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– an application in paleoclimate
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Abstract

This article aims at the statistical assessment of time series with large fluctuations in short
time, which are assumed to stem from a continuous process perturbed by a Lévy process exhibit-
ing a heavy tail behavior. We propose an easily implementable procedure to estimate efficiently
the statistical difference between the noisy behavior of the data and a given reference jump
measure in terms of so-called coupling distances, which were introduced in [10]. After a short
introduction to Lévy processes and coupling distances we recall basic statistical approximation
results and derive rates of convergence. In the sequel the procedure is elaborated in detail in
an abstract setting and eventually applied in a case study to simulated and paleoclimate data.
It indicates the dominant presence of a non-stable heavy-tailed jump Lévy component for some
tail index α > 2.
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1 Introduction

In many contexts time series of interest show too large fluctuations in short periods of time in order
to justify the assumption of an underlying continuous model. Due to the continuity of Gaussian
models it is necessary to go beyond the Gaussian paradigm to model random perturbations and
to include the effect of shocks. The natural class including discontinuous perturbations is given by
Lévy processes, that is non-Gaussian extensions of Brownian motion, which keep the white noise
structure of stationary, δ-correlated increments. Often stochastic modeling consists in the study of
deterministic models, which represent preknowledge about the underlying phenomenon, perturbed
by (Lévy) noise.

In this contribution we want to follow the ideas of [10] in order to calibrate the jump behavior
in our model by means of coupling distances based on empirical data. Coupling distances contain
a suitably renormalized Wasserstein distance between jump measures of Lévy processes, which
metrizes the weak convergence of distributions. In their work they consider a class of Lévy driven
dynamical systems and derive a quantitative upper bound for the proximity of their distributions
on sample path space. An essential factor in this estimate is the coupling distance between Lévy
measures. By construction these distances explore the discrepancy of Lévy measures along decreas-
ing jump sizes. This article wishes to provide the theoretical background as well as an instructive
road map to implement the concept of coupling distances in a statistical setting.

The estimation of the tail behavior is also of interest on its own. Many important dynamical
features, stability properties or scaling invariance are determined by the mass distribution in the
tails. See for instance [17, 18, 21, 13, 16]. In a mathematical paradigm of climate science rapid
transitions between stadials and interstadials of the last glaciation period can be described by the
impact of unpredictable shocks, that can be interpreted as large discontinuities of a random driving
force. In the seminal article [7] Ditlevsen identified an α-stable Lévy component in a climate proxy
signal with the help of the statistical analysis of large jumps. Further investigation in that direction
has been carried out in [12] and [14] exploiting the selfsimilarity of these processes.

We will concentrate on the calibration of the tails of compound Poisson processes, a crucial
subclass of Lévy processes with jumps. We refer to Section 2 for a nutshell and to [1] and [23] for
the interested reader. This section also contains the definition of the coupling distance. In Section 3
we provide the statistical tools to assess the Wasserstein distance in the coupling distance. We prove
the rate of convergence to a non-trivial limiting random variable. Section 4 details the conceptual
and algorithmic approach to the calibration problem. Conceptually we describe the modeling class
interpreting large increments as governed by large jumps of the driving noise. This allows to define
the statistical quantity of interest, the empirical version of a coupling distance. We present an
algorithm how to evaluate this statistic on a data sample. In Section 5 we exemplify the previous
strategy for the calibration of polynomial tails. Simulated sample paths confirm the strength of
method. Eventually we reassess the climate proxies studied by Ditlevsen et. al with our calibration
procedure. Comparing the coupling distance for α = 1.75 with values α > 2 justifies the assumption
of an non-stable jump Lévy component.

2 Lévy processes and coupling distances

Lévy processes: The most prominent representative of a Lévy process is arguably Brownian mo-
tion. A standard Brownian motion B = (Bt)t>0 is defined as a stochastic process starting in B0 = 0,
with independent increments satisfying the stationarity condition Bt −Bs = Bt−s ∼ N(0, (t− s))
for t > s. It has almost surely continuous trajectories t 7→ Bt and moments of all orders.

The concept of a Lévy process drops the assumption of the Gaussianity of increments. A Lévy
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process is given as a stochastic process with independent and stationary increments Lt−Ls ∼ Lt−s.
Such a process is not necessarily continuous. However, to ensure the separability of the process
(trajectories should be determined by any countable dense set of points in time) one imposes
stochastic continuity, i.e.

lim
t→s

P(|Lt − Ls| > η) = 0 for all η > 0.

This property ensures that almost all trajectories are at least right-continuous and with finite left
limits (commonly denoted by the French acronym càdlàg). The so-called Lévy-Itô decomposition
tells us that a given Lévy process L = (Lt)t>0 in R

d can be decomposed almost surely into the
sum of four independent components, three of which are stochastic processes. That is there exits
a vector a ∈ Rd, a d-dimensional standard Brownian motion B = (Bt)t>0, a positive semi-definite
(covariance) matrix A ∈ Rd⊗d and a measure on the Borel sets ν : B(Rd)→ [0,∞] such that for all
ρ > 0

ν({0}) = 0,

∫
Bρ(0)

|x|2ν(dx) <∞ and ν(Rd \ Bρ(0)) <∞, (2.1)

where Bρ(0) = {y ∈ Rd | |y| < ρ}. For each fixed ρ > 0 the measure ν has two associated processes.
First, there is a compound Poisson process Cρ = (Cρt )t>0 with intensity λρ = ν(Rd \ Bρ(0)) and
jump distribution νρ

B(Rd) 3 E 7→ νρ(E) :=
ν(E ∩ (Rd \ Bρ(0))

λρ
. (2.2)

That is a pure jump process with exponentially distributed waiting times between consecutive
jumps of intensity λρ, which are independent and distributed according to νρ in (2.2). Note that
the jumps of Cρ are bounded from below by ρ. Second, there is another pure jump process
Jρ = (Jρt )t>0, whose jumps are bounded from above by ρ to be discussed below. The Lévy process
L is decomposed path-wise as

Lt = at+A1/2Bt + Cρt + Jρt ∀t > 0 P− a.s. (2.3)

In particular, the marginal laws of L are given by the so-called Lévy-Chinchine representation of
the characteristic function

E[exp(i〈u, Lt〉)] = exp(tΨ(u)),

with

Ψ(u) = iat− 1

2
〈a,Aa〉+

∫
Rd\Bρ(0)

[
ei〈u,y〉 − 1

]
ν(dy) +

∫
Bρ(0)

[
ei〈u,y〉 − 1− i〈u, y〉

]
ν(dy), u ∈ Rd.

This representation tells us that Jρ = (Jρt )t>0 can be understood as the superposition of inde-
pendent (recentered) compound Poisson processes, with jumps that take values in rings given by
Rj = {ρj < |y| 6 ρj−1}, for a strictly decreasing sequence ρ = ρ0 > ρ1 > · · · > 0 of radii ρj ↘ 0,
such that

Bρ(0) \ {0} =
⋃
j∈N0

Rj

with joint (possibly infinite) intensity∑
j∈N0

ν(Rj) = ν(Bρ(0)) 6∞
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and individual jump distribution E 7→ νρj+1(E)− νρj (E). If ν(Bρ(0)) <∞ we can choose formally
ρ = 0 and hence Jρ ≡ 0.

Remark 2.1. This construction relies heavily on the fact that the integrals in the exponent Ψ
are additive over disjoint supports. Hence the characteristic function decomposes into a product of
characteristic functions and thus independent components. As a consequence for every repartition
V1, . . . , Vn of Rd (

⋃
i Vi = R

d and Vi
⋂
Vj = ∅ unless i = j) the Lévy process decomposes into the

sum of n independent Lévy processes Li with jumps taking values in Vi.

Coupling distances between Lévy measures: In the article [10] the authors construct a
distance on the set of Lévy measures in R

d, that exploits the approximation of the discontinuous
part of L by compound Poisson processes with decreasing lower bound on the jump size.

The idea is that given two jump (probability) distributions µ and µ′ on Rd we want to measure
the distance E[|X−Y |2] between two random variables X ∼ µ and Y ∼ µ′ on a common probability
space. Obviously, there is more than one distribution of the random vector (X,Y ), that guarantees
the marginals X ∼ µ and Y ∼ µ′. Any probability measure Π on the product space Rd × Rd with
these marginals, is called a coupling of µ and µ′. Hence the set of all couplings is given by

C(µ, µ′) :=
{

Π : B(Rd)⊗B(Rd)→ [0, 1] probability measure, with

Π(E × Rd) = µ(E), Π(Rd × E) = µ′(E) for all E ∈ B(Rd)
}
. (2.4)

Since the expectation operator is a functional entirely determined by Π ∈ C(µ, µ′), the proximity of
µ and µ′ can be quantified minimizing the function Π 7→ EΠ[|X − Y |2] over the set of all couplings
in C(µ, µ′). This motivates the following abstract definition.

Definition 2.1. The Wasserstein metric of order 2 between two probability measures µ, µ′ on the
Borel sets of Rd is defined by

W2(µ, µ′) := inf
Π∈C(µ,µ′)
Π∼(X,Y )

E[|X − Y |2]
1
2 .

Any minimizer is referred to as optimal coupling between µ and µ′.

It is well-known in the mathematical literature [22] that the convergence W2(µn, µ) → 0 is
equivalent to the weak convergence µn ⇀ µ and the convergence of the second moments. In this
work we will consider the following example.

Example 2.2. Consider (Rd, | · |1) with |x|1 = min(|x|, 1) and the Euclidean norm | · |. This will
be the space where we approximate the laws of the jumps. We introduce the cutoff norm, since we
do not require the jumps to have second moments.

Remark 2.2. On (R, | · |) one can show that for two distribution functions F (x) = µ((−∞, x]) and
F ′(x) = µ′((−∞, x]) the optimal coupling is realized by the random vector

(X,Y ) = (F−1(U), (F ′)−1(U)),

where U has the uniform distribution in [0, 1]. Therefore the Wasserstein metric is easily evaluated
by

W 2
2 (µ, µ′) =

1∫
0

|(F−1(u)− (F ′)−1(u)|2du.
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The optimality of the pair (X,Y ) relies on the specific metric on R. The law of (X,Y ) is obviously a
coupling of µ and µ′, and the right-hand side provides at least an upper bound for the Wasserstein
distance.

Definition 2.3. For two absolutely continuous Lévy measures ν = fdx and ν ′ = f ′dx on R
d and

0 < λ < min(ν(Rd), ν ′(Rd)) let

ρ(λ) := inf{r > 0 | ν(Rd \ Br(0)) > λ}

and ρ′(λ) analogously. We introduce a family of semimetrics Tλ

Tλ(ν, ν ′) := λ
1
2 W2(νρ(λ), ν

′
ρ′(λ)).

First note that given ν and λ > 0 we have the following equality λρ(λ) = λ, with λρ defined
before (2.2). Intuitively, given Lévy measures µ and µ′, the semimetric Tλ(ν, ν ′) compares the jump
distributions νρ(λ) and ν ′ρ′(λ) of two compound Poisson processes with common rate λ = λρ(λ) =
λρ′(λ).

Note further that the bivariate function Tλ is symmetric and satisfies the triangle inequality
hence it is a semimetric. Clearly Tλ(ν, ν) = 0 does not guarantee that ν the zero measures, since
ν|Bρ(λ) is not taken into account. Therefore it is not a proper metric. In order to overcome this

shortcoming and provided that ν(Rd) = ν ′(Rd) =∞ we introduce the following.

Definition 2.4. For two absolutely continuous Lévy measures ν = fdx and ν ′ = f ′dx on R
d with

ν(Rd) = ν ′(Rd) =∞ we define
T (ν, ν ′) := sup

λ>0
Tλ(ν, ν ′).

Remark 2.5. Both restrictions in the definitions above can be removed. For details we refer to
the original work [10].

• The restriction on absolute continuity is overcome by an interpolation procedure.

• The requirement of infinite mass can be dropped by the ad hoc introduction of an artificial
point mass in 0 carrying the missing weight. In this way also finite Lévy measures fall into
the setup.

We also refer to [20] for further applications of coupling distances.

3 Statistical considerations

In this section we provide the technical background to compare the jump statistics of a data set
to a given reference distribution in terms of the coupling distance. For this purpose we collect
the necessary statistical theory. Since our case study is essentially one dimensional we stick to the
scalar case. For higher dimensions we refer to Remark 3.1 at the end of this section.

Basic notions: Let us consider a sequence of independent and identically distributed random
variables (Xi)i∈N with common law µ on the real line. Denote by µn the empirical distribution
based on the sample of size n given by

µn(E) :=
1

n

n∑
i=1

δXi(E) =
#{Xi ∈ E}

n
=

1

n

n∑
i=1

1{Xi ∈ E} , E ∈ B(R) , (3.1)
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where δa(·) = δ0( ·−a) is the Dirac measure at a. The corresponding empirical distribution function
Fn is the distribution function of µn

Fn(x) := µn((−∞, x]) =
#{Xi 6 x}

n
=

1

n

n∑
i=1

1{Xi 6 x} , x ∈ R . (3.2)

The strong law of large numbers (Glivenko-Cantelli Theorem) tells us that if F is the distribution
function of the common distribution µ of X, we have for almost all ω ∈ Ω

sup
x∈R
|Fn(x, ω)− F (x)| → 0 (n→∞) . (3.3)

A proper scaling of this quantity leads to a non-trivial limit. Indeed if we fix x ∈ R, the random
variables 1{Xi 6 x}, i ∈ N are i.i.d. Bernoulli variables with F (x) = P(Xi 6 x). Now the central
limit theorem (de Moivre-Laplace Theorem) states that

√
n (Fn(x)− F (x)) =

1√
n

n∑
i=1

1{Xi 6 x} − F (x)
d−→ N (0, F (x)(1− F (x))) . (3.4)

This quantity can be viewed as a stochastic process indexed by x ∈ R which leads to the following
definition.

Definition 3.1. Let (Xi)i∈N be a sequence of i.i.d. random variables in R with common distribution
function F and let Fn, n ∈ N be its empirical distribution function. We define the associated
empirical (error) process by

Gn(x, ω) :=
√
n (Fn(x, ω)− F (x)) , 0 6 x 6 1 . (3.5)

There is a huge literature on empirical processes, for an overview and more details we refer
for instance to [2] or [24]. It is easily seen that Gn is a random element of the space D[0, 1], the
space of càdlàg functions ϕ : [0, 1] → R, and the one dimensional (marginal) distributions of Gn
are determined by (3.5). Moreover it is well known that the random variable F (X) is uniformly
distributed on the interval [0, 1] whenever X has the continuous strictly increasing distribution
function F , since in this case F is one to one and by an easy change of variables

P(F (X) ∈ [a, b]) =

F−1(b)∫
F−1(a)

f(x)dx = b− a for all 0 6 a < b 6 1.

However F is usually not known and to be estimated. In any case we have F (X) ∈ [0, 1] whether
F corresponds to the actual distribution of X or not. Hence distributions on the interval [0, 1] are
of particular interest. Gn is then a random element of D[0, 1] and its behavior is well understood.

Theorem 3.2 ([3]Theorem 14.3, p.149). Let (Xi)i∈N be a sequence of i.i.d. random variables
on [0, 1] with common distribution function F and (Gn)n∈N be the associated empirical processes.
Then there exists a Gaussian random element G with values in D[0, 1] such that

sup
x∈R
|Gn(x, ω)−G(x, ω)| d−→ 0 (n→∞).

Moreover G is the unique Gaussian process determined by E[G] = 0 and covariance

E[Gs ·Gt] = F (s)(1− F (t)) for 0 6 s 6 t.

In particular if F is the uniform distribution on [0, 1], then G = B0 is a Brownian bridge, that is
a Brownian motion conditioned to end in 0 at time x = 1.
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Quantiles: In view of the Wasserstein distance it is also interesting to look at the empirical
quantile function F−1

n . For n ∈ N denote by Xi:n the i-th order statistic of a sample of size n, i.e.
the ordered sample

Xi:1 6 Xi:2 6 · · · 6 Xn:n.

As Fn is discontinuous it is certainly not invertible yet the concept of quantiles for non invertible
distributions allows to define for 0 < u 6 1

F−1
n (u) = inf{x ∈ R : Fn(x) > u} = inf{x ∈ R : ]{Xi 6 x} > nu}

= min{Xi:n : ]{Xi:n 6 x} > nu} = Xdnue:n .
(3.6)

It is the left continuous inverse of the right continuous Fn. In analogy to (3.3) we have by the law
of large numbers

|F−1
n (u, ω)− F (u)−1| → 0 , for all u ∈ (0, 1) as n→∞ for almost all ω ∈ Ω.

However in general we cannot expect a uniform convergence in u, since for unbounded support of
µ the values will be infinity. For a precise analogue to the Glivenko-Cantelli theorem one must
therefore stay away from the endpoints of the open support of µ if they are positive or negative
infinity. Following the analogy to the central limit theorem of formula (3.5) we introduce the
empirical quantile process.

Definition 3.3. Let (Xi)i∈N be a sequence of real valued i.i.d. random variables with common
distribution function F . The empirical quantile process or simply quantile process is defined as

Qn(u, ω) :=
√
n
(
F−1
n (u, ω)− F−1(u)

)
, 0 6 u 6 1, n ∈ N . (3.7)

For uniform distributions we obtain an analogue of Theorem 3.2.

Theorem 3.4. Let (Xi)i∈N be a sequence of real valued i.i.d. random variables with common
uniform distribution function F = U . Then there exists a Brownian bridge (B0

n)n∈N such that

sup
06u61

|Qn(u, ω)−B0
u(ω)| d−→ 0. (3.8)

As already mentioned for general distributions F uniform convergence of the quantile process
is out of reach, instead we will consider cutoff L2 distances later. In the following we link the
empirical quantile process to Wasserstein distances.

The empirical Wasserstein distance: We can now calculate the Wasserstein distance of an
empirical measure µn(ω) to some given reference measure µ. We introduce the Wasserstein statistic

wn(ω) := W 2
2 (µn(ω), µ) . (3.9)

We can calculate this distance by

wn =

1∫
0

|F−1
n (u)−F−1(u)|2du =

1∫
0

|Xdnue:n−F−1(u)|2du =
n∑
i=1

i
n∫
i
n

(X(i−1):n−F−1(u))2du , n ∈ N .

(3.10)
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The last expression actually turns out to be a quadratic polynomial in the order statistic, that is

wn =
n∑
i=1

aiX
2
i:n + biXi:n + c , (3.11)

where the coefficients are determined by the binomial formula and given by

ai =
1

n
, bi = −2

i
n∫

i−1
n

F−1(u)du, c =

1∫
0

(
F−1(u)

)2
du . (3.12)

This formula can also be adapted for the trimmed version

W 2
2 (µn, µ) 6

1∫
0

(
|F 1
n(u)− F−1(u)|2 ∧ 1

)
du (3.13)

where the right-hand side can be calculated similarly to (3.11) as follows

w*
n =

n∑
i=1

β1
iX

2
i:n + β2

iXi:n + β3
i + β4 , (3.14)

where for the sequence 0 6 a∗1 6 b∗1 6 a∗2 6 · · · 6 a∗n 6 b∗n 6 1 given by

a∗i =

(
i− 1

n
∨ |F (Xi:n − 1)|

)
∧ i

n
, b∗i =

i− 1

n
∨
(
|F (Xi:n + 1)| ∧ i

n

)
(3.15)

the coefficients are calculated by

β1
i = b∗i − a∗i , β2

i = −2

b∗i∫
a∗i

F−1(u)du, β3
i =

b∗i∫
a∗i

(
F−1(u)

)2
du, β4 = 1−

n∑
i=1

β1
i . (3.16)

Remark 3.1. The concept of coupling distances was introduced in [10] for distributions in R
d.

However, in higher dimensions the concept of empirical quantile functions turns out to be much
more involved.

Asymptotic distribution and rate of convergence: For rigorous statistical applications it
is necessary to determine the rate of convergence of the statistic of interest, in our case w*

n. By
definition w*

n tends to zero. Quantifying the rate of convergence amounts to finding the correct
renormalization to obtain a non-trivial (random) limit.

For this purpose we need the notion of slow variation. A (measurable) function ` : (0, 1)→ (0, 1)
is slowly varying at zero (at one) if it satisfies for all x ∈ (0, 1)

lim
u→0

(u→1)

`(ux)

`(u)
= 1.

The prototype of a slowly varying function at 0 is `(u) = ln(u). An easy calculation shows

`(ux)

`(u)
=
`(u)

`(u)
+
`(x)

`(u)
→ 1 as u→ 0 + .

We summarize the relevant properties. A classical reference is [4].
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• Let ` be slowly varying. Then also `γ is slowly varying for all γ ∈ R.

• For γ > 0, we have uγ`(u)→ 0 and u−γ`(u)→∞ as u→ 0+.

In the following we prove a polynomial rate of convergence of w*
n up to a slowly varying contribution.

Theorem 3.5. Let F be a distribution function on R with density f such that f ◦F−1 is regularly
varying at zero and at one, of index κ, κ′ > 0 in the sense that

f(F 1(u)) = uκ`(u) near 0, and f(F 1(u)) = uκ
′
`(u) near 1

for a common slowly varying function ` in zero and one. Assume |κ− κ′| < 1
2 and without loss of

generality let κ < κ′. Choose now γ

0 <
2κ′ − 3

2κ′ − 2
< γ <

2κ− 2

2κ− 1
< 1.

Then we have the limit

n1−2(1−γ)(κ−1) `2
(
nγ−1

)
wn
∗ d−→

(
1 + 1(κ = κ′)

) 1∫
0

(uκ−2Bu)2du as n→∞ ,

where B = (Bu)u∈[0,1] is a standard Brownian motion.

Remark 3.2. It is easy that
2κ′ − 3

2κ′ − 2
<

2κ− 2

2κ− 1

is equivalent to κ′ − 1
2 6 κ 6 κ′.

Proof. The proof follows along the lines of [6]. First consider a sequence of intermediate points
(kn)n∈N such that

1 6 kn 6 n , kn ↗∞ and
kn
n
↘ 0 as n→∞ .

We then decompose our integral

1∫
0

(
|F−1
n (u)− F−1(u)|2 ∧ 1

)
du =

( kn
n∫

0

+

1
2∫

kn
n

+

n−kn
n∫

1
2

+

1∫
n−kn
n

)(
|F−1
n (u)− F−1(u)|2 ∧ 1

)
du . (3.17)

We will first treat the second integral in of (3.17) with the help of Theorem 2.4 in [5]. With a
slight adaption to our situation it states that for the quantile process Qn =

√
n(Un − u) of the

uniform distribution on [0, 1] (cf. Definition 3.3), any κ > 1 and any slowly varying function
` : (0, 1)→ (0, 1) we have the limit

(kn
n

)2(κ−1)
`2
(kn
n

) 1
2∫

kn
n

(Qn(u)

uκ`(u)

)2
du

d−→
1∫

0

u2κ−4|Bu|2du as n→∞. (3.18)
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The mean value theorem tells us that for some (random) intermediate value

u ∧ Un(u) 6 ϑn(u) 6 u ∨ Un(u) (3.19)

we have for each ω ∈ Ω

n

1
2∫

kn
n

(
|F−1
n (u)− F−1(u)|2 ∧ 1

)
du = n

1
2∫

kn
n

(( ∂
∂u
F−1(ϑn(u))

)2
|U−1
n (u)− U−1(u)|2 ∧ 1

)
du

=

1
2∫

kn
n

( |√n(U−1
n (u)− u)|2

f(F−1(ϑn(u))2
∧ n
)
du.

By continuity of f , inequality (3.19), the regular variation of f(F−1(u)) we have f(F−1(θn(u))→ `(u)uκ

as n→∞. Hence (3.18) yields

n
(kn
n

)2κ−2
`2
(kn
n

) 1
2∫

kn
n

(
|F−1
n (u)− F−1(u)|2 ∧ 1

)
du

=
(kn
n

)2κ−2
`2(

kn
n

)

1
2∫

kn
n

( Qn(u)2

f(F−1(ϑn(u))2
∧ n
)
du

d−→
1∫

0

u2κ−4|Bu|2du.

By symmetry of the problem analogous arguments hold for the upper half interval (the third integral
of (3.17)) with κ′. For the remainder integrals we have the simple bound

n

kn
n∫

0

(
|F−1
n (u)− F−1(u)|2 ∧ 1

)
du 6 n

kn
n

= kn → 0. (3.20)

By the properties of ` outlined above only the polynomial terms define the two conditions on kn

n

(
kn
n

)2κ−2

`2
(kn
n

)
↗∞ and kn

(
kn
n

)2κ−2

`2
(kn
n

)
↘ 0 . (3.21)

We choose kn = nγ , with γ < 1 and we get the following requirement

2κ− 3

2κ− 2
< γ <

2κ− 2

2κ− 1
. (3.22)

Now we have treated all integrals in (3.17). The two tail integrals do not contribute to the limit
as long as the upper bound on γ in (3.22) holds for both κ, κ′. Actually only the integral with
the smaller exponent matters (therefore two times if κ = κ′). It remains to see that the bounds in
(3.22) are monotonically increasing for κ > 1 to obtain the bounds on γ stated in the theorem.

Example 3.3. The assumptions on the underlying distribution are not restrictive.
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1. Prominent examples of heavy tailed distributions are (symmetric) α-stable distributions. See
[8]. They admit a density f and the distribution function F is regularly varying of order
−α, α ∈ (0, 2) at ±∞. L’Hospital’s rule yields that f is also regularly varying of order
−(α + 1). Obviously the quantile function F−1 is then regularly varying at 0 and 1 with
index − 1

α and

f(F−1(u)) = u
α+1
α `(u)

for a function ` slowly varying at ±∞. In this case κ = κ′ = 1 + 1
α and we obtain a rate of

convergence of our statistic of polynomial order

n1−2(κ−1)(1−γ) with 1− α

2
< γ <

1

1 + α
2

.

Minimizing γ we can achieve any polynomial rate of convergence slower than n
1

1+ 2
α . Since

α ∈ (0, 2) this is slower than the order
√
n of the central limit theorem.

2. The simplest examples of one-sided polynomial tails are Pareto distributions where

F (x) = 1− cα

xα
, x > c, α > 1.

By analogous reasoning we can still achieve convergence rates arbitrarily close to

n
1

1+ 2
α ,

now including values α > 2. In this regime we are faster than the central limit theorem but
always less than one.

Corollary 3.4. In the situation of Theorem (3.5) our statistic w*
n renormalized as in (3.21) tends

to a limit with expectation 1
2κ−2 and for κ > 5

4 the variance is bounded by 1
4κ−5 .

Proof. Since E[B2
u] = u we have by Fubini’s theorem

E[

1∫
0

u2κ−4|Bu|2du] =

1∫
0

u2κ−3du =
1

2κ− 2
,

and since Bu√
u
∼ N(0, 1) we have

E

[( 1∫
0

(uκ−2|Bu|)2du− 1

2κ− 2

)2]
= E

[( 1∫
0

u2κ−3
( |Bu|2

u
− 1
)
du
)2]

6

1∫
0

[
u2(2κ−3)

E
( |Bu|2

u
− 1
)2]

du =

1∫
0

u2(2κ−3)du =
1

2(2κ− 3) + 1
.

4 The procedure in detail

In this section we work through the program laid out in the previous sections. In order to keep
calculations and the strategy easily tractable we will restrict ourselves to a simple example, which
can be obviously adapted and extended. Many real-world phenomena exhibit strong fluctuations
in short time, which are hardly explained by a continuous evolution.
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A reasonable modeling approach is hence to consider a process of the type

Yt = Gt + Lt, t ∈ [0, T ] for fixed T > 0, (4.1)

where G = (Gt)t∈[0,T ] is a continuous process and L = (Lt)t∈[0,T ] is a purely discontinuous Lévy
process. We have seen in Section 2, that L is determined by a Lévy triplet of the form (0, 0, ν),
where ν is a Lévy measure defined in (2.1). For instance, the solutions of stochastic differential
equations

Yt = x+

t∫
0

f(Ys)ds+ Lt, t ∈ [0, T ],

for globally Lipschitz continuous functions f : R→ R fall into this class. The aim of this procedure
is now to determine the nature of L and thus of its Lévy measure ν.

Given a data set y = (yi)i=0,...n we interpret y as a realization of a process Y given in the class
of models (4.1) observed at discrete times t1 < · · · < ti < · · · < tn, that is

yi = Yti(ω) for some ω ∈ Ω.

We make the following modeling assumptions: Fix a threshold ρ > 0.

1. The observation frequency is sufficiently high in comparison to the occurrence of large jumps
given as increments beyond our threshold ρ. That means we assume that in each time interval
[ti−1, ti) at most one large jump occurs.

2. The behavior of small jumps is sufficiently benign in comparison to the large jump threshold
ρ during our observation. That means in particular, we assume that over one time interval
[ti−1, ti) that small jump and continuous contributions cannot accumulate to this threshold.

These assumptions can be made rigorous by further model assumptions on Y e.g. with the Lipschitz
continuity of G. Under the assumptions it is justified to estimate

Yti − Yti−1 ≈ Cρs − C
ρ
s−0 for exactly one s ∈ [ti−1, ti),

for the compound Poisson process Cρ given by (2.3) and hence can be considered as the realization
of an i.i.d. sequence X = (Xi)i=1,...,n. We denote by x = (xi)i=1,...n the vector of large increments

xi = (yi − yi−1)1{|yi − yi−1| > ρ}

this means
xi = Xi(ω) for some ω ∈ Ω.

Let µn be the empirical measure of the data X. The Glivenko-Cantelli theorem (3.2) tells us that
for almost all ω ∈ Ω

µn(ω, ·)→ µ n→∞, weakly

for the common distribution µ of X. Since by construction µ = νρ we obtain

µn(ω) ≈n νρ.

Since the Wasserstein distance encoded in the coupling distance metrizes the weak convergence we
have for almost all ω ∈ Ω

Tλρ(µn, νρ)→ 0 as n→∞.
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In particular we have an estimator for the tail of the Lévy measure νρ. We are now in the position
to estimate the distance between the Lévy measure of the compound Poisson approximation Cρ of
L (respectively Y ) and the tail ν∗ρ of a suspected reference Lévy measure ν∗. In particular

Tλρ(νρ, ν
∗) 6 Tλρ(νρ, µn) + Tλρ(µn, ν

∗
ρ) 6 (λρ wn

∗(µn, ν
∗))

1
2 + Tλρ(νρ, µn), (4.2)

where the second to last term tends to 0. The first term can be calculated explicitly due to Section 3.
This is carried out in the case of polynomial tails in the next section.

5 Case study

Many observed quantities in nature follow a heavy-tailed distribution, that can be interpreted as
the superposition of (large) power law jumps. Small jumps are statistically hard to distinguish
from continuous increments and will be neglected in this study. Therefore it is natural to consider
jumps away from 0 with polynomial tails. In our simple model we assume

ν(dy) =
c1dy

|y|1+α1
1{y < −ρ1}+

c2dy

y1+α2
1{y > ρ2}, (5.1)

where c1, c2 > 0, α1, α2 > 0 and ρ1, ρ2 > 0 sufficiently small.

Concrete formulas: To prevent numerical pathologies in the following calculation we exclude
α1 and α2 from being 1 or 2. Due to Remark (2.1) we can restrict ourselves to one-sided Lévy
measures and estimate the right and left tail independently, that is c = c1 > 0, c2 = 0, α = α1 > 0
and ρ = ρ1 > 0. Consider the Lévy measure ν with Pareto density f given by

f(x) =
c

|x|α+1
, x 6 −ρ

F (x) := ν((−∞, x]) =
c

α
|x|−α, x 6 −ρ

F−1(u) = −(
α

c
u)−1/α, u ∈ (0, 1).

Since the measure ν is not a probability measure we will introduce the normalized measures νλ of
precisely mass λ > 0, that is supported on (−∞,−ρ], with

ρ = F−1(λ) =

(
αλ

c

)−1/α

. (5.2)

We now can look at the normalization

f̃λ(x) =
c

λ|x|α+1
, x 6 −ρ

F̃λ(x) =
c

αλ
|x|−α, x 6 −ρ. (5.3)

and its inverse

F̃−1
λ (u) = −(

αλ

c
u)−1/α, u ∈ (0, 1).

In order to calculate the cutoff Wasserstein distance in formula (3.16) we evaluate the primitives

1∫
z

F̃−1
λ (u)du = − α

α− 1

(
αλ

c

)−1/α (
1− z1−1/α

)
, z ∈ (0, 1) (5.4)
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1∫
z

(
F̃−1
λ (u)

)2
du = − α

α− 2

(
αλ

c

)−2/α (
1− z1−2/α

)
, z ∈ (0, 1). (5.5)

Now all necessary functions to implement the empirical Wasserstein distance (3.14) are at our
disposal. Recall the modeling assumption of Section 4 and that the time series stems from a
process of the form (4.1).

Simulations: In a first test case we simulate n = 100.000 data points from a the perfectly
symmetric version of jump measure given in (5.1) with minimal jump sizes ρ = 0.5 and α1 = 1.5,
α2 = 1.8, α3 = 2.4 and α4 = 3.0. We interpret those as the jumps of compound Poisson processes
at rate λ = 1 and denote by µin the empirical measure of the respective simulation i = 1, . . . 4.
Furthermore we set T = 1 and apply a small linear drift G(t) = 0.0125 × t to each of them.
The paths are shown in Figure 5 (left). We calculate the empirical coupling distance between the
simulated data and the jump measures according to the outlined procedure. The right display of
Figure 5 shows pronounced and small minima of the coupling distances as a function

α 7→ Tλ(ναρ , µ
i
n) ∈ [0, λ

1
2 ]. (5.6)

at the original values of α = αi. Due to the cutoff of the Wasserstein distance at height 1 (see
Definition 2.3) and the specific choice of the intensity λ = 1 the values of (5.6) are between 0
and 1. Due to Theorem 3.5, Corollary 3.4 and Example 3.3 we can give a the expected value
of Tλ(ναiρ , µ

i
n). For large n this expectation should be close to the normalized expectation of the

limiting distribution. For the optimal rate for γ = 1− α
2 this is given by

Ei,n :=
(
E[
∫ 1

0 (u1+ 1
αBu)2du]

λ n
1

1+ 2
α

) 1
2

=

√
α

2λ
n
− 1

2(1+ 2
α ) . (5.7)

The simulation results are compared to the expected value in the following table.

αi 1.5 1.8 2.4 3.0

Tλ(ναiρ , µ
i
n) 0.0575 0.0642 0.0273 0.0183 � 1

Ei,n 0.0735 0.0621 0.0474 0.0387

Apparently the empirical results are better than our prediction Ei,n. Recall that the optimal rate
in Example 3.3 is actually not achieved, hence we renormalize by a too small value in formula (5.7)
and consequently slightly overestimate the value of our statistic Tλ(ναiρ , µ

i
n).

Paleoclimatic time series: The concentration of calcium ions in ice core data from the Green-
land shelf provide a climate proxy for the yearly average temperature distribution during the last
glacial period, see [19]. The record shows large fluctuations between (cooler) stadials and (warmer)
interstadials, see Figure 5 (left up). In [7] Ditlevsen concentrated on the actual (42) transitions
between the different regimes which he interprets as the effect of single large jumps of an underlying
noise signal. His analysis indicates a tail index of α = 1.75. Moreover he proposed an α-stable
Lévy component in the noise signal.
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Figure 1: Left: Simulated paths for fixed values of α. Right: Empirical coupling distances between
the data of the simulated paths and the jump measures (5.3), as a function of varying α

A series of works [12], [15] and [14] continued the investigation on the mathematical side to-
wards α-stable perturbations and developed an estimation procedure based on the selfsimilarity
and characteristic path variations. In the realm of stable diffusions their method confirms the
proposed index of stability. In [9] Wasserstein distances were also applied to measure the distance
between α-stable distributions and empirical measures, however due to the lack of moments the
analysis is restricted to Wp for p = p(α) < 1.

These elaborate techniques are hardly applicable beyond this framework. The procedure pro-
posed here does not rely on any features of stable distributions and only requires a monotonic
tail behavior of the jump distribution. There is a variety of estimators for the tail index in the
literature, our method does not intend to contribute to this list. Instead our method quantifies the
fit of a proposed tail behavior to a given data set. The proposed tails could be derived by standard
methods. Certainly coupling distances can also serve in a minimal distance estimation procedure.
In order to make such a procedure statistically rigorous it would be necessary to further quantify
the separation power by finding uniform lower bound jointly in the parameters (α, λ, ρ).

Our model only describes large jumps, small fluctuations can certainly not be described by the
(polynomial) tail behavior. In other words, the modeling assumptions in Section 4 are valid only for
increments beyond a certain threshold ρ > 0. Small fluctuations are interpreted as contributions
of a continuous part G and small jumps as in (4.1). Also note that for α > 2 in the limit of ρ to 0
the measure ν from (5.1) is not square integrable in the neighborhood of 0. Hence it is not a Lévy
measure (cf. formula (2.1) in Section 2).

Our procedure shows marked minima of the coupling distance for the right and the left side of the
one-sided polynomial tails given in 5.1 as a function in α for α1 = 3.55 (left) and α2 = 3.6 (right).
The Wasserstein distances, which correspond to the coupling distance to the interval [0, 1] gives
the small values 0.089 � 1 (left) and 0.081 � 1 (right). The cutoffs have been chosen ρ1 = 0.34
allowing for n1 = 530 sample points and ρ2 = 0.36 with n2 = 894 sample points. The respective
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Figure 2: Left (above): Logarithmic calcium signal. Left (below): Increments of the logarithmic
calcium signal. Right: Plot of the coupling distance for the left tail (blue) and the right tail (red)
of the jump measure.

rates are λρ1 = 11 and λρ2 = 8. The prediction procedure developed above yields E1,n1 = 0.054
and E2,n2 = 0.053. This under estimation could be explained beyond climatological reasoning by
comparably small sample sizes, where the asymptotic regime is not yet fully unfolded. Yet the
order of magnitude is caught.

The authors point out that there is a significant degree of freedom in the 3 parameter fit. For
instance the cutoff parameter may vary between the floating boundaries of the modeling assumption
of a meaningful tail contribution (not corrupted by small scale fluctuations) and a statistically
relevant number of data points.

Comparable fits for α = 1.75 with a significant number of data points n > 100 do not allow for
reasonably small Wasserstein distances (all values > 0.5). Consequently we could not confirm the
suggestion of a tail index α = 1.75 in the literature. The proposed procedure indicates a Lévy jump
component with a tail index clearly above 2, that cannot belong to the family of stable diffusions.
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Stochastic Processes and their Applications, 116(4):611–642, 2006.

[18] P. Imkeller, I. Pavlyukevich, T. Wetzel. First exit times for Lévy-driven diffusions with expo-
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