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Abstract

This thesis deals with Einstein metrics and the Ricci flow on compact mani-
folds. We study the second variation of the Einstein-Hilbert functional on Ein-
stein metrics. In the first part of the work, we find curvature conditions which
ensure the stability of Einstein manifolds with respect to the Einstein-Hilbert
functional, i.e. that the second variation of the Einstein-Hilbert functional at
the metric is nonpositive in the direction of transverse-traceless tensors.

The second part of the work is devoted to the study of the Ricci flow and
how its behaviour close to Einstein metrics is influenced by the variational be-
haviour of the Einstein-Hilbert functional. We find conditions which imply that
Einstein metrics are dynamically stable or unstable with respect to the Ricci
flow and we express these conditions in terms of stability properties of the metric
with respect to the Einstein-Hilbert functional and properties of the Laplacian
spectrum.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Einsteinmetriken und Ricci-Fluss auf
kompakten Mannigfaltigkeiten. Wir studieren die zweite Variation des Einstein-
Hilbert Funktionals auf Einsteinmetriken. Im ersten Teil der Arbeit finden
wir Krümmungsbedingungen, die die Stabilität von Einsteinmannigfaltigkeiten
bezüglich des Einstein-Hilbert Funktionals sicherstellen, d.h. die zweite Varia-
tion des Einstein-Hilbert Funktionals ist nichtpositiv in Richtung transversaler
spurfreier Tensoren.

Der zweite Teil der Arbeit widmet sich dem Studium des Ricci-Flusses und
wie dessen Verhalten in der Nähe von Einsteinmetriken durch das Variationsver-
halten des Einstein-Hilbert Funktionals beeinflusst wird. Wir finden Bedinun-
gen, die dynamische Stabilität oder Instabilität von Einsteinmetriken bezüglich
des Ricci-Flusses implizieren und wir drücken diese Bedingungen in Termen
der Stabilität der Metrik bezüglich des Einstein-Hilbert Funktionals und Eigen-
schaften des Spektrums des Laplaceoperators aus.
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Chapter 0

Introduction

The Einstein-Hilbert functional associates to each metric the integral of its scalar
curvature. It is a natural geometric functional because it can be considered as
the mean over all curvatures on a given Riemannian manifold. It first appeared
in the context of general relativity ([Hil15]) since the famous Einstein equations
arise as the Euler-Lagrange equations of this functional. It is also of great
interest in geometry. The famous Yamabe Problem was resolved by solving
the Euler-Lagrange equation of the Einstein-Hilbert functional restricted to the
conformal class of a metric (see [Sch84]).

The Ricci flow is a geometric flow first introduced by R. Hamilton in [Ham82].
It is a kind of nonliner heat equation for metrics that tends to smooth out
irregularities in the metric. For any metric on a given compact surface, the
volume-normalized variant of the Ricci flow starting at the metric converges
to a metric of constant Gaussian curvature. In higher dimensions, the Ricci
flow is much less understood and there are many open problems. On the other
hand, Ricci flow techniques helped to open famous problems from geometry, e.g.
the famous Poincaré conjecture ([Per02; Per03]) and the differentiable sphere
theorem ([BS09]).

This thesis studies the Einstein-Hilbert functional and its variation at Ein-
stein metrics and the Ricci flow close to Einstein metrics. It can be divided into
two parts where the first part consists of Chapters 2,3 and 4 and the second
part Chapters 5 and 6. Throughout, we deal with compact manifolds.

In Chapter 2, we introduce the Einstein-Hilbert functional and we summarize
some well-known facts about its variational theory. The critical points of the
Einstein-Hilbert action, when restricted to metrics of unit-volume, are precisely
the Einstein metrics and they are always saddle points. The second variation
admits a contrasting variational behavior in different directions of changes of
the metric.

Einstein metrics are always local (even global) minima of the Einstein-
Hilbert action restricted to unit-volume metrics in their conformal class. In
contrast, the second variation restricted to the tangent space of the manifold C1
of unit-volume metrics with constant scalar curvature has finite coindex. We call
an Einstein manifold stable if the second variation of the Einstein-Hilbert action
is nonpositive on TgC1. If this is not the case, we call the manifold unstable.
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More precisely, the tangent space of C1 splits as

TgC1 = Tg(g ·Diff(M))⊕ tr−1
g (0) ∩ δ−1

g (0),

and because the Einstein-Hilbert functional is a Riemannian functional, its sec-
ond variation clearly vanishes at Tg(g ·Diff(M)). On tr−1(0)∩δ−1(0), it is given
by − 1

2∆E and ∆E is a Laplace-type operator called the Einstein operator. The
elements in its kernel are called infinitesimal Einstein deformations because they
correspond to non-trivial curves of Einstein metrics through g.

The Einstein operator (or equivalently, the Lichnerowicz Laplacian) also
appears on various occasions in physics. Solutions of ∆E = 0 are gravita-
tional waves in the Lorentzian case (see [FH05]). Properties of the Einstein
operator also play a role in the stability of higher-dimensional black holes
([GH02; GHP03]) which appear in higher-dimensional gravity theories.

In Chapter 3, we study concrete examples. First, we mention some well-
known stable and unstable Einstein manifolds in Section 3.1. After that, we
study flat compact manifolds and compute the dimension of the space of in-
finitesimal Einstein deformations explicitly in terms of the holonomy (Propo-
sition 3.2.4). Then we discuss the stability properties of products of Ein-
stein spaces and compute the index and the nullity of the quadratic form
h 7→ (∆Eh, h)L2 on the product in terms of mulitiplicities of certain eigen-
values of the Laplace-Beltrami operator on the factors and of the index and the
nullity of this quadratic form on the factors (Proposition 3.3.7).

Chapter 4 is devoted to the study of stability under certain curvature assum-
tions. We first mention some results by N. Koiso which imply stablity under
sectional curvature bounds. We then extend these results slightly (Proposi-
tions 4.2.2 and 4.2.5). Some eigenvalue bounds on the Einstein operator under
curvature assumptions are given in Propositions 4.2.7 and 4.2.9.

We also prove some stablity criteria involving a quantity written in terms of
the Weyl tensor (Theorems 4.3.4 and 4.3.7). Using an explicit expression of the
Gauss-Bonnet formula for six-dimensional Einstein manifolds, this allows us to
prove a stability criterion in dimension six which involves the Euler character-
istic of the manifold (Theorem 4.5.4). Similarly to our considerations involving
the Weyl tensor, we can prove stablity criterions for Kähler-Einstein manifolds
involving the Bochner tensor (Theorems 4.6.7 and 4.6.8).

The proofs are based on the two Bochner formulas (4.2) and (4.3) for the
Einstein operator and on estimates of the curvature action R̊ on symmetric
(0, 2)-tensors.

In the second part of the work, we consider the Ricci flow close to Einstein
metrics. We say that an Einstein metric (M, g) is dynamically stable if any Ricci
flow (in an appropriate form) starting close enough to an Einstein metric con-
verges (perhaps after pulling back by a 1-parameter family of diffeomorphisms)
to an Einstein metric close to (M, g). Furthermore, we call (M, g) dynami-
cally unstable if there is an ancient solution of the Ricci flow, which converges
(perhaps modulo diffeomorphism) to (M, g) as t→ −∞.

We build upon results from [GIK02; Ses06; Has12; HM13] for Ricci-flat met-
rics and [Ye93] for Einstein manifolds. The interesting point is the following: Al-
though the Ricci flow is not the gradient flow of the Einstein-Hilbert functional,
its behavior close to an Einstein metric is strongly related to the behaviour of
the Einstein-Hilbert functional close to it.
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With the use of the λ-functional and its variational theory, stability and
instability assertions for compact Ricci-flat manifolds were proven in [Has12;
HM13]. We transfer these results to non Ricci-flat Einstein metrics and use
similar methods to those in [Has12; HM13].

We study negative Einstein metrics in Chapter 5 and positive Einstein met-
rics in Chapter 6. In both cases, the strategy is essentially the same. We
introduce the functionals µ+ and ν− on the space of metrics which are non-
decreasing under the Ricci flow variants (5.5), (6.1), respectively. We consider
their well-known second variation formulas at Einstein metrics. Considering
simplified expressions of these formulas, we see that they are of a similar nature
to the second variation of the Einstein-Hilbert functional.

From these, it is easy to see that dynamical stability implies stablity with
respect to the Einstein-Hilbert functional. The converse direction is much harder
to prove and it is only true under additional assumptions.

In both chapters, we first prove stability/instability results which rely on the
additional assumption that all infinitesimal Einstein deformations are integrable
(Theorems 5.4.13, 5.4.14 and Theorems 6.4.7, 6.4.8, respectively). In the posi-
tive case, we also assume that 2µ /∈ spec(∆) where µ is the Einstein constant.
We obtain dynamical stability of an Einstein manifold (M, g) if it is stable with
respect to the Einstein-Hilbert functional and if the smallest nonzero eigenvalue
of the Laplacian satisfies λ > 2µ. The convergence speed is exponential and we
do not have to pull the flow back by diffeomorphisms. Dynamical instability
holds if one of the two conditions fails.

Then we prove stability/instability results without the integrability condition
and without the assumption 2µ /∈ spec(∆) (Theorems 5.5.5, 5.5.6 and Theorems
6.5.8, 6.5.9, respectively). We then obtain dynamical stability if we assume that
(M, g) is a local maximum of the Yamabe functional and that the smallest
nonzero eigenvalue of the Laplacian satisfies λ > 2µ. The convergence speed is
polynomial and the convergence is modulo diffeomorphism. We have dynamical
instability if (M, g) is not a local maximum of the Yamabe functional or λ < 2µ.

The central tools are Lojasiewicz-Simon inequalities for the functionals µ+

and ν−. Another importent step is to prove local maximality of the function-
als under the stability conditions mentioned above. In the integrable case, we
furthermore prove transversality estimates which ensure that we do not have
to pull back the flow by diffeomorphisms. The proofs of these three impor-
tant properties mostly rely on Taylor expansion and careful estimates of the
error terms. In the nonintegrable case, we apply a general Lojasiewicz-Simon
inequality proven in [CM12].

From the previous results, it is not clear what to expect when the Einstein
manifold is a local maximum of the Yamabe functional and the smallest nonzero
eigenvalue of the Laplacian is exactly 2µ. We give a partial answer to this
question in Section 6.6 and prove dynamical instability of CPn (Theorem 6.6.3).
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Chapter 1

Mathematical Preliminaries

In this short chapter, we recall some definitions and identities, fix sign conven-
tions for the Riemann curvature tensor and the Laplacian and fix some notation.
Throughout this thesis, any manifold is smooth, compact and connected and its
dimension is at least 3 (unless the contrary is explicitly asserted).

Let Mn be a manifold and g be a Riemannian metric on it. We define the
Riemann curvature tensor (as a (1, 3)-tensor) with the sign convention such that

RX,Y Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

As a (0, 4)-tensor, the curvature tensor is given by

R(X,Y, Z,W ) = g(RX,Y Z,W ).

Let {e1, . . . , en} be an orthonormal frame. The Ricci tensor is defined as

Ric(X,Y ) =

n∑
i=1

R(X, ei, ei, Y ),

and the scalar curvature is

scal =

n∑
i=1

Ric(ei, ei).

For any smooth (r, s)-tensor field T , we define

RX,Y T = ∇X∇Y T −∇Y∇XT −∇[X,Y ]T,

and we have the useful identity

[RX,Y T ](ω1, . . . , ωr, X1, . . . , Xs)

=

r∑
i=1

T (ω1, . . . , RY,Xωi, . . . , ωr, X1, . . . , Xs)

+

s∑
j=1

T (ω1, . . . , ωr, X1, . . . , RY,XXj , . . . , Xs).
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We call this identity the Ricci identity. We will need this identity frequently,
for instance for computing the variational formulas in the appendix. The metric
induces a natural pointwise scalar product on (r, s)-tensors by

〈T, S〉 =

n∑
i1,...,ir,
j1,...,js=1

T (e∗i1 , . . . , e
∗
ir , ej1 , . . . , ejs)S(e∗i1 , . . . , e

∗
ir , ej1 , . . . , ejs),

where {e1, . . . , en} is an orthonormal basis at the given point and {e∗1, . . . , e∗n}
is its dual basis. The global L2-scalar product is

(T, S)L2 =

ˆ
M

〈T, S〉 dV.

These induce a pointwise norm and an Lp-norm by

|T | := 〈T, T 〉1/2,

‖T‖Lp :=

(ˆ
M

|T |p dV
)1/p

.

Furthermore, we define the Ck-norms and the Sobolev norms by

‖T‖Ck =

k∑
i=0

sup
p∈M
|∇iT |,

‖T‖Wk,p =

(
k∑
i=0

∥∥∇iT∥∥2

Lp

)1/2

.

We abbreviate

‖T‖Hk = ‖T‖Wk,2 ,

and for k ∈ N, we define the H−k-norm as the dual norm of the Hk-norm, i.e.

‖T‖H−k = sup
S 6=0

(T, S)L2

‖S‖Hk
.

For α ∈ (0, 1) and k ∈ N0, we define the Hölder norm by

‖T‖Ck,α = ‖T‖Ck + sup
p 6=q

||∇kT |q − |∇kT |p|
d(p, q)α

.

Given a metric, we can naturally identify vector fields and 1-forms by the map

P : X(M)→ Ω1(M),

X 7→ (Y 7→ 〈X,Y 〉).

This map is called the musical isomorphism. We denote P (X) = X[ and
P−1(ω) = ω] where X ∈ X(M), ω ∈ Ω1(M). For any f ∈ C∞(M), we de-
fine the gradient as

gradf = (∇f)].
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The Lie derivative of a smooth tensor field T along a vector field X is given by

LXT =
d

dt

∣∣∣∣
t=0

ϕ∗tT,

where ϕt is the 1-parameter group of diffeomorphisms generated by X. We have
the formulas

LXf = X(f),

LXY = [X,Y ],

LXω(Y ) = X(ω(Y ))− ω([X,Y ]),

where f ∈ C∞(M), X,Y ∈ X(M) and ω ∈ Ω1(M). For any (r, s)-tensor field,
the above formulas extend by the Leibnitz rule, i.e.

LXT (ω1, . . . , ωr, X1, . . . , Xs) =X(T (ω1, . . . , ωr, X1, . . . , Xs))

−
r∑
i=1

T (ω1, . . . ,LXωi, . . . , ωr, X1, . . . , Xs)

−
s∑
i=1

T (ω1, . . . , ωr, X1, . . . ,LXXi, . . . , Xs).

It is furthermore easy to see that for any metric g,

(LXg)(Y,Z) = g(∇YX,Z) + g(Y,∇ZX),

where ∇ is the covariant derivative with respect to g.
By SpM , we denote the bundle of (0, p)-tensors which are symmetric in all

entries. We equip SpM with the pointwise scalar product and the L2-scalar
product from above. The divergence is the map δ : Γ(SpM) → Γ(Sp−1M),
defined by

δT (X1, . . . , Xp−1) = −
n∑
i=1

∇eiT (ei, X1, . . . , Xp−1).

The adjoint map δ∗ : Γ(Sp−1M)→ Γ(SpM) with respect to the L2-scalar prod-
uct is given by

δ∗T (X1, . . . , Xp) =
1

p

p−1∑
i=0

∇X1+iT (X2+i, . . . , Xp+i),

where the sums 1 + i, . . . , p + i are taken modulo p. The Laplace-Beltrami
operator acting on functions (which we often just call Laplacian) is defined with
the sign convention such that

∆f = −tr∇2f = ∇∗∇f.

For T, S ∈ Γ(S2M), we define their composition as

T ◦ S(X,Y ) =

n∑
i=1

S(X, ei) · T (ei, Y ).

7



We define an endomorphism R̊ : Γ(S2M)→ Γ(S2M) by

R̊T (X,Y ) =

n∑
i=1

T (Rei,XY, ei).

Note that R̊ is self-adjoint with respect to the pointwise scalar product and the
L2-scalar product. For T ∈ Γ(S2M), we define the Lichnerowicz Laplacian by

∆LT = ∇∗∇T + Ric ◦ T + T ◦ Ric− 2R̊T.

The Lichnerowicz Laplacian is self-adjoint with respect to the L2-scalar product.
If we wish to emphasize the dependence of the above objects on the metric,

we add a g in the notation, e.g. we write Rg instead of R. For first and second
variations of these objects in the direction of h, we use the notation of [Bes08],
e.g. we write R′g(h), R′′g (h) for the first two variations of the curvature tensor
and similarly for other quantities.

8



Chapter 2

The Einstein-Hilbert
Functional

This chapter summarizes well-known facts about the Einstein-Hilbert functional
and its variational theory. The facts explained here can also be found in [Bes08;
Sch89].

2.1 The Definition
Definition 2.1.1 (Einstein-Hilbert functional). Let M be a manifold and let
M be the set of all smooth Riemannian metrics on M . The map

S : M→ R,

g 7→
ˆ
M

scalg dVg

is called Einstein-Hilbert functional. Sometimes, it is also called total scalar
curvature.

As an open subset of the infinite-dimensional vector space Γ(S2M), M is
an infinite-dimensional manifold. By smoothness, it cannot be modelled as a
Banach manifold but as an inverse limit Hilbert manifold (ILH-manifold). In
the following, we do not need details about IHL-theory so we refer the reader
to [Omo68].
Remark 2.1.2. The Einstein-Hilbert functional is a Riemannian functional, i.e.
for any diffeomorphism ϕ : M →M , we have

S(ϕ∗g) = S(g),

where ϕ∗g is the pullback metric defined by ϕ∗g(X,Y ) := g(dϕ(X), dϕ(Y )).
Remark 2.1.3. In dimension 2, the Gauss-Bonnet theorem yields

S(g) =

ˆ
M

scalg dVg = 2

ˆ
M

Kg dVg = 4πχ(M),

where Kg is the Gaussian curvature with respect to g and χ(M) is the Euler
characteristic of M . Thus, the functional is constant onM.

9



2.2 First Variation
Before we compute the first variation of this functional, we remark that by
compactness of M , the tangent space ofM at any metric g is given by

TgM = Γ(S2M).

Proposition 2.2.1 (First variation of the Einstein-Hilbert functional). Let
(M, g) be a Riemannian manifold. Then the first variation of the total scalar
curvature in the direction of h ∈ Γ(S2M) is given by

S′g(h) =

ˆ
M

〈
scalg

2
g − Ricg, h

〉
g

dVg.

Proof. By the Lemmas A.1 and A.2, we have

scal′g(h) = ∆g(trgh) + δg(δgh)− 〈Ricg, h〉g,

dV ′g(h) =
1

2
trgh dVg.

Therefore, by Stokes’ theorem,

S′g(h) =

ˆ
M

scal′g(h) dVg +

ˆ
M

scalg dV
′
g(h)

=

ˆ
M

[∆g(trgh) + δg(δgh)− 〈Ricg, h〉g] dVg +
1

2

ˆ
M

scalg · trgh dVg

= −
ˆ
M

〈Ricg, h〉g dVg +
1

2

ˆ
M

scalg〈g, h〉g dVg

=

ˆ
M

〈
1

2
scalg · g − Ricg, h

〉
g

dVg.

Definition 2.2.2 (Einstein tensor). For a given Riemannian metric g, we define
the Einstein tensor G as

G = Ric− 1

2
scal · g.

Proposition 2.2.1 asserts that −G is the L2-gradient of the Einstein-Hilbert
functional.

Corollary 2.2.3. The critical metrics of the Einstein-Hilbert functional are the
Ricci-flat metrics, i.e. the metrics satisfying Ricg = 0.

Proof. By Proposition 2.2.1, the critical points are determined by the equation

−Gg =
1

2
scalg · g − Ricg = 0.

By contracting, we obtain (n
2
− 1
)

scalg = 0

and since n ≥ 3, the scalar curvature vanishes. Therefore,

Ricg = Ricg −
1

2
scalg · g = 0.

Conversely, any Ricci-flat metric has vanishing Einstein tensor.

10



Given some c > 0, we denote

M⊃Mc = {g ∈M|vol(M, g) = c} .

This is a submanifold of M of codimension 1. By the variation of the volume
element and by compactness, its tangent space at some metric is given by

TgMc =

{
h ∈ Γ(S2M)

∣∣∣∣ ˆ
M

trgh dVg = 0

}
=: Γg(S

2M).

Corollary 2.2.4. Let g ∈M be a metric of volume c. Then g is a critical point
of S|Mc

if and only if Ricg = µ · g for some µ ∈ R.

Proof. A metric g is a critical point of S|Mc
if and only if the L2-gradient of S

at g is orthogonal to TgMc. This means that Gg = λ · g for some λ ∈ R. By
contraction, (

1− n

2

)
scalg = λ · n

and since n ≥ 3, the scalar curvature is constant. This immediately yields

Ricg = Gg +
1

2
scalg · g = µ · g

for some µ ∈ R. Conversely, if Ricg = µ · g, then the Einstein tensor equals
Gg = λ · g, where λ = (1− n

2 ) · µ.

Definition 2.2.5 (Einstein manifolds). A Riemannian manifold (M, g) is said
to be Einstein if Ricg = µ · g for some µ ∈ R. We call µ the Einstein constant of
g. If µ > 0, we call an Einstein manifold positive, if µ < 0, we call it negative.
If µ = 0, we call it Ricci-flat.

Remark 2.2.6. Einstein metrics also appear as the critical points of the map

M3 g 7→ vol(M, g)
2
n−1

ˆ
M

scalg dVg

which is the volume-normalized variant of the Einstein-Hilbert functional. Ein-
stein metrics with fixed constant µ are the critical points of

M3 g 7→
ˆ
M

(scalg + (2− n)µ) dVg.

2.3 Second Variation
To see if the Einstein-Hilbert functional has extremality properties at Einstein
metrics, we now compute its second variation.

Proposition 2.3.1 (Second variation of the Einstein-Hilbert functional). Let
(M, g) be an Einstein manifold with constant µ and volume c. Then the second
variation of S|Mc at g in the direction of h ∈ Tg(Mc) is given by

S′′g (h) =

ˆ
M

〈h,−1

2
∇∗∇h+ δ∗δh+ δ(δh)g

+
1

2
(∆gtrgh)g − µ

2
(trgh)g + R̊gh〉g dVg.

(2.1)

11



Proof. Let gt be a variation of g inMc and let h = d
dt |t=0gt and k = d2

dt2 |t=0gt.
Then by the variational formulas in Lemma A.1,

d2

dt2

∣∣∣∣
t=0

S[gt] =− d

dt

∣∣∣∣
t=0

ˆ
M

〈Ggt , g′t〉gt dVgt

=−
ˆ
M

〈G′g(h), h〉g dVg −
ˆ
M

〈Gg, k〉g dVg

+ 2

ˆ
M

〈Gg, h ◦ h〉g dVg −
1

2

ˆ
M

〈Gg, h〉gtrgh dVg.

Since (M, g) is Einstein, Gg = ( 1
n −

1
2 )scalg · g and

2

ˆ
M

〈Gg, h ◦ h〉g dVg = 2

(
1

n
− 1

2

)
scalg

ˆ
M

|h|2g dVg,

−1

2

ˆ
M

〈Gg, h〉gtrgh dVg = −1

2

(
1

n
− 1

2

)
scalg

ˆ
M

(trgh)2 dVg.

Since gt is a curve inMc, we have

0 =
d2

dt2

∣∣∣∣
t=0

vol(M, gt) =

ˆ
M

d2

dt2

∣∣∣∣
t=0

dVgt

=
1

2

ˆ
M

d

dt

∣∣∣∣
t=0

(trgt(g
′
t) dVgt)

=
1

2

ˆ
M

[trgk + (1/2)(trgh)2 − |h|2g] dVg,

which implies

−
ˆ
M

〈Gg, k〉g dVg =−
(

1

n
− 1

2

)
scalg

ˆ
M

trgk dVg

=−
(

1

n
− 1

2

)
scalg

ˆ
M

[|h|2g −
1

2
(trgh)2] dVg.

By the variational formulas of the Ricci tensor and the scalar curvature (see
Lemma A.2),

G′(h) =Ric′(h)− 1

2
scal′(h) · g − 1

2
scal · h

=
1

2
∆Lh− δ∗(δh)− 1

2
∇2trgh

− 1

2
(∆gtrgh+ δ(δh)− 〈Ric, h〉g)g −

1

2
scalg · h

=
1

2
∇∗∇h− R̊h− δ∗(δh)− 1

2
δ(δh)g − 1

2
∇2trgh

− 1

2
∆gtrgh · g +

µ

2
trgh · g + (

1

n
− 1

2
)scalg · h,

which yields, after integration by parts,

−
ˆ
M

〈G′(h), h〉 dVg =

ˆ
M

〈−1

2
∇∗∇h+ δ∗δh+ δ(δh)g +

1

2
∆g(trgh)g

+ R̊h− µ

2
(trgh)g + (

1

2
− 1

n
)scalg · h, h〉g dVg.

By summing up, we obtain the desired formula.
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Remark 2.3.2. The second variational formula in [Bes08, Proposition 4.55] is
incorrect. There, the factor 1

2 is missing in front of the µ(trgh)g-term.

2.4 A Decomposition of the Space of Symmetric
Tensors

To get a better understanding of the complicated looking operator appearing
in (2.1), we discuss a decomposition of the space of symmetric tensors and we
consider the operator restricted to the components of the decomposition.

Lemma 2.4.1 ([Koi79b]). For any compact Riemannian manifold (M, g), we
have the following L2-orthogonal decomposition

Γ(S2M) = [C∞(M) · g + δ∗g(Ω1(M))]⊕ tr−1
g (0) ∩ δ−1

g (0).

If (M, g) is an Einstein manifold but not the standard sphere, this decomposition
can be refined to

Γ(S2M) = C∞(M) · g ⊕ δ∗g(Ω1(M))⊕ tr−1
g (0) ∩ δ−1

g (0).

All these factors are infinite dimensional.

Here, tr−1
g (0) (resp. δ−1

g (0)) denotes the space of tensor fields, whose trace
(resp. divergence) vanishes at each point in M .

These subspaces can be interpreted geometrically as follows. Let

[g] = {f · g|f ∈ C∞(M), f > 0}

be the conformal class of g. Then the tangent space of this submanifold of
M at g is exactly the first factor of the decomposition above, i.e. elements of
C∞(M) · g are conformal deformations of g.

Let Diff(M) be the group of diffeomorphisms on M . It has a natural right
action on M given by (g, ϕ) 7→ ϕ∗g. The action of the diffeomorphism group
on g gives a submanifold g · Diff(M) whose tangent space at g is given by the
space of all Lie derivatives of the metric g. We calculate

LXg(Y,Z) = g(∇YX,Z) + g(Y,∇ZX)

= Y (g(X,Z))− g(X,∇Y Z) + Z(g(Y,X))− g(∇ZY,X)

= Y (X[(Z))−X[(∇Y Z) + Z(X[(Y ))−X[(∇ZY )

= (∇YX[)(Z) + (∇ZX[)(Y )

= 2(δ∗gX
[)(Y,Z),

which shows that Tg(g ·Diff(M)) is exactly δ∗g(Ω1(M)). This gives a description
of the second factor.

Elements in tr−1
g (0) ∩ δ−1

g (0) are often called transverse traceless tensors.
From now on, we abbreviate

TTg = tr−1
g (0) ∩ δ−1

g (0),

and we speak of TT -tensors. Deformations of the Einstein metric g in TT -
directions preserve the volume element and the scalar curvature in first order.

13



Therefore, the third factor is often referred to as the space of non trivial volume
preserving and scalar curvature preserving deformations.
From the decomposition above, we obtain

Tg(Mc) = Γg(S
2M) = [C∞g (M) · g + δ∗g(Ω1(M))]⊕ TTg (2.2)

for Einstein metrics in general and, if g is not the standard metric on the sphere,

Tg(Mc) = Γg(S
2M) = C∞g (M) · g ⊕ δ∗g(Ω1(M))⊕ TTg. (2.3)

Here, C∞g (M) =
{
f ∈ C∞(M)|

´
M
f dVg = 0

}
.

Remark 2.4.2. The standard sphere is the only Einstein metric which has con-
formal Killing vector fields. We have

1

n− 1
f · gst = −δ∗(∇f) = −2Lgradfgst

for any f ∈ C∞(Sn) with ∆f = n · f where n is the smallest nonzero eigenvalue
of the Laplacian. More precisely,

C∞(Sn) · gst ∩ δ∗gst(Ω
1(Sn)) = {f · gst ∈ C∞(Sn) · gst|∆f = n · f} ,

see e.g. [Oba62].
We now investigate the second variational formula of the Einstein-Hilbert

functional restricted to the three components of (2.3). Let h = f · g for some
f ∈ C∞g (M). Then (2.1) yields

S′′g (h) =
n− 2

2

ˆ
M

〈f, (n− 1)∆gf − nµf〉 dVg. (2.4)

At this point, we mention the following

Theorem 2.4.3 ([Oba62]). Let (M, g) a compact Riemannian manifold and let
λ be the smallest nonzero eigenvalue of the Laplace operator acting on C∞(M).
Assume there exists µ > 0 such that Ric(X,X) ≥ µ|X|2 for any vector field X.
Then λ satisfies the estimate

λ ≥ n

n− 1
µ,

and equality holds if and only if (M, g) is isometric to the standard sphere.

Later on, we often refer to this theorem as Obata’s eigenvalue estimate.
We conclude that S′′g |C∞g (M)·g ≥ 0 and S′′g |C∞g (M)·g > 0 if (M, g) is not the

standard sphere. Therefore, an Einstein metric is always a local minimum of the
total scalar curvature restricted to metrics of the same volume in its conformal
class. For the standard sphere, this is well known and for other Einstein metrics
it is immediate from the strict inequality.

The second variation is easy to investigate when restricted to the second
component of the splitting. Since S is a Riemannian functional, it is constant
on any orbit g · Diff(M). Because δ∗g(Ω1(M)) = Tg(g · Diff(M)), we therefore
have

S′′g (h) = 0 (2.5)
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for each h ∈ δ∗g(Ω1(M)).
The third component appears to be the most interesting one. For h ∈ TTg,

formula (2.1) yields

S′′g (h) = −1

2

ˆ
M

〈h,∇∗∇h− 2R̊h〉 dVg. (2.6)

Definition 2.4.4 (Einstein Operator). We call the differential operator

∆E = ∇∗∇− 2R̊ : Γ(S2M)→ Γ(S2M)

the Einstein operator.

The Einstein operator is a self-adjoint elliptic operator. By compactness of
M , (∆E+c)−1 is a compact operator on L2(S2M) for any c ∈ R in the resolvent
set of ∆E . Therefore, by spectral theory, ∆E has a discrete set of eigenvalues
{λn}, n ∈ N, forming a sequence λ1 < λ2 < . . ., and λn → ∞ as n → ∞. Any
eigenvalue has finite multiplicity.

The Einstein operator is closely related to the Lichnerowicz Laplacian ∆L,
which is another self-adjoint elliptic operator acting on Γ(S2M). In fact, on
Einstein manifolds, we have the relation

∆L = ∆E + 2µ · id, (2.7)

where µ is the Einstein constant of g. In addition, the Lichnerowicz Laplacian
satisfies some useful properties.

Lemma 2.4.5. Let (M, g) be a Riemannian manifold and ∆L its Lichnerowicz
Laplacian. Then

∆L(f · g) =(∆f) · g, (2.8)
tr(∆Lh) =∆(trh) (2.9)

for all f ∈ C∞(M), h ∈ Γ(S2M). Moreover, if Ric is parallel,

∆L(δ∗ω) = δ∗(∆Hω), (2.10)
δ(∆Lh) = ∆H(δh), (2.11)

∆L(∇2f) = ∇2(∆f) (2.12)

for all f ∈ C∞(M), ω ∈ Ω1(M), h ∈ Γ(S2M). Here, ∆H = ∇∗∇ + Ric is the
Hodge Laplacian on 1-forms.

Proof. Formula (2.8) follows from an easy calculation. For a proof of (2.9),(2.10)
and (2.12), see e.g. [Lic61, pp. 28-29]. Formula (2.11) is a consequence of (2.10).

Lemma 2.4.6. If g is Einstein, the Einstein operator maps TTg to itself.

Proof. This follows from (2.7) and Lemma 2.4.5.

Remark 2.4.7. From (2.4), (2.5), (2.6) and Lemma 2.4.6, we conclude the fol-
lowing: If (M, g) is an Einstein manifold but not the standard sphere, the
decomposition

C∞g (M) · g ⊕ δ∗g(Ω1(M))⊕ TTg
is orthogonal with respect to the bilinear form induced by S′′. In contrast,
the decomposition is not L2-orthogonal since C∞g (M) and δ∗g(Ω1(M)) are not
L2-orthogonal.
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2.5 Stability of Einstein Metrics and Infinitesi-
mal Einstein Deformations

Comparing (2.4) and (2.6), we see that an Einstein metric is neither a local
minimum nor maximum of S. But it is a local minimum in its conformal class
and S′′|TT has finite coindex. This motivates the following

Definition 2.5.1 (Stability of Einstein manifolds). Let (M, g) be an Einstein
manifold. We say that (M, g) is stable if its Einstein operator restricted to TT -
tensors is nonnegative. If ∆E |TT is positive, we call (M, g) strictly stable. If
∆E |TT contains negative eigenvalues, we call (M, g) unstable. Furthermore, we
call ker(∆E |TT ) the space of infinitesmal Einstein deformations.

Due to compactness, ker(∆E |TT ) is always finite-dimensional. In the follow-
ing, we will justify the notion of infinitesimal Einstein deformations. We define
an equivalence relation on M as follows: We call g1 and g2 equivalent if there
exist c > 0 and ϕ ∈ Diff(M) such that g2 = c · ϕ∗g1. Observe that all metrics
in one equivalence class essentially contain the same geometry, since they are
isometric up to rescaling. The quotiont

M/ ∼=M1/ ∼

is called the space of all Riemannian structures. The quotient of the set of
all Einstein metrics under this relation is called the moduli space of Einstein
structures. A local description of the set of Riemannian structures is given by
the slice theorem. For us, the following parts of the theorem are important (see
also [Bes08, p.345] for a more detailed formulation).

Theorem 2.5.2 (Ebin). Let g0 be a unit-volume Riemannian metric on a com-
pact manifold M . Then there exists a submanifold Sg0

⊂ M1 with tangent
space

Tg0
Sg0

= TgM1 ∩ δ−1
g0

(0)

and a neighbourhood U ⊂M1 of g0 such that for any g ∈ U , there exist ḡ ∈ Sg0

and ϕ ∈ Diff(M) such that g = ϕ∗ḡ. We call Sg0
a slice of the action of Diff(M).

The theorem basicly says that all geometries close to g0 are contained in the
slice Sg0 . Due to rescaling, the analogous assertion of course holds for manifolds
with arbitrary volume.

Now, let gt be a curve of Einstein metrics of volume c through g = g0 lying
in the slice Sg. Then, since all gt are critical points of the Einstein-Hilbert
functional restricted to Mc, the function t 7→ S(gt) = vol(M, gt) · scalgt is
constant. We immediately obtain that the scalar curvature (and hence the
Einstein constant) is constant in t and that h = d

dt |t=0gt satisfies the system

δgh = 0,

ˆ
M

trgh dVg = 0,
d

dt

∣∣∣∣
t=0

(
Ricgt −

S(gt)

c · n
· gt
)

= 0. (2.13)

By a result of Berger and Ebin (see [Bes08, Theorem 12.30]), this is equivalent
to the system

δgh = 0, trgh = 0, ∆Eh = 0. (2.14)
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In other words, h is an infinitesimal Einstein deformation. We conclude that
if ker(∆E |TT ) is trivial, the Einstein metric g is isolated in the moduli space
of Einstein structures, i.e. there are no other Einstein metrics close to g except
those of the form c · ϕ∗g. On the other hand, it is in general not true that for
any h ∈ ker(∆E |TT ), there exists a curve of Einstein metrics tangent to h. In
fact, g can be isolated in the moduli space although ker(∆E |TT ) is nontrivial.
Such examples (e.g. the product metric on CP 2n×S2) are discussed in [Koi82].

Definition 2.5.3. An infinitesimal Einstein deformation h is said to be inte-
grable if there exists a curve gt of Einstein metrics such that d

dt |t=0gt = h.

Remark 2.5.4. Stability properties of compact Riemannian Einstein metrics also
play a role in mathematical general relativity. In [AM11], L. Andersson and
V. Moncrief consider the Lorentzian cone over a compact negative Einstein
manifold. They prove a global existence theorem for solutions of Einstein’s
equations close to the cone under the assumption that the compact Einstein
metric is stable.
Remark 2.5.5. The eigenvalues of the Einstein operator (resp. the Lichnerowicz
Laplacian) acting on TT -tensors are also important for the stability of higher-
dimensional black holes and event horizons in physics, see [GH02; GHP03].
There, a stability conditon (which we may call physical stability) on Einstein
manifolds with constant µ > 0 is given by

λ ≥ − µ

n− 1

(
4− 1

4
(n− 1)2

)
for the smallest eigenvalue of the Lichnerowicz Laplacian acting on TT -tensors.

2.6 The Manifold of Metrics of constant Scalar
Curvature

On a given compact manifold, there exist many metrics of constant scalar cur-
vature. We introduce the notations

C = {g ∈M|scalg is constant} ,
Cc =Mc ∩ C.

Let Ψ: M → C∞(M) be defined by Ψ(g) = ∆gscalg. Since M is compact,
C = Ψ−1(0). Let g ∈ C. By the first variation of the scalar curvature, the
differential of Ψ at g is equal to

αg(h) = dΨg(h) = ∆g(scal′g(h)) = ∆g(∆gtrgh+ δg(δgh)− 〈Ric, h〉). (2.15)

Theorem 2.6.1 ([Koi79a]). Let g0 ∈ C1 such that scalg0
/(n−1) is not a positive

eigenvalue of the Laplace-Beltrami operator. Then in a neighbourhood of g0, C1
is an ILH-submanifold ofM such that

Tg0
C1 = ker(αg0

) ∩
{
h ∈ Γ(S2M)

∣∣∣∣ ˆ
M

trg0
h dVg0

= 0

}
. (2.16)

Furthermore, the map (f, g) 7→ f · g from C∞(M) × C1 to M is a local ILH-
diffeomorphism from a neighbourhood of (1, g0) to a neighbourhood of g0.
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By rescaling, this local decomposition holds of course for constant scalar
curvature metrics of arbitrary volume. Observe that this assertion holds for all
Einstein metrics except the standard sphere. The local decomposition follows
from the ILH inverse function theorem and the splitting

Γ(S2M) = C∞(M) · g ⊕ TgCc.

If g is an Einstein metric, then g ·Diff(M) ⊂ Cc, and therefore,

δ∗(Ω1(M)) = Tg(g ·Diff(M)) ⊂ TgCc.

By (2.15) and (2.16), it is easy to see that TTg ⊂ TgC1. Since also the decom-
position

Γ(S2M) = C∞(M) · g ⊕ δ∗g(Ω1(M))⊕ TTg

holds, we have

TgCc = δ∗(Ω1(M))⊕ TTg,

and in addition, this decomposition is L2-orthogonal.

Proposition 2.6.2 ([Bes08],Proposition 4.47). Let (M, g) be a metric of con-
stant scalar curvature and volume c such that scalg/(n− 1) /∈ spec+(∆g). Then
g is a critical point of S|Cc if and only if g is Einstein.

Observe that stability of an Einstein manifold precisely means that the sec-
ond variation of the Einstein-Hilbert functional is nonpositive on TgCc. The
following lemma is quite immediate but is not stated in this form in the litera-
ture.

Lemma 2.6.3. Let (M, g0) be an Einstein manifold of volume c. If we have
scalg ≤ scalg0

for all g ∈ Cc in a small C2-neighbourhood of g0, then (M, g0) is
stable. Conversely, if (M, g0) is strictly stable, there exists a C2-neighbourhood
U of g0 in the space of metrics such that scalg ≤ scalg0

for all g ∈ U ∩ Cc, and
equality holds if and only if g is isometric to g0.

Proof. Suppose that g0 is unstable, then there exists h ∈ TTg ⊂ TgCc such
that S′′g0

(h) > 0. By integrating, we obtain a curve gt ∈ Cc such that we have
scalgt = c−1S(gt) > c−1S(g0) = scalg0

for all t ∈ (0, ε). Conversely, suppose
that (M, g0) is strictly stable, i.e. S′′ is negative on TT -tensors. Let Sg0 be a
slice through g0 and consider the set Sg0 ∩ Cc. This is an infinite-dimensional
submanifold ofM and its tangent space through g0 is given by TT . The map
g 7→ scalg = c−1S[g] is a smooth functional on Sg0

∩Cc which is continuous with
respect to the C2-topology. Since g0 is a critical point of scal and the second
variation is negative at g0, there is a small C2-neighbourhood V ⊂ Sg0

∩Cc such
that scalg < scalg0 for all g ∈ V, g 6= g0. By the slice theorem, there exists a C2-
neighbourhood U inM such that any g ∈ Cc∩U can be written as ϕ∗ḡ for some
ϕ ∈ Diff(M) and ḡ ∈ V. By diffeomorphism invariance, scalg = scalḡ ≤ scalg0

and equality holds if and only if g = ϕ∗g0.
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2.7 The Yamabe Invariant
For a smooth metric g on a given compact manifold, we consider

Y (M, [g]) = inf
g̃∈[g]

vol(M, g̃)(2−n)/n

ˆ
M

scalg̃ dVg̃,

where [g] is the conformal class of g. We call this infimum the Yamabe constant
of the conformal class of g. By the solution of the Yamabe problem (which was
solved by Schoen in [Sch84]), it is well known that this infimum is always finite
and that it is realized by a metric of constant scalar curvature. Metrics realizing
this infimum are nessecarily of constant scalar curvature and are called Yamabe
metrics. We now define the Yamabe functional

Y : M→ R,
g 7→ Y (M, [g]).

By definition, this functional is conformally invariant. It is also a diffeomorphism
invariant, so Y (ϕ∗g) = Y (g) for any ϕ ∈ Diff(M). The Yamabe functional is
continuous with respect to the C2-topology (see [Bes08, Proposition 4.31]). We
call

Y (M) = sup
g∈M

Y (M, [g])

the Yamabe invariant of M . It is well known (see e.g. [LP87, p. 50]) that

Y (M, [g]) ≤ Y (Sn, [gst]),

and equality holds if and only if M = Sn and g is isometric to some metric in
[gst]. Thus, we immediately obtain the bound

Y (M) ≤ Y (Sn).

In particular, the Yamabe invariant of any manifold is always a real number.

Definition 2.7.1. A Yamabe metric g is called supreme if Y (M, [g]) = Y (M).

Let Yc be the set of Yamabe metrics of volume c. Clearly, Yc ⊂ Cc. Let g
be an Einstein metric. It is well-known that any Einstein metric is the unique
Yamabe metric in its conformal class (see [Sch89, Proposition 1.4]).

Theorem 2.7.2 ([BWZ04]). Let (M, g0) be an Einstein metric not conformally
equivalent to the round sphere. Then any metric g ∈ C which is C2,α-close to
g0 is a Yamabe metric.

In other words, U ∩ Yc = U ∩ Cc for a small C2,α-neighbourhood U of
g0. Moreover, if U is small enough, Theorem 2.6.1 implies that a small C2,α-
neighbourhood of (1, g0) in C∞(M) × Cc is mapped diffeomorphically to U by
(f, g) 7→ f · g. Since g is Yamabe, we have

Y (f · g) = Y (g) = c2/n · scalg

for f · g ∈ U . This shows that the Yamabe functional is smooth on U , since
g 7→ scalg is smooth on Cc. Using these observations, we can deduce the following
from Proposition 2.6.2:
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Corollary 2.7.3. Let (M, g0) be an Einstein manifold. If Y (g) ≤ Y (g0) for all
g ∈M in a small C2,α-neighbourhood of g0, then (M, g0) is stable. Conversely,
if (M, g0) is strictly stable, there exists a C2,α-neighbourhood U of g0 in the
space of metrics such that Y (g) ≤ Y (g0) for all g ∈ U , and equality holds if and
only if g is isometric to g0.

In particular, we have

Corollary 2.7.4. Any supreme Einstein metric (M, g) is stable.
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Chapter 3

Some stable and unstable
Einstein Manifolds

In this chapter, we study the Einstein operator on particular examples. In the
first section, we mention some well-known examples and classes of stable and
unstable Einstein manifolds. In Section 3.2, we study the Einstein operator on
Bieberbach manifolds and we compute the dimension of its kernel in terms of
the holonomy. In Section 3.3, we study the Einstein operator on products of
Einstein spaces.

3.1 Standard Examples

In general, it is very hard to find out if an Einstein manifold is stable or not.
However for some examples, this is possible and for very few examples, it is even
possible to compute the spectrum of the Einstein operator explicitly.

Example 3.1.1 (The flat torus). We consider the Torus Tn = Rn/Zn equipped
with the flat metric. We consider the Einstein operator acting on the subbundle
tr−1(0) ⊂ Γ(S2M). This is a trivial vector bundle over Tn and its dimension
equals n(n+ 1)/2− 1. Since the manifold is flat, ∆E = ∇∗∇ = ∆0 ⊕ . . .⊕∆0

where ∆0 is the usual Laplace-Beltrami operator acting on functions. There-
fore, the spectrum of ∆E concides with the spectrum of the Laplace-Beltrami
operator on Tn, so

spec(∆E |tr−1(0)) =
{

(2π)2(k2
1 + . . .+ k2

n)| ki ∈ Z
}
.

In particular, since all eigenvalues are nonnegative, (Tn, geukl) is stable. The
kernel of ∆E |tr−1(0) has dimension n(n+ 1)/2− 1, since it consists precisely of
the parallel sections in tr−1(0), which are obviously TT -tensors.

Example 3.1.2 (The sphere and the real projective space). The n-dimensional
unit sphere is an Einstein manifold with constant (n − 1). Here, we have the
relation

∆E = ∆L − 2(n− 1),
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where ∆L is the Lichnerowicz Laplacian. The spectrum of ∆L on the standard
sphere was explicitly computed in [Bou99]. For ∆L acting on traceless transverse
tensors, eigentensors were constructed in the proof of [Bou99, Proposition 3.19]
and the spectrum is given in [Bou99, Theorem 3.2]. We immediately obtain the
spectrum of ∆E :

spec(∆E |TT ) = {k(k + n− 1)| k ≥ 2} .

In particular, (Sn, gst) is strictly stable since all eigenvalues are positive. The
real projective space (RPn, gst) is also strictly stable. The spectrum of its
Einstein operator is

spec(∆E |TT ) = {2k(2k + n− 1)| k ≥ 2} ,

see [Bou99, Theorem 4.2].

Example 3.1.3 (Coverings). Let ϕ : (M̃, g̃) → (M, g) be a finite Rieman-
nian covering of Einstein manifolds. If (M̃, g̃) is (strictly) stable then (M, g) is
(strictly) stable. This is due to the fact that any TT -eigentensor of ∆E on M
can be lifted to a TT -eigentensor of ∆E on M̃ with the same eigenvalue.

Example 3.1.4 (Symmetric spaces of compact type). For most symmetric
spaces of compact type, it is known if they are stable or not. A table collecting
the smallest eigenvalue of the Lichnerowicz Laplacian (from which we obtain the
smallest eigenvalue of the Einstein operator immediately) on such spaces is given
in [CH13, p.15-17]. The only known unstable manifolds in this class are Spin(5),
Sp(n), n ≥ 3, SO(5)/(SO(3) × SO(2)) and Sp(n)/U(n), n ≥ 3. For HP 2 and
Sp(p+q)(Sp(p) × Sp(q)), it is not known whether they are stable or not. All
other manifolds in this class are known to be stable. From these, the spaces
SU(n), n ≥ 3, SU(n)/O(n), n ≥ 3, SU(2n)/Sp(n), n ≥ 3, U(p+q)(U(p)×U(q)),
p, q ≥ 2 and E6/F4 have infinitesimal Einstein deformations.

Example 3.1.5 (Spin manifolds). Suppose now that our manifold (M, g) is
spin. We call a nonzero spinor σ a real Killing spinor, if ∇Xσ = cX · σ for
some c ∈ R. Any Riemannian manifold carrying a real Killing spinor is Einstein
with constant 4c2(n− 1). If c = 0, σ is parallel and (M, g) is Ricci-flat. By the
work in [Wan91], [DWW05], it is known that such manifolds are stable. The
idea is as follows: Given a real Killing spinor, we associate to each symmetric
(0, 2)-tensor a spinor-valued 1-form by

Ψ: Γ(S2M)→Γ(T ∗M ⊗ S),

h 7→(X 7→ h(X) · σ).

Here, S denotes the spinor bundle of (M, g) and h is considered as an endomor-
phism on TM . Now a straightforward calculation shows that if h ∈ TT ,

D2 ◦Ψ(h) + 2cD ◦Ψ(h) = Ψ ◦∆E(h) + c2n(n− 1)Ψ(h).

where D is the twisted Dirac operator acting on Γ(T ∗M ⊗ S). Since D2 is a
nonnegative operator, (M, g) is stable if c = 0.

For the more general case of non-parallel real Killing spinors, stability can
not be derived. We then replace the connection on T ∗M⊗S by a new connection
∇̃ defined by ∇̃X = ∇X + c

nX· and obtain the Bochner formula

Ψ ◦∆E(h) = D̃2 ◦Ψ(h)− c2(n− 1)2Ψ(h),
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where D̃ is the Dirac operator associated to ∇̃. Thus, the smallest eigenvalue of
∆E |TT is bounded from below by −n−1

4 µ where µ > 0 is the Einstein constant.
As we will see, this estimate is rather bad compared to the ones discussed in
the next chapter.

Example 3.1.6 (Kähler manifolds). Kähler-Einstein manifolds with nonposi-
tive Einstein constant are stable. This will be discussed in more detail in Section
4.6.

Example 3.1.7 (Product manifolds). The prototypical example of an unstable
Einstein manifold is the product of two positive Einstein manifolds (Mn1 , g1),
(Nn2 , g2). Take h = n2 ·g1−n1 ·g2. Then h ∈ TTg1+g2 and ∆Eh = −2µh where
µ is the Einstein constant.

Example 3.1.8 (Other unstable manifolds). From the estimates in [GH02;
GHP03; GM02; PP84a; PP84b], the following examples are also unstable:

• The three infinite families of homogeneous Einstein metrics in dimensions
5 and 7 in [Rom85; CDF84; DFVN84; PP84b]. They are S1 -bundles over
S2 × S2 , CP 2 × S2 and S2 × S2 × S2, respectively. These examples are
special cases of the examples in [WZ86].

• A few of the inhomogeneous Einstein metrics on the products of spheres
in low dimensions constructed by C. Böhm in [Böh98].

In [Böh05], C. Böhm constructed unstable Einstein metrics on the total spaces
of principal torus bundles over products of Kähler-Einstein manifolds.

All the unstable Einstein metrics from the previous examples have positive
scalar curvature. In contrast, no unstable Einstein metrics with nonpositive
scalar curvature are known (in the compact case). This raises the following

Question ([KW75; Dai07]). Are all compact Einstein manifolds with nonpos-
itive scalar curvature stable?

This is not true in the noncompact case since the Riemannian Schwarzschild
metric is unstable (see [GPY82, Sec. 5]).

3.2 Bieberbach Manifolds
Bieberbach manifolds are flat connected compact manifolds. It is well known
that any Bieberbach manifold is isometric to Rn/G, where G is a suitable sub-
group of the Euclidean motions E(n) = O(n)nRn. We call such groups Bieber-
bach groups. For every element g ∈ E(n), there exist unique A ∈ O(n) and
a ∈ Rn such that gx = Ax + a for all x ∈ Rn, and we write g = (A, a).
There exist homomorphisms r : E(n) → O(n) and t : Rn → E(n), defined by
r(A, a) = A and t(a) = (1, a). Let G be a Bieberbach group. The subgroup
r(G) ⊂ O(n) is called the holonomy of G since its natural representation on Rn
is equivalent to the holonomy representation of Rn/G (see e.g. [Cha86]).

We call two Bieberbach manifolds M1 and M2 affinely equivalent if there
exists a diffeomorphism F : M1 → M2 whose lift to the universal coverings
π1 : Rn →M1, π2 : Rn →M2 is an affine map α : Rn → Rn such that

π2 ◦ α = F ◦ π1.
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If M1 and M2 are affinely equivalent, the corresponding Bieberbach groups
G1 and G2 are isomorphic via ϕ : G1 → G2, ϕ(g) = αgα−1. Conversely, if two
Bieberbach groups G1 and G2 are isomorphic, there exists an affine map α such
that the isomorphism is given by g 7→ αgα−1 (see [Wol11, Theorem 3.2.2]). The
map α descends to a diffeomorphism F : M1 →M2 and M1 and M2 are affinely
equivalent via F .

Now we want to determine whether a Bieberbach manifold has infinitesimal
Einstein deformations or not. Any Bieberbach manifold is stable since

(∆Eh, h)L2 = (∇∗∇h, h)L2 = ‖∇h‖2L2 ≥ 0.

Furthermore, we see that any infinitesimal Einstein deformation is parallel.

Remark 3.2.1. The following lemma is a consequence of the holonomy principle.
It also follows immediately from [Die13, Proposition 4.2].

Lemma 3.2.2. Let (M, g) be a connected Riemannian manifold. There exists
a nonzero traceless symmetric (0, 2)-tensor field h with ∇h ≡ 0 if and only if
the holonomy of (M, g) is reducible.

Proof. Let h be a symmetric and traceless parallel tensor field and consider it
as an endomorphism h : TM → TM . Let p ∈M and let {e1, . . . , en} be a local
orthonormal frame around p such that all ei are eigenvectors of h at each point,
i.e. h(ei) = λiei. Since h is parallel,

0 =∇ei(h(ej))− h(∇eiej)

=∇ei(λjej)−
n∑
k=1

h(Γkijek)

=(∇eiλj)ej + λj(∇eiej)−
n∑
k=1

λkΓkijek

=(∇eiλj)ej +

n∑
k=1

(λj − λk)Γkijek

=(∇eiλj)ej +

n∑
k=1,k 6=j

(λj − λk)Γkijek.

Since the ei are linearly independant, ∇eiλj = 0 for all 1 ≤ i, j ≤ n. Thus, the
eigenvalues λi are constant as functions on M . Let now λ1 < . . . < λk be the
pairwise distinct eigenvalues of h. We obtain an orthogonal splitting

TM = E(λ1)⊕ . . .⊕ E(λk).

where E(λi) is the space of eigensections to the eigenvalue λi. Since h is trace-
free, there exist at least two distinct eigenvalues, so the splitting into eigenspaces
is nontrivial. Let now γ : [0, 1] → M be a piecewise smooth curve. Let
X0 ∈ Tγ(0)M and Xt, t ∈ [0, 1] be the parallel translated vector field along
γ. Then h(Xt) is the parallel translated vector field of h(X0) along γ. There-
fore, the eigenspaces of h are preserved by parallel translation along curves,
so the holonomy representation on TpM leaves the eigenspaces of h invariant.
Thus, it is reducible.
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To prove the converse, suppose that the holonomy of (M, g) is reducible.
Let p ∈M and (E1)p, . . . (Ek)p be invariant subspaces of Holp(M, g) such that
(E1)p ⊕ . . . ⊕ (Ek)p = TpM . Since Holp(M, g) ⊂ O(TpM, gp), this sum is
orthogonal. By parallel translation of the (Ei)p, we obtain a well-defined parallel
splitting E1 ⊕ . . . ⊕ Ek = TM . The metric splits as g = g1 ⊕ . . . ⊕ gk since
these subbundles are orthogonal. Then any combination

∑k
i=1 λigi, λi ∈ R is a

symmetric parallel tensor field and its trace vanishes for a suitable choice of the
λi.

Corollary 3.2.3. A Bieberbach manifold M = Rn/G is strictly stable if and
only if the subgroup r(G) ⊂ O(n) acts irreducibly on Rn.

Proof. Recall that r(G) is isomorphic to the holonomy ofM . Since any infinites-
imal Einstein deformation is parallel, the assertion is immediate from Lemma
3.2.2.

We now consider the contrary case where the holonomy is reducible. We
then know that the space of infinitesimal Einstein deformations is nontrivial.
We want to compute its dimension. Let TM = E1 ⊕ . . . ⊕ Ek be a parallel
splitting of the tangent bundle into irreducible components. Then a parallel
splitting of the bundle of symmetric (0, 2)-tensors is given by

T ∗M � T ∗M =

k⊕
i,j=1

E∗i � E∗j =

k⊕
i=1

�2E∗i ⊕
k⊕
i<j

E∗i � E∗j . (3.1)

Here, E∗i is the image of Ei under the musical isomorphism and � denotes the
symmetric tensor product. We now want to determine the space of parallel
sections in each of these summands. First suppose that h ∈ Γ(�2Ei) is parallel.
Considered as an endomorphism on TM , it induces an endomorphism h : Ei →
Ei. By the proof of Lemma 3.2.2, its eigensections form a splitting of the bundle
Ei. Since we assumed Ei to be irreducible, there can only exist one eigenvalue,
which implies that h = λgi where λ ∈ R and gi is the metric restricted to Ei.
Thus, parallel tensors in the component

⊕k
i=1�2E∗i are of the form

h =

k∑
i=1

λigi, λi ∈ R.

If we assume h to be trace-free, we have the condition

k∑
i=1

λidim(Ei) = 0.

We have just obtained a k− 1-dimensional space of infinitesimal Einstein defor-
mations. Now we consider the second component of the splitting (3.1). Sections
of E∗i �E∗j , considered as endomorphisms on TM , are sections of End(Ei⊕Ej)
which are of the form

h =

(
0 A∗

A 0

)
,

where A ∈ Γ(End(Ei, Ej)) and A∗ is its adjoint. Any such map is trace-free.
Now if h is parallel, A is also parallel. Therefore, ker(A) and im(A) are both
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parallel subbundles of Ei, Ej , respectively. Since Ei, Ej are irreducible, this
shows that A is an isomorphism if it is nonzero. We now want to state nessecary
and sufficient conditions which ensure the existence of such a map.

Fix a point p and consider a linear map Ap : (Ei)p → (Ej)p. It is clear
that there exists at most one parallel endomorphism A : Ei → Ej which coin-
cides with Ap at p. Assume that such an A exists and let γ : [0, 1] → M be
a closed curve starting and ending at p. Then A commutes with the parallel
transport along γ and therefore, Ap commutes with the holonomy representa-
tion ρ(Holp(M, g)) ⊂ O(TpM, gp). This is also a sufficient condition. If Ap
commutes with the holonomy representation, one obtains a well-defined parallel
endomorphism A by parallel translation along curves.

This condition precisely means that the restricted standard holonomy repre-
sentatios ρ(Holp(M, g))|Ei and ρ(Holp(M, g))|Ej are equivalent via Ap. Recall
that two representations ρ1 : G→ L(V ), ρ2 : G→ L(W ) are equivalent if there
exists an isomorphism ϕ : V →W such that ρ2(g) ◦ϕ = ϕ ◦ ρ1(g) for all g ∈ G.

Since the representations ρ(Holp(M, g))|Ei and ρ(Holp(M, g))|Ej are finite
dimensional and irreducible, the space of linear maps L : (Ei)p → (Ej)p com-
muting with these representations is 1-dimensional. This follows easily from a
Lemma from representation theory (see e.g. [NS82, p. 27]).

In summary, we have shown that the dimension of the space of parallel
sections in E∗i � E∗j equals 1 if the holonomy representations restricted to Ei
and Ej are equivalent and zero otherwise. Summing over all E∗i � E∗j , i < j
and using the fact that the representations ρ : Holp(M, g) → O(TpM, gp) and
r : G→ O(n) are equivalent, we obtain

Proposition 3.2.4. Let (M = Rn/G, g) be a Bieberbach manifold and let ρ be
the canonical representation of the subgroup r(G) on Rn. Let

ρ ∼= (ρ1)i1 ⊕ . . .⊕ (ρl)
il

be an irreducible decomposition of ρ. Then the dimension of infinitesimal Ein-
stein deformations is equal to

dim(ker(∆E |TT ) = −1 +

l∑
j=1

ij +

l∑
j=1

ij(ij − 1)

2
.

Remark 3.2.5. We show that each of the infinitesimal Einstein deformations
above is integrable. Let M = Rn/G be a Bieberbach manifold with the flat
metric g and let h be a parallel tensor field. For small values of t, gt = g + th
is also a metric. Choose local coordinates such that gij = δij . Then the local
coefficients hij are constant, since h is parallel. Thus, also gt has constant
coefficients with respect to these coordinates, which implies that the Riemann
curvature tensor vanishes. In particular, (M, gt) is a curve of Einstein metrics.

Recall that two Bieberbach manifolds M1 and M2 are called affinely equiv-
alent if there exists a diffeomorphism F : M1 → M2 whose lift to the universal
coverings π1 : Rn → M1, π2 : Rn → M2 is an affine map α ∈ GL(n) n Rn such
that F ◦ π1 = π2 ◦ α. Since π1, π2 are local isometries and α is affine, the map
F is parallel, i.e.

∇M2

X dF (Y ) = dF (∇M1

dF−1(X)Y ), ∀X ∈ X(M2), Y ∈ X(M1).
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The map F induces an ismorphism F∗ : Γ(S2M1) → Γ(S2M2) which is defined
as F∗h(X,Y ) = h(dF−1(X), dF−1(Y )). Since F is parallel,

∇M2

X F∗h = F∗∇M1

dF−1(X)h, ∀X ∈ X(M2).

Therefore, F∗ maps parallel tensor fields onM1 isomorphically to parallel tensor
fields onM2. It follows that the dimension of infinitesimal Einstein deformations
only depends on the affine equivalence class of M .

For any n ∈ N the number of affine equivalence classes of n-dimensional
Bieberbach manifolds is finite (see [Bie12]). In dimension 3, a classification
of all Bieberbach manifolds up to affine equivalence is known. In fact, there
exist 10 Bieberbach 3-manifolds where six of them are orientable and the others
are non-orientable. We describe the corresponding Bieberbach groups in the
following. Moreover, we will compute the dimension of infinitesimal Einstein
deformations explicitly. Let {e1, e2, e3} be the standard basis of R3, let R(ϕ)
be the rotation matrix of rotation of R3 about the e1-axis through ϕ and let E
be the reflection matrix at the e1-e2-plane, i.e.

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 ,

R(ϕ) =

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 , E =

1 0 0
0 1 0
0 0 −1

 .

Let furthermore ti = (1, ei), i ∈ {1, 2, 3} and I be the identity map. Then the
Bieberbach groups can be described as follows (see e.g. [KK03]):

generators of Gi
G1 t1, t2, t3
G2 t1, t2, t3 and α = (Rπ,

1
2e1)

G3 t1, s1 = (I,R 2π
3
e2), s2 = (I, (R 4π

2
e2)) and α = (R 2π

3
, 1

3e1)

G4 t1, t2, t3 and α = (Rπ
2
, 1

4e1)
G5 t1, s1 = (I,Rπ

3
e2), s2 = (R( 2π

3 )e2, I) and α = (Rπ
3
, 1

6e1)
G6 t1, t2, t3, α = (Rπ,

1
2e1),

β = (−E ·Rπ, 1
2 (e2 + e3)) and γ = (−E, 1

2 (e1 + e2 + e3))
G7 t1, t2, t3 and α = (E, 1

2e1)
G8 t1, t2, s = (I, 1

2 (e1 + e2) + e3) and α = (E, 1
2e1)

G9 t1, t2, t3, α = (Rπ,
1
2e1) and β = (E, 1

2e2)
G10 t1, t2, t3, α = (Rπ,

1
2e1) and β = (E, 1

2 (e2 + e3))

The manifoldsM/Gi are orientable if 1 ≤ i ≤ 6 and non-orientable if 7 ≤ i ≤ 10.
Now we extract the generators of the holonomy and use Proposition 3.2.4 to
compute the dimension of ker(∆E |TT ):
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generators of r(Gi) dim(ker∆E |TT )
G1 I 5
G2 Rπ 3
G3 R 2π

3
1

G4 Rπ
2

1
G5 Rπ

3
1

G6 {Rπ,−E ·Rπ,−E} 2
G7 E 3
G8 E 3
G9 {Rπ, E} 2
G10 {Rπ, E} 2

This table in particular shows that each three-dimensional Bieberbach man-
ifold has infinitesimal Einstein deformations and hence, it is also deformable as
an Einstein space by our remark above. In fact, the moduli space of Einstein
structures on these manifolds concides with the moduli space of flat structures .
An explicit desciption of these moduli spaces is given in [Kan06, Theorem 4.5].

It seems possible but it is not known if there are Bieberbach manifolds which
are isolated as Einstein spaces.

3.3 Product Manifolds
Let (M, g1) and (N, g2) be Einstein manifolds and consider the product manifold
(M × N, g1 + g2). It is Einstein if and only if the components have the same
Einstein constant µ. In this case, the Einstein constant of the product is also
µ. We want to determine if a product Einstein space is stable or not. This was
worked out in [AM11] in the case, where the Einstein constant is negative. We
now study the general case.

In the following, we often lift tensors on the factors M,N to tensors on
M ×N by pulling back along the projecton maps. In order to avoid notational
complications, we drop the explicit reference to the projections throughout the
section.

At first, we consider the spectrum of the Einstein operator on the product
space.

Proposition 3.3.1 ([AM11]). Let ∆M×N
E be the Einstein operator with respect

to the product metric acting on Γ(S2(M × N)). Then the spectrum of ∆M×N
E

is given by

spec(∆M×N
E ) = (spec(∆M

E ) + spec(∆N
0 )) ∪ (spec(∆N

E ) + spec(∆M
0 ))

∪ (spec(∆M
1 ) + spec(∆N

1 )).

Here, ∆M
0 , ∆N

0 , ∆M
1 , ∆N

1 denote the connection Laplacians on functions and
1-forms with respect to the metrics on M and N , respectively.

Proof. Let {αi}, {ωi}, {hi} be complete orthonormal systems of symmetric
(0, p)-eigentensors (p = 0, 1, 2) of the operators ∆M

0 , ∆M
1 , ∆M

E , respectively.
Let λ(0)

i , λ
(1)
i , λ

(2)
i be the corresponding eigenvalues. Let {βi}, {φi}, {ki} be

complete orthonormal systems of symmetric (0, p)-eigentensors (p = 0, 1, 2) of
the operators ∆N

0 , ∆N
1 , ∆N

E , respectively. Let κ(0)
i , κ

(1)
i , κ

(2)
i be their eigenvalues.
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By [AM11, Lemma 3.1], the tensor products αikj , βihj , ωi�φj form a complete
orthonormal system in Γ(S2(M ×N)). Straightforward calculations show that

∆M×N
E (αikj) = (λ

(0)
i + κ

(2)
j )αikj ,

∆M×N
E (ωi � φj) = (λ

(1)
i + κ

(1)
j )ωi � φj ,

∆M×N
E (βihj) = (κ

(0)
i + λ

(2)
j )βihj ,

from which the assertion follows.

Lemma 3.3.2. Let (M, g) be an Einstein manifold with constant µ. Then the
spectrum of ∆E on Γ(S2M) can be decomposed as

spec(∆E) = spec(∆0 − 2µ · id) ∪ spec+((∆1 − µ · id)|W ) ∪ spec(∆E |TT )

where W =
{
ω ∈ Ω1(M) | δω = 0

}
.

Proof. If (M, g) is not the standard sphere, we consider the decomposition

Γ(S2M) = C∞(M) · g ⊕ δ∗g(Ω1(M))⊕ TTg.

Let {fi}, i ∈ N0 be an eigenbasis of ∆0 to the eigenvalues λ(0)
i , where f0 is

the constant eigenfunction. Let {ωi}, i ∈ N, be an eigenbasis of ∆1 = ∆H − µ
acting on W with eigenvalues λ(1)

i . Let {hi}i∈N be an eigenbasis of ∆E |TT with
eigenvalues λ(2)

i . Then {∇fi}, i ∈ N, {ωi}, i ∈ N form an eigenbasis of ∆1 on
all 1-forms and {fi · g}, i ∈ N0,

{
∇2fi

}
, i ∈ N, {δ∗ωi}, i ∈ N and {hi}, i ∈ N

form a basis of Γ(S2M).
If (M, g) = (Sn, gsp), we obtain a basis, if we remove from

{
∇2fi

}
the fi

which are the eigenfunctions to the first nonzero eigenvalue of the Laplacian
(c.f. Remark 2.4.2). By the relation ∆E = ∆L − 2µ · id and Lemma 2.4.5, we
have

∆E(fi · g) = (λ
(0)
i − 2µ)fi · g,

∆E(∇2fi) = (λ
(0)
i − 2µ)∇2fi,

∆E(δ∗ωi) = (λ
(1)
i − µ)δ∗ωi,

which shows that we have obtained a basis of eigentensors of ∆E . By Lemma
3.3.3 below, λ(1)

i −µ ≥ 0 and equality holds if and only if δ∗ωi = 0. This finishes
the proof of the lemma.

Lemma 3.3.3. Let (M, g) be an Einstein manifold with constant µ and W as
in Lemma 3.3.2 above. Then

‖∇ω‖2L2 = 2 ‖δ∗ω‖2 + µ ‖ω‖2L2

for any ω ∈W . In particular, spec((∆1 − µ · id)|W ) is nonnegative.
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Proof. Let {e1, . . . , en} be a local orthonormal frame. Then

‖∇ω‖2L2 =

ˆ
M

∑
i,j

(∇eiω(ej))
2 dV

=
1

2

∑
i,j

ˆ
M

[(∇eiω(ej) +∇ejω(ei))
2 − 2(∇eiω(ej)∇ejω(ei))] dV

= 2 ‖δ∗ω‖2 +

ˆ
M

∑
i,j

ω(ej)∇2
ei,ejω(ei) dV

= 2 ‖δ∗ω‖2 +

ˆ
M

∑
i,j

ω(ej)Rei,ejω(ei) dV

= 2 ‖δ∗ω‖2 +

ˆ
M

∑
j

ω(ej)(ω ◦ Ric)(ej) dV

= 2 ‖δ∗ω‖2 + µ ‖ω‖2L2

and if µ is nonnegative, the nonnegativity of ∆1 − µ · id = ∇∗∇− µ · id follows.
If µ is negative, ∆1 − µ · id is obviously positive.

Proposition 3.3.4. If (M, g1) and (N, g2) are two stable Einstein metrics with
µ ≤ 0, the product manifold (M ×N, g + h) is also stable.

Proof. By Lemma 3.3.2 and since µ ≤ 0, the operators ∆M
E , ∆N

E are nonnegative
on all of Γ(S2M) if and only if their restriction to TT -tensors is, respectively.
By Proposition 3.3.1, ∆M×N

E is nonnegative since the sum of the spectra does
not contain negative elements.

If (M, g) and (N, g2) are stable Einstein manifolds with constant µ < 0, it
is also quite immediate that

ker(∆M×N
E |TT ) ∼= ker(∆M

E |TT )⊕ ker(∆N
E |TT )

(see [AM11, Lemma 3.2]). We show that if µ = 0, the situation is slightly more
subtle.

Proposition 3.3.5. Let (Mn1 , g1) and (Nn2 , g2) be stable Ricci-flat manifolds.
Then

ker(∆M×N
E |TT ) ∼=R(n2 · g1 − n1 · g2)⊕ (par(M)� par(N))

⊕ ker(∆M
E |TT )⊕ ker(∆N

E |TT ).

Here, par(M),par(N) denote the spaces of parallel 1-forms onM,N respectively.
If all infinitesimal Einstein deformations of M and N are integrable, then all
infinitesimal Einstein deformations of M ×N are integrable.

Proof. By the proof of Proposition 3.3.1, the kernel of ∆M×N
E is spanned by ten-

sors of the form αikj , βihj , ωi�φj where αi, ωi, hi and βi, φi, ki are eigentensors
of ∆0,∆1,∆E on M and N , respectively. By Lemma 3.3.2, these operators are
nonnegative, so the eigentensors have to lie in the kernel of the corresponding
operators. Moreover,

ker(∆M
E ) = R · g1 ⊕ ker(∆M

E |TT )

30



and

ker(∆N
E ) = R · g2 ⊕ ker(∆N

E |TT ).

This shows

ker(∆M×N
E ) ∼=R · g1 ⊕ R · g2 ⊕ (par(M)� par(N))

⊕ ker(∆M
E |TT )⊕ ker(∆N

E |TT ).

The first assertion follows from restricting ∆M×N
E to TT -tensors. Any deforma-

tion h ∈ R(n2 · g1 − n1 · g2) is integrable since it can be integrated to a curve of
metrics of the form (g1)t + (g2)t where (g1)t and (g2)t are just rescalings of g1

and g2. This of course does not affect the Ricci-flatness of M ×N .
Now, consider the situation where h ∈ (par(M)� par(N)). Let ω1, . . . , ωm1

be a basis of par(M) and φ1, . . . φm2 be a basis of par(N). Suppose for simplicity
that all these forms have constant lengh 1. Then

h =

m1∑
i=1

m2∑
j=1

αijωi � φj .

We show that h is integrable. By the holonomy principle, we have parallel
decompositions

TM = E ⊕
m1⊕
i=1

(R · ω]i ), TN = F ⊕
m2⊕
j=1

(R · φ]j),

and the metrics split as g1 = g̃1 +
∑m1

i=1 ωi ⊗ ωi, g2 = g̃2 +
∑m2

j=1 φj ⊗ φj .
The metrics g̃1 and g̃2 are also Ricci-flat. The tangent bundle of the product
manifold obviously splits as

T (M ×N) = E ⊕ F ⊕
m1⊕
i=1

(R · ω]i )⊕
m2⊕
j=1

(R · φ]j).

Observe that g1 + g2 is flat when restricted to

G =

m1⊕
i=1

(R · ω]i )⊕
m2⊕
j=1

(R · φ]j).

Consider the curve of metrics t 7→ gt = g1 + g2 + th on M ×N .
The metric restricted E ⊕ F does not change and stays flat if we restrict to

G. Thus, gt is a curve of Ricci-flat metrics, so h is integrable.
If h ∈ ker(∆M

E |TT ), then there exists a curve of Einstein metrics (g1)t on M
tangent to h by assumption. Consequently, the curve (g1)t ⊕ g2 is a curve of
Einstein metrics on M × N tangent to h, so h is integrable (considered as an
infinitesimal Einstein deformation onM×N). If h ∈ ker(∆N

E |TT ), an analogous
argument shows the integrability of h.

Now, let us turn to the case where the Einstein constant is positive.
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Lemma 3.3.6. Let (M, g) be a positive Einstein manifold with constant µ.
Then

dim(ker∆E) = 2 ·mult∆0
(2µ) + dim(ker∆E |TT ),

ind(∆E) = 1 + mult∆0

(
n

n− 1
µ

)
+

∑
λ∈( n

n−1µ,2µ)

2 ·mult∆0(λ) + ind(∆E |TT ),

where mult∆0
(λ) is the multiplicity of λ as an eigenvalue of ∆0 and ind(∆E) is

the index of the quadratic form h 7→ (∆Eh, h)L2 .

Proof. This follows immediately from the proof of Lemma 3.3.2 and Obata’s
theorem (Theorem 2.4.3).

Proposition 3.3.7. Let (Mn1 , g1), (Nn2 , g2) be stable Einstein manifolds with
constant µ > 0. Then

dim(ker∆M×N
E |TT ) =dim(ker∆M

E |TT ) + dim(ker∆N
E |TT )

+ mult∆M
0

(2µ) + mult∆N
0

(2µ),

ind(∆M×N
E |TT ) =1 +

∑
λ∈(

n1
n1−1µ,2µ)

mult∆M
0

(λ) +
∑

λ∈(
n2
n2−1µ,2µ)

mult∆N
0

(λ).

Proof. We now prove the first assertion. By Lemma 3.3.3, ∆M
1 and ∆N

1 are
positive. Thus by Proposition 3.3.1, we have to count the number of eigenvalues
(with their multiplicity) λ(0)

i ∈ spec(∆M
0 ), λ(2)

i ∈ spec(∆M
E ), κ(0)

i ∈ spec(∆N
0 ),

κ
(2)
i ∈ spec(∆N

E ) such that λ(0)
i + κ

(2)
i = 0 and λ

(2)
i + κ

(0)
i = 0. Consider the

first equation. If λ(0)
i = λ

(0)
0 = 0, then also κ(2)

i = 0 and the multiplicity of κ(2)
i

is given in Lemma 3.3.6. If λ(0)
i > 0, then κ(2)

i < 0. By Lemma 3.3.2, Lemma
3.3.3 and since (M, g1) is stable, κ(2)

i + 2µ = κ
(0)
i ∈ spec(∆N

0 ). We thus have
to find κ

(0)
i such that λ(0)

i + κ
(0)
i = 2µ for λ(0)

i > 0. By Obata’s eigenvalue
estimate, we have a lower bound λ

(0)
i , κ

(0)
i ≥ n

n−1µ for nonzero eigenvalues of
the Laplacian. Therefore, the only situation which remains possible is that
λ

(0)
i = 2µ and κ(0)

i = κ
(0)
0 = 0. Since eigenvalue zero has always multplicity 1,

κ
(2)
i = κ

(0)
0 − 2µ = −2µ is of multiplicity 1. Now we do the same game for the

equation λ(2)
i + κ

(0)
i = 0. We obtain, after summing up both cases,

dim(ker∆M×N
E ) =dim(ker∆M

E |TT ) + dim(ker∆N
E |TT )

+ 3mult∆M
0

(2µ) + 3mult∆N
0

(2µ).

By the formula

mult∆M×N
0

(τ) =
∑

λ+κ=τ

mult∆M
0

(λ) ·mult∆N
0

(κ) (3.2)

and by Obata’s eigenvalue estimate,

mult∆M×N
0

(2µ) = mult∆M
0

(2µ) + mult∆N
0

(2µ).

From Lemma 3.3.6, we get the dimension of ker∆M×N
E |TT .
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To show the second assertion, we compute the number of eigenvalues (with
multiplicity) satisfiying λ(0)

i + κ
(2)
i < 0 or λ(2)

i + κ
(0)
i < 0. Consider the first

inequality. If λ(0)
i = λ

(0)
0 = 0, then κ(2)

i < 0 and the number of such eigenvalues
(with multiplicity) is given by Lemma 3.3.6. If λ(0)

i > 0, then λ(0)
i ≥ n

n−1µ and

κ
(2)
i < − n

n−1µ. By Lemma 3.3.2, κ(2)
i +2µ = κ

(0)
i ∈ spec(∆N

0 ) and κ(0)
i < n−2

n−1µ.

By Obata’s eigenvalue estimate, κ(0)
i = κ

(0)
0 = 0 and κ(2)

i = −2µ appears with
multiplicity 1. This also implies that λ(0)

i < 2µ.
Simliarly, we deal with the inequality λ(2)

i +κ
(0)
i < 0. Summing up over both

cases, we obtain

ind(∆M×N
E ) =2 + 3

∑
λ∈(

n1
n1−1µ,2µ)

mult∆M
0

(λ) + 3
∑

λ∈(
n2
n2−1 ,2µ)

mult∆N
0

(λ)

+ 2 ·mult∆M
0

(
n1

n1 − 1
µ

)
+ 2 ·mult∆N

0

(
n2

n2 − 1
µ

)
.

By (3.2) and by Obata’s eigenvalue estimate,∑
λ∈(0,2µ)

mult∆M×N
0

(λ) =
∑

λ∈(0,2µ)

mult∆M
0

(λ) +
∑

λ∈(0,2µ)

mult∆N
0

(λ)

and the second assertion follows from Lemma 3.3.6.

As we see, products of positive Einstein manifolds are always unstable and
small eigenvalues of the Laplacian enlarge the index of the form

TT 3 h 7→ (∆Eh, h)L2 .

Remark 3.3.8. In particular, if 2µ is an eigenvalue of the Laplace-Beltrami
operator on M or N (this holds e.g. for the complex projective space) then
the product metric has infinitesimal Einstein deformations. The non-integrable
infinitesimal Einstein deformations on CP 2n × S2 mentioned in Section 2.5 are
of this form.
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Chapter 4

Stability and Curvature

In this chapter, we study curvature conditions which ensure stability of Einstein
manifolds. We build upon work by Koiso ([Koi78; Koi79b; Koi80; Koi82; Koi83]),
Itoh and Nagakawa ([IN05]).

4.1 Stability under Sectional Curvature Bounds
At first, we mention an important theorem by Koiso, which is a first attempt
to relate stability of Einstein manifolds to curvature assumptions. Because we
also work with his methods later on, we will sketch Koiso’s proof of the theorem
below. Let S2

gM be the vector bundle of symmetric (0, 2)-tensors whose trace
with respect to g vanishes.

Theorem 4.1.1 ([Koi78]). Let (M, g) be Einstein with constant µ. Let r0 be
the largest eigenvalue of R̊ on traceless tensors, i.e.

r0 = sup

{
(R̊h, h)L2

‖h‖2L2

∣∣∣∣∣ h ∈ Γ(S2
gM)

}
. (4.1)

If r0 ≤ max
{
−µ, 1

2µ
}
, then (M, g) is stable. If r0 < max

{
−µ, 1

2µ
}
, then (M, g)

is strictly stable.

Proof. We define two differential operators by

D1h(X,Y, Z) =
1√
3

(∇Xh(Y, Z) +∇Y h(Z,X) +∇Zh(X,Y )),

D2h(X,Y, Z) =
1√
2

(∇Xh(Y, Z)−∇Y h(Z,X)).

For the Einstein operator, we have the Bochner formulas

(∆Eh, h)L2 = ‖D1h‖2L2 + 2µ ‖h‖2L2 − 4(R̊h, h)L2 − 2 ‖δh‖2L2 , (4.2)

(∆Eh, h)L2 = ‖D2h‖2L2 − µ ‖h‖2L2 − (R̊h, h)L2 + ‖δh‖2L2 , (4.3)

see [Koi78] or [Bes08, p. 355] for more details. Because of the bounds on r0 and
δh = 0, we obtain either (∆Eh, h)L2 ≥ 0 or (∆Eh, h)L2 > 0 for TT -tensors by
(4.2) or (4.3).
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The next step is to estimate r0 in terms of sectional curvature bounds. We
define a function on M by

r(p) = sup

{
〈R̊η, η〉p
|η|2p

∣∣∣∣∣ η ∈ (S2
gM)p

}
. (4.4)

Observe that r0 ≤ supp∈M r(p).

Lemma 4.1.2 ([Fuj79], see also [Bes08]). Let (M, g) be Einstein and p ∈ M .
Let Kmin and Kmax be the minimum and maximum of its sectional curvature
at p, then

r(p) ≤ min {(n− 2)Kmax − µ, µ− nKmin} .

Proof. Choose η such that R̊η = r(p)η. Let {e1, . . . , en} be an orthonormal
basis in which η is diagonal with eigenvalues λ1, . . . , λn such that λ1 = sup |λi|
and

∑
λi = 0. Then

r(p)λ1 = (R̊η)(e1, e1) =
∑
i,j

R(ei, e1, e1, ej)h(ej , ei) =
∑
i

Ki1λi

where Ki1 is the sectional curvature of the plane spanned by ei and e1. Thus,

r(p)λ1 =
∑
i 6=1

Kmaxλi −
∑
i 6=1

(Kmax −Ki1)λi

≤ −λ1Kmax + λ1

∑
i 6=1

(Kmax −Ki1)

= ((n− 2)Kmax − µ)λ1.

(4.5)

On the other hand,

r(p)λ1 =
∑
i 6=1

Kminλi +
∑
i6=1

(Ki1 −Kmin)λi

≤ −λ1Kmin + λ1

∑
i 6=1

(Ki1 −Kmin)

= (−nKmin + µ)λ

(4.6)

which finishes the proof.

As a consequence, we get two well-known corrollaries.

Corollary 4.1.3. Any Einstein manifold (M, g) with n−2
3n -pinched sectional

curvature, i.e., its sectional cuvature lies in the half-open interval (n−2
3n , 1]·Kmax,

is strictly stable.

Proof. This assumption means that 2nKmin >
2
3 (n−2)Kmax. Therefore, either

µ > 2
3 (n−2)Kmax or µ < 2nKmin. In both cases, r0 ≤ sup r(p) < µ

2 by Lemma
4.1.2 and Theorem 4.1.1 implies strict stability.

Corollary 4.1.4. Any Einstein manifold (M, g) of negative sectional curvature
is strictly stable.
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Proof. By Lemma 4.1.2, Kmax < 0 implies r0 ≤ sup r(p) < −µ and strict
stability again follows from Theorem 4.1.1.

By the last corollary, we obtained a quite strong stability criterion for neg-
ative Einstein metrics. However, the pinching criterion from Corollary 4.1.3
is rather weak, because it is only of use in dimension n < 8. For n ≥ 8,
any Einstein manifold satisfying the curvature conditions of Corollary 4.1.3 is
quater-pinched and thus, by the proof of the differentiable sphere theorem, it is
isometric to a quotient the standard sphere (see [BS09]).

4.2 Extensions of Koiso’s Results
Now, we want to prove stability under weaker conditions than in the Corollaries
4.1.3 and 4.1.4. Unfortunately we cannot go further than replacing the strict
inequalities in the assumptions by weak inequalities. Then we immediately get
∆E |TT ≥ 0. Furthermore, we will see that the existence of infinitesimal Einstein
deformations imposes very strict conditions on the structure of the manifold.
We first need a technical lemma.

Lemma 4.2.1. Let (Mn, g) be Einstein with constant µ and p ∈ M . Suppose
that

r(p) = (n− 2)Kmax − µ = µ− nKmin. (4.7)

Here, r(p) is the function defined in (4.4) and Kmax, Kmin are the maximal
and minimal sectional curvatures of planes lying in TpM , respectively.

Then (M, g) is even-dimensional. Let η ∈ (S2
gM)p be such that R̊η = r(p)η.

Then η has only two eigenvalues λ,−λ and the eigenspaces E(λ), E(−λ) are
both of dimension m = n/2. Moreover, K(P ) = Kmax for each plane P lying
in either E(λ) or E(−λ) and K(P ) = Kmin if P is spanned by one vector in
E(λ) and one in E(−λ).

Proof. Let η ∈ (S2
gM)p be such that R̊h = r(p)h. As in the proof of Lemma

4.1.2, let λ1, . . . , λn be the eigenvalues of η (with λ1 = max |λi|) and let Kij be
the sectional curvatures with respect to the corresponding orthonormal basis.
By (4.7), we see that equality must hold both in (4.5) and (4.6), i.e.

−
∑
i6=1

(Kmax −Ki1)λi = λ1

∑
i 6=1

(Kmax −Ki1) (4.8)

and ∑
i 6=1

(Ki1 −Kmin)λi = λ1

∑
i 6=1

(Ki1 −Kmin). (4.9)

From (4.8), we get that either λi = −λ1 or Kij = Kmax whereas (4.9) implies
λi = λ1 or Kij = Kmin for each i. Thus there only exist two eigenvalues λ and
−λ which are of same multiplicity since the trace of η vanishes. In particular,
(M, g) is even-dimensional.

Let P ⊂ TpM be a plane which satisfies one of the assumptions of the lemma.
We then may assume that P is spanned by two vectors of the eigenbasis we
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have chosen. If P ⊂ E(λ) or P is spanned by two vectors in E(λ), E(−λ),
respectively, we may assume e1 ∈ P . Then the assertions follow from the above.
If P ⊂ E(−λ), we may replace η by −η and the roles of E(λ) and E(−λ)
interchange.

Now we are able to improve Corollary 4.1.3 by considering the case where the
manifold is weakly (n− 2)/3n-pinched.

Proposition 4.2.2. Let (M, g) be an Einstein manifold such that the sectional
curvature lies in the interval [(n− 2)/3n, 1] ·Kmax, Kmax > 0. Then (M, g) is
stable. If ker∆E |TT is nontrivial, Mn is even-dimensional. Furthermore, there
exists an orthogonal splitting TM = E ⊕ F into two subbundles of dimension
n/2. The two C∞(M)-bilinear maps

I : Γ(E)× Γ(E)→ Γ(F), (X,Y ) 7→ prF (∇XY )

and

II : Γ(F)× Γ(F)→ Γ(E), (X,Y ) 7→ prE(∇XY )

are both antisymmetric in X and Y . Moreover, the sectional curvature of a
plane P is equal to Kmax if P either lies in E or F . If P = span{e, f} with
e ∈ E and f ∈ F , then K(P ) = Kmin.

Proof. Let µ be the Einstein constant. Because of curvature assumpions, µ ≥
2
3 (n− 2)Kmax or µ ≤ 2nKmin at each point. In both cases, the function r from
Lemma 4.1.2 satisfies r ≤ 1

2µ. Thus, r0 ≤ 1
2µ

and Theorem 4.1.1 implies that (M, g) is stable. Suppose now there exists
h ∈ ker∆E |TT , h 6= 0. Then by (4.3),

0 = (∆Eh, h)L2 = ‖D1h‖2L2 + 2µ ‖h‖2L2 − 4(h, R̊h)L2

≥ 0 + 2µ ‖h‖2L2 − 2µ ‖h‖2L2 = 0.

Therefore, D1h ≡ 0 and 〈R̊h, h〉p ≡ µ
2 |h|

2
p for all p ∈ M . The second equality

implies that

µ =
2

3
(n− 2)Kmax = 2nKmin

and

r(p) = (n− 2)Kmax − µ = µ− nKmin.

Thus, Lemma 4.2.1 applies and at each point where h 6= 0, the tangent space
splits into the two eigenspaces of h, i.e. TpM = Ep(λ)⊕Ep(−λ). Since D1h ≡ 0,
we have

∇eih(ej , ek) +∇ejh(ek, ei) +∇ekh(ei, ej) = 0

for any local orthonormal frame {e1, . . . , en}. By considering h as an endomor-
phism h : TM → TM ,

g(∇eih(ej), ek) + g(∇ejh(ek), ei) + g(∇ekh(ei), ej) = 0 (4.10)
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for 1 ≤ i, j, k ≤ n. Choose an eigenframe of h around some p outside the zero
set of h. We compute

〈∇eih(ej), ek〉 = 〈∇ei(h(ej)), ek〉 − 〈h(∇eiej), ek〉

= 〈∇ei(λjej), ek〉 −
∑
l

〈h(Γlijel), ek〉

= 〈(∇eiλj)ej , ek〉+ 〈λj∇eiej , ek〉 −
∑
l

〈Γlijλlel, ek〉

= (∇eiλj)δjk + λjΓ
k
ij − λkΓkij ,

where λj is the eigenvalue of ej . Now we rewrite (4.10) as

(λj − λk)Γkij + (λk − λi)Γijk + (λi − λj)Γjki
= −(∇eiλj)δjk − (∇ejλk)δki − (∇ekλi)δij .

(4.11)

If we choose i = j = k, we obtain

0 = −3(∇eiλi).

Since λi = ±λ, it is immediate that λ is constant and it is nonzero. Thus, we
obtain a global splitting TM = E ⊕ F where the two distributions are defined
by

E =
⋃
p∈M

Ep(λ), F =
⋃
p∈M

Ep(−λ).

By Lemma 4.2.1, the assertion about the sectional curvatures is immediate. To
finish the proof, it just remains to show the antisymmetry of the maps I, II,
respectively.

Let {e1, . . . , en} be the eigenframe from before. Suppose that e1, . . . , en/2
are local sections in E and en/2+1, . . . , en are local sections in F . Choose i, j ∈
{1, . . . , n/2}, k ∈ {n/2 + 1, . . . , n}. Then λi = λj = λ, λk = −λ and (4.11)
yields

0 = 2λΓkij − 2λΓijk = 2λ(Γkij + Γkji), (4.12)

since the right-hand side of (4.11) vanishes for any i, j, k. Now consider the map
I. It is easy to check that I is C∞(M)-bilinear in both variables. We have

I(ei, ej) = prF (∇eiej) = prF

(
n∑
k=1

Γkijek

)
=

n∑
k=n/2+1

Γkijek, (4.13)

and by (4.12), we immediately get I(ei, ej) = −I(ej , ei). Similarly, antisymme-
try is shown for II.

Now let us turn to the case of nonpositive secional curvature.

Definition 4.2.3. Let (M, g) be a Riemannian manifold and let {e1, . . . , en}
be an orthonormal frame at p ∈M . Then Kij = Rijji is the sectional curvature
of the plane spanned by ei and ej if i 6= j and is zero if i = j. We count the
number of j such that Ki0j = 0 for a given i0 and call the maximum of such
numbers over all orthonormal frames at p the flat dimension of M at p, denoted
by fd(M)p. The number fd(M) = supp∈M fd(M)p is called the flat dimension
of M .
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Proposition 4.2.4 ([Koi78]). Let (M, g) be a non-flat Einstein manifold with
nonpositive sectional curvature. Then (M, g) is stable. If ker(∆E |TT ) is non-
trivial, the flat dimension of M satisfies fd(M)p ≥ dn2 e at each p ∈M .

If in addition, a lower bound on the sectional curvature is assumed, we obtain
stronger consequences of the existence of infinitesimal Einstein deformations:

Proposition 4.2.5. Let (M, g) a non-flat Einstein manifold with nonpositive
sectional curvature and Einstein constant µ. If Kmin > 2

nµ, then (M, g) is
strictly stable. If Kmin ≥ 2

nµ, then (M, g) is stable. If ker∆E |TT is nontrivial,
then M is even-dimensional and we have an orthogonal splitting TM = E ⊕ F .
Both subbundles are of dimension n/2. The C∞(M)-bilinear maps

I : Γ(E)× Γ(E)→ Γ(F), (X,Y ) 7→ prF (∇XY )

and

II : Γ(F)× Γ(F)→ Γ(E), (X,Y ) 7→ prE(∇XY )

are symmetric. Moreover, K(P ) = 0 for any plane lying in E or F .

Proof. Since the sectional curvature is nonpositive but not identically zero, the
Einstein constant is negative. Now we follow the same strategy as in the proof
of Proposition 4.2.2. If Kmin >

2
nµ ,then rp < −µ and by Proposition 4.1.1,

(M, g) is strictly stable. If Kmin ≥ 2
nµ and h ∈ ker(∆E |TT ), we obtain from

(4.3) that

0 = (∆Eh, h)L2 = ‖D2h‖2L2 − µ ‖h‖2L2 − (h, R̊h)L2

≥ −µ ‖h‖2L2 + µ ‖h‖2L2 = 0.

Consequently, D2h ≡ 0 and r(p) = Kmax − µ = µ− nKmin. Again by Lemma
4.2.1, there is a splitting TpM = Ep(λ) ⊕ Ep(−λ) at each point p ∈ M where
h 6= 0 and Ep(±λ) is the n/2-dimensional eigenspaces of h to the eigenvalue
±λ, respectively. Evidently, (M, g) is even-dimensional. We will now show
that λ is constant in p. Let {e1, . . . , en} be a local eigenframe of h such that
e1, . . . , en/2 ∈ E(λ) and en/2+1, . . . , en ∈ E(−λ) and let λ1 ≡ . . . ≡ λn/2 and
λn/2+1 ≡ . . . ≡ λn be the corresponding eigenfunctions. Since D2h ≡ 0,

(λj − λk)Γkij − (λi − λk)Γkij = −(∇eiλj)δjk + (∇ejλi)δik (4.14)

for 1 ≤ i, j, k ≤ n. Choose i 6= j and j = k such that ei, ej , ek lie in the same
eigenspace. Then by (4.14),

0 = −∇eiλj

and since λj equals either λ or −λ, the eigenvalues of h are constant in p. A
splitting of the tangent bundle is obtained by TM = E ⊕ F where the two
distributions are defined by

E =
⋃
p∈M

Ep(λ), F =
⋃
p∈M

Ep(−λ).

The flatness of planes in E and F follows from Lemma 4.2.1. It remains to
show the symmetry of I and II. Let {e1, . . . en} an orthonormal frame such
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that e1, . . . , en/2 are local sections in E and en/2+1, . . . , en are local sections in
F . Let i, j ∈ {1, . . . n/2} and k ∈ {n/2 + 1, . . . , n}. By (4.14),

2λΓkij − 2λΓkji = 0.

and since

I(ei, ej) =

n∑
k=n/2+1

Γkijek, (4.15)

I is symmetric. The symmetry of II is shown by the same arguments. It is
furthermore easy to see that both maps are C∞(M)-bilinear.

Remark 4.2.6. By symmetry of the operators I and II, the map (X,Y ) 7→ [X,Y ]
preserves the splitting TM = E ⊕F . Thus, both distributions are integrable by
the Frobenius theorem.

It is not known whether the pinching assumptions of Proposition 4.2.2 can
be further improved. We conclude this section with some eigenvalue estimates
for the Einstein operator.

Proposition 4.2.7. Let (M, g) be a Riemannian manifold of constant curvature
K. Then (M, g) is stable. If K 6= 0, it is strictly stable. Let λ be the smallest
eigenvalue of ∆E |TT . It satisfies the estimate

λ ≥ max {2(n+ 1)K,−(n− 2)K} .

Proof. The stability properties of constant curvature metrics have been shown in
Section 3.2 and the Corollaries 4.1.3 and 4.1.4. It remains to show the eigenvalue
estimates.

For constant curvature metrics, the Riemann curvature tensor is given by
RX,Y Z = K(g(Y,Z)X − g(X,Z)Y ) and we have µ = (n− 1)K for the Einstein
constant. The action of the cuvature tensor on traceless tensors is given by
R̊h(X,Y ) = −Kh(X,Y ). Now, Bochner formula (4.2) yields

(∆Eh, h)L2 = ‖D1h‖2L2 + 2µ ‖h‖2L2 − 4(h, R̊h)L2

≥ 2(n+ 1)K ‖h‖2L2 ,

and from (4.3), we obtain

(∆Eh, h)L2 = ‖D2h‖2L2 − µ ‖h‖2L2 − (h, R̊h)L2

≥ −(n− 2)K ‖h‖2L2 .

Remark 4.2.8. For nonnegative K, this lower bound is optimal. It is achieved on
the torus and the sphere, see Examples 3.1.1 and 3.1.2. For hyperbolic spaces,
this is not known but should be numerically computable.

Proposition 4.2.9. Let (M, g) an Einstein manifold with constant µ and sec-
tional curvature K ≥ 0. Then the smallest eigenvalue of ∆E |TT satisfies

λ ≥ −2µ.

Moreover, equality holds if and only if the holonomy of (M, g) is reducible.
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Proof. By curvature assumptions and Lemma 4.1.2, r0 ≤ supp∈M r(p) ≤ µ,
where r0 and r(p) are defined in (4.1) and (4.4), respectively. Therefore,

(∆Eh, h) = ‖∇h‖2L2 − 2(R̊h, h)L2 ≥ −2µ ‖h‖2L2 ,

and equality implies that h is parallel. By Lemma 3.2.2, the holonomy of (M, g)
is reducible. Conversely, if (M, g) has reducible holonomy, the metric splits as
g = g1 + g2 and a tracefree linear combination αg1 + βg2 is an eigentensor of
∆E |TT to the eigenvalue −2µ.

Remark 4.2.10. If the holonomy is reducible, (M, g) is locally isometric to a
Riemannian product (M1, g1) × (M2, g2). This follows from [Bau09, Satz 5.6].
In particular, the sectional curvature cannot be positive in this case.
From the previous proposition we can deduce the following assertion for the
Lichnerowicz Laplacian:

Proposition 4.2.11. Let (M, g) be an Einstein manifold with nonnegative sec-
tional curvature. Then the Lichnerowicz Laplacian is positive semidefinite on
Γ(S2M) and span(g) ⊂ ker∆L. Moreover (M, g) has reducible holonomy if and
only if span(g) ( ker∆L,

Proof. Obviously, the Einstein constant µ is nonnegative. If (M, g) is Ricci-flat,
it is flat by our curvature assumptions and the Lichnerowicz Laplacian coincides
with the connection Laplacian. In this case, the assertion follows from Lemma
3.2.2. We assume µ > 0 from now on. We know that ∆L preserves on each
component of the splitting

Γ(S2M) = (C∞(M) · g + δ∗(Ω1(M)))⊕ TT.

By Proposition 4.2.9 and since ∆L = ∆E + 2µ · id, ∆L is nonnegative on TT
and has nontrivial kernel if and only if (M, g) has reducible holonomy. On
the first component of the splitting, ∆L acts as the Laplace-Beltrami operator
(c.f. Lemma 2.4.5) and the kernel is given by R · g. Also by Lemma 2.4.5,
the spectrum of ∆L on δ∗(Ω1(M)) is contained in the spectrum of the Hodge
Laplacian ∆H = ∇∗∇+ µ · id on 1-forms. Since µ > 0, ∆H is positive so ∆L is
positive on δ∗(Ω1(M)).

Remark 4.2.12. Under the conditions of Proposition 4.2.9 and 4.2.11, we see that
the kernel of the Lichnerowicz Laplacian consists precisely of symmetric parallel
(0, 2)-tensors. We have computed their dimension in terms of the holonomy, see
Proposition 3.2.4.
Remark 4.2.13. The nonnegativity of ∆L under these conditions also follows
from the results in [Bar93, Section 2]. A charcterization of the kernel is not
given there.

4.3 Stability and Weyl Curvature
We have seen that constant curvature metrics and sufficiently pinched Einstein
manifolds are stable. This motivates to prove stability theorems in terms of the
Weyl tensor which measures the deviation of an Einstein manifold of being of
constant curvature.
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Definition 4.3.1. Let h and k be two symmetric (0, 2)-tensors. The Kulkarni-
Nomizu product of h and k is the (0, 4)-tensor given by

(h? k)(X,Y, Z,W ) = h(X,W )k(Y, Z) + h(Y,Z)k(X,W )

− h(X,Z)k(Y,W )− h(Y,W )k(X,Z).

Any Kulkarni-Nomizu product has the same symmetries as the Riemann tensor,
i.e.

(h? k)(X,Y, Z,W ) = −(h? k)(Y,X,Z,W ) = −(h? k)(X,Y,W,Z),

(h? k)(X,Y, Z,W ) = (h? k)(Z,W,X, Y ),

(h? k)(X,Y, Z,W ) + (h? k)(Y, Z,X,W ) + (h? k)(Z,X, Y,W ) = 0.

Recall that on a metric g with constant curvature K, the Riemann tensor is
given by R = K

2 (g ? g). With this notation, we now can formulate the Ricci
decomposition of the Riemann curvature tensor. Let Ric0 = Ric − 1

n scal · g
be the traceless part of the Ricci tensor. Then the Riemann curvature tensor
(considered as a (0, 4)-tensor) can be decomposed as

R = W +
scal

2n(n− 1)
(g ? g) +

1

n− 2
(Ric0 ? g), (4.16)

and this composition is orthogonal in the sense that

|R|2 = |W |2 +

∣∣∣∣ scal

2n(n− 1)
(g ? g)

∣∣∣∣2 +

∣∣∣∣ 1

n− 2
(Ric0 ? g)

∣∣∣∣2
(see [Bes08, p. 48]). We call the tensor W , defined by equation (4.16), the Weyl
cuvature tensor. It has the same symmetries as the Riemann curvature tensor.
Moreover, any trace of W vanishes. It also has a nice behavior under conformal
transformations. Suppose that the metrics g, g̃ are conformally equivalent, i.e.
g̃ = f · g for some smooth function f > 0. Then the corresponding Weyl tensors
are related by W̃ = f ·W , c.f. [Bes08, p. 58].

If (M, g) is Einstein with constant µ, then Ric0 vanishes and (4.16) simplifies
to

R = W +
µ

2(n− 1)
(g ? g). (4.17)

Define Wij := W (ei, ej , ej , ei) for a chosen orthonormal frame. By (4.17), we
have Wij = Kij − µ

(n−1) for i 6= j where Kij is the sectional curvature of the
plane spanned by ei and ej . Thus, the coefficientWij measures how the sectional
curvature of the plane spanned by ei and ej differs from its mean. The sectional
curvature is constant if and only if all Wij and the whole Weyl tensor vanish.
We define the action of the Weyl tensor on Γ(S2M) by

W̊h(X,Y ) =

n∑
i=1

h(Wei,XY, ei),

where {e1, . . . , en} is an orthonormal frame and

g(WX,Y Z,W ) = W (X,Y, Z,W ).
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By (4.17), the action of the curvature tensor on traceless tensors decomposes as

R̊h(X,Y ) =

n∑
i=1

h(Rei,XY, ei)

=

n∑
i=1

h(Wei,XY, ei) +
µ

n− 1

n∑
i=1

{h(g(X,Y )ei, ei)− h(g(ei, Y )X, ei)}

=

n∑
i=1

h(Wei,XY, ei) +
µ

n− 1
{g(X,Y )trh− h(X,Y )}

= W̊h(X,Y )− µ

n− 1
h(X,Y ).

Lemma 4.3.2. Let (M, g) be any Riemannian manifold and let p ∈ M . The
operator W̊ : (S2

gM)p → (S2
gM)p is trace-free. It is indefinite as long asWp 6= 0.

Proof. First we compute the trace of W̊ acting on all symmetric (0, 2)-tensors.
Let {e1, . . . , en} be an orthonormal basis of TpM . Then an orthonormal basis
of (S2M)p is given by

η(ij) =
1√
2
e∗i � e∗j , 1 ≤ i ≤ j ≤ n,

where � denotes the symmetric tensor product. Simple calculations yield

〈W̊η(ij), η(ij)〉 = −Wijji.

Thus,

trW̊ =
∑

1≤i≤j≤n

〈W̊η(ij), η(ij)〉 = −
∑

1≤i≤j≤n

Wijji = −1

2

n∑
i,j=1

Wijji = 0

because the Weyl tensor has vanishing trace. Since (W̊g)ij =
∑
kWkijk = 0,

the restricion of W̊ to (S2
gM)p has also vanishing trace. Suppose now that the

operator W̊ vanishes, then all Wijji vanish. By the symmetries of the Weyl
tensor, this already implies that Wp vanishes. This proves the lemma.

To study the behavior of this operator, we define a function w : M → R by

w(p) = sup

{
〈W̊η, η〉p
|η|2p

∣∣∣∣∣ η ∈ (S2
gM)p

}
. (4.18)

Thus, w(p) is the largest eigenvalue of the action W̊ : (S2
gM)p → (S2

gM)p.
Lemma 4.3.2 implies that the function w is nonnegative.

The decomposition of R̊ allows us to estimate the smallest eigenvalue of ∆E

acting on TT -tensors in terms of the function w. From (4.2), we obtain

(∆Eh, h) = ‖D1h‖2L2 + 2µ ‖h‖2L2 − 4(R̊h, h)

≥ 2µ ‖h‖2L2 + 4
µ

n− 1
‖h‖2L2 − 4(W̊h, h)

≥ 2µ
n+ 1

n− 1
‖h‖2L2 − 4

ˆ
M

w · |h|2 dVg

≥
[
2µ
n+ 1

n− 1
− 4 ‖w‖∞

]
‖h‖2L2 ,
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and similarly from (4.3),

(∆Eh, h) = ‖D2h‖2L2 − µ ‖h‖2L2 − (R̊h, h)

≥ −µ ‖h‖2L2 +
µ

n− 1
‖h‖2L2 − (W̊h, h)

≥ −µn− 2

n− 1
‖h‖2L2 −

ˆ
M

w · |h|2 dVg

≥
[
−µn− 2

n− 1
− ‖w‖∞

]
‖h‖2L2 .

Proposition 4.3.3. Let (M, g) be Einstein with constant µ and let λ be the
smallest eigenvalue of ∆E |TT . Then

λ ≥ max

{
2µ
n+ 1

n− 1
− 4 ‖w‖∞ ,−µn− 2

n− 1
− ‖w‖∞

}
.

As a consequence, we have

Theorem 4.3.4. An Einstein manifold (M, g) with constant µ is stable if

‖w‖∞ ≤ max

{
µ

n+ 1

2(n− 1)
,−µn− 2

n− 1

}
.

If the strict inequality holds, (M, g) is strictly stable.

We now give a different stability criterion which involves an integral of the
function w. The main tool we use here is the Sobolev inequality which holds
for Yamabe metrics.

Proposition 4.3.5 (Sobolev inequality). Let (M, g) be a Yamabe metric in a
conformal class and suppose that vol(M, g) = 1. Then for any f ∈ H1(M),

4
n− 1

n− 2
‖∇f‖2L2 ≥ scal

{
‖f‖2Lp − ‖f‖

2
L2

}
(4.19)

where p = 2n/(n− 2).

Proof. This follows easily from the definition of Yamabe metrics, see e.g. [IS02].

Remark 4.3.6. The inequality holds if f is replaced by any tensor T because of
Kato’s inequality

|∇|T || ≤ |∇T |. (4.20)

As remarked in [LeB99, p. 329], any Einstein metric is Yamabe, so the Sobolev
inequaliy holds in this case.

Theorem 4.3.7. Let (M, g) be an Einstein manifold with positive Einstein
constant µ. If

‖w‖Ln/2 ≤ µ · vol(M, g)2/n · n+ 1

2(n− 1)

(
4(n− 1)

n(n− 2)
+ 1

)−1

, (4.21)

then (M, g) is stable. If the strict inequality holds, (M, g) is strictly stable.
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Proof. Both sides of the inequality are scale-invariant, see Lemma 4.3.8 below.
Therefore, we may assume vol(M, g) = 1 from now on. First, we estimate the
largest eigenvalue of the Weyl tensor action by

(W̊h, h)L2 ≤
ˆ
M

|w||h|2 dV

≤ ‖w‖Ln/2
∥∥|h|2∥∥

Ln/(n−2)

= ‖w‖Ln/2 ‖h‖
2
L2n/(n−2)

≤ ‖w‖Ln/2
(

4
n− 1

µn(n− 2)
‖∇h‖2L2 + ‖h‖2L2

)
.

We used the Hölder inequality and the Sobolev inequality. With the estimate
obtained, we can proceed as follows:

(∆Eh, h)L2 = ‖∇h‖2L2 − 2(R̊h, h)L2

= ‖∇h‖2L2 + 2
µ

n− 1
‖h‖2L2 − 2(W̊h, h)L2

≥ ‖∇h‖2L2 + 2
µ

n− 1
‖h‖2L2 − 2 ‖w‖Ln/2

(
4

n− 1

µn(n− 2)
‖∇h‖2L2 + ‖h‖2L2

)
=

(
1− 8

n− 1

µn(n− 2)
‖w‖Ln/2

)
‖∇h‖2L2 + 2

(
µ

n− 1
− ‖w‖Ln/2

)
‖h‖2L2 .

The first term on the right hand side is nonnegative by the assumption on w.
It remains to estimate ‖∇h‖2L2 . This can be done by using (4.2). We have

‖∇h‖2L2 = ‖D1h‖2L2 + 2µ ‖h‖2L2 − 2(R̊h, h)L2

≥ 2µ ‖h‖2L2 + 2
µ

n− 1
‖h‖2L2 − 2(W̊h, h)L2

= 2µ
n

n− 1
‖h‖2L2 − 2(W̊h, h)L2

= 2µ
n

n− 1
‖h‖2L2 − 2 ‖w‖Ln/2

(
4

n− 1

µn(n− 2)
‖∇h‖2L2 + ‖h‖2L2

)
= 2

(
µ

n

n− 1
− ‖w‖Ln/2

)
‖h‖2L2 − 8

n− 1

µn(n− 2)
‖w‖Ln/2 ‖∇h‖2L2 ,

and therefore, ‖∇h‖2L2 can be estimated by

‖∇h‖2L2 ≥ 2

(
µ

n

n− 1
− ‖w‖Ln/2

)(
1 + 8

n− 1

µn(n− 2)
‖w‖Ln/2

)−1

‖h‖2L2 .

Combining these arguments, we obtain

(∆Eh, h)L2 ≥
{

2

(
1− 8

n− 1

µn(n− 2)
‖w‖Ln/2

)(
µ

n

n− 1
− ‖w‖Ln/2

)
·(

1 + 8
n− 1

µn(n− 2)
‖w‖Ln/2

)−1

+ 2

(
µ

n− 1
− ‖w‖Ln/2

)}
‖h‖2L2 .

The manifold (M, g) is stable if the right-hand side of this inequality is nonneg-
ative. It is elementary to check that this is equivalent to

‖w‖Ln/2 ≤ µ
n+ 1

2(n− 1)

(
4(n− 1)

n(n− 2)
+ 1

)−1

.
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The assertion about strict stability is also immediate.

Lemma 4.3.8. The Ln/2-Norm of the function w is conformally invariant.

Proof. Let g, g̃ be conformally equivalent, i.e. g̃ = f · g for a smooth positive
function f . Let W and W̃ be the Weyl tensors of the metrics g and g̃, respec-
tively. We have trg̃h = f−1trgh for any symmetric (0, 2)-tensor. Thus,

S2
g̃M = S2

gM,

so the operators ˚̃W and W̊ are acting on the same space of tensors. It is well-
known that W̃ = f ·W when considered as (0, 4)-tensors. Therefore,

〈 ˚̃Wh, h〉g̃ = f−3〈W̊h, h〉g.

Furthermore, we have

|h|2g̃ = f−2|h|2g, dVg̃ = fn/2 dVg.

We now see that the largest eigenvalue of the Weyl-tensor action transforms as
w̃ = f−1w and

‖w̃‖2/n
Ln/2(g̃)

=

ˆ
M

w̃n/2 dVg̃ =

ˆ
M

wn/2 dVg = ‖w‖2/n
Ln/2(g)

,

which shows the lemma.

Corollary 4.3.9. Let (M, g) be a Riemannian manifold and let Y ([g]) be the
Yamabe constant of the conformal class of g. If

‖w‖Ln/2(g) ≤ Y ([g])
n+ 1

2n(n− 1)
·
(

4(n− 1)

n(n− 2)
+ 1

)−1

, (4.22)

any Einstein metric in the conformal class of g is stable.

Proof. Suppose that g̃ ∈ [g] is Einstein. By Lemma 4.3.8,

‖w̃‖Ln/2(g̃) = ‖w‖Ln/2(g) .

We know that g̃ is a Yamabe metric in the conformal class of g. By the definition
of the Yamabe constant, the Einstein constant of g̃ equals

µ =
1

n
· Y ([g]) · vol(M, g)2/n,

which yields

‖w̃‖Ln/2(g̃) ≤ µ · vol(M, g)2/n · n+ 1

2(n− 1)
·
(

4(n− 1)

n(n− 2)
+ 1

)−1

.

The assertion now follows from Theorem 4.3.7.

Now we give upper estimates for the values of the function w:
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Lemma 4.3.10. Let (M, g) be Einstein and p ∈ M . Let Wmin = minWijji

and Wmax = maxWijji where the minimum (resp. maximum) is taken over all
orthonormal bases of TpM . Then

w(p) ≤ min {(n− 2)Wmax,−nWmin} . (4.23)

Proof. For the sake of completeness, we give the proof although it is completely
analogous to the proof of Lemma 4.1.2. Let κ be an eigenvalue of W̊ and choose
η ∈ (S2

gM)p such that W̊η = κη. Choose an orthonormal basis {e1, . . . , en}
of eigenvectors of η with eigenvalues λ1, . . . , λn such that λ1 = sup |λi| and∑
λi = 0. Then

κλ1 = κη(e1, e1) = (W̊η)(e1, e1) =
∑
i,j

W (ei, e1, e1, ej)h(ej , ei) =
∑
i

Wi11iλi.

Thus,

κλ1 =
∑
i 6=1

Wmaxλi −
∑
i 6=1

(Wmax −Wi11i)λi

≤ −λ1Wmax + λ1

∑
i 6=1

(Wmax −Wi11i)

= (n− 2)Wmaxλ1,

where we used the fact that W is trace-free. Furthermore,

κλ1 =
∑
i 6=1

Wminλi +
∑
i 6=1

(Wi11i −Wmin)λi

≤ −λ1Wmin + λ1

∑
i 6=1

(Wi11i −Wmin)

= −nWminλ1,

which finishes the proof.

Observe thatWmin = Kmin− µ
n−1 and thatWmax = Kmax− µ

n−1 for Einstein
manifolds with constant µ. By using the Cauchy-Schwarz inequality, we have

Lemma 4.3.11. Let (M, g) be a Riemannian manifold. Then

w(p) ≤ |W |p. (4.24)

There are also attempts to prove stability criterions involving an eigenvalue
estimate of the Weyl curvature operator. Recall that by its symmetries, the
Weyl tensor can be considered as a self-adjoint operator acting on 2-forms by
defining

〈Ŵ (X ∧ Y ), Z ∧W 〉 = W (Y,X,Z,W ).

We call Ŵ : Γ(Λ2M) → Γ(Λ2M) the Weyl curvature operator. Let w(p) be its
largest eigenvalue at p ∈M .
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Theorem 4.3.12 ([IN05]). Let (M, g) be a compact, connected oriented Ein-
stein manifold with negative Einstein constant µ. If

sup
p∈M

w(p) < − µ

n− 1
, (4.25)

then (M, g) is strictly stable.

However, the proof uses the very rough estimate

Wmax ≤ w(p). (4.26)

In fact, the Theorem follows directly from combining Theorem 4.3.4, Lemma
4.3.10 and (4.26). Therefore, it seems not convenient to formulate stability
criterions in terms of the Weyl curvature operator because we find no direct
way to estimate w(p) in terms of w(p) without using (4.26).

4.4 Isolation Results of the Weyl Curvature Ten-
sor

In the last section, we have shown that an Einstein manifold is stable if its
Weyl tensor is small enogh in a certain sense. The smallness of the tensor was
expressed in serveral ways. However, we have to be careful. There exists various
results (see [Mut69; Sin92; GL99; IS02]) which state that if the Weyl tensor of
an Einstein metric is small enough, it vanishes identically. A strong result of
this form is the following

Theorem 4.4.1 ([IS02]). Let (M, g) be a compact connected, oriented Einstein-
manifold, n ≥ 4, with positive Einstein constant µ and of unit-volume. Then
there exists a constant C(n), depending only on n, such that if the inequality
‖W‖Ln/2 < C(n)nµ holds, then W = 0 so that (M, g) is a finite isometric
quotient of the sphere.

More precisely, they put C(n) as

C(n) =

{ n−2
4(n−1)Cn if 4 ≤ n ≤ 9,
2
nCn if n ≥ 10.

The constant Cn appears in the estimate

|〈{W,W} ,W 〉| ≤ C−1
n |W |3,

and {W,W} is a (0, 4)-tensor quadratic in W which appears in the formula

0 = ∇∗∇W + 2µW + {W,W} .

We are interested in the value of Cn. Therefore, we compute the coordinate
expression for {W,W}. On any Einstein manifold, we have ∇W = ∇R since
the difference R−W is a parallel tensor. Moreover

∇iWjklm +∇jWkilm +∇kWijlm = 0,

∇iWijkl = 0,
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where the components of W are taken with respect to an orthonormal frame.
The first equation is just the second Bianchi identity and the second equation
follows from contracting the first. Using these two properties, we obtain∑

i

{
−∇2

iiWjklm + (∇2
ij −∇2

ji)Wiklm − (∇2
ik −∇2

ki)Wijlm

}
= 0.

By the Ricci identity and the first Bianchi identity,∑
i

(∇2
ij−∇2

ji)Wiklm

=
∑
i,n

{RjiinWnklm +RjiknWinlm +RjilnWiknm +RjimnWikln}

=µWjklm +
∑
i,n

{WjiknWinlm +WjilnWiknm +WjimnWikln}

+
µ

n− 1
(Wkjlm +Wlkjm +Wmklj)

=µWjklm +
∑
i,n

{WjiknWinlm +WjilnWiknm +WjimnWikln} .

An analogous formula is valid for (∇2
ik −∇2

ki)Wijlm. Therefore,

0 = ∇∗∇W + 2µW + {W,W} ,

and {W,W} consists of six summands of the form
∑
i,nWjiknWinlm. It is

immediate that

|〈{W,W} ,W 〉| ≤ 6|W |3, (4.27)

so Cn = 1/6 is an appropriate choice since (4.27) seems to be not far away from
the optimum. This yields

‖W‖Ln/2 ≥

{
n(n−2)
24(n−1)µ if 4 ≤ n ≤ 9,
1
3µ if n ≥ 10.

(4.28)

Recall Theorem 4.3.7. There, we proved stability for a small Ln/2-norm of the
function w. From Lemma 4.3.11, we conclude that a positive Einstein manifold
of unit volume is stable, if

‖W‖Ln/2 ≤ µ ·
n+ 1

2(n− 1)

(
4(n− 1)

n(n− 2)
+ 1

)−1

. (4.29)

A comparison of the last two inequalities shows that there exists a small gap
where the inequality (4.29) works.

By different techniques, Gursky and LeBrun proved a gap theorem for the
Weyl tensor, which only holds in dimension 4. For any oriented Riemannian 4-
manifold the Weyl-tensor orthogonally splits asW = W+ +W− whereW+,W−

is the self-dual (resp. anti-self-dual) part of the Weyl tensor.

Theorem 4.4.2 ([GL99]). Let (M, g) be a compact oriented Einstein 4-manifold
with scal > 0 and W+ 6≡ 0. Thenˆ

M

|W+|2 dV ≥
ˆ
M

scal2

6
dV,

with equality if and only if ∇W+ ≡ 0.
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Here, we translated this result to our norm convention for curvature tensors
which differs from the one in [GL99] by a factor 1/4. By changing orientation,
the roles of W+ and W− interchange and we see that the same gap theorem
also holds for W−. Therefore, if W± 6= 0,∥∥W±∥∥2

L2 ≥
ˆ
M

scal2

6
dV = vol(M, g)

8

3
µ2.

If W 6≡ 0, either W+ or W− is not vanishing, so the same gap holds for ‖W‖L2 .
By passing to the orientation covering, we see that the same gap also holds
for non-orientable Einstein manifolds. This gap is much larger than the one
proven by Itoh and Satoh. If (M, g) is of unit-volume, we have ‖W‖L2 ≥

√
8
3µ

while (4.28) yields ‖W‖L2 ≥ µ
9 . In fact, it shows that stability criterion (4.29) is

useless in dimension 4, since this requires the Weyl tensor to satisfy ‖W‖L2 ≤ µ
3 .

4.5 Six-dimensional Einstein Manifolds
In this section, we compute an explicit representation of the Gauss-Bonnet for-
mula for six-dimensional Einstein manifolds. We use this representation to
show a stability criterion for Einstein manifolds involving the Euler characteris-
tic. The generalized Gauss-Bonnet formula for a compact Riemannian manifold
(M, g) of dimension n = 2m is

χ(M) =
(−1)m

23mπmm!

ˆ
M

Ψg dV.

The function Ψg is defined as

Ψg =
∑

σ,τ∈Sm

sgn(σ)sgn(τ)Rσ(1)σ(2)τ(1)τ(2) . . . Rσ(n−1)σ(n)τ(n−1)τ(n),

where the coefficients are taken with respect to an orthonormal basis (see e.g.
[Zhu00]). In dimension four, this yields the nice formula

χ(M) =
1

32π2

ˆ
M

(|W |2 + |Sc|2 − |U |2) dV (4.30)

(see also [Bes08, p. 161]). Here, Sc = scal
2n(n−1)g ? g is the scalar part and

U = 1
n−2Ric0 ? g is the traceless Ricci part of the curvature tensor. Due to

different conventions for the norm of curvature tensors, formula (4.30) often
appers with the factor 1

8π2 instead of 1
32π2 . On Einstein manifolds, we have

U = 0 and the Gauss-Bonnet formula simplifies to

χ(M) =
1

32π2

ˆ
M

(
|W |2 +

8

3
µ2

)
dV (4.31)

where µ is the Einstein constant. As a nice consequence, we obtain a topological
condition for the existence of Einstein metrics which is due to Berger.

Theorem 4.5.1 ([Ber65]). Every compact 4-manifold carrying an Einstein met-
ric g satisfies the inequality

χ(M) ≥ 0.

Moreover, χ(M) = 0 if and only if (M, g) is flat.
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Another consequence of (4.31) is the following: Let (M, g) be of unit volume.
Then there exists a constant C > 0 such that, if µ ≥ C ·

√
χ(M), the Weyl

curvature satisfies ‖W‖L2 ≤ 1
3µ. This implies stability by Theorem 4.3.7 and

Lemma 4.3.11. Unfortunately, the same condition on the Weyl tensor already
implies that it vanishes, as we discussed in the last section. Thus, the assertion
is of no use here.

In dimension six, an explicit representation of the Gauss-Bonnet formula is
given by

χ(M) =
1

384π3

ˆ
M

{scal3 − 12scal|Ric|2 + 3scal|R|2 + 16〈Ric,Ric ◦ Ric〉

− 24RicijRicklRikjl − 24Ric ji R
iklmRjklm + 8RijklRimknR

n m
j l

− 2RijklR mn
ij Rklmn} dV

(see [Sak71, Lemma 5.5]). When (M, g) is Einstein, this integral is equal to

χ(M) =
1

384π3

ˆ
M

{24µ3 − 6µ|R|2 + 8RijklRimknR
n m
j l

− 2RijklR mn
ij Rklmn} dV.

(4.32)

Lemma 4.5.2. If (M, g) is a compact Einstein manifold with constant µ,

‖∇R‖2L2 = −
ˆ
M

{4RijklR m n
i k Rjnlm + 2RijklR mn

ij Rklmn + 2µ|R|2} dV.

Proof. This is [Sak71, (2.15)] in the special case of Einstein metrics.

Note that we translated the formulas from [Sak71] to our sign convention
for the curvature tensor.

Proposition 4.5.3. Let (M, g) be an Einstein six-manifold with constant µ.
Then

χ(M) =
1

384π3

ˆ
M

{
−14

5
µ|W |2 − 2|∇W |2 +

144

25
µ3 + 48tr(Ŵ 3)

}
dV.

Here, Ŵ 3 = Ŵ ◦ Ŵ ◦ Ŵ , where Ŵ is the Weyl curvature operator acting on
2-forms.

Proof. By Lemma 4.5.2, (4.32) can be rewritten as

384π3χ(M) =

ˆ
M

{24µ3 − 10µ|R|2 − 2|∇R|2 − 6RijklR mn
ij Rklmn} dV.

Moreover, ∇W = ∇R because the difference R −W = Sc is a parallel tensor.
Thus,

384π3χ(M) =

ˆ
M

{24µ3 − 10µ|R|2 − 2|∇W |2 − 6RijklR mn
ij Rklmn dV }

=

ˆ
M

{24µ3 − 10µ(|Sc|2 + |W |2)− 2|∇W |2 − 6RijklR mn
ij Rklmn} dV

=

ˆ
M

{
24µ3 − 10µ

(
12µ2

5
+ |W |2

)
− 2|∇W |2 − 6RijklR mn

ij Rklmn

}
dV

=

ˆ
M

{−10µ|W |2 − 2|∇W |2 − 6RijklR mn
ij Rklmn} dV.
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Now we analyse the last term on the right hand side. Recall that the Riemann
curvature operator R̂ and the Weyl curvature operator Ŵ are defined by

〈R̂(X ∧ Y ), Z ∧ V 〉 = R(Y,X,Z, V ),

〈Ŵ (X ∧ Y ), Z ∧ V 〉 = W (Y,X,Z, V ).

Let {e1, . . . , en} be a local orthonormal frame of TM . Then {ei ∧ ej}, i < j is
a local orthonormal frame of Λ2M . A straightforward calculation shows

−6
∑

i,j,k,l,m,n

RijklRijmnRklmn =− 48
∑

i<j,k<l,m<n

RijklRijmnRklmn

=48
∑
i<j

g(R̂(R̂(R̂(ei ∧ ej))), ei ∧ ej) = 48trR̂3,

where the coefficients of R are taken with respect to the orthonormal frame. The
decomposition (4.17) of the (0, 4)-curvature tensor induces the decomposition
R̂ = Ŵ + µ

5 idΛ2M . This yields

48trR̂3 = 48

{
tr(Ŵ 3) + 3

µ

5
tr(Ŵ 2) + 3

µ2

25
trŴ +

µ3

125
tr(idΛ2M )

}
= 48tr(Ŵ 3) +

36

5
µ|W |2 +

144

25
µ3.

Therefore, we have

384π3χ(M) =

ˆ
M

{−10µ|W |2 − 2|∇W |2 +
144

25
µ3 +

36

5
µ|W |2 + 48tr(Ŵ 3)} dV

=

ˆ
M

{−14

5
µ|W |2 − 2|∇W |2 +

144

25
µ3 + 48tr(Ŵ 3)} dV,

which finishes the proof.

Theorem 4.5.4. Let (M, g) be a positive Einstein six-manifold with constant
µ and vol(M) = 1. If

1

25

(
144− 12 · 72 · 32

5 · 112

)
µ3 ≤ 384π3χ(M)− 48

ˆ
M

tr(Ŵ 3) dV,

then (M, g) is strictly stable.

Proof. By the Sobolev inequality,

‖W‖2L3 ≤
5

6µ
‖∇W‖2L2 + ‖W‖2L2 .

Therefore we have, by Proposition 4.5.3

384π3χ(M) = −14

5
µ ‖W‖2L2 − 2 ‖∇W‖2L2 +

144

25
µ3 + 48

ˆ
M

tr(Ŵ 3) dV

< −12

5
µ ‖W‖2L2 − 2 ‖∇W‖2L2 +

144

25
µ3 + 48

ˆ
M

tr(Ŵ 3) dV

≤ −12

5
µ ‖W‖2L3 +

144

25
µ3 + 48

ˆ
M

tr(Ŵ 3) dV.
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Now if µ satisfies the estimate of the statement in the theorem, we obtain

12

5
µ ‖W‖2L3 <

144

25
µ3 − 384π3χ(M) + 48

ˆ
M

tr(Ŵ 3) dV

≤ 144

25
µ3 − 1

25

(
144− 12 · 72 · 32

5 · 112

)
µ3 =

12µ

5

72 · 32

52 · 112
µ2,

which is equivalent to

‖W‖L3 <
7 · 3
5 · 11

µ.

By Theorem 4.3.7 and Lemma 4.3.11, (M, g) is strictly stable.

Remark 4.5.5. Mind the fact that this stability criterion is not ruled out by
isolation results.

4.6 Kähler Manifolds
Here, we prove stability criterions for Kähler-Einstein manifolds in terms of the
Bochner curvature tensor, which is an analogue of the Weyl tensor.

Definition 4.6.1. Let (M, g) be a Riemannian manifold of even dimension.
An almost complex structure on M is an endorphism J : TM → TM such that
J2 = −idTM . If J is parallel and g is hermitian, i.e. g(JX, JY ) = g(X,Y ),
we call the triple (M, g, J) a Kähler manifold. If (M, g) is Einstein, we call
(M, g, J) Einstein-Kähler.

If J is parallel, R(X,Y )JZ = JR(X,Y )Z and we get an additional symme-
try for the (0, 4)-cuvature tensor, namely

R(JX, JY, Z,W ) = R(X,Y, JZ, JW ) = R(X,Y, Z,W ).

We say that R is hermitian. The bundle of traceless symmetric (0, 2)-tensors
splits into hermitian and skew-hermitian ones, i.e. S2

gM = H1 ⊕H2, where

H1 =
{
h ∈ S2

gM | h(X,Y ) = h(JX, JY )
}
,

H2 =
{
h ∈ S2

gM | h(X,Y ) = −h(JX,KY )
}
.

Stability of Kähler-Einstein manifolds was studied in [Koi83; IN05; DWW07].
We sketch the ideas of [Koi83] in the following. It turns out that the Einstein
operator preserves the bundle splitting Γ(H1)⊕ Γ(H2). Therefore to show that
a Kähler-Einstein manifold is stable it is sufficient to show that the restriction
of ∆E to the subspaces Γ(H1) and Γ(H2) is positive semidefinite, respectively.
In fact, we can use the Kähler structure to conjugate the Einstein operator to
other operators. If h1 ∈ H1, we define a 2-form by

φ(X,Y ) = h1 ◦ J(X,Y ) = h1(X, J(Y )).

We have

∆Hφ = (∆Eh1) ◦ J + 2µφ, (4.33)
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where ∆H is the Hodge Laplacian on 2-forms and µ is the Einstein constant.
Since ∆H is nonnegative, ∆E is nonnegative on Γ(H1), if µ ≤ 0. For h2 ∈ H2,
we define a symmetric endomorphism I : TM → TM by

g ◦ I = h2 ◦ J,

and since IJ + JI = 0, we may consider I as a T 1,0M -valued 1-form of type
(0, 1). We have the formula

g ◦ (∆CI) = (∆Eh2) ◦ J, (4.34)

where ∆C is the complex Laplacian. Thus, the restriction of the Einstein oper-
ator to Γ(H2) is always nonnegative, since ∆C is. As a consequence, we have

Corollary 4.6.2 ([DWW07]). Any compact Kähler-Einstein manifold with non-
positive Einstein constant is stable.

Remark 4.6.3. This is not true for positive Kähler-Einstein manifolds. The
product of two positive Kähler-Einstein manifolds is unstable.

Using (4.33) and (4.34), dim(ker∆E |TT ) can be expressed in terms of certain
cohomology classes (see [Koi83] or [Bes08, Proposition 12.98]). Moreover, inte-
grability of infinitesimal Einstein deformations can be related to integrability of
infinitesimal complex deformations (see [Koi83; IN05]).

We discuss conditions under which a Kähler-Einstein manifold is strictly
stable in the nonpositive case and stable in the positive case. This can be
described in terms of the Bochner curvature tensor which has similar properties
as the Weyl tensor.

Definition 4.6.4 (Bochner curvature tensor). Let (M, g, J) be Kähler and let
ω(X,Y ) = g(J(X), Y ) be the Kähler form. The Bochner curvature tensor is
defined by

B =R+
scal

2(n+ 2)(n+ 4)
{g ? g + ω ? ω − 4ω ⊗ ω}

− 1

n+ 4
{Ric ? g + (Ric ◦ J) ? ω − 2(Ric ◦ J)⊗ ω − 2ω ⊗ (Ric ◦ J)}

(see e.g. [IK04, p. 229]).

The Bochner curvature tensor posesses the same symmetries as the Riemann
tensor and in addition,

B(JX, JY, Z,W ) = B(X,Y, JZ, JW ) = B(X,Y, Z,W ),
n∑
i=1

B(X, ei, ei, Y ) = 0.

If (M, g) is Kähler-Einstein, the Bochner tensor is

B = R− µ

2(n+ 2)
{g ? g + ω ? ω − 4ω ⊗ ω} ,

where µ is the Einstein constant (see e.g. [IK04; IN05] and mind the different
sign convention for the curvature tensor). This implies the relation

B(X, J(X), J(X), X) = R(X, J(X), J(X), X)− 4µ

n+ 2
|X|4.
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In particular, if the Bochner tensor vanishes, the holomorphic setional curvature,
i.e. the sectional curvature of all planes spanned by X and J(X) is constant.
The Bochner tensor acts naturally on symmetric (0, 2)-tensors by

B̊h(X,Y ) =

n∑
i,j=n

B(ei, X, Y, ej)h(ei, ej),

where {e1, . . . , en} is an orthonormal basis. Let

b+(p) =

{
〈B̊η, η〉
|η|2

∣∣∣∣∣ η ∈ (H1)p

}
.

For Kähler-Einstein manifolds with negative Einstein constant, it was proven
by M. Itoh and T. Nakagawa that they are strictly stable if the Bochner tensor
is small.

Theorem 4.6.5 ([IN05]). Let (M, g, J) be a compact Kähler-Einstein manifold
with negative Einstein constant µ. If the Bochner curvature tensor satisfies

sup
p
b+(p) < −µ n

n+ 2
, (4.35)

then g is strictly stable.

However, an error occured in the calculations and the result is slightly dif-
ferent. Therefore, lets redo the proof. By straightforward calculation,

〈R̊h, h〉 = 〈B̊h, h〉 − µ

n+ 2
{|h|2 − 3

∑
i,j

h(ei, ej)h(J(ei), J(ej))}. (4.36)

In particular,

〈R̊h1, h1〉 = 〈B̊h1, h1〉+ 2
µ

n+ 2
|h1|2

for h1 ∈ H1 and

〈R̊h2, h2〉 = 〈B̊h2, h2〉 − 4
µ

n+ 2
|h2|2

for h2 ∈ H2. By (4.33), ∆E is positive definite on Γ(H1) so it remains to
consider the part in Γ(H2). By (4.3),

(∆Eh2, h2)L2 = ‖D2h2‖2L2 − µ ‖h2‖2L2 − (h2, R̊h2)L2 + ‖δh2‖2L2 .

≥ −µ ‖h2‖2L2 − (h2, R̊h2)L2

≥ −µ ‖h2‖2L2 − (h2, B̊h2)L2 +
4µ

n+ 2
‖h2‖2L2

≥ −µn− 2

n+ 2
‖h2‖2L2 − sup

p
b+(p) ‖h2‖2L2 .

Remark 4.6.6. Theorem 4.6.5 is true if we replace (4.35) by

sup
p
b+(p) < −µn− 2

n+ 2
. (4.37)
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Now, let us turn to positive Kähler-Einstein manifolds. We will use Bochner
formula (4.2). Unfortunately, we cannot make use of the vector bundle splitting
S2
gM = H1 ⊕H2. In order to apply (4.2), we need the condition δh = 0, which

is not preserved by the splitting into hermitian and skew-hermitian tensors. Let

b(p) = sup

{
〈B̊η, η〉
|η|2

∣∣∣∣∣ η ∈ (S2
gM)p

}
. (4.38)

Since the trace of the Bochner tensor vanishes, B̊ : (S2
gM)p → (S2

gM)p has also
vanishing trace (this follows from the same arguments as used in the proof of
Lemma 4.3.2). Thus, b is nonnegative.

Theorem 4.6.7. Let (M, g, J) be Kähler-Einstein with positive Einstein con-
stant µ. If

‖b‖L∞ ≤
µ(n− 2)

2(n+ 2)
,

then (M, g) is stable.

Proof. Let h ∈ TT . By (4.36) and the Cauchy-Schwarz inequality,

〈R̊h, h〉 ≤ 〈B̊h, h〉+ 2
µ

n+ 2
|h|2.

Using (4.2), we therefore obtain

(∆Eh, h)L2 = ‖D1h‖2L2 + 2µ ‖h‖2L2 − 4(h, R̊h)L2

≥2µ ‖h‖2L2 − 4(h, B̊h)L2 − 8
µ

n+ 2
‖h‖2L2

≥2µ
n− 2

n+ 2
‖h‖2L2 − 4 ‖b‖L∞ ‖h‖

2
L2 .

Under the assumptions of the theorem, ∆E |TT is nonnegative.

We also prove a stability criterion involving the Ln/2-norm of b:

Theorem 4.6.8. Let (M, g, J) be a positive Kähler-Einstein manifold with con-
stant µ and vol(M, g) = 1. If the function b satisfies

‖b‖Ln/2 ≤ µ ·
(n− 2)

2(n+ 2)

(
4(n− 1)

n(n+ 2)
+ 1

)−1

,

then (M, g) is stable.

Proof. The proof is very similar to that of Theorem 4.3.7. Let h ∈ TT . By
assumtion, (M, g) is a Yamabe metric. Thus, we can use the Sobolev inequality
and we get

(B̊h, h)L2 =

ˆ
M

〈B̊h, h〉 ≤
ˆ
M

b|h|2 dV

≤ ‖b‖Ln/2 ‖h‖
2
L2n/n−2

≤ ‖b‖Ln/2
(

4(n− 1)

µn(n− 2)
‖∇h‖2L2 + ‖h‖2L2

)
.
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By the above,

(∆Eh, h)L2 = ‖∇h‖2L2 − 2(R̊h, h)L2

≥ ‖∇h‖2L2 − 2(B̊h, h)L2 − 4µ

n+ 2
‖h‖2L2

≥ ‖∇h‖2L2 − 2 ‖b‖Ln/2
(

4(n− 1)

µn(n− 2)
‖∇h‖2L2 + ‖h‖2L2

)
− 4µ

n+ 2
‖h‖2L2

=

(
1− 8(n− 1)

µn(n− 2)
‖b‖Ln/2

)
‖∇h‖2L2 − 2 ‖b‖Ln/2 ‖h‖

2
L2 −

4µ

n+ 2
‖h‖2L2 .

The first term on the right hand side is nonnegative by the assumption on b.
To estimate ‖∇h‖2L2 , we rewrite (4.2) to get

‖∇h‖2L2 = ‖D1h‖2L2 + 2µ ‖h‖2L2 − 2(h, R̊h)L2

≥ 2µ
n

n+ 2
‖h‖2L2 − 2(h, B̊h)L2

≥ 2µ
n

n+ 2
‖h‖2L2 − 2 ‖b‖Ln/2

(
4(n− 1)

µn(n− 2)
‖∇h‖2L2 + ‖h‖2L2

)
.

Thus,

‖∇h‖2L2 ≥ 2

(
µ

n

n+ 2
− ‖b‖Ln/2

)(
1 +

8(n− 1)

µn(n− 2)

)−1

‖h‖2L2 .

By combining these arguments,

(∆Eh, h)L2 ≥
{

2

(
µ

n

n+ 2
− ‖b‖Ln/2

)(
1− 8(n− 1)

µn(n− 2)
‖b‖Ln/2

)
(

1 +
8(n− 1)

µn(n− 2)

)−1

− 2 ‖b‖Ln/2 −
4µ

n+ 2

}
‖h‖2L2 ,

and the right-hand side is nonnegative if the above assumption holds.

By the Cauchy-Schwarz inequality, we clearly have

b(p) ≤ |B|p. (4.39)

Remark 4.6.9. As for the Weyl tensor, there also exist isolation results for the
Ln/2-norm of the Bochner tensor, see [IK04, Theorem A]. The methods are
similar to those of [IS02] and for the constant Cn appearing in formula (24) of
[IK04], the value 1/6 (as in Section 4.4) seems to be not too far away from the
optimum. A criterion combining Theorem 4.6.8 and (4.39) is not ruled out by
these results, if n ≥ 5. If n = 4, B = W− (see [IK04, p. 232]). Then Theorem
4.4.2 applies and this criterion is ruled out.
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Chapter 5

Ricci Flow and negative
Einstein Metrics

5.1 Introduction
The Ricci flow was first introduced by Hamilton in [Ham82]. In this section,
we summarize some facts about Ricci flow which are relevant to the rest of the
chapter. More details can be found in many introductory textbooks (see e.g.
[CK04; CCG+07; CCG+08; Bre10]).

Definition 5.1.1. Let Mn, n ≥ 2 be a manifold. A curve of metrics g(t) is
called Ricci flow if it is a solution of the initial value problem

d

dt
g(t) = −2Ricg(t), g(0) = g0. (5.1)

It is well known that for a given metric g0, there exists a short time interval
[0, ε) and a Ricci flow [0, ε) 3 t → g(t) starting at g(0) = g0. Observe that
the Ricci flow starting at an Einstein metric g0 with constant µ is given by
(1−2tµ)g0. So in the positive case, the manifold shrinks till it collapses at time
t = 1

2µ . In the negative case, it expands for all time. Ricci-flat metrics remain
unchanged under the flow. The Ricci flow is not a gradient flow in the strict
sense but it can be interpreted as a gradient flow of the functional

λ(g) = inf
f∈C∞(M)´
M
e−f dVg=1

ˆ
M

(scalg + |∇f |2g)e−f dVg (5.2)

on the space of metrics modulo diffeomorphisms. In fact, the first variation of
λ is given by

λ(g)′(h) = −
ˆ
M

〈h,Ricg +∇2fg〉ge−fg dVg, (5.3)

where fg is the minimizer realizing λ(g). Since λ is diffeomorphism invariant,
its first variation vanishes on the space of Lie derivatives. In particular,

λ(g)′(∇2fg) =
1

2
λ(g)′(Lgradfgg) = 0.
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Therefore,

λ(g)′(−2Ricg) = 2

ˆ
M

|Ricg +∇2fg|2ge−fg dVg ≥ 0,

which shows that λ is nondecreasing along the Ricci flow.
Remark 5.1.2. By substituting ω2 = e−f , (5.2) becomes

λ(g) = inf
ω∈C∞(M)´
M
ω2 dVg=1

ˆ
M

(scalgω
2 + 4|∇ω|2g) dVg. (5.4)

This shows that λ(g) is nothing but the smallest eigenvalue of the elliptic oper-
ator Hg = 4∆g + scalg. In particular, if the scalar curvature of g is constant, we
have λ(g) = scalg and the corresponding minimizer satisfies ω ≡ vol(M, g)−1/2.

As remarked above, the stationary points of the Ricci flow are precisely the
Ricci-flat metrics and Einstein metrics remain stationary up to rescaling. It is
therefore natural to ask how the Ricci flow behaves close to Einstein metrics.
This question was discussed in the Ricci-flat case in [GIK02; Ses06; Has12;
HM13] whereas the general Einstein case was discussed in [Ye93].

By work of Sesum and Haslhofer, the following was shown:

Theorem 5.1.3 ([Ses06],[Has12]). Let (M, gRF ) be a compact Ricci-flat metric
and suppose, all infinitesimal Einstein deformations are integrable. Then the
follwing are equivalent:

(i) For every neighbourhood V of gRF in the space of metrics there exists a
smaller neighbourhood U ⊂ V such that the Ricci flow starting in U stays
in V for all t ≥ 0 and converges to a Ricci-flat metric for t→∞.

(ii) The Einstein operator is nonnegative on TT -tensors.

We call property (i) dynamical stability and (ii) linear stability. A central
tool in Haslhofer’s proof of this theorem is the λ-functional and its behavior near
Ricci-flat metrics. In [Has12], an instability assertion is included: If neither the
above cases of above do occur, then there exists an ancient (i.e. it exists since
t = −∞) Ricci flow g(t), t ∈ (−∞, 0] such that g(t)→ gRF as t→ −∞.

Recently, Haslhofer and Müller were able to get rid of the integrability as-
sumption.

Theorem 5.1.4 ([HM13]). Let (M, gRF ) be a compact Ricci-flat manifold. If
gRF is a local maximizer of λ, then for every Ck,α-neighbourhood U of gRF there
exists a Ck,α-neighbourhood V such that the Ricci flow starting at any metric
in V exists for all time and converges (modulo diffeomorphism) to a Ricci-flat
metric in U .

As above, [HM13] also includes an instability assertion: If the above assump-
tion does not hold, there exists an ancient Ricci flow g(t), t ∈ (−∞, 0] which
converges modulo diffeomorphism to gRF as t→ −∞.
Remark 5.1.5. The maximality of λ can be characterized by the assertion that
there exist no metrics of positive scalar curvature close to gRF (see [CHI04,
p. 4]). It is also equivalent to say that gRF is a local maximum of the Yamabe
functional. This is for example the case on any compact flat manifold and on
the K3-surface.
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Here, we give two classes of examples where this is the case.

Example 5.1.6 (Ricci-flat Kähler manifolds). By [LeB99][Theorem 3.6], any
compact four-dimensional Ricci-flat Kähler manifold (M,J, g) is supreme, i.e. it
realizes the Yamabe invariant of M .

Example 5.1.7 (Manifolds with parallel spinors). By [DWW05], any compact
simply-connected manifold admitting a parallel spinor is a local maximum of
the Yamabe functional.

Our aim now is to characterize dynamical stability for general Einstein met-
rics in the spirit of [Has12; HM13]. In this context, we consider dynamical
stability with respect to certain normalized variants of the Ricci flow which
leave Einstein metrics unchanged. From the results in [Ye93], dynamical sta-
bility follows if the Einstein operator ∆E is positive on traceless tensors. We
will prove dynamical stability under weaker assumptions and we will also prove
instability theorems.

We will deal with functionals which are nondecreasing under these normal-
ized Ricci flows. They are called Ricci entropies. It turns out that we have to
use different functionals for positive and negative Einstein manifolds. Therefore
we will treat both cases separately, although the strategy is basically the same.

In this chapter, we consider the Ricci flow close to negative Einstein mani-
folds. Without loss of generality, we may restrict to the case where the Einstein
constant is equal to −1. Such metrics are stationary points of the flow

ġ(t) = −2(Ricg(t) + g(t)). (5.5)

This flow is homothetically equivalent to the standard Ricci flow. In fact,

g̃(t) = e−2tg

(
1

2
(e2t − 1)

)
is a solution of (5.5) starting at g0 if and only if g(t) is a solution of (5.1) starting
at g0.

Definition 5.1.8 (Dynamical stability and instability). Let (M, gE) be an Ein-
stein manifold with constant −1. We call (M, gE) dynamically stable if for every
neighbourhood U of gE in the space of metrics there exists a smaller neighbour-
hood V ⊂ U such that the Ricci flow (5.5) starting in V stays in U for all t ≥ 0
and converges to an Einstein metric with constant −1 for t→∞.

We call (M, gE) dynamically stable modulo diffeomorphism if for each solu-
tion of (5.5) starting in V, there exists a family of diffeomorphisms ϕt, t ≥ 0
such that the modified flow ϕ∗t g(t) stays in U for all t ≥ 0 and converges to an
Einstein metric with constant −1 for t→∞.

We call (M, gE) dynamically unstable (modulo diffeomorphism) if there ex-
ists an ancient Ricci flow g(t), t ∈ (−∞, T ] such that g(t) → gE as t → −∞
(there exists a family of diffeomorphisms ϕt, t ∈ (−∞, T ] such that ϕ∗t g(t)→ gE
as t→ −∞).

Furthermore, from now on we call an Einstein manifold (M, gE) Einstein-
Hilbert stable if it is stable in the sense of Definition 2.5.1, i.e. the Einstein
operator is nonnegative on TT -tensors. If this is not the case, (M, gE) is called
Einstein-Hilbert unstable.
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5.2 The Expander Entropy
Let (M, g) be a Riemannian manifold and f ∈ C∞(M). Define

W+(g, f) =

ˆ
M

[
1

2
(|∇f |2 + scal)− f

]
e−f dV.

This is a simpler variant of the expander entropy W+(g, f, σ) introduced in
[FIN05].

Lemma 5.2.1. The first variation of W+ at a tuple (g, f) equals

W ′+(h, v) =

ˆ
M

[−1

2
〈Ric +∇2f − (−∆f − 1

2
|∇f |2 +

1

2
scal− f)g, h〉

− (−∆f − 1

2
|∇f |2 +

1

2
scal− f + 1)v]e−f dV.

Proof. Let gt = g + th and ft = f + tv. We have

d

dt
|t=0W+(gt, ft) =

ˆ
M

[
1

2
(|∇ft|2gt + scalgt)− ft]′e−f dV

+

ˆ
M

[
1

2
(|∇f |2 + scal)− f ](−v +

1

2
trh)e−f dV.

By the variational formula of the scalar curvature,ˆ
M

[
1

2
(|∇ft|2gt + scalgt)−ft]′e−f dV

=

ˆ
M

(−1

2
〈h,∇f ⊗∇f〉+ 〈∇f,∇v〉)e−f dV

+

ˆ
M

[
1

2
(∆trh+ δ(δh)− 〈Ric, h〉)− v]e−f dV.

By integration by parts,ˆ
M

〈∇f,∇v〉e−f dV =

ˆ
M

(∆f + |∇f |2)ve−f dV

andˆ
M

1

2
(∆trh+ δ(δh))e−f dV =

ˆ
M

1

2
[trh∆(e−f ) + 〈h,∇2(e−f )〉] dV

=

ˆ
M

1

2
[trh(−∆f − |∇f |2) + 〈h,−∇2f +∇f ⊗∇f〉]e−f dV.

Thus,ˆ
M

[
1

2
(|∇ft|2gt + scalgt)− ft]′e−f dV =

ˆ
M

[−1

2
〈h,∇2f + Ric + (∆f + |∇f |2)g〉

+ (∆f + |∇f |2 − 1)v]e−f dV.

The second term of above can be written asˆ
M

[
1

2
(|∇f |2 + scal)− f ](−v +

1

2
trh)e−f dV

=

ˆ
M

[
1

2
〈[ 1

2
(|∇f |2 + scal)− f ]g, h〉 − [

1

2
(|∇f |2 + scal)− f ]v]e−f dV.

By adding up these two terms, we obtain the desired formula.
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Now we introduce the functional

µ+(g) = inf

{
W+(g, f)

∣∣∣∣ f ∈ C∞(M),

ˆ
M

e−f dV = 1

}
. (5.6)

It was shown in [FIN05, Thm 1.7] that given any smooth metric, the infimum
is always uniquely realized by a smooth function. We call the minimizer fg.
The minimizer depends smoothly on the metric. It satisfies the Euler-Lagrange
equation

−∆fg −
1

2
|∇fg|2 +

1

2
scalg − fg = µ+(g). (5.7)

This can be seen as follows: If fg realizes the infimum, then W ′+(0, v) = 0 for
all v ∈ C∞(M) with (v, e−fg )L2 = 0 because of the constraint

´
M
e−fg dV = 1.

This is exactly the case when −∆fg− 1
2 |∇fg|

2 + 1
2 scalg−fg = c for some c ∈ R.

By integration by parts, one shows that

c =

ˆ
M

(
−∆fg −

1

2
|∇fg|2 +

1

2
scal− fg

)
e−fg dV =W+(g, fg) = µ+(g).

(5.8)

Remark 5.2.2. Since W+(ϕ∗g, ϕ∗f) =W+(g, f), the functional µ+(g) is invari-
ant under diffeomorphisms, so µ+(ϕ∗g) = µ+(g) for any ϕ ∈ Diff(M).

Lemma 5.2.3 (First variation of µ+). The first variation of µ+(g) is given by

µ+(g)′(h) = −1

2

ˆ
M

〈Ric + g +∇2fg, h〉e−fg dV, (5.9)

where fg realizes µ+(g). As a consequence, µ+ is nondecreasing under the Ricci
flow (5.5).

Proof. By Lemma 5.2.1 and (5.7),

µ+(g)′(h) =

ˆ
M

[
−1

2
〈Ric +∇2f − µ+(g)g, h〉 − (µ+(g) + 1)v

]
e−f dV (5.10)

where v = d
dt |t=0fg+th. Due to the constraint

´
M
e−fg dVg = 1, we have

(v, e−fg )L2 = 1
2

´
M

trh dV . Inserting this in (5.10) yields the first variational
formula. By diffeomorphism invariance,

µ+(g)′(∇2fg) =
1

2
µ′+(g)(Lgradfgg) = 0.

Thus, if g(t) is a solution of (5.5),

d

dt
µ+(g(t)) =

ˆ
M

|Ricg(t) + g(t) +∇2fg(t)|2e−fg(t) dVg(t) ≥ 0,

which proves the lemma.

Remark 5.2.4. We call metrics gradient Ricci solitons if Ricg + ∇2f = cg for
some f ∈ C∞(M) and c ∈ R. In the compact case, any such metric is already
Einstein if c ≤ 0 (see [Cao10, Proposition 1.1]). By the first variational formula
of µ+, we conclude that Einstein metrics with constant −1 are precisely the
critical points of µ+.
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Lemma 5.2.5. Let (M, gE) be an Einstein manifold with constant −1. Fur-
thermore, let h ∈ δ−1

gE (0). Then

(i) fgE ≡ log vol(M, gE),

(ii) d
dt |t=0fgE+th = 1

2 trgEh,

(iii) d
dt |t=0(RicgE+th + gE + th+∇2

gE+thfgE+th) = 1
2∆Eh,

where ∆E is the Einstein operator.

Proof. By substituting w = e−f/2, we see that wgE = e−fgE /2 is the minimizer
of the functional

W̃(w) =

ˆ
M

2|∇w|2 +
1

2
scalw2 + w2 logw2 dV

under the constraint
‖w‖L2 = 1.

By Jensen’s inequality, we have a lower bound

W̃(w) ≥ 1

2
inf
p∈M

scal(p)− log(vol(M, gE)), (5.11)

which is realized by the constant function wgE ≡ vol(M, gE)−1/2 since the scalar
curvature is constant on M . This proves (i).

To prove (ii), we differentiate the Euler-Lagrange equation (5.7) in the di-
rection of h. We obtain

0 = (−∆f)′ − 1

2
(|∇f |2)′ +

1

2
scal′ − f ′ = −∆f ′ +

1

2
(∆(trh) + δ(δh) + trh)− f ′

= −(∆ + 1)f ′ +
1

2
(∆ + 1)trh.

Here we used that fgE is constant and δh = 0. Since ∆ + 1 is invertible on the
space of smooth functions, the second assertion follows. It remains to show (iii).
By straightforward differentiation,

(Ric + g +∇2f)′ =
1

2
∆Lh− δ∗(δh)− 1

2
∇2trh+ h+ (∇2)′fgE +∇2(f ′)

=
1

2
∆Lh−

1

2
∇2trh+ h+

1

2
∇2trh =

1

2
∆Eh.

Here we used (i) and (ii).

Proposition 5.2.6 (Second variation of µ+). The second variation of µ+ at an
Einstein metric with RicgE = −gE is given by

µ+(gE)′′(h) =

{
− 1

4

ffl
M
〈∆Eh, h〉 dV, if h ∈ δ−1(0),

0, if h ∈ δ∗(Ω1(M)),

where
ffl

denotes the averaging integral, i.e. the integral divided by the volume.
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Proof. Since µ+ is a Riemannian functional, the Hessian restricted to δ∗(Ω1(M))
vanishes. Now let h ∈ δ−1(0). By the first variational formula and Lemma 5.2.5,

µ+(gE)′′(h) =
d2

dt2

∣∣∣∣
t=0

µ+(gE + th)

= −1

2

ˆ
M

〈(Ric + g +∇2f)′, h〉e−f dV

= −1

4

 
M

〈∆Eh, h〉 dV.

Recall that ∆E preserves δ−1(0). Thus, the splitting δ∗(Ω1(M)) ⊕ δ−1(0) is
orthogonal with respect to µ′′+.

With this formula, we easily prove

Corollary 5.2.7. Let (M, gE) be an Einstein manifold with constant −1. Then
dynamical stability (modulo diffeomorphism) implies Einstein-Hilbert stability.

Proof. We have seen that µ+ is nondecreasing under (5.5) and that µ+ is in-
variant under diffeomorphisms. Thus, (M, gE) is nessecarily a local maximum
of µ+, if it is dynamically stable (modulo diffeomorphism). Consequently, the
second variation of µ+ is negative semidefinite. The assertion now follows from
Proposition 5.2.6.

5.3 Some technical Estimates
In this section, we will establish bounds on µ+, fg and their variations in terms
of certain norms of the variations. These estimates are needed in proving the
main theorems of the next two sections.

Lemma 5.3.1. Let (M, gE) be an Einstein manifold such that Ric = −gE.
Then there exists a C2,α-neighbourhood U in the space of metrics such that the
minimizers fg are uniformly bounded in C2,α, i.e. there exists a constant C > 0
such that ‖fg‖C2,α ≤ C for all g ∈ U . Moreover, for each ε > 0, we can choose
U so small that ‖∇fg‖C0 ≤ ε for all g ∈ U .

Proof. As in the proof of Lemma 5.2.5 (i), we use the fact that

µ+(g) = inf
w∈C∞(M)

W̃(g, w) = inf

ˆ
M

2|∇w|2 +
1

2
scalw2 + w2 logw2 dV (5.12)

under the constraint
‖w‖L2 = 1.

There exists a unique minimizer of this functional which we denote by wg. We
have wg = e−fg/2 and wg satisfies the Euler-Lagrange equation

2∆wg +
1

2
scalgwg − 2wg logwg = µ+(g)wg. (5.13)

We will now show that there exists a uniform bound ‖wg‖C2,α ≤ C for all
metrics g in a C2,α-neighbourhood U of gE . First observe that by (5.12),

2 ‖∇wg‖L2 ≤ µ+(g)− C1vol(M, g)− 1

2
inf
p∈M

scalg(p),
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since the function x 7→ x log x has a lower bound. Testing W̃ with the constant
function w ≡ vol(M, gs)−1/2 yields

µ+(g) ≤ 1

2
sup
p∈M

scalg(p)− log(vol(M, g)). (5.14)

Using these estimates, we see that the H1-norm of ωg can be estimated by
quantities, which are uniformly bounded on U . By Sobolev embedding, we
obtain a uniform bound on ‖wg‖L2n/(n−2) . Let p = 2n/(n− 2) and choose some
q slightly smaller than p. By (5.13) and elliptic regularity,

‖wg‖W 2,q ≤ C2(‖wg logwg‖Lq + ‖wg‖Lq ).

Since x 7→ x log x grows slower than x 7→ xβ for any β > 1 as x→∞, we have
the estimate

‖wg logwg‖Lq ≤ C3(vol(M, g)) + ‖wg‖Lp .

This yields an uniform bound ‖wg‖W 2,q ≤ C(q). By Sobolev embedding, we
have uniform bounds on ‖wg‖Lp′ for some p′ > p and by applying elliptic regu-
larity on (5.13), we have bounds on ‖wg‖W 2,q′ for every q′ < p′.

Iterating this procedure, we obtain uniform bounds ‖wg‖W 2,p ≤ C(p) for
each p ∈ (1,∞). Again by elliptic regularity ,

‖wg‖C2,α ≤ C4(‖wg logwg‖C0,α + ‖wg‖C0,α)

≤ C5[(‖wg‖C0,α)γ + ‖wg‖C0,α)

for some γ > 1 and for sufficiently large p, Sobolev embedding yields

‖wg‖C0,α ≤ C6 ‖wg‖W 1,p ≤ C6 · C(p).

Therefore, we have a uniform bound on ‖wg‖C2,α .
Next, we show that the C2,α-norms of fg are uniformly bounded. First, we

claim that we may choose a smaller neighbourhood V ⊂ U such that for g ∈ V,
the functions wg are bounded away from zero (recall that any wg = e−fg/2 is pos-
itive). Suppose this is not the case. Then there exists a sequence gi → gE in C2,α

such that minp wgi(p)→ 0 for i→∞. Since ‖wgi‖C2,α ≤ C for all i, there exists
a subsequence, again denoted by wgi such that wgi → w∞ in C2,α′ for some
α′ < α. Obviously, the right hand side of (5.12) converges. By the estimates
(5.11) and (5.14), we see that also the left hand side of (5.12) converges. There-
fore, w∞ equals the minimizer of W̃(gE , w), so w∞ = wgE = vol(M, gE)−1/2.
In particular, minp wgi(p)→ vol(M, gE)−1/2 6= 0 which contradicts the assump-
tion. Now we have

‖fg‖C2,α = ‖−2 log(wg)‖C2,α ≤ C(log inf wg, 1/(inf wg)) ‖wg‖C2,α

≤ C(log inf wg, 1/(inf wg)) · C6 · C(p)

and the claim shows that the right hand side is bounded.
It remains to prove that for each ε > 0, we may choose U so small that

‖∇fg‖C0 < ε. We again use a subsequence argument. Suppose this is not
possible. Then there exists a sequence of metrics gi → g in C2,α and some
ε0 > 0 such that for the corresponding fgi , the estimate ‖∇fgi‖C0 ≥ ε0 holds
for all i. Because of the bound ‖fg‖C2,α ≤ C, we may choose a subsequence,
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again denoted by fi converging to some f∞ in C2,α′ for α′ < α. By the same
arguments as above, f∞ = fgE ≡ − log(vol(M)). In particular, ‖∇fgi‖C0 → 0,
a contradiction.

Lemma 5.3.2. Let (M, gE) be an Einstein manifold such that RicgE = −gE.
Then there exists a C2,α-neighbourhood U of gE in the space of metrics and a
constant C > 0 such that for all g ∈ U , we have∥∥∥∥ ddt

∣∣∣∣
t=0

fg+th

∥∥∥∥
C2,α

≤ C ‖h‖C2,α ,

∥∥∥∥ ddt
∣∣∣∣
t=0

fg+th

∥∥∥∥
Hi
≤ C ‖h‖Hi , i = 1, 2.

Proof. Recall that fg satisfies the Euler-Lagrange equation

−∆f − 1

2
|∇f |2 +

1

2
scal− f = µ+(g).

Differentiating this equation in the direction of h yields

−∆̇f −∆ḟ +
1

2
h(gradf, gradf)− 〈∇f,∇ḟ〉+

1

2
˙scal− ḟ = µ̇+(g).

By Lemma A.3 and Lemma A.2 the variational formulas for the Laplacian and
the scalar curvature are

∆̇f = 〈h,∇2f〉 − 〈δh+
1

2
∇trh,∇f〉,

˙scal = ∆(trh) + δ(δh)− 〈Ric, h〉.

Because ∆ + 1 is invertible, we can apply elliptic regularity and we obtain∥∥∥ḟ∥∥∥
C2,α

≤ C1

∥∥∥(∆ + 1)ḟ
∥∥∥
C0,α

≤ C1

∥∥∥〈∇f,∇ḟ〉∥∥∥
C0,α

+ C1

∥∥∥∥−∆̇f +
1

2
h(∇f,∇f) +

1

2
˙scal− µ̇+(g)

∥∥∥∥
C0,α

≤ C1 ‖∇f‖C0

∥∥∥∇ḟ∥∥∥
C0,α

+ C1

∥∥∥∥−∆̇f +
1

2
h(∇f,∇f) +

1

2
˙scal− µ̇+(g)

∥∥∥∥
C0,α

.

By Lemma 5.3.1, we may choose U so small that ‖∇f‖C0 < ε for some small
ε < min

{
C−1

1 , 1
}
. Then we have

(1− ε)
∥∥∥ḟ∥∥∥

C2,α
≤
∥∥∥ḟ∥∥∥

C2,α
− C1 ‖∇f‖C0

∥∥∥∇ḟ∥∥∥
C0,α

≤ C1

∥∥∥∥−∆̇f +
1

2
h(∇f,∇f) +

1

2
˙scal− µ̇+(g)

∥∥∥∥
C0,α

≤ (C2 ‖fg‖C2,α + C3) ‖h‖C2,α .

The last inequality follows from the variational formulas of the Laplacian, the
scalar curvature and µ+. By the uniform bound on ‖fg‖C2,α , the first estimate
of the lemma follows.
Similarly, we can estimate the Hi-norm of ḟ . Again by elliptic regularity,∥∥∥ḟ∥∥∥

Hi
≤ C4

∥∥∥(∆ + 1)ḟ
∥∥∥
Hi−2

≤ C4

∥∥∥〈∇f,∇ḟ〉∥∥∥
L2

+ C4

∥∥∥∥−∆̇f +
1

2
h(∇f,∇f) +

1

2
˙scal− µ̇+(g)

∥∥∥∥
Hi−2

≤ C4 ‖∇f‖C0

∥∥∥∇ḟ∥∥∥
L2

+ C4

∥∥∥∥−∆̇f +
1

2
h(∇f,∇f) +

1

2
˙scal− µ̇+(g)

∥∥∥∥
Hi−2

.

67



Choosing U such that ‖∇f‖C0 < ε for some ε < min
{
C−1

4 , 1
}
, we obtain

(1− ε)
∥∥∥ḟ∥∥∥

Hi
≤
∥∥∥ḟ∥∥∥

Hi
− C4 ‖∇f‖C0

∥∥∥∇ḟ∥∥∥
L2

≤ C4

∥∥∥∥−∆̇f +
1

2
h(∇f,∇f) +

1

2
˙scal− µ̇+(g)

∥∥∥∥
Hi−2

≤ (C5 ‖f‖C2,α + C6) ‖h‖Hi .

The last estimate is clear from the variational formulas if Hi−2 = L2. In the
case Hi−2 = H−1, we test the integrand with an H1-function ϕ and find that

(−∆̇f +
1

2
h(∇f,∇f) +

1

2
˙scal− µ̇+(g), ϕ)L2 ≤ (C5 ‖f‖C2,α + C6) ‖h‖H1 ‖ϕ‖H1 .

Therefore, the H−1-norm can be estimated as above.

Proposition 5.3.3 (Estimate of the second variation of µ+). Let (M, gE) be
an Einstein manifold with constant −1. Then there exists a C2,α-neighbourhood
U of gE and a constant C > 0 such that∣∣∣∣∣ d2

dsdt

∣∣∣∣
s,t=0

µ+(g + th+ sk)

∣∣∣∣∣ ≤ C ‖h‖H1 ‖k‖H1

for all g ∈ U .
Proof. By the formula of the first variation,

d2

dsdt

∣∣∣∣
s,t=0

µ+(g + th+ sk) = − d

ds

∣∣∣∣
s=0

1

2

ˆ
M

〈Ricgs + gs −∇2fgs , h〉gse−fgs dVgs

= (1) + (2) + (3),

and we estimate these three terms separately. The first term comes from differ-
entiating the scalar product:

|(1)| =
∣∣∣∣ˆ
M

〈Ricg + g −∇2fg, k ◦ h〉ge−fg dVg
∣∣∣∣

≤ C1

∥∥Ricg + g −∇2fg
∥∥
C0

∥∥e−fg∥∥
C0 ‖h‖L2 ‖k‖L2

≤ (C2 + C3 ‖f‖C2,α) exp(−min fg) ‖h‖L2 ‖k‖L2

≤ C4 ‖h‖H1 ‖k‖H1 .

These estimates hold since |Ricg+g| and exp(−min fg) are uniformly bounded in
a small C2,α-neighbourhood of gE . The second term comes from differentiating
the gradient:

|(2)| =

∣∣∣∣∣12
ˆ
M

〈
d

ds

∣∣∣∣
s=0

(Ricgs + gs −∇2fgs), h

〉
g

e−fg dVg

∣∣∣∣∣
=

∣∣∣∣12
ˆ
M

〈Ric′ + k − (∇2)′fg −∇2f ′g, h〉ge−fg dVg
∣∣∣∣

=

∣∣∣∣∣12
ˆ
M

〈
1

2
∆Lk − δ∗(δk)− 1

2
∇2trk + k − (∇2)′fg −∇2f ′g, e

−fgh

〉
g

dVg

∣∣∣∣∣
≤ C5 ‖k‖H1 ‖h‖H1 ‖fg‖C2,α exp(−min fg)

≤ C6 ‖k‖H1 ‖h‖H1 .
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The first inequality follows from integration by parts, Lemma A.3 and Lemma
5.3.2, the second from the uniform bound on the fg. The third term appears
when we differentiate the measure:

|(3)| =
∣∣∣∣12

ˆ
M

〈Ricg + g −∇2fg, h〉g
(
−f ′g +

1

2
trk

)
e−fg dVg

∣∣∣∣
≤ C7

∥∥Ricg + g −∇2fg
∥∥
C0 exp(−min fg) ‖h‖L2

∥∥∥∥−f ′g +
1

2
trk

∥∥∥∥
L2

≤ C8 ‖h‖H1 ‖k‖H1 .

Here, we again used Lemma 5.3.2 in the last step.

Lemma 5.3.4. Let (M, gE) be an Einstein manifold with constant −1. Then
there exists a C2,α-neighbourhood U of gE and a constant C > 0 such that∥∥∥∥∥ d2

dtds

∣∣∣∣
t,s=0

fg+sk+th

∥∥∥∥∥
Hi

≤ C ‖h‖C2,α ‖k‖Hi , i = 1, 2.

Proof. In the proof, we denote t-derivatives by dot and s-derivatives by prime.
Differentiating (5.7) twice yields

−∆ḟ ′ − ∆̇f ′ −∆′ḟ − ∆̇′f + h(gradf, gradf ′) + k(gradf, gradḟ)

−〈∇f,∇ḟ ′〉 − 〈∇ḟ ,∇f ′〉+
1

2
˙scal
′
− ḟ ′ = µ̇′+.

By elliptic regularity, we have∥∥∥ḟ ′∥∥∥
Hi
≤ C1

∥∥∥(∆ + 1)ḟ ′
∥∥∥
Hi−2

≤ C1 ‖∇f‖C0

∥∥∥∇ḟ ′∥∥∥
L2

+ C1 ‖(A)‖Hi−2 , (5.15)

where

(A) =− ∆̇f ′ −∆′ḟ − ∆̇′f + h(gradf, gradf ′) + k(gradf, gradḟ)

− 〈∇ḟ ,∇f ′〉+
1

2
˙scal
′
− µ̇′+.

Now we consider the occurent second variational formulas of the Laplacian and
the scalar curvature. By Lemma A.5, they can be schematically written as

∆̇′f = ∇k ∗ h ∗ ∇f + k ∗ ∇h ∗ ∇f,
˙scal
′

= ∇2k ∗ h+ k ∗ ∇2h+∇k ∗ ∇h+R ∗ k ∗ h.

Here, ∗ is Hamilton’s notation for a combination of tensor products with con-
tractions. Now, Lemma 5.3.3, integration by parts and the Hölder inequality
yield ∥∥∥∥−∆̇′f +

1

2
˙scal
′
− µ̇′+

∥∥∥∥
Hi−2

≤ C2 ‖h‖C2,α ‖k‖Hi .

For Hi−2 = L2, this is clear, for Hi−2 = H−1 this follows again from testing
with an H1-function. For the remaining terms

(B) = −∆̇f ′ −∆′ḟ + h(gradf, gradf ′) + k(gradf, gradḟ)− 〈∇ḟ ,∇f ′〉
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such an estimate follows from the first variational formula of the Laplacian and
the estimates we already developed for ḟ and f ′ in Lemma 5.3.2. In fact, we
even have

‖(B)‖L2 ≤ C3 ‖h‖C2,α ‖k‖H1 ,

so that the desired type of estimate holds in any case. We obtain

‖(A)‖Hi−2 ≤ C4 ‖h‖C2,α ‖k‖Hi .

Since ‖∇f‖C0 can be assumed to be arbitrarily small, we bring this term to the
left hand side of (5.15) and obtain the result.

Proposition 5.3.5 (Estimates of the third variation of µ+). Let (M, gE) be an
Einstein manifold with constant −1. Then there exists a C2,α-neighbourhood U
of gE and a constant C > 0 such that∣∣∣∣ d3

dt3

∣∣∣∣
t=0

µ+(g + th)

∣∣∣∣ ≤ C ‖h‖2H1 ‖h‖C2,α

for all g ∈ U .

Proof. We have, by the first variational formula,

d3

dt3

∣∣∣∣
t=0

µ+(g + th) = −1

2

d2

dt2

∣∣∣∣
t=0

ˆ
M

〈Ric + g +∇2fg, h〉e−f dV

= −1

2

ˆ
M

〈(Ric + g +∇2fg)
′′, h〉e−f dV − 3

ˆ
M

〈Ric + g +∇2fg, h
3〉e−f dV

− 1

2

ˆ
M

〈Ric + g +∇2fg, h〉(e−f dV )′′ + 2

ˆ
M

〈(Ric + g +∇2fg)
′, h ◦ h〉e−f dV

−
ˆ
M

〈(Ric + g +∇2fg)
′, h〉(e−f dV )′ + 2

ˆ
M

〈Ric + g +∇2fg, h ◦ h〉(e−f dV )′,

where h3 = h ◦ h ◦ h. Straightforward calculations show that

(e−f dV )′ =

(
−f ′ + 1

2
trh

)
e−f dV,

(e−f dV )′′ =

[
−f ′′ − 1

2
|h|2 +

(
−f ′ + 1

2
trh

)2
]
e−f dV,

(Ric + g +∇2fg)
′ =

1

2
∆Lh− δ∗(δh)− 1

2
∇2trh+ h− (∇2)′fg −∇2f ′g.

By these calculations, it is quite obvious that we can estimate the last five terms
of above by C ‖h‖2H1 ‖h‖C2,α using the Hölder inequality and the estimates for
f ′ and f ′′ we developed in Lemma 5.3.2 and Lemma 5.3.4. It remains to deal
with the first term which contains the second derivative of the gradient of µ+.
We have the schematic expressios

(Ric + g)′′ = ∇2h ∗ h+∇h ∗ ∇h+R ∗ h ∗ h,
(∇2fg)

′′ = (∇2)′′fg + 2(∇2)′f ′g +∇2f ′′g

= ∇f ∗ ∇h ∗ h+∇f ′ ∗ ∇h+∇2f ′′g ,
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see Lemma A.3 and Lemma A.5. From these expressions we obtain, by applying
Lemma 5.3.2 and Lemma 5.3.4 again,∣∣∣∣ˆ

M

〈(Ric + g +∇2fg)
′′, h〉e−f dV

∣∣∣∣ ≤ C ‖h‖2H1 ‖h‖C2,α .

Note that we have to use integration by parts for the ∇2f ′′g -term to obtain an
upper bound containing an H1-norm.

5.4 The integrable Case

In this section, we prove dynamical stability and instability theorems for neg-
ative Einstein manifolds under the technical assumption that all infinitesimal
Einstein deformations are integrable. For all results in this section, we suppose
that this condition holds.

5.4.1 Local Maximum of the Expander Entropy

In this section we will prove a criterion which ensures that an Einstein manifold
is a local maximum of the expander entropy. For the proof, we will use the
slice theorem stated in Chapter 2 and we use an explicit construction of the
slice. Moreover, we use Taylor expansion and with the estimates of the previous
section, we are able to control the error terms.

Theorem 5.4.1 (Ebin-Palais ([Ebi70])). Let M be a compact manifold and
M the space of metrics on M . Then for each g0 ∈ M, there exists a C2,α-
neighbourhood U such that each g ∈ U can be written as g = ϕ∗g̃ for some
ϕ ∈ Diff(M) and g̃ ∈ Sg0

= (g0 + δ−1
g0

(0)) ∩ U .

We call Sg0
an affine slice. Now let gE be an Einstein metric with constant

−1 and let
E = {g ∈ SgE | Ricg = αg for some α ∈ R}

be the set of Einstein metrics in the affine slice near gE . Moreover, let

P = {g ∈ SgE | Ricg = −g} .

If we assume that all infinitesimal Einstein deformations of gE are integrable,
E (and hence also P) is a manifold near gE and the tangent spaces at gE are
given by

TgEE = R · gE ⊕ ker(∆E |TT ), TgEP = ker(∆E |TT ),

see [Bes08, Proposition 12.49] for more details. Note also that

P = {g ∈ E | vol(M, g) = vol(M, gE)}

by the observations in Section 2.5. By Lemma 5.2.5 (i), fg is constant for any
g ∈ P and thus, µ+(g) =

scalg
2 − log(vol(M, g)) is constant on P. For the

proof of maximality, we further need the following decomposition of the space
of divergence-free tensors:
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Lemma 5.4.2. Let (M, gE) be an Einstein manifold with nonvanishing constant
µ. Then we have the L2-orthogonal decomposition

δ−1
gE (0) = CgE (C∞(M))⊕ TTgE ,

where CgE : C∞(M)→ Γ(S2M) is defined as CgE (f) = (∆f − µf)gE +∇2f .

Proof. We first check the L2-orthgonality. Let f ∈ C∞(M) and h ∈ TTgE .
Then

(CgEf, h)L2 = (∆f − µf, trh)L2 + (∇2f, h)L2 = 0 + (∇f, δh)L2 = 0.

Now we show that CgE (C∞(M)) ⊂ δ−1
gE (0). Let f ∈ C∞(M). We then have

δ(CgEf) =δ((∆f − µf)gE +∇2f)

=−∇∆f + µ∇f + δ∇2f.

Let {e1, . . . , en} be a local orthonormal frame. By the Ricci identity,

δ(CgEf)(ei) =−∇ei∆f + µ∇eif + δ∇2f(ei)

=

n∑
j=1

(∇3
ei,ej ,ej −∇

3
ej ,ei,ej )f + µ∇eif

=

n∑
j=1

∇R(ej ,ei)ejf + µ∇eif

=− µ∇eif + µ∇eif = 0.

Since also TTgE ⊂ δ−1
gE (0) and the decomposition Γ(S2M) = δ∗(Ω1(M))⊕δ−1

gE (0)
is orthogonal, it suffices to prove

Γ(S2M) = δ∗(Ω1(M))⊕ CgE (C∞(M))⊕ TTgE .

Let h ∈ Γ(S2M). Because of Lemma 2.4.1, we can write h = f̃ · gE + δ∗ω + h̃
where f̃ ∈ C∞(M), ω ∈ Ω1(M) and h̃ ∈ TT . By Obata’s eigenvalue estimate,
∆− µ is invertible for any Einstein manifold with constant µ 6= 0. Thus,

h =f̃ · gE + δ∗ω + h̃

=(∆− µ)f · gE +∇2f + δ∗(ω −∇f) + h̃

=CgE (f) + δ∗(ω −∇f) + h̃,

where f = (∆− µ)−1f̃ . This shows the assertion.

Theorem 5.4.3. Let (M, gE) be an Einstein manifold with constant −1 which
is Einstein-Hilbert stable. Then there exists a C2,α-neighbourhood U of gE such
that µ+(g) ≤ µ+(gE) for all g ∈ U . Moreover, equality holds if and only if g is
also an Einstein metric with constant −1.

Proof. We first show that the second variation of µ+(gE) is nonpositive. By
the second variational formula in Proposition 5.3.3, it suffices to show that the
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Einstein operator is nonnegative on δ−1
gE (0). By Lemma 5.4.2, we have the L2-

orthogonal decomposition

δ−1
gE (0) = CgE (C∞(M))⊕ TTgE ,

where CgE : C∞(M) → δ−1
gE (0) is defined as CgE (f) = (∆f + f)gE −∇2f . On

TT , ∆E is nonnegative by assumption. Recall that ∆L = ∆E − 2 · id on an
Einstein manifold with constant −1. We thus have

∆ECgE (f) = ∆LCgE (f) + 2CgE (f)

= ∆L((∆f + f)gE +∇2f) + 2CgE (f)

= (∆(∆f) + (∆f))gE + (∇2∆f) + 2CgE (f)

= CgE (∆f + 2f).

Here we used Lemma 2.4.5. We see that CgE (f) is an eigentensor of ∆E with
eigenvalue λ if and only if f is an eigenfunction of the Laplace-Beltrami operator
with eigenvalue λ− 2. Therefore, ∆E is positive on CgE (C∞(M)).

Next, we show that µ+(g) ≤ µ+(gE) on the affine slice (gE + δ−1
gE (0)) ∩ U

and equality holds if and only if g ∈ P. Let δ−1
gE (0) = TgEP ⊕N where N is the

L2-orthogonal complement of TgEP in δ−1
gE (0). By the above arguments, µ′′+(gE)

is negative definite on N . We consider the map

E : P ×N → SgE ,
(ḡ, h) 7→ ḡ + h.

By the inverse function theorem for Banach manifolds, this is a local diffeomor-
phism around (gE , 0) if we temporarily enlarge the involved spaces to C2,α-
spaces. However, each metric in P is smooth. This follows from the fact
that ker(∆E |TT ) = TgEP is smooth by elliptic regularity and the arguments
in [Has12, Proposition 3.6] and [Bes08, Theorem 12.49]. Therefore, each C2,α-
metric in SgE near gE is of the form ḡ + h and is smooth if and only if h is
smooth. By Taylor expansion,

µ+(ḡ + h) = µ+(ḡ) +
d

dt

∣∣∣∣
t=0

µ+(ḡ + th) +
1

2

d2

dt2

∣∣∣∣
t=0

µ+(ḡ + th) +R(ḡ, h),

R(ḡ, h) =

ˆ 1

0

(
1

2
− t+

1

2
t2
)
d3

dt3
µ+(ḡ + th)dt.

Now, we claim that there exists a constant C1 such that for all ḡ ∈ P and h ∈ N ,

d2

dt2

∣∣∣∣
t=0

µ+(ḡ + th) ≤ −C1 ‖h‖2H1 . (5.16)

We define the projection map

pr : M×N → Γ(S2M)

which maps a tuple (g, h) to the projection of h onto the second factor of the
splitting δ∗g(Ω1(M))⊕δ−1

g (0). Let h̄ = pr(ḡ, h). Recall that the second variation
is only nonzero on the second factor. Therefore,

d2

dt2

∣∣∣∣
t=0

µ+(ḡ + th) = − 1

4vol(M, ḡ)

ˆ
M

〈∆E h̄, h̄〉 dVḡ

= − 1

4vol(M, ḡ)

ˆ
M

〈∆Eh, h〉 dV +
1

4vol(M, ḡ)

ˆ
M

〈∆Eδ
∗ω, δ∗ω〉 dV,

(5.17)
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where ω is a 1-form satisfying h = δ∗ω + h̄. We now deal with the first term of
the right hand side. Since at (∆E)gE is positive definite on N , we have

((∆E)gEh, h)L2(gE) = ε ‖∇h‖2L2(gE) + (1− ε)(∇∗∇h− 2

1− ε
R̊h, h)L2(gE)

≥ C2 ‖h‖2H1(gE) ,

where ε > 0 is sufficiently small. By Taylor expansion,

((∆E)ḡh, h)L2(ḡ) =((∆E)gEh, h)L2(gE)

+

ˆ 1

0

d

dt
((∆E)gE+t(ḡ−gE)h, h)L2(gE+t(ḡ−gE))dt.

We have

d

dt

∣∣∣∣
t=0

((∆E)g+tkh, h)L2(g+tk) =(∆′Eh, h)L2 − 2(∆Eh, k ◦ h)L2

+
1

2
(∆Eh, (trk)h)L2 ,

and by Lemma A.5,

∆′Eh = ∇2k ∗ h+∇k ∗ ∇h+ k ∗ ∇2h+R ∗ k ∗ h.

We arrive, using integration by parts, at an estimate of the form

d

dt

∣∣∣∣
t=0

((∆E)g+tkh, h)L2(g+tk) ≤ C3 ‖k‖C2 ‖h‖H1 .

Thus,

((∆E)ḡh, h)L2 ≥ C2 ‖h‖2H1(gE) − C3 ‖ḡ − gE‖C2 ‖h‖H1 .

Therefore, if we choose the C2,α-neighbourhood small enough, we have a uniform
upper estimate on the first term of (5.17). The second term can be estimated
from above by

1

4vol(M, ḡ)

ˆ
M

〈∆Eδ
∗ω, δ∗ω〉 dV ≤ C4 ‖δ∗ω‖H1 .

By Lemma 5.4.4 below, we can choose, given any ε > 0, the neighbourhood U
so small that

‖δ∗ω‖H1 < ε ‖h‖H1 ,

and this implies inequality (5.16). By Proposition 5.3.5, we have the uniform
estimate

|R(ḡ, h)| ≤ C3 ‖h‖C2,α ‖h‖2H1 .

This yields

µ+(ḡ + h) ≤ µ+(g)− C1

2
‖h‖2H1 + C3 ‖h‖C2,α ‖h‖2H1 . (5.18)
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Therefore, if we choose the C2,α-neighbourhood small enough, the negative term
in (5.18) dominates and we obtain the desired inequality. Equality implies h = 0
which means that g ∈ P. On P, µ+ is constantly equal to µ+(gE).

By the Ebin-Palais slice theorem, every g ∈ U can be written as g = ϕ∗g̃ for
some ϕ ∈ Diff(M) and g̃ ∈ S. By diffeomorphism invariance,

µ+(g) = µ+(g̃) ≤ µ+(gE),

and equality holds if and only if g = ϕ∗g̃, where g̃ ∈ P. This implies that g is
also an Einstein manifold with constant −1.

Lemma 5.4.4. Let gE and N,ω,P as above. Then for every ε > 0, there exists
a C2,α-neighbourhood U of gE such that for all g ∈ U ∩ P, h ∈ N ,

‖δ∗ω‖H1(g) ≤ ε ‖h‖H1(g) .

Proof. Let h = δ∗gωg+pr(g, h) be the g-dependant decomposition of h according
to the splitting Γ(S2M) = δ∗g(Ω1(M))⊕ δ−1

g (0). Then we have

δgh = δgδ
∗
gωg.

The 1-form ωg decomposes as ωg = ∇fg + ω̄g, where fg ∈ C∞(M) and ω̄g ∈
δ−1
g (0). By straightforward calculation, one sees that

δgδ
∗
gωg = δgδ

∗
g∇fg + δgδ

∗
g ω̄g = (∇∗∇)∇fg +

1

2
(∇∗∇− Ric)ω̄g.

This shows that δgδ∗g acts as an elliptic operator on both parts of the decom-
position, since on Einstein manifolds, ∇∗∇ and ∇∗∇ − Ric = ∆H preserve
both subspaces. Since δgδ∗gωg = 0 implies δ∗gωg = 0, we may choose ωg to be
orthogonal to the kernel of δgδ∗g . Therefore, by elliptic regularity,∥∥δ∗gωg∥∥2

H1 ≤ ‖ωg‖
2
H2 ≤ ‖∇fg‖2H2 + ‖ω̄g‖2H2

≤ C1

∥∥δgδ∗g∇fg∥∥2

L2 + C2

∥∥δgδ∗g ω̄g∥∥2

L2

≤ C3

∥∥δgδ∗gωg∥∥2

L2 = C3 ‖δgh‖2L2 .

In the last inequality, we used the fact that the decomposition

Ω1(M) = ∇(C∞(M))⊕ δ−1
g (0)

is L2-orthogonal. We calculate

d

dt

∣∣∣∣
t=0

‖δg+tkh‖2L2(g+tk) =2(δ′h, δh)L2 −
ˆ
M

k((δh)], (δh)]) dV

+
1

2

ˆ
M

|δh|2trk dV.

By Lemma A.3,

δ′h = ∇k ∗ h+ k ∗ ∇h,
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and thus, we get

d

dt

∣∣∣∣
t=0

‖δg+tkh‖2L2(g+tk) ≤ C4 ‖h‖2H1(g) ‖k‖C1(g) .

Therefore by Taylor expansion,

‖δgE+kh‖2L2(gE+k) =

ˆ 1

0

d

dt
‖δg+tkh‖2L2(g+tk) dt ≤ C5 ‖h‖2H1(g) ‖k‖C2,α(g) .

Finally, if we choose the neighbourhood U so small that

‖g − gE‖C2,α ≤ ε(C3 · C5)−1

for all g ∈ U ∩ P,∥∥δ∗gωg∥∥2

H1 ≤ C3 ‖δgh‖2L2 ≤ C3 · C5 ‖h‖2H1 ‖g − gE‖C2,α ≤ ε ‖h‖2H1 ,

which proves the lemma.

5.4.2 A Lojasiewicz-Simon Inequality and Transversality
This subsection is devoted to the proof of two theorems which are essential
ingredients in the proof of dynamical stability in the next section. Here we use
the slice theorem and a certain 2-parameter expansion. The error terms can be
controlled by the estimates we developed in Section 5.3.

Theorem 5.4.5 (Optimal Lojasiewicz-Simon Inequality for µ+). Let (M, gE) be
an Einstein manifold with constant −1. Then there exists a C2,α-neighbourhood
U of gE and a constant C > 0 such that

|µ+(g)− µ+(gE)|1/2 ≤ C
∥∥Ric + g +∇2fg

∥∥
L2

for all g ∈ U .

Later on, this theorem will ensure that the Ricci flow converges exponentially
as t→∞.

Theorem 5.4.6 (Transversality). Let (M, gE) be an Einstein manifold with
constant −1. Then there exists a C2,α-neighbourhood U of gE and a constant
C > 0 such that

‖Ric + g‖L2 ≤ C
∥∥Ric + g +∇2fg

∥∥
L2

for all g ∈ U .

This theorem ensures that the Ricci flow does not move too excessively in
gauge direction. We will conclude that the flow converges in the strict sense
without pulling back by a family of diffeomorphisms.

Proof of Theorem 5.4.5 and Theorem 5.4.6. By diffeomorphism invariance, it
suffices to prove both theorems on a slice in the space of metrics. As before, we
work on the affine slice SgE = U ∩ (gE + δ−1

gE (0)). As in the previous section, let

P = {g ∈ SgE | Ricg = −g} ,
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and let N be the L2-orthogonal complement of TgEP in δ−1
gE (0). Then every

metric g ∈ SgE can be uniquely written as g = ḡ + h with ḡ ∈ P and h ∈ N ,
provided that U is small enough. Taylor expansion yields the estimates

|µ+(ḡ + h)− µ+(ḡ)| ≤ C1 ‖h‖2H2 ,

‖Ricḡ+h + ḡ + h‖2L2 ≤ C2 ‖h‖2H2 .

In order to prove the two theorems, it therefore suffices to show∥∥Ricḡ+h + ḡ + h+∇2fḡ+h
∥∥2

L2 ≥ C3 ‖h‖2H2

for some appropriate constant C3. To obtain this estimate, we need a few
lemmas.

Lemma 5.4.7. Let F (s, t) be a C2-function on 0 ≤ s, t ≤ 1 with values in a
Fréchet-space. Then

F (1, 1) = F (1, 0) +
d

dt
|t=0F (0, t) +

ˆ 1

0

(1− t) d
2

dt2
F (0, t)dt

+

ˆ 1

0

ˆ 1

0

d2

dsdt
F (s, t)dsdt.

Proof. See [Has12, Lemma 4.3].

Lemma 5.4.8. Let g = ḡ + h ∈ SgE as above. Then we have the 2-parameter
expansion

Ricg + g +∇2fg =
1

2
(∆E)gEh+O1 +O2,

where

O1 =

ˆ 1

0

(1− t) d
2

dt2
(RicgE+th + gE + th+∇2fgE+th)dt,

O2 =

ˆ 1

0

ˆ 1

0

d2

dsdt
(RicgE+s(ḡ−gE)+th

+ gE + s(ḡ − gE) + th+∇2fgE+s(ḡ−gE)+th)dsdt.

Proof. We apply Lemma 5.4.7 to the map

F (s, t) = RicgE+s(g−gE)+th + gE + s(g − gE) + th+∇2fgE+s(g−gE)+th

and use Lemma 5.2.5 (iii).

Lemma 5.4.9. Let g = ḡ + h ∈ SgE as above. Then there exists a C2,α-
neighbourhood and a constant C > 0 such that

‖O1‖L2 ≤ C ‖h‖C2,α ‖h‖H2 ,

‖O2‖L2 ≤ C ‖ḡ − gE‖C2,α ‖h‖H2 .

hold in this neighbourhood.
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Proof. Let dot be t-derivatives and prime be s-derivatives. Put k = g− gE . By
Lemma A.3 and Lemma A.5, we have

(Ricg + g)̇ ′ = ∇2k ∗ h+∇k ∗ ∇h+ k ∗ ∇2h+R ∗ k ∗ h,
(∇fg )̇ ′ = ∇k ∗ h ∗ ∇f + k ∗ ∇h ∗ ∇f +∇f ′ ∗ ∇h+∇k ∗ ∇ḟ +∇2ḟ ′.

The estimate for O2 follow from the Hölder inequality, Lemma 5.3.2 and Lemma
5.3.4. The other estimate is shown analogously.

Let us now continue the main proof. By Lemma 5.4.8 and since (∆E)gE |N is
injective, we have∥∥Ricḡ+h + ḡ + h+∇2fḡ+h

∥∥2

L2 ≥
1

4
‖(∆E)gEh‖

2
L2 − 〈O1 +O2, (∆E)gEh〉

≥C4 ‖h‖2H2 − C5(‖O1‖L2 + ‖O2‖L2) ‖h‖H2 .

If we choose the neighbourhood small enough, Lemma 5.4.9 yields∥∥Ricḡ+h + ḡ + h+∇2fḡ+h
∥∥2

L2 ≥ C6 ‖h‖2H2 ,

which finishes the proof of both theorems.

5.4.3 Dynamical Stability and Instability

Lemma 5.4.10 (Estimates for t ≤ 1). Let (M, gE) be an Einstein manifold with
constant −1 and let k ≥ 2. Then for all ε > 0 there exists a δ > 0 such that if
‖g0 − gE‖Ck+2

gE
< δ, the Ricci flow starting at g0 exists on [0, 1] and satisfies

‖g(t)− gE‖CkgE < ε

for all t ∈ [0, 1].

Proof. The Riemann curvature tensor and the Ricci tensor evolve under the
standard Ricci flow as ∂tR = −∆R+R ∗R and ∂tRic = −∆Ric +R ∗ Ric (see
e.g. [Bre10]). Under the flow ġ(t) = −2(Ricg(t) + g(t)), they evolve as

∂tR = −∆R+R ∗R− 4R, ∂tRic = −∆Ric +R ∗ Ric.

The additional term −4R comes from rescaling whereas the evolution equation
for the Ricci tensor does not change because of scale-invariance. Therefore, we
get the evolution inequalities

∂t|∇iR|2 ≤ −∆|∇iR|2 +

i∑
j=0

Cij |∇i−jR||∇jR||∇iR|,

∂t|∇i(Ric + g)|2 ≤ −∆|∇i(Ric + g)|2 +

i∑
j=0

C̃ij |∇i−jR||∇jRic||∇i(Ric + g)|.

Here, all covariant derivatives, Laplacians and norms are taken with respect to
g(t). By the maximum principle for scalars (see e.g. [CCG+08, Theorem 10.2]),
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there exists a K̃(K,n, k) < ∞ such that if g(t) is a Ricci flow on [0, T ] with
T ≤ 1 and

sup
p∈M
|Rg(t)|g(t) ≤ K, sup

p∈M
|∇iRg(0)|g(0) ≤ K

for all t ∈ [0, T ] and i ≤ k, then

sup
p∈M
|∇iRg(t)|g(t) ≤ K̃

for all t ∈ [0, T ] and i ≤ k. Again by the maximum principle, there exists for
each ε̃ > 0 a δ̃(ε̃, K̃, n, k) > 0 such that, if

sup
p∈M
|∇i(Ricg(0) + g(0))|g(0) ≤ δ̃

for all i ≤ k, we have

sup
p∈M
|∇i(Ricg(t) + g(t))|g(t) ≤ ε̃

for all t ∈ [0, T ] and i ≤ k. If we choose the ε-neighbourhood small enough such
that the Ck-norms with respect to gE and g(t) differ at most by a factor 2,

d

dt
‖g(t)− gE‖CkgE ≤

∥∥2(Ricg(t) + g(t))
∥∥
CkgE
≤ 4

∥∥(Ricg(t) + g(t))
∥∥
Ck
g(t)

.

Let δ̄ > 0 be small enough and let

K = sup
{
‖Rg‖C0

g
| ‖g − gE‖CkgE < ε

}
+ sup

{
‖Rg‖Ckg | ‖g − gE‖Ck+2

gE
< δ̄
}
.

Let K̃ = K̃(K,n, k), δ̃ = δ̃(K̃, ε̃, n, k) and δ1 < δ̄ be so small that for

‖g0 − gE‖Ck+2
gE
≤ δ1,

we have

sup
p∈M,i≤k

|∇i(Ricg0
+ g0)|g(0) ≤ δ̃, ‖g0 − gE‖CkgE ≤

ε

4
,

and the Ricci flow starting at g0 satisfies

sup
(p,t)∈M×[0,T ],i≤k

|∇i(Ricg(t) + g(t))|g(t) ≤ ε̃ =
ε

16(k + 1)
.

Let T ∈ [0,∞] be the maximal interval such that the Ricci flow starting at g0

exists on [0, T ) and satisfies

‖g(t)− gE‖CkgE < ε

for all t ∈ [0, T ). Suppose that T ≤ 1. Then

‖g(t)− gE‖CkgE ≤ ‖g0 − gE‖CkgE +

ˆ T

0

d

dt
‖g(t)− gE‖CkgE dt

≤ ‖g0 − gE‖CkgE + 4

ˆ T

0

∥∥(Ricg(t) + g(t))
∥∥
Ck
g(t)

dt

≤ δ + 4(k + 1)ε̃ ≤ ε

2
,

which contradicts the maximality of T .
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Lemma 5.4.11. Let g(t), t ∈ [0, T ] be a solution of the Ricci flow (5.5) and
suppose that

sup
p∈M
|Rg(t)|g(t) ≤ T−1 ∀t ∈ [0, T ].

Then for each k ≥ 1, there exists a constant C(k) such that

sup
p∈M
|∇kRg(t)|g(t) ≤ C(k) · T−1t−k/2 ∀t ∈ (0, T ].

Proof. This is a well-known result for the standard Ricci flow. For the sake of
completness, we redo the proof of Hamilton in [Ham95, Theorem 7.1] which also
works for the flow (5.5). From the evolution equation ∂tR = −∆R+R∗R−4R,
we obtain the evolution inequality

∂t|∇kR|2 ≤ −∆|∇kR|2 − 2|∇k+1R|2 +

k∑
j=0

Cjk|∇jR||∇k−jR||∇kR|.

We will now use the |∇k+1R|2-term we omitted in the proof of the previous
lemma. In particular, we have

∂t|R|2 ≤ −∆|R|2 − 2|∇R|2 + C00|R|3,
∂t|∇R|2 ≤ −∆|∇R|2 − 2|∇2R|2 + 2C01|R||∇R|2.

Let now F be the function

F = t|∇R|2 +A|R|2,

where A is some large constant. We have

∂tF ≤ −∆F + (C1t|R| − 2A)|∇R|2 + C2A|R|3.

By assumption, |R| ≤ T−1 and tT ≤ 1. Thus, if we take 2A ≥ C1,

∂tF ≤ −∆F + C3T
−3.

Since F (0) ≤ C4T
−2, the maximum principle yields

F ≤ C4T
−2 + tC3T

−3 ≤ C5T
−2

for t ≤ T . By definition of F , we thus have

t|∇R|2 ≤ F ≤ C5T
−2.

This shows the assertion for k = 1. Now we proceed by induction. Suppose
that the lemma holds for a fixed k ∈ N. Then by the evolution inequalities and
induction hypothesis,

∂t|∇kR|2 ≤−∆|∇kR|2 − 2|∇k+1R|2 + C6T
−3t−k,

∂t|∇k+1R|2 ≤−∆|∇k+1R|2 − 2|∇k+1R|2 + C7T
−1|∇k+1R|2

+ C8T
−2|∇k+1R|t−(k+1)/2.
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From

T−2|∇k+1R|t−(k+1)/2 ≤ 1

2
(T−1|∇k+1R|2 + T−3tk+1),

we obtain

∂t|∇k+1R|2 ≤−∆|∇k+1R|2 + C9T
−1|∇k+1R|2 + C10T

−3tk+1.

Now we define

Fk = t|∇k+1|2 +Ak|∇kR|2,

where Ak is some large constant. Then

∂tFk ≤ −∆Fk + (C11tT
−1 − 2Ak)|∇k+1R|2 + C12AkT

−3t−k,

and if t ≤ T and Ak ≥ 2C11,

∂tFk ≤ ∆Fk + C13T
−3t−k.

Since Fk(0) ≤ C14T
−2t−k, the maximum principle yields

Fk ≤ C14T
−2t−k + C13T

−3t−k+1 ≤ C15T
−2t−k,

where we used t ≤ T . Thus,

t|∇k+1R|2 ≤ Fk ≤ C15T
−2t−k,

and the induction step is completed. This proves the lemma.

Remark 5.4.12. For a given Ricci flow g(t), the previous lemma and a bootstrap
argument imply the following: Suppose we have a uniform bound

sup
p∈M
|Rg(t)|g(t) ≤ K ∀t ∈ [0, T ].

Then for each k ≥ 1 and δ > 0, there exists a constant C(k, δ) such that

sup
p∈M
|∇kRg(t)|g(t) ≤ C(k, δ) ·K ∀t ∈ [δ, T ].

Theorem 5.4.13 (Dynamical stability). Let (M, gE) be a compact Einstein
manifold with constant −1 which is Einstein-Hilbert stable and satisfies the in-
tegrability condition. Let k ≥ 3. Then for every Ck-neighbourhood U of gE,
there exists a Ck+2-neighbourhood V ⊂ U of gE such that the following holds:
For any metric g0 ∈ V the Ricci flow (5.5) starting at g0 stays in U for all time.
Moreover, the Ricci flow converges to some Einstein metric g∞ ∈ U with con-
stant −1 as t→∞. The convergence is exponentially, i.e. there exist constants
C1, C2 > 0 such that for all t ≥ 0,

‖g(t)− g∞‖CkgE ≤ C1e
−C2t.

81



Proof. We write Bkε for the ε-ball around gE with respect to the CkgE -norm.
Without loss of generality, we may assume that U = Bkε and ε > 0 is so small
that Theorems 5.4.3, 5.4.5 and 5.4.6 are satisfied. By Lemma 5.4.10, we can
choose V so small that any Ricci flow starting in V exists on [0, 1] and stays in
Bkε/4 up to time 1.

Let now g0 ∈ V be arbitrary and T ∈ (1,∞) be the maximal time such that
the Ricci flow starting at g0 exists on [0, T ) and stays in U for all t ∈ [0, T ).
Then

‖g(t)− gE‖CkgE ≤ ‖g(1)− gE‖CkgE +

ˆ T

1

d

dt
‖g(t)− gE‖CkgE dt

≤ ε

4
+

ˆ T

1

∥∥2(Ricg(t) + g(t))
∥∥
CkgE

dt

≤ ε

4
+ 4

ˆ T

1

∥∥Ricg(t) + g(t)
∥∥
Ck
g(t)

dt.

Here we assumed that ε is so small that the Ck-norms defined by g(t) and gE
differ at most by a factor 2. By Remark 5.4.12, we have uniform bounds

sup
p∈M
|∇iRg(t)|g(t) ≤ C(i) ∀t ∈ [1, T ).

By interpolation inequalites for tensors (c.f. [Ham82, Corollary 12.7]), we there-
fore get, if we fix some β ∈ (0, 1),∥∥Ricg(t) + g(t)

∥∥
Ck
g(t)

≤ CS
∥∥Ricg(t) + g(t)

∥∥
Hl
g(t)

≤ CSC1

∥∥Ricg(t) + g(t)
∥∥β
L2
g(t)

.

Here l ≥ k is some sufficiently large number and CS is the constant from Sobolev
embedding. Suppose that g(t) is not an Einstein metric with constant −1 (oth-
erwise the flow is trivial). Then by Theorems 5.4.3, 5.4.5 and 5.4.6 and the first
variation of µ+,

− d

dt
|µ+(g(t))− µ+(gE)|β/2 =

β

2
|µ+(g(t))− µ+(gE)|β/2−1 d

dt
µ+(g(t))

=
β

2
|µ+(g(t))− µ+(gE)|β/2−1

ˆ
M

|Ricg(t) + g(t) +∇2fg(t)|2e−fg(t) dVg(t)

≥ C2|µ+(g(t))− µ+(gE)|β/2−1
∥∥Ricg(t) + g(t) +∇2fg(t)

∥∥2

L2
g(t)

≥ C3 ‖Ric + g‖β
L2
g(t)

.

Hence by integration and monotonicity of µ+ along the flow,
ˆ T

1

∥∥Ricg(t) + g(t)
∥∥
Ck
g(t)

≤ C4

ˆ T

1

∥∥Ricg(t) + g(t)
∥∥β
L2
g(t)

dt

≤ C5|µ+(g(1))− µ+(gE)|β/2

≤ C5|µ+(g0)− µ+(gE)|β/2 ≤ ε

16
,

(5.19)

provided we have chosen V small enough. We thus obtain

‖g(t)− gE‖CkgE ≤
ε

2
,
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which contradicts the maximality of T . Therefore, T =∞ and for all t ≥ 0, we
have

‖g(t)− gE‖CkgE < ε,
ˆ ∞

0

‖ġ(t)‖CkgE dt <∞.

It follows that g(t) → g∞ as t → ∞. Along the flow, we have, by Theorem
5.4.5, − d

dt |µ+(g(t))− µ+(gE)| ≥ C6|µ+(g(t))− µ+(gE)|. Thus,

|µ+(g(t2))− µ+(gE)| ≤ e−C6(t2−t1)|µ+(g(t1))− µ+(gE)|,

which shows that µ+(g∞) = µ+(gE) and by Theorem 5.4.3, Ricg∞ = −g∞. The
convergence is exponential since for t1 < t2,

‖g(t1)− g(t2)‖CkgE ≤C7|µ+(g(t1))− µ+(gE)|β/2

≤C7e
− β2C6t1 |µ+(g0)− µ+(gE)|,

where the first inequality follows from arguments as in (5.19). The assertion
follows from t2 →∞.

Theorem 5.4.14 (Dynamical instability). Let (M, gE) be an Einstein mani-
fold with constant −1 which satisfies the integrability condition. If (M, gE) is
Einstein-Hilbert unstable, there exists a nontrivial ancient Ricci flow emerging
from it, i.e. there is a Ricci flow g(t), t ∈ (−∞, 0] such that limt→−∞ g(t) = gE.

Proof. Since (M, gE) is Einstein-Hilbert unstable, it cannot be a local maximum
of µ+. Let gi → gE in Ck and suppose that µ+(gi) > µ+(gE) for all i. Let
gi(t) be the Ricci flow (5.5) starting at gi. Then by Lemma 5.4.10, ḡi = gi(1)
converges to gE in Ck−2 and by monotonicity, µ+(ḡi) > µ+(gE) as well. Let
ε > 0 be so small that Theorems 5.4.5 and 5.4.6 both hold on Bk−2

2ε . Theorem
5.4.5 yields the differential inequality

d

dt
(µ+(gi(t))− µ+(gE)) ≥ C1(µ+(gi(t))− µ+(gE)),

from which we obtain

(µ+(gi(t))− µ+(gE))eC1(s−t) ≤ (µ+(gi(s))− µ+(gE)), (5.20)

as long as gi stays in Bk−2
2ε . Thus, there exists a time ti such that

‖gi(ti)− gE‖Ck−2 = ε.

Now observe that Lemma 5.4.10 holds if we replace 1 by any other time. Thus,
ti →∞ because gi(ti)→ gE in Ck−2 if ti was bounded. By interpolation,∥∥Ricgi(t) − gi(t)

∥∥
Ck−2 ≤ C2

∥∥Ricgi(t) − gi(t)
∥∥β
L2 (5.21)

for some β ∈ (0, 1). By Theorems 5.4.5 and 5.4.6, we have the differential
inequality

d

dt
(µ+(gi(t))− µ+(gE))β/2 ≥ C3

∥∥Ricgi(t) + gi(t)
∥∥β
L2 , (5.22)
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if µ+(gi(t)) > µ+(gE). Therefore, by the triangle inequality and by integration,

ε = ‖gi(ti)− gE‖Ck−2 ≤ ‖ḡi − gE‖Ck−2 + C4(µ+(gi(ti))− µ+(gE))β/2. (5.23)

Now put gsi (t) := gi(t+ ti), t ∈ [Ti, 0], where Ti = 1− ti → −∞. We have

‖gsi (t)− gE‖Ck−2 ≤ ε ∀t ∈ [Ti, 0],

gsi (Ti)→ gE in Ck−2.

Because the embedding Ck−3(M) ⊂ Ck−2(M) is compact, we can choose a
subsequence of the gsi , converging in Ck−3

loc (M × (−∞, 0]) to an ancient Ricci
flow g(t), t ∈ (−∞, 0]. From taking the limit i → ∞ in (5.23), we have ε ≤
C4(µ+(g(0)) − µ+(gE))β/2 which shows that the Ricci flow is nontrivial. For
Ti ≤ t, we have, by (5.21) and (5.22),

‖gsi (Ti)− gsi (t)‖Ck−3 ≤C5(µ+(gi(t+ ti))− µ+(gE))β/2

≤C5(µ+(gi(ti))− µ+(gE))β/2eC1t = C6e
C1t.

Thus,

‖gE − g(t)‖Ck−3 ≤‖gE − gsi (Ti)‖Ck−3 + C6e
C1t + ‖gsi (t)− g(t)‖Ck−3 .

It follows that ‖gE − g(t)‖Ck−3 → 0 as t→ −∞.

Remark 5.4.15. All known compact negative Einstein manifolds are Einstein-
Hilbert stable (see e.g. [Dai07]). Moreover, no nonintegrable infinitesimal Ein-
stein deformations are known in the negative case. Therefore, all known exam-
ples are dynamically stable by Theorem 5.4.13.

It would be very interesting to generalize these theorems to the noncompact
case. Stability of the hyperbolic space under Ricci flow was studied in [SSS11;
Bam11]. The more general case of symmetric spaces of noncompact type was
studied in [Bam10]. There, the nonnegativity of the Einstein operator plays an
important role.

5.5 The Nonintegrable Case
The integrability condition we assumed is a strong condition and one cannot
expect that it holds in general. Luckily we were able to get rid of this condition.
In this section, we prove dynamical stability and instability theorems without
the integrabilty assumption. In contrast to the previous results, we obtain
convergence modulo diffeomorphism and the convergence rate is polynomially.

Recall that the integrability condition was nessecary in proving Theorems
5.4.3, 5.4.5 and 5.4.6. In this section we prove analogoues of Theorems 5.4.3
and 5.4.5.

5.5.1 Local Maximum of the Expander Entropy
Here we give a different characterization of local maximality of µ+. We use
the local decomposition of the space of metrics stated in Theorem 2.6.1 and
the observation that the µ+-functional can be explicitly evaluated on metrics of
constant scalar curvature.
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Theorem 5.5.1. Let (M, gE) be a compact Einstein manifold with constant −1.
Then gE is a maximum of the µ+-functional in a C2,α-neighbourhood if and only
if g is a local maximum of the Yamabe functional in a C2,α-neighbourhood. In
this case, any metric sufficiently close to gE with µ+(g) = µ+(gE) is Einstein
with constant −1.

Proof. Let c = vol(M, gE) and write

C = {g ∈M|scalg is constant} ,
Cc = {g ∈M|scalg is constant and vol(M, g) = c} .

Since scalgE
n−1 /∈ spec+(∆gE ), Theorem 2.6.1 asserts that the map

Φ: C∞(M)× Cc →M
(v, g) 7→ v · g

is a local ILH-diffeomorphism around (1, gE). Recall also that any metric g ∈ C
sufficiently close to gE is a Yamabe metric.

By the proof of Lemma 5.2.5 (i), the minimizer fḡ realizing µ+(ḡ) is constant
and equal to log(vol(M, ḡ)) if ḡ ∈ C. Thus, µ+(ḡ) = 1

2 scalḡ − log(vol(M, ḡ)). If
gE is not a local maximum of the Yamabe functional, there exist metrics gi ∈ Cc,
gi → gE in C2,α which have the same volume but larger scalar curvature than
gE . Thus, also µ+(gi) > µ+(gE) which causes the contradiction.

If gE is a local maximum of the Yamabe functional, it is a local maximum of
µ+ restricted to Cc. Any other metric ḡ ∈ Cc satisfying µ+(ḡ) = µ+(gE) is also
a local maximum of the Yamabe functional. In particular, ḡ is a critical point
of the total scalar curvature restricted to Cc and the scalar curvature is equal
to −n. By Proposition 2.6.2, ḡ is an Einstein manifold with constant −1. For
α · ḡ, where α > 0 and ḡ ∈ Cc sufficiently close to gE , we have

µ+(α · ḡ) =
1

2
scalα·ḡ − log(vol(M,α · ḡ))

=
1

2α
scalḡ − log(αn/2vol(M, ḡ))

≤ 1

2α
scalgE −

n

2
log(α)− log(vol(M, ḡ))

= −n
2

(
1

α
+ log(α)

)
− log(vol(M, gE))

≤ −n
2
− log(vol(M, gE)) = µ+(gE),

which shows that gE is also a local maximum of µ+ restricted to C and equality
occurs if and only if α = 1 and µ+(ḡ) = µ+(gE).

It remains to investigate the variation of µ+ in the direction of volume-
preserving conformal deformations. Let h = v · ḡ, where ḡ ∈ C and v ∈ C∞(M)
with

´
M
v dVḡ = 0. Then

d

dt

∣∣∣∣
t=0

µ+(ḡ + th) = −1

2

ˆ
M

〈Ricḡ + ḡ, h〉e−fḡ dV

= −1

2

 
M

(scalḡ + n)v dV = 0,
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since fḡ is constant. The second variation equals

d2

dt2

∣∣∣∣
t=0

µ+(ḡ + th)

=− 1

2

d

dt

∣∣∣∣
t=0

ˆ
M

〈Ricḡ+th + ḡ + th+∇2fḡ+th, h〉ḡ+the−fḡ+th dVḡ+th

=− 1

2

 
M

〈
d

dt

∣∣∣∣
t=0

(Ricḡ+th + ḡ + th+∇2fḡ+th), h

〉
ḡ

dVḡ

+

 
M

〈Ricḡ + ḡ, h ◦ h〉ḡ dVḡ −
1

2

 
M

〈Ricḡ + ḡ, h〉
(
−f ′ + 1

2
trh

)
dVḡ.

By the first variation of the Ricci tensor,

−1

2

 
M

〈Ric′ + h, h〉 dVḡ

=− 1

2

 
M

〈
1

2
∆Lh− δ∗(δh)− 1

2
∇2trh, h

〉
dVḡ −

n

2

 
M

v2 dVḡ

=− 1

2

 
M

〈
(∆v)ḡ +

(
1− n

2

)
∇2v, v · ḡ

〉
dVḡ −

n

2

 
M

v2 dVḡ

=− n− 1

2

 
M

|∇v|2 dVḡ −
n

2

 
M

v2 dVḡ.

By differentiating Euler-Lagrange equation (5.7), we have

(∆ + 1)f ′ =
1

2
((n− 1)∆v − scalḡv). (5.24)

Thus,

−1

2

ˆ
M

〈
d

dt

∣∣∣∣
t=0

∇2fḡ+th, h

〉
e−fḡ dV =

1

2

 
M

∆f ′ · v dV

=
1

2

 
M

(∆ + 1)f ′ · v dV − 1

2

 
M

f ′ · v dV

=
1

4

 
M

[(n− 1)∆v − scalḡv]v dV − 1

2

 
M

f ′ · v dV.

Adding up, we obtain

−1

2

ˆ
M

〈
d

dt

∣∣∣∣
t=0

(Ricḡ+th + ḡ + th+∇2fḡ+th), h

〉
ḡ

e−fḡ dVḡ

=− 1

4

 
M

|∇v|2 dVḡ −
1

2

(
n+

scalḡ
2

) 
M

v2 dV − 1

2

 
M

f ′ · v dV

≤− C1 ‖v‖2H1 ,

and this estimate is uniform in a small C2,α-neighbourhood of gE . Here we have
used that by (5.24), the L2-scalar product of f ′ and v is positive. Given any
ε > 0, the remaining terms of the second variation can be estimated by

ˆ
M

〈Ricḡ + ḡ, h ◦ h〉ḡe−fḡ dVḡ = (scalḡ + n)

 
M

v2 dV ≤ ε ‖v‖2L2
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and

−1

2

ˆ
M

〈Ricḡ + ḡ, h〉
(
−f ′ḡ +

1

2
trh

)
e−fḡ dVḡ

= − scalḡ + n

2

 
M

v
(
−f ′ḡ +

n

2
v
)
dV ≤ ε ‖v‖2L2 ,

provided that the neighbourhood is small enough. In the last inequality, we
used ‖f ′‖L2 ≤ C2 ‖v‖L2 which holds because of (5.24) and elliptic regularity.
Thus, we have a uniform estimate

d2

dt2

∣∣∣∣
t=0

µ+(ḡ + tvḡ) ≤ −C3 ‖v‖2H1 .

Let now g be an arbitrary metric in a small C2,α-neighbourhood of gE . By the
above, it can be written as g = ṽ · g̃, where (ṽ, g̃) ∈ C∞(M) × CgE is close to
(1, gE). By substituting

v =
ṽ −

ffl
ṽ dVg̃ffl

ṽ dVg̃
, ḡ =

( 
ṽ dVg̃

)
g̃,

we can write g = (1 + v)ḡ, where ḡ ∈ C is close to gE and v ∈ C∞ḡ (M) is close
to 0. Thus by Taylor expansion and Proposition 5.3.5,

µ+(g) = µ+(ḡ) +
1

2

d2

dt2

∣∣∣∣
t=0

µ+(ḡ + tvḡ) +

ˆ 1

0

(
1

2
− t+

1

2
t2
)
d3

dt3
µ+(ḡ + tvḡ)dt

≤ µ+(gE)− C4 ‖v‖2H1 + C5 ‖v‖C2,α ‖v‖2H1 .

Now if we choose the C2,α-neighbourhood small enough, µ+(g) ≤ µ+(gE) and
equality holds if and only if v ≡ 0 and µ+(g) = µ+(gE). As discussed earlier in
the proof, this implies that g is Einstein with constant −1.

5.5.2 A Lojasiewicz-Simon Inequality
For proving a gradient inequality in the nonintegrable case, we need to know
that µ+ is analytic. To show this, we use the implicit function theorem for
Banach manifolds in the analytic category mentioned in [Koi83, Section 13].
Such arguments were also used in [SW13] for a result similar to the below
lemma.

Lemma 5.5.2. There exists a C2,α-neighbourhood U of gE such that the map
g 7→ µ+(g) is analytic on U .

Proof. Let H(g, f) = −∆gf − 1
2 |∇f |

2 + 1
2 scalg − f and consider the map

L : MC2,α

× C2,α(M)→ C0,α
gE (M)× R

(g, f) 7→
(
H(g, f)−

 
M

H(g, f) dVgE ,

ˆ
M

e−f dVg − 1

)
.

Here, C0,α
gE (M) =

{
f ∈ C0,α(M)|

´
M
f dVgE = 0

}
. This is an analytic map

between Banach manifolds. Observe that L(g, f) = (0, 0) if and only if we
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have H(f, g) = const and
´
M
e−f dVg = 1. The differential of L at (gE , fgE )

restricted to its second argument is equal to

dLgE ,fgE (0, v) =

(
−(∆gE + 1)v +

 
M

v dV,−
 
M

v dV

)
.

The map dLgE ,fgE |C2,α(M) : C2,α(M) → C0,α
gE (M) × R is a linear isomorphism

because it acts as −(∆gE + 1) on C2,α
gE and as −id on constant functions. By

the implicit function theorem for Banach manifolds, there exists a neighbour-
hood U ⊂ MC2,α

and an analytic map P : U → C2,α(M) such that we have
L(g, P (g)) = (0, 0). Moreover, there exists a neighbourhood V ⊂ C2,α(M) of
fgE such that if L(g, f) = 0 for some g ∈ U , f ∈ V, then f = P (g).

Next, we show that fg = P (g) for all g ∈ U (or eventually on a smaller
neighbourhood). Suppose this is not the case. Then there exists a sequence
gi which converges to g in C2,α and such that fi 6= P (gi) for all i. By the
proof of Lemma 5.3.1, ‖fgi‖C2,α is bounded and for every α′ < α, there is a
subsequence, again denoted by fgi converging to fgE in C2,α′ . We obviously
have L(gi, fgi) = (0, 0) and for sufficiently large i we have, by the implicit
function theorem, fgi = P (gi). This causes the contradiction.

We immediately get that µ+(g) = H(g, P (g)) is analytic on U since H and
P are analytic.

Theorem 5.5.3 (Lojasiewicz-Simon inequality for µ+). Let (M, gE) be a Ein-
stein manifold with constant −1. Then there exists a C2,α-neighbourhood U of
gE in the space of metrics and constants σ ∈ [1/2, 1), C > 0 such that

|µ+(g)− µ+(gE)|σ ≤ C
∥∥Ricg + h+∇2fg

∥∥
L2 (5.25)

for all g ∈ U .

Proof. The proof is an application of a general Lojasiewicz-Simon inequality
which was proven in [CM12]. Here the analyticity of µ+ is crucial.

Since both sides are diffeomorphism invariant, it suffices to show the inequal-
ity on a slice to the action of the diffeomorphism group. Let

SgE = U ∩
{
gE + h

∣∣ h ∈ δ−1
gE (0)

}
,

and let µ̃+ be the µ+-functional restricted to SgE . Obviously, µ̃+ is analytic since
µ+ is. The L2-gradient of µ+ is given by ∇µ+(g) = − 1

2 (Ricg + g +∇2fg)e
−fg .

It vanishes at gE . On the neighbourhood U , we have the uniform estimate

‖∇µ+(g1)−∇µ+(g2)‖L2 ≤ C1 ‖g1 − g2‖H2 , (5.26)

which holds by Taylor expansion and Lemma 5.3.2. The L2-gradient of µ̃+ is
given by the projection of ∇µ+ to δ−1

gE (0). Therefore, (5.26) also holds for ∇µ̃+.
The linearization of µ̃+ at gE is (up to a constant factor) given by the Einstein
operator, see Lemma 5.2.5 (iii). By ellipticity,

∆E : (δ−1
gE (0))C

2,α

→ (δ−1
gE (0))C

0,α

is Fredholm. It also satisfies the estimate ‖∆Eh‖L2 ≤ C2 ‖h‖H2 .
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By [CM12, Theorem 6.3], there exists a constant σ ∈ [1/2, 1) such that
|µ+(g)− µ+(gE)|σ ≤ ‖∇µ̃+(g)‖L2 for any g ∈ SgE . Since

‖∇µ̃+(g)‖L2 ≤ ‖∇µ+(g)‖L2 ≤ C3

∥∥Ricg + h+∇2fg
∥∥
L2 ,

(5.25) holds for all g ∈ SgE . By diffeomorphism invariance, it holds for all
g ∈ U .

Remark 5.5.4. Because the Lojasiewicz exponent σ ∈ [1/2, 1), the convergence
rate will be polynomially. Exponential convergence only holds if σ = 1/2.

5.5.3 Dynamical Stability and Instability

The proofs of the following stability/instability results are, up to some modifi-
cations, of the same nature as the proofs in the integrable case.

Theorem 5.5.5 (Dynamical stability modulo diffeomorphism). Let (M, gE) be
an Einstein manifold with constant −1. Let k ≥ 3. If gE is a local maximizer of
the Yamabe functional, then for every Ck-neighbourhood U of gE, there exists a
Ck+2-neighbourhood V such that the following holds:

For any metric g0 ∈ V there exists a 1-parameter family of diffeomorphisms
ϕt such that for the Ricci flow g(t) starting at g0, the modified flow ϕ∗t g(t) stays
in U for all time and converges to an Einstein metric g∞ with constant −1 in
U as t → ∞. The convergence is of polynomial rate, i.e. there exist constants
C,α > 0 such that

‖ϕ∗t g(t)− g∞‖Ck ≤ C(t+ 1)−α.

Proof. Without loss of generality, we may assume that U = Bkε and ε > 0 is so
small that Theorems 5.5.1 and 5.5.3 hold on U .

By Lemma 5.4.10, we can choose a small neighbourhood V such that the
Ricci flow starting at any metric g ∈ V stays in Bkε/4 up to time 1. Let T ≥ 1

be the maximal time such that for any Ricci flow g(t) starting in V, there exists
a family of diffeomorphisms ϕt such that the modified flow ϕ∗t g(t) stays in U .
By definition of T and diffeomorphism invariance, we have uniform curvature
bounds

sup
p∈M
|Rg(t)|g(t) ≤ C1 ∀t ∈ [0, T ).

By Remark 5.4.12, we have

sup
p∈M
|∇lRg(t)|g(t) ≤ C(l) ∀t ∈ [1, T ). (5.27)

Because fg(t) satisfies the equation −∆fg − 1
2 |∇fg|

2 + 1
2 scalg − fg = µ+(g), we

also have

sup
p∈M
|∇lfg(t)|g(t) ≤ C̃(l), ∀t ∈ [1, T ). (5.28)

Note that all these estimates are diffeomorphism invariant.
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We now construct a modified Ricci flow as follows: Let ϕt ∈ Diff(M), t ≥ 1
be the family of diffeomorphisms generated by X(t) = −gradg(t)fg(t) and define

g̃(t) =

{
g(t), t ∈ [0, 1],

ϕ∗t g(t), t ≥ 1.
(5.29)

The modified flow satisfies the usual Ricci flow equation for t ∈ [0, 1] while for
t ≥ 1, we have

d

dt
g̃(t) = ϕ∗t (ġ(t)) + ϕ∗t (LX(t)g(t))

= −2ϕ∗t (Ricg(t) + g(t))− 2ϕ∗t (∇2fg(t))

= −2(Ricg̃(t) + g̃(t) +∇2fg̃(t)).

Let T ′ ∈ [0, T ] be the maximal time such that the modified Ricci flow, starting
at any metric g0 ∈ V, stays in U up to time T ′. Then

‖g̃(T ′)− gE‖CkgE ≤‖g̃(1)− gE‖Ck +

ˆ T ′

1

∥∥ ˙̃g(t)
∥∥
CkgE

dt

≤ ε
4

+ 2

ˆ T ′

1

∥∥ ˙̃g(t)
∥∥
Ck
g(t)

dt,

provided that U is small enough. By the interpolation inequality for tensors
(see [Ham82, Corollary 12.7]), (5.27) and (5.28), we have∥∥ ˙̃g(t)

∥∥
Ck
g(t)

≤ C2

∥∥ ˙̃g(t)
∥∥1−η
L2
g(t)

for η as small as we want. In particular, we can assume that

θ := 1− σ(1 + η) > 0,

where σ is the exponent appearing in Theorem 5.5.3. By the first variation of
µ+,

d

dt
µ+(g̃(t)) ≥ C3

∥∥ ˙̃g(t)
∥∥1+η

L2
g(t)

∥∥ ˙̃g(t)
∥∥1−η
L2
g(t)

.

By Theorem 5.5.1 and Theorem 5.5.3 again,

− d

dt
|µ+(g̃(t))−µ+(gE)|θ = θ|µ+(g̃(t))− µ+(gE)|θ−1 d

dt
µ+(g̃(t))

≥ C4|µ+(g̃(t))− µ+(gE)|−σ(1+η)
∥∥ ˙̃g(t)

∥∥1+η

L2
g(t)

∥∥ ˙̃g(t)
∥∥1−η
L2
g(t)

≥ C5

∥∥ ˙̃g(t)
∥∥
Ck
g(t)

.

Hence by integration,

ˆ T ′

1

∥∥ ˙̃g(t)
∥∥
Ck
dt ≤ 1

C5
|µ+(g̃(1))− µ+(gE)|θ ≤ 1

C5
|µ+(g̃(0))− µ+(gE)|θ ≤ ε

8
,
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provided that V is small enough. This shows that ‖g̃(T ′)− gE‖CkgE ≤ ε, so T ′

cannot be finite. Thus, T =∞ and g̃(t) converges to some limit metric g∞ ∈ U
as t→∞. By the Lojasiewicz-Simon inequality, we have

d

dt
|µ+(g̃(t))− µ+(gE)|1−2σ ≥ C6,

which implies

|µ+(g̃(t))− µ+(gE)| ≤ C7(t+ 1)−
1

2σ−1 .

Here, we may assume that σ > 1
2 because the Lojasiewicz-Simon inequality also

holds after enlarging the exponent. Therefore, µ+(g∞) = µ+(gE), so g∞ is an
Einstein metric with constant −1. The convergence is of polynomial rate since
for t1 < t2,

‖g̃(t1)− g̃(t2)‖Ck ≤ C8|µ+(g̃(t1))− µ+(gE)|θ ≤ C9(t1 + 1)−
θ

2σ−1 ,

and the assertion follows from t2 →∞.

Theorem 5.5.6 (Dynamical instability modulo diffeomorphism). Let (M, gE)
be an Einstein manifold with constant −1 which is not a local maximizer of
the Yamabe functional. Then there exists an ancient Ricci flow g(t), defined on
(−∞, 0], and a 1-parameter family of diffeomorphisms ϕt, t ∈ (−∞, 0] such that
ϕ∗t g(t)→ gE as t→ −∞.

Proof. Since (M, gE) is not a local maximum of the Yamabe functional, it cannot
be a local maximum of µ+. Let gi → gE in Ck and suppose that we have
µ+(gi) > µ+(gE) for all i. Let g̃i(t) be the modified flow defined in (5.29),
starting at gi. Then by Lemma 5.4.10, ḡi = gi(1) converges to gE in Ck−2 and
by monotonicity, µ+(ḡi) > µ+(gE) as well. Let ε > 0 be so small that Theorem
5.5.3 holds on Bk−2

2ε . Theorem 5.5.3 yields the differential inequality

d

dt
(µ+(g̃i(t))− µ+(gE))1−2σ ≥ −C1,

from which we obtain

[(µ+(g̃i(t))− µ+(gE))1−2σ − C1(s− t)]−
1

2σ−1 ≤ (µ+(g̃i(s))− µ+(gE))

as long as g̃i(t) stays in Bk−2
2ε . Thus, there exists a ti such that

‖g̃i(ti)− gE‖Ck−2 = ε,

and ti →∞. If {ti} was bounded, g̃i(ti)→ gE in Ck−2. By interpolation,∥∥Ricg̃i(t) − g̃i(t)
∥∥
Ck−2 ≤ C2

∥∥Ricg̃i(t) − g̃i(t)
∥∥1−η
L2

for η > 0 as small as we want. We may assume that θ = 1− σ(1 + η) > 0. By
Theorem 5.5.3 , we have the differential inequality

d

dt
(µ+(g̃i(t))− µ+(gE))θ ≥ C3

∥∥Ricg̃i(t) + g̃i(t)
∥∥1−η
L2 ,
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if µ+(g̃i(t)) > µ+(gE). Thus,

ε = ‖g̃i(ti)− gE‖Ck−2 ≤ ‖ḡi − gE‖Ck−2 + C4(µ+(g̃i(ti))− µ+(gE))θ. (5.30)

Now put g̃si (t) := g̃i(t+ ti), t ∈ [Ti, 0], where Ti = 1− ti → −∞. We have

‖g̃si (t)− gE‖Ck−2 ≤ ε ∀t ∈ [Ti, 0],

g̃si (Ti)→ gE in Ck−2.

Because the embedding Ck−3(M) ⊂ Ck−2(M) is compact, we can choose a
subsequence of the g̃si , converging in Ck−3

loc (M × (−∞, 0]) to an ancient flow
g̃(t), t ∈ (−∞, 0], satisfying the differential equation

˙̃g(t) = −2(Ricg̃(t) + g̃(t) +∇2fg̃(t)).

Let ϕt, t ∈ (−∞, 0] be the diffeomorphisms generated by X(t) = gradg̃(t)fg̃
where ϕ0 = id. Then g(t) = ϕ∗t g̃(t) is a solution of (5.5). From taking the
limit i → ∞ in (5.30), we obtain ε ≤ C4(µ+(g(0))− µ+(gE))β/2 and therefore,
the Ricci flow is nontrivial. For Ti ≤ t, we have, by the Lojasiewicz-Simon
inequality,

‖g̃si (Ti)− g̃si (t)‖Ck−3 ≤C4(µ+(g̃i(t+ ti))− µ+(gE))θ

≤C4[−C1t+ (µ+(g̃i(ti))− µ+(gE))1−2σ]−
θ

2σ−1

≤[−C5t+ C6]−
θ

2σ−1 .

Thus,

‖gE − g̃(t)‖Ck−3 ≤‖gE − g̃si (Ti)‖Ck−3 + [−C5t+ C6]−
θ

2σ−1

+ ‖g̃si (t)− g̃(t)‖Ck−3 .

It follows that ‖gE − g̃(t)‖Ck−3 → 0 as t → −∞. Therefore, (ϕ−1
t )∗g(t) → gE

in Ck−3 as t→ −∞.

Remark 5.5.7. The previous theorems in particular imply the following: Any
compact negative Einstein metric is either dynamically stable or dynamically
unstable modulo diffeomorphism and this only depends on the local behaviour
of the Yamabe functional.

On manifolds with Yamabe invariant Y (M) ≤ 0, it is well-known that any
metric realizing the Yamabe invariant is Einstein (see e.g. [And05]). From The-
orem 5.1.4, Remark 5.1.5 and Theorem 5.5.5, we thus obtain

Corollary 5.5.8. Let M be a manifold with Y (M) ≤ 0. Then any metric on
M realizing the Yamabe invariant is a dynamically stable Einstein manifold.
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Chapter 6

Ricci Flow and positive
Einstein Metrics

6.1 Introduction
In this chapter we prove analogous stability and instability results to those in
Chapter 5 for positive Einstein manifolds.

To deal with positive Einstein manifolds we use a different variant of the
Ricci flow which is defined by the differential equation

ġ(t) = −2Ricg(t) +
2

n

( 
M

scalg(t) dVg(t)

)
g(t). (6.1)

It has the property that the volume is preserved under the flow. If g(t) be a
solution of (6.1), then

d

dt
vol(M, g(t)) =

1

2

ˆ
M

trġ(t) dVg(t)

=

ˆ
M

[
−scalg(t) +

( 
M

scalg(t) dVg(t)

)]
dVg(t) = 0.

We now translate the definition of dynamical stability and instability to positive
Einstein metrics and with respect to (6.1).

Definition 6.1.1 (Dynamical stability and instability). Let (M, gE) be a pos-
itive Einstein manifold. We call (M, gE) dynamically stable if for every neigh-
bourhood U of gE in the space of metrics there exists a smaller neighbourhood
V ⊂ U such that the Ricci flow (6.1) starting in V stays in U for all t ≥ 0 and
converges to an Einstein metric as t→∞.

We call (M, gE) dynamically stable modulo diffeomorphism if for each solu-
tion of (6.1) starting in V, there exists a familiy of diffeomorphisms ϕt, t ≥ 0
such that the modified flow ϕ∗t g(t) stays in U for all t ≥ 0 and converges to an
Einstein metric as t→∞.

We call (M, gE) dynamically unstable (modulo diffeomorphism) if there ex-
ists an ancient flow g(t), t ∈ (−∞, T ] such that g(t) → gE as t → −∞ (there
exists a family of diffeomorphisms ϕt, t ∈ (−∞, T ] such that ϕ∗t g(t) → gE as
t→ −∞).
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Remark 6.1.2. The reason why we do not deal with the flow

ġ(t) = −2(Ricg(t) − g(t)), (6.2)

which is the natural analogue of (5.5), is that its stationary points are never
dynamically stable. Let c ∈ R. If gE is an Einstein manifold with constant 1,
the solution of (6.2) starting at (1 + c)gE is given by (1 + ce2t)gE , which clearly
diverges as long as c 6= 0.

It is well known that the standard sphere is dynamically stable. This was
proven in [Ham82] for n = 3 and in [Hui85] for n ≥ 4. We have also already seen
that it is Einstein-Hilbert stable. Therefore we assume throughout the chapter
that (M, g) 6= (Sn, gst).

The stability/instability conditions are quite simliar as in the negative case.
However, the situation is slightly more subtle because a condition on the spec-
trum of the Laplace operator comes into play as we will see.

6.2 The Shrinker Entropy
We define the Ricci shrinker entropy which was first introduced by G. Perelman
in [Per02]. Let

W−(g, f, τ) =
1

(4πτ)n/2

ˆ
M

[τ(|∇f |2g + scalg) + f − n]e−f dV.

For τ > 0, let

µ−(g, τ) = inf

{
W−(g, f, τ)

∣∣∣∣ f ∈ C∞(M),
1

(4πτ)n/2

ˆ
M

e−f dVg = 1

}
.

For any τ > 0, the infimum is realized by a smooth function. We define the
shrinker entropy as

ν−(g) = inf {µ−(g, τ) | τ > 0} .

If λ(g) > 0 (see (5.2) for the definition), then ν−(g) is finite and realized by some
τg > 0 (see [CCG+07, Corollary 6.34]). In this case, a pair (fg, τg) realizing
ν−(g) satisfies the equations

τ(2∆f + |∇f |2 − scal)− f + n+ ν− = 0, (6.3)
1

(4πτ)n/2

ˆ
M

fe−f dV =
n

2
+ ν−, (6.4)

see e.g. [CZ12, p. 5].
Remark 6.2.1. Note that W−(ϕ∗g, ϕ∗f, τ) = W−(g, f, τ) for ϕ ∈ Diff(M) and
W−(αg, f, ατ) =W−(g, f, τ) for α > 0. Therefore, ν−(g) = ν−(α · ϕ∗g) for any
ϕ ∈ Diff(M) and α > 0.

Proposition 6.2.2 (First variation of ν−). Let (M, g) be a Riemannian mani-
fold. Then the first variation of ν− is given by

ν−(g)′(h) = − 1

(4πτ)n/2

ˆ
M

〈
τg(Ric +∇2fg)−

1

2
g, h

〉
e−fg dVg,

where (fg, τg) realizes ν−(g). Consequently, ν− is nondecreasing under any so-
lution of (6.1).
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Proof. A proof of the first variational formula is given in many papers, see e.g.
[CZ12, Lemma 2.2]. By scale and diffeomorphism invariance,

ν−(g)′(∇2fg) = ν−(g)′(Lgradfg) = 0,

ν−(g)′
((

1

2τ
− 1

n

 
M

scal · dV
)
· g
)

= 0.

Therefore, if g(t) is a solution of (6.1), the time-derivative of ν−(g(t)) is equal
to

2τg(t)

(4πτg(t))n/2

ˆ
M

∣∣∣∣Ricg(t) +∇2fg(t) −
1

2τg(t)
g(t)

∣∣∣∣2 e−fg(t) dVg(t) ≥ 0, (6.5)

which finishes the proof.

The critical metrics of ν− are those which satisfy Ric +∇2fg − 1
2τ g = 0. We

call such metrics shrinking gradient Ricci solitons. Any positive Einstein metric
(M, gE) is a stationary point of (6.1). Since equality must hold in (6.5), it is
a shrinking gradient Ricci soliton and because fgE is nessecarily constant, the
pair (fgE , τgE ) satisfies

τgE =
1

2µ
, fgE = log(vol(M, gE))− n

2
(log(2π)− log(µ)), (6.6)

where µ is the Einstein constant.

Lemma 6.2.3. Let (M, gE) be a positive Einstein metric with constant µ. Then

(i) d
dt |t=0τgE+th = τ

n

ffl
trh dV .

If δh = 0 and
´
M

trh dV = 0, then

(ii) d
dt |t=0fgE+th = 1

2 trh,

(iii) d
dt |t=0(τgE+th(RicgE+th +∇2fgE+th)− 1

2 (gE + th)) = 1
4µ∆Eh,

where ∆E is the Einstein operator.

Proof. The first variation of τ at shrinking gradient Ricci solitons was computed
by Cao and Zhu (see [CZ12, Lemma 2.4]). It is given by

d

dt

∣∣∣∣
t=0

τg+th = τg

´
M
〈Ric, h〉e−fg dV´
M

scal · e−fg dV
.

This is (i) in the case of positive Einstein metrics. To compute (ii), we differen-
tiate equation (6.3) at gE and we obtain

τ(2∆f ′ − scal′)− τ ′scal− f ′ = 0.

Since
´
M

trh dV = 0, τ ′ vanishes and since δh = 0,

1

µ
∆f ′ − f ′ = τscal′ = τ(∆(trh)− µtrh) =

1

2µ
(∆trh− µtrh).
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By Obata’s eigenvalue estimate, µ∆− 1 is invertible and (ii) follows. The proof
of (iii) is done by straightforward computation. By using δh = 0, τ ′ = 0 and
(ii),

(τ(Ric +∇2f)− 1

2
g)′ = τ(Ric′ +∇2f ′)− 1

2
h

= τ

(
1

2
∆Lh− δ∗(δh)− 1

2
∇2trh+

1

2
∇2trh

)
− 1

2
h

=
1

2µ

1

2
∆Lh−

1

2
h

=
1

4µ
(∆Lh− 2µh) =

1

4µ
∆Eh.

Before we continue computing the second variation on Einstein manifolds,
we first remark that the splitting of δ−1

gE (0) ⊂ Γ(S2M) proven in Lemma 5.4.2
can be refined to

δ−1
gE (0) = R · gE ⊕ CgE (C∞gE (M))⊕ TTgE ,

and this splitting is again orthogonal. Recall that CgE (f) = (∆f−µf)gE+∇2f
and that C∞gE (M) denotes the space of smooth functions with

´
M
f dVgE = 0.

The whole space of symmetric (0, 2)-tensor fields splits orthogonally as

Γ(S2M) = δ∗(Ω1(M))⊕ R · gE ⊕ CgE (C∞gE (M))⊕ TTgE .

The second variation of ν− on shrinking gradient Ricci solitons was already
computed in [CHI04; CZ12]. The decomposition above allows us to state it
in a simpler form. Moreover, the formula simplifies because we only treat the
Einstein case.

Proposition 6.2.4 (Second variation of ν−). The second variation of ν− on a
postive Einstein metric (M, gE) with constant µ is given by

ν−(gE)′′(h) =

{
− 1

4µ

ffl
M
〈∆Eh, h〉 dV, if h ∈ CgE (C∞gE (M))⊕ TTgE ,

0, if h ∈ R · gE ⊕ δ∗(Ω1(M)).

Proof. By scale and diffeomorphism invariance, ν−(gE)′′ vanishes on the sub-
space R ·gE⊕δ∗(Ω1(M)). Now let h ∈ CgE (C∞gE (M))⊕TTgE . Note that δh = 0
and

´
M

trh dV = 0. By Lemma 6.2.3 (iii),

d2

dt2

∣∣∣∣
t=0

ν−(gE+th) = − d

dt

∣∣∣∣
t=0

1

(4πτ)n/2

ˆ
M

〈
τ(Ric +∇2fg)−

1

2
g, h

〉
e−fg dV

= − 1

(4πτ)n/2

ˆ
M

〈
d

dt

∣∣∣∣
t=0

(τ(Ric +∇2fg)−
1

2
g), h

〉
e−fg dV

= − 1

4µ

 
M

〈∆Eh, h〉 dV.

Moreover, since the Einstein operator and the Lichnerowicz Laplacian satisfy
the relation ∆L = ∆E + 2µ · id, Lemma 2.4.5 implies that the Einstein operator
preserves the subspaces CgE (C∞gE (M)) and TTgE . Thus, the splitting of above
is orthogonal with respect to ν−(gE)′′.
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Corollary 6.2.5. Let (M, gE) be a positive Einstein manifold with constant µ.
Then dynamical stability (modulo diffeomorphism) implies Einstein-Hilbert sta-
bility. Moreover, it implies that the smallest nonzero eigenvalue of the Laplacian
satisfies the bound λ ≥ 2µ.

Proof. We have seen that ν− is nondecreasing under (6.1) and that ν− is in-
variant under diffeomorphisms. Thus, we have that (M, gE) is nessecarily a
local maximum of ν−, if it is dynamically stable (modulo diffeomorphism). The
second variational formula implies that the Einstein operator is nonnegative on
CgE (C∞gE (M))⊕ TTgE . Einstein-Hilbert stability follows from definition. More-
over, for any f ∈ C∞gE (M), Lemma 2.4.5 implies

∆E(CgE (f)) = (∆L − 2µ)(CgE (f)) = CgE ((∆− 2µ)f).

Since we excluded the case (M, g) = (Sn, gst), we conclude from Lemma 2.4.1
that CgE : C∞gE (M) → Γ(S2M) is injective. Thus, ∆ − 2µ is nonnegative on
C∞gE (M), which proves the eigenvalue bound.

Definition 6.2.6. An Einstein manifold (M, gE) is called linearly stable if
ν−(gE)′′ is negative semidefinite. A linearly stable Einstein manifold is called
neutrally linearly stable if ν−(gE)′′(h) = 0 for some h ∈ CgE (C∞gE (M))⊕ TTgE .

6.3 Some technical Estimates
This section contains similar technical estimates to those in Section 5.3. We
prove estimates on ν−(g), fg, τg and their variations in terms of norms of the
variations. Compared to Section 5.3, more technical effort is needed because
we have to deal with a coupled pair of Euler-Lagrange equations satisfied by
(fg, τg).

Lemma 6.3.1. Let (M, gE) be a compact Einstein manifold. Then there exists
a C2,α-neighbourhood U of gE such that the minimizing pair (fg, τg) realizing
ν−(g) is unique and depends analytically on the metric. Moreover, the map
g 7→ ν−(g) is analytic on U .
Proof. We again use an implicit function argument. We define a map H by
H(g, f, τ) = τ(2∆f + |∇f |2 − scal)− f + n. Let

Ck,αgE (M) =

{
f ∈ Ck,α(M)

∣∣∣∣ ˆ
M

f dVgE = 0

}
.

Define

L : MC2,α

× C2,α(M)× R+ → C0,α
gE (M)× R× R,

(g, f, τ) 7→ (L1, L2, L3),

where the three components are given by

L1(g, f, τ) = H(g, f, τ)−
 
M

H(g, f, τ) dVgE ,

L2(g, f, τ) =
1

(4πτ)n/2

ˆ
M

fe−f dVg −
n

2
+

 
M

H(g, f, τ) dVg,

L3(g, f, τ) =
1

(4πτ)n/2

ˆ
M

e−f dVg − 1.
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This is an analytic map between Banach manifolds. We have L(g, f, τ) = (0, 0, 0)
if and only if there exists a c ∈ R such that the set of equations

τ(2∆f + |∇f |2 − scal)− f + n = c, (6.7)
1

(4πτ)n/2

ˆ
M

fe−f dV − n

2
= −c, (6.8)

1

(4πτ)n/2

ˆ
M

e−f dV = 1 (6.9)

is satisfied. Now we compute the differential of L at (gE , fgE , τgE ) restricted
to R = C2,α(M) × R. We use the splitting C2,α(M) = C2,α

gE (M) × R via
f 7→ (f −

ffl
M
f dVgE ,

ffl
M
f dVgE ) to write

dL(gE ,fgE ,τgE )

∣∣
R

: C2,α
gE (M)× R× R→ C0,α

gE (M)× R× R

as the matrix

dL(gE ,fgE ,τgE )

∣∣
R

=

 1
µ∆− 1 0 0

0 −fgE −nµ(fgE + 1)
0 −1 −nµ

 .

Here, we used (6.6) to compute the matrix. This is an isomorphism since the
map 1

µ∆− 1 : C2,α
gE (M) → C0,α

gE (M) is an isomorphism and the determinant of
the 2×2-block is equal to −nµ 6= 0. By the implicit function theorem for Banach
manifolds, there exists a neighbourhood U ⊂MC2,α

of gE and an analytic map
P : U → C2,α(M) × R+ such that L(g, P (g)) = 0. Moreover, there exists a
neighbourhood V ⊂ C2,α(M)×R+ such that for any (g, f, τ) ∈ U × V, we have
L(g, f, τ) = 0 if and only if (f, τ) = P (g).

Now, we prove that on a smaller neighbourhood U1 ⊂ U , there is a unique
pair of minimizers in the definition of ν− and it is equal to P (g). Suppose this
is not the case. Then there exist a sequence gi of metrics such that gi → gE in
C2,α and pairs of minimizers (fgi , τgi) such that P (gi) 6= (fi, τgi) for all i ∈ N.
By substituting w2

gi = e−fgi , we see that the pair (wgi , τgi) is a minimizer of the
functional

W̃−(gi, w, τ) =
1

(4πτ)n/2

ˆ
M

[τ(4|∇w|2 + scalgw
2)− log(w2)w2 − nw2] dVgi

under the constraint 1
(4πτ)n/2

´
M
w2 dVgi = 1. It satisfies the pair of equations

−τgi(4∆wgi + scalgiwgi)− 2 log(wgi)wgi + nwgi + ν−(gi)wgi = 0, (6.10)

− 1

(4πτgi)
n/2

ˆ
M

w2
gi logw2

gi dVgi =
n

2
+ ν−(gi). (6.11)

We have an upper bound ν−(gi) ≤ C1 by testing with suitable pairs (f, τ). In
fact, by choosing f = log(vol(M, gi) · ( 2π

µ )−n/2) and τ = 1
2µ , where µ is the

Einstein constant of gE , we have

ν−(gi) ≤
1

2µ
sup scalgi − n+ log

(
vol(M, gi) ·

(
2π

µ

)−n/2)
. (6.12)
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Therefore,

1

(4πτgi)
n/2

ˆ
M

[τgi(4|∇wgi |2 + scalgiw
2
gi)− log(w2

gi)w
2
gi − nw

2
gi ] dVgi ≤ C1.

Now, we show that there exist constants C2, C3 > 0 such that C2 ≤ τgi ≤ C3.
Suppose this is not the case. By [CCG+07, Lemma 6.30], we have a lower
estimate

ν−(gi) = µ−(gi, τgi) ≥ (τgi − 1)λ(gi)−
n

2
log τgi − C4(gi)

≥ (τgi − 1) inf scalgi −
n

2
log τgi − C6

≥ (τgi − 1)C5 −
n

2
log τgi − C6.

Here λ is the functional defined in (5.2), C5 > 0 and C4(g) depends on the
Sobolev constant and the volume. Now if τgi converges to 0 or ∞, ν−(gi)
diverges, which causes the contradiction. Observe that we also obtained a lower
bound on ν−(gi).

Next, we show that ‖∇wgi‖L2 is bounded. Choose ε > 0 so small that
2 + 2ε ≤ 2n

n−2 . By Jensen’s inequality and the bounds on τgi ,
ˆ
M

w2
gi logw2

gi dVgi =
1

ε

ˆ
M

w2
gi logw2ε

gi dVgi

≤1

ε
‖wgi‖

2
L2 log

(
1

‖wgi‖
2
L2

ˆ
M

w2+2ε
gi dVgi

)

=
1

ε
(4πτgi)

n/2 log

(
(4πτgi)

−n/2
ˆ
M

w2+2ε
gi dVgi

)
≤C7 log

(ˆ
M

w2+2ε
gi dVgi

)
+ C8.

By the Sobolev inequality,
ˆ
M

w2+2ε
gi dVgi ≤C9(‖∇wgi‖

2
L2 + ‖wgi‖

2
L2)1+ε

≤C9(‖∇wgi‖
2
L2 + C10)1+ε.

In summary, we have

C1 ≥
1

(4πτ)n/2

ˆ
M

[τ(4|∇wgi |2 + scalgiw
2
gi)− log(w2

gi)w
2
gi − nw

2] dVgi

≥ C11 ‖∇wgi‖
2
L2 − C12 log(‖∇wgi‖

2
L2 + C10)− C13,

which shows that ‖∇wgi‖L2 is bounded.
Now we proceed with a bootstrap argument similar to the proof of Lemma

5.3.1. By Sobolev embedding, the bound on ‖wgi‖H1 implies a bound on
‖wgi‖L2n/(n−2) . Let p = 2n/(n − 2) and choose some q slightly smaller than
p. By elliptic regularity and (6.10),

‖wgi‖W 2,q ≤ C14(‖wgi logwgi‖Lq + ‖wgi‖Lq ).
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Since for any β > 1, |x log x| ≤ |x|β for |x| large enough, we have

‖wgi logwgi‖Lq ≤ C15(vol(M, gi)) + ‖wgi‖Lp ≤ C16 + ‖wgi‖Lp .

Thus, ‖wgi‖W 2,q ≤ C(q). Using Sobolev embedding, we obtain bounds on
‖wgi‖Lp′ for some p′ > p. From the (6.10) again, we have bounds on ‖wgi‖W 2,q′

for any q′ < p′. Using this arguments repetitively, we obtain ‖wgi‖W 2,q ≤ C(q)
for all q ∈ (1,∞). Again by elliptic regularity,

‖wgi‖C2,α ≤ C17(‖wgi logwgi‖C0,α + ‖wgi‖C0,α)

≤ C18((‖wgi‖C0,α)γ + ‖wgi‖C0,α)

for some γ > 1. For some sufficiently large q, we have, by Sobolev embedding,

‖wgi‖C0,α ≤ C19 ‖wgi‖W 1,q ≤ C19 · C(q).

We finally obtained an upper bound on ‖wgi‖C2,α . Thus, there exists a subse-
quence, again denoted by (wgi , τgi), which converges in C2,α′ , α′ < α, to some
limit (w∞, τ∞). We have, by (6.12),

ν−(gE) ≥ lim
i→∞

ν−(gi) = lim
i→∞

W̃−(gi, wgi , τgi) = W̃−(gE , w∞, τ∞) ≥ ν−(gE),

and therefore, (w∞, τ∞) = (wgE , τgE ) because the minimizing pair is unique at
gE by (6.6). Moreover, by resubstituting,

(fgi , τgi)→ (f∞, τ∞) = (fgE , τgE )

in C2,α′ . Because the pair (fgi , τgi) satisfies (6.3) and (6.4), L(gi, fgi , τgi) = 0
and the implicit function argument from above implies that P (gi) = (fgi , τgi) for
large i. This proves the claim. In particular, we have shown that the constant
c appearing above is equal to −ν−(g). Since the map g 7→ (fg, τg) is analytic,
the map

g 7→ ν−(g) = −τg(2∆fg + |∇fg|2 − scalg) + fg − n

is also analytic. This proves the lemma.

Lemma 6.3.2. Let (M, gE) be a positive Einstein manifold. Then there exists
a C2,α-neighbourhood U in the space of metrics and a constant C > 0 such that∥∥∥∥ ddt

∣∣∣∣
t=0

fg+th

∥∥∥∥
C2,α

≤ C ‖h‖C2,α ,

∥∥∥∥ ddt
∣∣∣∣
t=0

fg+th

∥∥∥∥
Hi
≤ C ‖h‖Hi , i = 0, 1, 2,∣∣∣∣ ddt

∣∣∣∣
t=0

τg+th

∣∣∣∣ ≤ C ‖h‖L2 .

Proof. We obtain these estimates by deriving an Euler-Lagrange equation and
using elliptic regularity. Recall that in a small neighbourhood of gE , the pair
(fg, τg) realizing ν−(g) is unique and satisfies the pair of equations

τ(2∆f + |∇f |2 − scal)− f + n+ ν− = 0, (6.13)
1

(4πτ)n/2

ˆ
M

fe−f dV =
n

2
+ ν−. (6.14)
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Now we differentiate (6.13) and we obtain

τ(2∆̇f + 2∆ḟ−h(gradf, gradf) + 2〈∇f,∇ḟ〉 − ˙scal)

+ τ̇(2∆f + |∇f |2 − scal)− ḟ + ν̇− = 0.
(6.15)

Using (6.14), we can compute τ̇ in terms of f and ḟ . We have

τ̇ =
1

4π

2

n

(´
M
fe−f dV
n
2 + ν−

) 2
n−1(´

M
fe−f dV
n
2 + ν−

)˙

(6.16)

and (´
M
fe−f dV
n
2 + ν−

)˙

=

´
M

(1− f)ḟ e−f dV + 1
2

´
M
ftrhe−f dV

n
2 + ν−

−
ν̇− ·

´
M
fe−f dV

(n2 + ν−)2
.

(6.17)

Now we can seperate the terms of (6.15) which contain ḟ . Then we have

(2τ∆− 1)ḟ + (2∆f + |∇f |2 − scal)

ˆ
M

F · ḟ dV + 2τ〈∇f,∇ḟ〉+ (∗) = 0,

where

F =
1

2πn

(n
2

+ ν−

)−2/n
(ˆ

M

fe−f dV

) 2
n−1

(1− f)e−f ,

(∗) =τ(2∆̇f − h(gradf, gradf)− ˙scal) + ν̇−

+
1

2πn

(´
M
fe−f dV
n
2 + ν−

) 2
n−1(

1
2

´
M
ftrhe−f dV
n
2 + ν−

−
ν̇− ·

´
M
fe−f dV

(n2 + ν−)2

)
.

Now we define an integro-differential operator D by

Dv := (2τ∆− 1) v +G

ˆ
M

F · v dV + 2τ〈∇f,∇v〉, (6.18)

where

G = 2∆f + |∇f |2 − scal.

Now, we can rewrite (6.15) as

Dḟ + (∗) = 0. (6.19)

On gE , we have that f = const, τ = 1
2µ , F = 1−f

nµf ·vol(M,gE) and G = −nµ so
that D is equal to

DgEv =

(
1

µ
∆− 1

)
v − 1− f

f

 
M

v dVgE .
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Observe that this operator acts by multiplication with some nonzero constant
on constant functions and as ( 1

µ∆ − 1) on functions with vanishing integral.
Therefore by Obata’s eigenvalue estimate, DgE is an invertible operator and we
have the estimates

‖v‖C2,α ≤ C1 ‖DgEv‖C0,α , ‖v‖Hi ≤ C2 ‖DgEv‖Hi−2 , i = 0, 1, 2.

We show that these estimates also hold in a small C2,α-neighbourhood of gE .
We separate F = F0 + F1 and G = G0 +G1 where F0, G0 denote the constant
parts (with respect to the underlying metric) of the functions F,G respectively.
Then we have

Dv =(2τ∆− 1)v +G0

ˆ
M

F0 · v dV +G1

ˆ
M

F0 · v dV

+G0

ˆ
M

F1 · v dV +G1

ˆ
M

F1 · v dV + 2τ〈∇f,∇v〉.

By Theorem 6.3.1, the mappings g 7→ F0, F1, G0, G1 are smooth mappings from
a C2,α-neighbourhood of gE to C2,α(M). Therefore,

D0v = (2τ∆− 1)v +G0

ˆ
M

F0 · v dV

is also invertible for g close to gE . For a fixed ε > 0,

‖v‖C2,α ≤ C3

∥∥∥∥(2τ∆− 1)v +G0

ˆ
M

F0 · v dV
∥∥∥∥
C0,α

≤ C3 ‖Dv‖C0,α + C3

∥∥∥∥G0

ˆ
M

F1 · v dV +G1

ˆ
M

F1 · v dV + 2τ〈∇f,∇v〉
∥∥∥∥
C0,α

≤ C3 ‖Dv‖C0,α + ε ‖v‖C2,α

in a sufficiently small C2,α-neighbourhood of gE , since the C0,α-norms of F1, G1

and ∇f are small there. Provided that we have chosen ε small enough, we
obtain

‖v‖C2,α ≤ C4 ‖Dv‖C0,α ,

and similarly,

‖v‖Hi ≤ C5 ‖Dv‖Hi−2 , i = 0, 1, 2,

in a small neighbourhood of gE . Now, we have∥∥∥ḟ∥∥∥
C2,α

≤ C6

∥∥∥Dḟ∥∥∥
C0,α

(6.19)
= C6 ‖(∗)‖C0,α ≤ C7 ‖h‖C2,α .

The estimate of (∗) follows from the variational formulas for the Laplacian, the
scalar curvature, the ν−-functional and the Hölder inequality. Analogously,∥∥∥ḟ∥∥∥

Hi
≤ C8 ‖h‖Hi .

for i = 0, 1, 2. Finally, from (6.16) and (6.17),

|τ̇ | ≤ C9

∥∥∥ḟ∥∥∥
L2

+ C10 ‖h‖L2 ≤ C11 ‖h‖L2 ,

which finishes the proof.
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Proposition 6.3.3 (Estimate of the second variation of ν−). Let (M, gE) be
a positive Einstein manifold. There exists a C2,α-neighbourhood U of gE such
that ∣∣∣∣∣ d2

dsdt

∣∣∣∣
s,t=0

ν−(g + th+ sk)

∣∣∣∣∣ ≤ C ‖h‖H1 ‖k‖H1

for all g ∈ U and some constant C > 0.

Proof. We use similar arguments as in the proof of Proposition 5.3.3. Put
u = e−f

(4πτ)n/2
and ∇ν− = τ(Ric +∇2f)− 1

2g so that the first variation of ν− is

ν−(g)′(h) = −
ˆ
M

〈∇ν−, h〉u dV.

As before, we use dot for t-derivatives and prime for s-derivatives. Then

d2

dsdt

∣∣∣∣
s,t=0

ν−(g + th+ sk) =− d

ds

∣∣∣∣
s=0

ˆ
M

〈∇ν−, h〉u dV

=−
ˆ
M

〈(∇ν−)′, h〉u dV + 2

ˆ
M

〈∇ν−, k ◦ h〉u dV

−
ˆ
M

〈∇ν−, h〉(u dV )′.

By standard estimates and Lemma 6.3.2, we even have∣∣∣∣2 ˆ
M

〈∇ν−, k ◦ h〉u dV
∣∣∣∣ ≤ C1 ‖h‖L2 ‖k‖L2 ,∣∣∣∣ˆ

M

〈∇ν−, h〉(u dV )′
∣∣∣∣ ≤ C2 ‖h‖L2 ‖k‖L2 .

By the variational formula of the Ricci tensor and the Hessian and Lemma 6.3.2
again, ∣∣∣∣ˆ

M

〈(∇ν−)′, h〉u dV
∣∣∣∣ ≤ C3 ‖h‖H1 ‖k‖H1 ,

which finishes the proof.

Lemma 6.3.4. Let (M, gE) be a positive Einstein manifold. Then there exists
a C2,α-neighbourhood U of gE and a constant C > 0 such that∥∥∥∥∥ d2

dtds

∣∣∣∣
t,s=0

fg+sk+th

∥∥∥∥∥
Hi

≤ C ‖h‖C2,α ‖k‖Hi , i = 1, 2.

Proof. We again deal with the Euler-Lagrange equations satisfied by the pair
(fg, τg):

τ(2∆f + |∇f |2 − scal)− f + n+ ν− = 0, (6.20)
1

(4πτ)n/2

ˆ
M

fe−f dV =
n

2
+ ν−. (6.21)
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Differentiating (6.20) twice yields

τ(2∆̇′f + 2∆̇f ′ + 2∆′ḟ + 2∆ḟ ′ − 2h(gradf, gradf ′)

−2k(gradf, gradḟ) + 2〈∇f,∇ḟ ′〉+ 2〈∇ḟ ,∇f ′〉 − ˙scal
′
)

+τ̇(2∆′f + 2∆f ′ + 2〈∇f,∇f ′〉 − k(gradf, gradf))

+τ ′(2∆̇f + 2∆ḟ + 2〈∇f,∇ḟ〉 − h(gradf, gradf))

+τ̇ ′(2∆f + |∇f |2 − scal)− ḟ ′ + ν̇′− = 0.

(6.22)

Using (6.21), we can compute τ̇ ′ in terms of ḟ ′, ḟ and f ′:

τ̇ ′ =
1

4π

2

n

(
2

n
− 1

)(´
M
fe−f dV
n
2 + ν−

) 2
n−2(´

M
fe−f dV
n
2 + ν−

)˙(´
M
fe−f dV
n
2 + ν−

)′

+
1

4π

2

n

(´
M
fe−f dV
n
2 + ν−

) 2
n−1(´

M
fe−f dV
n
2 + ν−

)˙ ′

.

We seperate the term containing ḟ ′ and estimate all others. By Lemma 6.3.2
and the first variation of ν−, the first of the two terms has an upper bound of
the form C ‖h‖L2 ‖k‖L2 . Let us consider the second term more carefully. We
have (´

M
fe−f dV
n
2 + ν−

)˙ ′

=
(
´
M
fe−f dV )˙

′

n
2 + ν−

+
2ν′− · ν̇− ·

´
M
fe−f dV

(n2 + ν−)3

−
ν̇−(

´
M
fe−f dV )′ + ν′−(

´
M
fe−f dV )˙ + ν̇′−(

´
M
fe−f dV )′

(n2 + ν−)2

and(ˆ
M

fe−f dV

)̇ ′
=

ˆ
M

[(1− f)ḟ ′ + (f − 2)ḟf ′ +
1

2
(1− f)ḟtrk]e−f dV

+
1

2

ˆ
M

(1− f)f ′trhe−f dV +
1

4

ˆ
M

(trh · trk − 2〈h, k〉)fe−f dV.

Thus,

τ̇ ′ =
1

4π

2

n

(´
M
fe−f dV
n
2 + ν−

) 2
n−1 ´

M
(1− f)ḟ ′e−f dV

n
2 + ν−

+ (A),

where (A) consists all terms which contain at most first derivatives of f . By
Lemma 6.3.2, the first variational formula of ν− and Proposition 6.3.3, we have
the estimate

|(A)| ≤ C ‖h‖L2 ‖k‖L2 . (6.23)

Now we consider (6.22) again and separate the terms which contain ḟ ′. Then
we obtain

Dḟ ′ + (B) = 0,
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where D is the differential operator defined in (6.18) and

(B) =τ(2∆̇′f − ˙scal
′
) + ν̇′− + (A) · (2∆f + |∇f |2 − scal)

+ τ(2∆′ḟ + 2∆̇f ′ − 2h(gradf, gradf ′)− 2k(gradf, gradḟ) + 2〈∇ḟ ,∇f ′〉)
+ τ̇(2∆′f + 2∆f ′ + 2〈∇f,∇f ′〉 − k(gradf, gradf))

+ τ ′(2∆̇f + 2∆ḟ + 2〈∇f,∇ḟ〉 − h(gradf, gradf)).

In the proof of Lemma 6.3.2, we have shown that D : Hi → Hi−2 is an isomor-
phism if we are in a small neighbourhood of gE . From the first two variational
formulas of the Laplacian and the scalar curvature, Lemma 6.3.2, Proposition
6.3.3, (6.23) and the Hölder inequality, we thus have∥∥∥ḟ ′∥∥∥

Hi
≤ C

∥∥∥Dḟ ′∥∥∥
Hi−2

= C ‖(B)‖Hi−2 ≤ C ‖h‖C2,α ‖k‖Hi ,

and the proof is finished.

Proposition 6.3.5 (Estimates of the third variation of ν−). Let (M, gE) be a
positive Einstein manifold. There exists a C2,α-neighbourhood U of gE such that∣∣∣∣ d3

dt3

∣∣∣∣
t=0

ν−(g + th)

∣∣∣∣ ≤ C ‖h‖2H1 ‖h‖C2,α

for all g ∈ U and some constant C > 0.

Proof. We again put u = e−f

(4πτ)n/2
and ∇ν− = τ(Ric +∇2f)− 1

2g. Then

d3

dt3

∣∣∣∣
t=0

ν−(g + th) =− d2

dt2

∣∣∣∣
t=0

ˆ
M

〈∇v−, h〉u dV

=−
ˆ
M

〈(∇v−)′′, h〉u dV − 6

ˆ
M

〈∇v−, h ◦ h ◦ h〉u dV

−
ˆ
M

〈∇v−, h〉(u dV )′′ + 2

ˆ
M

〈(∇v−)′, h ◦ h〉u dV

+ 2

ˆ
M

〈∇v−, h ◦ h〉(u dV )′ −
ˆ
M

〈(∇v−)′, h〉(u dV )′.

Further computations, standard estimates and the Lemmas 6.3.2 and 6.3.4 yield
an upper bound of the form C ‖h‖2H1 ‖h‖C2,α for each of these terms (see also
the proof of Proposition 5.3.5).

6.4 The Integrable Case

As in Section 5.4, we prove stability/instability results under the assumption
that all infinitesimal Einstein deformations are integrable. Additionally, we
assume that 2µ (where µ is the Einstein constant) is not an eigenvalue of the
Laplacian. These conditions are assumed to hold throughout this section.
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6.4.1 Local Maximum of the Shrinker Entropy
In this subsection, we prove the analogue of Theorem 5.4.3 with the same meth-
ods. We use a similar notation to that in Subsection 5.4.1. Let U be a small
C2,α-neighbourhood of a positive Einstein metric gE and let

SgE = U ∩ (gE + δ−1
gE (0))

be an affine slice of gE in the space of metrics. Let

E = {g ∈ SgE | Ricg = αg for some α ∈ R}

be the set of Einstein metrics in the affine slice near gE . Let

P = {g ∈ E | Ricg = µg} = {g ∈ E | vol(M, g) = vol(M, gE)} ,

where µ is the Einstein constant of gE . If we assume that all infinitesimal
Einstein deformations of gE are integrable, E is a manifold near gE and the
tangent space at gE is given by

TgEE = R · gE ⊕ ker(∆E |TT ).

For any g ∈ E ,

ν−(g) = log(vol(M, g)) +
n

2
log(scalg) +

n

2
(1− log(2πn)),

and thus, ν− is constant on P. By scale invariance, it is also constant on E .
Let N be the L2-orthogonal complement of TgEE in δ−1

gE (0). Then by the
implicit function theorem, every g ∈ SgE can be written as g = ḡ + h, where
ḡ ∈ E and h ∈ N . Since P (and hence also E)) only contains smooth elements
as was already discussed in Section 5.4.1, g is smooth if and only if h is smooth.

Theorem 6.4.1. Let (M, gE) be a positive Einstein manifold with constant
µ. Suppose that gE is Einstein-Hilbert stable and that the smallest nonzero
eigenvalue of the Laplacian satisfies λ > 2µ. Then there exists a small C2,α-
neighbourhood U ⊂M of gE such that ν−(g) ≤ ν−(gE) for all g ∈ U . Moreover,
equality holds if and only if (M, g) is also Einstein.

Proof. We first show that the second variation of ν− vanishes on TgEE and is
negative definite on N . The tangent space of the slice SgE splits as

δ−1
gE (0) = R · gE ⊕ CgE (C∞gE (M))⊕ TTgE

On R · gE , the second variation vanishes whereas on CgE (C∞gE (M)) ⊕ TTgE ,
it is defined by − 1

4µvol(M,gE)∆E . By the proof of Lemma 6.2.5, we have that
∆E(CgEf) = CgE ((∆−2µ)f) for f ∈ C∞gE (M). The assumption on the spectrum
of the Laplacian ensures that − 1

4µvol(M,gE)∆E is negative on CgE (C∞gE (M)).
By Einstein-Hilbert stability, the second variation is negative on TT -tensors
orthogonal to ker∆E |TT and vanishes on ker∆E |TT .

Now, we prove that gE is a local maximum on SgE and the maximum is only
attained on E . By Taylor expansion,

ν−(ḡ + h) = ν−(ḡ) +
1

2

d2

dt2

∣∣∣∣
t=0

ν−(ḡ + th) +R(ḡ, h),

R(ḡ, h) =

ˆ 1

0

(
1

2
− t+

1

2
t2
)
d3

dt3
ν−(ḡ + th)dt,
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where ḡ ∈ E and h ∈ N . As in the proof of Theorem 5.4.3, one shows that there
are uniform bounds

d2

dt2

∣∣∣∣
t=0

ν−(ḡ + th) ≤ −C1 ‖h‖2H1 ,

R(ḡ, h) ≤ C2 ‖h‖C2,α ‖h‖2H1 .

Therefore, if we choose the C2,α-neighbourhood small enough, we have that
ν−(ḡ + h) ≤ ν−(ḡ) = ν−(gE) and equality holds if and only if h = 0. By
the slice theorem, any metric g ∈ U can be written as g = ϕ∗(ḡ + h) where
ϕ ∈ Diff(M), h ∈ N and ḡ ∈ E . Thus,

ν−(g) = ν−(ḡ + h) ≤ ν−(ḡ) = ν−(gE),

and equality holds if and only if g is Einstein.

6.4.2 A Lojasiewicz-Simon Inequality and Transversality

In this subsection, we prove analogoues of the results in Subsection 5.4.2.

Theorem 6.4.2 (Optimal Lojasiewicz-Simon inequality for ν−). Let (M, gE)
be a positive Einstein manifold with constant µ. Then there exists a C2,α-
neighbourhood U of gE and a constant C > 0 such that

|ν−(g)− ν−(gE)|1/2 ≤ C
∥∥∥∥τg(Ricg +∇2fg)−

1

2
g

∥∥∥∥
L2

for all g ∈ U .

Theorem 6.4.3 (Transversality). Let (M, gE) be positive Einstein manifold
with constant µ. Then there exists a C2,α-neighbourhood U of gE and a constant
C > 0 such that∥∥∥∥Ricg −

1

n

( 
scalg dV

)
g

∥∥∥∥
L2

≤ C
∥∥∥∥τg(Ricg +∇2fg)−

1

2
g

∥∥∥∥
L2

for all g ∈ U .

Proof of Theorem 6.4.2 and Theorem 6.4.3. By diffeomorphism invariance, it
suffices to prove these two inequalities on an affine slice in the space of metrics.
Let SgE , N and E be as above. Then every g ∈ SgE can be written as g = ḡ+h
where ḡ ∈ E and h ∈ N . By Taylor expansion and the Lemmas 6.3.2 and 6.3.4,

|ν−(ḡ + h)− ν−(ḡ)| ≤ C1 ‖h‖2H2 ,∥∥∥∥Ricḡ+h −
1

n

( 
scalḡ+h dV

)
(ḡ + h)

∥∥∥∥2

L2

≤ C2 ‖h‖2H2 ,

so it remains to show∥∥∥∥τḡ+h(Ricḡ+h +∇2fḡ+h)− 1

2
(ḡ + h)

∥∥∥∥
L2

≥ C3 ‖h‖H2 . (6.24)
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We put ∇ν−(g) = τg(Ric+∇2fg)− 1
2g. Then by Lemma 5.4.7 and Lemma 6.2.3

(iii), we have

∇ν−(ḡ + h) =
1

4µ
(∆E)gEh+O1 +O2,

where

O1 =

ˆ 1

0

(1− t) d
2

dt2
∇ν−(gE + th)dt,

O2 =

ˆ 1

0

ˆ 1

0

d2

dsdt
∇ν−(gE + s(g − gE) + th)dtds.

By standard estimates and Lemmas 6.3.2 and 6.3.4,

‖O1‖L2 ≤ C ‖h‖C2,α ‖h‖H2 ,

‖O2‖L2 ≤ C ‖ḡ − gE‖C2,α ‖h‖H2 .

By the eigenvalue assumption, (∆E)gE |N is injective. Thus,

‖∇ν−(ḡ + h)‖2L2 =
1

16µ2
‖(∆E)gEh‖

2
L2 − 〈O1 +O2, (∆E)gEh〉+ ‖O1 +O2‖2L2

≥ C1 ‖h‖2H2 − C2(‖O1‖L2 + ‖O2‖L2) ‖h‖H2 .

Therefore, if the neighbourhood is small enough, we obtain (6.24).

6.4.3 Dynamical Stability and Instability

Lemma 6.4.4. Let (M, gE) be a positive Einstein manifold. For each ε > 0
there exists δ > 0 such that if ‖g0 − gE‖Ck+2 < δ, the Ricci flow (6.1) starting
at g0 exists on [0, 1] and satisfies

‖g(t)− gE‖Ck < ε

for all t ∈ [0, 1].

Proof. The Riemann curvature tensor and the Ricci tensor evolve under the
standard Ricci flow as ∂tR = −∆R + R ∗ R, ∂tRic = −∆Ric + R ∗ Ric. Under
the normalized Ricci flow, we have the evolution equations

∂tR =−∆R+R ∗R+
4

n

( 
M

scal dV

)
R,

∂tRic =−∆Ric +R ∗ Ric,

∂t
1

n

( 
M

scal dV

)
· g =

2

n

( 〈
Ric− 1

n

( 
M

scal dV

)
· g,G

〉
dV

)
· g

− 2

n

( 
M

scal dV

)(
Ric− 1

n

( 
M

scal dV

)
· g
)
,

where G is the Einstein tensor. Let Ric0 = Ric − 1
n

(ffl
M

scal dV
)
g. We then
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obtain the evolution inequalities

∂t|∇iR|2 ≤ −∆|∇iR|2 +

i−1∑
j=1

Cij |∇jR||∇i−jR||∇iR|+ Ci1( sup
p∈M
|R|)|∇iR|2,

∂t|∇iRic0|2 ≤ −∆|∇iRic0|2 +

i∑
j=0

C̃ij( sup
p∈M
|∇jR||∇i−jRic|)|∇iRic0|.

Now one uses the maximum principle for scalars. The rest of the proof is exactly
as in Lemma 5.4.10.

Lemma 6.4.5. Let g(t), t ∈ [0, T ] be a solution of the Ricci flow (6.1) and
suppose that

sup
p∈M
|Rg(t)|g(t) ≤ T−1 ∀t ∈ [0, T ].

Then for each k ≥ 1, there exists a constant C(k) such that

sup
p∈M
|∇kRg(t)|g(t) ≤ C(k) · T−1t−k/2 ∀t ∈ (0, T ].

Proof. By the evolution equation ∂tR = −∆R + R ∗ R + 4
n (
ffl
M

scal dV )R, we
have the evolution inequality

∂t|∇iR|2 ≤−∆|∇iR|2 − 2|∇i+1R|2 +

i−1∑
j=1

Cij |∇jR||∇i−jR||∇iR|

+ Ci1( sup
p∈M
|R|)|∇iR|2.

The lemma is shown by induction on k. This works exactly as in the proof of
Lemma 5.4.11.

Remark 6.4.6. As in Remark 5.4.12, we obtain uniform bounds of all derivatives
of the curvature along the Ricci flow on [δ, T ], if the curvature is bounded on
[0, T ].

Theorem 6.4.7 (Dynamical stability). Let (M, gE) be a compact positive Ein-
stein manifold with constant µ which is Einstein-Hilbert stable. Suppose that
the integrability condition holds and that the smallest nonzero eigenvalue of the
Laplacian satisfies λ > 2µ. Let k ≥ 3.

Then for every Ck-neighbourhood U of gE in the space of metrics, there exists
a Ck+2-neighbourhood V such that the Ricci flow, starting at any g0 ∈ V, stays
in U for all time and converges to an Einstein metric g∞ ∈ U . The convergence
is exponentially, i.e. there exist constants C1, C2 > 0 such that for all t ≥ 0,

‖g(t)− gE‖CkgE ≤ C1e
−C2t.

Proof. As above, we denote by Bkε the ε-ball around gE with respect to the
CkgE -norm. Without loss of generality, we assume that U = Bkε for an ε > 0 so
small that Theorems 6.4.1, 6.4.2 and 6.4.3 hold on U . By Lemma 6.4.4, we can
choose V so small that any Ricci flow starting in V stays in Bkε/4 up to time 1.
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Let now T ≥ 1 be the maximal time such that any Ricci flow starting in V stays
in U for all t < T . By definition of T , we have uniform curvature bounds

sup
p∈M
|Rg(t)|g(t) ≤ C1 ∀t ∈ [0, T ),

and by Remark 6.4.6,

sup
p∈M
|∇iRg(t)|g(t) ≤ C(i) ∀t ∈ [1, T ), ∀i ≥ 0.

Assume that ε > 0 is so small that the Ck-norms defined by gE and g(t) differ
at most by a factor 2. Then we have

‖g(T )− gE‖CkgE ≤ ‖g(1)− gE‖CkgE +

ˆ T

1

d

dt
‖g(t)− g(1)‖CkgE dt

≤ ε

4
+ 4

ˆ T

1

∥∥∥Ric0
g(t)

∥∥∥
Ck
g(t)

dt.

By interpolation (c.f. [Ham82, Corollary 12.7]), using the bounds on |∇iR|,∥∥∥Ric0
g(t)

∥∥∥
Ck
g(t)

≤ C2

∥∥∥Ric0
g(t)

∥∥∥
Hl
≤ C3

∥∥∥Ric0
g(t)

∥∥∥β
L2

for some β ∈ (0, 1) and C > 0. Here, l > k is some constant such that Sobolev
embedding holds. By Theorems 6.4.1, 6.4.2 and 6.4.3,

− d

dt
|ν−(g(t))− ν−(gE)|β/2 =

β

2
|ν−(g(t))− ν−(gE)|β/2−1 d

dt
ν−(g(t))

≥ C4|ν−(g(t))− ν−(gE)|β/2−1
∥∥∇(ν−)g(t)

∥∥2

L2

≥ C5

∥∥∥Ric0
g(t)

∥∥∥β
L2
≥ C6

∥∥∥Ric0
g(t)

∥∥∥
Ck
g(t)

.

Hence by integration,
ˆ T

1

∥∥∥Ric0
g(t)

∥∥∥
Ck
g(t)

dt ≤ C7|ν−(g(1))− ν−(gE)|β/2

≤ C7|ν−(g(0))− ν−(gE)|β/2 ≤ ε

16
,

provided that we have chosen V small enough. This shows that T = ∞. Since´
M
‖ġ(t)‖CkgE dt <∞, g(t) converges to some limit g∞ as t→∞. By Theorem

6.4.2, we have − d
dt |ν−(g(t))− ν−(gE)| ≥ C8|ν−(g(t))− ν−(gE)|. Thus,

|ν−(g(t))− ν−(gE)| ≤ eC8t|ν−(g0)− ν−(gE)|,

which shows that ν−(g∞) = ν−(gE) and by Theorem 6.4.1, g∞ is Einstein. The
convergence is exponential, since for t1 < t2,

‖g(t1)− g(t2)‖CkgE ≤ C9|ν−(g(t1))− ν−(gE)|β/2

≤ C9e
−C8β

2 t1 |ν−(g0)− ν−(gE)|β/2.

The assertion follows from t2 →∞.
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Theorem 6.4.8 (Dynamical instability). Let (M, gE) be a positive Einstein
manifold with constant µ which satisfies the integrability condition. Suppose
that 2µ /∈ spec(∆). If (M, gE) is Einstein-Hilbert unstable or we have that
( n
n−1µ, 2µ) ∩ spec(∆) 6= ∅, there exists a nontrivial ancient Ricci flow emerg-
ing from it, i.e. there is a Ricci flow g(t), defined on t ∈ (−∞, T ], such that
limt→−∞ g(t) = gE.

Proof. Under these conditions, (M, gE) cannot be a local maximum of ν−. Let
gi → gE in Ck and suppose that ν−(gi) > ν−(gE) for all i. Let gi(t) be the
Ricci flow (6.2) starting at gi. Then by Lemma 6.4.4, ḡi = gi(1) converges to
gE in Ck−2 and by monotonicity, ν−(ḡi) > ν−(gE) as well. Let ε > 0 be so
small that Theorems 6.4.2 and 6.4.3 both hold on Bk−2

2ε . Theorem 6.4.2 yields
the differential inequality

d

dt
(ν−(gi(t))− ν−(gE)) ≥ C1(ν−(gi(t))− ν−(gE)),

from which we obtain

(ν−(gi(t))− ν−(gE))eC1(s−t) ≤ (ν−(gi(s))− ν−(gE)), (6.25)

as long as gi stays in Bk−2
2ε . Thus, there exists a ti such that

‖gi(ti)− gE‖Ck−2 = ε,

and ti →∞. If ti was bounded, gi(ti)→ gE in Ck−2. By interpolation,∥∥∥Ric0
gi(t)

∥∥∥
Ck−2

≤ C2

∥∥∥Ric0
gi(t)

∥∥∥β
L2

(6.26)

for some β ∈ (0, 1). By Theorems 6.4.2 and 6.4.3, we have the differential
inequality

d

dt
(ν−(gi(t))− ν−(gE))β/2 ≥ C3

∥∥∥Ric0
gi(t)

∥∥∥β
L2
, (6.27)

if ν−(gi(t)) > ν−(gE). Thus by the triangle inequality and by integration,

ε = ‖gi(ti)− gE‖Ck−2 ≤ ‖ḡi − gE‖Ck−2 + C4(ν−(gi(ti))− ν−(gE))β/2. (6.28)

Now, put gsi (t) := gi(t+ ti), t ∈ [Ti, 0], where Ti = 1− ti → −∞. We have

‖gsi (t)− gE‖Ck−2 ≤ ε ∀t ∈ [Ti, 0],

gsi (Ti)→ gE in Ck−2.

Because the embedding Ck−3(M) ⊂ Ck−2(M) is compact, we can choose a
subsequence of the gsi , converging in Ck−3

loc (M × (−∞, 0]) to an ancient Ricci
flow g(t), t ∈ (−∞, 0]. From taking the limit i → ∞ in (6.28), we have that
ε ≤ C4(ν−(g(0))−ν−(gE))β/2 which shows that the Ricci flow is nontrivial. For
Ti ≤ t, we have, by (6.26) and (6.27),

‖gsi (Ti)− gsi (t)‖Ck−3 ≤C5(ν−(gi(t+ ti))− ν−(gE))β/2

≤C5(ν−(gi(ti))− ν−(gE))β/2eC1t = C6e
C1t.

Thus,

‖gE − g(t)‖Ck−3 ≤‖gE − gsi (Ti)‖Ck−3 + C6e
C1t + ‖gsi (t)− g(t)‖Ck−3 .

It follows that ‖gE − g(t)‖Ck−3 → 0 as t→ −∞.
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Remark 6.4.9. In contrast to the negative case, many examples satisfying the
assumptions of Theorem 6.4.8 are known. We already discussed some Einstein-
Hilbert unstable examples (see e.g. Example 3.1.7). In fact, there are also
examples of Einstein manifolds which are Einstein-Hilbert stable but do not
satisfy the eigenvalue assumptions from above, e.g. HPn for n ≥ 3 (c.f. [CH13]).

Remark 6.4.10. The condition on the Laplacian spectrum appearing in Theorem
6.4.7 also plays a role in other contexts. Let (M, g) be Einstein with constant
µ > 0. The identity map on (M, g) is stable as a harmonic map if and only if the
smallest nonzero eigenvalue of the Laplacian on an Einstein manifold (M, g) sat-
isfies λ ≥ 2µ (see [Smi75, Proposition 2.11]). The same condition on the Lapla-
cian spectrum also ensures that simply-connected irreducible symmetric spaces
of compact type are stable with respect to the functional g 7→

´
M
|R|n/2 dV

restricted to its conformal class (c.f. [BM12, pp. 1-2]).
Recall also that this condition appeared when we discussed the spectrum of

the Einstein operator on product spaces, c.f. Proposition 3.3.7.

6.5 The Nonintegrable Case
As in the negative case, we are also able to get rid of the integrability condition
here. We prove analogues of Theorems 6.4.1 and 6.4.2. The proofs of these
theorems are very similar to the proofs of Section 5.5.

6.5.1 Local Maximum of the Shrinker Entropy
Theorem 6.5.1. Let (M, gE) be a positive Einstein manifold with constant µ.
If gE is a local maximum of ν−, it is a local maximum of the Yamabe functional
and the smallest nonzero eigenvalue satisfies λ ≥ 2µ. Conversely, if gE is a local
maximum of the Yamabe functional and λ > 2µ, then gE is a local maximum of
ν−. In this case, any other local maximum is also an Einstein metric.

Proof. Let c = vol(M, gE) and recall the notations

C = {g ∈M|scalg is constant} ,
Cc = {g ∈M|scalg is constant and vol(M, g) = c} .

Since we excluded the case of the sphere, Obata’s eigenvalue estimate implies
that scalgE

n−1 /∈ spec(∆gE ). Thus, the map

Φ: C∞(M)× Cc →M,

(v, g) 7→ v · g

is a local ILH-diffeomorphism around (1, gE). We first evaluate ν− on the space
of constant scalar curvature metrics. Let ḡ be a metric of constant scalar cur-
vature and consider the pair

f̄ = log(vol(M, ḡ)) +
n

2
log(scalḡ)−

n

2
log(2πn), τ̄ =

n

2scalḡ
.

This pair satisfies the coupled Euler-Lagrange equations (6.3) and (6.4) and the
constraint in the definition of ν−. If ḡ is close to gE (in C2,α), the pair (f̄ , τ̄)
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is close to (fgE , τgE ). Therefore, by the implicit function argument used in the
proof of Lemma 6.3.1, (f̄ , τ̄) is the pair realizing ν−(ḡ), provided that ḡ is close
enough to gE . In other words, (f̄ , τ̄) = (τḡ, fḡ). In particular, fḡ is constant.
Thus,

ν−(ḡ) = log(vol(M, ḡ)) +
n

2
log(scalḡ) +

n

2
(1− log(2πn)).

By the monotonicity of the logarithm and scale invariance of ν−, gE is a local
maximum of the ν− restricted to C if and only if gE is a local maximum of the
Einstein-Hilbert functional restricted to Cc. Since all constant scalar curvature
metrics in a sufficiently small neighbourhood of gE are Yamabe metrics, this is
equivalent to the assertion that gE is a local maximum of the Yamabe functional.
If gE is a local maximum of ν− on all ofM, the eigenvalue bound follows from
Corollary 6.2.5.

We now investigate the behavior in conformal directions and use the eigen-
value assumption. Let ḡ be of constant scalar curvature and h = vḡ for some
v ∈ C∞ḡ (M). Then

ν′−(ḡ)(h) = − 1

4πτḡ

ˆ
M

〈
τḡ(Ricḡ +∇2fḡ)−

1

2
ḡ, h

〉
e−fḡ dVḡ

= −
 
M

〈
n

2scalḡ
Ricḡ −

1

2
ḡ, vḡ

〉
dVḡ

= −
 
M

(n
2
− n

2

)
v dVḡ = 0.

The second variation is equal to

d2

dt2

∣∣∣∣
t=0

ν−(ḡ + th)

=− 1

4πτḡ

ˆ
M

〈
d

dt

∣∣∣∣
t=0

τḡ+th(Ricḡ+th +∇2fḡ+th)− 1

2
h, h

〉
e−fḡ dVḡ

=−
 
M

τ ′ · v · scalḡ dV −
 
M

〈τ(Ric′ +∇2(f ′))− 1

2
vḡ, vḡ〉 dVḡ

=−
 
M

〈τ
(

1

2
∆L(vḡ)− δ∗δ(vḡ)− n

2
∇2v

)
+∇2(f ′))− 1

2
vḡ, vḡ〉 dVḡ

=−
 
M

〈
τ

(
1

2
(∆v)ḡ +

(
1− n

2

)
∇2v +∇2(f ′)

)
− 1

2
vḡ, vḡ

〉
dVḡ

=−
 
M

n

2

(
n

2scalḡ
∆v − v

)
v dV −

 
M

τ
〈(

1− n

2

)
∇2v +∇2(f ′), vḡ

〉
dVḡ.

We first deal with the terms containing the Hessians of v and f ′. Differentiating
the Euler-Lagrange equation

τ(2∆f + |∇f |2 − scal)− g + n− ν− = 0

in the direction of h = vg yields

(2τ∆− 1)f ′ = τ ′scalḡ + τscal′ḡ

= τ ′scalḡ + τ((n− 1)∆v − scalḡv).
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Here we use the fact that fḡ is constant since ḡ is of constant scalar curvature.
Since τḡ = n

2scalḡ
,

f ′ =
( n

scal
∆− 1

)−1
(
τ ′scalḡ +

n

2

(
n− 1

scal
∆− 1

)
v

)
.

Because of the assumption on the spectrum of gE , we were allowed to take the
inverse of n

scal∆− 1 for ḡ close enough to gE . Moreover,

∆f ′ =
n

2

( n

scal
∆− 1

)−1
(
n− 1

scal
∆− 1

)
∆v.

Thus,

−
 
M

τ
〈(

1− n

2

)
∇2v +∇2(f ′), vḡ

〉
dV

=
n

2scal

 
M

((
1− n

2

)
∆v + ∆f ′

)
v dV

=
n

2scal

 
M

(
(1− n

2
)∆v +

n

2
(
n

scal
∆− 1)−1

(
n− 1

scal
∆− 1

)
∆v

)
v dV.

Therefore, the second variation is equal to

d2

dt2
|t=0ν−(ḡ + th) = −

 
M

Lv · v dV, (6.29)

where L is the linear operator given by

L =
n

2

(
n

2scalḡ
∆− 1

)
− n

2scal

((
1− n

2

)
∆ +

n

2

( n

scal
∆− 1

)−1
(
n− 1

scal
∆− 1

)
∆

)
=
n+ 1

4

( n

scal
∆− 1

)−1 ( n

scal
∆− 2

)( n

scal
∆− n

n− 1

)
.

If the smallest nonzero eigenvalue of the Laplacian is greater than 2scal
n , the

operator L : C∞ḡ (M) → C∞ḡ (M) is positive. By assumption, this is certainly
true in a small neighbourhood of gE in the space of constant scalar curvature
metrics. By continuity, if ε > 0 is sufficiently small,

−
 
M

Lv · v dV = −ε
 
M

|∇v|2 dV −
 
M

(L− ε∆)v · v dV

≤ −ε′ ‖∇v‖2L2 − C1 ‖v‖2L2

≤ −C2 ‖v‖2H1 ,

and this estimate is uniformly in a small neighbourhood. Let now g ∈ M be
an arbitrary metric in a small C2,α-neighbourhood of gE . By the above, it can
be written as g = ṽ · g̃, where (ṽ, g̃) ∈ C∞(M) × CgE is close to (1, gE). By
substituting

v =
ṽ −

ffl
ṽ dVg̃ffl

ṽ dVg̃
, ḡ =

( 
ṽ dVg̃

)
g̃,
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we can write g = (1 + v)ḡ where ḡ ∈ C is close to gE , and v ∈ C∞ḡ (M) is close
to 0. By Taylor expansion and Proposition 6.3.5,

ν−(g) = ν−(ḡ) +
1

2

d2

dt2

∣∣∣∣
t=0

ν−(ḡ + tvḡ) +

ˆ 1

0

(
1

2
− t+

1

2
t2
)
d3

dt3
ν−(ḡ + tvḡ)dt

≤ ν−(gE)− C2

2
‖v‖2H1 + C3 ‖v‖C2,α ‖v‖2H1

≤ ν−(gE),

provided that the neighbourhood is small enough. If g = (1 + v)ḡ is another
local maximum of ν−, then v = 0 and g ∈ C is a local maximum of the total
scalar curvature restricted to Cd. Here, d = vol(M, g). By Proposition 2.6.2, g
is Einstein.

Remark 6.5.2. If (M, gE) is a local maximum of the Yamabe functional and we
have the weak inequality λ ≥ 2µ, then it is in general not true that it is a local
maximum of ν−. A counterexample will be given in Section 6.6.

Corollary 6.5.3. Let (M, gE) be a compact positive Einstein manifold with
constant µ. If gE is a local maximum of the Yamabe invariant and λ > 2µ, any
shrinking gradient Ricci soliton in a sufficiently small neighbourhood of gE is
nessecarily Einstein.

Proof. This follows from Theorem 6.5.1 and the fact that shrinking gradient
Ricci solitons are precisely the critical points of ν−.

6.5.2 A Lojasiewicz-Simon Inequality
Theorem 6.5.4 (Lojasiewicz-Simon inequality). Let (M, gE) be a positive Ein-
stein manifold. Then there exists a C2,α neighbourhood U of gE and constants
σ ∈ [1/2, 1), C > 0 such that

|ν−(g)− ν−(gE)|σ ≤ C
∥∥∥∥τ(Ricg +∇2fg)−

1

2
g

∥∥∥∥
L2

(6.30)

for all g ∈ U .

Proof. Since both sides are diffeomorphism invariant, it suffices to show the
inequality on a slice to the action of the diffeomorphism group. Let

SgE = U ∩
{
gE + h | h ∈ δ−1

gE (0)
}
.

Let ν̃− be the ν−-functional restricted to SgE . Obviously, ν̃− is analytic since
ν− is. By the first variational formula in Lemma 6.2.2, the L2-gradient of ν−
is (up to a constant factor) given by ∇ν−(g) = [τ(Ricg +∇2fg) − 1

2g]e−fg . It
vanishes at gE . On the neighbourhood U , we have the uniform estimate

‖∇ν−(g1)−∇ν−(g2)‖L2 ≤ C ‖g1 − g2‖H2 , (6.31)

which holds by Taylor expansion. The L2-gradient of ν̃− is given by the projec-
tion of ∇ν− to δ−1

gE (0). Therefore, (6.31) also holds for ∇ν̃−. The linearization
of ν̃− at gE vanishes on R ·gE and equals − 1

4µvol(M,gE)∆E on the L2-orthogonal
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complement of R·gE in δgE (0), see Proposition 6.2.4. Let us denote this operator
by D. By ellipticity,

D : (δ−1
gE (0))C

2,α

→ (δ−1
gE (0))C

0,α

is Fredholm. It also satisfies the estimate ‖Dh‖L2 ≤ C ‖h‖H2 . By Theorem
[CM12, Theorem 6.3], there exists a constant σ ∈ [1/2, 1) such that the inequal-
ity |ν−(g)− ν−(gE)|σ ≤ ‖∇ν̃−(g)‖L2 holds for any g ∈ SgE . Since

‖∇ν̃−(g)‖L2 ≤ ‖∇ν−(g)‖L2 ≤ C
∥∥∥∥τ(Ricg +∇2fg)−

1

2
g

∥∥∥∥
L2

,

(5.25) holds on all g ∈ SgE . By diffeomorphism invariance, it holds on all
g ∈ U .

6.5.3 Dynamical Stability and Instability
In order to consider dynamical stability in the nonintegrable case, we have to
deal with another variant of the Ricci flow, which is given by the differential
equation

ġ(t) = −2Ricg(t) +
1

τg(t)
g(t). (6.32)

This can be considered as the gradient flow of ν− on the space of metrics modulo
diffeomorphism. Suppose we have a solution g(t) of ġ(t) = −2Ricg(t), then a
solution g̃(t) of (6.32) is given by

g̃(t) = v(t)−1g

(ˆ t

0

v(t′)dt′
)
,

where v : [0, T )→ R is some positive function statisfying the integro-differential
equation

v̇(t) = −v2(t)
(
τg(

´ t
0
v(t′)dt′)

)−1

with initial condition v(0) = 1. In this subsection, we prove dynamical stabil-
ity/instability results with respect to (6.32).

Lemma 6.5.5. Let (M, gE) be a positive Einstein manifold. For each ε > 0
there exists δ > 0 such that if ‖g0 − gE‖Ck+2 < δ, the Ricci flow (6.32) starting
at g0 exists on [0, 1] and satisfies

‖g(t)− gE‖Ck < ε

for all t ∈ [0, 1].

Proof. From the well-known evolution equations ∂tR = −∆R + R ∗ R and
∂tRic = −∆Ric + R ∗ Ric for the standard Ricci flow, we derive the evolution
equations

∂tR = −∆R+R ∗R+
2

τ
R,

∂tRic = −∆Ric +R ∗ Ric,

∂t
1

2τ
g = −∂tτ

2τ2
g +

1

2τ

(
−2Ric +

1

τ
g

)
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for the flow (6.32). From these, we obtain the evolution inequality

∂t|∇iR|2 ≤ −∆|∇iR|2 +

i−1∑
j=1

Cij |∇jR||∇i−jR||∇iR|+ Ci0

(
|R|+ 1

τ

)
|∇iR|2

for the Riemann tensor. For Ric− 1
2τ g, we have

∂t

∣∣∣∣Ric− 1

2τ
g

∣∣∣∣2 ≤ −∆

∣∣∣∣Ric− 1

2τ
g

∣∣∣∣2 + C

(
|R||Ric|+

∣∣∣∣∂tτ2τ

∣∣∣∣) ∣∣∣∣Ric− 1

2τ
g

∣∣∣∣
≤ −∆

∣∣∣∣Ric− 1

2τ
g

∣∣∣∣2 + C

(
|R||Ric|+ 1

2τ

∣∣∣∣Ric− 1

2τ
g

∣∣∣∣) ∣∣∣∣Ric− 1

2τ
g

∣∣∣∣ ,
where we used Lemma 6.3.2 for the estimate |∂tτ | ≤ C|Ric − 1

2τ g|. For higher
derivatives, we have

∂t

∣∣∣∣∇i(Ric− 1

2τ
g

)∣∣∣∣2 ≤−∆

∣∣∣∣∇i(Ric− 1

2τ
g

)∣∣∣∣2
+

i∑
j=0

C̃ij |∇jR||∇i−jRic|
∣∣∣∣∇i(Ric− 1

2τ
g

)∣∣∣∣ .
The rest of the proof is exactly as in Lemma 5.4.10 and uses the maximum
principle for scalars.

Lemma 6.5.6. Let g(t), t ∈ [0, T ] be a solution of the Ricci flow (6.32) and
suppose that

sup
p∈M
|Rg(t)|g(t) +

1

τg(t)
≤ T−1 ∀t ∈ [0, T ].

Then for each k ≥ 1, there exists a constant C(k) such that

sup
p∈M
|∇kRg(t)|g(t) ≤ C(k) · T−1t−k/2 ∀t ∈ (0, T ].

Proof. By the evolution equation ∂tR = −∆R + R ∗ R + 2
τR, we have the

evolution inequality

∂t|∇iR|2 ≤−∆|∇iR|2 − 2|∇i+1R|2 +

i−1∑
j=1

Cij |∇jR||∇i−jR||∇iR|

+ Ci0

(
|R|+ 1

τ

)
|∇iR|2.

The proof follows from induction on i exactly as in Lemma 5.4.11.

Remark 6.5.7. As in Remark 5.4.12 for the flow (5.5), we obtain uniform bounds
of all derivatives of the curvature along the Ricci flow (6.32) on [δ, T ] if the
curvature and 1

τ are bounded on [0, T ].
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Theorem 6.5.8 (Dynamical stability modulo diffeomorphism). Let (M, gE) be
a compact positive Einstein manifold with constant µ and let k ≥ 3. Suppose
that gE is a local maximizer of the Yamabe functional and the smallest nonzero
eigenvalue of the Laplacian is larger than 2µ. Then for every Ck-neighbourhood
U of gE, there exists a Ck+2-neighbourhood V such that the following holds:

For any metric g0 ∈ V, there exists a 1-parameter family of diffeomorphisms
ϕt and a positive function v such that for the Ricci flow (6.32) starting at g0,
the modified flow ϕ∗t g(t) stays in U for all time and converges to an Einstein
metric g∞ in U as t → ∞. The convergence is of polynomial rate, i.e. there
exist constants C,α > 0 such that

‖ϕ∗t g(t)− g∞‖Ck ≤ C(t+ 1)−α.

Proof. Without loss of generality, we may assume that U = Bkε and that ε > 0
is so small that Theorems 6.5.1 and 6.5.4 hold on U .

By Lemma 6.5.5, we can choose a small neighbourhood V such that the Ricci
flow, starting at any metric g ∈ V stays in Bkε/4 up to time 1. Let T ≥ 1 be
the maximal time such that for any Ricci flow g(t) starting in V, there exists a
family of diffeomorphisms ϕt such that the modified flow ϕ∗t g(t) stays in U . By
definition of T and by diffeomorphism invariance, we have uniform curvature
bounds

sup
p∈M
|Rg(t)|g(t) ≤ C1 ∀t ∈ [0, T ),

|τg(t)| ≤ C2 ∀t ∈ [0, T ).

By Remark 6.5.7, we have

sup
p∈M
|∇lRg(t)|g(t) ≤ C(l) ∀t ∈ [1, T ). (6.33)

Because fg(t) satisfies the equation τ(2∆f + |∇f |2 − scal)− f + n+ ν− = 0, we
also have

sup
p∈M
|∇lfg(t)|g(t) ≤ C̃(l) ∀t ∈ [1, T ). (6.34)

Note that all these estimates are diffeomorphism invariant.
We now construct a modified Ricci flow as follows: Let ϕt ∈ Diff(M), t ≥ 1

be the family of diffeomorphisms generated by X(t) = −gradg(t)fg(t) and define

g̃(t) =

{
g(t), t ∈ [0, 1],

ϕ∗t g(t), t ≥ 1.
(6.35)

The modified flow satisfies the usual Ricci flow equation for t ∈ [0, 1] while for
t ≥ 1, we have

d

dt
g̃(t) = ϕ∗t (ġ(t)) + ϕ∗t (LX(t)g(t))

= ϕ∗t

(
−2Ricg(t) +

1

τg(t)
g(t)

)
− 2ϕ∗t (∇2fg(t))

= −2Ricg̃(t) +
1

τg̃(t)
g̃(t) +∇2fg̃(t).
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Let T ′ ∈ [0, T ] be the maximal time such that the modified Ricci flow, starting
at any metric g0 ∈ V, stays in U up to time t. Then

‖g̃(T ′)− gE‖Ck ≤‖g̃(1)− gE‖Ck +

ˆ T ′

1

∥∥ ˙̃g(t)
∥∥
Ck
dt

≤ ε
4

+

ˆ T ′

1

∥∥ ˙̃g(t)
∥∥
Ck
dt.

By interpolation (c.f. [Ham82, Corollary 12.7]), (6.33) and (6.34), we have∥∥ ˙̃g(t)
∥∥
Ck
≤ C3

∥∥ ˙̃g(t)
∥∥1−η
L2

for η as small as we want. In particular, we can assume that θ := 1−σ(1+η) > 0,
where σ is the constant appearing in the Lojasiewicz-Simon inequality 6.5.4. By
the first variation of ν−,

d

dt
ν−(g̃(t)) ≥ C4

∥∥ ˙̃g(t)
∥∥1+η

L2

∥∥ ˙̃g(t)
∥∥1−η
L2 .

By Theorem 6.5.1 and again Theorem 6.5.4,

− d

dt
|ν−(g̃(t))− ν−(gE)|θ = θ|ν−(g̃(t))− ν−(gE)|θ−1 d

dt
ν−(g̃(t))

≥ C5|ν−(g̃(t))− ν−(gE)|−σ(1+η)
∥∥ ˙̃g(t)

∥∥1+η

L2

∥∥ ˙̃g(t)
∥∥1−η
L2

≥ C6

∥∥ ˙̃g(t)
∥∥
Ck
.

Hence by integration,

ˆ T ′

1

∥∥ ˙̃g(t)
∥∥
Ck
dt ≤ 1

C6
|ν−(g̃(1))− ν−(gE)|θ ≤ 1

C6
|ν−(g̃(0))− ν−(gE)|θ ≤ ε

4
,

provided that V is small enough. Thus, T =∞ and g̃(t) converges to some limit
metric g∞ ∈ U as t→∞. By the Lojasiewicz-Simon inequality, we have

d

dt
|ν−(g̃(t))− ν−(gE)|1−2σ ≥ C7,

which implies

|ν−(g̃(t))− ν−(gE)| ≤ C8(t+ 1)−
1

2σ−1 .

Therefore, ν−(g∞) = ν−(gE), so g∞ is an Einstein metric by Theorem 6.5.1.
The convergence is of polynomial rate, since for t1 < t2,

‖g̃(t1)− g̃(t2)‖Ck ≤ C9|ν−(g̃(t1))− ν−(gE)|θ ≤ C10(t1 + 1)−
θ

2σ−1 .

The assertion follows from t2 →∞.

Theorem 6.5.9 (Dynamical instability modulo diffeomorphism). Let (M, gE)
be a positive Einstein manifold that is not a local maximizer of ν−. Then there
exists a nontrivial ancient Ricci flow g(t), t ∈ (−∞, 0] and a 1-parameter family
of diffeomorphisms ϕt, t ∈ (−∞, 0] such that ϕ∗t g(t)→ gE as t→∞.
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Proof. Let gi → gE in Ck and suppose that ν−(gi) > ν−(gE) for all i. Let g̃i(t)
be the modified flow defined in (6.35), which starts at gi. Then by Lemma 6.5.5,
ḡi = gi(1) converges to gE in Ck−2 and by monotonicity, ν−(ḡi) > ν−(gE) as
well. Let ε > 0 be so small that Theorem 6.5.4 holds on Bk−2

2ε . Theorem 6.4.2
yields the differential inequality

d

dt
(ν−(g̃i(t))− ν−(gE))1−2σ ≥ −C1,

from which we obtain

[(ν−(g̃i(t))− ν−(gE))1−2σ − C1(s− t)]−
1

2σ−1 ≤ (ν−(g̃i(s))− ν−(gE)),

as long as g̃i(t) stays in Bk−2
2ε . Thus, there exists a ti such that

‖g̃i(ti)− gE‖Ck−2 = ε,

and ti →∞. If {ti} was bounded, g̃i(ti)→ gE in Ck−2. By interpolation,∥∥ ˙̃gi(t)
∥∥
Ck−2 ≤ C2

∥∥ ˙̃gi(t)
∥∥1−η
L2

for η > 0 as small as we want. We may assume that θ = 1− σ(1 + η) > 0. By
Theorem 6.5.4 , we have the differential inequality

d

dt
(ν−(g̃i(t))− ν−(gE))θ ≥ C3

∥∥ ˙̃gi(t)
∥∥1−η
L2 ,

if ν−(g̃i(t)) > ν−(gE). Thus,

ε = ‖g̃i(ti)− gE‖Ck−2 ≤ ‖ḡi − gE‖Ck−2 + C4(ν−(g̃i(ti))− ν−(gE))θ. (6.36)

Now put g̃si (t) := g̃i(t+ ti), t ∈ [Ti, 0], where Ti = 1− ti → −∞. We have

‖g̃si (t)− gE‖Ck−2 ≤ ε ∀t ∈ [Ti, 0],

g̃si (Ti)→ gE in Ck−2.

Because the embedding Ck−3(M) ⊂ Ck−2(M) is compact, we can choose a
subsequence of the g̃si , converging in Ck−3

loc (M × (−∞, 0]) to an ancient flow
g̃(t), t ∈ (−∞, 0], which satisfies the differential equation

˙̃g(t) = −2

(
Ricg̃(t) −

1

2τg̃(t)
g̃(t) +∇2fg̃(t)

)
.

Let ϕt, t ∈ (−∞, 0] be the diffeomorphisms generated by X(t) = gradg̃(t)fg̃(t),
where ϕ0 = id. Then g(t) = ϕ∗t g̃(t) is a solution of (6.32). From taking the limit
i → ∞ in (6.36), we have ε ≤ C4(ν−(g(0)) − ν−(gE))β/2 which shows that the
Ricci flow is nontrivial. For Ti ≤ t, the Lojasiewicz-Simon inequality implies

‖g̃si (Ti)− g̃si (t)‖Ck−3 ≤C4(ν−(g̃i(t+ ti))− ν−(gE))θ

≤C4[−C1t+ (ν−(g̃i(ti))− ν−(gE))1−2σ]−
θ

2σ−1

≤[−C5t+ C6]−
θ

2σ−1 .

120



Thus,

‖gE − g̃(t)‖Ck−3 ≤‖gE − g̃si (Ti)‖Ck−3 + [−C5t+ C6]−
θ

2σ−1

+ ‖g̃si (t)− g̃(t)‖Ck−3 .

It follows that ‖gE − g̃(t)‖Ck−3 → 0 as t → −∞. Therefore, (ϕ−1
t )∗g(t) → gE

in Ck−3 as t→ −∞ which proves the theorem.

Remark 6.5.10. We hope to generalize Theorems 6.5.8 and 6.5.9 to the case of
shrinking gradient Ricci solitons, i.e. we want to characterize dynamical stability
and instability of them in terms of the local behavior of ν−.

6.6 Dynamical Instability of the Complex Pro-
jective Space

Theorem 6.5.1 is rather unsatisfactory, because we cannot completely character-
ize the maximality of the shrinker entropy in terms of the local behavior of the
Yamabe functional and an eigenvalue assumption. In fact there are several ex-
amples of Einstein manifolds (including (CPn, gst), see [CH13]) which are local
maxima of the Yamabe functional but to which we cannot apply Theorem 6.5.1
because 2µ (where µ is the Einstein constant) is exactly the smallest nonzero
eigenvalue of the Laplacian.

In this section, we prove an instability criterion for such Einstein metrics.
The idea is simple but its realization needs a long calculation. It consists of
explicitly computing a third variation of the shrinker entropy.

Proposition 6.6.1. Let (M, gE) be a positive Einstein manifold with constant
µ and suppose we have a function v ∈ C∞(M) such that ∆v = 2µ · v. Then the
third variation of ν− in the direction of v · gE is given by

d3

dt3

∣∣∣∣
t=0

ν−(gE + tv · gE) = (3n− 4)

 
M

v3 dV.

Proof. Put u = e−f

(4πτ)n/2
. By the first variation, the negative of the L2(u dV )-

gradient of ν− is given by ∇ν− = τ(Ric +∇2f)− g
2 , so

d

dt

∣∣∣∣
t=0

ν−(gE + th) = −
ˆ
M

〈∇ν−, h〉u dV.

Since (M, gE) is a critical point of ν−, we clearly have ∇ν− = 0. Since v is a
nonconstant eigenfunction,

´
M
v dV = 0. Thus by Lemma 6.2.3, τ ′ vanishes.

Recall from (6.6) that τgE = 1
2µ and fgE is constant. Therefore, by the first
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variation of the Ricci tensor,

∇ν′− =τ ′µgE +
1

2µ
(Ric′ +∇2(f ′))− g′

2

=
1

2µ

(
1

2
∆L(v · gE)− δ∗δ(v · gE)− 1

2
∇2tr(v · gE) +∇2(f ′)

)
− v · gE

2

=
1

2µ

(
1

2
∆v · gE + (1− n

2
)∇2v +∇2(f ′)

)
− v · gE

2

=
1

2µ

((
1− n

2

)
∇2v +∇2(f ′)

)
.

To compute f ′, we consider the Euler-Lagrange equation

τ(2∆f + |∇f |2 − scal)− f + n+ ν− = 0. (6.37)

By differentiating once and using τ ′ = 0 and ν′− = 0,

1

2µ
(2∆f ′ − scal′)− f ′ = 0,

and by the first variation of the scalar curvature,(
1

µ
∆− 1

)
f ′ =

1

2µ
scal′ =

1

2µ
(∆(tr(v · gE)) + δδ(v · gE)− 〈Ric, v · gE〉)

=
1

2µ
((n− 1)∆v − nµv).

By Obata’s eigenvalue estimate, 1
µ∆ − 1 is invertible. By using the eigenvalue

equation, we therefore obtain

f ′ =
(n

2
− 1
)
v. (6.38)

Thus,

∇ν′− = 0, (6.39)

and therefore, the third variation equals

d3

dt3

∣∣∣∣
t=0

ν−(gE + tv · gE) = −
ˆ
M

〈∇ν′′−, v · gE〉u dV.

Since τgE = 1
2µ and τ ′ = 0,

∇ν′′− = −τ ′′ · gE +
1

2µ
(Ric +∇2f)′′.

The function u is constant since f is constant. Thus, the τ ′′-term drops out
after integration. We are left with

d3

dt3

∣∣∣∣
t=0

ν−(gE + tv · gE) = − 1

2µ

ˆ
M

〈(Ric +∇2f)′′, v · gE〉u dV. (6.40)

122



We first compute Ric′′. Let gt = (1 + tv)gE and vt = v
1+tv . Then g′t = vt · gt

and d
dt |t=0vt = −v2. By the first variation of the Ricci tensor,

d

dt
Ricgt =

1

2
∆L(vt · gt)− δ∗δ(vt · gt)−

1

2
∇2tr(vt · gt)

=
1

2
[(∆vt)gt − (n− 2)∇2vt],

and the second variation at gE is equal to

d2

dt2

∣∣∣∣
t=0

RicgE+tv·gE =
d

dt

∣∣∣∣
t=0

1

2
[(∆vt)gt − (n− 2)∇2vt]

=
1

2
[(∆′v + ∆(v′) + ∆v · v)gE − (n− 2)(∇2)′v − (n− 2)∇2(v′)]

=
1

2
[(〈v · gE ,∇2v〉 − 〈δ(v · gE) +

1

2
∇tr(v · gE),∇v〉)gE

+ (−∆v · v + 2|∇v|2)gE − (n− 2)

(
1

2
|∇v|2gE −∇v ⊗∇v

)
+ (n− 2)(2∇2v · v + 2∇v ⊗∇v)]

=−
(n

2
− 2
)
|∇v|2gE − (∆v · v)gE + 3

(n
2
− 1
)
∇v ⊗∇v + (n− 2)∇2v · v

=−
(n

2
− 2
)
|∇v|2gE − 2µv2gE + 3

(n
2
− 1
)
∇v ⊗∇v + (n− 2)∇2v · v,

where we used the first variational formulas of the Laplacian and the Hessian
in Lemma A.3. Let us now compute the (∇2f)′′-term. Since fgE is constant,

d2

dt2

∣∣∣∣
t=0

∇2fgE+tv·gE = ∇2(f ′′) + 2(∇2)′f ′

= ∇2(f ′′)−∇v ⊗∇f ′ −∇f ′ ⊗∇v + 〈∇f ′,∇v〉gE .

We already know that f ′ = (n2 − 1)v by (6.38). To compute f ′′, we differentiate
(6.37) twice. By (6.39), ν′′− = 0. Since also τ ′ = 0 as remarked above, we obtain

0 = −τ ′′scal + τ(2∆f + |∇f |2 − scal)′′ − f ′′

= −τ ′′nµ+
1

µ
∆f ′′ +

2

µ
∆′f ′ +

1

µ
|∇(f ′)|2 − 1

2µ
scal′′ − f ′′.

(6.41)

Because ∆v = 2µv,

∆′f ′ =〈v · g,∇2f ′〉 −
〈
δ(v · g) +

1

2
∇tr(v · g),∇f ′

〉
6.38
=
(n

2
− 1
) [
−v∆v − 〈−∇v +

n

2
∇v,∇v〉

]
=
(n

2
− 1
) [
−2µv2 −

(n
2
− 1
)
|∇v|2

]
.

(6.42)

Next, we compute scal′′. As above, let gt = (1 + tv)gE and vt = v
1+tv . Then by

the first variation of the scalar curvature,

d

dt
scalgt =∆trg′t + δδ(g′t)− 〈Ricgt , g

′
t〉

=(n− 1)∆vt − scalgtvt.

123



The second variation of the scalar curvature at gE is equal to

d2

dt2
|t=0scalgE+tv·gE =

d

dt
|t=0[(n− 1)∆vt − scalgtvt]

=(n− 1)[∆′v −∆(v′)]− nµ · v′ − scal′v

=(n− 1)[〈v · gE ,∇2v〉 − 〈δ(v · gE) +
1

2
∇tr(v · gE),∇v〉+ ∆(v2)]

+ nµ · v2 − [∆tr(v · gE) + δδ(v · gE)− 〈Ric, v · gE〉]v

=(n− 1)
[
−∆v · v −

(n
2
− 1
)
|∇v|2 + 2∆v · v − 2|∇v|2

]
+ 2nµ · v2 − (n− 1)∆v · v

=− (n− 1)
(n

2
+ 1
)
|∇v|2 + 2µn · v2.

By (6.38), |∇(f ′)|2 = (n2 − 1)2|∇v|2. Thus, we can rewrite (6.41) as(
1

µ
∆− 1

)
f ′′ =τ ′′nµ− 1

µ
(2∆′f ′ + |∇(f ′)|2 − 1

2
scal′′)

(6.42)
= τ ′′nµ− 1

µ
[−2(n− 2)µv2 − 2

(n
2
− 1
)2

|∇v|2 +
(n

2
− 1
)2

|∇v|2

+
n− 1

2

(n
2

+ 1
)
|∇v|2 − µnv2]

=τ ′′nµ− 1

µ

[
(−3n+ 4)µv2 +

(
5

4
n− 3

2

)
|∇v|2

]
=: (A).

Since 1
µ∆− 1 is invertible, we can rewrite the above as

f ′′ = (
1

µ
∆− 1)−1(A).

By integrating,

− 1

2µ

ˆ
M

〈(∇2f)′′, v · gE〉u dV = − 1

2µ

 
M

〈(∇2f)′′, v · gE〉 dV

=− 1

2µ

 
M

〈∇2(f ′′)−∇v ⊗∇f ′ −∇f ′ ⊗∇v + 〈∇f ′,∇v〉gE , v · gE〉 dV

6.38
= − 1

2µ

 
M

〈
∇2(f ′′)− (n− 2)∇v ⊗∇v +

(n
2
− 1
)
|∇v|2gE , v · gE

〉
dV

=− 1

2µ

 
M

[
−∆(f ′′)v +

1

2
(n− 2)2|∇v|2v

]
dV

=− 1

2µ

 
M

[
−(A)

(
1

µ
∆− 1

)−1

∆v +
1

2
(n− 2)2|∇v|2v

]
dV

=− 1

2µ

 
M

[
−2µ(A)v +

1

2
(n− 2)2|∇v|2v

]
dV.

Now we insert the definition of (A). Since the term containing τ ′′ drops out
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after integration, we are left with

− 1

2µ

ˆ
M

〈(∇2f)′′, v · gE〉u dV =

− 1

2µ

 
M

[
(−6n+ 8)µv3 +

1

2
(n2 + n− 2)|∇v|2v

]
dV.

By the second variation of the Ricci tensor computed above,

− 1

2µ

ˆ
M

〈Ric′′, v · gE〉u dV = − 1

2µ

 
M

〈Ric′′, v · gE〉 dV

=− 1

2µ

 
M

[−n
(n

2
− 2
)
|∇v|2v

− 2µnv3 + 3
(n

2
− 1
)
|∇v|2v − (n− 2)∆v · v2] dV

=− 1

2µ

 
M

[(
−n

2

2
+

7n

2
− 3

)
|∇v|2v − 4(n− 1)µv3

]
dV.

Adding up these two terms, we obtain

d3

dt3

∣∣∣∣
t=0

ν−(g + tv · g)
(6.40)

= − 1

2µ

 
M

[(−10n+ 12)µv3 + 4(n− 1)|∇v|2v] dV.

By integration by parts,
ˆ
M

|∇v|2v dV =
1

2

ˆ
M

∆v · v2 dV = µ

ˆ
M

v3 dV,

and therefore, we finally have

d3

dt3

∣∣∣∣
t=0

ν−(g + tv · g) = (3n− 4)

 
M

v3 dV,

which finishes the proof.

Corollary 6.6.2. Let (M, gE) be a positive Einstein manifold with constant
µ. Suppose there exists a function v ∈ C∞(M) such that ∆v = 2µv and´
M
v3 dV 6= 0. Then gE is not a local maximum of ν−.

Proof. Let ϕ(t) = ν−(gE + tv · gE). By the proof of the proposition above,
ϕ′(0) = 0, ϕ′′(0) = 0 and ϕ′′′(0) 6= 0. Depending on the sign of the third
variation, ϕ(t) > ϕ(0) either for t ∈ (−ε, 0) or t ∈ (0, ε). This proves the
assertion.

Because the eigenfunctions on CPn can be constructed explicitly, we are
able to find an eigenfunction satisfying the above condition. Thus we obtain

Theorem 6.6.3. The manifold (CPn, gst), n > 1 is dynamically unstable mod-
ulo diffeomorphism.

Proof. Let µ be the Einstein constant. We prove the existence of a function
v ∈ C∞(CPn) satisfying ∆v = 2µv and

´
CPn v

3 dV 6= 0. First, we rewiev
the construction of eigenfunctions on CPn as explained in [BGM71, Section
III C]. Consider Cn+1 = R2n+2 with coordinates (x1, . . . , xn+1, y1, . . . , yn+1)
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and let zj = xj + iyj , z̄j = xj − iyj be the complex coordinates. Defining
∂zj = 1

2 (∂xj−i∂yj ) and ∂z̄j = 1
2 (∂xj−i∂yj ), we can rewrite the Laplace operator

on Cn+1 as

∆ = −4

n+1∑
j=1

∂zj ◦ ∂z̄j .

Let Pk,k be the space of complex polynomials on Cn+1 which are homogeneous
of degree k in z and z̄ and let Hk,k the subspace of harmonic polynomials in
Pk,k. We have

Pk,k = Hk,k ⊕ r2Pk−1,k−1.

Elements in Pk,k are S1-invariant and thus, they descend to functions on the
quotient CPn = S2n+1/S1. The eigenfunctions to the k-th eigenvalue of the
Laplacian on CPn (where 0 is meant to be the 0-th eigenvalue) are precisely
the restrictions of functions in Hk,k. Since 2µ is the first nonzero eigenvalue, its
eigenfunctions are restrictions of functions in H1,1.

Let h1(z, z̄) = z1z̄2 + z2z̄1, h2(z, z̄) = z2z̄3 + z3z̄2, h3(z, z̄) = z3z̄1 + z1z̄3 and
let v be the eigenfunction which is the restriction of h = h1 + h2 + h3 ∈ H1,1.
Note that h is real-valued and so is v. Then v3 is the restriction of

h3 ∈ P3,3 = H3,3 ⊕ r2H2,2 ⊕ r4H1,1 ⊕ r6H0,0. (6.43)

We show that
´
S2n+1 h

3 dV 6= 0. At first,

h3 =

3∑
j=1

h3
j + 3

∑
j 6=l

hj · h2
l + 6h1 · h2 · h3.

Note that
´
S2n+1 h

3
1 dV = 0 because h1 is antisymmetric with respect to the

isometry (z1, z̄1) 7→ (−z1,−z̄1). For the same reason,
´
S2n+1 h1 · h2

2 dV = 0.
Similarly, we show that all other terms of this form vanish after integration so
it remains to deal with the last term of above. Note that

h1 · h2 · h3(z, z̄) = 2|z1|2|z2|2|z3|2 +
∑
σ∈S3

|zσ(1)|2z2
σ(2)z̄

2
σ(3).

Consider |z1|2z2
2 z̄

2
3 . This polynomial is antisymmetric with respect to the isom-

etry (z2, z̄2) 7→ (i · z2, i · z̄2) and therefore,
ˆ
S2n+1

|z1|2z2
2 z̄

2
3 dV = 0.

Similarly, we deal with the other summands. In summary, we have
ˆ
S2n+1

h3 dV = 6

ˆ
S2n+1

h1 · h2 · h3 dV = 12

ˆ
S2n+1

|z1|2|z2|2|z3|2 dV > 0,

since the integrand on the right hand side is nonnegative and not identically
zero. We decompose h3 =

∑3
j=0 hj , where hj ∈ r6−2jHj,j . Since the re-

strictions of the hj to S2n+1 are eigenfunctions to the 2j-th eigenvalue of the
Laplacian on S2n+1 (see [BGM71, Section III C]), we have that h0 6= 0 because
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the integral is nonvanishing. This decomposition induces a decomposition of
v3 =

∑3
i=0 vi where vi is an eigenfunction of the i-th eigenvalue of ∆CPn and

v0 6= 0. Therefore,
´
CPn v

3 dV 6= 0.
By Corollary 6.6.2, (CPn, gst) is not a local maximum of ν− and thus, it is

dynamically unstable modulo diffeomorphism by Theorem 6.5.9.

Remark 6.6.4. In contrast to the above, (CPn, gst) is dynamically stable with
respect to the Kähler-Ricci flow, see [SW13].

Remark 6.6.5. It is conjectured (c.f. [Cao10]) that the only linearly stable
simply-connected4-dimensional positive Einstein manifolds are (Sn, gst) and
(CPn, gst). If this conjecture holds, the above theorem implies that the round
sphere is the only dynamically stable Einstein manifold in this class.

Remark 6.6.6. There are some other neutrally linearly stable Einstein metrics
where 2µ ∈ spec(∆), see [CH13]. It seems likely that there we can find eigen-
functions with eigenvalue 2µ such that

´
M
v3 dV 6= 0.

Lemma 6.7. blablabla
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Appendix A

Calculus of Variation

Here, we prove the variational formulas we used throughout the thesis.

Lemma A.1. Let ω, ξ ∈ Ω1(M) and T, S ∈ Γ(S2M). Then the first variation
of the induced scalar products and the trace are given by

d

dt

∣∣∣∣
t=0

〈ω, ξ〉g+th = −h(ω], ξ]),

d

dt

∣∣∣∣
t=0

〈T, S〉g+th = −2〈T, h ◦ S〉g,

d

dt

∣∣∣∣
t=0

trg+thT = −〈T, h〉g.

Furthermore, the first variation of the volume element is given by

d

dt

∣∣∣∣
t=0

dVg+th =
1

2
trgh · dVg.

Proof. We use local coordinates. The first formula follows from

d

dt

∣∣∣∣
t=0

(g + th)ijωiξj = −hijωiξj = −hklgkiωigljξj .

The second formula follows from

d

dt

∣∣∣∣
t=0

(g + th)ij(g + th)klTikSjl = −hijgklTikSjl − gijhklTikSjl

= −2gijgkmTikSjlg
lnhnm

= −2gijgkmTik(h ◦ S)km.

The variation of the trace follows from

d

dt

∣∣∣∣
t=0

(g + th)ijTij = −hijTij = −gkigljhklTij .
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Finally, we compute the first variation of the volume element and we obtain

d

dt

∣∣∣∣
t=0

dV =
d

dt

∣∣∣∣
t=0

[det((g + th)ij)]
1/2dx

=
1

2
det(gij)

−1/2 d

dt

∣∣∣∣
t=0

[det((g + th)ij)]dx

=
1

2
trhdet(gij)

1/2dx =
1

2
trh · dV.

Lemma A.2. Let (M, g) be Riemannian manifold and denote the first variation
of the Levi-Civita connection in the direction of h by G. Then G is a (1, 2) tensor
field, given by

g(G(X,Y ), Z) =
1

2
(∇Xh(Y, Z) +∇Y h(X,Z)−∇Zh(X,Y )).

The first variation of the Riemann curvature tensor (as a (1, 3) and as a (0, 4)-
tensor), the Ricci tensor and the scalar curvature are given by

d

dt

∣∣∣∣
t=0

g+thRX,Y Z =(∇XG)(Y,Z)− (∇YG)(X,Z),

d

dt

∣∣∣∣
t=0

Rg+th(X,Y, Z,W ) =
1

2
(∇2

X,Zh(Y,W ) +∇2
Y,Wh(X,Z)−∇2

Y,Zh(X,W )

−∇2
X,Wh(Y,Z) + h(RX,Y Z,W )− h(Z,RX,YW )),

d

dt

∣∣∣∣
t=0

Ricg+th(X,Y ) =
1

2
∆Lh(X,Y )− δ∗(δh)(X,Y )− 1

2
∇2
X,Y trh,

d

dt

∣∣∣∣
t=0

scalg+th =∆g(trgh) + δg(δgh)− 〈Ricg, h〉g.

Proof. The difference between two connections is a (1, 2)-tensor field, so G is.
We do the computations at some point p and use normal coordinates with
respect to g centered at p. First, we have

Gkij =
d

dt

∣∣∣∣
t=0

Γkij =
1

2
gkl(∂ihjl + ∂jhil − ∂khij)

=
1

2
gkl(∇ihjl +∇jhil −∇khij).

For the (1, 3) curvature tensor,

d

dt

∣∣∣∣
t=0

R l
ijk =

d

dt

∣∣∣∣
t=0

(∂iΓ
l
jk − ∂jΓlik + ΓmjkΓlim − ΓmikΓljm)

= ∂iG
l
jk − ∂jGlik

= ∇iGljk −∇jGlik.

For the (0, 4) curvature tensor,

d

dt

∣∣∣∣
t=0

Rijkl =
d

dt

∣∣∣∣
t=0

(glmR
m

ijk ) =hlmR
m

ijk + glm(∇iGmjk −∇jGmik)

=hlmR
m

ijk +
1

2
(∇2

ijhkl +∇2
ikhjl −∇2

ilhjk)

− 1

2
(∇2

jihkl +∇2
jkhil −∇2

jlhik).
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By the Ricci identity,

1

2
(∇2

ijhkl −∇2
jihkl) = −1

2
(R m

ijk hml +R m
ijl hkm),

which yields

d

dt

∣∣∣∣
t=0

Rijkl =
1

2
(∇2

ikhjl −∇2
ilhjk −∇2

jkhil +∇2
jlhik + hlmR

m
ijk −R m

ijl hkm).

The first variation of the Ricci tensor is

d

dt

∣∣∣∣
t=0

Ricjk =
d

dt

∣∣∣∣
t=0

R i
ijk =∇iGijk −∇jGiik

=
1

2
gim(∇2

ijhkm +∇2
ikhjm −∇2

imhjk)

− 1

2
gim(∇2

jihkm +∇2
jkhim −∇2

jmhik).

Again by the Ricci identity,

1

2
gim(∇2

ijhkm −∇2
jihkm) = −1

2
gimR n

ijk hnm +
1

2
Ricnj hkn,

and

1

2
gim∇2

ikhjm =
1

2
gim∇2

ikhmj =
1

2
gim(∇2

ikhmj −∇2
kihmj +∇2

kihmj)

=
1

2
gim(R n

kim hnj +R n
kij hmn) +

1

2
gim∇2

kihmj

=
1

2
Ricmk hmj +

1

2
gimR n

kij hmn −
1

2
∇k(δh)j .

By rearranging the terms from above,

d

dt

∣∣∣∣
t=0

Ricjk =
1

2
(−gim∇2

imhjk + Ricmk hmj + Ricmj hkm − 2gimRnijkhnm)

− 1

2
(∇k(δh)j +∇j(δh)k)− 1

2
∇jktrh

=
1

2
∆Lhjk − δ∗(δh)jk −

1

2
∇2
jktrh.

The first variation of the scalar curvature is

d

dt

∣∣∣∣
t=0

scal =
d

dt

∣∣∣∣
t=0

(gijRicij) =− hijRicij + gij
d

dt

∣∣∣∣
t=0

Ricij

=− hijRicij + ∆trh+ δ(δh).

Lemma A.3. The first variation of the Hessian and the Laplacian are given by

d

dt

∣∣∣∣
t=0

g+th∇2
X,Y f =− 1

2
[∇Xh(Y, gradf) +∇Y h(X, gradf)−∇gradfh(X,Y )],

d

dt

∣∣∣∣
t=0

∆g+thf =〈h,∇2f〉 −
〈
δh+

1

2
∇trh,∇f

〉
.
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The first variation of the symmetrised covariant differential and the divergence
of a 1-form ω are given by

d

dt

∣∣∣∣
t=0

δ∗g+thω(X,Y ) =− 1

2
[∇Xh(Y, ω]) +∇Y h(X,ω])−∇ω]h(X,Y )],

d

dt

∣∣∣∣
t=0

δg+thω =〈h,∇ω〉 − δh(ω])− 1

2
〈∇trh, ω〉.

Proof. We first prove the last two formulas. We again use local coordinates. Let
ω be a 1-form. Then the first variation of its symmetrised covariant differential
is given by

d

dt

∣∣∣∣
t=0

(δ∗ω)ij =
d

dt

∣∣∣∣
t=0

1

2
(∂iωj + ∂jωi − (Γkij + Γkji)ωk)

=− 1

2
gkl(∇ihjl +∇jhil −∇lhij)ωk

by the first variation of the Levi-Civita connection. The first variation of the
divergence is given by

d

dt

∣∣∣∣
t=0

(δω) = − d

dt

∣∣∣∣
t=0

(gij(δ∗ω)ij)

= hij(δ∗ω)ij +
1

2
gijgkl(∇ihjl +∇jhil −∇lhij)ωk

= hij(∇ω)ij − gkl(δhl +∇ltrh)ωk.

Since ∇2f = δ∗(∇f) and ∆f = δ(∇f), the first two formulas follow from the
others by putting ω = ∇f .

Lemma A.4. Let h be a (0, 2)-tensor field. Then we have

d

dt

∣∣∣∣
t=0

∇g+tkh =k ∗ ∇h+∇k ∗ h,

d

dt

∣∣∣∣
t=0

δg+tkh =k ∗ ∇h+∇k ∗ h,

d

dt

∣∣∣∣
t=0

(∆L)g+tkh =k ∗ ∇2h+∇2k ∗ h+∇k ∗ ∇h+R ∗ k ∗ h,

d

dt

∣∣∣∣
t=0

(∆E)g+tkh =k ∗ ∇2h+∇2k ∗ h+∇k ∗ ∇h+R ∗ k ∗ h.

Here, ∗ is Hamilton’s notation for a combination of tensor products with con-
tractions.

Proof. The variation of the covariant differential of a (0, 2)-tensor field h in the
direction of k is given by

d

dt

∣∣∣∣
t=0

∇ihjk =
d

dt

∣∣∣∣
t=0

(∂ihjk − Γlijhlk − Γlikhjl)

=− 1

2
glm(∇ikjm +∇jkim −∇mkij)hlk

− 1

2
glm(∇ikkm +∇kkim −∇mkik)hjl,
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which yields

d

dt

∣∣∣∣
t=0

δhk =− d

dt

∣∣∣∣
t=0

(gij∇ihjk)

=hij∇ihjk + gij
d

dt
|t=0∇ihjk

=kij∇ihjk −
1

2
gijglm(∇ikjm +∇jkim −∇mkij)hlk

− 1

2
gijglm(∇ikkm +∇kkim −∇mkik)hjl.

To compute the last two formulas, we first compute the first variation of the
Hessian on (0, 2)-tensors. Schematically, the local expression is of the form

∇2
ijhkl = ∂i(∂jhkl + (Γ ∗ h)jkl) + (Γ ∗ ∇h)ijkl.

We now use normal coordinates with respect to g centered at some fixed point
p. Then

d

dt

∣∣∣∣
t=0

(∇2
ijhkl) = ∂i

((
d

dt

∣∣∣∣
t=0

Γ

)
∗ h
)
jkl

+

((
d

dt
|t=0Γ

)
∗ ∇h

)
ijkl

= ∇i((∇k ∗ h)jkl) + (∇k ∗ ∇h)ijkl

= (∇2k ∗ h)ijkl + (∇k ∗ ∇h)ijkl.

For the connection Laplacian, we have

d

dt

∣∣∣∣
t=0

(∇∗∇h)kl = − d

dt

∣∣∣∣
t=0

(gij∇2
ijhkl)

= kij∇2
ijhkl − gij

d

dt
|t=0(∇2

ijhkl)

= (k ∗ ∇2h)kl + (∇2k ∗ h)kl + (∇k ∗ ∇h)kl.

By Lemma A.2, the first variational formulas for the Riemann curvature tensor
and the Ricci tensor are of the form

d

dt

∣∣∣∣
t=0

Rijkl = (∇2 ∗ h)ijkl + (R ∗ h)ijkl,

d

dt

∣∣∣∣
t=0

Ricij =
1

2
∆Lhij − δ∗(δh)ij −

1

2
∇2
ij(trh),

= (∇2 ∗ h)ij + (R ∗ h)ij .

Therefore, the variation of the Lichnerowicz Laplacian in the direction of k is
given by

d

dt

∣∣∣∣
t=0

(∆Lh)ij =
d

dt

∣∣∣∣
t=0

(∇∗∇h− Ric ◦ h− h ◦ Ric− 2R̊h)ij

= (k ∗ ∇2h)ij + (∇2k ∗ h)ij + (∇k ∗ ∇h)ij + (R ∗ k ∗ h)ij .

Similarly,

d

dt

∣∣∣∣
t=0

(∆Eh)ij =
d

dt

∣∣∣∣
t=0

(∇∗∇h− 2R̊h)ij

=(k ∗ ∇2h)ij + (∇2k ∗ h)ij + (∇k ∗ ∇h)ij + (R ∗ k ∗ h)ij .
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Lemma A.5. The second variations of the Hessian, the Laplacian, the Ricci
tensor and the scalar curvature have the schematic expressions

d

ds

d

dt

∣∣∣∣
s,t=0

∇2
g+sk+thf =k ∗ ∇h ∗ ∇f +∇k ∗ h ∗ ∇f,

d

ds

d

dt

∣∣∣∣
s,t=0

∆g+sk+thf =k ∗ ∇h ∗ ∇f +∇k ∗ h ∗ ∇f,

d

ds

d

dt

∣∣∣∣
s,t=0

Ricg+sk+th =k ∗ ∇2h+∇2k ∗ h+∇k ∗ ∇h+R ∗ k ∗ h,

d

ds

d

dt

∣∣∣∣
s,t=0

scalg+sk+th =k ∗ ∇2h+∇2k ∗ h+∇k ∗ ∇h+R ∗ k ∗ h.

Proof. We first compute the second variation of the Hessian in the direction of
h and k. Using Lemma A.3 and Lemma A.4, we obtain

d

ds

d

dt

∣∣∣∣
s,t=0

∇2
ijf =

d

ds

∣∣∣∣
s=0

(
−1

2
gkl(∇ihjl +∇jhil −∇lhij)∂kf

)
=

1

2
kkl(∇ihjl +∇jhil −∇lhij)∂kf) +∇k ∗ h ∗ ∇f

= k ∗ ∇h ∗ ∇f +∇k ∗ h ∗ ∇f.

Therefore, using Lemma A.3 again, the second variation of the Laplacian is
given by

d

ds

d

dt

∣∣∣∣
s,t=0

∆f = − d

ds

d

dt

∣∣∣∣
s,t=0

(gij∇2
ijf)

= hij
d

ds

∣∣∣∣
s=0

∇2
ijf + kij

d

dt

∣∣∣∣
t=0

∇2
ijf − gij

d

ds

d

dt

∣∣∣∣
s,t=0

∇2
ijf

= k ∗ ∇h ∗ ∇f +∇k ∗ h ∗ ∇f.

Now we are able to compute the second variation of the Ricci tensor in the
direction of h and k. By Lemma A.1, Lemma A.3 and Lemma A.4,

d

ds

d

dt
|s,t=0Ricij =

d

ds

∣∣∣∣
s=0

(
1

2
∆Lhij − δ∗(δh)ij −

1

2
∇2
ij(trh)

)
=

1

2
(
d

ds

∣∣∣∣
s=0

∆L)hij − (
d

ds

∣∣∣∣
s=0

δ∗)(δh)ij − δ∗(
d

ds

∣∣∣∣
s=0

δh)ij

− 1

2
(
d

ds

∣∣∣∣
s=0

∇2
ij)(trh) +

1

2
∇2
ij〈k, h〉

=(k ∗ ∇2h)ij + (∇2k ∗ h)ij + (∇k ∗ ∇h)ij + (R ∗ k ∗ h)ij .

For the scalar curvature, we therefore obtain, using Lemma A.2,

d

ds

d

dt
|s,t=0scal =

d

ds

d

dt

∣∣∣∣
s,t=0

(gijRicij)

= −kij d
dt

∣∣∣∣
t=0

Ricij − hij
d

ds

∣∣∣∣
s=0

Ricij + gij
d

ds

d

dt

∣∣∣∣
s,t=0

Ricij

= k ∗ ∇2h+∇2k ∗ h+∇k ∗ ∇h+R ∗ k ∗ h.
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gE (0))C
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∗, Hamilton’s notation, 69, 132
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M , 6
C∞g (M), 14
Ck,α(M), space of Ck,α-functions on

M , 97
Ck,αgE (M), 97
CgE , a map, 72
D, twisted Dirac operator, 22
D1, a differential operator, 35
D2, a differential operator, 35
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F4, an exceptional Lie group, 22
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H, a differential operator, 60
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Holp(M, g), Holonomy of (M, g) w.r.t.

p, 25
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K, sectional curvature, 36
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Kmin, minimal sectional curvature, 36
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O(n), orthogonal group, 22
O1, an error term, 77, 108
O2, an error term, 77, 108
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R, Riemann curvature tensor, 5
S, Einstein-Hilbert functional, 9
S, spinor bundle, 22
SO(n), special orthogonal group, 22
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SpM , bundle of symmetric (0, p)- ten-

sors over M , 7
Sm, symmetric group, 51
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Sp(n), symplectic group, 22
Spin(n), spin group, 22
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Tn, torus, 21
TgM, tangent space ofM at g, 10
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U(n), unitary group, 22
W , Weyl curvature tensor, 43
W+, self-dual part of W , 50
W−, anti-self-dual part of W , 50
Wmax, 48
Wmin, 48
X(f), derivative of f along X, 7
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Y , Yamabe functional, 19
Y (M), Yamabe invariant of M , 19
Y (M, [g]), Yamabe constant of [g], 19
Y ([g]), Yamabe constant of [g], 47
[., .], Lie-bracket of vector fields, 7
[g], conformal class of g, 13
CPn, complex projective space, 17
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∆, Laplace-Beltrami operator, 7
∆0, Laplacian on functions, 21
∆1, connection Laplacian on Ω1(M),

28
∆C , complex Laplacian, 55
∆E , Einstein operator, 15
∆H , Hodge Laplacian, 15, 55
∆L, Lichnerowicz Laplacian, 8
Γ, space of smooth sections of a vector

bundle, 7
Γg(S

2M), 11
Γkij , Christoffel symbol, 24
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Ω1(M), space of 1-forms on M , 6
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RPn, real projective space, 22
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‖.‖Ck,α , Hölder norm, 6
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‖.‖Wk,p , Sobolev norm, 6
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δ∗, adjoint of δ, 7
δ−1(0), space of divergence-free (0, 2)-
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dim, dimension, 25
dV , volume element, 6ffl
, averaging integral, 64

gradf , gradient of the function f , 6
R̂ Riemann curvature operator, 53
Ŵ , Weyl curvature operator, 48
ind, index of a quadratic form, 32
ker, kernel of an operator, 16
λ(g), Perelman’s λ-functional, 59
〈., .〉, pointwise inner product, 6
Bkε , ε-ball w.r.t. the CkgE -norm, 82
C, set of metrics of constant scalar cur-

vature, 17
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E , set of Einstein metrics in a slice, 71
LX , Lie derivative along X, 7
M, the set of smooth Riemannian met-
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MC2,α

, set of C2,α-metrics, 87

Mc, set of smooth metrics with volume
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P, set of Einstein metrics with fixed
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Sg0
, slice of the metric g0, 16

W+(g, f), 62
W+(g, f, σ), 62
W−(g, f, τ), 94
Yc, Yamabe metrics of volume c, 19
X(M), vector fields on M , 6
B̊, Bochner curvature action on S2M ,

56
R̊, curvature action on S2M , 8
W̊ , Weyl curvature action on S2M , 43
End, endomorphism bundle, 25
dx, Euclidean volume element, 130
pr, projection map, 39
span, linear span, 42
µ+(g), expander entropy, 63
µ−(g, τ), 94
mult∆(λ), multiplicity of λ as an eigen-

value of ∆, 32
∇, covariant derivative, 7
∇k, k’th covariant derivative, 6
ν−(g), shrinker entropy, 94
�, symmetric tensor product, 25
ω], sharp of ω, 6
⊗, tensor product, 31
w(p), 48
?, Kulkarni-Nomizu product, 43
∂i, directional derivative, 130
∂xi , directional derivative, 126
ρ(G), representation of G, 26
Ric, Ricci tensor, 5
Ric0, traceless Ricci tensor, 43, 108
scal, scalar curvature, 5
spec, spectrum, 21
spec+, positive spectrum, 18
τg, minimizer realizing ν−(g), 94
Diff(M), group of diffeomorphism of

M , 13
fd(M), flat dimension of M , 39
fd(M)p, flat dimension of M at p, 39
tr, trace, 7
tr−1(0), space of traceless symmetric

(0, 2)-tensors, 13
|.|, pointwise norm, 6
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b(p), 57
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b+(p), 56
dF , differential of F , 26
fg, minimizer realizing λ(g), 59
fg, minimizer realizing µ+(g), 63
fg, minimizer realizing ν−(g), 94
g, Riemannian metric, 5
gE , Einstein metric, 61
gRF , Ricci-flat metric, 60
geukl, flat metric on Tn, 21
gst, standard metric on Sn,RPn,CPn,

14
r(p), 36
r0, 35
w(p), 44

1-form, 6, 15, 22, 28–30, 42, 74, 132
1-parameter family, 89, 118, 119
1-parameter group, 7
2-form, 48, 52, 54
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adjoint map, 7, 25
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affine map, 23, 24
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119, 120
averaging integral, 64

Banach manifold, 73, 87, 88, 98
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first, 50
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group, 23, 27
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bilinear, 15, 38–41
black hole, 2, 17
Bochner curvature tensor, 2, 54–56
Bochner formula, 2, 22, 35, 41, 57
bootstrap, 81, 99

C2-topology, 18, 19
Cauchy-Schwarz inequality, 48, 57, 58
codimension, 11
cohomology class, 55
coindex, 1, 16
compact embedding, 84, 92, 111, 120
complex coordinates, 126

complex projective space, 33, 121
conformal, 85, 113

class, 1, 13, 14, 16, 19, 45, 47, 112
transformation, 43

conformally
equivalent, 19, 43, 47
invariant, 19, 47

connection, 22, 130
Levi-Civita, 130

constant curvature, 41–43
constant scalar curvature, 1, 17–19, 84,
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contraction, 11, 69, 132
covariant derivative, 7, 78
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115, 121
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diffeomorphism

group, 7, 13, 88, 115
invariance, 18, 19, 59, 63, 75, 76,

88, 89, 95–97, 107, 115, 116,
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differentiable sphere theorem, 1, 37
differential equation, 92, 93, 116, 120
differential inequality, 83, 91, 111, 120
differential operator, 15, 35, 105
Dirac operator, 22, 23
distribution

of the tangent bundle, 39–41
divergence, 7, 13
divergence-free, 71
dual basis, 6

eigenframe, 39
eigensection, 24, 25
eigenspace, 24, 37, 38, 40
eigentensor, 22
eigenvalue, 14
eigenvector, 24, 48
Einstein

constant, 11
equation, 1, 17
manifold, 11
metric, 11
operator, 2, 15
tensor, 10, 108

Einstein-Hilbert functional, 1, 9
elliptic regularity, 66, 67, 69, 73, 75,
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ellipticity, 88, 116
endomorphism, 24, 25
Euclidean motions, 23
Euler characteristic, 2, 9, 51
Euler-Lagrange equation, 1, 63–65, 67,

86, 97, 100, 103, 112, 113, 122
event horizon, 17
evolution equation, 78, 80, 108, 109,

116, 117
evolution inequality, 80, 109, 117
expander entropy, 62, 71

first variation
of µ+, 63, 65, 68, 70, 90
of ν−, 94, 102, 104, 115, 119
of τ , 95
of the covariant differential, 132
of the divergence, 132
of the Einstein-Hilbert functional,

10
of the Hessian, 103, 123, 131, 133
of the Laplacian, 67, 70, 102, 105,

123, 131
of the Levi-Civita connection, 130,

132
of the Lichnerowicz Laplacian, 133
of the Ricci tensor, 86, 103, 122,

123, 130, 131, 133
of the Riemann curvature tensor,

130, 133
of the scalar curvature, 17, 67, 102,

105, 122, 130, 131
of the symmetrised covariant dif-

ferential, 132
flat, 21, 23, 26
flat dimension, 39, 40
Fréchet-space, 77
Frobenius theorem, 41

Gauss-Bonnet formula, 2, 51, 52
Gauss-Bonnet theorem, 9
Gaussian curvature, 1, 9
general relativity, 1, 17
generator, 27
gradient, 6, 68, 70

L2, 10, 11, 88, 121
gradient Ricci soliton, 63

shrinking, 95, 115, 121
gradient flow, 59, 116
gravitational wave, 2

Hölder inequality, 46, 69, 70, 78, 102,
105

harmonic map, 112
hermitian, 54, 57
holonomy, 2, 21, 23, 25, 27, 41, 42

principle, 24, 31
reducible, 24, 25, 41, 42
representation, 24, 26

homogeneous, 23
hyperbolic space, 41, 84

identity map, 112
ILH

diffeomorphism, 17, 85, 112
inverse function theorem, 18
manifold, 9
submanifold, 17
theory, 9

implicit function theorem, 87, 88, 98,
106

indefinite, 44
index of a quadratic form, 2, 32, 33
induction, 80, 81, 109
infinite-dimensional, 9
infinitesimal complex deformation, 55
infinitesimal Einstein deformation, 2,

16
inhomogeneous, 23
integration by parts, 12, 63, 69, 74, 125
integro-differential equation, 116
integro-differential operator, 101
interpolation, 82, 83, 90, 91, 110, 111
inverse function theorem, 73
inverse limit Hilbert, 9
irreducible, 25
isometric, 23
isometry, 126
isomorphic, 25
isomorphism, 24, 88, 98

Jensen’s inequality, 64, 99

Kähler manifold, 54
Kähler-Einstein manifold, 2, 23, 54–57
Kato’s inequality, 45
kernel, 2, 21, 30, 42, 75
Kulkarni-Nomizu product, 43

L2-orthogonal
complement, 73, 77, 106, 116
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decomposition, 13, 15, 18, 72, 73,
75

λ-functional, 3, 59, 60, 94
Laplace-Beltrami operator, 2, 7
Laplacian, 7

complex, 55
connection, 28, 42, 133
Hodge, 15, 42, 55
Lichnerowicz, 8, 15, 17, 22, 42, 96

Leibnitz rule, 7
Lie derivative, 7, 59

of the metric, 13
linearization, 88, 115
linearly independant, 24
local isometry, 26
locally isometric, 42
Lojasiewicz exponent, 89
Lojasiewicz-Simon inequality, 3, 76, 88,

91, 92, 107, 115, 119, 120
Lorentzian cone, 17

maximum principle, 78–81, 109, 117
minimizer, 59, 63, 65, 66, 85, 98, 100
moduli space

of Einstein structures, 16, 17, 28
of flat structures, 28

modulo diffeomorphism, 2, 3, 59–61,
65, 84, 89, 91–93, 97, 118, 119

monotonicity, 82, 83, 91, 113, 120
µ+-functional, 63
multiplicity, 15, 32
musical isomorphism, 6, 25

negative semidefinite, 65
non-orientable, 27, 51
norm, 6

Ck, 6
Lp, 6
Hölder, 6
Sobolev, 6

normal coordinates, 130, 133
ν−-functional, 94
nullity of a quadratic form, 2

Obata’s eigenvalue estimate, 14, 32, 33,
72, 96, 102, 112, 122

Obata’s theorem, 32
operator

compact, 15
elliptic, 15

Laplace-type, 2
orientable, 27
orientation covering, 51
oriented, 49, 50
orthogonal splitting, 24, 38, 40, 96

parallel
decomposition, 31
section, 21
splitting, 25
tensor field, 26, 27
translation, 24, 25

plane, 36, 38, 40
Poincare conjecture, 1
polynomial, 126

harmonic, 126
positive definite, 74
principal torus bundle, 23
product, 2, 21, 23, 28, 31, 33, 42, 112
projection, 28, 73, 88, 115
pullback metric, 9

quater-pinched, 37

Real projective space, 21
reflection matrix, 27
representation, 26
resolvent set, 15
Ricci

decomposition, 43
entropy, 61
flow, 1, 59
identity, 6, 50, 72, 131
tensor, 5

Ricci-flat, 2, 3, 10, 11, 30, 31, 42, 59,
60

Riemann curvature operator, 53
Riemann curvature tensor, 5
Riemannian covering, 22
Riemannian functional, 2, 9
Riemannian metric, 5
Riemannian Schwarzschild metric, 23
Riemannian structure, 16
right action, 13
rotation matrix, 27

scalar curvature, 5
scalar product, 6, 129

L2, 6
pointwise, 6
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scale-invariance, 46, 78, 95, 96, 106
second variation

of µ+, 64, 68, 72
of ν−, 96, 103, 106
of the Einstein-Hilbert functional,

11, 14, 18
of the Hessian, 134
of the Laplacian, 69, 105, 134
of the Ricci tensor, 123, 125, 134
of the scalar curvature, 69, 105,

124, 134
sectional curvature, 36–40, 43, 56

pinched, 36, 38, 41, 42
self-adjoint, 8, 15, 48
sequence, 66, 88, 98
shrinker entropy, 94, 121
simply-connected, 61, 112, 127
skew-hermitian, 54, 57
slice, 16, 71, 76, 88, 106, 115

affine, 71, 73, 76, 106, 107
slice theorem, 16, 71, 75, 107
Sobolev

constant, 99
embedding, 66, 82, 100, 110
inequality, 45, 46, 53, 57, 99

spectral theory, 15
spectrum, 21, 28, 30, 42, 112, 114
sphere, 13, 14, 18, 19, 21, 23, 29, 41,

94, 127
Spin manifold, 22
spinor, 22

Killing, 22
parallel, 22

spinor bundle, 22
stable, 1, 16

dynamically, 2, 60, 61, 81, 89, 93,
97, 109, 118

Einstein-Hilbert, 61, 81, 97
linearly, 60, 97, 127
neutrally linearly, 97, 127
physically, 17
strictly, 16

standard basis, 27
stationary, 60, 94
Stokes’ theorem, 10
subbundle, 26, 38, 40
subgroup, 23
subsequence, 66, 88, 120
supreme metric, 19, 20, 61
symmetric space

of compact type, 22
of noncompact type, 84

symmetric tensor, 7
symmetric tensor product, 25, 44

tangent space, 10, 71, 106
Taylor expansion, 71, 73, 74, 76, 77,

87, 88, 106, 107, 115
tensor field, 5
tensor product, 69, 132
third variation

of µ+, 70
of ν−, 105, 121, 122

torus, 21, 41
total scalar curvature, 9, 10, 14, 85,

115
trace, 13, 129
traceless tensor, 24, 35, 41, 61
transverse traceless tensor, 13, 22
triangle inequality, 84
TT -tensor, 13, 17, 35, 44
TT -tensors, 21

universal covering, 23, 26
unstable, 1, 16

dynamically, 2, 3, 60, 61, 83, 91,
93, 111, 119, 125, 127

Einstein-Hilbert, 61, 83

vector field, 6, 24
conformal Killing, 14

volume, 14, 16, 18, 93
element, 11, 13, 129
normalized, 11
preserving, 85
unit, 1, 16, 50, 52

Weyl curvature operator, 48, 52, 53
Weyl curvature tensor, 2, 42–44, 47–

52, 54
anti-self-dual, 50
self dual, 50

Yamabe
constant, 19, 47
functional, 3, 19, 60, 61, 85, 89,

91, 112, 113, 115, 118
invariant, 19
metric, 19, 45, 47, 57, 85, 113
problem, 1, 19
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