
Universität Potsdam
Hasso-Plattner-Institut für Softwaresystemtechnik

Fachgebiet Systemanalyse und Modellierung

Virtual Prototypes for the
Model-Based Elicitation and

Validation of Collaborative Scenarios

Gregor Berg

June 2013

Dissertation

zur Erlangung des akademischen Grades

“Doktor der Ingenieurwissenschaften” (Dr. Ing.)

in der Wissenschaftsdisziplin

“Systemanalyse und Modellierung”

This work is licensed under a Creative Commons License:
Attribution - Noncommercial - Share Alike 3.0 Germany
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2014/6972/
URN urn:nbn:de:kobv:517-opus-69729
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69729

Abstract

Requirements engineers have to elicit, document, and validate how stakeholders act and
interact to achieve their common goals in collaborative scenarios. Only after gathering
all information concerning who interacts with whom to do what and why, can a software
system be designed and realized which supports the stakeholders to do their work. To
capture and structure requirements of different (groups of) stakeholders, scenario-based
approaches have been widely used and investigated. Still, the elicitation and validation
of requirements covering collaborative scenarios remains complicated, since the required
information is highly intertwined, fragmented, and distributed over several stakehold-
ers. Hence, it can only be elicited and validated collaboratively. In times of globally
distributed companies, scheduling and conducting workshops with groups of stakehold-
ers is usually not feasible due to budget and time constraints. Talking to individual
stakeholders, on the other hand, is feasible but leads to fragmented and incomplete
stakeholder scenarios. Going back and forth between different individual stakeholders
to resolve this fragmentation and explore uncovered alternatives is an error-prone, time-
consuming, and expensive task for the requirements engineers. While formal modeling
methods can be employed to automatically check and ensure consistency of stakeholder
scenarios, such methods introduce additional overhead since their formal notations have
to be explained in each interaction between stakeholders and requirements engineers.
Tangible prototypes as they are used in other disciplines such as design, on the other
hand, allow designers to feasibly validate and iterate concepts and requirements with
stakeholders.

This thesis proposes a model-based approach for prototyping formal behavioral spec-
ifications of stakeholders who are involved in collaborative scenarios. By simulating
and animating such specifications in a remote domain-specific visualization, stakehold-
ers can experience and validate the scenarios captured so far, i.e., how other stakeholders
act and react. This interactive scenario simulation is referred to as a model-based vir-
tual prototype. Moreover, through observing how stakeholders interact with a virtual
prototype of their collaborative scenarios, formal behavioral specifications can be au-
tomatically derived which complete the otherwise fragmented scenarios. This, in turn,
enables requirements engineers to elicit and validate collaborative scenarios in individ-
ual stakeholder sessions – decoupled, since stakeholders can participate remotely and are
not forced to be available for a joint session at the same time. This thesis discusses
and evaluates the feasibility, understandability, and modifiability of model-based virtual
prototypes. Similarly to how physical prototypes are perceived, the presented approach
brings behavioral models closer to being tangible for stakeholders and, moreover, com-
bines the advantages of joint stakeholder sessions and decoupled sessions.

Zusammenfassung

Anforderungsingenieure erheben, dokumentieren und validieren wie Bedarfsträger in
einzelnen und gemeinsamen Aktivitäten die Ziele ihrer kollaborativen Szenarios errei-
chen. Auf Grundlage von Angaben darüber, wer warum mit wem zusammen was er-
ledigt, kann anschließend ein Softwaresystem spezifiziert und umgesetzt werden, welches
die Bedarfsträger bei der Durchführung ihrer Abläufe unterstützt. Um Anforderungen
verschiedener (Gruppen von) Bedarfsträger zu erfassen und zu strukturieren, werden
szenariobasierte Ansätze genutzt und erforscht. Die Erhebung und Validierung von
Anforderungen, die kollaborative Szenarios abdecken, ist dennoch kompliziert, da der-
artige Informationen hochgradig verknüpft, fragmentiert und über mehrere Bedarfs-
träger verteilt sind, wodurch sie nur in Gruppensitzungen effizient erhoben und validiert
werden können. In Zeiten global verteilter Firmen ist die Planung und Durchführung
solcher Workshops mit Gruppen von Bedarfsträgern nur selten praktikabel. Mit einzel-
nen Bedarfsträgern zu sprechen ist hingegen oft realisierbar, führt aber zu fragmen-
tierten, unvollständigen Szenariobeschreibungen. Durch eine Vielzahl von Einzelge-
sprächen mit wechselnden Bedarfsträgern kann diese Fragmentierung aufgelöst werden
– dies ist aber eine fehleranfällige und zeitaufwändige Aufgabe. Zwar bieten formale
Modellierungsmethoden z.B. automatische Konsistenzchecks für Szenarios, doch führen
derartige Methoden zu Mehraufwand in allen Gesprächen mit Bedarfsträgern, da diesen
die verwendeten formalen Notationen jedes Mal erläutert werden müssen. Handfeste
Prototypen, wie sie in anderen Disziplinen eingesetzt werden, ermöglichen es Designern,
ihre Konzepte und erhobenen Anforderungen ohne viel Aufwand mit Bedarfsträgern zu
validieren und zu iterieren.
In dieser Dissertation wird ein modellbasierter Generierungsansatz vorgeschlagen, der
kollaborative Szenarios prototypisch auf Grundlage von formalen Verhaltensmodellen
für die beteiligten Bedarfsträger darstellt. Durch die Simulation dieses Verhaltens und
dessen Animation innerhalb einer webbasierten, domänenspezifischen Visualisierung,
können Bedarfsträger diese Modelle erleben und die bisher erfassten Szenarios validieren.
Eine derartige interaktive Szenariosimulation wird als modellbasierter virtueller Proto-
typ bezeichnet. Basierend auf den Interaktionen zwischen Bedarfsträgern und einem
virtuellen Prototypen ihrer Szenarios können zudem formale Verhaltensspezifikationen
automatisch abgeleitet werden, die wiederum die fragmentierten kollaborativen Szena-
rios vervollständigen. Dies ermöglicht es den Anforderungsingenieuren, die kollabora-
tiven Szenarios in individuellen Sitzungen mit einzelnen Bedarfsträgern zu erheben und
zu validieren – entkoppelt voneinander, da Bedarfsträger webbasiert teilnehmen können
und dabei nicht darauf angewiesen sind, dass andere Bedarfsträger ebenfalls in der glei-
chen Sitzung teilnehmen. Diese Dissertation diskutiert und evaluiert die Machbarkeit,
Verständlichkeit sowie die Änderbarkeit der modellbasierten virtuellen Prototypen. Auf
die gleiche Art wie physikalische Prototypen wahrgenommen werden, erlaubt es der
vorgestellte Ansatz, Verhaltensmodelle für Bedarfsträger erlebbar zu machen und so die
Vorteile von Gruppensitzungen mit denen entkoppelter Sitzungen zu verbinden.

Acknowledgment

First and foremost, I’d like to express my gratitude to my supervisor Prof. Dr. Holger
Giese at the System Analysis and Modeling group who provided me with the opportunity
of pursuing my research. Secondly, I am grateful for the generous grant provided by the
HPI-Stanford Design Thinking Research Program, as well as the collaborations and dis-
cussions within this research community, especially Thomas Beyhl, Jonathan Edelman,
Alexander Lübbe, and Andreas Seibel. Concerning the identification of potential topics
for this thesis, I had the pleasure of collaborating with Jörn Hartwig and Alexander
Renneberg at D-LABS GmbH.

Concerning the implementation of the concepts presented in this thesis, I am grateful
for the time, energy, and commitment of the following students (in alphabetical order):
Daniel Eichler, Stefan Kleff, Alexander Lüders, Nico Rehwaldt, Stefan Richter, Henrik
Steudel, and Ralf Teusner. For the supervision of some of the experiments, the help
of Chriss Kühnl and Andreas Seibel was also greatly appreciated. Moreover, I would
like to thank Regina Hebig, Stephan Hildebrandt, Christian Krause, and Ralf Teusner
for providing valuable feedback on early drafts of this thesis and all my friends and
colleagues at the System Analysis and Modeling group for their support and fruitful
discussions. Furthermore, I am most grateful to Jessica Thomas for proof-reading my
thesis.

Last but not least, I’m very grateful for the support and patience of my wife Denise
who provided the all-embracing remainder of what enabled me to finish this thesis.

Contents

1. Introduction 1
1.1. Establishing Correct, Consistent, and Complete Requirements 2
1.2. Problem Definition . 3
1.3. Contributions . 7
1.4. Structure . 9

2. Preliminaries 11
2.1. Elicitation and Discovery . 12

2.1.1. Group Sessions . 13
2.1.2. Individual Sessions . 13

2.2. Documentation, Specification, and Models 14
2.3. Validation of Models . 16

2.3.1. Visualization and Animation . 17
2.3.2. Prototyping . 18

2.4. Scenarios . 19
2.5. Graph Transformations . 21

3. Overall Approach 25
3.1. Modeling Collaborative Scenarios . 28

3.1.1. Refining the Basic Domain Model to Describe Scenario States . . 29
3.1.2. Story Patterns based on Scenario States 31
3.1.3. Introducing new Concepts into the Domain Model 32
3.1.4. Handling Domain Concept Modifications 32
3.1.5. Use Cases for Domain Model, States, and Story Patterns 34

3.2. From Formal Models to Virtual Prototypes 36
3.2.1. Prerequisites of Representations 36
3.2.2. Affordance Options . 39
3.2.3. Virtual Prototypes . 41

3.3. Overview . 44
3.4. Chapter Summary . 45

4. Replaying and Rearranging Scenarios 47
4.1. Concept . 48

4.1.1. Simulation Approach . 49

VII

Contents

4.1.2. Case Study: Sale of a Movie Ticket 54
4.2. Stakeholder Feedback in Validation Sessions 60

4.2.1. Story Patterns Belonging to a Participant’s Role 61
4.2.2. Story Patterns Affecting a Participant’s Role 61
4.2.3. General Feedback . 62

4.3. Strategy-Driven Exploration of Stakeholder Scenarios 63
4.3.1. Strategies Based on a Limited Look Ahead 63
4.3.2. Reducing the Participants’ Downtime 65

4.4. Chapter Summary . 66

5. Completion and Correction of Captured Scenarios 67
5.1. Concept . 68

5.1.1. Simulation Loop Including Stakeholder Input 68
5.1.2. Case Study: Alternatives for the Movie Ticket Sale 70

5.2. Restrictions on Deriving Story Patterns 73
5.3. Merging Preconditions of Equivalent Activities 74
5.4. Chapter Summary . 75

6. Decoupled Completion and Correction of Scenarios 77
6.1. Concept . 79

6.1.1. Capturing Different Stakeholder Expectations as Triggers 80
6.1.2. Capturing Stakeholders’ Follow-Up Actions 81
6.1.3. Resolving Triggers Systematically 82

6.2. Case Study: Notifying a Lifeguard Service 83
6.2.1. Session 1 – Notifier . 83
6.2.2. Session 2 – Communications Operative 86
6.2.3. Session 3 – Boatman . 89
6.2.4. Resulting Scenario . 90

6.3. Chapter Summary . 90

7. Research Prototype 93
7.1. Architecture . 95
7.2. Implementation of the Simulation Loop 97
7.3. Interacting with Artifacts . 109
7.4. Adaptability . 110
7.5. Chapter Summary . 111

8. Evaluation 113
8.1. Preliminaries . 114
8.2. Understandable Representation . 115

8.2.1. Interacting to Validate Scenarios 116
8.2.2. Stakeholder Interpretation of the Virtual Prototype 120

VIII

Contents

8.3. Prototype Iterations: Quick and Inexpensive 122
8.3.1. Setting up a Simulation Session 123
8.3.2. Automation within the Simulation Loop 125

8.4. Modifications through Stakeholders . 126
8.4.1. Immediate Feedback Based on Play-In 126
8.4.2. Stakeholders Correcting Erroneous Story Patterns 127

8.5. Chapter Summary . 130

9. Related Work 131
9.1. Animated Play-Out . 132
9.2. Play-In of New Specifications . 138
9.3. Scenario Specifications . 139
9.4. Overview and Chapter Summary . 140

10.Conclusions 141
10.1. Discussion . 142
10.2. Future Work . 143

Bibliography 147

A. Publications 167

B. Evaluation Data 171
B.1. T-Test Results for Section 8.2.1 . 171
B.2. Summarized Responses of the Evaluation in Section 8.2.2 171

IX

1. Introduction

In recent decades, software systems have become more complex, ubiquitous and inter-
connected. Nowadays, as digitalization progresses and computational power steadily
increases, prospective end users of planned software systems make greater demands
concerning the capabilities and the usability of such systems. Consequently, their com-
plexity increases – as does the effort necessary to capture and define the needs of the
system’s end users as well as all other persons or organizations who “influence a system’s
requirements” or who are “impacted by that system”, i.e. stakeholders as defined by
Glinz and Wieringa [GW07]. Hence, stakeholders who need to be interviewed do not
only include prospective end users of the planned system, but rather everybody in its
environment [Ale05]. As modern software systems such as the ones developed for insur-
ances or online marketplaces impact more people every day, this elicitation grows more
complex to ensure that software engineers “get the right design as well as get the design
right” [Bux07].

It is up to requirements engineers to elicit, document, and validate such needs, con-
straints and, more broadly, requirements. The IEEE’s1 Standard Glossary of Software
Engineering Terminology [IEE90] defines a requirement as a condition or capability that
is either needed by a user for solving a problem or achieving an objective, or that
must be met or possessed by a system to satisfy a contract, standard, or specification.
To gather requirements for a software system, requirements engineers and stakeholders
interact in such a way that the stakeholders’ domain knowledge is ascertained along
with requirements based on specific domain properties [Jac00]. The interaction between
stakeholder and requirements engineer was suitably summarized by Maiden and Alexan-
der who pointed out that requirements engineers “get people to tell the stories of what
their systems are meant to do, so they build the right thing” [AM04]. Still, building
the right thing also includes the identification of all stakeholders, the elicitation of their
requirements concerning the projected software system and the validation, which has to
establish that all stakeholders have been correctly understood. Then, these requirements
can be used to establish the initial vision, i.e. the idea of why the software system is
needed, in context [JP93].

Requirements engineers are usually no experts in the stakeholders’ domain – a fact
that is potentially even helpful as it requires them to question underlying assumptions
and tacit knowledge which otherwise would not be covered in the requirements they
produce [Ber95, Ber02]. Nevertheless, this also implies that a requirements engineer’s

1 The Institute of Electrical and Electronics Engineers, http://www.ieee.org/ (accessed June 2013)

1

http://www.ieee.org/

1. Introduction

2. SpecifyRequirements 1. Interview

3. Validate

Requirements
Engineer Stakeholder

Figure 1.1.: A requirements engineer iteratively interviews different stakeholders (1),
specifies their individual requirements (2), and later on the stakeholder can
validate whether the requirements engineer’s specification is correct (3)

interpretation of what a stakeholder said can be wrong because of a miscommunica-
tion between them or due to an incorrect assumption of the stakeholder. Either way,
any of the requirements that the requirements engineers collect can be incorrect and,
consequently, inconsistent with the other requirements. Of course, inconsistencies may
also arise if different stakeholders with diverse perspectives are interviewed and their
statements are in conflict. Only through requirement validations not only with the orig-
inally interviewed stakeholder but also with other ones (cf. Figure 1.1), the requirements
engineer can ensure that incorrect requirements are corrected and inconsistencies are re-
solved. As pointed out by Zowghi and Gervasi [ZG03], increasing the consistency of a
specification may require the removal of distinct requirements which, in turn, decreases
the overall completeness of the specification. They further point out that the introduc-
tion of additional requirements increases the completeness but, at the same time, may
decrease the overall consistency of the specification.

The requirements engineers collect the requirements iteratively alongside the develop-
ment, or they collect them in a Software Requirements Specifications (SRS, cf. [IEE98])
which is handed over to be realized in a follow-up phase [Pre05, Som06]. As argued by
Alexander and Beck, this choice depends on the size and scope of the system that is
being specified and developed [AB07].

1.1. Establishing Correct, Consistent, and Complete
Requirements

Creating a collection of correct requirements which are consistent and completely cover
the intended software system [Poh93] would be quite easy if all stakeholders would
always provide objective and correct answers to what they require and if they would
do so without contradicting other statements. In practice, however, this is not the case
due to stakeholders being subjective in their statements and the fact that for complex

2

1.2. Problem Definition

software systems there is not one distinct stakeholder who can describe everything that
the software engineers require to know in order to build the right system.

ok ok ok
ok

ok
ok

Viable
solution
space

Stakeholder constraints
restricting solution space

Stakeholder 1 Stakeholder 2 Stakeholder 3 Stakeholder 4 Synthesized
Stakeholder
Constraints

Figure 1.2.: Requirements from different stakeholder groups (views one to four, respec-
tively) need to be synthesized (fifth view) in order to know which solutions
are viable (adapted from [Dav93])

Since each stakeholder has an individual, subjective perspective on what is required,
synthesizing their perspectives to produce a specification that all stakeholders can agree
upon is a challenging task even for experienced requirements engineers. As illustrated in
Figure 1.2, each group of stakeholders has specific needs and requirements which restrict
the solution space for the final product [Dav93]. Consequently, all stakeholders need to
be interviewed since the knowledge about what needs to be supported is fragmented
and “distributed in several involved people’s minds” [Des08]. Of course, each stake-
holder may also have arguments for or against statements made by other stakeholders
[JMF09]. This becomes even more challenging for the requirements of innovative prod-
ucts, since these are inherently elusive and hard to describe [Poh10]. Only by eliciting
all requirements and checking them against each other, can the requirements engineers
synthesize a specification of a software system that supports everybody who is impacted.

As in the story of the blind men and the elephant [GC04], each man perceives and
describes a different part of the animal. Since each stakeholder belonging to another
group of stakeholders [Ale05] would describe different aspects, forgetting to talk to a
stakeholder leads to an incomplete specification which does not cover all the required
conditions and capabilities. Additionally, as argued by van der Aalst [Aal07], people
tend to oversimplify how stakeholders work together. Having abstracted too much from
reality, the requirements engineers might end up with what he refers to as PowerPoint
reality. Consequently, it is up to the requirements engineers to interview all stakeholders
and to derive a specification which describes a software system, which conforms to all of
the individual stakeholder perspectives. Only then can it be ensured that the software
system is accepted and later used by all stakeholders.

1.2. Problem Definition

As previously stated, requirements engineers have to talk to many different stakeholders.
After they captured statements of individual stakeholders, they then have to validate

3

1. Introduction

the stakeholder requirements generated from these statements. As well as validating
these requirements with the stakeholder they originated from, the requirements engineers
must seek feedback from other stakeholders who might be affected. Of course, the more
stakeholders are involved, the more effort is necessary to talk to all of them to validate
requirements or elicit new ones. These interactions can take place either individually
or in groups of up to all stakeholders involved in a particular scenario. This decision
depends on factors such as the stakeholders’ availability, which usually differs, and their
distribution over different locations. Consequently, we arrive at the first problem to be
tackled:

Problem P1: Interacting with all involved stakeholders – managing availabilities, schedul-
ing dates, traveling – is difficult, especially since most of their requirements are inter-
connected and potentially in conflict.

Both types of stakeholder interactions, engaging one stakeholder at a time or groups
of them simultaneously, have distinct advantages, most of which solve problems of the
alternative setting, e.g. fragmented scenarios in individual stakeholder sessions or the
influence of hierarchies in a session engaging multiple stakeholders. By combining both
approaches, i.e. by providing the advantages of group sessions in isolated individual
sessions, we hope to provide a better solution for the trade-off involved when deciding
which type of session should be scheduled next.

Thesis-Goal TG1: The first goal of this thesis is to enhance individual sessions with
one stakeholder in such a way that A) the stakeholder gets immediate feedback on his
or her statements based on (previously captured) statements, responses, or behavior
of other stakeholders and that B) the stakeholder is enabled to directly build on and
complement the scenarios of other stakeholders (TG1A and TG1B, respectively).

For a stakeholder to be able to complement an incomplete scenario as described by
other stakeholders, he has to understand which parts of it have already been captured.
Therefore, an approach trying to enhance individual sessions must overcome the frag-
mentation of scenarios that is inherent in this type of stakeholder interaction. Only then
would an isolated stakeholder be able to validate whether what was captured is correct
from his point of view and how it might be complemented.

Powell [Pow10] compared the elicitation of requirements to collecting individual pieces
of a giant jigsaw puzzle from different stakeholders. While a scenario which involves
multiple stakeholders and has many alternatives can be considered equivalent to such a
jigsaw puzzle, the activities of individual stakeholders within this scenario represent the
corresponding pieces – each one has a distinct precondition which needs to be fulfilled
by the postconditions of other activities. During the collection of these pieces, the
requirements engineers rarely know what the complete puzzle looks like and how many

4

1.2. Problem Definition

pieces there are. Each individual session provides new pieces which are difficult to
match against any of the others without first knowing the context of either of these
pieces. Consequently, by providing an understandable visualization of which pieces of the
puzzle are already captured and how they might fit together, even an isolated stakeholder
would be able to pinpoint errors (e.g., which ones do not fit or are incorrect), and fill
the gaps between some of the already captured pieces by providing additional pieces or
rearranging existing ones. In short, the statements and requirements of stakeholders in
individual sessions would not be isolated pieces of a big puzzle anymore.

It would hardly be feasible for requirements engineers to create such a visualization
manually for each stakeholder or each session. It is possible, however, to automate this
creation if the pieces are unambiguous and well-defined. Generally, formal models help
engineers to cope with the complexity inherent in engineering endeavors – in this case, to
define fragmented pieces of a scenario in which many different stakeholders are involved.
Still, employing formal models to capture requirements from a stakeholder who later has
to validate whether these are correct introduces a new problem:

Problem P2: Formally defined requirements cannot directly be specified, validated, or
corrected by stakeholders. Instead, such models have to be explained or translated for
stakeholders, and may only be modified directly by requirements engineers, who also
have to translate stakeholder feedback into model updates.

To identify incorrect requirements, stakeholders have to judge the correctness of the
gathered requirements. Depending on the formality of the requirements’ presentation,
translation overhead is introduced to ensure that stakeholders understand the require-
ments.2 As Luebbe and Weske [LW11] point out, to elicit the scenarios and interactions
between stakeholders, a method expert who is familiar with a formal modeling nota-
tion elicits the collaborative scenarios and later creates a corresponding model. In a
subsequent stakeholder session, this model is then presented, discussed, and iterated
– usually relying on face-to-face explanations. Alternatives for assisting stakeholders
in understanding formal models include natural language annotations, redundant infor-
mal representations [ARE96], or the creation of prototypes that the stakeholders can
experience directly [SS97].

Tangible prototypes are a characteristic part of innovation-oriented processes such as
Design Thinking [CS08, Bro09, PMW09], and they support the collection of requirements
or the iteration of ideas with numerous stakeholders in a feasible manner. Designers
employ prototyping not only to explore possible solutions or design alternatives – rather,
prototypes are used as early as possible to explore and define the stakeholders’ needs
which any suitable solution should address. Inspired by tangible prototypes, which can
intuitively be understood and changed by prospective end users, we propose model-based

2 This overhead is among the reasons why Davis [Dav93] argues, that requirements should only be
specified formally if “we cannot afford to have the requirement misunderstood” by software engineers.

5

1. Introduction

Stakeholdern

Models of
Stakeholderq

 Simulation System

Stakeholderp Stakeholderq

Models of
StakeholderpModels

indirectly
check correctness
and completeness

Intuitive
Representation

Figure 1.3.: Individual stakeholders are able to validate pieces of relevant scenarios if
these pieces are represented in a fashion that is simple to understand, as
envisioned in TG2

virtual prototypes. Through being able to automatically derive such a prototype of what
the requirements engineers have captured so far, stakeholders can directly experience
how they were understood without the requirements engineers having to invest time and
effort into the creation of the prototype.

Thesis-Goal TG2: Based on formally defined behavioral models, our goal is to cre-
ate a prototyping approach A) which allows stakeholders to understand such models
intuitively, B) which allows them to initially build and modify these models intuitively,
and C) which allows requirements engineers to quickly and inexpensively generate and
iterate behavioral models. These three points are discussed below:

TG2A) In order to be able to represent the content of the captured models intuitively
for stakeholders, whose collaborative scenarios have to be elicited, we have to rely on the
highest common factor between these stakeholders. Since this factor can only depend on
how the stakeholders interact in the workplace, such a representation has to reflect this
workplace as well as its contextual triggers [SMK+09]. Our approach is aimed at eliciting
and validating behavioral models which capture pre- and postconditions of stakeholder
activities and their interactions among each other.

TG2B) Stakeholders have to be able to modify a virtual prototype similar to how
they would change a tangible one. Hence, stakeholders interacting with a prototype
derived from a set of behavioral models should be able to complement these models by
intuitively adding new ones or identifying erroneous ones themselves to correct them.

TG2C) To ensure that the use of formal models becomes feasible, the automation
affordances of formal models have to be exploited. As pointed out by Pohl [Poh10],
prototyping can be done quite inexpensively and quickly if the prototypes can be gener-

6

1.3. Contributions

ated.3 Unfortunately, the more interactive, the more complex and the more expensive a
prototype becomes [LW99]. By automatically generating prototypes which are suitable
for stakeholders, our approach can ensure quick and inexpensive iterations.

1.3. Contributions

The conceptual contributions of this thesis are as follows. The main contribution of
this dissertation is the concept of virtual model-based prototyping for behavioral spec-
ifications capturing stakeholder actions and interactions as they occur in collaborative
stakeholder scenarios. Inspired by tangible prototypes and the similarity between mod-
els and prototypes, we developed a state-based simulation approach with an animated
visualization that is intuitive for stakeholders in such a way that they understand the
behavioral models underlying the simulation. Thereby, the stakeholders are enabled to
validate and provide feedback about models which originated from other stakeholders.
This simulation relies on graph transformation systems which are more concrete than
automata or sequence charts used in related approaches. Furthermore, by deriving a
virtual prototype based on the already captured models, it becomes possible to estab-
lish an overview of which pieces of the overall puzzle have already been captured, even
for individual stakeholders participating in isolated sessions. Based on such an overview
of how the collected behavioral models may fit together, immediate feedback based on
prior sessions can be provided, similar to a group session. Additionally, the context for
activities or interactions, observed from such a session, is already established as well.

As our second contribution, we present our simulation algorithm which guides stake-
holders through captured scenarios in which they are involved, so that they can validate
specific situations and their respective actions as well as explore scenarios that were
not yet covered. To overcome stalemates due to seemingly non-deterministic decisions
of other stakeholders during an elicitation with an affected stakeholder, our approach
supports the definition of what we refer to as expected continuations, which allows the
impacted stakeholder to define fragments of how a scenario in such a stalemate should
continue. A black box abstraction for stakeholders concerning their reactions on specific
inputs is introduced which, in turn, enables impacted stakeholders to walk through their
scenarios even though interactions with other stakeholders have not been observed and
captured yet. By matching such expectations to the pieces of the puzzle that other stake-
holders contribute to the scenario puzzle, the requirements engineer eventually ends up
with the synthesized collaborative scenario or identifies a potential conflict. Either way,
this matching approach overcomes the fragmentation resulting from individual stake-
holder sessions by automatically exploring how they might fit together and validating
the resulting combinations with the stakeholders.

3 Pohl even rates prototypes which can be generated as requiring the least effort of all validation
techniques he discusses in [Poh10].

7

1. Introduction

Additionally, we present an evaluation of our concepts based on a research prototype
which includes a domain-specific graphical user interface that maps and illustrates the
side-effects of story patterns in an intuitive manner for stakeholders. To decouple stake-
holders locally and thereby reduce the requirements engineers’ need for traveling, the
implementation is web-based and enables remote scenario simulations. The evaluation
covers the understandability of the implemented virtual prototyping approach, quick
and inexpensive iterations, and the stakeholders’ ability to understand and change the
models underlying the prototype.

The contributions of this thesis illustrate the feasibility of virtual model-based proto-
types to support requirements engineers in eliciting and validating collaborative scenarios
as they take place between numerous stakeholders. Through these contributions, some
of the most important advantages of workshop-like group settings involving multiple
stakeholders have been transferred to individual sessions taking place in isolation.

The contributions were inspired through the insight that tangibility of prototypes
simplifies communication between stakeholders and requirements engineers – an insight
which we owe to our investigations into the innovation process Design Thinking and
which was part of the overall frame in which this thesis and its contributions were
developed.

8

1.4. Structure

1.4. Structure

Chapter 2: The preliminaries of this thesis are discussed in this chapter. Specifically,
this includes the activities related to requirements engineering, i.e. how requirements
can be elicited, modeled and validated. Also, the suitability of prototypes to validate as-
sumptions and requirements is discussed. Finally, graph transformations are introduced
as a structural modeling technique suitable to describe behavior.

Chapter 3: We present an overview of our approach to ease the understanding of the
forthcoming chapters. Furthermore, this chapter discusses the similarities of models and
prototypes and how we can bridge the remaining gap using virtual prototypes.

Chapter 4: This chapter discusses how our simulation approach replays behavioral
models (i.e. story patterns), illustrated using the case study of selling a movie ticket.

Chapter 5: In this chapter, we discuss how we extended our approach to include the
elicitation of story patterns based on observed stakeholder interactions with a virtual
prototype.

Chapter 6: This chapter introduces triggers and expected continuations which support
stakeholders to overcome stalemates during the elicitation.

Chapter 7: The concepts presented in the former chapters are partially implemented
as a research prototype which is discussed in this chapter.

Chapter 8: This chapter presents an evaluation of the understandability of the realized
virtual prototype and the stakeholders’ ability to modify it. Additionally, the costs and
the effort required to build, i.e. derive and start, a session are discussed.

Chapter 9: The state of the art of simulating and visualizing requirements for stake-
holders and how these approaches are integrated into the validation is discussed in this
related work chapter.

Chapter 10: Finally, we draw conclusions and discuss directions for future work.

9

2. Preliminaries

Alongside the requirements engineering activities illustrated in Figure 2.1, this chapter
discusses the preliminaries that this thesis builds upon. Starting with the discovery of
stakeholders and new requirements, the resulting insights are modeled and documented.
Afterwards, the documented requirements engineers’ interpretation of what the stake-
holders said is validated with the stakeholders again to ensure that it correctly reflects
what the stakeholders intended to say, i.e. what they need. As illustrated in Figure 2.2,
the requirements engineers arrive at a complete specification if it contains and specifies
all stakeholder needs (A\B=∅) [Dav94]. To arrive at a complete and correct specifica-
tion, the requirements engineers also need to ensure that the documentation does not
contain incorrect requirements which do not reflect stakeholder needs (C\B=∅).

Validation

Discovery Stakeholders

Development

Documentation

Figure 2.1.: Inquiry circle of requirements engineering activities (adapted from [ABD09])

Requirements engineers have to produce a requirements specification document that is
consistent, complete and contains only correct requirements.1 The validation (whether
individual requirements are correct) as well as the elicitation and exploration of all
scenarios to ensure that the gathered set of requirements is complete depend on the in-
teraction with stakeholders. The consistency of a set of requirements, on the other hand,
is usually achieved without stakeholders, since consistency issues relate to the conflicting

1 Although more detailed lists of quality attributes which requirements have to possess exist [Dav05,
BPKR09], these three are considered the most relevant for a requirements specification.

11

2. Preliminaries

A

B

C

Stakeholder
Needs

SRS
requirementsnull if complete null if correct

Figure 2.2.: Requirements engineers interact with stakeholders until B=A∪C (adapted
from [Dav94])

statements of different stakeholders. Inconsistencies can be identified by checking each
requirement against all others to ensure that they do not contain conflicting statements.
While this procedure can be executed in more structured ways to compare only related
requirements, a complexity of O(|Requirements|) for checking each new requirement
remains.

Choosing an informal specification, such as (structured) natural language, only very
limited tool support is available to automate consistency checks, e.g. [GZ05]. Conse-
quently, such checks are manual, time-consuming and error-prone [AS02]. This is one of
the main advantages of employing formal modeling notations to specify requirements.
While formal models assist requirements engineers in checking the consistency of their
requirements, such models are disadvantageous for tasks relying on stakeholder inter-
actions. Specifically, they restrict what can be expressed due to their metamodel (cf.
[GGLS11]) and formal notations have to be explained to stakeholders [ARE96] to enable
them to validate whether their intentions were correctly conveyed in these models.

The requirements engineering process is discussed in detail. First, Section 2.1 discusses
how requirements are elicited from stakeholders. Then, the specification of requirements
is described in Section 2.2. Since stakeholders need to validate the requirements, Section
2.3 lists the requirements engineers’ options of including stakeholders in the validation of
their requirements. Afterwards, Section 2.4 illustrates the usage of scenarios in require-
ments engineering. Section 2.5 concludes this chapter with a description of graphs, graph
transformations, and story patterns, which are the formalism chosen for this thesis.

2.1. Elicitation and Discovery

As argued by Endres and Rombach [ER03], it is “good practice to start a requirements
process with a vision statement.” Then, the requirements engineers can interview all
stakeholders and establish this vision in a broader context [JP93]. This entails the elic-
itation of individual statements of needs, which have to be specified and converted into
stakeholder requirements [HJD11]. Iteratively, the requirements engineers gather knowl-
edge about the stakeholders’ domain and its properties (dom) as well as requirements
(req) based on these properties [Jac00]. Only then are software engineers later able to

12

2.1. Elicitation and Discovery

design a specification (spec) in such a way that it fulfills these collected requirements:
spec, dom |= req.

Apart from stakeholders, other sources for requirements are also available [AS02,
PR11], although most of them are static and out of scope for this thesis – these sources
cannot provide feedback on whether the requirements engineer’s interpretation is cor-
rect or not. Consequently, the most important source of information is stakeholders,
especially the ones who are prospective users of the software system that is specified.
To interact with stakeholders, Davis et al. found in a literature review that structured
interviews are a method which, although not the best in all situations, is always suitable
and always yields good results [DDH+06]. Still, to gather requirements, the interactions
between requirements engineers and stakeholders take place either in groups of up to all
stakeholders involved in a particular scenario or individually.

2.1.1. Group Sessions

Different types of group sessions exist, not only for eliciting [LW99, AS02, Lau02,
MNK+07, Lue11], but also for validating requirements [SS97, RS09, Poh10]. In such
group settings, hierarchies among the participants can influence the elicitation [Mur11]
in terms of whether specific conflicts are addressed, how decisions are made, and how
conflicts are resolved. Apart from such group dynamics, group sessions also introduce
scheduling overheads. The more people attend, the more complex it becomes to find a
time slot and a location all participants actually agree on. In case of globally distributed
stakeholders, it may even be infeasible to get all stakeholders physically together for such
a meeting. Therefore, technical settings such as video conferencing exist, which decou-
ples the participants from a specific location [DESG00, Dam01, LRA02]. Still, even with
techniques for improving synchronous communication in distributed settings [CDL07],
time zone issues remain and stakeholders “continue to rely on formal channels” or asyn-
chronous channels for communication [Dam07].

However, group sessions are quite effective for quickly eliciting, validating, and iter-
ating scenarios [LW11], since each stakeholder statement may instantly be countered
by alternative arguments until a consensus is found. Thus, all participants in such a
meeting can arrive at a commonly shared understanding of their collaborative scenarios
and requirements.

To sum up, while instantaneous feedback provided by each other allows stakeholders
to iterate their understanding, group sessions are infeasible to conduct often, if at all.

2.1.2. Individual Sessions

In an individual elicitation session, an isolated stakeholder can describe only the exter-
nally visible behavior of any other stakeholders he interacts with. The actual behavior

13

2. Preliminaries

of these interaction partners has to be considered as a black box.2 Consequently, without
yet knowing what the interaction partner bases her decisions on or what her private
policies [DMCS05] are, the interviewee is likely to describe non-deterministic behavior,
e.g. different responses for seemingly identical requests, from any of his interaction part-
ners. We refer to such points during the elicitation of a scenario as a stalemate: without
knowledge of how an interaction partner reacts, the stakeholder can only speculate on
what happens next. Therefore, the investigated scenario remains incomplete until the
opposite perspective is elicited to complete the interaction.

As opposed to group sessions, the requirements elicited in individual sessions are rather
fragmented. After each session, the overall scenarios which were already captured have
to be amended with the new fragments. Thus, the incidental complexity [NS00] of the
requirements engineers’ models increases more rapidly, since smaller chunks of informa-
tion are added or updated more often than in group sessions. Still, individual sessions
are well-suited for tasks such as resolving an identified conflict, exploring alternatives
of a specific scenario, or validating another stakeholder’s results. Also, short individual
elicitations may be the only way of getting to talk to stakeholders whose availability is
restricted due to time or budget constraints.

Correcting an error in the requirements or resolving a conflict between requirements
has to be possible during any short, iterative sessions with the stakeholders that were
misunderstood. Still, visiting these stakeholders individually might require the require-
ments engineers to travel quite often, as discussed in our report of how employees of
D-LABS GmbH have to travel all over the world to meet their stakeholders [GGS11a].
These traveling times may be reduced by decoupling stakeholders and requirements en-
gineers from one location as discussed for the group sessions.

Maiden et al. [MNK+07] report gathering seven times more requirements per person
per hour in individual workplace sessions than in group sessions. Additionally, sessions
with individual stakeholders inherently emphasize the individual viewpoint of the inter-
viewee [SS97], which in turn allows stakeholders to discuss their needs freely without
being restricted by hierarchical constraints.

To summarize, talking to individual stakeholders to elicit their collaborative scenarios
may be the only possible method of talking to all stakeholders, but it may lead to
fragmentation of these scenarios. Since each session may require additional sessions to
validate new insights, it is usually not foreseeable how many sessions will be necessary.

2.2. Documentation, Specification, and Models

Based on stakeholder statements which the stakeholders usually expressed in natural lan-
guage (NL), the requirements engineers have to extract and specify requirements. While

2 “A usually complicated electronic device whose internal mechanism is usually hidden from or mys-
terious to the user ; broadly: anything that has mysterious or unknown internal functions or mech-
anisms” [Mer13]

14

2.2. Documentation, Specification, and Models

NL can be assumed to be common to everybody, it is inherently ambiguous to deal with
[GZ05]. Although there exist many shortcomings of NL requirements, different studies
indicate that most requirements engineers still rely on NL for expressing requirements
[NL03, LMP04]. As Dawson and Swatman [DS99] argue, informal models are considered
to be models that “can be understood and explained without specific training”. Further
examples are “natural language models including text descriptions, use case scripts, ad
hoc diagrams and interactive demonstration models as often produced for prototypes”.

Formal models, on the other hand, can be used to unambiguously express what stake-
holders require. Since they have to conform to a standardized metamodel, they are
limited in terms of what they are able to express (syntactical restrictions). Still, this
also ensures that everybody who is familiar with the model’s corresponding modeling
notation and its concepts can unambiguously understand what the modeler intended to
express. However, employing a formal modeling approach introduces a barrier between
the stakeholders and their requirements – since formal models are considered to “require
training in order to be understood or explained” [DS99]. Therefore, without either ad-
ditional annotations or even face-to-face explanations, stakeholders cannot understand,
judge and comment on these requirements [ARE96]. Additionally, there is not one type
of model which can be used to capture everything that stakeholders require as argued by
Alexander [Ale11]. Of all the real world aspects which have to be considered, each one
of these notations abstracts most of these aspects while emphasizing a specific subset.
Consequently, each notation overcomes specific disadvantages and is useful for a specific
purpose (cf. Pohl’s definition of model [Poh10]). Still, to be able to derive prototypes
automatically and feasibly, adherence to a formal metamodel with a guaranteed semantic
is necessary. Thus, informal requirements are not within the scope of this thesis.

The Unified Modeling Language (UML) provides multiple models for different pur-
poses [BHK04], mainly for modeling structure (e.g. class and object diagrams) and
behavior (e.g. sequence diagrams, use case diagrams, and state machines). For tasks re-
lated to requirements engineering, use cases [KG00, Coc01] and class diagrams are used
quite frequently [SL04, DP06]. Since class diagrams can be used quite easily to model
the concepts which can be found in the stakeholders’ domain and how these concepts
are interconnected there exist different approaches for either generating class diagrams
from natural language statements [AG01] or vice versa [MAA08].

UML and Metamodeling: A UML class diagram prescribes and defines all valid states
which can be modeled and instantiated by a UML object diagram [OMG05a, OMG05b].
Kühne [Küh06] argued that a metamodel of a domain establishes a language to be used
to construct sentences describing situations as they can be observed in this domain.
Consequently, after a specific model and its notation are chosen, all possible situations

15

2. Preliminaries

can be expressed using these concepts, but only concepts defined by the corresponding
metamodel can be employed using this notation.3

Cranefield et al. propose [CP99, KCH+02] and demonstrate [CHP01] the usage of
UML class diagrams to model ontologies. An ontology, in our case, is an explicit specifi-
cation of a conceptualization [Gru93]. Furthermore, Uschold [Usc98] defines an ontology
as necessarily consisting of “a vocabulary of terms and some specification of their mean-
ing” which also includes “definitions and an indication of how concepts are interrelated”.
Thereby, they “collectively impose a structure on the domain and constrain the possible
interpretation of terms.” Throughout this thesis, metamodels are primarily considered
as world view instead of a mere abstract syntax for models [LK10]. Thus, the terms on-
tology and metamodel are used synonymously throughout the remainder of this thesis.

2.3. Validation of Models

Each model that is created based on stakeholder statements is rather a requirements
engineer’s interpretation of what the stakeholder may have intended to say [Poh10]. In
general, individual requirements can have different errors as illustrated in Figure 2.3.
These errors, such as ambiguity or incorrectness, may be due to misconceptions of the
stakeholder, misunderstandings between requirements engineer and stakeholder, or a
misinterpretation during the creation of a requirement. Since these error sources cannot
explicitly be excluded with certainty, the requirements engineers have to ensure that
each requirement gathered is correct, feasible, unambiguous, verifiable, modifiable, and
traceable [BPKR09].

Furthermore, requirements are not set in stone. Instead, they only provide a snapshot
of what was required at the time they were elicited [Dav05]. They are subject to change
due to a number of reasons such as new technologies, new regulations, or new products
released by competitors [PR11]. Additionally, requirements and their importance for
stakeholders age – priorities change and satisfiers which were explicitly demanded are
later on just subconsciously taken for granted (cf. Kano model as described in [PR11]).
Consequently, eliciting requirements over a long period of time implies that these re-
quirements have to be validated more often.

Finally, all collected requirements have to be consistent and complete [BPKR09].
Sets of requirements may contain additional errors as pointed out by Avci [Avc08] (cf.
Figure 2.3). A requirement introduced into a set of existing ones may be redundant or
inconsistent, i.e. in conflict with another one. Both of these problems can be addressed
automatically with available tool support (e.g. [GZ05, SGM05]).

To ensure that the requirements are suitable, i.e. possess the quality attributes men-
tioned above, the requirements have to be “validated (checked informally) as acceptable

3 As part of the FlexiTools workshop series, on the other hand, Ossher et al. argue that choosing
such a notation at an early point in time is a strong and restricting commitment [OHS+10] and,
therefore, that modeling tools should explicitly support ad hoc modeling [AAF+09].

16

2.3. Validation of Models

Erroneous Requirements

One Requirement Relation between two or more
Requirements

Missing Requirement

Ambiguous Requirement

Incorrect Requirement

Incomplete Requirement

Mistakable Requirement

Inconsistent Requirements

Redundant Requirements

Figure 2.3.: Types of requirements errors (adapted from [Avc08])

to the customer” [ZJ97]. The requirements engineers also have to ensure that the set of
collected requirements “as a whole has been validated as expressing all the customer’s
desires with respect to the software development project”. Again, individual or group
sessions can be conducted to validate requirements. Group sessions, as Pohl points out
[Poh10], can be quite formal and complex to set up. In such a session, a requirements
engineer may provide a face-to-face explanation [ARE96] of the formal requirements he
defined to enable stakeholders to understand these requirements.

In 2009, Cheng and Atlee pointed out the current research directions in requirements
engineering [CA09]. They highlighted simulation and animation as methods which
would help not only during the elicitation, but also during the validation of requirements.
While both of these techniques are necessary for creating interactive (simulation) and
understandable (animation) representations of requirements which stakeholders can val-
idate, the remainder of this section focuses on visualization and animation approaches,
as well as prototypes in detail.

2.3.1. Visualization and Animation

To be included into the validation of requirements based on their statements, stake-
holders have to understand these requirements. If the requirements were specified for-
mally, it is necessary to provide a representation which can be easily understood. For
requirements engineers, visualizations aim at “mapping complex data to perceptual rep-
resentations in such a way as to maximize human understanding and communication”
[GMM07]. Stakeholders, on the other hand, require a representation that overcomes the
abstraction introduced by the modeling notation and its concepts. Consequently, the

17

2. Preliminaries

content of such models needs to be mapped “into visual artifacts, permitting stakehold-
ers to actually see the requirements”, e.g. using metaphors stakeholders are familiar
with [GMM07].

While visualization mainly conveys the structure and relationships [GMM07], ani-
mation illustrates the dynamic behavior instead. The animation of a specification, as
defined by Lalioti and Loucopoulos [LL93], is “the process of providing an indication
of the dynamic behavior of the system” by walking through parts of the specifications
“to follow some scenario”. Thereby, animation can be used to “determine causal rela-
tionships”, that are embedded which stakeholders would not perceive otherwise, and to
“ensure adequacy and accuracy by reflection of the specified behavior back to the user”.

As pointed out by Gemino [Gem04], visualization, animation, and even narration
enable stakeholders to better understand requirements. Still, when choosing how to
visualize requirements, it has to be noted that a) the chosen representation [SS99] and
b) the stakeholder who sees it [SML+09] influences which aspects are primarily perceived
and, thus, what kind of feedback can be obtained.

2.3.2. Prototyping

Based on elicited assumptions and requirements, the requirements engineer may pro-
totype these to ease the stakeholder validation. Prototypes can be distinguished as
tangible and intangible ones. While the former kind is usually rather low-fidelity and
easy to build, the latter, although more expensive to create, is the only viable option
for abstract concepts and “things you cannot touch” [Bro09] such as how an innova-
tive service, which does not yet exist, might respond to an end user’s input. In the
following subsection, which is partially based on [GEGS10] and [GGS11a], both kinds
of prototypes are discussed.

Tangible Prototypes in Design Thinking: In innovation processes such as Design
Thinking [CS08], assumptions and ideas are usually externalized and communicated
using tangible prototypes in physical manifestations [LST08]. Prototyping is an impor-
tant method of validating assumptions about stakeholders and provoking reactions from
them. In engineering, prototyping typically aims at creating tangible representations of
design ideas. Additionally, prototypes can help to establish a common understanding
between design thinkers and end users as well as between design thinkers themselves.
Furthermore, prototypes can facilitate discussion during divergent project stages and
agreement in convergent stages of a project. Depending on how well stakeholders can
experience and perceive a prototype, they are able to judge and evaluate the design idea
or even the rationale behind it.

For Brown [Bro09], a prototype is “anything tangible that lets us explore an idea,
evaluate it and push it forward”. Most importantly, physical prototypes usually afford
stakeholder modifications – by being able to change the prototype themselves, they can
mold it to fit their specific perception of how it should behave or look like.

18

2.4. Scenarios

Prototypes in Software Engineering: In software engineering, tangibility for stake-
holders is quite difficult to achieve for designs or ideas concerning inherently complex
intangible or non-material concepts. Current prototyping practices of software systems
development focus on the articulation of graphical user interfaces (GUI) using a broad
range of approaches from paper prototyping [Sny03] to evolutionary prototyping imple-
mentations that evolved based on evaluations till the prototype is suitable for production
[BBLZ96]. However, these prototypes usually represent the perspective of an individual
and isolated stakeholder. Therefore, such prototypes are not suitable to elicit feedback
about the underlying concepts of how activities are executed and intertwined or how
an innovative software solution could support them. Instead, these prototypes mainly
address usability issues. Since software engineers can judge whether a system is built cor-
rectly and without errors, they can hardly answer whether the right system is built, i.e.
suitable for the task it was designed for, since only a holistic view of all the intertwined
perspectives could answer this question.

Thus, while the stakeholders can judge whether the system is built correctly, i.e. usable
for them, they can hardly answer whether the right system is built, i.e. suitable for the
task it was designed for, since only a holistic view of all the intertwined perspectives
could answer this question.

Prototypes provoke discussions, between stakeholders and developers as well as among
developers. Sommerville and Sawyer [SS97], and Pohl [Poh10] point out that prototypes
are suitable for increasing the stakeholder involvement in the elicitation and validation
of their requirements – but only as long as their creation is inexpensive and allows for
quick iterations. However, software prototypes may become “the private toys of their
developers” which means that “no serious attempt is made to capture all the insights
sparked by prototypes”, as Schneider argues [Sch96]. Thus, it is just as important to
capture the discussions about the prototype as it is explained by its developer, since
only the “developer-prototype system represents the full knowledge”.

2.4. Scenarios

Glinz [Gli00] defines a scenario as “an ordered set of interactions between partners.”
Further, an instance scenario may “comprise a concrete sequence of interaction steps”
(e.g. a specific story of one stakeholder), while a type scenario consists of “a set of
possible interaction steps” (e.g. the result of a synthesis of multiple instance scenarios).
As pointed out in literature, (instance) scenarios support stakeholders to structure their
thoughts along a narrative [ABD09]. Further, scenarios allow requirements engineers to
provide a context for specific requirements which would be hard to evaluate without a
corresponding context – especially if innovation is involved, scenarios are a suitable way
of making the innovation tangible [Bro09, OP10].

As Cheng and Atlee point out [CA09], although scenarios are inherently incomplete,
they are quite easy to use for requirements engineers and stakeholders throughout the

19

2. Preliminaries

whole requirements engineering process. During the elicitation, domain knowledge needs
to be gathered. Thereby, scenarios provide a vocabulary to communicate with stake-
holders [Car95], since scenarios are always from the stakeholders’ perspective [Kuu95].
Further, since each scenario is related to the modeling of a “very restricted part of the
system’s behavior at a time”, requirement engineers can focus without “getting lost in
the complexity of tackling the entire behavior” [HD98]. Consequently, scenarios are in-
herently incomplete as perspectives of other stakeholders are usually missing – hence,
the fragmentation in individual sessions (cf. Section 2.1.2). Therefore, to complete a
partial scenario the requirements engineer has to synthesize multiple partial scenarios
from different stakeholders similarly to how pieces of a puzzle need to be arranged.

Modeling approaches for scenarios range from using structured natural language in use
case templates [Coc01] to formally modeled flows of activities as in story-driven modeling
[DGZ04]. Finally, scenarios can be validated directly by stakeholders, since scenarios
are structured similar to stories. Hence, they afford the requirements engineer to ask
questions to ensure correctness (Are these steps in the right order?, Can this actor carry
out this action?) and completeness (Is this story complete?, Has a step been omitted?)
of requirements [AM04].

Based on the support scenarios offer throughout the requirements engineering activi-
ties, their inherent incompleteness, and the ability to cope with complex collaborations
between different stakeholders, the approach presented in this thesis aims at collecting
collaborative scenarios.

Play Engine: One of the most prominent scenario-based approaches for the specifica-
tion of reactive systems is Harel and Marelly’s Play Engine [HM03a]. Their approach
uses Live Sequence Charts (LSC [Har01]) which distinguish between possible and neces-
sary behavior. By providing a prototypical mock-up of a software system’s user interface,
a domain expert can play in desired behavior, i.e. scenarios of how the system’s inter-
face has to react to user inputs [HM03b]. For instance, pressing a specific button must
change the color of a distinct label. In the background, the play engine automatically
generates “formal requirements in the language of LSCs” which capture the changes of
the user interface that the domain expert demonstrated – observation-based, “without a
need to explicitly prepare the LSCs” [HKMP02].

Play-out, on the other hand, is “the process of testing the behavior of the system by
providing any user actions, in any order, and checking the system’s ongoing responses”
[HM03a]. During play-out, a stakeholder provides an input and the Play Engine tries
to find a suitable reaction as specified in the LSCs that constitutes an acceptable con-
tinuation for the stakeholder. Since the scenario-based specifications are inherently
incomplete and, hence, rather fragmented, multiple specifications may cover different
but overlapping fragments of the same scenario. Therefore, during play-out sessions,
the Play Engine may nondeterministically choose one of multiple alternatives which the
LSCs define. To reduce this nondeterminism, Harel et al. [HKMP02] employ model

20

2.5. Graph Transformations

checking to check whether a correct next step exists among the possible continuations
which the LSCs contain. They refer to the resulting, “strengthened execution mecha-
nism” as smart play out [HM03a]. Consequently, even if conflicting LSCs exist which
result in mostly invalid states during the play out, smart play out ensures that the
follow-up state is a valid one (if a valid continuation exists).

Throughout this thesis, to play out a behavioral specification will be used synony-
mously with replaying an executable behavioral specification (which was derived from
a prior observation). Further, to play in a specification refers to a stakeholder who ex-
ecutes an activity to progress a scenario, i.e. changes the state of this scenario, in such
a way that a specification representing these changes can automatically be derived by
comparing the states of the scenario before and after the stakeholder acted.

2.5. Graph Transformations

To specify graph-based model transformations, Grunske et al. [GGZ+05] define Directed
Typed Graphs as follows: TV and TE are sets of vertex types and edge types, respectively,
and G is the set of all possible graphs over TV and TE. From this set G, a directed typed
graph G = (V,E, src, trg, type) has two finite sets V and E of vertices and edges.
Further, the two functions src : E → V and trg : E → V assign a source and a target
vertex to each edge, respectively. The function type : V → TV ∪E → TE assigns a type
to each vertex and to each edge. In accordance with Habel et al. [HHT96], the following
has to hold for any subgraph Gsub ⊆ G: Gsub = (Vsub, Esub, src, trg, type) with Vsub ⊆ V ,
Esub ⊆ E, and ∀e ∈ Esub : src(e), trg(e) ∈ Vsub.

Moreover, Grunske et al. define graph morphisms between two graphs G1 = (V1, E1,
src1, trg1, type1) and G2 = (V2, E2, src2, trg2, type2) as follows [GGZ+05]: A mapping
m : G1 → G2 consists of a pair of mappings (mV ,mE), with mV : V1 → V2 and
mE : E1 → E2. For these mappings, ∀v ∈ V1 : type2(mV (v)) = type1(v) and ∀e ∈
E1 : type2(mE(e)) = type1(e) hold. Further, they preserve sources and targets, i.e.
∀e ∈ E1 : mV (src1(e)) = src2(mE(e)) ∧mV (trg1(e)) = trg2(mE(e)) holds [CMR96]. If
both mappings mV and mE are bijective, the mapping m is bijective, and the graphs
G1 and G2 are considered isomorphic (denoted G1

∼= G2), i.e. that they have “equal
structure but different naming” [Zün01].

While directed typed graphs can be used to describe structures or snapshots similar
to object diagrams [Hec06], graph transformations can define how such structures may
change. As defined by Rozenberg [Roz97], a graph transformation GT consists of two
graphs: the left-hand side (LHS), which can be considered the application condition
or precondition for the transformation, and the right-hand side (RHS), which defines
the result or postcondition of the transformation. Additionally, Habel et al. [HHT96]
introduced negative application conditions (NACs), which restrict the application of a
rule to graphs, in which “some context specified in the [NAC] does not occur” [EHKZ05].

21

2. Preliminaries

Grunske et al. [GGZ+05] explain the application of a graph transformation GT =
(LHS,RHS) on a directed type graph G as follows: As first step, a subgraph Gsub ⊆ G
for which an isomorphism m : LHS → Gsub exists needs to be identified. Only if such
a subgraph exists, the precondition of the graph transformation is fulfilled. In such
a case, the graph transformation GT is referred to as applicable on G. Secondly, all
edges and vertices which are in LHS \ RHS are removed from the matched subgraph
Gsub ∈ G [Hec06]. If this deletion removes a vertex v which is either the target or source
of an edge e which is not deleted, e is referred to as a dangling edge. The removal of
all remaining dangling edges as used here is referred to as the single-pushout approach
(SPO, cf. [Roz97]). If the double-pushout approach (DPO) is used, on the other hand,
a graph transformation which leaves dangling edges would not have been applicable
in the first place [EEPT06]. As third step, all vertices and edges in RHS \ LHS are
added to the graph which results in the graph G′. In other words, the application of
GT = (LHS,RHS) on the subgraph Gsub, for which an isomorphic mapping m to LHS

exists, consists of replacing Gsub with RHS which leads to G′ (expressed as G
GT,m
=⇒ G′

[BH02]). Throughout this thesis, a shorthand version G
GT−→ G′ is used if either only

one such matching subgraph exists or the resulting graphs are isomorphic independent
of which mapping m is used to apply GT .

Combined Visualization in Story Patterns: As a kind of graph transformation, story
patterns also consist of a left-hand side and a right-hand side [Zün01]. However, to
emphasize the differences between these two sides and to visualize these differences
more intuitively, story patterns encode the changes they affect as follows: all elements,
i.e. vertices and edges, which are to be removed (∈ LHS \ RHS) are displayed with
a corresponding modifier (−− or �destroy�, illustrated in red). Elements which are
added (∈ RHS \ LHS), on the other hand, have a green modifier (++ or �create�)
attached to them. Furthermore, any dangling edges which may remain are removed
afterwards (i.e. single-pushout is used). Throughout this thesis, the terms story pattern
and graph transformations will be used synonymously, since both can be considered
equivalent except for the different visual representation of LHS and RHS which is
defined for story patterns.

Additionally, each story pattern is directly assigned with an instantiated object it
contains. This object is referred to as this object and the transformation is executed
in its context [Zün01, GHS09]. Our approach exploits the existence of a this object in
a story pattern SPn to explicitly specify that the behavior represented by SPn belongs
to the this object (role v1 in case of Figure 2.4).

Modifiable Natural Language Representation of Story Patterns (NL4SP): As di-
rected typed graphs, the LHS and RHS of a story pattern can be considered equivalent
to an UML object diagram. Based on this equivalence, Daniel Eichler implemented a
transformation which generates a NL representation for story patterns in his master’s

22

2.5. Graph Transformations

LHSn

v2:Email

v1:Role

to

v3:Role
from

v1:Role

v3:Role

RHSn SPn

v2:Email

this:Role

--to

v3:Role
--from

Figure 2.4.: A left-hand side LHSn and a right-hand side RHSn are visually combined
in a story pattern SPn (typed over TV ={Role, Email} and TE ={from, to})

thesis [Eic12]. Vertices and edges in LHS, i.e. the preconditions of the story pattern,
can be presented based on the types of the vertices and their edges. This can be done
by enumerating the vertices and the edges between them, just as an object diagram or a
class diagram as illustrated by Meziane et al. [MAA08]. For LHSn in Figure 2.4, the re-
sult would be: v2(Email) is connected to v1(Role) via edge to. v2(Email) is

connected to v3(Role) via edge from.

The changes that the story pattern encodes, however, are represented by the differ-
ences between LHS and RHS. These can also simply be enumerated. For Figure 2.4, the
changes between LHSn and RHSn are: Edge from between v3(Role) and v2(Email)
is deleted. Edge to between this(Role) and v2(Email) is deleted. v2(Email)
is deleted.

The resulting NL representation becomes easier to understand, if the types in TV

and TE are named intuitively. Additionally, naming the vertices intuitively as well
(e.g. referring to v3 as Adam instead), further improves the readability of the NL
representation for stakeholders [GEHG13].

Presenting a NL representation of a story pattern enables stakeholders to understand
the preconditions and changes encoded in the story pattern more intuitively. However,
while such a representation can be generated automatically (a in Figure 2.5a), any stake-
holder modifications of this representation (b in Figure 2.5a) cannot be automatically
translated back into the underlying story pattern (c in Figure 2.5a). Instead, natural
language processing techniques have to be applied to parse the modifications and try
to (re)construct a meaningful model, which only works for simple sentence structures
[ZD09].

Eichler’s approach of providing Natural Language for Story Patterns (NL4SP) starts
by generating a NL representation of a story pattern SPn (a in Figure 2.5b). For
each element in a story pattern, different valid model operations can be applied by a
requirements engineer (b in Figure 2.5b): elements can be renamed, their types can be
changed, or they may be deleted from or added to either side of the story pattern. In
contrast to any unrestricted NL modifications, all of the above operations conform to
the story patterns’ metamodel, and, if applied, lead to a consistently modified story
pattern SP ′

n. Consequently, by translating only valid operations, mapping them on the
corresponding (groups of) words in the NL representation of SPn, and offering them to

23

2. Preliminaries

a) automatic
translation

c) manual
translation

Natural Language
Representation of SPn

Stakeholder
un
de
rs
ta
nd
ab
le

b)
 u

nr
es

tr
ic

te
d

N
L

m
od

ifi
ca

tio
ns

Story
Pattern SPn

Requirements
Engineer

un
de
rs
ta
nd
ab
le

ap
pl

ic
ab

le
/v

al
id

m
od

el
 o

pe
ra

tio
ns

(a) While a story pattern SPn can be represented
in NL (a), unrestricted stakeholder modifica-
tions (b) have to be mapped back manually (c)

a) automatic
translation

d) automatic
translation

Natural Language
Representation of SPn

Stakeholder

un
de
rs
ta
nd
ab
le

c)
 re

st
ric

te
d

N
L

op
er

at
io

ns

Story
Pattern SPn

Requirements
Engineer

un
de
rs
ta
nd
ab
le

ap
pl

ic
ab

le
/v

al
id

m
od

el
 o

pe
ra

tio
ns

b) automatic
translation

(b) NL4SP provides applicable model operations
in NL (b) so that stakeholder modifications are
restricted (c) to operations which can automat-
ically be translated back into SPn (d)

Figure 2.5.: Stakeholders can modify story patterns more intuitively in NL – Eichler’s
NL4SP ensures that they do so consistently (adapted from [GEHG13])

a stakeholder (c in Figure 2.5b), the stakeholder’s modifications are restricted to valid
operations which can be translated back into the underlying story pattern (d in Figure
2.5b). Hence, stakeholders can modify a formal story pattern by manipulating (groups
of) words within a more intuitive NL representation of the story pattern.

For the remainder of this thesis, it suffices to know that such an intuitive natural lan-
guage interface which enables stakeholders to understand and manipulate story patterns
is available (cf. [Eic12, GEHG13]).

24

3. Overall Approach

Scenarios in which multiple different stakeholders are involved who interact to achieve a
common goal are referred to as collaborative scenarios. To specify and realize a software
system which supports these stakeholders, requirements engineers have to investigate
how these stakeholders interact. Only if the requirements engineers elicit how the stake-
holders collaborate, can this software system fulfill the needs and requirements of those
stakeholders. Thus, to support the elicitation and validation of knowledge which is frag-
mented and “often distributed in several involved people’s minds” [BDML09], we provide
a simulation approach which automatically elicits stakeholder activities based on how
stakeholders play through their scenarios in groups or individually. Through an intuitive
domain-specific visualization, stakeholders participate in a simulation of their scenario
and can play in their usual activities and interactions. This behavior is recorded by the
simulator and can be replayed in simulation sessions during which the stakeholder, who
was originally recorded, cannot participate. By playing out these recorded fragments,
the simulator provides feedback to the participating stakeholder on how other stake-
holders might react on his or her actions. This allows requirements engineers to gather
information that is distributed among different stakeholders in decoupled sessions with
individual stakeholders.

Our approach aims at enabling individual stakeholders to validate collaborative sce-
narios they are involved in as well as to correct and complete these scenarios. This can be
achieved by providing a virtual prototype of the scenario that individual stakeholders can
directly experience, judge, and modify. The results, i.e. how a participating stakeholder
is affected, are then intuitively animated relying on domain-specific metaphors. Our
virtual prototyping approach relies on three different parts (D, S, SP) required for the
simulation and a domain-specific visualization which uses metaphors the stakeholders
are familiar with. The three parts are as follows:

• a UML Class Diagram which is referred to as domain model D and which captures
the concepts of the stakeholders’ domain and how they interrelate

• a set S of UML Object Diagrams each of which consists of instances of domain con-
cepts defined in D and represents a situation which may occur in the stakeholders’
domain

• a set SP of story patterns which capture behavior observed from stakeholders

25

3. Overall Approach

sinit

Domain Model

si sterm

<<conformsTo>>

UML Class Diagram

UML Object Diagrams

(a) Object diagrams represent instance situations
of the concepts defined in a class diagram

G G' G''

Graph Transformations

Graphs

LHS RHS

SP SP'

LHS RHS

(b) Graph transformations encode how one graph
G can be transformed into a graph G′

Graph Transformations
(Story Patterns)

SPi SPi+1

Domain Model
UML Class Diagram

interpreted as
Type Graph

sinit si sterm

<<conformsTo>>

UML Object Diagrams
interpreted as
Typed Graphs

LHS RHS LHS RHS

(c) By interpreting object diagrams as graphs
conforming to the domain model, graph trans-
formations define how to get from one object
diagram to the next

SP1 SP2

Domain Model

sinit s1 s2

<<conformsTo>>

LHS RHS LHS RHS

(d) In our state-based simulation, object dia-
grams represent scenario states; graph trans-
formations describe observed state changes
and can be executed to simulate these changes

Figure 3.1.: Concepts, states, and behavioral models in our approach

As pointed out in Section 2.2, class diagrams prescribe all valid states which corre-
sponding object diagrams may represent (Figure 3.1a) and graph transformations de-
scribe the differences between pairs of graphs (Figure 3.1b). Arijo et al. [AHTG11] as
well as Baresi and Heckel [BH02] pointed out that an object diagram conforming to a
class diagram is equivalent to a typed graph conforming to a type graph [CMR96]. Con-
sequently, instantiated concepts in an object diagram correspond to nodes in a graph
whose type is defined in a type graph similar to D. Furthermore, associations between
instances within the object diagram are equivalent to directed typed edges between
nodes in a typed graph. By utilizing this equivalence, we are able to define concepts in
D, instantiate these in object diagrams S which are interpreted as graphs. This, in turn,
allows the usage of story patterns SP to describe transitions between these graphs (Fig-
ure 3.1c). Additionally, since the concepts in D represent the stakeholders’ domain, the
object diagrams represent all possible situations the domain may be in, as per definition.
Thus, provided D defines concepts associated with the scenarios the stakeholders are in-
volved in, such object diagrams can be used to specify distinct situations which may
occur at specific points in time during the execution of these scenarios. In other words,
all possible object diagrams which conform to D are considered states the stakeholder
scenarios may potentially be in. This combination of scenario states, which are based on

26

domain concepts in D, and story patterns which specify transformations between these
states allows us to simulate these scenarios (Figure 3.1d).

The possibility to execute and simulate formal models provides requirements engineers
with new insights concerning aspects such as the overall consistency of the gathered be-
havioral models. Stakeholders, on the other hand, do not directly benefit from such
capabilities, since they are usually not trained to understand the results of such simu-
lations. However, by employing an intuitive representation of the current state of the
simulation, stakeholders may directly experience this simulation. This enables them to
comment on the current state of the simulation which aims to represent the scenarios
they are involved in and, thus, indirectly the behavioral models which change the state
of the simulation (Figure 3.2).

Simulator

Stakeholder
participating

as Rolen
Simulated Rolep Simulated Roleq

Story
Patterns

Indirectly
check Correctness
and Completeness

Story Patterns
of Rolep

Story Patterns
of Roleq

Intuitive
Representation
of the Current

State

D
om

ain M
odel

sinit s1 s2

<<uses>>

<<uses>>SP2SP2SPSP2SP2SP

D
om

ain M
odel

Figure 3.2.: Using an intuitive representation of situations in a simulated scenario, stake-
holders experience how simulated activities of other roles affect them

In our approach, each scenario involving multiple collaborating stakeholders can be
considered a flow of activities of stakeholders and software systems between a sequence
of situations in which the stakeholders involved in the scenario find themselves. For
instance, sending an email with a document attached to it or handing over a contract
which needs to be signed are activities leading to new situations (in these cases: some-
body having access to a copy of the document and somebody else being able to sign
the contract, resp.). By describing such situations using the language established by D,
the structure of those states S between the start and the end of the scenario can be
captured, modified, and behavioral specifications SP can be derived from and executed
on top of these states.

The extendable domain model D, its instantiations in distinct states in S, and be-
havioral specifications SP are discussed in Section 3.1, which is partially based on
our publication [GGS10b]. Then, Section 3.2 (partially based on [GEGS10]) illustrates
how these states of collaborative scenarios can be visualized based on domain-specific

27

3. Overall Approach

metaphors, i.e. in a way that is intuitively understandable for stakeholders involved in
these scenarios.

3.1. Modeling Collaborative Scenarios

Based on Davis et al.’s analysis of more than 4 000 papers related to requirements engi-
neering which were published during 50 years of research [DHD+07], they reported that
only few of these papers discuss the subjective perception of reality which also affects
requirements engineers [DN07]. However, only if the stakeholders’ domain is investi-
gated and modeled accordingly, can requirements be built upon the domain model, as
Jackson pointed out [Jac00]. He further argues that a set of requirements can only be
correct with respect to the domain model D for which they are defined. Consequently, a
domain model D has to contain the concepts required to define the requirements captur-
ing the stakeholders’ needs. To provide a solid foundation to work with, we introduced
an extendable domain model referred to as Dbasic, i.e. basic domain model (Figure 3.3,
cf. [GGS10b]). Dbasic already contains the concepts necessary for describing situations
as they occur in collaborative scenarios taking place in workplace environments. For
instance, it can be expressed that an email was sent from a role to another role. In our
approach, Dbasic is used as a language for describing such situations and states which,
in turn, conform to Dbasic. Hence, the domain model can be considered as type model
[Küh06]. Still, by extending this domain model and, thereby, enhancing the language
that it defines, requirements engineers can describe specific situations within particular
projects in even more detail.

Role

InteractionOntology
World

Ontology
Element

Visit

Call

Email

Facthas knows

exchangesfro
m
to

Digital
Artifact

Analogue
Artifact handover

attachment

0..*0..1
0..*

0..*

1..*

0..*

0..*
isIn
0..1Artifact

+picture
ArtifactState
+picture

copyOf
*

1

Figure 3.3.: Projects start from this basic domain model Dbasic by defining subclasses
suitable for the context of the project (adapted from [GGS10b])

28

3.1. Modeling Collaborative Scenarios

3.1.1. Refining the Basic Domain Model to Describe Scenario
States

At the beginning, when the collaborations between different stakeholders within their
scenarios have to be elicited, the basic domain model Dbasic establishes a vocabulary
that can be used as a starting point to describing states and, thus, the stakeholders’
behavior that changes these states. This basic domain model illustrated in Figure 3.3
structures the general domain of collaborative scenarios involving multiple stakeholders.
While stakeholders or stakeholder groups can be characterized by roles, how they com-
municate can be described by different kinds of interaction. Additionally, the artifacts
the stakeholders work with and the knowledge they require to do so can be described
by artifact and fact, respectively.

Boss CustomerProposal Proposal
Printout Assistant

Concept specified in
basic domain model

Additional concepts in
refined domain model

Role

InteractionOntology
World

Ontology
Element

Visit

Call

Email

Facthas knows

exchangesfro
m

to

Digital
Artifact

Analogue
Artifact handover

attachment

0..*0..1
0..*

0..*

1..*

0..*

0..*
isIn
0..1Artifact

+picture
ArtifactState
+picture

copyOf
*

1

Figure 3.4.: For each domain, roles and artifacts are identified and defined in Dspecific

Further, to use, extend, and refine the rather generic concepts of Dbasic, a second
domain model Dspecific is used to capture the subclasses that are defined by the require-
ments engineer. By adding or refining concepts to Dspecific, the language that is defined
by D, which combines Dbasic and Dspecific and, therefore, consists of all concepts, be-
comes more expressive. Similarly to how cars are undistinguishable without concepts for
describing their specific parts, their brands, or their color, the same goes for describing
collaborative scenarios; talking about generic documents being passed around by generic
roles is useless, until specific manifestations can be described, distinguished, and later
on recognized by stakeholders. A simple example of such a scenario-specific extension

29

3. Overall Approach

of D is shown in Figure 3.4. Concepts defined in Dbasic are illustrated in orange, while
concepts captured in Dspecific are displayed in blue. For this example, three different
roles were already identified in initial interviews: Assistant, Boss, and Customer.

Starting with Dbasic as shown in Figure 3.3, project specific subclasses of Role, Fact,
Artifact, or even Interaction can be defined in Dspecific as illustrated in Figure 3.4.
Then, specific situations or states can be described in conformance to D. The specifica-
tion of an email which is sent from one person to others (with each recipient receiving an
individual copy of the email) is necessary, since it can be considered as a communication
primitive [GH06]. The states before and after such an email was sent are illustrated in
Figure 3.5. Corresponding to the domain-specific refinement of the domain model, the
refined roles and artifacts are the ones which are interacting and modified along the way,
respectively.

sn
john

:Customer
adam

:Assistant

proposal
:Proposal attachment

to
mail
:EMail

from

bert
:Boss

sm
john

:Customer
adam

:Assistant

proposal
:Proposal

has

bert
:Boss followed by

has

Figure 3.5.: Abridged states representing the situations before (sm) and after (sn) the
assistant Adam receives a proposal from the customer John

As soon as new collaborative scenarios are to be investigated in a new project, Dbasic

(possibly including suitable and approved extensions as we described in [GGS10b]) is
used as the initial domain model and can iteratively be extended by a new Dspecific. Po-
tentially, each refinement enhances the language established through the domain model
in such a way that it can then be used to describe states which were not expressible with
prior versions of D.

Since we are interested in eliciting specific collaborative scenarios (e.g., signing a
business proposal), any potential impacts of other instances of the same scenario (e.g.,
multiple instances of the proposal existing within the same state) or parallel executions
of other scenarios should be excluded. Thus, our approach works under two specific
assumptions:

1) Similar to the categorization introduced in Alexander’s stakeholder onion [Ale05],
different stakeholders involved in a collaborative scenario can be consolidated into
specific roles, i.e. subclasses of Role. For instance, while there might be only one
stakeholder who everybody refers to as “boss”, there may be multiple stakehold-
ers who work for this Boss as Assistant. Consequently, any of these assistants
does have the necessary knowledge to enact the role of an assistant during the
enactment of the scenario. Therefore, only one instance of each specific subclass
of Role defined in D is required for the simulation of the scenario.

30

3.1. Modeling Collaborative Scenarios

2) Our approach distinguishes between different artifacts by introducing refinements
thereof, which reflect the distinction from a stakeholder’s point of view. Such re-
finements enable the requirements engineers to describe scenario states in a level
of detail which makes the different artifacts distinguishable for stakeholders. Con-
sequently, just as their real-life counterparts, it is always possible to introduce a
refined concept in D for each domain concept that needs to be distinguishable.

While these assumptions require a sufficiently expressive domain model D, they do not
restrict the applicability of our approach.

3.1.2. Story Patterns based on Scenario States

The domain model D can be considered the type graph for graphs which, in turn, rep-
resent states that describe situations occurring within the collaborative scenarios under
investigation. From a subsequent pair of such situations, the changes between them
can be expressed using graph transformations, i.e. story patterns. An example that is
part of a scenario concerned with signing a business proposal is illustrated in Figure
3.5. As a customer, John would say: “After having prepared a proposal, I send

it to the assistant via email.” From an external point of view, the observation is
limited to the prior and subsequent situation (sm and sn, resp.) as well as to which one
of the interacting stakeholders is actively changing the situation. Still, objectively we
observe the situations illustrated in Figure 3.5 as follows: “When the customer (the ac-
tive role) has a proposal, the assistant then receives an email sent by the

customer containing this proposal.” This apparent difference between these two
states can be described using story patterns: as soon as the prior situation is observed
(LHS = sm), customer can conduct an activity which leads to the later situation
(RHS = sn). Moreover, observed changes between subsequent states can be defined
as a story patterns which are then assigned as executable behavior to one of the par-
ticipating roles (indicated by naming the corresponding instance of role this). By
restricting this objects to be instances of roles, the behavior captured in story patterns
is bound to and belongs to the corresponding group of stakeholders. An example of
generic behavior is shown in Figure 3.6a: since the applicability of this story pattern is
not further restricted to specific roles, any role can send a digital artifact to any other
role via email. However, to capture a distinct interaction that can be observed within
any of the scenarios under investigation, we simply have to refine this specification to
be applicable only for the corresponding situations which usually invoke this behavior.
As Figure 3.6b shows, it is possible to define which sender is supposed to send which
attachment (which needs to be a digital artifact, as specified in D) to which receiver.
This new specification relies on refinements defined in the project-specific parts of D.
Consequently, specifications refining generic concepts can be used to specify distinct
stakeholder actions or interactions with other (potentially simulated) roles.

31

3. Overall Approach

has
++from

++to

++attachmentd
:DigitalArtifact

this
:Role

b
:Role

e:Email

SPSendEmail

(a) While any (subclass of) Role can send an
Email with attached DigitalArtifacts, ...

has
++from

++to

++attachmentp
:Proposal

this
:Customer

adam
:Assistant

e:Email

SPSendProposal

(b) ... only a Customer may execute the story pat-
tern for sending a Proposal

Figure 3.6.: The story pattern SPSendProposal refines the generic version SPSendEMail

(adapted from [GGS10b])

3.1.3. Introducing new Concepts into the Domain Model

By carefully studying Figure 3.3, one might find several gaps which inhibit the usage of
the generic Dbasic for modeling most scenarios. While Dbasic easily affords the definition
of specific roles, it does not include concepts necessary for, e.g., describing scenarios
involving traveling stakeholders in globally distributed companies. In the following, we
demonstrate one of multiple possible solutions for modeling this specific challenge to
illustrate how the domain model D, which our approach employs, bridges such gaps.
Dbasic already contains the concept of one role visiting another one (Visit). While

one is usually able to visit coworkers working on the same floor, the situation is different
for coworkers in other towns, countries, or even on other continents. To reflect this
distinction in the domain model, it is necessary to include information about the location
of roles into D. One possible solution is presented in Figure 3.7a. Each role can be
modeled to be in a Room which can be assigned to a Floor, House, Town, or Country.
Depending on the size of the company, it might suffice to include rooms on floors within
the same building. Then, visits are still possible without considering the time it takes to
reach the target or the resources consumed to get there. However, if somebody working
in Germany needs to visit a colleague in Canada, a visit can take several days and
cost thousands of dollars. Since this distinction between different types of visits relies
on locations, a Location concept must be modeled within the project-specific domain
model first (cf. Figure 3.7a). Then, refinements of Visit can be described as illustrated
in Figure 3.7b.

3.1.4. Handling Domain Concept Modifications

Usually, modeling tools rely on a predefined metamodel and the language this metamodel
establishes. Concepts which were not anticipated by the tool provider are not covered in

32

3.1. Modeling Collaborative Scenarios

Location

Room

Town

House

Floor

Country

Role

Visit

LocalVisitVisitByPlane

isAt

rooms

floors

houses

towns

0..*

0..1

0..*

0..*

0..*

(a) Concepts for Location and refinements of
Visit are added to D to model collaborative
scenarios within globally distributed companies

++from ++tothis
:Role

b
:Rolev:Visit

SPVisit

++from ++tothis
:Role

b
:Rolev:LocalVisit

SPVisitLocally

sameHouse
:House

isAt isAt

++from ++tothis
:Role

b
:Role:VisitByPlane

SPVisitByPlane

c1:Country

--isAt
isAt

c2:Country

++isAt

(b) After concepts related to Location have been
added to D, different subtypes of Visit can be
distinguished and specified in story patterns

Figure 3.7.: Extending the concepts in the domain model D allows to describe more
complex situations and, hence, behavior (adapted from [GGS10b])

such a metamodel and, hence, cannot be modeled. As a result, predefined metamodels
restrict the requirements engineers and are generally considered rather inconvenient due
to this inflexibility. However, an inflexible metamodel avoids the problem of models
becoming invalid due to changes in their metamodel. The same problem applies for the
models that have to conform to D: While additional concepts enrich the language that is
established by D as discussed in Section 3.1.3, modifications or the removal of concepts
invalidates all models referring to the outdated concepts. As a consequence, these models
do not conform to the updated version of D. To solve this problem, we propose to
circumvent invalid references between these states and story patterns to concepts in D by
redirecting them to the corresponding superclass in D or even Dbasic. For instance, if the
concept Customer in D (cf. Figure 3.4) is deemed inappropriate and marked for deletion,
the story pattern SPSendProposal in Figure 3.6b would become invalid, since it contains
an instance of and, thus, references the concept Customer. In the worst case, this means
losing the specified behavior completely. While the interaction might not be valid for
a Customer, the observation that it took place still remains valid. By redirecting this
reference to Role, the story pattern remains valid and executable. However, information
is lost, since the story pattern’s precondition is less restrictive. Instead of capturing a
potentially unique interaction between a customer and an assistant, the resulting, more

33

3. Overall Approach

generic story pattern implies that any role can send an email with an attached proposal
to the assistant. The same substitution is possible for almost all elements of a domain
model, as long as there is a valid superclass, i.e. more generic concept, in Dbasic (in our
case OntologyElement, cf. Figure 3.3).

Since all relevant changes originate in the domain model D, this category of changes is
considered metamodel-specific [HBJ09] and can be applied to all instances of Ontology-
Element. Consequently, all instances of a modified concept which are part of a state s
conforming to D or that are part of either the LHS or RHS of a story pattern SP ∈ SP
can be adapted correspondingly. It has to be ensured that all affected models in S and
SP are always updated accordingly, i.e. only contain valid references to the concepts
defined in D. The simple replacement illustrated in this section suffices in most cases –
since approaches for this category of problems (e.g., COPE for the “coupled evolution of
metamodels and models” [HBJ09])1 already exist, more complex replacements are out
of the scope of this thesis.

3.1.5. Use Cases for Domain Model, States, and Story Patterns

By enabling requirements engineers to modify the domain model D, we avoid the draw-
backs of an premature commitment to a specific formal tool or metamodel [OBS+10]. At
the same time, the distinction between generic concepts in Dbasic and specific concepts
added later on to D guarantees domain-specific semantics [GGLS11]. Consequently, the
use cases concerning the domain model D that are relevant for the requirement engineers
are illustrated in Figure 3.8. Initially, the elicitation together with stakeholders and the
subsequent specification of concepts during which D is defined similar to a glossary (D1
and D2, respectively) takes place. Afterwards, to ensure that a common understanding
is established between the stakeholders and requirements engineers, D can be validated
(D3), e.g. by producing an easy to understand natural language version of the modeled
relationships between the concepts of the domain [MAA08]. Incorrect assumptions of
the requirements engineers may manifest in erroneous concepts in the domain model.
Especially in a specific situation during a simulation, a stakeholder can point out that,
e.g., an additional distinction between different types of proposals is required or that a
specific role such as Customer can be removed as mentioned above. Then, the domain
model can be adapted based on stakeholder feedback (D4), if deemed necessary. Of
course, adapting D includes modifications such as removal and addition of concepts that
might invalidate states or even story patterns. Thus, invalid references from states or
story patterns to D have to be checked and potentially adapted as well (D5).

Initial or terminal states, on the other hand, can be described by stakeholders (S1
in Figure 3.9). This enables requirements engineers to use this description to create a
state specification relying on the vocabulary established by D (S2) – this may even be
achieved by the stakeholders directly, provided they can use an intuitive editor for doing

1 D is employed in such a way that it is equivalent to a metamodel for our states and story patterns.

34

3.1. Modeling Collaborative Scenarios

Requirements
Engineer

Stakeholder D1: Elicit Domain
Concepts

D2: Specify
Domain Model

D4: Adapt Domain
Model based on

Feedback

<includes>
<uses>

D3: Validate
Domain Concepts

D5: Modify References in
Story Patterns and States

<includes>

Figure 3.8.: Use cases related to the domain model D

so (cf. Section 2.5). After a state has been defined, a requirements engineer may either
modify it based on stakeholder feedback (S4) or even remove it (S3).

Requirements
Engineer

Stakeholder

S1: Describe
Situation S2: Define State

based on D

<includes>

S4: Modify
State

S3: Remove
State

Figure 3.9.: Use cases related to distinct states in S which are based on D

We chose story patterns to formally capture stakeholder actions and interactions.
Still, stakeholders need to be able to experience a) a state and b) its changes which
reflect activities of other stakeholders or software systems. By recognizing such a state
and changes within it, they are able to evaluate whether what they see matches their
experience or expectations in the respective state during a simulation. Consequently,
such a representation enables stakeholders to point out factual errors directly in the
state that is being visualized as well as indirectly in the story pattern(s) that led to
this state. Thus, by collecting story patterns and validating them with stakeholders,
they can identify errors and report them to requirements engineers (SP1 in Figure 3.10).
Since each piece of the stakeholder’s story depends on the precondition and the resulting

35

3. Overall Approach

postcondition, either one of these conditions might have to be adapted (SP2 and SP3,
respectively) or the story pattern is removed (SP4).

Requirements
Engineer

Stakeholder

SP1: Point out
Factual Error

SP2: Adapt
Precondition

<includes>
<includes>

SP3: Adapt
Postcondition

SP4: Remove
Story Pattern

Figure 3.10.: Use cases related to the story patterns in SP

3.2. From Formal Models to Virtual Prototypes

To effectively prototype collaborative scenarios with stakeholders, the models described
in Section 3.1 are not sufficient. As Schrage [Sch04] argues, “we model, prototype,
and simulate software with clients, not for them”. Consequently, to validate and elicit
their requirements, they need to be able to understand, judge, and complement what is
presented to them. What makes tangible prototypes particularly effective is the stake-
holders’ ability to recognize whether a prototype is a sketch of a suitable solution that
fulfills their needs.

Formal models, on the other hand, are used quite commonly in engineering disci-
plines. Their elements carry semantic and syntactic information that are not obvious to
most stakeholders. Consequently, such models are either used to efficiently communi-
cate knowledge between trained professionals or to benefit from automation capabilities
provided by these models. The main differences between these two approaches of rep-
resenting ideas, however, is whether a stakeholder has to be trained to understand the
representation of the information. This section discusses how intuitive visualizations
of states conforming to D and story patterns in SP executed on them can be used to
virtually prototype the collaborative scenarios under investigation.

3.2.1. Prerequisites of Representations

To communicate, iterate, and validate an idea with stakeholders or other engineers, the
idea has to be externalized and represented in order to be shared. The more complex
or abstract the idea, the more difficult it is to create a representation that stakeholders

36

3.2. From Formal Models to Virtual Prototypes

can understand intuitively, i.e. that is considered “tangible”. Furthermore, the choice
of the representation influences what can be modeled, recognized, and which operations
can be executed. Moreover, this choice also determines which background any person
judging it requires in order to be able to work with it.

As an example, we may consider the following two different representations of num-
bers. Early in school, most people learn to multiply Arabic numerals such as 177 × 23
as illustrated in Table 3.1. However, if the multipliers are represented using Roman
numerals, i.e. CLXXV II ×XXIII,2 only few people are capable of doing so without
transforming the numerals into the Arabic format first. Therefore, which operations (in
this case multiplication) a person is capable of executing on a specific representation of
information depends on a) how it is represented (Arabic or Roman numerals) and b)
whether this person was trained to work with or understand this specific representation.

177 × 23 = 4071

354

+ 531

4071

Table 3.1.: Multiplication of Arabic numerals as it is taught in school

Tangible Prototypes as Representations without Prerequisites: Lim et al. [LST08]
argue that prototypes are manifestations of design ideas that “filter the qualities in
which the designer is interested without distorting the understanding of the whole”.
Consequently, stakeholders need to able to recognize the properties of the prototype and
interpret which of those are relevant to provide suitable feedback about them. Tangible
prototypes can be touched, experienced, and evaluated without any specific prerequisites
(cf. Figure 3.11a). The only required knowledge imposed by such a tangible prototype is
that the stakeholders have to be familiar with the domain. By matching their interpre-
tation of the prototype with their perception of the problem they want to have solved,
all stakeholders can provide feedback.

Prerequisites of Models: Models, on the other hand, are commonly used to describe
inherently intangible concepts such as software systems. By modeling either an existing
or an envisioned original, engineers can externalize and share their thoughts with other
engineers. According to Stachowiak [Sta73], models are abstract representations of ex-
isting or envisioned originals, i.e. they have a point of reference. To be feasible, not all
properties of this original are represented in the model. Without such a reduction, a
model would be impractically complex. Pohl [Poh10] defines a model as “an abstract

2 This example and an illustration of the procedure of how to multiply Roman numerals can be found
at http://www.phy6.org/outreach/edu/roman.htm (accessed June 2013)

37

http://www.phy6.org/outreach/edu/roman.htm

3. Overall Approach

representation of [aspects of the existing or conceived reality under consideration] cre-
ated for a specific purpose”. By emphasizing certain aspects, the overall complexity
decreases and can be dealt with. As indicated by Rothenberg [Rot89], modeling is a
way of dealing with things or situations that are too costly to deal with directly. In the
case of the construction of bridges, the engineers want to know whether the planned
bridge withstands the expected load before they build it. To achieve this, they model
the bridge and analyze these models to predict or verify the physical properties of the
bridge.

In several domains dealing with abstract and intangible concepts, e.g., software engi-
neering or molecular chemistry, domain-specific models enable experts to externalize and
communicate their knowledge or ideas with other experts. In such a setting, the involved
experts are from the same domain and, therefore, will likely share the same interpreta-
tion (e.g., i1 in Figure 3.11b) of the model. Having such a common understanding of
what is modeled allows them to effectively communicate concerning the existing or envi-
sioned original. If, however, stakeholders are involved as well (e.g. during validations),
such a common interpretation can usually only be achieved if the representation of the
model mimics the original as close as possible. Unless an expert explains these mod-
els, the underlying modeling language, its elements, and their symbolic meaning to the
stakeholders, each stakeholder would interpret the model differently, if not incorrectly
(e.g., i2 in Figure 3.11b).

The creation of a prototype to externalize a design idea can be considered equivalent
to the creation of a model prescribing an envisioned original. In both cases, knowledge
is externalized to be communicated with other persons, i.e., other experts or stakehold-
ers. Additionally, the created representations by definition do not reflect all properties
– instead, specific properties are emphasized and others ignored. For instance, while
transformations from UML class diagrams to natural language [MAA08] afford stake-

Design Idea Prototype

weight'

transformation

weight

interpretationsize size'

relevant property manifested property
omitted property superfluous propertyq q'

p p'

(a) Relevant properties of design ideas can be
manifested tangibly in prototypes

relevant property manifested property
omitted property superfluous propertyq q'

p p'

Envisioned Original Model

p'i1

?
i2

p

abstraction

q'

q

(b) An (envisioned) original that is externalized
as a model introduces prerequisites for its cor-
rect interpretation i1

Figure 3.11.: Feedback can be fostered by externalizing visions or ideas

38

3.2. From Formal Models to Virtual Prototypes

holders to understand and validate this informal representation of these models, other
transformations support specific operations by focusing on a specific aspect such as
causal dependencies to simplify the identification of inconsistencies [LSW08]. As men-
tioned before, representations impose prerequisites to be interpreted correctly. Thus,
the main difference between prototyping and modeling is the fact that prototypes usu-
ally build upon the stakeholders’ domain knowledge, while models require stakeholders
to be trained to understand the employed modeling language and its notation [DS99].
Otherwise, models may only be used to communicate and share ideas among trained
experts. Therefore, as externalization of knowledge, concepts, or ideas, prototyping
can be considered as a specialized form of modeling which sacrifices unambiguity and
expressiveness (for trained experts) for understandability for stakeholders.

3.2.2. Affordance Options

Only if all stakeholders (and modelers) recognize and interpret a prototype’s property
p′ as the manifestation of the design idea’s property p, can they share the same under-
standing of this property (as illustrated in Figure 3.11) and iterate the underlying idea.
Affordances, as defined by Gaver [Gav91], are properties of the world that are compati-
ble with and relevant for people’s interactions. This definition of affordances is suitable
to describe the stakeholders’ ability to recognize and interpret a property represented
in a model or prototype correctly. Moreover, Gaver argues that whether an affordance
is perceived depends, among other things, on the observers’ experience [Gav91]. For
instance, while an architect is able to envision herself walking through the building she
sees sketched on an architectural drawing, somebody unfamiliar with such models is not
able to do so – let alone find the entrance of the envisioned building. This dependency
on each stakeholder’s individual experience or expertise leads to three different choices
to achieve tangibility for prototypes:

• The first option is to build prototypes that offer an affordance by relying on con-
cepts that everybody is familiar with (cf. Figure 3.12a). Everybody who ever used
a labeled button would recognize the associated affordances in other contexts as
well. While it is desirable to create affordances in such a way, it is hardly possible
for inherently abstract concepts the stakeholders are not familiar with.

• The second option would be to teach stakeholders how to perceive affordances
which would otherwise be new, unfamiliar, and, thus, hidden for them. This can be
achieved by, e.g., showing or teaching them how they can interact with a prototype
or how they are supposed to interpret a specific representation. Consequently, the
observers gain new experiences which allow them to recognize such affordances
later on again (cf. Figure 3.12b). However, a prototype that must initially be
explained to all stakeholders to enable them to evaluate the embodied concepts
is infeasible for projects which involve many stakeholders since each one of them

39

3. Overall Approach

PU
SH

(a) Creating obvious
affordances

Designer

Could you
imagine living
in this house?

(b) Teaching to perceive affor-
dances

Your Home - 3D

turn
left

turn
right

backward

forward

(c) Present affordances within the
stakeholders’ domain of expertise

Figure 3.12.: There are different possibilities of creating affordances that can be per-
ceived intuitively

would have to be taught beforehand. Further, the explanations may change the
stakeholders’ interactions with the prototype which may affect the authenticity of
their reactions and, hence, their feedback.

• A third option, suitable especially for inherently abstract concepts, is to provide
stakeholders with a common interpretation of the otherwise potentially incompre-
hensible prototype (cf. icommon in Figure 3.13). While this is a common practice
for requirements engineers who, e.g., either annotate their formal models or even
keep redundant natural language representations [ARE96], doing so for many iter-
ations is infeasible due to the high costs of creating such representations manually.
To create such a representation feasibly, an automatic transformation of the rele-
vant properties of ideas is necessary. This transformation must not require specific
experiences to perceive the manifested concepts and to evaluate the underlying
design idea (cf. Figure 3.12c). This is possible by explicitly relying on the com-
monly shared domain of expertise of the stakeholders (captured in D), which is
referenced in the requirements engineers’ models (in our case: SP and all states
conforming to D).

Consequently, the suitability of a prototype for a specific stakeholder or a group of
stakeholders depends on the prototype’s prerequisites concerning the background of the
person that needs to judge the prototype. Since the models that engineers create either
describe details, relations between them and requirements from within this domain or
prescribe an idea how specific stakeholder needs can be fulfilled, the engineers can always
rely on the domain-specific knowledge of the stakeholders. The engineers can build upon
this knowledge by providing representations that all stakeholders can uniformly interpret.

40

3.2. From Formal Models to Virtual Prototypes

3.2.3. Virtual Prototypes

As illustrated in Figure 3.13, a model can be experienced similar to a tangible prototype,
if the stakeholders are enabled to understand its content and, in case of dynamic behav-
ior, how it affects them – ideally within their domain of expertise. Thus, the behavioral
specifications collected from any of the involved stakeholders can be prototyped directly
by enabling stakeholders to experience how they are affected through story patterns of
other stakeholders. Then, the stakeholders can comment on what these models represent
without being hindered by the story patterns’ idiosyncratic formal representation. Con-
sequently, our solution maps the content of these complex models back into the domain
of expertise of the stakeholders to close the gap between behavioral specifications on
the one side and tangible prototypes on the other side. By executing a story pattern
and automatically mapping its effects into the stakeholder domain, stakeholders are en-
abled to understand the behavior specified in the story pattern. Such effects are usually
based on interactions with stakeholders, actions like prompting stakeholders or reacting
to stimuli from them. Creating such effects through simulating and visualizing those
using domain-specific metaphors provides a common interpretation icommon which can
be perceived intuitively and uniformly as long as it is solely based on the stakeholders’
domain (cf. Figure 3.13). Of course, for complex systems supporting collaborative sce-
narios involving different groups of stakeholders with different backgrounds, each group
of stakeholders might need a different visualization of the model within their individual
domain of expertise, similar to the effects observed by Sellen et al. [SML+09]. Similarly
to tangible prototypes, different aspects can be emphasized or omitted.

Domain Model

Reference Domain metaphors for
externalized aspectsi(p')Mapping domain concepts

to domain metaphors

Externalized Model

transformation

Assumptions &
Requirements Stakeholders' Domain

p'p i(p')
icommon

Virtual
Prototype

Figure 3.13.: An externalized model which imposes prerequisites on understanding needs
to be transported back into the stakeholders’ domain of expertise

Based on the domain model D, specific states S of the collaborative scenarios, and
the collected behavioral specification SP , it is possible to provide a framework to create
virtual prototypes, as opposed to tangible ones. By consistently employing domain-
specific metaphors that are intuitively understandable for the stakeholders and that
they are familiar with, it can be ensured that most if not all of them share a common
interpretation of what is presented to them (cf. TG2A in Section 1.2). Thus, a virtual

41

3. Overall Approach

prototype V P consists of D, S, SP , and a domain mapping which defines how concepts
in D and their modifications (as defined by story patterns in SP) have to be visualized
and animated using domain-specific metaphors. The only additional prerequisite, apart
from the models already defined by the requirements engineer, is the definition of this
domain-specific transformation as illustrated in Figure 3.13. For instance, stakeholders
have to be able to interact with emails, i.e. to write and read emails or attach digital
artifacts to them. By presenting the stakeholders with an icon that they are familiar
with as illustrated in Figure 3.14, they are enabled to receive emails as sent by other
stakeholders. This way, the stakeholder is affected by a story pattern which is executed
to simulate another stakeholder. For instance, if a story pattern specifies that certain
information is shared between two stakeholders via email, the recipient can receive this
information via (virtual) email within the visualization as part of the simulation. Fur-
thermore, these metaphors not only allow stakeholders to experience formal models, but
also to create story patterns themselves by interacting with the virtual prototype and,
thus, play in activities (cf. TG1B). Each interaction, e.g. each specific email sent to
a distinct role, and each action such as signing an artifact is observed and saved as a
story pattern which can be replayed to simulate the observed behavior.

A virtual prototype needs to present all artifacts recognizably for stakeholders who
work with them on a daily basis – consequently, each instance of Artifact requires a
picture stakeholder are familiar with assigned to it which can be shown each time the
artifact needs to be represented (cf. D in Figure 3.3). Further, the progress of the
scenario is usually marked on analog or digital versions of a specific artifact. Therefore,
the representation of artifacts needs to be interactive in a way that affords stakeholders
to write and draw upon them (cf. Figure 3.14b). Then, stakeholders can mark, sign,
or stamp such documents recognizably for other stakeholders and, hence, hand these
processed documents over to other stakeholders during the simulation.

(a) The virtual prototype enables stakeholders to interact
with each other, e.g. using the concept of Email of D

(b) Stakeholders are also able to work with
those artifacts they are familiar with

Figure 3.14.: Our virtual prototyping approach relies on a simulation and the illustrated
domain-specific animated visualization suitable for collaborative scenarios

42

3.2. From Formal Models to Virtual Prototypes

Prototypes employed in requirements engineering usually differ quite a lot concerning
the effort required for their creation [Poh10]. Consequently, whether virtual prototypes
can be created quickly and inexpensively (cf. TG2C) affects their feasibility to support
the iterative refinement of the collected stakeholder scenarios. Based on the formal
nature of the underlying domain model and story patterns, virtual prototypes can be
derived semi-automatically at virtually no cost as soon as the domain mapping and a
corresponding domain-specific user interface such as the one illustrated in Figure 3.14
exist. This requires the requirements engineers to initially create the necessary visual
metaphors. Generally, each concept defined in D that stakeholders have to interact
with must have a corresponding mapping to be visualized (to notify a stakeholder of
its existence) or even animated (if its modifications cannot be ignored) accordingly.
The effort needed to create such metaphors cannot be estimated, since an intuitively
understandable metaphor is usually not obvious, but may have to be iterated with
stakeholders first. However, such metaphors can be re-used in other projects in the
same or related domains as well, which makes their creation worthwhile.

Usually, stakeholders involved in a collaborative scenario neither have instantaneous
access to all artifacts nor do they see every detail of what happens within the scenario.
This has to be reflected in the stakeholders’ visualization of the state of the scenario
simulation in a realistic fashion. What has to be visualized to reproduce a distinct
stakeholder’s individual perspective is domain-specific. Thus, based on the stakeholders’
domain, the concepts defined in the domain model D must be annotated to reflect which
elements are visible to a stakeholder and, correspondingly, have to be presented in the
stakeholder’s visualization of the state a simulated scenario is in. This annotation uses
the �visible� stereotype and is based on the links connecting a stakeholder’s role to
objects that are part of the state (illustrated in gray in Figure 3.15). Each object
that is directly connected to a role via a correspondingly annotated link is considered
visible for that role. Through prototypical iterations of these annotations for D, the
requirements engineers can quickly determine which links connecting which objects have
to be represented. In the considered domain, the same annotations usually apply for all
stakeholders and, hence, for all roles. As defined for Dbasic, an instance of Role requires
a representation of instances of Artifact which are connected to this role via has.
Further, visibility is transitive which means that, e.g. an instance of ArtifactState

which is visibly connected to an instance of Artifact is visible for any role that has this
artifact. Additionally, all ongoing interactions that were established before need to be
included, since the interaction might be part of the rationale behind activities observed
from the participant.

Based on the visibility annotations of D, the current state scur of a simulation has to
be visualized for each of the participating roles. We refer to a state scur that is reduced
to what is visible for a specific role r as a projection scur|r or r’s perspective of scur.
For each projection for each role r, scur|r ⊆ scur has to hold. To determine what has
to be represented for a specific role r, its projection scur|r has to be established for a
state scur. Starting at the instance r of Role, all objects reachable via �visible� links

43

3. Overall Approach

must be represented for this specific role and, thus, are elements ∈ scur|r. This search
for visible instances in scur skips over other instances of Role. Although they might be
transitively connected via a specific Interaction for which r may either be the target
or the initiator (connected via to or from, resp.), instances only reachable through other
roles are, as in reality, not visible to r.

Concept specified in
basic domain model

Association annotated as
visible for connected roles «visible»

Artifact
+picture

ArtifactState
+picture

«visible»
isIn

«visible» has

«visible»
to

«vi
sib

le»

fro
m

«visible» knows

«visible» handover

«visible» attachment

Role

InteractionOntology
World

Ontology
Element

Visit

Call

Email

Fact

exchanges

Digital
Artifact

Analogue
Artifact

copyOf

Figure 3.15.: Instances linked to a role in a state conforming to D are considered visi-
ble for that role if the requirements engineer annotated the corresponding
association in D as �visible� (highlighted in gray)

To summarize, a projection scur|role contains the instance of role itself as well as
all instances of Artifact, Fact, and each ongoing Interaction that role is visibly
connected to in scur and all objects transitively visibly connected to instances as well.

3.3. Overview

The forthcoming chapters discuss the scenario simulations underlying our virtual pro-
totyping approach. The structure is illustrated using the corresponding simulation loop
in Figure 3.16. Specifically, Chapter 4 introduces the simulation loop which illustrates
the approach throughout this thesis. Further, Chapter 4 describes how story patterns
of different roles are replayed to enable stakeholders to experience their collaborative
scenarios even in individual simulation sessions, i.e. sessions with only one participant.
Afterwards, Chapter 5 extends this simulation loop by describing how story patterns
are derived from observing participating stakeholders interact with each other or even
simulated roles. Therefore, while Chapter 4 illustrates the play-out of story patterns
describing activities in collaborative scenarios, Chapter 5 introduces an automatic play-
in capability which enables stakeholders to intuitively complement their collaborative
scenarios by simply enacting them. To deal with the inherent fragmentation of scenar-

44

3.4. Chapter Summary

ios involving multiple stakeholders and the resulting stalemates, Chapter 6 introduces
a black box abstraction based on stakeholder expectations. This covers the simulation
loop of our scenario simulations.

[no SP
applicable]

[at least one SP applicable]

[else]

start
session

[else]

wait for
participant(s)b)

check which
story patterns
are applicable
in current state

c)
simulator

chooses SP
to execute

d)

[no SP belonging to a
participant applicable]

[participant
defers choice
to simulator]
[participant chooses SP]

j)
highlight SPs

already observed in
identical sequence

[else]

h) propose applicable SPs
of participant in GUI

[final state
observed and

acknowledged]

simulator
executes

chosen SP
e)

end
session

f) synchronize GUIs of
affected participants

a) load initial
scenario state

z) notify
participant(s) g) housekeeping

derive SP based
on observationn)

m) synchronize state to
observed action

observe GUI (inter-)
action of participantk)

[alternative out-
comes known]

[else]

[stalemate for
participant]

[else]

p)
express expected
changes as partial

state

q)
define follow-up

action that is
applicable next

[participant
knows how
to follow-up]

Chapter 5:
Completion and Correction of

Captured Scenarios

Chapter 4:
Replaying and Rearranging

Scenarios

Chapter 6:
Decoupled Completion and

Correction of Scenarios

Figure 3.16.: Overview of which steps of scenario simulations are covered in which chap-
ter of this thesis

3.4. Chapter Summary

To establish a common understanding with the stakeholders, the requirements engineers
have to establish a common language. Our domain model D, which can be gathered
and iterated as simply as a glossary, covers this language gap. Since it is used as type
model for situations the stakeholders can be in, the story patterns reference D as their
type graph as well. Still, to enable stakeholders not only to talk about these situations,
but to also validate the corresponding behavior they expect to occur in each situation,
an intuitive representation is required.

We developed a virtual prototyping approach that, after executing story patterns
specifying activities and interactions of stakeholders, visualizes how a stakeholder par-
ticipating in a scenario simulation is affected relying on domain-specific metaphors. Most
importantly, stakeholders can experience the content of story patterns without any of
the prerequisites which are imposed by the representation of the model itself. This ap-
proach was introduced and illustrated for the domain of collaborative scenarios occurring
in office environments.

45

4. Replaying and Rearranging
Scenarios

This chapter describes the simulation concept of our virtual prototyping approach and
how it can be used to validate behavioral specifications which were derived from ob-
served stakeholder activities as they occur in collaborative scenarios. Thus, it focuses on
the play-out of story patterns belonging to other roles to simulate collaborative scenar-
ios. After identifying the roles involved in the scenarios under investigation and defining
them in D, their activities can be captured in story patterns. By being able to simulate
activities of a specific stakeholder through the execution of corresponding story patterns
belonging to him, other stakeholders may experience how they are affected by these
activities. Stakeholders participating in a simulation are referred to as participants.
Furthermore, each individual participant is able to point out errors concerning either
whether a specific precondition, i.e. LHS, is correct before a story pattern is applicable
or whether an action or interaction is correct and complete (cf. Figure 3.10). For in-
stance, participants may point out that a necessary activity is not offered, that another
activity is offered incorrectly, or that a specific artifact is not missing. Consequently,
the systematic validation of story patterns representing the collaborative scenarios of
the involved stakeholders affords requirements engineers the possibility to find incorrect
models and identify inconsistencies within the captured behavior. Thus, while the vali-
dation ensures that all captured interactions are correct from the individual perspectives
of the involved stakeholders, it also supports the verification of the overall consistency
of the scenario fragments.

For such a simulation of a collaborative scenario to be successful, the already captured
story patterns should suffice to cover some of the scenarios so that a participant is able
to walk through a complete scenario. While this approach allows multiple participating
stakeholders to interact directly during the simulation, our approach aims at quick, in-
expensive single-user simulations during which all other roles are simulated as illustrated
for Role2 in Figure 4.1. The complex scheduling of rather infeasible group sessions as
sketched by Luebbe and Weske [LW11] can be complemented through individual sessions
by:

a) decoupling participants temporally from each other by simulating stakeholders who
are unavailable using story patterns derived from observing those stakeholders in
earlier sessions and

47

4. Replaying and Rearranging Scenarios

Stakeholder
as Role1

Behavioral
Models of

Role2

 Simulator

(simulated)
Role2

Behavioral
Models of

Role3

Behavioral
Models

Behavioral
Models of

Role1

proposed
behavior

used to
simulate

Interactive Visualization
of the State for Role1

Stakeholder
as Role3

Interactive Visualization
of the State for Role3

proposed
behavior

Figure 4.1.: Participating stakeholders walk through their scenarios to validate the
models that represent how they interact with other roles (adapted from
[GHG12b])

b) decoupling participants locally from each other by providing the interactive in-
terface remotely which eliminates the need for the participants to be in the same
room during a session

Decoupling stakeholders requires the decoupling of their interactions, as proposed by
TG1. To achieve this goal, our approach has to simulate the behavior of individual
stakeholders. Section 4.1 presents a conceptual description of our simulation approach
and subsequently illustrates this approach using scenarios related to selling a movie
ticket in a cinema which is based on our publication [GHG12b]. Afterwards, potential
stakeholder feedback is detailed in Section 4.2. Strategies for automatically guiding
the simulation are discussed in Section 4.3 which is partially based on our publication
[TGRK13]. Section 4.4 concludes this chapter with a summary.

4.1. Concept

To realistically simulate actions of roles that are not played by participants, the sim-
ulation approach has to be able to manipulate the individual context of a stakeholder
participating as role r. For a situation represented via the state si, this context encom-
passes everything that is visible to the role (i.e. si|r). Only after a subsequent update of
their individual visualization, can participants perceive how they are affected and react
accordingly.

48

4.1. Concept

4.1.1. Simulation Approach

Before a simulation can be started, the requirements engineer has to define a domain
model D ⊇ Dbasic. Further, the set S of states needs to include at least an initial state
sinit and a (possibly empty) set Sterm of terminal states. Moreover, to be able to actually
simulate specific roles, the non-empty set SP should contain story patterns belonging
to the roles which have to be simulated. In the following, the individual steps necessary
to guide one or more participants through a scenario are explained along the simulation
loop illustrated in Figure 4.2.

[no SP
applicable]

[at least one SP applicable]

[else]

start
session

[else]

wait for
participant(s)b)

check which
story patterns
are applicable
in current state

c)
simulator

chooses SP
to execute

d)

[no SP belonging to a
participant applicable]

[participant
defers choice
to simulator]
[participant chooses SP]

j)
highlight SPs

already observed in
identical sequence

[else]

h) propose applicable SPs
of participant in GUI

[final state
observed and

acknowledged]

simulator
executes

chosen SP
e)

end
session

f) synchronize GUIs of
affected participants

a) load initial
scenario state

z) notify
participant(s) g) housekeeping

wait for participants to
interact via the GUIx)

Figure 4.2.: Play-Out with the option of reliving scenarios just as they were observed
before via steps c, h, j, e & f (adapted from [GHG12b])

a) Load Initial Scenario State: An initial state sinit ∈ S of the collaborative scenarios
under investigation needs to be initialized to start a simulation. This state is a directed
typed graph with the domain model D as its type graph and, thus, can be used to match
and execute the graph transformations in SP . This state is initialized as the current
state (referred to as scur) of the simulation.

b) Wait for Participants: After initializing the current state of the simulation, it has
to be decided which roles are enacted by participating stakeholders and which roles
need to be simulated. For all roles that are not enacted, behavior observed from earlier
sessions can be replayed to simulate their activities. The number of roles involved in
the collaborative scenarios under investigation which were identified and defined in D
is referred to as n. Thus, between one and n roles may participate in one interactive
simulation session. Of course, if all roles are played by participating stakeholders, the

49

4. Replaying and Rearranging Scenarios

simulator is not required to execute behavior, but is still useful to make suggestions
(cf. steps h and j in Figure 4.2) and to observe the stakeholders’ interactions. If, on
the other hand, no stakeholders participate, the simulation may be run without the
overhead of the interactive user interface. Consequently, the number P of participants
for a simulation session can be 0 ≤ P ≤ n. Once all prospective participants have joined
the session, the simulation can be started.

c) Check which Story Patterns are Applicable in Current State: In order to execute
behavior, it must first be established which of the story patterns in SP are applicable.
Usually, a stakeholder’s activity has a precondition which needs to be fulfilled before the
stakeholder responsible for the activity may execute it. Such preconditions are specified
as objects required by the LHS of a story pattern corresponding to this activity. Only
if the precondition of a story pattern is fulfilled, would the corresponding stakeholder
be able to execute the activity. Of course, the same also applies for all roles which are
simulated.

To know which of the activities represented in the story patterns in SP are applicable,
the simulator needs to establish whether their respective preconditions are fulfilled in the
simulation’s current state scur. Since these preconditions are encoded in the LHS of story
patterns, their fulfillment is checked for each story pattern by searching for a subgraph
s′cur ⊆ scur which is isomorphic to the LHS of a story pattern SPi = (LHSi, RHSi) so
that s′cur

∼= LHSi. If such a match for the precondition of a story pattern is found in scur,
the story pattern is considered applicable for the current state scur of the simulation.

This is done for all story patterns, regardless of whether or not the role they belong
to is enacted by a participant. Consequently, each simulated role that has applicable
story patterns associated with it would in fact be able to execute the encoded activities.
Thus, at the end of step c, a set SPapplicable ⊆ SP ∪ ∅ of story patterns which are
applicable for scur is established along with at least one matching subgraph of scur for
each applicable pattern. In other words, the simulator knows which activities of which
roles can be executed next to continue the scenario. As pointed out in Section 3.1.1,
different matches for a story pattern may exist when, e.g., a role has multiple identical
copies of a specific artifact. If these are identical for the stakeholders, these matches are
considered identical for the simulator as well and one match may be selected at random.
Otherwise, additional refinements are necessary and will subsequently be pointed out by
a participant if an incorrect match is chosen for execution.

h) Propose Applicable Story Patterns of Participant in GUI: If at least one of the
applicable story patterns in SPapplicable belongs to one of the participants, these can
be offered for execution. Only their story patterns are offered to the respective partici-
pants, since they are responsible for their execution and only they can judge whether the
corresponding activity can or should be performed. Thereby, the participating stake-
holders can validate whether their expectations are met. They can explicitly refute or

50

4.1. Concept

acknowledge whether their perception of scur, i.e. their interpretation of their individ-
ual visualization of scur|r, matches the preconditions they associate with the activities
offered to them.

Presenting formal story patterns to stakeholders is not promising, since their under-
standing of Natural Language representations of story patterns is significantly better
than looking at the story pattern representation [GEHG13]. Since a story pattern is
only applicable if its precondition matches, the fact that it is proposed explicitly states
that the simulator considered the precondition of the activity captured in the story pat-
tern to be fulfilled in scur. This can already be judged by the stakeholder by interpreting
her visualization of scur. Therefore, it suffices to present the changes (elements which
are either removed or added through the execution of the story pattern) in Natural
Language as described in Section 2.5. For instance, if an activity represented as “you
sign the contract” is offered to a stakeholder although she does not yet have access to a
contract, she would point out that the precondition of the activity and, thus the story
pattern in its current form, is invalid and has to be corrected (cf. use cases in Figure
3.10). To summarize this step, if the applicable story patterns are offered in a way that
the they understand, participants may judge whether the correct activities are proposed
based on their context.

j) Highlight Story Patterns Already Observed in Identical Sequence: After the
applicable story patterns belonging to participants have been proposed, it is possible to
indicate to the participants which paths through their scenarios were already covered
in prior sessions. Of course, using different colors may help to differentiate between
scenarios that were only partially covered once and scenarios that were covered more
thoroughly and agreed upon by all stakeholders. For instance, if a sequence such as

sinit
SPa−→ s1

SPd−→ s4
SPe−→ s5

SPf−→ s6 has already been covered and the simulation is
currently in s5, all story patterns that are applicable and belong to the participant are
proposed, e.g., SPf , SPg, and SPh. However, only SPf was observed and acknowledged
in an earlier session and, thus, its NL representation that is offered in the participant’s
visualization can be highlighted as covered for this state. Consequently, the participant
can explicitly choose to continue to either validate the scenario that was already observed
or to explore an alternative one. The alternatives, in this case, were not observed yet,
but are considered as potentially valid based on the captured story patterns. Still, if such
potentially valid story patterns lead to states which are invalid from the participant’s
point of view, the preconditions of these story patterns need to be adjusted accordingly
to exclude the subsequent invalid follow-up state.

At this point, the participant may either defer the choice of a story pattern to the
simulator (step d), choose a story pattern SPchosen ∈ SPapplicable himself (step e), or
interact with the GUI and the other roles in a way that was not yet observed (step x).

51

4. Replaying and Rearranging Scenarios

d) Simulator Chooses Story Pattern to Execute: After step j, a participant may
defer the choice of what to do next to the simulator. Then, it is the simulator’s turn to
decide which of the applicable story patterns in SPapplicable to execute. Alternatively,
the same applies if none of the story patterns in SPapplicable belong to a participant,
i.e. to one of the roles any participant enacts. Therefore, out of all applicable story
patterns, the simulator may choose which one to execute next (referred to as SPchosen).
Implicitly, this choice also determines which role is simulated, i.e. the one the chosen
story pattern belongs to. By default, the simulator chooses a story pattern randomly
from SPapplicable, since this mode covers all alternatives – eventually. However, to make
the simulation approach more feasible, this choice can also be made more well-informed
by employing metrics and specific strategies based on them (we discuss these options in
Section 4.3 and in [TGRK13]).

e) Simulator Executes Chosen Story Pattern: After a story pattern SPchosen was
chosen either by a participant (coming from step j in Figure 4.2) or by the simulator
(step d), it has to be applied on scur. Based on the application of graph transformations
as discussed in Section 2.5, the application of SPchosen leads to the next state snext of

the simulation (scur
SPchosen−→ snext).

x) Wait for Participants to Interact via the GUI: If no story patterns are applicable
(i.e. SPapplicable = ∅ after step c), the virtual prototype depends on inputs provided
by the participants. Consequently, participants have to be able to manipulate scur to
play in additional behavior via their individual interactive representation of this state.1

Each interaction with the UI modifies the underlying state. For instance, a participant
starting an interaction such as a visit with another role using the interactive visualization
implicitly instantiates the corresponding concept of Visit as defined in D in the state
scur, which leads to a follow-up state snext. Chapter 5 discusses such GUI interactions
in detail. For now, it suffices to say that a participant’s interactions with the GUI can
also lead to a new follow-up state snext for which scur � snext holds.

f) Synchronize GUIs of Affected Participants: After the state of the simulation has
been changed either by the simulator or through GUI interactions (step e or x, resp.),
participants who are affected by the changes have to be able to perceive these differences.
Otherwise, they cannot distinguish between the former and the subsequent state, which
might lead to confusion if, e.g., new story patterns are applicable (step c) and presented
to them (steps h and j), although nothing changed for them.

{(scur|r) � (snext|r)} ⇒ role r affected (4.1)

1 This may also happen if a participant interacts unexpectedly with the GUI after expected behavior
was proposed (step j).

52

4.1. Concept

A stakeholder participating as a role r is considered affected by the differences between
scur and snext if an element within the perspective of that role changes (cf. Equation
4.1). This encompasses elements that are created, deleted or modified. If an element
was created through the execution of SPchosen and is visible to the participant enact-
ing r, i.e. all elements ∈ (RHSchosen \ LHSchosen) ∩ snext|r, its existence has to be
indicated in r’s representation in an intuitive way as discussed in Section 3.2. For
instance, the arrival of an email needs to be signaled visually and audibly so that par-
ticipants can experience it intuitively. However, if an element is deleted, i.e. all elements
∈ (LHSchosen \RHSchosen) ∩ scur|r, it has to be removed from the representation of the
affected participant r. Thus, it must be ensured that the domain-specific representation
is capable of visualizing or animating the disappearance of these elements as part of the
synchronization between scur and snext. Modifications, on the other hand, are usually
encoded and applied as deletion and subsequent addition of the element to be modified.

Changes within the follow-up state snext of the simulation can affect any role, partic-
ipating as well as simulated ones. If, for instance, a Visit is initiated or an Email is
sent, not only is the initiator affected, but also the targeted role(s). For the simulated
ones, however, no representation has to be provided and, hence, they do not require GUI
updates. Moreover, if no role is affected (i.e. scur|role ∼= snext|role holds for all roles), no
updates are required.

g) Housekeeping: After each synchronization (step f), the follow-up state snext reached
in this round of the loop is assigned as the new current state of the simulation, i.e.
scur := snext. Then, the final states in Sterm are tested against the new current state
of the simulation to check whether the conditions for a scenario completion are fulfilled
for the current simulation session. This is the case if a complete match fulfilling the
condition illustrated in Equation 4.2 can be found.

∃sterm ∈ Sterm : sterm ∼= scur (4.2)

Since finding such a match cannot guarantee that all stakeholders are satisfied con-
cerning the overall completion of the collaborative scenario, the participants still have
to acknowledge that the matched state sterm is final from their distinct point of view. If
one of the participants does not agree, the simulation continues to allow this participant
to continue the simulation until a state can be reached, which is considered as final by
all participants, i.e. they all acknowledge it correspondingly.

z) Notify Participants: As soon as step g confirmed that a state scur matches to a
state sterm ∈ Sterm and the participants acknowledged the completion of the scenario,
the simulation is considered as successfully terminated and all participants are notified
within their respective visualization. As well as this type of termination, participants
have to be able to directly end such a session to indicate that, from their perspective,
the current state can be considered terminal. If the participants did not acknowledge a

53

4. Replaying and Rearranging Scenarios

prior match to one of the states in Sterm, it has to be considered potentially incorrect
and the state they finally agreed upon needs to be saved as a possible replacement.

To ensure that the scenario terminated correctly, the participants can then be asked
whether they have any additional feedback about the scenario they just participated in.

4.1.2. Case Study: Sale of a Movie Ticket

To illustrate our simulation approach for validating behavioral models, this section dis-
cusses it using the case study of selling cinema tickets. Based on interviews with part-
time movie ticket sellers and moviegoers, we specified a model Dcinema of their domain
(illustrated abridged in Figure 4.3) and seven story patterns in SP (cf. Figure 4.4) either
belonging to the role Seller or MovieGoer. These story patterns can be summarized as
follows: After a moviegoer visits the seller (SPv), the moviegoer needs to share the facts
time slot (SPa) and movie title (SPb) with the seller. Knowing these facts, the seller
can then create a ticket (SPc) and give this ticket along with promotional material to
the moviegoer (SPd). Then, the moviegoer gives money to the seller (SPe) and leaves
the seller (SPw). Furthermore, S consists of the two states sinit and sterm which are
illustrated in Figure 4.3.

Participating as a Seller

After capturing the first session as described above, another session was observed. These
two sessions as they were observed as well as three alternative transitions are illustrated
as a partial state space in Figure 4.5. Now, these two sessions and the corresponding
story patterns need to be validated:

I) sinit
SPv−→ s1

SPa−→ s2
SPb−→ s3

SPc−→ s4
SPd−→ s5

SPe−→ s6
SPw−→ s7

II) sinit
SPv−→ s1

SPb−→ s8
SPe−→ s9

SPa−→ s10
SPc−→ s11

SPd−→ s6
SPw−→ s7

All simulations start by loading an initial state sinit (step a in Figure 4.2). Afterwards,
participants can remotely enter the simulation session (step b). From each state during
the simulation, different scenarios may unfold depending on what the participating or
simulated stakeholders decide to do.

After one complete scenario has been observed and captured, Jane participates in a
validation session as a seller. All stakeholders who are not participating in this validation
are simulated, thus, Jane interacts with a simulated moviegoer. The simulation starts
by loading the initial state (step a in Figure 4.2) and adding Jane as participant (step
b). The simulator iterates over the captured story patterns (cf. Figure 4.4) and tests
whether any of them are applicable for execution (step c) on the current state sinit (cf.
Figure 4.3) of the simulation.

All scenarios that may unfold are initiated by the moviegoer who visits the seller.
Thus, no initial action is expected from the seller. The only story pattern that is

54

4.1. Concept

<<instanceOf>>

:Promotional
Material

john
:Moviegoer jane:Seller

goodFather
:MovieTitle

knows

evening
:TimeSlot

knows

has

ticketprice
:Money

has

sinit
ticketprice
:Money

john
:Moviegoer jane:Seller

goodFather
:MovieTitle

knows

evening
:TimeSlot

knows

has

seat12:Ticket

has

knows
knows

has

:Promotional
Material

sterm

RoleArtifact

InteractionOntology
World

Ontology
Element

Call

Visit

Email

Fact
has knows

exchanges

MovieTitle

Reservation
NumberTimeSlot

Moviegoer

Seller

Money

Promotional
Material Ticket

from

to

<<instanceOf>>

Figure 4.3.: Not only initial and terminal states of a movie ticket sale can be described
using a suitable domain model Dcinema (abridged)

applicable to sinit is SPv as discovered in step c. Since this story pattern does not
belong to the participant, the simulator can directly choose it for execution (step d)

and execute it (step e). This leads the simulation to the following state (sinit
SPv−→ s1,

cf. Figure 4.6). Then, the GUI of all participating stakeholders who are affected by
the changes are updated (step f). In this case, the visit from the moviegoer has to be
indicated in Jane’s GUI. Since no final state can be matched (step g), the simulation
continues by checking which story patterns are applicable in s1 (step c).

Only after a visit has been established, is the simulated moviegoer able to share the
information that the seller requires for the creation of the corresponding ticket: either
the moviegoer tells Jane which movie he wants to see or in which time slot he wants to
see it (SPb or SPa in Figure 4.4, respectively). The simulator may execute either one of
these models to simulate the behavior expected from the moviegoer.

After the simulator randomly chooses SPa (step d) and executes it (step e), the

simulator is in the follow-up state (s1
SPa−→ s2). In s2 (Figure 4.6), the seller has access

to the fact of the moviegoer’s chosen time. This has to be indicated for Jane in her
GUI as part of the GUI synchronization for all affected participants (step f). Since this

55

4. Replaying and Rearranging Scenarios

SPv
:Visit

this
:Moviegoer jane:Seller

++from ++to

evening
:TimeSlot

++knowsknows

SPa :Visit

this
:Moviegoer jane:Seller

from to

goodFather
:MovieTitle

++knowsknows

SPb :Visit

this
:Moviegoer jane:Seller

from to

seat12
:Ticket

this:Seller

++has

goodFather
:MovieTitle knows

evening
:TimeSlot knows

SPc

john
:Moviegoer

knows

:Promotional
Material

hasknows

:Visit
from to

seat12:Ticket

:Promotional
Material

++has

++has --has

--has

SPd

john
:Moviegoer this:Seller:Visit

from to

SPw :Visit

this
:Moviegoer jane:Seller

--from --to

seat12:Ticket ticketprice
:Money

has has

ticketprice
:Money

this
:Moviegoer

SPe

--has ++has

:Visitfrom to

goodFather
:MovieTitle

knows

jane:Seller

knows

Figure 4.4.: Observing a ticket sale and deriving different pieces of the puzzle

information does not suffice for the ticket purchase to take place, the moviegoer has to
share which movie he wants to see as well. Consequently, the simulator (not having
reached a final state yet) checks which story patterns are applicable in the current state
s2 (step c). The only other activity (SPb – “the moviegoer tells the seller the title of the
movie”) is chosen and executed, leading to the state s3 and another update in Jane’s

GUI (s2
SPb−→ s3).

As pointed out before, participating stakeholders can acknowledge or refute behavior
of other stakeholders if it directly affects them. Thus, if the moviegoer were able to
create or access a ticket without any interaction with Jane, she could not comment on
it, since she would not be affected in this scenario. If, however, he takes the ticket
she offers him without paying, she would most certainly object, thereby identifying a
conflict.

Only after both facts were shared on behalf of the simulated moviegoer (s3 in Figure
4.5), is Jane able to create a ticket (SPc in Figure 4.4) for the moviegoer. Thus, after
checking which behavioral specifications are applicable (step c), only SPc and SPe fit.
Since SPe belongs to the role moviegoer, it is not proposed to Jane. SPc, on the other
hand, belongs to the role seller and, therefore, is proposed to Jane in her visualization
(step h). Other story patterns belonging to seller, which might be applicable, would also

56

4.1. Concept

s1 s2 s3
SPa SPb s4 s5 s6

SPc

SPe

s8

SPb SPa

s9SPe SPa SPc

SPd

s11s10

s7
SPwSPvsinit

SPd SPe

SPe

transition from a state m to a follow-up state n
was already observed

a transition that is possible but is not yet observed

nm

nm

SPx SPx

SPx

Figure 4.5.: After validating two sessions, three alternative transitions are still possible

jane:Seller

evening
:TimeSlot

goodFather
:MovieTitle

s1

john
:Moviegoer

knows

:Promotional
Material

has

knows

ticketprice
:Money

has
to

:Visit
from

jane:Seller

evening
:TimeSlot

goodFather
:MovieTitle

s2

john
:Moviegoer

knows

:Promotional
Material

has

knows

ticketprice
:Money

has
to

:Visit
from

knows

Figure 4.6.: State specifications before (s1) and after (s2) John tells Jane when he wants
to see a movie (also reachable by applying SPa from Figure 4.4 on s1)

be proposed to Jane, representing all alternative scenarios which were already observed
and are still possible. If any of the applicable story patterns were already observed in
exactly the same context, i.e. after exactly the same sequence of story patterns, they
would be highlighted (step j) in Jane’s visualization.

At this point, Jane can choose to interact with her representation scur|seller of the
current state to create the ticket manually (step x). It is also possible to tell the simulator
to simply replay the already captured pattern SPc (step e). If multiple story patterns
are proposed to her, she may instead defer the decision of which pattern to execute to
the simulator (step d). For this round, Jane continues by choosing SPc for execution,

thereby creating a ticket (s3
SPc−→ s4). After the synchronization between her GUI and

the current state of the simulation (step f), she can see the ticket and recognizes that
she can hand it over to the moviegoer.

In state s4 (cf. Figure 4.5), SPd and SPe are identified (step c) as applicable. Again,
only story patterns belonging to the seller are proposed to Jane (step h) – in this case
SPd which she chooses to hand over the ticket and the promotional material to the
moviegoer (step e). Since the GUIs of all affected participants are updated (step f),
Jane consequently looses access to both artifacts.

57

4. Replaying and Rearranging Scenarios

As mentioned before, the story pattern representing the payment of a ticket (SPe in
Figure 4.4) belongs to the simulated moviegoer and, therefore, is not considered as long
as a participant may enact behavior. Consequently, while it was applicable in s3 and
s4, it was up to the participant to decide how to continue. Only if the participant had
deferred the choice to the simulator might SPe have been chosen and executed. Now,
however, it is the only applicable story pattern in the simulation’s current state s5 (cf.
Figure 4.5). The simulated moviegoer is now able to pay (steps c, d, and e) – much
to the relief of Jane who receives and perceives the money in her GUI (step f). In
the subsequent step g, the simulator cannot match the final state sterm (cf. Figure 4.3)
since the visit is not terminated yet. Consequently, step c establishes that the simulated
moviegoer can terminate the visit using SPw, the only applicable story pattern. After
the simulator chooses and executes SPw (steps d and e), and Jane’s GUI is updated
(step f). At this point, scur is a complete match for sterm (step g) and Jane acknowledges
the successful termination of the scenario.

To summarize, Jane experienced the behavior of a simulated moviegoer while partic-
ipating as a seller. All handovers were causally correct and as expected. Moreover, she
not only acknowledged the correctness of the moviegoer’s story patterns, but also that
her story patterns were correct and the overall scenario, which she experienced, was
consistent.

Pointing Out and Correcting Factual Errors

Since most of the existing pieces of the overall scenario puzzle have already been cap-
tured, all involved stakeholders can validate whether and how they fit together (i.e.
which sequences in P(SP) are valid). By acknowledging or refuting the correctness of
sequences of these story patterns, all invalid sequences can be explicitly excluded by
slightly modifying the preconditions of these patterns or removing them completely. For
instance, it might be against the cinema policy to hand over any tickets before they
were paid for by the customer. After another stakeholder in the role of a seller joins
in a session with a participant as moviegoer, this second seller points out that ticket
may only be handed over after the moviegoer has paid for it. Consequently, to enforce
such a policy, the preconditions of when to hand over the ticket need to be adapted. In
other words, the LHS of SPd simply needs to exclude all states in which the seller did
not yet receive the money – a trivial addition to this LHS as presented in Figure 4.7.
After the revision of SPd, the adapted pattern SP ′

d can only be matched within states
in which the moviegoer paid first before receiving the ticket. The resulting partial state
space illustrating the valid story pattern execution sequences are presented in Figure
4.8. By replacing SPd with SP ′

d, the first session becomes incomplete, since the state

s5 cannot be reached anymore. Furthermore, the transition s11
SP ′

d−→ s6 is available, but
has not been observed and validated yet. Still, since the LHS has become stricter and,

58

4.1. Concept

thus, is applicable in fewer states than before, it can still be considered as valid for the
remaining states in which it is applicable.

SPd'

seat12:Ticket

:Promotional
Material

++has

++has --has

--has

john
:Moviegoer this:Seller:Visit

from to

ticketprice
:Money

has

Figure 4.7.: In this revision of SPd (Figure 4.4) the seller must get the money first

s1 s2 s3
SPa SPb s4 s6

SPc

SPe

s8

SPb SPa

s9SPe SPa SPc

SPd

s11s10

s7
SPwSPvsinit

SPe '

transition from a state m to a follow-up state n
was already observed

a transition that is possible but is not yet observed

nm

nm

SPx SPx

SPx

Figure 4.8.: By adapting SPd to SP ′
d, transition s4

SPd−→ s5 is no longer available and

s11
SP ′

d−→ s6 has to be validated again since it was not observed in this sequence

Generally, the fact that a story pattern SPa might be applied on a state si (si
SPa−→ sj)

implies that a match for the preconditions of SPa must exist (∃s′i ⊆ si : s′i
∼= LHSa).

If either the resulting state sj or the application of SPa leading to it is considered
incorrect, this application has to be inhibited. By expressing additional preconditions in
the story pattern’s LHS, the requirements engineer can modify SPa in such a way that
SP ′

a = (LHS ′
a, RHS ′

a) is no longer applicable in si (@s′i ⊆ si : s′i
∼= LHS ′

a). Elements
which are added or removed from a story pattern’s LHS have to be included or removed
from the RHS as well to keep the activity that is encoded in the story pattern consistent:
(RHS \ LHS) ∼= (RHS ′ \ LHS ′) has to hold. Otherwise, if RHS is not adapted, all
elements added only to LHS are explicitly deleted if they are not in RHS as well.

On the other hand, a requirements engineer might need to explicitly include a state sj
which does not yet contain a matching subgraph for a story pattern SPb = (LHSb,RHSb),
i.e. @s′j ⊆ sj : s′j

∼= LHSb. To ensure that such a subgraph s′j can be found, all elements

59

4. Replaying and Rearranging Scenarios

seat12
:Ticket

++has

goodFather
:MovieTitle knows

evening
:TimeSlot knows

SPc''

john
:Moviegoer

knows

knows

:Visit
from to

this:Seller

++has

:Promotional
:Material

(a) Adapting only LHS leads to new side effects

seat12
:Ticket

++has

goodFather
:MovieTitle knows

evening
:TimeSlot knows

SPc'

john
:Moviegoer

knows

knows

:Visit
from to

this:Seller

(b) Adapting RHS as well conserves the activity

Figure 4.9.: To remove promotional material from SPc’s precondition, it has to be re-
moved from the RHS as well – otherwise, the activity is changed

in LHSb which cannot be found in sj have to be removed from LHSb. This, however,
is only possible as long as these elements are not modified as part of the story pattern’s
activity, i.e. the elements which may be removed must be in (RHS ∩ LHS). If this is
ensured, the resulting less restrictive precondition which is applicable in the same states
as before plus at least sj is the following: LHS ′

b := LHSb ∩ sj. Only by removing the
same elements (LHSb \ sj) from the RHS as well, can the enacted changes be kept
consistent: RHS ′

b := RHSb \ (LHSb \ sj). For instance, if a participant points out
that the creation of a ticket (SPc in Figure 4.4) should also be possible in situations
in which the seller does not have promotional material (∈ LHSc ∩ RHSc), removing it
from LHSc alone would lead to an incorrect story pattern which creates a ticket and
promotional material the seller has access to (illustrated in Figure 4.9a). By removing
the promotional material from RHSc as well, the original activity represented in the
story pattern remains intact (cf. Figure 4.9b) and would be applicable in the desired
state(s).

4.2. Stakeholder Feedback in Validation Sessions

For their synthesis of protocol-based models, Desai et al. [DMCS05] emphasize the im-
portance of what they refer to as local policies for the enactment of interactions. They
define a role’s local policy as its (usually private) individual business logic which con-
trols the role’s participation and, thus, its decisions in the different scenarios as part of
a process. The same goes for interactions between individual stakeholders. Due to such
a private decision rationale, interactions with other stakeholders might seem similar to
interacting with a black box, i.e. being only able to observe actions and reactions on
inputs provided beforehand. Consequently, in the validation of story patterns and the
scenarios they cover, we have to distinguish between different kinds of observations.

60

4.2. Stakeholder Feedback in Validation Sessions

4.2.1. Story Patterns Belonging to a Participant’s Role

A story pattern SPi that is proposed correctly is a story pattern which represents an
activity that is applicable form the point of view of the participant whose role SPi

belongs to. Thus, judging from the RHS of each story pattern that is proposed, the
participant can recognize and point out any incorrect preconditions (cf. use cases in

Figure 3.10). If, for instance, the simulator arrived in a state s2 (sinit
SPv−→ s1

SPa−→ s2, cf.
Figure 4.5) and a stakeholder participating as a seller was only informed about the time
slot, she would recognize and point out that an incorrectly proposed SPc (“You (Seller)
create seat12(Ticket)”, cf. Figure 4.4) should not yet be available. In s3, on the other
hand, the seller received both required facts and the stakeholder would acknowledge this
proposed activity as correct for this situation. Thus, by acknowledging or refuting the
correctness of sequences of these story pattern as well as when a story pattern is proposed
(or when it is not), all invalid sequences can be explicitly excluded by slightly modifying
the preconditions of these patterns as demonstrated in Section 4.1.2 or removing them
completely. The more complex the preconditions in a story pattern’s LHS, the less
often it is applicable, observed, or executed during validation sessions.

4.2.2. Story Patterns Affecting a Participant’s Role

Some of the story patterns which do not belong to a participant can still affect the role in
which the stakeholder participates. If a participating stakeholder interacts several times
with a simulated role, the participant cannot know how many different activities of
how many roles have to be simulated in between the interactions which she is involved
in. The participant can only perceive how she is affected by these activities if the
representation scur|r of her role is updated accordingly. Consequently, she may only point
out whether a state si in which the simulation arrives is valid based on her perception of
this state and her experience. Generally, after a participant interacts with a simulated
role rsimu, she usually has to wait for a reaction which arrives in a state si in which
she is affected before she can continue. Otherwise, the participant’s representation of a

sequence scur
SP1−→ sa

SP2−→ sb ... sn
SPm−→ si is mostly identical (scur|r ∼= sa|r ∼= sb|r... ∼= sn|r)

until the state si is reached for which sn|r � si|r holds. If this is the case, all story
patterns in between cannot be judged directly, since the participant may not even know
how many story patterns were executed to simulate the parts of the scenario she is not
involved in. For instance, a participating seller arrives in s5 in which she already handed

over the ticket but was not paid yet (sinit
SPv−→ s1

SPa−→ s2
SPb−→ s3

SPc−→ s4
SPd−→ s5, cf.

Figure 4.5). Then, a simulated moviegoer might execute a story pattern that allows him

to leave without paying (s5
SP ′

w−→ si using a correspondingly modified version of SPw).
Since the moviegoer’s visit ended, this story pattern affects the participant (s5|r 6∼= si|r).
While she does not know what else might have happened in between, she is still able
to refute the observed scenario by pointing out that the state si is invalid. Therefore,

61

4. Replaying and Rearranging Scenarios

the sequence of activities of other roles in between the last state s5 right after her last

activity (after s4
SPd−→ s5) and the last state si in which she was affected in an incorrect

manner contains at least one incorrect story pattern.

To summarize, although identifying errors in sequences of story patterns which are
executed non-transparently is possible, a participant must be affected to pinpoint the
error. Even than, identifying which specific story pattern is incorrect is not easy.

4.2.3. General Feedback

Generally, the types of errors which participants may point out during the simulation
include, but are not limited to, activities which are incorrectly represented by a story
pattern, incorrect preconditions which lead to a story pattern being applicable in too
many or to few situations, or inconsistencies between different stakeholders. Through
multiple iterations with different participants, the requirements engineers can validate
which behavior (represented by a corresponding story pattern SP ∈ SP) is considered
as suitable in which situations and, thus, should be applicable in which states. By
adjusting the preconditions of story patterns which participants identified as incorrect
for specific states, it can be ensured that they are only applicable in valid states the
stakeholders usually find themselves in during the scenario. For instance, if a participant
argues that a specific story pattern, whose natural language representation is offered
for execution, cannot be executed yet on account of information being missing, the
precondition of this story pattern has not been restrictive enough. Consequently, the
corresponding information has to be introduced in the precondition so that the story
pattern is only applicable if the restriction pointed out by the participant is fulfilled.2

Apart from the errors participants point out explicitly, the remainder of what is shown
to them is considered acknowledged. Thus, if all participants play through a scenario
without complaints, it is considered agreed upon by these stakeholders. Further, our
approach allows stakeholders to point out activities which are proposed although they
should not be applicable (incorrect options). Additionally, stakeholders may also be
able to enumerate which activities they would expect to be possible and, thus, implicitly
recognize missing story patterns. Consequently, the simulation allows stakeholders to
recognize errors of commission and omission, respectively [BP84].

Moreover, the final feedback of participants after a scenario is terminated can indicate
how satisfied they are concerning the coverage so far. Such feedback is gathered using
freeform text with a suitable prompt.

2 If the required concepts have not yet been captured, D is extended correspondingly (Figure 3.8).

62

4.3. Strategy-Driven Exploration of Stakeholder Scenarios

4.3. Strategy-Driven Exploration of Stakeholder
Scenarios

So far, the concepts presented in this chapter have only discussed how to randomly choose
one of the applicable story patterns for execution in step d. Based on the generation of a
partial state space [Val91] (also referred to as reachability analysis [LCL87]), this section
discusses strategies for deciding which story pattern to choose and how to continue.

4.3.1. Strategies Based on a Limited Look Ahead

The simulation of collaborative scenarios can be guided more effectively if the conse-
quences of the applicable story patterns are known. For instance, while deadlocks should
be avoided during the elicitation of new behavior, it may be useful to guide stakeholders
into such a deadlock during a validation session to allow them to pinpoint the erroneous
behavior or assumptions leading to it. For our purposes, the state space consists of all
reachable states and the transitions between them starting from sinit and relying on the
story patterns in SP . In other words, the state space we want to explore represents
the possible scenarios which may unfold based on sinit and SP . If the complete state
space is explored, all eventually occurring consequences and their side-effects are known.
However, it is not always reasonable to compute all possibilities beforehand, especially
since the state space might be too big to handle or even infinite. Additionally, the state
space supports a guided simulation only in cases in which the participant’s actions were
known in the form of expected inputs for the simulation. Consequently, the state space
might be outdated if a state that was not reachable before is entered through a partic-
ipant’s actions in step x (Figure 4.2). In a survey of simulation tools for requirements
engineering [SRB+00], Schmid et al. distinguish between random and limited depth
exploration. For the remainder of this thesis, we refer to the result of a limited depth
exploration as a look ahead. As described in [Ric11, Teu11], a look ahead which starts
at the current state scur and with a depth of n contains all states which can be reached
from scur within the execution of sequences of up to n story patterns. Therefore, each
time the simulator checks which of the story patterns in SP are applicable for a state
scur (step c), the simulation implicitly calculates a look ahead with a depth of 1.

As we pointed out in [TGRK13], two distinct kinds of strategies cover the choice of
which story pattern to execute next: strategies which rely on the structure of the look
ahead and strategies which base this decision on specific properties of individual states.

Structure of the Look Ahead: Based on the structure of a look ahead generated from
scur, it can be seen how many different diverging paths unfold after each subsequent tran-
sition. Depending on the depth of the look ahead, these paths may even be converging
later on, until one of the terminal states of the collaborative scenario is reached.

63

4. Replaying and Rearranging Scenarios

For each reachable state sj in the look ahead, the following considerations apply. If
there are no outgoing transitions, i.e. no story patterns are applicable, this state might
be invalid, especially if it was already visited in a former session. However, if all incoming
transitions are purely speculative and, thus, have neither been observed nor excluded in a
prior session, then it is important to process this state. If a suitable participant accepts
the transition as valid, it is considered observed and, thus, correct. The exclusion of
such a state through the adaption of the LHS of the previously executed story pattern,
on the other hand, was already covered in Section 4.1.2.

Moreover, a look ahead can be used to compute which sequences offer the most al-
ternative outcomes – while one sequence might lead to a diverse total of ten alternative
states at the nth step, another sequence might be rather straight-forward resulting in
only one state. As Richter [Ric11] points out, if a specific state sj has many outgoing
transitions, the preconditions of the corresponding story patterns might be inaccurate
or not restrictive enough. By choosing the story patterns corresponding to the sequence
leading to sj as identified in the look ahead, a participant may be steered towards sj.
Once arrived in this state, specific participants may judge whether the applicable story
patterns are suitable based on their experience concerning the corresponding activities.
In summary, strategies which base their decision of how to continue purely on the struc-
ture of the look ahead are suitable for the exploration of collaborative scenarios if they
always choose diverging sequences. To validate behavior leading to alleged deadlocks,
however, a strategy always choosing sequences which converge in the look ahead may be
employed.

Scoring Individual States within the Look Ahead: After a look ahead has been
generated, different scoring algorithms can be applied to compare the reachable states
within the look ahead. Instead of only deciding based on the structure, individual objects
in distinct states can be investigated and compared. Hence, although such computations
introduce overhead, values of specific attributes can be summed up to evaluate whether
a state si is closer to a previously specified goal than another state sj [Teu11].

For instance, an attribute-based form of such a strategy has to score a state based
on the value of one or more specific attributes such as a role’s budget. Depending on
how high the value of the corresponding attribute for budget becomes, the strategy
would score such a state higher (or lower, depending on which situation the stakeholder
should experience). By introducing individual weights wi ∈ Z to the attributes ai, in
which the requirements engineer is interested, more complex scoring functions can be
used. A simple example is illustrated in Equation 4.3, which can be used to sum up all
resources times their individual weight in terms of how these values changed between the
simulation’s current state scur and a follow-up state sx in the look ahead (adapted from
[TGRK13]). While axi represents the value of attribute ai in state sx, acuri corresponds
to this attribute’s value in scur. After all states within the look ahead have been scored
correspondingly, the state with the highest score can be chosen. This, in turn, also

64

4.3. Strategy-Driven Exploration of Stakeholder Scenarios

chooses a sequence of story patterns which, when applied in the same order, arrive at
this state.

score(scur → sx) =

|Attributes|∑
i=1

wi × (axi − acuri) (4.3)

Alternatively, a binary object-based form of such a strategy might score states, in
which a specific desired concept such as a ticket exists higher than states which do not
contain a ticket. Consequently, as soon as a state containing a ticket is identified within
the look ahead, such a strategy would score this state higher and try to reach it by
deciding for story patterns belonging to the shortest sequence leading to this state.

The peculiarities of individual states within a look ahead are ignored by strategies
which only focus on the structure of the look ahead. Strategies which score these states,
on the other hand, allow the requirements engineers to define specific goals or charac-
terize situations (e.g. focus on states in which the moviegoer has a ticket) which the
simulator then tries to reach.

4.3.2. Reducing the Participants’ Downtime

Imagine a situation scur, in which story patterns are applicable, but none of them belong
to a participant. Thus, the simulator has to decide which story pattern to execute (step
d). As long as the context of this participant remains unchanged, none of his story
patterns will be applicable. However, the more story patterns are executed before a
participant is eventually affected in a follow-up state si (i.e. scur|r 6∼= si|r), the more
uncertainty is introduced in between scur and si. Specifically, as pointed out in Section
4.2.2, while the participant may recognize that an incorrect state is reached, he is not able
to pinpoint the error to one of the story patterns in between. Consequently, by ensuring
that a participant will be affected by the smallest number of story pattern executions in
between, this uncertainty can be reduced. If an incorrect state is identified, fewer story
patterns should be considered suspicious. Furthermore, executing fewer story patterns
decreases the probability of an erroneous sequence. Depending on the time it takes to
find, choose, and apply the story patterns in between, the simulation remains responsive
instead of paused from the participant’s perspective.

Whether or not a participant’s role is affected can be deduced from the changes en-
coded in each applicable story pattern. Any of these story patterns affect a participant
by either creating, modifying, or deleting an association which has the participant as
target or source. Alternatively, a participant may also be affected by the creation, dele-
tion, or modification of objects directly connected to the corresponding role. Such a
check can either be performed ad hoc for all the story patterns that are applicable for
the current state scur of the simulation, or by finding the shortest sequence of story
patterns within a limited look ahead.

65

4. Replaying and Rearranging Scenarios

4.4. Chapter Summary

In this chapter, we presented our approach of replaying story patterns to simulate the
interactions of different stakeholders in collaborative scenarios. Through such a simu-
lation, participating stakeholders can acknowledge or refute sequences of story patterns
which represent activities as they were (potentially) observed in previous stakeholder
sessions. Thereby, the simulator decouples stakeholder interactions. The validation of
such interactions is conducted using an animated simulation suitable for all involved
stakeholders. At the same time, the simulator can use the story patterns to propose
speculative sequences and, thus, to explore alternative scenarios. Further, by defining
and selecting appropriate strategies, requirements engineers can guide stakeholders to-
wards specific situations which were not validated yet or marked as being in conflict.
In combination with a short feedback loop, this strategy-driven simulation approach
supports requirements engineers to elicit, understand, and validate such collaborative
scenarios.

Nevertheless, a non-empty set of story patterns was among the preconditions of this
chapter. The following chapter discusses how our approach overcomes this precondition
and, thereby, becomes more feasible through the automatic generation of story patterns
based on observations.

66

5. Completion and Correction of
Captured Scenarios

Apart from automatically replaying story patterns to allow stakeholders to validate the
models in SP as described in Chapter 4, our approach also facilitates the semi-automatic
elicitation of such models. By steering the simulation toward incomplete scenarios, i.e.
sequences of story patterns which do not lead to a successful termination of the scenario,
our approach allows participants to play in new behavior and complement each others’
scenarios. While the simulator replays story patterns in a way that enables it to ask a
participant “Is (this activity in) this state correct?”, the simulator can also provide the
context to ask a participant: “From this current situation, how do you continue?” and
“What are your next steps toward the successful termination of the scenario?” In such
a situation, a participant can enact the subsequently required activities within her indi-
vidual intuitive representation. Hence, the stakeholders are empowered to complement
their scenarios step by step in a decoupled manner. Further, by employing simulation
strategies, participants can be steered into scenarios which have not yet been completed
or specific situations which requirements engineers are interested in (cf. Section 4.3.1).
Consequently, the overall coverage of how the stakeholders interact increases since more
fragments of these collaborative scenarios can be observed and elicited.

By interacting with each other or simulated roles using the intuitive representation,
participants may play in new formal models without being directly confronted with
them. Even if an elicitation starts without any behavioral models which the simulator
may use to simulate other roles, complete scenarios can be played through if all involved
roles are played by participating stakeholders. Thus, the elicitation of many scenarios
is possible even without the simulator – solely by relying on the derivation of formal
models based on observing the participants’ interactions. The only prerequisite for such
a scenario simulation is a state in which the simulation of the scenario can be initialized.

While Chapter 4 introduced the simulation concepts necessary to enable stakeholders
to validate scenarios, this chapter discusses how stakeholders may complete scenarios and
correct erroneous story patterns. In this chapter, Section 5.1 which is partially based on
[GHG12b] explains our concept of allowing stakeholders involved in highly collaborative
scenarios to intuitively play in story patterns and, thus, add their individual behavior
to SP . Further, this section also illustrates the concepts building on the cinema case
study introduced in Section 4.1.2. While Section 5.2 discusses the restrictions on the
story patterns derived from such an elicitation session, the merging of the resulting story
patterns is presented in Section 5.3. Section 5.4 summarizes this chapter.

67

5. Completion and Correction of Captured Scenarios

4.
 d

er
iv

e
st

or
y

pa
tte

rn

si

:C

has :B:A

has

si+1

:C

has :B:A

has

:D

has

Interactive Visualization of
the State si for Participant

Interactive Visualization of
the State si+1 for Participant2. Participant interacts with interactive visualization

SPi

:C

has :B:A

has

:D

++has

1.
 s

yn
ch

ro
ni

ze

3.
 s

yn
ch

ro
ni

ze

FR
O

NT
 E

ND
BA

CK
 E

ND

Figure 5.1.: When a state si is visualized (1), participants can interact with their visu-
alization (2), thereby manipulating the underlying state (3) so that a story
pattern SPi can be derived (4) based on the differences between si and si+1

5.1. Concept

By providing intuitive interaction elements as part of the stakeholder specific state visu-
alization (1. in Figure 5.1), participants can (indirectly) manipulate the underlying state
si of the simulation by interacting with other roles or even documents (2. in Figure 5.1)
to arrive at the follow-up state si+1 (3. in Figure 5.1). The difference between this pair
of states (si, si+1) represents the intended action of the participant. Consequently, this
action can be formally captured in a story pattern SPi (4. Figure 5.1) which, if applied
to the state si, leads to si+1 as observed in the simulation session. Thus, the actions
observed during a simulation are captured formally in a way that allows the simulator
to execute them in later sessions to replay what the participant was observed doing.

5.1.1. Simulation Loop Including Stakeholder Input

To include an observation-based elicitation into the scenario simulation concept, the
simulation loop has to be extended correspondingly. Thus, the step x) Wait for Partic-
ipants to Interact via the GUI shown in Figure 4.2 is refined by three additional steps
k, m, and n as illustrated in Figure 5.2. The remainder of the simulation loop remains
the same.

68

5.1. Concept

[no SP
applicable]

[at least one SP applicable]

[else]

start
session

[else]

wait for
participant(s)b)

check which
story patterns
are applicable
in current state

c)
simulator

chooses SP
to execute

d)

[no SP belonging to a
participant applicable]

[participant
defers choice
to simulator]
[participant chooses SP]

j)
highlight SPs

already observed in
identical sequence

[else]

h) propose applicable SPs
of participant in GUI

[final state
observed and

acknowledged]

simulator
executes

chosen SP
e)

end
session

f) synchronize GUIs of
affected participants

a) load initial
scenario state

z)
notify

participant(s) g) housekeeping

derive SP based
on observationn)

m) synchronize state to
observed action

observe GUI (inter-)
action of participantk)

Figure 5.2.: After refining step x into k, m, and n, the simulation loop supports not
only the replay of stakeholder activities but also the play-in of new story
patterns

k) Observe GUI (Inter-)Actions of Participant: By observing how a stakeholder par-
ticipating as role r interacts with her representation scur|r of the current state scur and
mapping these interactions back into the state itself, our approach empowers stakehold-
ers to manipulate the underlying state of the simulation in an intuitive way. Thus, the
participant’s interaction with her representation during the simulation leads to events
which have to be interpreted as updates for the underlying current state. Apart from
events created within the representation, requirements engineers can also directly observe
the participants’ interactions, while the participants enact their collaborative scenarios.

m) Synchronize State to Observed Action: Based on the domain mapping between
the affordances offered in the intuitive representation and changes that the participants
can execute on the current state scur, the simulation needs to progress correspondingly
to a follow-up state snext. For instance, if a participant interacted with another role via
email, the corresponding domain concept Email is instantiated accordingly as part of
the modification leading to snext – based on the mapping between domain-specific GUI
and the domain-specific model.

n) Derive Story Pattern Based on Observation: Based on the differences between scur
and the subsequent snext, the observed activity can simply be extracted and captured in
a complete story pattern, i.e. SPderivedAll = (scur, snext) based on both states. However,
a stakeholder participating as role r may only interact with those parts of the current
state scur which are visible to this role (scur|r), leading to changes within this partial

69

5. Completion and Correction of Captured Scenarios

state (snext|r). Consequently, these changes can already sufficiently be derived in a
story pattern SPderived = (scur|r, snext|r). As per our definition, the execution of such a
story pattern SPderived on an identical state scur would lead to a state s′next for which
s′next

∼= snext holds. By default, the activity encoded in this story pattern is assumed to
be correct, since it represents the changes as intended and implicitly acknowledged by
the participating stakeholder.

For each activity which can be captured by observing a stakeholder participating as
a specific role r, the corresponding changes can be attributed to this role. The instance
of role r (which exists in the LHS as well as the RHS) becomes the story pattern’s this
object. Per convention, this expresses that the resulting story pattern belongs to role r
and may only be executed by this role (cf. Section 2.5).

Furthermore, it has to be ensured that no identical story pattern already exists in
SP . The story pattern SPderived uses both states reduced to the perspective of the
corresponding role r: scur|r and snext|r. Thus, each time a state s′cur that is identical
from the perspective of r (i.e. scur|r ∼= s′cur|r) is transformed to a state s′next that is
also identical for r (i.e. snext|r ∼= s′next|r), the generated story pattern is rejected. In
other words, a new story pattern SPderived is only added to SP if the following holds:
@SPi ∈ SP : SPi = SPderived.

5.1.2. Case Study: Alternatives for the Movie Ticket Sale

In the cinema example presented in Section 4.1.2, Jane validated the existing story
patterns and identified errors from her perspective as a seller. Now, John participates
as a moviegoer to provide new insights into how this group of stakeholders goes through
the sale of a ticket. Thus, after loading sinit (step a in Figure 5.2), John joins into
the simulation (step b) and can start to interact with the simulator, after the simulator
checks which of the story patterns in SP (Figure 4.4) are applicable. For this initial
state, only SPv is applicable.

Play In of new Behavior

At each state scur visited during the simulation session, participating stakeholders can
choose to interact with the visualization directly in the steps k, m, and n (Figure 5.2)
to fill in the gaps that still remain due to incompleteness. Thus, the ability to play in
behavior that was not observed before is essential to cover all scenarios the stakeholders
are involved in by exploring the alternatives which may unfold. Starting at sinit, the

following session unfolds: sinit
SPv−→ s1

SPa−→ s2
SPb−→ s3

SPe−→ s10
SPc−→ s11

SP ′
d−→ s6 (Figure 4.8).

In detail, after John starts the visit, he shares the time slot and the title of the movie
(SPv, SPa, and SPb, resp.) with a simulated seller. Then, John can either hand over
the money for the ticket (SPe) or the simulated seller may create a ticket (SPc). Since
participants are prioritized, John chooses to execute the proposed story pattern (steps
h, j, and e). Then, since none of the applicable story patterns (SPapplicable 6= ∅) belong

70

5.1. Concept

to the moviegoer John, he has to wait for the simulated seller to create the ticket (SPc).
As a moviegoer, John has already handed over the money. Thus, after the simulated
seller has created the ticket (without GUI changes for John who was not affected), the
seller hands over the tickets together with promotional material (SP ′

d, leading to state
s6 in Figure 4.8). After his GUI is synchronized in step f, he can perceive the ticket
and acknowledges the correctness of the scenario so far. Thereby, he also validates one
of the potentially possible, i.e. speculative scenario sequences illustrated in Figure 4.8.
Finally, he chooses the proposed story pattern SPw to leave the seller by terminating
the visit (steps h, j, e, and f).

At this point, the simulator can match the current state scur to the final state sterm
(cf. Figure 4.3). Since John considers the scenario to be incomplete, he does not
acknowledge this final state and continues. So far, John has only relied on story patterns
proposed to him by the simulator (i.e. steps h, j, and e). However, to present his way
of completing the scenario, John interacts directly with his GUI (steps k, m, and n)
to throw away the promotional material he just received – “as always”, as he remarks.
From observing John, who participates as a moviegoer, the simulator can derive the
story pattern SP ′

r (cf. Figure 5.3a) from the corresponding pair of states. Since this
activity takes place in isolation without any further interaction with a seller, the role
seller is not affected by it and does not have to approve or validate this behavior. Based
on these insights, a requirements engineer can add the current state as an alternative
terminal state s′term (similar to sterm illustrated in Figure 4.3, except that promotional
material is not required) to Sterm.

:Promotional
Material

goodFather
:MovieTitle

evening
:TimeSlot

seat12:Ticket--has knows

knows

has

this
:Moviegoer

SPr'

(a) A moviegoer was observed loosing the ad-
vertisement

goodFather
:MovieTitle

evening
:TimeSlot

ticketprice
:Money++has

seat12
:Ticket

knows

knows

has

this
:Moviegoer

SPq'

(b) Moviegoer incorrectly obtains a ticket

Figure 5.3.: An optional (SP ′
r) and an incorrect (SP ′

q) observation made after observing
two moviegoers

Correcting Incorrectly Played In Behavior

Figure 5.3b illustrates behavior that was observed, i.e. played in, from another stake-
holder acting as a moviegoer. Again, the simulation starts from sinit, in which the

71

5. Completion and Correction of Captured Scenarios

moviegoer is expected to initiate a visit to the seller. If, however, the creation of arti-
facts is not restricted, the participant may exploit the affordance of being able to create
a ticket himself while participating as a moviegoer. Consequently, from such an obser-
vation, the story pattern SP ′

q can be derived. As illustrated in sterm (cf. Figure 4.3), this
scenario may end if the moviegoer received the ticket and the seller received the money.
Still, having obtained a ticket, the stakeholder participating as a moviegoer concludes
the session and, thus, the session’s final state scur is included to Sterm as a new potential
final state s′′term.

However, while it might be tempting for moviegoers to create a ticket without having
to pay for it, this observation does not conform to the valid scenarios may which occur
at the cinema. Consequently, whenever the behavior in SP ′

q is about to be validated in
a session, a stakeholder participating as a seller would correctly point out that either she
received no money or that the new final state s′′term has been reached prematurely before
she was able to create the ticket. As a consequence, the underlying formal behavioral
specification, i.e. story pattern, may be modified by the requirements engineer to address
the stakeholder’s critique. Furthermore, by representing the story pattern in natural
language using the NL4SP approach (cf. Section 2.5), stakeholders may modify the
story pattern directly. Alternatively, the story pattern may simply be removed from
SP .

SPr ' SPr '

transition from a state m to a follow-up state n
which was already observednm

SPx SPx

s1 s2 s3
SPa SPb s4 s6

SPc

SPe

s8

SPb SPa

s9SPe SPa SPc
s11s10

s7
SPwSPvsinit

SPe
SPd 'SPq '

a transition that is possible but is not yet observednm
SPx

a transition marked as invalid after a validationnm
SPx

s12 s13s14

SPw

Figure 5.4.: After additional simulation sessions, SP ′
r was introduced and SP ′

q is marked
invalid (continuation from Figure 4.8)

Play In of Alternative Sequences

Based on its precondition, each story pattern can be available at different states dur-
ing a simulation. Thus, different sequences of states and story patterns between them
may exist. However, only a fraction of these sequences is based on observations in prior
simulation sessions. The example scenario is quite straightforward: the sequence start-

72

5.2. Restrictions on Deriving Story Patterns

ing with sinit
SPv−→ s1

SPa−→ s2
SPb−→ s3 was already observed and validated without any

stakeholder complaints. Still, the alternative sequence starting with sinit
SPv−→ s1

SPb−→ s8,
but continuing with SPa was not validated yet (indicated by the dashed line between s8
and s3 in Figure 5.4). To allow a moviegoer to validate this alternative and speculative
sequence, sinit is loaded and the participant initiates a visit to the seller (SPv), after
which the simulation arrives in s1. Since both applicable story patterns (SPa and SPb, as
established in step c) belong to the moviegoer, both are proposed (step h in Figure 5.2)
and highlighted (step j) to indicate that they have already been observed after SPv.

If the participant chooses SPb, the simulation enters s8 in which SPa and SPe can
be proposed to the participant (step h). As illustrated in Figure 5.4, only SPe has
already been observed in such a sequence and, correspondingly, is highlighted (step
j). By directly proposing speculative alternatives (such as SPa in this case) to already
observed sequences, stakeholders can acknowledge or refute whether the preconditions
of the proposed story patterns are correct and whether the new sequence is indeed part
of a valid scenario.

If no participant chooses the sequence of SPb and SPa himself, the simulator can still
execute these story patterns in this sequence to provoke feedback from affected stake-
holders participating as seller. This becomes possible as soon as the role of the moviegoer
needs to be simulated and, further, can be enforced through the use of strategies.

5.2. Restrictions on Deriving Story Patterns

After a scenario has been observed, the differences between two succeeding states s1
and s2 (cf. Figure 4.6) can be interpreted as an action or interaction SPa (Figure 4.4)
of a distinct stakeholder interacting with her visualization of s1. Actions that can be
observed mainly concern the creation, modification or consumption of artifacts such as
progress reports or invoices [Gab11]. All artifacts or facts, i.e. pieces of information such
as a movie title, can be passed around or shared during those interactions. Through
observation of how participants interact with the virtual prototype, they play in transi-
tions to states which might not have been reachable from sinit solely relying on the story
patterns in SP . Apart from exploring individual states which results in corresponding
story patterns, participants may also play in completely new scenarios, i.e. alternative
sequences of getting from an initial state toward a terminal one. Based on these new
states, new story patterns can be derived and added to SP .

The level of detail of what can be described is defined by D. With Dcinema (cf. Figure
4.3), the requirements engineer can build sentences such as: “IF the moviegoer is at
the seller (jane) and the seller has a ticket (seat12), promotional material, and money
(ticketprice), THEN the seller gives the ticket and the promotional material to the movie-
goer” as illustrated in SP ′

d (Figure 4.7). However, since only states conforming to D can
be visited during the simulation, it may be required to extend D to allow participants
to reach previously inaccessible states that can be observed within the scenarios under

73

5. Completion and Correction of Captured Scenarios

investigation. Story patterns can only define changes which can be described in the
language established by D (cf. [Küh06]) – if there is no concept or word for signature,
it cannot be described and, thus, cannot be represented or provided in the GUI. Our
approach focuses on allowing stakeholders to achieve what they normally achieve, simply
based on the concepts they rely on to achieve it. If stakeholders point out that a specific
activity is not possible due to missing concepts in D, it is up to the requirements engi-
neer to extend D by modeling these concepts correspondingly (cf. use cases in Section
3.1.5). Further, while generic extensions for new types of artifacts are straightforward,
unexpected extensions such as a concept representing locations (as discussed in Section
3.1.3) may also require a suitable visual metaphor to enable stakeholders to intuitively
recognize the implications of such a new concept.

5.3. Merging Preconditions of Equivalent Activities

A stakeholder participating as moviegoer can only interact with the part of the current
state scur that is visible to him, i.e. the corresponding projection scur|moviegoer. Thus,
while the postconditions of an action can be easily deduced from the difference between
the state prior to the action and the state the scenario is in afterwards, the preconditions
are quite complex if not impossible to infer correctly in an automated fashion. Based
on the context of a stakeholder who was observed conducting a specific activity, it is
clearly obvious how the context is changed. However, which objects or information were
relevant for this activity, i.e. which of them enabled the stakeholder to execute this
activity, cannot be deduced based on the observed context alone.

For instance, while SP ′′′
a = (scur, snext) represents the resulting story pattern as strictly

derived from s1 and s2 in Figure 4.6, all other story patterns illustrated in Figure 5.5
are reduced versions of the same activity. While SP ′′

a = (scur|moviegoer, snext|moviegoer)
corresponds to the moviegoer’s perspective, SP ′

a and SPa are even less restrictive versions
of the same modifications which were observed. In the following, different reductions are
discussed which can be performed on a derived story pattern to decrease redundancy
among the story patterns. As a reminder, by making a story pattern’s precondition less
strict, elements removed from LHS also have to be removed from the RHS to keep the
encoded activity intact (cf. Section 4.1.2).

Merging Preconditions from Different Scenarios: After SP ′′
a = (LHS ′′

a , RHS ′′
a) has

been derived, alternative scenarios may exist in which the moviegoer shares the time
slot without access to any money. Hence, the same modification can be observed in a
situation, i.e. state scur in which not all of the preconditions of SP ′′

a are fulfilled. After
such an observation, SP ′

a would be a suitable reduction of SP ′′′
a , since it covers both

alternatives: situations in scenarios which include money as well as scenarios without it.
This holds true since, based on the fact that the precondition of SP ′

a is a subset of the
precondition in SP ′′

a , SP ′
a is applicable in all states in which SP ′′

a is applicable as well.

74

5.4. Chapter Summary

SPa'''

knows

has

knows

has tofrom

++knows

jane:Seller

evening
:TimeSlot

goodFather
:MovieTitle

this
:Moviegoer

:Promotional
Material

ticketprice
:Money :Visit

SPa''

knowsknows

has tofrom

++knows

jane:Seller

evening
:TimeSlot

goodFather
:MovieTitle

this
:Moviegoer

ticketprice
:Money :Visit

SPa'

knowsknows

tofrom

++knows

jane:Seller

evening
:TimeSlot

goodFather
:MovieTitle

this
:Moviegoer

:Visit

++knowsknows

SPa

from to

evening
:TimeSlot

:Visit

this
:Moviegoer jane:Seller

Figure 5.5.: These four story patterns represent the same activity (sharing a time slot),
although their applicability is different due to their modified preconditions

Minimal Reduction: Based on asking a stakeholder participating as a moviegoer di-
rectly what is essential for him to share the time slot he intends to see the movie with
the seller, the obvious answer would be, that apart from being able to speak with the
seller, i.e. visiting her, no other precondition is required – except for himself to know
the intended time slot. Consequently, SPa = (LHSmin, RHSmin) is reduced to this min-
imum, which can only be achieved after either observing such a context scur|moviegoer

during a simulation, or asking the stakeholders which parts of the preconditions they
require access to. As pointed out by Alshanqiti et al. [AHK13], such a minimal version
of the same rule may also be merged from multiple observations – successful and failed
ones as indicated by participants during validations. Based on feedback of stakeholders,
preconditions can further be refined, e.g. by introducing NACs to ensure that specific
story patterns are not applicable in distinct states during the simulation. The refinement
or modification of a story pattern may even be delegated to the stakeholders themselves
by representing the story pattern in NL (cf. Section 2.5).

Each time preconditions of a story pattern SP are modified, its applicability changes.
Consequently, stakeholders need to validate the resulting preconditions in subsequent
simulation sessions.

5.4. Chapter Summary

In this chapter, we extended our simulation approach to empower stakeholders to com-
plete each other’s scenarios through the interactive user interface of the virtual proto-

75

5. Completion and Correction of Captured Scenarios

types. While story patterns are derived from observing participants, the preconditions
of these automatically generated story patterns still need to be validated. Specifically,
the validation supports the identification of problems such as incorrect observations,
erroneously merged preconditions, and inconsistencies between different stakeholders
enacting the same role.

Up until now, we implicitly relied on the assumption that a participant is always
capable of continuing the scenario – eventually, after several iterations. In situations
where the stakeholders’ availability is limited, this is not always feasible, since it cannot
be assumed that a participant can always fill-in the blanks which remained from earlier
sessions. This simplifying assumption is overcome by the extension introduced in the
following chapter.

76

6. Decoupled Completion and
Correction of Scenarios

The requirements engineers start by eliciting scenarios from individual stakeholder per-
spectives. After combining such fragmented instance scenarios into a consistent overall
scenario model, they validate this scenario to exclude elicitation errors and check whether
they have covered all alternatives. Then, these activities continue iteratively with addi-
tional elicitation activities, updates of the modeled scenarios, and subsequent validation
activities until the result is agreed upon. The resulting global scenario is the crucial ele-
ment to ensure that a consistent understanding of the different stakeholder perspectives
can be established. Of course, the elicitation and validation of scenarios requires less
effort if all stakeholders are involved simultaneously. If all participants directly comment
on whether they agree with the statements of other stakeholders, the requirements engi-
neer might obtain a commonly agreed-upon scenario model directly within an elicitation
session, similar to Luebbe and Weske’s approach [LW11]. However, due to scheduling
and resource constraints, such a setting is usually less efficient compared to elicitations
with individual stakeholders [SMK+09] if not unfeasible. Also, experience shows that in
case of group meetings social effects can result in suppressed opinions and observations
of stakeholders positioned lower in the hierarchy [Mur11]. Furthermore, the stakeholders
who participate are sometimes chosen based on who is noncritical for the daily work to
continue without interruptions [ARE96]. To limit such effects, techniques that permit
all stakeholders to be involved in the elicitation and validation without needing to be
present in person at the same location and at the same time are required.

So far, the presented approach does not support stakeholders in overcoming situa-
tions in which their next steps depend on how other roles respond or interact with
them during the play-in and exploration of new scenarios. Therefore, participants can
only complement each other’s activities if applicable counterparts to their interactions1

(i.e. plausible continuations of the scenario) have already been observed and can be
replayed. Since the simulator cannot know how to react if no suitable response has
been observed, stakeholders run into dead ends during their elicitation sessions (referred
to as stalemates). Thus, the simulation concepts presented so far required that the
stakeholders involved in this interaction to participate either simultaneously or multiple
times to be able to complement each other. Since arranging a meeting of all involved

1 In accordance with Dirgahayu et al. [DQS10], an interaction is considered “an action performed by
multiple entities in cooperation to establish a result that is acceptable by all involved entities”.

77

6. Decoupled Completion and Correction of Scenarios

:Boatman
:Communications

Operative

:Communications
Operative :Boatman

: Notifier
:Communications

Operative

?

Estimated Arrival
Message

Overturned Boat
Notification

?

Figure 6.1.: The scenario initiated on the left (a Notifier calling in an emergency) is
incomplete and the Notifier cannot know which of the possible continuations
(right) will occur

stakeholders to elicit the new scenarios in one simulation session is too complex and
time-consuming, each stakeholder night have to participate in multiple sessions, waiting
for other stakeholders to play in their continuations for the scenario. This can lead to
numerous sessions, especially for stakeholders working in coordinating roles. Only by
being able to further decouple individual stakeholders during the elicitation and vali-
dation of their interactions, can a complete, systematic, and feasible elicitation of all
scenarios be ensured.

This chapter extends our simulation approach in a way that it overcomes stalemates
by bridging the unknown fragments of the scenario and, thereby, can reduce the number
of necessary sessions. By enabling participants to explicitly express their expectations of
what changes for them after interacting with other stakeholders in form of partial states,
other participants can continue playing in their parts of the scenario, thereby fulfilling
these expectations without requiring additional elicitation sessions. Monitoring the ex-
ecution of the simulation as described in [Teu11] enables this extension of the simulator
to recognize the fulfillment of such expectations to identify suitable continuations of
incomplete scenarios. Consequently, the results of multiple simulation sessions can be
combined automatically based on fulfilled expectations.

Since this chapter deals with challenges arising from decoupling stakeholders, it is
assumed that only one stakeholder participates in this decoupled mode of the simulation
throughout this chapter. This chapter is based on our publication [GHG12a] and struc-
tured as follows: Section 6.1 discusses our approach on how stakeholders can describe
their expected continuations by simply answering three questions to define triggers and
two questions for follow-up actions. Then, Section 6.2 presents a case study based on
practical examples elicited from a lifeguard service during a requirements engineering
seminar we conducted [GHPG13]. Finally, a summary is presented in Section 6.3.

78

6.1. Concept

6.1. Concept

In each simulation session, each participating stakeholder has a unique perspective on
the current state scur of the simulation. After each activity of any role, each participant
might be affected by the result. Still, only some of these activities and their results are
even visible to the role in which this stakeholder participates. Consequently, every time a
participant is affected by a change of the current state of the simulation, this change has
to be reflected in the stakeholder’s visualization (step f in Figure 6.2). This visualization
illustrates the current state scur of the simulation, reduced to what a participant’s role
RoleT is able to perceive (scur|RoleT).

After the simulator has reached a state ssm in which no story pattern is applicable
(step c returns ∅), the stakeholder participating as RoleT is expected to play in alterna-
tive behavior. However, ssm is considered to be a stalemate if RoleT arrived in ssm after
initiating an interaction with another role RoleReq and must wait for the execution of an
activity of RoleReq which cannot be simulated since it was not yet observed. Generally,
a stalemate can only be overcome if the requirements engineers gather the other side of
the interaction. Similar to a black box, we can only assume how RoleReq continues after
being triggered by RoleT . Still, while RoleReq’s activities are not yet known, RoleT can
describe most of the possible outcomes, i.e., how he is affected by the result, based on
experience. Similar to a jigsaw puzzle, many pieces of information exist, however, only
a few of them are required to complete individual scenarios. Thus, it is essential that
individual stakeholders do not have to give up at the first stalemate, but are able to
continue to describe their expectation(s)2 as well as their follow-up actions of how they
continue after the expectation is fulfilled. Since an individual stakeholder cannot know
how the overall state ssm of all involved roles changes in between, he can only specify
his perspectives of the respective states. Thus, an expectation can only be a partial
state s′sm|RoleT describing the changes the stakeholder expects to perceive based on his
individual perspective (ssm|RoleT).

Question for Stakeholder Answer
Q1 Who did you interact with? RoleReq

Q2 Who, if not [RoleReq], do you expect to get an answer from? RoleResp

Q3 What do you expect to change [based on ssm|RoleT]? s′sm|RoleT

Table 6.1.: By answering these questions, a stakeholder describes which interactions usu-
ally occur, who is involved, and how they affect him

If a stalemate occurs during an elicitation of a scenario, a participant can still answer
the questions in Table 6.1. Q1 provides the requirements engineers with the information

2 The results of “what customers expect when contacting the service provider, by the telephone for
example, with this being contrasted with similar [expectations] of in-person visits or email corre-
spondence” (cf. Expectation Maps in [SS12b]).

79

6. Decoupled Completion and Correction of Scenarios

of who to talk to next to get closer to the completion of the incomplete scenario. Possible
answers are the roles that are defined in the domain model D. Only a stakeholder
identified as role RoleReq, i.e., someone who usually receives RoleT ’s request, knows how
to continue. Still, in some cases, RoleReq is not the role that is expected to respond.
Furthermore, if multiple responses, which may originate from different roles, need to
be distinguished, the (otherwise optional) second question Q2 provides information on
whom else might provide a result which RoleT expects.

[no SP
applicable]

[at least one SP applicable]

[else]

start
session

[else]

wait for
participant(s)b)

check which
story patterns
are applicable
in current state

c)
simulator

chooses SP
to execute

d)

[no SP belonging to a
participant applicable]

[participant
defers choice
to simulator]
[participant chooses SP]

j)
highlight SPs

already observed in
identical sequence

[else]

h) propose applicable SPs
of participant in GUI

[final state
observed and

acknowledged]

simulator
executes

chosen SP
e)

end
session

f) synchronize GUIs of
affected participants

a) load initial
scenario state

z)
notify

participant(s) g) housekeeping

derive SP based
on observationn)

m) synchronize state to
observed action

observe GUI (inter-)
action of participantk)

[alternative out-
comes known]

[else]

[stalemate for
participant]

[else]

p)
express expected
changes as partial

state

q)
define follow-up

action that is
applicable next

[participant
knows how
to follow-up]

Figure 6.2.: Complete simulation loop which supports play out, play in, and triggers

The simulation has a specific state ssm, in which the stalemate occurred. In this state,
an interaction has been started that results in a change for RoleT – although he does
not know how anyone else might be affected as a side effect, the stakeholder can still
describe what changes for him, i.e. answer question Q3. To both simplify and structure
this description, the participant’s perspective ssm|RoleT is represented in NL using the
NL4SP approach [GEHG13] and provided as a template for the required response to
Q3. The participant can reshape this partial state to reflect the changes they expect to
be affected by. Thus, based on the differences between what the participant currently
perceives (ssm|RoleT) and the participant’s answer to Q3 (s′sm|RoleT), an expectation is
defined.

6.1.1. Capturing Different Stakeholder Expectations as Triggers

As illustrated in Figure 6.1, the requirements engineers have to deal with individual
perspectives as well as handovers. It happens quite often, that a stakeholder RoleT telling
his story cannot continue after he hands over a critical artifact, requests information or
starts any other form of interaction with another stakeholder RoleReq. Since RoleT does
not know what Desai et al. [DMCS05] refer to as local and usually private policies, which

80

6.1. Concept

dictate how RoleReq acts or reacts in a specific situation, we can never be completely
sure what happens without talking to a corresponding stakeholder. We refer to such a
potential dead end during the elicitation as a stalemate – without information on how
another role continues the scenario, requirements engineers and the stakeholder can only
guess what happens next. To enable participants to describe their expectations using
triggers, the simulation loop was extended with the step p as illustrated in Figure 6.2.

p) Express Expected Changes as Partial State: A trigger is a tuple (ssm, RoleT ,
RoleReq, RoleResp, s

′
sm|RoleT). It contains the stalemate state ssm as it occurred during

the simulation. Further, the role of the participant who defined the trigger (RoleT)
is included. Additionally, to resolve the trigger, it is essential to know which role is
expected to continue the scenario and which role is expected to interact with RoleT next
(RoleReq based on Q1 and RoleResp based on Q2, respectively). Finally, the partial state
s′sm|RoleT that RoleT expects to observe afterwards is included as well, based on Q3. This
expectation can be defined using the NL4SP approach (cf. Section 2.5).

Often, there is an information asymmetry between different roles. Thus, a stakeholder
cannot know what a decision that affects her is based on. Still, by enumerating the
different possible continuations, all different scenarios can be captured systematically,
as opposed to only one at a time. Consequently, based on the current state as perceived
by the participant (ssm|RoleT), other alternatives can be described as well by simply
answering Q2 and Q3 again for the alternative expectations. Hence, from each stalemate
ssm, multiple expectations can be defined as part of different triggers.

6.1.2. Capturing Stakeholders’ Follow-Up Actions

A follow-up action f is an activity of a role which is expected to apply if a specific
precondition is fulfilled. It is characterized by a pair of states, the first being a precon-
dition (sF |RoleT), which has to be fulfilled to execute the changes leading to the second
(s′F |RoleT). Questions similar to those necessary to define triggers can be used to elicit
follow-up actions. The corresponding questions are presented in Table 6.2. While QA es-
tablishes what has to be fulfilled for the participant to consider the activity, QB contains
the postcondition which is reached after the activity is executed.

Question for Stakeholder Named Part of Story Pattern
QA When do you become active [again]? sF |RoleT Left-Hand Side
QB How do you continue after [sF |RoleT]? s′F |RoleT Right-Hand Side

Table 6.2.: By answering these questions, stakeholders can specify a distinct partial state
(LHS) and how they follow up on it (RHS of a resulting story pattern)

Moreover, since both partial states in a follow-up action fi = (sF |RoleT , s
′
F |RoleT) can

be considered as precondition and postcondition, a follow-up action fi is equivalent

81

6. Decoupled Completion and Correction of Scenarios

to a story pattern SPi = (LHSi, RHSi) if LHSi
∼= sF |RoleT and RHSi

∼= s′F |RoleT .
Consequently, each follow-up action fi leads to a story pattern SPi which can be applied
as soon as the current state scur of the simulation contains a match for sF |RoleT , i.e.
the precondition of SPi. Since we know which role the participant enacted, the story
pattern belongs to this specific role.

q) Define Follow-Up Action that is Applicable next: Since a trigger ti = (ssm,
RoleT , RoleReq, RoleResp, s

′
sm|RoleT) has to be resolved for the participant playing as

RoleT to follow up, the simulation needs to be in a state in which the expectation of
this trigger is fulfilled. Consequently, if a follow-up action is defined directly after a
trigger, the trigger’s expected partial state (s′sm|RoleT) can automatically be offered as
the default answer to the follow-up action’s question QA, i.e. sF |RoleT := s′sm|RoleT .
Combined with the follow-up state, i.e. the answer to QB, this leads to the follow-up
action fi = (s′sm|RoleT , s

′′
sm|RoleT). As explained above, these two partial states can be

used to derive a story pattern SPi which captures the intention of what the participant
would do after RoleResp of ti responded as expected. As opposed to triggers, the defini-
tion of additional follow-up actions starts with the postcondition s′F |RoleT of the prior
follow-up action as precondition for the next; after fi = (sF |RoleT , s

′
F |RoleT), f2 would

be (s′F |RoleT , s
′′
F |RoleT). This allows stakeholders to describe sequences of activities which

complement one scenario at a time. Again, the NL4SP approach may be used to enable
stakeholders to modify or define the required partial states.

6.1.3. Resolving Triggers Systematically

After the requirements engineer has elicited an incomplete collaborative scenario end-
ing in a stalemate ssm and at least one trigger tm = (ssm, RoleT , RoleReq, RoleResp,
s′sm|RoleT), the next stakeholder to talk to is already predetermined. To complete this
scenario, a stakeholder of the corresponding role RoleReq needs to participate to con-
tinue the interaction with RoleT . The simulation starts by loading the state ssm for
RoleReq, so that the simulation can continue directly from the last complete state of the
incomplete scenario. The visualization of ssm corresponding to RoleReq’s perspective
ssm|RoleReq

visualizes the last interaction with RoleT in such a way that the participating
stakeholder is able to identify which scenario the requirements engineers are currently
interested in. By explicitly loading ssm, inconsistencies between different triggers and
their continuations can be avoided, since all follow-up activities are considered direct
responses leading towards the expectation s′sm|RoleT .

All triggers that are collected along the way are stored next to the terminal states in
Sterm. The follow-up actions, on the other hand, are stored next to the derived story
patterns. To resolve a trigger, the simulator simply checks in each loop (step c) whether
the expected outcome of an interaction (s′sm|RoleT) can be matched in the current state
scur of the simulation. After a trigger has been fulfilled, a sequence has been found which
potentially complements the incomplete scenario of RoleT . Then, potential follow-up

82

6.2. Case Study: Notifying a Lifeguard Service

actions the participant whose trigger was fulfilled may have defined are checked, as are all
other story patterns in step c. If the simulator decides how to continue in step d, follow-
up actions are executed with priority, since these actions allegedly belong to the same
scenario. Thereby, the simulator enforces the completion of such fragmented scenarios.
Furthermore, specific strategies that score whether any of the expected changes are
reachable within a look ahead can be formulated (cf. Scoring Individual States in Section
4.3.1). This bridges any unknown fragments of the collaborative scenario – RoleT may
continue to fill-in the blanks between ssm and s′sm|RoleT later on.

Based on this algorithm, scenarios are completed step by step by different stakehold-
ers in subsequent, remote sessions, which decouple them temporally and locally. The
possibility remains that no state fulfilling the expectation (i.e. scur ⊇ s′cur

∼= s′sm|RoleT)
can be reached – even after multiple sessions of the role that is expected to reply. In
this case, the requirements engineer has to be notified and two options exist: either talk
to RoleResp to ask, e.g., what needs to be true for RoleResp to behave as expected or talk
to RoleT to ensure that the described expectation is correct.

6.2. Case Study: Notifying a Lifeguard Service

This section illustrates the concepts of expected continuations in triggers and follow-up
actions using a case study elicited from a lifeguard service (cf. [GHPG13]). For this
case study, Figure 6.3 illustrates an abridged version of the domain model DW . As can
be seen in DW , boats can only be seen by roles which are at the same location. (cf.
Figure 6.3). The scenario starts with sinit

3 as illustrated in Figure 6.4 and covers the
elicitation of the communication between a bystander notifying the lifeguards (referred to
as Notifier) about an emergency, the corresponding communications operative (referred
to as ComOp), and a Boatman. Three consecutive sessions are necessary: starting with
the notifier in the first session (Section 6.2.1), the communications operative continues
(Section 6.2.2) before the boatman finalizes the scenario in the third session (Section
6.2.3). All of these sessions are displayed in Figure 6.5.

6.2.1. Session 1 – Notifier

To elicit the emergency notification scenario, a Notifier participates in the simulation.
In his visualization of sinit (Figure 6.4), the Notifier can recognize the overturned boat
which is at his location and which he needs to notify the lifeguard service about. As
illustrated in Figure 6.1, the Notifier starts the notification scenario by sending an Over-
turnedBoatNotification to the ComOp. This notification leads the simulation into the
state sm (cf. Figure 6.7). However, the Notifier cannot continue, since he does not know

3 This state is also the initial state sinit referred to in the sequence diagrams throughout this chapter.
In the following, all state labels in sequence diagrams refer to complete or partial states represented
by such object diagrams.

83

6. Decoupled Completion and Correction of Scenarios

«visible»
isOn

«visible»isIn

«visible»
isAt

«visible»
isAt

«visible»
to

«visible»
from

Role

Artifact

Boat Notifier Communications
OperativeBoatman

ArtifactState

Overturned
State

Interaction OverturnedBoat
NotificationLocation

next

WalkieTalkie
Message

GoTo
Message

EstimatedArrival
Message

Successful
RescueMessage

RescueFailed
Message

LowOnFuel
Message

Concept specified in
basic domain model

Additional concepts in
refined domain model

Association annotated as
visible for connected roles «visible»

Figure 6.3.: (Abridged) domain model DW elicited from a lifeguard service

for sure what happens next. Thus, a stalemate occurs in sm and the stakeholder partic-
ipating as Notifier is asked to describe his expectations on how another stakeholder he
interacted with might respond or, more generally, how his context may change. Con-
sequently, a trigger can be created based on sm|Notifier. Firstly, the Notifier provides
the last interaction partner (Q1 in Table 6.1). For the Notifier, this would be the Co-
mOp who he notifies about the emergency (Figure 6.1). After the ComOp passed on
the information, the Notifier expects to hear from her again – consequently, Q2 would
be answered the same. Then, sm|Notifier is represented in NL to enable the stakeholder
to express how he expects to be affected, thereby answering Q3. The Notifier expects
to receive an estimation on when help will arrive. Thus, using the vocabulary already
established as part of the domain model DW , this expectation can be described explic-
itly. The Notifier expects sm|Notifier and s′m|Notifier to be identical, except that he has to
receive an EstimatedArrivalMessage from a ComOp. Whether a boat already departed
to his location, or whether another emergency happened somewhere else is not clear to
the Notifier, providing none of those things are visible to him. The expected follow-up
state can be represented and described in different ways to be suitable for stakeholders.

someBoat
:Boat a:Location b:Location d:Location

:Notifier :Communications
Operative

c:Location

:Overturned
State :Boatman lifeGuard

:Boat

isAt

isAt isAt

isOn

isIn isAt

Figure 6.4.: An initial state sinit for the lifeguard service scenarios

84

6.2. Case Study: Notifying a Lifeguard Service

Notifier
Session

sm m
sinit

t1
sm|Notifier ' t1=(sm, Notifier, ComOp, ComOp, sm|Notifier)

is defined
 '

sm|Notifier '
sn|ComOp '

t2=(sn, ComOp, Boatman, Boatman, sn|ComOp)
and t3 (not shown) are defined along with the
follow-up action f1

 '
ComOp
Session

sm m
sinit snn

t1

t2
sn |ComOp '''

f1

sxsq
Complete
Scenario

sm m
sinit snn xq

Results:
- complete scenario which can be simulated
- 5 story patterns (m,n,p,q,x) which may
 already cover alternative scenarios

sn|ComOp '
sq

Boatman
Session

t2 is fulfilled since sq|ComOp = sn|ComOp
and story pattern x (derived from f1) can be
executed on sq to simulate ComOp

 '
sm m

sinit snn

t1

t2

q

sm|Notifier '

sn |ComOp '''
f1

sm|Notifier '

sx

sn |ComOp '''sq

Boatman
Session:
Execute

ComOp's
Follow-up

sm m
sinit snn

t1
q

t1 is fulfilled since sx|Notifier = sm|Notifier '
x

Session Trace of Session Result of Session

si
simulation session starting
in si and ending in si+1

si+1

a state sq fulfilling an
expectation of a ComOp

sn|ComOp '
sq

partial state as expected by a ComOp
(based on sn)

sn t2
a trigger connecting a stalemate
and its corresponding expectation

sn|ComOp '

a state snsn

sn|ComOp '

sn |ComOp '''

f1 a follow-up action defining what
ComOp does after an expectation is
fulfilled

f1

t2 sn

KEY

Figure 6.5.: After only three stakeholder sessions, the scenario has been completed with
two triggers and one follow-up action (adapted from [GHG12a])

While Figure 6.7 (right) illustrates this expectation as a partial state in an object dia-
gram, Figure 6.6 (right) presents a natural language representation that can easily be
understood and modified: [CommunicationsOperative] sends [EstimatedArrivalMessage]
to [you (Notifier)].

Finally, the Notifier’s answers result in the trigger t1 =(sm, Notifier , ComOp, ComOp,
s′m|Notifier), as illustrated in Figure 6.7. Furthermore, the Notifier may also describe
additional expectations such as the fact that he expects a lifeguard boat to arrive at his
location as illustrated in Figure 6.8b. Afterwards, his session is concluded.

85

6. Decoupled Completion and Correction of Scenarios
Lo

ca
l C

ha
ng

es
 fo

r N
ot

ifie
r

:Communications
Operative:Notifier

?
?

sinit

sm

sm|Notifiers'

OverturnedBoatNotification

EstimatedArrival

Message

(a) Notifier knows how he informs the ComOp
(green)

What has to happen next?
> After [you (Notifier)]
 sent [OverturnedBoatNotification]
 to [CommunicationsOperative] ...

> [Communications Operative]
 sends [EstimatedArrivalMessage]
 to [you (Notifier)]

(unknown sequence of activities and
interactions between other roles)

Lo
ca

l C
ha

ng
es

 fo
r N

ot
ifi

er

s m
| N

ot
ifi

er
s m

| N
ot

ifi
er

s'

(b) Notifier can validate his expectations, i.e., how
he is affected (yellow), in a NL representation

Figure 6.6.: While the Notifier knows how he informs the ComOp (green), he does not
know how the ComOp continues this scenario (gray); still, the Notifier can
formulate his expectations, i.e., how he is affected (yellow), in NL (right)

6.2.2. Session 2 – Communications Operative

To resolve the trigger t1 that Notifier created in the first session (1st row in Figure 6.5),
a ComOp is required for the next session. As the last interaction partner of Notifier, it
is implied, that a ComOp knows how to continue. Thus, the stalemate sm of the trigger
(illustrated in Figure 6.7) is initialized for the session and the participating ComOp
stakeholder receives Notifier’s notification of an overturned boat in her corresponding
visualization sm|ComOp.

Sometimes, RoleReq is also the responding role RoleResp, which can answer RoleT ’s
interaction directly to fulfill RoleT ’s expectation with a suitable response. In the case of
t1, however, ComOp cannot yet fulfill Notifier’s expectation (s′m|Notifier). As always, the
ComOp continues by starting an interaction with a Boatman by sending a GoToMessage,
thereby bringing the simulation into the state sn (2nd row in Figure 6.5). At this point,
the ComOp cannot continue to play in what needs to be done, since a stalemate sn is
reached in which she cannot deterministically predict how the Boatman will react, since
two different scenarios are possible.

After the ComOp’s GoToMessage sending a Boatman to another location in response
to the notification, ComOp expects that the Boatman responds with an EstimatedAr-
rivalTime, as prescribed by their protocol. Consequently, the ComOp defines a trigger
t2 = (sn,ComOp,Boatman,Boatman, s′n|ComOp) expecting this message. While the Co-
mOp might usually get an EstimatedArrivalMessage, she might also be confronted with
a LowOnFuelMessage, indicating that the boat needs to refuel first (illustrated in Fig-
ure 6.11). Of course, the ComOp knows that all boats are fueled up at the beginning of
each weekend. However, she does not know how much gas each boat may have left after

86

6.2. Case Study: Notifying a Lifeguard Service

someBoat
:Boat

a:Location b:Location d:Location

:Notifier :Communications
Operative

c:Location

:Overturned
State

:Boatman lifeGuard
:Boat

isAt

isOn

isAt

isAt

isAt

isIn

from to
:OverturnedBoat

Notification

t1

:Notifier

:Communications
Operative

from

to

:EstimatedArrival
Message

?

?

?

?
?

?

?

sm sm|Notifier '

Figure 6.7.: Based on sm (left, Notifier’s visibility is highlighted in gray), the Notifier
can describe changes he expects as a partial state s′m|Notifier (right) in DW ’s
vocabulary, leading to trigger t1 (adapted from [GHG12a])

several hours of service since this information is only available to each respective Boat-
man. Thus, although a ComOp knows both possible outcomes, she cannot know which
one she will be confronted with, since she has no access to the information required for
this decision.

After ComOp’s expectations have been captured in t2, the participating stakeholder
can still describe how she as a ComOp would continue after her expectation (s′n|ComOp)
is fulfilled. Consequently, the partial state as expected in t2 is presented to the stake-
holder, either in an interactive visualization or in a textual representation as provided by
NL4SP. Based on this expectation as answer to QA, the stakeholder is able to specify the
differences resulting from her follow-up actions. For this example, the answer to QB (cf.

:Location :Location

--isAt

this
:Boatman

lifeGuard
:Boat isOn

++isAt

next

(a) Going to the next location

?

?
?
?

?

?

?

isAt

isAt

isIn

:Notifier

someBoat
:Boat

a:Location

:Overturned
State

lifeGuard
:Boat:Boatman

isAt

isOn

(b) Eventually, the Notifier expects a lifeguard boat
to arrive at his location

Figure 6.8.: Only by moving from one location to the next (a), can a Boatman eventually
fulfill a Notifier’s expectation (b)

87

6. Decoupled Completion and Correction of Scenarios

:Communications
Operative :Boatman

?

?

t1

:Notifier

sm|Notifier '

sm

sinit

(a) Incomplete scenario after a Notifier session

t1

:Communications
Operative :Boatman

sm

sinit

sn|ComOp '

x

?
?

t2

sn

sn |ComOp '''

f1

:Notifier

sm|Notifier '

(b) Same scenario after a ComOp follows up

Figure 6.9.: The expectation described in t1 (a) might be fulfilled after t2 has been
resolved and follow-up action f1 was executed (b)

Table 6.2) would be: “[I] send the Notifier an EstimatedArrivalMessage” (s′′′n |ComOp).
Thus, the follow-up action f1 = (s′n|ComOp, s

′′′
n |ComOp) leads to the story pattern SPx (cf.

Figure 6.10b) of how the ComOp would continue as soon as the expectation defined in
t2 has been fulfilled.

From sn, as for most stalemates, multiple continuations are possible from ComOp’s
point of view. Consequently, the LowOnFuel alternative is also based on the stalemate sn
and can be defined as trigger t3 = (sn,ComOp,Boatman,Boatman, s′′n|ComOp) (cf. Figure

someBoat
:Boat a:Location

this
:Notifier

:Overturned
State

:Communications
Operative

isIn

isAt

isAt

++from

++to
:OverturnedBoat

Notification

(a) Notifying the life guard service

:Location

:Notifier

this:Communications
Operative

:Boatman

isAt

--from

--to

:Estimated
ArrivalMessage

++from
++to :Estimated

ArrivalMessage

(b) SPx based on follow-up action f1

Figure 6.10.: After the ComOp was informed by a Notifier (a), the ComOp defines a
follow-up action of how she continues which leads to SPx (b)

88

6.2. Case Study: Notifying a Lifeguard Service

alt

:Communications
Operative :Boatman

What has to happen next?
> When [you (CommunicationsOperative)]
 sent [GoToMessage] to [Boatman] ...

> [you (CommunicationsOperative)]
 receive [EstimatedArrivalMessage]
 from [Boatman]

Expectation 1

> [you (CommunicationsOperative)]
 receive [LowOnFuelMessage]
 from [Boatman]

Expectation 2

sm

sn
?

GoToMessage

EstimatedArrival
Message

?

LowOnFuel
Message

?

sn|ComOp '

sn|ComOp ''

Figure 6.11.: Both expectations for how a Boatman may react to a GoToMessage as
experienced before and, therefore, expected by a ComOp

6.11). After these triggers and the follow-up action have been defined, this session is
concluded (as illustrated in the 2nd row of Figure 6.5).

6.2.3. Session 3 – Boatman

As specified in t2 and t3, the next role to talk to is Boatman, who is in both cases
expected to continue from sn. After the participant reviewed sn in his visualization, he
responds with an estimated arrival time (3rd row), thereby leading the simulation into
state sq in which his role Boatman fulfills ComOp’s expectation as defined in t2.

In sq, ComOp’s follow-up action f1 (represented by SPx) is applicable, since its pre-
condition is coincidentally identical to t2’s postcondition (s′n|ComOp). Consequently, by
fulfilling t2, the ComOp can be triggered which, in this case, allows the simulator to
execute SPx with priority over any other applicable story patterns. This leads the sim-
ulation into the follow-up state sx as illustrated in the 4th row in Figure 6.5. More
importantly, the initial expectation of Notifier can be matched since the expected an-
swer was provided through ComOp’s follow-up action (sx ⊇ s′m|Notifier

∼= s′′′n |ComOp, cf.
Figure 6.12).

Even though f1 was executed and t1 was fulfilled, the boatman still participates. By
doing so as he was told (GoToMessage), he can be observed going from one location
to the next as illustrated in Figure 6.8a. Thus, eventually, he arrives at the Notifier’s
location which, in turn, fulfills the Notifier’s expectation illustrated in Figure 6.8b.

89

6. Decoupled Completion and Correction of Scenarios

someBoat
:Boat a:Location b:Location d:Location

:Notifier :Communications
Operative

c:Location

:Overturned
State

:BoatmanlifeGuard
:Boat

isAt

isAt
isAt

isOn
isIn

isAt

fromto
:Estimated

ArrivalMessage

sx

Figure 6.12.: After ComOp is simulated using the story pattern SPx, the simulation
is in state sx with sx ⊇ s′m|Notifier

∼= s′′′n |ComOp (fulfilling the highlighted
expectation in Figure 6.7)

6.2.4. Resulting Scenario

After these three sessions, the requirements engineers systematically observed and de-
rived all the story patterns required to execute and simulate the complete notification
scenario (5th row in Figure 6.5). Since all expectations have been fulfilled, an agreed
upon scenario has been established, since all stakeholders were affected as expected and
nobody pointed out errors as discussed in Section 4.2. Furthermore, the requirements
engineers can continue by systematically covering the alternatives, e.g., what has to hap-
pen when a Boatman fulfills the expectation described in t3? Of course, the scenario may
even continue, since, apart from seeing a lifeguard boat at his location (Figure 6.8b),
the notifier may also expect to see that the overturned boat is returned in an upright
position (i.e. its default state).

The total number of sessions required to elicit a complete scenario is related to the
number of stalemates stakeholders run into during elicitations, since each stalemate may
require an additional session to be resolved before RoleT may continue. Generally, the
number of stalemates per role can vary strongly. Especially for the role ComOp in the
discussed example, at least ten interactions with other roles need to be elicited for each
scenario. However, by being able to express her expectations and triggers intuitively, the
ComOp is now able to defer the completion of all scenarios to other stakeholders later on.
Consequently, instead of ten sessions to overcome ComOp’s stalemates only, ComOp can
express all her contributions to the collaborative scenarios in just one session. Decoupled
from her, the other stakeholders can then complement the scenarios accordingly.

6.3. Chapter Summary

In this chapter, we presented an approach that reduces the effort necessary to initially
elicit and validate unknown collaborative scenarios. Thereby, the number of sessions
necessary to elicit a stakeholder’s actions within a fragmented scenario can be reduced.

90

6.3. Chapter Summary

In the case of stalemates, stakeholders can express their expectations on interaction re-
sults in the form of partial states. Based on these partial scenarios, stakeholders are
then able to play in continuing behaviors decoupled from one another. Our simula-
tor synthesizes the captured individual perspectives to obtain the complete scenarios,
thereby overcoming the inherent fragmentation of different perspectives. We discussed
how this technique extends our model-based validation approach in order to be applicable
for model-based elicitation, too. In this chapter, we also illustrated how the discussed
extension can be applied in order to systematically complete fragmented scenarios of
collaborating stakeholder groups within a lifeguard service.

Without the inclusion of expected continuations as triggers and follow-up actions, the
requirements engineer would have to go back and forth between two or more stakeholders
for each interaction. By systematically eliciting such interactions using triggers and
follow-up actions, on the other hand, the total number of elicitation sessions no longer
depends on the number of interactions and stalemates, but on the number of roles and
the stakeholders’ ability to express their expectation. In this case, our approach can end
up with only one elicitation session per role.

91

7. Research Prototype

The presented approach proposes to enable stakeholders to validate behavioral specifica-
tions, i.e. story patterns, which are part of the collaborative scenarios the stakeholders
are involved in (Chapter 4). These story patterns have to be executed, visualized, and
animated in such a way that stakeholders can experience and judge them. Further, by
enabling stakeholders to play in new story patterns (Chapter 5) or to explicitly describe
continuations they expect based on experience (Chapter 6), requirements engineers can
elicit the stakeholders’ collaborative scenarios in individual stakeholder sessions. These
concepts were implemented over the course of three years and together with a total of
seven master’s students who worked as student assistant or worked on the implemen-
tation as part of their respective master’s theses [Kle11, Ric11, Teu11, Eic12]. The
prototype was implemented in Eclipse1 using EMF2 and GMP.3 To enable stakehold-
ers to participate remotely, we developed a web-based user interface using Enterprise
Java Beans which can be deployed on a JBoss4 application server. The execution of
story patterns is based on the Story Diagram Interpreter (SDI5, cf. [GHS09]) which was
developed by Stephan Hildebrandt.

The research prototype relies on an EMF Ecore model as domain model D (upper
layer in Figure 7.1). Starting with sinit, states are dynamically instantiated during
the simulation (S, middle layer) based on this Ecore model (cf. Dynamic EMF in
[SBPM09]). The story patterns SP , in turn, are either derived from subsequent pairs
of states (during play-in) or executed on these states (play-out). All story patterns
conform to their metamodel that is defined as part of the SDI (illustrated abridged in
Figure 7.2). Using its pre- and postcondition, a story pattern reflects the pair of states
it was derived from. Each object contained in a story pattern is a StoryPatternObject

representing an instance of a class defined in D. The reference to the class in D which
the object is an instance of is captured as the classifier of the StoryPatternObject.
An association, on the other hand, is represented as a StoryPatterLink and refers to
the domain model via its eStructuralFeature (cf. [GEHG13]).

1 Version 3.7, http://eclipse.org/ (accessed June 2013)
2 Eclipse Modeling Framework Project, http://eclipse.org/modeling/emf/ (accessed June 2013)
3 Graphical Modeling Project, http://www.eclipse.org/modeling/gmp/ (accessed June 2013)
4 Version 7.0, http://www.jboss.org/ (accessed June 2013)
5 Available at http://mdelab.de/update-site, Version 2.3.3 (accessed June 2013)

93

http://eclipse.org/
http://eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmp/
http://www.jboss.org/
http://mdelab.de/update-site

7. Research Prototype

Role ArtifactFact

Domain Model

BossAssistant ProposalCustomer

has
EMF Ecore Model

has

proposal1
:Proposal

john
:Customer

adam
:Assistant

bert
:Boss

sinit
proposal1
:Proposal

john
:Customer

adam
:Assistant

email1:
EMail

from to

attachment

bert
:Boss

has

s1 Dynamic EMF
Instances based
on Ecore Model

proposal1
:Proposal

this
:Customer

adam
:Assistant

email1:
Email

has
++from ++to

++attachment

Story Patterns

LHS

<<instanceOf>>

RHS

Figure 7.1.: In the research prototype, the domain model D is realized as an EMF Ecore
model, the states S during the simulation are dynamic instances of this
model, and story patterns SP are derived from these states (refinement of
Figure 3.1d)

Figure 7.2.: Abridged metamodel of story patterns as defined by Hildebrandt’s SDI
(adapted from [GEHG13])

The files of a project that investigates collaborative scenarios consist of an Ecore file
representing the domain model D, a set S of states which are serialized as XMI6 files,
and a set SP of story patterns that reside in XML files as well.

6 XML Metadata Interchange [OMG05c]

94

7.1. Architecture

Section 7.1 describes the architecture of the research prototype – specific steps of
its simulation loop (which was introduced and extended over chapters 4, 5, and 6) are
illustrated using pseudo code listings in Section 7.2. Then, specific GUI interactions and
the way they are translated into state changes are explained in Section 7.3. Further,
Section 7.4 discusses the effort required to adapt the research prototype to a different
domain. Afterwards, Section 7.5 summarizes this discussion of the research prototype.

7.1. Architecture

Figure 7.3 illustrates the deployment of our research prototype. Through a web browser,
stakeholders interact remotely with the virtual prototype’s front end. The mapping
between the current state scur of the simulation and the visualization scur|r of a role r are
realized by the GameEngine. Thus, the GameEngine is responsible of visualizing updates
of scur|r in the participant’s front end as well as modifying scur based on stakeholder
actions observed in the front end.

<<device>>
Work Station

<<Execution
Environment>>
Web Browser

Front End

<<Device>>
Web Server

Participant

<<Application Server>>
JBoss 7

Story
Patterns StatesArtifact

Pictures

HTTP

HTTP <<file>>
BasicOntology.ecore

<<file>>
ProjectOntology.ecore

Game Engine Story Diagram
InterpreterSimulator

Project
Workspace

Figure 7.3.: UML deployment diagram of the research prototype

On the web server, the simulator runs on an application server and accesses the
required models from within a project’s workspace. For each workspace, there is a
ProjectOntology.ecore which representsDspecific and, thus, extends the classes defined
in the BasicOntology.ecore which represents Dbasic. Elements defined in either model
are accessible via their corresponding namespaces.7 All states in S are dynamic instances
of the elements in these Ecore models. These states are serialized .xmi files which are
stored by the simulator after each modification of the current state scur of the simulation.
Further, all story patterns belonging to a project are saved as .story XMI files which

7 Per default, these namespaces are http://basicontology/ and http://projectontology/.

95

http://basicontology/
http://projectontology/

7. Research Prototype

conform to the XML schema provided by the SDI (cf. Figure 7.2) and reference the
namespaces of the Ecore models.

To enable stakeholders to intuitively recognize any of the artifacts they have to deal
with, corresponding pictures can be saved on the web server. These can then be assigned
to specific subclasses of Artifact so that each time a stakeholder wants to interact with
an instance of an artifact, the assigned picture can be shown.

+initialize()
+loop()

Simulator

+loadStates()
+loadStoryPatterns()
+initializeDomainModel()

- projectFolder
DiskAdapter

loader

Rule
+getRules()
RulesKeeper rules

ruleKeeper

Statecurrent

Figure 7.4.: The research prototype is initialized by loading the domain model, any sce-
nario states, and the story patterns

To initialize a simulation session, the simulator employs the DiskAdapter which pro-
vides access to all files belonging to a project (Figure 7.4). Specifically, apart from initial-
izing the EMF Ecore models, the DiskAdapter provides the initial state sinit which the
simulator uses as the initial state of the scenario. The story patterns, on the other hand,
are handed over to and managed by the RulesKeeper. A Rule contains a StoryPattern

as defined by the SDI [GHS09] and a reference to a Role (or a subclass thereof defined
in Dspecific) which the story pattern belongs to (cf. thisObj in Figure 7.5).

-simulatorChoice()
-executeRule()
-updateAffectedViews()
-finalizeRound()
+checkForState()
+initialize()
+loop()

Simulator 0..*
activeRoles

applicableRules
0..*

+chooseStoryPattern()
Strategy

strategy
0..1

sdi

+executeActivity()
StoryDiagramInterpreter

ApplicableRule Rule

Role
thisObj

StoryPattern
pattern

rule

matchedRole

Figure 7.5.: For the play-out, the research prototype employs the SDI and strategies

During a running scenario simulation, the simulator can replay story patterns to
simulate roles or derive new story patterns based on stakeholder interactions. To play
out any story patterns, the simulator invokes the StoryDiagramInterpreter for each
available StoryPattern to check whether a match for its preconditions can be found
in the current state scur of the simulation. Consequently, the simulator obtains a set
of applicableRules for which matches were identified (Figure 7.5). In case all story

96

7.2. Implementation of the Simulation Loop

patterns belong to specific roles such as Assistant, each applicable Rule is referenced
by exactly one ApplicableRule and both point to the same specific role (via thisObj

and matchedRole, respectively). If, however, a StoryPattern belongs to a generic role
(e.g. Role) for which D defines subclasses (e.g. Assistant, Boss, and Customer as
illustrated in Figure 7.1) the corresponding Rule might be applicable for more than one
role. For instance, if a story pattern specifies, that Role may sign a Proposal, any
subclass of Role (i.e. Assistant, Boss, and Customer) may provide a valid match.
Consequently, in case Assistant and Boss both have access to a Proposal in scur, two
instances of ApplicableRule would be created. While both instances would reference
the same Rule, one points to Assistant and the other one to Boss as their respective
matchedRole. This distinction allows the simulator to decide which role to simulate if
a story pattern is executable for different roles.

If a Strategy was initialized for the simulation session, the simulator invokes it using
its applicableRules. Then, the strategy chooses and returns one of those rules based
on the strategy’s goals (cf. Section 4.3). Otherwise, the simulator chooses at random
which ApplicableRule the StoryDiagramInterpreter has to execute.

current

next

State pre
post

+initialize()
+loop()

Simulator

+generateStoryPattern()
StoryPatternGenerator

generator
result

StoryPattern

Figure 7.6.: Using the StoryPatternGenerator, the simulator can derive story patterns
from states observed during the simulation

The play-in of story patterns depends on stakeholder modifications of the current
state scur. These modifications are realized by the mapping between the domain-specific
visualization and the underlying state in the GameEngine (cf. Figure 7.3). After a
stakeholder participating as role r modifies scur and leads the simulation to snext, the
StoryPatternGenerator is automatically invoked to generate a StoryPattern based
on the differences between scur|r and snext|r (Figure 7.6).

7.2. Implementation of the Simulation Loop

This section explains how a simulation is run based on the simulation loop illustrated
in Figure 7.7.

a) Load Initial Scenario State: To start a simulation session, the EMF Ecore files
containing the domain model D have to be loaded first. Without these files, the refer-
ences of the story patterns in SP , which are loaded afterwards, would be invalid. Then,
all states in S, i.e. at least sinit, are loaded and initialized as Dynamic EMF instances.

97

7. Research Prototype

[no SP
applicable]

[at least one SP applicable]

[else]

start
session

[else]

wait for
participant(s)b)

check which
story patterns
are applicable
in current state

c)
simulator

chooses SP
to execute

d)

[no SP belonging to a
participant applicable]

[participant
defers choice
to simulator]
[participant chooses SP]

j)
highlight SPs

already observed in
identical sequence

[else]

h) propose applicable SPs
of participant in GUI

[final state
observed and

acknowledged]

simulator
executes

chosen SP
e)

end
session

f) synchronize GUIs of
affected participants

a) load initial
scenario state

z)
notify

participant(s) g) housekeeping

derive SP based
on observationn)

m) synchronize state to
observed action

observe GUI (inter-)
action of participantk)

[alternative out-
comes known]

[else]

[stalemate for
participant]

[else]

p)
express expected
changes as partial

state

q)
define follow-up

action that is
applicable next

[participant
knows how
to follow-up]

Figure 7.7.: Complete simulation loop including Play-In, Play-Out, and Triggers

As long as all files conform to the project’s domain model captured in the EMF Ecore
file, no errors occur. As per convention for the research prototype, each role that is
defined in D must have exactly one instance in sinit.

b) Wait for Participants: After the session has been initiated, the prospective partic-
ipants have to be invited. This can be achieved either by sending them a specific link8

that can be generated by the prototype and which automatically logs the participant
into a specific role, or by sending them a generic link to the web interface, i.e. without
any parameters. All roles defined for the scenarios which are not yet chosen by other
participants are offered in the web interface as illustrated in Figure 7.8.

After the invited stakeholders joined into the session, they have to explicitly confirm
that they are ready by pressing a corresponding button labeled “I’m ready”. As soon
as all participants who logged into the simulation are ready, the simulation starts in
scur := sinit. Further, a list of the roles that are enacted by the participants can be
accessed as activeRoles.

c) Check which Story Patterns are Applicable in Current State: To obtain the set
SPapplicable, the simulator has to check for matches for the left-hand side of each story
pattern in SP in scur. To ensure that the current state scur itself does not change due to
an unintended side-effect from any of the story patterns, test versions without any side-
effects are created for these checks. Thus, for each story pattern SPi = (LHSi, RHSi),
a test version SP test

i = (LHSi, LHSi) is created – a method described and employed
in Gabrysiak’s master’s thesis [Gab09] for Fujaba [GZ04]. In our research prototype,

8 http://[your.domain]/webversion/?project=[projectTitle]&role=[nameOfInvitedRole]

98

http://[your.domain]/webversion/?project=[projectTitle]&role=[nameOfInvitedRole]

7.2. Implementation of the Simulation Loop

Figure 7.8.: All roles are offered to the participant, excluding the ones already chosen
by other participants (Assistant, in this case)

this check is performed by the SDI which is invoked using the current state scur and
an adapted version SP test

i of the story pattern which is checked (cf. line 11 in Listing
7.1). Before this check is performed, the role the story pattern belongs to is chosen
(thisObj). Then, all roles which are instances of Role and its subclasses are checked
to identify those roles which can execute this behavior. Thus, only roles that can match
the precondition of the story pattern are further tested by the SDI. If the SDI returns
a suitable match, i.e. sdi.executeActivity(SPtesti , r, scur)6= ∅, the story pattern
SPi is applicable for the instance r of role. Multiple potential matches for one instance
of a specific role are ignored since all objects are considered to be distinguishable (cf.
Section 3.1.1). If the this object is a rather generic Role, all subclasses are considered
suitable matches for the this object and, thus, may provide matches for the tested story
pattern. For each of these matches, references to the applicable Rule and the matched
instance of Role whose type is identical, or a subclass of, rule’s thisObj are saved as an
ApplicableRule (cf. lines 12–15 in Listing 7.1). All of these matches are then added to
the set of applicable story patterns which is returned and handed over to the subsequent
steps within the simulation loop.

If the simulator uses a strategy which requires a limited look ahead, the same method
checkForState() is invoked for each of the states that needs to be explored until the
maximum depth of the look ahead is arrived at.

h) Propose Applicable Story Patterns of Participants in GUI: If at least one of
the applicable story patterns belongs to a participant, i.e. a role that is played by a

99

7. Research Prototype

1 pub l i c Appl icableRule [] checkForState (Rule [] ru l e s , State s c u r) {
2 app l i c ab l eRu l e s = new Appl icableRule [] ; // r e s e t Simulator ’ s cache
3 f o r (Rule r u l e in r u l e s) {
4 StoryPattern sp = r u l e . getPattern () ; // e x t r a c t SP from r u l e
5 StoryPattern s p t e s t = new StoryPattern () ;
6 s p t e s t .LHS = sp . getLHS () ; // same precond i t i on as s to ry pattern
7 s p t e s t .RHS = sp . getLHS () ; // ensure s that no s ide−e f f e c t i s encoded
8 Role th i sObj = r u l e . getThisObj () ; // r o l e the SP be longs to
9 f o r (Role r in s c u r . getRo les ()) { // f i n d a l l i n s t a n c e s o f r o l e

10 i f (r . ins tanceOf (th i sObj)) {
11 i f (s d i . ex e cu t eAct i v i ty (s p t e s t , r , s c u r) != n u l l) {
12 Appl i cab le appRule = new Appl icableRule () ;
13 appRule . matchedRole = r ; // r o l e which can be s imulated
14 appRule . r u l e = r u l e ; // r u l e o f a p p l i c a b l e SP
15 app l i c ab l eRu l e s . add (apprule) ; // save p a r t i a l match
16 }
17 }
18 }
19 }
20 re turn app l i c ab l eRu l e s ;
21 } // NOTE: s c u r did not change throughout t h i s method

Listing 7.1: Searching for story patterns in SP which are applicable in scur (step c)

stakeholder (cf. lines 3–4 in Listing 7.2), this story pattern is considered as behavior
that can be expected to occur. To allow participants to recognize and understand which
options were already captured and, hence, which alternatives of the scenario were already
covered in prior sessions, the story pattern is proposed to the corresponding participant
(cf. lines 5–8 in Listing 7.2). Of course, presenting a formal story pattern to a stakeholder
is not a viable option – a natural language representation, on the other hand, is easier to
understand (cf. Figure 7.9). Such a representation can easily be generated – the more
details are included in the domain model, the more understandable the resulting NL
representation will be (cf. [GEHG13]). As discussed in Section 4.1, it suffices to present
the changes encoded by the story pattern, since these changes allow the participant to
recognize the activity and to judge whether it should be applicable based on the current
state scur of the simulation. This is illustrated for SPc in Figure 7.9. Furthermore, the
proposed option contains JavaScript snippets which return an identifier for the story
pattern as soon as the participant clicks on the proposed NL representation.

j) Highlight Story Patterns Already Observed in Identical Sequence: All observed
traces are saved alongside the simulation. This enables the simulator to determine
whether any of the prior simulation sessions covered an identical sequence of states and
transitions between them. If any of the sequences reach up to scur, the applicable story

100

7.2. Implementation of the Simulation Loop

1 pub l i c void proposeOptions (Appl icableRule [] app l i c ab l eRu l e s) {
2 f o r (Appl icableRule appRule in app l i c ab l eRu l e s) {
3 Role r o l e = appRule . getMatchedRole () ; // SP executab l e by r o l e
4 i f (a c t i v e R o l e s . conta in s (r o l e)) { // i s t h i s r o l e enacted ?
5 Rule r u l e = appRule . getRule () ; // r e t r i e v e r u l e
6 StoryPattern sp = r u l e . ge tPat te r () ; // r e t r i e v e a p p l i c a b l e SP
7 St r ing sp2nl = transformIntoNaturalLanguage (sp) ; // NL genera t i on
8 proposeOptionToPart ic ipant (sp , sp2nl , r o l e) ; // shows NL in GUI
9 }

10 }
11 }

Listing 7.2: Proposing natural language representations of changes encoded in applicable
story patterns to participants (step h)

seat12
:Ticket

this:Seller

++has

goodFather
:MovieTitle knows

evening
:TimeSlot knows

SPc

john
:Moviegoer

knows

:Promotional
Material

hasknows

:Visit
from to

(a) Story pattern SPc belongs to the role seller (b) Changes encoded in SPc are presented to a seller

Figure 7.9.: When the story pattern SPc is applicable for a stakeholder participating as
a seller, it is proposed in the participant’s GUI (cf. step h in Figure 7.7)

patterns may already have been observed. All story pattern for which this is true can
then be highlighted accordingly.

d) Simulator Chooses Story Pattern to Execute: Based on the set of applicable-
Rules, the simulator chooses one of them randomly for execution (cf. line 4 in Listing
7.3). Participants may also defer their choice of how to continue to the simulator instead.

If only one stakeholder participates, a default strategy prioritizing story patterns which
affect this participant’s role (i.e. change scur|r, cf. discussion in Section 4.3.2) is used.
Therefore, this strategy checks which of the applicable story patterns affects the partici-
pant through the creation, deletion, or modification of objects that are directly connected
to the corresponding role. This also includes story patterns which either create, modify,
or delete associations connected to this role. For instance, if a story pattern creates
an email addressed to this role (i.e. linked to it via to), this story pattern would be
prioritized over others without an impact on scur|r.

101

7. Research Prototype

e) Simulator Executes Chosen Story Pattern: The SDI is used to execute the chosen
story pattern referenced by chosenAppRule. This, in turn, simulates the corresponding
activity for the role that the chosenAppRule points to as matchedRole. Listing 7.4
illustrates how the simulator reaches the follow-up state snext.

k) Observe GUI (Inter-) Action of Participant: As described in Section 3.2, the
graphical user interface provided to participants has interactive elements which enable
participants to change the current state of the simulation. Further, these interactive
elements encapsulate some of the concepts in D. Thus, the participants can submit the
data necessary to instantiate those concepts using the corresponding interactive parts of
the GUI. For example, if an email is composed, its subject, its content, and IDs of any of
the participant’s artifacts which were attached are entered by the participant to be sent
to the server along with a list of roles who are supposed to receive a copy of this email
(cf. Figure 7.10 and Table 7.1). Specifically, clicking on the email icon and choosing to
write a new email leads to the corresponding window. Other roles which are defined in
D are enumerated as possible receivers, while the subject line and the body of the email
are simple text fields. To attach an artifact, on the other hand, the participant can drag
and drop it from his Documents field on the right onto the email window. Then, the
email can be sent by pressing the button labeled Send. Of course, the email is only sent
within the simulation.

m) Synchronize State to Observed Action: Based on the data collected from the
participant’s interaction with the interactive GUI elements, the simulator running on
the server has to update the current state of the simulation. The interactive elements
use JavaScript to send corresponding requests to the server informing it of any changes
the participant enacted in the GUI. After the server has been informed, these actions
are translated into model updates for the current state of the simulation based on the
mapping between the GUI and the domain model. For instance, the data provided by a
participant in order to write an email (illustrated in Figure 7.10) is used to instantiate

1 p r i v a t e Appl icab leRule s imulatorChoice (Appl icableRule [] app l i cab l eRu l e s ,
St rategy s t r a t e g y) {

2 Appl icableRule chosenRule = n u l l ;
3 i f (s t r a t e g y != n u l l) { // use s t r a t e g y to choose what to do
4 chosenRule = s t r a t e g y . chooseStoryPattern (app l i c ab l eRu l e s) ;
5 } e l s e { // otherwise , choose randomly
6 chosenRule = app l i c ab l eRu l e s [random (app l i c ab l eRu l e s . s i z e)] ;
7 }
8 re turn chosenRule ; // which SP to execute along with the r o l e
9 }

Listing 7.3: The simulator chooses a story pattern randomly or using a strategy (step d)

102

7.2. Implementation of the Simulation Loop

1 p r i v a t e State executeRule (Appl icab leRule chosenAppRule , State s c u r) {
2 Rule r u l e = chosenAppRule . getRule () ;
3 StoryPattern chosenSP = r u l e . getPattern () ;
4 Role execut ingRole = chosenAppRule . getMatchedRole () ; // s imulated r o l e
5 State s nex t = s d i . ex e cu t eAct i v i t y (chosenSP , execut ingRole , s c u r) ;
6 re turn s next ; // fo l l ow−up s t a t e
7 }

Listing 7.4: The SDI progresses the simulator into a new follow-up state (step e)

Figure 7.10.: As an Assistant, the participant writes an email informing the Boss about
a Proposal that just arrived

an email object whose body and subject line are the ones provided by the participant.
Further, the chosen artifacts are attached to the email and one instance of this email
is created for each of the receivers.9 Finally, each created email object is linked to the
initiating participant (from) and to the individual receiving role (to).

More examples of how GUI interactions are translated into state updates are illus-
trated in Table 7.1. The mapping between concepts in D, their representation in the
participants’ GUI, and how these concepts are instantiated based on inputs within the
front end have to be created manually. However, this is only necessary once, since such
a mapping can be reused for other projects covering the same domain.

At the end of this step, the simulation progresses to the follow-up state snext.

9 In the research prototype, this email duplication is used to keep track of who already read the email
and who did not.

103

7. Research Prototype

Participant’s Ac-
tion in Front End

Data sent from Client to Server Modification of scur due to Par-
ticipant’s Action

Write email In an email editor, the par-
ticipant enters subject line and
text (both strings), chooses re-
ceivers and may attach artifacts

A corresponding email object
is created for each receiver

Read email The participant selects an email
from a list of all emails

The selected Email instance
is consumed (deleted from the
state)

Create an artifact The participant selects an arti-
fact to create from a list of all
artifacts defined in D

A corresponding instance is
created and assigned to the
participant’s role

Process an artifact
and name its state

Lines drawn on the artifact’s pic-
ture and name of its new state

New ArtifactState is created
and overlay is assigned to it

Visit another role Target role the participant wants
to visit

A Visit is instantiated be-
tween initiating and target role

Table 7.1.: Examples of GUI interactions (left) that enable participants to enter data
(middle) which is sent to the server to update scur correspondingly (right)

n) Derive Story Pattern based on Observation: Based on the prior state (still referred
to as scur) and the follow-up state snext, a story pattern SPderived = (scur|r, snext|r) can
be generated in accordance to the visibility of the participant’s role r.

Conceptually, the generation of the story pattern is quite easy as illustrated in Listing
7.5. However, this ignores the story pattern encoding employed by the SDI [DHP+12].
In this encoding, a story pattern consists of only one graph. Elements in this graph
possess an attribute called modifier which indicates whether this element is created
(all elements ∈ RHS \ LHS), destroyed (all elements ∈ LHS \ RHS), or remains
without change (all elements ∈ LHS ∩ RHS). These modifiers represent the changes
which story patterns encode in their LHS and their RHS.

The actually implemented story pattern generation works as follows: in a story pat-
tern, all objects and the links between them are represented using StoryPatternObjects
and StoryPatternLinks, respectively (cf. Figure 7.2). After a StoryPatternObject is
instantiated for each object obj ∈ scur|r∪snext|r, its classifier is set to the same type in
D (i.e. class in the Ecore model) that the original object obj referred to. Afterwards, the
same is done for all links in scur|r∪snext|r: StoryPatternLinks are created and associated
with the sources and targets corresponding to their originals in scur|r ∪ snext|r. Instances
of StoryPatternLink reference the links in D via their attribute eStructuralFeature.

Since states of the simulation are saved each time they are changed, they are avail-
able as XMI files which conform to D and can be compared using the Eclipse project

104

7.2. Implementation of the Simulation Loop

1 p r i v a t e StoryPattern generateStoryPatte rn (State lhs , State rhs , Role r) {
2 StoryPattern genSP = new StoryPattern () ;
3 genSP .LHS = reduceSta t eToVi s ib i l i t yOfRo l e (lhs , r) ; // bu i ld l h s | r
4 genSP .RHS = reduceSta t eToVi s ib i l i t yOfRo l e (rhs , r) ; // bu i ld rhs | r
5 re turn genSP ;
6 }

Listing 7.5: Conceptually, the generation of a story pattern is quite simple (step n)

EMF Compare.10 At this point, EMF Compare is used to create a diff model from the
subsequent states, reduced to the visibility of the participant’s role r. This diff model
contains information on which elements from the prior state scur were removed to get
to the follow-up state snext and which elements were added. Using this information, the
objects and links in the story pattern can be attributed accordingly. The modifier of
each element which the diff model considers deleted is set to DESTROY, while elements
which were added are set to CREATE. All other elements have a default modifier of NONE,
indicating that they remain the same.

p) Define Trigger as Expected Continuation: A stakeholder participating as RoleT
has to be able to define her expectations (s′sm|RoleT) based on her perspective (ssm|RoleT)
of the stalemate state ssm. By modifying elements of this perspective, the expected
changes can be defined. This capability was implemented in Eichler’s NL4SP approach
[Eic12]. His implementation generates a NL representation of a story pattern and allows
stakeholders to consistently modify the underlying story pattern by directly interacting
with the NL representation of these partial states (cf. Section 2.5). Thus, by remov-
ing, adding, or modifying elements in the NL representation of ssm|RoleT , stakeholders
are empowered to express how they expect this specific state to change (resulting in
s′sm|RoleT).

Since the definition of the expected changes between ssm|RoleT and s′sm|RoleT is covered,
the remaining parts of a trigger t = (ssm, RoleT , RoleReq, RoleResp, s

′
sm|RoleT) have to be

defined. Essentially, the participant (who is participating as RoleT) only needs to pick
different roles out of the ones defined in D to complete the trigger. As for the research
prototype, the most complex part of enabling participants to define triggers (i.e. the
description of the expected partial state) is covered by Eichler’s NL4SP implementation.

q) Define Follow-Up Action: Similar to how stakeholders can use the prototype dis-
cussed in step p to define changes, they can also define follow-up actions (cf. Figure
7.11). A follow-up action is considered equivalent to a story pattern (cf. Section 6.1.2).
Thus, provided a state sF |RoleT exists, a story pattern SPF = (sF |RoleT , sF |RoleT) can be
built and presented in NL. This story pattern does not contain any changes, since its

10 http://eclipse.org/emf/compare/ (accessed June 2013)

105

http://eclipse.org/emf/compare/

7. Research Prototype

LHS and its RHS are identical. Consequently, the stakeholder can then use the vocab-
ulary defined by D to express how he or she would continue. Thereby, the RHS of SPF

is modified, leading to a follow-up action SP ′
F = (sF |RoleT , s

′
F |RoleT) which encodes how

the stakeholder would follow up upon arriving in a state scur ⊇ sF |RoleT . Stakeholders
can use the NL4SP prototype for this task as well.

(a)

(d)(c)

(b)

Figure 7.11.: Stakeholders can modify a story pattern (a and d, before and after, resp.)
through a NL interface (b,c) to, e.g., remove the incorrect assumption that
only signed contracts are handed over (adapted from [GEHG13])

f) Synchronize GUIs of Affected Participants: Any transition between scur and its
follow-up state snext may affect each of the roles. Thus, each stakeholder participating as
a role that is affected by such a transition requires updates for his or her corresponding
graphical user interface (cf. Listing 7.6). Depending on how the context of a role (scur|r)
changed, the participant’s GUI is updated accordingly based on the mapping illustrated

106

7.2. Implementation of the Simulation Loop

in Table 7.2. Since the server does not push changes to the GUIs which have to be
updated, each client sends a pull request every two seconds.

1 p r i v a t e void updateAffectedViews (State s cur , State s nex t) {
2 f o r (Role r in a c t i v e Ro l e s) {
3 State s c u r r = reduceSta t eToVi s ib i l i t yOfRo l e (s cur , r) ;
4 State s n e x t r = reduceSta t eToVi s ib i l i t yOfRo l e (s next , r) ;
5 i f (s c u r r != s n e x t r) { // then : r o l e a f f e c t e d by t r a n s i t i o n
6 updateViewOfRole (r , s n e x t r) ; // update a f f e c t e d p e r s p e c t i v e
7 }
8 }
9 }

Listing 7.6: After establishing which roles that are currently played are affected, their
individual perspectives are updated to reflect the new state (step f)

g) Housekeeping: Before the simulation loop starts over by entering step c again,
minor adjustments and checks are necessary. First of all, the follow-up state snext is set
as the current state for the next round: scur:= snext. Then, all terminal states ∈ Sterm

are checked, whether one of them are a match for the current state of the simulation and,
thus, has been reached. For this check, a story pattern is created to employ the SDI.
Since no changes are performed by this story pattern, no this role needs to be identified
beforehand. The simulation is ended if all participants acknowledge this terminal state.

1 p r i v a t e Bool f ina l i z eRound (State [] t e rmina l s , State s cur , State s nex t) {
2 s c u r = s next ; // fo l l ow−up s t a t e i s now cur rent one
3 f o r (State s term in t e rmina l s) {
4 StoryPattern s p t e s t = new StoryPattern () ;
5 s p t e s t .LHS = s term ;
6 s p t e s t .RHS = s term ;
7 i f (s d i . ex e cu t eAct i v i ty (s p t e s t , nu l l , s c u r) != n u l l) {
8 re turn askPartic ipantsAcknowledgement (s term) ;
9 }

10 }
11 re turn f a l s e ; // loop cont inues i f no match i s found
12 }

Listing 7.7: If a final state can be matched, participants are asked to confirm that they
consider the scenario to be over – if not, the simulation continues

z) Notify Participant(s): After a final state has been matched and acknowledged,
the simulation session is terminated and each participant is asked to provide additional
feedback concerning the scenario and the role that was just used to play through this
scenario (cf. Figure 7.12).

107

7. Research Prototype

Modification
of scur|r

Data sent from Server to Client Update in Participant’s GUI

Role received
an Email

Email instance with all values
(such as body and subject line)
necessary to present this email
to the participant

Email icon starts to flash (until par-
ticipant clicks on it to see the email)

Role receives
a Call

Call object, including all val-
ues (such as initiating role
linked via from) necessary to
indicate the call to the partici-
pant

Telephone icon is animated, ringing
sound is played, and name of the call-
ing role starts to flash above the icon
(until participant clicks on it to start
a conversation via asynchronous chat)

Role is tar-
geted by a
Visit

Visit object including all val-
ues (such as initiating role
linked via from) necessary to
indicate the visit to the partic-
ipant

Door icon is replaced by an open door
and a window is shown to inform the
participant that (s)he is visited by
the initiating role (this window also
allows the roles to communicate via
an asynchronous chat and exchange
AnalogueArtifacts)

Role receives
a specific
Artifact

Instance of the Artifact, in-
cluding a link to its picture on
the server and, if applicable, its
ArtifactState and associated
pictures

Artifact is presented in the box la-
beled Documents (clicking on it loads
and presents the artifact’s picture in
a new window)

Table 7.2.: Examples of state modifications (left), the data that is sent to the clients of
the affected participants, and its impact on the participant’s GUI (right)

Figure 7.12.: When a session is terminated, participants are asked for additional feedback

108

7.3. Interacting with Artifacts

7.3. Interacting with Artifacts

Apart from interacting with other roles, the creation and modification of artifacts are
essential activities within collaborative scenarios. To create an artifact, participants may
use the icon of a well-known word processor. By clicking on the corresponding icon, a list
of all subclasses of DigitalArtifact and AnalogArtifact defined in D are presented
to the participant (Figure 7.13a). Upon clicking on one of these classes, a corresponding
instance is initialized and assigned to the role of the participant (Figure 7.13d). To
be recognizable for the stakeholders, each artifact may have a picture assigned to it (cf.
Figure 3.3). If the artifact’s class has no assigned picture yet, all pictures in the project’s
artifact/ folder are presented for the participant to choose from (Figures 7.13b and
7.13c). The chosen picture is then assigned to the artifact instance which can then be
recognized more easily by other stakeholders.

(a) A participant picks an artifacts from the ones
defined in D

(b) If no picture was assigned, the participant picks
one from the artifacts/ folder

(c) A preview of the chosen picture is shown (d) Then, participants interact with the artifact

Figure 7.13.: A participant may create any of the artifacts defined in D which creates
an instance that the participant’s role has access to

Furthermore, participants need to be able to modify artifacts in order to, e.g., indicate
processing steps associated with the artifact. All artifacts that a participant’s role has
access to are enumerated in the GUI within the Documents list (illustrated in Figures
7.10 and 7.14). Clicking twice on one of the artifacts shown in this list opens a new view
presenting the picture of the artifact to the participant. From this view, participants

109

7. Research Prototype

(a) Before and ... (b) ... after a Boss signs a ProposalPrintout

Figure 7.14.: Using a mouse, participants can draw on artifacts they have access to

may draw on top of this picture using their mouse. This enables them to express more
complex activities such as signing or stamping documents, or even annotating these
artifacts using free text which can be drawn into the picture as illustrated in Figure
7.14b. This feature was implemented using HTML5 canvas.11 All annotations, i.e.
everything that was drawn into the overlay, are saved using JSON.12

In the current version of the research prototype, an overlay that is created for an
artifact instance remains assigned to it and active for the remainder of this session, apart
from being saved in the same folder as the artifact pictures. Further, the participant may
choose which ArtifactState the artifact instance is in. If no ArtifactState has been
defined, the participant is able to create a new one to describe the artifact modifications.
This information is potentially available for later sessions to replay activities and how
they have manipulated the affected artifacts.

7.4. Adaptability

Although the current implementation already covers numerous types of collaborative
scenarios which may occur in office environments, the research prototype may still need
to be adapted to cover, e.g. unexpected types of communication in new domains. The
simulation loop is domain-agnostic, since it only relies on generic concepts such as Role
and Artifact in Dbasic. Therefore, as long as Dbasic remains the same, the simulation
works for all states and story patterns which can be defined based on D.

The domain-specific GUI, however, needs to be adapted for each domain. In the re-
search prototype, the office background and the employed visual metaphors represented

11 http://www.w3.org/TR/2009/WD-html5-20090825/the-canvas-element.html (accessed June
2013)

12 JavaScript Object Notation, cf. [Cro06] and http://json.org/ (accessed June 2013)

110

http://www.w3.org/TR/2009/WD-html5-20090825/the-canvas-element.html
http://json.org/

7.5. Chapter Summary

by different icons are identical for all stakeholder groups. Thus, the research prototype
does not support scenarios in which stakeholder groups require different workplace vi-
sualizations. Further, since the mapping between the GUI and the simulation is hard
coded, the mappings in Tables 7.1 and 7.2 have to be adjusted accordingly to reflect how
options offered in the GUI modify scur and how changes of scur have to be visualized in
the GUI. Specifically, this applies if new modes of communication are introduced in D.
While the domain-agnostic simulation loop is not affected by the introduction of, e.g.,
tube mail, a suitable visual metaphor needs to be found and defined for both mappings.

7.5. Chapter Summary

Over a period of three years and together with seven student assistants, the concepts
described in this thesis have been implemented in Eclipse and EMF. In the resulting
research prototype, the requirements engineer can initialize a new project by defining
roles and an initial state for the collaborative scenarios to be elicited. Then, the research
prototype can already be used for remote simulation session for stakeholders.

Furthermore, this prototype has been improved, extended, and evaluated in multiple
master’s theses [Eic12, Kle11, Ric11, Teu11]. The next chapter discusses the experiments
in which the research prototype was used to evaluate our concepts.

111

8. Evaluation

To evaluate the goals discussed within this dissertation, we conducted different exper-
iments using our research prototype. Most importantly, we investigated whether our
virtual prototypes fulfill the requirements of a prototype which can be used for re-
quirements engineering. Thus, these virtual prototypes need to be understandable for
stakeholders (TG2A) – otherwise, they would only be an alternative representation of
the models which might be just too time consuming to explain to be useful. Another
important strength of physical prototypes is the fact they can be produced inexpensively
which allows the designers or engineers to iterate their ideas quickly (TG2C). Again,
this is only the case, if the result is intuitively understandable for the stakeholders. Still,
from an requirements engineer’s perspective, the generation of a virtual prototype has to
be quick and include as much automation as possible – otherwise, the costs of deploying
these prototypes would be too high to be feasible. Furthermore, physical prototypes are
usually easy to modify (TG2B) or reshape, depending on their materials. Thus, empow-
ering stakeholders to actively change a virtual prototype by complementing collaborative
scenarios (TG1B) might lead to a similar engagement, especially if the prototype affords
immediate feedback regarding these changes (TG1A). Consequently, in this chapter, we
evaluate whether our model-based virtual prototyping approach fulfills these properties
which a prototype requires to be useful and feasible.

Section 8.1 starts by explaining t-tests and threats to validity which apply uniformly
for all the experiments we conducted. Most importantly, stakeholders have to be able
to intuitively understand the virtual prototypes, which our research prototype derives.
This was evaluated empirically in two experiments covering TG2A which are discussed
in Section 8.2. Specifically, these experiments answer the question whether stakeholders
can interact using our research prototype (step k in Figure 8.1) and stakeholders correctly
interpret changes which are visualized in the GUI (step f). The requirements engineer’s
ability to feasibly iterate the story patterns reflecting the stakeholders’ scenarios depends
on the time required to set up a virtual prototype as well as the overall degree of
automation of our approach. Thus, Section 8.3 presents measurements of the time it
takes to set up a virtual prototype (step a) and describes the overall degree of automation
of the research prototype’s simulation loop (discussion of all steps in Figure 8.1), which
covers TG2C .

Section 8.4 presents an evaluation of the stakeholders’ ability to modify the models
belonging to the virtual prototype which is partially based on our publication [GEHG13]
and covers TG2B. This experiment evaluates the natural language generation and the
corresponding interface which partially cover steps p and q. Additionally, this section

113

8. Evaluation

[no SP
applicable]

[at least one SP applicable]

[else]

start
session

[else]

wait for
participant(s)b)

check which
story patterns
are applicable
in current state

c)

[no SP belonging to a
participant applicable]

[participant
defers choice
to simulator]
[participant chooses SP]

j)
highlight SPs

already observed in
identical sequence

[else]

h) propose applicable SPs
of participant in GUI

[final state
observed and

acknowledged]

simulator
executes

chosen SP
e)

end
session

f) synchronize GUIs of
affected participants

a) load initial
scenario state

z)
notify

participant(s) g) housekeeping

derive SP based
on observationn)

m) synchronize state to
observed action

observe GUI (inter-)
action of participantk)

[else]
[alternative out-
comes known]

[else]

[stalemate for
participant]p)

express expected
changes as partial

state

q)
define follow-up

action that is
applicable next

[participant
knows how
to follow-up]

d)
simulator

chooses SP
to execute

SECTION
8.4.2

SECTION
8.3.1

SECTION
8.2.1 & 8.2.2

SECTION
8.4.1

Figure 8.1.: The highlighted steps of the simulation loop are evaluated in the assigned
sections

discusses how stakeholders may modify the prototype itself through their interactions
to complement scenarios started by other stakeholders (covering TG1B). Furthermore,
it is discussed how such additions lead to immediate feedback for the participating
stakeholders (covering TG1A). This discussion partially covers steps d, e, and f as
illustrated in Figure 8.1. Section 8.5 summarizes the results of our evaluation.

8.1. Preliminaries

As part of our evaluation, we conducted different experiments either with multiple groups
of software engineering students or with up to two groups of students from unrelated
disciplines, i.e. without a technical background. This section explains the common
threats to validity which can be excluded for all the experiments described in this chapter.
Additionally, t-tests are explained, which are used throughout this chapter to evaluate
the statistical significance of our results.

Threats to Validity (based on [WRH+00, MDF05]): All of the experiments we con-
ducted took place at only one point in time for each participant or group of participants.
Thus, our experiment designs already addressed specific threats to the internal validity of
our experiments. During the time frame in which we conducted these experiments, there

114

8.2. Understandable Representation

was no event of such magnitude that it might have had an impact on the participants
and their performance, i.e. there was no threat due to the history.

In most of our experiments, the duration was less than one hour. In this short time
frame, no biological or psychological changes affecting the subjects’ ability to participate
or their overall performance are to be expected. Only one experiment took place for
a total of up to four hours (cf. Section 8.2.1). However, even in this setting, the
participants were explicitly allowed to take breaks or eat as they saw fit. Consequently,
the threat of biological and psychological changes, i.e. maturation, can be excluded.
Moreover, due to the short overall duration of the experiments, there was no drop out
or mortality of the participants, which allows us to exclude this threat. For the duration
of each experiment series, the instruments used to measure the dependent variables
remained the same. Thus, we can exclude the threat of instrument change.

Each of our experiments was only conducted once with each participant. Therefore,
we can also exclude the threat of subjects performing better due a learning effect or
testing effect. Since none of the experiments discussed in the evaluation rely on pre-
and posttests, we can also exclude the effect of the regression toward the mean, which,
otherwise, might influence our results.

T-Test: As suggested by Zikmund et al. [ZBCG10], we applied the independent sam-
ples t-test to test the differences between the means taken from two independent groups.
Furthermore, they point out that this test is suitable as long as the variance of both
groups can be assumed to be “approximately equal”. The independent samples t-test
was used throughout this chapter. Its results are provided in the form of p values which
indicate the statistical significance of the difference between the means of two groups
[MDF05]. The typical convention, as argued by Marczyk et al. [MDF05], is a five per-
cent level for statistical significance (cf. [Sar05, ZBCG10]). Thus, if a t-test yields a p
value of 0.05 or less, the difference between the means of the two groups is considered
to be significant and not a result of mere chance. This, in turn, implies that the treat-
ment of the experiment group resulted in a significantly different outcome which allows
us to determine whether the treatment had the hypothesized effect. Throughout this
chapter, all figures illustrating experimental results also contain error bars presenting
the corresponding 95% confidence interval.

8.2. Understandable Representation

Only if they can understand a virtual prototype and the concepts it manifests, stakehold-
ers are able to explore and complement scenarios involving them. In order to evaluate
the understandability and, hence, whether stakeholders are able to interact with our
research prototype, we investigated how a stakeholder and four students gathering re-
quirements from him interact using the research prototype (Section 8.2.1, partially based
on [GGS12]). Additionally, in order to ensure that the chosen metaphors in the research

115

8. Evaluation

prototype’s web-based interface are suitable, we asked students to interpret interactions
with the user interface that were captured on video (Section 8.2.2, partially based on
the GUI evaluation in [GGB12]).

8.2.1. Interacting to Validate Scenarios

To investigate how students elicit, model, and validate scenarios involving multiple stake-
holders, we had nine groups of four students each interview a stakeholder, model their
insights, and then validate what they learned in a final interaction with the stakeholder.
Three of these groups used the research prototype without its simulation capabilities.
Therefore, they solely relied on its interaction capabilities. While three other groups
were allowed to flexibly document their findings however they saw fit using pens and
paper, the remaining three groups used a UML modeling tool. Thus, our research pro-
totype was compared against a formal modeling approach leading to UML models and
an informal approach which led to more understandable requirements to be validated.

Setup: As part of an undergraduate modeling lecture, a total of 36 students from our
institute used three different specification methods. As participants of the lecture, the
students had already formed teams of four students each. In nine groups of four students
each, they elicited requirements (up to 55 min), modeled their findings (up to 110 min),
and validated their result (up to 50 min). For the elicitation and validation, each group
talked to one out of nine stakeholders who was randomly assigned to the group. The
students talked to their distinct stakeholder about a speculative online supermarket and
how the stakeholders, in his or her role as a supporting call center agent, solved problems
related to, e.g., belated deliveries.

All nine stakeholders were simulated by students without a software engineering back-
ground. None of them were familiar with the scenario – however, all of them were uni-
formly instructed about possible scenarios for two hours prior to the experiment. This
ensured that all students interacting with these stakeholders had the opportunity to
gather equivalent scenarios.

While the elicitation was identical for all groups, the specification was created using
different methods and tools, also leading to differences in the students’ subsequent vali-
dation sessions. The method that was to be used was assigned randomly: three groups
used a UML modeling tool,1 another three groups modeled their findings more flexibly
using pens and paper, and the remaining three groups relied on our research proto-
type. The research prototype that was provided facilitated the discussion between the
stakeholder and the students, but required the students to participate as the other roles
identified in the scenarios under investigation. Thus, without simulation capabilities, all
interactions had to take place directly between users of the system – one stakeholder and

1 Visual Paradigm for UML, http://www.visual-paradigm.com/ (accessed June 2013)

116

http://www.visual-paradigm.com/

8.2. Understandable Representation

the four students in the group. This ensured that we were able to focus the evaluation on
the stakeholder interactions without having the simulation interfering with the students.

After each phase, the students answered questions using a five-point Likert scale (1
for agreement and 5 for disagreement) or free text. Figures 8.2a and 8.2b illustrate how
the students rated their results and activities after the specification phase, while the
results of the questionnaire after the validation are presented in Figure 8.2c. For each of
these specification and validation methods, we present the responses of twelve students.
Thus, the results are sufficiently convincing concerning the engineers’ point of view on
our approach, while the stakeholder’s perspective can only be considered as exploratory
(n=3 per group). All results are based on the individual perception of the students and
stakeholders.

Due to the duration of up to four hours, the dates of the individual sessions were
directly arranged between the students and their stakeholder – still, all sessions were
conducted within one week during the semester. For these sessions, the students brought
their own laptops – depending on the method to be used by the students, we provided
them either with pen and paper, or a server hosting our research prototype. All sessions
were supervised by two researchers to keep the setting as stable as possible.

Results: When asked after the specification phase, all students generally agreed that
their results are logical, correct and understandable. Still, we see that students modeling
informally (Paper) were significantly more confident that end users would be able to un-
derstand their results (Q3 in Figure 8.2a with p < 0.02 compared to both alternatives2).
According to the students’ responses to Q5, all students were generally rather satisfied
with the results they produced during the specification phase. As anybody who has ever
used a modeling tool will understand, we were surprised to see that students relying on
such a tool had slightly more fun than the other groups.

Interestingly, students using virtual prototypes agreed that the time frame of 100 min-
utes allocated for specifying their findings was sufficient (Q7 in Figure 8.2b). The usage
of a formal modeling tool proved to be quite time consuming in comparison. When
asked how much more time they felt was necessary, only one of the students using vir-
tual prototypes asked for 20 more minutes. While four students relying on informal
representations felt they needed 36 minutes more on average, 50% of the students em-
ploying the formal modeling tool required more time (x̄=80 minutes). Furthermore, as
we also reported in [GGS12], the students using virtual prototypes achieved a much
better common understanding of how the stakeholder’s company works.

The stakeholder’s ability to understand the presented specifications was measured in-
directly through the amount of comprehension related questions (Q8 and Q9 in Figure
8.2c). The students presenting their specifications encountered significantly more ques-
tions when they relied on the formal modeling tool as opposed to the other two methods

2 The individual results of the t-tests used to evaluate the differences between these three methods
can be found in Table B.1.

117

8. Evaluation

Sheet7

Page 1

STUDS

1

2

3

4

5

2 2 2.17 2.672.17 2.33 2.17 2.421.5 2.08 1.58 3.17

1

2

3

4

5

2.17 1.92 1.752.25 1.83 2.582.17 2 2.33

Q1: Are your
models logical?

Q2: Are your
models correct?

Q3: Are your models
understandable?

Q4: Are explanations
required?

Agreement -

Weak Agreement -

Weak Disagreement -

Disagreement -

Neutral -

Formal UML Tool PaperVirtual Prototype

(a) After the specification, the students rated the quality of their specifications

Sheet7

Page 1

STUDS

1

2

3

4

5

2 2 2.17 2.672.17 2.33 2.17 2.421.5 2.08 1.58 3.17

1

2

3

4

5

2.17 1.92 1.752.25 1.83 2.582.17 2 2.33
Q5: Are you satisfied

with your result?
Q6: Did you
have fun?

Q7: Did you have
enough time?

(b) Questions about the students’ modeling
activities

Sheet7

Page 2

1

2

3

4

5

4.25 3.58 3.75 3.713.5 2.33 3.92 2.574.17 4.42 4.58 4
Q8: Were there many
end user questions?

Q9: Were there many
comprehension

questions?

Q10: Did the end
user provide
corrections?

Q11: Do you think
you are to blame for

the corrections?

(c) After the validation, the students were asked to rate
their results

Figure 8.2.: How modelers perceived virtual prototypes compared to a UML modeling
tool and using pen and paper instead (n=12; adapted from [GGS12])

(p < 0.05 compared to both alternatives for Q8). Also, the three different modeling
approaches all differed significantly in terms of the amount of comprehension related
questions the students had to answer (p < 0.02 compared to both alternatives for Q9).
While the informal pen and paper approach was perceived as most understandable, the
UML models were hardly understandable without explanations. Virtual prototypes, on
the other hand, were ranked in between.

When we asked the students whether the end users provided corrections (Q11 in
Figure 8.2), the differences were not significant. However, we were surprised to see that
the students relying on the formal modeling tool tended to feel responsible for the errors
that were made during the specification phase. Our working thesis for this phenomenon
is based on the inability to preserve ambiguity [Mai12] when specifying findings using
a formal model. Multiple times, the students had to decide, for example, whether
to model an interaction as synchronous or asynchronous, since there is no in between
state or TBD (To Be Determined) in a formal specification. Consequently, without

118

8.2. Understandable Representation

sufficient information, deciding for either option put the students at risk of modeling
the interaction incorrectly. While this might provoke stakeholder feedback correcting
such wrong assumptions, the stakeholders still have to understand the models in order
to be able to recognize such errors. The results of Q11 in Figure 8.2c give us a strong
indication that the ability to preserve ambiguity in models is quite important. Still,
the ability to specify insights without ambiguity leaves the designers more confident in
their models. Without any distinction as to how confidently a part of the model was
created, revisiting this model later on may lead the modelers to consider all implicit or
ad hoc decisions to be just as correct as the rest of the model. This also explains why
students using the UML tool were in agreement about their model but still felt rather
guilty about the errors that were corrected. While the students relying on the UML
modeling tool already had experience in using it, the students using a virtual prototype
were initially introduced to it during the evaluation. Hence, we expect better results
from settings in which the requirements engineers have used virtual prototypes before.

As for the stakeholders who were exposed to a virtual prototype: all agreed (x̄=1,
s2=0; n=3) that what they ended up with after the validation session was co-created
by the students as well as the end user. While end users presented with informal specifi-
cations felt similarly involved (x̄=1.66, s2=0.58), groups exposing the end users to UML
models did not involve them as much (x̄=3, s2=2). Although there is an indication that
more flexible approaches can be employed more interactively, i.e. pen and paper as well
as our workplace prototype, this small sample of three stakeholders per method is not
statistically significant.

Threats to Validity (based on [WRH+00, MDF05]): Apart from the internal threats
to validity discussed in Section 8.1, other threats which apply for this specific setting
have to be considered as well. Through the separation of the individual groups during
the conduct of the experiment, the threat of unintentionally exposing any of the groups
to the treatment of another group, i.e. imitation of treatment, has been eliminated. Since
all groups were handled equally as ensured by the two supervisors, there was no special
treatment involved. While the assignment of the students to the different groups was not
randomized as part of the experiment, the assignment of the methods and stakeholders
for each group was random. Thus, a biased selection has been excluded as much as
possible for the described setting.

The external validity of our results, on the other hand, requires the results to be
generalizable across people or situations. By relying on undergraduate software engi-
neering students, we chose prospective requirements engineers to evaluate our approach.
Since they are still relatively young and inexperienced, more experienced requirements
engineers might perform differently, i.e. better, with either one of the methods. Still,
the way the stakeholders became engaged during interactions allows us to conclude that
this approach of engaging stakeholders with formal models may also improve if used by
experts. What we cannot exclude, however, is the possibility that older stakeholders, or

119

8. Evaluation

stakeholders who are not as familiar with computers might react differently when they
are exposed to our approach (similar to the effects reported by Sellen et al. [SML+09]).
As described above, the setup of our experiment was logistically challenging and quite
complex. Thus, a replication requires a set of stakeholders who experienced the same
scenarios to provide equivalent requirements for all groups. Still, the scenarios related to
an online supermarket involve multiple stakeholders and are a representative example of
the scenarios for which our approach was created. Consequently, we are confident that
replications covering similar collaborative scenarios would lead to equivalent results.

8.2.2. Stakeholder Interpretation of the Virtual Prototype

Interacting with a research prototype can be error-prone and lead to unforeseeable
complications. Consequently, for this second experiment the domain-specific visual
metaphors employed in the visualization were used in interactions which were captured
on video (four snapshots are illustrated in Figure 8.3). Then, these videos were replayed
for 15 students without a software engineering background who were asked to interpret
the interactions they saw.

(a) V1: Logging into the system (b) V3: Answering a call

(c) V5: Signing a contract (d) V7: Sending a document via email

Figure 8.3.: Screenshots of four of the videos of a student interacting with the prototype

Setup: For our research prototype, we chose specific visual metaphors such as a door to
visit someone or a telephone offering an instant messaging window to represent calls in

120

8.2. Understandable Representation

order to enable stakeholders to experience virtual prototypes. To evaluate whether these
metaphors can be intuitively understood, we conducted a study with 15 students (all
of them without a computer science background). We prepared seven videos (duration
between 13 and 54 seconds) in which a student interacted with the user interface to fulfill
seven distinct tasks as listed in the 2nd column of Table 8.1, e.g., reading an email after
getting notified about it or accepting a phone call and chatting about a coffee break.

For each video, the 15 students were asked to provide a free text interpretation of
what they thought happened in the video. Additionally, they rated their confidence in
their interpretation using a seven-point Likert scale (1 for very uncertain and 7 being
very certain). To ensure that the free text responses can be compared, an unrelated in-
troductory video was shown and example answers illustrated the level of detail expected
in the free text answers. Then, each of the seven prototype videos was shown twice to
the students. After a video was shown twice, the students had as much time as they
needed – the next video was played twice once they had all stopped writing.

Furthermore, four undergraduate students from our institute evaluated and compared
the free text interpretations to ensure an objective rating of whether each individ-
ual interpretation was suitable. For instance, they rated whether “Boss accepts and
signs Contract” (“Boss bewilligt und unterschreibt Auftrag”) and “Document is signed”
(“Dokument wird unterschrieben”) adequately summarize the content of the fifth video.
Their rating was quite strict as can be seen in Table B.2 along with a German summary
created by these four students for each interpretation.

Description of the Video Recognition Confidence (1–7)
V1 Logging into the system 93.3% (14) x̄=5.36, s2=1.48
V2 Receiving and reading an email 80% (12) x̄=5.67, s2=0.42
V3 Receiving and answering a call 100% (15) x̄=6.00, s2=0.77
V4 Creating a document 100% (15) x̄=5.27, s2=1.21
V5 Interacting with a document 100% (15) x̄=5.73, s2=1.35
V6 Visiting another participant 80% (12) x̄=6.00, s2=0.91
V7 Sending a document via email 100% (15) x̄=5.91, s2=1.45

Table 8.1.: Video evaluation of whether potential stakeholders confidently understand
the visual metaphors embedded in our virtual prototype (n=15; Confidence
ranges from 1 for very uncertain to 7 for very certain; adapted from [GGB12])

Results: Out of the 15 students watching the seven videos, 98 out of the 105 inter-
pretations (93.3%) were rated as correct. Hence, on average, each video was correctly
summarized by 14 out of the 15 participants (s2=2). The 4th column of Table 8.1 presents
the confidence of the students whose interpretation was rated as correct.3 The worst

3 The seven incorrect interpretations were as follows with smi = n for subject i ’s confidence value n
for video m: sV1

13 = 7, sV2
09 = (no value), sV2

11 = 5, sV2
13 = 7, sV6

09 = 6, sV6
11 = 5, and sV6

15 = 6 (cf. Table
B.2)

121

8. Evaluation

confidence was related to the video V4 which illustrated the word processor metaphor
used to create artifacts – still, all 15 interpretations were considered correct. In gen-
eral, the overall confidence of the correct interpretations was quite high (x̄=5.7, s2=1.11
for 94 valid values), although the seven interpretations which were considered incorrect
were, on average, slightly more confident (x̄=6, s2=0.8 for six valid values).

Threats to Validity (based on [WRH+00, MDF05]): By relying on four students
to rate the correctness of the subjects’ interpretations, we ensured an objective rating
process. Due to the high number of videos for this experiment, we cannot exclude a
testing effect which might lead to improved interpretations for following videos. Still,
as the first video represents the first interaction a stakeholder has with our research
prototype, it would be unrealistic to switch their order. Additionally, none of the in-
teractions illustrated in the videos would occur by itself, but rather within the context
of other interactions. Furthermore, the interactions and their representations shown in
the videos are disjoint in such a way that having seen either one does not necessarily
aid the subjects in understanding the remaining videos. Consequently, while we cannot
guarantee that no testing effect occurs, we are confident that the subjects’ ability to
intuitively, i.e. without any prior explanation, interpret interactions presented by our
research prototype was not impaired. Since there was only one group, there was neither
special treatment nor the threat of diffusion involved.

By relying on students from disciplines different from software engineering or com-
puter science, we obtained a more representative sample of prospective stakeholders
whose scenario might have to be captured using our approach. Again, they were rela-
tively young which might have led to better interpretations than an older sample might
have produced (cf. [SML+09]). Still, since our sample produced more than 93% correct
interpretations without being briefed about what they were about to see, we are con-
fident that other stakeholders might correctly interpret the representation just as well
after getting a brief introduction to the tool. Alternatively, in a more realistic setting,
stakeholders may even influence the visualization which is, in the end, built to accommo-
date their understanding of their domain. In general, we are confident that a replication
using the same or similar videos of the metaphors used in the visualization would yield
similar results for an equivalent sample of young students from different disciplines.

Furthermore, we evaluated one specific visualization covering one distinct domain.
Since the understandability highly depends on the employed metaphors, results may be
different for other domains in which the metaphors have to be more complex. Still, as
long as these metaphors are intuitive, stakeholders will understand them.

8.3. Prototype Iterations: Quick and Inexpensive

To be able to quickly and inexpensively iterate the collaborative scenarios which can
be replayed and complemented within the virtual prototype, it should be automated in

122

8.3. Prototype Iterations: Quick and Inexpensive

such a way that as many tasks as possible are performed unattended, i.e. without a
requirements engineering having to intervene most of the time. Still, even before the
simulation can be started, it has to be feasible to conduct multiple sessions without
delays due to performance issues, especially while loading the models. The costs of
setting up the research prototype are illustrated in Section 8.3.1. Then, the automation
achieved in our research prototype is described in Section 8.3.2.

8.3.1. Setting up a Simulation Session

To set up a remote interactive session for stakeholders to participate in using the research
prototype, its application server (JBoss, cf. Chapter 7) has to be started for the research
prototype to be deployed. Then, one of the existing projects has to be picked and its
files, i.e. its domain model D, its story patterns SP and its states S are loaded. This
subsection illustrates the corresponding loading times, i.e. the costs associated with the
creation of a virtual prototype. All values are averages of 10 repetitions on a virtual
machine which uses Windows XP SP2 on an Intel Core2Duo@3.0GHz and 1.5 GB RAM.4

Starting the Research Prototype on a JBoss: Starting the research prototype on a
JBoss (version 7.1) takes x̄=6.37 seconds (s2=1.05). The deployment of the necessary
files, on the other hand, takes less than a second. Hence, the research prototype can be
reached remotely after less than 10 seconds.

Loading the Models Belonging to a Project: After a requirements engineer has
chosen the corresponding project or a stakeholder has clicked on a generated invitation
link he has received from the requirements engineer (cf. Section 7.2), the data of this
project is loaded – this includes the corresponding domain model D as well as already
existing story patterns SP and all states in S. The concepts collected in D are limited by
the essential complexity of the stakeholders’ domain [NS00]. Depending on the diversity
of the scenarios covered, there may be different final states sterm ∈ Sterm. While the set
of states S = sinit ∪ Sterm might increase by one for each new scenario that is covered,
the set of story patterns SP grows more rapidly with each new scenario. For these
measurements, elements of S can be considered as simple story patterns each of which
does not affect changes – for a state sterm, the corresponding story pattern would be
SPterm = (sterm, sterm). The initial state sinit, on the other hand, would be considered
a story pattern SPinit = (∅, sinit). Consequently, for the following measurements, the
elements of S are considered elements of SP .

To load a simple project equivalent to the Ticket Sale case study discussed in Section
4.1.2, a domain model extension of eight concepts (extending the 21 concepts within
Dbasic), seven story patterns and one initial state have to be loaded to initialize a virtual

4 Due to the virtualization, the same measurements can be expected to yield even better results on
an ordinary desktop computer.

123

8. Evaluation

Scenar
iowahl

Rolle
nwahl

AVG VAR AVG VAR

D=8
SP=7
D=8
SP=7
D=8
SP=7
D=8
SP=7
D=8
SP=7
D=8
SP=7
D=8
SP=7
D=8
SP=7
D=8
SP=7
D=8
SP=7

D=8
SP=35
D=8
SP=35
D=8
SP=35
D=8
SP=35
D=8
SP=35
D=8
SP=35
D=8
SP=35
D=8
SP=35
D=8
SP=35
D=8
SP=35

D=8
SP=100
D=8
SP=100
D=8
SP=100
D=8
SP=100
D=8
SP=100
D=8
SP=100
D=8
SP=100
D=8
SP=100
D=8
SP=100
D=8
SP=100

D=40
SP=100
D=40
SP=100
D=40
SP=100
D=40
SP=100
D=40
SP=100
D=40
SP=100
D=40
SP=100
D=40
SP=100
D=40
SP=100
D=40
SP=100

D=40
SP=1000
D=40
SP=1000
D=40
SP=1000
D=40
SP=1000
D=40
SP=1000
D=40
SP=1000
D=40
SP=1000
D=40
SP=1000
D=40
SP=1000
D=40
SP=1000

D=40
SP=500
D=40
SP=500
D=40
SP=500
D=40
SP=500
D=40
SP=500
D=40
SP=500
D=40
SP=500
D=40
SP=500
D=40
SP=500
D=40
SP=500

611 110 631.4 13243.2 0.61 0.11 0.631 0.0132
467 77 0.47 0.08
717 78 AVG RolleVAR Rolle0.72 0.08 AVG RolleVAR Rolle
616 112 107.5 468.278 0.62 0.11 0.108 0.0005
731 111 0.73 0.11
727 151 0.73 0.15
545 110 0.55 0.11
652 91 0.65 0.09
455 116 0.46 0.12
793 119 0.79 0.12

AVG VAR AVG VAR
1460 117 1106 29749.3 1.46 0.12 1.106 0.0297
1140 98 1.14 0.1
971 162 AVG RolleVAR Rolle0.97 0.16 AVG RolleVAR Rolle

1089 72 122.9 1374.32 1.09 0.07 0.123 0.0014
1031 116 1.03 0.12
961 113 0.96 0.11
881 109 0.88 0.11

1165 87 1.17 0.09
1305 176 1.31 0.18
1057 179 1.06 0.18

AVG VAR AVG VAR
1431 104 1478.7 157035 1.43 0.1 1.479 0.157
981 73 0.98 0.07
937 70 AVG RolleVAR Rolle0.94 0.07 AVG RolleVAR Rolle

1967 158 141.5 8921.61 1.97 0.16 0.142 0.0089
1798 115 1.8 0.12
1162 133 1.16 0.13
1577 125 1.58 0.13
2114 153 2.11 0.15
1353 396 1.35 0.4
1467 88 1.47 0.09

AVG VAR AVG VAR
1395 94 1416.9 25566.1 1.4 0.09 1.417 0.0256
1339 126 1.34 0.13
1719 121 AVG RolleVAR Rolle1.72 0.12 AVG RolleVAR Rolle
1342 93 96.9 269.878 1.34 0.09 0.097 0.0003
1558 83 1.56 0.08
1205 87 1.21 0.09
1565 94 1.57 0.09
1440 73 1.44 0.07
1385 106 1.39 0.11
1221 92 1.22 0.09

AVG VAR AVG VAR
9713 116 9468.9 6E+06 9.71 0.12 9.469 5.9079
8084 96 8.08 0.1

11560 96 AVG RolleVAR Rolle11.6 0.1 AVG RolleVAR Rolle
6881 86 103.6 581.822 6.88 0.09 0.104 0.0006

12260 128 12.3 0.13
6330 76 6.33 0.08

13952 151 14 0.15
8228 72 8.23 0.07
8678 104 8.68 0.1
9003 111 9 0.11

AVG VAR AVG VAR
4367 4684.6 492154 4.37 0 4.685 0.4922
4182 4.18 0
3671 AVG RolleVAR Rolle3.67 0 AVG RolleVAR Rolle
6300 6.3 0 0 0
4671 4.67 0
5001 5 0
4472 4.47 0
5056 5.06 0
4312 4.31 0
4814 4.81 0

7 35 100 1000
Ladezeit 631.4 1106 1478.7 9468.9

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

7 35 100 1000

Chart 1

Ladezeit

(y) ms to load
(x) story
patterns

8 Additional
Concepts in D

40 Additional
Concepts in D

8 Project
Concepts in D

7 631.4
35 1106
100 1478.7
500 4684.6

1000 9468.9

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 100 200 300 400 500 600 700 800 900 1000

Lo
ad

in
g

Ti
m

e
in

 M
illi

se
co

nd
s

Number of Story Patterns to Load

8 Additional Concepts in D 40 Additional Concepts in D

Figure 8.4.: Loading up to 1000 story patterns can be achieved in less than ten seconds
(averages of ten repetitions)

prototype. This took, on average, x̄=0.631 seconds as illustrated in Figure 8.4. As
argued above, a more sophisticated project accumulates more domain concepts, states,
and story patterns. Still, even if 40 additional concepts, i.e. 61 concepts in total, are
included in D and up to 1000 story patterns are gathered along the way, initializing a
virtual prototype can be done in approximately ten seconds. Thus, starting the JBoss
and initializing a virtual prototype using the research prototype can be done quite quickly
in less than one minute even for big projects. Additionally, as soon as the research
prototype is loaded and initialized, further simulation sessions can be conducted without
having to restart the research prototype.

Interactions at Runtime: The Story Diagram Interpreter (SDI, cf. Section 7.2) is
responsible for checking which of the n story patterns that were already collected can
be applied. Measurements related to the SDI and related improvements are out of the
scope of this thesis.5

When a story pattern is generated, the corresponding pair of states scur and snext is
used to derive the story pattern in parallel to the stakeholder interactions. Thus, this
generation is done separately and does not impair the overall performance of the virtual
prototype.

5 Concepts such as incremental matching algorithms for increasing the overall performance of the story
diagram interpreter as part of our research prototype are discussed and evaluated in the master’s
thesis of Stefan Kleff [Kle11]. Measurements covering the generation of a look ahead as required for
strategies can be found in the [TGRK13].

124

8.3. Prototype Iterations: Quick and Inexpensive

8.3.2. Automation within the Simulation Loop

The simulation may only be feasibly run, if the requirements engineer’s tasks are au-
tomated as well during the execution. Figure 8.5 illustrates the automation within the
simulation loop. While activities and decisions in blue are executed or determined by
the simulator, manual input is required to execute activities in white or determine how
to continue at decision points in white.

As long as story patterns which do not belong to a participant are applicable (step
c), the simulation may progress (steps d and e) with updates of the participants’ visu-
alizations (step f) only. Alongside providing feedback about the specific scenario which
unfolds during the simulation, the simulation can progress automatically until one of
the following conditions applies:

• a final state sterm matches and the participants may acknowledge the completion
of the scenario which concludes the session (decision after step g)

• one or more story patterns belonging to a participant are applicable, which enables
this participant to choose how to continue between different options provided by
the simulator (decision after step j)

• no story pattern is applicable in the current state scur, which means that a pos-
sible continuation is not yet known – a participant may decide to either define a
continuation of what she expects to happen (steps p and q) or play in a plausible
continuation herself otherwise (steps k, m, and n)

[activity of
stakeholder]b)

manual activity
of stakeholder

[automatic
activity]a) automated activity

of simulator
decided by the
stakeholder

determined by the
simulator

[no SP
applicable]

[at least one SP applicable]

[else]

start
session

[else]

wait for
participant(s))b)

simulator
chooses SP
to execute

d)

[no SP belonging to a
participant applicable]

[participant
defers choice
to simulator]
[participant chooses SP]

j)
highlight SPs

already observed in
identical sequence

[else]

h) propose applicable SPs
of participant in GUI

simulator
executes

chosen SP
e)

end
session

f) synchronize GUIs of
affected participants

a) load initial
scenario state

z)
notify

participant(s) g) housekeeping[final state
observed and

acknowledged]

derive SP based
on observationn)

m) synchronize state to
observed action

observe GUI (inter-)
action of participantk)

[alternative out-
comes known]

[else]

[stalemate for
participant]

[else]

p)
express expected
changes as partial

state

q)
define follow-up

action that is
applicable next

[participant
knows how
to follow-up]

c)

check which story
patterns (SPs) are

applicable in
current state

Figure 8.5.: While activities and decision nodes in blue are automated, others require
input from participating stakeholders

125

8. Evaluation

These are the cases in which the simulator cannot automatically decide what has to
happen next due to potentially incomplete information. Consequently, in these cases,
the participants have to become active by either deciding what to explore next or com-
plementing the scenario covered in their session. Since everything else is automated,
the prototype cannot only be deployed and initialized quite quickly, but also be used
semi-automatically to allow stakeholders to complement or validate scenarios – in most
cases unattended by the requirements engineers.

8.4. Modifications through Stakeholders

Virtual prototypes of a project differ based on which story patterns have already been
collected during the course of the scenario elicitation. By adjusting these models, new
scenarios can be explored while other scenarios are excluded. Consequently, the virtual
prototype can be adjusted by the stakeholders simply through playing in new story
patterns. Stakeholders have two ways of adapting and modifying the set SP of story
patterns which a virtual prototype is based on. First, story patterns can be played in
as discussed in Section 8.4.1. Second, each stakeholder may explicitly correct errors in
story patterns belonging to her if she recognizes errors, as discussed in Section 8.4.2
(based on [GEHG13]).

8.4.1. Immediate Feedback Based on Play-In

A virtual prototype is derived based on the models (D, S, SP) belonging to a project.
Interacting with such a virtual prototype, however, influences its underlying models.
Specifically, the set SP can be changed by adding, removing, or modifying its story
patterns. This, in turn, alters which scenarios a participant can experience by interacting
with the virtual prototype.

Each time a stakeholder participating as role r plays in priorly unknown and thus
unexpected behavior, the simulator enters a new simulation state which might not have
been reachable before (snext in Figure 8.6a). This, in turn, may enable other story pat-
terns in SP which would not have been applicable before (SPf in Figure 8.6b). Thus, by
adding behavior to the virtual prototype and, thereby, re-shaping it, the participant may
fulfill the preconditions of story patterns belonging to other stakeholders. Consequently,
the execution of such a story pattern changes the state of the simulation, leading to a
new current state (scur in Figure 8.6c). While the former state sx is different from the
new state scur, it has to be different from the point of view of the participant. Hence,
if the simulator executes any sequence of story patterns which lead to a state scur for
which scur|r � sx|r is fulfilled, the participant receives immediate feedback via his GUI
on the behavior he just played in – feedback which he might not have gotten otherwise.

Additionally, through the play-in as sketched above, each participant may complement
scenarios in which he has to interact with other stakeholders. While expected continua-

126

8.4. Modifications through Stakeholders

SPa

SPb SPc

sinit

s2 s3
SPd SPe s4 s5

SPf

s6

SPg

play-inscur snext

(a) In the current state, a participant plays-in new
behavior, thereby entering a new state

s1
SPa

SPb SPc

sinit sy
SPf

s2 s3
SPd SPe s4 s5

SPf

s6

SPg

play-in scur

(b) In the new state, the simulator can execute a
previously captured SPf to simulate other roles

s1
SPa sx

SPb SPc

sinit
SPf

s2 s3
SPd SPe s4 s5

SPf

s6
SPg

SPg

play-in scur

(c) After SPf was executed, the participant per-
ceives how he was affected if sx|r � scur|r

a transition that is possible but
is not yet observed

nm
SPx

transition from a state m to
a follow-up state n which was
already observed

SPx

nplay-inm observed transition based on
stakeholder interactions

nm
SPx

(d) Keys for (a), (b), and (c)

Figure 8.6.: Participants may receive immediate feedback on new input they provide if
existing story patterns become applicable

tions support any scenario complementation as illustrated as part of the case study in
Chapter 6, the mechanism sketched above may already suffice for some cases.

In summary, stakeholders can change a virtual prototype by interacting with it. This
enables them to receive immediate feedback from other roles through story patterns
which are replayed by the simulator. Thus, even though stakeholders can participate
individually, the simulator can provide such feedback automatically by design. Relying
on these capabilities, participants can complement each others’ scenarios step by step.

8.4.2. Stakeholders Correcting Erroneous Story Patterns

As part of his master’s thesis, Eichler evaluated the NL4SP approach and its NL interface
for modifying story patterns [Eic12]. We re-visited the raw data of this evaluation to
derive additional statistical interpretations which were also published in [GEHG13].

As soon as a stakeholder perceives an error, i.e. identifies an erroneous story pat-
tern, the stakeholders can directly fix it within the NL4SP prototype. To investigate
whether stakeholders understand what story patterns represent in a NL representation,
the following hypotheses were evaluated:

HA Students understand NL representation better than the formal story pattern rep-
resentation

127

8. Evaluation

HB Consequently, students can also more reliably identify errors in the natural lan-
guage representation

HC Additionally, students make more correct modifications editing the NL represen-
tation as opposed to the story pattern representation

Setup: To evaluate these hypotheses, we randomly assigned twelve students of disci-
plines other than software engineering to either group G1 or G2. They dealt with the
scenario of ordering and receiving an item online which consisted of three steps. These
were steps of a scenario they had all experienced before and, therefore, can be consid-
ered to be domain experts in. While G1 answered all questions relying on a formal story
pattern representation (SP), G2 used the natural language representation (NL). To limit
any negative effects an immature research prototype might have, printouts were used for
both representations. Thus, the story patterns were presented as images the students
had to draw into.

After an introduction (one page) into the representation they had to use, the students
started by answering questions about the content of the three steps (HA). Specifically,
they had to identify: what is the value of the order (one property), what does the package
contain (two objects) and which conditions have to be met for the order to be shipped
(four associations).

Then, the students were asked to identify incorrect elements within the specification
of the three steps related to ordering T-Shirts in the representation assigned to them
(HB). For the identification of the five errors that were introduced (e.g., a different value
for the order and sunny weather as additional precondition), they were not allowed to
consult the earlier representations.

Finally, the students were asked to specify the postcondition of buying gasoline from
a gas station in their respective representation (HC). For a provided precondition, they
had to create or modify five different associations to reach the postcondition. This was
done either by drawing and annotating lines in a story pattern printout or by arranging
13 concepts as they would have been proposed by the natural language interface proto-
type to construct the missing statements, e.g., you(Customer), from, and contains. In
between these tasks, the students filled out short questionnaires concerning the perceived
ease of use of their respective method. The students were allowed to take as much time
as they needed for these tasks.

Results: It took the students working with the story patterns x̄=20.81 minutes (s2=13),
while the other students needed x̄=29.1 minutes (s2=64.7). While the difference is sig-
nificant (p = 0.044), it is consistent with expectations [LS87]. Table 8.2 presents the
results per representation and hypothesis. As hypothesized, students working with the
NL representation answered significantly (HA, p < 0.01) more understandability ques-
tions correctly (81%) than students using the formal representation (45%, 1st row in
Table 8.2).

128

8.4. Modifications through Stakeholders

G1 with SP G2 with NL

1 Average of correct answers to seven under-
standability questions (HA, p < 0.01)

x̄=3.17, s2=1.47
(45% covered)

x̄=5.67, s2=1.21
(81% covered)

2 Average of correct errors (out of five) iden-
tified per student (HB, p=0.034)

x̄=1.67, s2=1.97
(33% covered)

x̄=3.75, s2=0.70
(75% covered)

3 Average of false positive errors identified per
student (HB, p=0.027)

x̄=2.83, s2=2.14 x̄=0.5, s2=0.55

4 Average amount of errors pointed out per
student = correct + false positive discoveries

x̄=4.5, s2=1.87
(37% correct)

x̄=4.25, s2=0.53
(88% correct)

5 Correct modifications out of five the stu-
dents were asked to perform (HC , p=0.66)

x̄=2.5, s2=1.87
(50% coverage)

x̄=3.0, s2=1.90
(60% coverage)

Table 8.2.: Results are averages of six students working with process steps represented
using story patterns (SP) or natural language (NL, adapted from [GEHG13])

On average, students using the formal representation pointed out more errors than
students working with the NL representation (4th row in Table 8.2). However, out of their
answers, errors marked by students using the NL representation covered significantly
(p < 0.04) more of the real errors (2nd row) and contained significantly (p < 0.03)
fewer false positives (3rd row). In total, while only 37% of the errors marked by students
working with the formal representation were correctly identified errors, 88% of the errors
marked by the NL group were real.

Based on a given precondition, the students had to form statements until a desired
postcondition was constructed. Students arranging the 13 partial statements that were
provided were more successful in constructing this postcondition (60% coverage of what
they needed to describe) than the other group who sketched modifiers and new associ-
ations into a story pattern printout (50%, cf. 5th row in Table 8.2). Although students
performed better using the NL representation, the difference was not significant (HC).

In summary, we observed that students without a technical background understood
models significantly better in the NL representation (HA) and were also significantly
better at identifying errors (HB). However, modifying the model and being able to
correct such errors was only insignificantly better (HC).

Threats to Validity: Although the experiment was set up as a within-subject exper-
iment [Gre76], the execution of the second treatment was inconsistent in such a way
that we were only able to confidently rely on the data of the first treatment. Thus,
instead of a n=12 within-subject design, we can only offer data for the remaining n=6
between-subject results. Consequently, the usable sample is much smaller than expected.
Also, due to the small sample size and the students’ different academic backgrounds,
we cannot exclude effects such as, e.g., chemistry students might perform better with
formal models than with NL. Additionally, the experiment we conducted only compared

129

8. Evaluation

story patterns to a natural language representation generated from them. Other formal
representations might be more or less intuitive for stakeholders. Still, despite the small
sample, the statistical tests confirm that the results are significant for HA and HB.

The students were assigned randomly to either group which eliminates the threat of a
biased selection. The design of the experiment also eliminated the threat of imitation of
treatment, i.e. unintentionally exposing any of the groups to the treatment of another
group, since all subjects worked with either representation. Still, while they started out
working with different representations, no special treatment of either group was involved.

The subjects we recruited for the experiment were students from disciplines other than
software engineering or computer science. Thus, while the sample was small, it was still
representative for prospective stakeholders using our approach later on. The scenarios
covered during this experiment can be assumed to be known to most students – a fact
which makes us confident that results from a replication would be quite similar. Still,
once more, older people might not be as familiar with such scenarios which might lead
to different results.

8.5. Chapter Summary

Apart from the case studies which we discussed for most of the concepts within this the-
sis, we also empirically evaluated the most critical steps of our approach – namely the
ones in which stakeholders directly interact with our research prototype. Using this re-
search prototype, we were able to positively test whether stakeholders would intuitively
understand the visualization we provided (TG2A). Moreover, the models underlying the
virtual prototypes derived from our research prototype can also be modified indirectly
(TG2B). Further, we measured how much time it takes the requirements engineers to set
up a virtual prototype for stakeholders to interact with and discussed the degree of au-
tomation that is involved in running a simulation session (TG2C). Based on our results,
we can confidently state that such derived, model-based prototypes can be employed
feasibly to iterate the underlying models. Hence, TG2 can be considered fulfilled.

Concerning the individual setting in which these stakeholder interactions are to take
place: Although the stakeholders can participate decoupled from each other, they are
still able to complement each others’ scenarios or describe expectations of what needs
to happen (TG1B). The state-based simulation of those collaborative scenarios the
stakeholders are involved in enables a sophisticated replay of previously observed actions.
Consequently, the possibility of replaying these models allows the simulation of possible
reactions which might be suitable continuations for the participant who is exposed to
immediate feedback (TG1A, for cases in which the simulator reaches a state sx for which
sx|r � scur|r holds). Thus, TG1 can also be considered fulfilled.

In conclusion, similarly to how physical prototypes are perceived, our evaluation il-
lustrates how our approach brings models closer to being tangible for stakeholders and,
thereby, provides the advantages of group sessions in individual sessions.

130

9. Related Work

Our approach of deriving virtual prototypes combines different existing techniques some
of which were used in related approaches, in a novel way. In particular, our simulation
loop consists of the play-out of formal models, allows stakeholders to play in new mod-
els, and further enables stakeholders to define expectations which can the be resolved
systematically – all within an intuitive representation. Similar simulation capabilities,
which are essential for creating a dynamic and interactive animation, are quite com-
mon in requirements engineering tools [SRB+00]. However, our approach relies on the
synergies between formal models (which inhibit stakeholders from understanding them),
domain-specific animations of the changes encoded in these formal models, and a simula-
tor capable of executing these models to simulate identified roles and, thereby, enabling
an interactively animated simulation.

It is important to note that stakeholders are an invaluable sources of knowledge, but
only as long as they provide feedback within their individual application domain. Thus,
presenting them with formal requirements models reduces their understanding of the
content, thereby inhibiting their feedback. As motivated in TG2A, our approach focuses
foremost on a representation which stakeholders can understand intuitively. Since most
other approaches simulating formal requirement models merely visualize the simulation’s
state within their formal notation (e.g. Seybold et al. [SMG04, SMG06]), we also focus
the discussion of related approaches on those which provide an intuitive animation (i.e.
animated play-out, cf. 2nd column in Table 9.1) within the stakeholders’ domain of
expertise. Although some of the related approaches offer animated play-out capabilities,
only few approaches allow stakeholders to directly play in new specifications. The 3rd

column of Table 9.1 illustrates which kind of play-in support the related approaches
offer.

Moreover, our approach explicitly supports the elicitation and validation of collabora-
tive scenarios, including support for explicitly dealing with expectations and the inherent
scenario fragmentation encountered in such scenarios. While some related approaches
limit their focus on defining the input and output of reactive systems, others explicitly
allow the distinction between different stakeholder groups to model their interactions.
The 4th column in Table 9.1 indicates whether support for collaborative scenarios is
provided.

The specification techniques employed by the respective approach are presented in
the 5th column of Table 9.1. For all of the related approaches, the feasibility of iterating
a formal specification depends on the onetime effort required to adapt the approach to a
specific domain and the costs involved in creating the next iteration. Since not enough

131

9. Related Work

information concerning these costs is available, the coverage of TG2C is only discussed
where applicable.

After the related approaches which this chapter discusses are presented in Table 9.1,
Section 9.1 focuses on those approaches that provide animated play-out capabilities.
Then, Section 9.2 presents related approaches capable of automatically deriving models
based on observations of one or more actors. Finally, Section 9.3 discusses the advantages
of using transitions between concrete states over message-based scenario specifications,
before Section 9.4 summarizes the related work and this chapter.

9.1. Animated Play-Out

While different visualization and representation approaches exist which assist require-
ments engineers to manage and verify their specifications (cf. Gotel et al.’s overviews
in [GMM07, CLGG09]), there are only few approaches which allow stakeholders to di-
rectly be involved in the validation of their (formally specified) requirements. Most of
these latter approaches are dedicated to a distinct modeling notation, e.g. for Z specifica-
tions [ÖPMS98, Tey02], for Goal-Oriented specifications [VLMP04, PBM+05], for Graph
Transformation Systems [EB04, EHKZ05], or for ScenarioML specifications [ATB06].
Further, while some of the animations are derived automatically (e.g. [ATB06]), most
animations are manually defined and are too specific to be reused in any other projects
(e.g. [ÖPMS98, MNK+07]). The remainder of this section discusses such related ap-
proaches in detail.

One of the main contributions of Harel and Marelly’s Play-approach [HM03a], is
the possibility of not only replaying captured system behavior (play-out), but the pos-
sibility to capture additional system behavior (play-in) and, thus, new scenarios while
doing so. Their approach, however, is centered on user interfaces – for each input the
user provides, the play-in covers only how the system or its (visible) components should
react. While this suffices to capture the interaction between individual stakeholders
and a software system, the elicitation and validation of interactions between different
stakeholders are out of scope of the Play-Engine. Later on, the approach was extended
to cover military settings and present these in 3D environments. This extended the
Play-Engine to cover a limited set of scenarios in which actors move and shoot [AH07],
or react on external stimuli by performing specific actions [HSKS08]. In both cases,
however, the focus is on training exercises during which all actors are essentially doing
the same (trying not to get shot or following a team leader, respectively) – no collabo-
rative behavior is explored. Furthermore, the perception of individual actors is purely
event-based – hence, a manual mapping between GUI and events needs to be established
as well as whether an actor is visible to another one [AH07].

132

9.1. Animated Play-Out

Capabilities of the Approach
Approach Animated

Play-Out
Play-In of New
Specifications

Collaborative
Scenarios

Specification
Technique

Description

[HM03a]
[AH07]
[HSKS08]

 (explicitly
defined)

G# Live Sequence
Charts

play-in and smart play-
out based on GUI mock-
up, later 3D animation

[VLMP04]
[PBM+05]

 # # Finite State
Machines

focus on validation of
goals related to control
systems

[KNNZ00] # G# GTS interactively animates
graph-based specifica-
tions

[EB04]
[EHKZ05]

 # G# GTS editor allows to cre-
ate animations for graph
transformation systems

[MPGK00] # G# Labeled Tran-
sition System

animation steps are as-
signed to transitions in
timed automata

[UCKM04] # Labeled Tran-
sition System

interactive animation of
play-out, manually de-
fined partial states

[ATB06] # ScenarioML automatically derives
animation for manually
specified scenarios

[Sch07] G# (informal) G# Use Cases GUI mock-up-based re-
play of use case steps
with informal play-in

[GH06]
[VBI+09]

G# G# (pattern
recognition)

 Messages be-
tween users

focus on negotiations,
behavior specified man-
ually

[DEVG08] (based on
observations)

G# Segments of
“action se-
quences”

smart play-out of move-
ment for virtual charac-
ters played in via joy-
stick and mouse

[GMM09] # (based on
observations)

GTS automatically infers
specification of Java
classes

[Aal07]
[Aal11]

(based on
observations)

G# Petri nets automatically derives
process models from
event logs

Virtual
Prototypes

 (based on
observations)

 GTS

Table 9.1.: Overview of related approaches focused on which features they provide (“ ”
for full support, “G#” for limited support, and “#” for no support) and their
specification technique (“GTS” for approaches relying on graph transforma-
tions, and italics for message-based approaches)

133

9. Related Work

Van et al.’s approach [VLMP04] provides animated play-out capabilities for the val-
idation of goal-oriented requirements (cf. [Lam01]). Hence, it is based on goals and
their operationalization, i.e. their preconditions and prescriptive postconditions. By
using operationalized goals, goal-based state machines are generated which can simulate
(parts of) the behavior required to achieve these goals. Moreover, if these goals contain
temporal logic specifications, so-called claim state machines can be generated. These,
in turn, are used to monitor their goals and their respective goal state machines during
the simulation and animation. To animate the simulation, a mapping is created which
assigns a picture to each state in which such a goal state machine can be. For the
simulation, stakeholders can provide input through “input event panes” [VLMP04] or
“domain-specific control panels” such as levers found in a train [PBM+05]. Based on
the mapping between animation and state machines, these inputs modify the state of
the underlying state machines which, in turn, leads to an update in the visualization.
Thus, this approach focuses on the validation of reactive behavior based on goals which
have to be achieved or maintained. Although multiple different views are supported,
the effort necessary to create an instance situation to iteratively identify errors and fix
them is considered to be high due to a rather restrictive visualization engine. Finally,
this approaches is focused on the validation of control systems – collaborative scenarios
cannot be elicited or validated.

The models employed by Köhler et al.’s approach [KNNZ00] are quite similar to the
ones we use. While we employ story patterns, they employ story diagrams, which con-
sist of story patterns and Java statements, with control flow in between them [FNTZ00].
Based on the FUJABA environment [FNTZ00, NNZ00], a specific state the system can
be in during a simulation can be visualized using a Dynamic Object Browsing System
(DOBS), which represents this state along with iconic representations of these objects.
Their approach is illustrated using a production control system, which is specified, sim-
ulated, and animated. Stakeholders may interact with this animation via DOBS which
offers all applicable methods defined for each of the classes of the system.

Similar to our approach, the behavioral models belong to specific classes – in our ap-
proach, only roles are valid targets. Consequently, in both approaches, behavior can
be assigned and, hence, allows to model collaborative scenarios. However, although the
play-out is animated, the interactions between stakeholders and the animated replay of
the story diagrams are reduced to invoking methods based on their signatures. After
selecting an object, its methods are displayed and can be invoked by the user, e.g., after
selecting a shuttle, among the options are checkPlan(), getAt(), doProduce(), and
toString(). Unfortunately, such an interaction is not as intuitive for stakeholders, since
these signature names are based on conventions stakeholders are typically not aware of.
Furthermore, the approach does not enable stakeholders to play in new behavior.

Ermel et al.’s approach extends a graph transformation system with additional ele-
ments for which graphical icons and animations can be assigned [EB04]. Their approach

134

9.1. Animated Play-Out

explicitly supports the definition of different domain-specific scenario views. Moreover,
all graph transformations are extended to include these graphically representable ele-
ments as well. Since their rules are quite abstract, they can be visualized for different
scenarios by annotating the models with different visualizations. They used this ap-
proach to create animations for graph transformation systems derived from UML speci-
fication [EHKZ05]. According to Al-Rawas and Easterbrook [ARE96], their visualization
approach might be considered as a self-explanatory annotation of a formal model. In
essence, while their approach tries to provide specific visualizations and animations for
generic rules, our approach provides a generic visualization that is suitable for a complete
domain for specific rules. While their animation may support the validation of collabo-
rative scenarios by animating them, perspectives of different roles seems only viable by
creating and defining distinct scenario views which only represent parts of the current
state of the simulation. Further, their approach works only in one direction: it can only
visualize state modifications. Without affording stakeholders to modify the state from
within their animated view, Ermel et al.’s approach does not provide play-in capabilities.

Magee et al. pointed out that animations which are clearly separated from the
specification that is to be animated can be considered annotations of this specification
[MPGK00], similar to how Haumer et al. annotated specific goals of a goal model with
videos illustrating their meaning [HPW98]. Magee et al.’s approach [MPGK00] is based
on multiple labeled transition systems (LTS) which are “augmented with a finite set of
(real-valued) clocks” to derive timed automata. These automata represent interacting
components and their respective states. Each transition within such a timed automaton
may be annotated with a graphical animation which may illustrates this transition in
the “problem domain”, i.e. in a way that is understandable for stakeholders. These au-
tomata (or subsets thereof) may be initialized and started to investigate their behavior,
i.e. the specification can be played out. Further, the modelers can provide stakehold-
ers the possibility of interacting with the animation by setting specific conditions using
hard-coded buttons in the GUI. Although the approach allows the replay of specific se-
quences of behavior, it is limited to the play-out and, hence, validation of specifications
without any possibility to amend or modify the underlying automata.

Uchitel et al. propose an approach which provides animated play-out for collabo-
rative scenarios [UCKM04]. However, they point out that scenarios carry only implicit
states, especially if these scenarios are specified by message sequence charts (MSC) that
represent the interactions between components based on the messages these components
exchange. Based on scenarios specified via MSCs of how components and roles (i.e.
users of the system) interact, an LTS can be derived for each of the involved actors.

By simulating these specifications, a stakeholder can participate as one of the roles
interacting with the specified system. However, as pointed out, their approach does
not define an overall state for such a simulation. Instead, each LTS of each component
possesses a distinct internal state by itself. In order to interactively visualize the simu-

135

9. Related Work

lation for the stakeholder, Uchitel et al. define “abstractions of system states” referred
to as fluents which are based on “the occurrence of events such as those that appear in
operational scenarios”.

The visualization and animation is presented using an interactive web page. This web
page contains elements (buttons and hyperlinks) which enable the participant to invoke
transitions which are possible in the corresponding LTSs. These transitions conform to
the message exchanges defined for the participant’s role in the scenario specifications.

Fluents are assigned to each GUI element that can change during the simulation.
Thus, based on which events have already occurred and, hence, the state of the fluent,
specific parts of the animated visualization are either active or not. Since these elements
also indicate which actions the participant may perform in accordance with the simulated
LTSs, a participant may point out errors based on the availability of such actions (or
their corresponding GUI elements).

To summarize their approach, Uchitel et al. provide a web-based representation which
is interactively simulated based on LTSs derived from scenario specifications. Their us-
age of fluents and conditional elements in the web-pages that are generated enables them
to provide distinct perspectives on the current state of the simulation – similar to a par-
ticipant’s view scur|r in our approach. However, they introduced an additional layer of
abstraction between the simulation and its visualization. Consequently, as they point
out themselves, each time a participant points out an error, it may always be caused by
an incorrectly defined fluent. Thus, they first have to check whether the manually cre-
ated “visualization criteria”, i.e. the abstract states defined by the fluents, are correct.
In our approach, on the other hand, such a mismatch can be investigated directly based
on the current state scur of the simulation – especially to find out why a specific story
pattern was not applicable yet (cf. Section 4.2.1). Moreover, through its emphasis on
validation, this approach does not allow participants to play in additional scenarios.

In Alspaugh et al.’s approach [ATB06], scenarios are created (manually) as struc-
tured text. Then, an animation is derived automatically using animated characters
(representing people, actors, or other entities) which move toward each other when they
interact. However, each scenario is only replayed “whole” without the possibility to ex-
plore overlapping or alternative situations. While the approach allows the specification
and animation of collaborative scenarios, the result is equivalent to a video without any
interactive components. Although Brill et al. [BSK10] emphasize the value of “videos as
a means of documenting requirements” as they are “more concrete and easier to under-
stand by stakeholders”, stakeholders cannot amend, complete, or directly correct any of
the scenarios which are replayed.

Schneider’s Fast Feedback technique [Sch07] allows requirements engineers to itera-
tively elicit and validate requirements in individual sessions of up to three stakeholders
by combining use cases defining scenario steps with UI mockups covering these steps.
By not only asking for use case information, but also for user interface information, the

136

9.1. Animated Play-Out

requirements engineer can sketch corresponding UI mock-ups which are then automati-
cally connected to steps in these use cases. A tool running on a tablet-PC, which is used
to capture all information, continues to “generate an animation of the pencil-prototypes”
which stakeholders can interact with by pretending to enter data. The stakeholders’ ac-
tions, i.e. scribbling values in forms or adding annotations to the mock-up, are recorded
and provide “information on how the stakeholders intend to use the system”. While the
annotations and scribblings of the stakeholder appear on the mock-up, the GUI is not
interactive, i.e. it does not react to stakeholder inputs.

Similar to the Play-Engine [HM03a], scenarios are played out and animated using
GUI mock-ups. Additionally, stakeholders can directly experience and validate these
mock-ups, while their informal input is recorded. With its emphasis on getting as
much information as possible from the stakeholder, this approach requires that require-
ments engineer manually integrates this input consistently with requirements of other
stakeholders or stakeholder groups. Therefore, while the Fast Feedback technique al-
lows stakeholders to express their thoughts and intended usage patterns centered on UI
mock-ups, it provides only limited support for analyzing the recorded information and
coping with complex collaborative scenarios.

Guyot and Honiden [GH06] provide a manually created animation of collaborative
scenarios in which multiple participants compete against each other in trading scenarios,
to elicit and understand the strategies or rationale behind the participants’ behavior.
In their approach they even enforced a distribution of the participating stakeholders
over different rooms, to ensure that all communications between them took place within
their tool. Only then were they able to record all interactions and query the partici-
pants based on events from these records in follow-up debriefing sessions. Further, these
records can be used to “automatically extract interaction patterns” from the partici-
pants’ observed behavior. Then, these patterns must be manually implemented in order
to mirror participants’ strategies or to provide suggestions for participants in subsequent
sessions. This approach was extended by Vasconcelos et al. [VBI+09] with the intent
of introducing “artificial players” which base their behavior and decisions on observed
communication of human players. However, they also acknowledged that they have not
yet resolved how to automatically generate behavior based on such observations.

Dinerstein et al.’s approach [DEVG08] proposes programming by demonstration to
allow end users to play in behavior by moving virtual characters or entities such as hu-
mans, animals, and submarines through virtual environments. The observed behavior,
i.e. movement played in through joysticks, mouse, and keyboard, is captured and seg-
mented for later sessions. When the virtual entity has to be simulated, this segmented
behavior is “combined in novel sequences to create new motions” to explore all alterna-
tives of how this entity should continue. To find the best alternative, a planning tree of
a predetermined length n is generated and scored based on a fitness function. Such a
planning tree can be considered equivalent to a look ahead (cf. Section 4.3).

137

9. Related Work

The play-out of Dinerstein et al.’s approach is not only animated suitably for “non-
technical users”, but it can also be considered smart – based on a predefined or derived
fitness function which scores possible alternatives, novel behavior can be explored to find
the best alternative. However, their approach is rather restrictive in terms of how a user
can interact with their environment apart from moving through it. Any “high-level ac-
tions” require different translations and mappings to map a mouse click to a predefined
tasks such as taking and placing boxes. Further, their synthesis of observed behavior
can only be applied to optimization problems such as the path planning examples they
illustrate. More complex interactions or collaborations between roles with different tasks
are not discussed in their approach.

9.2. Play-In of New Specifications

While not providing an animated representation suitable for stakeholders, other related
approaches exist which provide similar automation capabilities for deriving behavioral
models based on observations. For instance, Ghezzi et al. [GMM09] try to “infer
formal specifications of black box components by observing their runtime behavior”.
For instances of specific Java classes, this is achieved by invoking the methods of the
instance, querying its internal state using observers (i.e. methods of the class with non-
void return types) to distinguish different states the object can be in, and comparing
pairs of succeeding states. Based on such pairs of states, the changes in between can be
gathered and defined using graph transformations. These, in turn, represent the inferred
behavior of the Java class under investigation. While their method of automatically
deriving behavior is quite similar, their approach is restricted to a single actor, i.e. an
instance of a class.

Scenario

RulesConcepts

generalizege
ne
ral
ize

reference
(a) Heckel starts by observing scenarios

and derives the rest (references between
concepts and rules are implied)

Scenario

RulesConcepts

automatically

derivees
tab

lish

lan
gu

ag
e f

or

reference
(b) After establishing a domain model with

the stakeholders, they play-in scenarios
so that rules can be derived

Figure 9.1.: Comparison between (a) Heckel [Hec06] and (b) our approach

While Heckel argues that the domain concepts can be generalized from scenarios
[Hec06], this is unrealistic if multiple or heterogeneous stakeholder groups are involved.

138

9.3. Scenario Specifications

Unlike an objective observer who would deterministically derive the same rules and con-
cepts (cf. Figure 9.1a and Ghezzi et al.’s approach [GMM09]), stakeholders are neither
objective nor deterministic. The requirements engineers can only elicit the actual scenar-
ios by establishing a common understanding of the domain concepts (cf. Figure 9.1b),
iteratively validating the stakeholders’ statements, and correcting misunderstandings.

Van der Aalst proposes an objective approach based on process mining (ProM,
[Aal07, Aal11]), which is able to derive Petri nets (or other types of process models) of
how different people can achieve their goals collaboratively based on log files detailing
traces of their collaborative scenarios. However, ProM can only be used if a logging
system is already in place. Further, since ProM is only able to use any information that
is available in these logs, this logging system needs to be verbose to provide enough
information. Even then, analog interactions which do not leave traces in an event-based
logging system cannot be captured.

Since humans tend to abstract from details, approaches which generate models based
on objective observations are usually closer to reality than models which are created
by humans [Aal07]. Thus, while both approaches can uncover the whole complexity of
all scenarios, no representation suitable for stakeholders is available. Our approach, on
the other hand, provides such an intuitive representation and is capable of eliciting this
complexity as well.

9.3. Scenario Specifications

Most approaches of synthesizing scenarios start with collections of potentially incom-
plete, implied (cf. [UKM01, UKM02a], or negative (cf. [UKM02b]) instance scenarios.
These are usually specified message-based, e.g. using Message Sequence Charts (e.g.
Uchitel et al. [UKM01]), Sequence Diagrams (e.g. Whittle and Jayaraman [WJ10]) or
Live Sequence Charts (Harel et al. [Har01]). For scenario specifications containing mul-
tiple interacting components, it is feasible to generate either a global state machine or a
set of communicating object state machines (i.e. one for each involved object) [LDD06].
Such a synthesized state machine conforms to all scenario specifications – negative and
positive. Liang et al. [LDD06] discuss a total of 21 different approaches of generating
state machines from message based scenario specifications.

Still, these approaches are not suitable to elicit human interactions, which are limited
by what stakeholders can perceive from their individual context. To obtain behavioral
models of what stakeholders do, it does not suffice to know which messages arrived at
a stakeholder in which sequence, but rather which artifacts and information they can
see, access, and, hence, use to make their decisions. For instance, only by moving to
the Notifier’s location (SPmove in Figure 6.8a) can the Boatman fulfill the Notifier’s
expectation, that a lifeguard boat will arrive, eventually (Figure 6.8b). By eliciting and
validating them in a state-based manner, it becomes viable to visualize the current

139

9. Related Work

state a stakeholder is in based on what he has access to. In Uchitel et al.’s approach
[UCKM04], this information is also required for the visualization. However, they must
define additional abstract states (fluents), since their message based specification using
MSCs cannot suitably express the presence of information. In other words, follow-up
activities become available based on what an individual participant has already achieved
– not based on the history of messages he has sent or received. While message-based
abstractions are suitable for the definition of reactive software systems, they are not
suitable for capturing concrete stakeholder behavior or exploring the rationale behind it.
By being able to distinguish between different artifacts and their states, the requirements
engineers are able to specify workflows not only in an activity-based manner but also
artifact-based as argued by Nigam and Caswell [NC03].

9.4. Overview and Chapter Summary

To validate their requirements, stakeholders have to understand them. While approaches
exist which allow stakeholders to experience their requirements through simulation and
animation, these approaches are mostly restricted to the design of reactive systems
[VLMP04, PBM+05]. Based on a specific stakeholder input, these approaches provide
and visualize an output which conforms to the stakeholder requirements and which the
stakeholder can understand and validate. However, no approach produces such an ani-
mated output based on stakeholder interactions in collaborative scenarios. Furthermore,
only few approaches provide stakeholders the possibility to intuitively express their ac-
tivities, i.e. what they do, how they do it, and with whom they do it, formally.

Our approach, on the other hand, rearranges and replays behavioral specifications
automatically derived from stakeholder observations to produce animated output as a
response to a specific stakeholder input. Thereby, participants are enabled to experience
and validate their collaborative scenarios. Additionally, while some of these advantages
can also be achieved in group sessions involving all stakeholders, our approach explicitly
supports decoupled sessions with individual stakeholders. These capabilities, in combi-
nation, amount to a novel approach of prototyping collaborative scenarios which brings
the advantages of group sessions to individual sessions.

140

10. Conclusions

Eliciting and validating requirements is quite complex, especially if many different stake-
holders and their usually disjoint perspectives are involved. Multiple formal approaches
can support the requirements engineer to cope with the inherent complexity of such
settings. For instance, by employing formal models to specify and automatically derive
behavioral specifications, different model checking techniques (cf. [SRB+00]) and auto-
mated visualizations for requirements engineers (cf. [GMM07]) are supported. However,
employing those approaches introduces overhead – especially in interactions with the
stakeholders. Since these interactions are essential to gather and validate the stakehold-
ers’ requirements, the requirements engineers have to make a trade-off between formal
and informal modeling approaches. In this thesis, we presented an approach that offers
a better trade-off for the requirements engineer.

Our model-based virtual prototyping approach provides an understandable representa-
tion which allows stakeholders to experience, judge, and comment on the formal models
which they would otherwise not be able to interpret (covering TG2A). Based on the
similarities between prototypes and models, we proposed virtual prototypes to over-
come the prerequisite of formal models, i.e. the knowledge required to understand and
work with them. To represent these models interactively, they are played out – each
identified stakeholder can be simulated by executing the corresponding story patterns
encoding the behavior observed from representatives of that role. This enables the simu-
lator to provide immediate feedback as a reaction to stakeholder input (covering TG1A).
Further, our approach affords stakeholders to play in what they would normally do in
such a way that formal models can be derived from observing the stakeholders interact
with the animated user interface of the simulation (covering TG1B and TG2B). Both
capabilities, play-out and play-in, were illustrated using a real-life case study of selling
movie tickets.

To deal with stalemates, i.e. situations during the elicitation in which a participant
needs to wait for a reaction of another role and cannot deterministically predict which
answer to expect, we introduced a black box abstraction for yet unknown activities of
other stakeholders. Thus, by intuitively defining the different alternative responses a
stakeholder expects and how he or she would continue in each case, these scenarios
can systematically be explored, played in, and validated in decoupled stakeholder ses-
sions. The definition and resolution of such expectations was illustrated using a real-life
example of a lifeguard service.

The concepts were prototypically implemented using Eclipse and EMF. Moreover,
based on the resulting research prototype, we evaluated the goals defined for this thesis

141

10. Conclusions

– namely whether our approach supports stakeholders in the validation and elicitation
of the scenarios they are involved in, and whether our approach supports requirements
engineers to quickly and inexpensively iterate story patterns (covering TG2C). In the
evaluation, the understandability of our animated domain-specific representation yielded
positive results. Furthermore, the costs of deploying and iterating story patterns were
evaluated. Overall, our approach fulfills the thesis’ goals outlined in Section 1.2, de-
couples stakeholder interactions, and, thus, enhances individual stakeholder sessions. In
conclusion, similar to how physical prototypes are perceived, our approach brings behav-
ioral models describing collaborative scenarios closer to being tangible for stakeholders.

10.1. Discussion

In most engineering and design disciplines, tangible prototypes can be used to manifest,
communicate, and iterate ideas. For software systems supporting collaborative scenarios,
however, prototypes are either infeasible or restricted to UI designs. We presented our
approach of prototyping collaborative scenarios by simulating formal behavioral models.
Based on its automation capabilities and an understandable representation, the approach
allows requirements engineers to inexpensively iterate story patterns with stakeholders.
Our approach brings the main advantage of informal requirements – the fact that stake-
holders usually understand them without explanations – to formal requirement models.
Thereby, we provide requirements engineers with a better trade-off when they have to
decide whether to document requirements formally or informally.

Generalizability of the Approach: The approach of employing virtual prototypes in
requirements engineering was successfully implemented and evaluated for the domain
of collaborative scenarios as they occur in office workplaces. These scenarios provide
a rich mixture of formal and informal artifacts, and thus solid and fluid information
(cf. [SS12a]). Furthermore, they provide standardized communication channels which
can be covered quite easily using the presented metaphors. The metaphors implemented
in the research prototype have been created, tested, and iterated over a period of three
years. Thus, while we are confident that such metaphors relying on the stakeholder
domain may be found and integrated easily, this aspect has not yet been evaluated for
other domains. Especially the notion of visibility for a role to reflect its perspective
scur|role may be to general for more complex domains in which the visibility may be
computed differently for each role.

Concerning the scenarios which may be covered, it has to be noted that while our
approach can convincingly represent media breaks as they often occur in collaborative
scenarios, it is less effective in settings in which stakeholders rely extensively on dif-
ferent software systems to share their knowledge and interact with each other. Such
systems and their functionality would have to be mimicked within our scenario simu-
lations to allow stakeholders to correctly use these systems as they do in their daily

142

10.2. Future Work

routine. Otherwise, the elicited scenarios would be different from how the stakeholders
actually work.

10.2. Future Work

Apart from additional real-life case studies covering other domains in which the presented
approach can be evaluated, further opportunities exist.

Conceptual Extensions

Parallelization of Scenario Execution: Currently, the simulator enforces a strict se-
quentialization of all steps of the involved roles. Instead, the simulation might be par-
allelized by finding one specific story pattern to execute for each of the simulated roles.
Executing them, still sequentially but seemingly in one step, might be perceived as more
realistic, as, e.g., multiple asynchronous interactions can arrive seemingly simultane-
ously. However, it has to be ensured that each story pattern chosen for one role does
not change the applicability of any story pattern chosen for another role. Consequently,
it has to be ensured that the graph transformations chosen for simultaneous execution
“only share items which are preserved” (cf. Critical Pair Analysis [HKT02]). Otherwise,
trying to simultaneously execute such story patterns may lead to inconsistent states.

Parallel Scenario Completion: As described in Chapter 6, our approach currently
focuses on completing one scenario at a time. The overall number of stakeholder in-
teractions can be further reduced by taking into account how stakeholders interact in
multiple scenarios. Specifically, the resolution of triggers defined by different stakehold-
ers might be handled explicitly within the same session.

Deriving User Stories from Collected Story Patterns: As pointed out by Leffingwell
[Lef11], user stories are “brief statements of intent that describe something the system
needs to do for some user.” These usually have the following form:

As a [user role], I can [activity] so that [business value].

Consequently, out of these three parameters, two are already encoded in each story pat-
tern. Since each story pattern belongs to a specific role r, the user role is provided.
Furthermore, the activity is equivalent to a natural language representation of the post-
condition of a story pattern – details of this representation are described in Section 2.5.
While the preconditions of the activity are also available, these can be ignored for the
user story. The business value, on the other hand, is not an explicit element of the story
pattern. To obtain this goal, i.e. why the activity is executed, two possibilities are imag-
inable: either the requirements engineer simply asks the stakeholder to fill in this single

143

10. Conclusions

remaining gap, or story patterns which were observed subsequently in other scenarios
are used to express activities which were only possible afterwards. This is illustrated
in the caption of Figure 10.1: only after a ticket is created, may the seller hand it over
to a moviegoer (cf. story pattern SPd in Figure 4.4). Consequently, it may be feasible
to automatically extract the missing parameter from observed scenarios and, thereby,
generate user stories from the collected story patterns.

seat12
:Ticket

this:Seller

++has

goodFather
:MovieTitle knows

evening
:TimeSlot knows

SPc

john
:Moviegoer

knows

:Promotional
Material

hasknows

:Visit
from to

(a) Story pattern belonging to the role seller (b) The activity encoded in the story pattern

Figure 10.1.: “As a seller, I can create a ticket so that I can hand over ticket

to moviegoer”

Prototyping the Required Software System within the Scenario Simulation: Our
approach captures collaborative scenarios by defining and refining the pre- and postcon-
ditions of stakeholder activities. Therefore, instead of prototyping design alternatives,
we focused on establishing the collaborative scenarios which the required software sys-
tem has to support. Thus, by introducing the notion of a software prototype as an active
agent in our approach, requirements engineers may define and iteratively prototype the
capabilities of the required software system and how it may fulfill the stakeholders’ needs.
Quite similar to how stakeholder activities are defined using pre- and postconditions, the
capabilities of such a software system may be prototypically defined using story patterns
as well. Within our scenario simulation, stakeholders may interact with such a prototype
of a planned software system that provides the required capabilities for, e.g. replacing
several manual activities a single role has to perform. Consequently, the activities of the
prototyped software system could be offered to participants within their intuitive GUI
as soon as the corresponding preconditions are fulfilled. Then, participants are enabled
to directly comment on whether these prototyped capabilities offered to them fulfill the
stakeholders’ needs.

Detecting Workarounds in Existing Scenarios: Building on the prior extension, if
our approach can be used to iteratively prototype capabilities of software systems, it
would also become feasible to use the story patterns from which the resulting software
system is built as an oracle [Ham94] to test the implementation against.

Furthermore, as of now, process mining relies on event logs [Aal07] to derive process
models. However, as Bhattacharya et al. point out [BCK+07], tasks in such process

144

10.2. Future Work

models “do not model their internal behavior”. Instead, their focus is on reasoning
“about the composition and results of activities” without “describing what these activ-
ities are”. Since the captured story patterns model this internal behavior, stakeholders
working around the realized software system can be recognized by observing the exe-
cution of individual activities of this running system. The domain model D provides
the required object level information to compare the actual usage of the system against
the expected usage. Thus, based on such derivations, workarounds1 which may require
a modification of the system may automatically be identified.

Research Prototype

Flexible Mapping between Front End and Back End: In this thesis, the approach
was implemented and evaluated for one domain. In its current version, the mapping
between the options offered in the front end and the corresponding modifications of the
current state of the simulation in the back end are reusable, but hard-coded (cf. step m
in Section 7.2). This mapping can be simplified by utilizing story patterns instead: for
each option in the front end, the mapping invokes a generic story pattern which leads to
the same changes. Each of these generic story patterns would then explicitly represent
a communication primitive [GH06]. Consequently, the approach is then easier to adapt
to other domains, since the requirements engineer would then be able to modify an
animation in the front end independently from its corresponding generic story pattern
in the back end.

Support for Visual NACs: The version of the Story Diagram Interpreter which is
used by the research prototype did not support visual NACs in story patterns. To
overcome this restriction, these conditions had to be encoded as OCL-constraints, which
unfortunately introduced a textual abstraction on top of the graphical one. Since it is
planned to support visual NACs in forthcoming versions of the SDI, migrating to an
updated version may substitute this workaround.

1 Poelmans [Poe99] defines a workaround as “opportunistic solution” of stakeholders or “a coping
strategy that deviates from the strategies that have been defined in the workflow systems”.

145

Bibliography

[AAF+09] Ateret Anaby-Tavor, David Amid, Amit Fisher, Harold Ossher, Rachel Bel-
lamy, Matthew Callery, Michael Desmond, Sophia Krasikov, Tova Roth,
Ian Simmonds, and Jacqueline de Vries. An algorithm for identifying the
abstract syntax of graph-based diagrams. In Proc. of the 2009 IEEE Sym-
posium on Visual Languages and Human-Centric Computing, VLHCC’09,
pages 193–196, Washington, DC, USA, 2009. IEEE Computer Society.

[Aal07] Wil van der Aalst. Trends in business process analysis: From validation
to process mining. In Proc. of the International Conference on Enterprise
Information Systems (ICEIS), Funchal, Madeira, Portugal, June 12-16 2007.

[Aal11] Wil van der Aalst. Process Mining: Discovery, Conformance and Enhance-
ment of Business Processes. Springer Berlin Heidelberg, 2011.

[AB07] Ian Alexander and Kent Beck. Point/counterpoint. IEEE Software, 24:62–
65, 2007.

[ABD09] Ian Alexander and Ljerka Beus-Dukic. Discovering Requirements: How to
Specify Products and Services. John Wiley & Sons, 2009.

[AG01] Vincenzo Ambriola and Vincenzo Gervasi. On the parallel refinement of
NL requirements and UML diagrams. In Proceedings of the ETAPS 2001
Workshop on Trasformations in UML, Genova, Italy, 2001.

[AH07] Yoram Atir and David Harel. Using lscs for scenario authoring in tactical
simulators. In SCSC: Proceedings of the 2007 summer computer simulation
conference, pages 437–442, San Diego, CA, USA, 2007. Society for Computer
Simulation International.

[AHK13] Abdullah Alshanqiti, Reiko Heckel, and Tamim Khan. Learning Minimal
and Maximal Rules from Observations of Graph Transformations. In Proc.
of the 12th International Workshop on Graph Transformation and Visual
Modeling Techniques, GT-VMT’13, 2013.

[AHTG11] Niaz Arijo, Reiko Heckel, Mirco Tribastone, and Stephen Gilmore. Mod-
ular performance modelling for mobile applications. In Proc. of the 2nd
joint WOSP/SIPEW international conference on Performance engineering,
ICPE’11, pages 329–334, New York, NY, USA, 2011. ACM.

147

Bibliography

[Ale05] Ian Alexander. A Taxonomy of Stakeholders: Human Roles in System De-
velopment. International Journal of Technology and Human Interaction,
1(1):23 – 59, 2005.

[Ale11] Ian Alexander. GORE, SORE, or What? IEEE Software, 28:8–10, 2011.

[AM04] Ian Alexander and Neil Maiden, editors. Scenarios, Stories, Use Cases:
Through the Systems Development Life-Cycle. John Wiley, New York, Au-
gust 2004.

[ARE96] A. Al-Rawas and S. Easterbrook. Communication Problems in Requirements
Engineering: A Field Study. In Proceedings of the First Westminster Con-
ference on Professional Awareness in Software Engineering. Royal Society,
London, February 1996.

[AS02] Ian Alexander and Richard Stevens. Writing Better Requirements. Pearson
Education, 2002.

[ATB06] Thomas A. Alspaugh, Bill Tomlinson, and Eric Baumer. Using social agents
to visualize software scenarios. In Proceedings of the 2006 ACM symposium
on Software visualization, SoftVis’06, pages 87–94, New York, NY, USA,
2006. ACM.

[Avc08] Oral Avci. Warum entstehen in der Anforderungsanalyse Fehler? Eine
Synthese empirischer Befunde der letzten 15 Jahre. Industrialisierung des
Software-Managements, 139:89–104, 2008. In German.

[BBLZ96] Dirk Bäumer, Walter R. Bischofberger, Horst Lichter, and Heinz
Züllighoven. User interface prototyping—concepts, tools, and experience.
In Proc. of the 18th International Conference on Software Engineering,
ICSE’96, pages 532–541, Washington, DC, USA, 1996. IEEE Computer So-
ciety.

[BCK+07] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam, and F. Y. Wu.
Artifact-centered operational modeling: lessons from customer engagements.
IBM Syst. J., 46(4):703–721, 2007.

[BDML09] Robin Bergenthum, Jörg Desel, Sebastian Mauser, and Robert Lorenz. Con-
struction of process models from example runs. In Kurt Jensen and Wil M.
Aalst, editors, Transactions on Petri Nets and Other Models of Concurrency
II, pages 243–259. Springer-Verlag, Berlin, Heidelberg, 2009.

[Ber95] Daniel M. Berry. The importance of ignorance in requirements engineering.
Journal of Systems and Software, 28(1):179–184, February 1995.

148

Bibliography

[Ber02] Daniel M. Berry. Controversy corner: the importance of ignorance in require-
ments engineering: An earlier sighting and a revisitation. J. Syst. Softw.,
60(1):83–85, January 2002.

[BH02] Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transfor-
mation: A software engineering perspective. In Andrea Corradini, Hartmut
Ehrig, Hans Kreowski, and Grzegorz Rozenberg, editors, Graph Transfor-
mation, volume 2505 of Lecture Notes in Computer Science, pages 402–429.
Springer Berlin / Heidelberg, 2002.

[BHK04] Marc Born, Eckhardt Holz, and Olaf Kath. Softwareentwicklung mit UML
2. Addison Wesley, 2004.

[BP84] Victor R. Basili and Barry T. Perricone. Software errors and complexity: an
empirical investigation. Commun. ACM, 27(1):42–52, January 1984.

[BPKR09] Brian Berenbach, Daniel Paulish, Juergen Kazmeier, and Arnold Rudorfer.
Software & Systems Requirements Engineering: In Practice. McGraw-Hill,
Inc., New York, NY, USA, 2009.

[Bro09] Tim Brown. Change by Design: How Design Thinking Transforms Organi-
zations and Inspires Innovation. HarperBusiness, September 2009.

[BSK10] Olesia Brill, Kurt Schneider, and Eric Knauss. Videos vs. use cases: Can
videos capture more requirements under time pressure? In Roel Wieringa
and Anne Persson, editors, Requirements Engineering: Foundation for Soft-
ware Quality, volume 6182 of LNCS, pages 30–44. Springer Berlin Heidel-
berg, 2010.

[Bux07] Bill Buxton. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann Publishers, 500 Sansome Street, Suite 400,
San Francisco, CA 94111, 2007.

[CA09] Betty H.C. Cheng and Joanne M. Atlee. Current and Future Research Direc-
tions in Requirements Engineering. In Kalle Lyytinen, Pericles Loucopoulos,
John Mylopoulos, and Bill Robinson, editors, Design Requirements Engi-
neering: A Ten-Year Perspective, volume 14 of Lecture Notes in Business
Information Processing, pages 11–43. Springer Berlin Heidelberg, 2009.

[Car95] John M. Carroll. Introduction: The scenario perspective on system devel-
opment. In Scenario-Based Design: Envisioning Work and Technology in
System Development, chapter Introduction: The Scenario Perspective on
System Development, pages 1–18. John Wiley & Sons, Inc., 1995.

149

Bibliography

[CDL07] Fabio Calefato, Daniela Damian, and Filippo Lanubile. An Empirical Inves-
tigation on Text-Based Communication in Distributed Requirements Work-
shops. In Proc. of the International Conference on Global Software Engineer-
ing, ICGSE’07, pages 3–11, Washington, DC, USA, 2007. IEEE Computer
Society.

[CHP01] Stephen Cranefield, Stefan Haustein, and Martin Purvis. Uml-based on-
tology modelling for software agents. In Proceedings of the Workshop on
Ontologies in Agent Systems, 5th International Conference on Autonomous
Agents, 2001.

[CLGG09] John R. Cooper, Seok-Won Lee, Robin A. Gandhi, and Orlena Gotel. Re-
quirements Engineering Visualization: A Survey on the State-of-the-Art. In
Proc. of the 4th International Workshop on Requirements Engineering Vi-
sualization, pages 46–55, Los Alamitos, CA, USA, 2009. IEEE Computer
Society.

[CMR96] A. Corradini, U. Montanari, and F. Rossi. Graph Processes. Fundam. Inf.,
26(3-4):241–265, June 1996.

[Coc01] Alistair Cockburn. Writing Effective Use Cases. Agile Software Develop-
ment. Addison Wesley, 2001.

[CP99] Stephen Cranefield and Martin Purvis. Uml as an ontology modelling lan-
guage. In In Proceedings of the Workshop on Intelligent Information Integra-
tion, 16th International Joint Conference on Artificial Intelligence (IJCAI-
99), pages 46–53, 1999.

[Cro06] D. Crockford. The application/json Media Type for JavaScript Object Nota-
tion (JSON). http://tools.ietf.org/html/rfc4627 (accessed June 2013), July
2006. Request for Comment Nr. 4627.

[CS08] Kevin Clark and Ron Smith. Unleashing the power of design thinking.
Design Management Review, 19(3):8–15, 2008.

[Dam01] Daniela Damian. An Empirical Study of Requirements Engineering in Dis-
tributed Software Projects: Is Distance Negotiation More Effective? In
Proc. of the Asia-Pacific Software Engineering Conference, page 149, Los
Alamitos, CA, USA, 2001. IEEE Computer Society.

[Dam07] Daniela Damian. Stakeholders in global requirements engineering: Lessons
learned from practice. IEEE Software, 24(2):21–27, 2007.

[Dav93] Alan M. Davis. Software Requirements: Objects, Functions and States.
Prentice-Hall, Englewood Cliffs, revised edition, 1993.

150

Bibliography

[Dav94] Alan M. Davis. Requirements Engineering. In Encyclopedia of Software
Engineering, volume II, pages 1043–1055. John Wiley & Sons Inc., February
1994.

[Dav05] Alan M. Davis. Just Enough Requirements Management : Where Software
Development Meets Marketing. Dorset House Publishing Co., Inc., New
York, NY, USA, 2005.

[DDH+06] Alan M. Davis, Oscar Dieste, Ann Hickey, Natalia Juristo, and Ana M.
Moreno. Effectiveness of requirements elicitation techniques: Empirical re-
sults derived from a systematic review. In Proc. of the 14th IEEE Interna-
tional Conference Requirements Engineering, pages 179–188, Los Alamitos,
CA, USA, 2006. IEEE Computer Society.

[Des08] Jörg Desel. From human knowledge to process models. In Wil Aalst,
John Mylopoulos, Michael Rosemann, Michael J. Shaw, Clemens Szyperski,
Roland Kaschek, Christian Kop, Claudia Steinberger, and Günther Fliedl,
editors, Information Systems and e-Business Technologies, volume 5 of Lec-
ture Notes in Business Information Processing, pages 84–95. Springer Berlin
Heidelberg, 2008.

[DESG00] Daniela E. Herlea Damian, Armin Eberlein, Mildred L.G. Shaw, and
Brian R. Gaines. Using Different Communication Media in Requirements
Negotiation. IEEE Software, 17(3):28–36, 2000.

[DEVG08] Jonathan Dinerstein, Parris K. Egbert, Dan Ventura, and Michael Goodrich.
Demonstration-based behavior programming for embodied virtual agents.
Computational Intelligence, 24(4):235–256, November 2008.

[DGZ04] I. Diethelm, L. Geiger, and A. Zündorf. Systematic story driven modeling.
In Proc. of the ICSE Workshop on Scenarios and State Machines: models,
algorithms, and tools, Edinburgh, 2004.

[DHD+07] Alan M. Davis, Ann Hickey, Oscar Dieste, Natalia Juristo, and Ana M.
Moreno. A quantitative assessment of requirements engineering publications-
1963-2006. In Proceedings of the 13th international working conference on
Requirements engineering: foundation for software quality, REFSQ’07, pages
129–143, Berlin, Heidelberg, 2007. Springer-Verlag.

[DHP+12] M. von Detten, C. Heinzemann, M. Platenius, J. Rieke, D. Travkin, and
S. Hildebrandt. Story diagrams - syntax and semantics. Technical Report tr-
ri-12-324, Software Engineering Group, Heinz Nixdorf Institute, University
of Paderborn, July 2012.

151

Bibliography

[DMCS05] Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh.
Interaction protocols as design abstractions for business processes. IEEE
Transactions on Software Engineering, 31:1015–1027, 2005.

[DN07] Alan M. Davis and Kesav V. Nori. Requirements, plato’s cave, and percep-
tions of reality. In Annual International Computer Software and Applications
Conference, COMPSAC’07, pages 487–492, Los Alamitos, CA, USA, 2007.
IEEE Computer Society.

[DP06] Brian Dobing and Jeffrey Parsons. How uml is used. Commun. ACM,
49(5):109–113, 2006.

[DQS10] Teduh Dirgahayu, Dick Quartel, and Marten van Sinderen. Interaction re-
finement in the design of business collaborations. In Proc. of the 2010 ACM
Symposium on Applied Computing, SAC’10, pages 86–93, New York, NY,
USA, 2010. ACM.

[DS99] Linda Dawson and Paul Swatman. The use of object-oriented models in
requirements engineering: a field study. In ICIS’99: Proceedings of the 20th
international conference on Information Systems, pages 260–273, Atlanta,
GA, USA, 1999. Association for Information Systems.

[EB04] Claudia Ermel and Roswitha Bardohl. Scenario animation for visual behav-
ior models: A generic approach. Software and Systems Modeling, 3(2):164–
177, 2004.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. EATCS. Springer-Verlag Berlin Heidelberg, 2006.

[EHKZ05] Claudia Ermel, Karsten Hölscher, Sabine Kuske, and Paul Ziemann. Ani-
mated simulation of integrated uml behavioral models based on graph trans-
formation. In Proc. of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’05), pages 125–133, Los Alamitos,
CA, USA, 2005. IEEE Computer Society.

[Eic12] Daniel Eichler. Empowering stakeholders to manipulate formal models using
structured natural language representation. Master’s thesis, Hasso Plattner
Institute for Software Systems Engineering, University of Potsdam, Ger-
many, March 2012.

[ER03] Albert Endres and Dieter Rombach. A Handbook of Software and Systems
Engineering: Empirical Observations, Laws and Theories. The Fraunhofer
IESE series on software engineering. Addison Wesley, 2003.

152

Bibliography

[FNTZ00] Thorsten Fischer, Jörg Niere, Lars Torunski, and Albert Zündorf. Story
diagrams: A new graph rewrite language based on the unified modeling lan-
guage and java. In Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and
Grzegorz Rozenberg, editors, Theory and Application of Graph Transforma-
tions, volume 1764 of Lecture Notes in Computer Science, pages 157–167.
Springer Berlin / Heidelberg, 2000.

[Gab09] Gregor Gabrysiak. Modeling and Simulation of Reusable Collaborations
for Embedded Systems with Dynamic Structures. Master’s thesis, Hasso
Plattner Institute for Software Systems Engineering, University of Potsdam,
Germany, March 2009.

[Gab11] Gregor Gabrysiak. Exploration and validation through animation of sce-
nario specifications. In Doctoral Symposium of the 19th IEEE International
Requirements Engineering Conference, RE’11, pages 27–30, Trento, Italy,
August 29 2011.

[Gav91] William W. Gaver. Technology affordances. In CHI’91: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 79–84,
New York, NY, USA, 1991. ACM.

[GC04] Kentaro Go and John M. Carroll. The blind men and the elephant: views
of scenario-based system design. Interactions, 11:44–53, November 2004.

[GEGS10] Gregor Gabrysiak, Jonathan A. Edelman, Holger Giese, and Andreas Seibel.
How tangible can virtual prototypes be? In Proc. of the 8th Design Thinking
Research Symposium, DTRS’10, pages 163–174, Sydney, Australia, October
19-20 2010.

[GEHG13] Gregor Gabrysiak, Daniel Eichler, Regina Hebig, and Holger Giese. En-
abling Domain Experts to Modify Formal Models via a Natural Language
Representation Consistently. In Proc. of the First ICSE 2013 Workshop on
Natural Language Analysis in Software Engineering, NaturaLiSE’13, pages
1–8, San Francisco, CA, USA, May 25 2013.

[Gem04] Andrew Gemino. Empirical comparisons of animation and narration in re-
quirements validation. Requir. Eng., 9(3):153–168, 2004.

[GGB12] Gregor Gabrysiak, Holger Giese, and Thomas Beyhl. Virtual Multi-User
Software Prototypes III. In H. Plattner, C. Meinel, and L. Leifer, editors, De-
sign Thinking Research – Measuring Performance in Context, Understanding
Innovation, pages 263–284. Springer Berlin Heidelberg, 2012.

[GGHG12] Gregor Gabrysiak, Markus Guentert, Regina Hebig, and Holger Giese.
Teaching Requirements Engineering with Authentic Stakeholders: Towards

153

Bibliography

a Scalable Course Setting. In Proc. of the First International Work-
shop on Software Engineering Education Based on Real-Word Experiences,
EduRex’12, pages 1–4, Zurich, Switzerland, June 9 2012.

[GGLS11] Gregor Gabrysiak, Holger Giese, Alexander Lüders, and Andreas Seibel.
How Can Metamodels Be Used Flexibly? In Proc. of ICSE 2011 Workshop
on Flexible Modeling Tools, FlexiTools’11, Waikiki, Honolulu, Hawaii, USA,
May 22 2011.

[GGS09] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Interactive Visual-
ization for Elicitation and Validation of Requirements with Scenario-Based
Prototyping. In Proc. of the 4th International Workshop on Requirements
Engineering Visualization, REV’09, pages 41–45, Los Alamitos, CA, USA,
September 1 2009.

[GGS10a] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Deriving behavior of
multi-user processes from interactive requirements validation. In Proc. of the
IEEE/ACM International Conference on Automated Software Engineering,
ASE’10, pages 355–356, Antwerp, Belgium, September 20-24 2010.

[GGS10b] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Using Ontologies for
Flexibly Specifying Multi-User Processes. In Proc. of ICSE 2010 Workshop
on Flexible Modeling Tools, FlexiTools’10, Cape Town, South Africa, May 2
2010.

[GGS11a] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Towards Next Gen-
eration Design Thinking: Scenario-Based Prototyping for Designing Com-
plex Software Systems with Multiple Users. In H. Plattner, C. Meinel, and
L. Leifer, editors, Design Thinking: Understand – Improve – Apply, Under-
standing Innovation, pages 219–236. Springer Berlin Heidelberg, 2011.

[GGS11b] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Why Should I Help
You to Teach Requirements Engineering? In Proc. of the 6th International
Workshop on Requirements Engineering Education and Training, REET’11,
pages 9–13, Trento, Italy, August 29 2011.

[GGS12] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Towards Next-
Generation Design Thinking II: Virtual Multi-User Software Prototypes. In
H. Plattner, C. Meinel, and L. Leifer, editors, Design Thinking Research,
Understanding Innovation, pages 107–126. Springer Berlin Heidelberg, 2012.

[GGSN10] Gregor Gabrysiak, Holger Giese, Andreas Seibel, and Stefan Neumann.
Teaching requirements engineering with virtual stakeholders without soft-
ware engineering knowledge. In Proc. of the 5th International Workshop on

154

Bibliography

Requirements Engineering Education and Training, REET’10, pages 36 – 45,
Sydney, Australia, September 28 2010.

[GGZ+05] Lars Grunske, Leif Geiger, Albert Zündorf, Niels Eetvelde, Pieter Gorp,
and Dániel Varró. Using graph transformation for practical model-driven
software engineering. In Sami Beydeda, Matthias Book, and Volker Gruhn,
editors, Model-Driven Software Development, pages 91–117. Springer Berlin
Heidelberg, 2005.

[GH06] Paul Guyot and Shinichi Honiden. Agent-based participatory simulations:
Merging multi-agent systems and role-playing games. Journal of Artificial
Societies and Social Simulation, 9(4), 2006.

[GHG12a] Gregor Gabrysiak, Regina Hebig, and Holger Giese. Decoupled Model-Based
Elicitation of Stakeholder Scenarios. In Proc. of the Seventh International
Conference on Software Engineering Advances, ICSEA’12, pages 70–77, Lis-
bon, Portugal, November 18-23 2012.

[GHG12b] Gregor Gabrysiak, Regina Hebig, and Holger Giese. Simulation-Assisted
Elicitation and Validation of Behavioral Specifications for Multiple Stake-
holders. In Proc. of the 21st IEEE International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises, WETICE’12,
pages 220–225, Toulouse, France, June 25-27 2012.

[GHPG13] Gregor Gabrysiak, Regina Hebig, Lukas Pirl, and Holger Giese. Cooperating
with a Non-governmental Organization to Teach Gathering and Implemen-
tation of Requirements. In Proc. of the 26th Conference on Software Engi-
neering Education and Training, CSEE&T’13, pages 11–20, San Francisco,
CA, USA, May 19-21 2013.

[GHS09] Holger Giese, Stephan Hildebrandt, and Andreas Seibel. Improved Flexi-
bility and Scalability by Interpreting Story Diagrams. In Tiziana Magaria,
J. Padberg, and Gabriele Taentzer, editors, Proc. of the Eighth Interna-
tional Workshop on Graph Transformation and Visual Modeling Techniques
(GT-VMT 2009), 2009.

[Gli00] Martin Glinz. Improving the quality of requirements with scenarios. In Proc.
of the 2nd World Congress for Software Quality, pages 55–60, Yokohama,
September 2000.

[GMM07] Orlena C.Z. Gotel, Francis T. Marchese, and Stephen J. Morris. On re-
quirements visualization. In Proc. of the 2nd International Workshop on
Requirements Engineering Visualization, page 11, Los Alamitos, CA, USA,
2007. IEEE Computer Society.

155

Bibliography

[GMM09] Carlo Ghezzi, Andrea Mocci, and Mattia Monga. Synthesizing intensional
behavior models by graph transformation. In ICSE’09: Proceedings of the
2009 IEEE 31st International Conference on Software Engineering, pages
430–440, Washington, DC, USA, 2009. IEEE Computer Society.

[Gre76] Anthony G. Greenwald. Within-Subjects Designs: To Use or Not To Use?
Psychological Bulletin, 83(2):314 – 320, 1976.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition 5(2):199-220, Stanford University, April 1993.

[GW07] Martin Glinz and Roel J. Wieringa. Guest editors’ introduction: Stakehold-
ers in requirements engineering. IEEE Software, 24(2):18–20, 2007.

[GZ04] Leif Geiger and Albert Zündorf. Statechart modeling with fujaba. In Proc. of
the International Workshop on Graph-Based Tools, volume Electronic Notes
in Theoretical Computer Science 127 of GraBaTs’04, pages 37–49, 2004.

[GZ05] Vincenzo Gervasi and Didar Zowghi. Reasoning about inconsistencies in nat-
ural language requirements. ACM Trans. Softw. Eng. Methodol., 14(3):277–
330, 2005.

[Ham94] Richard Hamlet. Random Testing. In Encyclopedia of Software Engineering,
volume II, pages 971–978. John Wiley & Sons Inc., February 1994.

[Har01] David Harel. From play-in scenarios to code: An achievable dream. Com-
puter, 34:53–60, January 2001.

[HBJ09] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. Cope
– automating coupled evolution of metamodels and models. In Sophia
Drossopoulou, editor, ECOOP 2009 – Object-Oriented Programming, vol-
ume 5653 of LNCS, pages 52–76. Springer Berlin / Heidelberg, 2009.

[HD98] Patrick Heymans and Eric Dubois. Scenario-based techniques for supporting
the elaboration and the validation of formal requirements. Requirements
Engineering, 3(3-4):202–218, March 1998.

[Hec06] Reiko Heckel. Graph transformation in a nutshell. Electronic Notes in Theo-
retical Computer Science, 148(1):187 – 198, 2006. Proceedings of the School
of SegraVis Research Training Network on Foundations of Visual Modelling
Techniques (FoVMT 2004).

[HHT96] Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph grammars with
negative application conditions. Fundamenta Informaticae, 26(3):287–313,
1996.

156

Bibliography

[HJD11] Elizabeth Hull, Ken Jackson, and Jeremy Dick. Requirements Engineering.
Springer, 3rd edition, 2011.

[HKMP02] David Harel, Hillel Kugler, Rami Marelly, and Amir Pnueli. Smart play-out
of behavioral requirements. In FMCAD’02: Proceedings of the 4th Inter-
national Conference on Formal Methods in Computer-Aided Design, pages
378–398, London, UK, 2002. Springer-Verlag.

[HKT02] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence
of typed attributed graph transformation systems. In Andrea Corradini,
Hartmut Ehrig, Hans-Jrg Kreowski, and Grzegorz Rozenberg, editors, Graph
Transformation, volume 2505 of Lecture Notes in Computer Science, pages
161–176. Springer Berlin Heidelberg, 2002.

[HM03a] David Harel and Rami Marelly. Come, Let’s Play: Scenario-Based Pro-
gramming Using LSC’s and the Play-Engine. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2003.

[HM03b] David Harel and Rami Marelly. Specifying and executing behavioral re-
quirements: the play-in/play-out approach. Software and Systems Modeling,
2:82–107, 2003. 10.1007/s10270-002-0015-5.

[HPW98] Peter Haumer, Klaus Pohl, and Klaus Weidenhaupt. Requirements elicita-
tion and validation with real world scenes. IEEE Transactions on Software
Engineering, 24(12):1036–1054, 1998.

[HSKS08] David Harel, Itai Segall, Hillel Kugler, and Yaki Setty. Crafting game-
models using reactive system design. In Proceedings of the 2008 Conference
on Future Play: Research, Play, Share, Future Play’08, pages 121–128, New
York, NY, USA, 2008. ACM.

[IEE90] IEEE Standards Board. IEEE Standard Glossary of Software Engineering
Terminology (610.12-1990). The Institute of Electrical and Electronics En-
gineers, New York, 1990. Reaffirmed 2002.

[IEE98] IEEE. Recommended practice for software requirements specifications. Tech-
nical Report IEEE Std. 830-1998, IEEE, 1998.

[Jac00] Michael Jackson. The real world. In Jim Davies, Bill Roscoe, and Jim Wood-
cock, editors, Millennial Perspectives in Computer Science: Proceedings of
the 1999 Oxford-Microsoft Symposium in Honour of C A R Hoare, pages
157–173, 2000.

157

Bibliography

[JMF09] Ivan Jureta, John Mylopoulos, and Stephane Faulkner. Analysis of multi-
party agreement in requirements validation. In Proc. of the 17th IEEE In-
ternational Requirements Engineering Conference (RE’09), pages 57–66, Los
Alamitos, CA, USA, 2009. IEEE Computer Society.

[JP93] M. Jarke and K. Pohl. Establishing visions in context – towards a model
of requirements processes. In J. I. DeGross, R. P. Ostrom, and D. Robey,
editors, Proceedings of the 14th Intl. Conference on Information Systems,
pages 23–34, Orlando, Florida, USA, Dezember 1993.

[KCH+02] Paul Kogut, Stephen Cranefield, Lewis Hart, Mark Dutra, Kenneth Ba-
clawski, Mieczyslaw Kokar, and Jeffrey Smith. Uml for ontology develop-
ment. Knowl. Eng. Rev., 17(1):61–64, March 2002.

[KG00] Daryl Kulak and Eamonn Guiney. Use Cases: Requirements in Context.
Addison Wesley, 1st edition, May 2000.

[Kle11] Stefan Kleff. Effiziente Simulation von virtuellen Prototypen. Master’s
thesis, Hasso-Plattner-Institut für Softwaresystemtechnik, Universität Pots-
dam, Germany, August 2011.

[KNNZ00] Hans J. Köhler, Ulrich Nickel, Jörg Niere, and Albert Zündorf. Integrating
uml diagrams for production control systems. In Proc. of the 22nd Interna-
tional Conference on Software Engineering, ICSE’00, pages 241–251, New
York, NY, USA, 2000. ACM.

[Küh06] Thomas Kühne. Matters of (meta-) modeling. Software and Systems Mod-
eling, 5:369–385, 2006.

[Kuu95] K. Kuutti. Work processes: Scenarios as a preliminary vocabulary. In
John M. Carroll, editor, Scenario-Based Design: Envisioning Work and
Technology in System Development, pages 19–36. John Wiley, 1995.

[Lam01] Axel Van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided
Tour. In Proc. of the 5th International Symposium on Requirements Engi-
neering (RE’01), page 0249, Los Alamitos, CA, USA, 2001. IEEE Computer
Society.

[Lau02] Soren Lauesen. Software Requirements: Styles and Techniques. Addison-
Wesley, Longman, Amsterdam, 2002.

[LCL87] F. J. Lin, P. M. Chu, and M. T. Liu. Protocol verification using reachability
analysis: the state space explosion problem and relief strategies. SIGCOMM
Comput. Commun. Rev., 17(5):126–135, August 1987.

158

Bibliography

[LDD06] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin. A comparative survey
of scenario-based to state-based model synthesis approaches. In Proc. of
the 2006 international workshop on Scenarios and state machines: models,
algorithms, and tools, SCESM’06, pages 5–12, New York, NY, USA, 2006.
ACM.

[Lef11] Dean Leffingwell. Agile Software Requirements: Lean Requirements Practices
for Teams, Programs, and the Enterprise. Agile Software Development. Ad-
dison Wesley, 2011.

[LK10] Alfons Laarman and Ivan Kurtev. Ontological metamodeling with explicit
instantiation. In Mark van den Brand, Dragan Gaševic, and Jeff Gray,
editors, Software Language Engineering, volume 5969 of Lecture Notes in
Computer Science, pages 174–183. Springer Berlin / Heidelberg, 2010.

[LL93] V. Lalioti and P. Loucopoulos. Visualisation for validation. In Colette
Rolland, Franois Bodart, and Corine Cauvet, editors, Advanced Information
Systems Engineering, volume 685 of Lecture Notes in Computer Science,
pages 143–164. Springer Berlin / Heidelberg, 1993.

[LMP04] Mich Luisa, Franch Mariangela, and NoviInverardi Pierluigi. Market re-
search for requirements analysis using linguistic tools. Requirements Engi-
neering, 9:40–56, 2004. 10.1007/s00766-003-0179-8.

[LRA02] Wesley James Lloyd, Mary Beth Rosson, and James D. Arthur. Effective-
ness of Elicitation Techniques in Distributed Requirements Engineering. In
Proc. of the 10th Anniversary Joint IEEE International Requirements Engi-
neering Conference (RE’02), page 311, Los Alamitos, CA, USA, 2002. IEEE
Computer Society.

[LS87] Jill H. Larkin and Herbert A. Simon. Why a Diagram is (Sometimes) Worth
Ten Thousand Words. Cognitive Science, 11(1):65–100, 1987.

[LST08] Youn-Kyung Lim, Erik Stolterman, and Josh Tenenberg. The anatomy of
prototypes: Prototypes as filters, prototypes as manifestations of design
ideas. ACM Trans. Comput.-Hum. Interact., 15(2):1–27, 2008.

[LSW08] Daniel Lübke, Kurt Schneider, and Matthias Weidlich. Visualizing use case
sets as bpmn processes. In Proc. of the 3rd International Workshop on Re-
quirements Engineering Visualization (REV’08), pages 21–25, Los Alamitos,
CA, USA, 2008. IEEE Computer Society.

[Lue11] A. Luebbe. Tangible Business Process Modeling: Design and Evaluation of
a Process Model Elicitation Technique. PhD thesis, University of Potsdam,
2011.

159

Bibliography

[LW99] Dean Leffingwell and Don Widrig. Managing Software Requirements. Addi-
son Wesley, 1999.

[LW11] A. Luebbe and M. Weske. Tangible media in process modeling – a controlled
experiment. In H. Mouratidis and C. Roland, editors, Proc. of the 23th
Conference on Advanced Information Systems Engineering (CAiSE 2011),
volume 6741 of LNCS, pages 283–298, 2011.

[MAA08] Farid Meziane, Nikos Athanasakis, and Sophia Ananiadou. Generating nat-
ural language specifications from uml class diagrams. Requir. Eng., 13(1):1–
18, 2008.

[Mai12] Neil Maiden. Cherishing ambiguity. IEEE Software, 29(6):16–17, 2012.

[MDF05] Geoffrey Marczyk, David DeMatteo, and David Festinger. Essentials of
Research Design and Methodology. Essentials of Behavioral Science. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2005.

[Mer13] Merriam-Webster Online Dictionary. Definition of Black Box .
http://www.merriam-webster.com/dictionary/black-box, Accessed June
2013.

[MNK+07] Neil Maiden, Cornelius Ncube, Simin Kamali, Norbert Seyff, and Paul
Grünbacher. Exploring scenario forms and ways of use to discover require-
ments on airports that minimize environmental impact. In Proceedings of
the 15th IEEE International Requirements Engineering Conference (RE’07),
pages 29–38, 2007.

[MPGK00] Jeff Magee, Nat Pryce, Dimitra Giannakopoulou, and Jeff Kramer. Graphi-
cal animation of behavior models. In Proc. of the 22nd International Confer-
ence on Software Engineering, ICSE’00, page 499, Los Alamitos, CA, USA,
2000. IEEE Computer Society.

[Mur11] Fernando Muradas. A novel framework for requirements elicitation in a
military settings. In Doctoral Symposium of the 19th IEEE International
Requirements Engineering Conference, RE’11, Trento, Italy, August 29 2011.

[NC03] A. Nigam and N. S. Caswell. Business artifacts: An approach to operational
specification. IBM Syst. J., 42(3):428–445, 2003.

[NL03] Colin J. Neill and Phillip A. Laplante. Requirements Engineering: The State
of the Practice. IEEE Software, 20(6):40–45, 2003.

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The fujaba environment. In
Proc. of the 22nd international conference on Software engineering, ICSE’00,
pages 742–745, New York, NY, USA, 2000. ACM.

160

Bibliography

[NS00] L. Nguyen and P. A. Swatman. Essential and incidental complexity in re-
quirements models. In Proc. of the 4th International Conference on Require-
ments Engineering (RE’00), page 130, Washington, DC, USA, 2000. IEEE
Computer Society.

[OBS+10] Harold Ossher, Rachel Bellamy, Ian Simmonds, David Amid, Ateret Anaby-
Tavor, Matthew Callery, Michael Desmond, Jacqueline de Vries, Amit
Fisher, and Sophia Krasikov. Flexible modeling tools for pre-requirements
analysis: conceptual architecture and research challenges. In Proceedings of
the ACM international conference on Object oriented programming systems
languages and applications, OOPSLA’10, pages 848–864, New York, NY,
USA, 2010. ACM.

[OHS+10] Harold Ossher, André van der Hoek, Margaret-Anne Storey, John Grundy,
and Rachel Bellamy. Flexible modeling tools (flexitools2010). In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 2, ICSE’10, pages 441–442, New York, NY, USA, 2010. ACM.

[OMG05a] Object Management Group. Unified Modeling Language: Infrastructure.
http://www.omg.org/spec/UML/2.0/ (accessed June 2013), July 2005. Ver-
sion 2.0.

[OMG05b] Object Management Group. Unified Modeling Language: Superstructure.
http://www.omg.org/spec/UML/2.0/ (accessed June 2013), July 2005. Ver-
sion 2.0.

[OMG05c] Object Management Group. XML Metadata Interchange.
http://www.omg.org/spec/XMI/2.1/ (accessed June 2013), September
2005. Version 2.1.

[OP10] Alexander Osterwalder and Yves Pigneur. Business Model Generation: A
Handbook for Visionaries, Game Changers, and Challengers. John Wiley &
Sons, Inc., August 2010.

[ÖPMS98] M. Özcan, P. Parry, I. Morrey, and J. Siddiqi. Visualisation of executable
formal specifications for user validation. In Tiziana Margaria, Bernhard
Steffen, Roland Rückert, and Joachim Posegga, editors, Services and Vi-
sualization Towards User-Friendly Design, volume 1385 of Lecture Notes
in Computer Science, pages 142–157. Springer Berlin / Heidelberg, 1998.
10.1007/BFb0053503.

[PBM+05] Christophe Ponsard, Nadiya Balych, Philippe Massonet, Jean Vanderdonckt,
and Axel van Lamsweerde. Goal-Oriented Design of Domain Control Panels.
In Stephen W. Gilroy and Michael D. Harrison, editors, DSV-IS, volume
3941 of LNCS, pages 249–260. Springer, 2005.

161

Bibliography

[PMW09] Hasso Plattner, Christoph Meinel, and Ulrich Weinberg. Design Thinking.
mi-Wirtschaftsbuch, 2009. In German.

[Poe99] Stephan Poelmans. Workarounds and distributed viscosity in a workflow
system: a case study. SIGGROUP Bull., 20(3):11–12, 1999.

[Poh93] Klaus Pohl. The Three Dimensions of Requirements Engineering. In
CAiSE’93: Proceedings of Advanced Information Systems Engineering, pages
275–292, London, UK, 1993. Springer-Verlag.

[Poh10] Klaus Pohl. Requirements Engineering: Fundamentals, Principles, and
Techniques. Springer, 2010.

[Pow10] Daniel Powell. Behavior engineering - a scalable modeling and analysis
method. In Proc. of the 8th IEEE International Conference on Software
Engineering and Formal Methods, pages 31–40, Los Alamitos, CA, USA,
2010. IEEE Computer Society.

[PR11] Klaus Pohl and Chris Rupp. Requirements Engineering Fundamentals: A
Study Guide for the Certified Professional for Requirements Engineering
Exam - Foundation Level. Rocky Nook, 2011.

[Pre05] Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Higher Education, 6th edition, 2005.

[Ric11] Stefan Richter. Gesteuerte und interaktive Simulation von virtuellen Proto-
typen. Master’s thesis, Hasso-Plattner-Institut für Softwaresystemtechnik,
Universität Potsdam, Germany, November 2011.

[Rot89] Jeff Rothenberg. The nature of modeling. In Lawrence E. Widman, Ken-
neth A. Loparo, and Norman R. Nielsen, editors, AI, Simulation & Modeling,
pages pp. 75–92. John Wiley & Sons, Inc., 1989.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing
by Graph Transformation, volume 1 of Foundations. World Scientific Pub.
Co., 1997.

[RS09] Chris Rupp and die SOPHISTen. Requirements-Engineering und -
Management: Professionelle, iterative Anforderungsanalyse für die Praxis.
Carl Hanser Verlag GmbH & CO. KG, 5th edition, July 2009.

[Sar05] Edward P. Sarafino. Research Methods: Using Processes & Procedures of
Science to Understand Behavior. Upper Saddle River: Pearson/Prentice
Hall, 2005.

162

Bibliography

[SBPM09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework. Addison-Wesley, Boston, MA, 2. edition, 2009.

[Sch96] Kurt Schneider. Prototypes as assets, not toys: why and how to extract
knowledge from prototypes. In Proc. of the 18th International Conference
on Software Engineering, ICSE’96, pages 522–531, Washington, DC, USA,
1996. IEEE Computer Society.

[Sch04] Michael Schrage. Never Go to a Client Meeting without a Prototype. IEEE
Software, 21:42–45, 2004.

[Sch07] Kurt Schneider. Generating fast feedback in requirements elicitation. In
Pete Sawyer, Barbara Paech, and Patrick Heymans, editors, Requirements
Engineering: Foundation for Software Quality, volume 4542 of Lecture Notes
in Computer Science, pages 160–174. Springer Berlin Heidelberg, 2007.

[SGM05] Christian Seybold, Martin Glinz, and Silvio Meier. Simulation-based Valida-
tion and Defect Localization for Evolving, Semi-Formal Requirements Mod-
els. In Proc. of the Asia-Pacific Software Engineering Conference, pages
408–420, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[SL04] Keng Siau and Lihyunn Lee. Are use case and class diagrams complemen-
tary in requirements analysis? an experimental study on use case and class
diagrams in uml. Requirements Engineering, 9:229–237, 2004.

[SMG04] Christian Seybold, Silvio Meier, and Martin Glinz. Evolution of requirements
models by simulation. In Proc. of the International Workshop on Principles
of Software Evolution, pages 43–48, Los Alamitos, CA, USA, 2004. IEEE
Computer Society.

[SMG06] Christian Seybold, Silvio Meier, and Martin Glinz. Scenario-driven modeling
and validation of requirements models. In Proc. of the 2006 international
workshop on Scenarios and state machines: models, algorithms, and tools,
SCESM’06, pages 83–89, New York, NY, USA, 2006. ACM.

[SMK+09] Norbert Seyff, Neil Maiden, Kristine Karlsen, James Lockerbie, Paul
Grünbacher, Florian Graf, and Cornelius Ncube. Exploring how to use sce-
narios to discover requirements. Requirements Engineering, 14(2):91–111,
June 2009.

[SML+09] Katherine M. Sellen, Micheal A. Massimi, Danielle M. Lottridge, Khai N.
Truong, and Sean A. Bittle. The people-prototype problem: understanding
the interaction between prototype format and user group. In CHI’09: Pro-
ceedings of the 27th international conference on Human factors in computing
systems, pages 635–638, New York, NY, USA, 2009. ACM.

163

Bibliography

[Sny03] Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Design and
Refine User Interfaces. Morgan Kaufmann, 2003.

[Som06] Ian Sommerville. Software Engineering. Addison Wesley, 8th edition, 2006.

[SRB+00] Reto Schmid, Johannes Ryser, Stefan Berner, Martin Glinz, Ralf Reute-
mann, and Erwin Fahr. A Survey of Simulation Tools for Requirements
Engineering. Technical report, University of Zurich, 2000.

[SS97] Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Prac-
tice Guide. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997.

[SS99] D. Skog and M. Söderlund. Virtual information representation. In Pro-
ceedings of the 22nd Information Systems Research Seminar in Scandinavia,
pages 191–204, Keuruu, Finland, 1999.

[SS12a] Kai Stapel and Kurt Schneider. FLOW-Methode - Methodenbeschreibung
zur Anwendung von FLOW. Technical report, Fachgebiet Software Engi-
neering, Leibniz Universität Hannover, 2012.

[SS12b] Marc Stickdorn and Jakob Schneider, editors. This is Service Design Think-
ing: Basics – Tools – Cases. Bis Publishers, 2012.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie (German). Springer, Wien,
1973.

[Teu11] Ralf Teusner. Smarte Simulation von virtuellen Prototypen. Master’s
thesis, Hasso-Plattner-Institut für Softwaresystemtechnik, Universität Pots-
dam, Germany, November 2011.

[Tey02] A. Teyseyre. A 3d visualization approach to validate requirements. In Proc.
of the Congreso Argentino de Ciencias de la Computación, Argentina, Oc-
tober 2002.

[TGRK13] Ralf Teusner, Gregor Gabrysiak, Stefan Richter, and Stefan Kleff. Interactive
Strategy-Based Validation of Behavioral Models. In Proc. of the 12th In-
ternational Workshop on Graph Transformation and Visual Modeling Tech-
niques, GT-VMT’13, Rome, Italy, March 23-24 2013.

[UCKM04] Sebastian Uchitel, Robert Chatley, Jeff Kramer, and Jeff Magee. Fluent-
based animation: Exploiting the relation between goals and scenarios for
requirements validation. In Proc. of the 12th IEEE International Conference
on Requirements Engineering (RE’04), pages 208–217, Los Alamitos, CA,
USA, 2004. IEEE Computer Society.

164

Bibliography

[UKM01] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Detecting implied scenar-
ios in message sequence chart specifications. SIGSOFT Softw. Eng. Notes,
26:74–82, September 2001.

[UKM02a] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Implied scenario detection
in the presence of behaviour constraints. Electronic Notes in Theoretical
Computer Science, 65(7):65 – 84, 2002. VISS 2002, Validation and Imple-
mentation of Scenario-based Specifications (Satellite Event of ETAPS 2002).

[UKM02b] Sebastian Uchitel, Jeff Kramer, and Jeff Magee. Negative scenarios for im-
plied scenario elicitation. In Proceedings of the 10th ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering, SIGSOFT’02/FSE-10, pages
109–118, New York, NY, USA, 2002. ACM.

[Usc98] Mike Uschold. Knowledge level modelling: concepts and terminology. Knowl.
Eng. Rev., 13(1):5–29, 1998.

[Val91] Antti Valmari. Stubborn sets for reduced state generation. In Proceedings
on Advances in Petri nets 1990, pages 491–515, New York, NY, USA, 1991.
Springer-Verlag New York, Inc.

[VBI+09] Eurico Vasconcelos, Jean-Pierre Briot, Marta Irving, Simone Barbosa, and
Vasco Furtado. A user interface to support dialogue and negotiation in par-
ticipatory simulations. In Nuno David and Jaime Sichman, editors, Multi-
Agent-Based Simulation IX, volume 5269 of Lecture Notes in Computer Sci-
ence, pages 127–140. Springer Berlin / Heidelberg, 2009.

[VLMP04] Hung Tran Van, Axel van Lamsweerde, Philippe Massonet, and Christophe
Ponsard. Goal-oriented requirements animation. In Proc. of the IEEE Inter-
national Conference on Requirements Engineering, volume 0, pages 218–228,
Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[WJ10] Jon Whittle and Praveen K. Jayaraman. Synthesizing hierarchical state
machines from expressive scenario descriptions. ACM Trans. Softw. Eng.
Methodol., 19:8:1–8:45, February 2010.

[WRH+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Reg-
nell, and Anders Wesslén. Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[ZBCG10] William G. Zikmund, Barry J. Babin, Jon C. Carr, and Mitch Griffin. Busi-
ness Research Methods. Wadsworth Inc Fulfillment, 8th edition, 2010.

[ZD09] Albert Zündorf and Jörn Dreyer. NT2OD – from natural text to object dia-
gram. In Proc. of the 7th international Fujaba Days, pages 56–58, November
2009.

165

Bibliography

[ZG03] Didar Zowghi and Vincenzo Gervasi. On the interplay between consistency,
completeness, and correctness in requirements evolution. Information and
Software Technology, 45(14):993 – 1009, 2003. Eighth International Work-
shop on Requirements Engineering: Foundation for Software Quality.

[ZJ97] Pamela Zave and Michael Jackson. Four dark corners of requirements engi-
neering. ACM Trans. Softw. Eng. Methodol., 6:1–30, January 1997.

[Zün01] Albert Zündorf. Rigorous Object Oriented Software Development, 2001.
Habilitation Thesis, University of Paderborn.

166

A. Publications

Our initial idea of including stakeholders interactively into the validation of requirements
was first published at the 4th International Workshop on Requirements Engineering Visu-
alization (REV’09, [GGS09]). It was motivated through the needs which we elicited from
the design consultancy D-LABS GmbH,1 an industrial partner within our HPDTRP2

project, and which were published in the book Design Thinking: Understand – Improve
– Apply [GGS11a]. As the idea of model-based prototyping aimed at stakeholders mani-
fested, we also discussed the similarities that exist between models and prototypes at the
8th Design Thinking Research Symposium (DTRS8, [GEGS10]). Then, the interactivity
of our approach was evaluated in an experiment with students and published in the book
Design Thinking Research: Studying Co-Creation in Practice [GGS12]. Also, we imple-
mented and presented the capability to derive formal specifications based on observed
interactions at the 25th IEEE/ACM International Conference on Automated Software
Engineering (ASE’10, [GGS10a]). The overall dissertation topic was then presented
and discussed at the Doctoral Symposium that was part of the 19th IEEE International
Requirements Engineering Conference (RE’11, [Gab11]). Additionally, the three years
of our HPDTRP project were summarized along with experimental results concerning
the understandability of our approach in the book Design Thinking Research: Mea-
suring Performance in Context [GGB12]. Further, the simulation loop was established
and subsequently published at the 21st IEEE International Conference on Collaboration
Technologies and Infrastructures (CoMetS’12, [GHG12b]). Then, an extension which
defined a black box abstraction for stakeholders was introduced and published at the
7th International Conference on Software Engineering Advances (ICSEA’12, [GHG12a]).

Furthermore, we published papers describing the results of master’s theses building
upon and extending the concepts developed within this thesis at the 12th International
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT’13,
[TGRK13]) and at the 1st International Workshop on Natural Language Analysis in
Software Engineering (NaturaLiSE’13, [GEHG13]).

Along the way, two related topics emerged and were looked into as well. Firstly, we in-
vestigated the potentials of flexible metamodels, i.e. how our approach can benefit from
them (FlexiTools Workshop at ICSE’10 [GGS10b]) and how metamodels can be em-
ployed flexibly in general (FlexiTools Workshop at ICSE’11 [GGLS11]). Secondly, based
on the need for suitable experimentees, we came up with a novel approach of recruiting

1 http://www.d-labs.com/english/ (accessed June 2013)
2 HPI-Stanford Design Thinking Research Program, http://www.hpi.uni-potsdam.de/forschung/
design_thinking_research_program/program/?L=1 (accessed June 2013)

167

http://www.d-labs.com/english/
http://www.hpi.uni-potsdam.de/forschung/design_thinking_research_program/program/?L=1
http://www.hpi.uni-potsdam.de/forschung/design_thinking_research_program/program/?L=1

A. Publications

and instructing simulated stakeholders (5th REET Workshop at RE’10 [GGSN10]). This
led to a new concept for a requirements engineering seminar (6th REET Workshop at
RE’11 [GGS11b]) which was successfully conducted three times at the HPI. While the
second seminar in cooperation with a software startup company was described in more
detail focusing on the scalability of the seminar setting (EduREX Workshop at ICSE’12
[GGHG12]), the results of the first seminar were discussed along with the subsequent
implementation in our publication at the 26th Conference on Software Engineering Ed-
ucation and Training (CSEE&T’13, [GHPG13]).

168

Publications

[Gab11] Gregor Gabrysiak. Exploration and validation through animation of scenario spec-
ifications. In Doctoral Symposium of the 19th IEEE International Requirements
Engineering Conference, RE’11, pages 27–30, Trento, Italy, August 29 2011.

[GEGS10] Gregor Gabrysiak, Jonathan A. Edelman, Holger Giese, and Andreas Seibel. How
tangible can virtual prototypes be? In Proc. of the 8th Design Thinking Research
Symposium, DTRS’10, pages 163–174, Sydney, Australia, October 19-20 2010.

[GEHG13] Gregor Gabrysiak, Daniel Eichler, Regina Hebig, and Holger Giese. Enabling
Domain Experts to Modify Formal Models via a Natural Language Representation
Consistently. In Proc. of the First ICSE 2013 Workshop on Natural Language
Analysis in Software Engineering, NaturaLiSE’13, pages 1–8, San Francisco, CA,
USA, May 25 2013.

[GGB12] Gregor Gabrysiak, Holger Giese, and Thomas Beyhl. Virtual Multi-User Software
Prototypes III. In H. Plattner, C. Meinel, and L. Leifer, editors, Design Thinking
Research – Measuring Performance in Context, Understanding Innovation, pages
263–284. Springer Berlin Heidelberg, 2012.

[GGHG12] Gregor Gabrysiak, Markus Guentert, Regina Hebig, and Holger Giese. Teach-
ing Requirements Engineering with Authentic Stakeholders: Towards a Scalable
Course Setting. In Proc. of the First International Workshop on Software En-
gineering Education Based on Real-Word Experiences, EduRex’12, pages 1–4,
Zurich, Switzerland, June 9 2012.

[GGLS11] Gregor Gabrysiak, Holger Giese, Alexander Lüders, and Andreas Seibel. How
Can Metamodels Be Used Flexibly? In Proc. of ICSE 2011 Workshop on Flexible
Modeling Tools, FlexiTools’11, Waikiki, Honolulu, Hawaii, USA, May 22 2011.

[GGS09] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Interactive Visualization
for Elicitation and Validation of Requirements with Scenario-Based Prototyping.
In Proc. of the 4th International Workshop on Requirements Engineering Visual-
ization, REV’09, pages 41–45, Los Alamitos, CA, USA, September 1 2009.

[GGS10a] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Deriving behavior of
multi-user processes from interactive requirements validation. In Proc. of
the IEEE/ACM International Conference on Automated Software Engineering,
ASE’10, pages 355–356, Antwerp, Belgium, September 20-24 2010.

169

Publications

[GGS10b] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Using Ontologies for Flexi-
bly Specifying Multi-User Processes. In Proc. of ICSE 2010 Workshop on Flexible
Modeling Tools, FlexiTools’10, Cape Town, South Africa, May 2 2010.

[GGS11a] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Towards Next Generation
Design Thinking: Scenario-Based Prototyping for Designing Complex Software
Systems with Multiple Users. In H. Plattner, C. Meinel, and L. Leifer, editors, De-
sign Thinking: Understand – Improve – Apply, Understanding Innovation, pages
219–236. Springer Berlin Heidelberg, 2011.

[GGS11b] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Why Should I Help You to
Teach Requirements Engineering? In Proc. of the 6th International Workshop on
Requirements Engineering Education and Training, REET’11, pages 9–13, Trento,
Italy, August 29 2011.

[GGS12] Gregor Gabrysiak, Holger Giese, and Andreas Seibel. Towards Next-Generation
Design Thinking II: Virtual Multi-User Software Prototypes. In H. Plattner,
C. Meinel, and L. Leifer, editors, Design Thinking Research, Understanding Inno-
vation, pages 107–126. Springer Berlin Heidelberg, 2012.

[GGSN10] Gregor Gabrysiak, Holger Giese, Andreas Seibel, and Stefan Neumann. Teaching
requirements engineering with virtual stakeholders without software engineering
knowledge. In Proc. of the 5th International Workshop on Requirements Engi-
neering Education and Training, REET’10, pages 36 – 45, Sydney, Australia,
September 28 2010.

[GHG12a] Gregor Gabrysiak, Regina Hebig, and Holger Giese. Decoupled Model-Based Elic-
itation of Stakeholder Scenarios. In Proc. of the Seventh International Conference
on Software Engineering Advances, ICSEA’12, pages 70–77, Lisbon, Portugal,
November 18-23 2012.

[GHG12b] Gregor Gabrysiak, Regina Hebig, and Holger Giese. Simulation-Assisted Elici-
tation and Validation of Behavioral Specifications for Multiple Stakeholders. In
Proc. of the 21st IEEE International Conference on Enabling Technologies: In-
frastructure for Collaborative Enterprises, WETICE’12, pages 220–225, Toulouse,
France, June 25-27 2012.

[GHPG13] Gregor Gabrysiak, Regina Hebig, Lukas Pirl, and Holger Giese. Cooperating
with a Non-governmental Organization to Teach Gathering and Implementation of
Requirements. In Proc. of the 26th Conference on Software Engineering Education
and Training, CSEE&T’13, pages 11–20, San Francisco, CA, USA, May 19-21
2013.

[TGRK13] Ralf Teusner, Gregor Gabrysiak, Stefan Richter, and Stefan Kleff. Interactive

Strategy-Based Validation of Behavioral Models. In Proc. of the 12th Interna-

tional Workshop on Graph Transformation and Visual Modeling Techniques, GT-

VMT’13, Rome, Italy, March 23-24 2013.

170

B. Evaluation Data

B.1. T-Test Results for Section 8.2.1

Table B.1 presents the p values of independent two-sample t-tests of the eleven Likert
scale questions. As a special form of ANalysis Of VAriance (ANOVA), t-tests can be
used to determine whether a statistically significant difference between the means of two
groups exist [MDF05]. Therefore, apart from the three pairwise t-tests, the last column
shows the corresponding ANOVA results which determine significance of the responses
of all three groups for each question.

p for comparing the groups using ... ANOVA
VP / UML VP / Pen and Paper UML / Pen and Paper results
Q1 0.63332 0.09726 0.05800 0.12
Q2 0.20676 0.79241 0.36356 0.47
Q3 1.00000 0.00487 0.01591 0.009
Q4 0.47453 0.08772 0.02376 0.064
Q5 0.83983 1.00000 0.85786 0.97
Q6 0.80436 0.80651 0.63332 0.89
Q7 0.13058 0.11745 0.64402 0.22
Q8 0.00968 0.76396 0.02844 0.019
Q9 0.00145 0.01084 0.00001 0.0001
Q10 0.74266 0.07977 0.03653 0.13
Q11 0.06365 0.70655 0.06801 0.10

Table B.1.: Results of independent two-sample t-tests which evaluate pairwise the sig-
nificance of either of the three methods used by the different groups (VP
stands for virtual prototype and UML for the modeling tool; bold values are
considered significant, i.e. ≤ 0.05)

B.2. Summarized Responses of the Evaluation in
Section 8.2.2

171

S
u
b

je
c
t

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

A
g
e

2
1

2
5

3
0

2
2

2
8

2
3

1
8

2
3

2
2

2
4

2
1

2
2

2
4

2
2

2
6

D
e
sc

rip
tio

n
fo

r
V
1

U
se

r
e
n
tsc

h
e
i-

d
e
t

sic
h

in
P

C
-S

p
ie

l
fü

r
A

ssi

A
u
sw

a
h
l

A
ssi

(a
u
sfü

h
rlic

h
b

e
sc

h
rie

b
e
n
)

A
u
sw

a
h
l

A
ssiste

n
t

“
m

a
n

sp
ie

lt
a
lle

in
”

A
u
sw

a
h
l

A
ssiste

n
t

(P
C

-S
p
ie

l
fe

h
lt)

A
u
sw

a
h
l

d
e
r

e
r-

ste
n

(A
ssi)

M
ö
g
lic

h
k
e
it

(S
im

u
la

-
to

r)

A
u
sw

a
h
l

e
in

e
r

M
ö
g
lic

h
k
e
it

(P
C

S
p
ie

l)

A
u
sw

a
h
l

e
in

e
r

R
o
lle

A
u
sw

a
h
l

e
in

e
r

R
o
lle

B
ü
ro

sp
ie

l
in

d
e
m

m
a
n

R
o
lle

n
e
in

n
e
h
m

e
n

k
a
n
n

S
im

u
la

tio
n

B
ü
ro

a
b
la

u
f,

A
ssi

a
u
s-

g
e
w

ä
h
lt

W
a
h
l

in
e
in

e
m

S
p
ie

l
fü

r
A

ssi

A
u
sw

a
h
l

A
ssi,

ist
b

e
re

it

A
u
ff

o
rd

e
ru

n
g

e
rsc

h
e
in

t
a
u
f

B
ild

-
sc

h
irm

u
n
d

w
ird

b
e
stä

tig
t

S
im

u
la

-
tio

n
ssp

ie
l,

A
u
sw

a
h
l

d
e
r

R
o
lle

A
ssi

(sp
ie

lt
a
lle

in
e
)

A
ssi

w
ird

a
u
s-

g
e
w

ä
h
lt

(P
C

sp
ie

l)

C
o
n
fi

d
e
n
c
e

6
6

5
5

6
4

2
5

6
6

5
6

7
7

6
C

o
rre

c
tn

e
ss

C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
I
n
c
o
r
r
e
c
t

C
o
r
rec

t
C
o
r
rec

t
D

e
sc

rip
tio

n
fo

r
V
2

M
e
ie

r
b

e
k
o
m

m
t

M
a
il

v
o
n

B
o
ss,

o
b

A
n
w

e
isu

n
g

v
o
n

S
c
h
m

id
t

d
a

ist

“
S
y
m

b
o
l

b
lin

k
t”

fra
g
e

v
o
n

B
o
ss,

o
b

A
n
fra

g
e

v
o
n

K
u
n
d
e

b
e
a
rb

e
ite

t
w

u
rd

e

M
a
il

v
o
n

B
o
ss

a
n

M
e
ie

r
“
h
a
b

e
n

sie
A

u
ftra

g
b

e
k
o
m

-
m

e
n
”

A
ssi

b
e
k
o
m

m
t

M
a
il

v
o
n

B
o
ss

M
a
il

w
ird

g
e
ö
ff

n
e
t

(d
u
rc

h
k
lic

k
e
n

a
u
f

ic
o
n
)

u
n
d

g
e
le

se
n

ö
ff

n
e
t

B
rie

fu
m

-
sc

h
la

g
,

F
e
n
ste

r
ö
ff

n
e
t

sic
h

u
n
d

w
ird

g
e
sc

h
lo

sse
n

S
im

u
la

tio
n

B
ü
ro

a
b
la

u
fe

s.
M

a
ilp

ro
-

g
ra

m
m

g
e
ö
ff

n
e
t

A
ssi

b
e
k
o
m

m
t/

li-
e
st

M
a
il

v
o
m

B
o
ss

P
o
st

w
ird

g
e
le

se
n

A
ssi

li-
e
st

M
a
il

v
o
n

B
o
ss

(a
n
d
e
re

r
M

itsp
ie

le
r)

M
a
il

m
it

F
ra

g
e

n
a
c
h

A
u
f-

tra
g

w
ird

g
e
ö
ff

n
e
t

M
e
ie

r
ö
ff

n
e
t

M
a
il

o
b

A
u
ftra

g
d
a

ist

B
lin

k
e
n
d
e
r

B
rie

f,
w

ird
g
e
le

se
n

S
p
ie

le
r

ist
M

e
ie

r,
O

u
tlo

o
k

w
ird

g
e
-

ö
ff

n
e
t

u
m

A
u
fträ

g
e

a
n
z
u
n
e
h
m

e
n
,

e
r

e
rh

ä
lt

A
n
fra

g
e

A
ssi

ö
ff

n
e
t

u
n
d

lie
st

M
a
il

C
o
n
fi

d
e
n
c
e

6
6

5
6

5
5

5
6

–
6

5
7

7
6

5
C

o
rre

c
tn

e
ss

C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
I
n
c
o
r
r
e
c
t

C
o
r
rec

t
I
n
c
o
r
r
e
c
t

C
o
r
rec

t
I
n
c
o
r
r
e
c
t

C
o
r
rec

t
C
o
r
rec

t
D

e
sc

rip
tio

n
fo

r
V
3

A
n
ru

f
v
o
m

B
o
ss

w
e
g
e
n

K
a
ff

e
e
/

in
5

m
in

d
a

B
o
ss

fra
g
t

p
e
r

T
e
le

fo
n

n
a
c
h

K
a
ff

e
e

/
“
in

5
m

in
”

A
n
ru

f
v
o
n

B
o
ss

w
e
g
e
n

K
a
ff

e
e
/

in
5
m

in

”
B

o
ss

te
le

fo
n
ie

rt
n
a
c
h

K
a
f-

fe
e
/

M
a
ie

r
“
ja

in
5
m

in
”

T
e
le

fo
n
-

g
e
sp

rä
c
h

w
ird

g
e
fü

h
rt

K
o
m

m
u
n
i-

k
a
tio

n
p

e
r

T
e
le

fo
n

B
o
ss

te
lt

A
ssi

a
n

w
ill

K
a
f-

fe
e
/

g
le

ic
h

B
o
ss

ru
ft

A
ssi

a
n
,

w
ill

K
a
f-

fe
e
/

“
in

5
m

in
”

T
e
le

fo
n
a
t

m
it

B
o
ss

B
o
ss

ru
ft

A
ssi,

w
ill

K
a
ff

e
e
/

in
5
m

in

B
o
ss

ru
ft

A
ssi

a
n
,

w
ill

K
a
f-

fe
e
/

5
m

in

T
e
le

fo
n
,

B
o
ss

w
ill

K
a
ff

e
e
,

M
e
ie

r:
“
in

5
m

in
”

T
e
le

fo
n

k
lin

g
e
lt,

B
o
ss

fra
g
t

M
e
ie

r
n
a
c
h

K
a
ff

e
e
:

“
in

5
m

in
”

A
n
ru

f
v
o
n

B
o
ss,

K
a
f-

fe
e

k
o
m

m
t

in
5
m

in

B
o
ss

k
o
n
-

ta
k
tie

rt
A

ssi
n
a
c
h

K
a
ff

e
e
,

A
n
tw

o
rt

in
5
m

in
C

o
n
fi

d
e
n
c
e

7
6

6
5

6
4

–
6

7
6

5
6

7
7

6
C

o
rre

c
tn

e
ss

C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
D

e
sc

rip
tio

n
fo

r
V
4

K
u
n
d
e

e
rste

llt
A

u
ftra

g
s-

d
o
k
u
m

e
n
t,

a
u
f

d
e
m

S
ig

n
u
m

v
o
n

B
o
ss

fe
h
lt

K
u
n
d
e

e
rste

llt
A

u
ftra

g
s-

d
o
k
u
m

e
n
t,

v
e
rw

irft
e
s

A
ssi

e
r-

ste
llt

D
o
k
u
m

e
n
-

t/
A

u
ftra

g
m

it
W

o
rd

.
G

e
g
e
n
-

sta
n
d

w
ird

v
e
rk

a
u
ft

A
ssi

e
r-

ste
llt

w
o
rd

D
o
k
u
m

e
n
t

P
ro

b
a
n
t

e
rste

llt
D

o
k
u
m

e
n
t

!la
c
h
t!

A
u
ftra

g
w

ird
e
r-

ste
llt

(w
o
rd

)

B
e
n
u
tz

e
r

e
rste

llt
A

u
tra

g
W

o
rd

A
ssi

e
r-

ste
llt

A
u
ftra

g
u
n
d

V
e
r-

w
irft,

B
o
ss

h
a
t

sic
h

a
u
sg

e
lo

g
g
t

E
rste

llu
n
g

e
in

e
s

D
o
k
u
-

m
e
n
te

s

A
ssi

e
r-

ste
llt

D
o
k
u
m

e
n
t

(A
u
ftra

g
)

W
o
rd

e
rste

llte
s

D
o
k
u
m

e
n
t

“
A

u
ftra

g
”

J
e
m

a
n
d

e
rste

llt
A

u
ftra

g
/

D
o
k
u
m

e
n
t

A
u
ftra

g
/

D
o
k
u
m

e
n
t

w
ird

e
rste

llt

P
e
rso

n
ist

je
tz

t
K

u
n
d
e

u
n
d

g
ib

t
A

u
ftra

g

A
ssi

g
ib

t
A

u
ftra

g
a
u
f

C
o
n
fi

d
e
n
c
e

7
5

5
3

6
5

5
6

6
6

4
4

5
7

5
C

o
rre

c
tn

e
ss

C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
D

e
sc

rip
tio

n
fo

r
V
5

B
o
ss

b
e
-

w
illig

t
u
n
d

u
n
-

te
rsc

h
re

ib
t

A
u
ftra

g

D
o
k
u
m

e
n
t

w
ird

u
n
te

r-
sc

h
rie

b
e
n

B
o
ss

u
n
-

te
rsc

h
re

ib
t

u
n
d

sp
e
-

ic
h
e
rt

A
u
ftra

g

B
o
ss

e
r-

ste
llt/

u
n
-

te
rsc

h
re

ib
t

A
u
ftra

g

P
ro

b
a
n
t

u
n
te

r-
sc

h
re

ib
t

A
u
f-

tra
g

u
n
d

v
e
rse

n
d
e
t

A
u
ftra

g
w

ird
a
n
g
e
n
o
m

-
m

e
n
,

u
n
te

r-
sc

h
rie

b
e
n

u
n
d

b
e
-

n
a
n
n
t

B
o
ss

g
e
n
e
h
m

ig
t

A
n
tra

g

A
ssi,

ru
ft

A
u
ftra

g
a
u
f,

u
n
-

te
rsc

h
re

ib
t

ih
n

a
n

S
te

lle
d
e
s

B
o
sse

s
u
n
d

sp
e
ic

h
e
rt

A
ssi

u
n
-

te
rsc

h
re

ib
t

A
u
ftra

g
a
n
sta

tt
B

o
ss

B
o
ss

b
e
stä

tig
t

A
u
ftra

g
u
n
d

u
n
te

r-
sc

h
re

ib
t

“
A

ssi
w

a
r

a
u
fe

in
m

a
l

d
e
r

B
o
ss”

u
n
d

n
a
h
m

A
u
ftra

g
a
n

M
e
ie

r
ö
ff

n
e
t

A
u
ftra

g
,

n
im

m
t

a
n

u
n
d

u
n
te

r-
sc

h
re

ib
t

A
u
ftra

g
w

ird
b

e
stä

tig
t

u
n
d

m
it

M
e
ie

r
u
n
-

te
rsc

h
rie

b
e
n

P
e
rso

n
ist

je
tz

t
B

o
ss,

A
u
f-

tra
g

w
ird

a
n
g
e
n
o
m

-
m

e
n
,

U
n
te

rz
e
-

ic
h
n
u
n
g

m
it

M
e
ie

r

A
ssi

u
n
-

te
rsc

h
re

ib
t

A
u
f-

tra
g
,“

e
ig

e
n
a
rtig

,
d
a

d
ie

s
d
e
r

B
o
ss

m
a
c
h
e
n

so
llte

”

C
o
n
fi

d
e
n
c
e

7
6

5
6

6
5

7
6

5
7

4
3

7
6

6
C

o
rre

c
tn

e
ss

C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
D

e
sc

rip
tio

n
fo

r
V
6

B
o
ss

v
e
rlä

sst
B

ü
ro

u
n
d

fra
g
t

A
ssi

n
a
c
h

K
a
f-

fe
e
/

“
in

2
m

in
”

k
lic

k
t

a
u
f

T
ü
r,

fra
g
t

A
ssi

n
a
c
h

K
a
ff

e
e
/

“
in

2
m

in
”

B
o
ss

b
e
-

su
c
h
t

A
ssi,

fra
g
t

n
a
c
h

K
a
ff

e
/

“
in

2
m

in
”

B
o
ss

b
e
-

su
c
h
t

A
ssi,

w
ill

K
a
ff

e
e

P
ro

b
a
n
t

k
lic

k
t

a
u
f

T
ü
r

>
re

d
e
t

m
it

A
ssi

T
ü
r

w
ird

a
n
g
e
k
lic

k
t,

K
o
m

m
u
-

n
ik

a
tio

n
m

it
A

ssi

B
o
ss

b
e
-

su
c
h
t

A
ssi,

w
ill

K
a
f-

fe
e

-
“
in

2
m

in
”

A
ssi

1
b

e
-

su
c
h
t

A
ssi

2
w

ill
K

a
f-

fe
e
/

“
in

2
m

in
”

K
o
m

m
u
n
i-

k
a
tio

n
z
w

.
B

o
ss

u
n
d

A
ssi

B
o
ss

b
e
-

su
c
h
t

A
ssi,

w
ill

K
a
ff

e
e

B
o
ss

fra
g
t

A
ssi

n
a
c
h

K
a
ff

e
e
,

A
n
tw

o
rt

in
2
m

in

B
o
ss

b
e
-

su
c
h
t

A
ssi

fra
g
t

n
a
c
h

K
a
ff

e
e

M
e
ie

r
k
lic

k
t

F
e
n
ste

r
a
n

fra
g
t

S
e
k
re

tä
rin

n
a
c
h

K
a
f-

fe
e
/

in
2
m

in

B
o
ss

b
e
-

su
c
h
t

A
ssi,

fra
g
t

n
a
c
h

K
a
ff

e
e
,

A
n
tw

o
rt:

2
m

in

M
e
ie

r
ist

je
tz

t
B

o
ss

g
e
w

o
rd

e
n

C
o
n
fi

d
e
n
c
e

7
6

5
5

6
4

7
6

6
6

5
6

7
7

6
C

o
rre

c
tn

e
ss

C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
I
n
c
o
r
r
e
c
t

C
o
r
rec

t
I
n
c
o
r
r
e
c
t

C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
I
n
c
o
r
r
e
c
t

D
e
sc

rip
tio

n
fo

r
V
7

K
u
n
d
e

sc
h
ic

k
t

M
a
il

a
n

M
e
ie

r

p
e
r

“
N

a
c
h
ric

h
t-

e
n
sy

m
b

o
l”

A
u
ftra

g
v
e
rsc

h
ic

k
t

K
u
n
d
e

sc
h
ic

k
t

A
ssi

d
e
n

A
u
ftra

g

K
u
n
d
e

n
im

m
t

A
u
f-

tra
g

a
n
,

sc
h
re

ib
t

d
ie

s
a
n

A
ssi

P
ro

b
a
n
t

sc
h
re

ib
t

M
a
il,

h
ä
n
g
t

A
n
-

h
a
n
g

d
ra

n
,

se
n
d
e
t

M
a
il

b
e
-

n
u
tz

t,
N

a
c
h
ric

h
t

+
A

n
h
a
n
g

v
e
rfa

sst,
v
e
rse

n
d
e
t

K
u
n
d
e

se
n
d
e
t

A
ssi

m
it

A
u
ftra

g
im

A
n
h
a
n
g

A
ssi

1
v
e
rsc

h
ic

k
t

a
n

A
ssi

2
M

a
il

m
it

A
u
ftra

g

B
o
ss

sc
h
ic

k
t

A
ssi

d
e
n

A
u
ftra

g

S
p
ie

le
r

in
R

o
lle

d
e
s

K
u
n
d
e
n

se
n
d
e
t

A
ssi

M
a
il

m
it

A
u
f-

tra
g

B
o
ss

ist
je

tz
t

K
u
n
d
e

u
n
d

v
e
rsc

h
ic

k
t

A
u
ftra

g
a
n

A
ssi

K
u
n
d
e

sc
h
re

ib
t

M
a
il+

A
u
ftra

g
a
n

A
ssi

P
e
rso

n
sc

h
ic

k
t

M
a
il

(sa
m

t
A

u
f-

tra
g
)

a
n

M
e
ie

r

K
u
n
d
e

sc
h
ic

k
t

A
ssi

M
a
il

m
it

A
u
f-

tra
g

im
A

n
h
a
n
g

M
e
ie

r
ist

S
c
h
m

id
t

g
e
w

o
rd

e
n
,

S
c
h
m

id
t

sc
h
ic

k
t

A
u
ftra

g
a
n

M
e
ie

r
C

o
n
fi

d
e
n
c
e

–
6

6
7

–
5

–
6

6
7

3
7

7
7

5
C

o
rre

c
tn

e
ss

C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t
C
o
r
rec

t

T
ab

le
B

.2.:
G

erm
an

d
ata

for
th

e
ex

p
erim

en
t

d
escrib

ed
in

S
ection

8.2.2
(su

m
m

arized
from

th
e

free
tex

t
resp

on
ses

b
y

th
e

stu
d
en

ts
w

h
o

rated
th

e
correctn

ess)

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Establishing Correct, Consistent, and Complete Requirements
	1.2 Problem Definition
	1.3 Contributions
	1.4 Structure

	2 Preliminaries
	2.1 Elicitation and Discovery
	2.1.1. Group Sessions
	2.1.2. Individual Sessions

	2.2 Documentation, Specification, and Models
	2.3 Validation of Models
	2.3.1. Visualization and Animation
	2.3.2. Prototyping

	2.4 Scenarios
	2.5 Graph Transformations

	3 Overall Approach
	3.1 Modeling Collaborative Scenarios
	3.1.1. Refining the Basic Domain Model to Describe Scenario States
	3.1.2. Story Patterns based on Scenario States
	3.1.3. Introducing new Concepts into the Domain Model
	3.1.4. Handling Domain Concept Modifications
	3.1.5. Use Cases for Domain Model, States, and Story Patterns

	3.2 From Formal Models to Virtual Prototypes
	3.2.1. Prerequisites of Representations
	3.2.2. A�ordance Options
	3.2.3. Virtual Prototypes

	3.3 Overview
	3.4 Chapter Summary

	4 Replaying and Rearranging Scenarios
	4.1 Concept
	4.1.1. Simulation Approach
	4.1.2. Case Study: Sale of a Movie Ticket

	4.2 Stakeholder Feedback in Validation Sessions
	4.2.1. Story Patterns Belonging to a Participant's Role
	4.2.2. Story Patterns Affecting a Participant's Role
	4.2.3. General Feedback

	4.3 Strategy-Driven Exploration of Stakeholder Scenarios
	4.3.1. Strategies Based on a Limited Look Ahead
	4.3.2. Reducing the Participants' Downtime

	4.4 Chapter Summary

	5 Completion and Correction of Captured Scenarios
	5.1 Concept
	5.1.1. Simulation Loop Including Stakeholder Input
	5.1.2. Case Study: Alternatives for the Movie Ticket Sale

	5.2 Restrictions on Deriving Story Patterns
	5.3 Merging Preconditions of Equivalent Activities
	5.4 Chapter Summary

	6 Decoupled Completion and Correction of Scenarios
	6.1 Concept
	6.1.1. Capturing Different Stakeholder Expectations as Triggers
	6.1.2. Capturing Stakeholders' Follow-Up Actions
	6.1.3. Resolving Triggers Systematically

	6.2 Case Study: Notifying a Lifeguard Service
	6.2.1. Session 1 - Notifier
	6.2.2. Session 2 - Communications Operative
	6.2.3. Session 3 - Boatman
	6.2.4. Resulting Scenario

	6.3 Chapter Summary

	7 Research Prototype
	7.1 Architecture
	7.2 Implementation of the Simulation Loop
	7.3 Interacting with Artifacts
	7.4 Adaptability
	7.5 Chapter Summary

	8 Evaluation
	8.1 Preliminaries
	8.2 Understandable Representation
	8.2.1. Interacting to Validate Scenarios
	8.2.2. Stakeholder Interpretation of the Virtual Prototype

	8.3 Prototype Iterations: Quick and Inexpensive
	8.3.1. Setting up a Simulation Session
	8.3.2. Automation within the Simulation Loop

	8.4 Modifications through Stakeholders
	8.4.1. Immediate Feedback Based on Play-In
	8.4.2. Stakeholders Correcting Erroneous Story Patterns

	8.5 Chapter Summary

	9 Related Work
	9.1 Animated Play-Out
	9.2 Play-In of New Specifications
	9.3 Scenario Specifications
	9.4 Overview and Chapter Summary

	10 Conclusions
	10.1 Discussion
	10.2 Future Work

	Bibliography
	A Publications
	Publications
	B Evaluation Data
	B.1 T-Test Results for Section 8.2.1
	B.2 Summarized Responses of the Evaluation in Section 8.2.2

