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Introduction

Consider the first boundary value problem for a second order elliptic equation
with small parameter 0 < ε � 1,

�εu := εΔu+ a1(x, y)∂xu+ a2(x, y)∂yu = f(x, y), for (x, y) ∈ Ω,
u = g(x, y), for (x, y) ∈ ∂Ω.

(0.1)
Here, Ω = {(x, y) ∈ R

2 : x2 + y2 < R2} is the disk of radius R with centre at
the origin, Δ is the Laplace operator in the plane, the coefficients a1 and a2
are assumed to be smooth functions in a neighbourhood of the closure of Ω,
and f , g are smooth functions in the closure of Ω and at the boundary of Ω,
respectively. From a priori estimates of the Schauder type it follows that for
every fixed ε > 0 problem (0.1) has a unique solution u = u(x, y; ε), see for
instance [3, Ch. 3]. We are interested in studying the asymptotic behaviour of
the solution u as ε → 0.

∗Institute of Mathematics RAS, Ufa, Russia, oasultanov@gmail.com
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Assume that the dynamical system

ẋ = a1(x, y),
ẏ = a2(x, y),

(0.2)

t ≥ 0, has a unique stationary solution x = 0, y = 0 in Ω. We focus on the case
where this solution is asymptotically stable, i.e., the trajectories of the system
point towards the domain Ω and tend to the origin.

It should be noted that boundary value problem (0.1) contains a small pa-
rameter multiplying the highest order derivatives. It is known [12, 4] that the
behaviour of the solution to (0.1) depends on the characteristics of the limit
equation �0u = f . The well-known perturbation method for constructing an
asymptotic solution of problem (0.1) starts with a “good” solution of the limit
problem. If such a solution is available, it can be glued together with a boundary
layer constructed by transition to stretched coordinates x′ =

√
εx and y′ =

√
εy.

This method falls short of providing an asymptotic solution of problem (0.1),
for under the presence of singular point of the vector field a = (a1, a2) the
limit problem fails to possess any “good” solution. Moreover, the approxima-
tion obtained in this way grows exponentially as ε → 0, which makes the use
of boundary layer inefficient. Hence, the study of (0.1) requires more advanced
techniques.

Problem (0.1) appears in the study of white noise effect in stability theory
of fixed points of dynamical system (0.2). For this purpose one considers the
perturbed equations in the form of stochastic differential equations

dXt = a1(Xt, Yt)dt+
√
2ε dW 1

t ,

dYt = a2(Xt, Yt)dt+
√
2ε dW 2

t

(0.3)

under the initial condition X0 = x, Y0 = y. Here, W 1
t (ω) and W 2

t (ω) are
independent one-dimensional Winer processes defined on a probability space
(X ,A, P ), where X is arbitrary nonempty set, A a sigma-algebra, and P a
probability measure. The solution Xt(ω), Yt(ω) of this system is a stochastic
process which depends on the parameter ε > 0. It is well known [11] that
the trajectories of (0.3) leave any bounded domain in R

2 with probability one.
Hence, there is no stability of the fixed point x = 0, y = 0 under white noise
perturbations. Denote by

τΩ(ω) = inf{t ≥ 0 : (Xt(ω), Yt(ω)) /∈ Ω}
the first exit time from the domain Ω. It is of interest to compute the mean
exit time EτΩ of stochastic trajectories (Xt(ω), Yt(ω)), when the noise intensity
is sufficiently small, i.e. 0 < ε � 1. It is worth pointing out that the solution
of elliptic equation (0.1) is associated with certain probabilistic parameters of
stochastic trajectories. For instance, if f ≡ −1 and g = 0, then u(x, y; ε) ≡
τΩ (see [10], p. 110). Hence it follows that asymptotic analysis of solution of
boundary value problem (0.1) as ε → 0 is of great importance in the research
of dynamical systems (0.2) under white noise perturbation.

As but prime example let us consider boundary value problem (0.1) in di-
mension one, i.e. n = 1,

εu′′
xx − xu′

x = −1, for x ∈ (−1, 1),
u(−1) = 0,
u(1) = 0,
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where 0 < ε � 1. The solution is given by

u(x; ε) = −1

ε

∫ x

−1

exp(s2/2ε)

∫ s

0

exp(−z2/2ε)dzds.

Using Laplace’s method one finds an asymptotic expansion for the solution as
ε → 0. Namely,

u(x; ε) = e1/2ε
√

επ

2

(
1 + ε+ 3ε2 +O(ε3)

)
,

as ε → 0, the expansion being uniform in x in each interval |x| ≤ 1 − δ with
δ > 0. It should be noted that the solution has a growing exponential in its
asymptotic expansion which does not depend on x in the main term. Apparently,
such intriguing effects can also appear in the two-dimensional case to be studied
below.

Such problems have been investigated using probabilistic methods. In par-
ticular, an exponential estimate for the solution of (0.1) was found in [11] for
the case of f ≡ −1 and g = 0. The work [7] presents a method for obtaining the
leading term of asymptotic expansion of the solution u. In [5], one finds a proof
of this formula for the case of potential vector fields a, and in [9] a proof for
arbitrary vector fields. However, the construction of full asymptotic expansion
for solution (0.1) still remains an open problem.

The present paper is devoted to asymptotic analysis of boundary value prob-
lem (0.1) in the spatial case, where the characteristics of limit equation bear
radial symmetry. In other words, the stationary solution of system (0.2) is ac-
tually a proper node. Then equation (0.1) can be written in the usual polar
coordinates (r, ϕ) as

ε(∂2
r + r−1∂r + r−2∂2

ϕ)u+ b(r)∂ru = f(r, ϕ), if r < R,
u = g(ϕ), if r = R,

(0.4)

where b(r) = −r+O(r2) as r → 0. Since the substitution x = r cosϕ, y = r sinϕ
has a singular point r = 0, there appears an additional boundary condition
|u(0, ϕ; ε)| < ∞.

In the particular case b(r) = −r there is an explicit formula for the solution,
and so we get full information about its asymptotics. The study of this case
allows one to detect a relation between the right-hand side f(r, ϕ) and the
appearance of exponential growth in the solution. To wit, an exponential growth
in the solution of (0.4) appears only in the case when f(r, ϕ) has nonzero average
value. This remark and the construction of asymptotic expansion for solution
(0.4) with b(r) = −r constitute our contribution.

The paper contains five sections. By superposition principle, the general
solution of problem (0.1) splits into the sum of two functions, the first one
satisfying the homogeneous differential equation and inhomogeneous boundary
condition and the second functions satisfying the inhomogeneous differential
equation and homogeneous boundary condition. In Section 1 we study the
boundary value problem in the case where f(r, ϕ) ≡ 0. Section 2 is devoted to
the case g(ϕ) ≡ 0. In Section 3 we treat in detail the case where b(r) = −r. After
a short conclusion of Section 4 we adduce proofs of main asymptotic formulas
in Section 5.
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1 The case of homogeneous differential equation

We first observe that the functions g at the boundary of Ω can be though of as
functions of ϕ ∈ [0, 2π] satisfying g(0) = g(2π). The arc length at the circle ∂Ω
is ds = Rdϕ, hence the scalar product in the space L2(∂Ω) looks like that at
the unit circle

(g, h)L2(∂Ω) =
1

2π

∫ 2π

0

g(ϕ)h(ϕ)dϕ.

We look for a formal solution to boundary value problem (0.4) in the form
of Fourier series

u(r, ϕ; ε) =
∞∑

k=−∞
eıkϕUk(r; ε), (1.1)

on the interval [0, 2π], r ∈ [0, R] being a parameter. The coefficients satisfy the
boundary value problem

lkUk :=
(
ε(∂2

r + r−1∂r − k2r−2) + b(r)∂r

)
Uk(r; ε) = 0, if r < R,

Uk(R; ε) = Gk,
|Uk(0; ε)| < ∞,

(1.2)
where

Gk =
1

2π

∫ 2π

0

e−ıkϕg(ϕ)dϕ

are the Fourier coefficients of the Dirichlet data. For k 
= 0 there is an additional
boundary condition at the singular point r = 0, namely Uk(0; ε) = 0. This
condition arises from the claim of continuity of solution.

If k = 0, then U0(r; ε) ≡ G0, for the solution of (1.2) is unique. For k 
= 0, we
are able to estimate the solution of (1.2). Indeed, we shall construct a solution
in the form

Uk(r; ε) = r2Gk/R
2 + Vk(r; ε).

Then Vk ought to satisfy the boundary value problem

lkVk = (ε(k2 − 4) + 2r2)
Gk

R2
, if r < R,

Vk(R; ε) = 0,
Vk(0; ε) = 0.

(1.3)

On using the maximum principle for solutions of (1.3) we establish an estimate
for Uk(r; ε), to wit

max
r∈[0;R]

|Uk(r; ε)| ≤
(
6 +

2R2

εk2

)
|Gk|

for all ε > 0. If g ∈ C2, then series (1.1) and its first and second derivatives
converge.

We now construct an asymptotic expansion for the solution of (0.4) in the
case b(r) = −r. To this end we study the behaviour of the terms of series (1.1)
as ε → 0. Consider the problem

∂2
rUk −

(r
ε
− 1

r

)
∂rUk − k2

r2
Uk = 0, if r < R,

Uk(R; ε) = Gk,
|Uk(0; ε)| < ∞.

(1.4)
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Since U−k(r; ε) = Uk(r; ε), we restrict our attention to those k which are non-
negative. If k = 2m with a nonnegative integer m, then equation (1.4) has two
linearly independent solutions

Φ0(r; ε) ≡ 1,

Ψ0(r; ε) =

∫ R

r

exp
(z2
2ε

) dz

z
,

if m = 0, and

Φ2m(r; ε) =
m∑
j=1

a2m,2jε
j

r2j

(
exp

( r2
2ε

)
−

j∑
l=0

1

l!

( r2
2ε

)l)
,

Ψ2m(r; ε) =

m∑
j=0

b2m,2jε
j

r2j
,

if m 
= 0. The coefficients a2m,2j and b2m,2j are uniquely determined from the
recurrence relations

ja2m,2j+2 = 2(j2 −m2)a2m,2j ,

(j + 1)b2m,2j+2 = 2(m2 − j2)b2m,2j

for j = 0, 1, . . . ,m− 1, where a2m,2 and b2m,0 are arbitrary nonzero constants.
It is immediately obvious that Φ2m(r; ε) = 0(ξ2m) as ξ = r/

√
ε → 0, because

m∑
j=1

a2m,2j

2j(j + l)!
≡ 0

for l = 1, . . . ,m− 1.
If k = 2m + 1 with a nonnegative integer m, a pair of linearly independent

solutions to equation (1.4) is given by means of the confluent hypergeometric
functions Φ̃(ρ; a, c) and Ψ̃(ρ; a, c), namely

Φk(r; ε) =
( r2
2ε

)k/2

Φ̃
( r2
2ε

;
k

2
, k + 1

)
,

Ψk(r; ε) =
( r2
2ε

)k/2

Ψ̃
( r2
2ε

;
k

2
, k + 1

)
.

There are integral representations for the special functions Φ̃(ρ; a, c) and Ψ̃(ρ; a, c),
to wit

Φ̃(ρ; a, c) =
Γ (c)

Γ (a)Γ (c− a)

∫ 1

0

eρtta−1(1− t)c−a−1 dt,

Ψ̃(ρ; a, c) =
1

Γ (a)

∫ ∞

0

e−ρtta−1(1 + t)c−a−1 dt,

see for instance [1, 8]. Asymptotic analysis of the integrals shows that Φk(r; ε)
is smooth at zero, and it has exponential growth as ξ → ∞. On the other hand,
Ψk(r; ε) has a singularity at r = 0 and it decreases as ξ → ∞. The behaviour
of solutions in a neighborhood of singular points ξ = 0 and ξ = ∞ can be
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derived from the formal constructions of [6]. Asymptotic solutions are easily
constructed in the form of power series with constant coefficients

Φk(r; ε)e
−ξ2/2 =

∞∑
j=1

ak,2jξ
−2j , Ψk(r; ε) =

∞∑
j=0

bk,2jξ
−2j ,

as ξ → ∞. Substituting these series in (1.4) and equating the coefficients of
the same powers of ξ give recurrence relations for determining the coefficients,
namely

ak,2j+4 =
4(j + 1)2 − k2

2(j + 1)
ak,2j+2,

bk,2j+2 =
k2 − 4j2

2(j + 1)
bk,2j

for j ≥ 0. The coefficients ak,2, bk,0 are arbitrary nonzero constants. In much
the same way we construct an asymptotic solution as ξ → 0, to wit

Φ1(r; ε) = ξ

∞∑
j=0

(c̃1,2j ln ξ + c1,2j)ξ
2j , Φk(r; ε) = ξk

∞∑
j=0

ck,2j ξ
2j ,

Ψk(r; ε) = ξ−k
∞∑
j=0

dk,2j ξ
2j ,

where c̃1,2j and ck,2j , dk,2j are constants, k ≥ 1. Each of the constructed series
corresponds to an exact solution, for which that series gives an asymptotic
expansion as ξ → ∞ or ξ → 0, cf. [6].

The general solution of (0.4) in the case of b(r) = −r is constructed in the
form of linear combination

Uk(r; ε) = Ck(ε)Φk(r; ε) +Dk(ε)Ψk(r; ε),

for k ∈ Z. We choose Dk(ε) ≡ 0 to exclude singularities at zero. Then Ck(ε) is
determined from the boundary condition Uk(R; ε) = Gk, that is,

C0(ε) ≡ G0,
Ck(ε) = Gk/Φk(R; ε).

Hence it follows that

U0(r; ε) ≡ G0,

Uk(r; ε) = Gke
(r2−R2)/2ε (1 +O(ε)) ,

as ε → 0, uniformly in r ∈ [ε1/2−δ, R] for any δ > 0.
It remains to estimate the sum of the Fourier series as ε → 0 in order to

get asymptotics of the solution to boundary value problem (0.4). Note that the
maximum principle applies to boundary value problem (1.4) to give an estimate
for Uk(r; ε), where k 
= 0. More precisely, we obtain

|Uk(r; ε)| ≤ e(r
2−R2)/2ε|Gk|

(
1 +

3r2 + ε|k2 − 4|
|r2 − εk2|

)

for all ε > 0 and r ∈ [0;R]. Hence, the solution of (0.4) in the case of b(r) = −r
can be expressed as convergent Fourier series

u(r, ϕ; ε) = G0 + e(r
2−R2)/2ε

∑
k �=0

eıkϕŨk(r; ε). (1.5)
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Theorem 1.1 Let f ≡ 0, g ∈ C2(∂Ω), and b(r) = −r. Then, for each
ε > 0, the solution u ∈ C2(Ω) of boundary value problem (0.4) has the form
(1.5) and u(r, ϕ; ε) = G0 + o(1), as ε → 0, uniformly in r ∈ [ε1/2−δ;R− δ] and
ϕ ∈ (0, 2π], for any δ > 0.

2 The case of homogeneous boundary condition

As in Section 1, the solution is constructed in the form (1.1). Then its coefficients
fulfill the boundary value problem

lkUk(r, ε) = Fk(r), for r < R,
Uk(R; ε) = 0,
|Uk(0; ε)| < ∞,

(2.1)

where Fk(r) are the Fourier coefficients of the function f(r, ϕ) on the interval
ϕ ∈ [0, 2π].

For k = 0, problem (2.1) can be solved explicitly, which yields

U0(r; ε) =
1

ε

∫ r

R

s−1eθ(s)/ε
∫ s

0

ze−θ(z)/εF0(z)dz ds

with θ(r) = −
∫ r

0

b(z)dz.

If k 
= 0, then there is an a priori estimate for solutions. Note that the
assumption on the continuity of solution u(r, ϕ; ε) in the disk Ω implies readily
Uk(0; ε) = 0 for all ε > 0 and k 
= 0. On using the maximum principle we
immediately obtain

max
r∈[0;R]

|Uk(r; ε)| ≤ R2

k2ε
max

r∈[0;R]
|Fk(r)| (2.2)

for all ε > 0. It follows that the Fourier series (1.1) converges together with the
first and second derivatives.

Our next concern will be the asymptotics of constructed solution u(r, ϕ; ε)
as ε → 0. Let f ∈ C2(Ω). Then, for any k > 0, the Fourier coefficient Fk(r)
possesses asymptotics

Fk(r) = r|k|
(
Fk,0 + rFk,1 +O(r2)

)
,

as r → 0.
Note that if b(r) = −r, θ(r) = r2/2 and F0(r) does not vanish identically,

then U0(r; ε) has exponential growth as ε → 0. To wit,

U0(r; ε) = −c(ε) eR
2/2ε

∞∑
j=1

ω2j ε
j

R2j
,

as ε → 0, uniformly in r ∈ [ε1/2−δ, R− δ], for any δ > 0, where

c(ε) = F0,0 + ε1/2
√
2πF0,1 +O(ε),

ω2j = (2j − 2)!!.
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The remaining coefficients Uk(r; ε) with k 
= 0 fulfill inequalities (2.2). Further-
more, there is an available estimate for the remainder of the Fourier series

U(r, ϕ; ε)− U0(r; ε) = O(ε−1) (2.3)

as ε → 0, uniformly in (r, ϕ) ∈ Ω.
We denote by 〈f(r, ϕ)〉 the average value of the function f(r, ϕ) on the

interval [0, 2π], i.e.

〈f(r, ϕ)〉 = 1

2π

∫ 2π

0

f(r, ϕ)dϕ = F0(r).

Theorem 2.1 Suppose that b ∈ C1[0, R] and f ∈ C1(Ω), g ≡ 0. Then, for
any ε > 0, the solution u ∈ C2(Ω) of boundary value problem (0.4) has the
form (1.1). If moreover 〈f(r, ϕ)〉 is different from zero, then the solution has
asymptotics

u(r, ϕ; ε) = eθ(R)/ε ε2F0,0

Rb(R)

(
1 +O(ε1/2)

)
,

as ε → 0, uniformly in r ∈ [ε1/2−δ, R− δ] and ϕ ∈ (0, 2π], for any δ > 0.

If 〈f(r, ϕ)〉 = 0, then U0(r; ε) ≡ 0 and it is necessary to analyse the behaviour
of Uk(r; ε) as ε → 0 to construct asymptotics of the solution. A rough estimate
O(ε−1) follows from the maximum principle. However, this estimate can be
specified in the particular case b(r) = −r by evaluating the asymptotics of the
Fourier coefficients Uk(r; ε), as ε → 0. To do this, one ought to investigate
certain Laplace-type integrals, see [2].

3 The case of right-hand side of zero average
value

Using variation of constants, one easily obtains a particular solution Vk(r; ε) to
inhomogeneous differential equation (2.1). That is

V0(r; ε) =
1

ε

∫ r

0

s−1es
2/2ε

∫ s

0

ze−z2/2εF0(z)dz ds = 0,

for F0(r) = 0. If k 
= 0 then

Vk(r; ε)

= Φk(r; ε)

∫ r

R

ze−z2/2εFk(z)Ψk(z; ε)dz − Ψk(r; ε)

∫ r

0

ze−z2/2εFk(z)Φk(z; ε)dz.

The solution of (2.1) with b(r) = −r is constructed in the form

Uk(r; ε) = Vk(r; ε) + Ck(ε)Φk(r; ε) +Dk(ε)Ψk(r; ε), (3.1)

for k ∈ Z. Once again we set Dk(ε) ≡ 0 to exclude singularities at zero. Then
C0(ε) ≡ 0 and

Ck(ε) =
Ψk(R; ε)

Φk(R; ε)

∫ R

0

ze−z2/2εFk(z)Φk(z; ε) dz

8



for k 
= 0. Formula (3.1) allows one to derive asymptotics of the Fourier coeffi-
cients Uk(r; ε), as ε → 0 (see Section 5). More precisely, we get

Uk(r; ε) = ln ε

∞∑
j=2

τk,j(r)r
−jεj/2 +

∞∑
j=2

σk,j(r)r
−jεj/2, (3.2)

as ε → 0, uniformly in r ∈ [ε1/2−δ;R−δ], for any δ > 0. The coefficients σk,j(r)
and τk,j(r) are bounded functions of r ∈ [0, R].

Theorem 3.1 Let b(r) = −r. Suppose f ∈ C1(Ω) has zero average value
on the interval [0, 2π] and g ≡ 0. Then the Fourier coefficients of the solution
u ∈ C2(Ω) to boundary value problem (0.4) have asymptotics (3.2) uniformly
in r ∈ [ε1/2−δ, R− δ] for all δ > 0.

4 Conclusion

We construct an explicit formal solution of Dirichlet problem (0.1) and establish
its asymptotic character, as ε → 0. If 〈f(r, ϕ)〉 
= 0, then the solution grows
exponentially, as ε tends to zero. If 〈f(r, ϕ)〉 = 0, then the solution has power-
logarithmic asymptotics.

5 Appendix

Here we compute asymptotic estimates for the solution Uk(r; ε) of boundary
value problem (2.1), as ε → 0. All asymptotic series written here are uniform
with respect to the parameter r ∈ [ε1/2−δ, R − δ], where δ > 0 is an arbitrary
small number.

We rewrite Uk(r; ε) as

Uk(r; ε) = Φk(r; ε)
(
J2
k (r; ε) + Ck(ε)

)
+ Ψk(r; ε)

(
J1
k (0; ε)− J1

k (r; ε)
)
,

where

J1
k (r; ε) :=

∫ r

R

ze−z2/2εFk(z)Φk(z; ε)dz,

J2
k (r; ε) :=

∫ r

R

ze−z2/2εFk(z)Ψk(z; ε)dz.

The functions J1
k (r; ε) and J2

k (r; ε) are Laplace-type integrals bearing asymp-
totic estimates

J1
k (r; ε) =

∞∑
l=1

αk,l(r)ξ
−2l,

J2
k (r; ε) = e−ξ2/2

∞∑
l=1

βk,l(r)ξ
−2l,

as ξ → ∞. The coefficients βk,l(r) are linear combinations of Fk(r) and its
derivatives, in particular,

βk,1(r) = −r2Fk(r),
βk,2(r) = −bk,2r

2Fk(r)− r3F ′
k(r),

9



etc., while

αk,l(r) = ak,2lr
2l

∫ r

R

z1−2lFk(z)dz.

The functions αk,l(r) and βk,l(r) are bounded. The construction of asymptotic
expansion of J1

k (0; ε) is slightly more complicated. Let k = 2m with a nonnega-
tive integer m. Then, using an explicit representation for the integrand, we find
that

J1
2m(0; ε) =

m∑
j=1

Ã2m,2jε
j + J̃1

2m(ε)εm+1,

where

Ã2m,2j = −a2m,2j

∫ R

0

z1−2jF2m(z) dz,

J̃1
2m(ε) =

m∑
j=1

a2m,2j

j∑
l=0

∫ R/
√
ε

0

z1+2(|m|−j+l)

2ll!
F̃2m(

√
εz)e−z2/2 dz = O(1),

as ε → 0. Here, F̃2m(r) = r−2|m|F2m(r) = O(1), as r → 0.
If k = 2m+ 1, then

Fk(z) = z|k|
( n∑

l=0

Fk,lz
l + F̃k,n+1(z)

)
,

where F̃k,n+1(z) = O(zn+1) as z → 0. Furthermore, we get

Φk(z; ε) = eξ
2/2

( N∑
j=1

ak,jξ
−2j + Φ̃k,N+1(ξ)

)
,

where Φ̃k,N+1(ξ) = O(ξ−2N−2), as ξ → ∞. It follows that

J1
2m+1(0; ε) = I1k(ε) + I2k(ε) + I3k(ε) + I4k(ε),

where

I1k(ε) := −
n∑

l=0

Fk,l

∫ R

0

z|k|+1+l
Nl∑
j=1

ak,2jε
j

z2j
dz,

I2k(ε) := −
n∑

l=0

Fk,l

∫ R

0

z|k|+1+lΦ̃k,Nl+1

( z√
ε

)
dz,

I3k(ε) := −
N∑
l=1

ak,2lε
l

∫ R

0

z|k|+1−2jF̃k,n+1(z)dz,

I4k(ε) := −
∫ R

0

z|k|+1F̃k,n+1(z)Φ̃k,N+1

( z√
ε

)
dz,

N > 1 and n > 0.
For each l ≥ 0 we choose Nl = [(l + k + 1)/2] in I1k(ε). Then

I1k(ε) =

Nn∑
j=1

λ̃k,2jε
j ,
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where λ̃k,2j are constants. We consider the terms of I2k(ε) with l = 2p and
l = 2p+ 1, to wit

I2k,2p =

∫ R

0

z2|m|+2p+2Φ̃k,|m|+p+2

( z√
ε

)
dz

= ε|m|+p+3/2
(∫ ∞

0

−
∫ ∞

R/
√
ε

)
ξ2|m|+2p+2Φ̃k,|m|+p+2(ξ)dξ

= νk,2pε
|m|+p+3/2 +

∞∑
j=|m|+p+2

λk,jε
j

and

I2k,2p+1

=

∫ R

0

z2|m|+2p+3Φ̃k,|m|+p+2

( z√
ε

)
dz

= ε|m|+p+2
(∫ 1

0

+

∫ R/
√
ε

1

)
ξ2|m|+2p+3

(
ak,2|m|+2p+4ξ−2|m|−2p−4+Φ̃k,|m|+p+3(ξ)

)
dξ

= (νk,2p+1 + μk,2p+1 ln ε) ε
|m|+p+2 +

∞∑
j=|m|+p+3

λk,jε
j .

The coefficients λk,j , νk,j , μk,2p+1 can be computed explicitly and they do not
depend on ε. This gives an asymptotic estimate for the sum

I1k(ε) + I2k(ε) = ln ε

∞∑
j=2

μ̃k,jε
j/2 +

∞∑
j=2

λ̃k,jε
j/2,

as ε → 0. In I3k(ε) and I4k(ε) we choose N = Nn−1 for n > 1. Then

I3k(ε) + I4k(ε) =

Nn−1∑
j=1

λ̃k,2jε
j +O(εNn−1+1),

as ε → 0, n > 1. Thus, we arrive at an asymptotic estimate for J1
2m+1(0; ε)

J1
2m+1(0; ε) = ln ε

∞∑
j=2

A2m+1,jε
j/2 +

∞∑
j=2

B2m+1,jε
j/2,

with some constants A2m+1,j and B2m+1,j independent of ε. From this the
desired asymptotic expansion for Uk(r; ε) follows.
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