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AN INTEGRAL FORMULA FOR THE NUMBER OF LATTICE

POINTS IN A DOMAIN

L. AIZENBERG AND N. TARKHANOV

This paper is dedicated to D. Shoikhet on the occasion of his 60 th birthday.

Abstract. Using the multidimensional logarithmic residue we show a simple

formula for the difference between the number of integer points in a bounded
domain of Rn and the volume of this domain. The difference proves to be the

integral of an explicit differential form over the boundary of the domain.
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Introduction

Classical function theory is of great importance in number theory, let alone the
analytical extension of the Riemann zeta function and prime number theorem, see
[New98], [Tit51], [Gam01], etc.

This work was intended as an attempt at applying the theory of functions of
several complex variables to classical problems of number theory. To wit, we apply
the multidimensional logarithmic residue which is an efficient numerical tool of
algebraic geometry, see [AYu79].

Let Z be a bounded domain with piecewise smooth boundary in the space Cn of
n complex variables z = (z1, . . . , zn). Consider a holomorphic mapping w = f(z) of
the closed domain Z̄ into C

n which has no zeros at the boundary of Z. Then f has
only isolated zeros in Z and the number of zeros counted with their multiplicity is
given by the logarithmic residue formula

N(f,Z) =

∫
∂Z

(n− 1)!

(2πı)n

n∑
j=1

(−1)j−1 f̄j
|f |2n df̄ [j] ∧ df (0.1)

(see [AYu79, § 2]), where |f |2 = |f1|2+ . . .+ |fn|2, fj being the j th component of f ,
by df = df1∧ . . .∧dfn is meant the exterior product of the differentials df1, . . . , dfn,
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2 L. AIZENBERG AND N. TARKHANOV

and df̄ [j] stands for the exterior product of the differentials df̄1, . . . , df̄n after each
other, the differential df̄j being omitted. The domain Z is oriented in such a way
that ∫

Z

1

(2ı)n
dz̄ ∧ dz > 0.

We apply formula (0.1) to get an equality for the difference between the number
of lattice points in the domain Z and its volume. A number of classical problems of
number theory, e.g. the problem on the number of lattice points in a ball [Vin76],
the problems on Dirichlet divisors [Cha70], etc. reduce to evaluating asymptotics
of the difference. It is worth pointing out that this asymptotics can not be found
by standard methods, such as the Laplace method, stationary phase method, or
saddle point method.

The theory of lattice points in large regions has attracted the interest of many
mathematicians for more than eleven decades. The monograph [Fri82] presents a
broad survey of the main problems and results in lattice point theory.

1. The integral formula

As usual, we write R
n, n ≥ 1, for the n -dimensional real Euclidean space of

variables x = (x1, . . . , xn) with xj ∈ R. Suppose X is a bounded domain in R
n

whose boundary is piecewise smooth and does not contain any point with integer
coordinates. Denote by N(X ) the number of integer points in X and by V (X ) its
volume.

Theorem 1.1. If the boundary ∂X does not contain lattice points then the differ-
ence N(X )− V (X ) can be written in the form

N(X )−V (X ) =

∫ ∞

0

. . .

∫ ∞

0

dt

∫
∂X

2n−2(n− 1)!

π

n∑
j=1

t[j] sin(2πxj)νj

( n∑
j=1

(t2j − 2tj cos(2πxj)) + n
)n

ds,

(1.1)
where dt = dt1 ∧ . . . ∧ dtn, t[j] = t1 . . . tj−1tj+1 . . . tn, ds is the surface measure of
∂X and ν(x) = (ν1(x), . . . , νn(x)) is the unit outward normal vector of the boundary
at x ∈ ∂X .

Proof. Consider the domain Z = X × Y in C
n, where Y is a bounded domain

with piecewise smooth boundary in the space R
n of variables y = (y1, . . . , yn). We

assume that 0 ∈ Y. The points of z = (z1, . . . , zn) of Z have the form zj = xj + ıyj ,
for j = 1, . . . , n. As holomorphic mapping f : Z → C

n vanishing solely at the
entire points of X × {0}, we take

f1(z) = e2πız1 − 1,
. . .

fn(z) = e2πızn − 1,

each zero being simple.
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By formula (0.1), we get

N(f,Z) =

∫
∂Z

(n− 1)!

(2πı)n

n∑
j=1

(−1)j−1(e−2πız̄j − 1)de−2πız̄[j] ∧ de2πız

(
|e2πız1 − 1|2 + . . .+ |e2πızn − 1|2

)n ,

where

de−2πız̄[j] = de−2πız̄1 ∧ . . . ∧ de−2πız̄j−1 ∧ de−2πız̄j+1 ∧ . . . ∧ de−2πız̄n ,
de2πız = de2πız1 ∧ . . . ∧ de2πızn .

The right-hand side is easily reduced to

∫
∂Z

(−2πı)n−1(n−1)!

n∑
j=1

(−1)j−1
(
e
−2πı

n∑

k=1

z̄k − e
−2πı

∑

k �=j

z̄k)
e
2πı

n∑

k=1

zk
dz̄[j] ∧ dz

(
|e2πız1 − 1|2 + . . .+ |e2πızn − 1|2

)n .

(1.2)
A trivial verification shows that

dz̄[j] ∧ dz = (2ı)n−1
(
(−1)n−1dx ∧ dy[j] + ıdx[j] ∧ dy

)
(1.3)

for all j = 1, . . . , n. Using (1.3) one separates the real and imaginary parts of (1.2),
these are

∫
∂Z

(4π)n−1(n−1)!

n∑
j=1

(−1)n+j
(
e
−4π

n∑

k=1

yk − e
−4π

∑

k �=j

yk−2πyj

cos(2πxj)
)
dx ∧ dy[j]

(
|e2πız1 − 1|2 + . . .+ |e2πızn − 1|2

)n

+

∫
∂Z

(4π)n−1(n−1)!

n∑
j=1

(−1)j−1e
−4π

∑

k �=j

yk−2πyj

sin(2πxj)dx[j] ∧ dy

(
|e2πız1 − 1|2 + . . .+ |e2πızn − 1|2

)n

(1.4)

and

∫
∂Z

(4π)n−1(n−1)!

n∑
j=1

(−1)j−1
(
e
−4π

n∑

k=1

yk − e
−4π

∑

k �=j

yk−2πyj

cos(2πxj)
)
dx[j] ∧ dy

(
|e2πız1 − 1|2 + . . .+ |e2πızn − 1|2

)n

+

∫
∂Z

(4π)n−1(n−1)!

n∑
j=1

(−1)n+j−1e
−4π

∑

k �=j

yk−2πyj

sin(2πxj)dx ∧ dy[j]

(
|e2πız1 − 1|2 + . . .+ |e2πızn − 1|2

)n ,

respectively.
The number N(f,Z) is real, hence it suffices to consider the mere real part (1.4)

of formula (0.1). Moreover, we make the change of variables

t1 = e−2πy1 ,
. . .

tn = e−2πyn ,
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obtaining

N(f,Z) =

∫
∂Z′

2n−1(n−1)!

n∑
j=1

(−1)j−1 t1 . . . tn (tj − cos(2πxj))dt[j] ∧ dx

( n∑
j=1

(t2j − 2tj cos(2πxj)) + n
)n

+

∫
∂Z′

2n−2(n−1)!

π

n∑
j=1

(−1)n+j−1t[j] sin(2πxj)dt ∧ dx[j]

( n∑
j=1

(t2j − 2tj cos(2πxj)) + n
)n

= I1 + I2,

(1.5)

where Z ′ is the image of the domain Z under the change of variables tj = e−2πyj ,
for j = 1, . . . , n.

This change involves the mere variables y whence Z ′ = X × T , where T is the
image of Y by tj = e−2πyj with j = 1, . . . , n. Since Y contains the origin, the
n -tuple with coordinates 1 belongs to T . We now give the domain T the following
concrete form

T = {t ∈ R
n : r2 < |t|2 < R2} ∩ {t ∈ R

n : t1, . . . , tn > ε},

where r <
√
n, R >

√
n and ε > 0 is small enough. The boundary ∂T consists

of a piece Sr of the (n − 1) -dimensional sphere {t ∈ R
n : |t| = r}, a piece SR of

the (n− 1) -dimensional sphere {t ∈ R
n : |t| = R}, and pieces Hj of hypersurfaces

tj = ε parallel to the coordinates hyperplanes tj = 0. According to this structure of
the boundary of T we represent the integral I1 as the sum of integrals I1,Sr , I1,SR

and I1,Hj with j = 1, . . . , n.
Let the piece H1 tend to the hyperplane {t1 = 0}. At this hyperplane we

obviously get

n∑
j=1

(t2j − 2tj cos(2πxj)) + n =
n∑

j=2

(tj − cos(2πxj))
2 + sin2(2πxj) + 1

≥ 1.

Therefore, the integral I1,H1 tends to zero as H1 tends to the hyperplane {t1 = 0}.
Analogously, I1,Hj tends to zero as Hj tends to the hyperplane {tj = 0}, for each
j = 2, . . . , n.

It remains to consider the limits of the integrals I1,Sr
and I1,SR

, when r → 0 and

R → ∞. Let Sn−1
≥0 be the part of the unit sphere with centre at the origin which lies

in the cube 0 ≤ tj ≤ 1, j = 1, . . . , n. We endow S
n−1
≥0 with the usual orientation,

then Sr = −r Sn−1
≥0 and SR = R S

n−1
≥0 . (When we tended Hj to the hyperplane

{tj = 0} for all j = 1, . . . , n, then Sr and SR became one 2n -th spheres.) Hence it
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follows readily that

I1,Sr
= −

∫
X
dx

∫
S
n−1
≥0

2n−1(n−1)!

n∑
j=1

(−1)j−1 r2n−1t1 . . . tn (rtj − cos(2πxj))dt[j]

(
r2 − 2

n∑
j=1

rtj cos(2πxj) + n
)n

→ 0

as r → 0.
On the other hand, we get

I1,Sr
=

∫
X
dx

∫
S
n−1
≥0

2n−1(n−1)!

n∑
j=1

(−1)j−1 R2n−1t1 . . . tn (Rtj − cos(2πxj))dt[j]

(
R2 − 2

n∑
j=1

Rtj cos(2πxj) + n
)n

→
∫
X
dx

∫
S
n−1
≥0

2n−1(n−1)!

n∑
j=1

(−1)j−1 t1 . . . tn tjdt[j],

as R → ∞. The last integral just amounts to V (X ), for∫
S
n−1
≥0

2n−1(n−1)!
n∑

j=1

(−1)j−1 t1 . . . tn tjdt[j] =

∫
S
n−1
≥0

2n−1(n−1)! t1 . . . tn ds

= 1.

Thus, if the domain T expands to the nonnegative one 2n -th space as above, the
integral I1 tends to V (X ). And the integral I2 converges to the integral on the right-
hand side of formula (1.1), for ∂Z ′ = (∂X ×T )∪ (X ×∂T and (−1)j−1dx[j] = νjds
for all j = 1, . . . , n, as desired. �

For the most practical cases n = 2 and n = 3 Theorem 1.1 was first proved in
[Aiz83].

2. The one-dimensional case

In this section we clarify the structure of formula (1.1) by directly computing the
integral on the right-hand side of this formula in the case n = 1. Let X = (a, b),
where m < a < m + 1 and M < b < M + 1, m and M being integer numbers
satisfying m < M . Then

I =

∫ ∞

0

dt

∫
∂X

1

2π

sin 2πx

(t− cos 2πx)2 + (sin 2πx)2

=

∫ ∞

0

1

2π

( sin 2πb

(t− cos 2πb)2 + (sin 2πb)2
− sin 2πa

(t− cos 2πa)2 + (sin 2πa)2

)
dt.

Substituting s = t− cos 2πb and s = t− cos 2πa into the first and second terms on
the right-hand side, respectively, we get

I =

∫ ∞

− cos 2πb

1

2π

sin 2πb

s2 + (sin 2πb)2
ds−

∫ ∞

− cos 2πa

1

2π

sin 2πa

s2 + (sin 2πa)2
ds

=
1

2π
arctan

s

sin 2πb
�∞− cos 2πb −

1

2π
arctan

s

sin 2πa
�∞− cos 2πa .
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To be specific, we consider the case

m+ 1/2 < a < m+ 1,
M < b < M + 1/2,

then sin 2πa < 0 and sin 2πb > 0. Hence it follows that

I =
1

2π

(π
2
− arctan

(
− cos 2πb

sin 2πb

)
−

(
− π

2

)
+ arctan

(
− cos 2πa

sin 2πa

))

=
1

2π
(π + arctan cot 2πb− arctan cot 2πa).

Finally, on using the equality arctanx = π/2− arccotx we deduce

I =
1

2π
(π − arctan cot(2πb− 2πM) + arctan cot(2πa− 2π(m+ 1/2))

= (M −m)− (b− a),

which just amounts to N(X )− V (X ), as desired.

3. Some comments

It is easy to see that the integrations over t ∈ [0,∞)n and x ∈ ∂X in formula
(1.1) can be exchanged. In this way we get

N(X )− V (X ) =

∫
∂X

n∑
j=1

(−1)j−1Fj(x) sin 2πxj dx[j], (3.1)

where

Fj(x) =
2n−2(n− 1)!

π

∫ ∞

0

. . .

∫ ∞

0

t[j]( n∑
k=1

(tk − cos 2πxk)
2 +

n∑
k=1

(sin 2πxk)
2
)n

dt

are functions of cos 2πxj and sin 2πxj , for j = 1, . . . , n. The differential form under
the integral over ∂X on the right-hand side of (3.1) is smooth away from the lattice
of half-integer points in R

n. As is seen from Section 2, the differential form is not
closed outside this lattice. The coefficients Fj bear certain symmetry in variables
x1, . . . , xn, perhaps, it suffices to compute only one of these coefficients in order to
determine the others. Moreover, Fj can be computed in a closed form, however, the
expressions are cumbersome, cf. formula (3) in [Aiz85]. It is possible that formula
(3.1) can be applied to construct asymptotics of the difference N(X ) − V (X ) as
R → ∞, where X is the ball of radius R with centre at 0 or, more generally, an
ellipsoid (x1

a1

)2

+ . . .+
(xn

an

)2

< R2

or another expanding domain, cf. [Guy81], [Fri82]. But we will not develop this
point here.
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