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Chapter 1

Introduction

The field of quantum optics [1, 2] lies at the crossing point of atomic physics
and quantum field theory, where atoms, the electromagnetic field and their
interaction are investigated. It provides a setting to explore fundamental
quantum problems like quantum measurement, hidden variables and entan-
glement. On the other hand, many practical applications and devices stem
from quantum optics, like the laser, atomic clocks or a randomness generator
[3]. Typical problems of quantum optics that are relevant in the context of
this work are the spontaneous decay of the electronic state of an atom un-
der the emission of a photon, the atom driven by a laser, and cavity QED,
a problem dealing with an atom interacting with an electromagnetic field
whose modes are modified by a cavity. In a similar way, photonic crystals
can modify electromagnetic modes.

Photonic crystals are periodic structures of materials with different refrac-
tive index. From the viewpoint of classical optics, the multiple reflections and
refractions of light at the interfaces and their interference alters the transmis-
sion of light, depending on angle and frequency. In the quantum framework,
periodicity allows to treat photonic crystals with similar mathematical tools
like crystals in solid state physics. Like the electrons in a solid state crystal
form a bandstructure of allowed and forbidden bands, in a photonic crystal
there is a bandstructure with band gaps. Therefore photonic crystals are
also called photonic band gap materials. The role of the electronic modes is
played by the photonic modes. An atom that is placed in a photonic crystal
will be inhibited strongly to emit a photon in the band gap, i.e. the sponta-
neous decay is modified [4]. If the atom is pumped by a laser, the resulting
emission spectrum will be altered as well.

1



2 CHAPTER 1. INTRODUCTION

In contrast to solid state crystals, photonic crystals are in general artifi-
cially manufactured materials. Due to the technological progress in nanofab-
rication, the experimental possibilities has grown substantially in the recent
years. In the rapidly evolving field of photonics, photonic crystals appear as
waveguides, photonic crystal fibers or cavities. Modified spontaneous emis-
sion of semiconductor quantum dots in photonic crystals have been observed
experimentally [5].

The system focused on in this work, the pumped two level atom in a
photonic crystal environment, is an example of an open quantum system.
Open quantum systems [6] are systems with few relevant variables and an
environment, also called bath, that interacts with the system. The objective
is to determine the behaviour of the system while the environment variables
are ‘traced out’, i.e. they are taken into account only in a compact way
like a response function. Open quantum systems appear in many fields of
physics like solid state physics, chemical physics or nuclear physics. Many
approaches have been developed.

In a closed quantum system the unitary evolution ensures the conserva-
tion of probability. In an open quantum system the evolution is not unitary
any more, but is required to preserve the trace of the system’s reduced density
operator. Many authors also add the requirement of a completely positive
evolution [7, 8]. However, in the derivation of the equations of motion approx-
imations have to be made that spoil the theoretical requirements. Actually,
even the assumption of an entangled initial state may destroy the completely
positive evolution [9].

In the Heisenberg picture, the reduced dynamics leads to generalized
quantum Langevin equations, where the noise originates from the environ-
ment. In our case, these equations are the Bloch equations. In the Schrödinger
picture, the resulting system density matrix obeys a quantum master equa-
tion. Both approaches are equivalent.

If the characteristic time scales of the environment correlation functions
are much smaller than the system evolution, one can neglect memory effects
for the reduced system. The dynamics can be described by a Markovian
quantum master equation in Lindblad form [8, 6].

With the usual Wigner-Weisskopf-approximations, Photons that are emit-
ted by a pumped atom in free space disappear from the system. Therefore
the system has no memory. In contrast to that, if the atom is located inside
a photonic crystal,the former approximations cannot be applied. One can
image, that the photons may be reflected and thereby the crystal provides a
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memory for the system, where the history has to be taken into account.
In the present case, the two level system represents the relevant degrees

of freedom, whereas the photonic modes are considered as irrelevant. In the
general case, the question, which degrees of freedom belong to the system
and which to the environment, is not fixed a priori. In cases where only few
environment variables are coupled to the system, it may be appropriate to
include them into the system. If the environment spectral function can be
approximated by Lorentzians, then the non-Markovian open system can be
treated like a Markovian system by including additional degrees of freedom
[10].

Open quantum systems in solid state physics have to deal with a finite
temperature of the environment. In our case the photonic cristal is assumed
to be free of excitations, apart from those emitted by the atom. That corre-
sponds to zero temperature of the environment and a vacuum initial state.
The vacuum initial state for the environment together with an arbitrary
atomic initial state is a product initial state. The product initial state is
already a Markov approximation but seems to be justified in the zero tem-
perature case. For the calculation of the spectra, we use the stationary system
state.

Many methods for open quantum systems have been developed; also for
the driven and non-Markovian case, but they are not always applicable. A
quantum jump approach can be used to solve non-Markovian master equa-
tions [11]. The time evolution is calculated numerically with a quantum
Monte Carlo wave function method. The method was not appropriate with
the photonic crystal correlation function. Furthermore, the driving caused a
strongly growing computing time with system time, such that the statistical
limit cannot alway be reached.

Path integrals [12, 13] provide another approach to open quantum sys-
tems. When the bath is integrated out and the system coordinates are fixed,
the relevant degrees of freedom are described by the influence functional, that
gives the weights for the paths of the system. This approach was developed
in the context of the spin boson model. The difficulty of arriving at prac-
tical results was partially overcome by approximation techniques like NIBA
(non-interacting blip approximation). The conditions for the NIBA are not
always met and hard to verify, so this approach did not turn out useful for
the present work.

In this work, mostly the Heisenberg appoach is used with the Liouville
approximation and a projection operator technique.
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Outline

In chapter 2, we discuss some aspects of a one-dimensional photonic crystal,
like the band structure and reflectance as well as the local density of states.
We use transfer matrices that connect Bloch eigenstates to develop a effective
medium theory. Defect modes and negative refraction is also adressed. In
chapter 3 we explain the Hamilton operator and its variations as well as the
density of states for the present problem. In chapter 4, related problems
like the dephasing model, the driven atom and resonance fluorescence in
free space are discussed. Chapter 5 shows a analytical solution for the time
evolution of a pumped two-level atom in a photonic crystal. The calculation
of correlation functions and spectra is the topic of chapter 6. The results of
two different methods using the quantum regression theorem on the one hand
and the fluctuation dissipation theorem on the other hand are compared.
We also give some examples for squeezing. In chapter 7, we use projection
methods to calculate time evolution and spectra.

Publications that do not appear in this thesis

[14] G. Boedecker, C. Henkel, Ch. Hermann, O. Hess, ‘Spontaneous emission
in photonic structures: Theory and simulation’ in Photonic Crystals, (edited
by K. Busch, S. Lölkes, R. Wehrspohn, H. Föll), John Wiley & Sons (2006).
Basic concepts (Fermi’s Golden Rule, local density of states) are reviewed
and possibilities of optically tuning an optical transition frequency across a
band edge are discussed. We give a review of quantum electrodynamic ap-
proaches to radiative decay close to a photonic gap. In the second section,
simulation techniques are described that permit the determination of the lo-
cal density of photon states in arbitrary photonic structures.

[15] C. Henkel, G. Boedecker, M. Wilkens, ‘Local fields in a soft matter
bubble’, Appl. Phys. B 93, 217 (2008).
The electric field created by a point dipole located in a dielectric void (“bub-
ble”) is calculated. We consider a continuous profile of the medium per-
mittivity and find that, at large distances, the effective dipole field depends
on the model chosen for the bubble walls, in particular their thickness. A
boundary layer model is analyzed that gives good agreement with numerical
calculations.



Chapter 2

Aspects of a one-dimensional

photonic crystal

This chapter was published in [16]. We consider light propagation in a fi-
nite photonic crystal with a transfer matrix approach. The Bloch modes
inside and the vacuum modes outside the photonic crystal are linked with
a transformation matrix that is interpreted as a transfer matrix. So the
transmission and reflection from a one-dimensional system are described in
an effective medium theory, which reproduces exactly the results of trans-
fer matrix calculations. We derive simple formulas for the reflection from
a semi-infinite crystal, the local density of states in absorbing crystals, and
discuss defect modes and negative refraction.

2.1 Introduction

Periodic crystals do not exist in the real world, they are all finite. It turns out
that in a finite crystal one has to consider the reflection of the Bloch waves
at the endfaces. This leads to the formation of standing waves, as mentioned
e.g. by [17]. Reflection amplitudes are easy to find in the long wavelength
limit using effective medium theory. We construct here an effective medium
theory that describes at all frequencies the light propagation through a finite
crystal. Its key ingredients are the reflection and transmission coefficients
for a half-space crystal, calculated using an expansion in Bloch waves. With
our approach, standard formulas for a homogeneous layer can be used for a
finite crystal. We consider a few important applications: the local density of

5
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states for finite or infinite systems, even with absorption, and frequencies of
defect modes. We discuss negative refraction. Our results are illustrated by
exact formulas for a 1D Kronig-Penney (planar scatterer) model.

2.2 Transfer matrix approach

We start by recalling the transfer matrix method for a one-dimensional sys-
tem made of a finite number N of unit cells. We use units with c = 1 and
denote ω the wavevector in the background medium with permittivity ε = 1.
The transfer matrix T connects the field En at the left edge of the nth unit
cell to the field En+1 at the next cell. Expanding the fields in plane waves
propagating to the left and right

En(x) = an e
iω(x−na) + bn e

−iω(x−na), (2.1)

where a is the crystal period, we have (see chap. 6 of [18])
(

an+1

bn+1

)

= T

(

an

bn

)

. (2.2)

Since detT = 1, its eigenvalues λ± can be written in the form λ± = e±ika

where k is the Bloch quasimomentum. An eigenvalue on the unit circle
(real k) corresponds to a propagating (extended) Bloch mode whereas real
eigenvalues (k imaginary) are found in the band gaps. An example is shown
in Fig. 2.1 for the Kronig-Penney model detailed below.

The reflection and transmission amplitudes from a finite crystal are given
by the Nth power of the primitive transfer matrix, e.g. rN = −TN

21/T
N
22 . T

N

is particularly simple to compute in the Bloch basis:

TN = M

(

eikaN 0
0 e−ikaN

)

M−1, M =

(

N+ N−
N+c+ N−c−

)

. (2.3)

The ratios of the plane wave amplitudes for the Bloch states ±k are

c± =
e±ika − T11

T12
=

T21

e±ika − T22
. (2.4)

Independent of the normalization factorsN± chosen for the Bloch eigenstates,
the reflection coefficient is given by (in agreement with [17, 19])

rN =
c+c−(eikaN − e−ikaN)

c+eikaN − c−e−ikaN
. (2.5)
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Figure 2.1: Left panel: complex eigenvalue λ+ = eika vs. frequency for the
Kronig-Penney model, Eq. (2.9), with point scatterers of polarizability α =
(0.2 + 0i) a. Right panel: band structure ω(k) of the infinite crystal. The
thick dispersion curves correspond to the physical Bloch momentum fixed by
the requirements of causality and energy conservation. Even bands exhibit
negative refraction (k < 0).

For a finite number of periods N , the reflectance |rN | shows oscillations as a
function of frequency due to the formation of standing waves between the end
faces of the crystal, with a fringe spacing scalingwith 1/N . If these are not
resolved due to some finite frequency resolution (or fluctuations in the crystal
thickness), the envelope of the reflectance is a useful generalization. Maxi-
mizing |rN | with respect to N for each fringe period, we find from Eq. (2.5)
in allowed bands (see Fig. 2.2)

0 ≤ |rN | ≤
∣

∣

∣

2c+c−
c+ + c−

∣

∣

∣
, (2.6)

provided energy conservation holds. This envelope function is consistent with
[17] and overestimates the reflectance in the band gap.

In the preceding plots, a Kronig-Penney type model has been used for
definiteness. We consider a wave equation with point scatterers (see [21] for
a 3D generalization)

d2E(x)

dx2
+ ω2

(

1 +

N
∑

n=1

αnδ(x− (n− 1
2
)a)
)

E(x) = 0 (2.7)

where the polarizability αn characterizes the strength of the nth scatterer.
We focus on αn = α to get a periodic crystal. The continuity of the electric
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Figure 2.2: Left: reflectance |rN | for the Kronig-Penney model with α =
(0.2+0i) a, N = 4 (blue line). The envelope, Eq. (2.6), is shown as well. Solid
green line: half-space approximation |r|, Eq. (2.11). Dashed dark green line:
|r| for absorbing scatterers (α = (0.2 + 0.02i) a). Right: reflection coefficient
|ri| for Bloch waves reflected from the end face of a semi-infinite crystal.
Solid line: our result, Eq. (2.13); dashed line: proposed by Sakoda [20].
Kronig-Penney model with α = (0.2 + 0i) a.

field E and its first derivative on the scatterers leads to the transfer matrix

T =

(

(1 + i
2
ωα)eiωa i

2
ωα

− i
2
ωα (1 − i

2
ωα)e−iωa

)

(2.8)

whose eigenvalues are given by

λ± = cos(ωa) − ωα

2
sin(ωa) ± i sin(ωa)

√

1 + ωα cot(ωa) − 1
4
ω2α2 (2.9)

We have chosen the sign of the square root such that λ+ is located on or
inside the unit circle (provided α has an infinitesimally positive imaginary
part).

2.3 Half-space-approximation

We show here that the Bloch modes for the infinite crystal can be used to
define a reflection coefficient r for a semi-infinite crystal. The key idea is
to use the transformation matrices M and M−1 occurring in Eq. (2.3) as
transfer matrices, linking plane waves in the vacuum outside the crystal to
Bloch modes inside the crystal. For a unit incident amplitude from the left,
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transmission and reflection amplitudes are thus given by

(

t
0

)

= M−1

(

1
r

)

. (2.10)

Independent of the eigenmode normalizations, this yields

r = c+ =
eiωa − eika

eiωaeika − 1
, (2.11)

where the second equation is valid for the Kronig-Penney model. At low
frequency, we recover the standard effective medium result r ≈ (1−neff)/(1+
neff) with the effective index neff = (1 + α/a)1/2 = limω→0 k(ω)/ω. Fig. 2.2
shows that Eq. (2.11) gives, for all frequencies, a good approximation to
the reflectance from a finite crystal, when |rN | is averaged over the standing
wave fringes. In the band gaps, we recover the intuitively expected perfect
reflector, |r| = 1.

In a similar manner, we define a coefficient ri for the ‘interior’ reflection
of a Bloch wave from a crystal end face, say the left one:

(

ri
1

)

= M−1

(

0
t′

)

(2.12)

Reflection from both end faces can be described by the same coefficient. This
fixes the normalization of the Bloch eigenmodes:

ri = −N−
N+

= −N+c+
N−c−

= −c+. (2.13)

For the last equality, we have used the relation c+c− = 1 which follows from
the symmetry relation T12 = −T21 of the transfer matrix for an even scatterer.
Note the π phase shift between ‘exterior’ and ‘interior’ reflection amplitudes.

Our expression for the interior reflection can be compared to a conjecture
by Sakoda, ri(Sakoda) = (ng − 1)/(ng + 1) where the group index ng =
dk/dω. When the standing waves inside a finite crystal are used for lasing, |ri|
determines the quality factor of this cavity [20]. Sakoda’s result qualitatively
agrees with ours (see Fig. 2.2), but underestimates |ri|, except very close to
the band edges.
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2.4 Applications and discussion

Effective medium theory. In the preceding section, we have seen that
physically reasonable reflection and transmission amplitudes can be intro-
duced for the endfaces of a photonic crystal, when the field inside the crystal
is expanded in Bloch modes. This immediately suggests an effective medium
description of a finite length crystal. The reflectance rN , e.g. would be given
by the well-known Fabry-Pérot expression [22]

rN,FP = r +
trit

′e2ikaN

1 − r2
i e

2ikaN
, (2.14)

where the standing wave oscillations arise by summing a multiple scattering
series.

It is easy to check that rN,FP coincides with the transfer matrix result rN ,
Eq. (2.5), by substituting the reflection amplitudes, Eqs. (2.11, 2.13), and the
corresponding transmissions. In fact, this is not surprising because according
to the definitions Eqs. (2.10, 2.12) of these amplitudes, the transformation
matrices M and M−1 can play the role of transfer matrices at the crystal
endfaces. If we express them in terms of the r, ri, t, t

′, the expression Eq. (2.3)
for TN becomes precisely the product of transfer matrices one would write
down for a homogeneous layer, and leads to Eq. (2.14).

It has been previously noted that the Bloch momentum k is a useful
quantity to describe the propagation inside a finite-size crystal [19, 21, 23]. In
particular, Jeong et al. [23] interpret the phase of the transmission amplitude
in terms of a frequency-dependent effective index, but find differences with
respect to the conventional expression neff = k/ω close to the band edges.
Our analysis indicates that this is due to the contribution of the Fabry-Pérot
denominator in the expression tN = tt′eikaN/(1 − r2

i e
2ikaN).

Local density of states. The LDOS ρ(x, ω) is the key quantity for the
radiative decay of a two-level system in the crystal [24], and it is well known
that it is obtained from the imaginary part of the Green function G(x, x;ω)
(the field radiated by a pointlike test source). If we put two (finite or semi-
infinite) crystals at distances dL,R from a test source, the Green function is
easily obtained from the corresponding reflection coefficients rL,R. Normal-
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Figure 2.3: LDOS, Eq. (2.15), in an infinite crystal with scatterers at
x = . . . ,−a/2, a/2, . . . Left: no absorption (α = 0.2 a). Right: nonzero
absorption (α = (0.2 + 0.05i) a).

izing to the free space LDOS, we get in this way

ρ(x, ω) = Re
(rL(ω)e2idLω + rR(ω)e2idRω + 2

1 − rL(ω)rR(ω)e2i(dL+dR)ω
− 1
)

, dL = −dR = x.

(2.15)
Note that the distances dL,R are defined relative to the reference planes im-
plicit in the reflection coefficients rL,R (located a/2 in front of the first scat-
terer in our example). This simple formula reproduces more involved ex-
pressions given, e.g. in [25]. For an infinite crystal with point scatterers, the
LDOS is plotted in Fig. 2.3 and shows the characteristic inverse square root
singularities close to the band edges [19]. One also recovers the well-known
dielectric and air bands at the gap edges.

Our approach immediately allows for a nonzero absorption in the sample
where, at least for an infinite crystal, standard band theory breaks down
because all Bloch vectors become complex (extended states do not exist any
more; see [26] for a detailed discussion). For finite absorbing systems, it
is well-known that transfer matrix techniques still provide the required re-
flection and transmission spectra (see, e.g. [27]). To define consistently a
half-space reflection amplitude Eq. (2.11), we require that r(ω) be nonsin-
gular as a function of complex frequency in the upper half plane (as dictated
by causality). For the Kronig-Penney model, we can show that it suffices to
choose the eigenvalue eika located inside the unit circle. (This condition is



12CHAPTER 2. ASPECTS OF A ONE-DIMENSIONAL PHOTONIC CRYSTAL

consistent with the limit N → ∞ of Eq. (2.5) for finite absorption.) The
reflection coefficient for finite absorption is shown in Fig. 2.2: it drops be-
low unity in the band gaps. The LDOS (Fig. 2.3) exhibits a smoothing
out of the dielectric band edge while the singularity at the upper gap edge
persists. This is due to the approximation of point-like scatterers in our
Kronig-Penney model, which makes the mode functions at the air band edge
insensitive to the scattering strength α.

Defect modes. As a final application, we investigate the situation that
two crystals surround a defect scatterer with αd 6= α. Expanding the field
in plane waves around the defect, we find that the defect mode frequency is
determined by

− iωαd =
rR(ω)e2iωdR − 1

rR(ω)e2iωdR + 1
+
rL(ω)e2iωdL − 1

rL(ω)e2iωdL + 1
, (2.16)

where dR,L are again the distances between the crystals and the defect. For
given real ω, αd is in general complex and can be absorbing or even active.
In the latter case, the crystal backscatters more light than is incident when
the defect resonance is hit (see Fig. 2.4). By varying αd, the defect mode
frequency can be tuned across the band gap.

Negative refraction. To conclude, we point out that the simple one-
dimensional Kronig-Penney model provides an exactly soluble example of a
photonic crystal with negative refraction. For a non-absorbing, semi-infinite
crystal, the requirement that |r|2 ≤ 1 leads to the condition sin(ωa) sin(ka) ≥
0 for the ‘physical’ Bloch momentum k. This is fulfilled when an incident
plane wave in an even frequency band injects a Bloch wave with negative k
into the crystal. Note that this choice of k is consistent with the well-known
rule that the Bloch wave should have a positive group velocity vg = dω/dk
(see, e.g. [28]), as is manifest from the thick lines in Fig. 2.1.
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Figure 2.4: Left: reflectance from two N = 6 layer crystals (α = 0.2 a) with
a defect in between (dR = dL = a/2). Green line with peak: active de-
fect with scattering strength αd/a ≈ −0.62 − 0.04i, given by Eq. (2.16) for
ωa/2πc ≈ 0.462. The same structure with a passive defect (αd ≈ −0.62 a)
gives the green line with the transmission dip. Blue line: reflectance for
αd = α.
Right: defect frequency in the first band gap vs. real part of scattering
strength αd.
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Chapter 3

Quantum optics in a photonic

crystal

3.1 Atom-field quantized interaction in a PhC

In a photonic crystal, the dielectric constant ǫ is position-dependent and peri-
odic. It is assumed to be real. We use the gauge condition ([29]) ∇ · (ǫA) = 0,
B(r, t) = ∇×A(r, t), E(r, t) = − ∂

∂t
A(r, t). The wave equation

1

ǫ(~r)
∇× (∇× ~E(~r, t)) = − 1

c2
∂2

∂t2
~E(~r, t) (3.1)

has to be solved with a periodic ǫ(~r + ~ai) = ǫ(~r), ~ai being an elementary
lattice vector. The solution is of the form

~E(~r, t) = ~E(~r)e−iωt (3.2)

Because of the periodic ǫ, Bloch’s theorem applies and the solution is of the
form

~E(~r) = ~E~kn(~r) = ~u~kn(~r)ei~k·~r (3.3)

with a periodic function ~u~kn(~r + ~ai) = ~u~kn(~r) and a band index n. ~k is a
wave vector in the first Brilouin zone.
The electric field is expanded into eigenmodes ~E~kn(r). The amplitudes de-
scribe a harmonic oscillation. So the field can be quantized by replacing the
amplitude by annihilation and creation operators.

15
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The electric field operator is then

Ê(r, t) =
∑

~kn

i

√

h̄ω~kn

2ǫ0V
[â~kn(t) ~E~kn(r) − â†~kn

(t) ~E~kn(r)] (3.4)

V is the the volume of the photonic crystal and the normalization factor is
chosen such that the eigenmodes of the electric field in the crystal are the
states of a harmonic oscillator with the elctromagnetic energy per mode h̄ω
times the photon number operator (not including the zero-point energy).
The interaction Hamiltonian for A · p-coupling is (discarding the term ∝ A2

is allowed for not too intense light beams)

Hint = − e

me
A · p (3.5)

= − e

me

∑

~kn

√

h̄

2ǫ0V ω~kn

[â~kn(t)E~kn(r) − â†~kn
(t)E∗

~kn
(r)] · p (3.6)

= −i
∑

~kn

g~kn[â~kn(t) − â†~kn
(t)]σx (3.7)

We take the electric field at the position of the nucleus r (dipole approxima-
tion). Furthermore we used p = meḋ/e = iωAmed/e and defined

g~kn = ωA

√

2h̄

ǫ0V ω~kn

E~kn · dge (3.8)

If d is real (only m=0 transitions) then d = 2〈g|d|e〉σx = 2dgeσx

3.2 The Hamilton operator

The full system Hamilton operator describes a two level atom with frequency
ωA that is driven by a laser characterized by the Rabi frequency ǫ = dge

·E/h̄. and the laser frequency ωL. The environment Hamiltonian describes
the photonic modes where a†λ, aλ are the photon creation and annihilation
operators. The summation over λ includes the wave vector as well as the
band index. The last term is the coupling of the atom and the electric field.
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H =
1

2
h̄ωAσz + h̄ǫ cosωLt σx +

∑

λ

h̄ωλa
†
λaλ + ih̄

∑

λ

gλ(a
†
λ − aλ)σx (3.9)

In the rotating wave approximation rapidly oscillating terms are discarded.

H =
1

2
h̄ωAσ3 + h̄ǫ(σ+e

−iωLt +σ−e
iωLt)+

∑

λ

h̄ωλa
†
λaλ + ih̄

∑

λ

gλ(a
†
λσ−−aλσ+)

(3.10)
σ± = σx ± iσy describes the excitation/deexcitation of the two-level atom.
For certain methods it is appropriate to use a transformed Hamilton operator.

3.2.1 Hamiltonian in the frame rotating with laser fre-

quency

This transformation delivers a Hamilton operator without explicit time de-
pendence. A unitary transformation with U = exp(−iωLσzt/2) exp(−iωLt

∑

λ a
†
λaλ/2)

leads to

H =
1

2
h̄∆ALσ3+h̄ǫ(σ++σ−)+

∑

λ

h̄∆λL
a†λaλ+ih̄

∑

λ

gλ(a
†
λσ−−aλσ+) (3.11)

with ∆AL = ωA − ωL , ∆λL = ωλ − ωL. Due to the rotating wave approxi-
mation, the summation is over near-resonant frequencies.

3.2.2 Frame rotating with atom frequency ωA

In this frame the term for the free atom Hamiltonian disappears.

H = h̄ǫ(σ+e
iωALt + σ−e

−iωALt) +
∑

λ

h̄∆λAa
†
λaλ + ih̄

∑

λ

gλ(a
†
λσ− − aλσ+)

(3.12)
with ∆λA = ωλ − ωA

3.2.3 Dressed basis interaction Hamiltonian

The dressed basis states are the eigenstates of the system consisting of atom
and driving laser. After the transformation to the dressed basis the laser
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part of the Hamilton operator disappears.

˜|1〉 = c|1〉 + s|2〉
˜|2〉 = −s|1〉 + c|2〉

where c = cosφ, s = sinφ, sin2 φ = 1
2
[1 − 1/(4ǫ2/∆2

AL + 1)
1
2 ], and Ω =

[ǫ2 + ∆2
AL/4]

1
2 , the new spin matrices are R3 = ˜|2〉 ˜〈2| − ˜|1〉 ˜〈1| etc.

The non-interacting part of the Hamiltonian is then

H0 = h̄ΩR3 + h̄
∑

λ

∆λa
†
λaλ

On resonance ∆AL = 0 both coefficients are equal, c = s and Ω = ǫ. For
weak driving, H0 describes approximately the whole system. The interaction
Hamiltonian in the interaction picture

HI(t) = ih̄[(csR3 + c2R+e
−i2Ωt − s2R−e

i2Ωt)]
∑

λ

gλa
†
λe

i∆λt

+h.c. (3.13)

This interaction Hamiltonian includes resonant as well as antiresonant terms.
The R3 terms produce dephasing.

3.2.4 Spin-Boson-Hamiltonian

A frequently discussed system is the spin-boson model, see e.g.[13]. It is a
double-well potential, where the detuning of the ground states is denoted by
ǫ, the quantity 1

2
h̄∆ is the matrix element for tunneling between the wells,

the “tunnel splitting”. It can be compared easier to our system, if we rotate
the spin coordinates around the y axis by π/2, thereby exchanging σx and
σy.

HSB = −1

2
h̄∆σx −

1

2
h̄ǫσz +

1

2
σzh̄

∑

α

γα(aα + a+
α ) + h̄

∑

α

ωαa
+
αaα (3.14)

The rotating wave approximation is usually not performed in this context.
A model with time-dependent potential ǫ(t) was discussed in [12].
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3.3 Environment

The photonic crystal provides an environment of the atom that changes the
photonic modes by multiple Bragg scattering at the interfaces. Since the
dispersion relation is in general complicated, we consider an effective mass
approximation at the band edge [30]. In the isotropic model, the dispersion

relation is given by ω(~k) = ωe±A(k−k0)
2. ωe is the band edge frequency, k0

is the radius of the sphere in ~k space, about which the expansion is performed
and A = 1

2
∂2ω/∂k2|k=k0 is a constant characteristic for the material. A better

approximation to a realistic photonic crystal is the anisotropic model with a
dispersion relation

ω(~k) = ωe + A(~k − ~k0)
2 (3.15)

~k0 is a point in the boundary of the Brillouin zone and the dispersion relation
approximates the “air band” above the bandgap. We will use the anisotropic
dispersion relation in this work. The density of states describes the number
of modes present for a certain frequency. A definition of the density of states
is

ρ0(ω) =
∑

~k

δ(ω(~k) − ω) (3.16)

In the following, we use the projected local density of states:

ρ(ω) =
∑

~k

|g~k|2δ(ω(~k) − ω) (3.17)

g~k characterizes the coupling of the Bloch modes at the position of the atom.

g~k = ωA

√

2h̄

ǫ0V ω~k

E~k · dge (3.18)
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ρ(ω) =
∑

~k

|g~k|2δ(ω(~k) − ω)

=
2h̄ω2

Adge

ǫ0(2π)3

∫ ∞

~k0

d3~k
1

ω~k

δ(ω(~k) − ω)

=
2h̄ω2

Adge

ǫ0(2π)3

∫ ∞

0

dk
k2

ωe + Ak2
δ(ωe + Ak2 − ω)

∫ π

0

dθ sin θ cos2 θ

∫ 2π

0

dφ

=
4h̄ω2

Adge

3ǫ0(2π)2

2

A
3
2

√
ω − ωe

ω
Θ(ω − ωe)

≈ α
√
ω − ωeΘ(ω − ωe) (3.19)

with α =
8h̄ω2

Adge

3ǫ0(2π)2A
3
2 ωe

. We have taken into account that the dispersion relation

is only valid for ω near the band-edge. Therefore we keep only the differences
ω − ωe and approximate ω ≈ ωe.

Environment correlation function The correlation function is in the
interaction picture

GIP (t− t′) = 〈0|
∑

~k

a~ke
i(ω−ωA)t

∑

~k

a+
~k
e−i(ω−ωA)t′ |0〉 (3.20)

=
∑

k

g2
ke

i(ωk−ωA)(t−t′) (3.21)

=

∫

dωei(ω−ωA)(t−t′)
∑

~k

g2
kδ(ω − ωk) (3.22)

=

∫

dωei(ω−ωA)(t−t′)ρ(ω) (3.23)

In the Heisenberg picture the expression differs only in a factor eiωA(t−t′)

GH(t− t′) =

∫

dωeiω(t−t′)ρ(ω) (3.24)

For the anisotropic DOS (ω ≈ ωe):

G(t− t′) = α

∫

dωei(ω−ωA)(t−t′)
√
ω − ωeθ(ω − ωe) (3.25)

=
e−i(t−t′)(ωA−ωe)α

√

π/2(−1 + i)

2(t− t′)3/2
(3.26)
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In contrast to the free space correlation function ∝ δ(t − t′), the photonic
crystal correlation function provides a memory for the system. Earlier times
have to be taken into account.

Since the root function
√
ω − ωe in the density of states is infinitely grow-

ing, we may want to use a cutoff in later chapters
√
ω − ωee

−λ(ω−ωe)2 . A re-
alistic density of states will look much more complicated and the square root
approximation is only valid at the band edge. The cutoff parameter should
be chosen such that the nonrelativistic approximation is valid.
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Figure 3.1: Density of states
Blue: ρ(ω) =

√
ω − ωe, ωe = 1;

Red:ρ(ω) =
√
ω − ωee

−λ(ω−ωe)2 ,
λ = 1/10, ωe = 1

spin boson bath In the spin-boson model eq.(3.14) the bath spectrum
(spectral function) is defined as follows:

J(ω) =
∑

α

γ2
αδ(ω − ωα) =

q2
0

2h̄

∑

α

c2α
mαωα

δ(ω − ωα) (3.27)

The spectral function is of the form

J(ω) = Bωse−ω/ωc (3.28)

For s = 1, this is called ohmic dissipation, 0 < s < 1 subohmic, s > 1
superohmic. The subohmic case for s = 1

2
is similar to the photonic crystal

bath, but without the shift to the bandedge ωe.
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Chapter 4

Related problems

In this chapter we discuss several problems which illustrate some aspects of
our problem and can be treated more easily than the full problem. The de-
phasing model arises from our full resonance fluorescence model by omitting
the atom rotation. The driven atom only considers the self rotation of the
atom and the driving laser. The resonance fluorescence in free space uses a
flat density of states instead of the photonic crystal density of states.

4.1 Analytical solution of simplified Hamilto-

nian – the dephasing model

We consider the spin-boson Hamiltonian eq.(3.14) in the zero tunneling case
∆ = 0. This is treated by Palma et al. [31] by using the interaction picture
evolution operator (h̄ = 1).

H = ǫσz +
∑

λ

∆λa
†
λaλ +

∑

λ

gλσz(a
†
λ + aλ) (4.1)

We use the interaction picture with H0 = ǫσz +
∑

λ ∆λa
†
λaλ, U0 = e−iH0t.

The state

|Ψ〉 = c0|0〉 + c1|1〉 (4.2)

is in interaction picture:

|Ψ̃〉 = U+
0 |Ψ〉 = eiH0t(c0|0〉 + c1|1〉) = eiǫtc0|0〉 + e−iǫtc1|1〉 (4.3)

23
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and the interaction Hamiltonian is

H̃I(t) = eiH0tHIe
−iH0t =

∑

k

gkσz(a
†
ke

i∆kt + ake
−i∆kt) (4.4)

The time evolution is then

U(t) = T e−i
R t

0
H̃I(t′)dt′ (4.5)

In order to simplify U(t), we break up he integral into infinitesimal time
intervals ǫ = t−t0

N
, N → ∞ and define

H̃I,n := −i
∫ t0+nǫ

t0+(n−1)ǫ

H̃I(t
′)dt′. (4.6)

U(t, t0) = U(t, t− ǫ)U(t − ǫ, t− 2ǫ)...U(t0 + 2ǫ, t0 + ǫ)U(t0 + ǫ, t0)

= lim
N→∞

eH̃I,N eH̃I,N−1 ...eH̃I,2eH̃I,1 (4.7)

Since
[H̃I(t

′), H̃I(t
′′)] = −2i

∑

k

g2
k sin(∆k(t

′ − t′′)) (4.8)

and
[H̃I(t), [H̃I(t

′), H̃I(t
′)]] = 0 (4.9)

we can apply the Baker-Campbell-Haussdorff relation eAeB = eA+B+[A,B]/2.
and get

U(t, t0) = lim
N→∞

exp

[

N
∑

n=1

(

H̃I,n +
1

2

[

H̃I,n,
N
∑

k=1

H̃I,k

])]

= exp

[

−i
∫ t

0

H̃I(t
′)dt′ + i

∫ t

0

dt′
∫ t′

0

dt′′
∑

k

g2
k sin(∆k(t

′ − t′′))

]

= A(t) exp[−i
∫ t

0

∑

k

gkσz(a
†
ke

i∆kt′ + ake
−i∆kt′)dt′]

= A(t) exp[σz
1

2

∑

k

(a†kξ(t) − akξ
∗(t))] (4.10)

where we defined

ξk(t) = 2gk
1 − ei∆kt

∆k
(4.11)
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and A(t) = exp
[

i
∫ t

0
dt′
∫ t′

0
dt′′
∑

k g
2
k sin(∆k(t

′ − t′′))
]

. The phase factor A(t)

drops out in the calculation of expectation values and correlations.
U(t) is a displacement operator for the field, depending on the system state

U(t)|0〉|Ψ〉b = |0〉
∏

k

D(−1

2
ξk(t))|Ψ〉bA(t) (4.12)

U(t)|1〉|Ψ〉b = |1〉
∏

k

D(+
1

2
ξk(t))|Ψ〉bA(t) (4.13)

with
D(ξk(t)) = exp{a†kξk(t) − akξ

∗
k(t)} (4.14)

and
D(−ξk(t)) = D+(ξk(t)) (4.15)

4.1.1 Expectation values

Since the Hamilton operator commutes with σz:

σ̃z = U(t)σzU
+(t) = σz (4.16)

the expectation value is constant

〈σz(t)〉 = 〈Ψ̃|σ̃z|Ψ̃〉 = −|c0|2 + |c1|2 (4.17)

The operator σx in interaction picture:

σ̃x = σ̃+ + σ̃− = σ+e
−2iǫt + σ−e

2iǫt (4.18)

and
σ̃y = −i(σ̃+ − σ̃−) = −i(σ+e

−2iǫt − σ−e
2iǫt) (4.19)

Now we can calculate the expectation value of σx:

〈σx(t)〉 = 〈Ψ̃|σ̃x|Ψ̃〉 (4.20)

=
∏

k

〈Ψ|b
(

D+(−1

2
ξk(t))〈0|c∗0 +D+(

1

2
ξk(t))〈1|c∗1

)

(σ+e
−2iǫt + σ−e

2iǫt)
∏

k′

(

c0|0〉D(−1

2
ξk′(t)) + c1|1〉D(+

1

2
ξk′(t))

)

|Ψ〉b

=
∏

k

(

c∗0c1e
−2iǫt〈Ψ|bD(+ξk(t))|Ψ〉b + c0c

∗
1e

2iǫt〈Ψ|bD(−ξk(t))|Ψ〉b
)

= e−Γ(t)(c∗0c1e
−2iǫt + c0c

∗
1e

2iǫt) (4.21)
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with the definition

Γ(t) =
∑

k

1

2
|ξk(t)|2 (4.22)

and we used

∏

k

〈0|bD(ξk(t))|0〉b = e−
P

k

|ξk(t)|2

2 = e−Γ(t) (4.23)

With a similar calculation for 〈σy〉 we can write down the system density
matrix

ρ(t) =

(

|c1|2 e−Γ(t)c0c
∗
1e

−2iǫt

e−Γ(t)c∗0c1e
2iǫt |c0|2

)

(4.24)

Its eigenvalues are λ1/2 = 1
2
(1±

√

1 − 4e−2Γ(t)|c0|2|c1|2). Since 0 ≤ |c0|2|c1|2 ≤
1
4
, and if Γ(t) > 0, both eigenvalues are positive. We discuss the function

Γ(t) at the end of this section.

The purity is

p = ρ2
11 + ρ2

22 + 2ρ12ρ21

= 1 + 2|c0|2|c1|2(e−2Γ(t) − 1) (4.25)

Since p < 1 for Γ(t) > 0, we have a mixed state.
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4.1.2 Correlations

We calculate the correlations to be able to compare them to the solution of
our original problem. We note that U(t) = U+

0 (t)UH(t)

〈σ+(t)σ−(t′)〉 = 〈Ψ(t)|σ+UH(t)U+
H (t′)σ−|Ψ(t′)〉

= 〈Ψ(t)|U0(t)U
+
0 (t)σ+U0(t)U

+
0 (t)UH(t)

U+
H(t′)U0(t

′)U+
0 (t′)σ−U0(t

′)U+
0 (t′)|Ψ(t′)〉

= 〈Ψ̃(t)|σ̃+(t)U(t)U+(t′)σ̃−(t′)|Ψ̃(t′)〉

=
∏

k

〈Ψ|
(

D+(−1

2
ξk(t))〈0|c∗0 +D+(

1

2
ξk(t))〈1|c∗1

)

σ+e
−2iǫtU(t)U+(t′)σ−e

2iǫt′

∏

k

(

c0|0〉D(−1

2
ξk(t

′))|Ψ̃〉b + c1|1〉D(+
1

2
ξk(t

′))|Ψ〉b
)

=
∏

k

〈Ψ|D+(
1

2
ξk(t))〈0|c∗1U(t)U+(t′)(c1|0〉D(+

1

2
ξk(t

′))|Ψ〉b

=
∏

k

〈Ψ|D+(ξk(t))〈0|c∗1c1|0〉D(ξk(t
′))|Ψ〉be−2iǫ(t−t′)

= |c1|2e−
1
2

P

k |ξk(t)−ξk(t′)|2e−2iǫ(t−t′) (4.26)

Other correlations:

〈σz(t)σz(t
′)〉 = 〈Ψ̃(t)|σ̃z(t)U(t)U+(t′)σ̃z|Ψ̃(t′)〉

= e−
1
2

P

k |ξk(t)−ξk(t′)|2 (4.27)

〈σz(t)σy(t
′)〉 = −i

(

c∗0c1e
−Γ(t)e−2iǫt′ + c∗1c0e

Γ(t)e2iǫt′
)

(4.28)

〈σy(t)σz(t
′)〉 = 〈σz(t

′)σy(t)〉+
(4.29)

〈σy(t)σy(t
′)〉 = 〈Ψ̃(t)|σ̃y(t)U(t)U+(t′)σ̃y|Ψ̃(t′)〉

= e−Γ(t)−Γ(t′)(|c0|2e−4iǫt + |c1|2e4iǫt) (4.30)
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Figure 4.1: e−Γ(t) with δ = −0.5 (blue), δ = −2 (red), δ = −10 (yellow)

σ̄+ = σz + iσy (4.31)

σ̄− = σz − iσy (4.32)

〈σ̄−(t)σ̄+(t′)〉 = 〈σz(t)σz(t
′)〉 + i〈σy(t)σz(t

′)〉 − i〈σz(t)σy(t
′)〉 + 〈σy(t)σy(t

′)〉
= 1 − 2c0c

∗
1e

− 1
2
(Γ(t)+Γ(t′))e−2iǫt − 2c∗0c1e

− 1
2
(Γ(t)+Γ(t′))e2iǫt

+|c0|2e−Γ(t)−Γ(t′)e−4iǫt + |c1|2e−Γ(t)−Γ(t′)e4iǫt (4.33)

The decay function Γ(t) is for the photonic crystal density of states

Γ(t) =
1

2

∑

k

|ξk(t)|2

= 2
∑

k

g2
k

1 − cosωkt

ω2
k

= Re

∫ ∞

0

dωJ(ω)
1 − e−i((ω−ωA)t

(ω − ωA)2

= Re

∫ ∞

0

dω(ω − ωe)
1
2 e−(ω−ωe)/ωcΘ(ω − ωe)

1 − e−i((ω−ωA)t

(ω − ωA)2

= Re

∫ ∞

0

dωω
1
2e−ω/ωc

1 − e−i((ω+ωe−ωA)t)

(ω + ωe − ωA)2
(4.34)

If the atom frequency is in the band, δ := ωA − ωe > 0, the integral is
diverging and the atom decays instantaneously.

In the gap δ < 0 and

Γ(t)
ωc→∞−−−−→ Re[

√
iteiδt − iπ

√
−δt− π

2
√
−δ

(1 − 2iδt)erf
√
−iδt]
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The error function for large arguments is to lowest order

erf(z) = 1 − 1√
πz
e−z2

(4.35)

and therefore

Γ(t) = Re[
√
iteiδt − iπ

√
δt− π

2
√
−δ

(1 − 2iδt)erf
√
−iδt]

t→∞−−−→ π

2
√
−δ

(4.36)

Fermi’s Golden Rule predicts zero decay, actually we find a partial decay,
i.e. an initial decay at the beginning and a constant nonzero value for long
times.

4.2 Driven atom

For a very weak coupling to the environment, the limiting case is the atom
with only driving. This can be solved analytically. The dressed state Hamil-
tonian can be used, since the dressed states are its eigenstates.

H =
1

2
∆ALσz + ǫ(σ+ + σ−) (4.37)

The equations of motion are

σ̇−(t) = i[H, σ−] = −i∆ALσ−(t) + iǫσz

σ̇z(t) = i[H, σz ] = 2iǫ(−σ+ + σ−) (4.38)

The solution is with Ω =
√

∆2 + 4ǫ2, ∆ = ∆AL

σ−(t) =
1

Ω2

[

[2ǫ2 +
1

4
(∆ − Ω)2eiΩt +

1

4
(∆ + Ω)2e−iΩt]σ−(0)

ǫ2[2 − e−iΩt − eiΩt]σ+(0) + [∆ǫ− ǫ2]σz(0)
]

σz(t) =
1

Ω2

[

[ǫ(2∆ − (∆ + Ω)e−iΩt − (∆ − Ω)eiΩt)]σ−(0)

+[ǫ(2∆ − (∆ + Ω)eiΩt − (∆ − Ω)e−iΩt)]σ−(0)

+[∆2 + 2ǫ2e−iΩt + 2ǫ2eiΩt]σz(0)
]

(4.39)
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The dipole correlation is 〈ψ|σ+(t)σ−(t′)|ψ〉. The Fourier transformed corre-
lation function with τ = t− t′ and t = 0 is

S(ω) =
1

Ω4

√
2π[∆2(∆2 + 2ǫ2) + 4ǫ2(∆2 + 2ǫ2)]δ(ω)

+
1

Ω2

√

π

2
[(∆ + Ω)2 + 4ǫ2]δ(ω − Ω)

+
1

Ω2

√

π

2
[(∆ − Ω)2 + 4ǫ2]δ(ω + Ω) (4.40)

it consists of three δ-peaks at 0,−Ω,+Ω.

4.3 Resonance fluorescence in free space

The discussion of resonance fluorescence in free space can be found for exam-
ple in [1].The resulting spectrum is the Mollow triplet. With the Hamilton
operator eq.(3.10), where the gk are the free space coupling constants in this
section, the Heisenberg equations of motion are

σ̇−(t) = i[H, σ−] = −iωAσ− + iǫe−iωLtσz +
∑

λ

gλaλσz (4.41)

σ̇z(t) = i[H, σz] = 2iǫ(−σ+e
−iωLt + σ−e

iωLt) − 2
∑

λ

gλ(a
+
λ σ− + σ+aλ)

(4.42)

ȧλ(t) = i[H, aλ] = −iωλaλ − gλσ−

(4.43)

The last equation is formally solved by

aλ(t) = aλ(0)e−iωλt −
∫ t

0

gλσ−(t′)e−iωλ(t−t′)dt′ (4.44)

Then

∑

λ

gλaλ(t) =
∑

λ

gλaλ(0)e−iωλt −
∑

λ

∫ t

0

g2
λσ−(t′)e−iωλ(t−t′)dt′ (4.45)

For the second term we change the sum into an integral

∑

λ

→ 2
V

(2π)3

∫

dkk2

∫

sin θdθ

∫

dϕ (4.46)
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I =
∑

λ

∫ t

0

g2
λσ−(t′)e−iωλ(t−t′)dt′

= 2
V

(2π)3

∫

dkk2

∫

sin θdθ

∫

dϕ

∫ t

0

g2
λσ−(t′)e−iωλ(t−t′)dt′

=
h̄ω2

Ad
2
ge

2ǫ0c3π3

∫

dωω

∫

dθ sin θcos2θ

∫

dϕ

∫ t

0

σ−(t′)e−iω(t−t′)dt′

=
2h̄ω2

Ad
2
ge

3ǫ0c3π2

∫

dωω

∫ t

0

σ−(t′)e−iω(t−t′)dt′

≈
2h̄ω2

Ad
2
ge

3ǫ0c3π2

∫

dωω

∫ t

0

dt′σ−(0)e−iωAt′e−iω(t−t′)

=
2h̄ω2

Ad
2
ge

3ǫ0c3π2
e−iωAtσ−(0)

∫

dωω

∫ t

0

dt′ei(ω−ωA)(t′−t) (4.47)

With the free space dispersion relation k = ω
c
, ê~k · dge = cos θdge and we used

the lowest order (Liouville) approximation:

σ−(t) = e−iωAtσ−(0) (4.48)

In the integral
∫ ∞

0

dωω

∫ t

0

dt′ei(ω−ωA)(t′−t) (4.49)

the quantity ω varies little around ω = ωA for which the time integral is not
negligible. Therefore we replace ω by ωA and the lower integration limit with
−∞.
We use

∫ ∞

−∞
dωei(ω−ωA)(t′−t) = 2πδ(t′ − t) (4.50)

To get the result

I =
4h̄ω3

Ad
2
ge

3ǫ0c3π
e−iωAtσ−(0) (4.51)

=
4h̄ω3

Ad
2
ge

3ǫ0c3π
σ−(t) (4.52)

The response function is

G(τ) =
4h̄ω3

Ad
2
ge

3ǫ0c3π
δ(τ) =: βδ(τ) (4.53)
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This is a delta-peaked response function that does not include the state of
the system at earlier times. In a photonic crystal this approximation cannot
be made and the equations of motion have a memory kernel.

σ̇−(t) = −iωAσ−(t) + iǫe−iωLtσz(t) − βσ−(t)

+
∑

λ

gλσz(t)aλ(0)e−iωλt (4.54)

σ̇z(t) = 2iǫ(−σ+e
−iωLt + σ−e

iωLt) − 2β(1 + σz)

−2
∑

λ

gλ(σ+aλ(0)e−iωλt + σ−a
+
λ (0)eiωλt) (4.55)

Taking the expectation value with a vacuum bath state (〈aλ〉 = 〈a+
λ 〉 = 0)

and solving for 〈σz + 1〉:

〈σz + 1〉 = e−2βt〈σz(0) + 1〉

+
4ǫ2

β2 + ∆2
AL

∫ t

t0

dt′[(−∆)eβ(t′−t) sin ∆AL(t′ − t))

+(β cos ∆AL(t′ − t)eβ(t′−t) − βe2β(t′−t))]〈σz(t
′)〉 (4.56)

With the definition ∆AL := ωA − ωL

Resonant case ∆ = 0:

〈σz(t) + 1〉 = +
4ǫ2

β

∫ t

t0

dt′(eβ(t′−t) − e2β(t′−t))〈σz(t
′)〉

+e−2βt〈σz(0) + 1〉 (4.57)

The convolution integral suggests a Laplace transformation

〈σz(s)〉 = − (s+ β)(s+ 2β)(−2β + s〈σz(0)〉
s((s+ β)(s+ 2β) + 4ǫ2)(s+ 2β)

(4.58)

We assume an initial condition σz(0) = −1 and define Ω :=
√

16ǫ2 − β2.
The back transformation shows a constant term and damped oscillations.

〈σz(t)〉 = − 2β2

2β2 + 4ǫ2
− ǫ2(iΩ + 3β)

(2β2 + 4ǫ2)iΩ
e−

1
2
(3β−iΩ)t − ǫ2(iΩ − 3β)

(2β2 + 4ǫ2)iΩ
e−

1
2
(3β+iΩ)t

(4.59)
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Figure 4.2: σz(t)
solid:ǫ = 3, β = 0.1
dotted:ǫ = 3, β = 0.03
dashed:ǫ = 0.1, β = 0.1

In the long time limit the oscillating terms decay

〈σz(t)〉 → − 2β2

2β2 + 4ǫ2
(4.60)

〈σ−〉 and 〈σ+〉 oscillate with frequency ωA

〈σ−(t)〉 = iǫe(−iωA−β)t

∫

dt′eβt′〈σz(t)〉 → − 2iǫβ

2β2 + 4ǫ2
e−iωAt (4.61)

〈σ+(t)〉 → 2iǫβ

2β2 + 4ǫ2
eiωAt (4.62)

This can be compared later with the solution in a photonic crystal.
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Chapter 5

Driven two-level atom in a PhC

In this chapter we calulate analytically the expectation value of the popu-
lation inversion 〈σz(t)〉 in the Liouville approximation of lowest order. The
equations of motion are after adiabatic elimination of the photonic degrees
of freedom:

σ̇−(t) = −iωAσ−(t) + iǫe−iωLtσz(t) −
∫ t

0

G(t− t′)σ−(t′)

+
∑

λ

gλσz(t)aλ(0)e−iωλt (5.1)

σ̇z(t) = 2iǫ(−σ+(t)e−iωLt + σ−(t)eiωLt)

−
∫ t

0

(G(t− t′)eiωA(t−t′) +G∗(t− t′)e−iωA(t−t′))(1 + σz(t
′))

−2
∑

λ

gλ(σ+(t)aλ(0)e−iωλt + a+
λ (0)σ−(t)eiωλt) (5.2)

The equation for σ+(t) is the hermitian conjugate of the σ−(t) equation.
Taking the expectation values in vacuum state removes the last terms. The
Laplace transformation is, with initial values 〈σ−(0)〉, 〈σz(0)〉:

(s+ iωA +G(s))〈σ−(s)〉 = 〈σ−(0)〉 + iǫ〈σz(s+ iωL)〉
(s+G(s− iωA) +G∗(s+ iωA))〈σz(s)〉 = 〈σz(0)〉 − 2iǫ〈σ+(s+ iωL)〉 + 2iǫ〈σ−(s− iωL)〉

−1

s
(G(s− iωA) +G∗(s+ iωA))

35
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Where G∗(s + iωA) is the Laplace transformation of G∗(t)e−iωAt. The equa-
tions are solved for σz(s). σz(0) is σz for t = 0 etc.

σz(s)
(

s+G(s− iωA) +G∗(s+ iωA) +
2ǫ2

s+ iδ +G∗(s+ iωL)
+

2ǫ2

s− iδ +G(s− iωL)

)

= σz(0) − 2iǫσ+(0)

s+ iδ +G∗(s+ iωL)
+

2iǫσ−(0)

s− iδ +G(s− iωL)
− 1

s
(G(s− iωA) +G∗(s+ iωA))

We consider the case σ−(0) = σ+(0) = 0 and define δ = ωL − ωA, GA(s) :=
G(s− iωA), G∗

A(s) := G∗(s+ iωA), GL(s) := G(s− iωL), G∗
L(s) := G(s+ iωL)

σz(s) =
[sσz(0) − (GA(s) +G∗

A(s)](s+ iδ +G∗
L(s))(s− iδ +GL(s))

s{[s+GA(s)+G∗
A(s)](s+ iδ +G∗

L(s))(s− iδ +GL(s)) + 2ǫ2(2s+GL(s)+G∗
L(s))}

This has four poles like the free space solution eq.(4.58), but also four branch
cuts stemming from the square root in G(s) = α

√
i
√
s+ iωe. For the back-

transformation we have to take into account the branch cuts.

∫ γ+i∞

γ−i∞
σz(s)e

st +

∫

cuts

σz(s)e
st = 2πi

∑

zeroes

Res[σz] (5.3)

Res[σz ] are the residues of σz and the sum is over the zeroes of the denomi-
nator of σz(s). We use the following contour on the complex plane

Since G∗
A(s) = [GA(s∗)]∗ we see σz(s) = [σz(s

∗)]∗. The poles appear in pairs,
so the pole contributions are real, exponentially decaying functions.
Due to the direction of the line integral, the cut contribution is imaginary.
The backtransformation is done with Mathematica by numerically finding
the zeroes of the denominator and consequently calculating the residues.
The results depend on the distance to the band edge ωA − ωe = ωL −ωe and
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the Rabi frequency ǫ in units of the coupling α.
With small Rabi frequency and an atomic frequency slightly in the band, we
see a fast and complete decay:

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

Figure 5.1: 〈σz(t)〉
ωA = ωL, ωA − ωe = 0.27,
ǫ = 0.25, α = 1

In the band, we get decaying oscillations for stronger Rabi frequency and
stronger decay for weaker Rabi frequency.
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Figure 5.2: 〈σz(t)〉
ωA = ωL, ωA − ωe = 10,
α = 1, solid: ǫ = 30,
dashed: ǫ = 10, dotted:
ǫ = 1
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A stronger coupling α causes faster decay and larger oscillation frequen-
cies:

0.5 1.0 1.5 2.0

-0.5

0.5

1.0

Figure 5.3: 〈σz(t)〉
ωA = ωL, ωA − ωe = 1, ǫ =
3, solid: α = 0.1, dashed:
α = 0.5, dotted: α = 1

Three different band edge frequencies such that the oscillations in the gap
decay more slowly.
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Figure 5.4: 〈σz(t)〉
ωA = ωL = 100, ǫ = 30,
solid: ωe = 50, dashed:
ωe = 90, dotted: ωe = 150

These results may be compared to the decay given by Fermi’s golden rule
[32]. The expression for the decay rate of the excited state to the ground
state

Γ = 2π
∑

~k,n

|〈0, 1~k,n|~d · ~E|1, 0~k,n〉|2δ(ω~k,n − ωA)

= 2πρ(ωA)

= 2πα
√

∆Ae (5.4)
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And therefore σz(t) = 2|e−Γt|2 − 1 = 2|e−2πα
√

∆Aet|2 − 1. It does not decay
for ωA in the gap and decays completely to −1 for ωA in the band.
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With G(s) = α
√

i(s+ iωe)), the final value theorem states that the
steady state value is lims→0 sσz(s) = limt→∞ σz(t).
Resonant case

lim
s→0

sσz(s) =
−α2(ωe − ωA)

α2(ωe − ωA) + 2ǫ2
(5.5)

For ǫ = 0 this is the spontaneous decay solution.
In general there are four different cases:

• For ωA in the band (ωA > ωe) and ωL in the gap (ωL < ωe), GL(0) +
G∗

L(0) = 0, GA(0) +G∗
A(0) = 2GA(0) and therefore

lim
s→0

sσz(s) =
−2GA(0)(iδ +G∗

L(0))(−iδ +GL(0))

2GA(0)(iδ +G∗
L(0))(−iδ +GL(0))

= −1 (5.6)

• For ωL in the band and ωA in the gap:

lim
s→0

sσz(s) =
0

2ǫ2(GL(0) +G∗
L(0))

= 0 (5.7)

• For both ωL and ωA in the gap GL(0)+G∗
L(0) = 0 and GA(0)+G∗

A(0) =
0. L’Hôpital’s rule can be used. The stationary state depends on the
initial condition:

lim
s→0

sσz(s) =
(σz(0) + α√

∆eA
)(δ − α

√
∆eL)2

(1 + α√
∆eA

)(δ − α
√

∆eL)2 + 2ǫ2( α√
∆eL

+ 2)
(5.8)

• For both ωL and ωA in the band:

lim
s→0

sσz(s) = −
√

∆Ae(δ
2 + α2∆Ae)√

∆Ae(δ2 + α2∆Ae) + 2ǫ2
√

∆Le

(5.9)



Chapter 6

Fluctuation Dissipation

Theorem

This chapter was published in [33]. Correlation functions of a driven two-
level system embedded in a photonic crystal are analyzed. The equations of
motion for two-time correlations are derived by two different methods, the
quantum regression theorem and the fluctuation dissipation theorem, and
found to be the same.

6.1 Introduction

In most theoretical treatments of open quantum systems the Markov ap-
proximation is used. That means it is assumed that quanta emitted from the
system disappear in the reservoir. However, there are systems where this is
not justified, e.g. for an emitter in a photonic crystal. The multiple Bragg
reflections from the crystal planes can trap photons (band gap). But even
in allowed bands, they create a significant memory of the photon bath that
influences the system at later times. In the calculation of system correlations
(Mollow spectrum), quantum regression approaches are used [34] that are
justified in the Markov case.

However, the quantum regression “theorem” (QRT) ist not always ap-
plicable. A counter-example was provided by Ford and O’Connell [35]. We
want to analyze here the QR approach for the case of a driven atom in a
photonic crystal by comparing the equations of motion for correlations with
those derived from linear response theory, as they are used in the fluctuation

41
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dissipation theorem (FDT). The discussion highlights transient (or inhomo-
geneous) terms that are absent for one-time averages, but drive correlations
– they provide a correction to the naive form of the QRT [36]. The same
kind of transients also appears in the FDT, although technically for different
reasons. The analysis shows that the two methods have to face the same
challenge, namely to bring the non-Markovian equations of motion in a form
that can be efficiently solved.

6.2 Quantum regression theorem

The quantum regression theorem states that the equations of motion are
the same for one-time as for two-time correlation functions [1]. The time
dependence for the expectation value 〈A(t)〉 and the correlation function
〈A(t)B(0)〉 of two system observables is

〈A(t)〉 = tr{U−1(t)A(0)U(t)ρ}
= trS{A(0) trB{U(t)ρSρBU

−1(t)}} (6.1)

〈A(t)B(0)〉 = tr{U−1(t)A(0)U(t)B(0)ρ}
= trS{A(0) trB{U(t)[B(0)ρS ]ρBU

−1(t)}} (6.2)

If the density matrix is at t = 0 in a product state ρ(0) = ρS(0) ⊗ ρB(0),
the time dependence for both quantities is the same. The Wiener Khin-
chine theorem requires a stationary state to calculate the spectrum, but the
stationary state is in general entangled for non-Markovian reservoirs. In
other words, for a stationary correlation 〈A(t)B(t′)〉 with both t, t′ → ∞,
the density matrix at time t′ is neither in product form nor does it contain
sufficient information to predict the evolution towards the time t. A solu-
tion to circumvent this problem is provided by linear response theory and
the fluctuation-dissipation theorem, that does not require an initial product
state and a Markov approximation.

6.3 Fluctuation dissipation theorem

Several relations are called fluctuation-dissipation theorem in the literature.
In our case, we use one that is suitable for zero temperature, also called Kubo
relation [37], [38]. The system described by H0 is perturbed by an additional
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term H1

H = H0 +H1, H1 = Af(t) (6.3)

A is a hermitian operator and f(t) is a test function vanishing in the very
far past (t ≤ 0). The system state is then described by ρ0, so 〈B(t)〉0 =
tr{ρ0B(t)}.

The density matrix in the interaction picture is

ρI(t) = ρ(0) +
1

i

∫ t

0

[H1I(t), ρI(t)] (6.4)

For a small parameter in H1I(t) this may be iterated as follows:

ρI(t) = ρ(0) +
1

i

∫ t

0

dt1[H1I(t1), ρ(0)]

+
1

i2

∫ t

0

dt1

∫ t1

0

dt2[H1I(t2), [H1I(t1), ρI(0)]] + . . . (6.5)

We use this formula to calculate the expectation value

〈B(t)〉 = tr{BI(t)ρI(t)}

= 〈BI(t)〉0 +
1

i

∫ t

0

dt1〈[BI(t), H1I(t1)]〉0

+
1

i2

∫ t

0

dt1

∫ t1

0

dt2〈[H1I(t2)[H1I(t1), BI(t)]]〉0 + . . . (6.6)

with H1I(t) = AI(t)f(t). The linear response of the system to the pertur-
bation is achieved by performing the functional derivative δ/δf(t′) around
f = 0:

δ〈B(t)〉
δf(t′)

∣

∣

∣

∣

f=0

=
δ

δf(t′)

∫ ∞

−∞
dt′Φ(t, t′)f(t′) = Φ(t, t′) (6.7)

with the response function

Φ(t, t′) = −i〈[BI(t), AI(t
′)]〉0Θ(t− t′) (6.8)

In contrast to the QRT, this version of the FDT provides us only with the
commutator expectation value. To obtain the anticommutator and to com-
pare it to the QRT, a thermal state and a temperature dependent factor is
necessary [37] that is singular in the zero temperature case. In addition, the
temperature is not well-defined here, since we deal with a driven system.
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6.4 Resonance fluorescence with coloured bath

We are investigating a two-level atom with frequency ωA coupled to a ra-
diation field with annihilation operators aλ and creation operators a+

λ . The
coupling constants are denoted gλ, and a driving laser with frequency ωL and
Rabi frequency ǫ is applied. The Hamilton operator in the frame rotating at
the laser frequency ωL is, making the rotating wave approximation (h̄ = 1),

H =
1

2
∆ALσz +

∑

λ

∆λLa
+
λ aλ + ǫ(σ+ + σ−)

+i
∑

λ

gλ(a
+
λ σ− − σ+aλ) (6.9)

where the detunings are ∆AL = ωA − ωL, ∆λL = ωλ − ωL. The Heisenberg
equations of motion are

σ̇−(t) = −i∆ALσ−(t) + iǫσz(t) +
∑

λ

gλσz(t)aλ(t) (6.10)

σ̇z(t) = −2iǫσ+(t) + 2iǫσ−(t)

−2
∑

λ

gλ(a
+
λ (t)σ−(t) + σ+(t)aλ(t)) (6.11)

ȧλ(t) = −i∆λLaλ(t) + gλσ−(t) (6.12)
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with an analogous equation for σ+(t). The last equation is solved formally
and substituted in the first two equations

σ̇−(t) = −i∆ALσ−(t) + iǫσz(t)

+
∑

λ

∫ t

0

dt1 g
2
λσz(t)σ−(t1)e

−i∆λL(t−t1)

+
∑

λ

gλσz(t)aλ(0)e−i∆λLt (6.13)

σ̇z(t) = −2iǫσ+(t) + 2iǫσ−(t)

−2
∑

λ

∫ t

0

dt1 g
2
λσ+(t1)σ−(t)ei∆λL(t−t1)

−2
∑

λ

gλa
+
λ (0)σ−(t)ei∆λLt

−2
∑

λ

∫ t

0

dt1 g
2
λσ+(t)σ−(t1)e

−i∆λL(t−t1)

−2
∑

λ

gλσ+(t)aλ(0)e−i∆λLt (6.14)

Weak driving Born approximation

In the integral terms of the foregoing equations, we are faced with products
of system operators at different times. This highlights the nonlinearity of the
equations that should be removed to get a closed system of equations. In this
section, we use the evolution of the system alone, neglecting the coupling to
the bath and the driving for a weak coupling Born approximation

TC0 : σz(t) ≈ σz(t1), σ−(t) ≈ e−i∆AL(t−t1)σ−(t1), t > t1 (6.15)

from later to earlier times to get a time convolution (TC) integral. We
will call this the TC0 approximation. It is also possible to use the oppo-
site evolution for a time convolutionless (TCL) version of the equations, see
Sec.6.7.2 below. An improved approximation is discussed in Sec.6.8. Defin-
ing the bath response at shifted frequencies GL(τ) :=

∑

λ g
2
λe

−i∆λLτ and
GA(τ) :=

∑

λ g
2
λe

−i∆λAτ , the expectation values with the photonic bath in
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the vacuum state are

〈σ̇−(t)〉 = −i∆AL〈σ−(t)〉 + iǫ〈σz(t)〉

−
∫ t

0

dt1GL(t− t1)〈σ−(t1)〉 (6.16)

〈σ̇z(t)〉 = −2iǫ〈σ+(t)〉 + 2iǫ〈σ−(t)〉

−
∫ t

0

dt1 (GA(t− t1) +G∗
A(t− t1))〈1 + σz(t1)〉 (6.17)

where we used aλ(0)|0〉 = 0. The solution of these equations was given in
chapter 5.

6.5 Spectrum via quantum regression theo-

rem

In accordance with the quantum regression formula, for t′ = 0 the correlation
function can be found from the equations

d

dt
〈σ+(t)σ−(0)〉 = +i∆AL〈σ+(t)σ−(0)〉 − iǫ〈σz(t)σ−(0)〉

−
∫ t

0

dt1G
∗
L(t− t1)〈σ+(t1)σ−(0)〉 (6.18)

d

dt
〈σz(t)σ−(0)〉 = −2iǫ〈σ+(t)σ−(0)〉 + 2iǫ〈σ−(t)σ−(0)〉

−
∫ t

0

dt1 (GA(t− t1) +G∗
A(t− t1))〈(1 + σz(t1))σ−(0)〉 (6.19)

plus a similar equation for 〈σ−(t)σ−(0)〉, so we get a closed system for
〈σ+(t)σ−(0)〉, 〈σz(t)σ−(0)〉, and 〈σ−(t)σ−(0)〉.

Stationary limit

The spectrum is proportional to the Fourier transform of the normally or-
dered dipole correlation function 〈σ+(t)σ−(t′)〉 with respect to t − t′ in the
stationary limit (i.e., both t and t′ → ∞). It will be sufficient to con-
sider t > t′ [see eqs.(6.57, 6.58) below]. The initial conditions for the
correlation functions are then fixed by stationary state expectation values
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〈σ+(t′)σ−(t′)〉 = 1
2
〈1 + σz(t

′)〉, 〈σz(t
′)σ−(t′)〉 = −〈σ−(t′)〉, 〈σ−(t′)σ−(t′)〉 = 0.

Since we now have t′ 6= 0, additional terms must be added to the regression
equations (6.18, 6.19). These happen to be zero for the normally ordered
correlation in the weak-drive Born approximation (TC0), and eq.(6.18) still
holds with σ−(0) replaced by σ−(t′) everywhere. This is no longer true in the
next-order (TC1 approximation), see Sec.6.8.

But if we consider the anti-normally ordered correlation 〈σ−(t′)σ+(t)〉, a
triple average containing, e.g., 〈σ−(t′)a+

λ (0)σz(t)〉 occurs. So the commutator
[σ−(t′), a+

λ (0)] is required. Using the formal solution for the bath operator to
make the operator aλ(t

′) appear and using the TC0 approximation, we find :

[σ−(t′), a+
λ (0)] = [σ−(t′), a+

λ (t′)] e−i∆λLt′

−gλ

∫ t′

0

dt1 e
−i∆λLt1 [σ−(t′), σ+(t1)]

= gλe
−i∆ALt′

∫ t′

0

dt1 e
−i∆λAt1σz(t1) (6.20)

The equation of motion for 〈σ−(t′)σ+(t)〉 is then

d

dt
〈σ−(t′)σ+(t)〉 = i∆AL〈σ−(t′)σ+(t)〉 − iǫ〈σ−(t′)σz(t)〉

−
∫ t

0

dt1G
∗
L(t− t1)〈σ−(t′)σ+(t1)〉

+

∫ t′

0

dt1G
∗
L(t− t1)e

−i∆AL(t′−t1)〈σz(t1)σz(t)〉 (6.21)

Note that the argument t − t1 of the response function is positive over the
integration range of the last line; this term therefore vanishes in the strict
Markov limit. It is a “transient” that decays in the limit t− t′ → ∞.

6.6 Spectrum via fluctuation dissipation the-

orem

Instead of comparing the results of the QRT and FDT equations of motion,
we compare the equations themselves. For the FDT approach

H = H0 +H1(t), H1(t) = f(t)σ− + f ∗(t)σ− (6.22)
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where H0 is the full system Hamilton operator eq.(6.9) and f(t) an arbitrary
complex function that vanishes for t < 0. We calculate the equations of
motion for H and get an additional term −if(t)σz(t) in the equation for
σ+(t) and 2i(f(t)σ−(t) − f ∗(t)σ+(t)) in the equation for σz.

The linear response is obtained by taking the variational derivative δσ(t)
δf(t′)

around f(t) ≡ 0, using d
dt

δσ(t)
δf(t′)

= δσ̇(t)
δf(t′)

. When setting f(t) = f ∗(t) = 0,

the terms containing f ∗(t) drop out. In the following, we use the shorthand
notation

σ+,f(t, t
′) :=

δσ+(t)

δf(t′)

∣

∣

∣

∣

f=0

(6.23)

and consider only t ≥ t′. The averages 〈· · · 〉 are taken in the non-perturbed
state (f = 0).

Applying the same procedure (the TC0 approximation) as above to re-
duce multi-time correlations to single-time averages, we get the equations of
motion

d

dt
〈σ+,f(t, t

′)〉 = i∆AL〈σ+,f(t, t
′)〉 − iǫ〈σz,f(t, t

′)〉
−iδ(t− t′)〈σz(t)〉

−
∫ t

0

dt1〈σ+,f (t1, t
′)〉G∗

L(t− t1) (6.24)

d

dt
〈σz,f(t, t

′)〉 = −2iǫ(〈σ+,f (t, t
′)〉 − 〈σ−,f(t, t

′)〉)
+2iδ(t− t′)〈σ−(t)〉

−2

∫ t

0

dt1〈σz,f(t1, t
′)〉(G∗

A(t− t1) +GA(t− t1)) (6.25)

With the fluctuation dissipation theorem 〈σ+,f(t, t
′)〉 = −i〈[σ+(t), σ−(t′)]〉 at

the time t = t′, the initial conditions are

〈σ+,f(t
′, t′)〉 = −i〈[σ+(t′), σ−(t′)]〉 = −i〈σz(t

′)〉 (6.26)

〈σz,f(t
′, t′)〉 = −i〈[σz(t

′), σ−(t′)]〉 = 2i〈σ−(t′)〉 (6.27)

〈σ−,f(t
′, t′)〉 = −i〈[σ−(t′), σ−(t′)]〉 = 0 (6.28)

The terms containing δ(t − t′) in Eqs.(6.24, 6.25) produce a jump of the
response functions. This jump is of the same amount as the initial condi-
tion (6.26–6.28). Since we assign the initial value right after the jump, this
implies that the solution before the jump is zero. This is consistent with eq.
(6.8).
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Born approximation including perturbation

One could argue that in the FDT approach instead of eq. (14) one has to
include the solution containing f(t). The approximation to keep or discard
the term is independent of the weak coupling approximation.

Let us take a careful look at the equation of motion including the pertur-
bation H1(t) = f(t)σ− + f ∗(t)σ+. Recalling eq.(6.13), we have without any
approximations

σ̇+(t) = i∆ALσ−(t) − iǫσz(t) − if(t)σz(t)

+

∫ t

0

dt1G
∗
L(t− t1)σ+(t1)σz(t)

+
∑

λ

gλa
+
λ (0)σz(t)e

i∆λLt (6.29)

where the sum over the bath modes has been performed in the memory
integral. The last term vanishes when taking the expectation value (initial
vacuum state for the bath).

When we now “pull back” the operator σz(t) under the integral to the
earlier time t1, we have to take into account the perturbation H1(t) in the
equations of motion (weak-drive Born approximation)

σ̇−(t) ≈ −i∆ALσ−(t) + if ∗(t)σz(t) (6.30)

σ̇+(t) ≈ i∆ALσ+(t) − if(t)σz(t) (6.31)

σ̇z(t) ≈ 2i(f(t)σ−(t) − f ∗(t)σ+(t)) (6.32)

with initial conditions at t1. The solution is up to linear order in f(t), f ∗(t)
is

σ−(t) ≈ e−i∆AL(t−t1)σ−(t1) (6.33)

+i

∫ t

t1

dt′ e−i∆AL(t−t′)f ∗(t′)σz(t1)

σ+(t) ≈ ei∆AL(t−t1)σ+(t1)

−i
∫ t

t1

dt′ ei∆AL(t−t′)f(t′)σz(t1) (6.34)

σz(t) ≈ σz(t1) + 2i

∫ t

t1

dt′f(t′)σ−(t1)e
i∆AL(t′−t1) (6.35)
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Inserting eq.(6.35) into the memory integral, we get

∫ t

0

dt1G
∗
L(t− t1)σ+(t1)σz(t)

≈
∫ t

0

dt1G
∗
L(t− t1)

[

− σ+(t1)

+i

∫ t

t1

dt2f(t2)(1 + σz(t1))e
−i∆AL(t2−t1)

]

(6.36)

At this stage, we are ready for the functional derivative with respect to f(t′).
Combining Eqs.(6.29, 6.36) yields for the response function the (approxi-
mate) equation of motion

d

dt
〈σ+,f(t, t

′)〉 = i∆AL〈σ−,f(t, t
′)〉 − iǫ〈σz,f(t, t

′)〉
−iδ(t− t′)〈σz(t

′)〉

−
∫ t

t′
dt1G

∗
L(t− t1)〈σ+,f(t1, t

′)〉

+ i

∫ t′

0

dt1G
∗
L(t− t1)e

−i∆AL(t′−t1)〈1 + σz(t1)〉

Note the lower limit of the first integral, the quantity 〈σ+,f (t1, t
′)〉 being zero

for t1 < t′. The second term is a transient that does not appear in eq.(6.16)
for the one-time average. This integral covers again only 0 < t1 < t′ and the
response function G∗

L(t− t1) makes it vanish for t− t′ → ∞.
The same argument can be worked out for the response of the other

observables: with transient terms appearing in some places. We compare to
the regression approach in the following Section.

6.7 Comparison of the different approaches

6.7.1 Regression vs FDT

We compare the equations of motion for correlation functions in the form of
commutators as calculated in the previous sections. First of all, the homoge-
nous parts of the equations are identical for the regression approach and in
linear response, apart from the memory integrals that start at t1 = 0 for
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quantum regression [eq.(6.21)] at t1 = t′ in linear response [eq.(6.37)]. In ad-
dition, the transient terms look different. The extra term from the regression
formula eq.(6.21) yields

d

dt
〈[σ+(t), σ−(t′)]〉

∣

∣

∣

∣

tr1

= −
∫ t′

0

dt1G
∗
L(t− t1)e

−i∆AL(t′−t1)〈σz(t1)σz(t)〉 (6.37)

The memory term of the regression formula (6.18) may be split in two inte-
grals below and above t′. This gives a second transient term to be added to
eq.(6.37),

−
∫ t′

0

dt1G
∗
L(t− t1)〈[σ+(t1), σ−(t′)]〉

≈ −
∫ t′

0

dt1G
∗
L(t− t1) e

−i∆AL(t′−t1)〈σz(t1)〉 (6.38)

in the TC0 approximation. On the other hand from linear response eq.(6.37)
we have

i
d

dt
〈σ+,f(t, t

′)〉
∣

∣

∣

∣

tr

= −
∫ t′

0

dt1G
∗
L(t− t1)e

−i∆AL(t′−t1)〈1 + σz(t1)〉 (6.39)

Within the accuracy of the weak-drive approximation, it is consistent to shift
the σz operators in time. Doing this with σz(t), the sum of Eqs.(6.37, 6.38)
simplifies to the linear response result eq.(6.39).

It is interesting to see that (i) the correction to the regression equations
takes a similar form as for master equations with non-factorizing initial condi-
tions (a transient forcing dependent on one-time averages that dies out after
the first time argument t′), see, e.g., Ref.[39]. And (ii) that the transient
terms come out in the same form from the linear response analysis although
they arise technically in different places (FD: pull back under the memory
integral, QR: non-commuting system and bath operators).
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6.7.2 Convolutionless formulation

De Vega and Alonso treat a similar problem in [36, 40]. We compare their
results with ours, in the ǫ = 0 case for consistency with the TC0 approxima-
tion:

d

dt
〈σ+(t)σ−(t′)〉 = i∆AL〈σ+(t)σ−(t′)〉

−
∫ t

0

dt1G
∗
A(t− t1)〈σ+(t)σ−(t′)〉 (6.40)

d

dt
〈σ−(t′)σ+(t)〉 = i∆AL〈σ−(t′)σ+(t)〉

−
∫ t

0

dt1G
∗
A(t− t1)〈σ−(t′)σ+(t)〉

+

∫ t′

0

dt1G
∗
L(t− t1)e

−i∆AL(t′−t1)〈σz(t
′)σz(t)〉 (6.41)

Since these equations do not contain convolutions, it is more appropriate
to compare them to the convolution-less version of the QR equations. The
latter are derived by using in eq. (6.13) and eq. (6.14) the “forward pull”
(this could be called TCL0 approximation)

σz(t1) ≈ σz(t), σ−(t1) ≈ e−i∆AL(t1−t)σ−(t), t1 < t (6.42)

instead of eqs. (6.15). We then find that equations (6.18, 6.19) of our ap-
proach yield eqs. (6.40, 6.41). The last term in eq.(6.41) is produced by the
transient correction that was worked out before, due to the nonzero commu-
tator [a†λ(0), σ−(t′)]. The only difference is therefore whether the equations
contain convolutions or are written in convolution-less form.

6.8 Beyond weak driving

The previous argument can be generalized to moderate driving where the
Rabi frequency ǫ is not small. More precisely, instead of eqs. (6.15), we
include the pumping laser and solve

σ̇−(t) ≈ −i∆ALσ−(t) + iǫσz(t) (6.43)

σ̇z(t) ≈ −2iǫσ+(t) + 2iǫσ−(t) (6.44)
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for pulling back the system operators and removing the nonlinearity. The
resulting Bloch equations contain the bath response at shifted frequencies
G±Ω(τ) = GL(τ) e±iΩτ where Ω =

√

∆2
AL + 4ǫ2 is the generalized Rabi fre-

quency. In this way, we take into account the change in the bath spectral
density across the Mollow sidebands.

The programme of the previous sections can be carried out as before
to calculate the equations of motion for correlation and response functions.
Without entering into the details, we find that the homogeneous part of the
regression equations (all except the last lines of eqs.(6.18, 6.19)) is equal to
the result of the fluctuation dissipation theorem. The remaining parts (the
transient terms) are discussed in more detail here.

6.8.1 Linear response

In linear response, eq.(6.29) for σ+(t) can serve again as a starting point.
We handle the correlation σ+(t1)σz(t) under the integral in the spirit of a
time-convolution approach and pull back the operator σz(t) to the earlier
time t1. With the approximation that the system Hamiltonian HS alone is
sufficient here, this pull-back map is linear and can be written in the form

σz(t) =
∑

a

Rza(t, t1; f)σa(t1), a = ±, z (6.45)

where Rza(t, t1; f) is a reminder that this depends on the perturbation f(t′)
for t > t′ > t1. With the shorthand

σ+a(t1) = σ+(t1)σa(t1) (6.46)

for the operator product, the functional derivative becomes

δ

δf(t′)
[σ+(t1)σz(t)] = Rza(t− t1)σ+a,f (t1, t

′)

− iσ+(t1)[σz(t), σ−(t′)]Θ(t > t′ > t1) (6.47)
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where Rza(t− t1) corresponds to the non-perturbed time evolution, given by
eqs.(6.43,6.44). Its solution with initial conditions at t1,

σz(t) =
1

Ω2

[

(

∆2
AL + 2ǫ2 e−iΩ(t−t1) + 2ǫ2 eiΩ(t−t1)

)

σz(t1)

+ǫ
(

2∆AL − (∆AL − Ω) e−iΩ(t−t1) − (∆AL + Ω) eiΩ(t−t1)
)

σ+(t1)

+ǫ
(

2∆AL − (∆AL + Ω) e−iΩ(t−t1) − (∆AL − Ω) eiΩ(t−t1)
)

σ−(t1)

]

(6.48)

yields the matrix elements Rza(t − t1). In the second term in eq.(6.47), we
have used the Kubo formula (6.8) for the conservative system defined by
HS to evaluate the linear response δRza(t, t1; f)/δf(t′)|f=0. The notation
Θ(t > t′ > t1) is a square function with value unity as long as the double
inequality holds.

The first line of eq.(6.47) gives the memory integral of the homogeneous
part in the equations of motion. The second line yields the transient term

i
d

dt
〈σ+,f(t, t

′)〉
∣

∣

∣

∣

tr

=

∫ t′

0

dt1G
∗
L(t− t1)〈σ+(t1)[σz(t), σ−(t′)]〉 (6.49)

The commutator must be evaluated with the non-perturbed system dynam-
ics, using Rza(t− t′) instead of the pull back map eq.(6.45).

6.8.2 Quantum regression

In the regression method, the operator pullback is based only on the matrix
with elements Rza(t− t1). Considering the commutator 〈[σ+(t), σ−(t′)]〉, the
memory term in its equation of motion reads

∫ t

0

dt1G
∗
L(t− t1)

∑

a

Rza(t− t1)〈[σ+a(t1), σ−(t′)]〉. (6.50)

Note that now the time 0 remains the lower integration limit.
The comparison to the transient term of the fluctuation-dissipation ap-

proach is easier if we do not perform explicitly the pullback. The integration
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range 0 < t1 < t′ does not appear in the linear response equations and can
therefore be identified as a transient. Restoring the operator σz(t), this piece
of eq.(6.50) gives

transient 1 :
∫ t′

0

dt1G
∗
L(t− t1)〈[σ+(t1)σz(t), σ−(t′)]〉 (6.51)

Other transient terms arise from eq.(6.20), because of a nonzero commutator
with the initial field operator a†λ(0). Putting the two together, we have

transient 1+2 :
∫ t′

0

dt1G
∗
L(t− t1) 〈[σ+(t1)σz(t), σ−(t′)] + [σ−(t′), σ+(t1)]σz(t)〉

d

dt
〈[σ+(t), σ−(t′)]〉

∣

∣

∣

∣

tr

=

∫ t′

0

dt1G
∗
L(t− t1) 〈σ+(t1)[σz(t), σ−(t′)]〉

(6.52)

This is precisely the transient term found in linear response, eq.(6.49).

For completeness, we discuss briefly the regression equations for normally
ordered correlations. The memory integral for the correlation 〈σ+(t)σ−(t′)〉
is given by eq.(6.50) with the commutator under the integral replaced by the
operator product. In the TC1 approximation, the memory integral involves
the Green functions G±Ω(τ) [defined after eq.(6.44)], as can be seen from
eq.(6.48). The correlation function is coupled to 〈σa(t)σ−(t′)〉 (a = z,−)
whose equation of motion contains additional, transient terms. These arise
from the commutator [aλ(0), σ−(t′)] which becomes, by analogy to eq.(6.20)

[aλ(0), σ−(t′)] = (6.53)

−gλ

∫ t′

0

dt1 e
i∆λLt1 {2R−z(t

′ − t1)σ−(t1) −R−+(t′ − t1)σz(t1)}

This is written in the spirit of a convolution integral, the matrix elements
R−a(t

′ − t1) (a = z,+) providing the pullback of the operator σ−(t′) to the
earlier time t1. As an example, we give here one equation of motion that
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features transient terms in the TC1 approximation

d

dt
〈σz(t)σ−(t′)〉 = −2iǫ (〈σ+(t)σ−(t′)〉 − 〈σ−(t)σ−(t′)〉)

− 1

2Ω2

∫ t

0

dt1

[

(

1
2
(∆AL + Ω)2 (GΩ(t− t1) +G∗

Ω(t− t1))

+4ǫ2 (GL(t− t1) +G∗
L(t− t1))

+1
2
(∆AL − Ω)2

(

G−Ω(t− t1) +G∗
−Ω(t− t1)

)

)

1
2
〈(1 + σz(t1))σ−(t′)〉

−2ǫ
(

(−∆AL − Ω)G∗
Ω(t− t1) + 2∆ALG

∗
L(t− t1)

+(−∆AL + Ω)G∗
−Ω(t− t1)

)

〈σ+(t1)σ−(t′)〉

−2ǫ
(

(−∆AL − Ω)GΩ(t− t1) + 2∆ALGL(t− t1)

+(−∆AL + Ω)G−Ω(t− t1)
)

〈σ−(t1)σ−(t′)〉
]

+

∫ t′

0

dt1GL(t− t1)〈(1 + σz(t1))σ−(t′)〉 (6.54)

Compared to the TC0 version eq.(6.19), this equation contains the Green
function at shifted frequencies and a transient term.

6.9 Numerical results

6.9.1 Emission spectrum

The spectrum of the atomic dipole is defined as the Fourier transform of the
normally ordered dipole autocorrelation

Sd(ω) = lim
t′→∞

∞
∫

−∞

dτ〈σ+(t′ + τ)σ−(t′)〉 e−iωτ (6.55)

Assuming that the correlation function becomes stationary, we have

〈σ+(t′ − τ)σ−(t′)〉 = 〈σ+(t′)σ−(t′ + τ)〉 = 〈σ+(t′ + τ)σ−(t′)〉∗ (6.56)
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so that eq.(6.55) assumes the form of a Laplace transform

Sd(ω) = 2 Reσ+−(s→ iω) (6.57)

σ+−(s) = lim
t′→∞

∞
∫

0

dτ e−sτ 〈σ+(t′ + τ)σ−(t′)〉 (6.58)

One can show that this definition must be multiplied with the photonic mode
density to get the photon emission rate at frequency ω [41]. This definition is
used in Fig.6.1. Note that the Laplace variable s approaches the imaginary
axis from the right half-plane (positive real part).

6.9.2 Laplace transformation

The equations can be solved by a Laplace transformation when the transient
terms are neglected. The bath correlation functions GL(τ), G∗

L(τ), have
Laplace transforms (denoted with square bracket around the argument)

GL[s] = α
√

is− ∆eL, G∗
L[s] = −iα

√

is + ∆eL (6.59)

for a photonic crystal with a three-dimensional anisotropic dispersion relation
and a band edge frequency ωe = ωL +∆eL [42]. The strength of the coupling
to the photonic band is parametrized by α with dimension [frequency]1/2.

When the equations for the two-time correlation functions are solved by
a Laplace transformation, the initial conditions should be imposed at equal
times t = t′ in equilibrium, but not at t = 0, where the bath is in the vacuum
state. As an example, we consider the following equation (from the TC0
approximation):

d

dt
〈σ+(t)σ−(t′)〉 = +i∆AL〈σ+(t)σ−(t′)〉 − iǫ〈σz(t)σ−(t′)〉

−
∫ t

0

dt1G
∗
L(t− t1)〈σ+(t1)σ−(t′)〉 (6.60)

We neglect the lower integration range 0 < t1 < t′ and change to the time
difference τ = t1 − t′:

∫ t

0

dt1G
∗
L(t− t1)〈σ+(t1)σ−(t′)〉

≈
∫ t−t′

0

dτ G∗
L(t− t′ − τ)〈σ+(t′ + τ)σ−(t′)〉 (6.61)
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which is a convolution integral. Furthermore

d

dt
〈σ+(t)σ−(t′)〉 =

d

dτ
〈σ+(t′ + τ)σ−(t′)〉 (6.62)

Applying the Laplace transformation
∫∞
0
dτ e−sτ yields

s σ+−(s) − 〈σ+(t′)σ−(t′)〉|t′→∞

= i∆ALσ+−(s) − iǫ σz−(s) −G∗
L[s]σ+−(s) (6.63)

where the notation σa−(s) (a = ±, z) is a defined by generalizing eq.(6.58).
Similar algebraic equations are obtained for σz−(s) and σ−−(s). The analytic
continuation of σ+−(s) to s = iω gives the dipole spectrum (6.57).

In the TC1 approximation, the memory terms are more involved com-
pared to eq.(6.60), see eq.(6.54) in Sec.6.8.2. The transient terms arising
there must be neglected to apply the Laplace technique.

In Fig.6.1, the parameters are chosen such that the left peak lies close to
the band edge. It is suppressed relative to the central and right peaks only
in the low-order approximation TC0, however. In the following order, the
symmetry of the spectrum is nearly fully restored.

The response function of the driven two-level system is illustrated in
Fig.6.2 where the imaginary part of its Fourier transform Φ(ω) is plotted
for different laser frequencies. The absorption on the red sideband for blue
detuning and on the blue sideband for red detuning can be explained from
the dressed levels and happens already for a flat continuum (thin gray lines).
The TC1 approximation gives less absorption on the red sideband (more
on the blue one), compared to a flat band (light gray lines) because of the
asymmetric spectral density. We note that the linear absorption spectrum is
more regular than the normally ordered emission spectrum within the TC1
approximation: the latter would diverge and be negative at the detuning
corresponding to the lower thick spectrum in Fig.6.2.

6.10 Remarks

We have seen that the limited validity of the quantum regression formula can
be healed by considering transient terms that appear from a careful treatment
of the operator ordering. The same transient terms are also provided by
the fluctuation dissipation theorem. De Vega and Alonso [36, 40] treat the
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problem with a coherent state approach. The time-convolutionless version of
our equations is identical to their modified version of the quantum regression
approach.

Lee and Lai use a Fourier transformation approach for the problem [43].
They do not adress the operator ordering problem that delivered the transient
terms in our derivation of the QRT equations. These extra terms also appear
in the correlations of a Brownian particle (damped oscillator), see the book
[6]. To bring the nonlinear Bloch equations into linear form, Lee and Lai work
in the low-order approximation only (called TC0 here). Fig.6.1 illustrates
that this can lead to qualitative differences in the symmetry of the spectrum
compared to the next order TC1.
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Figure 6.1: Mollow spectrum for resonant driving. Thin line: weak-drive ap-
proximation (called TC0 in the main text); thick line: approximation TC1.
We plot the spectrum defined in eq.(6.57) multiplied with the spectral den-
sity: S(ω) = Sd(ω) ReG∗

L[iω], as appropriate for the photon emission rate
per unit bandwidth.
Parameters: ∆AL = 0 and ωA − ωe = 50α2, ǫ = 20α2. Fermi’s Golden
Rule predicts a linewidth in the TC0 approximation of ReGL[s → 0] =
α
√
ωA − ωe =

√
50α2 = ReGA[s → 0]. Applying TC1, the asymmetry

of the spectral density appears already at the level of the Golden Rule:
carrier linewidth ReGL[s → 0] =

√
50α2, sidebands ReG±Ω[s → 0] =

αRe
√
±Ω + ωA − ωe = {

√
90,

√
10}α2.
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Ωe ΩA ΩA+ 2Ε

ΩL = ΩA

Ωred = Ωe

flat

TC1

Figure 6.2: Linear absorption spectrum calculated from the commutator
−i[σ†(t′), σ(t)] (t ≥ t′, response function), for different laser frequencies. The
spectra are shifted vertically for better viewing. The upper thick line corre-
sponds to resonant driving (ωL = ωA); for the lower one, ωL = ωA−0.45 ǫ: the
red sideband in the Mollow triplet is located at the band edge, ωL −Ω = ωe.
Parameters: as in Fig.6.1; from bottom to top, the laser frequency ωL in-
creases in steps of 0.1 ǫ from ωA − 0.8 ǫ to ωA + 0.8 ǫ. Thin gray lines: flat
spectral density, fixed to the value at ωA, thick black lines: photonic band
with lower edge ωe = ωA−2.5 ǫ, calculated with the TC1 approximation. On
resonance, the decay rate is ReGA[0] = (1/

√
8) ǫ ≈ 0.35 ǫ.
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6.11 Dependence on the parameters - numer-

ical examples

On the following pages we present some illustrative examples of the spectrum
S(ω) = Sd(ω) ReG∗

L[iω] with different parameter values. Each example is
calculated for the TC0 as well as for the TC1 approximation. The thin, blue
line is the result for TC0, the thick, purple line for TC1.

Distance from bandgap ωA − ωe

If the bandgap is far away and the atom frequency deep in the band, the
density of states becomes nearly flat and the spectrum looks similar to the
Mollow triplet.
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Figure 6.3: S(ω)
, ωA = ωL = 100, ωe =
0, ǫ = 20,α = 0.8, λ =
0
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Figure 6.4: S(ω)
, ωA = ωL = 100, ωe =
20, ǫ = 20,α = 0.8,
λ = 0
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With decreasing distance ωA −ωe, the left peak becomes more supressed.
This effect is stronger for TC0 than for TC1.
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Figure 6.5: S(ω)
, ωA = ωL = 100, ωe =
50, ǫ = 20, α = 0.8,
λ = 0

With one sideband in the gap, even negative peaks appear in the TC1
solution. That may be a signal that the parameters are out of the range of
validity of the performed approximations.
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Figure 6.6: S(ω)
, ωA = ωL = 100, ωe =
80, ǫ = 20, α = 0.8,
λ = 0
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Figure 6.7: S(ω)
, ωA = ωL = 100, ωe =
100, ǫ = 20, α = 0.8,
λ = 0

For ωA in the bandgap, in TC0 the steady state values of the one-time
expectation values are not independent of the initial values. In contrast to
this, in TC1 there is a unique stationary state.
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Changing the Rabi frequency ǫ

Stronger driving causes the side peaks to move apart.
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Figure 6.8: S(ω)
, ωA = ωL = 100, ωe =
0, ǫ = 30, α = 0.8, λ =
0
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Figure 6.9: S(ω)
, ωA = ωL = 100, ωe =
0, ǫ = 48, α = 0.8, λ =
0
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Figure 6.10: S(ω)
, ωA = ωL = 100, ωe =
0, ǫ = 50, α = 0.8, λ =
0

When the side peak is in the gap, similar effects occur like for making
smaller ωA − ωe. For stronger Rabi frequency, the TC0 solution appears to
be more physical than the TC1 solution, that has a negative middle peak.
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Cut-off parameter

Not only the density of states at the band-edge is relevant. Indeed, the cut-off
parameter plays an important role. We use a cut-off function e−λ(ω−ωe)2 . For
increasing cut-off parameter, the right peak disappears for the TC0 solution.
For the TC1 solution, the intensity is lowered on all three peaks.
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Figure 6.11: S(ω)
, ωA = ωL = 100, ωe =
50, ǫ = 20, α = 0.8,
λ = 0.0001
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Figure 6.12: S(ω)
, ωA = ωL = 100, ωe =
50, ǫ = 20, α = 0.8,
λ = 0.0005
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Figure 6.13: S(ω)
, ωA = ωL = 100, ωe =
50, ǫ = 20, α = 0.8,
λ = 0.001
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Increasing coupling constant α

Decreasing the coupling constant sharpens the peak. For small α, the result
is quite similar for TC0 and TC1.
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Figure 6.14: S(ω)
, ωA = ωL = 100, ωe =
50, ǫ = 20, α = 0.7,
λ = 0
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Figure 6.15: S(ω)
, ωA = ωL = 100, ωe =
50, ǫ = 20, α = 0.3,
λ = 0
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Figure 6.16: S(ω)
, ωA = ωL = 100, ωe =
50, ǫ = 20, α = 0.1,
λ = 0



6.11. DEPENDENCE ON THE PARAMETERS - NUMERICAL EXAMPLES67

Detuning ωA − ωL

Even for small detunings, the peaks are strongly suppressed in TC1.
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Figure 6.17: S(ω)
, ωA−ωL = 5, ωe = 50,
ǫ = 20, α = 0.8, λ = 0
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Figure 6.18: S(ω)
, ωA−ωL = 7, ωe = 50,
ǫ = 20, α = 0.8, λ = 0
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Figure 6.19: S(ω)
, ωA − ωL = 10, ωe =
50, ǫ = 20, α = 0.8,
λ = 0

In the last plot, the detuning is too strong for the TC1 approximation.



68 CHAPTER 6. FLUCTUATION DISSIPATION THEOREM

6.12 Squeezing

The squeezing phenomenon appears already in the case of the Mollow spec-
trum [44]. It was discussed for the case of a photonic crystal density of states
by Lee and Lai [45]. We treat this topic in the framework of the preceding
section.

The dipole operator can be resolved into quadratures

σ−(t) =
xθ(t) + ipθ(t)√

2
e−iθ (6.64)

The squeezing spectrum is

Sθ(ω) = 2 Re

∫ ∞

0

〈δxθ(t)δxθ(t− τ)〉eiωτdτ (6.65)

= Re

∫ ∞

0

e−2iθ〈σ−(t)σ−(t+ τ)〉 + e2iθ〈σ+(t)σ+(t+ τ)〉

+〈σ+(t)σ−(t+ τ)〉 + 〈σ−(t)σ+(t+ τ)〉dτ (6.66)

The four appearing correlation spectra are calculated in TC0 (thin blue
line) and TC1 (thick purple line) approximation.

6.12.1 Numerical examples

For later comparison, we first show the squeezing spectra in free space (Mol-
low triplet) for θ = 0 (left) and θ = π/2 (right).
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In the next plot, the squeezing spectrum is plotted as a function of the
angle θ for the left, the middle and the right peak respectively.
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We plot the spectra for ten different squeezing angles. The squeezing
angle varies from 0 to π. For θ = 0, the middle peak contributes the biggest
part to the squeezing, whereas for θ = π/2, the main contribution comes
from the side peaks.
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In the next plot the squeezing of them is shown for each of the three
peaks as a function of the angle θ.
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For some parameters, the results for TC0 and TC1 differ considerably.
In the next plot, the left peak is in the gap due to high ǫ. The left peak

shows no squeezing in TC1, but in TC0.
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For finite cut-off parameter, the right peak shows no squeezing in TC1.
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Another possibility to change the squeezing is to change the detuning.
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Chapter 7

Projection operator method

7.1 General method

In chapter 5 and 6, we used the Wigner Weisskopf procedure to derive the
Heisenberg equations of motion for the TC0 equations. For the TC1 equa-
tions we extendended this approach by including not only the atom part of
the Bloch equations, but also the driving in the memory integral. However
there are several other methods to derive Heisenberg equations of motion
for expectation values of the system variables. In this chapter we use the
projection operator formalism of [46], see also [47, 48]. It works also for
a time-dependent Hamilton operator. With this method, higher orders are
calculated systematically.

7.1.1 Basic relations

This section recalls some standard quantum relations and fixes the notation
to be used in the following sections.

Starting point is the Liouville von Neumann equation for the system and
bath density matrix

ρ̇(t) = −iL(t)ρ(t) (7.1)

with the Liouville operator

L(t)· = [H(t), ·] (7.2)

H(t) consists of a time-independent part and H0 and a time-dependent part
H1(t). Accordingly

L(t)· = (L0 + L1(t))· (7.3)

73
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Eq. (7.1) is formally solved:

ρ(t) = U+(t, t0)ρ(t0) (7.4)

where U+(t, t0) is defined as U+(t, t0) = T+[e
−

R t

t0
dt′iL(t′)

].
The expectation value of an operator A is

〈A〉t = tr{Aρ(t)} = tr{A(t)ρ} (7.5)

where A(t) = U−(t, t0)A and U−(t, t0) := T−[exp(i
∫ t

t0
dt′L(t′))]; T− stands for

increasing time ordering from left to right. In interaction picture:

Û−(t, t0) = T−[exp(i

∫ t

t0

dt′L̂1(t
′))] (7.6)

L̂1(t) = eiL0(t−t0)L1(t)e
−iL0(t−t0) (7.7)

The time-dependence of Û−(t, t0) is

∂

∂t
Û−(t, t0) = Û−(t, t0)iL̂1(t) (7.8)

A projection operator P , P 2 = P , Q = 1 − P is used.
We apply P and Q on the right of eq.(7.8)

d

dt
V̂−(t) = V̂−(t)iL̂1(t)P + Ŵ−(t)iL̂1(t)P (7.9)

d

dt
Ŵ−(t) = V̂−(t)iL̂1(t)Q+ Ŵ−(t)iL̂1(t)Q (7.10)

with

V̂−(t) = Û−(t, t0)P (7.11)

Ŵ−(t) = Û−(t, t0)Q (7.12)

7.1.2 Time convolution decomposition

Eq. (7.10) is solved as

Ŵ−(t) = Qû−(t, t0) +

∫ t

t0

dτV̂−(τ)iL̂1(τ)Qû−(t, τ) (7.13)
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where

û−(t, τ) = T−[exp(

∫ t

τ

dτ ′iL̂1(τ
′)Q)] (7.14)

Eq. (7.13) in eq. (7.9) results

d

dt
V̂−(t) = V̂−(t)iL̂1(t)P +

∫ t

t0

dτV̂−(τ)iL̂1(τ)Qû−(t, τ)iL̂1(t)P

+Qû−(t, t0)iL̂1(t)P (7.15)

Usually PA = A, hence

V̂−(t)A = Û−(t, t0)PA = Â(t) (7.16)

The result is then

d

dt
Â(t) = V̂−(t)iL̂1(t)A +

∫ t

t0

dτV̂−(τ)iL̂1(τ)Qû−(t, τ)iL̂1(t)A

+Qû−(t, t0)iL̂1(t)A (7.17)

7.1.3 Expansion formulas: time convolution decompo-

sition

The integral kernel as well as the inhomogenous term of eq.(7.17) are ex-
panded in powers of the Liouville operator.

d

dt
Â(t) = Û−(t, t0)iL̂1(t)A +

∫ t

t0

dτK̂−(t, τ)A+ Î−(t) (7.18)

K̂−(t, τ) := Û−(τ, t0)PiL̂1(τ)Qû−(t, τ) (7.19)

Î−(t) := Qû−(t, t0)iL̂1(t)A (7.20)

Expansion of the kernel (expansion of û−(t, τ))

∫ t

t0

dτK̂−(t, τ) =

∫ t

t0

dt1Û−(t1, t0)P Φ̂−,2(t, t1)

+
∞
∑

n=3

∫ t

t0

dt1

∫ t1

t0

dt2...

∫ tn−2

t0

dtn−1

Û−(tn−1, t0)P Φ̂−,n(t, t1, ....tn−2, tn−1) (7.21)
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where

Φ̂−,2(t, t1) = iL̂1(t1)QiL̂1(t) (7.22)

Φ̂−,n(t, t1, ....tn−2, tn−1) = iL̂1(tn−1)QiL̂1(tn−2)...QiL̂1(t1)QiL1(t) (7.23)

P Φ̂−,n(t, t1, ....tn−2, tn−1) =: 〈iL̂1(tn−1)iL̂1(tn−2)...iL1(t)〉APC (7.24)

Where we defined the “antipartial cumulants”. Explicitly:

〈iL̂1(t1)iL1(t)〉APC = PiL̂1(t1)QiL̂1(t) (7.25)

= 〈〈iL̂1(t1)iL̂1(t)〉〉 − 〈〈iL̂1(t1)〉〉〈〈iL̂1(t)〉〉 (7.26)

With P. = 〈〈.〉〉. For the next order:

〈iL̂1(t2)iL̂1(t1)iL1(t)〉APC = PiL̂1(t2)QiL̂1(t1)QiL̂1(t)

= 〈〈iL̂1(t2)iL̂1(t1)iL̂1(t)〉〉
−〈〈iL̂1(t2)iL̂1(t1)〉〉〈〈iL̂1(t)〉〉
−〈〈iL̂1(t2)〉〉〈〈iL̂1(t1)iL̂1(t)〉〉
+〈〈iL̂1(t2)〉〉〈〈iL̂1(t1)〉〉〈〈iL̂1(t)〉〉 (7.27)

For the last term of eq.(7.18), a similar expansion applies:

I−(t) = (QiL̂1(t) +

∫ t

0

dt1QΦ̂−2(t, t1)

+
∞
∑

n=3

∫ t

0

dt1

∫ t1

0

dt2...

∫ tn−2

0

dtn−1QΦ−,n(t, t1, ....., tn−2, tn−1))A

(7.28)

7.1.4 Time convolutionless decomposition

The equation of motion of the last section involves a convolution integral
with the time dependent operator and an integral kernel. By arranging the
basic equations in a different way, this convolution integral can be avoided
and the equations may be solved more easily. Using

V̂−(τ) = Û−(τ, t0)P = Û−(t, t0)(P +Q)Û+(t, τ)P

= V̂−(t)Û+(t, τ)P + Ŵ−(t)Û+(t, τ)P (7.29)
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and eq.(7.14), eq.(7.10) is solved as

Ŵ−(t) = Qû−(t, t0)

+(V̂−(t) + Ŵ−(t))

∫ t

t0

dτÛ+(t, τ)PiL̂1(τ)Qû−(t, τ) (7.30)

We solve this equation for Ŵ−(t):

Ŵ−(t) = [Qû−(t, t0) − V̂−(t)(Θ̂−(t)−1 − 1)]Θ̂−(t) (7.31)

with

Θ̂−(t) =
(

1 −
∫ t

t0

dτÛ+(t, τ)PiL̂1(τ)Qû−(t, τ)
)

)−1

=:
(

1 − Ŝ−(t)
)−1

(7.32)

From eq.(7.9) and eq.(7.31) we get

d

dt
V̂−(t) = V̂−(t)iL̂1(t)P − V̂−(t)(1 − Θ−(t))iL̂1(t)P

+Qû−(t, t0)Θ−(t)iL̂1(t)P (7.33)

So for Â(t):

d

dt
Â(t) = V̂−(t)iL̂1(t)A− V̂−(t)(1 − Θ−(t))iL̂1(t)A

+Qû−(t, t0)Θ−(t)iL̂1(t)A (7.34)

7.1.5 Expansion formulas: time convolutionless decom-

position

Working out on eq. (7.34)

d

dt
Â(t) = Ψ̂−(t)A+ Ĵ−(t) (7.35)

with
Ψ̂−(t) = Û−(t, t0)P Θ̂−(t)iL̂1(t) (7.36)

Ĵ−(t) = Qû−(t, t0)Θ̂−(t)iL̂1(t)A (7.37)
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Ψ̂−(t) has the form

Ψ̂−(t) = Û−(t, t0)
∞
∑

n=0

P (Ŝ(t))niL̂1(t) (7.38)

=: Û−(t, t0)
∑

n=1

P Ψ̂−,n(t) (7.39)

We expand the exponentials in Û+(t, τ) and û−(t, τ).
The first terms of the expansion are with P. = 〈〈.〉〉

Ψ̂−,1(t) = PiL̂1(t) (7.40)

Ψ̂−,2(t) =

∫ t

t0

dt1PiL̂1(t1)QiL̂1(t)

=

∫ t

t0

dt1〈〈iL̂1(t1)(1 − P )iL̂1(t)〉〉)

=

∫ t

t0

dt1

(

〈〈iL̂1(t1)iL̂1(t)〉〉 − 〈〈iL̂1(t1)〉〉〈〈iL̂1(t)〉〉
)

(7.41)

Ψ̂−,3(t) =

∫ t

t0

dt1

∫ t1

t0

dt2

{

PiL̂1(t2)QiL̂1(t1)QiL̂1(t)

−PiL̂1(t1)PiL̂1(t2)QiL̂1(t)
}

=

∫ t

t0

dt1

∫ t1

t0

dt2

{

〈〈iL̂1(t2)iL̂1(t1)iL̂1(t)〉〉 − 〈〈iL̂1(t2)iL̂1(t1)〉〉〈〈iL̂1(t)〉〉

−〈〈iL̂1(t2)〉〉〈〈iL̂1(t1)iL̂1(t)〉〉 − 〈〈iL̂1(t1)〉〉〈〈iL̂1(t2)iL̂1(t)〉〉
+〈〈iL̂1(t2)〉〉〈〈iL̂1(t1)〉〉〈〈iL̂1(t)〉〉
+〈〈iL̂1(t1)〉〉〈〈iL̂1(t2)〉〉〈〈iL̂1(t)〉〉

These cumulants are called anti-ordered cumulants

Ψ̂−,1(t) = 〈iL̂1(t)〉AOC (7.42)

Ψ̂−,2(t) =

∫ t

t0

dt1〈iL̂1(t1)iL̂1(t)〉AOC (7.43)

Ψ̂−,n(t) =

∫ t

t0

dt1...

∫ tn−2

t0

dtn−1〈iL̂1(tn−1)...iL̂1(t)〉AOC (7.44)

(7.45)
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Ĵ−(t) = Qû−(t, t0)

∞
∑

n=0

(Ŝ(t))niL̂1(t)A

=

∞
∑

n=1

Ĵ−,n(t) (7.46)

Ĵ−,1(t) = QL̂1(t)A (7.47)

Ĵ−,2(t) = Q

∫ t

t0

dt1iL̂1(t1)QiL̂1(t)A (7.48)

7.2 Application to PhC Resonance Fluores-

cence

7.2.1 Hamilton operator

The general form of the Hamilton operator for the projection method is

H = H0 +H1(t) (7.49)

We choose the following partitioning into H0 and H1

H0 =
1

2
ωAσz +

∑

λ

ωλa
+
λ aλ

H1(t) = ǫ(σ+e
−iωLt + σ−e

iωLt) + i
∑

λ

gλ(a
+
λ σ− − aλσ+) (7.50)

= H1L(t) +H1I(t) (7.51)

The time dependent operators (in the sense of the interaction picture) are

eiH0tH1L(t)e−iH0t = ǫe−iωLteiωAtσ+ + ǫeiωLte−iωAtσ−

= ǫ̃(t)σ+ + ǫ̃∗(t)σ−

eiH0tH1I(t)e
−iH0t = i

∑

λ

gλ(a
+
λ σ−e

iωλt−iωAt + aλσ+e
−iωλt+iωAt)

= b+(t)σ− + b−(t)σ+
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7.2.2 2nd and 3rd order TCL expansion

We apply the expansion in 7.1.5 to our problem.
and use the projection operator

PA = trB{ρBA} (7.52)

The first order Ψ̂−(t), eq.(7.40):

Ψ̂−,1(t)σ+ = PiL̂1(t)σ+

= Pi(b+ + ǫ̃∗(t))(−σz)

= −i〈b+ + ǫ̃∗(t)〉Bσz

= −iǫ̃∗(t)σz

Û(t, t0)Ψ̂−,1(t)σ+ = −iǫ̃∗(t)σ̂z(t)

Define B+ := (b+(t) + ǫ̃∗(t)), B− := (b−(t) + ǫ̃(t)). Second order Ψ̂−(t)
eq.(7.41):

Ψ̂−,2(t)σ+ =

∫ t

t0

dt1

(

〈〈iL̂1(t1)iL̂1(t)〉〉 − 〈〈iL̂1(t1)〉〉〈〈iL̂1(t)〉〉
)

σ+

= −
∫ t

t0

dt1

{(

〈〈B−(t1)B
+(t)〉〉 + 〈〈B+(t)B−(t1)〉〉

)

σ+

−
(

〈〈B+(t)B+(t1)〉〉 − 〈〈B+(t1)B
+(t)〉〉

)

σ−

−
(

〈〈B−(t1)〉〉〈〈B+(t)〉〉 + 〈〈B+(t)〉〉〈〈B−(t1)〉〉
)

σ+

+
(

〈〈B+(t)〉〉〈〈B+(t1)〉〉 − 〈〈B+(t1)〉〉〈〈B+(t)〉〉
)

σ−

}

(7.53)

The appearing one- and two-time correlation functions are for example:

〈〈B+(t)〉〉 = ǫ̃∗(t) (7.54)

〈〈B−(t1)B
+(t)〉〉 = 〈b−(t1)b

+(t)〉B + ǫ̃(t1)ǫ̃
∗(t) (7.55)

Since many of the correlations vanish, the result is

Ψ̂−,2(t)σ+ = −
∫ t

t0

dt1〈b−(t1)b
+(t)〉Bσ+ (7.56)
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Û−(t, t0)Ψ̂−,2(t)σ+ = −
∫ t

t0

dt1〈b−(t1)b
+(t)〉Bσ̂+(t) (7.57)

In order to determine Ψ̂−,3(t) we first note:

〈〈B−(t2)B
+(t1)B

+(t)〉〉 = +〈b−(t2)b
+(t1)〉B ǫ̃∗(t) + 〈b−(t2)b

+(t)〉B ǫ̃∗(t1)
+ǫ̃(t2)ǫ̃

∗(t1)ǫ̃
∗(t) (7.58)

〈B−(t2)B
+(t1)B

+(t)〉AOC = 〈〈B−(t2)B
+(t1)B

+(t)〉〉 − 〈〈B−(t2)B
+(t1)〉〉〈〈B+(t)〉〉

−〈〈B−(t2)〉〉〈〈B+(t1)B
+(t)〉〉

−〈〈B+(t1)〉〉〈〈B−(t2)B
+(t))〉〉

+〈〈B−(t2)〉〉〈〈B+(t1)〉〉〈〈B+(t)〉〉
+〈〈B+(t1)〉〉〈〈B−(t2))〉〉〈〈B+(t))〉〉

= 0 (7.59)

Ψ̂−,3(t) =

∫ t

t0

dt1

∫ t1

t0

dt2〈iL̂1(t2)iL̂1(t1)iL̂1(t)〉AOC = 0 (7.60)

Ĵ−,1 = QiL̂1(t)A

= iL̂1(t)A− i〈L̂1(t)〉BA
= iB+(t)(σ−+ − σ+−) − i〈B+(t)〉B(σ−+ − σ+−) (7.61)

Ĵ−,2 =
∫ t

t0
dt1

(

iL̂1(t1)iL̂1(t) − iL̂1(t1)〈iL̂1(t)〉B

−〈iL̂1(t1)iL̂1(t)〉B + 〈iL̂1(t1)〉B〈iL̂1(t)〉B
)

A (7.62)

These terms will disappear after taking the trace.
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7.2.3 2nd and 3rd order TCL equations of motion

Collecting the results of the preceding paragraph, we arrive at the equations
of motion:

d

dt
〈σ+(t)〉 = iǫ̃(t)〈σ−+(t) − σ+−(t)〉 −

∫ t

0

dt1G(t1 − t)〈σ+(t)〉

d

dt
〈σ−(t)〉 = iǫ̃∗(t)〈σ+−(t) − σ−+(t)〉 −

∫ t

0

dt1G(t− t1)〈σ−(t)〉

d

dt
〈σ+−(t)〉 = iǫ̃(t)〈σ−(t)〉 − iǫ̃∗(t)〈σ+(t)〉

−
∫ t

0

dt1G(t1 − t) +G(t− t1)〈σ+−(t)〉

d

dt
〈σ−+(t)〉 = −iǫ̃(t)〈σ−(t)〉 + iǫ̃∗(t)〈σ+(t)〉

+

∫ t

0

dt1G(t1 − t) +G(t− t1)〈σ+−(t)〉

with σ+− := σ+σ−
The 3rd order terms are zero.
With the definitions ξ(t) =

∫ t

0
dt1〈b−(t1)b

+(t)〉, and the rotating frame quan-

tities σ̃+(t) = e−i(ωA−ωL)tσ+(t), σ̃−(t) = ei(ωA−ωL)tσ−(t), ξ̃(t) = ξ(t)ei(ωA−ωL)t,
ξ̃∗(t) = ξ∗(t)e−i(ωA−ωL)t and using σz = σ+− − σ−+ we arrive at

d

dt
〈σ̃+(t)〉 = −iǫ〈σz(t)〉 − [ξ̃(t) + i(ωA − ωL)]〈σ̃+(t)〉 (7.63)

d

dt
〈σ̃−(t)〉 = iǫ〈σz(t)〉 − [ξ̃∗(t) − i(ωA − ωL)]〈σ̃−(t)〉 (7.64)

d

dt
〈σz(t)〉 = 2iǫ〈σ̃−(t)〉 − 2iǫ〈σ̃+(t)〉 − (ξ(t) + ξ∗(t))〈1〉 − (ξ(t) + ξ∗(t))〈σz(t)〉

(7.65)

These equations are identical to the TCL equations of chapter 6. That means,
those equations are correct to 3rd order.

The equivalent master-equation in Lindblad form with time dependent
coefficients is

ρ̇ = i[HS, ρ] + ξ(t)[σ−ρσ+ − σ+σ−ρ] + h.c. (7.66)
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with

HS = ǫ(σ+ + σ−) +
1

2
(ωA − ωL)σz (7.67)

(7.68)

ξ(t) must be positive to ensure that the equation is trace-preserving and
completely positive. A master equation in Lindblad form with constant coef-
ficients describes a Markovian open quantum system. The time dependence
of the coefficients reflects the non-Markovianity of the problem. Such master
equations were discussed in e.g. [49].

7.2.4 Environment functions

The first integral of the response function ξ(t) =
∫ t

0
dt′G(t′ − t) with

G(t′ − t) = α

∫ ∞

ωe

dωei(ω−ωA)(t′−t)

√
ω − ωe

ω
(7.69)

We did not perform the approximation ω ≈ ωe in the denominator like in
eq.(3.19) for the reason of convergence. In the band we get:

ξ(t) =

∫ t

0

dt′G(t′ − t)

=
απ

ωA
(−
√

∆Aeerf((−1)3/4
√

∆Aet)

+i
√
ωe(−1 − eitωA(−1 + erf((−1)1/4

√
tωe))))) (7.70)

In the gap:

ξ(t) =
iαπ

ωA

(
√

−∆Aeerf((−1)1/4
√

−∆Aet)

+
√
ωe(−1 − eitωA(−1 + erfc((−1)1/4

√
tωe))))) (7.71)

In the long time limit in the gap:

lim
t→∞

∫ t

0

dt′ξ(t′) = −iπα(ωA − 2ωe + 2
√
−ωe∆Ae)

2ω2
A

√
−∆Ae

+ i
πα(−√

ωe +
√
−∆Ae)

ωA
t

(7.72)
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in the band

lim
t→∞

∫ t

0

dt′ξ(t′) = −iπα(−ωe +
√
ωe∆Ae)

2ω2
A

√
∆Ae

+
πα(−i√ωe −

√
∆Ae)

ωA
t

(7.73)

7.2.5 Special cases

Spontaneous decay In the case without driving, we see directly from
eq.(7.65) that the equations decouple

d

dt
〈σz(t)〉 = −(ξ(t) + ξ∗(t))〈σz(t)〉 − (ξ(t) + ξ∗(t)) (7.74)

d

dt
〈σ̃+(t)〉 = −[ξ̃(t) + i(ωA − ωL)]〈σ̃+(t)〉 (7.75)

The population inversion is therefore

〈σz(t)〉 = (〈σz(0)〉 + 1)e
R t
0 dt′(ξ(t′)+ξ∗(t′)) − 1 (7.76)

Resonance fluorescence in free space With the free space response
function eq.(4.53), ξ(t) = ξ∗(t) ∝ β the free space equations eqs.(4.54) are
recovered for σ̆+(t) = e−iωAtσ+(t). (Without noise terms).

7.2.6 Numerical examples

The equations (7.65) can be solved numerically with Mathematica (see uchi8a.nb).
We give some examples for 〈σz〉
Spontaneous decay ǫ = 0 in the gap and in the band:
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Atom frequency in the gap, smaller and bigger Rabi frequency:
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For larger coupling in the gap, a revival phenomenon appears.
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In the band, with different couplings:
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For larger couplings the approximation is not appropriate and the solution
becomes unphysical. A physical solution should stay inside the Bloch sphere
with |〈σz〉| ≤ 1.
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7.2.7 TC 3rd order

In this section we apply the results of section 7.1.2 to our problem to get the
time convolution version of the equations. The first term of the right hand
side of eq.(7.18) for A = σ+ up to 3rd order is

Û−(t, t0)PiL̂1(t)A = iǫ̃∗(t)(σ−+(t) − σ+−(t)) (7.77)

The 2nd term is

∫ t

t0

dτK̂−(t, τ)A =

∫ t

t0

dt1Û−(t1, t0)〈iL̂1(t1)iL̂1(t)〉APCσ+

+

∫ t

t0

dt1

∫ t1

t0

dt2

Û−(t2, t0)〈iL̂1(t2)iL̂1(t1)iL̂1(t)〉APCσ+ (7.78)

Since for 2nd order 〈.〉APC = 〈.〉AOC

〈iL̂1(t1)iL̂1(t)〉APCσ+ = −
∫ t

t0

dt1〈b−(t1)b
+(t)〉σ+(t1) (7.79)

For the 3rd order we first calculate

L̂1(t2)L̂1(t1)L̂1(t)σ+ = −B−(t2)B
+(t1)B

+(t)σ+− − B−(t2)B
+(t)B+(t1)σ+−

+B+(t1)B
+(t)B−(t2)σ−+ +B+(t)B+(t1)B

−(t2)σ−+

+B+(t2)B
−(t1)B

+(t)σ−+ +B+(t2)B
+(t)B−(t1)σ−+

−B−(t1)B
+(t)B+(t2)σ+− − B+(t)B−(t1)B

+(t2)σ+−

(7.80)
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The 3rd order cumulants are

〈B−(t2)B
+(t1)B

+(t)〉APC = 〈〈B−(t2)B
+(t1)B

+(t)〉〉
−〈〈B−(t2)B

+(t1)〉〉〈〈B+(t)〉〉
−〈〈B−(t2)〉〉〈〈B+(t1)B

+(t)〉〉
+〈〈B−(t2)〉〉〈〈B+(t1)〉〉〈〈B+(t)〉〉 (7.81)

In contrast to the TCL equations, not all the 3rd order cumulants are zero:

〈B−(t2)B
+(t1)B

+(t))〉APC = 〈b−(t2)b
+(t)〉ǫ∗(t1)

〈B−(t2)B
+(t)B+(t1)〉APC = 〈b−(t2)b

+(t1)〉ǫ∗(t)
〈B+(t1)B

+(t)B−(t2)〉APC = 0

〈B+(t)B+(t1)B
−(t2)〉APC = 0

〈B+(t2)B
−(t1)B

+(t)〉APC = 0

〈B+(t2)B
+(t)B−(t1)〉APC = 0

〈B−(t1)B
+(t)B+(t2)〉APC = 〈b−(t1)b

+(t2)〉ǫ∗(t)
〈B+(t)B−(t1)B

+(t2)〉APC = 0 (7.82)

The 3rd term of eq.(7.18)

I−(t) = QiL̂1(t) +

∫ t

0

dt1QΦ̂−2(t, t1)

+

∫ t

0

dt1

∫ t1

0

dt2QΦ−,3(t, t1, t2))σ+

(7.83)

The first term of I−(t)

QiL̂1(t)σ+ = b+(σ−+ − σ+−) (7.84)

disappears ofter averaging as well as the others.
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7.2.8 TC equations of motion

Collecting the results of the preceding section, we arrive at the time convo-
lution equations of motion up to 2nd order

d

dt
〈σ+(t)〉 = −iǫ̃∗(t)〈σz(t)〉 −

∫ t

0

dt1G(t1 − t)〈σ+(t1)〉

d

dt
〈σ−(t)〉 = iǫ̃(t)〈σz(t)〉 −

∫ t

0

dt1G(t− t1)〈σ−(t1)〉

d

dt
〈σz(t)〉 = 2iǫ̃∗(t)〈σ−(t)〉 − 2iǫ̃(t)〈σ+(t)〉

−
∫ t

0

dt1(G(t1 − t) +G(t− t1))(〈σz(t1)〉 + 1)

(7.85)

The 3rd order equations are

d

dt
〈σ+(t)〉 = −iǫ̃∗(t)〈σz(t)〉 −

∫ t

0

dt1G(t1 − t)〈σ+(t1)〉

+i

∫ t

0

dt1

∫ t1

0

dt2

[

G(t2 − t)ǫ∗(t1)

+G(t2 − t1)ǫ
∗(t) +G(t1 − t2)ǫ

∗(t)
]1

2
(〈σz(t2)〉 + 1)

d

dt
〈σ−(t)〉 = iǫ̃(t)〈σz(t)〉 −

∫ t

0

dt1G(t− t1)〈σ−(t1)〉

−i
∫ t

0

dt1

∫ t1

0

dt2

[

G(t− t2)ǫ(t1)

+G(t1 − t2)ǫ(t) +G(t2 − t1)ǫ(t)
]1

2
(〈σz(t2)〉 + 1)

d

dt
〈σz(t)〉 = 2iǫ̃∗(t)〈σ−(t)〉 − 2iǫ̃(t)〈σ+(t)〉

−
∫ t

0

dt1(G(t1 − t) +G(t− t1))(〈σz(t1)〉 + 1)

(7.86)
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7.2.9 Numerical solution: time-evolution of TC2 and

TC3

For the solution of this system of integro-differential equations we use a
iterative method. It is suitable even for higher orders. Its limitations are the
long computation time for longer system time.

Iterative variational method

Following [50], we consider a general nonlinear system:

D[σ(t)] + F [σ(t)] = g(t) (7.87)

with a differential operatorD and a operator F and a given function g(t). For
the iterative method, where σn is the nth iteration, the following correction
functional is considered:

σn+1(t) = σn(t) +

∫ t

0

λ(s)[σ′(s) + F̃ [σn(s)]]ds (7.88)

F̃ [σn(s)] is a restricted variation i.e. δF̃ [σn(s)] = 0. λ is a Lagrange multiplier
that is chosen using a variational method.

δσn+1(t) = δσn(t) + δ

∫ t

0

λ(s)[σ′
n(s) + F̃ [σn(s)]]ds (7.89)

= δσn(t) + λ(s)δσn(s)|s=t −
∫ t

0

λ′(s)δσn(s)ds (7.90)

The conditions for λ are

λ′(s) = 0 (7.91)

1 + λ(t) = 0 (7.92)

Therefore the Langrange multiplier is λ(t) = −1.
In our problem, D ist the time derivative left side of the equation system, F
is the homogenous part of the right side and g is the inhomogeeous part.

Plots

We present the numerical solution for TC 2nd order and TC 3rd order. The
first plot is the solution using the method of chapter 5 for comparison.
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7.2.10 Correlations

To get the equations for the correlations we use the quantum regression the-
orem without the transient terms for simplicity. We use a Laplace transform
in order to calculate the spectrum.

f(iω) :=

∫ ∞

0

dtf(t)eiωt (7.93)

∫ t

0

dt1

∫ t1

0

dt2G(t2 − t)ei∆t1σ(t2)

=

∫ t

0

dt2

∫ t

t2

dt1G
∗(t− t2)e

i∆t1σ(t2) −→ 1

i∆
[G∗(ω + ∆)σ(ω + ∆) +G∗(ω)σ(ω + ∆)

∫ t

0

dt1

∫ t1

0

dt2G(t2 − t1)e
i∆tσ(t2) −→ 1

−iω − i∆
G∗(ω + ∆)σ(ω + ∆)

here G(t) = GA(t).
For second order the Laplace-Fourier transform is,

− σ+−(0) − iωσ+−(ω) = −iǫσz−(ω − ∆) −G∗(ω)σ+−(ω)

−σ−−(0) − iωσ−(ω) = iǫσz−(ω + ∆) −G(ω)σ−−(ω)

−σz−(0) − iωσz−(ω) = 2iǫσ−−(ω − ∆) − 2iǫσ+−(ω + ∆)

−(G(−iω) +G(iω))(σz−(iω) +
σ−
−iω )

(7.94)

Frequency shift of the first two equations results in a closed linear system:

− σ+−(0) − i(ω + ∆)σ+−(ω + ∆) = −iǫσz−(ω) −G∗(ω + ∆)σ+−(ω + ∆)

−σ−−(0) − i(ω − ∆)σ−(ω − ∆) = iǫσz−(ω) −G(ω − ∆)σ−−(ω − ∆)

−σz−(0) − iωσz−(ω) = 2iǫσ−−(ω − ∆) − 2iǫσ+−(ω + ∆)

−(G∗(ω) +G(ω))(σz−(ω) +
σ−
−iω )

(7.95)

These equations are identical to the TC0 equations of chapter 6.
Including all terms up to 3rd order and shifted:
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− σ+− − i(ω + ∆)σ+−(ω + ∆) = −iǫσz−(ω) −G∗(ω + ∆)σ+−(ω + ∆)

− ǫ

∆

(

(G∗(ω) +G∗(ω + ∆))[σz−(ω) +
σ−(0)

−iω ]

− ǫ

ω
(G(ω) +G∗(ω))[σz−(ω) +

σ−(0)

−iω ]

−σ−− − i(ω − ∆)σ−(ω − ∆) = iǫσz−(ω) −G(ω − ∆)σ−−(ω − ∆)

− ǫ

∆

(

(G(ω) +G(ω − ∆))[σz−(ω) +
σ−(0)

−iω ]

+
ǫ

ω
(G(ω) +G∗(ω))[σz−(ω) +

σ−(0)

−iω ]

−σz− − iωσz−(ω) = 2iǫσ−−(ω − ∆) − 2iǫσ+−(ω + ∆)

−(G∗(ω) +G(ω))(σz−(ω) +
σ−
−iω )

(7.96)

In the resonant case ∆ = 0 the Laplace transformed equations (7.86) of
3rd order are

− σ+−(0) − iωσ+−(ω) = −iǫσz−(ω) −G∗(ω)σ+−(ω)

+iǫL[tG∗(t)](ω)(σz−(ω) +
1

−iω )

− ǫ

ω
(G(ω) +G∗(ω))(σz−(ω) +

1

−iω )

−σ−−(0) − iωσ−−(ω) = iǫσz−(ω) −G(ω)σ−−(ω)

−iǫL[tG(t)](ω)(σz−(ω) +
1

−iω )

+
ǫ

ω
(G(ω) +G∗(ω))(σz−(ω) +

1

−iω )

−σz−(0) − iωσz−(iω) = 2iǫσ−−(ω) − 2iǫσ+−(ω)

−(G∗(ω) +G(ω))(σz−(ω) +
1

−iω )

(7.97)

L[tG(t)] is the Laplace transformation of tG(t).
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7.2.11 Results

We want to compare the numerical results with our former solutions of the
spectrum

In the following figures, the blue, dotted curve is the TC0 solution, identi-
cal to the 2nd order of ch. 6. The dashed, magenta curve is the TC1 solution
of chapter 6. The purple curve is the 3rd order solution of eqns.(7.96,7.97) .

The first first plot is qualitatively similar for the different solutions, how-
ever the height of the peaks differ.
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With a larger system-bath coupling the peaks broaden, the middle peak
is considerably smaller for the 3rd order solution:
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For a bigger band edge frequency,the right peak is split in two parts. The
results are very different for the TC1 and the 3rd order solution.
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For a considerable atom-laser detuning, the middle peak is negative in
the 3rd order solution.
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