between models and
other development artifacts).

Figure 6.12.: Meta model of Software Manufacture Model language

In Figure 6.12 the meta model of the Software Manufacture Model language is shown. In the next
Section the different aspects of the Software Manufacture Model language are introduced in detail,
followed by a set of examples. In Section 6.2.2 a simplification mechanism is presented that enables
a compact notation of complex activities. The semantic of activities with respect to changes in a
megamodel is explained in Section 6.2.3 and following in Section 6.2.4 the terms predecessor and successor
are introduced to allow reasoning about the order of activities in a Software Manufacture Model.

6.2.1. Language Description

A model consists of activities, artifacts, and connectors. A connector connects an artifact to a pin. Such,
pins belong to activities and represent their input and output parameters (i.e. pins are the connection
points between an activity and artifacts). Together, these four meta model elements can be used to
express object flow in Software Manufacture Models.
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As shown in the notation key in Figure 6.13, the notation of activities and artifacts is similar to the
notation of UML activity diagrams [156]. Activities are shown as rectangles with rounded corners and
artifacts are shown as rectangles. Pins are shown as small squares at the edging of an activity. Connectors
are shown as arrow. In case the connector connects an artifact to an input pin, the arrowhead directs
to the pin. Else, in case the connector connects an artifact to an output pin, the arrowhead directs to
the artifact.

Figure 6.13.: Concrete syntax of Software Manufacture Model language

Figure 6.14 shows on a part of the EMF generation example how these four introduced model elements
can be used to express object flow. It is possible that the same artifact is connected to two activities
(e.g. “ecore model”). Alternatively, an artifact might be modeled twice to enhance readability of the
model (e.g. “emf generator model”).

Figure 6.14.: Modeled object flow of a part of the EMF example (Section 2.6).

Activities

An activity is identified by a name, which can be chosen, such that it informally describes the activity. As
already mentioned above each activity consists of two potentially empty sets of pins: input pins (inPins),
and output pins (outPins). Artifacts that are connected to input pins belong to the precondition of the
activity and are consumed by it. Artifacts that are connected to output pins belong to the postcondition
of the activity and are produced by it (or modified, in case the artifact is also connected to an input
pin).

Further, an activity has a potentially empty set of links, which are used to further describe precondition
and postcondition of the activity concerning the relations of artifacts that are consumed, produced, or
modified by the activity. Finally, an activity has a mode. This mode describes the degree of automation
of that activity as automated, semi-automated, or manually.
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As summarized in Figure 6.13, the mode of an activity is illustrated by a rectangle that is placed at the
upper left corner of the activity. The rectangle is white for mode manually, black for mode automated,
and black and white for mode semi-automated. For example, in Figure 6.14 three activities from the emf
generation example are shown (illustrated without links). Activity “create ecore model” is a manual,
while “create emf generator model” is automated. In Figure 6.15 the semi-automated activity “generate
proxy” from the case study SIW is shown.

Figure 6.15.: Representation of activity “generate proxy” from case study SIW without specification of
links

Artifacts

An artifact in the model represents a role, actually. During application of an MDE setting there can be
multiple artifacts that fulfill this role. For example, there might be multiple Java source code files that
are compiled during the same compilation activity.

A modeled artifact has a role name. In addition, a type can be annotated to indicate that different
languages or file formats are used. As summarized in Figure 6.13, role name and type are separated by
a colon. For example, the artifact that is consumed by the activity shown in Figure 6.15 has the role
name “service signature” and is of type “WSDL”. In contrast the produced artifacts are only annotated
with role names.

Connectors

A connector connects a modeled artifact to a pin. In addition a connector has an upper and a lower
multiplicity. This multiplicity defines how many artifacts that fulfill the role of the modeled artifact
can, during execution, be consumed or produced by the activity in the way that is described for the
connected pins. The lower multiplicity describes the minimum number of artifacts, while the upper
multiplicity describes the maximum number of artifacts. When the maximum number of artifacts is not
constrained (i.e. can be arbitrarily high) the upper multiplicity is set to “*”. Per default lower and
upper multiplicities are equal to one. In this case, they do not need to be annotated in the model.

As summarized in Figure 6.13, the multiplicity is annotated to the connector. The lower multiplicity
precedes the upper multiplicity. For example, in Figure 6.16 activity “generate java code” from the emf
generator example is shown. One artifact of the role “ecore model” is consumed and arbitrary many
“interface implementations” might be produced.

Figure 6.16.: Representation of activity “generate java code” from EMF generation example without
specification of links and pin types
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Pins

A pin belongs to an activity and has a pin mode, which is either unspecified, manual enrichment,
or definition (as specified in the metamodel in Figure 6.12). The mode definition describes that the
artifacts connected to the pin define how the activity is automatically executed (such as a transformation
specification). A pin of this mode is an input pin. The mode manual enrichment describes that the
artifacts connected to the pin are enriched manually with content that was not there in any input artifact
during the activity. A pin of this mode is an output pin. All pins that are neither manual enrichment
pins nor definition pins are unspecified. As summarized in Figure 6.13, unspecified pins are annotated
as white squares. Pins of mode manual enrichment are annotated as squares with a stick man inside.
Finally, a pin of mode definition is shown as a square with a “D” inside.

As already indicated above, a connector between an artifact and a pin defines a multiplicity. Pins
that allow the consumption of more than one artifact (i.e. where connectors with an upper multiplicity
greater than one or multiple connectors are attached) are modeled as set pins. Each pin is either a set
pin or not. As summarized in Figure 6.13, a set pin is shown as a square with an “S” inside.

Three example activities are shown in Figure 6.17. The artifact “tests” is connected to the manual
activity “adapt tests” via an input pin and an output pin, which is a manual enrichment pin. This
indicates that the developer, who performs the activity, does not only introduce content from the other
input artifact “implementing class” to artifact “tests”. For example, the developer might extend “tests”,
such that a special case is taken into account. The activity “execute transformation” has a definition pin,
which is connected to artifact “transformation specification”. This indicates that this artifact specifies
how the activity consumes “model 1” to produce “model 2”. Finally, the activity “merge into” consumes
multiple “models”, which are merged into the “documentation”.

Figure 6.17.: Representation of three activities: “adapt tests”, “execute transformation”, and “merge
into”, without specification of links

Links and Relations

Links are used to describe what relations between artifacts belong to the precondition and postcondition
of an activity. Links are modeled between two pins (a start and an end). Both pins can be input pins
or output pins of the activity that contains the link. Links that are modeled between two input pins
belong to the precondition of the activity and thus describe what artifact relations are required before
the activity can be executed. Links between two output pins, links from an input pin to an output pin,
and links from an output pin to an input pin belong to the postcondition of the activity. Thus, these
links describe what (new) relations exist between artifacts after the activity was executed.

A link has a relation, which specifies how artifacts are related to each other. The relation is formulated
in the direction specified by the link, e.g. artifacts connected to the start pin are in this relation to
artifacts connected to the end pin. When artifacts are connected to an input pin and an output pin
as well, links that are connected to the input pin describe relations to the consumed version of the
artifact (i.e. the version of the artifact that existed before the activity was executed) and links that
are connected to the output pin describe relations to the resulting version of the artifact. Thus, a link
between an input pin and an output pin that connected to the same artifact can be used to express how
the artifact changed. As summarized in Figure 6.13, links are modeled as arrow between two pins within
the activity. The arrowhead directs to the end pin of the link and the relation is annotated alongside
the link.

There are three types of relations: two basic relation types as well as set relations, which are used to
describe for which subset of artifacts that are connected to a set pin a basic relation holds. The two
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basic relation types are content relations and artifact relations. When one or both of the connected pins
is a set pin, the relation needs a set relation.
Content relations describe how the contents of two artifacts are related to each other. There are

three content relations that can be modeled within Software Manufacture Models: overlap, equal, and
unequal. An overlap can be used to express that the contents of both artifacts overlap. For example,
system aspects that are specified in a platform independent model are also included in a corresponding
platform specific model within an MDA approach. This platform specific model includes additional
content that concerns the platform specific aspects. An overlap between the content of artifacts can
also occur when different views or aspects of the same system parts are expressed in two artifacts (e.g.
of architecture and behavior). For example, objects that are modeled in a sequence diagram contain
information about what classes are parts of the system, which is also content of a corresponding class
diagram.
An equal relation is a more specialized form of an overlap relation. Here it is expressed that none of

both artifacts contains content that is not contained by the other, too. This happens, when copies of
artifacts are created (e.g. when a release is published) or in case of transformations, that just translate
artifacts between two languages. Content relations of type equal or overlap that are modeled between
input pins and output pins (or in the other direction) express that content flows from the artifacts that
are connected to the input pin to the artifacts that are connected to the output pin.
An unequal relation can be used to explicitly express that the contents of the connected artifacts are

not completely equal. For artifacts that are connected to an input pin and an output pin of the activity,
unequal relations can be used to express that the resulting version of the artifact is created during the
activity new. Content is not systematically preserved from the consumed version of the artifact and
overlaps in content are rather random. In contrast, an overlap relation between the consumed and
resulting version of an artifact, indicate that – although content might be changed – parts of the content
are preserved.
As summarized in Figure 6.13, the link annotation for content relations is accompanied by a “C”.

Thus, a link with an overlap relation is annotated with
⋂

C
, a link with an equal relation is annotated

with =C , and a link with an unequal relation is annotated with 6=C .
Artifact relations are direct relations between two artifacts. This includes at the one hand the existence

of explicit references between artifacts: references relations and referenced by relations. On the other
hand there are containment relations: contains relations and contained by relations. Containment
relations are used to express that one artifact is part of another artifact. For example, a method is a
part of a class. Thus, a method is contained by a class and a class contains a method.
As summarized in Figure 6.13, a link with a references relation is annotated with Refs, a link with

a referenced by relation is annotated with RefBy, a link with an contains relation is annotated with
Contains, and a link with a contained by relation is annotated with ContainedBy.
Finally, set relations can be used to express content relations or artifact relations between artifact sets

that are connected to set pins. Set relations consist of a relation scope and a basic relation, which is
either a content relation or an artifact relation. The relation scope can be used to define for what parts
of the artifact sets, which are connected to the two pins, the described basic relation holds. The default
relation scope is ForAllForAll, which indicated that each artifact in the set of artifacts connected to the
start pin is in the described basic relation to each artifact in the set of artifacts connected to the end
pin. The relation scope ForAllSubset is similar to a ForAllForAll scope with the difference that only
a subset of the set of artifacts connected to the end pin is affected. Thus, ForAllSubset indicates that
each artifact in the set of artifacts connected to the start pin is in the described basic relation to each
artifact in a specific subset of the set of artifacts connected to the end pin. Finally, the relation scope
ForAllElement is a special case of the relation scope ForAllSubset, where the affected subset of artifacts
connected to the end pin has the size one. Thus, ForAllElement indicates that each artifact in the set
of artifacts connected to the start pin is in the described basic relation to a specific artifact in the set of
artifacts connected to the end pin.

In practice it is sufficient to use relation scopes where one of both sets is restricted, only. The possible
relation scopes defined for Software Manufacture Models are one-sided in a sense that this restriction is
defined for the set of artifacts connected to the end pin. This implies no constraint, since the direction
of the link is not bound to the question what artifacts are consumed and produced by the activity.
Further, content relations are symmetric (i.e. the meaning does not change with the direction) and
artifact relations can be expressed in both directions (e.g. references vs. referenced by).
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In principle links and relations modeled for a set might be split up to modeled links and relations for
the single artifacts within the set. However, this might lead on the one hand to redundant information,
and is on the other hand only possible if the exact number of artifacts in the set is known.

As summarized in Figure 6.13, the link annotation for set relations with ForAllForAll prefix consists of
the annotation of the basic relation, only. The link annotation for set relations with ForAllSubset prefix
consists of the annotation of the basic relation followed by {⊂}. The link annotation for set relations
with ForAllElement prefix consists of the annotation of the basic relation followed by {∈}.

Example 6

To get an impression how the above introduced language looks like, the models of four activities are
presented in the following. All four activities have basically the same structure as the example from
Figure 6.6 in Section 6.1.2: there are two consumed artifact roles and one of them is output of the
activity as well.

The first example is the activity “adapt tests” that is shown in Figure 6.18. “Adapt tests” is a
manual activity, where tests are adapted manually with respect to an implementing class. Content
of the “ implementing class” is moved to “tests”. Also the input version of artifact “tests” overlaps
with the output version of this artifact, which indicates that the content is modified. Finally, the
manual enrichment pin indicates that the new content of “tests” is not only propagated content from
“ implementing class”, e.g. like new covered test cases.

The second example in Figure 6.18 is the automated activity “generate new”. The activity models a
generation step that takes a model and generates a new version of source code (i.e. content is moved
from the “model” to the output version of the “code”). The content of the old input version of the
code is not preserved (i.e. the artifact is overwritten – there is no systematic equivalence between input
version and output version of the “code”).

Figure 6.18.: Activities “adapt tests” and “generate new”

In Figure 6.19 the activity “configure test application” from Figure 6.6 in Section 6.1.2 is shown
in Software Manufacture Model notation. Now it can be seen that the consequence of the activity is
that the “build configuration” is changed, such that it gains references to “tests” (i.e. as a result of
the activity the tests that shall be executed are references by the build configuration). The activity is
semi-automated, i.e. there is tool support, but addition manual decisions are required.

A fourth activity is “merge into” which is shown in Figure 6.19, too. “Merge into” automatically
merges multiple “models” into the “documentation”. This is modeled by a multiplicity at the connector
from artifact “models”. The content of the “documentation” is modified, but mainly preserved (modeled
by the overlap relation). Further, the set relation between the pin connected to “models” and the out
pin connected to the “documentation” has a ForAllForAll scope, which is default. Thus, content from
each “model” is moved to the “documentation”.

A more complex example for an activity is shown in Figure 6.20. The activity “generate java code”
stems from the EMF example (Section 2.6) and consumes the artifacts “ecore model” and “emf generator
model” in order to generate a set of “ interfaces”, “adapter factories”, and “ interface implementations”.
It is a precondition of the activity that the “ecore model” is referenced by artifact “emf generator
model”. Content of these two artifacts is used to create the produced artifacts. Finally, artifact “ interface
implementation” contains a part that is referred to as “generated NOT”. Sets of both artifacts can be
consumed by the activity, too.

The links describe the relations between the sets of input versions of both artifacts and the set of
output versions of “ interface implementation”. The first link describes that each consumed “ interface
implementation” overlaps in content with one of the created “ interface implementations”. Thus, the ac-
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Figure 6.19.: Activities “configure test application” and “merge into”

Figure 6.20.: Activity “generate java code” from EMF example (Section 2.6).

tivity does not only produce “ interface implementations”, but can also adapt already existing “ interface
implementations”. The second link describes that each consumed version of artifact “generated NOT”
is afterwards contained by one of the created or manipulated “ interface implementations”. Thus, the
activity “generate java code” preserves the artifact “generated NOT” when it is executed to manipulate
“ interface implementations”.

6.2.2. Notation of Complex Activities

On average each of the 228 activities that were captured for the 11 case studies of MDE settings
from the first and third study, contains about 2 links. However, there are some (mostly automated)
activities that consume and produce multiple artifacts and consequently contain more links. To tackle
this complexity, the Software Manufacture Model language was initially introduced with some strategies
to model activities more lightweight. Four steps of these strategies turned out to be useful during
capturing and modeling the 11 case studies from practice.
To illustrate these steps one of the most complex activity from the case studies is chosen. The

activity “Generate Code” from case study SIW consumes a configuration, context parameters, a set of
templates, and a “proxy class” with its methods as input. On that basis, “Generate Code” produces
an implementation for the methods of the “proxy class”, different artifacts for a “data dictionary”,
different ABAP objects that include static parts and code slots for later completion, a “mapping class”
that also includes static parts as well as a mapping slot for later completion, and finally different further
objects, such as “Table Entries” and “BAdl Definitions”. The consumed configuration defines how
“Generate Code” is executed, comparable to a transformation specification. The mapping class is an
ABAP object that is exposed here, since it is treated differently in further development steps. The proxy
class already exists before the activity is executed, and has to be completed by “Generate Code”. In
this special example, there are not only much different output artifacts, but that it is not clear before
execution, which artifacts exactly are produced. The reason is that the set of produced artifacts depends
strongly on the used templates, which are referenced in the configuration. In Figure 6.21 the compact
characterization of the activity is shown.
Note that a main part of the complexity of this example activity stems from the fact that the results

depend strongly on the actually used template. Thus, for an analysis on an MDE setting such an activity
might be substituted by a more concrete activity that describes the effects of the activity for a specific
template. However, the activity as is shown was captured during the studies.
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Figure 6.21.: A compact characterization of the activity “GenerateCode” from case study SIW

Especially in automated activities that allow an extensive configuration or base strongly on templates,
it happens that a flexible number of diverse artifacts might be created or consumed. To tackle such un-
certainties during modeling the modeler can in a first step introduce “wildcards”. A wildcard represents
a set of artifacts with different roles and types that are treated within the activity as well as in the fol-
lowing development steps equally. In the example in Figure 6.21, three such wildcards were introduced:
the Data Dictionary Artifacts, the ABAP Objects, and the Objects. Fortunately, the wildcard concept
was required in three of the 228 activities, only. However, as in the shown example, the use of wildcards
is for some activities essential and enables capturing the actual complexity while creating a model that
is readable.

The next step for tackling complexity is the introduction of “internal sets”. This means that different
input artifacts (respectively output artifacts) on an activity that have similar relations to other artifacts
can be treated within the activity characterization as one set. Thus, the different artifacts are connected
to the same set pin. For example, each “template” has a content overlap with a subset of all output
artifacts. Further, each output artifact has a content overlap to the “context parameters”. Consequently,
nearly all output artifacts can be summarized in one “internal set”. Exceptions are only the “method”s,
which have further relations. Internal sets were used to model eight of the 228 activities.

The use of wildcards and internal sets, can lead to a loss of detail information when the relations
of the combined artifact actually differ. For example, a combination of a content equal relation and a
content overlap relation can result in a set relation that describes a content overlap for each artifact in
the set. The detailed information that content between some of the artifacts does not only overlap, but
is equal, gets lost.

In a third step, the activity can be modeled more clearly, when links describing the same relations are
optically joined. For example, the two links between the “templates” and the above described internal
set and the “method”s, respectively, are illustrated this way.

Finally, containment relations between two consumed or two produced artifacts might not be illus-
trated as links within the activity, but external. For example, the illustration of “proxy class” and
“method” in Figure 6.21 shows that the “methods” are a subset of the “proxy class”. The same holds
for the “static parts” and “slots” within the “ABAP objects” and “mapping class”.

6.2.3. Activity Semantic

The semantic of a Software Manufacture Model activity can be described as a set of possible changes
in a megamodel that stores the actually available artifacts as well as their relations. The set of changes
that are described by an activity results from the set of possible application points as well as the freedom
given by unspecified side effects as well as freedom in specified results.

An application point is the set of artifacts (in the megamodel) that can be used to apply an activity
on. The artifacts fulfill the artifacts roles that are specified as input of the activity, such that each
specified artifact role is mapped to zero, one, or more artifacts in the application point according to
the specified multiplicities and that all preconditions defined by the activity are fulfilled (e.g. specified
relations between consumed artifacts exist). In each situation during development multiple application
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points might exist for an activity. For example, there may be multiple artifacts that might fulfill the same
consumed artifact role specified by an activity. Further, the number of artifacts in an application point
can vary, when the corresponding activity consumes a set of an artifact role with a variable multiplicity
(e.g. 1..*). Whether, when an on which application point an activity is actually executed is a decision
that is made by the developers (or within a transformation chain, by the corresponding specification).
The application of an activity to an application point leads to two forms of changes. On the one hand

there are possible changes that are not specified explicitly by the activity, but have to be expected as
possible side effects. On the other hand there are the changes that are explicitly specified by the activity.
When artifacts are only produced by an activity it is easy to specify all created relations, to other

artifacts. However, artifacts that are changed in an activity (i.e. artifacts that are input as well as
output of the activity) might already have relations to other artifacts before the activity is executed.
Thus, a part of the artifact might be referenced by other artifacts, the artifact itself might reference other
artifacts, and the artifact might have content overlaps to other artifacts (or can be equal in content).
These other artifacts are not necessarily considered in the activity. Consequently, such relations might
get lost (but do not need to) as a side effect when the activity is executed.

Artifacts roles that are specified as output of an activity, only, lead to the creation of artifacts. The
number of created artifacts for an artifact role can vary corresponding to the specified multiplicity.
When old versions of the artifact existed, these are not taken into account, i.e. a completely new artifact
is created (with own relations to other artifacts). In practice this new artifact might be stored by
overwriting the old artifact.
Relations can be created for all artifacts that are consumed, manipulated, or produced in an activity.

Again the actual number of relations depends on the actual number of artifacts mapped to the artifact
roles, but also on the relation scopes of set relations. Between two produced or manipulated artifacts
(i.e. relations specified between two output pins) or between a consumed and a produced or manipulated
artifact (i.e. relations specified between an input pin and an output pin), content overlap and equals
relations, references, and referenced by relations are created as specified in the activity. A specified
content unequal relation leads to the explicit deletion of content overlap and equals relations between
the corresponding artifacts. Finally, specified containment relations reflect that an artifact is or becomes
part of another artifact.
Content overlap and unequal relations between an input pin and an output pin that is connected to

the same artifact role indicates that the corresponding artifacts change. As a consequence the above
described possible loss of relations to other artifacts can occur. However, when an equal relation is
described between an input pin and an output pin that is connected to the same artifact role, this
indicates that this loss of relations will not happen (since the content of the artifact is not changed).
Note that if an artifact role is connected to an input pin and an output pin of an activity, a link that
is connected to the input pin describes a relation to the consumed version of the artifact role. In case
of a content relation this indicates that content of the consumed version of the artifact is moved to this
other artifact.

6.2.4. Activity Orders: Predecessors and Successors

As explained above, one reason for basing the Software Manufacture Model language on the description
of pre- and postconditions of activities is to enable an analysis of technically possible orders of activities.
It is less important to derive a set of all possible order of activities for all concerns at once, than to
answer questions what activity orders might be applied for specific concerns. Two central questions are:

❼ Which activities need to be executed to gain a specific resulting artifact “X”? Thus, it is a question
which activities are predecessors for an artifact.

❼ Which activities need to be executed to propagate changes from the specific artifact “Y” to the
resulting artifacts? Thus, it is a question which activities are potential successors of another
activity.

Therefore, following terms are defined here: A predecessor set of a specific activity or artifact is a set
of activities that are sufficient to create the precondition for the specific activity or to create the specific
artifact. A predecessor of a specific activity or artifact is an activity that is part of a predecessor set
(i.e. an activity that might be executed in order to create the precondition of a specific activity or to
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create the artifact). For each activity or artifact multiple predecessor sets might exist (i.e. there might
be alternative ways to enable the activity or create the artifact). A successor of a specific activity is an
activity for which the specific activity is a predecessor. Note that – with this definition – none of both
terms, predecessor and successor, refer to activity orders that result from correction or change of the
system.

Further, a start activity is defined here as an activity without predecessor. Not only activities without
precondition (i.e. without consumed artifacts) can be start activities. This is, because artifacts might
be created external and are provided to the MDE setting. For example, a document might be created
on the basis of a template that is reused. Similarly, a start artifact is defined here as an artifact that
cannot be created within the MDE setting. Finally, the term resulting artifact is used to describe
artifacts that are not used for the creation of other artifacts (i.e. artifacts from which no content flows
to other artifacts). In Section 8.3.1 it is described how predecessor sets, predecessors, and successors are
automatically identified within a prototypical implementation.

However, due to the possibility to express that artifacts are optionally consumed, it is possible that
some ambiguities concerning the order of activities arise. This concerns mainly the differentiation of
creation, manipulation, and recreation, but also ambiguities due to explicitly modeled correction cycles.
To cope with these ambiguities, the following modeling conventions are defined.

Creation vs. manipulation: A first concern is the differentiation of an activity that manipulates
an artifact role from an activity that creates an artifact role and additionally consumes other instances
of that artifact role. The Software Manufacture Models language includes no concepts for explicitly
differentiating this situation. To handle this following rule-of-thumb is introduced here: an activity is
considered to create an artifact, if the artifact is only output of that activity or if the artifact is optional
input (lower multiplicity is 0) as well as mandatory output (lower multiplicity is greater than 0) of that
activity. Consequently, following modeling convention shall be applied to ensure a correct identification
of predecessor sets:

MC1 Models that are used for the analysis should be prepared, such that the multiplicities in the model
allow a differentiation between manipulating and creating activities.

Recreation vs. manipulation: Similarly, the Software Manufacture Model language includes no
explicit constructs to differentiate between an activity that manipulates an artifact (and will be applied
after an activity for the creation) and an activity that recreates the artifact in a later iteration of the
development and takes the old version of the artifact into account. Currently a strict understanding of
the definition of predecessors leads for both cases to the result that this (recreating or manipulating)
activity is a successor of a creation activity for this artifact. This is basically correct, but does not reflect
that – in context of a change – the recreating activity is used instead the creating activity. For a correct
identification of predecessors and successors, the same modeling convention as for the differentiation
of creating and manipulating activities might be applied (MC1). Thus, for a recreating activity the
consumption of the old version of the artifact might be marked as optional, such that the activity is
identified as creating instead of manipulating.

Correction cycles vs. implementation: Another characteristic of Software Manufacture Models
that might lead to problems for the predecessor analysis is that it is not differentiated between an order of
activities that represents “normal” development or enrichment and an order of activities that represents
a correction cycle. This problem occurs when the result of a check or test is modeled in form of an error
report artifact that is optionally consumed by e.g. one of the modeling or coding activities. With a
strict understanding of the definition of predecessors, the check activity can be seen as predecessor of a
modeling activity. This is not incorrect, but introduces ambiguities when the results of the predecessor
analysis are used for further reasoning of development effort. To ensure comparable results, following
modeling convention should be fulfilled:

MC2 Within Software Manufacture Models that are used for the analysis, the modeled consumption of
error reports should be removed.

6.3. Software Manufacture Model Patterns

Goal of the Software Manufacture Model pattern language is to provide a simple approach to enable
developers in capturing and summarizing structures in Software Manufacture Models, such that these
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structures can be associated with specific characteristics. A pattern can be used to support other
developers in identifying parts in their Software Manufacture Models that should be investigated in
more detail for the characteristics associated with the pattern.
The pattern match (i.e. the definition when a part of a Software Manufacture Model can be considered

as occurrence of a pattern) is designed such that it is intuitively understandable. Thus, developers that
document a pattern should be able to reason whether the associated characteristic holds for all Software
Manufacture Model parts that can be matched to the pattern. The idea behind the pattern match that
will be presented in this section is to identify activities in the Software Manufacture Model that have
similar effects on how artifacts and their interrelations are created and change as the matched pattern
activities. Matched activities can have additional effects on other artifacts and their relation, if these
are not relevant for the pattern. In the following, the Software Manufacture Model pattern language
and the pattern match are introduced and discussed.

6.3.1. Pattern Language

In Figure 6.22 the metamodel of the Software Manufacture Model pattern language is shown. The
metamodel is mainly an extension of the metamodel of the Software Manufacture Model language (see
Figure 6.12). In the following, the pattern specific extensions are presented.

Figure 6.22.: Meta model of Software Manufacture Model Pattern language

A Software Manufacture Model pattern within the Software Manufacture Model pattern language
contains one or more ordered pattern activities, which are similar to activities in Software Manufacture
Models, but allow some degrees of freedom.
Artifacts within a Software Manufacture Model pattern represent roles for artifacts in a Software

Manufacture Model. A pattern does not define a type of an artifact. The reason is that this type is not
relevant for the analysis techniques that will be presented in this thesis. However, in future work an
extension of the Software Manufacture Model pattern language might allow constraints on the type. For
example, in Figure 6.24 the pattern subsequent adjustment is shown. Pattern activity initial creation
has one input and one output. An artifact role that is connected to multiple pattern activities is shown
as an own element for each pattern activity. This avoids the implication of a direct order between two
pattern activities, as there can be multiple activities in a matched Software Manufacture Model that are
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Figure 6.23.: Concrete syntax of Software Manufacture Model Pattern language

performed between two activities matched to pattern activities. As in Software Manufacture Models, an
artifact can hierarchically contain another artifact, which can be modeled as a nesting or with the help
of containment relations.

Figure 6.24.: Sample Software Manufacture Model pattern: subsequent adjustment

As described above, activities can have different modes in Software Manufacture Models. These modes
allow indicating whether the activity is performed manually, semi-automatically, or automatically. To
allow the definition of pattern activities without specifying this property, activities in Software Manu-
facture Model patterns can have the mode “undefined”. In the Software Manufacture Model activity
adjustment the merge is performed manually, while activity initial creation is performed automatically.

A pattern activity describes only a part of an activity (i.e. an activity that is matched to a pattern
activity can consume and produce additional artifacts). Therefore, “negative structures” can be specified
in patterns. Such negative structures can be used to make explicit that a structure should not occur
(comparable to negative application conditions in graph transformations [55]). The negative structure
must not be matched when the corresponding pattern activity is matched to an activity in the Software
Manufacture Model. As shown in the notation key in Figure 6.23, all elements (i.e. connectors, pins,
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links, and artifacts) that are part of the negative structure are shown as crossed out elements (see Fig.
6.23). For example, in Fig. 6.24 the activity initial creation creates adjusted artifact without considering
an input version of it.

6.3.2. Pattern Matching

To transform knowledge about a Software Manufacture Model pattern to knowledge about a concrete
Software Manufacture Model it is necessary to identify a match between both. In the following, it is
defined when a Software Manufacture Model pattern can be matched to a Software Manufacture Model.
For the illustration, a simplified version of the EMF example (Section 2.6) is used here. Figure 6.25

shows the corresponding activities.

Figure 6.25.: Simplified version of the EMF example (Section 2.6) with Software Manufacture Model
activities

A match of a Software Manufacture Model pattern to a concrete Software Manufacture Model consists
of matches of each pattern activity to an activity of this Software Manufacture Model. The different
pattern activities of the same pattern are matched to different activities. The order of the activities
indicated in the Software Manufacture Model pattern has to conform to the possible orders of activities
in the matched Software Manufacture Model. For example, pattern activity initial creation has to be
matched to an activity that is a predecessor of the activity matched to adjustment.
A Software Manufacture Model pattern does not define how many other activities occur between

two activities that are matched to two pattern activities. As shown in Figure 6.26, Software Manufac-
ture Model pattern subsequent adjustment can be matched to the Software Manufacture Model of the
EMF case study. A possible order of both activities conforms to the order indicated in the Software
Manufacture Model pattern.

Figure 6.26.: Illustration of match of activities from the EMF example (Section 2.6) to Software Manu-
facture Model proto-anti-pattern subsequent adjustment

An activity in a Software Manufacture Model can be matched to pattern activities of different Software
Manufacture Model patterns. The (non-negative) structure described in a pattern activity has to occur
in the matched activity, too (isomorphic match). This means that two connected elements (activity,
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connector, artifact, pin, or link) can only be matched to two similarly connected elements in the pattern.
Two elements in the Software Manufacture Model pattern, describing the same artifact role, have to be
matched to two artifacts of the same type and role or to the same artifact, respectively. Two distinct
elements in the Software Manufacture Model pattern have to be matched to two distinct elements in
the Software Manufacture Model.

Further, the mode of a matched activity needs to fit to the mode of the pattern activity (as summarized
in Table 6.1). A pattern activity with the mode “undefined” can be matched to activities with all modes,
a pattern activity with the mode “automated” can be matched to activities with the modes “automated”
or “semi-automated”, and a pattern activity with the mode “manually” can be matched to activities
with the modes “manually” or “semi-automated”. Finally, a pattern activity with the mode “semi-
automated” can be matched to activities with the mode “semi-automated”. This enables specifying
patterns for effects that base on the fact that a matched activity is partly automated as well as partly
manual.

Table 6.1.: Summary of which Software Manufacture Model pattern activity modes can be matched to
which Software Manufacture Model activity modes.

↓ can be matched to → semi− automated automated manually

undefined X X X

automated X X

manually X X

semi− automated X

The negative structure describes situations, where a pattern activity cannot be matched. When the
whole negative structure of a pattern activity is matched to a Software Manufacture Model activity, the
included match of the pattern parts that do not belong to the negative structure is invalid. If only a
part of the negative structure is matched, while the rest of the pattern activity is matched, the whole
pattern activity is matched validly. For example, an artifact matched to adjusted artifact in subsequent
adjustment should not be input of the activity matched to initial creation.

A matched activity in a Software Manufacture Model can also contain unmatched links, pins, and
artifacts.

A link in an activity that is matched makes the same or a more concrete statement about the relation
of two artifacts than the corresponding link in the pattern activity. Only links with the same type of
basic relation can be match to each other.

Artifact links can be matched to similar artifact links in the pattern. Thus, contains can be matched
to contains or contained by depending on the direction of the link (i.e. when the start pin of the link is
matched to the end pin of the link in the pattern contained can only be matched to contained by and
the other way around). Similarly, references can be matched to references or referenced by depending
on the direction of the link.

Content links can be matched to each other following Table 6.2. Links specifying the same content
relation can be matched. Further, a link with an equal relation can be matched to a pattern link with an
overlap relation, since equal content is a special form of a content overlap. Consequently, characteristics
that hold under the assumption that the content overlaps, hold also when the content is equal.

Table 6.2.: Content relations that can be matched to content relations in a pattern link

↓ can be matched to →
⋂

c
=c 6=c

⋂
c

X

=c X X

6=c X

Finally, a link with a set relation can be matched to a pattern link with a basic relation, when the

103



6. Modeling

relation scope is ForAllForAll and the relation of the set relation can be matched to the basic relation
in the pattern link. Further, a link with a set relation can be matched to a pattern link with a set
relation, if the relation of the link can be matched to the relation of the pattern link and if the relation
scope can be matched. A pattern link with relation scope ForAllForAll can only be matched to a link
with the same relation scope. A pattern link with relation scope ForAllSubset can be matched to a link
with relation scope ForAllForAll or ForAllSubset. A pattern link with relation scope ForAllElement
can be matched to a link with each of the relation scopes. Thus, all relations created in the pattern
activity will also be created in the activity. For example, pattern link might specify that from each
output artifact a reference to one of the input artifacts is created (relation scope ForAllElement). A link
might specify that from each output artifact a reference to each input artifact is created (relation scope
ForAllForAll). All references that would be created due to the specification of the pattern link are also
created when the specification of the link is fulfilled. Therefore this pattern link can be matched to the
link. The other way around, no match would be created. Here the pattern link might specify that from
each output artifact a reference to each input artifact is created (relation scope ForAllForAll), while the
link specifies that from each output artifact a reference to one of the input artifacts is created (relation
scope ForAllElement). In this situation the pattern link specifies the creation of more references than
the link.

A pin has to be matched to a pin of the same mode. Further, a pin that is connected to a single
artifact might be substituted by a set pin. In this case, for all artifacts in the set hold the same or
more restricted statements about their relations to other artifacts compared to the pattern (i.e. the link
refinements hold).

Example 7

Figure 6.26 shows that activity “generate model code” is matched to pattern activity “ initial creation”,
while “manipulate implementation” is matched to “adjustment”. The “ecore model” is matched to
“base artifact” and “ interface implementation” is matched to “adjusted artifact”. The pin connected to
“adjusted artifact” in “ initial creation” is matched to a set pin, which represents that “generate model
code” produces a set of “ interface implementations”. Corresponding to the link specified in initial
creation, the matched link in “generate model code” expresses that all “ interface implementation”s
overlap in content with the “ecore model”. “Generate model code” contains additional input and
output artifacts. “Manipulate implementation” contains in addition a manual enrichment pin, which
indicates that “ interface implementation” contains afterwards also content that was created manually.

6.3.3. Discussion of Pattern Matching

The above presented match bases on the syntax of the Software Manufacture Model language. This
simplicity is motivated by the need to support practitioners who document a pattern. They need to be
able to understand what activities will be identified as match. This understanding is a precondition for
judging that a pattern can be associated with a specific property (e.g. concerning changeability as it
will be used in Section 7.1) that holds for the matched activities, too.

In contrast, the idealized goal of the match is to identify activities that fulfill the semantic of the
pattern activities. The matched activities need to describe the same changes to artifacts and their
relations as the pattern activities (and can describe additional changes). From a technical viewpoint
the exploration whether the semantic of one activity includes the other activity can be quite complex
(taken into account that the described changes depend also on the current situation, where an activity
is applied to, e.g. the actual number activities in a consumed set).

To tackle this problem the syntactic pattern match was introduced above in Section 6.3.2. This
syntactic pattern match is quite simple, but allows the identification of most groups of activities that
fulfill a pattern. However, this simplicity is also a compromise, since in some special cases activities
remain that might be used to fulfill the semantic of the pattern activity, but will not be identified by
the syntactic match. This is illustrated in the following using three examples:

Example 8

First, the syntactic approach does not allow considering transitivity of containment relations. In Figure
6.27 an example is shown, that would not be identified as a match with the presented approach. For
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both activities, matches to the pattern activities can be identified. However, the first activity can only
be matched when “method” is matched to the role “consumed artifact” or “part”. Artifact “method”
will not fulfill one of these two roles in the match of the second pattern activity. Consequently, the
activity matches cannot be combined to a match of the whole pattern. In contrast to this result, the
activities might - from a semantical viewpoint - be matched to the pattern, since a containment relation
is transitive.

Figure 6.27.: Example of a match that will not be identified, since transitivity of containment relations
is not taken into account.

The second example is illustrated in Figure 6.28 (left). Here a similar problem as in the first example
is shown: The creation of the reference from the “start” to a certain point in the “target” happens
semantically in the activity, too (the “method”, which is contained by of the “design” is referenced by
the “documentation”). However, since the method is modeled explicitly, the syntactic approach would
not lead to a match.

The third example is illustrated in Figure 6.28 (right). The problem illustrated here is, that two
artifact roles in the pattern, “first merged artifact” and “second merged artifact”, need to be matched
to the same artifact role “design part” in the Software Manufacture Model. Thus, the syntactic approach
would not identify a match, while it is semantically clear that the activity “set merge” can lead to the
same (and additional) changes for artifacts and their relations, as pattern activity “merge”1.

The first two examples represent situations, where a match might be identified, when the containment
relation would be taken into account. For example, before activities with such a containment relation
are considered in the syntactic match, they could be enriched. Artifact relations of a contained artifact
might be formulated in addition for the containing artifact. In the example in Figure 6.27 this would
mean that “create class” would gain an additional link that describes that “design” contains “method
signature”. In the example on the left side of Figure 6.28 this enrichment would lead to a link describing
that “design” is references by the output version of “documentation”. After such a semantically neutral
enrichment or normalization of the activities the above described syntactic matching would identify the
pattern occurrence.

For the third example the situation is more complex. “Set merge” technically could be applied to
reach the same changes as the pattern activity “merge”. However, there might be a reason that the two
consumed artifacts in the pattern are modeled as distinct roles. Distinct further activities in the pattern
might be formulated for the two roles. This, distinction is lost in the Software Manufacture Model of
the “set merge”. Consequently, it is not clear whether the properties associated to the pattern do really
hold for the activities in the Software Manufacture Model, too.

Thus, the presented syntactical change is designed in a way that it does capture the first two examples
with preparation, only and that it does not capture the last example. Instead, the presented syntactical

1Note that in the publication [P2] this special case was considered as a valid match.
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Figure 6.28.: Two example of matches that will not be identified. The identification of the match in the
example on the left would require automated consideration of the fact that references that
hold for an artifact a, do hold for and artifact b that contains a, too. The identification
of the match in the example on the right would require to allow that multiple elements
from the pattern are matched to the same element in the activity, in special cases, where
non-set pins are matched to set pins.

pattern match enables a simple capturing and identification of structures in Software Manufacture
Models. Subsuming, the pattern approach presented here is designed is a way that it can be intuitively
used to capture and communicate experience with structures in Software Manufacture Models. A formal
analysis is explicitly not the goal of the presented pattern approach. It is not designed for automated
identification of all parts in a Software Manufacture Model that fulfill a certain property. Similarly the
pattern approach is not designed in a way that the people who document a pattern should proof that
the associated properties hold for each match. Both of these later use cases would require a full formal
definition of the semantic of Software Manufacture Models as well as expensive proofs that properties
of each pattern hold for all matchable Software Manufacture Models.
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Above it was discussed that MDE settings can affect hard changeability concerns and that certain
manifestations of MDE traits can lead to constrains of the used software development processes (see
Chapter 3). This Chapter introduces analysis techniques that can be used to identify parts of an MDE
setting that affect hard changeability concerns as well as process-relevant manifestations of MDE traits.

These techniques conform to two approaches. On the one hand, some concerns and MDE traits are
of local character, i.e. they manifest in a combination of a few activities, or even a single activity.
Here patterns are used for the analysis. This is done for the analysis how hard changeability concerns
are affected as well as for the assessment of the manifestation of the MDE trait manual information
propagation. On the other hand, some MDE traits can only be identified on the basis of the information
what activities in an MDE setting are predecessors or successors of each other. This concerns the MDE
traits phases and length of activity chains. The hard changeability concerns can make an application of
agile processes more difficult and thus influence the process interrelation as well. Similarly, the length of
activity chain which is listed as MDE trait here is also a changeability concern (i.e. How many activities
have to be applied? ). All analysis techniques base on the Software Manufacture Model language (and
Software Manufacture Model pattern language).

Figure 7.1.: Overview of this chapter: analysis supports concerns an MDE setting’s impact on change-
ability and process interrelation.

In this Chapter, first patterns are presented, that allow analyzing how hard changeability concerns
are affected, as summarized in Figure 7.1. Further, simple analysis techniques for the assessment of the
manifestations of MDE traits are introduced. The Chapter closed with a discussion how and for what
goals the analysis techniques can be applied.

This chapter is partially based on [P2].

7.1. Analysis of Changeability

In context of the first study (see Section 4), four proto-patterns for the analyses of changeability concerns
have been identified. In this Section the chosen structure for the description of the patterns is introduced.
Then it is described how the proto-patterns have been identified. An overview of the identified proto-
patterns is given. Afterwards, the proto-patterns are introduced.

7.1.1. Description Structure of Patterns

In Section 6.3 the Software Manufacture Model pattern language was introduced. However, a pattern
does not only consist of a structure in a model, but also of the documentation of further aspects,
such as the consequences associated to the pattern (i.e. the knowledge that is associated with the
specific structure). In the following the structure that shall be used for the systematic description of
the changeability related properties of Software Manufacture Model patterns and Software Manufacture
Model anti-patterns is introduced.

This structure for the description of Software Manufacture Model patterns and Software Manufacture
Model anti-patterns (shown in Table 7.1) is oriented on Gamma et al. [86]. In both cases the pattern
is first described structurally (supported by the presentation of the structure in Software Manufacture
Model pattern notation). Then it is described how the Software Manufacture Model pattern affects

107



7. Analysis

Table 7.1.: Structures of Software Manufacture Model anti-pattern and Software Manufacture Model
pattern.

Anti-Pattern Structure

1. Description

2. Benefits & Risks

3. Resolution Strategy

4. Origin

5. Occurrences

6. Related Patterns

Pattern Structure

1. Description

2. Benefits & Risks

3. Implementation

4. Applicability

5. Occurrences

6. Related Patterns

changeability concerns (“benefits and risks”). When a Software Manufacture Model pattern is matched
to a set of activities, the described influence holds for the activities and artifacts that are matched. For
example, if a Software Manufacture Model pattern describes that an activity preserves certain parts of
the content of an input artifact this does not necessarily hold for other input artifacts.
After the description of benefits and risks, implementation approaches are provided, followed by infor-

mation when the pattern can be applied. Alternatively, for Software Manufacture Model anti-patterns
resolution strategies are provided, followed by a description when associated risks are manifested (“ori-
gin”). Finally, known occurrences of a pattern are listed and relations to other patterns are described.

7.1.2. Identification of Proto-Pattern

Before the patterns are presented, it is described how the two Software Manufacture Model proto-anti-
patterns and two Software Manufacture Model proto-patterns were identified. As introduced in Section
2.4, a pattern describes a structure that can be associated with positive properties and is often used to
communicate an experienced solution to a common problem. In contrast an anti-pattern can be used
to describe situations that should be prevented or that can be used as hints to identify risks. The term
proto-pattern (or proto-anti-pattern, respectively) is used to describe that a pattern still has the status
of a candidate. Thus, a proto-pattern already has the structure of a pattern and includes all associated
information. However, the term pattern usually implies that at least three occurrences in practice are
documented. Until this is the case a pattern has the status of a proto-pattern. This section introduces
proto-pattern, since the identification of these pattern based on the SAP case studies, only. Whether
the different proto-patterns have the potential to get the status of a pattern shall be discussed later on
in Chapter 9.
The identification of the proto-patterns started with solutions that have been used in the SAP case

studies (from the first study) to prevent that hard changeability concerns are affected. Based on these
solutions, the concepts that underlie the Software Manufacture Model language were used for a theo-
retical consideration how parts of a Software Manufacture Model have to look like to affect the hard
changeability concerns. This consideration was done by altering activity structures. For these activity
structures change scenarios (i.e. a definition on which artifacts a change is introduced) were formu-
lated. These scenarios were then investigated to identify whether one of the changeability concerns
is affected. Although this approach was, only applied for a small set of variations, it was possible to
identify some relevant candidates for Software Manufacture Model anti-patterns (Software Manufacture
Model proto-anti-patterns).
Afterwards, the SAP case studies were revised with focus on the Software Manufacture Model proto-

anti-patterns. Although it was not expected, it was possible to identify occurrences.
The processes captured in the SAP case studies are used in practice. Furthermore, it can be expected

that the examples, which were chosen by practitioners of a company to be presented to external observers,
are experienced as successful. Consequently, it was not surprising that the identified occurrences of the
Software Manufacture Model proto-anti-patterns do not lead to failure of the projects. This is due to
mitigating factors such as low probabilities that the critical change scenarios happen (i.e. where a good
changeability is not required, the occurrence of a negative influence on changeability can be tolerated).
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Finally, the identified Software Manufacture Model proto-patterns and Software Manufacture Model
proto-anti-pattern were enriched with information about their influence on changeability concerns.

All in all, this process led to the identification of two Software Manufacture Model proto-patterns and
two Software Manufacture Model proto-anti-patterns. In Figure 7.2 an overview about the identified
proto-patterns is given. Software Manufacture Model proto-pattern split manufacture as well as Soft-
ware Manufacture Model proto-anti-pattern subsequent adjustment affect the hard changeability concern
unexpected loss or preservation of content. Artifact split manufacture can be used as solution for subse-
quent adjustment. Software Manufacture Model proto-pattern anchor affects hard changeability concern
unexpected loss or preservation of references. Finally, Software Manufacture Model proto-anti-pattern
creation dependence describes a situation, where different changes are coupled to each other, which can
lead to the situation that more changes than necessary can cause the re-execution of activities. As a
consequence, although it does not directly affect a hard changeability concern, creation dependence is
an amplifier for negative effects on changeability, such as the effects caused by subsequent adjustment.
Anchor can be used to reduce this amplifying effect of creation dependence.

Figure 7.2.: Overview of identified proto-patterns and their interrelation

7.1.3. Software Manufacture Model Proto-Pattern Subsequent Adjustment

Subsequent adjustment is a Software Manufacture Model proto-anti-pattern associated to changeability
concern unexpected loss of content.

Description The activity initial creation (Fig. 7.3) automatically creates adjusted artifact and fills it
with content on the basis of base artifact (i.e. both artifacts overlap in content after the execution). No
already existing version of adjusted artifact is considered. The activity adjustment adds further content
to adjusted artifact manually.

Figure 7.3.: Software Manufacture Model pattern subsequent adjustment

Benefits & Risks After the first execution (initial creation followed by adjustment) the adjusted artifact
contains content that was added in both activities. Due to changed requirements, base artifact might be
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changed manually or by other automated activities. To propagate the change initial creation is executed
again, which overwrites content of adjusted artifact completely. This leads to a loss of content that was
added in the manual activity adjustment.

Developers might choose a workaround and apply the necessary change not to the base artifact, but
directly to adjusted artifact. The resulting inconsistency of artifacts is a source for errors and increases
the training hurdle for new developers that join the team. Further, benefits which are provided by
the automation of the activity initial creation are nearly lost. For example, usually it is less error
prone to change the more abstract base artifact than changing adjusted artifact. With the described
workaround this benefit cannot be used. Alternatively, developers might copy-and-paste the parts that
they have changed in adjusted artifact during the first execution of activity adjustment or developers
might redo their work for each change. Both variants are annoying for developers and cost time and
thus productivity.

Resolution Strategy First, the probability that base artifact will be changed – such that initial creation
is executed again – should be weighted. When, no changes will be applied to base artifact it is not
necessary to optimize the MDE setting, such that changes of this artifact are supported. For example,
base artifact might be completely reused from another project or can be part of a library.

In a second step, it should be considered whether the parts of adjusted artifact that are touched by the
two activities can be separated clearly. If this is possible, an implementation of Software Manufacture
Model proto-pattern split manufacture can be applied to solve the problem. Alternatively, the separation
on artifact level might be changed, e.g. by applying the generation gap pattern [78]. Then adjusted
artifact can be split into two artifacts which reference each other.

If a clear separation is not possible, the structure of the artifact should be changed to separate the
concerns affected by the different activities more strongly. Solutions may provide blueprints for the
structure of the instances of adjusted artifact, change the language of adjusted artifact, or even apply
a complete redesign of the way how information is split over different artifacts. A short term solution
is changing activity adjustment in a way that the changes are not applied to adjusted artifact but to
a copy of adjusted artifact. Thus, manually added content will not be overwritten in case of a new
application of activity initial creation and might be copied in some other way to adjusted artifact.

Origin As mentioned above, in some cases Software Manufacture Model proto-anti-pattern subsequent
adjustment can exist within a Software Manufacture Model without causing harm. For example, the
probability that base artifact will change can be very low or there might be no need that product parts
based on adjusted artifact survive changes (see the example in “occurrence” below). However, due
to adaption of the product portfolio these conditions can change over time and enable the Software
Manufacture Model proto-anti-pattern to cause harm.

A further possible origin of subsequent adjustment is a spread of development over different depart-
ments, where adjusted artifact is handed over between these departments. The first department might
decide to generate adjusted artifact automatically, while the second department still assumes that ad-
justed artifact can be enriched with information.

Occurrence In the SAP case studies, one occurrence of Software Manufacture Model proto-anti-pattern
subsequent adjustment was identified. In this example, the activity in the role of initial creation auto-
matically initializes dummy data for the creation of a dummy service that is used during development
for a prototype for a user interface. In this case, the presence of changeability concern causes no harm,
as there is no need that the dummy service survives the whole live cycle of the software.

Related Patterns Split manufacture can be used to resolve the problems caused by subsequent adjust-
ment.

Example 9

In Figure 7.4 an example extract of a Software Manufacture Model is shown. This example includes
three activities: “Modify configuration” is a manual activity to modify a “configuration” file. “Generate
implementation” consumes a “service description” and generates a “class diagram” and “ java code”.
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Further, a reference from the “ java code” to the “configuration” is created. Finally, “ implement method”
is a manual activity, where the “ java code” is enriched on the basis of the “specification”.

Figure 7.4.: Example Software Manufacture Model extract for creation of a web service implementation.
Pattern subsequent adjustment is matched.

An example for the documents that might already be created within a project is shown in Figure 7.5.
Here, a “service description” is available1 as well as a textual specification and a configuration file.

Figure 7.5.: Initial set of artifacts available: a web service description, a specification, and a configuration
file.

An initial execution of activity “generate implementation” (which matches to pattern activity initial
creation) might lead to the “class diagram” and the “ java class” shown in Figure 7.6. Since the generated
method is not yet implemented the manual activity “ implement method” (which matches to pattern
activity adjustment) is executed, which leads to the result illustrated in Figure 7.7(a).

Now a change scenario is entered, where artifact “service description” is extended such that other
functionality is provided (illustrated in Figure 7.7(b)).

In order to propagate this change, such that the new functionality that is specified in the service
description is also implemented, the activity “generate implementation” needs to be executed a sec-
ond time. This result of this execution is shown in Figure 7.8. It can be seen that the whole ar-
tifact is generated completely new (since the model activity is not able to consider existing versions

1The example is oriented on the example WSDL from http://cs.au.dk/˜amoeller/WWW/webservices/

wsdlexample.html (last access at November 9th, 2013), which is shown in Appendix E.
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Figure 7.6.: Aritfacts created by activity “generate implementation” from Figure 7.4 on the basis of the
artifacts shown in Figure 7.5: a class diagram of the interfaces as well as a source code
frame.

(a) Source code frame from Figure 7.6 after treatment in activ-
ity “implement method”.

(b) Change in service description artifact
from Figure 7.4: new method is added to ser-
vice description (changes are marked green).

Figure 7.7.: Source code artifact after execution of activity “implement method” (left) and service de-
scription after change (right).

of the generated artifacts). As a consequence the (potentially extensive) implementation of method
“getLastTradePriceInput” is lost. This example shows how pattern subsequent adjustment can lead to
unexpected loss of content, when changes are applied.

Figure 7.8.: Class diagram of interfaces and code frame after new execution of activity “generate imple-
mentation” on the basis of changed service description from Figure 7.7(b).
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7.1.4. Software Manufacture Model Proto-Pattern Creation Dependence

Creation dependence is a Software Manufacture Model proto-anti-pattern that is an amplifier for existing
changeability concerns.

Description As shown in Fig. 7.9 the automated activity depending creation creates depending artifact
with a reference to the input necessary artifact. An already existing version of depending artifact is
not considered as input of depending creation. In some cases, the process might contain alternative
activities that allow restoring the reference without recreating the whole depending artifact. Such
an activity might define more restricted changes to depending artifact and help to prevent the below
described consequences.

Figure 7.9.: Software Manufacture Model pattern creation dependence

Benefits & Risks The general risk in coupling of changes is that other problems with changeability,
e.g. caused by occurrences of subsequent adjustment, are intensified. Coupling changes, which would
not necessarily trigger further activities, to changes, which have successors that are associated to change-
ability problems, enhances the number of triggers for these changeability problems. Applying depending
creation couples the creation of the artifact depending artifact (and thus creation of its content) to
the creation of a reference to necessary artifact. Consequently, all activities that manipulate necessary
artifact are additional predecessors for the creation of depending artifact.

Due to changing requirements, e.g. within agile development, necessary artifact might be changed.
As a consequently, the reference has to be restored, when the reference’s target is deleted during the
change of necessary artifact. However, the reapplication of depending creation leads to new creation of
depending artifact. Then, changeability problems that are associated to activities that are triggered by
a change of depending artifact occur unnecessarily often. Developers might use manual workarounds for
restoring the references.

Resolution Strategy First, it should be weighted whether there is a changeability problem that can be
amplified by the creation dependence (i.e. whether successor activities of depending creation strongly
affect a changeability concern). In addition it should be weighted whether it is probable that necessary
artifact will be changed. For example, if an artifact is used as library or as an interface the probability
that this artifact is changed might be very low. In case that either no changeability problem is amplified
or that a change in necessary artifact is not probable, it can be decided to leave the situation as is.

Otherwise, there are two types of resolution approaches: limiting change propagation or splitting up
the reference creation from content creation. The first approach is to limiting the propagation of the
change from the necessary artifact to the depending artifact, by preventing that the reference gets lost,
when necessary artifact is changed. For example, the anchor Software Manufacture Model proto-pattern
might be used for that reason. If it is not possible to specify an appropriate anchor, it is necessary to
identify possible changes on necessary artifact and restrict them to the really necessary ones.

Alternatively, an alternative activity should be introduced, that allows updating the references in
depending artifact without complete recreation of the content. Further, it should be localized which
parts of the depending artifact have to be changed to restore a reference. Another solution is to adapt
the automation of creation dependence such that it changes the parts of depending artifact that reference
necessary artifact only, instead of completely recreating the depending artifact. This might be used to
design the successor activities such that they do not need to be reapplied in case of these local changes
in depending artifact.
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However, it is possible that there is a strong coupling between the content of depending artifact and
the references to necessary artifact. For example, the definition of a layout (as depending artifact) might
depend strongly on the question, which parts of a complex data structure (as necessary artifact) are
referenced. The fact that the creation of the whole depending artifact is coupled to the reference creation
can be a hint for a strong coupling of reference change and content change.
For a resolution of such a strong coupling of reference change and content change it has to be considered

whether it is possible to split both changes. This might not be a simple task as underlying paradigms
might have to be switched. In the above mentioned example of the data structure and the layout
paradigms might be used that are similar to style sheets that are decoupled from the concrete content
of an XML file. If the decoupling of reference change and content change succeeds, a solution can be
found, where updating references does not trigger changes in the content.

Origin Depending on different factors, e.g. when no changeability problems are associated to successors
of creation dependence or if there is a low probability that necessary artifact changes, it is possible that
Software Manufacture Model proto-anti-pattern creation dependence occurs without causing harm.

However, changes to requirements on usually built software can influence such probabilities or cause
changes to the Software Manufacture Model. This can activate negative properties of Software Manu-
facture Model proto-anti-pattern creation dependency. In the mentioned example, the need for a cus-
tomizable data structure can arise. Thus, it becomes probable that necessary artifact “data structure”
changes regularly, with all consequences for the need to change depending artifact “layout”.

Alternatively, changeability problems with successors might be introduces in the MDE setting. For
example, the creation dependency might be part of an automated transformation chain where the product
is not touched manually. However, an extension of the feature range for the software that is built by
the company might not be supported by the DSL that used as generation basis for depending artifact
within depending creation (i.e. as additional input of depending creation). This can cause developers
to manipulate depending artifact after generation - with the consequence that a subsequent adjustment
proto-anti-pattern is introduced. In this scenario, the already existing creation dependency can amplify
the newly introduced changeability problem.

Occurrences Creation dependency was found in three of the SAP case studies. All occurrences seem to
profit from mitigating factors such as a low probability that necessary artifact changes. In one case the
automated creation dependency was not followed by manual activities, i.e. there were no changeability
problems that could be amplified.

Related Patterns Anchor might be applicable to prevent a loss of reference and the propagation of
changes from necessary artifact to depending artifact.

Example 10

Figure 7.10 highlights that in the example that was introduced to explain pattern subsequent adjustment
in Figure 7.4 a match of pattern depending creation (on activity “generate implementation”) can be
identified, too. The “configuration” can be matched to pattern artifact necessary artifact and “code”
can be matched to pattern artifact depending artifact. For this example the starting situation that was
already introduced in Figure 7.5 can be reconsidered. Again the initial execution of both activities,
“generate implementation” and “ implement method”, can lead to the artifacts shown in Figure 7.11.
Now a change scenario is entered, where the “configuration” is changed such that the name of the
database changes (as shown in Figure 7.12(a)). As a consequence, activity “generate implementation”
needs to be executed a second time in order to restore the reference from artifact “class code” to the
identifier for the database within the configuration. Although this restores the reference (as shown in
Figure 7.13) the problem that is caused by the occurrence of pattern subsequent adjustment manifests:
the implementation of the method “getLastTradePriceInput” is lost.
Even worse, also an alternative change scenario, where no database-related configurations are changed

(e.g. as shown in Figure 7.12(b)), can lead to the new execution of “generate implementation”. This can
happen when an automated model management system detects that the configuration file was changed
and triggers or proposes the new execution of generate implementation. Thus, content might get lost,
even if no inconsistency between the artifacts existed. This holds especially when the decision is made
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Figure 7.10.: Example Software Manufacture Model extract for creation of a web service implementation.
Pattern creation dependence is matched.

Figure 7.11.: Aritfacts created by subsequent application of activities “generate implementation” and
“implement method” from Figure 7.10 on the basis of the artifacts shown in Figure 7.5: a
class diagram of the interfaces as well as a source code frame with an implementation of
the method.

(a) Change of database name in con-
figuration artifact from Figure 7.5
(marked green).

(b) Change of server name in configu-
ration artifact from Figure 7.5 (marked
green).

Figure 7.12.: Two example changes on the configuration artifact.

within a build server that automatically executes an automated activity when the input artifacts were
modified. In an MDE setting, where the reference creation would not be part of the generation step
(e.g. it might be created manually), activity “generate implementation” would not be a successor of
activity “modify configuration”. Thus, “modify configuration” does not need to be an additional trigger
for “generate implementation”. This example shows, how an occurrence of pattern creation dependence
can lead to additional triggers for the new execution of activities and thus makes an existing problem
with changeability worse.
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Figure 7.13.: Class diagram of interfaces and code frame after new application of generate implementa-
tion in order to restore reference to data base configuration in changed configuration file
from Figure 7.12(a).

7.1.5. Software Manufacture Model Proto-Pattern Split Manufacture

Split manufacture is a Software Manufacture Model proto-pattern that is associated to the changeability
concern unexpected loss of content. Techniques to implement this Software Manufacture Model proto-
pattern are already known in literature. Nonetheless, this Software Manufacture Model proto-pattern
is described here, as the ability to identify it is important for analysis and improvement of Software
Manufacture Models.

Description Split manufacture consists of two activities: regenerate and manual completion (see Fig.
7.14). Regenerate modifies content of modified artifact, but preserves artifact detail, which is part of
modified artifact before and after regenerate was executed. Manual completion modifies artifact detail.

Figure 7.14.: Software Manufacture Model pattern split manufacture

Benefits & Risks The content that was added in manual completion is preserved when regenerate
is executed in case of a change. This saves effort and improves changeability. Further, the Software
Manufacture Model proto-pattern enforces the developer of the Software Manufacture Model to make
explicit which parts of the artifact are touched automatically or manually.

Implementation The implementation of split manufacture requires that the technology used for the
automation of activity regenerate is able to preserve artifact parts, e.g. a technology that supports
protected regions. In addition, it has to be defined what parts of the artifact belong to the artifact
detail. Finally, developer guidelines can ensure that only the artifact details are touched in manual
completion.

Applicability Split manufacture is applicable when the language used as basis for the generation cannot
express all needed functionality.

Occurrences Implementations of this proto-pattern are broadly known, such as in round-trip engi-
neering or protected regions, e.g. in Xpand2. In addition, one occurrence in the SAP case studies was
identified.

2http://wiki.eclipse.org/Xpand (last access at November 9th, 2013)
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Related Patterns Split manufacture can be used to resolve Software Manufacture Model proto-anti-
pattern subsequent adjustment.

Example 11

As an example for split manufacture a variant of the example from Figure 7.4 is used here. The pattern
is applied as solution of the occurrence of subsequent adjustment in Figure 7.4. Thus, activity “generate
implementation” is matched to regenerate, since it is now implemented in a way that an already existing
version of the “code” is considered as input. Existing input versions of “method”s are preserved and
are contained by the output version of “code” afterwards. Further, activity “ implement method” is now
modeled, such that it is more explicit that only the “method”s are adapted.

Figure 7.15.: Adapted example Software Manufacture Model extract for creation of a web service imple-
mentation. In contrast to version from Figure 7.4, pattern subsequent adjustment is not
more matched. Instead pattern split manufacture is matched.

Now a change in the service description (e.g. as in Figure 7.7(b)) in a situation where the activities
shown in Figures 7.5 and 7.11 are available, leads to a new execution of “generate implementation”, too.
However, as a result the content of method “getLastTradePriceInput” is preserved (as shown in Figure
7.16).

Figure 7.16.: Class diagram of interfaces and code frame after new application of generate implementa-
tion in order to propagate change of service description that is illustrated in Figure 7.7(b)
(previous versions of code file and class diagram were available as shown in Figure 7.11).
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7.1.6. Software Manufacture Model Proto-Pattern Anchor

Anchor is a Software Manufacture Model proto-pattern and is associated to changeability concern un-
expected loss of references.

Description As shown in Fig. 7.17, activity dock on anchor creates or changes tying artifact, so that
tying artifact owns a reference to anchor. Finally, activity modify bound artifact is used to change
bound artifact. Input anchor is passed to the output version of bound artifact unchanged.

Figure 7.17.: Software Manufacture Model pattern anchor

Benefits & Risks Anchor allows applying changes to bound artifact without worrying that references
from tying artifact to bound artifact get dangling. This prevents further that a change in one of the
artifacts enforces a change in the other artifact. Subsuming, the change becomes local for the developer,
which eases the change and reduces the probability of errors that are caused by forgotten references.

Implementation For an implementation an appropriate kind of anchors has to be chosen. Ideal anchors
are not probable to change or change only rarely. To ease the identification of anchors during the project
or the implementation of automated variants of dock on anchor and modify bound artifact, anchors can
be defined based on the structure of the bound artifact, e.g. an anchor can be a method signature.
If activities dock on anchor and modify bound artifact are manually, they can be implemented using

developer guidelines to ensure that anchor is not changed and can be used as target for a reference. If
modify bound artifact is an automated activity, a technique should be used that can deal with protected
regions. The anchor is located in the protected region. An automated implementation of dock on anchor
has to respect that references only target at anchors.

Applicability Anchor is applicable when consistent references between two artifacts are required and
changing the referenced artifact should be supported.

Occurrences One occurrence of anchor was identified in the SAP case studies, where it was used to
define extensions for customizing a user interface.

Related Patterns Anchor can prevent lost references to resolve problems of creation dependence.

Example 12

Figure 7.18 shows an adapted version of the example shown in Figure 7.10, where the occurrence of
the creation dependence is shown. The creation dependence and the “subsequent adjustment” still
exist in this version of the example. However, the anchor pattern is applied, too. Activity “generate
implementation” is explicitly build in a way that it consumes the “database tag”, only, - independent
of the rest of artifact “configuration”. Thus, this activity is only triggered, when the database tag is
manipulated.

Further, activity “modify configuration” now reflects a developer convention not to manipulate the
database tag (i.e. in context of this activity the database tag is preserved when the configuration is ma-
nipulated). This first important aspect of this occurrence of pattern anchor is that the reference between
“code” and “configuration” will not be lost, since the target of the reference is a stable part of the con-
figuration. The second aspect is that the effect of the creation dependence is reduced. Thus, “generate
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Figure 7.18.: Adapted example Software Manufacture Model extract for creation of a web service im-
plementation. In addition to the pattern matches on the version from Figure 7.10, pattern
anchor is matched, too.

implementation” is no longer a successor of “modify configuration”. As a consequence changes like the
one shown in Figure 7.12(b) will no longer trigger the new execution of “generate implementation”. A
change that is performed to the database tag (as in Figure 7.12(a)) in context of other activities can still
trigger the new execution of “generate implementation” followed by the problems of the “subsequent
adjustment”. Therefore, the anchor pattern does not solve, but only reduces the effects of the creation
dependence.

7.2. Analysis of Process Interrelation

In the following, three analysis techniques are introduced that allow assessing the manifestations of the
three MDE traits that are introduced in Section 3.3.

7.2.1. Analysis Method for Phases and Synchronization Points

Global synchronization points can easily be identified on the basis of a Software Manufacture Models by
considering predecessors and successors of all activities. A global synchronization point is an activity
for which all other activities in the MDE setting are either successors or predecessors. Thus, there are
no activities that can be executed parallel to the global synchronization point.

Correspondingly, it might be interesting to identify local synchronization points, which can be iden-
tified similarly, by considering a local focus, which is a subset of the activities in an MDE setting, only.
This is useful, when the work done in an MDE setting is split over different sub-teams. Further an MDE
setting might include alternative solutions to implement the same set of artifacts. These alternatives
would not occur as predecessors or successors of a potential synchronization point, even if they are never
executed in parallel, too. For this reason it might be useful to consider a subset of artifacts, only.

Following the definition, synchronization points can have any degree of automation (manual, semi-
automated, or automated). It is assumed that a modeled manual activity is done by a single developer.
In practice, a single manual activity might be split up between developers, too. However, this can be
associated with its own challenges for synchronization, especially, when the same artifact is accessed by
two developers. Thus, even when work in a manual synchronization point is split this means special
effort for synchronization of work.

The identification of a (local) synchronization point requires information which activities have no order
concerning the activity under consideration. Consequently, it is more difficult to identify synchronization
points in a model that contains activities for very different concerns (i.e. when the model has no clear
focus). In order to simplify the identification of synchronization points, following modeling convention
should be fulfilled before this analysis is performed on a Software Manufacture Model:
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MC3 A Software Manufacture Model that is used for the analysis of synchronization points should
have a clear focus. When a Software Manufacture Model contains activities for the creation of an

additional product that is not in focus or activities that are seldom used to manipulate the MDE setting
itself, these activities might be removed to improve clarity.

To more directly regard to the consequences of global synchronization points the resulting number of
phases in the MDE setting can be counted. A phase is a non-empty set of all activities between two
synchronization points or before or after all synchronization points. Thus, all activities in a phase are
successor of one synchronization point and predecessor of another synchronization point, or all activities
in a phase are successor of one synchronization point, which has no other synchronization point as
successor, or all activities in a phase are predecessor of one synchronization point, which has no other
synchronization point as predecessor. A phase includes no synchronization points. Correspondingly,
a local phase includes no local synchronization points within the respective local focus. An exception
from that are activities that are extensive manual tasks that can potentially be split among developers.
This can be coding activities or modeling activities when the model includes multiple views. When such
activities are synchronization points they are counted as miniphases. In case that a miniphase directly
follows or is followed by a phase or miniphase, they are counted as one phase. However, the interrelation
between the number of synchronization points and phases is complex. The number of phases is not
necessarily equal to the number of global synchronization points plus one. For example, an exception
occurs when in a chain of successive activities all are synchronization points (i.e. multiple activities
are executed in a row before parallel work is possible again). While a single synchronization point
might split a setting into two phases, other settings with multiple synchronization points in the main
focus have a single phase only. The location of the synchronization point plays an important role for
the actual impact. Synchronization points at the start or at the very end of the setting, introduce no
new forces for the team (as a team is usually synchronized at the start of the development and has to
synchronize at the end). Thus, although single synchronization points can have important impacts, the
pure number of synchronization points is not as expressive as the number of phases, due to the above
discussed exceptions.

Consequently, the number of phases might give a more direct hint on the question how often devel-
opers possibly need to wait for each other before a synchronization point, compared to the number of
synchronization points itself.

Example 13

Figure 7.19 shows an excerpt from BO. The shown excerpt includes a manual activity “adapt business
object model” that manipulates an already available model of the business object (“BO Model”). In
activity “transform to ESR model” the “BO model” is translated manually to another format (“ESR
BO model”). Further, there is an alternative activity to create an “ESR BO model” directly: “create
ESR model”. The automated activity “generate code & tables” consumes the “ESR BO model” and
creates database “tables” as well as “BO code” that references these “tables”. The implementation is
finished manually within activity “write business logic”. In addition, activity “model S&AMs” is used
to create a status and action model (“S&AM model”) that is reference from the “BO code”. What is
not shown in the extract is that these “S&AM models” are interpreted during “BO code” execution.

Considering the predecessors and successors of the different activities, one global synchronization point
can be identified: activity “generate code & tables”, which has three predecessor sets: the first consists
of “adapt business object model” and “transform to ESR model”, the second includes “transform to
ESR model”, only, and the third consists of “create ESR model”. The other two activities “model
S&AMs” and “write business logic” are successors of “generate code & tables”. Both activities, “model
S&AMs” and “write business logic”, are successor as well as predecessor for each other. Consequently,
they are not synchronization points themselves.

The activities “adapt business object model”, “transform to ESR model”, and “create ESR model”
belong to a first phase, while the activities “model S&AMs” and “write business logic” belong to a
second phase. Thus, the number of phases that can be identified for this excerpt of case study BO
is two. In this example the three predecessor sets of “generate code & tables” reveal that there are
alternative ways to retrieve an “ESR BO model”. When searching for local synchronization points this
might be used to filter the activities from Figure 7.19, such that only activities that belong to one of
the predecessor sets of activity “generate code & tables” remains (i.e. activity “create ESR model”

120



7.2. Analysis of Process Interrelation

Figure 7.19.: Excerpt from Software Manufacture Model of BO.

is removed from the setting for this consideration). Afterwards activity “generate code & tables” is
still a global synchronization point. However, two additional synchronization points can be identified:
“transform to ESR model” and “adapt business object model”. Activity “transform to ESR model”
has one possible predecessor, which is “adapt business object model”, and three successors, which are
“generate code & tables”, “model S&AMs”, and “write business logic”. For activity “adapt business
object model” all other activities are successors.

This example shows how local synchronization points might be identified. However, the extract of
the case study BO that is considered here includes no activities that are predecessor of “generate code
& tables” and successor of “transform to ESR model”, and also no activities that are predecessor of
“transform to ESR model” and successor of “adapt business object model”. Thus, there is no additional
phase between these new synchronization points.

While the identification of global synchronization points and phases can be fully automated, the
identification of relevant local synchronization points and phases can only be supported and requires
manual reasoning in the end. The automation support provides a set of candidates for local foci that
contain local synchronization points and phases. However, not each local focus is meaningful within an
MDE setting and for the same local synchronization point (combined) local foci of different size might be
identified. This is the reason why further manual reasoning about the relevance of local synchronization
points is required.

A first step is to decide whether a retrieved local focus is meaningful. For example when the activities
in the focus can be associated with the creation of a partial product this focus is meaningful. Next the
relevant combination of local foci should be chosen. A subset of the automatically identified local foci
can be chosen, such that there is one or more local foci for each relevant local synchronization point. A
local focus where multiple local synchronization points are included or where multiple phases are created
is potentially more relevant when a local focus without phases. It is possible that a local focus is part
of another local focus.

Finally, the identified local foci and local synchronization points can be enriched with further in-
formation. For example, it has to be identified whether a synchronization point is a miniphase (i.e.
an extensive manual modeling or coding activity with the potential that developers work parallel in
this activity). Alternatively, an identified phase might consist of alternative activities, only (which is
interesting, since no additional options for parallel working can be expected from that phase).

The prototypical implemented identification of (candidates for) synchronization points and phases is
described in Section 8.3.2.

7.2.2. Analysis Method for Manual Information Propagations

Manual information propagation can be identified by simply identifying matches of the pattern shown
in Figure 7.20 to a Software Manufacture Model. Each occurrence of the pattern describes a pair of
artifacts, where content from one artifact is moved in a manual activity to the other artifact (referred to
as manually transformed artifact pair). The pattern might match multiple times to the same activity.

It is not only interesting to identify activities where manual information propagation occurs. The
actual number of the manually transformed artifact pairs provides an impression of the extent of manual
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Figure 7.20.: Software Manufacture Model pattern manual information propagation

information propagation. Manually transformed artifact pairs are all pairs of artifacts there one is
matched to source artifact and the other is matched to target artifact in the same match of the pattern.

Due to the semantic of the pattern match that is described in Chapter 6, pattern matches can also
affect semi-automated activities. When the analyzed models are created such that activities are only
modeled as semi-automated, when the respective manual effort is minimal, all matches of the pattern
to semi-automated activities can simply be ignored. Manual activities might for example be modeled as
semi-automated activities, when the modeler wants to express that an advanced editor supports definition
of references between model elements and implementing services. If this happens, each pattern match
to a semi-automated activity has to be reconsidered individually to decide whether the match can be
ignored or not.

To avoid this effort, following modeling convention should be fulfilled before this analysis is performed
on a Software Manufacture Model:

MC4 Activities within a Software Manufacture Model are modeled as semi-automated only, when the
respective manual effort is limited and constant with respect to the automatically performed part of the

activity.

Example 14

Again an extract of case study BO that is shown in Figure 7.19 is used as example.

Figure 7.21.: Illustration of three matches of pattern manual information propagation on activities from
case study excerpt in Figure 7.19

Figure 7.21 shows the three matches of pattern manual information propagation that can be identified
on this example. Two matches can be identified on activity “create ESR model” and one match can be
identified on activity “transform to ESR model”. The three manually transformed artifact pairs in this
extract are: “BO specification” and “ESR BO model”, “ integration scenario” and “ESR BO model”,
as well as “BO model” and “ESR BO model”.

122



7.2. Analysis of Process Interrelation

7.2.3. Analysis Method for Complexity of Activity Chains

As introduced in Section 3.3.3, the measure that is used in this thesis for the complexity of activity
chains is the lengths of activity chains. The length of an activity chain defines the number of activities
that have to be performed to apply a change to one artifact and propagate it to a resulting artifact
(e.g. the artifacts that are used for final compilation or interpretation of the product). This length is
not fixed number, but has a minimum and a maximum, since alternative chains might exist as well as
optional activities within a chain.

For a pair of artifacts, where the change is applied to the first artifact and should be propagated
to the second artifact, the length of activity chains (i.e. the number of activities that have to be
executed) can be retrieved as follows. All predecessor sets for the second artifact have to be derived.
These predecessor sets are filtered, such that predecessor sets are removed that include no activities that
consume, manipulate, or produce the first artifact. From the remaining predecessor sets each activity
is removed that does not create or manipulate the first artifact directly and that is no successor of an
activity that does create or manipulate the first artifact. Now, the minimum length of the activity
chain for the studied pair of artifacts is equal to the number of activities in the smallest predecessor set,
while the maximum length of the activity chain for the studied pair of artifacts is equal to the number
of activities in the biggest predecessor set. If there is no such predecessor set, changes from the first
artifact are not propagated to the second artifact in context of the MDE setting.

This complexity measure focuses on the number of context switches for a developer and activities
might be modeled with a high degree of detail. To gain comparable results nonetheless, a Software
Manufacture Model that is used for this analysis should be modeled such that following convention is
fulfilled.

MC5 In case, multiple automated activities follow each other directly (i.e. no other activity is
successor of one of these activities and predecessor of another of these activities, at once) and these
automated activities are combined automatically, such that one trigger is sufficient to execute all of
these activities, they should be modeled as a single automated activity. In case, multiple manual

activities that follow each other directly (i.e. no other activity is successor of one of these activities and
predecessor of another of these activities, at once) affect the same set of artifacts (i.e. each of these

activities produces or manipulates the same set of artifacts), they should be modeled as a single manual
activity.

Other aspects that can cause misleading results are explicitly modeled workarounds. When activities
are included in the model that are not meant to be supported by the MDE setting, but represent
workarounds that are applied by developers, the analysis can lead to lengths that are too short (since
the workaround is represented instead of the actually required development path). To prevent this
effect, following modeling convention should be fulfilled before this analysis is performed on a Software
Manufacture Model:

MC6 A Software Manufacture Model that is used for the analysis of the length of activity chains
should not include activities that represent workarounds.

Example 15

This should be illustrated on the two artifacts “BO model” and “BO code” from the extract of case
study BO that is shown in Figure 7.19. Figure 7.22 shows the different predecessor sets for artifact
“BO code”. First, the predecessor sets 1 - 4 are removed, since no activity is included that consumes,
manipulates, or produces artifact “BO model”. All activities in the remaining predecessor sets are either
activities that create or manipulate artifact “BO model” or their successors. The resulting minimum
number of activities can be found in predecessor set 5, where only the activities “generate code &
tables” and “transform to ESR model” are included. The maximum number of activities can be found
in predecessor set 12, where in addition the activities “model S&AM”, “write business logic”, and
“adapt business object model” are included. Consequently the length of activity chain for the artifact
pair “BO model” and “BO code” is between 2 and 5 for this extract of case study BO. Note that this
minimum length includes no activity to apply the change to artifact “BO model”. This is, because this
artifact is produced outside the modeled MDE setting and might be changed there, too.
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Figure 7.22.: Predecessor sets for artifact “BO code” base on case study excerpt from Figure 7.19

Now the artifact pair “ESR model” and “BO code” can be considered. Again the predecessor sets
for “BO code” are taken as basis (Figure 7.22). None of the predecessor sets is removed since all
contain at least one artifact that consumes, manipulates, or produces “BO model”. In a next step the
activity “adapt business object model” is removed since it neither consumes, manipulates, or produces
“BO model”, nor is it a successor of an activity that consumes, manipulates, or produces “BO model”.
The resulting minimum number of activities can be found in predecessor sets 1 and 5, where only two
activities are included, respectively. The maximum number of activities can be found in predecessor sets
4, 8, and 12, where four activities are included, respectively. Consequently the length of activity chain
for the artifact pair “ESR model” and “BO code” is between 2 and 4 for this extract of case study BO.

The calculation of the lengths of activity chains is automated. The automated support is capable of
providing the lengths of activity chains for all pairs of artifacts in the MDE setting. However, not all
artifacts are actually subject to the introduction of changes, and not all changes are probable. In order
to consider only relevant artifact pairs when evaluating a setting, manual decisions have to be met.

Therefore, first two types of artifacts have to be chosen. On the one hand, the analyst decides which
artifacts are change artifacts (i.e. artifacts that are used for the introduction of changes). On the other
hand, the analyst decides which artifacts are target artifacts (i.e. artifacts where the change should be
propagated to). The artifact pairs that are then considered for the analysis are all pairs of one change
artifact (as first artifact) and one target artifact.
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Further, it is possible that some of the change artifacts are only seldom used for changes while the
application of changes to other artifacts is more probable. Thus, an analyst can mark common changes,
which are changes that are not only possible, but that are used regularly. Then a range can be retrieved,
which describes the minimum and maximum number of activities that have to be applied for the common
changes. Further, the maximum length of activity chains is the maximum number of different activities
that have to be applied to implement and propagate a change that was found for a pair of artifacts.
The implementation of the automation support for the assessment of the lengths of activity chains is
described in Section 8.3.3.

7.3. Analysis Approach

In this Section an analysis approach for the practical application of MDE settings is introduced. This
analysis approach comprises a set of use cases for analysis of MDE settings. It shall be explained how
the introduced analysis techniques can be used to address the different use cases (as summarized in
Figure 7.23).

The use cases can be split into three groups. First, the analysis techniques can be used at the start of
a project or when a new or existing MDE setting is taken into operation. Possible goals of an analysis
at this point in time are to plan the combination with software development processes and to make a
risk assessment. Second, the analysis techniques can be used to decide about refactoring options for an
MDE setting that is used regularly in different projects. Finally, the analysis techniques can be used to
support evolution decisions, when an existing MDE setting is not sufficient to fit arising needs on the
software products of a company or when other motivations for evolution occur.

Figure 7.23.: Overview of analysis approach and uses for analysis techniques.
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Project Planning

When taking an MDE setting into operation the analysis techniques can be applied to ensure that
the right process or process tailoring in combined with the MDE setting. Measuring the length of
activity chains as well as the assessment whether hard changeability concerns are affected with the help
of the Software Manufacture Model proto-anti-patterns can be used as a basis to decide whether an
agile process can be combined with the MDE setting. As described in Section 3.3, the identification of
process-relevant manifestations of different MDE traits can motivate an adaptation of the process: When
manual transformations are identified, the process tailoring should be done, such that the corresponding
need for additional quality assurance can be addressed. Further, the identification of synchronization
points should be considered when planning how work is split along a team and how release cycles are
planned.

Further the analysis techniques can be used for an initial risk assessment. The basis for such a risk
assessment is an analysis how changeability concerns are affected. A risk assessment for an MDE setting
that is already chosen for a project has two reasons:

First, especially proto-patterns (not anti-patterns) encode expectations on manual activities. For
example, for an occurrence of split manufacture only specific parts of the modified artifact are allowed to
be touched manually. Further, occurrences of proto-anti-patterns provide hints which artifacts should not
be changed without care and agreement within the team. For example, for an occurrence of subsequent
adjustment, changes should not be applied to artifacts that can cause the new execution of initial creation.
Consequently, a couple of necessary developer conventions, on what artifacts or artifact parts cannot be
modified safely, follow from the MDE setting. The risk analysis helps to identify these conventions and
to make them explicit for developers.

Second, when a proto-anti-pattern occurrence is identified and can be associated with risk, the MDE
setting should be analyzed for alternative ways to implement a change. Goal of a change is to propagate
the change to the resulting artifacts. The activities that are actually matched to the proto-anti-patterns
might not be part of each predecessor set of the targeted resulting artifacts. Thus, there are alternative,
risk-free, paths of activities that can be used to create or manipulate the required artifact. One tasks of
a risk assessment is the identification of such alternatives, such that the developers gain the information
how changes can be applied safely.

Refactoring

A main reason to analyze an MDE setting is to identify potential for refactoring. In general, a refactoring
can happen for different reasons. However, the identification of proto-anti-patterns can help to predict
situations that can make a refactoring necessary. During an analysis of changeability concerns with the
proto-patterns, each occurrence of a proto-anti-pattern is further analyzed for mitigating factors that
prevent a manifestation of the associated changeability problem. Mitigating factors that are identified as
relevant in a situation should be documented explicitly. A change in such a mitigating factor at any time
can lead to the manifestation of the problem. Consequently, the mitigating factors need to be observed,
since their omission can enforce the need to remove the proto-anti-patterns from the MDE setting. For
example, an artifact “configuration file” that is matched to base artifact in an occurrence of subsequent
adjustment might never be changed. However, a change in the offered options to customize the software
product can lead to frequent changes of this “configuration file”. In this case, the changeability problem
of the pattern can manifest and refactoring is required.

Apart from the question when a refactoring becomes necessary, the analysis techniques directly help
to identify what should be addressed in a refactoring. Occurrences of proto-anti-patterns are natu-
ral candidates for refactoring. The description of these proto-anti-patterns already includes resolution
strategies that can be used for refactoring. Proto-patterns already document possible solutions.

Also an identified process-relevant manifestation of an MDE trait can be target of refactoring efforts.
For example, a manual transformation might be supplemented by automated support or even be substi-
tuted by a full automation. Also the length of activity chains or the existence of synchronization points
can be chosen as target of a refactoring (i.e. in order to enable the use of the MDE setting with agile
processes).
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Planning Evolution

As described in Section 3.4 structural evolution might happen to MDE settings for the most diverse
reasons. For example, it might be planned to automated additional parts of the development.

Structural evolution can change the properties of an MDE setting, such that the influence of change-
ability changes or that the manifestations of the MDE traits changes. Thus, it is important to ensure that
an evolution step does not lead to a worse changeability or has unexpected effects on the manifestation
of MDE traits.

A general approach to support evolution decisions is to model the MDE setting that will result from
the evolution step as Software Manufacture Model, too. On this model the analysis techniques presented
in this chapter can be applied, to identify how changeability support of the new MDE setting will be
and what process-relevant manifestations of MDE traits will occur. This way, different variants of the
new MDE setting might be analyzed and compared to the actual setting. In future it might, in addition,
become possible to collect “best practices” for evolution steps that can be safely applied to handle
specific evolution needs.
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In this chapter, tools and automation support for the languages and analyses presented in Chapters
6 and 7 is presented, as summarizes in Figure 8.1. The Software Manufacture Model language and
the Software Manufacture Model pattern language are supported by editors. For both languages non-
graphical tree editors were developed. In addition, a graphical editor for the new version of the Software
Manufacture Model language was developed in cooperation with eight students in a seminar.

An initial version of the pattern matcher was developed on the basis of the initial Software Manufac-
ture Model meta model. This pattern matcher was adapted for the new Software Manufacture Model
meta model, again in cooperation with students in the seminar. During the seminar the students were
encouraged to experiment with the notation of the Software Manufacture Model language. As a conse-
quence the notation within the graphical editor differs from the notation that was presented in Section
6.2. This concerns the annotation of the degree of automation, the notation of the set pins as well as the
notation of the links including link direction and relations. The differences in the notation are explained
in Appendix D.

Figure 8.1.: Overview of this chapter: implementation supports modeling of MDE settings as well as
analysis of an MDE setting’s impact on changeability and process interrelation.

In the following the editor support is shortly described (Section 8.1), followed by an introduction of
the automated pattern matcher (Section 8.2). Afterwards the automation support for the order-based
analysis methods is presented.

This chapter is partially based on [P2].

8.1. Editors

The tree editors for both, Software Manufacture Model language and Software Manufacture Model
pattern language, are developed based on the Eclipse modeling framework (EMF version 2.8.11) in
Eclipse Juno2. Both meta models were modeled as Ecore meta model. On that basis the tree-editors
were generate with EMF. Figures 8.2 and 8.3 show screen shots of the Software Manufacture Model
tree editor (showing parts of case study Carmeq) and the pattern editor (showing pattern Creation
Dependence (see Section 7.1.4)).

The graphical editor for the Software Manufacture Model language was developed on the basis of the
tree editor with the graphical modeling framework (GMF Runtime 1.6.03) and Eugenia4. Figure 8.4
shows a screenshot of the graphical editor (showing parts of case study Carmeq).

8.2. Pattern Matcher

The pattern matcher is implemented in Java on the basis of the described editors. For the identification
of a pattern match, for each activity within the considered Software Manufacture Model and each pattern

1Eclipse Modeling Framework (http://www.eclipse.org/modeling/emf/ (last access at November 9th, 2013))
2Eclipse Juno version 4.2.0 (http://www.eclipse.org/ (last access at November 9th, 2013)); Java 1.7.0 SE Runtime

Environment
3Graphical Modeling Framework (https://projects.eclipse.org/projects/modeling.gmp.gmf-tooling (last

access at November 9th, 2013))
4Eugenia (http://www.eclipse.org/epsilon/doc/eugenia/ (last access at November 9th, 2013))
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Figure 8.2.: Screenshot of Software Manufacture Model tree editor

activity a graph is created. This transformation is done in a way that different node types are created for
the different elements of the Software Manufacture Model (i.e. artifact, pin, connector, and link). Also
for each connected activity a node is created. In addition, links of different types are transformed to
different node types, such that the identification of graph matches becomes faster. For pattern activities
with negative structure two graphs are created: one that includes elements of the activity that do not
belong to the negative structure, only, and one that includes all elements of the activity.

After this transformation a library for graph matching is used to retrieve an isomorphic match5. For
each identified match a mapping between the matched pattern activity and the activity of the Software
Manufacture Model is created and returned. This mapping includes detailed information which artifacts,
connectors, links, and pins for a Software Manufacture Model activity are matched to which artifacts,
connectors, links, and pins of a pattern activity. Then, the mappings of links for each identified activity
mapping are evaluated. This is done to remove mappings, where the mapped link does not refine the
link for the pattern activity. For example, a mapping of a refines link to a refines link in the pattern
activity is incorrect when the direction of both links is different (i.e. start pin of the link in the activity
is mapped to the end pin of the link in the pattern activity and the other way around).

As a next step for each identified mapping of a pattern activity with negative structure, the corre-
sponding mapping of the pattern activity without negative structure (i.e. with the same mapping of
activity elements to elements of the pattern activity) is removed.

Finally, it is tested, which identified matches of pattern activities can be combined to matches of the
whole pattern. Therefore it is necessary to check whether artifact roles that are produced or consumed
by multiple pattern activities of the same pattern are mapped to the same artifacts in the mappings
that should be combined to a pattern match. If this is the case a pattern match is identified. Resulting
matches are automatically highlighted in the graphical editor. A screenshot of the output of the pattern
matcher is shown in Figure 8.5.

5http://www.hpi.uni-potsdam.de/giese/gforge/mdelab/?page_id=819 (last access at November 9th, 2013)
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Figure 8.3.: Screenshot of pattern editor

8.3. Automation Support for Order-Based Analysis Techniques

In the following, the implementation of the identification of predecessor sets is described (Section 8.3.1).
Finally, the automation support for the assessment of synchronization points and phases (Section 8.3.2)
and lengths of activity chains (Section 8.3.3) are introduced.

8.3.1. Automated Identification of Predecessor Sets, Predecessors, and Successors

In Section 6.2.4 the terms predecessor set, predecessor, and successor are introduced. The information
about predecessor sets of activities within an MDE setting is the basis for the assessment of phases and
lengths of activity chains. Therefore, automation support for those two analyses requires an automated
identification of predecessor sets (and with it of predecessors and successors). In this section, it is
explained how predecessor sets, predecessors, and successors are automatically derived on the basis of a
Software Manufacture Model.

For the illustration of the identification of predecessor sets, the EMF example (see Section 2.6) is used
in the following. The Software Manufacture Model of the corresponding activities is shown in Figure
8.6. As indicated in the introduction of the EMF example in Section 2.6 three additional activities shall
be added for better illustration: “create genmodel”, “create documentation” and “merge into”. Activity
“create documentation” is a manual activity to create a documentation, while “merge into” is a semi-
automated activity that allows to include the “ecore model” into the documentation. “Create genmodel”
is an alternative activity for the creation of artifact “emf generator model”. Start activities in this ex-
ample are “create ecore model”, “create genmodel” and “create documentation”. The resulting artifacts
in the example are “interface”, “adapter factory”, “interface implementation”, and “documentation”.
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Figure 8.4.: Screenshot of graphical Software Manufacture Model editor

Figure 8.5.: Highlighted match of pattern subsequent adjustment (see Section 7.1.3) in activities of case
study VCat

Identifying Predecessors

To identify the predecessor sets of a given activity each artifact that is consumed by this activity is
considered. For each artifact two sets of activities are collected: first, all activities that produce one or
more of the artifacts that are consumed by the given activity and second, all activities that manipulate
one or more of the artifacts that are consumed by the given activity. Similarly the identification of
predecessor sets for a given artifact starts with the identification of activities that create or manipulate
this artifact. For example, the set creating activities for artifact “interface implementation” includes
“generate java code”, while the set of manipulating activities includes “manipulate implementation”.
On the basis of these two sets of activities all possible candidate predecessor sets are created for all

artifacts. A possible candidate predecessor set includes for the considered artifact (i.e. in case of a given
activity: an artifact that is consumed, and in case of a given artifact: this artifact) one activity that
creates this artifact (if there is such an activity in the MDE setting) as well as an arbitrary combination of
activities that manipulate a considered artifact. In case that an artifact is optional input of the activity
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Figure 8.6.: Software Manufacture Model of activities from the extended EMF example (Section 2.6).

an empty predecessor set candidate is added as alternative to the set of predecessor set candidates for
this artifact. For example, the two candidate predecessor sets that are shown in Figure 8.7 can be
created.

Figure 8.7.: Initial candidate predecessor sets for artifact “interface implementation”.

Here a first filter is applied to remove predecessor set candidates that contain the activity under study,
since an activity cannot be its own predecessor. Afterwards all combinations of candidate predecessor
sets for the different consumed artifacts are retrieved (one candidate predecessors set per consumed
artifact) to gain all initial predecessor set candidates for the activity under study.

In a next step these possible candidate predecessor sets are further filtered (in case of a given activity).
For each candidate predecessor set it is checked whether the relations that belong to the precondition
of the activity can be created within this candidate predecessor set. The candidates that cannot fulfill
these preconditions are removed. Precondition links that are connected to optional input artifacts do
not need to be fulfilled, when the optional input artifact is not provided by the predecessor set.

Finally, the consumed artifacts and the activity can be registered as “handled”.
Now for each of the retrieved initial candidates all activities are examined. All artifacts are identified

that are consumed by one of the activities in the candidate and that were not yet investigated for prede-
cessors. For those artifacts the above described steps are repeated to identify their candidate predecessor
sets. In order to optimize the algorithm, results from previous computations for activities from other
candidates can be reused. However, this optimization is not part of the current implementation.

For example, for “initial candidate set 1” from Figure 8.7 the artifacts “ecore model” and “emf
generator model” need to be further considered. Artifact “interface implementation” which is consumed
by “manipulate implementation” was already checked for predecessors. As a result, four candidate sets
can be identified for artifact “emf generator model” and one candidate set can be identified for artifact
“ecore model”. These candidate sets are shown in Figure 8.8.

Following, all combinations of the initial candidate predecessor with the candidates created for the
identified artifacts can be retrieved. Multiple new versions of the initial candidate predecessor set
might be created, since each identified artifact might have multiple candidate predecessor sets, too. For
example, Figure 8.9 shows the new versions of “initial candidate set 1”.

These new combinations for initial candidate predecessor sets are further filtered. Each activity that
already was in the initial candidate set before the new versions were created and that was not yet checked
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Figure 8.8.: Candidate sets for artifacts “emf generator model” and “ecore model”.

Figure 8.9.: Combinations first initial candidate set from Figure 8.7 and candidate sets from Figure 8.8.

is checked. This check concerns the question whether the relations that belong to the precondition of
the activity can be created within the new version of the candidate predecessor set. When a new version
cannot fulfill these preconditions it is removed. In the example in Figure 8.9, none of the candidate sets
include activities that are already checked. However, the activities “generate java code” and “manipulate
implementation” were already part of the initial candidate set before. Consequently, each candidate set
is checked whether it is possible to fulfill the precondition of both activities with this candidate set. The
precondition of “generate java code” (a reference between two input artifacts) cannot be created within
the first two candidate sets. Consequently, only the candidate set shown in Figure 8.10 are further
treated.
As a special case this check has to consider that some artifacts in the Software Manufacture Model

are start artifacts. Preconditions that belong to these start artifacts (i.e. start artifacts as well as
required relations to or from start artifacts) do not need to be fulfilled to pass the check. The underlying
assumption is that such relations might already be created outside the MDE setting. For example, Figure
8.11 shows two initial candidate sets for artifact “documentation”. Activity “create documentation”
consumes the start artifact “documentation template”. Thus, although the candidate sets include no
activities that can create “documentation template”, the activity “create documentation” passes the
check (marked as initial with an “i”, here).
Due to the combination of predecessor sets for different artifacts, it might occur again that the initial

activity is contained in one of the resulting predecessor sets. Thus, the corresponding filter is applied
again. Afterwards, all activities can be marked as handled.

This step (the identification of artifacts that have no creating activity in the candidate set and the
subsequent identification and integration of its candidate predecessor sets) is repeated until the initial
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Figure 8.10.: Remaining initial candidate sets after check of activities “generate java code” and “manip-
ulate implementation”.

Figure 8.11.: Example candidate predecessor sets for artifact “documentation”.

candidate predecessor sets do not change anymore and no new variations are created. In the example,
for the new activities in both of these remaining candidate sets no consumed artifacts can be identified
that were not yet investigated for predecessors. Thus, the unchecked activities in the candidate sets
are checked whether their preconditions can be fulfilled. Figure 8.12 shows all resulting candidate sets
(including the candidates that are created on the basis of “initial candidate set 2”).

Figure 8.12.: Candidate predecessor sets for artifact “interface implementation”, where all activities
passed the precondition check.

Some final filters are applied. First, equal candidate sets can result from the combination and extension
of candidate sets for the different artifacts. Such clones are removed from the candidate sets. Second,
when two artifacts can be created simultaneously by the same activity or alternatively by other activities
it is possible that multiple activities that can be used for the creation of the same artifact are combined
in one predecessor set (since the predecessor sets are combinations of predecessor sets of the different
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artifacts). Therefore, a last filter removes predecessor sets with such “creation overkill”.
The resulting candidates are the predecessor sets of the initially investigated activity or artifact.

Figure 8.13 shows the resulting predecessor sets for artifact “interface implementation”. Consequently
the predecessors for this artifact are “create ecore model”, “create emf generator model”, “manipulate
genmodel”, “generate java code”, and “manipulate implementation”.
The presented algorithm can be found in detail in Appendix F.1.

Figure 8.13.: Summary of predecessor sets of artifact “interface implementation”.

Identifying Successors

The successors on an activity can be examined straightforwardly when the predecessor sets of all activ-
ities are known. In the example of activity “create ecore model” all candidates are successors. However,
activity “create genmodel” is not a predecessor for the activities “generate java code” and “manipu-
late implementation”. Thus, the only candidate that actually is a successor of “create genmodel” is
“manipulate genmodel”.

Discussion

Goal of this algorithm is to identify all possible predecessor sets for a given activity or artifact. A
predecessor set (of a specific activity or artifact) is defined as a set of activities that are sufficient
to create the precondition for the specific activity or to create the specific artifact. This includes each
subset of activities in an MDE setting that might be used to create the required preconditions. However,
subsets with activities that cannot be used together (e.g. because they are alternatives to create the
same artifacts) are excluded.

There is a more straight forward solution, compared the presented algorithm. This simple solution
to retrieve the predecessor sets would be to form all possible subsets of activities in the MDE setting
and filter them. First for the complete MDE setting, start artifacts are identified. Then, the subsets
would be checked whether for each artifact in the set only one activity exists that can be used to create
this artifact (“creation overkill”). Second, the subsets would be checked whether for each activity, the
preconditions can be fulfilled (i.e. whether the consumed artifacts are start artifacts or can be created
within the subset, and whether the required relations are relations to start artifacts or can be created
within the subset). However, this simple solution has an exponential complexity, since all subsets of the
activities in an MDE setting have to be studied (i.e. the power set). For MDE settings with up to 30
activities, this is not applicable. Consequently, an optimized algorithm was required.

The presented algorithm is this an optimization, although it has still an exponential complexity.
The applied optimization results from a reduction of the size of activity sets that are subject to the
computation of power sets (and with it to the part of the algorithm that has the exponential complexity).
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Consequently, the main difference between the simple solution and the presented algorithm is that in
the presented algorithm the predecessor sets are built up recursively. Still the power sets of subsets
of the activities in the MDE setting are examined. However, the algorithm aims at reducing the size
of these subsets. Only activities that create or manipulate a given consumed artifact are used to
build candidate sets for artifacts (i.e. the power set of manipulating activities combined with creating
activities). Further, due to the recursive algorithm, only a subset of artifacts is studied in each cycle.
Thus, the following combination of candidate sets for the considered artifacts to candidate predecessor
sets is limited in the extent, too. The resulting candidates are directly filtered to ensure that impossible
candidate predecessor sets are not further considered.

This filter includes a check whether preconditions for the activities that were already part of the initial
candidate set can be fulfilled, with a given candidate predecessor set. This check can be done correctly at
this point, since all relevant activities (i.e. all activities in the MDE setting that could be used to fulfill
the preconditions) were considered for the creation of the candidate predecessor sets. Consequently, if a
combination of activities can be used to fulfill the precondition there is a candidate predecessor set that
includes this combination. The break condition for the recursion is the consideration of start artifacts
and activities. Finally, the applied filters exclude surplus predecessor candidate sets that result from the
stepwise combinations. Thus, predecessor candidate sets that are removed include “creation overkill”,
are clones of other predecessor candidate sets (i.e. equal), or contain the activity that was initial input
of the algorithm. Therefore, the presented algorithm leads to the required predecessor candidate sets
and with it also to information about predecessors and successors.

The benefit of this recursive approach is that the presented algorithm – although still of exponential
complexity – is applicable to MDE settings as they were captured during the first and third study, see
Chapter 4. Here applicable means that the algorithm returned for each of the case studies within three
minutes (or less).

In future, the presented implementation might be substituted by adapting standard techniques for
analysis of paths within network, like the Program Evaluation and Review Technique (PERT) or Bernard
Roy’s metra potential method (MPM) [223], such that relations between activities are considered.

8.3.2. Automation Support for Analysis of Phases and Synchronization Points

In this section the automation support for the identification of synchronization points and phases is
described. As described in Section 7.2.1, the identification of global synchronization points and phases
can be fully automated. For the identification of local synchronization points and phases automated
support is provided.

For both goals, first, predecessor sets of all activities (and with it a list of predecessors and successors
of an activity) need to be identified (which is automated as described in Section 8.3.1).

Global Synchronization Points

The identification of global synchronization points are is rather straight forward. For each activity in
the model it is checked whether this activity is a local synchronization point within a focus that covers
all activities of the model.

To check whether such a candidate activity is a local synchronization point within the focus of ac-
tivities, it is evaluated for each activity in the given focus whether this activity is either predecessor or
successor (and not both) of the candidate. If this is true for all activities in the focus the activity is a
local synchronization point.

Local Synchronization Points

For the automated identification of local synchronization points different strategies are possible. The
straight forward strategy would be to retrieve all combinations of an arbitrary number of activities
from the model as potential local focus and check for each activity in such a local focus whether it
is a local synchronization point in that focus. However, this straight forward strategy suffers from its
high computational complexity (which would be exponential). Instead an algorithm was implemented
that approaches the identification from a more pragmatic perspective. Therefore, for each activity in
the model it is checked whether it is a potential local synchronization point. This check bases on the
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identification of activities that are known to be in an order concerning the candidate activity. On the
one hand activities are collected that have the candidate as successor. On the other hand activities are
collected that require the candidate before they are executed (i.e. the candidate is part of all predecessor
sets of these activities). A candidate is further considered as potential local synchronization points, if
both sets include activities. Thus, only activities are considered that have the potential to split a local
focus into different phases.
For activities that pass this check a local focus is constructed as a combination of the two sets of

activities and the candidate (i.e. activities that have the candidate as successor and activities that
require the candidate as predecessor). For example, Figure 8.14 illustrates a local focus that would be
constructed for the activity “Generate Java Code” from the extended EMF example that is shown in
Figure 8.6.
For the constructed local focus it is checked whether the candidate actually is a local synchronization

point. It is possible that this is not the case, since the local focus is created out of activities that have
an order to the candidate, but is not checked before whether the activities are only successor or only
predecessor. Further it is for each other activities in the local focus checked whether it is an additional
local synchronization point in that focus.

Figure 8.14.: Example construction of a local focus for the potential synchronization point “Generate
Java Code” within the extended EMF example (Section 2.6).

If the local foci of two or more synchronization points overlap in most activities, it might be possible
that this overlap represents a local focus, where all of these activities are local synchronization points.
To identify such local foci with multiple synchronization points all combinations of two or more already
identified local foci are considered. Therefore, it is first checked, whether a combination of a given set of
local synchronization points with corresponding local foci is possible at all. This is the case if each local
synchronization point is part of the all considered local foci. If this is not the case for one of the local
synchronization points a combination is not possible. Then, the new combined local focus is constructed
as the overlap of all combined local foci (i.e. it is the combination of all activities that are in each local
focus). This way it is ensured that all local synchronization points remain local synchronization points
in the new combined focus. Finally, all activities in the new constructed local focus are checked again
whether they are additional local synchronization points in that focus.

Phases

Based on the information about global or local synchronization points and the corresponding local foci
it is possible to retrieve the resulting phases. Therefore, all synchronization points within a local focus
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are put into an order (predecessors followed by their successors). Then these ordered synchronization
points are iterated. All activities in the considered focus that are a) predecessors of the current activity
and b) not yet part of a phase are combined to a phase. After consideration of all synchronization points
the remaining activities (which are successors of all synchronization points) are combined to the last
phase.

The presented algorithm can be found in detail in Appendix F.2.

Discussion

On the basis of the identified predecessor sets the identification of global synchronization points or local
synchronization points for a given focus is straight forward. Similarly, phases can be automatically
calculated for a given focus and a given set of synchronization points.

However, as discussed in Section 8.3.1 the identification of miniphases and meaningful local foci
remains subject to manual decisions.

Basically, there are no “wrong local foci”, i.e. each subset of activities in the MDE setting can be a
local focus. However, some local foci are more meaningful than others. A part of the above presented
algorithm aims at identifying candidates for such foci. The notion of “meaningful” is approximated by
two ideas. First, from the viewpoint of the analysis, a local focus is only interesting, when it includes
synchronization points that split the focus into two or more phases. Therefore, the identification of local
foci starts with the search for activities that are successor for some activities and always predecessor for
other activities. Second, a local focus is not considered as meaningful, when the contained activities are
uncoupled (i.e. when the activities in the focus can be split into two or more groups, such that each
activity from one group is neither predecessor nor successor of any activity in another group). Therefore,
the local foci are constructed by collecting predecessors and successors of the potential synchronization
point. This initial approach to identify local foci has polynomial complexity.

The result of this initial approach is a local focus with a set of activities, such that the considered
potential synchronization point remains a synchronization point. However, sometimes local foci that
are slightly smaller contain additional synchronization points. In order to identify such additional local
foci, an additional part of the above presented algorithm creates overlaps between the identified local
foci. The synchronization points of each of the combined foci remain synchronization points within
such overlaps. This approach is implemented straight forwardly and has an exponential complexity.
However, due to the limited number of candidate local foci, from the first approximation step, this
algorithm turned out to be applicable for the MDE settings that were collected within the first and
third study (see Chapter 4).

Again the approach is an approximation. Thus, on the one hand there is a good chance to identify
local foci that are split into two or more phases. On the other hand this approximation often leads to
additional local foci that contain only one or no phase, but many synchronization points that are strictly
ordered. Subsuming, the identification support for local foci can only approximate what local foci are
meaningful. Nonetheless, during the application of the algorithm to the case studies from the first and
third study (see Chapter 4) the actually implemented approach led to the identification of all expected
synchronization points (i.e. all synchronization points that were identified manually, too).

8.3.3. Automation Support for Analysis of Complexity of Activity Chains

In this Section the automation support for the assessment of the lengths of activity chains is described.
First, it shall be described how the lengths are automatically retrieved. As for the identification of

synchronization points an automated identification of predecessor sets and successors is required as a
first step (the automation of this identification is described in Section 8.3.1).

The automated analysis is performed for all pairs of artifacts in the model. Therefore, first a list of
all artifacts in the model is created. This includes a small filtering, since it is assumed that an artifact
might occur multiple time within the model (in form of technically distinct model elements) in order to
improve readability. Two artifact model elements are defined to represent the same artifact if they have
the same role name and type. Based on that list all pairs of artifacts are retrieved. For each of these
pairs of artifacts the length of the activity chains between them is calculated. This calculation is done
in both directions (i.e. such that both artifacts are once the first and once the second artifact within
this calculation).
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Figure 8.15.: Example predecessor sets of activities that create or manipulate artifact “Interface Im-
plementation” within the extended EMF example (Section 2.6) that is shown in Figure
8.6.

To calculate the length, first all activities are retrieved that are relevant for the creation, manipulation,
and/or consumption of the first and second artifact. Then, all predecessor sets of the second artifact are
collected in order to identify all activities that produce or manipulate second artifact. This includes the
predecessor sets of all activities that create or manipulate the second artifact. For example, Figure 8.15
shows the predecessor sets for activities that create or manipulate artifact “Interface Implementation”
from the MDE setting of the extended EMF example (Section 2.6) shown in Figure 8.6.
The calculation of the length of activity chains can be based on these predecessor sets, since they

represent all sets of activities that can be used to propagate changes to the second artifact. Thus, for
all changes that might be propagated from an artifact to the second artifact and all activity chains that
can possibly be used for this propagation there is a predecessor set that represents this path.

Only some of the predecessor sets have to be taken into account. Relevant predecessor sets include
activities that create, manipulate, or consume the first artifact. For example, in Figure 8.15 the activities
that create or manipulate artifact “EMF Generator Model” are marked. In addition, the special case
that an activity directly consumes the first and produces the second artifact. Note that this second case
needs to be handled separately, since an activity is not part of its own predecessor set. If a predecessor
set is relevant and not empty a copy is added to the selection of predecessor sets.
Not all activities within a relevant predecessor set might be relevant, too. Therefore, each predecessor

set is filtered, such that only activities remain that are used for a change of the first artifact or the
propagation of such a change to the second artifact. These are on the one hand activities that manipulate
or create the first activity or on the other hand activities that are successors of activities which manipulate
or create the first activity. For example, the filtered predecessor sets for the artifact pair “EMF Generator
Model” and “Interface Implementation” are shown in Figure 8.16. Besides the filtering of the predecessor
sets it is checked whether an activity creates or manipulates the second artifact directly consumes the
first artifact.
If no connection between both artifacts can be identified (i.e. no predecessor set is identified and the

check for an activity that directly propagates changes between both artifacts fails) the algorithm can
stop for the considered pair of artifacts.
Otherwise the minimum and maximum number of activities that have to be executed to change and

propagate a change from first artifact to the second artifact can be retrieved. The size of such an
activity chain is equal to the size of a filtered predecessor set, since the filtered predecessor set includes
exactly the activities that are sufficient and actually used to propagate a change from the first artifact
to the second. The last activity in the chain (i.e. the activity that manipulates or creates the second
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Figure 8.16.: Example assessment of lengths of activity chains for artifact pair “EMF Generator Model”
and “Interface Implementation” within the extended EMF example (Section 2.6) that is
shown in Figure 8.6. Shown are the filtered predecessor sets of activities that create or
manipulate artifact “Interface Implementation”.

artifact) is not part of the predecessor set as described above. This is the reason why the lengths that
are calculated on the basis of the size of the predecessor sets have to be increased by 1. The difference
between minimum and maximum length results from the differences between the predecessor sets. Note
that in some cases the first artifact in the considered pair stems from outside the MDE setting and is
only used within the setting. In these cases, no activity for changing this artifact might be counted.

Thus, as indicated in Figure 8.16 the lengths of activity chains for artifact pair “EMF Generator
Model” and “Interface Implementation” is 2 to 4 in the example.

The presented algorithm can be found in detail in Appendix F.3.
As described in Section 7.2.3, not all pairs of artifacts need to be considered. The current version of

the presented algorithm still computes the lengths of activity chains for all pairs of artifacts (which has
square complexity (O(n2))). In future, the input of the analyst might be used to only calculate lengths
for relevant pairs of artifacts.

Further, the above described calculation of lengths for a given ordered pair of activities has a cubic
complexity (O(2n3)), only. Consequently, the length of activity chains can be calculated automatically
(under the assumption that information about predecessor sets of the activities of the MDE setting is
given).
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9. Study Results: Employing Modeling and Analysis

As shown in the overview picture in Figure 9.1 this thesis focuses on the questions how MDE settings can
influence changeability (Figure 9.1 a) and how MDE settings are interrelated with software development
processes (Figure 9.1 b). These questions were discussed on a theoretical level in Chapter 3. In that
context the hypotheses Hchangeability and Htraits, which state that MDE settings in practice differ in the
studied characteristics of MDE (i.e. the influence on hard changeability concerns and the interrelation
with software development processes) were formulated. In order to investigate these characteristics for
MDE settings, the Software Manufacture Model language and analysis techniques were introduced in
the Chapters 6 and 7. In this chapter the evaluation of the hypotheses Hchangeability and Htraits is
approached on the basis of the introduced modeling and analysis techniques and the case studies from
the first and third study (see Chapter 4).

Another focus of this thesis is on the question how evolution affects the above mentioned characteristics
of MDE settings (Figure 9.1 c). So far it was theoretically discussed that substantial structural evolution
can alter these characteristics (see Section 3.4.2). Further, it was shown that structural evolution and
substantial structural evolution actually occur in practice and are common (see Chapter 5).

As a final evaluation step it will be investigated in Section 9.4 whether the case studies include
examples, where structural evolution steps actually altered the different characteristics on MDE settings.
Therefore, the results from the analysis of changeability influence and process interrelation (that will
be presented in Sections 9.3 and 9.2) will be combined with the data on evolution steps from the third
study (see Chapter 4).

Before these different evaluations are presented, it is first discussed in Section 9.1 how the data from
the case studies was prepared for the analysis.

This chapter is partially based on [P2, P6, P4] and [P3].

Figure 9.1.: Overview of investigated aspects of MDE

9.1. Preparation of Models for Analysis

The Software Manufacture Models on which the analysis techniques are applied in the following stem
from the eleven case studies from the first and third study (see Chapter 4): BO, BRF, BW, Oberon,
SIW, VC, VCat, Carmeq, Cap1, Cap2a, and Cap2b (for case study Ableton the MDE setting was not
captured in detail). For BO the investigated Software Manufacture Model represents the MDE setting
at the evolution stage that was captured during the first study (i.e. the MDE setting between the
fourth and fifth evolution step). For the other models with captured evolution history (VC, VCat,
Carmeq, Cap1, Cap2a, and Cap2b) the version that was in use at the time of the interviews is used. As
described before, the models were captured in context of the interview phases, which happened partly
without the Software Manufacture Model language or on the bases of the old Software Manufacture
Model metamodel. In addition, most of the models were captured before the analysis techniques were
introduced.

However, in the Sections 6.2.4 and 7.2 a couple of modeling conventions for the correct application
of the analysis are defined. To apply the analysis, the captured models partly needed to be adapted,
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such that these modeling conventions are fulfilled. In the following these preparations are described.
Subsequently, possible impacts of the model preparation are discussed.

9.1.1. Model Preparation

First, the models are adapted to ensure a basic model quality. As already described in Chapter 4, some
of the captured models had to be adapted to the actual version of the Software Manufacture Model
metamodel. Some of the SAP case studies included activities that explicitly model the choice of a
specific artifact out of a set of artifacts for further treatment (e.g. the choice of a “floorplan template”
out of multiple instances of “floorplan templates” in case study Oberon). In context of the adaption to
the new metamodel, such activities were removed.

Further, to ensure that activities and artifacts of similar, but different roles can actually be distin-
guished, some names had to be changed. For example, in case study BO it is now differentiated between
“BO model” and “other BO model”, in order to differentiate between the model for the actually devel-
oped business objects and models that are used as example from previous projects.

Partly containment relations were not made explicit as links in the models (following the abstraction
rules from Software Manufacture Models in Section 6.2.2). Since the corresponding abstraction technique
is currently not supported by the editor, several activities were enriched with links to explicitly express
these containment relations. To enable the formulation of these links, it was necessary to split some of
the internal sets, such that containing and contained artifacts were connected to different pins.

Second, the models are adapted to fulfill the modeling conventions for the correct application of the
predecessor analysis (as introduced in Section 6.2.4). In the absence of more explicit information, the
currently implemented algorithm differentiates on the basis of the multiplicity of connectors whether an
activity that consumes and produces instances of the same artifact role is a creating or manipulating
activity for this artifact (i.e. an artifact that is created is optional input (lower multiplicity 0) and always
output). With respect to the resulting modeling convention MC1 some of the connector multiplicities
were adapted.

Further, a problem for the automated identification of predecessor sets is the fact that the Software
Manufacture Models so far include no concept to differentiate between normal artifacts and artifacts that
are used to store and report on identified errors. Thus, when error reports and their optional consump-
tion in modeling or coding activities are modeled explicitly, this affects the identified predecessors and
successors, such that cycles for correction activities are included. This in turn can affect the identified
length of activity chains. To fulfill modeling convention MC2 for preventing such problems, some simple
quality assurance activities or the artifacts that model the error reports were removed from the models.

Third, some modeling conventions were defined to ensure that the analysis techniques can be applied
(as introduced in Section 7.2). To fulfill modeling convention MC3 the focus of most models was limited,
which led to the removal of some activities in the models. This concerns some “meta” activities that
focused on the manipulation of artifacts that are used to specify how automated activities are executed.
For example, there were activities in case study Carmeq that describe the manipulation of the “word
macros” for the integration of “figures” into the “word standard document”. Further, some case studies
include activities for the creation of alternative results. For simplicity some of these alternatives were
removed. For example, in case study Cap2b different documents might be generated based on the model
(“Result1” - “Result9”). Although different generators are used, the corresponding activity chains are
similar. Thus, the removal of the alternatives, does not affect the properties that can be identified for
this MDE setting.

In addition, all activities that were modeled as manual or semi-automated activities were reconsidered
to decide about the actual degree of automation following modeling convention MC4. Some activities
that were modeled as semi-automated were changed to manual activities, when the degree of automation
for these activities did not exceed an intelligent editor support.

To reach comparability of the number of activities, the models were further normalized in the degree
of detail (following modeling convention MC5). On the one hand manual activities that access the same
artifacts or partial artifacts that are contained by the same artifacts were combined. Especially in case
studies like VC this led to a massive change, since the initially captured activities on the manipulation
of the “VC Model” were very detailed. On the other hand automated activities that are in a chain
(i.e. activities that are always executed together and where not each single activity has to be triggered
explicitly by a developer) were combined. For example, the automated activities “ConvertToDBEntry”
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and “GenerateRuleClass” in case study BRF were combined to one activity. In that context, also one
complex semi-automated activity was split into two activities that concern different artifacts: the activity
“integrate Figures and Tables” in case study Carmeq was split such that one activity for the integration
of figures and one activity for the integration of tables were modeled.

Finally, some activities that explicitly represented workarounds were removed, to fulfill modeling
convention MC6. For example, the initial model of Cap2a included an activity that represented a manual
synchronization of changes, which are applied to the resulting artifacts, back to the initial model.

To summarize, the nine modeling conventions were applied to the models of the case studies. As a
result the number of manual and automated activities within the Software Manufacture Models changed.
Table 9.1 provides an overview about the prepared models.

Table 9.1.: Summary of prepared models of case studies from the first and third study (see Chapter 4).

number of activities in

prepared model versions

number of activities in

original model version

BO 18 19
BRF 13 23
BW 10 19
Oberon 9 25
SIW 8 16
VC 10 30

VCat 10 10
Carmeq 18 25
Cap1 14 16
Cap2a 7 18
Cap2b 11 27

9.1.2. Resulting Threats to Validity of Analysis Results

Main motivation for the modeling conventions and, with it, for the applied changes is to reach a higher
comparability among the captured MDE settings. From the three categories of threats to validity (Wohlin
et al. [214]) that are relevant for this thesis (as discussed in Section 4.4), two are not directly affected.
These are the external validity (i.e. the question for the extent to which results can be generalized, as
discussed in Section 4.4.2) and conclusion validity (i.e. the question whether the conclusions that are
drawn on the basis of the data are correct, which shall be discussed separately on the results of the
analysis in Sections 9.2.4, 9.3.5, and 9.4.5). However, the modification of the data can have some impact
on the construction validity (i.e. on the question whether data and effects are captured appropriately).

Therefore, it is discussed in this section, how the applied preparation influences the effects that will be
analyzed on the basis of the Software Manufacture Models. This discussion is done for each of the effects
that will be analyzed for the MDE settings in the remainder of this chapter. These are the occurrences
of the patterns for changeability and the assessment of manual information propagation, the lengths of
activity chains, and the phases and synchronization points.

Pattern matches First, the above described changes might reduce the number of pattern matches that
can be identified during the analysis. This is mainly caused, by the removal of activities (when the
removed activities might have been matched to pattern activities). Further, the normalization of the
degree of automation and the combination of activities for the normalization of the degree of detail might
lead to removed matches. For example, in case study Cap2a two activities within a fully automated
transformation chain could have been matched to proto-anti-pattern creation dependence. These matches
are no longer visible for the combined activity that describes the whole transformation chain.

However, no links or artifacts are added during the preparation. Also combined activities that are
created during the normalization can only describe links that are already part of the model. Thus, while
it is possible that a pattern match is substituted by a match to the combined activity, no additional
pattern matches are cause.
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Subsuming, pattern matches that are identified within the prepared models are not caused by the
preparation of the models, but reflect effects in the actual MDE settings.

Lengths of activity chains The removal of activities (e.g. choice activities) can affect the lengths of
activity chains, which might be decreased by the removed activity. Further, the lengths of activity chains
can be affected by the application of modeling conventions to differentiate between manipulating and
creating activities or to remove correction cycles. In all cases the assessed lengths of activity chains
might be decreased, only. However, it is important to notice that the changes aim at increasing the
comparability between different MDE settings. Thus, the application of the changes to all studied MDE
settings, decreases differences that are caused by different modelers’ decisions to include details into a
Software Manufacture Model or not.

The main effect on the length of activity chains can be caused by the combination of activities during
the normalization of the degree of detail. As for the other preparation steps, the length of activity
chains might be decreased, only. For example, a single activity is counted instead of multiple activities
that form an automated transformation chain. Again, as described in Section 7.2.3, this normalization
increases comparability of different MDE settings, since individual modeler’s decisions on the captured
degree of detail are compensated. In addition, this normalization step ensures that the assessed lengths
of activity chains actually reflect the context changes that are experienced by developers (see Section
7.2.3). Subsuming, the lengths of activity chains that will be measured are most probably shorter than
for the original models, for the benefit of a better comparability of the lengths assessed for the different
MDE settings. Thus, differences in the lengths reflect actual differences in the complexities developers
are confronted with.

Phases and synchronization points The removal of activities changes the global foci of the Software
Manufacture Models. Consequently, these changes can lead to changes in the number of global phases
and global synchronization points. Similarly, potential local foci might be removed. However, no po-
tential local foci are added (since no activities are added). Thus, the local foci that are identified and
considered as relevant during the analysis, including the main focus, are part of the analyzed MDE
settings. Therefore, the comparison of the MDE settings shall mainly base on the main foci.

The local phases and synchronization points within the identified local foci are not affected by most
preparation steps. Only, the combination of activities during the normalization of the degree of detail,
can affect the phases and synchronization points. The number of synchronization points might be de-
creased, when several synchronization points are combined to one activity (e.g. within a fully automated
transformation chain). However, this decrease in synchronization points does not affect the number of
phases. In contrast, the combination of multiple manual activities within a phase might lead to the
removal of this phase (since a single activity substitutes a set of parallel activities). However, in this
case the combined activity is rated as extensive manual activity and therefore occurs as miniphase.

Subsuming, the number of phases that can be identified for the main focus and other local foci is not
affected by the preparation of the models.

Conclusion of threats To sum up, the preparation of the models neither introduces additional pattern
matches nor increases the number of phases and lengths of activity chains. The changes in the assessed
lengths of activity chains are required to reach comparability. Further, the consideration of main local
foci compensates that the applied changes might affect assessed phases within the global focus of an
MDE setting. Finally, it is possible that some pattern matches of removed activities are lost.

However, none of the identified effects (e.g. pattern occurrences, overlong activity chains, or huge
numbers of phases) can be caused by the applied model preparation. Further, the preparation has
carefully been applied by the modeler of the Software Manufacture Models on the basis of the interview
records, in order to ensure that no relevant activities are removed from the models. This decreases the
probability that relevant effects (e.g. pattern matches to relevant parts of the MDE settings) are no
longer captured in the data.
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9.2. Findings on Changeability

This section aims at evaluating whether MDE setting in practice differ in their influence on changeability.
In this context, it is also evaluated whether the proto-patterns that are introduced in Section 7.1 are
relevant in practice.

For this evaluation occurrences of the proto-patterns were searched in the case studies form the first
and third study (see Chapter 4). It is discussed to which amount risks of proto-anti-patterns manifest
in practice. Subsequently, the proto-patterns are used to investigate an open source case study. Finally,
the hypothesis Hchangeability from Section 3.5.1 is evaluated and threats to validity are discussed.

9.2.1. Changeability Analysis of Case Studies

For the analysis how hard changeability concerns are affected, matches of the four proto-patterns that
were presented in Section 7.1 were searched with the pattern matcher (see Section 8.2) on the Software
Manufacture Models of the eleven case studies from the first and third study (see Chapter 4) that were
prepared for the analysis as described in Section 9.1.

In the following, an overview of the results of these pattern matches is provided. First, the matches
of the two proto-anti-patterns subsequent adjustment and creation dependence are summarized. Subse-
quently, one of the matches of the proto-anti-pattern creation dependence is discussed in detail. Finally,
the matches of the two proto-pattern split manufacture and anchor are summarized and further identified
structures that support changeability are listed.

Occurrence of Proto-Anti-Pattern

As summarized in Table 9.2 and illustrated in Figure 9.2 the two proto-anti-patterns subsequent adjust-
ment and creation dependence occur several times in the eleven case studies.

Table 9.2.: Summary of identified matches for proto-patterns from Section 7.1 in the case studies from
the first and third study (see Chapter 4).

Subsequent

Adjustment

Creation De-

pendence

Split Manu-

facture

Anchor

BO 3 1
BRF
BW

Oberon 5 1
SIW 3 2
VC 3 1

VCat 3 2
Carmeq

Cap1 1 1
Cap2a 1
Cap2b 4

All 19 7 4 1
Average 1.72 0.63 0.36 0.09

Subsequent adjustment was matched 19 times within 7 of the eleven case studies. For 13 of these
occurrences mitigating factors that prevent the manifestation of the associated risks could be identified.
A first observed mitigating factor is that a change of the base artifact is not probable. This holds for 9
of the matches. The base artifact is a template (i.e. reused) in 4 of the matches. In one of the matches
a mitigating factor is that only a minimal amount of content is lost. Further, for one of the matches
the mitigating factor is that there is no need to maintain the resulting artifacts throughout the whole
live cycle. A last mitigating factor, which was observed for two matches within the same case study, is
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that the MDE setting includes an alternative activity for the one matched to the pattern activity initial
creation. Consequently, a matched activity is never executed to implement a change.
However, for six of the matches (in 4 case studies) no mitigating factors could be identified. Here the

records of the interviews partly included hints that the associated loss of content already occurred or
that developers use a copy and paste workaround to preserve manually created content. For example,
in case study Cap1 a new execution of activity “Create Constructionmodel” to propagate a change of
artifact “Specification model” can lead to the destruction of changes that were applied manually to
artifact “Structural Models” during activity “Manipulate Constructionmodel” before.

Figure 9.2.: Occurrences of patterns on changeability concerns within the case studies.

Creation dependence was matched 7 times in 4 of the eleven case studies. For 5 of these matches
no subsequent match of proto-anti-pattern subsequent adjustment could be identified. However, for two
of the matches (in two different case studies) no mitigating factor can be identified. Here the pattern
occurrence amplifies the effects of occurrences of proto-anti-pattern subsequent adjustment. For example,
in case study VC the occurrence of creation dependence implies that changes in artifact “DataService”
are additional triggers for a new execution of activity “Generate process Context”, which can lead to loss
of content of artifact “VC Model” if it was semi-automatically enriched during activity “Create Service
Component” before.

Prediction of Risks on the Basis of Proto-Anti-Patterns

While mitigating factors can be identified for the most of the occurrences of subsequent adjustment and
creation dependence, such “harmless” pattern matches can be useful to predict what evolution steps on
the MDE setting can lead to problems. Following it is shown on an example, how a match of creation
dependence in one of the case studies was used to predict future risk.

The final automated generation activity in case study Cap2a is built as a transformation chain. Within
this transformation chain the first three activities translate and enrich the “Model” stepwise into different
intermediate models. During these transformations a reference to another input artifact is propagated
through each intermediate model. The intermediate transformation activities match to the proto-anti-
pattern creation dependence (i.e. the respective result of a transformation steps is always created together
with a reference from this result to the “Plain Text Part”). Finally two further transformations are used
to produce the two resulting artifacts, respectively. For the creation of the “Result2” the “Plain Text
Part” is required, while the transformation step that produces the “Result1” ignores the references to
the “Plain Text Part”.
Due to the match of creation dependence to the first three transformations, not only a change in the

“Model”, but also a change in the “Plain Text Part” that affects the target of the reference, can lead
to a new execution of the whole transformation chain. This is necessary and valid to ensure that the
change is propagated to the “Result2”. However, a side effect of this transformation is that also the
“Result1” is generated new. Thus a change in the “Plain Text Part” can trigger the new generation of
the “Result1”, although this artifact does not depend on the content of the “Plain Text Part”. Currently,
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this additional trigger does not lead to problems, since the generation of the “Result1” is fully automated
and does not require further manual actions. Thus, the occurrence of creation dependence does not lead
to a problem, since no negative effects on changeability exist, which might be amplified.

However, with the knowledge about this pattern occurrence it is possible to predict what change of
the MDE setting will result in the occurrence of a problematic situation. In such a hypothetical scenario,
the standard requirements on the “Result1” (e.g. concerning the layout) change in future. A solution is
to apply necessary changes manually, which is directly available and probably easier to implement than
a change in the transformation. However, while the technology that is used for the transformation chain
does not support protected regions or similar techniques to prevent that hard changeability concerns are
affected, this introduction of a manual activity for manipulating the “Result1” leads to an occurrence
of pattern subsequent adjustment. This scenario would lead to a situation, where the risks that are
associated to the creation dependence (i.e. the amplification of a changeability problem), which is
already part of the current MDE setting, manifests. Thus, a change in the “Plain Text Part”s can
trigger the new execution of the transformation chain and thus lead to the destruction of the manually
created content – although the “Plain Text Part” has no effect on the content of the “Result1”.

Subsuming, only a single change to the currently used MDE setting is sufficient to get into this
problematic situation: the need to manually apply changes to the “Result1”. The example shows that
even occurrences of proto-anti-patterns without manifested problem can be helpful, since they allow to
predict what concrete evolution steps on the MDE setting will lead to the manifestation of the problems.

Occurrence of Positive Influences on Changeability

While for the proto-anti-patterns a relative high number of matches could be identified, only 4 matches
of split manufacture in two case studies and one match of anchor were identified. This includes the
occurrences that were the original of these two proto-patterns (i.e. the occurrences that led to the
identification of these structures). Thus, for proto-pattern anchor no additional occurrence could be
identified. Similarly, for proto-pattern split manufacture only one additional case study included addi-
tional occurrences.

However, further investigation of the interview records revealed that other strategies were applied
to support changeability. For example, in Cap1 a generation gap pattern [78] is applied to ensure
that manually created content of the code is not overwritten, when the code generation is reapplied to
propagate changes from the “Construction Model”. In Cap2b the word templates that are used for the
generation include specified regions that are target of the generation. Manually created content that is
created outside these regions is not overwritten during generation.

9.2.2. Changeability Analysis of an Open Source Example

To demonstrate how the pattern can be used in combination for analyzing a Software Manufacture
Model, the generation of java code within the EMF example (introduced in Section 2.6) is used here as
a very simple and commonly accessible case study1. This set of MDE activities was applied during a
project at the system analysis and modeling research group2, where up to five student assistances were
employed.

Above in Fig. 9.3 the activities are shown as they were initially perceived by the students. There
are four activities (omitting the creation of the ecore model here). Activity create EMF generator
model takes the ecore model, which is basically an EMF version of a class diagram that describes a
domain, and generates an EMF generator model, with a reference to the used ecore model. The EMF
generator model contains configurations, which further have to be adapted manually (activitymanipulate
generator model), e.g. to define the name space by filling attribute Base Package. Activity generate java
code takes the EMF generator model together with the ecore model and generates adapter factories,
interfaces, and interface implementations for the concepts specified in the ecore model. Subsequently,
the interface implementations are manipulated manually, e.g. to define default values for attributes.
The presented activities only show an excerpt, as is also possible to generate edit, editor, and tests code.

1In the here described project EMF 2.6 was used.
2https://www.hpi.uni-potsdam.de/giese/projects/dtr_virtual_multi_user_software_prototypes.

html?L=1 (last access at November 9th, 2013)

149



9. Study Results: Employing Modeling and Analysis

Figure 9.3.: Simplified version of the EMF example with initially perceived Software Manufacture Model
activities (repetition of Figure 6.25)

When analyzing Software Manufacture Model activities in Fig. 9.3 both Software Manufacture Model
proto-anti-patterns can be identified (as already indicated in Figure 9.3). First, the proto-anti-pattern
subsequent adjustment can be matched.

Actually, the students had to experience the loss of the manually added content, which is associated to
the proto-anti-pattern, multiple times. Interestingly, some of the students recognized that the generation
supports protected regions (marked with the flag “@generated NOT”). In fact, activity generate java
code looks like shown in Fig. 9.4(a). However, there was no communication about this opportunity and
the students still lost code. It took a while until they started to communicate that the protected regions
should be respected. This shows that developer guidelines can be as important for a successful solution
as the technical opportunities.

The students ended up improving their process, such that activitymanipulate implementation complies
with Fig. 9.4(b). The resulting solution conforms to the Software Manufacture Model proto-pattern split
manufacture: generate java code matches to pattern activity regenerate, manipulate implementation
matches to manual completion, interface implementation matches to modified artifact, and Generated
NOT (referring to the marked parts of the artifact) matches to artifact detail.

(a) (b)

Figure 9.4.: Corrected Software Manufacture Model activities of the EMF example (as already shown in
Figure 8.6)

Second, the activity create EMF generator model (Fig. 9.3) matches to pattern activity depending
creation of proto-pattern creation dependence, where ecore model matches to artifact role necessary
artifact and EMF generator model matches to artifact role depending artifact. Actually EMF generator
model depends strongly on the ecore model and EMF triggers an update to changes in the EMF generator
model automatically when the referenced ecore model is changed. For this example it was not possible to
specify how this update activity looks like, as no documentation could be found, which parts of the EMF
generator model are preserved. This preservation seems to affect at least the attribute Base Package.

However, there is a change that leads to a destruction of the reference from the EMF generator model
to the ecore model: changing the file name, which leads to the need for a new application of create EMF
generator model. In this case the attribute Base Package is not preserved and this information is lost.
Obviously, there is potential to resolve this drawback in future, as information can be preserved as long
as restoring the reference is not necessary. It seems that the file name of the ecore model is in most
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projects not changed, which explains why this Software Manufacture Model proto-anti-pattern is still
kept in EMF. However, if developers work in a fashion that requires regular refactoring the identified
restriction can be experienced as a reduction of changeability.

Summing up, the EMF case study shows how the presented pattern can be used to identify risks
for changeability. Further, the example illustrates that it can be important to be aware of pattern
occurrences during development.

9.2.3. Evaluation of Hypothesis Hchangeability

In Section 3.5.1 the hypothesis Hchangeability is formulated. The hypothesis states that MDE settings in
practice differ in their influence on changeability (“MDE settings in practice vary considerably in their
influences on changeability. Thus, there are MDE settings that strongly affect the hard changeability
concern unexpected loss of content (in more than 5% of all MDE settings) and also MDE settings that
do not affect the hard changeability concern unexpected loss of content (in more than 5% of all MDE
settings).”). To evaluate the hypothesis Hchangeability it shall be examined to what percentage MDE
setting form practice include occurrences of the proto-anti-pattern subsequent adjustment. As defined
in hypothesis Hchangeability a phenomenon is considered to be not seldom, if it exists in more than 5%
of all MDE settings.

Two pairs of hypothesis shall be tested. One the one hand, it shall be tested whether MDE settings
with occurrences of subsequent adjustment are seldom. Correspondingly, the null hypothesis h0 match
is that the percentage of MDE settings with occurrences of subsequent adjustment is below or equal to
10%, while the alternative hypothesis h1 match is that the percentage of MDE settings with occurrences
of subsequent adjustment is greater than 10%. On the other hand, it shall be tested whether MDE
settings without occurrences of subsequent adjustment are seldom. Correspondingly, the null hypothesis
h0 noMatch is that the percentage of MDE settings without occurrences of subsequent adjustment is
below or equal to 10%, while the alternative hypothesis h1 noMatch is that the percentage of MDE
settings without occurrences of subsequent adjustment is greater than 10%. The tested percentage of
10% substitutes the required 5% here, in the interest to approach the actual percentage. When h0 match
or h0 noMatch can be rejected this is an even stronger confirmation of Hchangeability.

To test the hypotheses the binomial test is used. The test allows checking for small samples whether
data points conform to one of two categories for a certain percentage of the data set. These categories
are “subsequent adjustment pattern matched” and “subsequent adjustment pattern not matched”. For
the test a significance level of 5% is applied. As summarized in Table 9.3 the tests are performed for a
10% percentage as well as a 20% percentage.

Table 9.3.: Results of binomial test to check whether probabilities for MDE setting with and without
occurrences of the proto-anti-pattern subsequent adjustment exceed 10%

#

occur-

rences

sample

size

h0 h1 p-value 95% con-

fidence in-

terval

Result

occurrences
included

7 11 p ≤ 10% p > 10% 2.29e-05 0.3498 - 1 h0 match
is rejected

7 11 p ≤ 20% p > 20% 0.001965 0.3498 - 1 h0 is re-
jected

no
occurrences

4 11 p ≤ 10% p > 10% 0.01853 0.1351 - 1 h0 noMatch
is rejected

included 4 11 p ≤ 20% p > 20% 0.1611 0.1351 - 1 h0 is plau-
sible

Hypothesis h0 match can be rejected. The test revealed that the probability that 7 MDE settings with
occurrences of subsequent adjustment are identified for a sample size of 11, while the expected percentage
is below or equal to 20%, is less than 5% (p-value = 0.001965). Consequently, h0 match is not plausible.
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Also hypothesis h0 noMatch can be rejected. The test revealed that the probability that 4 MDE settings
without occurrences of subsequent adjustment are identified for a sample size of 11, while the expected
percentage is below or equal to 10%, is less than 5% (p-value = 0.01853). Consequently, h0 noMatch is
not plausible. Further the test showed that the probability that 4 MDE settings without occurrences of
subsequent adjustment are identified for a sample size of 11, while the expected percentage is below or
equal to 20%, is greater than 5% (p-value = 0.1611).
Subsuming, there are to a comparable extent MDE settings that affect the hard changeability concern

“unexpected loss of content” as well as MDE settings that do not affect the hard changeability concern
“unexpected loss of content”. Therefore, hypothesis Hchangeability is supported by the results of this
analysis. Table 9.4 summarizes the result.

Table 9.4.: Summary of hypothesis on changeability

Hypotheses Percentage of MDE

settings with matches

of proto-anti-pattern

subsequent adjust-

ment

Percentage of MDE

settings without

matches of proto-

anti-pattern subse-

quent adjustment

Hchangeability MDE settings in practice vary con-
siderably in their influences on changeability.
Thus, there are MDE settings that strongly affect
the hard changeability concern unexpected loss of
content (in more than 5% of all MDE settings)
and also MDE settings that do not affect the hard
changeability concern unexpected loss of content
(in more than 5% of all MDE settings).

p > 20% p > 10% X

9.2.4. Threats to Validity

In the following, threats to conclusion validity are discussed for the presented evaluation of hypothesis
Hchangeability (for the discussion of other threats to validity see Section 4.4). With 11 MDE settings, the
data set is too small to make resilient statements on the frequency of MDE settings with (or without)
occurrences of the proto-anti-pattern. Fortunately, the MDE settings stem from four different companies
and occurrences of the proto-anti-pattern were found in different companies, too. As discussed in Section
9.2.3, this allows concluding that the proto-anti-pattern exists in practice and are not company specific.
Similarly, the identification of 3 MDE settings in 2 companies without matches of the two proto-anti-
pattern (4 MDE settings in 3 companies without matches of subsequent adjustment), is sufficient to
conclude that MDE settings without matches of the proto-anti-pattern exist in practice and in different
companies, too. Thus, the data is sufficient for the evaluation of hypothesis Hchangeability.

9.3. Findings on Process Interrelation

In the hypotheses formulated in Section 3.5.2 it is stated that MDE settings in practice differ in a way
that for each of the MDE traits some MDE settings include process-relevant manifestations and some
MDE settings include process-neutral manifestations of this trait.
In this section, these hypotheses are evaluated. Therefore, the analysis methods presented in Section

7.2 are applied on the eleven models from the first and third case study, which have been were prepared
for the analysis as described in Section 9.1.

9.3.1. Phases and Synchronization Points in Case Studies

In order to evaluate whether MDE settings in practice have different or rather similar characteristic
the analysis of synchronization points and phases, which was introduced in Section 7.2.1 was applied
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to the prepared Software Manufacture Models. In addition, to the automated part of the analysis, two
manual tasks were necessary. First, activities that are potential miniphases had to be identified. Second
it had to be evaluated evaluate, which of the identified local foci represent meaningful parts of the MDE
setting.

For the identification of potential miniphases, the models and the records from the interviews were
used to search for extensive manual activities. 29 modeling activities, 9 activities on natural language
documents, 9 coding activities, and 5 quality assurance activities (reviews and testing activities) were
identified as potential miniphases, altogether. Examples are the specification of a concept document
(activity “Create Concept Document”) in case study Carmeq, which is done by a team of experts, the
activities for definition of layout and data retrieval in case study BW (e.g. activities “Define Layout”
and “Model Data”), the enrichment of the “Construction Model” (which consists of different UML
models for structural and behavioral aspects) or the subsequent implementation of code bases in case
study Cap1 (activities “Manipulate Constructionmodel” and “Write Code”), or the modification of rules
and decision tables in BRF (activity “ChangeRuleSet”). All these activities represent work on multiple
artifacts of the same role or artifacts that can be divided in multiple sub artifacts and thus can be
subject to division of work between multiple developers.

The decision, which of the automatically identified local foci are considered as relevant and meaningful,
was done on the basis of the interview records, too. On that basis it was also evaluated whether and
which one of the local foci represents a main development path.

Data on Local Foci

Table 9.5 summarizes the identified and selected local and main foci for the eleven case studies. As
examples, global phases, synchronization points, and local foci of the three case studies Cap1, BW, and
SIW are illustrated in Figure 9.5. For case study Cap1 the third focus is the main focus, since it captures
the creation of the actual software product. For the same reason, the main focus of case study SIW is
the first local focus. Also the main focus of BW is the first local focus is (here the activities that are
left out of the local focus are only preparation activities).

In only some of the case studies, the sum of the different selected foci covers the complete MDE
setting (i.e. each activity of this MDE setting is at least part of one local focus). For example, the
first and third foci of case study BW cover two different aspects of the development. They share only
the automated interpretation activity that is the global synchronization point at the end of the MDE
setting. In other case studies the selected foci do not completely cover the corresponding MDE setting.
For example, in Cap1 a validation activity is part of the global MDE setting, but not included in one
of the three selected foci. Another reason that activities are not in any of the selected local foci, is
that these activities are alternatives for activities that are part of the main focus. For example, in SIW
the two activities that are not part of the main focus are activities for the regeneration of “code” and
“proxy”. These activities are alternatives for activities that can be used for the initial creation of both
products. Finally, as in case study BO activities that are used to embed the product of the MDE setting
into a context (e.g. activity “Test Scenarios”) might not be part of a local focus.

Different local foci of the same MDE setting can have different relations to each other. As described
above, they can represent different groups of tasks that have to be performed to create a common result
(e.g. as the first and third focus in BW). Alternatively, different foci can represent the creation of
different results. For example in Cap1 the three foci are split into the creation of the “UI-Prototype”,
the “Specification” (as documentation), and the software product. Finally, in some cases one local focus
is local to another local focus. For example, the second local focus in SIW is local to the first local
focus. This more detailed focus reveals that two of the three activities in the first phase have a strict
order. Similarly, the second focus in case study BW is local to the first focus. Here the activities for the
specification of the data transformation are removed.

Data on Synchronization Points

Figure 9.6 summarizes the identified global synchronization points and phases. Some of the manual
synchronization points are identified as miniphases. All in all eleven global synchronization points, four
of them miniphases, were identified. As specified in Section 7.2.1, a miniphase that is located directly
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Table 9.5.: Summary of prepared models of case studies from the first and third study (see Chapter 4).

local focus size (number

of activities)

is main

focus

BO a Preparation of new (extended) templates for the development 4
b Main development path 11 X

BRF Global path 13 X

a Preparation of process for configuration 8

BW a Development of layout of reports including transformation of data 8 X

b Development of layout of reports (local to development of layout
of reports including transformation of data)

6

c Configuration of data retrieval 3

Oberon a Main path 8 X

SIW a Main path 6 X

b Local to main path: preparation of project 5

VC Global path 10 X

VCat a Main path 7 X

Carmeq a Work on standard document without figures and tables 11
b Main path 15 X

c Creation of tables 11
d Creation of figures 11

Cap1 a Development of UI-Prototype (which is later reused to write code) 4
b Development of Specification as additional product 7
c Main development path 9 X

Cap2a Global path 7 X

Cap2b a Development of Result2 4 X

b Development of Result3 4

before or behind another phase (or miniphase) is counted as part of this phase in the following. Otherwise
the miniphase is counted as own phase.

Thus, in three of the case studies (BRF, Carmeq, and Cap2a) two global phases can be identified. In
only one of these cases (BRF) both phases are not miniphases, but have a comparable size. In Figure
9.7 for each case study the main local focus is summarized. For three of the case studies (BRF, VC, and
Cap2a) no local focus was identified as main focus. In these cases the whole MDE setting is the main
focus (i.e. global synchronization points and phases are repeated in Figure 9.7).

All in all 32 (local and global) synchronization points can be identified for the main foci. 12 of the
synchronization points are miniphases. The resulting number of phases for the eleven main foci is 22.
From these eleven main foci three are split into more than two (i.e. three or four) phases (BO, Carmeq,
and Cap1). Four of the cases have a single phase, only. Miniphases represent a relevant part of the
phases. 8 of 22 phases in the main foci consist of miniphases, only and further three phases are a
combination of multiple phases including one or more miniphases.

The Tables 9.6 and 9.7 summarize data about the identified synchronization points and phases. Details
on the identified synchronization points and phases can be found in Appendix G.4.

Excursus: observed effects on the process

Altogether there are less global phases than phases in the main foci. Case study BRF is the only
example, where the overall setting is clearly split into two phases, which are not miniphases. Actually,
this split of the MDE setting was created by intention. The two phases are used by different developers
with different skills. While the first part of the setting is used for development of the main part of the
software product within SAP, the second part of the setting is used for the customization of the setting,
which can be done by consultants or even experts at the customer’s company.

Also for the case studies Cap1 and Carmeq, which have between three and four phases in their main
focus, the split of phases in reflected in the processes and team structure. While the first of the four
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Figure 9.5.: Order of synchronization points and phases for the case studies Cap1, BW, and SIW

Table 9.6.: Summary of synchronization points in the case studies from the first and third study (see
Chapter 4).

# global syn-

chronization

points

# synchroniza-

tion points in

main focus

# global phases # local phases in

main focus

BO 0 6 1 3
BRF 1 1 2 2
BW 1 3 1 1

Oberon 1 3 1 1
SIW 0 1 1 2
VC 0 0 1 1

VCat 0 2 1 1
Carmeq 2 3 2 3

Cap1 1 6 1 4
Cap2a 3 3 2 2
Cap2b 2 4 1 2

All 11 32 14 22
Average 1 2.9 1.27 2
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Figure 9.6.: Order of global synchronization points and phases in the different case studies

phases in the main focus of case study Cap1 is only seldom used for the development of new releases,
the other three are regularly used to implement the respective changes. Activities in the first of these
three phases are organized around a model that captures the specification of the required system version.
In the next phase the architecture and behavior of the system are modeled and finally the last phase
includes work on the code. The developers came to terms with the phases by building the release cycles
around them. At each time three releases are in development. Each release is maintained by an own
team and in a different phase (the most current one is in the last phase, the next in the phase that is
second to the last, and so on).

In Carmeq the phases of the main focus reflect a similar effect as in case study BRF. The first and
second phases in the main focus are performed by different teams with different skills and responsibilities.
Within the local focus Carmeq c, the third phase of the main focus is further split into two phases. The
first “subphase” of this third phase is performed by the team that is responsible for the second phase
of the main focus, too. The second “subphase” of the third phase is performed by a third team (which
has different skills and responsibilities, too).

Subsuming, it can be observed that a split of phases is in some cases reflected in the team structure.
However, this is not a necessary effect. For example, for BO, which has three phases in the main focus,
too, such a split of the team structure was not recorded.

The definition of a synchronization point does not differentiate between manual and automated tasks.
Actually, from the ten sets of synchronization points that split phases in the main foci, 3 consist of
one or more automated activities, one is semi-automated activity, four consist of one or more manual
activities, and in two cases manual as well as automated activities are involved. Further, the case studies
reveal that an automated activity is not necessarily a synchronization point. Out of 34 automated and
17 semi-automated activities in the models, only one semi-automated and nine automated activities are
synchronization points in the main foci of the case studies.
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Figure 9.7.: Order of synchronization points and phases of respective main focus (of global setting where
no main local focus was identified)

Evaluation of Hypothesis Hphases

In the following it is discussed whether the presented data support hypothesis Hphases (“In practice
there are MDE settings with a process-neutral manifestation and MDE settings with a process-relevant
manifestation of MDE trait phases, in more than 5% of all MDE settings, each.”).

Process-neutral and process-relevant manifestations The numbers of synchronization points per main
focus of the settings differ between 0 (in VC) and 6 (in BO or Cap1). Basically the number of syn-
chronization points provides a hint on how strict the order of activities is. Thus, in a setting with
multiple synchronization points in the main focus developers working in the same team are enforced to
synchronize (e.g. as in the example of Cap1).

Synchronization points have different impacts on phases. For example, in BRF a single synchronization
point splits the setting into two phases. In contrast, in the main phase of Oberon three synchronization
points frame a single phase. Several synchronization points lead to no new phases, since they are located
at the star of the very end of their MDE settings: three of the 11 MDE settings end with a synchronization
point that is not a miniphase and three of the 11 MDE settings start with a synchronization point that
is not a miniphase.

The number of phases for the respective main focus differs between 1 and 4. As it was discussed in
Section 3.3.3 and illustrated with anecdotal evidence within the excursus above, the existence of three
or four phases can lead to or reflect splits in the team structure and even release cycles. Thus, the
existence of three or more phases can be considered as process-relevant manifestation of the MDE trait
phases. In contrast an MDE setting with a single phase, such as VC or VCat is neutral in this respect
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Table 9.7.: Summary of synchronization points within local foci of the case studies from the first and
third study (see Chapter 4).

local

focus

# global synchro-

nization points

# local synchro-

nization points

# local phase per

focus

BO a 0 4 1
b 0 6 3

BRF a 1 2 2

BW a 1 2 1
b 1 5 1
c 1 2 1

Oberon a 1 2 1

SIW a 0 1 2
b 0 3 1

VCat a 0 2 1

Carmeq a 2 1 2
b 2 1 3
c 2 5 4
d 2 5 4

Cap1 a 1 3 2
b 1 3 3
c 1 5 4

Cap2b a 2 2 2
b 2 2 2

All 11 56 40
Average 1 2.94 2.1

(process-neutral manifestation of the MDE trait phases). The summarization in table 9.6 reveals that
for four of the 11 captured MDE settings the number of phases in the main focus is one, while for three
of the 11 captured MDE settings the number of phases in the main focus is three or four, actually. Thus,
there are at least four process-neutral manifestations and at least three process-relevant manifestations
of the MDE trait phases within the 11 case studies.

Hypothesis testing In this section the hypothesis Hphases is evaluated. As defined for hypothesis
Hphases a phenomenon is considered to be not seldom, if it exists in more than 5% of all MDE settings.
On the one hand, it is tested whether the percentage of process-neutral manifestations of MDE trait
number of phases exceeds 5%. Therefore, the null hypothesis h0 neutral is that the percentage of process-
neutral manifestations is below or equal to 5%. The corresponding alternative hypothesis h1 neutral is
that the percentage of process-neutral manifestations is greater than 5%. On the other hand, it is tested
whether the percentage of process-relevant manifestations of MDE trait number of phases exceeds 5%.
Correspondingly, the null hypothesis h0 relevant is that the percentage of process-relevant manifestations
is below or equal to 5%, while the alternative hypothesis h1 relevant is that the percentage of process-
relevant manifestations is greater than 5%.

To test these hypotheses the binomial test is applied. This test is used for small samples to check
for two categories whether data points that conform to one of the two categories occur to a certain
percentage within the data set. These categories are “process-neutral” and “not process-neutral” for
h0 neutral and “process-relevant” and “not process-relevant” for h0 relevant. The significance level that
is chosen for the tests is 5%. As summarized in Table 9.8, the test was not only performed for a 5%
percentage of process-neutral and process-relevant manifestations (which is sufficient for the check of
the hypothesis Hphases), but also for a 10% percentage.

For process-neutral manifestations of MDE trait phases the null hypothesis can be rejected. The prob-
ability that 4 process-neutral manifestations are identified for a sample size of 11, while the percentage
of process-neutral manifestations is below or equal to 10%, is less than 5% (p-value = 0.01853). Thus,
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h0 neutral is not plausible. For the process-relevant manifestations the null hypothesis can be rejected,
too. Here, the probability that 3 process-relevant manifestations are identified for a sample size of 11,
while the percentage of process-relevant manifestations is below or equal to 5%, is less than 5% (p-value
= 0.01524). Thus, h0 relevant is not plausible, too. However, the probability that 3 process-relevant
manifestations are identified for a sample size of 11, while the percentage of process-relevant manifesta-
tions is below or equal to 10%, is above 5% (p-value = 0.08956). Consequently, it is plausible that the
percentage of process-relevant manifestations is below or equal to 10%.

Table 9.8.: Results of binomial test to check whether probabilities for process-neutral and process-
relevant manifestations of MDE trait number of phases exceed 5% (or 10% respectively)

Manifestation #

occur-

rences

sample

size

h0 h1 p-value 95% con-

fidence in-

terval

Result

process-
neutral

4 11 p ≤ 5% p > 5% 0.001552 0.1350 - 1 h0 neutral
is rejected

4 11 p ≤ 10% p > 10% 0.01853 0.1350 - 1 h0 is re-
jected

process-
relevant

3 11 p ≤ 5% p > 5% 0.01524 0.0788 - 1 h0 relevant
is rejected

3 11 p ≤ 10% p > 10% 0.08956 0.0788 - 1 h0 is plau-
sible

Summary Subsuming, for both, the number of synchronization points and the number of phases, it
can be shown that the MDE settings differ. Further, the investigation of phases reveals that both, MDE
settings with a low number of phases (i.e. process-neutral manifestations) as well as MDE settings with
a high number of phases (i.e. process-relevant manifestations of the MDE trait number of phases), are
not seldom. With this, the analysis results support hypothesis Hphases.

9.3.2. Manual Information Propagation in Case Studies

For the analysis of manual information propagation, an automated search for matches of the Software
Manufacture Model pattern manual information propagation on the prepared models was performed.
Since it was ensured during the preparation described above in Section 9.1 that the modeling convention
MC4 is fulfilled in the prepared models, matches to semi-automated activities could be simply ignored.

As summarized in Table 9.9 and Figure 9.8 the pattern was matched on 29 manual activities. 42
manually transformed artifact pairs could be identified. On average each of the MDE settings includes
3.82 manually transformed artifact pairs within 2.63 activities. In the case study VC and Cap2b no
such pair was found, while in other case studies (e.g. BO, Cap1, or Carmeq) between 7 and 10 manually
transformed artifact pairs could be identified.

The number on manually transformed artifact pairs differs from the number of activities for two
reasons. On the one hand, some activities like, “model” in case study Carmeq, consume and create
multiple artifacts, which combine to multiple pairs for the same activity. On the other hand, some
activities affect the same pair of artifacts. For example, the activities “model” and “model change” in
case study Carmeq are alternatives and affect mainly the same artifacts.

Excursus: coverage by quality assurance activities

Theoretically, each manually transformed artifact pair needs to be covered by some form of quality
assurance. This is addressed differently. For example, for case study BO 7 manually transformed
artifact pairs can be identified. A direct automated check is included in the MDE setting for one of
the pairs (“BO Model” and “ESR BO Model”), only. Further, for two pairs (both include the artifact
“ Integration Scenario”) an indirect check is performed. The “ Integration Scenario” is used to create
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“Test Case” which are applied to the product that is derived on the basis of the other artifacts. Here,
the creation of the “Test Case” is manual, too. Therefore, “Test Case” and “ Integration Scenario” are
a manually transformed artifact pair, too. This approach for testing (i.e. checking whether a derivation
is correct by comparing it to another derivation) is a usual and widespread approach.

For the remaining three manually transformed artifact pairs an indirect test was captured. The artifact
pairs are “Requirements” and “BO Specification”, “BO Specification” and “BO Model” as well as “BO
Specification” and “BO Template”. All three pairs are not checked directly. Instead (considering the
quality assurance activities that were captured in the records, only), faults that are introduced during
these manual information propagations can only be identified, when the resulting product is tested
against the requirements at the end of the development. Note that the records from the interviews cover
no information about possible manual review activities here. Thus, such activities cannot be excluded
for the example.

However, the example illustrates that the quality assurance that is used to address manually trans-
formed artifact pairs can differ. On the one hand, quality assurance activities are directly embedded
into the MDE setting (e.g. the comparison of “BO Model” and “ESR BO Model”). This leads to
smaller correction cycles during the implementation, but also mixes development and quality assurance
activities. On the other hand, quality assurance is done indirectly on the basis of the product. While this
bypasses a blending of development activities and quality assurance activities, there are the risks that
correction cycles include multiple activities and that the error source (i.e. the manual transformation,
where the fault was introduced) cannot be identified.

Details on the identified pattern matches can be found in Appendix G.2.

Figure 9.8.: Manual information propagation and manually transformed artifact pairs within the case
studies.
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Table 9.9.: Summary of identified matches for pattern manual information propagation in the case stud-
ies from the first and third study (see Chapter 4).

# Activities that match

pattern manual information

propagation

# manually transformed ar-

tifact pairs

BO 5 7
BRF 3 4
BW 2 3

Oberon 2 2
SIW 1 2
VC 0 0

VCat 3 4
Carmeq 7 10

Cap1 5 9
Cap2a 1 1
Cap2b 0 0

All 29 42
Average 2.63 3.82

Evaluation of Hypothesis HmanualInformationPropagation

In this section, it is discussed whether this data supports hypothesis HmanualInformationPropagation (“In
practice there are MDE settings with a process-neutral manifestation and MDE settings with a process-
relevant manifestation of MDE trait manual information propagation, in more than 5% of all MDE
settings, each.”).

Process-neutral and process-relevant manifestation For each of the eleven case studies between 0 and
10 manually transformed artifact pairs were identified. As discussed in Section 3.3.3 and on the example
of BO above, manually transformed artifact pair are partly handled directly, which enforces developers
that apply the manual information propagation to suspend their implementation work to perform the
additional (potentially manual) quality assurance activities. 3 of the 11 case studies include between 7
and 10 manually transformed artifact pairs, which can be considered as process-relevant manifestation
of the MDE trait manual information propagation.

Within the eleven case studies 2 include no manually transformed artifact pairs, and for a further one
(Cap2a) the information propagation of the only manually transformed artifact pair happens in context
of a quality assurance activity. Thus, at least 3 case studies include a process-neutral manifestation of
the MDE trait manual information propagation.

Hypothesis testing In the following hypothesis HmanualInformationPropagation is evaluated. As defined
for hypothesis HmanualInformationPropagation a phenomenon is considered to be not seldom, if it exists
in more than 5% of all MDE settings. For the evaluation, two tests are made: First, it is tested
whether the percentage of process-neutral manifestations of MDE trait manual information propagation
exceeds 5%. The used null hypothesis h0 neutral is that the percentage of process-neutral manifestations
is below or equal to 5%. Correspondingly, the alternative hypothesis h1 neutral is that the percentage
of process-neutral manifestations is greater than 5%. Second, it is tested whether the percentage of
process-relevant manifestations of MDE trait manual information propagation exceeds 5%. Here, the
used null hypothesis h0 relevant is that the percentage of process-relevant manifestations is below or equal
to 5%. Correspondingly, the alternative hypothesis h1 relevant is that the percentage of process-relevant
manifestations is greater than 5%.

As mentioned above, the binomial test is used as a test that can be used to check for a small sample
whether data points that conform to one of two categories occur to a certain percentage within the data
set. For h0 neutral these categories are “process-neutral” and “not process-neutral”, while for h0 relevant
the categories are “process-relevant” and “not process-relevant”. The applied significance level is 5%.
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A summary of the results is shown in Table 9.10. For process-neutral manifestations the null hypothesis
can be rejected. Thus, the probability that 3 process-neutral manifestations are identified for a sample
size of 11, while the percentage of process-neutral manifestations is below or equal to 5%, is less than
5% (p-value = 0.01524). Thus, h0 neutral is not plausible. Also for process-relevant manifestations the
null hypothesis can be rejected. The probability that 3 process-relevant manifestations are identified for
a sample size of 11, while the percentage of process-relevant manifestations is below or equal to 5%, is
less than 5% (p-value = 0.01524). Thus, h0 relevant is not plausible, too.

Again, not only a 5% percentage of process-neutral and process-relevant manifestations (which is suffi-
cient for the check of the hypothesis HmanualInformationPropagation) are tested but also a 10% percentage.
Here, the corresponding null hypothesis could not be rejected for a significance level of 5%. Thus, it
is plausible that 3 process-neutral (or process-relevant) manifestations are identified for a sample size
of 11, while the percentage of process-neutral (or process-relevant) manifestations is below or equal to
10%.

Table 9.10.: Results of binomial test to check whether probabilities for process-neutral and process-
relevant manifestations of MDE trait manual information propagation exceed 5% (or 10%
respectively)

Manifestation #

occur-

rences

sample

size

h0 h1 p-value 95% con-

fidence in-

terval

Result

process-
neutral

3 11 p ≤ 5% p > 5% 0.01524 0.0788 - 1 h0 neutral
is rejected

3 11 p ≤ 10% p > 10% 0.08956 0.0788 - 1 h0 is plau-
sible

process-
relevant

3 11 p ≤ 5% p > 5% 0.01524 0.0788 - 1 h0 relevant
is rejected

3 11 p ≤ 10% p > 10% 0.08956 0.0788 - 1 h0 is plau-
sible

Summary To summarize the results, neither MDE settings with a process-neutral manifestation nor
MDE settings with a process-relevant manifestation of the MDE trait manual information propagation
are seldom. Therefore, the results of this analysis support hypothesis HmanualInformationPropagation.

9.3.3. Complexity of Activity Chains in Case Studies

The length of activity chains was measured for the prepared models following the method described
in Section 7.2.3. Based on the interview records and models change artifacts and target artifacts were
identified. Further, for the change artifacts it was marked which are used for the introduction of common
changes (i.e. what changes are probable).

For example, change artifacts in BRF are the “BusinessRuleService”, the “SAPProcess”, and the
“Ruleset” (which contains “DecisionTables” and “Rules”). Target artifacts of this MDE setting are
“DBEntry” and “RuleClass”, which are generated of the basis of the “Ruleset” and accessed during
runtime by the “SAPProcess” via the “BusinessRuleService”. The MDE setting of this case study is
designed in a way that the “Rulsets” are tied initially to the “BusinessRuleServices” and the “SAPPro-
cess” and can be changed later on to customize the process to the business needs. Thus, only changes to
“Rulesets”, “DecisionTables”, and “Rules” are probable. Now, 4 to 6 activities are required to propagate
a change from the “SAPProcess” to the “RuleClass”, while only 2 to 3 activities are required to prop-
agate a change from the “Ruleset” to the “RuleClass”. Consequently, the maximum length of activity
chains (6) differs in this setting from the range for the length of activity chains for the implementation
and propagation of common changes (2 to 3 activities).
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Figure 9.9 summarizes the maximum and common lengths of activity chains for the eleven case studies.
Further, the ranges of manual activities that are necessary for a common change, as well as the maximum
set of manual activities (i.e. the amount of manual activities for a change with the maximum number
of activities) are provided.

While in some case studies the length of activity chains for a common change is relatively low (e.g.
between 2 and 3 in BRF or 1 and 5 in SIW) it is higher in other case studies (e.g. between 8 and 16
in Carmeq). For the most case studies (10 out of 11) the minimum number of activities that can be
used to implement a common change is between 1 and 3 (average 2.54 activities, mean 2 activities). In
a single outlier (Carmeq) this number is higher (8 activities).

The maximum length of activity chain varies between 4 and 16 (3 and 16 for common changes) and
is on average 7.81 (6.81 for common changes). The mean is 8 for the maximum and 6 for the maximum
length for common changes. The difference between minimum and maximum length of activity chain
for common changes varies between 1 and 8 (average 4.27 activities, mean 4 activities).

Figure 9.9.: Overview of the lengths on activity chains for the different case studies.

Excursus: improbable maximum

In only four of the 11 case studies (VCat, Cap1, BRF, BW) the maximum length of activity chains differs
from the maximum length for common changes. This difference is in these four case studies between
1 and 3 activities (on average 2.5 activities, mean 3 activities). All of these four MDE settings reflect
decisions to optimize changeability for certain changes at the expense of other changes (which are less
probable or not required). For example, the MDE setting of case study BRF is optimized for changes in
the “Ruleset” with the trade-off that changes in the “SAPProcess” or the “BusinessRuleServices” are
more expensive.

A comparison of the average maximum length of activity chains and maximum length of activity
chains for common changes of these 4 case studies to the average maximum length of activity chain for
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all eleven case studies provides an impression of the effect of this trade-off. While the maximum length
of activity chains is with 8 activities slightly above the average (7.72 activities), the maximum length of
activity chains for common changes (4 activities) is less than 60% of the average.

Considering only manual activities, the minimum number of activities that can be used to implement
a common change is between 0 and 3 (average 1.09 activities, mean 1 activity). The maximum number
of manual activities in an activity chain varies between 2 and 9 (2 and 9 for common changes) and is on
average 5.09 activities (4.45 for common changes). The mean for the number of manual activities is 4
for the maximum and 4 for the maximum length for common changes. The difference between minimum
and maximum number of manual activities within an activity chain for common changes varies between
1 and 6 (average 3.45 activities, mean 3 activities).
For two case studies the minimum number of manual activities for the propagation of a change is 0. In

these cases the start artifact is an artifact that is manipulated outside the setting. For example, artifact
“local extension” in VCat can be retrieved and installed automatically from a “global extension”. The
propagation of changes at such an external “global extension” can be done fully automatically.
Table 9.11 summarizes the data on lengths of activity chains. Details on the considered artifact pairs

can be found in Appendix G.3.

Table 9.11.: Summary of data on lengths of activity chains.

minimum maximum average mean

Minimum length of activity chain that can be used to
implement (one of the) common changes

1 8 2.54 2

Minimum number of manual activities that can be
used to implement (one of the) common changes

0 3 1.09 1

Maximum length of activity chain 4 16 7.81 8

Maximum number of manual activities in an activity
chain

2 9 5.09 4

Maximum length of activity chain for common changes 3 16 6.81 6

Maximum number of manual activities in an activity
chain for common changes

2 9 4.45 4

Difference between minimum and maximum length of
activity chain for common changes

1 8 4.27 4

Difference between minimum and maximum number of
manual activities within an activity chain for common
changes

1 6 3.45 3

Evaluation of Hypothesis HcomplexActivityChains

In the following it is discussed whether the presented data supports hypothesis HcomplexActivityChains
(“In practice there are MDE settings with a process-neutral manifestation and MDE settings with a
process-relevant manifestation of MDE trait complexity of activity chains, in more than 5% of all MDE
settings, each.”).

Process-neutral and process-relevant manifestations First of all, the difference between minimum
and maximum length of an activity chain varies for the eleven case studies between 1 and 8 activities.
A small difference supports developers in planning and predicting the effort that is necessary for the
application of changes. In contrast a big difference makes a prediction more difficult. Three of the
eleven case studies have a difference between 1 and 3 activities, only, while three other case studies have
a difference between 6 and 8 activities.

The minimum length of activity chains to implement one of the common changes varies for the eleven
case studies between 1 and 8. Similarly the maximum length of activity chains to implement one of
the common changes varies for the eleven case studies between 4 and 16. As discussed in Section
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3.3.3 a complex activity chain with many activities to be performed can prevent the application of
agile processes. In contrast, a low number of activities supports changeability and with it can allow
the application of agile processes. For example, the case studies BRF and VC (both with maximum
5 activities for common changes) aim at lightweight implementation and change. Thus, a maximum
length of activity chains of 5 might still be considered as process-neutral manifestation of MDE trait
complexity of activity chains.

In the example of case studies Carmeq, which requires between 8 and 16 activities for a change,
our interviewee reported that an agile application of the setting was considered as not applicable. An
anecdotal evidence that already a maximum length 6 activities might be experienced as complex by
the developers can be found in case study Cap2a. There, the interviewees reported on a workaround
that is used by some of the developers in order to gain results directly without adapting the model
first. Consequently, a maximum length of activity chains of 6 or more can already be considered as
process-relevant manifestation of MDE trait complexity of activity chains.

The eleven case studies include five MDE settings with a maximum number of 5 or less activities for
the application of a common change. In contrast, for six of the MDE settings up to 6 activities and
more might be required for the application of a change (for four of the MDE settings, even up to 8 and
more activities might be required).

Hypothesis testing To test hypothesis HcomplexActivityChains it shall be tested whether both, the per-
centage of process-neutral and the percentage on process-relevant manifestations of MDE trait complexity
of activity chains, exceed 5% of the MDE settings. As defined for hypothesis HcomplexActivityChains a
phenomenon is considered to be not seldom, if it exists in more than 5% of all MDE settings.

Consequently two pairs of hypotheses are formulated. For process-neutral manifestations the null
hypothesis h0 neutral is that the percentage of process-neutral manifestations is below or equal to 5%,
while the alternative hypothesis h1 neutral is that the percentage of process-neutral manifestations is
greater than 5%. Similarly, for process-relevant manifestations the null hypothesis h0 relevant is that the
percentage of process-relevant manifestations is below or equal to 5%, while the alternative hypothesis
h1 relevant is that the percentage of process-relevant manifestations is greater than 5%.

Each null hypothesis is tested with the binomial test, as mentioned above. This test can be used for
small samples to check whether data points conform to one of two categories for a certain percentage of
the data set. The two categories are “process-neutral” and “not process-neutral” for the test of h0 neutral
and “process-relevant” and “not process-relevant” for the test of h0 relevant, respectively. For the test a
significance level of 5% is applied.

In Table 9.12 the results of the tests are summarized. In addition to the check for a 5% percentage
of process-neutral and process-relevant manifestations, also a 10% percentage was tested. For both,
process-neutral and process-relevant manifestations, the null hypotheses can be rejected. Thus, the
probability that 5 process-neutral manifestations are identified for a sample size of 11, while the per-
centage of process-neutral manifestations is below or equal to 10%, is less than 5% (p-value = 0.002751).
Consequently, h0 neutral is not plausible. Similarly, the probability that 6 process-relevant manifestations
are identified for a sample size of 11, while the percentage of process-relevant manifestations is below or
equal to 10%, is less than 5% (p-value = 0.0002957). Thus, h0 relevant is not plausible, too.

Summary To summarize, the results of this analysis reveal that both, MDE settings with a process-
neutral manifestation of MDE trait complexity of activity chains and MDE settings with a process-
relevant manifestation of MDE trait complexity of activity chains exists and are not seldom. This data
supports the hypothesis HcomplexActivityChains.

9.3.4. Evaluation of Hypothesis Htraits

Above the analysis methods from Section 7.2 were applied to the models of the eleven case studies from
the first and third study (see Chapter 4) to evaluate the hypothesesHphases,HmanualInformationPropagation,
and HcomplexActivityChains from Section 3.5.2.

All three hypotheses are part of the comprehensive hypothesis Htraits (In practice the identified MDE
traits occur within a spectrum that includes process-relevant manifestations as well as process-neutral
manifestations. Thus, there are MDE settings with process-relevant manifestations for some or all of
the MDE traits, but there are also MDE settings with process-neutral manifestations for some or all MDE
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Table 9.12.: Results of binomial test to check whether probabilities for process-neutral and process-
relevant manifestations of MDE trait complexity of activity chains exceed 5% (or 10%
respectively)

Manifestation #

occur-

rences

sample

size

h0 h1 p-value 95% con-

fidence in-

terval

Result

process-
neutral

5 11 p ≤ 5% p > 5% 0.0001119 0.1996 - 1 h0 neutral
is rejected

5 11 p ≤ 10% p > 10% 0.002751 0.1996 - 1 h0 is re-
jected

process-
relevant

6 11 p ≤ 5% p > 5% 5.801e-06 0.2712 - 1 h0 relevant
is rejected

6 11 p ≤ 10% p > 10% 0.0002957 0.2712 - 1 h0 is re-
jected

traits.). Since all three hypotheses (Hphases, HmanualInformationPropagation, and HcomplexActivityChains)
could be supported by the data, Htraits is supported, too. Thus, the evaluation of these three hypotheses
confirms that, there are MDE settings with process-relevant manifestations for some of the MDE traits,
but there are also MDE settings with process-neutral manifestations for some MDE traits.
This evaluation is further strengthened by the fact that there are also MDE setting with process-

relevant manifestations of all three MDE traits (e.g. BO, Carmeq, and Cap1). Further, one MDE
setting with process-neutral manifestations of all three MDE traits was identified (VC).
Table 9.13 summarizes these results.

Table 9.13.: Summary of hypotheses on process interrelation

Hypotheses Percentage of

process-neutral

manifestations

Percentage of

process-relevant

manifestations

Hphases In practice there are MDE settings with a
process-neutral manifestation and MDE settings
with a process-relevant manifestation of MDE
trait phases, in more than 5% of all MDE set-
tings, each.

> 10% > 5% X

HmanualInformationPropagation In practice there
are MDE settings with a process-neutral manifes-
tation and MDE settings with a process-relevant
manifestation of MDE trait manual information
propagation, in more than 5% of all MDE set-
tings, each.

> 5% > 5% X

HcomplexActivityChains In practice there are MDE
settings with a process-neutral manifestation and
MDE settings with a process-relevant manifesta-
tion of MDE trait complexity of activity chains,
in more than 5% of all MDE settings, each.

> 10% > 10% X

Htraits In practice the identified MDE traits occur within a spectrum that includes
process-relevant manifestations as well as process-neutral manifestations.

X
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9.3.5. Threats to Validity

In the following, threats to conclusion validity are discussed for the presented evaluation of hypotheses
Hphases, HmanualInformationPropagation, HcomplexActivityChains, and Htraits (for the discussion of other
threats to validity see Section 4.4). The classification of manifestations into process-relevant and process-
neutral manifestations was carefully done on the basis of anecdotal evidences. Consequently, often not
the whole spectrum of an MDE trait is categorized. For example, when 2 - 6 manually transformed
artifact pairs are identified the manifestation of manual information propagation is neither classified as
process-neutral nor process-relevant. Here more data would be preferable to ensure that all process-
relevant manifestations are categorized as such.

In general, a bigger size of the data set would be preferable. However, the size of 11 MDE set-
tings allows at least some conclusions on the frequency of process-relevant manifestations and process-
neutral manifestations of the different MDE traits. Fortunately, for each MDE trait process-relevant
manifestations were assessed in MDE settings form multiple companies. Similarly, the data is suf-
ficient to show that the existence of process-neutral manifestations of the MDE traits is not com-
pany specific, too. Therefore, the data is sufficient for the evaluation of the hypotheses Hphases,
HmanualInformationPropagation, HcomplexActivityChains, and with this Htraits.

9.4. Findings on the Influence of Evolution on Changeability and Process
Interrelation

In this thesis the nature of MDE is investigated from different perspectives. On the one hand, the
influence of MDE settings of changeability and the interrelation to software processes is discussed. It was
shown that MDE settings from practice differ (see Sections 9.3 and 9.2). This includes the observation
that there are MDE settings that have negative influences on changeability or lead to constraints on
software development processes.

On the other hand, it was theoretically discussed that structural and substantial structural evolution
can change these characteristics of an MDE setting (see Section 3.4.2). Further, it was shown that
structural and substantial structural evolution actually occurs in practice.

What are still missing are actual practical examples on evolution steps that caused the introduction
of negative influences on changeability or constraints on software development processes into an MDE
setting. The final examination in this thesis is applied to the question whether the collected data
already includes hints on or actual evidences for such evolution steps. Therefore, first the method of this
investigation of the data is presented. Then it is discussed to what extent the introduction of pattern
occurrence can be ascribed to specific evolution steps. Afterwards, it is discussed how captured evolution
steps might have changed manifestations of the different MDE traits. Finally, the results of this final
examination are summarized and the validity of the conclusions is discussed.

9.4.1. Method

For this investigation the data from the third study is used. This includes the six case studies where a
Software Manufacture Model of one version of the MDE setting is available: BO, VCat, Carmeq, Cap1,
Cap2a, and Cap2b.

Although data on the evolution steps for these MDE settings is available, only for respectively one
(historical) version of each MDE setting a complete Software Manufacture Model is available. This is in
the most cases the currently used version of the MDE setting. An exception is cases study BO where an
older version of the MDE setting was captured in detail. This version resulted from the fourth evolution
step (S4) and was replaced with the fifth evolution step (S5). The Software Manufacture Model captured
for VCat represents the current version. However, this version is result of the first evolution step (S1),
while the second captured evolution will be applied in future to replace this current setting.

The evolution steps are captured in from of change descriptions, and allow no detailed reconstruction of
the actual activity details. Therefore, the approach to completely reconstruct the Software Manufacture
Models for all historical versions is not applicable.

However, it is possible to stepwise consider the evolution steps (starting at the MDE setting that was
captured in detail) and rate whether these evolution steps had the potential to affect the manifestations
of MDE traits and pattern occurrences that were analyzed in Section 9.3. The results can only be a
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rating of tendencies and potentials for synchronization points, phases, and the complexity of activity
chains, which are traits that base on the rather global information of predecessor sets. In contrast, it
is easier to identify evolution steps that lead to the introduction of the identified occurrences of proto-
anti-patterns, since patterns are identified based on local information, only. Nonetheless, this approach
cannot be used for the identification of proto-anti-pattern occurrences in historical versions of the MDE
setting that were later on removed.

As a result, the described analysis approach provides data that allow estimating to what extent
occurrences of proto-anti-patterns resulted from evolution steps and to what extent evolution steps
affected manifestation of the different MDE traits.

9.4.2. Effects of Evolution on Changeability

In the following it is examined whether a direct influence of evolution on occurrences of the proto-anti-
pattern subsequent adjustment and creation dependence can be observed within the six available case
studies from the third study.

Within the Software Manufacture Models that are captured for the six case studies, 6 occurrences of
proto-anti-pattern creation dependence could be identified in Section 9.2. As summarized in Table 9.14
and Figure 9.10, for 5 of these 6 occurrences, it is possible to identify evolution steps that introduced the
matched activities into the MDE setting. For example, the activity “ApplyChecks” in BO that is matched
to creation dependence was most probably introduced in the third evolution step (S3), where a couple
of validation activities were added in context of a technological change. In Cap2b, the matched activity
“Generate Result8” was introduced in the fourth evolution step (S4), together with the introduction of
the generation of “Result8”. Only one of the occurrences of creation dependence (in case study Cap1)
was most probably part of the corresponding MDE setting from the start.

For proto-anti-pattern subsequent adjustment 8 occurrences within the Software Manufacture Models
captured for the six case studies could be identified in Section 9.2. For 5 of these 8 occurrences introducing
evolution steps can be identified. For example, the automated activity “Generate Code & Tables”
was already introduced to BO in the first evolution step (S1). Later the activity “ModelS&AM ” was
introduced in BO during the second evolution step (S2) in context of the introduction of the concept of
Status and Action Management (SAM). Together “Generate Code & Tables” and “ModelS&AM ” match
to subsequent adjustment.

Three of the occurrences of subsequent adjustment were most probably part of the corresponding
MDE setting from the start. For example, following our records, the use of the “Construction Model”
in Cap1 and with it the match of subsequent adjustment on the activities “Create Constructionmodel”
and “Manipulate Constructionmodel” was already part of the initial MDE setting.

Excursus: evolution can also remove negative effects

The fact that the detailed version of the MDE setting BO is not the currently used version, allows the
observation that occurrence of proto-anti-patterns can also be removed by evolution steps. The match of
“Generate Code & Tables” and “ModelS&AM” to subsequent adjustment, which was introduced with
evolution step S2, was removed later on in the clean-up evolution step S5. Functionality of multiple
tools was integrated and the S&AM models were moved to an earlier position in the activity chain.

Theoretically, the introduction of subsequent adjustment can be caused by different changes. In all
five examples where an introducing evolution step could be identified, this evolution step is a substantial
structural evolution step. The match of subsequent adjustment was two times introduced by the addition
of an automated activity that matched to initial creation. Once an automated activity was exchanged by
another automated activity and a following manual activity (in order to produce the result in another
format). In a fourth case both matched activities were introduced together. Finally, the match of
“Generate Code & Tables” and “ModelS&AM ” in BO was introduced by the introduction of the manual
activity, only. 3 of the 5 occurrences of subsequent adjustment that were introduced by evolution steps
have no mitigating factors (i.e. their negative effects manifest in practice).

Excursus: C6 and C8 are truly substantial even when they do not cause C9

This example, how the match of “Generate Code & Tables” and “ModelS&AM” to subsequent adjust-
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Table 9.14.: Summary of identified evolution steps that introduced occurrences of proto-anti-patterns
within MDE settings of the third study (see Chapter 4).

Case Study Pattern Occurrence Introducing Evolu-

tion Step

creation dependence

BO “ApplyChecks” S3

Cap1 “Create Constructionmodel” –

Cap2b “Generate Result7” S4
“Generate Result8” S4
“Word Import Result2” S1
“Word Import Result3” S1

subsequent adjustment

BO “Generate Code & Tables” and “Write Business Logic” S1
“Generate Code & Tables” and “ModelS&AM” S2
“Project to BO Model” and “Adapt BusinessObject Model” S3

VCat “acquire zip-file” and “update extension” –
“acquire zip-file” and “customize extension” –
“run installation script” and “customize extension” S1

Cap1 “Create Constructionmodel” and “Manipulate Construction-
model”

–

Cap2a “Merge Parts of Model” and “Manipulate Result2” S1

ment was introduced to the MDE setting, illustrates that an evolution step that does not include change
type C9, but only C6 or C8, can cause effects on how hard changeability concerns are affected, too. In
the given example, the order of manual and automated activities did not change, because “Generate
Code & Tables” was already predecessor of another manual activity (“Write Business Logic”, which
matches to subsequent adjustment in combination with “Generate Code & Tables”, too).

This supports the classification of C6 and C8 as substantial structural evolution steps, even in cases
where C9 is not caused as a side effect.

Considering all 26 captured substantial structural evolution steps in these 6 case studies, 7 (more than
one quarter) could be ascribed with the actual introduction of proto-anti-patterns.

Figure 9.10.: Proportion of pattern occurrences that can be associated with an introducing evolution
step: for 5 out of 6 occurrences of proto-anti-pattern creation dependence an introducing
evolution step was identified, and for 5 out of 8 occurrences of proto-anti-pattern subsequent
adjustment an introducing evolution step was identified.
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9.4.3. Effects of Evolution on Process Interrelation

In the following, the impact of the evolution on the manifestations of MDE traits that were investigated
in Section 9.3 is discussed.

Phases and Synchronization Points

As described above changes in the number of synchronization points and phases are more difficult to
reconstruct than changes in pattern occurrences. However, for two of the case studies it is possible to
associate evolution steps with probable changes to the number of phases. In the Carmeq the second
phase (which includes the modeling activities) was added in the first evolution step (S1). Further, in
Cap1 the evolution steps S5 and S7 led to the introduction of the first and second local focus, which
both include an additional phase, respectively.
These two examples show that evolution affects the number of phases in practice, too, even if this

effect seems to be rather seldom.

Complexity of Activity Chain

Similarly, it is difficult to identify changes in the complexity of activity chains. However, some evolution
steps can be associated with tendencies. For example, while the first four evolution steps in BO (S1 - S4)
rather increased the complexity, the later evolution steps (S5 - S7) reduced the complexity. Similarly,
the evolution steps S1 and S2 introduced a supporting activity and checks into the MDE setting of
case study Cap1 – the complexity of activity chain increased. The technological change in evolution
step S3 of Cap1 made the supporting activity obsolete and thus decreased the complexity of activity
chain. Later further evolution steps (S4 and S6) again increased the complexity of activity chain, by
introducing other supporting activities and further checks.
Also in the case studies Carmeq and Cap2a the addition of checks and automated or semi-automated

activities for the support of manual activities increased the complexity (Carmeq S2, S3 and Cap2a S4,
S5). Finally, the introduction of the “generation of figures and tables” in S1 in Carmeq can be associates
with an increasing complexity of activity chain.
Subsuming, evolution steps sometimes change the complexity of activity chains in practice (summa-

rized in Figure 9.11). An increase of the complexity seems to occur more often than decrease of the
complexity.

Figure 9.11.: Amount of evolution steps that can be associated with changes in the complexity of activity
chains: 13 out of 32 evolution steps can be associated to increasing complexity of activity
chains, while 4 out of 32 evolution steps can be associated to decreasing complexity of
activity chains

Manual Information Propagation

Similar to the discussion of the proto-anti-patterns above, already identified manually transformed ar-
tifact pairs can be investigated in order to identify evolution steps that introduced these manual in-
formation propagations. As summarized in Table 9.15 and Figure 9.12, for 13 out of 31 manually
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transformed artifact pairs the evolution step that introduced this manual information propagation into
the corresponding MDE setting could be identified.

For example, in Cap1 the introduction of generation of the prototype in evolution step S5 added
the manual information propagation between the artifacts “UI-Specification” and “Code”. Later, the
situation that a second team started to manipulate copies of the “Specification model” added a task for
merging different versions of the “Specification model”, which led to the introduction of the manually
transformed artifact pair “Specification model” and “Specification model to be merged” in evolution step
S6. Finally, the introduction of the task to create “Specifications” led to the introduction of three further
manually transformed artifact pairs in evolution step S7.

The remaining 18 manually transformed artifact pairs were most probably already part of the initial
MDE settings.

In addition, two evolution steps could be identified that led to a reduction of the number of manually
transformed artifact pairs. In BO the fifth evolution step (S5) removed the manually transformed
artifact pair “ESR BO Model” and “BO Model”, which was introduced in S4. Similarly, in VCat the
first evolution step (S1) removed the manual task of copying configurations from an old framework.
Although not identified here, there might be much more manually transformed artifact pairs that were
removed during the evolution of the six case studies.

Table 9.15.: Summary of identified evolution steps that introduced manual information propagation into
MDE settings from the third study (see Chapter 4).

Case Study Manually Transformed Artifact Pair Introducing Evolu-

tion Step

BO “ESR BO Model” - “BO Model” S4

Carmeq “Basic SW Model” - “Graphics” S1
“Basic SW Model” - “Concept Document” S1
“Basic SW Model” - “Table” S1
“Basic SW Model” - “Workingcopy of BSW Model” S1
“Released Table HTML” - “Table HTML” S1
“Figure PNG” - “Released Figure PNG” S1

Cap1 “Code” - “UI-Specification” S5
“Specification model” - “Specification model to be merged” S6
“Specification” - “Feature Lists” S7
“Specification” - “Specification model” S7
“Specification” - “GUI Widget Lists” S7

Cap2a “Partial Model” - “Mail” S4

Figure 9.12.: 13 out of 31 manually transformed artifact pairs can be associated with an introducing
evolution step.
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9.4.4. Discussion of Evolution Effects

Following the results of this investigations are discussed. Based on the data from Section 9.4.2, it is
not possible to identify a correlation between the actual number of structural or substantial structural
evolution steps that occurred to an MDE setting and the number of matches of the proto-anti-patterns.
However, it was possible to identify for 10 out of 14 occurrences of proto-anti-patterns introducing evolu-
tion steps. These results from practice support the theoretical consideration that substantial structural
evolution steps can affect the changeability (see Section 3.4.2).
For changes in the manifestations of MDE traits the impact of evolution seems to be smaller. However,

the investigation revealed examples that evolution actually led to changes in the manifestations of MDE
traits in practice.
Subsuming, this final investigation revealed that characteristics of an MDE setting that concern the

support of changeability and the interrelation to software development processes are actually affected
by evolution in practice.

9.4.5. Threats to Validity

In the following, threats to conclusion validity are discussed for the presented results on evolution effects
(for the discussion of other threats to validity see Section 4.4). The data set for this last examination
consists of only 6 MDE settings. The number of pattern matches under study is with 6 and 8 relatively
low. Consequently, it is not possible to use this data to draw conclusions on the general frequencies of
proto-anti-pattern occurrences that were introduced by structural evolution steps, compared to proto-
anti-pattern occurrences that were already part of the initial MDE setting. Similarly, data on more MDE
settings and evolution histories would be necessary to make statements on the frequency of structural
evolution steps that affect the manifestations of the different MDE traits.
However, evolution steps with effects on proto-anti-pattern occurrences or manifestations of the MDE

traits were identified for multiple companies, respectively. This makes the data sufficient to conclude
that changes in these characteristics of MDE settings are caused by evolution steps in practice.
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So far the Software Manufacture Model language and analysis techniques have been introduced (in
Chapters 6 and 7) and applied to MDE settings from practice (see Chapter 9). In this Chapter the
Software Manufacture Model language and analysis techniques are evaluated.

10.1. Evaluation of Software Manufacture Model Language

The Software Manufacture Model language was designed to allow modeling of MDE settings from prac-
tice. One goal was to allow a comparison of the effects of activities. Further, the language aims at
supporting analysis of an MDE setting’s effects on changeability and the process interrelation. In this
Section it is evaluated whether Software Manufacture Models are applicable in practice and allow a com-
parison of effects of different activities. Further, it is shortly discussed what concepts of the language
design enabled the development of the analysis techniques that have been presented in Chapter 7.

10.1.1. Applicability

The Software Manufacture Model language was applied to model 11 case studies of MDE settings from
practice. Together, 228 activities were modeled. Only, nine of these activities include more than 5 links.
All activities could be expressed and visualized. Subsuming the language turns out to be applicable.

Although Software Manufacture Models are more complex than other process modeling languages, an
experience when capturing the case studies was that the application of Software Manufacture Models is
not more complex. In contrast, the application of the language supported the interviews and helped to
ask questions in a more focused way. Actually, the effort that was put into the elicitation of an MDE
setting decreased with the third study, where Software Manufacture Models were directly used during
elicitation of the MDE settings. A main explanation for this improvement is the fact that the elicitation
method changed. However, if Software Manufacture Models increase the complexity of eliciting an MDE
setting, the effect is excelled by other influences on the elicitation effort (e.g. as the elicitation method).

10.1.2. Comparability

In the following it is examined whether the Software Manufacture Model language helps to better com-
pare activities in MDE. Therefore, it is considered how classical model operations look like in Software
Manufacture Model notation. In the area of software development with MDE several standard model
operations are applied, such as model merge, model comparison, transformation, synchronization, or
model check [138, 48], but also model creation or deletion. Taking a closer look at these model opera-
tions reveals that they are very variable in most parts of the activity, due to a high variability in the
used definitions and understandings:

Example 16

For example, when trying to capture a model merge as a Software Manufacture Model activity, two
characteristic aspects can be identified: a) input artifacts are not in a containment relation to each
other (i.e. the only allowed artifact relations are references and referenced by), and b) the content of an
input artifact overlaps or is equal to the content of the output artifact. Figure 10.1 shows an example
of a merge activity that fulfills this characteristic. However, it is possible that the output artifact of
a merge is identical to one of the input artifacts, while other merge implementations always produce a
new artifact. This can make a relevant difference for the MDE setting, since the affected input artifact
is available for further treatment in the later case, while it is not in the first case. Further, not each
merge technology is able to implement both variants. Subsuming, each merge fulfills at least the listed
properties, but can be refined further.

This uncertainty about what a merge actually means is even more drastic when transformations are
considered. The term transformation is used in quite different ways. The only thing that is not variable

173



10. Evaluation of Modeling and Analysis

Figure 10.1.: Example for a model merge with two inputs

in the characteristic of a transformation activity is the fact that input and output artifacts have at least a
content overlap (i.e. some information of the input is taken and moved to the output, where information
might be added by the transformation) or are even equal in content. Figure 10.2 shows an example
transformation activity, which translates one artifact to an artifact of another language automatically.

Figure 10.2.: Example for a transformation with input and output of different languages

Other characteristics differ from transformation to transformation: In an in-place transformation the
output artifact is one of the input artifacts. The number of input and output artifacts can differ (and
is for some transformations allowed to be variable). A transformation can be performed manually or
automated. There are transformations that require a transformation definition (e.g. TGG rules) while
other transformations are hard-coded. These examples show that the term transformation, too, is not
sufficient to make a clear statement about the effects and role of an activity within an MDE setting.

Besides, the aspect that instances of standard model operations might have very different characteris-
tics it can be observed that a differentiation of activities on the basis of these terms can be misleading.
On the one hand, it is not always clear what the difference between two types of model operations is.
For example, a merge is sometimes seen as an own form of model operation and sometimes understood
as a special case of transformation.
On the other hand, one of our case studies revealed that it seems to be difficult for developers or

designers of an MDE setting to transfer and apply knowledge about one type of model operation to
other types of model operations.

Excursus: terminology can prevent the application of solutions

For example, the case study Cap1 includes an automated “model transformation” (activity “Create
Specification Model”) as well as an automated “code generation” (activity “Generate Code”). In both
cases the results need to be further manipulated and enriched. This is implemented for the model
transformation by directly manipulated the resulting model – including the risk that a new execution of
the model transformation will lead to loss of this manually added content. However, the adaption of the
results of the “code generation” is done, by applying the generation gap pattern [78] – which aims at
preventing exactly the same risk that can be associated with the “model transformation”. Obviously,
the same problem was not identified or addressed for a transformation activity between two models.
When calling attention to this situation, the interviewees admitted that the loss of manually created
content exists and that developers use workarounds like “copy and paste”. The question for the reason
why they choose to apply a technique for prevention of this effect to the code generation, but not to the
model transformation, resulted in a discussion about the terminology. The application of the generation
gap pattern happened on an activity which includes the words “Generate Code” in its name. Here
the naming helped the developers to recognize the possible application point for solutions to prevent
unexpected loss of code. In contrast to the “code generate”, our interviewees referred to the “model
transformation” as “automated support” and hence just did not attached so much importance to this
activity. This example provides an idea how differentiations in terminology can mislead developers when
creating an MDE setting.
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However, both activities turned out to be comparable when the Software Manufacture Model of the
MDE setting was created during the interviews. Figure 10.3 shows both activities. As marked red, both
activities include content flow from one of the input artifacts to one of the resulting artifacts. Both
activities do not consume this resulting artifact as input. Thus content of this artifact is not preserved
when the activity is executed a second time (which is the characteristic that leads to the potential
loss of content). Both activities are also different. For example, how the transformation is executed is
influenced by two scripts. During the transformation, the reference to the “UI-Specification” is copied
from the “Specification Model” to the “Structural Models”. Finally, for tracing reasons a second model
is created, which stores references to both “Specification Model” and “Structural Models”.

Figure 10.3.: Transformation (left) and generation (right) from case study Cap1.

Subsuming, this examination of standard model operation terminology reveals that the Software
Manufacture Model language in contrast to normally used model operation terminology

a) helps to identify relevant differences between activities of the same type of model operation and

b) can help to identify potentials for improvements and support decisions on solutions independent
of the actually used model operation terminology.

10.1.3. Analysis Support

One main aim of the Software Manufacture Model language is to support analysis of an MDE settings’
influence on hard changeability concerns and assessment of the manifestation of MDE traits. In the
following, it is shortly evaluated whether these goals are reached.

First, two of the main concepts in Software Manufacture Models are the differentiation between manual
and automated activities and the expression of changes in artifact relations in terms of pre- and post
conditions of activities. These two modeling concepts enable the straight forward identification of manual
information propagation using a simple Software Manufacture Model pattern. Further, the analysis of
an MDE setting’s effect on hard changeability concerns is enabled, since changes in artifact relations
(concerning references to other artifacts and content overlaps) are expressed in Software Manufacture
Models. Due to the additional ability to express artifact hierarchies (i.e. to model partial artifacts
and their changing relations) it is possible to express that different parts of an artifacts are affected
differently. This enabled the formulation of proto-patterns on changeability concerns.

Finally, the expression of object flow and activity pre and post conditions, is used as a basis to
automatically calculate the set of technically possible predecessor sets (and with it predecessors and
successors) of activities within a Software Manufacture Model. This information about the order of
activities enables the identification of lengths of activity chains, phases, and synchronization points.

Targeted improvements to the languages’ expressiveness (e.g. concerning the differentiation of ac-
tivities for creation, recreation, and manipulation) can be applied in future to decrease the number of
necessary modeling conventions. Nonetheless, the reached degree of automation of the analysis tech-
niques is already very high. The main manual effort is caused by the need to create Software Manufacture
Models that conform to the modeling conventions. For the analysis only some additional decisions are
required. To sum up, the Software Manufacture Model language enabled the development of intuitive
analysis techniques.
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10.1.4. Discussion

Subsuming, it was shown that the Software Manufacture Model language is applicable to capture MDE
settings from practice. Further, the examination of comparability revealed anecdotal evidences that
Software Manufacture Models can help to get another focus when reasoning about MDE activities,
compared to usually used model operation terminology. The final discussion showed that the different
concepts in the Software Manufacture Model language indeed supported the design of the analysis
techniques for changeability and process interrelation.

Apart from the evaluation of applicability, comparability and analysis support, the application of
Software Manufacture Models to the case studies revealed that additional hidden aspects of an MDE
setting might be identified:

Example 17

For example, in the interviews, an implicit dependency between automation steps in the case studies
Cap2a and Cap2b could be identified on the basis of the Software Manufacture Models. One of the
results from Cap2b includes hyper links to corresponding parts of a generation product of Cap2a. This
implicit relationship might one day become relevant when the link addresses that are created in Cap2a
are changed and the results created with the MDE setting in Cap2b become invalid. Interestingly, a
comparable hidden dependency could also be identified between two automated activities in case study
Carmeq.

Thus, modeling how artifact relations change within activities, helped to reveal situations, where the
creation of required artifact relations is done implicit (i.e. by cloning the code for the creation of links
or storage locations in multiple automated activities).

10.2. Evaluation of Analysis Techniques

In this section it is evaluated whether the analysis techniques presented in Chapter 7 are applicable to
MDE settings from practice and whether there is an actual need for these analysis techniques. Further
the overall analysis approach from Section 7.3 is discussed.

10.2.1. Applicability of Analysis

All analysis techniques that have been presented in Chapter 7 have been applied to 11 MDE settings
from practice in Chapter 9. This shows that the developed analysis techniques are actually applicable.

Special cases are the proto-patterns. First, the application of the analysis shows that the pattern
matching is applicable. However, there is also the question whether the proto-patterns that were intro-
duced in Section 7.1 have the potential to be actual patterns.

A proto-pattern has the potential to become an actual pattern, when more than three occurrences
in different contexts (or companies) in practice are documented. For the two proto-anti-patterns this
rule-of-thumb can be evaluated as fulfilled when taking the eleven case studies and the open source
emf case study together. Together, 20 occurrences of proto-anti-patterns subsequent adjustment are
identified within 8 MDE settings in 3 companies as well as in the open sources case study. Similarly, 8
occurrences of creation dependence are identified within 5 MDE settings in two companies as well as in
the open sources case study.

Only some matches for the proto-patterns with positive effects on changeability could be identified,
while the case studies revealed the application of further structures for the support of changeability. The
first conclusion is that the data that was so far collected is not sufficient to proof that anchor is more
than a proto-pattern. A second conclusion of this observation is, that the two proto-patterns (although
technically valid) are not sufficient to capture all changeability improving strategies that are relevant
and applied in practice. In future work, the collection of additional data on MDE settings might lead
to the formulation of additional Software Manufacture Model patterns to capture these solutions.

Finally, for split manufacture 5 occurrences are identified within 3 MDE settings in two companies
as well as in the open sources case study. Thus, the proto-pattern has not only been matched in the
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MDE setting, where it was initially identified, but also in other MDE settings. Consequently, for this
proto-pattern the rule-of-thumb can just be evaluated as fulfilled.

Subsuming, due to the occurrences in multiple MDE settings from different companies, three of the
four presented proto-(anti-)patterns seem to actually capture reoccurring situations that are relevant for
MDE settings in practice.

10.2.2. Need of Analysis Techniques

In Chapter 3 it was examined how MDE settings theoretically can affect changeability and that the
manifestation of the three presented MDE traits might be process-relevant. However, in the beginning
it was not clear whether there are MDE settings in practice that include process-relevant manifestations
of the three MDE traits or affect hard changeability concerns. Consequently, it was not clear whether
analysis techniques are actually needed.

Thus, in order to exclude or confirm the need for the analysis techniques, it was first necessary to
analyze the MDE settings from practice. Therefore, first the required analysis techniques have been
introduced in Chapter 7 and applied to the case studies from practice in Chapter 9. As a result, it is
now possible to evaluate the need for the analysis techniques:

For the MDE traits the analysis of the MDE settings from the first and third study in Chapter 9 led to
a confirmation of the hypothesis Htraits, including the hypotheses Hphases, HmanualInformationPropagation,
and HcomplexActivityChains (see Section 9.3). This means that for each of the three MDE traits there
are in practice MDE settings, where the MDE trait is manifested process-relevant, and MDE settings,
where the MDE trait is manifested process-neutral. The process relevance of certain manifestations
of the MDE traits was theoretically discussed and some anecdotal evidence is provided in Chapter 9.
Consequently, the difference in practice confirms the need for analysis techniques that allow assessing
the manifestation of these MDE traits.

For the hard changeability concern unexpected loss of content, the analysis of the MDE settings
from the first and third study in Chapter 9 led to a confirmation of the hypothesis Hchangeability (see
Section 9.2). This means that there are in practice MDE settings that affect this hard changeability
concern, while there are also seem to be MDE settings that do not affect this hard changeability concern.
This diversity in MDE settings from practice confirms the need for analysis techniques for the hard
changeability concern unexpected loss of content.

10.2.3. Discussion

In Section 7.3 an approach for analysis in context of the practical application of MDE settings was
presented. As shown in Figure 10.4 the different use cases for analysis are supported by the presented
analysis techniques. Unfortunately, it was not possible to actually apply the analysis techniques during
projects in practice in order to choose or tailor processes, refactor MDE settings, or plan evolution.
Thus, it remains subject to future work to evaluate the benefit of adapting MDE settings, their context,
or use according to the analysis’ results.

However, as indicated in Figure 10.4, we applied the analysis techniques as a post mortem analysis to
eleven MDE settings from practice in Chapter 9. Thus, although the MDE settings are partly still in
use in practice, the analysis results are not used to modify the MDE settings or the way they are applied
in practice (i.e. how they are combined with software development processes and how developers use
the MDE settings). As discussed above, this confirmed the applicability of the analysis techniques and
also the need for the analysis.
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Figure 10.4.: Overview of the use cases for analysis.
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11. Related Work

Within this thesis, different aspects of MDE are studied and analysis techniques for MDE settings are
provided. In this chapter, related work on the different contributions of this thesis is presented and
discussed. In this context, several MDE settings from practice were captured and discussed in the
Chapters 4 and 5. Therefore, related work on studies about the state of the art of MDE in practice
is discussed in Section 11.1. In order to further investigate the different MDE settings the Software
Manufacture Model language for representation of MDE settings was introduced in Chapter 6. Related
work on modeling and analysis approaches for MDE settings is discussed in Section 11.2.

Both, capturing MDE settings from practice and introducing a modeling language for MDE settings
was done in order to support the investigation of the three objects of this thesis: MDE’s influence
on changeability (Figure 11.1a), the interrelation of MDE and software development processes (Figure
11.1b), and the evolution of MDE settings (Figure 11.1c). Firstly, how MDE influences changeability
was theoretically discussed in Chapter 3. Therefore, related work on theoretical explanations for the
influence of MDE on changeability and related work on empirical studies about the actual degree of
success and impact of MDE is discussed in Section 11.3. Second, the interrelation of MDE and software
development processes was theoretically discussed in Chapter 3 and analysis techniques on relevant MDE
traits are introduced in Chapter 7. Correspondingly, related work on process interrelations is discussed
in Section 11.4. Finally, the evolution of MDE was theoretically discussed in Chapter 3 and studied in
Chapter 5. Related work on the topic of evolution shall be discussed in Section 11.5.

This chapter is partially based on [P3, P2, P6], and [P4].

Figure 11.1.: Overview of investigated aspects of MDE settings

11.1. Related Work on Studies about MDE in Practice

There is much literature about the manifestation of MDE in practice that focuses on capturing and
describing case studies in detail. For example, Guttman et al. collected in [94] 6 case studies about
the introduction of MDA in different companies. Also Brown describes two case studies on MDA in
[37]. In addition, this paper includes a list of state of the art MDA tools. Backer et al. list languages
and automation steps that are used within a case study of Motorola [15]. Although automation is used
for simulation as well as generation of code and test cases, Backer et al. subsume that manual coding
still plays an important role in this case study. Heijstek et al. present a case study from a Dutch IT
service provider in [95]. They list the frequency of different UML diagram types in use. They observe
that in this case study activity diagrams and class diagrams are used in most cases. Also Mohagheghi
et al. present in [146] three case studies on MDE and Melleg̊ard et al. present a detailed case study on
MDE in automotive domain [135]. Melleg̊ard et al. also examined what effort was put in the different
documents.

All of these case studies are presented with textual descriptions of the used languages and automations.
Mohagheghi et al. and Melleg̊ard et al. provide even simple models or illustrations of these MDE settings
in [146] and [135]. However, while all works focus on automation and used artifacts, explicit descriptions
of the required manual tasks are rare.
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Besides such case studies, some work in literature aims at capturing a broader picture of MDE.
First of all, in 2008 Mohagheghi and Dehlen collected in their survey paper information from different
case studies [143]. They found that automation was (at this point in time) most often used for code
generation. Further, they identified a lack of executable models and summarized that analysis was most
often performed on code level. Other works base on surveys and interviews among practitioners. For
example, Kirstan et al. performed in 2009 twelve interviews in car industry [114]. As a result, they
identified that techniques like prototyping and model in the loop are extensively used. Fieber et al.
examine software development at Siemens [71]. One insight of their interviews was that models are
mostly used for generation within Siemens.
Finally, some studies focus on questionnaires to collect data that is not specific to a single company.

In their survey with more than 100 software practitioners Forward et al. came to the result that code
generation is used seldom, while modeling is most often applied to plan and discuss the design of the
software. Hutchinson et al. found in their survey, that UML class diagrams and activity diagrams are
most commonly used [99]. Further, they made the observation that the use of MDE can be rather
pragmatic. To illustrate this insight, they provide a transcription of an interview. This transcription
describes how complex different languages are combined in a practical example. Finally, Torchiano and
Tomassetti et al. examined in 2011 the use of models in the Italian software industry [196, 195]. 13% or
the responding practitioners stated that they always used models, while 55% only sometimes do. UML
is most often used (70%) and code generation is used in 44% of the cases, while model interpretation
and transformations are not so often in use.
Summing up, while these broader studies can provide information about the frequency of model

use, they cannot provide a detailed picture how models and automation steps are actually composed.
Therefore, the publication of case studies remains important for research on MDE characteristics.
In contrast to related work, the case studies captured in context of this thesis have a main focus on

the structure of MDE settings, including the structure of manual and automated activities, in practice.

11.2. Related Work on Modeling and Analysis of MDE Settings

In this Chapter, related work on modeling and analysis approaches for MDE settings is discussed.

11.2.1. Modeling of MDE Development

The Software Manufacture Model language that is presented in this thesis is designed, such that activities
and their impact on the interrelation of artifacts can be expressed. In the following, related work on
modeling approaches for MDE as well as modeling approaches for processes is discussed.

Modeling MDE

Approaches to model MDE have different perspectives. First of all, there are approaches that focus on
the comparison of MDE tools. For example, Atkinson and Kühne discussed concepts for modeling and
comparing architectures of modeling tools in [11]. They focused on the question how different modeling
concepts (such as the relation between different meta-model layers) are implemented. Another example
is the modeling language TIL that enables the comparison and analysis of whole tool chains in MDE
[28]. TIL focuses on the question how different languages and formats are integrated.
Apart from the tool perspective, megamodel approaches focus on the question how different artifacts

are interrelated (as summarized in Section 2.1.2). As indicated in the survey paper in [P5] the execution
of model operations, if captured, is expressed in form of an own relation by megamodel approaches. No
information how “static”-relations and “overlap”-relations between artifacts change is provided. This
observation still holds for more recent megamodel approaches, such as in [65].
In contrast, research approaches for the characterization of activities or transformations often focus on

the question what artifacts are consumed and produced. For example, Vignaga et al. present an approach
for typing relations in model management [204]. They focus on the problem that transformations might
be input of (higher order) transformations and introduce an approach that allows hierarchies in the types.
Favre and NGuyen go a step further and define a set of basic relations that can occur between models or
systems, e.g. “DecomposedIn”, “ConformsTo”, or “IsTransformedIn”. They use these basic relations to
formulate patterns that capture parts of the software evolution process [66]. In contrast to the approach
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presented in this thesis, “overlap”-relations or explicit references between artifacts are not discussed.
Similarly it is not differentiated between manual and automated transformations. Nonetheless, Favre
and NGuyen present with this approach a possibility to capture, formalize, and differentiate software
evolution activities, such as reverse engineering or round-trip evolution.

Subsuming, similar to Software Manufacture Models the discussed approaches aim at differentiating
between MDE activities. However, in contrast to the discussed approaches, the Software Manufacture
Model language provides concepts to express how manual and automated modeling or transformation
activities affect changes in artifact relations.

Modeling Processes

The main focus of most process modeling languages is the illustration of control flow or object flow.
Activities are characterized by names as well as the artifacts that are consumed and produced. Examples
are SPEM [2] and languages that base on SPEM [24, 25]. Engels and Sauer present with MetaME an
alternative approach to model software engineering methods [58]. In addition, textual annotations might
be used, such as in [40] or [183].

Approaches, like the six UML-based languages for software process modeling surveyed in [26], can be
used to capture activities on a more detailed level. These approaches characterize activities by input
and output artifacts. MODAL [117] also focuses on this more detailed view. The language SPEM is
extended with concepts to deal with model based engineering. Like the approaches surveyed in [26],
the authors of MODAL consider the involved artifacts within the specification of activities. In addition,
they use further activity diagrams to specify activities more in detail.

The SimSWE approach of Birkhölzer [30] introduces a library for activities to enable reuse for the
simulation of processes. The activities are mainly characterized by aspects that are important for the
simulation, like task size, productivity, or communication overhead. However, there is no consideration
of artifacts that are produced or consumed. Esfahani et al. present in [60] a repository for agile method
fragments, where a method fragment is considered at the high abstraction layer of pair programming
or daily scrum meeting. Here artifacts are not taken into account. Jacobson et al. describe in [101]
the vision of the SEMAT project, which is to provide a common theory and terminology to describe
methods in software development. Due to this comprehensive goal, the key concepts (“kernel elements”)
are very high level (e.g. software system, team, work, or requirements) and (so far) have no specific
focus on MDE development.

Only some process modeling languages are directly designed to support MDE concepts. For example,
Diaw et al. (SPEM4MDE [51]), Porres and Valiente ([164]), and Maciel et al. ([129]) present extensions
of the process modeling language SPEM. Goal of these extensions is the creation of process modeling
languages that allow the automated execution of code generators or transformations.

Subsuming, in order to guide developers or automatically execute automated activities, the discussed
approaches aim at capturing activities, similar to Software Manufacture Models. However, in contrast
to these process modeling languages, the Software Manufacture Model language allows to capture and
reason about changes in the relations between artifacts, which is crucial for analyzing correctness and
consistency.

11.2.2. Analysis Techniques for MDE Settings

Models of software development can be used for an analysis how productivity and quality will be affected.
For example, Förster et al. present in [75] and [76] and pattern-based approach to model and verify, to
what extent quality requirements from ISO standard 9001 are fulfilled by a process.

This section deals with related work on the question how an MDE setting’s impact on productivity
and quality can be analyzed. First of all it is necessary to distinguish between the analysis of model
quality and the analysis of the quality of an MDE approach. As summarized by Mohagheghi et al. [144],
the term quality is in context of MDE often used to refer to the quality of the models that represent the
software system. For example, Monperrus et al. present a framework that can be used to declaratively
specify metrics on models. The framework then automatically generates corresponding measurement
software [147]. This means that the approach supports the development of metrics to evaluate software
at the stage of modeling, already.
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However, this thesis focuses on the quality of an MDE approach. Fieber et al. introduce a corre-
sponding taxonomy for model quality in [69], with a main focus of software - and documentation models.
Although criteria for the quality of a whole MDE approach are not discussed systematically, some as-
pects of the quality of a modeling notation are mentioned, e.g. the degree of formalization and the
adequacy for the application domain. However, research that actually deals with the question how MDE
approaches can be evaluated is rare.
An approach for the estimation of costs that are to be expected when implementing a project with

a specific MDE setting is presented by Sunkle and Kulkarni. This approach is a proposal how the
COCOMO II model can be used for cost estimation of model-driven development tool sets [193]. The
main idea of the approach is to encrypt the impact of MDE characteristics in terms of their effect on
COCOMO Scale Factors and Effort Multipliers. The rating levels for these cost drivers are determined
with the help of a questionnaire that is answered by developers that have years of experiences with the
MDE setting under study. Further, the estimation of system size is adapted by introducing individual
adjustment factors for code that is generate from different languages. The approach is presented on the
example of a specific MDE setting. MDE characteristics such as abstraction (e.g. separation of func-
tionality or component abstraction), automation (e.g. documentation generation, automated consistency
validation, or configuration management support), and maturity of tooling are considered.
Subsuming, Sunkle and Kulkarni present the probably first applicable approach for a quantitative cost

estimation that is individual for an MDE setting. Naturally, the approach comes with some constraints.
First, the evaluation what MDE characteristics are relevant for what cost driver, remains a research
challenge. Here experience is required to apply the cost estimation. Second, the proposed assignment
of the rating levels bases on experience of the developers. Thus, the approach, as is presented, is not
applicable to new or adapted MDE settings. Finally, Sunkle and Kulkarni make a pragmatic decision
for size estimation on the basis of the resulting lines of code, which is probably applicable for the most
MDE settings. However, the approach cannot be applied when MDE settings include interpretation of
models (i.e. when no code is generated). Another approach to apply COCOMO is presented by Biehl
and Törngren, who estimate costs savings when tool chains are used. They consider cost drivers, such
as reuse of tool adapters, when using automated tool chains [29].
A qualitative approach that aims at the goal to evaluate changeability or maintainability of an MDE

approach is presented by Domı́nguez-Mayo et al. They introduce in [53] a framework to study maintain-
ability of model-driven web methodologies. For different maintainability aspects, such as changeability,
it is listed what MDE characteristics have an influence. Relevant MDE characteristics are levels of
abstraction, standard definition, transformations, traces, and model based testing. For the evaluation it
is rated which of the relevant MDE characteristics are supported by a model-driven web methodology.
The framework is very simple and specific to model-driven web methodologies. For example, it is

not considered that certain characteristics of MDE can have positive as well as negative influences on
productivity.
In Section 3.2.4 it was discussed that an approach for the overall evaluation of changeability is difficult

to achieve. This is the reason why it is not a part of this thesis to aim at the same high goals as
Domı́nguez-Mayo et al. or Sunkle and Kulkarni. Instead this thesis focuses on the examination of the
impact of single MDE characteristics on hard changeability concerns.
Apart from these two approaches that aim at a direct evaluation of properties such as costs or change-

ability, there is a small amount of related work that aim to classify modeling approaches concerning their
maturity. These maturity models define levels that modeling approaches might fulfill. A well known
approach is Brown’s modeling spectrum [37], which was already introduced in Section 2.1 (Figure 2.1).
Comparable to Brown’s modeling spectrum, Warmer and Kleppe described six Modeling Maturity Lev-
els in [209]. While the modeling stages of Brown focus on the interrelations between code and models,
Warmer and Kleppe mainly focus on the quality and level of detail within models.
While these first two approaches describe rather theoretical views, Backer et al. present in [15] the

modeling challenge levels (MCLs) framework that captures experiences from different developers and
teams within Motorola. The goal of the MCL framework is to communicate experience and to provide a
road map for the introduction of modeling. The six presented MCLs reflect stages of the use of models
that were traversed by different teams, starting from no modeling, via informal and formal modeling,
up to optimized model-driven engineering. Unfortunately, Backer et al. present no details about how
different modeling approaches look like during these stages. A final approach towards an MDD maturity
model was presented in 2006 by Rios et al. [168]. In contrast to Backer et al., Rios et al. present
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detailed information on the structure and differences between the different maturity levels. Although
the idea of maturity models for MDE is promising, all these approaches suffer from missing description
of risks and benefits that are associated to the different stages. Thus, they cannot be used to evaluate
the changeability or maintainability of an MDE approach or MDE setting.

Subsuming, only few research work focuses on the evaluation or classification of the quality of a given
MDE setting. Furthermore, the available approaches suffer from the complexity of this challenge. For
this reason this thesis focuses on a qualitative and partial approach (i.e. only specific changeability
concerns are addressed).

11.3. Related Work on MDE’s Influence of Changeability and Productivity

This section focuses on related work on MDE and productivity (especially changeability). This thesis
approached the question how structures in MDE settings affect changeability in two steps. First, possible
influences have been examined theoretically (see Section 3.2). The second step was to empirically
investigate how MDE settings from practice differ in some of these relevant structures and with it in
their influence on changeability. Therefore, related work on theoretical explanation for MDE’s influence
on changeability is discussed in Section 11.3.1. Afterwards, empirical studies on the impact of MDE on
productivity are examined.

11.3.1. Theoretical Explanations on MDE’s Changeability Influence

In Section 2.2 it was already summarized how the effect of MDE on different productivity aspects, such
as reusability, portability, interoperability, complexity, and quality, is explained in literature. In the
following, related work on theoretical explanations for MDE’s influence on changeability is discussed.

Stahl et al. [188] argue that changeability and maintainability is supported in MDE by separation of
concerns. Separation of concerns ensures that changes do not have to be applied in all models of the
system. As Kelly et al. [110] argues, a setting where platform aspects are separated and introduced
by a fully automated transformation allows reaction to changes in platform requirements, since only
the transformation has to be changed and reapplied to all build systems. Further, Kleppe et al. [115]
and Gruhn et al. [92] argue that abstract models that are automatically transformed to code solve the
problem of keeping a consistent high level documentation. A good documentation is necessary to ensure
maintainability and changeability.

Mohagheghi et al. discuss in [144] that the development process and modeling conventions can influ-
ence the changeability. Further, they argue that generating models from models can also affect change-
ability positively (due to the automation). Some works focus on how generated code can be embedded
with manual code, such that handwritten code is preserved in case the generation has to be performed
again, e.g. generation gap pattern presented by Fowler [78] or protected regions as discussed by Stahl et
al. [188]. Almeida et al. [5] theoretically discuss, that a higher number of intermediate models (such as
PSM in MDA) and corresponding transformations, enables a better reuse of transformations, while the
efficiency of the design process might be decrease with an increasing number of intermediate models.
Finally, Hutchinson et al. present a table that lists for different productivity and maintenance aspects
possible positive as well as negative impacts that might be caused by MDE [99]. For example, the time
to develop code might be reduced by automated code generation, while it might be increased by the
required additional time for the implementation of model transformations.

It can be seen that there is a difference in the discussions of the impact of MDE. While most works
discuss how MDE can lead to benefits, some researchers also focus on possible disadvantages of MDE
(such as Fowler [78], Stahl et al. [188], Almeida et al. [5], and Hutchinson et al. [99]). Apart from
single arguments, the variety of changeability concerns that might be affected by MDE is not explored
to the same extent in the discussed related work as in this thesis. In contrast, this thesis approached
a systematic discussion on MDE’s impact on changeability in Section 3.2. Section 3.2 has a focus on
the creation of the software product and leaves impacts on the productivity of development of the MDE
setting out. Within this focus, the discussion in Section 3.2 provides a frame for the single arguments
that are discussed in related work. Moreover, only one of the here discussed works ([99]) combines
the theoretical consideration with an empirical investigation of the occurrence of the effects in practice.
However, while Hutchinson et al. [99] focus on the effort of single development tasks, this thesis focuses
on effects that are caused by the structure of an MDE setting.
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11.3.2. Empirical View on MDE Productivity

There are several studies, dealing with the question how model-driven engineering or model-driven
development influences software development. The results of most of them until 2008 are summarized
in the review paper “Where is the proof?” of Mohaghegi et al. [143]. This review shows that there
is no final proof for most of the common assumptions about MDE’s influence. For example, there are
studies supporting the assumption that MDE enhances productivity, while other studies state that MDE
reduces productivity. Also a positive influence on software quality is not empirically proven. Since then,
several studies on the impact and success of MDE were published.

Studies that Focus on Productivity and Quality Gains

In order to study the benefits of MDE on productivity and quality, different studies were performed
and published. A main part of these papers deals with single case studies or the comparison of two
or three case studies. Further, some researchers performed experiments to study the productivity and
quality gains. Finally, three questionnaire based studies collected insights from more than 100 software
practitioners, each.

Literature that presents case study based research often focus on qualitative aspects and experiences
of developers. For example, Kapteijns et al. discussed different factors, such as the amount of non-
generated featured that influence the productivity increase [107]. For the considered case study they
measured a performance increase of 2.6 times compared to a legacy project. Also Weigert et al. report
on an improvement of productivity within in Motorola [211]. Backer et al., who considered several
projects with MDE at Motorola, even report on detailed numbers such as up to 33% effort reduction,
65% code generation, or a 30 to 70 times reduction required time for bug fixing [15]. Vogel performed
three different studies (including a case study) during the introduction of MDE in a small to medium-
sized enterprise. He reports on a productivity gain from up to 57% for maintenance projects [205], but
concluded also, that for some development project there might be no productivity gain at all. Thus, not
all studies provide proves for an increased productivity. For example, Kirstan et al. – although aware
of the potentials – came to no clear result about actual productivity improvements in [114]. Also the
report of Backer et al. include information about one pilot project that failed, which is explained with
the use of manual transitions and informal models [15]. Also possible quality gain is in focus of research.
Here, Weigert et al. identified a higher fault discovery rate in early phases of development (compared
to the legacy base line) [210]. Similarly, within an industrial case study Nugroho et al. found a reduced
fault rate in classes that were modeled with UML compared to classes that were not modeled [152].
Heijstek et al. studied the influence of model size and model complexity on effort during development.
In addition, software quality is examined on the basis of a case study. They found no correlation between
the fault density and the complexity and size of the models.

The few experiments, that were performed, have a different focus. Melleg̊ard et al. studied the benefit
of the use of graphical modeling in requirements engineering. The experiment shows, that the impact of
changes can better be predicted on a graphical model and that less time is required for the application of
changes [136]. Similarly, Mart́ınez et al. found in an experiment that the time required for maintenance
tasks was more predictable, with a modeling approach [133]. However, they also found that developers
had a greater trust in stability of changes that they performed on code level.

Finally, some studies aim at collecting a boarder view on MDE in practice. Therefore Forward and
Lethbridge [77], Hutchinson et al. [99], and Torchiano et al. [195, 196] used questionnaires to collect
experiences form software practitioners. Forward and Lethbridge published their results on the opinions
of 113 software practitioners in 2008. They observed the tendency that a better validity of the software
can be reached, when models are used.

In 2011 Hutchinson et al. published results from a questionnaire with 250 responses and additional
interviews [99]. They retrieved detailed responses on the experiences with productivity and maintain-
ability increase associated to differed uses of models. For example, more than 70% of the responses
confirmed an increase in productive, when models are used for team communication and problem un-
derstanding. Further more than 60% of the responses confirmed that productivity increase when models
are used for code generation. However, less than 50% of the responses agreed with a productivity or
maintainability increase when DSLs are used. In addition, Hutchinson et al. studied the balance between
specific disadvantages and advantages of MDE techniques, such as code generation.
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Finally, Torchiano and Tomassetti et al. published a survey about the state of the art in the Italian
industry in 2012 ([195]) and 2013 ([196]). They collected responses from 155 software professionals. One
observation was that there is a statistically significant difference in the productivity gain and reached
platform independences, when comparing the use of models, only and the use of models in combination
with modeling technologies such as code generation. Further, they collected the experience that company
specific tooling leads to a higher flexibility and productivity.

Studies that Search for Factors that Support MDE Success

Besides the focus on the productivity gain, many studies focused collected factors that influence the
success of an adoption of MDE in practice. For example, Staron compares in [190] two case studies
– one with a successful adoption of MDE and one where the company stopped the adoption of MDE.
Based on data from interviews and a questionnaire, motivations for the adoption, such as the ability to
estimate costs or improve quality, are collected. Finally Staron compares both cases and identifies certain
factors that play a role in the adoption. These factors include the maturity of tools and techniques,
the compatibility to the software processes, the skills (especially language engineering expertise) as well
as the way MDE is adopted. Also Weigert et al. and Hutchinson et al. identified modeling skills as a
relevant factor ([210],[99]).

Mohagheghi et al. examined different case studies with the focus on factors that influence the adoption
of MDE ([146], [145]). Amongst other challenges, they identified a need for user friendly tools and a
good language design. That the used tools are an important factor is also supported by the results of
Backer et al. [15] and Chaudron et al. [41].

Another factor that was observed in a case study by Kuhn et al. is that short cycles are required,
especially when the built software has an experimental character [119]. To provide a frame for different
studied factors, Whittle et al. provide a taxonomy of factors that capture impact of MDE tools on MDE
adoption. This taxonomy is a result data from almost 40 interviews with practitioners [213]. Finally,
Torchiano and Tomassetti et al., collected potential problems for the adoption of MDE, including missing
competencies (developer skills) and the fear of a vendor lock-in ([195], [196]).

Discussion

Many of the findings regarding the increase of productivity and quality are positive, while there are still
results that are ambiguous. This observation that was already made by Mohagheghi et al. [143] fits
to this results of this thesis. From the viewpoint of the observation that MDE settings are diverse in
practice (Chapters 5 and 9) it would rather be surprising to find similar impacts on productivity in all
applications of MDE.

Further, most of the studies on relevant factors in MDE adoption focuses on maturity and usability
of tooling as well as social or organizational aspects like the willingness of developers and management
to adopt a new development approach. Most existing studies or experience reports do not focus on the
design of MDE settings (i.e. on the interplay of different MDE technologies). Thus, only some of the
studies consider the structure of the MDE setting as a possible influence on the success of MDE adoption
or productivity improvement.

A first example for a discussion at the level of MDE technologies is the work of Kuhn et al. [119].
They discuss the need of short cycles for the examined case study. This, finding can be considered as
an example how the MDE trait complexity of activity chain (see Section 3.3.3) can lead to problems
in practice. The discussion of the failed pilot study by Backer et al. is even more interesting. The
authors explicitly search for reasons within characteristics of the used MDE setting: the use of manual
transitions (considered as MDE trait manual information propagation in this thesis (Section 3.3.3)) and
the use of informal models [15].

Finally, only Staron explicitly discusses the compatibility to the process as an important factor in the
introduction of MDE. Staron argues that a need to adapt the process increases the effort of the MDE
adoption [190]. This observation supports the need for the discussion of process interrelation in this
thesis. All, these related studies use the empirical data to identify potential factors that might influence
the success of MDE.

In contrast to these studies, the factors that are studied in this thesis have been identified in a
systematic theoretical consideration, while the empirical studies are used to explore the diversity of
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manifestations of these factors in practice. A similar approach can be found by Hutchinson et al.,
where it is considered that MDE technologies, such as code generation, have potential positive as well
as negative impacts [99]. Similar to this thesis, Hutchinson et al. use an empirical study to investigate
the manifestation of the theoretically discussed effects in practice. However, in contrast to this thesis,
Hutchinson et al. focus on different factors than the structure of MDE settings (as discussed above in
Section 11.3.1).

11.4. Related Work on Process Interrelation

The question how MDE and software development processes are combined is addressed by some works
on the general question how combinations can look like, only. Similarly, systematic research on the
impact that MDE can have on a process is seldom. In this section it is first discussed how related work
on combinations fit into the reference model presented in Section 3.3.1. Afterwards, related work on
the mutual impact of MDE and software development processes is discussed and compared to the MDE
traits presented in this paper.

11.4.1. Combination of MDE and Software Development Processes

In the following, related work on the combination of MDE and software development processes is dis-
cussed. How MDE generally can be combined with or embedded in software development processes is
rarely addressed in literature. For example, Kent discusses in his seminal work that MDE is accompanied
with a micro process (capturing the manipulation of single models) and a macro process (capturing the
order of model manipulations) [111]. However, there is no discussion how macro and micro processes are
interrelated with software development processes. Also the more actual research road map from France
and Rumpe includes no discussion of this aspect [79].

After all, Stahl et al. discuss that MDSD (model-driven software development) can in principle be
combined with every process or method that bases on a iterative approach [188]. The basic assumption
of the combination is that modeling activities are applied during implementation phases of the respective
process. Whether a modeling activity can be used to support other phases, too, is not discussed in [188].
Kleppe et al. describe a similar understanding in [115]. Also Engels et al. assume that all processes can
be combined with a model based development approach [59].

However, not all literature assumes that MDE or MDA will be combined with existing standard pro-
cesses. For example, Asadi and Ramsin surveyed several proposals for methodologies that are specifically
defined for MDA [9].

To summarize, only Stahl et al. discuss a general view on the combination of MDE and processes
that can be compared to the reference model from Section 3.3.1. However, the possibility that MDE
artifacts are mapped to additional process documents and MDE activities are used in multiple phases
of the process is not discussed in [188]. In addition, the described MDSD approach bases on a relatively
fixed set of activities (modeling, transformation or generation, and manual implementation), while the
reference model presented in this thesis bases on no assumptions on the concrete structure of MDE
activities.

11.4.2. Impacts between MDE and Software Development Processes

In the following, related work with a direct focus on the impact of MDE on software development
processes (and the other way around) is discussed. For example, Engels et al. expect that the applied
process has impact on the quality of the different development artifacts [59].

Heijstek and Chaudron examined in [96] a case study with focus on the impact of MDE on software
development processes. They identified 14 factors that impact the architectural process. The concrete
structure of the studied MDE setting is not described in detail, but seems to include a model-to-code
generation. In addition, the authors make the assumption that it is easier to implement changes with the
studied MDE setting than with code, only. The identified factors mainly concern aspects like impacts
on communication, required skills, and tooling. One of the most interesting factors is the identified
increased of the need for collective code ownership. All in all, the results base on a single case study
and thus on a single MDE setting.
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Besides this targeted study, also some qualitative studies on MDE led to the conclusion that the
interrelation to the process is important. For example, Staron identified the importance of compatibility
between processes and MDE, too [190]. He comes to the conclusion that an introduced MDD approach
should not lead to the redefinition of the applied process. Aranda et al. [8] performed interviews in a
company that changed their development to use MDE. They found that division of labor changed within
the company. The identified reason for that result is that models enabled non-software engineers to take
over parts of the work that was formerly performed by software engineers.

Finally, Kalus and Kuhrmann surveyed literature to get a collection of criteria for software process
tailoring in [106]. Identified criteria are for example, the used programming language, tool infrastructure,
and complexity. However, the MDE traits identified in this thesis do not yet appear within this summary
of criteria for process tailoring in literature.

In [96] Heijstek and Chaudron make a first important step towards the examination of the interrelation
of MDE and software development processes. In contrast to their case study based research approach,
this thesis contributes with a theoretical consideration of the relationship between MDE setting and
processes. Further, this thesis provides the insight that MDE settings differ strongly in their MDE traits
and with it in their influence on the processes.

11.5. Related Work on MDE Evolution

This section focuses on related work on evolution in context of MDE. Therefore, first categorizations
and surveys on evolution are discussed. Afterwards, related work on the introduction of MDE and on
schema evolution are shortly discussed.

There are different surveys and research agendas that classify types of changes in model-driven software
evolution or in software evolution in general. For example, Stammel et al. provide an extensive survey on
techniques and approaches in software engineering that enable flexibility and evolution of software [189].
The whole spectrum of approaches reaching from agile methods via model-driven software development
to architectural patterns is discussed on a high level of abstraction.

A collection of possibilities to support software evolution with models is presented by Karanam and
Akepogu in [109]. However, within MDE approaches models are also part of the implementation of
the software and need to be evolved when the software evolves. For example, Engels et al. provide
support for the preservation of consistency among development artifacts by describing model evolution
in terms of transformations [57]. Khalil and Dingel present in [112] a survey on techniques that support
the evolution of UML models. They consider model evolution as a subset of software evolution. Thus,
the discussed approaches deal with evolution of the different models that are used for the specification
of a software system. Discussed evolution tasks concern for example the change propagation between
different models.

That evolution in MDE can be more than evolution of the software is summarized by van Deursen et
al. in [201]. Here, challenges in supporting the different forms of evolution are discussed. Considered
forms of evolution are “regular evolution”, which is software evolution, “meta-model evolution”, which
is a form of language evolution (discussed as change type C2 in this thesis), “platform evolution”, which
means the evolution of code generators and tools (discussed as change types C1 and C3 in this thesis),
and “abstraction evolution”, which means the introduction of an additional modeling language to the
set of languages (discussed as change type C5 in this thesis). “Abstraction evolution” as is introduced
by van Deursen et al. is a special case of structural evolution with the potential to affect change types
C4 and C6 , when the introduced additional language is used to express additional artifacts roles (and
does not only substitutes the language that is used for an already existing artifact role). In [137] Mens
et al. supplement the challenges listed by van Deursen et al. with a stronger focus on the evolution of
models.

Finally, Corrêa et al. classified change types for changes that are associated to software product lines
[47]. The categories include the change of the meta-model (summarized as language evolution C2 in
this thesis), changes of features and changes of models, which are both forms of software evolution, and
changes within a transformation (discussed as change type C1 in this thesis).

Subsuming, most categorizations have a central view on software evolution, which is as such not part
of the categorization in this thesis. Further, non-structural changes are considered in most categories,
while only in [201] a very specific form of structural changes is considered.
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An area of research that should be mentioned in that context is research on the introduction of MDE
into existing projects or to maintain already existing software. This goal was introduced as one of
the architecture-driven modernization scenarios in context of the architecture modernization initiative
(ADM) of the OMG [158]. Mansurov and Campara present in [131] a concrete approach to introduce
MDA into an already running project to maintain the created software. This introduction might be seen
as a special form of evolution.
Finally, evolution has a long history in data base research. Here schema evolution and the co-evolution

of data were studied. As summarized by Roddick in 1992 in an annotated bibliography, much research
was done on schema evolution [170]. Schema evolution can be compared to language evolution or even to
co-evolution of meta-models and models. For example, Lerner presents a framework for the automated
creation of transformations for migrating data from one schema to a new one [125]. Noy and Klein
discuss in [151] the difference between ontologies and database schemata in order to identify additional
challenges for the evolution of ontologies and corresponding co-evolution of data.
From the viewpoint of the types of MDE evolution that are discussed in this dissertation, research

on schema evolution focuses on the non-structural change type C2 . The schema can be seen as the
language, while the data can be compared to instances of this language. To sum up, related work on
evolution mainly focuses on non-structural forms of evolution. In contrast, this thesis introduced a
classification of structural evolution.
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In this chapter the results of this thesis are summarized. Subsequently, it is discussed how the goals of
this thesis are fulfilled and what implications arise from the gained insights and observations.

12.1. Summary

In this thesis, characteristics of MDE settings in practice were studied. This includes the influence of
an MDE setting on changeability, the interrelation to software development processes, and evolution.

First, these topics were approached on a theoretical level by analyzing the problem domains. It was
discussed how changeability can be affected by MDE. In this context the notion of changeability concerns
and hard changeability concerns was introduced. The main insight of this consideration is that MDE
settings can affect additional changeability concerns, compared to single languages or to a system’s
architecture.

Further, it was discussed how MDE settings and processes are interrelated. In this context a generic
reference model was introduced to refer to possible combinations of MDE settings and software devel-
opment processes. Additionally, the notion of MDE traits was introduced in order to refer to an MDE
setting’s characteristics that can, depending on their manifestation, lead to constraints on software de-
velopment processes. As a result, three MDE traits were selected for further consideration: phases,
manual information propagation, and complex activity chains.

As a final topic the evolution of MDE settings is examined. This includes the presentation of a
classification of possible change types. Further, it was discussed how the characteristics of an MDE
setting (i.e. the influence on changeability and other productivity dimensions as well as the manifestation
of the different MDE traits) are affected when different change types are applied on or happen to
an MDE setting. The notions of non-structural changes, structural changes and substantial structural
changes were introduced. The main insight of this discussion is the different consequences that structural
changes and non-structural changes can have on how an MDE setting affects productivity dimensions.
An MDE setting’s effects can be altered for more productivity dimensions if structural changes are
applied compared to non-structural changes. Similarly, the extent to which an MDE setting’s effect is
altered for a specific productivity dimension is potentially stronger for structural changes compared to
non-structural changes.

Subsequent to these discussions, three hypotheses were formulated on the diversity of manifesta-
tions of MDE traits in practice (Htraits with sub-hypotheses Hphases, HmanualInformationPropagation, and
HcomplexActivityChains), on the diversity of the influence of MDE settings on changeability in practice
(Hchangeability), and on the existence and commonness of structural evolution in practice (Hexistence and
Hcommon).

In order to approach an evaluation of these hypotheses, three studies were performed to collect data
about MDE settings and their evolution in practice. Together, these three studies provided models of
11 MDE settings from 4 companies, evolution histories from seven MDE settings from five companies
(spanning 33 evolution steps), several records on experiences with the MDE settings and motivations
for evolution steps, as well as 7 literature reports on MDE settings from practice. Further, the Software
Manufacture Model language is introduced as a modeling language that allows the capture of MDE
settings. To provide the possibility for documenting and communicating experiences with structures in
MDE settings, the Software Manufacture Model pattern language is also introduced.

On the basis of these two languages, novel techniques for the analysis of MDE settings are provided.
This includes 2 proto-patterns and 2 proto-anti-patterns for the identification of structures in an MDE
setting that affect changeability concerns positively or negatively. Further, simple techniques for as-
sessing the manifestations of the three identified MDE traits are introduced. While the technique for
manual information propagation bases on a simple Software Manufacture Model pattern, the techniques
for the MDE traits phases and complex activity chains are based on an identification of predecessor sets
of activities and artifacts.
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To complement the modeling languages and analyses techniques, some tools are provided. These are
editors for Software Manufacture Models and Software Manufacture Model pattern, as well as a pattern
matcher which automatically identify matches of Software Manufacture Model patterns within a given
Software Manufacture Model. Further, an automated identification of predecessor sets was implemented.
On that basis, semi-automated support for the identification of (local) phases and the length of activity
chains is provided.

The applicability of the Software Manufacture Model language and the analysis techniques was eval-
uated by applying them on the 11 captured MDE settings. This evaluation revealed several aspects.
Firstly, the Software Manufacture Model language is applicable to capture MDE settings from practice.
Further, the characterization of activities in Software Manufacture Models can support recognition of
similar situations (with perspective on changeability concerns), even when they are differentiated in
classical terminology. For example, the hard changeability concern unexpected loss of content might be
affected by both, code generations and model transformations. Thirdly, the evaluation revealed that
the analysis techniques are applicable to MDE settings from practice. Finally, the search for pattern
matches revealed that the proto-patterns subsequent adjustment, creation dependence, and split manu-
facture occur several times in different companies. Therefore, these proto-patterns have the potential to
become actual patterns.

By examining the data from the studies and applying the analysis methods on these data, the three
hypotheses were evaluated. First of all, the hypotheses on existence and commonness of structural
evolution in practice (Hexistence and Hcommon) are supported. Thus, it was concluded that structural
evolution of MDE settings exists and is common in practice. Second, the hypothesis on the manifestation
of MDE traits Htraits is supported by the results of the analysis of the 11 MDE settings from practice.
Thus, in practice the identified MDE traits occur within a spectrum that includes process-relevant mani-
festations as well as process-neutral manifestations. Also the hypothesis on the impact of MDE settings
on the hard changeability concern unexpected loss of content Hchangeability is supported by the results
of the analysis of the 11 MDE settings from practice. Thus, MDE settings in practice vary considerably
in their influence on changeability.

In addition to the evaluation of these hypotheses, the records and data from the interviews on evolution
histories were used to collect 11 observations on the combination of changes during structural evolution,
on trade-offs, and on motivations for structural evolution. These observations illustrate that structural
evolution occurs for various reasons, which may apply for most MDE settings in practice.

This thesis has shown that there is the theoretical possibility that structural evolution has negative
impacts and that structural evolution is common in practice. In addition, a final examination of the
captured structural evolution steps revealed actual examples of structural evolution steps that introduced
or removed proto-anti-patterns to MDE settings as well as structural evolution steps that changed the
manifestation of MDE traits of MDE settings.

Finally, the discussion of related work illustrates the novelty of the modeling and analysis approaches
and further evaluates the basic assumptions of this thesis. There is no modeling approach that focuses on
similar aspects to Software Manufacture Models. Approaches to analyzing properties of an MDE setting
in general or changeability in particular are rare. The consideration of related work on the combination
of MDE with software development processes and actual approaches for such combinations (as shown
in Section 3.3), shows that the generic reference model presented in this thesis captures all proposed
forms of combinations. Further, the examination of this related work on process interrelation shows that
all proposed approaches base on strong assumptions about the structure of the MDE setting or change
the software development process (if a standard process is applied at all). Nonetheless, the absence of
literature on process tailoring that considers MDE as relevant criterion emphasizes the novelty of the
examination of process interrelation in this thesis. Finally, the examination of related work on evolution
in context of MDE reveals that there is a lack of research that focuses on structural evolution in MDE.

12.2. Thesis’ Goals

In the following, a short summary is given of how the goals of this thesis have been achieved (summarized
in Figure 12.1). First Thesis’ Goal 1 (to provide a modeling approach that enables capturing of MDE
settings, such that the effects of activities on artifacts and their interrelations can be documented) is
addressed by the introduction of the Software Manufacture Model language.
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Thesis’ Goal 2 (to enhance the knowledge about MDE’s influence on changeability) is addressed by
the theoretical examination of changeability concerns and the examination and evaluation of hypothesis
Hchangeability, which revealed how MDE settings differ in their impact on changeability. Similarly,
Thesis’ Goal 3 (to enhance the knowledge about MDE’s interrelation with software development
processes) is addressed by a theoretical examination of MDE traits as well as the examination and
evaluation of hypothesis Htraits, which revealed the diversity of manifestations of different MDE traits
in practice.

On this basis, Thesis’ Goal 4 (to provide analysis techniques for MDE settings that support the
identification of risks for changeability as well as constraints on software development processes) was
achieved for the hard changeability concern unexpected loss of content and the three identified MDE
traits. The identification of the diversity of MDE settings concerning their influence on changeability
and the manifestations of MDE traits fulfills Thesis’ Goal 5 (to identify candidate factors to explain
the diversity in the degree of success of MDE in practice). The results show that differences of MDE
settings in these characteristics are candidates for explanations of differences in MDE success or failure
in practice. Consequently, these candidates should be considered in future research on the success of
MDE.

Thesis’ Goal 6 (to understand whether evolution in practice might change an MDE setting’s impact
on changeability and software development processes) was achieved by the examination of structural
evolution. This includes the theoretical discussion of the potential effects of structural evolution, the
empirical examination of the commonness of structural evolution in practice, and the identification of
examples of structural evolution steps that resulted in the introduction of proto-anti-patterns and in
negative effects on the manifestations of MDE traits.

Figure 12.1.: Overview of addressed thesis’ goals.

12.3. Implications

There is still much work to be done in understanding the impacts of MDE as well as in proving the
benefits of MDE. The insights of this thesis have some implications on what future work would be
beneficial, but also more generally on the focus of future research in MDE. These implications are
discussed in the following.

12.3.1. Changeability & Process Interrelation

The influence on changeability and the process interrelation of an MDE setting have been identified in
this thesis as candidates for factors that can explain the diversity of MDE success. In the following,
implications of this result are discussed.
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Change Research on MDE Success and Benefits!

First, research efforts to prove the benefits of MDE are affected. The observed diversity in the character-
istics of MDE settings shows that it is impossible to certify that the concept MDE is beneficial in each
manifestation. With the knowledge collected here, it is easily possible to artificially construct an MDE
setting that affects hard changeability concerns (e.g. includes occurrences of the subsequent adjustment
patterns) and that has process-relevant manifestations of the three MDE traits that are identified in
this thesis. Such an MDE setting could be designed as counterexample for the theory that MDE is
always more productive than non-MDE approaches – even if the applied modeling languages are very
intuitive. However, the context of the application of the MDE setting is also relevant. An MDE setting
with process-relevant manifestations of MDE traits might be applied successfully, e.g. in combination
with the V-Modell, but fail when another process is used.
The main implication for research on MDE success is, that the question “Is MDE beneficial?” needs

to be substituted by the question “When and why is an MDE setting beneficial?”. Fortunately, some
researchers have already started to reformulate this question and to search for factors that influence
MDE’s success.
A further implication concerns the comparability of case studies on MDE success or benefits. Cur-

rently, such studies mainly focus on social and organizational factors as well as on tools. To make such
studies more comparable, it would be beneficial if researchers start to document the structure of MDE
settings explicitly. This would help to exclude the possibility that certain negative effects are actually
caused by the technical structure of the MDE setting. Especially, effects that stem from the interrelation
of MDE settings with different aspects (such as the process, but also for example with organizational
factors) cannot be identified without such a holistic view on the studied MDE approaches.
A final implication is that results from older case studies should not be transferred or generalized

without discussion. Such discussion should capture potential impact of the changeability influence of
the concretely studied MDE setting or effects that stem from the interrelation with the process used.

Provide Guidance for Project Preparation!

Second, there is a need for support during project preparation. Also these implications arise from the
observed diversity of MDE settings and the possibility that a given MDE setting affects changeability
negatively or that a given MDE setting implies constraints on a process. The main implication is that
research is required to provide guidance for project preparation in order to prevent mismatches of MDE
settings and processes as well as to support a safe use of risky MDE settings.
Although this thesis provides first techniques for the analysis of hard changeability concerns and the

assessment of the manifestation of MDE traits, further research is still required. For example, while the
identification of a process-relevant manifestation of an MDE trait helps to identify the need for process
tailoring, it is still not clear what tailoring actions provide the best solution. Thus, research is required
on best practices and guidelines for MDE-based tailoring of processes.
Further, under financial and time constraints it is often necessary to work with the existing MDE

setting. Analyzing an MDE setting can nonetheless be useful in order to agree on conventions about
how to use the MDE setting safely, as proposed above. Project preparation might in future be supported
by research on whether and how such conventions can be automatically retrieved.

For the companies in future the question arises whether management of MDE settings need to be
embedded in the management and tailoring of the software development processes.

Future Work on MDE Effects and Boundaries

Further, the thesis had a focused view, only. On the one hand, a focus was set on an MDE setting’s impact
on changeability. As discussed the provided analysis techniques focus mainly on hard changeability
concerns, especially on “unexpected loss of content”. Future work might lead to analysis techniques
for additional changeability concerns. Still, it was not considered how MDE settings can affect other
internal software quality attributes, such as reusability. This remains a subject for future work, too.

On the other hand, a focus was set on the interrelation of MDE and software development processes.
It was possible to theoretically argue how the studied MDE traits can affect software development
processes. While the case studies included some hints how the processes actually were adapted, best
practices for process tailoring according to MDE traits is still missing. Further, while three promising
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MDE traits were studied in detail, future work might reveal additional relevant MDE traits. However,
MDE has boundaries to other techniques, too. For example, the question how MDE and architectural
strategies are interrelated and can influence each other should be studied in future work.

Summing up, research on both internal software quality attributes and the interrelation to other
techniques is promising and could lead to the identification of further candidates for the explanation of
the variations in the degree of success of MDE in practice.

12.3.2. Structural Evolution

This thesis provides the insight that structural evolution of MDE settings is part of the practice. This
opens up a discussion on evolution that is capable of changing the characteristics of an MDE setting
dramatically. In the following, implications of the existence of structural evolution are discussed.

Predicting Consequences of Evolution Decisions

Research often focuses on designing and introducing innovative and specialized MDE settings or single
MDE techniques. These approaches are sometimes evaluated empirically by reporting on success or by
experiments (e.g. as in [133]). However, when MDE settings are the result of structural evolution, such
empirical evaluations of the initial MDE setting are no longer helpful to predict the quality or risks of
the new MDE setting. Thus, techniques to evaluate the quality of an MDE setting need to change. An
empirical evaluation is expensive and will mostly not be applicable after an evolution step.

Consequently, well-founded knowledge is required about the causality of an MDE setting’s structure
and the benefits. Based on such knowledge, techniques to statically analyze and predict benefits of an
MDE setting would become possible. Such techniques can then be used by practitioners to balance
trade-offs when planning the next evolution step.

The analysis techniques introduced in this thesis are a first step in this direction. However, they focus
mainly on the identification of risks and constraints. How benefits can be predicted reliably is still an
open question. Apart from such overall analysis techniques, support for evolution decisions might also
be provided with respect to the concrete evolution steps. Best practices of evolution steps might be
collected and shared.

Shifting Trade-Offs

Trade-off plays an important role during evolution decisions. In combination with fact that different
forms of evolution lead to different changes in the characteristics of an MDE setting, this leads to the
implication that trade-offs need to be better understood.

It is possible to reach the same goals with different MDE settings and thus also by different evolution
steps on MDE settings. Therefore, it is necessary to show when and why practitioners choose specific
forms of evolution to reach a given goal. Researchers might provide techniques and tools that shift
the trade-off, such that less risky (structural) evolution steps become advantageous. For example,
frameworks for combining and extending DSLs, like the one presented in [104] might be a first step in
this direction. As summarized in Table 12.1 (explained in detail in Appendix H), literature on support
for evolution in context of MDE most often focuses on non-structural changes, only. However, it seems
that structural evolution is sometimes required. Therefore, more research on guidance and support for
structural evolution is required.

In this context, the question arises about how much effort is required to apply an evolution step to
an MDE setting (i.e. its evolvability). To estimate the costs that are associated with the evolution
step itself, techniques to assess and evaluate the evolvability of MDE settings are required. It was an
incidental observation of the studies in this thesis that Software Manufacture Models can also help to
reveal risks to the evolvability of an MDE setting (e.g. as in Example 17 in Section 10.1.4).

Evolution Strategy and MDE Maturity

Beyond single evolution steps, there is the question of the extent to which a strategic planning of
evolution can be used to reach long term goals. This includes the option and task to plan refactoring of
MDE settings. During periods when requirements on the created software are stable and resources are
available, such a refactoring can be used to correct negative side effects of former evolution steps. For
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Table 12.1.: Change types considered in literature on evolution support (details can be found in Appendix
H) (� = specific changes covered; ◦ = approach provides solution with assumptions on the
language or implementation to be changed; • = approach with a general coverage of the
change type)

Kind of Changes\Approaches [146]

[120]

[121]

[216]

[87] [150]

[12] [43]

[142] [199]

[208] [93]

[154]

[72]

[97]

[126]

[203] [141]

[140]

[104] [61]

Non-Structural Changes

C1 exchange automated activity � ◦ � � � ◦ ◦ ◦

C2 exchange language ◦ � ◦ • ◦ ◦

C3 exchange tool

Structural Changes

C4 change number of artifacts � �

C5 change number of languages � �

C6 change number of manual ac-
tivities

� �

C7 change number of tools

C8 change number of automated
activities

C9 change order of manual / au-
tomated activities

example, a goal might be to improve the integration of different tools or to decrease complexity for the
developers.
In the course of this, research on capability maturity models for MDE might be resumed. As discussed

in the related work section, existing proposals for such CMMs are more focused on specific forms of
MDE rather than of focusing on characteristics of these MDE settings. However, the insights about
MDE characteristics and structural evolution gained in this thesis can be a good starting point, to
create a CMM that reflects differences in the properties of MDE settings, such as their changeability
or evolvability. Thus, the maturity levels of a CMM for MDE – similar to the levels of the CMM for
software development processes [159] – can become actual indicators for the predictability of a project.

Change Management

Finally, the observations on structural evolution not only have implications for research, but also for
practice. For example, the observations indicate that sometimes developers trigger and implement
evolution steps on MDE settings on their own initiative. Considering the risks and potential that are
associated with structural evolution, it might be a meaningful step to establish a management of change
requests for MDE settings within a company. Such a change management would allow developers to
contribute to improvement of the MDE settings, while the risk of uncoordinated and inefficient evolution
of MDE settings can be reduced.
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Approach for Model Driven Process Modeling and Enactment. In Proceedings of the 2009 XXIII
Brazilian Symposium on Software Engineering (Washington, DC, USA, 2009), SBES ’09, IEEE
Computer Society, pp. 104–114.

[130] Mahé, V., Combemale, B., and Cadavid, J. Crossing Model Driven Engineering and Agility:
Preliminary Thought on Benefits and Challenges. In 3rd Workshop on Model-Driven Tool & Process
Integration, in conjunction with ECMFA 2010 (Paris, France, June 2010).

[131] Mansurov, N., and Campara, D. UML Modeling Languages and Applications. Springer-
Verlag, Berlin, Heidelberg, 2005, ch. Managed architecture of existing code as a practical transition
towards MDA, pp. 219–233.

[132] Marczyk, G. R., DeMatteo, D., and Festinger, D. Essentials of research design and
methodology, vol. 2. Wiley, 2010.

[133] Mart́ınez, Y., Cachero, C., Matera, M., Abrahao, S., and Luján, S. Impact of MDE
approaches on the maintainability of web applications: an experimental evaluation. In Proceedings
of the 30th international conference on Conceptual modeling (Berlin, Heidelberg, 2011), M. Jeusfeld,
L. Delcambre, and T.-W. Ling, Eds., ER’11, Springer-Verlag, pp. 233–246.

[134] Maxwell, K. D., Van Wassenhove, L., and Dutta, S. Software Development Productivity
of European Space, Military, and Industrial Applications. IEEE Trans. Softw. Eng. 22 (October
1996), 706–718.

[135] Melleg̊ard, N., and Staron, M. Characterizing model usage in embedded software engi-
neering: a case study. In Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume (New York, NY, USA, 2010), ECSA ’10, ACM, pp. 245–252.

[136] Melleg̊ard, N., and Staron, M. Improving efficiency of change impact assessment using
graphical requirement specifications: an experiment. In Proceedings of the 11th international con-
ference on Product-Focused Software Process Improvement (Berlin, Heidelberg, 2010), PROFES’10,
Springer-Verlag, pp. 336–350.

[137] Mens, T., Blanc, X., and Mens, K. Model-Driven Software Evolution: An alternative Research
Agenda. In The 6th BElgian-NEtherlands software eVOLution workshop (BENEVOL 2007) (2007).

[138] Mens, T., Czarnecki, K., and Gorp, P. V. 04101 Discussion – A Taxonomy of Model Trans-
formations. In Language Engineering for Model-Driven Software Development (Dagstuhl, Germany,
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Appendix A.

Languages used in Captured Case Studies

All in all 56 different languages were identified for the 11 captured MDE settings (as summarized in
Table A.1.

The captured MDE settings include five general purpose languages or programming languages: ABAP,
Excel (which was in one case rated as GPL and in one case not), Java, Java Script, and PHP.

Further, 21 domain specific languages (DSLs) can be identified: HTML, status and action models
(S&A Models), UI Component Definition Language, MDRS language for meta data, Business Object
Definition Language (BODL), TYPO-Script, MySQL, CSS, Adobe Photoshop PSD, Adobe Illustrator
Artwork (AI), Powerpoint Documents (ppt), XSD, Latex tex-files, Apache string templates, emf-files,
Diff-files, SQL, Export configuration, DDL script, DB script, and Korn shell script.

In addition, the captured MDE settings include 14 modeling languages: BPMN, Generic Modeling
Language (GML), data-flow diagrams, UML Plus, ESR specific Business Object Model, EA-UML, EA-
UML (AUTOSAR Profile), Ecore UML, AUTOSAR XML, a further EA-UML Profile, UML Profile and
extension, internal meta model, internal document meta model, and internal format.

Finally, 15 further artifact types can be identified: WSDL artifacts (web service description language),
context variables with DDIC-Reference (Data-Dictionary), Info Objects (defined in ABAP Dictionary),
rulesets (Regelsprache und Modellierungssprache), ZIP-files, natural language text, URL, Word tem-
plates, Word documents, PDF, Bugzilla Tasks, e-mail, PNG, XML, and RTF.
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Appendix A. Languages used in Captured Case Studies

Table A.1.: Used languages in the case studies

Object of

Study

GPL / Program-

ming language

DSL Modeling language No category as-

signed

BO ❼ ABAP
❼ Excel files

❼ S&A ❼ UML Plus
❼ ESR specific meta
model for business ob-
jects models

SIW ❼ ABAP ❼ Context variables
with DDIC-Reference
❼ WSDL

VC ❼ GML
❼ BPMN

❼ Excel files

Oberon ❼ UI Component Defi-
nition Language
❼ MDRS
❼ BODL

BRF ❼ ABAP ❼ BPMN ❼ Regelsprache und
Modellierungssprache

BW ❼ ABAP ❼ HTML ❼ data-flow diagrams ❼ Info Objects (defined
in ABAP Dictionary)

VCat ❼ PHP
❼ JavaScript

❼ TYPO-Script
❼ MySQL
❼ HTML
❼ CSS
❼ Adobe Photoshop
PSD
❼ Adobe Illustrator
Artwork (AI)

❼ ZIP-Files
❼ Natural language
text
❼ URL

Carmeq ❼ Powerpoint Docu-
ment (ppt)
❼ HTML
❼ XSD
❼ Tex-File (Latex)
❼ Apache String Tem-
plate
❼ EMF-File
❼ Diff-File

❼ EA-UML
❼ EA-UML (AU-
TOSAR Profile)
❼ Ecore UML Profile
❼ Eclipse UML
❼ AUTOSAR XML
(arxml)

❼ Word Template
❼ Word Document
❼ PDF
❼ Bugzilla Tasks
❼ e-mail
❼ PNG

Cap1 ❼ Java ❼ EA-UML (a Profile) ❼ XML
❼ RTF

Cap2a ❼ Export Configuration
❼ HTML

❼ UML Profile and ex-
tension
❼ Internal Meta Model
❼ Internal Document
Meta Model

❼ e-mail
❼ Word document
(docx)

Cap2b ❼ DDL Script
❼ DB Script
❼ Korn Shell Script
❼ HTML
❼ CSS

❼ UML Profile and ex-
tension
❼ Internal Format

❼ Word document
(docx)
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Appendix B.

Case Studies on Evolution of MDE Settings

This appendix includes data and references to reports about evolution histories of the case studies
collected in the third study (as described in Section 4.3). Table B.1 summarizes the change types that
are documented for the different captured evolution steps.

B.1. BO Evolution History

This appendix section includes the description of the evolution history of BO and stems from [P4].
SAP Business ByDesign1 is a hosted ERP solution for small and medium enterprises. It was built on

top of a newly designed platform that has introduced numerous new architecture and modeling concepts
into the development process. We focus on a very specific aspect, namely the design and implementation
of business objects, the main building blocks of the system. Business ByDesign is primarily built using
a proprietary programming language and runtime (ABAP), with a tool chain that is necessarily also
largely proprietary. The ABAP infrastructure has been a major success factor for SAP, as it enables
customers to modify and extend SAP’s software. The origin of object modeling at SAP lies in the
Data Modeler, a graphical design tool for creating entity-relationship diagrams using the SAP SERM
notation. It has no generation capabilities, but as it is part of the ABAP infrastructure, it is possible to
navigate directly from an entity or relationship to the implementing table (provided that the link has
been manually maintained in the model).

A new architecture. Business ByDesign is based on a modular service-oriented architecture (SOA).
In this context, the Data Modeler was used as a conceptual modeling tool for designing the structural
aspects of business objects. An important design goal was to provide a set of consistently designed
services with harmonized signatures. The chosen solution was to make the object models available in a
service repository, which was done by manually reentering them in a different tool. From there, skeletons
for the business objects were generated and subsequently fleshed out manually.

S1: Code generation (C4 – C9 ). To improve development efficiency, architects in different teams
began to develop frameworks that automated and standardized the generic parts of the object imple-
mentation. This typically covered the generation of elementary services and table structures during
development, but also extended to runtime libraries. The generation process used the generated skele-
tons as input, but required specification of additional model parameters. To increase homogeneity in
the platform, one of the frameworks was ultimately selected over the others as the mandated standard
(C5 , C7 ).

S2: Behavioral modeling (C4 – C8 ). Business ByDesign introduced a concept called Status and
Action Management (SAM) for constraining when and in which sequence basic services can be invoked
on an object. The constraints were evaluated at runtime by a dedicated engine and models were created
in Maestro, a proprietary, standalone (non-ABAP) tool providing a graphical editor with simulation
capabilities. The goal was to make object behavior more transparent and to ensure correctness of the
implementation by eliminating the need to manually write checks for preconditions.

S3: Model integration (C2 , C5 – C9 ). Conceptual SOA modeling was done in ARIS, a commercial
business modeling tool, using a custom visual DSL. As many of these models contained references to
business objects, it seemed advantageous to consolidate the conceptual models and move the detailed
design of object structure and data types into ARIS, eliminating the potential for inconsistencies. While
this move further severed the link between model and implementation, it enabled additional validation
activities in ARIS.

S4: Model quality (C6 , C7 , C8 ). To meet external quality standards, it became necessary to
demonstrably prove that models in ARIS and the service repository were consistent. Therefore, an

1SAP Business ByDesign http://www.sap.com/solutions/technology/cloud/business-by-design/

highlights/index.epx
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infrastructure for replicating models from ARIS into the system hosting the service repository was
created. This allowed cross-checking manually created content against the replicated conceptual models.
The introduction of the checks revealed, however, how strongly conceptual modeling and implementation
frameworks had evolved in different directions.

S5: A new infrastructure (C4 – C9 ). Several releases later, development efficiency and total
cost of ownership became a major focus while the importance of conceptual modeling declined. In a
bold move, ARIS, Maestro, and the service repository were eliminated and replaced by a new metadata
repository that was built using the business object runtime infrastructure itself. The new repository was
closer to the implementation and provided a single source of truth by consolidating multiple tools and
databases. However, this also came at a cost. There initially were no graphical modeling capabilities, the
ability to simulate status models was lost, and the modeling of design alternatives or future evolutions
of existing objects was not supported.

S6: A simpler alternative (C1 – C9 ). In parallel with the new repository, a new Visual Studio-
based tool targeting third-party developers was developed, allowing them to define and program business
objects using a script language. As its focus is simplicity, the supported feature set is reduced. In return,
the editor acts as a facade that completely hides the underlying tools from the user, thus allowing for
very efficient development – within the set limits.

S7: Optimization (C4 – C8 ). Finally, the latest release has brought a redesign of the underlying
frameworks. The motivation for this was primarily runtime efficiency, as the existing set of independently
developed frameworks proved to generate a significant overhead in their interactions. It was therefore
decided to merge features such as Status and Action Management directly into the business object
runtime, which was in turn made an integral part of the basic service infrastructure. For the first time,
all modeling activities for business objects were gathered in a single tool.

The history of business object development provides multiple examples for structural changes to
the development process. The case study illustrates how the weight given to different productivity
dimension changes. While initially automation was the key driver of the change (S1 ), the reduction of
cost of ownership became more important later on (S5 ). Finally, this case study shows that a sequence
of structural evolution steps with changing priorities can transform even a code-centric development
approach into a complex MDE setting.

B.2. Ableton Evolution History

The major product of Ableton is a software called Live, which provides artists and musicians with an
environment for musical compositions and productions. An important part of the business of Ableton
is the development of libraries, which provide users with a collection of presets for instruments included
in Live. Technically, the modeled presets are XML documents that conform to a schema definition.
This DSL allows non-software engineers (i.e. musicians) to create these libraries. Building a library is a
complex process of gathering information, validation of presets, packing libraries into installable binaries
and deployment. These steps are automated as an incremental build process that is triggered regularly
by cronjobs on a build server.

Ableton continually has to deal with evolution of this process. The evolution can be classified into
different categories, which have different reasons. Constant extensions and improvements of the capa-
bility of the software imply evolution of schema definitions. This language evolution requires migration
of legacy models as well as depending technologies (conforming to the change types C1 and C2 in Table
B.1). Certain parts of the automation need to be migrated manually (e.g. automatically applied fixes
to presets have to be adapted).

Not only the schema definitions evolve, but also the process of building libraries. One reason is
the need for refactoring to increase understandability, maintainability, flexibility, etc. Currently, the
build process is re-factored by spinning off certain aspects of the build process, such as validation, into
separate processes. Thus, the validation of presets can now also be run locally by sound designers during
implementation, which enables them to directly apply fixes, which implements the change types C8 and
C9 in Table B.1. This is an important improvement, as in the previous version of the process automated
fixes were implicitly applied on a temporary basis during the build process, which caused issues to remain
in the original models. Thus, a small reduction of the degree of automation (manually triggering the fix
process) was accepted to reach consistency. In addition, the validation rules became explicit input of the
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verification and are configured/manipulated by developers (manifesting changes C4, and C5 ). Although
this increases the number of languages the developers have to deal with, the flexibility of the automated
verification was enhanced. This improves the ability to adapt verification to language evolution of the
DSL. A further reason for evolution is organizational change. There is a long-term plan to migrate the
build process of libraries closer into the build process of the actual software development, which is done
based on a publicly available build server (Jenkins2). Goal is to have a central build system to achieve
a central visibility of the build process. Further, it should decrease the maintenance efforts that are
currently required to maintain both systems. Thus, splitting up different aspects of the build process
prepares the whole development for future evolution.

Despite the applied and planned evolution, some wishes are not fulfilled, since they are currently not
rated as profitable. For example, the migration of models and generation implementation to a new
version of the DSL is still a manual task.

B.3. Cap1 Evolution History

Figures B.1 and B.2 summarized the evolution history of case study Cap1.

B.4. Cap2a and Cap2b Evolution Histories

Figures B.3, B.4, and B.5 summarized the evolution history of the case studies Cap2a and Cap2b.

B.5. VCat Evolution History

Figure B.6 summarized the evolution history of case study VCat.

B.6. Carmeq Evolution History

Figures B.7 and B.8 summarized the evolution history of case study Carmeq.

2http://jenkins-ci.org/
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Figure B.1.: Summary of evolution history of case study Cap1 (part 1)
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B.6. Carmeq Evolution History

Table B.1.: Summary and classification of captured structural evolution steps (• = documented change)

Case

Stud-

ies

Evolution

step

C4 change

number of

artifacts

C5 change

number of

languages

C6 change

number

of manual

activities

C7 change

number of

tools

C8 change

number

of auto-

mated

activities

C9 change

order of

manual /

automated

activities

Cap1 S1 • • •

Cap1 S2 • • • • •

Cap1 S3 • • • • •

Cap1 S4 • •

Cap1 S5 • • • • • •

Cap1 S6 • • • •

Cap1 S7 • • •

Cap2a S1 • • •

Cap2a S2 • •

Cap2a S3

Cap2a S4

Cap2a S5 • • • •

Cap2b S1 • • • •

Cap2b S2 • • •

Cap2b S3 • • • •

Cap2b S4 • • •

Cap2b S5

Cap2b S6 • • • •

BO S1 • • • • • •

BO S2 • • • • •

BO S3 • • • • •

BO S4 • • •

BO S5 • • • • • •

BO S6 • • • • • •

BO S7 • • • • •

Ableton S1 • • • •

VCat S1 • • • • •

VCat S2 • • •

Carmeq S1 • • • • •

Carmeq S2 • • • •

Carmeq S3 • • • • •

Carmeq S4 •

Carmeq S5 •
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Figure B.2.: Summary of evolution history of case study Cap1 (part 2)
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Figure B.3.: Summary of evolution history of case studies Cap2a
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Figure B.4.: Summary of evolution history of case studies Cap2b (part 1)
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B.6. Carmeq Evolution History

Figure B.5.: Summary of evolution history of case studies Cap2b (part2)
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Figure B.6.: Summary of evolution history of case study VCat
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B.6. Carmeq Evolution History

Figure B.7.: Summary of evolution history of case study Carmeq (part 1)

B-11



Appendix B. Case Studies on Evolution of MDE Settings

Figure B.8.: Summary of evolution history of case study Carmeq (part 2)
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Appendix C.

Language Simplification

Figure C.1.: Meta model of initial Software Manufacture Model language

In the following, the difference between the initial Software Manufacture Model language that was
presented in [P6] and the Software Manufacture Model language that is presented din this thesis are
described. The simplifications have two kinds of impacts. On the one hand, a simplification can reduce
the syntactic complexity of the language. Goal of such reductions is a reduced effort for creating and
reading Software Manufacture Models. On the other hand, a simplification can affect semantic that is
covered with the language. Thus, the set of Software Manufacture Model activities that can be expressed
is reduced. This in mainly reached by reducing the degree to which details can be differentiated.

Notation and Formal Association of Degree of Automation

The first simplification concerns the degree of automation. In the initial version of the Software Man-
ufacture Model language the degree of automation was defined for the pins. This enables to illustrate
which relations in a semiautomated activity are established manually, semiautomated, or automated.
This degree of detail can for example be useful when refactoring a Software Manufacture Model and
the associated MDE setting.Thus, the differentiation gives a direct hint, how a semiautomated activity
might be split more clearly into an automated and a manual activity. Alternatively this differentiation
can be used to decide whether a semiautomated activity is a candidate for a full automation. In the
Software Manufacture Model language the degree of automation is no longer associated to the pins,
but to the activity. In consequence, the difference between manual and automated activities can be
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Figure C.2.: Meta model of Software Manufacture Model language

visualized with a single symbol. This reduces redundancy for all activities where all relations are estab-
lished with the equal degree of automation. Further, the pin notation is no longer overloaded with this
information. Both effects reduce the syntactic complexity. It is no longer possible to directly capture
detailed information which relations of a semiautomated activity are established with which degree of
automation. However, it is still possible to illustrate the different parts of such semiautomated activities
in form of two or more activities as a decomposition. Thus, the information can still be captured in Soft-
ware Manufacture Model language when required. Only 2 out of 193 so far documented activities from
practice contain pins of two out of the three automation modes (manual, semiautomated, automated).
Thus, the number of activities that are affected by this change is very low.

No Separation of Manual Enrichment Information

A purely syntactic reduction is the decision that there is no longer a separated manual enrichment pin
if other outgoing pins for an artifact exist. The information about manual enrichment is annotated to
one of the other outgoing pins that are connected to the described artifact. Only in case that no other
outgoing pin is connected to an artifact, the manual enrichment is annotated with an own outgoing pin.
This change positively affects the syntactical complexity by reducing the number of model elements.
For the 193 so far documented activities from practice, 83 manual enrichment pins are modeled. Only
18 of these 83 manual enrichment pins are connected to artifacts that are not connected to any other
outgoing pin of the activity. Thus, in 193 activities 65 manual enrichment pins have been found that
can be saved due to the simplification. Only one out of these 65 manual enrichment pins is connected
to an artifact that is connected to more that one additional output pin of the activity. In this rare case
the decision which of these output pins is enriched with the information about the manual enrichment
is arbitrary.
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Simplification on Links

Two further simplifications are the removal of the identity property and the language equals property of
links. Both properties where introduced in the initial version of the Software Manufacture Model lan-
guage to provide the associated information explicitly as part of the activity characterization. Thereby,
the equality of input and output languages is used as one basic property for differentiating between
different types of transformations [48]. Both changes reduce the syntactic complexity by reducing the
number of annotations in the model. The changes have no relevant semantic effect, since the informa-
tion is still implicitly available in the model. The analysis techniques for changeability (changeability
pattern and length of activity chain) do not depend on this information. Thus, there is currently no
disadvantage associated to this simplification.

A further syntactic simplification is the changed annotation of the direction of the relation. So far the
direction of the relation is annotated in the relation label as arrowhead. In the Software Manufacture
Model language this annotation moves to the link, where it is directly annotated as arrowhead at one
of the link ends. Consequently, the direction is easier and more intuitive to read. This holds especially
in case of links between two incoming pins or two outgoing pins, respectively. The change affects all
modeled links.

Reduction of Possibilities for Relations

Finally, the possibilities to describe relations have been reduced.
First of all, only two of the three basic relation types remained in the Software Manufacture Model.

Thereby the artifact set relations have been removed, since there have been 7 uses, only. All of these 7
uses have been explicit expressions, that a specific artifact instance is chosen out of a set of instances.
However, this choice is happens before each activity, anyway, and therefore does not need to be made
explicit.

As a next step, the set of possible artifact relations have been limited. Thereby, the fine grained
differentiation between contains and super (and in and sub) was not required in the modeled Software
Manufacture Models. Consequently, only contains and containedBy relations remained (besides refer-
ences and referencedBy). Similarly content relations have been limited, since not all degrees of detail
have been differentiated in the models. Thereby, only equal, overlap, and unequal remain in the Software
Manufacture Model language.

Finally, the set relations have been strongly simplified. Content preparations have not been used at
all and artifact set preparations were used to express that single elements of a set are affected, only. As
a consequence, the start and end prefixes have been substituted by a simple relation scope. This relation
scope covers the actually used combinations of set preparations and artifact set preparations, which are
ForAllForAll, ForAllSubset, and ForAllElement.
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Appendix D.

Notation of Software Manufacture Model Language in Graphical
Editor

As mentioned in Chapter 8 the Software Manufacture Model notation that is presented in this thesis
differs from the notation in the graphical editor. In this section the differences are listed in Tableles D.1,
D.2, D.3, and D.4.

Language

concept

Notation in this thesis Notation in graphical editor

automated
activity

manual
activity

semi-
automated
activity

Table D.1.: Comparison of Software Manufacture Model notations (part 1)
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Editor

Language

concept

Notation in this thesis Notation in graphical editor

artifact

wildcard not supported by graphical edi-
tor

arbitrary
number of
artifacts are
consumed by
activity

one artifact
is produced
by activity

pin

set pin

manual en-
richment
pin

definition
pin

Table D.2.: Comparison of Software Manufacture Model notations (part 2)
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Language

concept

Notation in this thesis Notation in graphical editor

link with
overlap
relation

link with
equal rela-
tion

link with
unequal
relation

link with
for-all-for-all
preparation

link with
for-all-subset
preparation

link with for-
all-element
preparation

Table D.3.: Comparison of Software Manufacture Model notations (part 3)
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Language

concept

Notation in this thesis Notation in graphical editor

link with ref-
erences rela-
tion

link with
referenced
by relation

link with
contains
relation

link with
contained by
relation

Table D.4.: Comparison of Software Manufacture Model notations (part 4)
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Appendix E.

WSDL Example

Listing E.1 shows the WSDL example from http://cs.au.dk/˜amoeller/WWW/webservices/wsdlexample.html (last access at
November 9th, 2013) that is used in Section 7.1.

1 <?xml ve r s i on=” 1 .0 ”?>
2 <d e f i n i t i o n s name=”StockQuote”
3 targetNamespace=”http :// example . com/ stockquote . wsdl ”
4 xmlns : tns=”http :// example . com/ stockquote . wsdl ”
5 xmlns : xsd1=”http :// example . com/ stockquote . xsd”
6 xmlns : soap=”http :// schemas . xmlsoap . org /wsdl / soap/”
7 xmlns=”http :// schemas . xmlsoap . org /wsdl /”>
8 <types>
9 <schema targetNamespace=”http :// example . com/ stockquote . xsd”

10 xmlns=”http ://www.w3 . org /2000/10/XMLSchema”>
11 <element name=”TradePriceRequest ”>
12 <complexType>
13 <a l l>
14 <element name=” tickerSymbol ” type=” s t r i n g ”/>
15 </a l l>
16 </complexType>
17 </element>
18 <element name=”TradePrice ”>
19 <complexType>
20 <a l l>
21 <element name=” p r i c e ” type=” f l o a t ”/>
22 </a l l>
23 </complexType>
24 </element>
25 </schema>
26 </types>
27 <message name=”GetLastTradePriceInput ”>
28 <part name=”body” element=”xsd1 : TradePriceRequest ”/>
29 </message>
30 <message name=”GetLastTradePriceOutput”>
31 <part name=”body” element=”xsd1 : TradePrice ”/>
32 </message>
33 <portType name=”StockQuotePortType”>
34 <operat ion name=”GetLastTradePrice ”>
35 <input message=” tns : GetLastTradePriceInput ”/>
36 <output message=” tns : GetLastTradePriceOutput”/>
37 </operat ion>

38 </portType>
39 <binding name=”StockQuoteSoapBinding” type=” tns : StockQuotePortType”>
40 <soap : b inding s t y l e=”document” t ranspor t=”http :// schemas . xmlsoap . org / soap/http ”/>
41 <operat ion name=”GetLastTradePrice ”>
42 <soap : opera t ion soapAction=”http :// example . com/GetLastTradePrice ”/>
43 <input>
44 <soap : body use=” l i t e r a l ”/>
45 </input>
46 <output>
47 <soap : body use=” l i t e r a l ”/>
48 </output>
49 </operat ion>

50 </binding>
51 <s e r v i c e name=”StockQuoteService ”>
52 <documentation>My f i r s t s e r v i c e </documentation>
53 <port name=”StockQuotePort ” binding=” tns : StockQuoteSoapBinding”>
54 <soap : address l o c a t i o n=”http :// example . com/ stockquote ”/>
55 </port>
56 </s e rv i c e>
57 </d e f i n i t i o n s >

Listing E.1: WSDL example from http://cs.au.dk/˜amoeller/WWW/webservices/wsdlexample.html
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Appendix F.

CodeListings

In this Appendix, in detail commented java code listings for the analysis are listed. First the code for the identification of
predecessor sets, predecessors and successors is documented. Afterwards listings for the identification of synchronization
points and the length of activity chains is presented.

F.1. Identififcation of Precesessor Sets

Listings F.1 and F.2 show the algorithm for the identification of predecessor sets for a given activity. In this context the
recursive method extendCandidateSet (shown in Listings F.3 and F.4) is used to extend the candidate predecessor sets
transitively by traversing through already identified predecessors and identifying their predecessor sets, respectively.

1 EList<EList<Act iv i ty>> ge tPredec e s s o rSe t s (
2 Act iv i ty a c t i v i t y ,
3 Model swmamo)
4 {
5 /✯✯ 1 . get a l l a r t i f a c t s that are consumed by an a c t i v i t y ✯✯/
6 EList<Art i f a c t> consumedArt i facts = getConsumedArti facts ( a c t i v i t y , swmamo) ;
7
8 EList<EList<EList<Act iv i ty>>>

uncombinedListsOfPredecessorSetCandidatesForConsumedArti facts =
9 new BasicEList<EList<EList<Act iv i ty >>>() ;

10
11 /✯✯ 2 . f o r each a r t i f a c t f i nd a l l a c t i v i t i e s that
12 /✯ produce or manipulate t h i s a r t i f a c t ✯✯/
13 for ( A r t i f a c t a r t i f a c t : consumedArt i facts ) {
14 EList<EList<Act iv i ty>> predeces sorSetCand idate s =
15 ge tPredece s so rSe tCand idate sForArt i f a c t ( a r t i f a c t , swmamo) ;
16
17 /✯✯ 3 . i f an a r t i f a c t i s op t i ona l input an a l t e r n a t i v e empty
18 /✯ predec e s s o r s e t candidate f o r t h i s a r t i f a c t i s added ✯✯/
19 i f ( this . i sOpt ionalConsumedArt i fact ( a r t i f a c t , a c t i v i t y , swmamo) )
20 predeces sorSetCand idate s . add (new BasicEList<Act iv i ty >() ) ;
21
22 /✯✯ FILTER 1 : remove pr edec e s so r s e t cand idates that conta in the a c t i v i t y
23 /✯ ( i . e . an a c t i v i t y cannot be i t s own predec e s so r ) ✯✯/
24 f i l t e rRemovePredecessorSetCandidatesThatConta inAct iv i ty (
25 predecessorSetCandidates , a c t i v i t y ) ;
26
27 uncombinedListsOfPredecessorSetCandidatesForConsumedArti facts . add (
28 predeces sorSetCand idate s ) ;
29 }
30
31 /✯✯ 4 . get a l l combinations o f candidate p r edec e s so r s e t s
32 /✯ ( one candidate p r ed e c e s s o r s s e t per consumed a c t i v i t y ) ✯✯/
33 EList<EList<Act iv i ty>> i n i t i a lCand i d a t e S e t s = this . combineSetCandidats (
34 uncombinedListsOfPredecessorSetCandidatesForConsumedArti facts ) ;
35
36 /✯✯ FILTER 2 : Remove candidate s e t s that are not ab le to f u l f i l l p r e cond i t i on o f
37 /✯ a c t i v i t y ( p r e cond i t i on l i n k s that are connected to op t i ona l input
38 /✯ a r t i f a c t s do not need to be f u l f i l l e d , when the op t i ona l input
39 /✯ a r t i f a c t i s not provided by the p r edec e s s o r s e t ) ✯✯/
40 f i l t e rRemovePredece s so rSe t sThatCanNotFu l f i l lPrecond i t i ons (
41 a c t i v i t y , i n i t i a lCand ida t eS e t s , swmamo) ;
42
43 /✯✯ 5 . r e g i s t e r these consumed a r t i f a c t s and the a c t i v i t y as handled ✯✯/
44 EList<Art i f a c t> hand l edAr t i f a c t s = new BasicEList<Art i f a c t >() ;
45 hand l edAr t i f a c t s . addAll ( consumedArt i facts ) ;
46 EList<Act iv i ty> hand l edAc t i v i t i e s = new BasicEList<Act iv i ty >() ;
47 hand l edAc t i v i t i e s . add ( a c t i v i t y ) ;
48
49 [ . . . ]
50 }

Listing F.1: getPredecessorSets() (part 1)
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1 EList<EList<Act iv i ty>> ge tPredec e s s o rSe t s (
2 Act iv i ty a c t i v i t y ,
3 Model swmamo)
4 {
5 [ . . . ]
6
7 /✯✯ 6 . extend a l l i n i t i a l candidate p r edec e s s o r s e t s
8 /✯ ( i . e . r e t r i e v e p r edec e s so r s e t s f o r the i n i t i a l cand idates ) ✯✯/
9 EList<EList<Act iv i ty>> CandidateSets = new BasicEList<EList<Act iv i ty >>() ;

10 for ( int i = 0 ; i<i n i t i a lCand i d a t e S e t s . s i z e ( ) ; i++)
11 CandidateSets . addAll ( extendCandidateSet ( i n i t i a lCand i d a t e S e t s . get ( i ) ,
12 a c t i v i t y , swmamo, hand ledArt i f ac t s , h and l edAc t i v i t i e s ) ) ;
13
14 /✯✯ FILTER 3 (= FILTER 1) again remove candidate s e t s that conta in the a c t i v i t y
15 /✯ ( i . e . an a c t i v i t y cannot be i t s own predec e s so r ) ✯✯/
16 f i l t e rRemovePredecessorSetCandidatesThatConta inAct iv i ty ( CandidateSets , a c t i v i t y ) ;
17
18 /✯✯ FILTER 4 : remove c l one s ( equal or c loned candidate s e t s can r e s u l t form the
19 /✯ combination and extens i on o f candidate s e t s f o r the d i f f e r e n t a r t i f a c t s ) ✯✯/
20 f i l t e rRemoveClones ( CandidateSets ) ;
21
22
23 /✯✯ FILTER 5 : remove pr edec e s s o r s e t s with c r e a t i on o v e r k i l l ( i . e . i f f o r one
24 /✯ a r t i f a c t in the model mu l t ip l e a c t i v i t i e s in p r edec e s so r s e t ( or the
25 /✯ a c t i v i t y cons ide red here ) can be used to c r e a t e t h i s a r t i f a c t ) ✯✯/
26 f i l t e rRemovePredece s so rSe t sWithCreat ionOverk i l l ( CandidateSets , a c t i v i t y , swmamo) ;
27
28 return CandidateSets ;
29 }

Listing F.2: getPredecessorSets() (part 2)

1 EList<EList<Act iv i ty>> extendCandidateSet (
2 EList<Act iv i ty> i n i t i a lCand ida t eSe t ,
3 Act iv i ty i n i t i a l A c t i v i t y ,
4 Model swmamo,
5 EList<Art i f a c t> hand ledArt i f ac t s ,
6 EList<Act iv i ty> hand l edAc t i v i t i e s )
7 {
8 EList<EList<Act iv i ty>> r e s u l t i n g S e t s = new BasicEList<EList<Act iv i ty >>() ;
9

10 /✯✯ 1 . i d e n t i f y a c t i v i t i e s in i n i t i a l candidate s e t that are not yet handled ✯✯/
11 EList<Act iv i ty> l o c a lHand l e dAc t i v i t i e s = new BasicEList<Act iv i ty >() ;
12 l o c a lHand l e dAc t i v i t i e s . addAll ( hand l edAc t i v i t i e s ) ;
13 EList<Act iv i ty> unhand l edAct iv i t i e s = getUnhand ledAct iv i t i e s (
14 i n i t i a lCand ida t eSe t , l o c a lHand l edAc t i v i t i e s ) ;
15
16 /✯✯ 2 . i d e n t i f y a r t i f a c t s consumed by unhandled a c t i v i t i e s in
17 /✯ i n i t i a l candidate s e t that are not yet handled ✯✯/
18 EList<Art i f a c t> l o c a lHand l edAr t i f a c t s = new BasicEList<Art i f a c t >() ;
19 l o c a lHand l edAr t i f a c t s . addAll ( hand l edAr t i f a c t s ) ;
20 EList<Art i f a c t> unhand ledArt i f ac t s = getUnhandledArt i facts (
21 unhand ledAct iv i t i e s , l o ca lHand l edAr t i f a c t s , swmamo) ;
22
23 /✯✯ 3 . BREAK CONDITION: i f no a r t i f a c t s are l e f t f o r treatment stop search and
24 /✯ re turn a s e t o f candidate s e t s that in c lude the i n i t i a l candidate set , only ✯✯/
25 i f ( unhand ledArt i fac t s . s i z e ( )<1){
26 r e s u l t i n g S e t s . add ( i n i t i a lCand i d a t eS e t ) ;
27 return r e s u l t i n g S e t s ;
28 }
29
30 /✯✯ 4 . c r e a t e uncombined l i s t o f l i s t s o f candidate s e t s and add l i s t that
31 /✯ i n c l ud e s i n i t i a l candidate set , only , as ba s i s f o r l a t e r combination ✯✯/
32 EList<EList<EList<Act iv i ty>>> uncombinedListOfCandidateSets =
33 new BasicEList<EList<EList<Act iv i ty >>>() ;
34 EList<EList<Act iv i ty>> l i s tW i t h I n i t i a l S e t = new BasicEList<EList<Act iv i ty >>() ;
35 l i s tW i t h I n i t i a l S e t . add ( i n i t i a lCand i d a t eS e t ) ;
36 uncombinedListOfCandidateSets . add ( l i s tW i t h I n i t i a l S e t ) ;
37
38 [ . . . ]
39 }

Listing F.3: extendCandidateSet() (part 1)
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F.2. Identification of Phases and Synchronization Points

1 EList<EList<Act iv i ty>> extendCandidateSet (
2 EList<Act iv i ty> i n i t i a lCand ida t eSe t ,
3 Act iv i ty i n i t i a l A c t i v i t y ,
4 Model swmamo,
5 EList<Art i f a c t> hand ledArt i f ac t s ,
6 EList<Act iv i ty> hand l edAc t i v i t i e s )
7 {
8 [ . . . ]
9

10 /✯✯ 5 . handle a l l unhandled a r t i f a c t s ✯✯/
11 for ( A r t i f a c t unhandledArt i fact : unhand ledArt i fac t s ) {
12 /✯✯ 5a . r e t r i e v e candidate s e t s f o r a l l unhandled a r t i f a c t ✯✯/
13 EList<EList<Act iv i ty>> cand ida t eSe t sFo rAr t i f a c t =
14 ge tPredece s so rSe tCand idate sForArt i f a c t ( unhandledArt i fact , swmamo) ;
15
16 /✯✯ 5b . i f an a r t i f a c t i s op t i ona l input f o r a l l a c t i v i t i e s in
17 /✯ i n i t i a lCand i da t eS e t that consume t h i s a c t i v i t y an a l t e r n a t i v e empty
18 /✯ predec e s s o r s e t candidate f o r t h i s a r t i f a c t i s added ✯✯/
19 i f ( a r t i f a c t I sOp t i o n a lF o rA l lA c t i v i t i e s I n I n i t i a lC and i d a t e S e t (
20 unhandledArt i fact , i n i t i a lCand ida t eSe t , swmamo) )
21 cand ida t eSe t sFo rAr t i f a c t . add (new BasicEList<Act iv i ty >() ) ;
22
23 /✯✯ 5c . add r e s u l t i n g l i s t o f candidate s e t s f o r the unhandled a r t i f a c t s
24 /✯ to the uncombinedListOfCandidateSets ✯✯/
25 uncombinedListOfCandidateSets . add ( cand ida t eSe t sFo rAr t i f a c t ) ;
26
27 /✯✯ 5d . r e g i s t e r unhandledArt i fact as handled ✯✯/
28 l o c a lHand l edAr t i f a c t s . add ( unhandledArt i fact ) ;
29 }
30
31 /✯✯ 6 . get a l l combinations o f candidate p r edec e s so r s e t s
32 /✯ ( one candidate p r ed e c e s s o r s s e t per consumed a c t i v i t y ) ✯✯/
33 EList<EList<Act iv i ty>> newCandidateSets = combineSetCandidats (
34 uncombinedListOfCandidateSets ) ;
35
36 /✯✯ FILTER 6 (= FILTER 2) Remove candidate s e t s that are not ab le to f u l f i l l
37 /✯ precond i t i on o f a c t i v i t y ( p r e cond i t i on l i n k s that are connected to
38 /✯ op t i ona l input a r t i f a c t s do not need to be f u l f i l l e d , when the
39 /✯ op t i ona l input a r t i f a c t i s not provided by the p r edec e s s o r s e t ) ✯✯/
40 f i l t e rRemovePredece s so rSe t sThatCanNotFu l f i l lPrecond i t i ons (
41 a c t i v i t y , newCandidateSets , swmamo) ;
42
43 /✯✯ FILTER 7 (= FILTER 3 = FILTER 1) again remove candidate s e t s that conta in the
44 /✯ very i n i t i a l a c t i v i t y ( i . e . an a c t i v i t y cannot be i t s own predec e s so r ) ✯✯/
45 f i l t e rRemovePredecessorSetCandidatesThatConta inAct iv i ty (
46 newCandidateSets , a c t i v i t y ) ;
47
48 /✯✯ 7 . r e g i s t e r unhandled a c t i v i t i e s as handled ✯✯/
49 l o c a lHand l e dAc t i v i t i e s . addAll ( unhand l edAct iv i t i e s ) ;
50
51 /✯✯ 8 . r e c u r s i v e l y c a l l t h i s method f o r each new candidate s e t ✯✯/
52 for ( EList<Act iv i ty> candidate : newCandidateSets )
53 r e s u l t i n g S e t s . addAll ( this . extendCandidateSet ( candidate ,
54 i n i t i a l A c t i v i t y , swmamo, l o ca lHand l edAr t i f a c t s , l o c a lHand l edAc t i v i t i e s ) ) ;
55
56 /✯✯ 9 . re turn r e s u l t i n g l i s t o f candidate s e t s ✯✯/
57 return r e s u l t i n g S e t s ;
58 }

Listing F.4: extendCandidateSet() (part 2)

F.2. Identification of Phases and Synchronization Points

In this Section the code for the derivation of phases and synchronization points is listed. Thereby, Listing F.5 shows
the frame of the algorithm, Listing F.6 includes the check whether an activity is a local synchronization point within
a given local focus, and Listing F.7 includes the derivation of the phases based on a given local focus with given local
synchronization points. Further, the derivation of local synchronizations points including the search for promising local
foci is shown in Listings F.8, F.9, F.10, and F.11.
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Appendix F. CodeListings

1 void i d en t i f yG loba lSynch ron i za t i onPo in t s (
2 Model swmamo,
3 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
4 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
5 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
6 {
7 /✯✯ f o r each a c t i v i t y i d e n t i f y whether the a c t i v i t y i s a l o c a l synchron i za t i on
8 /✯ point f o r a focus that cover s the whole model ✯✯/
9 EList<Act iv i ty> synchs = new BasicEList<Act iv i ty >() ;

10 for ( Ac t i v i ty a c t i v i t y : swmamo . g e tAc t i v i t y ( ) ) {
11 i f ( this . i sLoca lSynchron i za t i onPo in t ( a c t i v i t y , swmamo . g e tAc t i v i t y ( ) ,
12 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAc t i v i ty , p r ede c e s s o rSe t sPe rAc t i v i t y ) )
13 synchs . add ( a c t i v i t y ) ;
14 }
15
16 this . printoutPhasesForCombinedLocalSynchs ( synchs , swmamo . g e tAc t i v i t y ( ) , swmamo,
17 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAc t i v i ty , p r ede c e s s o rSe t sPe rAc t i v i t y ) ;
18
19 this . i d en t i f yLoca lSynch ron i z a t i onPo in t s (swmamo, p redece s so r sPe rAct iv i ty ,
20 suc c e s so r sPe rAc t i v i t y , p r ede c e s s o rSe t sPe rAc t i v i t y ) ;
21 }

Listing F.5: identifyGlobalSynchronizationPoints()

1 boolean i sLoca lSynchron i za t i onPo in t (
2 Act iv i ty candidate ,
3 EList<Act iv i ty> l o c a lA c t i v i t i e s ,
4 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
5 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
6 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
7 {
8 EList<Act iv i ty> s u c c e s s o r s = suc c e s s o r sPe rAc t i v i t y . get ( candidate ) ;
9 EList<Act iv i ty> pr ede c e s s o r s = prede c e s s o r sPe rAc t i v i t y . get ( candidate ) ;

10
11 /✯✯ 1 . f o r each a c t i v i t y in the g iven focus check whether t h i s a c t i v i t y i s e i t h e r
12 /✯ predec e s s o r or su c c e s s o r ( and not both ) o f the candidate ✯✯/
13 boolean a l lA r t i f a c t s I n S t r i c tO r d e r = true ;
14 for ( Ac t i v i ty a : l o c a l A c t i v i t i e s ){
15 boolean s t r i c tO rd e rEx i s t s = fa l se ;
16 i f ( a . equa l s ( synch ) ) s t r i c tO rd e rEx i s t s = true ;
17 i f ( s u c c e s s o r s . conta in s ( a ) && ( ! p r ed e c e s s o r s . conta in s ( a ) ) )
18 s t r i c tO rd e rEx i s t s = true ;
19 i f ( ( ! s u c c e s s o r s . conta in s ( a ) ) && prede c e s s o r s . conta in s ( a ) )
20 s t r i c tO rd e rEx i s t s = true ;
21
22 i f ( ! s t r i c tO rd e rEx i s t s )
23 a l lA r t i f a c t s I n S t r i c tO r d e r = fa l se ;
24 }
25
26 /✯✯ 2 . i f r e l a t i v e order to a l l other a r t i f a c t s i s c l e a r the a c t i v i t y
27 /✯ i s a l o c a l synchron i za t i on po int ✯✯/
28 i f ( a l l A r t i f a c t s I n S t r i c tO r d e r )
29 return true ;
30
31 return fa l se ;
32 }

Listing F.6: isLocalSynchronizationPoint()
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F.2. Identification of Phases and Synchronization Points

1 void printoutPhasesForCombinedLocalSynchs (
2 EList<Act iv i ty> synchs ,
3 EList<Act iv i ty> l o c a l S e t ,
4 Model swmamo,
5 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
6 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
7 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
8 {
9 /✯✯ 1 . put synchron i za t i on po in t s in order ✯✯/

10 EList<Act iv i ty> orderedSynchron izat ionPo int s = new BasicEList<Act iv i ty >() ;
11 i f ( ! synchs . isEmpty ( ) )
12 orderedSynchron izat ionPo int s . add ( synchs . get (0 ) ) ;
13 for ( int i = 1 ; i< synchs . s i z e ( ) ; i++){
14 Act iv i ty s = synchs . get ( i ) ;
15 /✯✯ i d e n t i f y new po s i t i o n ✯✯/
16 int newpos i t ion = orderedSynchron i zat ionPo int s . s i z e ( ) ;
17 for ( int j = 0 ; j<orderedSynchron izat ionPo int s . s i z e ( ) ; j++){
18 i f ( s u c c e s s o r sPe rAc t i v i t y . get ( s ) . conta in s ( o rderedSynchron iza t ionPo int s . get ( j ) ) )
19 i f ( j<newpos i t ion )
20 newpos i t ion = j ;
21 }
22 EList<Act iv i ty> he lpe r = new BasicEList<Act iv i ty >() ;
23 for ( int k = 0 ; k<orderedSynchron izat ionPo int s . s i z e ( ) ; k++ ){
24 i f ( k==newpos i t ion )
25 he lpe r . add ( s ) ;
26 he lpe r . add ( orderedSynchron iza t ionPo int s . get ( k ) ) ;
27 }
28 orderedSynchron izat ionPo int s = he lpe r ;
29 }
30
31 /✯✯ 2 . i t e r a t e ordered synchron i za t i on po in t s and pr in t out a l l a c t i v i t i e s
32 /✯ that are p r ede c e s s o r s o f that a c t i v i t y ✯✯/
33 EList<Act iv i ty> toCons ider = new BasicEList<Act iv i ty >() ;
34 toCons ider . addAll ( l o c a l S e t ) ;
35 for ( int i = 0 ; i<orderedSynchron izat ionPo int s . s i z e ( ) ; i++){
36 Act iv i ty synch = orderedSynchron i zat ionPo int s . get ( i ) ;
37 System . out . p r i n t l n ( ” be f o r e synchron i za t i on po int ” + synch . getName ( ) ) ;
38
39 EList<Act iv i ty> removeA = new BasicEList<Act iv i ty >() ;
40 for ( Ac t i v i ty act : toCons ider ){
41 i f ( act . equa l s ( synch ) )
42 removeA . add ( act ) ;
43 i f ( p r ede c e s s o r sPe rAc t i v i t y . get ( synch ) . conta in s ( act ) ){
44 removeA . add ( act ) ;
45 System . out . p r i n t l n ( act . getName ( ) ) ;
46 }
47 }
48 /✯✯ remove a l ready cons ide red a c t i v i t i e s from l i s t ✯✯/
49 for ( Ac t i v i ty r : removeA)
50 toCons ider . remove ( r ) ;
51
52 }
53
54 /✯✯ 3 . p r in tout a c t i v i t i e s that are s u c c e s s o r s o f a l l synchron i za t i on po in t s ✯✯/
55 System . out . p r i n t l n ( ” a f t e r a l l s ynchron i za t i on po in t s : ” ) ;
56 for ( Ac t i v i ty act : toCons ider ){
57 System . out . p r i n t l n ( act . getName ( ) ) ;
58 }
59
60 return ;
61 }

Listing F.7: printoutPhasesForCombinedLocalSynchs()
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Appendix F. CodeListings

1 void i d en t i f yLoca lSynch ron i z a t i onPo in t s (
2 Model swmamo,
3 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
4 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
5 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
6 {
7 EMap<EList<Act iv i ty >,EList<Act iv i ty>> localSynchWithFocus =
8 new BasicEMap<Act iv i ty , EList<Act iv i ty >>() ;
9

10 /✯✯ con s id e r each a c t i v i t y in the so f tware manufacture model as p o t e n t i a l
11 /✯ l o c a l synchron i za t i on po in t s ✯✯/
12 for ( Ac t i v i ty candidate : swmamo . g e tAc t i v i t y ( ) ){
13 /✯✯ 1 . i d e n t i f y a l l a c t i v i t i e s that have the candidate a c t i v i t y as su c c e s s o r ✯✯/
14 EList<Act iv i ty> haveCandidateAsSuccessor = new BasicEList<Act iv i ty >() ;
15 for ( Ac t i v i ty act : swmamo . g e tAc t i v i t y ( ) )
16 i f ( s u c c e s s o r sPe rAc t i v i t y . get ( act ) . conta in s ( candidate ) )
17 haveCandidateAsSuccessor . add ( act ) ;
18
19 /✯✯ 2 . i d e n t i f y a l l a c t i v i t i e s that r e qu i r e the candidate to be executed
20 /✯ be fo r e they can be executed ✯✯/
21 EList<Act iv i ty> requ i reCandidateBe fore = this . r e qu i r eAc t i v i t yBe f o r e (
22 candidate , swmamo, p r ede c e s s o rSe t sPe rAc t i v i t y ) ;
23
24 /✯✯ 3 . c on s id e r a l l cand idates f o r which a c t i v i t i e s e x i s t that have t h i s
25 /✯ candidate as su c c e s s o r as we l l as a c t i v i t i e s that r e qu i r e t h i s
26 /✯ candidate be f o r e they can be executed ✯✯/
27 i f ( ( haveCandidateAsSuccessor . s i z e ( )>0) && ( requ i reCand idateBe fore . s i z e ( ) > 0) ){
28
29 /✯✯ 4 . r e t r i e v e maximal p o s s i b l e l o c a l f o cus in which the candidate can be
30 /✯ a l o c a l synchron i za t i on po int ✯✯/
31 EList<Act iv i ty> l o ca lFocus = new BasicEList<Act iv i ty >() ;
32 l o ca lFocus . addAll ( haveCandidateAsSuccessor ) ;
33 l o ca lFocus . addAll ( requ i reCand idateBe fore ) ;
34
35 /✯✯ 5 . check whether candidate a c tua l l y i s l o c a l synchron i za t i on po int in
36 /✯ that l o c a l f o cus ✯✯/
37 boolean i sSynch = this . i sLoca lSynchron i za t i onPo in t ( candidate , loca lFocus ,
38 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAc t i v i ty ,
39 pr ede c e s s o rSe t sPe rAc t i v i t y ) ;
40 i f ( i sSynch ){
41 /✯✯ candidate i s l o c a l synchron i za t i on po int in that l o c a l f o cus ✯✯/
42
43 /✯✯ check whether other a c t i v i t i e s in t h i s l o c a l f o cus become
44 /✯ l o c a l synchron i za t i on points , too ✯✯/
45 EList<Act iv i ty> synchs = new BasicEList<Act iv i ty >() ;
46 synchs . add ( candidate ) ;
47
48 for ( Ac t i v i ty a : l o ca lFocus )
49 i f ( this . i sLoca lSynchron i za t i onPo in t (a , loca lFocus ,
50 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAc t i v i ty ,
51 pr ede c e s s o rSe t sPe rAc t i v i t y ) )
52 synchs . add ( a ) ;
53
54 localSynchWithFocus . put ( synchs , l o ca lFocus ) ;
55
56 this . printoutPhasesForCombinedLocalSynchs ( synchs , loca lFocus , swmamo,
57 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAc t i v i ty ,
58 pr ede c e s s o rSe t sPe rAc t i v i t y ) ;
59 }
60 }
61 }
62
63 /✯✯ 6 . i d e n t i f y p o s s i b l e combinations o f l o c a l f o c i ✯✯/
64 EMap<EList<Act iv i ty >,EList<Act iv i ty>> combis =
65 this . getAllCombinationsOfLoalSynchs ( localSynchWithFocus , swmamo,
66 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAc t i v i ty , p r ede c e s s o rSe t sPe rAc t i v i t y ) ;
67
68 return ;
69 }

Listing F.8: identifyLocalSynchronizationPoints()
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F.2. Identification of Phases and Synchronization Points

1 EMap<EList<Act iv i ty >,EList<Act iv i ty>> getAllCombinationsOfLoalSynchs (
2 EMap<Act iv i ty , EList<Act iv i ty>> l oca lSynchs ,
3 Model swmamo,
4 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
5 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
6 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
7 {
8 EMap<EList<Act iv i ty >,EList<Act iv i ty>> r e s u l t =
9 new BasicEMap<EList<Act iv i ty >,EList<Act iv i ty >>() ;

10
11 /✯✯ 1 . get l i s t o f a l l l o c a l synchron i za t i on po in t s ✯✯/
12 EList<Act iv i ty> synchs = new BasicEList<Act iv i ty >() ;
13 for ( Entry<Act iv i ty , EList<Act iv i ty>> key : l o ca lSynchs )
14 synchs . add ( key . getKey ( ) ) ;
15
16 /✯✯ 2 . r e t r i e v e a l l p o s s i b l e combinations o f synchron i za t i on po in t s ✯✯/
17 EList<EList<Act iv i ty>> combis = new BasicEList<EList<Act iv i ty >>() ;
18 for ( int i = 2 ; i<( l o ca lSynchs . s i z e ( )+1) ; i++)
19 combis . addAll ( this . getCombinationsOfI ( i , synchs ) ) ;
20
21 /✯✯ 3 . f o r each p o s s i b l e combination o f synchron i za t i on po in t s get
22 /✯ combined l o c a l f o c i ✯✯/
23 for ( EList<Act iv i ty> c : combis ){
24 EMap<Act iv i ty , EList<Act iv i ty>> param =
25 new BasicEMap<Act iv i ty , EList<Act iv i ty >>() ;
26 for ( Ac t i v i ty a : c )
27 param . add ( loca lSynchs . get ( l oca lSynchs . indexOfKey ( a ) ) ) ;
28 EMap<EList<Act iv i ty >,EList<Act iv i ty>> r = this . getCombinedLocal izat ionOfSynchs (
29 param , swmamo, predece s so r sPe rAct iv i ty , su c c e s s o r sPe rAc t i v i t y ,
30 pr ede c e s s o rSe t sPe rAc t i v i t y ) ;
31 r e s u l t . addAll ( r ) ;
32 }
33
34 return r e s u l t ;
35 }

Listing F.9: getAllCombinationsOfLoalSynchs()

1 EMap<EList<Act iv i ty >,EList<Act iv i ty>> getCombinedLocal izationOfSynch (
2 EMap<Act iv i ty , EList<Act iv i ty>> l oca lSynchs ,
3 Model swmamo,
4 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
5 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
6 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
7 {
8 EMap<EList<Act iv i ty >,EList<Act iv i ty>> r e s u l t =
9 new BasicEMap<EList<Act iv i ty >,EList<Act iv i ty >>() ;

10 /✯✯ 1 . Check whether combination i s p o s s i b l e : i s each synchron i za t i on po int part
11 /✯ o f the l o c a l s e t s o f each other synch ron i za t i on s po int ✯✯/
12 for ( Entry<Act iv i ty , EList<Act iv i ty>> e : l o ca lSynchs ){
13 boolean inAl lOtherFoc i = true ;
14 for ( Entry<Act iv i ty , EList<Act iv i ty>> in : l o ca lSynchs ){
15 boolean i s InAl lTh i sFocus = true ;
16 i f ( ! in . getKey ( ) . equa l s ( e . getKey ( ) ) ){
17 boolean t e s t = f a l se ;
18 for ( Ac t i v i ty a : in . getValue ( ) )
19 i f ( a . equa l s ( e . getKey ( ) ) )
20 t e s t = true ;
21 i f ( ! in . getValue ( ) . conta in s ( e . getKey ( ) ) )
22 i s InAl lTh i sFocus = f a l se ;
23 }
24 i f ( ! i s InAl lTh i sFocus )
25 inAl lOtherFoc i = f a l se ;
26 }
27
28 /✯✯ i f s ynchron i za t i on po int i s not part o f other l o c a l f o c i
29 /✯ re turn empty r e s u l t ✯✯/
30 i f ( ! inAl lOtherFoc i )
31 return r e s u l t ;
32 }
33
34 [ . . . ]
35 }

Listing F.10: getCombinedLocalizationOfSynch() (part 1)
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Appendix F. CodeListings

1 EMap<EList<Act iv i ty >,EList<Act iv i ty>> getCombinedLocal izationOfSynch (
2 EMap<Act iv i ty , EList<Act iv i ty>> l oca lSynchs ,
3 Model swmamo,
4 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
5 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
6 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
7 {
8 [ . . . ]
9

10 /✯✯ 2 . r e t r i e v e l i s t o f a l l a c t i v i t i e s i s l o c a l f o c i ✯✯/
11 EList<Act iv i ty> a l lAc t s = new BasicEList<Act iv i ty >() ;
12 for ( Entry<Act iv i ty , EList<Act iv i ty>> e : l o ca lSynchs )
13 for ( Ac t i v i ty a : e . getValue ( ) )
14 i f ( ! a l lAc t s . conta in s ( a ) )
15 a l lAc t s . add ( a ) ;
16
17 /✯✯ 3 . combine l o c a l f o c i , such that new l o c a l s e t combines a l l a c t i v i t i e s
18 /✯ that are part o f each l o c a l f o cus ✯✯/
19 EList<Act iv i ty> newLocalSet = new BasicEList<Act iv i ty >() ;
20 for ( Ac t i v i ty a : a l lAc t s ){
21 boolean i s I nA l l = true ;
22 for ( Entry<Act iv i ty , EList<Act iv i ty>> e : l o ca lSynchs ){
23 i f ( ! e . getValue ( ) . conta in s ( a ) )
24 i s I nA l l = f a l se ;
25 }
26 i f ( i s I nA l l )
27 newLocalSet . add ( a ) ;
28 }
29
30 /✯✯ 4 . check whether a l l combined l o c a l synchron i za t i on po in t s remain
31 /✯ l o c a l synchron i za t i on po in t s in new l o c a l f o cus ✯✯/
32 boolean a l lSynchs = true ;
33 EList<Act iv i ty> synchs = new BasicEList<Act iv i ty >() ;
34 for ( Entry<Act iv i ty , EList<Act iv i ty>> e : l o ca lSynchs ){
35 i f ( ! this . i sLoca lSynchron i za t i onPo in t ( e . getKey ( ) , newLocalSet ,
36 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAc t i v i ty , p r ede c e s s o rSe t sPe rAc t i v i t y ) )
37 a l lSynchs = f a l se ;
38 else

39 synchs . add ( e . getKey ( ) ) ;
40 }
41
42 /✯✯ 5 . c o l l e c t a l l a dd i t i ona l a c t i v i t i e s that are l o c a l synchron i za t i on
43 /✯ po in t s in that new l o c a l f o cus ✯✯/
44 i f ( a l lSynchs ){
45 for ( Ac t i v i ty a : newLocalSet )
46 i f ( this . i sLoca lSynchron i za t i onPo in t (a , newLocalSet , p r edece s so r sPe rAct iv i ty ,
47 suc c e s so r sPe rAc t i v i t y , p r ede c e s s o rSe t sPe rAc t i v i t y ) )
48 i f ( ! synchs . conta in s ( a ) )
49 synchs . add ( a ) ;
50 }
51
52 r e s u l t . put ( synchs , newLocalSet ) ;
53
54 this . printoutPhasesForCombinedLocalSynchs ( synchs , newLocalSet , swmamo,
55 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAc t i v i ty , p r ede c e s s o rSe t sPe rAc t i v i t y ) ;
56
57 return r e s u l t ;
58 }

Listing F.11: getCombinedLocalizationOfSynch() (part 2)

F.3. Identification of Lengths of Activity Chains

In this Section the code for the identification of lengths of activity chains is listed. Thereby, Listing F.12 contains the
frame code and the Listings F.13, F.14, and F.15 show the calculation of the lengths of activity chains for a given pair of
artifacts. The Listings F.16, F.17, and F.18 include methods for the identification of relevant activities for a given artifact.
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F.3. Identification of Lengths of Activity Chains

1 void ca l cu la teLengthsOfAct iv i tyCha ins (
2 Model swmamo,
3 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
4 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
5 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
6 {
7 /✯✯ 1 . get l i s t o f a l l a r t i f a c t s in the model ( the code i s wr i t t en with r e sp e c t
8 /✯ to the f a c t that an a r t i f a c t might occur as model element mul t ip l e times ,
9 /✯ such that r e a d ab i l i t y i s i n c r ea s ed ) ✯✯/

10 EList<Art i f a c t> a r t i f a c t s = swmamo . g e tA r t i f a c t s ( ) ;
11 EList<Art i f a c t> un iqueAr t i f a c t s = new BasicEList<Art i f a c t >() ;
12 for ( A r t i f a c t a r t : a r t i f a c t s ){
13 boolean i s I n = f a l se ;
14 for ( A r t i f a c t b : un i queAr t i f a c t s )
15 i f ( this . sameArt i fact ( art , b ) ) i s I n=true ;
16 i f ( ! i s I n )
17 un iqueAr t i f a c t s . add ( ar t ) ;
18 }
19
20 /✯✯ 2 . get a l l p a i r s o f two a r t i f a c t s ✯✯/
21 EList<EList<Art i f a c t>> pa i r s = new BasicEList<EList<Art i f a c t >>() ;
22 for ( int i = 0 ; i<un iqueAr t i f a c t s . s i z e ( ) ; i++){
23 for ( int j = i +1; j<un iqueAr t i f a c t s . s i z e ( ) ; j++){
24 EList<Art i f a c t> pa i r = new BasicEList<Art i f a c t >() ;
25 pa i r . add ( un iqueAr t i f a c t s . get ( i ) ) ;
26 pa i r . add ( un iqueAr t i f a c t s . get ( j ) ) ;
27 pa i r s . add ( pa i r ) ;
28 }
29 }
30
31 /✯✯ 3 . For each pa i r o f a r t i f a c t s l ength o f a r t i f a c t s cha ins between them i s
32 /✯ c a l c u l a t ed . This c a l c u l a t i o n i s done in both d i r e c t i o n s ( i . e . such that
33 /✯ both a r t i f a c t s are once the f i r s t and once the second a r t i f a c t ) . ✯✯/
34 for ( int k = 0 ; k< pa i r s . s i z e ( ) ; k++){
35 Ar t i f a c t f i r s t = pa i r s . get ( k ) . get (0 ) ;
36 Ar t i f a c t second = pa i r s . get ( k ) . get (1 ) ;
37 this . c a l cu l a t eLengthsOfAct iv i tyCha in sForArt i f a c tPa i r ( f i r s t , second , swmamo,
38 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAct i v i ty , p r ede c e s s o rSe t sPe rAc t i v i t y ) ;
39 this . c a l cu l a t eLengthsOfAct iv i tyCha in sForArt i f a c tPa i r ( second , f i r s t , swmamo,
40 predece s so r sPe rAct iv i ty , suc c e s so r sPe rAct i v i ty , p r ede c e s s o rSe t sPe rAc t i v i t y ) ;
41 }
42
43 return ;
44 }

Listing F.12: calculateLengthsOfActivityChains()
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Appendix F. CodeListings

1 void ca l cu la t eLengthsOfAct iv i tyCha in sForArt i f a c tPa i r (
2 Ar t i f a c t f i r s t ,
3 Ar t i f a c t second ,
4 Model swmamo,
5 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
6 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
7 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
8 {
9 /✯✯ 1 . r e t r i e v e a c t i v i t i e s that are r e l e van t f o r the c rea t i on , manipualtion ,

10 /✯ and/ or consumption o f the f i r s t and second a r t i f a c t ✯✯/
11 EList<Act iv i ty> a c c e s sF i r s t =
12 this . getAct iv i t iesThatCreateConsumeOrManipulateArt i fact (swmamo, f i r s t ) ;
13 EList<Act iv i ty> consumeFirst =
14 this . ge tAct iv i t i e sThatConsumeArt i fac t (swmamo, f i r s t ) ;
15 EList<Act iv i ty> outputSecond =
16 this . g e tAct iv i t i e sThatCreateOrMan ipu la teArt i f ac t (swmamo, second ) ;
17
18 /✯✯ 2 . Get a l l p r edec e s s o r s e t s o f the second a r t i f a c t in order to i d e n t i f y
19 /✯ a l l a c t i v i t i e s that produce or manipulate second a r t i f a c t . The pr edec e s so r
20 /✯ s e t s o f the se a c t i v i t i e s are r e l e van t in the f o l l ow i ng . ✯✯/
21 EList<EList<Act iv i ty>> a r t i f a c tRe l a t e dP r ed e c e s s o r S e t s =
22 new BasicEList<EList<Act iv i ty >>() ;
23 for ( Ac t i v i ty c r e a t o r : outputSecond ){
24
25 /✯✯ 3 . f o r each a c t i v i t y that c r e a t e s or manipulates the second a c t i v i t y :
26 /✯ r e t r i e v e a l l p r edec e s so r s e t s ✯✯/
27 EList<EList<Act iv i ty>> s e t s = prede c e s s o rSe t sPe rAc t i v i t y . get ( c r e a t o r ) ;
28 for ( EList<Act iv i ty> s e t : s e t s ){
29
30 /✯✯ 4 . check whether p r edec e s s o r s e t i s r e l e van t ✯✯/
31 /✯✯ 4a . check whether p r edec e s so r s e t i n c l ud e s a c t i v i t i e s that consume
32 /✯ the f i r s t a r t i f a c t ✯✯/
33 boolean a c c e s s e s F i r s tA r t i f a c t = fa l se ;
34 for ( Ac t i v i ty a : s e t ){
35 i f ( consumeFirst . conta in s ( a ) )
36 a c c e s s e s F i r s tA r t i f a c t = true ;
37 }
38
39 /✯✯ 4b . A l t e rna t i v e the cons ide red a c t i v i t y that c r e a t e s or manipulates
40 /✯ the second a r t i f a c t i s consuming the f i r s t a r t i f a c t d i r e c t l y . Note
41 /✯ that t h i s needs to be handled separa te ly , s i n c e an a c t i v i t y i s not
42 /✯ part o f i t s own predec e s s o r s e t . ✯✯/
43 i f ( consumeFirst . conta in s ( c r e a t o r ) )
44 a c c e s s e s F i r s tA r t i f a c t = true ;
45
46 /✯✯ 5 . i f the p r edec e s so r s e t i s r e l e van t and not empty add a copy to
47 /✯ the s e l e c t i o n ✯✯/
48 i f ( a c c e s s e s F i r s tA r t i f a c t )
49 i f ( ! s e t . isEmpty ( ) ){
50 EList<Act iv i ty> cop iedSet = new BasicEList<Act iv i ty >() ;
51 cop iedSet . addAll ( s e t ) ;
52 a r t i f a c tRe l a t e dP r ed e c e s s o r S e t s . add ( cop iedSet ) ;
53 }
54 }
55 }
56
57 [ . . . ]
58 }

Listing F.13: calculateLengthsOfActivityChainsForArtifactPair() (part 1)
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F.3. Identification of Lengths of Activity Chains

1 void ca l cu l a t eLengthsOfAct iv i tyCha in sForArt i f a c tPa i r (
2 Ar t i f a c t f i r s t ,
3 Ar t i f a c t second ,
4 Model swmamo,
5 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
6 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
7 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
8 {
9 [ . . . ]

10
11 /✯✯ 6 . Not a l l a c t i v i t i e s with in a r e l e van t p r edec e s s o r s e t might be re l evant ,
12 /✯ too . Therefore , each pr edec e s so r s e t i s f i l t e r e d , such that only a c t i v i t i e s
13 /✯ remain that are used f o r a change o f the f i r s t a r t i f a c t or the propagat ion
14 /✯ o f such a change to the second a r t i f a c t . These are on the one hand
15 /✯ a c t i v i t i e s that manipulate or c r e a t e the f i r s t a c t i v i t y or on the other
16 /✯ hand a c t i v i t i e s that are s u c c e s s o r s o f an a c t i v i t i e s that manipulate or
17 /✯ c r e a t e the f i r s t a c t i v i t y . ✯✯/
18 EList<EList<Act iv i ty>> f i l t e r e dA r t i f a c tR e l a t e dP r e d e c e s s o r S e t s =
19 new BasicEList<EList<Act iv i ty >>() ;
20 for ( EList<Act iv i ty> s e t : a r t i f a c tRe l a t edP r ed e c e s s o r S e t s ){
21 EList<Act iv i ty> f i l t e r e d S e t = new BasicEList<Act iv i ty >() ;
22 for ( Ac t i v i ty a : s e t ){
23 boolean i sA c c e s s i n gF i r s t = fa l se ;
24 boolean i s S u c c e s s o rF i r s t = fa l se ;
25
26 /✯✯ a c t i v i t y consumes , manipulates , or c r e a t e s f i r s t a r t i f a c t ✯✯/
27 i f ( a c c e s sF i r s t . conta in s ( a ) )
28 i sA c c e s s i n gF i r s t = true ;
29
30 /✯✯ a c t i v i t y i s s u c c e s s o r o f an a c t i v i t y that consumes , manipulates ,
31 /✯ or c r e a t e s f i r s t a r t i f a c t ✯✯/
32 for ( Ac t i v i ty a c c e s s : a c c e s sF i r s t ){
33 EList<Act iv i ty> s u c c e s s o r s = suc c e s s o r sPe rAc t i v i t y . get ( a c c e s s ) ;
34 i f ( s u c c e s s o r s . conta in s ( a ) )
35 i s S u c c e s s o rF i r s t = true ;
36 }
37
38 i f ( i sA c c e s s i n gF i r s t )
39 f i l t e r e d S e t . add ( a ) ;
40 else i f ( i s S u c c e s s o rF i r s t )
41 f i l t e r e d S e t . add ( a ) ;
42 }
43 f i l t e r e dA r t i f a c tR e l a t e dP r e d e c e s s o r S e t s . add ( f i l t e r e d S e t ) ;
44 }
45
46 /✯✯ 7 . Check whether an a c t i v i t i e s that c r e a t e s or manipulates the second
47 /✯ a r t i f a c t d i r e c t l y consumes the f i r s t a r t i f a c t ✯✯/
48 boolean d i r e c tRe l a t i o n = f a l se ;
49 for ( Ac t i v i ty c r e a t o r : outputSecond ){
50 i f ( consumeFirst . conta in s ( c r e a t o r ) )
51 d i r e c tRe l a t i o n=true ;
52 }
53
54 /✯✯ 8 . i f no connect ion between both a r t i f a c t s can be i d e n t i f i e d ,
55 /✯ stop a lgor i thm here ✯✯/
56 i f ( f i l t e r e dA r t i f a c tR e l a t e dP r e d e c e s s o r S e t s . s i z e ( ) < 1)
57 i f ( ! d i r e c tRe l a t i on )
58 return ;
59
60 [ . . . ]
61 }

Listing F.14: calculateLengthsOfActivityChainsForArtifactPair() (part 2)
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Appendix F. CodeListings

1 void ca l cu la t eLengthsOfAct iv i tyCha in sForArt i f a c tPa i r (
2 Ar t i f a c t f i r s t ,
3 Ar t i f a c t second ,
4 Model swmamo,
5 EMap<Act iv i ty , EList<Act iv i ty>> predece s so r sPe rAct iv i ty ,
6 EMap<Act iv i ty , EList<Act iv i ty>> suc c e s so r sPe rAc t i v i t y ,
7 EMap<Act iv i ty , EList<EList<Act iv i ty>>> pr ede c e s s o rSe t sPe rAc t i v i t y )
8 {
9 [ . . . ]

10
11 /✯✯ 9 . I d e n t i f y minimum and maximum number o f a c t i v i t i e s that have to be executed
12 /✯ to change and propagate a change from f i r s t a r t i f a c t to the second
13 /✯ a r t i f a c t . The s i z e o f an a c t i v i t y chain i s thereby equal to the s i z e o f
14 /✯ a f i l t e r e d p r edec e s so r s e t + 1 , s i n c e the f i l t e r e d pr edec e s so r s e t
15 /✯ i n c l ud e s exac t l y the a c t i v i t i e s that are s u f f i c i e n t and a c tua l l y used to
16 /✯ propagate a change from the f i r s t a r t i f a c t to the second . Thereby , the
17 /✯ l a s t a c t i v i t y in the chain ( i . e . the a c t i v i t y that manipulates or c r e a t e s
18 /✯ the second a r t i f a c t ) i s not part o f the p r edec e s s o r s e t as de s c r ibed above .
19 /✯ There fore the l eng th s have to be in c r ea s ed by 1 . The d i f f e r e n c e between
20 /✯ minimum and maximum length r e s u l t s from the d i f f e r e n c e s between the
21 /✯ predec e s s o r s e t s . Note that some f i r s t a r t i f a c t s stem from out s ide the MDE
22 /✯ s e t t i n g and are only used with in the s e t t i n g . As a r e su l t , no a c t i v i t y f o r
23 /✯ changing such an a r t i f a c t can be counted . ✯✯/
24 int min = 0 ;
25 int max = 0 ;
26 int s i z e ;
27
28 /✯✯ 9a . i n i t i a l i z e min and max with length o f f i r s t f i l t e r e d pr edec e s s o r s e t . ✯✯/
29 i f ( f i l t e r e dA r t i f a c tR e l a t e dP r e d e c e s s o r S e t s . s i z e ( )>0) {
30 s i z e = f i l t e r e dA r t i f a c tR e l a t e dP r e d e c e s s o r S e t s . get (0 ) . s i z e ( ) ;
31 min = s i z e ;
32 max = s i z e ;
33
34 /✯✯ 9b . I t e r a t e through f i l t e r e d p r edec e s s o r s e t s and update min and
35 /✯ max acco rd ing ly . ✯✯/
36 for ( int i = 1 ; i<f i l t e r e dA r t i f a c tR e l a t e dP r e d e c e s s o r S e t s . s i z e ( ) ; i++){
37 EList<Act iv i ty> s e t = f i l t e r e dA r t i f a c tR e l a t e dP r e d e c e s s o r S e t s . get ( i ) ;
38 s i z e = s e t . s i z e ( ) ;
39 i f ( s i z e<min)
40 min = s i z e ;
41 i f ( s i z e>max)
42 max = s i z e ;
43 }
44
45 /✯✯ 9c . i n c r e a s e min and max by one to r ep r e s en t a c t i v i t y that manipulates
46 /✯ or c reated the second a r t i f a c t ✯✯/
47 min = min +1;
48 max = max +1;
49
50
51 } else i f ( d i r e c tRe l a t i o n ){
52 /✯✯ 9d . Handle s p e c i a l case where no f i l t e r e d pr edec e s s o r s e t e x i s t s , but
53 /✯ the a c t i v i t y that manipulates or c r e a t e s the second a r t i f a c t consumes
54 /✯ the f i r s t a r t i f a c t ( which can happen when the f i r s t a r t i f a c t stems
55 /✯ from out s ide the MDE s e t t i n g ) . In t h i s case s e t min and max to 1 . ✯✯/
56 min = 1 ;
57 i f (max==0)
58 max = 1 ;
59 }
60
61 /✯✯ 10 . p r in tout r e s u l t ✯✯/
62 System . out . p r i n t ( ” from a r t i f a c t ” + f i r s t . getRoleName ( ) + ” to a r t i f a c t ” +
63 second . getRoleName ( ) + ” : ” ) ;
64 System . out . p r i n t l n (min + ” − ” + max) ;
65
66 return ;
67 }

Listing F.15: calculateLengthsOfActivityChainsForArtifactPair() (part 3)
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F.3. Identification of Lengths of Activity Chains

1 EList<Act iv i ty> getAct iv i t iesThatCreateConsumeOrManipulateArt i fact (
2 Model swmamo,
3 Ar t i f a c t a r t i f a c t )
4 {
5 EList<Act iv i ty> r e s u l t = new BasicEList<Act iv i ty >() ;
6 /✯✯ 1 . i t e r a t e a l l a c t i v i t i e s in the model and s e l e c t r e l e van t a c t i v i t i e s ✯✯/
7 EList<Act iv i ty> a c t i v i t i e s = swmamo . g e tAc t i v i t y ( ) ;
8 for ( Ac t i v i ty act : a c t i v i t i e s ){
9 boolean a c c e s s e s a r t =f a l se ;

10 /✯✯ 1a . an a c t i v i t y i s r e l e van t i f i t consumes the cons ide red a r t i f a c t ✯✯/
11 EList<Art i f a c t> consumedar t i f ac t s = this . getConsumedArti facts ( act , swmamo) ;
12 for ( A r t i f a c t a : consumedar t i f ac t s )
13 i f ( this . sameArt i fact ( a r t i f a c t , a ) )
14 a c c e s s e s a r t=true ;
15 /✯✯ 1b . and an a c t i v i t y i s r e l e van t i f i t produces the a r t i f a c t under
16 /✯ c on s i d e r a t i on ✯✯/
17 EList<Art i f a c t> p roduc eda r t i f a c t s = this . g e tProducedArt i f ac t s ( act , swmamo) ;
18 for ( A r t i f a c t a : p r oduc eda r t i f a c t s )
19 i f ( this . sameArt i fact ( a r t i f a c t , a ) )
20 a c c e s s e s a r t=true ;
21 i f ( a c c e s s e s a r t )
22 r e s u l t . add ( act ) ;
23 }
24 return r e s u l t ;
25 }

Listing F.16: getActivitiesThatCreateConsumeOrManipulateArtifact()

1 EList<Act iv i ty> getAct iv i t i e sThatConsumeArt i fac t (
2 Model swmamo,
3 Ar t i f a c t a r t i f a c t )
4 {
5 EList<Act iv i ty> r e s u l t = new BasicEList<Act iv i ty >() ;
6 /✯✯ 1 . i t e r a t e a l l a c t i v i t i e s in the model and s e l e c t r e l e van t a c t i v i t i e s ✯✯/
7 EList<Act iv i ty> a c t i v i t i e s = swmamo . g e tAc t i v i t y ( ) ;
8 for ( Ac t i v i ty act : a c t i v i t i e s ){
9 boolean a c c e s s e s a r t =f a l se ;

10 /✯✯ 1a . an a c t i v i t y i s r e l e van t i f i t consumes the cons ide red a r t i f a c t ✯✯/
11 EList<Art i f a c t> consumedar t i f ac t s = this . getConsumedArti facts ( act , swmamo) ;
12 for ( A r t i f a c t a : consumedar t i f ac t s )
13 i f ( this . sameArt i fact ( a r t i f a c t , a ) )
14 a c c e s s e s a r t=true ;
15 i f ( a c c e s s e s a r t )
16 r e s u l t . add ( act ) ;
17 }
18 return r e s u l t ;
19 }

Listing F.17: getActivitiesThatConsumeArtifact()

1 EList<Act iv i ty> getAct iv i t i e sThatCreateOrManipu la teArt i f ac t (
2 Model swmamo,
3 Ar t i f a c t a r t i f a c t )
4 {
5 EList<Act iv i ty> r e s u l t = new BasicEList<Act iv i ty >() ;
6 /✯✯ 1 . i t e r a t e a l l a c t i v i t i e s in the model and s e l e c t r e l e van t a c t i v i t i e s ✯✯/
7 EList<Act iv i ty> a c t i v i t i e s = swmamo . g e tAc t i v i t y ( ) ;
8 for ( Ac t i v i ty act : a c t i v i t i e s ){
9 boolean producesart =f a l se ;

10 /✯✯1a . an a c t i v i t y i s r e l e van t i f i t produces the cons ide red a r t i f a c t ✯✯/
11 EList<Art i f a c t> p roduc eda r t i f a c t s = this . g e tProducedArt i f ac t s ( act , swmamo) ;
12 for ( A r t i f a c t a : p r oduc eda r t i f a c t s )
13 i f ( this . sameArt i fact ( a r t i f a c t , a ) )
14 producesart=true ;
15 i f ( producesart )
16 r e s u l t . add ( act ) ;
17 }
18 return r e s u l t ;
19 }

Listing F.18: getActivitiesThatCreateOrManipulateArtifact()
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Appendix G.

Analysis Details for Changeability Patterns and MDE Traits

This Appendix includes the detailed results of the analyses performed in Chapter 7.

G.1. Pattern Occurrences for the 11 Case Studies

In this Section the identified occurrences of the proto-patterns from Section 7.1 are listed together with identified mitigating
factors. Table G.1 and Figure G.1 summarize the pattern occurrences.

Table G.1.: Summary of identified matches for proto-patterns from Section 7.1 in the case studies from the first and
third study (see Chapter 4).

Subsequent

Adjustment

Creation De-

pendence

Split Manu-

facture

Anchor

BO 3 1
BRF
BW

Oberon 5 1
SIW 3 2
VC 3 1

VCat 3 2
Carmeq

Cap1 1 1
Cap2a 1
Cap2b 4

All 19 7 4 1
Average 1.72 0.63 0.36 0.09

Figure G.1.: Occurrences of patterns on changeability concerns within the case studies.

Identified mitigating factors for subsequent adjustment in practice are:

❼ No change: 9 times it can be expected that the base artifact will not be change. Thereby, 4 times the base artifact
is a template.

❼ Minimal loss: 1 time the amount of content that can be loss is minimal.

❼ No need to maintain: 1 time there was no need to maintain the resulting artifacts through the whole live cycle.

❼ Resolved by alternative: 2 times there is an alternative activity that is used instead the second execution of the
initial creation
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❼ For 6 matches no mitigating factors could be identified. Instead it was reported that, e.g. developers use a copy
and paste workaround to preserve manually created content.

Identified mitigating factors for creation dependence in practice are:

❼ No amplification: 5 times no changeability issues could be identified for the successor activities of the matched
activity. Thus, no amplification is to be expected.

❼ For 2 match no mitigating factors could be identified.

List of matched pattern activities per MDE setting:

❼ BO

– creation dependence:

✯ “ApplyChecks” (depending artifact: ResultList) (No amplification)

– subsequent adjustment :

✯ “Generate Code & Tables” and “ModelS&AMs”

✯ “Generate Code & Tables” and “Write Business Logic”

✯ “Project to BO Model” and “Adapt BusinessObject Model” (No change)

❼ BRF – no matches identified

❼ BW – no matches identified

❼ Oberon

– subsequent adjustment :

✯ “Create DataModel” and “Bind to Business Object” (No change)

✯ “Create Floorplan” and “Bind to Business Object” (No change)

✯ “Create Floorplan” and “BindToQuery” (No change)

✯ “Create Floorplan” and “Manipulate Floorplan” (No change)

✯ “Create Floorplan” and “Add Event Handler” (No change)

– anchor :

✯ “define change transaction” and “apply changes”

❼ SIW

– split manufacture:

✯ “regenerateCode” and “mapToInternalSignature”

✯ “regenerateCode” and “AddCodeToSlot”

– subsequent adjustment :

✯ “Generate Proxy” and “Regenerate Proxy” (Minimal loss)

✯ “GenerateCode” and “mapToInternalSignature” (possible Base Artifacts: Template, Contextparame-
ters) (Resolved by alternative: regenerateCode)

✯ “GenerateCode” and “AddCodeToSlot” (possible Base Artifacts: Template, Contextparameters) (Resolved

by alternative: regenerateCode)

❼ VC

– creation dependence:

✯ “Generate process Context” (can amplify occurrences of subsequent adjustment with “Generate process
Context” as initial creation)

– subsequent adjustment :

✯ “Create Service Component” and “Define Data” (No need to maintain)

✯ “Generate process Context” and “Import Data Service”

✯ “Generate process Context” and “Create Service Component”

❼ VCat

– split manufacture:

✯ “install extension” and “customize extension”

✯ “install extension” and “update extension”

– subsequent adjustment :

✯ “acquire zip-file” and “update extension” (No change)

✯ “acquire zip-file” and “customize extension” (No change)

✯ “run installation script” and “customize extension” (No change)

❼ Carmeq – no matches identified

❼ Cap1

– subsequent adjustment :

✯ “Create Constructionmodel” and “Manipulate Constructionmodel”

– creation dependence:

✯ “Create Constructionmodel”

❼ Cap2a
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– subsequent adjustment :

✯ “Merge Parts of Model” and “Manipulate Result2”

❼ Cap2b

– creation dependence:

✯ “Generate Result7” (No amplification)

✯ “Generate Result8” (No amplification)

✯ “Word Import Result2” (No amplification)

✯ “Word Import Result3” (No amplification)

G.2. Manual Information Propagation within the 11 Case Studies

Following the matches of pattern manually transformed artifact pair are listed. Note that some artifact pairs are affected
by multiple activities. Table G.2 and Figure G.2 summarize the number of manually transformed artifacts pairs per case
study.

Table G.2.: Summary of identified matches for pattern manual information propagation in the case studies from the first
and third study (see Chapter 4).

# Activities that match pattern

manual information propagation

# manually transformed artifact

pairs

BO 5 7
BRF 3 4
BW 2 3

Oberon 2 2
SIW 1 2
VC 0 0

VCat 3 4
Carmeq 7 10

Cap1 5 9
Cap2a 1 1
Cap2b 0 0

All 29 42
Average 2.63 3.82

List of activities matched to manual information propagation per MDE setting:

❼ BO (5 activities, 7 manually transformed artifact pairs)

– “Model BusinessObject (BO)”: BO Model - Integration Scenario

– “Model BusinessObject (BO)”: BO Model - BO Specification

– “Analyse Requirements”: BO Specification - Requirements

– “Transform to ESR Model”: ESR BO Model - BO Model

– “Extend Template”: BO Template - BO Specification

– “Extend Template”: BO Template - Integration Scenario

– “CreateTestCase”: Integration Scenario - TestCase

❼ BRF (3 activities, 4 manually transformed artifact pairs)

– “TransformToBRF+Rules”: DecisionTable - Unstructured Rules

– “TransformToBRF+Rules”: Rule - Unstructured Rules

– “ChangeRuleSet”: Ruleset - Rule

– “Create BRSs 4”: BusinessRuleService - Unstructured Rules

❼ BW (2 activities, 3 manually transformed artifact pairs)

– “Model Container”: Container - InfoObject

– “Model Transformation”: Transformation Model - InfoSource

– “Model Transformation”: Transformation Model - Container

❼ Oberon (2 activities, 2 manually transformed artifact pairs)

– “Define Change Transaction”: Change Transaction - Floorplan

– “Manipulate Floorplan”: Floorplan - Anchor

❼ SIW (1 activities, 2 manually transformed artifact pairs)
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Figure G.2.: Manual information propagation and manually transformed artifact pairs within the case studies.

– “map to internal signature”: MappingSlot - BOR/Bapi Internal Signature

– “map to internal signature”: MappingSlot - Service Signatur

❼ VC (0 activities, 0 manually transformed artifact pairs)

❼ VCat (3 activities, 4 manually transformed artifact pairs)

– “create new extension”: empty extension template - local extension

– “customize extension”: local extension - TYPO3 database

– “customize extension”: local extension examples - local extension

– “create template”: TYPO3 template - design specification

❼ Carmeq (7 activities, 10 manually transformed artifact pairs)

– “Create Standard Document” SW Specification Template - AUTOSAR Standard Document Word

– “Create Standard Document” Concept Document - AUTOSAR Standard Document Word

– “Manipulate Standard Document” AUTOSAR Standard Document Word - Concept Document

– “Model” Basic SW Model - Graphics

– “Model Change” Graphics - Basic SW Model

– “Model” Basic SW Model - Concept Document

– “Model Change” Concept Document - Basic SW Model

– “Model” Basic SW Model - Table

– “Model Change” Table - Basic SW Model

– “Model” Basic SW Model - Workingcopy of BSW Model

– “Model Change” Workingcopy of BSW Model - Basic SW Model

– “Create Concept Document” Concept Document Template - Concept Document

– “Publish Standard Document” AUTOSAR Standard Document PDF - AUTOSAR Standard Document Word

– “Review 1: Tables” Released Table HTML - Table HTML

– “Review 2 Figures” Figure PNG - Released Figure PNG

❼ Cap1 (5 activities, 9 manually transformed artifact pairs)

– “Write Code”: Handwritten Code - UI-Prototype

– “Write Code”: Handwritten Code - Construction Model
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– “Manipulate Constructionmodel”: Construction Model - Specification model

– “Create Specification Model”: UI-Specification - Specification model

– “Create Specification”: Specification - Feature Lists

– “Create Specification”: Specification - Specification model

– “Create Specification”: Specification - GUI Widget Lists

– “Manipulate UI-Prototype”: Code - UI-Specification

– “Merge Versions of Specification Model”: Specification model - Specification model to be merged

❼ Cap2a (1 activities, 1 manually transformed artifact pair)

– “Manipulate Model”: Partial Model - Mail

❼ Cap2b (0 activities, 0 manually transformed artifact pairs)

G.3. Complexity of Activity Chains of the 11 Case Studies

This Section lists the identified lengths of activity chains. Thereby, Figure G.3 summarizes the collected data.

Figure G.3.: Summary of lengths of activity chains

List of lengths of activity chains measured per MDE setting:

❼ BO

– Change artifacts: BO Model, Requirements

– Target artifacts: S&AM Model, Tables, BO Code, DB Schema

– Changes:

✯ from artifact Requirements to artifact BO Code: 5 - 9 (Manual activities 4 - 7)

✯ from artifact Requirements to artifact Tables: 5 - 7 (Manual activities 4 - 5)

✯ from artifact Requirements to artifact DB Schema: 5 - 7 (Manual activities 4 - 5)

✯ from artifact Requirements to artifact S&AM Model: 6 - 9 (Manual activities 5 - 7)

✯ from artifact BO Model to artifact BO Code: 3 - 6 (Manual activities 1 - 5)

✯ from artifact BO Model to artifact Tables: 3 - 4 (Manual activities 1 - 3)

✯ from artifact BO Model to artifact DB Schema: 3 - 4 (Manual activities 1 - 3)

✯ from artifact BO Model to artifact S&AM Model: 4 - 6 (Manual activities 2 - 5)

– Common changes: all listed
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✯ Range: 3 - 9

✯ Range manual activities: 1 - 7

– Maximum length of activity chains: 9

– Maximum number of manual activities: 7

❼ BRF

– Change artifacts: BusinessRuleService, SAPProcess, Ruleset, DecisionTable, Rule

– Target artifacts: DBEntry, RuleClass

– Changes:

✯ from artifact SAPProcess to artifact RuleClass: 4 - 6 (Manual activities 2 - 4)

✯ from artifact SAPProcess to artifact DBEntry: 4 - 6 (Manual activities 2 - 4)

✯ from artifact BusinessRuleService to artifact RuleClass: 2 - 5 (Manual activities 1 - 3)

✯ from artifact BusinessRuleService to artifact DBEntry: 2 - 5 (Manual activities 1 - 3)

✯ from artifact Ruleset to artifact RuleClass: 2 - 3 (Manual activities 1 - 2)

✯ from artifact Ruleset to artifact DBEntry: 2 - 3 (Manual activities 1 - 2)

✯ from artifact DecisionTable to artifact RuleClass: 2 - 2 (Manual activities 1 - 1)

✯ from artifact DecisionTable to artifact DBEntry: 2 - 2 (Manual activities 1 - 1)

✯ from artifact Rule to artifact RuleClass: 2 - 2 (Manual activities 1 - 1)

✯ from artifact Rule to artifact DBEntry: 2 - 2 (Manual activities 1 - 1)

– Common changes: Change introduction in artifacts Ruleset, Rule, or Decision Table

✯ Range: 2 - 3

✯ Range manual activities: 1 - 2

– Maximum length of activity chains: 6

– Maximum number of manual activities: 4

❼ BW

– Change artifacts: InfoObject, Container, InfoSource, Layout, Query

– Target artifacts: Layout, HTML Report

– Changes:

✯ from artifact InfoObject to artifact Layout: 5 - 5 (Manual activities 5 - 5)

✯ from artifact InfoObject to artifact HTML Report: 6 - 8 (Manual activities 5 - 7)

✯ from artifact Container to artifact Layout: 4 - 4 (Manual activities 4 - 4)

✯ from artifact Container to artifact HTML Report: 5 - 7 (Manual activities 4 - 6)

✯ from artifact InfoSource to artifact HTML Report: 3 - 5 (Manual activities 2 - 4)

✯ from artifact Query to artifact Layout: 2 - 2 (Manual activities 2 - 2)

✯ from artifact Query to artifact HTML Report: 3 - 3 (Manual activities 2 - 2)

✯ from artifact Layout to artifact HTML Report: 2 - 2 (Manual activities 1 - 1)

– Common changes: Addition of new artifacts of role InfoSource and for changes in Layout and Query

✯ Range: 2 - 5

✯ Range manual activities: 1 - 4

– Maximum length of activity chains: 8

– Maximum number of manual activities: 7

❼ Oberon

– Change artifacts: Floorplan Template, Floorplan, Change Transaction

– Target artifacts: Floorplan, Configuration

– Changes:

✯ from artifact Floorplan Template to artifact Change Transaction: 2 - 7 (Manual activities 1 - 5)

✯ from artifact Floorplan Template to artifact Configuration: 3 - 8 (Manual activities 2 - 6)

✯ from artifact Floorplan to artifact Configuration: 3 - 8 (Manual activities 2 - 6)

✯ from artifact Change Transaction to artifact Configuration: 2 - 2 (Manual activities 2 - 2)

– Common changes: changes are most probably introduced on artifacts Floorplan and Change Transaction

✯ Range: 2 - 8

✯ Range manual activities: 2 - 6

– Maximum length of activity chains: 8

– Maximum number of manual activities: 6

❼ SIW

– Change artifacts: Service Signatur, Configuration, BOR/Bapi Internal Signature

– Target artifacts: Proxy Class - Method, ABAPObject - Slot, Mapping Class - Mapping Slot

– Changes:

✯ from artifact Configuration to artifact ABAPObject: 3 - 3 (Manual activities 1 - 1)
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✯ from artifact Configuration to artifact Slot: 3 - 4 (Manual activities 1 - 2)

✯ from artifact Configuration to artifact MappingSlot: 3 - 4 (Manual activities 1 - 2)

✯ from artifact Configuration to artifact MappingClass: 3 - 3 (Manual activities 1 - 1)

✯ from artifact Configuration to artifact Method: 3 - 3 (Manual activities 1 - 1)

✯ from artifact Service Signatur to artifact ABAPObject: 4 - 4 (Manual activities 1 - 1)

✯ from artifact Service Signatur to artifact MappingSlot: 4 - 5 (Manual activities 1 - 2)

✯ from artifact Service Signatur to artifact Slot: 4 - 5 (Manual activities 1 - 2)

✯ from artifact Service Signatur to artifact MappingClass: 4 - 4 (Manual activities 1 - 1)

✯ from artifact Service Signatur to artifact Method: 4 - 4 (Manual activities 1 - 1)

✯ from artifact Service Signatur to artifact ProxyClass: 1 - 1 (Manual activities 0 - 0)

✯ from artifact BOR/Bapi Internal Signature to artifact MappingSlot: 1 - 1 (Manual activities 1 - 1)

– Common changes: Changes are most probably introduced in Service Signature

✯ Range: 1 - 5

✯ Range manual activities: 0 - 2

– Maximum length of activity chains: 5

– Maximum number of manual activities: 2

❼ VC

– Change artifacts: VC Model, Process Model, Data Service

– Target artifacts: VC Model

– Changes:

✯ from artifact VC Model to artifact VC Model: 1 (Manual activities 1)

✯ from artifact Data Service to artifact VC Model: 1 - 5 (Manual activities 1 - 4)

✯ from artifact Process Model to artifact VC Model: 2 - 5 (Manual activities 1 - 4)

– Common changes: all listed

✯ Range: 1 - 5

✯ Range manual activities: 1 - 4

– Maximum length of activity chains: 5

– Maximum number of manual activities: 4

❼ VCat

– Change artifacts: local installation file, local extension, TYPO3 template, design specification

– Target artifacts: TYPO3 template, local extension, TYPO3 database

– Changes:

✯ from artifact local installation file to artifact TYPO3 database: 2 - 6 (Manual activities 0 - 2)

✯ from artifact local installation file to artifact local extension: 3 - 6 (Manual activities 0 - 2)

✯ from artifact local installation file to artifact TYPO3 template: 3 - 7 (Manual activities 1 - 2)

✯ from artifact local installation file to artifact database table: 3 - 6 (Manual activities 0 - 1)

✯ from artifact local extension to artifact TYPO3 database: 2 - 5 (Manual activities 0 - 3)

✯ from artifact local extension to artifact TYPO3 template: 2 - 6 (Manual activities 1 - 3)

✯ from artifact local extension to artifact database table: 2 - 5 (Manual activities 0 - 2)

✯ from artifact design specification to artifact TYPO3 template: 1 - 1 (Manual activities 1 - 1)

– Common changes: changes are introduced in local extension or design specification

✯ Range: 1 - 6

✯ Range manual activities: 0 - 3

– Maximum length of activity chains: 7

– Maximum number of manual activities: 3

❼ Carmeq

– Change artifacts: Concept Document, Basic SW Model, AUTOSAR Standard Document Word

– Target artifacts: AUTOSAR Standard Document PDF

– Changes:

✯ from artifact Concept Document to artifact AUTOSAR Standard Document PDF: 10 - 16 (Manual
activities 5 - 9)

✯ from artifact Basic SW Model to artifact AUTOSAR Standard Document PDF: 8 - 13 (Manual activities
3 - 6)

✯ from artifact AUTOSAR Standard Document Word to artifact AUTOSAR Standard Document PDF: 4
- 7 (Manual activities 2 - 3)

– Common changes: change introduction at Concept Document and Basic SW Model (for changes that concern
the figures and tables)

✯ Range: 8 - 16

✯ Range manual activities: 3 - 9

G-7



Appendix G. Analysis Details for Changeability Patterns and MDE Traits

– Maximum length of activity chains: 16

– Maximum number of manual activities: 9

❼ Cap1

– Change artifacts: UI-Specification, Specification model, Construction model

– Target artifacts: Specification, UI-Prototype, Generated Code, Handwritten code

– Changes:

✯ from artifact UI-Specification to artifact UI-Prototype: 2 - 2 (Manual activities 1 - 1)

✯ from artifact UI-Specification to artifact Specification: 4 - 7 (Manual activities 3 - 5)

✯ from artifact UI-Specification to artifact Generated Code: 4 - 8 (Manual activities 2 - 5)

✯ from artifact UI-Specification to artifact Handwritten Code: 8 - 11 (Manual activities 5 - 7)

✯ from artifact Specification model to artifact Specification: 3 - 6 (Manual activities 2 - 4)

✯ from artifact Specification model to artifact Generated Code: 3 - 7 (Manual activities 1 - 4)

✯ from artifact Specification model to artifact Handwritten Code: 5 - 8 (Manual activities 3 - 5)

✯ from artifact Specification model to be merged to artifact Specification: 4 - 5 (Manual activities 2 - 3)

✯ from artifact Specification model to be merged to artifact Generated Code: 4 - 6 (Manual activities 1 -
3)

✯ from artifact Specification model to be merged to artifact Handwritten Code: 6 - 7 (Manual activities 3
- 4)

✯ from artifact Construction Model to artifact Generated Code: 2 - 3 (Manual activities 0 - 1)

✯ from artifact Construction Model to artifact Handwritten Code: 4 - 4 (Manual activities 2 - 2)

– Common changes: Introduction of changes at Specification model

✯ Range: 3 - 8

✯ Range manual activities: 1 - 5

– Maximum length of activity chains: 11

– Maximum number of manual activities: 7

❼ Cap2a

– Change artifacts: Plain Text Part, Partial Model, Configuration

– Target artifacts: Result1, Result2

– Changes:

✯ from artifact Plain Text Part to artifact Result1: 2 - 5 (Manual activities 1 - 3)

✯ from artifact Plain Text Part to artifact Result2: 2 - 6 (Manual activities 1 - 4)

✯ from artifact Partial Model to artifact Result1: 3 - 5 (Manual activities 2 - 3)

✯ from artifact Partial Model to artifact Result2: 3 - 6 (Manual activities 2 - 4)

✯ from artifact Configuration to artifact Result1: 2 - 2 (Manual activities 1 - 1)

✯ from artifact Configuration to artifact Result2: 2 - 3 (Manual activities 1 - 2)

– Common changes: changes in Partial Model

✯ Range: 3 - 6

✯ Range manual activities: 2 - 4

– Maximum length of activity chains: 6

– Maximum number of manual activities: 4

❼ Cap2b

– Change artifacts: Partial Engineering Model, Partial Model

– Target artifacts: Result8, Placeholder Result3, Placeholder Result2, Result2, Result3

– Changes:

✯ from artifact Partial Engineering Model to artifact Result8: 2 - 3 (Manual activities 1 - 2)

✯ from artifact Partial Engineering Model to artifact Result2: 2 - 4 (Manual activities 1 - 3)

✯ from artifact Partial Engineering Model to artifact Placeholder Result2: 2 - 3 (Manual activities 1 - 2)

✯ from artifact Partial Engineering Model to artifact Result3: 2 - 4 (Manual activities 1 - 3)

✯ from artifact Partial Engineering Model to artifact Placeholder Result3: 2 - 3 (Manual activities 1 - 2)

✯ from artifact Partial Model to artifact Result8: 1 - 2 (Manual activities 0 - 1)

✯ from artifact Partial Model to artifact Result2: 1 - 3 (Manual activities 0 - 2)

✯ from artifact Partial Model to artifact Placeholder Result2: 1 - 2 (Manual activities 0 - 1)

✯ from artifact Partial Model to artifact Result3: 1 - 3 (Manual activities 0 - 2)

✯ from artifact Partial Model to artifact Placeholder Result3: 1 - 2 (Manual activities 0 - 1)

– Common changes: change introduced at Partial Engineering Model

✯ Range: 2 - 4

✯ Range manual activities: 1 - 3

– Maximum length of activity chains: 4

– Maximum number of manual activities: 3
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G.4. Phases within the 11 Case Studies

In the following phases and synchronization points for the different case studies are listed. Tables G.3 and G.4 as well as
Figure G.4 summarize the identified local foci, local synchronization points, global synchronization points and phases.

Table G.3.: Summary of synchronization points in the case studies from the first and third study (see Chapter 4).

# global syn-

chronization

points

# synchroniza-

tion points in

main focus

# global phases # local phases in

main focus

BO 0 6 1 3
BRF 1 1 2 2
BW 1 3 1 1

Oberon 1 3 1 1
SIW 0 1 1 2
VC 0 0 1 1

VCat 0 2 1 1
Carmeq 2 3 2 3

Cap1 1 6 1 4
Cap2a 3 3 2 2
Cap2b 2 4 1 2

All 11 32 14 22
Average 1 2.9 1.27 2

Table G.4.: Summary of synchronization points local foci of the case studies from the first and third study (see Chapter
4).

local

focus

# global synchro-

nization points

# local synchro-

nization points

# local phase per

focus

BO a 0 4 1
b 0 6 3

BRF a 1 2 2

BW a 1 2 1
b 1 5 1
c 1 2 1

Oberon a 1 2 1

SIW a 0 1 2
b 0 3 1

VCat a 0 2 1

Carmeq a 2 1 2
b 2 1 3
c 2 5 4
d 2 5 4

Cap1 a 1 3 2
b 1 3 3
c 1 5 4

Cap2b a 2 2 2
b 2 2 2

All 11 56 40
Average 1 2.94 2.1

List of synchronization points identified per MDE setting:

❼ BO
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– Extensive manual activities (potential miniphases): Define Requirements with Customer, Model Busines-
sObject (BO), Adapt BusinessObject Model, ModelS&AMs, Write Business Logic,

– Global synchronization points: 0

– Global Phases: 1 (18 activities)

– Miniphases: 0

– Local focuses with local synchronization points

✯ a Preparation of new (extended) templates for the development

➲ Local synchronization points: Extend Template , Analyse Requirements , Define Requirements with
Customer, Project to BO Model

➲ Combined local focus: Extend Template , Analyse Requirements, Define Requirements with Cus-
tomer, Project to BO Model

➲ Size of local focus: 4 activities out of 18 activities

➲ Phases: 0

➲ Miniphases: 1

✯ b Main development path

➲ Local synchronization points: Generate Code & Tables , Transform to ESR Model , Analyse Require-
ment, Define Requirements with Customer, Adapt BusinessObject Model, Test Local Interaction

➲ Combined local focus: Generate Code & Tables , Transform to ESR Model , Analyse Requirement,
Define Requirements with Customer, Model BusinessObject (BO) , Extend Template , Adapt Busi-
nessObject Model , Project to BO Model, ModelS&AMs, Test Local Interaction, Write Business
Logic

➲ Size of local focus: 11 activities out of 18 activities

➲ Phases: 2

➲ Miniphases: 1 (Define Requirements with Customer) – Adapt BusinessObject Model is combined
with first phase

➲ After: Define Requirements with Customer; Analyse Requirements – before: Adapt BusinessObject
Model; Transform to ESR Model; Generate Code & Tables: Model BusinessObject (BO) , Extend
Template, Project to BO Model

➲ After Generate Code & Tables – before Test Local Interaction: ModelS&AMs, Write Business Logic

❼ BRF

– Extensive manual activities (potential miniphases): ChangeRuleSet, TransformToBRF+Rules, Implement
Process 1, DefineUnstructuredRules

– Global synchronization points: 1

✯ TieBRSToCode 1

– Global Phases: 2 (together 13 activities)

– Miniphases: 0

✯ Before TieBRSToCode 1: Implement Process 1, Create BRS 2, Create BRS 3, DefineUnstructuredRules,
Create BRSs 4

✯ After all: DefineRuleset, ChangeRuleSet, ConvertToDBEntriesAndRuleClass, Simulation, GapAnaly-
sis, OverlapContradictionAnalysis, TransformToBRF+Rules

– Local focuses with local synchronization points:

✯ a Preparation of process for configuration

➲ Local synchronization points: DefineRuleset, TieBRSToCode 1, ChangeRuleSet

➲ Combined local focus: Implement Process 1, Create BRS 2, Create BRS 3, DefineUnstructuredRules,
Create BRSs 4, TieBRSToCode 1, ChangeRuleSet, DefineRuleset

➲ Size of local focus: 8 activities out of 13 activities

➲ Phases: 1

➲ Miniphases: 1 (ChangeRuleSet)

➲ Before all: Implement Process 1, Create BRS 2, Create BRS 3, DefineUnstructuredRules, Create
BRSs 4

❼ BW

– Extensive manual activities (potential miniphases): Model Container, Model Data, Model Transforma-
tion, Program Transformation, DefineContainerSubset, DefineQuery, Define Layout, CreateInfoSource, De-
fineScheduling

– Global synchronization points: 1

✯ Interprete

– Global Phases: 1 (10 activities)

– Miniphases: 0

✯ Before Interprete: Model Container, Model Data, CreateInfoSource, Model Transformation, Program
Transformation, DefineContainerSubset, DefineScheduling, DefineQuery, Define Layout

– Local focuses with local synchronization points:
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✯ a Development of layout of reports including transformation of data

➲ Local synchronization points: Model Container, Model Data, Interprete

➲ Combined local focus: Model Container, Model Data, Model Transformation, Program Transforma-
tion, DefineContainerSubset, DefineQuery, Define Layout, Interprete

➲ Size of local focus: 8 activities out of 10 activities

➲ Phases: 1

➲ Miniphases: 0 (Model Container and Model Data are combined with the phase)

➲ After: Model Container; Model Data – before: Interprete: Model Transformation, Program Trans-
formation, DefineContainerSubset, DefineQuery, Define Layout

✯ b Development of layout of reports (local to development of layout of reports including transformation
of data)

➲ Local synchronization points: Define Layout, DefineQuery, DefineContainerSubset, Model Con-
tainer, Model Data, Interprete

➲ Combined local focus: Define Layout, DefineQuery, DefineContainerSubset, Model Container, Model
Data, Interprete

➲ Size of local focus: 6 activities out of 10 activities

➲ Phases: 0

➲ Miniphases: 1 phase (results from combination of 5 miniphases)

✯ c Configuration of data retrieval

➲ Local synchronization points: DefineScheduling, CreateInfoSource, Interprete

➲ Combined local focus: DefineScheduling, CreateInfoSource, Interprete

➲ Size of local focus: 3 activities out of 10 activities

➲ Phases: 0

➲ Miniphases: 1 phase (results from combination of 2 miniphases)

❼ Oberon

– Extensive manual activities (potential miniphases): Manipulate Floorplan, Define Change Transaction

– Global synchronization points: 1

✯ Create Floorplan

– Global Phases: 1 (9 activities)

– Miniphases: 0

✯ After Create Floorplan: Create DataModel, BindToQuery, Bind to Business Object, Add Event Handler,
RegisterOBNReference, Define Change Transaction, Change Configuration, Manipulate Floorplan

– Local focuses with local synchronization points:

✯ a Main path

➲ Local synchronization points: Define Change Transaction, Create Floorplan, Change Configuration

➲ Combined local focus: Define Change Transaction, Create Floorplan, Create DataModel, BindTo-
Query, Bind to Business Object, Add Event Handler, Manipulate Floorplan, Change Configuration

➲ Size of local focus: 8 activities out of 9 activities

➲ Phases: 1

➲ Miniphases: 0 (Define Change Transaction is combined with the phase)

➲ After: Create Floorplan – before: Define Change Transaction; Change Configuration: Create Data-
Model, BindToQuery, Bind to Business Object, Add Event Handler, Manipulate Floorplan

❼ SIW

– Extensive manual activities (potential miniphases): AddCodeToSlot, mapToInternalSignature

– Global synchronization points: 0

– Global Phases: 1 (8 activities)

– Miniphases: 0

– Local focuses with local synchronization points:

✯ a Main path

➲ Local synchronization points: GenerateCode

➲ Combined local focus: Create SIW Project, Set Parameters, Generate Proxy, AddCodeToSlot, map-
ToInternalSignature, GenerateCode

➲ Size of local focus: 6 activities out of 8 activities

➲ Phases: 2

➲ Miniphases: 0

➲ Before: GenerateCode: Create SIW Project, Set Parameters, Generate Proxy

➲ After: GenerateCode: AddCodeToSlot, mapToInternalSignature

✯ b Local to main path: preparation of project

➲ Local synchronization points: GenerateCode, Set Parameters, Create SIW Project
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➲ Combined local focus: Create SIW Project, AddCodeToSlot, mapToInternalSignature, Generate-
Code, Set Parameters

➲ Size of local focus: 5 activities out of 8 activities

➲ Phases: 1

➲ Miniphases: 0

➲ After: AddCodeToSlot, mapToInternalSignature

❼ VC

– Global synchronization points: 0

– Global Phases: 1 (10 activities)

– Miniphases: 0

– Candidates: Calculated local synchronization points: 0

– Extensive manual activities (potential miniphases): ManipulateVCModel, Create Dummy Data, Create Ser-
vice Component, Define Data, Model Process, Import Data Service

❼ VCat

– Extensive manual activities (potential miniphases): Create Template, Customize Extension, Perform UI Test,
Create New Extension

– Global synchronization points: 0

– Global Phases: 1 (10 activities)

– Miniphases: 0

– Local focuses with local synchronization points:

✯ a Main path

➲ Local synchronization points: run installation script, download files of tested TYPO3 version

➲ Combined local focus: install extension, perform UI-Test, customize extension, install configuration
extension, create template, download files of tested TYPO3 version, run installation script

➲ Size of local focus: 7 activities out of 10 activities

➲ Phases: 1

➲ Miniphases: 0

➲ After all: install extension, perform UI-Test, customize extension, install configuration extension,
create template

❼ Carmeq

– Extensive manual activities (potential miniphases): Create Concept Document, Model, Model Change, Ma-
nipulate Standard Document, Review 1: Tables, Review 2 Figures, Review 3 (Integrated Figures and Tables),
Review 4 (Document Text)

– Global synchronization points: 2

✯ Create Bugzilla Management Tasks

✯ Create Concept Document

– Global Phases: 1 (18 activities)

– Miniphases: 1 (Create Concept Document)

✯ After all: Model Change, Model, Generate Figures and Tables, Table-Diff (SVN), Figure-Diff (Beyond-
Compare), Review 1: Tables, Review 2 Figures, Create Standard Document, Manipulate Standard
Document, Integrate Table To Word (Using Macro), Update Tables, Review 3 (Integrated Figures and
Tables), Review 4 (Document Text), Publish Standard Document, Integrate Figure To Word (Using
Macro), Update Figures

– Local focuses with Local synchronization points::

✯ a work on standard document without figures and tables

➲ Local synchronization points: Create Standard Document, Create Bugzilla Management Tasks,
Create Concept Document,

➲ Combined local focus: Manipulate Standard Document, Integrate Table To Word (Using Macro),
Update Tables, Review 3 (Integrated Figures and Tables), Review 4 (Document Text), Publish
Standard Document, Integrate Figure To Word (Using Macro), Update Figures, Create Concept
Document, Create Standard Document, Create Bugzilla Management Tasks

➲ Size of local focus: 11 activities out of 18 activities

➲ Phases: 1

➲ Miniphases: 1 (Create Concept Document)

➲ After all: Manipulate Standard Document, Integrate Table To Word (Using Macro), Update Tables,
Review 3 (Integrated Figures and Tables), Review 4 (Document Text), Publish Standard Document,
Integrate Figure To Word (Using Macro), Update Figures

✯ b Main Path

➲ Local synchronization points: Generate Figures and Tables, Create Bugzilla Management Tasks,
Create Concept Document
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➲ Combined local focus: Generate Figures and Tables, Create Bugzilla Management Tasks, Create
Concept Document, Model Change, Model, Table-Diff (SVN), Figure-Diff (Beyond-Compare), Re-
view 1: Tables, Review 2 Figures, Integrate Table To Word (Using Macro), Update Tables, Review
3 (Integrated Figures and Tables), Publish Standard Document, Integrate Figure To Word (Using
Macro), Update Figures

➲ Size of local focus: 15 activities out of 18 activities

➲ Phases: 2

➲ Miniphases: 1 (Create Concept Document)

➲ After: Create Bugzilla Management Tasks; Create Concept Document – before: Generate Figures
and Tables: Model Change, Model

➲ After: Generate Figures and Tables: Table-Diff (SVN), Figure-Diff (Beyond-Compare), Review
1: Tables, Review 2 Figures, Integrate Table To Word (Using Macro), Update Tables, Review 3
(Integrated Figures and Tables), Publish Standard Document, Integrate Figure To Word (Using
Macro), Update Figures

✯ c Creation of Tables

➲ Local synchronization points: Review 1: Tables, Table-Diff (SVN), Generate Figures and Tables,
Create Bugzilla Management Tasks, Create Concept Document, Integrate Table To Word (Using
Macro), Update Tables

➲ Combined local focus: Review 1: Tables, Table-Diff (SVN), Generate Figures and Tables, Create
Bugzilla Management Tasks, Create Concept Document, Model Change, Model, Integrate Table To
Word (Using Macro), Update Tables, Review 3 (Integrated Figures and Tables), Publish Standard
Document

➲ Size of local focus: 11 activities out of 18 activities

➲ Phases: 2

➲ Miniphases: 2 (Create Concept Document, Review 1: Tables)

➲ After: Create Bugzilla Management Tasks; Create Concept Document – before: Generate Figures
and Tables: Model Change, Model

➲ After all: Review 3 (Integrated Figures and Tables), Publish Standard Document

✯ d Creation of Figures

➲ Local synchronization points: Review 2 Figures, Figure-Diff (Beyond-Compare), Generate Figures
and Tables, Create Bugzilla Management Tasks, Create Concept Document, Integrate Figure To
Word (Using Macro), Update Figures

➲ Combined local focus: Review 2 Figures, Figure-Diff (Beyond-Compare), Generate Figures and
Tables, Create Bugzilla Management Tasks, Create Concept Document, Model Change, Model,
Integrate Figure To Word (Using Macro), Update Figures, Review 3 (Integrated Figures and Tables),
Publish Standard Document

➲ Size of local focus: 11 activities out of 18 activities

➲ Phases: 2

➲ Miniphases: 2 (Create Concept Document, Review 2 Figures)

➲ After: Create Bugzilla Management Tasks; Create Concept Document – before: Generate Figures
and Tables Model Change , Model

➲ After all: Review 3 (Integrated Figures and Tables), Publish Standard Document, Integrate Figure
To Word (Using Macro), Update Figures

❼ Cap1

– Extensive manual activities (potential miniphases): Manipulate UI-Prototype, Create/Manipulate UI-Specification,
Manipulate Specification Model, Create Specification, Manipulate Construction Model, Write Code

– Global synchronization points: 1

✯ Create/Manipulate UI-Specification

– Global Phases: 1 (14 activities)

– Miniphases: 0 (Create/Manipulate UI-Specification is combined with phase)

✯ After all: Generate UI-Prototype, Manipulate UI-Prototype, Create Specification Model, Generate Parts
for Specification, Create Specification, Manipulate Specification Model, Diff. Models, Merge Versions of
Specification Model, Create Constructionmodel, Manipulate Constructionmodel, Validation, Generated
Code, Write Code

– Local focuses with Local synchronization points::

✯ a Development of UI-Prototype (which is later reused to write code)

➲ Local synchronization points: Manipulate UI-Prototype, Generate UI-Prototype, Create/Manipu-
late UI-Specification, Write Code

➲ Combined local focus: Create/Manipulate UI-Specification, Manipulate UI-Prototype, Generate UI-
Prototype, Write Code

➲ Size of local focus: 4 activities out of 14 activities

➲ Phases: 0

➲ Miniphases: 2 (Create/Manipulate UI-Specification and Manipulate Prototyp with Write Code)
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✯ b Development of Specification as additional product

➲ Local synchronization points: Generate Parts for Specification, Create Specification Model, Cre-
ate/Manipulate UI-Specification, Create Specification

➲ Combined local focus: Generate Parts for Specification, Create Specification Model, Create/Manipu-
late UI-Specification, Manipulate Specification Model, Diff. Models, Merge Versions of Specification
Model, Create Specification

➲ Size of local focus: 7 activities out of 14 activities

➲ Phases: 1

➲ Miniphases: 2 (Create/Manipulate UI-Specification, Create Specification )

➲ After: Create Specification Model; Create/Manipulate UI-Specification – before: Generate Parts for
Specification; Create Specification: Manipulate Specification Model, Diff. Models, Merge Versions
of Specification Model

✯ c Main development path

➲ Local synchronization points: Generated Code, Create Constructionmodel, Create Specification
Model, Create/Manipulate UI-Specification, Manipulate Constructionmodel, Write Code

➲ Combined local focus: Create/Manipulate UI-Specification, Generated Code, Create Construction-
model, Create Specification Model, Manipulate Specification Model, Diff. Models, Merge Versions
of Specification Model, Manipulate Constructionmodel, Write Code

➲ Size of local focus: 9 activities out of 14 activities

➲ Phases: 1

➲ Miniphases: 3 (Create/Manipulate UI-Specification, Manipulate Constructionmodel, Write Code)

➲ After: Create Specification Model; Create/Manipulate UI-Specification – before: Create Construc-
tionmodel; Manipulate Constructionmodel; Generated Code; Write Code: Manipulate Specification
Model, Diff. Models, Merge Versions of Specification Model

❼ Cap2a

– Extensive manual activities (potential miniphases): Create/Manipulate Plain Text Part, Manipulate Model,
Manipulate Result2

– Global synchronization points: 3

✯ Create/Manipulate Configuration

✯ Merge Parts of Model

✯ Manipulate Result2

– Global Phases: 1 (7 activities)

– Miniphases: 1 (Manipulate Result2)

✯ Before all: Create/Manipulate Plain Text Part, Create Model, Manipulate Model, Check References in
Model

❼ Cap2b

– Extensive manual activities (potential miniphases): Manipulate Engineering Model, Manipulate Result3,
Manipulate Result2

– Global synchronization points: 2

✯ Create Engineering Model

✯ Manipulate Engineering Model

– Global Phases: 1 (11 activities)

– Miniphases: 0 (Manipulate Engineering Model is connected to phase)

✯ After all: Check Engineering Model, Generate Result9, Generate Result5, Generate Result7, Generate
Result8, Word Import Result2, Manipulate Result2, Word Import Result3, Manipulate Result3

– Local focuses with Local synchronization points::

✯ a Development of EVKonzept

➲ Local synchronization points: Word Import Result2, Create Engineering Model, Manipulate Engi-
neering Model, Manipulate Result2

➲ Combined local focus: Word Import Result2, Create Engineering Model, Manipulate Engineering
Model, Manipulate Result2

➲ Size of local focus: 4 activities out of 11 activities

➲ Phases: 0

➲ Miniphases: 2 (Manipulate Engineering Model, Manipulate Result2)

✯ b Development of Result3

➲ Local synchronization points: Word Import Result3, Create Engineering Model, Manipulate Engi-
neering Model, Manipulate Result3

➲ Combined local focus: Word Import Result3, Create Engineering Model, Manipulate Engineering
Model, Manipulate Result3

➲ Size of local focus: 4 activities out of 11 activities

➲ Phases: 0

➲ Miniphases: 2 (Manipulate Engineering Model, Manipulate Result3)
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Figure G.4.: Summary of order of global and local synchronization points and phases
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Appendix H.

Literature on Support for Evolution in Context of MDE

As indicated in the conclusion in Section 12.3.2, a small classification of what change types are considered within exemplary
approaches for evolution support from literature was made. This appendix shows this classification. An overview how
evolution of languages or transformations is addressed in literature is given in this section (summarized in Table H.1).
Note that evolution of single tools is not in focus of the following discussed research works.

First there are approaches that support specific changes of model operations (C1 ), e.g. MDPE workbench (as described
by Fritzsche and Johannes [83] and Mohagheghi et al. [146]) capsules the application of an extensible set of performance
analysis techniques on models.

Another example for a specific supported change is the MasterCraft code generator presented by Kulkarni et al. in [120].
The generator is built such that it can easily be configured to implement architectural decisions taken within a project.

Other approaches address the change of automated activities in a more general form. For example, in [121] Küster et
al. discuss a method for incremental development of a transformation chain and Yie et al. [216] approach the adaption of
a fully automated transformation chain. Both approaches work for automated activities that are implemented in form of
a transformation chain.

Some approaches deal with language evolution and migration of models, such that they become valid for a new version
of the language (C2 ). For example, Garcés et al. use the differences between two metamodels to generate a transformation
that migrates the corresponding models [87]. Further examples are the Modif metamodel presented by Babau and Kerboeuf
in [12], Model Change Language (MCL) presented by Narayanan et al. in [150], or the usage of higher-order model
transformations for co-evolution of metamodels and models (as presented by Cicchetti et al. [43], Meyers et al. [142], or
Van den Brand et al. [199]). An example for co-evolution support through the use of transformation pattern are presented
by Wachsmuth [208]. Finally, Gruschko et al. present a migration process to synchronize models with evolving meta
models [93].

A special example for an approach that supports language evolution is presented by Demuth et al. in [49]. This approach
supports the adaption of constraints according to the evolution of a meta model.

From the viewpoint of an MDE setting, all these approaches address the evolution of modeling languages (including
co-evolution of meta models and models), only, and conform to change type C2 .

Some MDE approaches expect specific simultaneous changes of used languages and transformations (co-evolution of
meta models and transformations). For example, the OMG’s MDA [154] and the migration process presented in [72]
expect exchange of languages and transformations to address a new target platform for a software system. Other ap-
proaches deal with systematically adapting transformations according to language evolution (C1 and C2 ). For example,
Herrmannsdoerfer et al. propose in [97] a systematic strategy and Levendovszky et al. propose in [126] a semi-automated
support for the adaption of the model transformation according to changes in a meta model are proposed. Vermolen et
al. lift the semi-automated adaption of transformations to modeling languages on a more technology-independent layer by
allowing also migrations of programming languages or data structures [203].

Meyers et al. subdivide metamodel- and model evolution into four primitive scenarios, describing how evolution of
models, metamodels, or transformations enforces co-evolution among each other [141, 140]. The resulting scenarios are
combinations of the change types C1 and C2 .

Finally, there are approaches that lead to an addition of input models to an automated activity, which is exchanged or
evolved. Specific side effects are an increasing number of models (C4 ) and potentially modeling languages (C5 ). Further,
in most cases the introduction of a new input model leads to an additional manual modeling activity for creating this new
model (C6 ).

An example is presented by Johannes and Fernandez in [104], where a system of DSLs that are used in combination
can be extended due to the hierarchical structure of the DSLs. Similarly, Estublier et al. present in [61] a modifiable
interpreter. Here a composition model is used to define how different domain-specific models are related.

To summarize, none of the approaches considers substantial structural evolution. Further, support for structural
evolution that is not substantial is provided by two approaches for specific changes only.
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Table H.1.: Change types considered in literature on evolution support (� = specific changes covered; ◦
= approach provides solution with assumptions on the language or implementation to be
changed; • = approach with a general coverage of the change type)

Kind of Changes\Approaches [146]

[120]

[121]

[216]

[87] [150]

[12] [43]

[142] [199]

[208] [93]

[154]

[72]

[97]

[126]

[203] [141]

[140]

[104] [61]

Non-Structural Changes

C1 exchange automated activity � ◦ � � � ◦ ◦ ◦

C2 exchange language ◦ � ◦ • ◦ ◦

C3 exchange tool

Structural Changes

C4 change number of artifacts � �

C5 change number of languages � �

C6 change number of manual ac-
tivities

� �

C7 change number of tools

C8 change number of automated
activities

C9 change order of manual / au-
tomated activities
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Appendix I.

Overview of Publications

Following, publications are listed that were created in context of this research and are basis for the
thesis.

Selected Publications In [P1] the research plan for this thesis is presented and discussed. In [P5] a
survey on mega model research is given. The Software Manufacture Model language is presented in [P6].
[P2] introduces the Software Manufacture Model Pattern notation together with four proto-patterns.
The research on MDE evolution will be published in [P4].

Further, the case studies that were captured in context of this research, are summarized and discussed
in different reports. Thereby, [P3] (SAP case studies) is published as technical report. For the other
reports (for the Capgemini case studies, the Carmeq case study, and the VCat case study) the final
permission for publication from the cooperation partners is still missing. The attached CD includes
these reports and models of the case studies VCat, Carmeq, Cap1, Cap2a and Cap2b. Since all three
reports are not yet published as technical reports, the three reports should be treated confidential and
are explicitly attached for the reviewers of the thesis, only. They shall not be shared with third parties.
As mentioned in Chapter 4, the names of activities and artifacts is the Capgemini case studies have
been substituted within this thesis, in order to not get in conflict with the permission process. The CD
includes the mapping between names used within this thesis and in the reports (in form of an excel file).

Additional Publications In addition to the publications that will be basis for the thesis, some additional
work has been done in context of the research on model management at the System Analysis and
Modeling group. Thereby, the consequences of the structure of MDE on the design of build servers ([A12])
is discussed. Further works concern the tracing in model management ([A1], [A10]) and automated
composition of model operations ([A11]).

Finally, some publications on related topics are: [A6], [A5], [A3], [A7], [A8], [A4], [A9], and [A2].
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