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Abstract

Learning a model for the relationship between the attributes and the annotated labels
of data examples serves two purposes. Firstly, it enables the prediction of the label for
examples without annotation. Secondly, the parameters of the model can provide useful
insights into the structure of the data. If the data has an inherent partitioned structure, it
is natural to mirror this structure in the model. Such mixture models predict by combining
the individual predictions generated by the mixture components which correspond to the
partitions in the data. Often the partitioned structure is latent, and has to be inferred
when learning the mixture model. Directly evaluating the accuracy of the inferred partition
structure is, in many cases, impossible because the ground truth cannot be obtained for
comparison. However it can be assessed indirectly by measuring the prediction accuracy
of the mixture model that arises from it. This thesis addresses the interplay between the
improvement of predictive accuracy by uncovering latent cluster structure in data, and
further addresses the validation of the estimated structure by measuring the accuracy of
the resulting predictive model.

In the application of filtering unsolicited emails, the emails in the training set are latently
clustered into advertisement campaigns. Uncovering this latent structure allows filtering of
future emails with very low false positive rates. In order to model the cluster structure, a
Bayesian clustering model for dependent binary features is developed in this thesis.

Knowing the clustering of emails into campaigns can also aid in uncovering which emails
have been sent on behalf of the same network of captured hosts, so-called botnets. This
association of emails to networks is another layer of latent clustering. Uncovering this latent
structure allows service providers to further increase the accuracy of email filtering and to
effectively defend against distributed denial-of-service attacks. To this end, a discriminative
clustering model is derived in this thesis that is based on the graph of observed emails. The
partitionings inferred using this model are evaluated through their capacity to predict the
campaigns of new emails.

Furthermore, when classifying the content of emails, statistical information about the
sending server can be valuable. Learning a model that is able to make use of it requires
training data that includes server statistics. In order to also use training data where the
server statistics are missing, a model that is a mixture over potentially all substitutions
thereof is developed.

Another application is to predict the navigation behavior of the users of a website. Here,
there is no a priori partitioning of the users into clusters, but to understand different usage
scenarios and design different layouts for them, imposing a partitioning is necessary. The
presented approach simultaneously optimizes the discriminative as well as the predictive
power of the clusters.

Each model is evaluated on real-world data and compared to baseline methods. The
results show that explicitly modeling the assumptions about the latent cluster structure
leads to improved predictions compared to the baselines. It is beneficial to incorporate a
small number of hyperparameters that can be tuned to yield the best predictions in cases
where the prediction accuracy can not be optimized directly.



Zusammenfassung

Das Lernen eines Modells fiir den Zusammenhang zwischen den Eingabeattributen und
annotierten Zielattributen von Dateninstanzen dient zwei Zwecken. Einerseits ermoglicht
es die Vorhersage des Zielattributs fiir Instanzen ohne Annotation. Andererseits kénnen
die Parameter des Modells niitzliche Einsichten in die Struktur der Daten liefern. Wenn
die Daten eine inhérente Partitionsstruktur besitzen, ist es natiirlich, diese Struktur im
Modell widerzuspiegeln. Solche Mischmodelle generieren Vorhersagen, indem sie die in-
dividuellen Vorhersagen der Mischkomponenten, welche mit den Partitionen der Daten
korrespondieren, kombinieren. Oft ist die Partitionsstruktur latent und muss beim Lernen
des Mischmodells mitinferiert werden. Eine direkte Evaluierung der Genauigkeit der in-
ferierten Partitionsstruktur ist in vielen Fallen unmoglich, weil keine wahren Referenzdaten
zum Vergleich herangezogen werden konnen. Jedoch kann man sie indirekt einschatzen,
indem man die Vorhersagegenauigkeit des darauf basierenden Mischmodells misst. Diese
Arbeit beschéftigt sich mit dem Zusammenspiel zwischen der Verbesserung der Vorhersage-
genauigkeit durch das Aufdecken latenter Partitionierungen in Daten, und der Bewertung
der geschatzen Struktur durch das Messen der Genauigkeit des resultierenden Vorhersage-
modells.

Bei der Anwendung des Filterns unerwiinschter E-Mails sind die E-Mails in der Train-
ingsmende latent in Werbekampagnen partitioniert. Das Aufdecken dieser latenten Struk-
tur erlaubt das Filtern zukiinftiger E-Mails mit sehr niedrigen Falsch-Positiv-Raten. In
dieser Arbeit wird ein Bayes’sches Partitionierunsmodell entwickelt, um diese Partition-
ierungsstruktur zu modellieren.

Das Wissen iiber die Partitionierung von E-Mails in Kampagnen hilft auch dabei her-
auszufinden, welche E-Mails auf Veranlassen des selben Netzes von infiltrierten Rechnern,
sogenannten Botnetzen, verschickt wurden. Dies ist eine weitere Schicht latenter Parti-
tionierung. Diese latente Struktur aufzudecken erlaubt es, die Genauigkeit von E-Mail-
Filtern zu erhchen und sich effektiv gegen verteilte Denial-of-Service-Angriffe zu vertei-
digen. Zu diesem Zweck wird in dieser Arbeit ein diskriminatives Partitionierungsmodell
hergeleitet, welches auf dem Graphen der beobachteten E-Mails basiert. Die mit diesem
Modell inferierten Partitionierungen werden via ihrer Leistungsfahigkeit bei der Vorhersage
der Kampagnen neuer E-Mails evaluiert.

Weiterhin kann bei der Klassifikation des Inhalts einer E-Mail statistische Informa-
tion tiber den sendenden Server wertvoll sein. Ein Modell zu lernen das diese Informatio-
nen nutzen kann erfordert Trainingsdaten, die Serverstatistiken enthalten. Um zusétzlich
Trainingsdaten benutzen zu kénnen, bei denen die Serverstatistiken fehlen, wird ein Modell
entwickelt, das eine Mischung iiber potentiell alle Einsetzungen davon ist.

Eine weitere Anwendung ist die Vorhersage des Navigationsverhaltens von Benutzern
einer Webseite. Hier gibt es nicht a priori eine Partitionierung der Benutzer. Jedoch
ist es notwendig, eine Partitionierung zu erzeugen, um verschiedene Nutzungsszenarien zu
verstehen und verschiedene Layouts dafiir zu entwerfen. Der vorgestellte Ansatz optimiert
gleichzeitig die Fahigkeiten des Modells, sowohl die beste Partition zu bestimmen als auch
mittels dieser Partition Vorhersagen Uber das Verhalten zu generieren.

Jedes Modell wird auf realen Daten evaluiert und mit Referenzmethoden verglichen. Die
Ergebnisse zeigen, dass das explizite Modellieren der Annahmen iiber die latente Partition-
ierungsstruktur zu verbesserten Vorhersagen fiihrt. In den Fallen bei denen die Vorhersage-
genauigkeit nicht direkt optimiert werden kann, erweist sich die Hinzunahme einer kleinen
Anzahl von iibergeordneten, direkt einstellbaren Parametern als niitzlich.
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Chapter 1

Introduction

In many applications, one wants to annotate instances of data with labels that in-
dicate how to further process them. Examples include email messages, where the
service provider wants to know whether to move them to a special folder because
they are unsolicited (spam), or transmit them normally. In cases where obtaining
the labels for all instances by other means is too costly or impractical, one can learn
a model for the relationship between the examples’ attributes and their labels. For
that, the learner usually needs a much smaller set of examples where both the at-
tributes and labels are known. In the following, let x denote the attributes of an
example, y a label, 6 the parameters of a model, and ¢ a cluster of instances. In
general, the learner is given a training set X = {(z1,vy1), ..., (Zn,yn)}, where the z;
specify the attributes of the i-th example, and the y; the respective labels. The goal
is to infer a prediction model P(y|z;0), parameterized by some set of parameters 6.
The latter are usually optimized according to the accuracy of the prediction model
on the training data. After that, the model can be used to predict the labels y of
new examples. Sometimes the predictions themselves are not relevant, but only the
model parameters that serve as a way to interprete or explain the training data. But
even in these cases, the predictions on new data are useful because their accuracy
provides an indicator for the appropriateness of the model parameters.

1.1 Mixture Models

Mixture models are a class of prediction models that rely on an underlying partition
structure in the relationship between attributes and label. They have an advantage of
exhibiting greater complexity than their underlying single-component models, while
in many cases, retaining their same efficient inference methods. For example, learning
a linear classifier using a convex loss function can be done very efficiently, but the
discriminative power of linear models is too low in some applications. A common
approach to increasing the discriminative power is to map the examples into a higher-
dimensional feature space and learn a decision funtion in the feature space. If the
objective function is quadratically regularized, the solution can be expressed solely
in terms of inner products of examples in the feature space, and thus the mapping
does not have to be done explicitly, but rather the inner product may be defined
directly as a kernel function. The resulting decision function can then be non-linear
in the input examples. However kernel methods are usually much slower than linear
methods, because evaluating the decision function requires iterating over potentially
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all training examples. But there already exists a partitioning of the training set into
components, learning a linear classifier for each component is easy, and the resulting
mixture model is then effectively non-linear. Especially if the data actually exhibit
an albeit unknown cluster structure, taking this structure into account when learning
a predictive model can be advantageous.

Examples of successful uses of mixture models include speech recognition [Povey 10],
clustering of gene expression microarray data [McNicholas 10], modeling the returns
of financial assets [Geweke 11], and image segmentation [Zhang 11].

In general, the partitioning of the training set is not given, hence the task has two
parts. Firstly, the learner has to find a partioning C' consisting of clusters ¢y, ..., ¢y,
such that (Je; = X and Vi # j : ¢; Ne; = 0. Secondly, for each cluster, one has
to estimate its predictive model parameters . They can be either estimated in a
maximum-a-posteriori fashion,

0" = arg max P(0)P(y|x;0),
P(ylr) = P(ylz;67),

or they can be integrated out in order to perform full Bayesian inference:

P(ylz) = / P(6)P(y]:6)d6.

While the latter is more exact, the former is used in cases when full Bayesian inference
is computationally intractable.

Within a component ¢, the mixture model defines a distribution P(y|x;c) be-
cause each component is associated with a set of parameters . The component-wise
distributions can be combined by summing over the components, weighted by their
probabilities given input =,

P(ylz) =) P(cle)P(y|z;c). (1.1)

Assessing the predictive accuracy of the resulting distribution P(y|z) indirectly
allows one to evaluate the performance of the partitioning C'. Although there is no
deterministic relationship between the two, in general a higher accuracy of P(y|z)
requires a higher accuracy of C'. Of course, in simple settings this relationship breaks
down; for example, if the output can be predicted from the input completely inde-
pendent from the cluster structure. But we focus on applications where there is in
fact a latent cluster structure in the data, and where knowing to which cluster an
example belongs facilitates the prediction of its output.

This thesis is concerned with the interplay between two mutually dependent pro-
cesses: the one hand the improvement of predictive accuracy by uncovering the latent
mixture structure in the data, and the validation of the estimated mixture structure
by measuring the accuracy of the resulting predictive model. It is not only of interest
to evaluate a particular estimated clustering, but also to evaluate different methods
of estimating clusterings. In particular, several new methods for estimating mixture
models from training data are presented. The aim of the methods is to forgo un-
justified assumptions about the data and to enable direct optimization of predictive
accuracy when possible. This results in a clear relationship between the resulting
predictive accuracy and the validity of the produced clusterings, setting the methods
apart from previously published clustering approaches where there is, in general, no
possibility to assess the partitionings inferred from real-world data.
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1.2 Classifying Emails with Mixtures of Campaigns

In the application of spam filtering, the inputs x are the contents of emails and
sometimes additional meta-data. The label that is to be predicted is binary, y €
{—1,1}, representing non-spam or spam. The most common way to represent the
content of an email is to use a bag-of-words representation of the text and use a
binary indicator vector that has a component for each word in the vocabulary. Thus
the vector x consists of ones that correspond to words that are included in the email
and zeroes elsewhere. Due to the high dimensionality of the input vectors and the
large number of training examples, usually generalized linear models are used to
model P(y|x). Let w be the vector of same dimensionality as = parameterizing the
distribution, and ¢ an arbitrary link function such that g=! : R — [—1;1]. Then the
predictive distribution is defined as

P(ylz;w) = g (w' ).

To guarantee very low false positive rates, an email provider wants to train a con-
servative spam filter, which does not try to capture the essence of “spamness”, but
instead filters only emails that belong to a known spam campaign. This is not pos-
sible using a single generalized linear model since those result in a planar decision
boundary, and thus all emails that lie between the known spam campaigns in input
space are filtered as well. A remedy is to combine several linear classifiers, one for
each campaign of spam emails. Since the probability that a message is spam given
that it belongs to a spam capaign is one, Equation 1.1 can be written as

2ccco Plale)P(c)
P(x) '

Py =1|z) = (1.2)

The main challenge is to find a clustering C' of a training set X into campaigns.
We do this by constructing a Bayesian mixture model over emails in a transformed
feature space in which the dimensions are treated as independent:

mmmzﬂlﬂmﬂpwmww (1.3)

ceC TrEC

Here, 6 is the parameter vector that governs the distribution over transformed fea-
ture vectors within a cluster, and ¢ is the transformation mapping. It is an injective
Boolean function, constructed with the goal to minimize the negative influence of
the independence assumption for the transformed feature dimensions. Previous ap-
proaches for modeling the generative process of text data fall into two categories. The
first category of approaches is to include an independence assumption in the input
space which is clearly unjustified and harms performance. The second possibility is
to use an n-gram model which inflates the dimensionality of the data and therefore
suffers from the problem that the overwhelming majority of n-grams have never been
seen before in the training set.

Using a multivariate Beta distribution for the prior P(f) yields a closed-form
solution for the integral in Equation 1.3, and we can find a good approximative solu-
tion to the clustering problem arg maxqc P(X|C) efficiently using a greedy sequential
algorithm.



It is problematic to estimate P(c) in Equation 1.2 from training data, because the
activities of spam campaigns can change rapidly within short timeframes. Thus we
assume a uniform distribution over campaigns. This could lead to the overestimation
of P(y = 1|z) for messages from campaigns that are split over multiple clusters
by the clustering process. To correct for this, we replace the sum over campaigns
by the maximum over campaigns. Finally, the constant 1/|C| from the uniform
distribution over clusters can be omitted, since we are only concerned with the relative
probabilities of messages being spam compared to each other. This leads us to the
final classification score as

max.cc P(z|c)
P(x)

score(x) =

In this application, not only the predictions of the final model are of interest, but
also the clustering itself has intrinsic value. It provides insight into the behavior of
spammers: it can tell us about how often the campaign templates change, how many
different campaigns are active at any given time, and about the employed strategies
for dissemination.

This approach is detailed and evaluated by Haider and Scheffer [Haider 09]. The
paper makes three major contributions. The most import contribution is the gen-
erative model for a clustering of binary feature vectors, based on a transformation
of the inputs into a space in which an independence assumption induces minimum
approximation error. Furthermore, the paper presents an optimization problem for
learning the transformation together with an appropriate algorithm. And finally it
details a case study on real-world data that evaluates the clustering solution on email
campaign detection.

For the paper I, derived the generative model and the feature transformation,
proved the theorem, developed and implemented the algorithms and conducted the
experiments.

1.3 Predicting Email Campaigns Using a Botnet
Model

In this application, the prediction of email campaigns is mainly a method to evaluate
the accuracy of the clustering. We are given a set of emails, consisting of their sender’s
IP address = and their spam campaign y. The goal is to find a clustering C of the pairs
(z,y), such that the clusters correspond to the botnets on whose behalf the emails
were sent. Knowing which IP address belongs to which botnet at any time facilitiates
the defense against distributed denial-of-service (DDOS) attacks. However, there
is no ground truth available with which to assess an inferred clustering. But by
evaluating the prediction of campaigns given IP addresses and a current clustering,
we can indirectly compare different methods of clustering emails into botnets. The
more accurate the clustering C', the more accurate the predictive distribution that is
based on the clustering tends to be:

(ylxz; C) = ZP ylz; c) P(c|x).

ceC



We make the assumption that the campaign of an email is conditionally independent
of its IP address given its cluster; i.e., P(y|z;c) = P(y|c). Both the distribution
over campaigns within a botnet P(y|c) and the distribution over botnets given an
IP address can be straightforwardly estimated using a maximume-likelihood approach.
The main challenge is again to find the clustering C' of a given set of training pairs. We
construct a discriminative model P(C|(z1,41),. ., (Zn, y,)) that represents its input
as a graph of emails, where there is an edge between two emails if and only if they are
from the same campaign or IP address. The crucial observation is that edges present
in the graph provide weak evidence for two emails belonging to the same botnet,
whereas the absence of an edge only provides very weak evidence against it. Our
model thus is defined purely in terms of the cliques of the graph. Within each clique,
we define the posterior distribution of the partitioning of the emails of the clique
to follow the Chinese Restarant Process (CRP). The individual clique distributions
are then multiplied and normalized. Since there is no closed-form solution for the
full Bayesian approach of averaging over all clusterings for predicting campaigns, we
devise a blockwise Gibbs sampling scheme that, in the limit of an infinite number
of iterations, generates samples C1,...,Cr from the true posterior. Predictions are
then averaged over the generated samples, such that the final predictive distribution
is

P(ylz; Cy,....Cr) = ZZP(C|$,Ct)P(y|C)-

t ceCy

This approach is detailed and evaluated by Haider and Scheffer [Haider 12b]. The
paper contributes a discriminative model for clustering in a graph without making
distributional assumptions about the generative process of the observables. Addi-
tionally, it presents a Gibbs sampling algorithm with which to efficiently traverse the
state graph to generate unbiased samples from the posterior in the limit. Finally, it
reports on a case study with data from an email service provider.

For the paper, I formulated the problem setting, derived the probabilistic model,
proved the theorems, developed and implemented the algorithm, and conducted the
experiments.

1.4 Classifying Emails with Missing Values

In spam filtering, one can use additional meta-information z about an email in addi-
tion to its content z, such as statistics about the sending server. Yet because we want
to utilize training data from external sources that do not include these statistics, we
are faced with the problem of learning a classifier from examples with missing values.
At test time, the server statistics are always available.

The way to do this without introducing simplifications is to find a set of imputa-
tions! Q = {wy,...,wp} for the missing values. Each wy is a complete instantiation
of the meta-information of all examples, and restricted to z in places where the true
meta-information is known. We prove that using at most n different sets of impu-
tations, where n is the size of the training set, is equivalent to using a mixture of

'In the area of learning from data with missing values, the assumed values are usually called
imputations.
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infinitely many imputation sets. We assume a known prior distribution P(w) over im-
putations. It can, for example, represent the belief that imputed values are normally
distributed about the mean of the actual values of other examples in the same feature
dimension. Unlinke previous work, our approach finds a complete distribution over
all possible imputations, instead of finding only a single imputation for each example.

The wy correspond to the components of a mixture model. Their respective pre-
dictive distributions P(y|z, z;w) can be modeled and learned as a conventional binary
classification problem. We choose a decision function kernelized with a Mercer kernel
k,

f(:L‘WZ) = Za/’bylk(xv z,xi,w),

where all mixture components share the same dual multipliers «;.

Thus the task is to simultaneously estimate the multipliers «; and the weights
B, ..., Bp of the individual mixture components. The most concise way to do this
is to construct a joint optimization problem, where both are free parameters and
the objective function is defined in terms of the classification error on the training
examples, the prior knowledge P(w) about the imputations, and a regularizer on the
norm of the weight vector in feature space. This amounts to optimizing

arg Ortnérul) Z lh(yi, Z Q;Y; Z Bdk‘(Ii, Wiy Ljs Wd,j)
R J d

H A g0 Bek(x, wa, 75, wa )

1;7j7d

+ X Bylog P(wy),
d

where ["(y, f) = max(1—yf, 0) is the hinge loss, under the constraints that Vd : 84 > 0
and ), 84 = 1. It can be solved in its dual form using a min-max-procedure that
iteratively selects the next best set of imputations wy and its weight §; and then
re-adjusts the multipliers «;.

This approach is detailed and evaluated by Dick et al. [Dick 08]. The novel
contributions of this paper are as follows. Firstly, it presents an optimization problem
for learning a predictor from incomplete data that makes only minimal assumptions
about the distribution of the missing attribute values, and allows potentially infintely
many imputations. Secondly, it contains a proof that the optimal solution can be
expressed in terms of a finite number of imputations. On multiple datasets it shows
that the presented method consistently outperforms single imputations.

For this paper I developed the theoretical framework and the optimization prob-
lems, and proved the theorem. Uwe Dick implemented the algorithm and conducted
the experiments.

1.5 Predicting User Behavior in Different Market
Segments

In the final application, the predictions of the learned mixture model are only of
secondary importance to the prediction model itself. Training examples consist of
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attributes x and behavior y. The goal is to simultaneously find a set of k& market
segments with associated parameters 6y, ..., 60, and a classifier h : X — {1,...,k}.
The classifier sorts each example into one of the segments, given its attributes. The
segment parameters are supposed to predict the behavior of the examples in the
segment, and thus serve as a description of the segment. For example, in the domain
of user behavior on a website, each example corresponds to one browsing session.
Its attributes are the timestamp, the referrer domain, and the category of the first
pageview. Its behavior is represented by the categories of the subsequent pageviews
and the layout elements in which the clicked links reside. Given a set of segments of
the training examples, one can craft specific website layouts for each segment, which
cater best to the included browsing sessions’ preferences. New sessions can then be
classified using h into one of the segments and presented with the corresponding
layout.

The operator of the website wants the classifier to accurately discriminate exam-
ples given only their attributes, and also wants the segment parameters to predict
the behavior of all examples that are classified into it with high accuracy. Therefore,
first finding a clustering in the space of attributes and then selecting parameters for
each cluster is not advisable because it can result in poor prediction of the behavior.
Analogously, first computing a clustering in the space of behaviors leads to good pre-
dictions of the behavior within each cluster, but can gravely harm the capability of
any classifier to separate examples into the respective clusters where their behavior
is best predicted. The appropriate optimization problem is thus

arg max Z log P(yi|Oh(z,))- (1.4)

The premise here is that the predictive distribution family P(y|6) is chosen so that the
parameters 6 can be interpreted in a meaningful way to guide the design of segmented
marketing strategies. Additionally, estimating the parameters within a segment c
given the contained examples with indices ¢ € ¢ has to be efficient. For example,
if the behavior is an exchangeable sequence of mutually independent multinomial
variables the optimization problem

arg max Z log P(y;|0)

i€c

has a closed-form solution, and the parameters 6 of the segment can be interpreted as
the preferences of the members of the segment. Our approach stands in contrast to
previously published market segmentation methods. Instead of defining a priori cri-
teria for clustering the examples, we simultaneously optimize the clustering according
to the goals of separability and homogeneity.

Solving the optimization problem of Equation 1.4 in the straightforward manner
of alternating between optimizing h and 6 does not work in practice because it gets
stuck in poor local optima where, in most cases, the majority of segments are empty.
As a remedy, we develop an algorithm that relies on the expression of the parameters
of h as a function of the parameters 6. The resulting objective function can be
maximized approximately using a variant of the EM-algorithm.

This approach is detailed and evaluated by Haider et al. [Haider 12a]. The
paper presents the first concise optimization problem for market segmentation, which

12



consists of learning a classifier and component-wise predictors. An algorithm for
approximately solving the problem is detailed, and evaluated on a large-scale dataset
of user navigation behavior of a news website.

For the paper I formulated the problem setting and the optimization problem,
derived the approximate solution, developed and implemented the algorithms, and
conducted the main experiments. Luca Chiarandini preprocessed the data and im-
plemented and conducted the baseline experiments.
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Abstract

We discuss the problem of clustering elements
according to the sources that have generated
them. For elements that are characterized
by independent binary attributes, a closed-
form Bayesian solution exists. We derive a
solution for the case of dependent attributes
that is based on a transformation of the in-
stances into a space of independent feature
functions. We derive an optimization prob-
lem that produces a mapping into a space
of independent binary feature vectors; the
features can reflect arbitrary dependencies in
the input space. This problem setting is mo-
tivated by the application of spam filtering
for email service providers. Spam traps de-
liver a real-time stream of messages known to
be spam. If elements of the same campaign
can be recognized reliably, entire spam and
phishing campaigns can be contained. We
present a case study that evaluates Bayesian
clustering for this application.

1. Introduction

In  model-based clustering, elements X =
{xM ..., x™} have been created by an unknown
number of sources; each of them creates elements
according to its specific distribution. We study
the problem of finding the most likely clustering of
elements according to their source

c* :a’:urgmcz}xP(X|C’)7 (1)

where C' consistently partitions the elements of X into
clusters C' = {c1,..., ¢} that are mutually exclusive
and cover each element.

Appearing in Proceedings of the 26" International Confer-
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Computing the likelihood of a set X under a cluster-
ing hypothesis C requires the computation of the joint
likelihood of mutually dependent elements X. within
a partition c. This is usually done by assuming latent
mixture parameters 6 that generate the elements of
each cluster and imposing a prior over the mixture pa-
rameters. The joint likelihood is then an integral over
the parameter space, where individual likelihoods are
independent given the parameters:

P(X.) = / 11 PxI6)P(6)ds. (2)
xeX.

For suitable choices of P(x|0) and P(6), this integral
has an analytic solution. In many cases, however,
the space X of elements is very high-dimensional, and
the choice of likelihood and prior involves a trade-off
between expressiveness of the generative model and
tractability regarding the number of parameters. If the
elements are binary vectors, X = {0, 1}, one extreme
would be to model P(x|f) as a full multinomial distri-
bution over X, involving 2” parameters. The other
extreme is to make an independence assumption on
the dimensions of X, reducing the model parameters
to a vector of D Bernoulli probabilities. No remedy for
this dichotomy is known that preserves the existence
of an analytic solution to the integral in Equation 2.

Our problem setting is motivated by the application
of clustering messages according to campaigns; this
will remain our application focus throughout the pa-
per. Filtering spam and phishing messages reliably
remains a hard problem. Email service providers op-
erate Mail Transfer Agents which observe a stream of
incoming messages, most of which have been created
in bulk by a generator. A generator can be an appli-
cation that dispatches legitimate, possibly customized
newsletters, or a script that creates spam or phishing
messages and disseminates them from the nodes of a
botnet. Mail Transfer Agents typically blacklist known
spam and phishing messages. Messages known to be
spam can be collected by tapping into botnets, and
by harvesting emails in spam traps. Spam traps are
email addresses published invisibly on the web that
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have no legitimate owner and can therefore not re-
ceive legitimate mail. In order to avoid blacklisting,
spam dissemination tools produce emails according to
probabilistic templates. This motivates our problem
setting: If all elements that are generated in a joint
campaign can be identified reliably, then all instances
of that campaign can be blacklisted as soon as one
element reaches a spam trap, or is delivered from a
known node of a botnet. Likewise, all instances of a
newsletter can be whitelisted as soon as one instance
is confirmed to be legitimate.

While text classification methods are frequently re-
ported to achieve extremely high accuracy for spam
filtering under laboratory conditions, their practical
contribution to the infrastructure of email services is
smaller: they are often applied to decide whether ac-
cepted emails are to be delivered to the inbox or the
spam folder. The vast majority of all spam delivery at-
tempts, however, is turned down by the provider based
on known message and IP blacklists. Text classifiers
are challenged with continuously shifting distributions
of spam and legitimate messages; their risk of false
positives does not approach zero sufficiently closely to
constitute a satisfactory solution to the spam problem.

This paper makes three major contributions. Firstly,
we develop a generative model for a clustering of bi-
nary feature vectors, based on a transformation of the
input vectors into a space in which an independence
assumption incurs minimal approximation error. The
transformations can capture arbitrary dependencies
in the input space while the number of parameters
stays reasonable and full Bayesian inference remains
tractable. Secondly, we derive the optimization prob-
lem and algorithm that generates the feature transfor-
mation. Finally, we present a large-scale case study
that explores properties of the Bayesian clustering so-
lution for email campaign detection.

The paper is structured as follows. We present the
Bayesian clustering model in Section 2, and an opti-
mization problem and algorithm for transforming de-
pendent features into independent features in Section
3. Section 4 discusses the estimation of prior param-
eters, Section 5 develops a sequential clustering algo-
rithm based on Bayesian decisions. Section 6 reports
on empirical results in our motivating application. We
review related work in Section 7. Section 8 concludes.

2. Bayesian Clustering for Binary
Features

In general, a clustering hypothesis C' entails that the
likelihood of the dataset factorizes into the likelihoods

of the subsets X, of elements in the clusters ¢ € C.
Elements within a cluster are dependent, so the like-
lihood of each element depends on the preceding ele-
ments in its cluster, as in Equation 3.

[[Pxo)

ceC

H H PxOxD ec:j<i}) (3)

ceC i:x(Dee

P(X]C)

The crucial part is modeling the probability P(x|X")
of a binary feature vector x given a set of elements X".
A natural way is to introduce latent model parameters
0 and integrate over them as in Equation 4.

P(x|X') = LP(X|0)P(9|X’)d9 (4)

Modeling 6 as a full joint distribution over all 2” pos-
sible feature vectors, with D being the dimensionality
of the input space X, is intractable.

Let ¢, be independent binary features and let vector
@(x) be a representation of x in the space of inde-
pendent features ¢. In order to streamline the pre-
sentation of the clustering model, we postpone the ra-
tionale and construction of the feature transformation
to Section 3. Under the assumption that attributes
in the space ¢ are independent, the model parame-
ters can be represented as a vector of Bernoulli proba-
bilities, # € (0,1)F, and we can compute P(x|0) as
Hle P(¢e(x)|0.). Furthermore, we impose a Beta
prior on every component . with parameters a,. and
Be. Since the Beta distribution is conjugate to the
Bernoulli distribution, we can now compute the poste-
rior over the model parameters analytically as in Equa-
tion 5, where #. = [{x’ € X' : ¢.(x") = 1}|.

P)
P(X")

17 Tex: P(6e(x)|0c) Ppeta(0e o, Be)
[ P(X'|6")P(0")do’

P(9|X') = P(X'|0)

E
- H PBeta(oe|ae + #67/86 + ‘X| - #6) (5)

e=1

The integral in Equation 4 then has the analytic solu-
tion of Equation 6:

Qe + #e
_ 6
e'¢>1(_X[)—1 Qe + Be + |X/| ( )

e + B + | X|

Px|X') =

ei6.(x)=0
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For a single element, independent of all others, the
probability term simplifies to

Qe Be
Po= [ —2 I -2 o
cont=1 e T Pe g ligmo Yo+ Pe

Furthermore, the joint probability of an interdepen-
dent set X’ in one cluster can be computed as

[I P&xOxY eXx’:j<i}
ix(DeX’
e X'|—#e
:Hnﬁzl<ae+k—1> KB+ k1)
e=1 L)i1‘ (O‘e + Be — 1)

E B(ae + #e;ﬁe + |Xl| - #e)
1l B(ae, Be) ’

where B denotes the Beta function.

P(X') =

3. Feature Transformation

In this section we will present a method of approx-
imating a distribution over high-dimensional binary
vectors that allows analytical integration over the in-
duced model parameters. The idea is to find a map-
ping into another space of binary vectors where the di-
mensions are treated independently of each other, such
that the divergence between the original distribution
and the approximate distribution defined in terms of
the mapped vectors is minimal.

A straightforward approach would be to employ a
model that captures dependencies between small sets
of attributes only and assumes independence other-
wise. Instead of working with independence assump-
tions, we construct a search space of transformations.
This space is complete in the sense that any possi-
ble interaction of attributes can be reflected in the
newly constructed attributes. These attributes are
constructed such that their product approximates the
true distribution as closely as possible.

The Bayesian clustering model introduced in Section 2
requires us to infer the probability of a feature vector
x given a set of feature vectors X’ it depends on. We
therefore want to approximate P(x|X’) by a quantity
Q4 (x|X"), where ¢ is a mapping from the original vec-
tor space X = {0, 1} to the image space Z = {0,1}F.
We define Q4 as a product over independent probabil-
ities for each output dimension, as in Equation 8.

Qq(x|X") Hque )|¢e(X")) (8)

By its definition as a product over probabilities, quan-
tity Qg (x|X) is always non-negative; however, it does

not necessarily sum to one over the event space of
possible inputs x. Since @y serves as an approxi-
mation of a probability in the Bayesian inference, it
is desirable that ) Q4(x|X) < 1 for all X. More-
over, the natural measure of approximation quality —
the Kullback-Leibler divergence — is only motivated
for measures that add up to at most one and may
be maximized by trivial solutions otherwise. Note
that the sum does not have to be exactly 1, since

an extra element X with P(X) = 0 can be added
to X that absorbs the remaining probability mass,
Qu(XIX') = 1= 2 cn Qo(xIX).

Normalization of Q4 (x|X) is intractable, since it would
require explicit summation of Equation 8 over all 27
possible input elements. We therefore have to define
the space of possible transformations such that after
any transformation @)y is guaranteed to sum to at most
one. By Theorem 1 (see Appendix), this holds for all
injective transformations.

Every mapping from X = {0,1}” to the Z = {0,1}¥
can be represented as a set of F Boolean functions,
and every Boolean function can be constructed as a
combination of elementary operations. Therefore we
can define the search space as the set of all concate-
nations of elementary Boolean transformations v that
preserve injectiveness. The choice of which elementary
transformations to use is driven by the practical goal
that ¢ also preserves sparseness. The following two
elementary transformations are injective, sufficient to
generate any Boolean function, and preserve sparsity:

fj(( Ty ey Ty )T):( , T .,xi#zj,...)T
’lLJ:](( yLiy ey Ly )T)
:(...,$iA$j7...,t’Ei/\_'LCﬁ_'(Ei/\.’L'j,...)T.

Every v replaces two features by Boolean combina-
tions thereof, leaving every other feature untouched.

For any set of elements X, the quantity Qu(x|X)
should minimize the Kullback-Leibler divergence from
the true distribution P(x|X). Hence, the optimization
criterion (Equation 9) is the expected KL divergence
between Q4 (x|X) and P(x|X) over all X.

L(P(-|X)]1Qs (-1X))] 9)

Z P(x|X)lo ((Xf%] (10)

> P(x]X)log Q¢(X|X)] (11)

xXeX

¢ =argmin E [K
¢ X~P(x)

=arg mln E
X~P(x)

=argmax F
¢  X~P(x)

=arg max E
¢  X~P(x),x~P(x|X)

[log Qs (x| X)] - (12)
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Equation 10 expands the definition of the KL diver-
gence; Equation 11 replaces minimization by maxi-
mization and drops the term P(x|X)log P(x|X) which
is constant in ¢. We approximate the expectation in
Equation 12 by the sum over an empirical sample S,
and obtain

Optimization Problem 1. Over the set of con-
catenations of elementary transformations, ¢ €

{08, v}, mazimize

D 1og Qu(x|S\ {x}).

xeS

The sum of log-probabilities can be calculated as

D log Qu(x[S\ {x})

x€eS

B
=Y #log(ao + #J —1) — [S|log(ao +Bo + S| —1)

e=1

+ (8] = #2) log(Bo + S| — #2 — 1),

where #5 = |{x' € S : ¢.(x') = 1}|, and ay, By are
the parameters of the Beta prior.

Optimization Problem 1 is non-convex, so we apply a
greedy procedure that iteratively adds the next-best
transformation starting with the identity transforma-
tion, as detailed in Algorithm 1.

Algorithm 1 Greedy Transformation Composition
&0 — id
fort=1... do
Y < argmaxy . g Qut—104 (%[5 \ {x})
if >0 Q1o (XIS\{x}) < X2 Qg1 (x|S\ {x})
x€eS x€eS
then
return ¢*—!
else
o' ¢! o)
end if
end for

4. Parameter Estimation

In the following section, we will derive a closed-form
estimator for parts of the parameters of the prior P(0).
The decisions whether to merge an element x with a
set X’ depend strongly on the prior parameters via
P(x) in Equation 7 and P(x|X’) in Equation 6.

Heller and Ghahramani (2005) derive an EM-like algo-
rithm that maximizes the data likelihood by iteratively

finding the best clustering and then performing gradi-
ent descent on the prior parameters. This approach
is computationally very expensive, since the likelihood
function is not convex and the entire dataset needs to
be re-clustered in each iteration.

We overcome these problems by using an alternative
parametrization of the Beta distribution. This allows
us to estimate half of the parameters from an unclus-
tered set of training examples S; the other half of the
parameters is pooled into a single value and adjusted
by a grid search on tuning data.

We re-parametrize the Beta priors as a, = p.o and
Be = (1—pe)o, where the p, are the prior means and o
is the common precision! parameter. The probability
of an element not given any other elements of the same
cluster does not depend on the prior precisions, only on
the means. Hence, the means have a stronger impact
on the resulting partitioning.

Imposing a Beta-distributed hyperprior on p, with pa-
rameters ag > 1 and By > 1 we can compute the
Maximum-A-Posteriori estimate of the means as

He = argmax P(u|S) = argmax [ | P(é(x)|1)P(n)
xeS
= argmf'XPBeta (tlao + {x € St ge(x) = 1},

Bo+{x €5 ¢e(x) =0})
CagtFH{xeES:ge(x) =1} -1
N a0+50+\5|—2

5. Sequential Bayesian Clustering

In this section we discuss the task of inferring the most
likely partitioning of a set of emails and present our
model-based sequential clustering algorithm.

Brute-force search over the entire space of possi-
ble partitionings in Equation 1 requires the evalua-
tion of exponentially many clusterings and is there-
fore intractable for reasonable numbers of emails.
A more efficient approach would be to perform
Markov chain Monte Carlo sampling methods like in
(Williams, 2000), which yields not only the Maximum-
A-Posteriori partitioning, but samples from the poste-
rior distribution.

Approximate agglomerative clustering algorithms
(Heller & Ghahramani, 2005) are more efficient. Since
in practice emails have to be processed sequentially,
and decisions whether an email belongs to a spam cam-
paign cannot be revised after delivering it, we adopt
the sequential clustering algorithm of Haider et al.

!The precision parameter of a Beta distribution is in-
versely related to its variance.
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Algorithm 2 Model-based Sequential Clustering
C+{}
fort=1...ndo
¢j + argmax.ec P(x|X,)
if P(x®|X,.) < P(x®) then
C+Cu {{x(t)}}
else
€ O\ {e} U{e; U {xD})
end if
end for
return C'

(2007). This greedy incremental algorithm has the
advantage of approximately finding the best campaign
association of a new email in O(n), where n is the
number of previously seen emails, instead of taking
O(n?) operations for performing a full agglomerative
re-clustering.

Instead of a weighted similarity measure as in (Haider
et al., 2007), our clustering model is based on a genera-
tive model. We replace the weighted sum over pairwise
features by an integral over the model parameters of
a cluster. This gives us the model-based sequential
clustering in Algorithm 2.

In every step, the algorithm compares the hypothe-
ses that the new element belongs to one of the exist-
ing clusters with the hypothesis that it forms its own
cluster. The likelihoods of these hypotheses are cal-
culated according to Equations 6 and 7. This greedy
algorithm can be straightforwardly extended to using
a non-uniform prior over clustering hypotheses, by re-
placing P(x) with P(x)P(CU{{x"1}) and P(x")|X.)
with P(x|X)P(C\ {e;} U{e; U{xD}}).

6. Email Campaign Detection

In this section, we explore the behavior of the feature
transformation procedure, and conduct a case study
of the Bayesian clustering method for spam filtering.

In unsupervised clustering, there is no ground truth
available that the output of the clustering algorithm
can be compared with. Fortunately, our motivating
application scenario — email spam containment — has
a natural evaluation criterion: the contribution of the
produced partitionings to accurate filtering.

We design an experimental setting that evaluates the
Bayesian clustering solution and the feature transfor-
mation technique for the problem of detecting spam
campaigns at an email service provider. Benchmark
data sets such as the SpamTREC corpus are not suit-
able for our evaluation. A fair evaluation relies on a

stream that contains realistic proportions of messages
of mailing campaigns, in the correct chronological or-
der. Benchmark corpora contain messages that have
been received by users, and have therefore passed un-
known filtering rules employed by the receiving server.
Furthermore, benchmark data sets do not contain re-
liable time stamps whereas the actual chronological
order is crucial.

Our experimental setting relies on a stream of spam
messages received by the mail transfer agent of an
email service provider. Between July and November
2008, we recorded a small fraction of spam messages,
a total of 139,250 spam messages in correct chronologi-
cal order. The messages have been tagged as spam be-
cause the delivering agent was listed on the Spamhaus
IP block list which is maintained manually. We sim-
ulate the practical setting where one has a stream of
verified spams, and one stream of unknown emails, by
taking every other email from the set as training exam-
ple. The rest is split into test examples (90%) and tun-
ing examples. In order to maintain the users’ privacy,
we blend the stream of spam messages with an addi-
tional stream of 41,016 non-spam messages from pub-
lic sources. The non-spam portion contains newslet-
ters and mailing lists in correct chronological order as
well as Enron emails and personal mails from public
corpora which are not necessarily in chronological or-
der. Every email is represented by a binary vector of
1,911,517 attributes that indicate the presence or ab-
sence of a word. The feature transformation technique
introduces an additional 101,147 attributes.

6.1. Feature Transformation

In order to assess the capability of our feature trans-
formation technique for approximating a high dimen-
sional probability distribution, we train the transfor-
mation on an additional set S7 of 10,000 older emails
including spam and ham (i.e., non-spam) messages in
equal parts, and test on another set S5 of emails of
the same size. Since we cannot measure the Kullback-
Leibler divergence from the true distribution directly,
we measure the quantity ﬁ > xes; 10g Qo (%[5 \ {x}),
which is the average entropy of an email, given all other
emails of the set. We compare the entropies on the
training and test sets for the transformation found by
the Greedy Transformation Composition algorithm to
the entropy of the identity transformation. The iden-
tity transformation corresponds to an assumption of
independent attributes in the input space.

In addition to the overall optimal transformation, we
compute the optimal transformations ¢* and ¢* com-
posed of only elementary transformations of the forms
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i or U, respectively.  Preliminary experiments
showed that the choice of prior parameters ag and Sy
has negligible influence within reasonable ranges, so
we report the results for ag = 1.1 and By = 100 in

Table 1. We can see that including elementary trans-

Table 1. Comparison of training and test entropies using
different feature transformations.
Transformation ‘ id ‘ o* ‘ o ‘ o
Training entropy | 1013.7 | 574.1 | 585.3 | 632.4
Test entropy 1007.1 | 687.5 | 672.0 | 720.2

formations of the form ¢;; decreases training entropy,
but increases test entropy. The best transformation
reduces test entropy compared to the identity trans-
formation by about 33%. This shows that factorizing
the probability over the dimensions in the image space
yields a much better approximation than factorizing
over the dimensions in the original feature space.

6.2. Bayesian Clustering for Spam Filtering

Our evaluation protocol is as follows. We use a train-
ing window of 5,000 known spam messages, corre-
sponding to a history of approximately 11 days. The
training messages are partitioned using Algorithm 2.
In each step, the clustering algorithm adds the chrono-
logically next 100 known spam emails to the partition-
ing and removes the 100 oldest. We then classify the
100 next test messages. We use the odds ratio

maxx.,,,, x| Xspam)

P(x)

as classification score, the maximum is over all spam
clusters in the training window. Test messages are not
added to the window of partitioned training messages.

A main difficulty in spam filtering is that ham emails
can be very diverse, and it is unrealistic that one has
training examples available from every region of the
true distribution. We conduct experiments in two
different settings that assess performance when ham
emails from the test distribution are available and the
performance without access to ham emails, respec-
tively. In setting A, we train the feature transforma-
tion and parameters p. with 10,000 ham emails from
the test distribution, and in setting B, we train on
10,000 spam messages instead.

As baseline for setting A, we use a Support Vector
Machine that is trained in every step on the history of
the last 5,000 spam and on the same 10,000 ham emails
as the clustering method. Hence, the SVM baseline
receives the same training data. In setting B, we use

a one-class SVM, trained on the history of 5,000 spam
messages. Additionally, we evaluate the benefit of the
feature transformation by comparing with a clustering
algorithm that uses the identity transformation.

An EM clustering procedure that uses a point esti-
mates for the model parameters serves as an additional
reference. We use a MAP estimate based on the same
model prior used for the Bayesian model. EM requires
the number of clusters to be known. We use the num-
ber of clusters that the Bayesian model identifies as
input to the EM clustering.

We use two evaluation measures. Firstly, we measure
the area under the ROC curve (AUC). Secondly, we
use an evaluation measure that reflects the character-
istics of the application more closely. An MTA has to
be extremely confident when deciding to refuse a mes-
sage for delivery from a contacting agent. We there-
fore measure the rate of true positives (spam messages
identified as such) at a false positive rate of zero. We
adjust the hyperparameters o for the clustering model
and C or v for the standard SVM and one-class SVM,
respectively, on the tuning set. We tune the parame-
ters separately for optimal AUC, and for an optimal
rate of true positives at a false positive rate of zero.
Figure 1 shows ROC curves.

We can see that in the setting with ham emails avail-
able for training, the SVM outperforms the clustering-
based filter in terms of AUC. In terms of the true pos-
itive rate at a false positive rate of zero, the clustering
method outperforms the SVM classifier, by achieving
a true positive rate of 0.945 9.1 x 10~* compared to
0.93849.6 x 10~% of the SVM. The cluster-based filter
shows its full strength in setting B, in the absence of
non-spam training messages from the test distribution.
Here, it achieves an AUC value of 0.992 £+ 2.6 x 10~*
and a true positive rate of 0.749 4 1.7 x 103, whereas
the one-class SVM attains an AUC of 0.77041.4x 1073
and a true positive rate of 0.102 + 1.2 x 1073, That
is, the Bayesian clustering method increases the true
positive rate at zero false positives almost sevenfold,
in the setting where no training emails from the distri-
bution of the test hams are available. Clustering with
the identity transformation as well as clustering with
the EM algorithm performs worse in all settings than
Bayesian clustering with the feature transformation.
In setting A (ham messages from the test distribution
available) with the parameters tuned for a high true
positive rate at a false positive rate of zero, the EM
algorithm achieves a true positive rate of only 0.04.
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Figure 1. Evaluation of spam filtering performance.

7. Related Work

Previous work on Bayesian clustering explored in great
detail the use of hierarchical priors for the cluster
structure and algorithms for inference under such pri-
ors, for example (Williams, 2000), (Heller & Ghahra-
mani, 2005), and (Lau & Green, 2007). These ap-
proaches focus on modeling hierarchical dependencies
between elements, while modeling only low-level de-
pendencies between the attributes within elements,
such as Gaussian covariances. By contrast, we assume
a uniform prior over the cluster structure, and instead
focus on modeling arbitrary dependencies between bi-
nary attributes. We find that a non-uniform prior over
partitionings is in fact not necessary, because properly
taking the prior over mixture parameters P(6) into
account also prevents the trivial solution of assigning
every element to its own cluster from being optimal.

Haider et al. (2007) devise a technique for mailing
campaign detection that relies on training data that
are manually clustered by campaigns. We find that
the effort of manually partitioning training data into

clusters is prohibitive in practice. Note that the effort
of partitioning data is much higher than the effort of
labeling data for classification because pairs of exam-
ples have to be considered.

Multi-way dependencies between attributes have been
considered for instance by Zheng and Webb (2000) and
Webb et al. (2005). They model the probability of an
attribute vector as a product of conditional probabil-
ities, such that each attribute can depend on multi-
ple other attributes. If these approaches were to be
used for Bayesian clustering, the number of mixture
parameters would grow exponentially in the degree of
dependencies. For our application, the high number of
attributes renders these approaches infeasible.

Remedies for the problem of constantly changing dis-
tributions in the Spam filtering domain have been pro-
posed in the area of adverserial learning. Teo et al.
(2008) developed a formulation that allows to model
test emails as modified versions of the training emails
and optimize the classifier against the worst-case sce-
nario of modifications. This approach leads to classi-
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fiers that are more robust against changes of the distri-
bution of spam emails, but still require the availability
of recent spam and ham training data.

8. Conclusion

We devised a model for Bayesian clustering of binary
feature vectors. The model is based on a closed-
form Bayesian solution of the data likelihood in which
the model parameters are integrated out. It allows
for arbitrary dependencies between the input features,
by transforming them into a space in which treating
them as independent incurs minimal approximation er-
ror. We derived an optimization problem for learning
such a transformation as a concatenation of elemen-
tary Boolean operations. In order to estimate the pa-
rameters of the prior from unlabeled data, we rewrite
the parameters of the beta distribution in terms of
mean values and a common variance. The mean val-
ues can be inferred in closed form from unlabeled data
efficiently, the common variance constitutes a param-
eter that is adjusted on tuning data. We adapted a
sequential clustering algorithm to use it with Bayesian
clustering decisions. In a case study, we observed that
the Bayesian clustering solution achieves higher true
positive rates at a false positive rate of zero than an
SVM. The benefit of the clustering solution is particu-
larly visible when no non-spam training messages from
the test distribution are available.
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Appendix

Theorem 1. Let the implicit model parameter 0. of
the distribution P(z) be Beta-distributed with param-
eters ae and B for each e € {1,...,E}. Then the
quantity Qs (x|X’) as defined in Equation 8 sums to
at most 1 for all X' iff ¢ is injective.

Proof. First we show indirectly that from VX' :
Dopez {x 1 d(x) = Z}|H5E:1 P(ze|pe(X")) < 1 fol-
lows Vz : |{x : ¢(x) = z}| < 1. Assume that
there exists a z* € Z with [{x : ¢(x) = z*}| >
2. Then choose an x* with ¢(x*) = z*. With-
out loss of generality, let Ve : zZ = 1. Then set
nzmaxe(m(ae—i—ﬁe)—ae)/(l— f/OT’))—&—l&ﬂd

X* = {x*,...,x*} with | X*| = n. It follows that

HP 2216e(X H/ 2216)P (06 (X*))d8

Qe +1
*Hae+ﬂe+n 61;[15/@:0.5,

and thus Z Hx : o(x) = z}| H P(ze|pe (X))
zEZ e=1
E
>|{x: ¢(x) = 2"} [[ P(zll¢e(X7)) > 1.

The opposite direction follows from the fact that VX' :
ez [y Plae|ée(X1)) < 1, because P(z|¢e(X))

is not an approximation, but a true Bayesian proba-
bility. Now we have

XY QuxIX) <1

xeX
SVX': Y HP be(x)|e(X)) <1
xeX e=1
E
SVX' Y [{x:o(x) = 2} ] Plzeloe(X)) <1
zCZ e=1
<Vz o [{x: ¢(x) =z} <1 & ¢ is injective.
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Abstract

We study the problem of identifying botnets
and the IP addresses which they comprise,
based on the observation of a fraction of the
global email spam traffic. Observed mail-
ing campaigns constitute evidence for joint
botnet membership, they are represented by
cliques in the graph of all messages. No evi-
dence against an association of nodes is ever
available. We reduce the problem of identify-
ing botnets to a problem of finding a minimal
clustering of the graph of messages. We di-
rectly model the distribution of clusterings
given the input graph; this avoids potential
errors caused by distributional assumptions
of a generative model. We report on a case
study in which we evaluate the model by its
ability to predict the spam campaign that a
given IP address is going to participate in.

1. Introduction

We address the problem of identifying botnets that are
capable of exploiting the internet in a coordinated, dis-
tributed, and harmful manner. Botnets consist of com-
puters that have been infected with a software virus
which allows them to be controlled remotely by a bot-
net operator. Botnets are used primarily to dissemi-
nate email spam, to stage distributed denial-of-service
(DDoS) attacks, and to harvest personal information
from the users of infected computers (Stern, 2008).

Providers of computing, storage, and communication
services on the internet, law enforcement and prose-
cution are interested in identifying and tracking these
threats. An accurate model of the set of IP addresses
over which each existing botnet extends would make it
possible to protect services against distributed denial-
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of-service attacks by selectively denying service re-
quests from the nodes of the offending botnet.

Evaluating botnet models is difficult, because the
ground truth about the sets of IP addresses that con-
stitute each botnet at any given time is entirely un-
available (Dittrich & Dietrich, 2008). Many studies on
botnet identification conclude with an enumeration of
the conjectured number and size of botnets (Zhuang
et al., 2008). Reliable estimates of the current size
of one particular botnet require an in-depth analysis
of the communication protocol used by the network.
For instance, the size of the Storm botnet has been
assessed by issuing commands that require all active
nodes to respond (Holz et al., 2008). However, once
the communication protocol of a botnet is understood,
the botnet is usually taken down by law enforcement,
and one is again ignorant of the remaining botnets.

We develop an evaluation protocol that is guided by
the basic scientific principle that a model has to be
able to predict future observable events. We focus on
email spam campaigns which can easily be observed by
monitoring the stream of messages that reach an email
service provider. Our evaluation metric quantifies the
model’s ability to predict which email spam campaign
a given IP address is going to participate in.

Previous studies have employed clustering heuristics
to aggregate IP addresses that participated in joint
campaigns into conjectured botnets (Xie et al., 2008;
Zhuang et al., 2008). Because an IP address can be a
part of multiple botnets during an observation inter-
val, this approach is intrinsicaly inaccurate. The prob-
lem is furthermore complicated as it is possible that a
botnet processes multiple campaigns simultaneously,
and multiple botnets may be employed for large cam-
paigns. We possess very little background knowledge
about whether multiple networks, each of which has
been observed to act in a coordinated way, really form
one bigger, joint network. Also, distributional assump-
tions about the generation of the observable events are
very hard to motivate. We address this lack of prior
knowledge by directly modeling the conditional distri-
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bution of clusterings given the observable data, and
by searching for minimal clusterings that refrain from
merging networks as long as empirical evidence does
not render joint membership in a botnet likely.

Other studies have leveraged different types of data
in order to identify botnets. For example Mori et al.
(2010); DiBenedetto et al. (2010) record and cluster
fingerprints of the spam-sending hosts’” TCP behavior,
exploiting that most bot types use their own protocol
stacks with unique characteristics. Yu et al. (2010)
identify bot-generated search traffic from query and
click logs of a search engine by detecting shifts in
the query and click distributions compared to a back-
ground model. Another angle to detect bots is to mon-
itor traffic from a set of potentially infected hosts and
find clusters in their outgoing and incoming packets
(Gu et al., 2008; John et al., 2009); for example, DNS
requests of bots used to connect to control servers
(Choi et al., 2009) or IRC channel activity (Goebel
& Holz, 2007). The major difference here is that ac-
cess to all the traffic of the hosts is required, and thus
these methods only work for finding infected hosts in
a network under one’s control.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss our approach to evaluating botnet
models by predicting participation in spamming cam-
paigns. In Section 3, we establish the problem of min-
imal graph clustering, devise a probabilistic model of
the conditional distribution of clusterings given the
input graph, and derive a Gibbs sampler. Section 4
presents a case study that we carried out with an email
service provider. Section 5 concludes.

2. Problem Setting and Evaluation

The ground truth about the sets of IP addresses that
constitute each botnet is unavailable. Instead, we fo-
cus on the botnet model’s ability to predict observable
events. We consider email spam campaigns which are
one of the main activities that botnets are designed
for, and which we can easily observe by monitoring the
stream of emails that reach an email service provider.
Most spam emails are based on a campaign template
which is instantiated at random by the nodes of a bot-
net. Clustering tools can identify sets of messages that
are based on the same campaign template with a low
rate of errors (Haider & Scheffer, 2009). A single cam-
paign can be disseminated from the nodes of a single
botnet, but it is also possible that a botnet processes
multiple campaigns simultaneously, and multiple bot-
nets may be employed for large campaigns.

We formalize this setting as follows. Over a fixed pe-

riod of time, n messages are observed. An adjacency
matrix X of the graph of messages reflects evidence
that pairs of messages originate from the same bot-
net. An edge between nodes i and j—represented by
an entry of X;; = 1—is present if messages ¢ and j
have been sent from the same IP address within the
fixed time slice, or if a campaign detection tool has
assigned the messages to the same campaign cluster.
Both types of evidence are uncertain, because IP ad-
dresses may have been reassigned within the time slice
and the campaign detection tool may incur errors. The
absence of an edge is only very weak and unreliable ev-
idence against joint botnet membership, because the
chance of not observing a link between nodes that are
really part of the same botnet is strongly dependent
on the observation process.

The main part of this paper will address the problem of
inferring a reflexive, symmetric edge selector matriz’ Y’
in which entries of Y;; = 1 indicate that the messages
represented by nodes ¢ and j originate from the same
botnet. The transitive closure Y of matrix Y defines
a clustering Cy of the nodes. The clustering places
each set of nodes that are connected to one another by
the transitive closure Y¥ in one cluster; the clustering
is the union of clusters:

Oy ={J_ i v =+1}). (1)

Because Y is reflexive, symmetric and transitive,
it partitions all nodes into disjoint clusters; that is,
cne =0 forallc,c €Cy,and ., c=1{1,...,n}.

An unknown process generates future messages which
are characterized by two observable and one latent
variable. Let the multinomial random variables s indi-
cate the campaign cluster of a newly received message,
a indicate the IP address, and let latent variable ¢ indi-
cate the originating cluster, associated with a botnet.
We quantify the ability of a model Cy to predict the
observable variable s of a message given a in terms of
the likelihood

P(s|a,Cy) = Zcp(s|c, Cy)P(cla,Cy).  (2)

Equation 2 assumes that the distribution over cam-
paigns is conditionally independent of the IP address
given the botnet; that is, botnet membership alone
determines the distribution over campaigns.

Multinomial distribution P(s|c,Cy) quantifies the
likelihood of campaign s within the botnet c¢. It can
be estimated easily on training data because model Cy
fixes the botnet membership of each message. Multi-
nomial distribution P(c|a, Cy') quantifies the probabil-
ity that IP address a is part of botnet ¢ given model
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Cy. Model Cy assigns each node—that is, message—
to a botnet. However, an address can be observed
multiple times within the fixed time slice, and the bot-
net membership can change withing the time interval.
Hence, a multinomial distribution P(c|a,Cy) has to
be estimated for each address a on the training data,
based on the model Cy. Note that at application time,
P(c|a,Cy) and hence the right hand side of Equation
2 can only be determined for addresses a that occur in
the training data on which Cy has been inferred.

3. Minimal Graph Clustering

Let X be the adjacency matrix of the input graph with
n nodes. Entries of X;; = 1 indicate an edge between
nodes ¢ and j which constitutes uncertain evidence for
joint membership of these nodes in a botnet. The in-
put matrix is assumed to be reflexive (X;; = 1 for
all 7), and symmetric (X;; = Xj;).

The outcome of the clustering process is represented by
a reflexive, symmetric edge selector matriz Y in which
entries of Yj; = 1 indicate that nodes ¢ and j are as-
signed to the same cluster, which indicates that the
messages originate from the same botnet. The tran-
sitive closure Yt of matrix Y defines a clustering Cy
of the nodes according to Equation 1. Intuitively, the
input matrix X can be thought of as data, whereas
output matrix Y should be thought of as the model
that encodes a clustering of the nodes. A trivial base-
line would be to use X itself as edge selector matrix
Y. In our application, this would typically lead to all
messages being grouped in one single cluster.

No prior knowledge is available on associations be-
tween botnets in the absence of empirical evidence.
If the adjacency matrix X does not contain evidence
that links nodes 7 and j, there is no justification for
grouping them into the same cluster. This is reflected
in the concept of a minimal edge selector matriz.

Definition 1. A selector matriz Y and, equivalently,
the corresponding graph clustering Cy, is minimal
with respect to adjacency matrix X if it satisfies

Y =YtoX, (3)

where (Y1 o X);; = YJXZ-j is the Hadamard product
that gives the intersection of the edges of Y and X.

Intuitively, for every pair of nodes that are connected
by the adjacency matrix, selector matrix Y decides
whether they are assigned into the same cluster. Nodes
that are not connected by the adjacency matrix X
must not be linked by Y, but can still end up in the
same cluster if they are connected by the transitive

closure Y*. Equation 3 also ensures that the transi-
tive closure Y+ does not differ from Y for any pair of
nodes i, j that are connected by the adjacency matrix.
This enforces that no two different minimal selector
matrices have the same transitive closures and there-
fore induce identical clusterings, which would inflate
the search space.

3.1. Probabilistic Model

This section derives a probabilistic model for the min-
imal graph clustering problem. Its most salient prop-
erty is that it is not based on a generative model of
the graph, but instead directly models the conditional
probability of the clustering given the adjacency ma-
trix X. This circumnavigates systematic errors caused
by inaccurate distributional assumptions for the gen-
eration of the adjacency matrix X.

We define the posterior distribution over all reflexive
and symmetric matrices Y that are minimal with re-
spect to X.

Definition 2. Let X € {0,1}"*™ be a reflexive and
symmetric adjacency matriz. Then, Yx C {0,1}"*"
1s the set of matrices that are reflerive, symmetric, and
minimal with respect to X.

In our application, each node is an element of at most
two cliques because each message is connected to all
other messages that have been sent from the same IP
address, and to all other messages that match the same
campaign template. If a template or an address has
been observed only once, either of these cliques may
resolve to just the node itself. Let Qx denote the
set of cliques in X, and let C{ be the projection of
clustering Cy to the elements of ¢ € Qx. Within
each clique ¢ € Qx, any clustering C{ is minimal
with respect to X because X;; = 1 for all ¢,j € g,
and therefore any reflexive, symmetric, and transitive
clustering of ¢ is possible. We model the probability
distribution over clusterings of each clique ¢ € Qx as a
Chinese Restaurant process (Pitman & Picard, 2006)
with concentration parameter o, > 0:

P(CHagng) = af¥ o0 TT vl (@)
4 a ceCy

Equation 5 now defines the distribution over all par-
tition matrices Y € Vx as a product over all cliques
in Qx, where the clique specific concentration param-
eters are collected into & = {ay : ¢ € Qx }.

[I P(C¥lag,ng) ifY € Yx
P(Cy|X, o) x < a€Qx (5)
0 otherwise
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Equation 5 can be seen in analogy to the factoriza-
tion of the posterior over cliques in conditional ran-
dom fields. However, because the minimality property
has non-local effects on the possible values that edges
can assume, this factorization is not equivalent to the
assumption of the Markov property on which the fac-
torization theorem for random fields is based (Ham-
mersley & Clifford, 1971).

Normalization of Equation 5 is computationally in-
tractable because it requires the enumeration of the
elements of Vx. However, the Gibbs sampler that we
will derive in the following only has to normalize over
all values of the random variables that are reassigned
in each step of the sampling process.

3.2. Inference

Computing the posterior distribution P(Cy|X, ) is
a generalization of the inference problem for conven-
tional Chinese Restaurant process models. When all
entries of X are one, the graph has only one clique and
the special case of a Chinese Restaurant process is ob-
tained. In this case, depending on the concentration
parameter, the outcome may be one single cluster of
all nodes. Maximization of the posterior as well as full
Bayesian inference are intractable even for this special
case because of the non-convexity of the posterior and
the exponential number of possible clusterings. Hence,
in this section we describe a Gibbs sampler that gen-
erates unbiased samples from the posterior.

Algorithm 1 Assignment space )} for Gibbs sampler

Input: Current partitioning matrix Y
1: let ¢1, ..., qx be the cliques with element ¢
2: let Y, = 0
3: for all combinations ¢; € C{ U {{i}}, ...,
cr € CFF U{{i}} do

4 let Y, =Y.,
5. let Y =Y, =11if and only if [ € ¢; for any j
6: if (Y/,)" =Y/, then
7: add Y’ to J)iY
8 else
9: discard Y’
10: end if
11: end for

Return: )] all reflexive, symmetric, minimal parti-
tioning matrices derived from Y by reassigning Y;.

Gibbs samplers divide the set of random variables into
smaller subsets and iteratively draw new values for one
subset given the values of the remaining variables. For
the observations to form an unbiased sample, the ran-
dom variables have to be partitioned such that the

sequence of assignments formes an ergodic Markov
chain; that is, each state has to be reachable from each
other state. In our case, perhaps the most obvious-
seeming approach would be to factor the posterior over
individual edges. However, since many matrices Y vi-
olate the minimality condition, the chain of alterations
of single matrix entries would not in general be ergodic.

Therefore, we devise a sampling algorithm that jointly
samples the i-th row and column (the i-th row and
column are identical because Y is symmetric). Let Y/
refer to the i-th row and column of the new matrix
Y’ and let Y/, = Y_,; refer to the remaining matrix
entries, such that Y/ =Y/ UY’,. Equation 6 expands
the definition of the conditional probability; Equation
7 factorizes over the cliques, according to Equation 5.
Equation 8 omits all terms that are constant in Y}
the denominator, and all cliques in which node 7 does
not occur. Normalization of the right hand side of
Equation 8 is now over all values for Y; that render Y’
reflexive, symmetric, and minimal with respect to X.

P(Yilvy—/i|X7 a)

PY/IY_;, X, ) = TPYLIX.a) (6)
quQX P(CY./|og, ng) )
P(Y_;|X, )
x H P(CY/|ag,nq) (8)
qEQx:i€q

The main computational challenge here is to determine
the set VY of reflexive, symmetric, minimal matrices
that can be derived from Y by changing row and col-
umn 3. Since Equation 8 has to be normalized, all of
its elements have to be enumerated. An obvious but
inefficient strategy would be to enumerate all up to
2™ assignments of Y; and test the resulting matrix for
reflexivity, symmetry, and minimality.

However, most values of Y/ violate minimality and
need not be enumerated. Algorithm 1 constructs the
set VY in O(n*), where k is the maximal number of
cliques that each node is a member of. In our applica-
tion, each node is an element of up to two cliques—the
set of messages with a shared IP address, and the set
of messages that follow the same campaign template.
Hence, in our case, the algorithm has a worst-case ex-
ecution time of O(n?). In most cases, the number of
clusters in each of the two cliques is much lower than
n, and thus much fewer than n? cases are considered.

Theorem 1. Given an adjacency matric X and an
edge selector matriz Y, Algorithm 1 constructs a set
VY that contains all Y’ =Y/ UY_; which are reflex-
we, symmetric, and minimal with respect to X. The
execution time of Algorithm 1 is in O(n*) when each
node is a member of at most k cliques in X.
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Proof. Let node i be an element of cliques ¢, ..., gk.
On these cliques, the current partitioning matrix Y in-
duces clusterings C{', ..., C¥ with at most n clusters
each. When Y/ links node ¢ to more than one cluster
from any C§!, then by the definition of a clustering in
Equation 1 these clusters are merged in Cy,. However,
when Y links node 4 to two clusters with at least one
other element in ¢; each, say j and ! with Y; = 0,
the transitive closure Y'* has to add at least an edge
to Y/, that links j and [. Since j and ! are in clique
q;, they have to be connected by the adjacency ma-
trix, X;; = 1. But Y, =0, Y}, = 1 and X;; = 1
violates the minimality condition defined in Equation
3. Therefore, Y/ must only merge clusters that have
elements in different cliques, and so at most n* com-
binations of clusters can lead to minimal matrices Y’
when merged. Reflexivity and symmetry of Y’ follow
from reflexivity and symmetry of X. The execution
time is dominated by the enumeration of all n* many
combinations of clusters in Line 3. O

The Gibbs sampler iteratively samples Y*+! according
to P(Y/|Y!, . X, ), given by Equation 8. Each Y**!
is created from the predecessor by cycling over the
rows that are resampled—that is, i; =t mod n. The
conditional is defined over the set J)Bt/ . We will now
argue that a sequence of matrices created by the Gibbs

sampler is an ergodic Markov chain.

Theorem 2. For oy > 0, the sequence Yo ..., vyT
with Y o~ PV L oa )Y (0 mod nys Xo @) s an er-
godic Markov chain.

Proof. The sequence is a Markov chain because each
element is sampled from a distribution that is param-
eterized only with the preceding matrix and the row
that is to be resampled. For it to be ergodic we have
to prove that from any state Y, every other state Y’
can be reached. With the o, > 0, Equation 5 is posi-
tive for all states in Yy that are reflexive, symmetric,
and minimal with respect to X. In each step the sam-
pler can only change row and column :. Hence, any
chain of states with Y1 ¢ yg{ ' mod n) €2l be reached

because by Theorem 1, all elements of yg{ ‘ mod n) A€
reflexive, symmetric, minimal with respect to X and
differ from Y only in row and column .

To begin with, we argue that from any state Y the
identity matrix I can be reached which connects each
node only to itself. To prove this, it suffices to show
that for any ¢ and any Y, a state V"% with IY%;; = 1
for all 4, IY’iij = 0 for all j # i, and IY’ijk =Y, for
all j,k # i can be reached directly from state Y by
sampling row and column Y;. By the definition of Y)Y,
the Gibbs sampler can directly reach state IY>* from Y’

if IY"? is symmetric, reflexive, minimal with respect to
X, and differs from Y only in the i-th row and column.
By its definition, it is clear that IY> differs from Y only
in the i-th column and row, and that it is reflexive.
Since Y is symmetric and the i-th row and column of
IV are identical, IY** has to be symmetric as well. It
remains to be shown that I = IV o X. We split
the proof of this claim into two parts. First, we show
that the i-th row and column of 1Y are equal to the
i-th row and column of ¥+ o X. Intuitively, because
IY"* connects node i only to itself, the transitive closure
adds nothing, and the Hadamard product has no effect
because X is reflexive. Formally, this can be shown via
an inductive proof along the following construction of
the transitive closure of IY*. Let R® = IY. For all
>0, let Réj =1if Rﬁj_l = 1 or if there is a k such that

R =1 and Ry = 1; otherwise, R}; = 0. When
R'"! contains an open triangle of edges Rﬁ;l =1 and
Rzl = 1, then R' is defined to add an edge Rﬁj =
1. Then the limit lim;_, o, R’ is the transitive closure
(I"H)*. Now inductively, if for all j : Ré;l = 0, then
for all j : Ri; = 0, and from I"; = 0 it follows that
IY,ij — IY’ii, and (IY,1'+ ° X)z — IY’ii.

Secondly, we show that all elements in I Vit except
the i-th row and column remain unchanged from Y+:
From the monotonicity of the transitive closure op-
erator and IY* < Y it follows that (IY’# 0X) ,; <
(YT o X)_;. Furthermore, since the transitive closure
operator only adds positive edges, (Iy’ﬁ_ o X)_; >
(IY"o X)_; = (Y o X)_;, which is in turn equal to
(Yt oX)_; because Y itself is minimal with respect to
X. Both inequalities together give us (IY7i+ oX)_; =
(Y* o X)_;, and because IV*_; = Y_, we have that
i, = (IY7iJr o X)_;. Together with the first part
finally 1Y = 1V o X.

This establishes that IY>* can be reached by the Gibbs
sampler from any state Y for any ¢, and thus by repeat-
edly using this state transition for all i, I is reachable.
The reachability relation is symmetric because Y*+!
is constructed from Y by reassigning one column and
row which can be reversed, and Y is required to be in
YVx, and therefore can be reached from Y*+!. Hence,
from any state Y, every other state Y’/ can be reached
via the state I, and ergodicity holds. O

3.3. Prediction

The Gibbs sampler creates a chain Y, ..., YT of ma-
trices, governed by the posterior P(Y|X, ). In order
to predict which campaign s a given IP address a will
participate in, we can approximate the Bayesian infer-
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ence of ¢ (Equation 9) using the chain (Equation 10).
P(sla,X,a) = ) P(Cy|X,a)P(sla,Cy) (9)
Yeyx

> P(sla,Cy) (10)

Ye{y°, . YT}

%

Equation 1 decomposes P(s|a,Cy) into two multi-
nomial distributions that can be estimated from the
available data.

4. Case Study

In this section, we conduct a case study on botnet de-
tection. Since the gound truth about which botnets
are currently active and which hosts they are com-
posed of is not available, we evaluate the model in
terms of its accuracy of predicting which spam cam-
paign a given IP address will participate in.

We record incoming spam emails over a period of 11
days in January 2012 at a large email service provider.
We select only emails that have been blacklisted on
the grounds of three content-based filtering techniques:
The first is a set of manually maintained regular ex-
pressions, each tailored to match against all spams
of one particular campaign. The second is a list of
semi-automatically generated, campaign-specific fea-
ture sets (Haider & Scheffer, 2009). A feature set con-
sists of words and structure flags and is the intersection
of all previously observed emails from the campaign.
The third is a blacklist of URLs that spam emails link
to. Thus, we have a reliable partitioning of all emails
into spam campaigns.

We exclude IP addresses of known legitimate forward-
ing servers that relay inbound emails according to their
users’ personal filtering policies. To this end, we track
the IP address from the last hop in the transmission
chain. If the address has a valid reverse DNS entry
that matches a domain from a list of well-known email
service providers, we omit the message.

Equation 5 allows for individual values of the concen-
tration parameters «, for each clique ¢ in the email
graph X. We use two distinct values: a value of o, for
all cliques that share a joint IP address, and a value of
a; for all cliques that match a joint campaign. Param-
eters o, and o, are tuned to maximize the AUC metric
on the data recorded on the first day. The data of the
remaining ten days is then used for evaluation. Within
each day, the Gibbs sampler infers a chain of cluster-
ings on the data of the first 16 hours. The emails of
the last 8 hours with a sender IP address that has pre-
viously occurred are used as test data. Emails from
IP addresses that have not been seen before are ex-

cluded, since no informed decision can be made for
them. The proportion of IP addresses that have not
previously been observed depends on the proportion of
the global email traffic that the server gets to observe.
Also, we exclude emails from campaigns that appear
less than 100 times. In total, this data collection pro-
cedure results in 701,207 unique pairs of campaigns
and IP addresses in the training sets and 71,528 in the
test sets. Each test email serves as a positive example
for its campaign and a negative example for all other
campaigns.

4.1. Reference Methods

We compare the Minimal Graph Clustering model to
three baselines. The first, threshold-based baseline
is an agglomerative clustering algorithm based on a
threshold heuristic, adapted from Zhuang et al. (2008).
It operates on the assumption that each campaign is
sent by only one botnet. Initially, every campaign con-
stitutes its own cluster. Clusters ¢ and ¢ are greedily
merged if their fraction of overlapping IP addresses
exceeds a threshold. This fraction is defined as

Yied@ied isi=s55) e lFi€c:sj=s)
2|c| 2|/ ’

where I is the indicator function and s; the campaign
of the i-th email. Given a clustering C' of emails,
P(sla,C) = .cc P(slc, C)P(c|a, C) is inferred after
multinomial distributions P(s|c) and P(c|a,C) have
been estimated on the training data. The clustering
threshold is tuned for performance on the first day.

The second baseline is spectral clustering, where we
tune the number of clusters and similarity values for
emails with matching campaign or IP address. We use
the implementation of Chen et al. (2011).

The third baseline is a straightforward generative clus-
tering model for email graphs with a Chinese Restau-
rant process prior and a likelihood function that factor-
izes over the edges of the email graph X, assuming in-
dependence for the edges in X. The likelihood function
has a set of four parameters § = {§", 6", §out gout

that quantify the probability of the presence of a link
when the nodes are and are not elements of a joint
botnet. The likelihood for an edge that connects two

emails from the same campaign is given as

gir. if C(i) = C(j
P(X;; =1C,0) =4 ° ) (Z) <j)

o, it C(i) # C(J),
where C(7) denotes the cluster that clustering C' as-
signs email 4 to. The likelihood of an edge between two
emails from the same IP address is defined analogously,
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Figure 1. ROC-curves for cam-

paign prediction.

using the paramters #2“* and 62“*. The joint probabil-
ity of the email matrix and a clustering C' is then given
as P(X,Cla,0) = Porp(Cla)]], ;o P(Xi5]C,0).
The parameters are adjusted using gradient-ascent on
the joint data likelihood.

4.2. Results

We measure ROC curves; IP addresses for which the
likelihood P(s|a, X, ) of the correct campaign ex-
ceeds the threshold are counted as true positives, ad-
dresses for which the likelihood of an incorrect cam-
paign exceeds the threshold as false positives. Figure 4
shows ROC curves for the four methods under study.

Minimal graph clustering attains the highest area un-
der the ROC curve of 0.784, compared to 0.675 for
threshold-based clustering, 0.671 for spectral cluster-
ing, and 0.651 for the generative edge model baseline.
The threshold-based method is marginally more accu-
rate than the Minimal Graph Clustering model for low
threshold values, and less accurate for all other thresh-
old values. Threshold-based clustering infers P(s|c)
and P(cla,C) and consequently P(s|a,C) to be zero
for many values of s and a. Therefore, a large interval
of points on the ROC curve cannot be attained by any
threshold value; this is indicated by a dashed line.

Typically, the number of requests during a DDoS at-
tack exceeds the capacity to serve requests by far. An
unprotected system will serve only a small, random
fraction of requests and will be unable to serve all oth-
ers; this amounts to a false positive rate of close to
one. In order to defend against such an attack, one
has to select a small proportion of requests which can
be served. Therefore, in defending against DDoS at-
tacks, the right hand side of the ROC curve that allows
high true positive rates is practically relevant.

Figure 4 shows execution times for running all four
methods until convergence depending on the number

Number of messages

Figure 2. Execution times for infer-
ring the clustering.

Fraction of training sample

Figure 3. AUC depending on train-
ing set size.

of examples. The Minimal Graph Clustering model
is computationally more expensive than the baselines.
For continuously maintaining a clustering that sub-
sequently incorporates newly available messages, it is
thus advisable to use the previous clustering as a start-
ing point of the Gibbs sampler in order to reduce the
number of necessary iterations until convergence.

Figure 4 shows area under ROC curve depending on
what fraction of the training sample is used. For test-
ing, only emails with IP addresses that are present in
the smallest subset are used. The plots indicate that
having access to a larger sample of the overall email
traffic could increase performance considerably.

5. Conclusion and Discussion

The identification of spam-disseminating botnets can
be reduced to the problem of clustering the graph of
email messages in which messages are linked if they
originate from the same IP address or match the same
campaign template. We devised a probabilistic model
that directly describes the conditional probability of a
clustering given the input graph without making dis-
tributional assumptions about the generation of the
observable data. We derived a Gibbs sampler; we
showed that resampling rows and edges of the output
matrix creates an ergodic Markov chain, and that each
sampling step can be carried out in O(n?). We argue
that botnet models can be evaluated in terms of their
ability to predict which spam campaign a given IP ad-
dress is going to participate in. From a case study
carried out with an email service provider we conclude
that the minimal graph clustering model outperforms
a number of reference methods—spectral clustering, a
generative model, and a threshold-based, agglomera-
tive clustering model—in terms of its area under the
ROC curve.

The botnet model draws a picture of the current size
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and activity of botnets. From the IP addresses, the ge-
ographical distribution of each botnet can be derived.
The botnet model can be used to select particularly
prolific botnets for in-depth analysis and possible le-
gal action. Widespread botnet software is versatile
and supports both, dissemination of email spam and
the staging of network attacks (Stern, 2008). When
both, a mailing campaign and a network attack are
carried out by a single network within the typical IP-
address reassignment interval of one day, then the
botnet model which has been trained on email data
can score HTTP requests by the likelihood that their
sender IP address is part of an attacking botnet. This
allows to prioritize requests and to maintain a service
during an attack. Alternatively, the botnet model can
be trained with HT'TP requests instead of emails; the
recipient domain of an HTTP request plays the role
of the campaign template. Again, the botnet model
allows to infer the likelihood that an individual sender
IP address acts as part of an attacking botnet.

Direct evaluation of the model’s ability to decide
whether an IP request is part of a network attack
would require evaluation data in the form of a col-
lection of individual HTTP requests labeled with the
botnet that has sent the request. While it is relatively
easy to collect the entire stream of legitimate and at-
tacking HTTP requests that reach a domain during
an attack, there is no practical means of labeling indi-
vidual requests. In general, HT'TP requests contain no
information that allows even a human expert to decide
whether a request is part of an attack, let alone which
botnet a request has really been sent from.
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Abstract

We address the problem of learning deci-
sion functions from training data in which
some attribute values are unobserved. This
problem can arise, for instance, when train-
ing data is aggregated from multiple sources,
and some sources record only a subset of at-
tributes. We derive a generic joint optimiza-
tion problem in which the distribution gov-
erning the missing values is a free parame-
ter. We show that the optimal solution con-
centrates the density mass on finitely many
imputations, and provide a corresponding al-
gorithm for learning from incomplete data.
We report on empirical results on benchmark
data, and on the email spam application that
motivates our work.

1. Introduction

In many applications, one has to deal with training
data with incompletely observed attributes. For in-
stance, training data may be aggregated from differ-
ent sources. If not all sources are capable of providing
the same set of input attributes, the combined train-
ing sample contains incompletely observed data. This
situation occurs in email spam detection, where it is
helpful to augment the content of an email with real-
time information about the sending server, such as its
blacklist status. This information is available for all
training emails that arrive at a mail server under one’s
own control, and it is also available at application time.
But if one wants to utilize training emails from public
archives, this information is missing.

We adress a learning setting in which values are miss-
ing at random: here, the presence or absence of values

Appearing in Proceedings of the 25" International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

does not convey information about the class labels. If
this condition is not met, it is informative to consider
the presence or absence of values as additional input to
the decision function. Techniques for learning from in-
complete data typically involve a distributional model
that imputes missing values, and the desired final pre-
dictive model. Prior work on learning from incomplete
data is manifold in the literature, and may be grouped
by the way the distributional model is used.

The first group models the distribution of missing val-
ues in a first step, and learns the decision function
based on the distributional model in a second step.
Shivaswamy et al. (2006) formulate a loss function
that takes a fixed proportion of the probability mass
of each instance into account, with respect to the es-
timated distribution of missing values. They derive
second order cone programs which renders the method
applicable only to very small problems. Other exam-
ples include Williams and Carin (2005), Williams et al.
(2005), and Smola et al. (2005).

The second group estimates the parameters of a distri-
butional model and the final predictive model jointly.
As an example, recently Liao et al. (2007) propose
an EM-algorithm for jointly estimating the imputa-
tion model and a logistic regression classifier with lin-
ear kernel, assuming the data arises from a mixture of
multivariate Gaussians.

The third group makes no model assumption about the
missing values, but learns the decision function based
on the visible input alone. For example, Chechik et al.
(2007) derive a geometrically motivated approach. For
each example, the margin is re-scaled according to the
visible attributes. This procedure specifically aims at
learning from data with values that are structurally
missing—as opposed to missing at random. Chechik
et al. (2007) find empirically that the procedure is not
adequate when values are missing at random.

Jointly learning a distributional model and a kernel
predictive model relates to the problem of learning a
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kernel function from a prescribed set of parameterized
kernels. This problen drew a lot of attention recently;
see, for example, Argyriou et al. (2005) and Micchelli
and Pontil (2007).

Estimating the distributional model first and training
the predictive model in a second step leaves the user
free to choose any learning algorithm for this second
step. However, a harder problem has to be solved than
would be necessary. If one is only interested in a deci-
sion function that minimizes the desired loss, knowing
the values or distribution of the missing attributes in
the training set is not actually required. Furthermore,
errors made in the imputation step and errors made in
estimating the parameters of the predictive model can
add up in a sequential procedure.

Consequently, we investigate learning the decision
function and the distribution of imputations depen-
dently. Unlike prior work on this topic, we develop a
solution for a very general class of optimization crite-
ria. Our solution covers a wide range of loss functions
for classification and regression problems. It comes
with all the usual benefits of kernel methods. We de-
rive an optimization problem in which the distribution
governing the missing values is a free parameter. The
optimization problem searches for a decision function
and a distribution governing the missing values which
together minimize a regularized empirical risk.

No fixed parametric form of the distributional model
is assumed. A regularizer that can be motivated by a
distributional assumption may bias the distributional
model towards a prior belief. However, the regularizer
may be overruled by the data, and the resulting distri-
butional model may be different from any parametric
form. We are able to prove that there exists an opti-
mal solution based on a distribution that is supported
by finitely many imputations. This justifies a greedy
algorithm for finding a solution. We derive manifesta-
tions of the general learning method and study them
empirically.

The paper is structured as follows. After introducing
the problem setting in Section 2, we derive an opti-
mization problem in Section 3. Section 4 proves that
there is an optimal solution that concentrates the den-
sity mass on finitely many imputations and presents
an algorithm. Example instantiations of the general
solution are presented in Section 5. We empirically
evaluate the method in Section 6. Section 7 concludes.

2. Problem Setting

We address the problem of learning a decision func-
tion f from a training sample in which some attribute

values are unobserved.

Let X be a matrix of n training instances x; and let
y be the vector of corresponding target values y;. In-
stances and target values are drawn #id from an un-
known distribution p(x,y) with x; € R? and y; € ),
where ) denotes the set of possible target values. Ma-
trix Z indicates which features are observed. A value
of z;; = 1 indicates that z;;, the [-th feature of the i-th
example, is observed. Values are missing at random:
y; is conditionally independent of z; given x;.

The goal is to learn a function f : x — y that pre-
dicts target values for completely observed examples.
The decision function should incur only a minimal true
risk R(f) = [ L(y, f(x))p(x, y)dxdy, where L is a loss
function for the task at hand.

As a means to minimizing the true risk, we seek a
function f in the reproducing kernel Hilbert space Hy
induced by a kernel k that minimizes a regularized
empirical risk functional R(f) = >0, l(yi, f(x:)) +
n||f||?. We demand k to be a Mercer kernel. Loss
function [ approximates the true loss L. The represen-
ter theorem allows us to write the minimizer as a sum
over functions in Hj centered at training instances:

F(x) = 3250 k(%)

The learning problem from completely observed data
would amount to solving Optimization Problem 1.

Optimization Problem 1 (Primal learning prob-
lem, observed data). Over c, minimize

R(c, k) :Z l (yi, Z cik(x;, xl)> +n Z cicik(x;,%;)
i=1 j=1

i,7=1

We require that the loss function be defined in such
a way that Optimization Problem 1 can be written
in the dual form of Optimization Problem 2. A wide
range of loss functions satisfies this demand; we will
later see that this includes hinge loss and squared loss.

Optimization Problem 2 (Dual of learning
problem). Given a <0, over ¢, mazimize

a{c,Kc) — R*(c)
subject to the constraints

Vigie) <0, VIR =0. (1)
R*(c) denotes a differentiable convex function of the
dual variables ¢ which we demand to be independent
of the kernel matrix K. The inequality constraints g}
are differentiable convex and the equality constraints
h; differentiable affine. We like to note that the re-
quirement of independence between R* and K is not
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very restrictive in practice, as we will see in chapter
5. Furthermore, we demand strong duality to hold
between Optimization problems 1 and 2.

3. Learning from Incomplete Data in
One Step

If any instance x; has unobserved features, then
k(x;,x) and, consequently, the decision function f are
not properly defined. In order to learn from incom-
plete data, we will marginalize the decision function
and risk functional by the observable attributes and
integrate over all unobserved quantities. To this end,
we define w € 0% C R™*4 as a matrix of imputations
constrained by w;; = z; if z;; = 1. We demand Q)Z( to
be compact for the rest of this paper. Let w; denote
the i-th row of w. Then we can define a family of ker-
nels K (w)(x;,x%;) = k(w;,w;). Any probability mea-
sure p(w) on imputations induces a marginalization of
the kernel by the observable variables. Equation 2 in-
tegrates over all imputations of unobserved values; it
can be evaluated based on the observed values.

Ko)exjx) = [ bwpwidp@) ()
weN%

Any probability measure p(w) constitutes an optimiza-
tion criterion R(c, K (p)). In the absence of knowledge
about the true distribution of missing values, p(w) be-
comes a free parameter. Note that p(w) is a continu-
ous probability measure that is not constrained to any
particular parametric form; the space of parameters is
therefore of infinite dimensionality.

It is natural to add a regularizer Q(p) that reflects
prior belief on the distribution of imputations p(w) to
the optimization criterion, in addition to the empiri-
cal risk and regularizer on the predictive model. The
regularizer is assumed to be continuous in p. The reg-
ularizer does not constrain p(w) to any specific class
of distribution, but it reflects that some distributions
are believed to be more likely. Without a regularizer,
the criterion can often be minimized by imputations
which move instances with missing values far away
from the separator, thereby removing their influence
on the outcome of the learning process. This leads to
Optimization Problem 3.

Optimization Problem 3 (Learning problem
with infinite imputations). Given n training ex-
amples with incomplete feature values, v > 0, kernel
function k, over all ¢ and p, minimize

Riq(e,p) = R(c,K(p) +Q(p) (3)
subject to the constraints
Vw: p(w) >0, waQ)z( p(w)dw = 1.

Each solution to Optimization Problem 3 integrates
over nfinitely many different imputations. The search
space contains all continuous probability measures on
imputations, the search is guided by the regularizer Q.
The regularization parameter v determines the influ-
ence of the regularization on the resulting distribution.
For v — oo the solution of the optimization reduces
to the solution obtained by first estimating the distri-
bution of missing attribute values that minimizes the
regularizer. For v — 0 the solution is constituted by
the distribution minimizing the risk functional R.

4. Solving the Optimization Problem

In this section, we devise a method for efficiently find-
ing a solution to Optimization Problem 3. Firstly, we
show that there exists an optimal solution ¢, p with p
supported on at most n + 2 imputations w € Q%. Sec-
ondly, we present an algorithm that iteratively finds
the optimal imputations and parameters minimizing
the regularized empirical risk.

4.1. Optimal Solution with Finite Combination

In addition to the parameters c of the predictive mod-
els, continuous probability measure p(w) contributes
an infinite set of parameters to Optimization Problem
3. The implementation of imputations as parameters
of a kernel family allows us to show that there exists
an optimal probability measure p for Equation 3 such
that p consists of finitely many different imputations.

Theorem 1. Optimization Problem 3 has an optimal
solution €,p in which p is supported by at most n + 2
imputations w € Q%.

Proof. The compactness of Q% and the continuity of K
immediately imply that there exists some solution to
Optimization Problem 3. It remains to be shown that
at least one of the solutions is supported by at most
n + 2 imputations. Let ¢,p be any solution and let all
requirements of the previous section hold. The idea
of this proof is to construct a correspondence between
distributions over imputations and vectors in R™*1!,
where a finite support set is known to exist. Define
S(w)=K(w)ecR"and D = {(S(w)",Q(w))" :w €
0%} c R Since Q% is compact and K(-) and Q(-)
are continuous by definition, D is compact as well. We
define a measure over D as u(A x B) = p({w : S(w) €
ANQ(w) € B}).

Then, by Carathéodory’s convex hull theorem, there
exists a set of k vectors {(s{,q1)",...,(s{,qx) "} C D
with £ < n + 2 and nonnegative constants v; with
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Zle v; = 1, such that

k

[T dulsT ) = 36T a0

i=1

For each 4, select any w; such that (S(w;)", Q(w;)) =
(s;, ;). We construct p by setting p(w) = Zle ViOu, s
where J,,, denotes the Dirac measure at w;. The op-
timal ¢ results as arg min, R(c, K(p)). We have

k
Z s;v;, and
i=1
k
Z qiV;.
i=1

/ sdu((sT,9)T) =
D

/ adu((sT,q)T) =
D

Then
K(p)e = ( K<w>dﬁ<w>>c ~ [, Sipie)
0z 0z
= [ Stw)du (S@).Qw)")
k
_ ;siw _ /Q)Z(S(w)dﬁ(w)
— [ Kwdpw)ie = K@e
%
Likewise,
Qw) = [ Q)du(Sw).Quw))
D
k
= Z%’Vi = Q).
i=1
Since Q(p) does not depend on ¢, ¢ =
argmine R(c, K(p)), and by strong duality,

¢ = argmaxca{c,K(p)c) — R*(c). This implies
that the Karush-Kuhn-Tucker conditions hold for ¢,
namely there exist constants «; > 0 and A; such that

aK(p)c — VR*(c) + Z kiVgi(c) + Z NjVhi(€) =0

Vi gi(€) <0, V; hi(c)=0, Vi rig/(c)=0
It is easy to see that therefore ¢ is also a maximizer
of a{c,K(p)c) — R*(c), because K(p)c = K(p)c and
the Karush-Kuhn-Tucker conditions still hold. Their
sufficiency follows from the fact that K(p) is positive
semi-definite for any p, and the convexity and affinity

premises. Thus,

R(c, K(p)) +7Q(p)

)
¢) — R*(¢)] +Q(p)
= [mcaxa c,K(p)c) — R*(C)} +7Q(p)
R(c, K(ﬁ))} +7Q(p)
= R(¢, K(p)) +vQ(p).

min

We have now established that there exists a solution
with at most n + 2 imputations. O

4.2. Iterative Optimization Algorithm

This result justifies the following greedy algorithm to
find an optimal solution to Optimization Problem 3.
The algorithm works by iteratively optimizing Prob-
lem 1 (or, equivalently, 2), and updating the distribu-
tion over the missing attribute values. Let pg denote
the distribution p(w) = dg. Algorithm 1 shows the
steps.

Algorithm 1 Compute optimal distribution of impu-
tations on Q%

Initialization: Choose p™") = p_u); e.g., wgll) = 0 for
all z;; # 1
fort=1... do
1. & < argmin. R(c, K (p™))
2. Find o™ € 0Z . Ry, (&pyuin) <
Ry (¢,p™M). Tf no such w1 exists, terminate.

3. B¢ + argminge (g1 [minC Rkﬁ(c,ﬁpw(tﬂ) +
(1-B)p®)]
4. p"D «— Bypern + (1= B)p®)

5. Vj<t2 5]%[3](17515)
end for

Step 1 consists of minimizing the regularized empiri-
cal risk functional R, given the current distribution.
In step 2 a new imputation is constructed which im-
proves on the current objective value. Since in gen-
eral Rkﬁ(c,pw) is not convex in w, one cannot find
the optimal w efficiently. But the algorithm only re-
quires to find any better w. Thus it is reasonable to
perform gradient ascent on w, with random restarts
in case the found local optimum does not satisfy the
inequality of step 2. In step 3 and 4 the optimal dis-
tribution consisting of the weighted sum of currently
used Dirac impulses 22:1 Bide, and the new imputa-
tion §e+1) is computed. This step is convex in f if
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fikﬁ(c, Bpyn) 4+ (1—B)pM) is linear in 3. By looking
at Optimization Problem 2, we see that this is the case
for R. Thus the convexity depends on the choice for
Q@ (see Sect. 5.2). Step 5 updates the weights of the
previous imputations.

The algorithm finds ¢ imputations w®) and their
weights 3;, as well as the optimal example coefficients
c. We can construct the classification function f as

SN Bieik(w!”x). (4)

j=11i=1

Note that the value n + 2 is an upper bound for the
number of basic kernels which constitute the optimal
solution. The algorithm is not guaranteed to terminate
after n 4 2 iterations, because the calculated imputa-
tions are not necessarily optimal. In practice, however,
the number of iterations is usually much lower. In our
experiments, the objective value of the optimization
problem converges in less than 50 iterations.

5. Example Learners

In this chapter we present manifestations of the generic
method, which we call weighted infinite imputations,
for learning from incomplete data that we use in the
experimental evaluation.

Recall from Section 3 the goal to learn a decision func-
tion f from incomplete data that minimizes the ex-
pected risk R(f) = [ L(y, f(x))p(x, y)dxdy. In clas-
sification problems the natural loss function L be-
comes the zero-one loss, whereas in regression prob-
lems the loss depends on the specific application; com-
mon choices are the squared error or the e-insensitive
loss. The considerations in the previous chapters show
that, in order to learn regression or classification func-
tions from training instances with missing attribute
values, we only have to specify the dual formulation of
the preferred learning algorithm on complete data and
a regularizer on the distribution of imputations p.

5.1. Two Standard Learning Algorithms

For binary classification problems, we choose to ap-
proximate the zero-one by the hinge loss and perform
support vector machine learning. The dual formula-
tion of the SVM is given by R¥VM (¢, k) =37, % —
éZ?J 1 cicik(xj,%;) subject to the constraints 0 <
cl < % and >.1" ; ¢; = 0. We see that the demands
of Optimization Problem 2 are met and a finite solu-
tion can be found. Taking the SVM formulation as
the dual Optimization Problem 2 gives us the means —
in conjunction with an appropriate regularizer @ — to

learn a classification function f from incomplete data.

For regression problems, the loss depends on the task
at hand, as noted above. We focus on penalizing the
squared error, though we like to mention that the ap-
proach works for other losses likewise. One widely used
learning algorithm for solving the problem is kernel
ridge regression. Again, we can learn the regression
function f from incomplete data by using the same
principles as described above. Kernel ridge regression
minimizes the regularized empirical risk > ., (y; —
f(xi))?+ 77||f||2 The dual formulation RERE(c, k) =
Z?:1 CiYi — 3 ZZ 16 4+ an Z” 1 clcjk(xlax]) again
meets the demands of the dual optimization problem
2. Substituting its primal formulation for R in step 1
of Algorithm 1 and in Eqn. 3 solves the problem of
learning the regression function from incomplete data
after specifying a regularizer Q.

5.2. Regularizing towards Prior Belief in
Feature Space

A regularizer on the distribution of missing values can
guide the search towards distributions w that we be-
lieve to be likely. We introduce a regularization term
which penalizes imputations that are different from
our prior belief @w. We choose to penalize the sum
of squared distances between instances x; and w; in
feature space Hjy, induced by kernel k. We define the
squared distance regularization term Q¢ as

Z 15 (i) — e (@)13
= Z k(Xi,Xi) —
=1

Note that when using Q%?, step 3 of Algorithm 1 be-
comes a convex minimization procedure.

Q*(k, @)

5.3. Imputing the Mean in Feature Space

In principle any imputation we believe is useful for
learning a good classifier can be used as w. Sev-
eral models of the data can be assumed to com-
pute corresponding optimal imputations. We like
to mention one interesting model, namely the class-
based mean imputation in the feature space Hjy in-
duced by kernel k. This model imputes missing
values such that the sum of squared distances be-
tween completed instances to the class-dependent
mean in feature space is minimal over all possi-
ble imputations. @ = argming Y ;- ; [|¢r(wi) —
t jy—y: Pk(w;)[13, where n, denotes the num-
ber of instances with label y. Simple alge-
braic manipulations show that this is equivalent to
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minimizing the sum of squared distances between
all instances Zve{fl}l} n%zl‘,j:yi:yj:v lpg(wi) —
Ge@)ld = Foero11) ms Dijuimy—v [F(Wi,wi) —
2k(wi, wj) + k(wj, w;)]

Definition 1 (Mean in Feature Space). The class-

based mean in feature space imputation method im-
putes missing values @ which optimize

Z : E
n'[) .
ve{—1,+1} i,jyi=y;=v
[k(wi, wi) — 2k(w;,w;) + k(w;,w;)]

w = argmin
w

Note that this model reduces to the standard mean in
input space when using the linear kernel.

6. Empirical Evaluation

We evaluate the performance of our generic approach
weighted infinite imputations for two example realiza-
tions. We test for classification performance on the
email spam data set which motivates our investiga-
tion. Furthermore, we test on seven additional binary
classification problems and three regression problems.

6.1. Classification

We choose to learn the decision function for the binary
classification task by substituting the risk functional of
the support vector machine, —R5YVM | as presented in
section 5.1 for R and the squared distance regularizer
Q%7 (Section 5.2) for @) in Optimization Problem 3.

For the motivating problem setting, we assemble a
data set of 2509 spam and non-spam emails, which
are preprocessed by a linear text classifier which is
currently in use at a large webspace hosting company.
This classifier discriminates reasonably well between
spam and non-spam, but there is still a small fraction
of misclassified emails. The classifier has been trained
on about 1 million emails from a variety of sources, in-
cluding spam-traps as well as emails from the hosting
company itself, recognizing more than 10 million dis-
tinct text features. On this scale, training a support
vector machine with Gaussian kernel is impractical,
therefore we employ a two-step procedure. We discard
the contents of the emails and retain only their spam
score from the text classifier and their size in bytes as
content features in the second-step classifier. At the
time of collection of the emails, we record auxiliary
real-time information about the sending servers. This
includes the number of valid and invalid receiver ad-
dresses of all emails seen from the server so far, and
the mean and standard deviation of the sizes and spam
scores of all emails from the server. Such information

is not available for emails from external sources, but
will be available when classifying unseen emails. We
randomly draw 1259 emails, both spam and non-spam,
with server information, whereas half of those were
drawn from a set of misclassified spam-emails. We aug-
ment this set with 1250 emails drawn randomly from
a source without server information for which only 2
of the 8 attributes are observed.

To evaluate the common odd versus even digits dis-
crimination, random subsets of 1000 training examples
from the USPS handwritten digit recognition set are
used. We test on the remaining 6291 examples. Ad-
ditionally, we test on KDD Cup 2004 Physics (1000
train, 5179 test, 78 attributes) data set and on the
4-view land mine detection data (500, 213, 41) as
used by Williams and Carin (2005). In the latter,
instances consist of 4 views on the data, each from
a separate sensor. Consequently, we randomly select
complete views as missing. From the UCI machine
learning repository we take the Breast (277 instances,
9 features), Diabetes (768, 8), German (1000, 20), and
Waveform (5000, 21) data sets. Selection criteria for
this subset of the repository were minimum require-
ments on sample size and number of attributes.

On each data set we test the performance of weighted
infinite imputation using four different regularization
imputations @ for the regularizer Q*¢(K (p),w). These
imputations are computed by mean imputation in in-
put space (MeanInput) and mean imputation in fea-
ture space (MeanFeat) as by Definition 1. Addi-
tionally we use the EM algorithm to compute the at-
tributes imputed by the maximum likelihood parame-
ters of an assumed multivariate Gaussian distribution
with no restrictions on the covariate matrix (Gauss),
and a Gaussian Mixture Model with 10 Gauss centers
and spherical covariances (GMM).

Four learning procedures based on single imputations
serve as reference methods: the MeanInput, Mean-
Feat, Gauss, and GMM reference methods first de-
termine a single imputation, and then invoke the learn-
ing algorithm.

All experiments use a spheric Gaussian kernel. Its vari-
ance parameter o as well as the SVM-parameter n are
adjusted using the regular SVM with a training and
test split on fully observed data. All experiments on
the same data set use this resulting parameter setting.
Results are averaged over 100 runs were in each run
training and test split as well as missing attributes are
chosen randomly. If not stated otherwise, 85% of at-
tributes are marked missing on all data sets. In order
to evaluate our method on the email data set, we per-
form 20-fold cross-validation. Since the emails with
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Table 1. Classification accuracies and standard errors for all data sets. Higher accuracy values are written in bold face,

“x” denotes significant classification improvement.

MeanInput Gauss GMM MeanFeat
Email Single imp || 0.9571 4 0.0022 0.9412 £ 0.0037 0.9505 £ 0.0030 0.9570 = 0.0022
WII 0.9571 £ 0.0022 0.9536 +0.0022 * 0.9527 + 0.0024 0.9600 = 0.0019 *
USPS Single imp || 0.8581 4 0.0027 0.8688 £ 0.0022 0.9063 £ 0.0012 0.8581 = 0.0027
WII 0.8641 + 0.0027 * 0.8824 +0.0024 + 0.9105 £ 0.0015 x 0.8687 + 0.0027 *
Physics Single imp || 0.6957 & 0.0035 0.5575 £ 0.0038 0.6137 £ 0.0050 0.6935 + 0.0028
WII 0.7084 + 0.0039 * 0.6543 +0.0055 + 0.6881 £ 0.0049 x 0.7036 + 0.0032
Mine Single imp || 0.8650 & 0.0025 0.8887 £ 0.0023 0.8916 £ 0.0023 0.8660 = 0.0026
WII 0.8833 +0.0026 * 0.8921 £+ 0.0021 0.8946 + 0.0022 « 0.8844 £ 0.0026 *
Breast Single imp || 0.7170 4 0.0055 0.7200 £ 0.0048 0.7164 £ 0.0048 0.7085 £ 0.0057
WII 0.7184 £+ 0.0056 0.7243 +0.0048 * 0.7212+0.0050 * 0.7152 £ 0.0057 *
Diabetes Single imp || 0.7448 4 0.0025 0.7053 £ 0.0036 0.7154 £ 0.0043 0.7438 £ 0.0026
WII 0.7455 + 0.0025 0.7234 +0.0036 * 0.7389 £ 0.0031 x 0.7439 + 0.0024
German Single imp || 0.7331 & 0.0029 0.7058 £ 0.0029 0.7056 £ 0.0028 0.7364 £+ 0.0029
WII 0.7368 +0.0025 * 0.7118 =0.0030 x 0.7120 & 0.0028 * 0.7357 4= 0.0027
Waveform | Single imp || 0.8700 £ 0.0019 0.8241 £0.0031 0.7827 £ 0.0049 0.8679 £ 0.0020
WII 0.8700 £ 0.0019 0.8612 1+ 0.0019 * 0.8583 £0.0020 x 0.8686 = 0.0020 *
1. Improvement by % Missing 2. Improvement by Sample Size 3. Execution Time by Sample Size
0.08 v T T T T T 0.05 T T T T 16000 T T T
MeanlInput Meanlnput Wg —
o7 Gams : Gouse - tango | (9957
0.06 | MeanFeat 0.04 |- MeanFeat -

: L. 12000 YA
>°-°5 " _ 003 € 10000 1
8004 | 9 } 3
5 5 @ 8000 |- 1
Soomf goozr s

E 6000 [ 1
0.02 - =
oo | 0.01 | 4000 L ,
0 el 0 2000 | 1
-0.01 1 ‘ : . : - : - - : : : : : - ! — : : :

10 20 30 40 50 60 70 80 90 200 400 600

% Missing

500 1500 2500

Size

800 3500

Size

1000 1200 1400

Figure 1. Detailed results on USPS classification task.

missing attributes cannot be used as test examples,
the test sets are only taken from the fully observed
part of the data set.

Table 6.1 shows accuracies and standard errors for
the weighted infinite imputations (WII) method with
squared distance regularization compared to all single
imputations @ on each data set. Regularization pa-
rameter «y is automatically chosen for each run based
on the performance on a separate tuning set. Base-
lines are obtained by first imputing w and learning the
classifier in a second step. The weighted infinite impu-
tations method outperforms the single imputation in
virtually all settings. We test for significant improve-
ments with a paired t-test on the 5% significance level.
Significant improvements are marked with a “x” in the
table.

We explore the dependence of classification perfor-

mance on training sample size and the percentage of
missing attribute values in more detail. The first graph
in Figure 1 shows improvements in classification accu-
racy of our method over the single imputations de-
pending on the percentage of missing values. Graph
2 shows classification accuracy improvements depend-
ing on the size of the labeled training set. Both ex-
periments are performed on USPS data set and we
again adjust - separately for each run based on the
performance on the tuning set. We note that similar
results are obtained for the other classification prob-
lems. The weighted infinite imputation method can
improve classification accuracy even when only 30%
of the attribute values are missing. It shows, though,
that it works best if at least 60% are missing, depend-
ing on w. On the other hand, we see that it works for
all training set sizes, again depending on w. Similar
results are obtained for the other data sets.
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Table 2. Mean squared error results and standard errors for regression data sets. Smaller mean squared errors are written

in bold face, “x” denotes significant improvement.

MeanInput Gauss GMM MeanFeat
Housing | Single imp || 193.0908 4+ 19.9408 288.6192 + 41.5954 160.4940 £ 16.2004 1134.5635 + 101.9452
WII 66.5144 +0.8958 x 62.3073 =0.8479 x 66.7959 £0.9173 * 64.7926 + 0.9619 *
Ailerons | Single imp || 81.7671 & 4.5862 172.5037 + 8.6705 79.8924 + 4.0297 193.5790 + 10.4899
WIIL 11.8034 +£0.1494 « 8.7505 £ 0.0932 x 11.7595 +0.1530 * 11.8220 + 0.1387 =
Cpu_act | Single imp || 10454.176 + 962.598  15000.380 +=973.100  10123.172 +933.143  15710.812 + 1099.603
WIIL 306.257 +12.500 « 204.180 £ 5.058 x* 305.651 +13.627 « 247.988 4+ 8.010 *

To evaluate the convergence of our method, we mea-
sure classification accuracy after each iteration of the
learning algorithm. It shows that classification accu-
racy does not change significantly after about 5 itera-
tions for a typical vy, in this case v = 10° for the USPS
data set. On average the algorithm terminates after
about 30-40 iterations. The computational demands of
the weighted infinite imputation method are approxi-
mately quadratic in the training set size for the classifi-
cation task, as can be seen in Graph 3 of Figure 1. This
result depends on the specific risk functional R and its
optimization implementation. Nevertheless, it shows
that risk functionals which are solvable in quadratic
time do not change their computational complexity
class when learned with incomplete data.

6.2. Regression

We evaluate the weighted infinite imputations method
on regression problems using the squared error as loss
function. Consequently, risk functional RE?® (Sect.
5.1) is used as R and again the squared distance reg-
ularizer Q*? for @ in Optimization Problem 3. From
UCI we take the Housing data (506, 14), and from the
Weka homepage cpu_act (1500, 21) and ailerons (2000,
40). Ridge parameter n and RBF-kernel parameter o
were again chosen such that they lead to best results
on the completely observed data. Regularization pa-
rameter v was chosen based on the performance on
a tuning set consisting of 150 examples. Results are
shown in Table 2. We can see that our method outper-
forms the results obtained with the single imputations
significantly for all settings.

7. Conclusion

We devised an optimization problem for learning de-
cision functions from incomplete data, where the dis-
tribution p of the missing attribute values is a free
parameter. The investigated method makes only mi-
nor assumptions on the distribution by the means of a
regularizer on p that can be chosen freely. By simul-
taneously optimizing the function and the distribution
of imputations, their dependency is taken into account

properly. We presented a proof that the optimal so-
lution for the joint learning problem concentrates the
density mass of the distribution on finitely many impu-
tations. This justifies the presented iterative algorithm
that finds a solution. We showed that instantiations
of the general learning method consistently outperform
single imputations.
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ABSTRACT

We study discriminative clustering for market segmentation
tasks. The underlying problem setting resembles discrimi-
native clustering, however, existing approaches focus on the
prediction of univariate cluster labels. By contrast, market
segments encode complex (future) behavior of the individ-
uals which cannot be represented by a single variable. In
this paper, we generalize discriminative clustering to struc-
tured and complex output variables that can be represented
as graphical models. We devise two novel methods to jointly
learn the classifier and the clustering using alternating op-
timization and collapsed inference, respectively. The two
approaches jointly learn a discriminative segmentation of
the input space and a generative output prediction model
for each segment. We evaluate our methods on segmenting
user navigation sequences from Yahoo! News. The proposed
collapsed algorithm is observed to outperform baseline ap-
proaches such as mixture of experts. We showcase exem-
plary projections of the resulting segments to display the
interpretability of the solutions.

Categories and Subject Descriptors
1.5.3 [Clustering]: Algorithms

General Terms

Algorithms, Experimentation

Keywords

Discriminative Clustering, Market Segmentation

1. INTRODUCTION

Market segmentation reveals divisions in a given market,
where a market refers to a population of interest such as
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people, customers, or organizations. A market segment is a
subset of a market that is characterized by similar demands
and/or needs based on qualities of a given product such as
price or function.

Every segment is required to meet the following criteria.
(i) It is homogeneous within the segment, so that individuals
within the same segment exhibit common needs and can be
targeted jointly with the same marketing strategy. (ii) It is
easily distinguishable from other segments to guarantee that
different segments have different demands and (iii) serves as
a blueprint for distinct targeting strategies. The require-
ments are often summarized as homogeneity, identifiability,
and interpretability (19).

Besides frequently deployed self-organizing maps (SOMs)
(13; 7), market segmentation matches the problem setting
of model-based clustering approaches. Clustering techniques
either minimize the within-cluster similarity (1; 14), maxi-
mize the between-cluster similarity (7), or optimize a combi-
nation of both (18), and thus aim to produce homogeneous
and identifiable solutions. Once segments have been com-
puted, new customers need to be assigned to one of the
subgroups to advertise the product accordingly.

Unfortunately, mapping new instances to an existing clus-
tering is often difficult in practice. Intuitively, the new cus-
tomer should be grouped to the closest segment with respect
to some similarity measure. Closeness can for instance be
computed as the distance in feature space to the median or
the nearest member of a segment (11; 4). However, often at
the time of classifying a new instance, not all features are
known. Even using the similarity measure that is used by
the clustering method itself on all features is frequently ob-
served to perform surprisingly inaccurate, see e.g., (20) and
Section 4. Other difficulties are for instance distribution-
based clusterings, such as Expectation Maximization (6),
which assign probabilities for cluster-memberships. By do-
ing so, customers are probabilistically related to every seg-
ment. Converting this soft assignment into a hard assign-
ment by taking a maximum a posteriori or winner-takes-ali
decision is often suboptimal if the memberships deviate from
a point distribution, in which case more than one segments
are likely candidates (14).

Optimally, the segmentation is therefore learned together
with a classifier that discriminatively maps new instances
to clusters; a problem setting which is also known as dis-
criminative clustering (5; 20; 24; 8). The idea is to have
the clustering provide the labels for the classifier which is
trained in a supervised manner. The joint optimization al-
ters the clustering so that the segments can be easily dis-



criminated from each other by the classifier. Combining the
two criteria thus guarantees concise clusterings and accu-
rate classifiers. Existing approaches focus on clustering a
population and predicting a cluster label for a new instance.
By contrast, market segmentation is more complex. In mar-
ket segmentation tasks, we need to differentiate between the
data that characterizes individuals and the data that charac-
terizes their future behavior. The clustering clearly needs to
take all available information into account to generate mean-
ingful segments. However, the classifier does not have access
to future events and needs to take a decision on the available
information such as gender, income, etc. This observation
renders existing approaches to discriminative clustering too
restrictive for market segmentation tasks.

In this paper we generalize discriminative clustering for
market segmentation tasks using the structured prediction
framework. We differentiate between attributes of a cus-
tomer and her interests/behavior. Attributes are a priori
available features of individuals of the population such as
gender or income. Her behavior is a collection of interact-
ing variables describing a segment. As segments need to be
interpretable, we model the output data as a complex and
structured variable which can be represented as a graphical
model. The distinction allows for learning a classifier only on
the attributes, computing the clustering on both attributes
and behavior, and finally summarizing the segments only in
terms of the behavior.

We devise two solutions which are based on the regular-
ized empirical risk minimization framework. The first is a
straightforward adaptation of mixtures of experts. Classi-
fier and clustering are optimized using an alternating strat-
egy where we fix one component while optimizing the other.
The second solution uses approximations and integrates out
parameters of the classifier using collapsed inference for effi-
ciency. Both approaches use generative models for the out-
put structure and, in contrast to conventional discriminative
clustering approaches, do not involve trade-off parameters
for classification accuracy and cluster consistency (class bal-
ance) because the optimization problems are not prone to
trivial and degenerate solutions.

Use cases of our methods contain traditional market seg-
mentation tasks. Consider for instance a company that aims
at promoting a new product or a hotel chain that intends to
lure visitors with special offers. Our methods not only com-
pute a meaningful segmentation of the customers but also
allow for devising appropriate targeting strategies from the
graphical models. Moreover, our method serves as discrim-
inative clustering for structured variables, where the task is
not to output a single class/cluster label but the average
structure for every segment. The differentiation between
attributes and behavior increases the range of applications
that can be addressed. A special — but still novel — case is
obtained when attributes and behavior partially overlap.

Empirically, we study our methods on another interesting
use case: Segmenting user navigation sessions on the Web
for displaying segment-specific website layouts. We experi-
ment on a large click log from Yahoo! News. The attribute
data is assembled from meta-information about the session
such as the timestamp, the referrer domain, and the first
page request. The behavior consists of subsequent naviga-
tion actions given by click sequences. The generative rep-
resentation of the behavior data is interpretable and can be
easily transformed into segment-specific layouts.
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The remainder of the paper is structured as follows. Sec-
tion 2 discusses the relationship of our problem setting with
previously studied settings and methods. In Section 3 we
derive two algorithms to optimize the empirical counterpart
of the expected segmented log-likelihood. Section 4 reports
on empirical results using a large click log from a commercial
news provider and Section 5 concludes.

2. RELATED WORK

Market segmentation tasks are often solved using neural
networks such as self-organizing maps (13; 7). Kiang et al.
(13) for instance extend self-organizing maps to group cus-
tomers according to their attitude towards different commu-
nications modes. D’Urso and de Giovanni (7) use the natu-
ral clustering property of self-organizing maps together with
dissimilarity measures which capture temporal structure of
the data. In general, clustering data with self-organizing
maps and variants thereof inherently implements the homo-
geneity assumption of market segmentation. However, clas-
sifying new instances into the clustering is often difficult and
it is not possible to output generative models to summarize
the resulting clusters. Additionally, the optimization crite-
rion of self-organizing maps is highly sensitive to the actual
initialization and usually converges to different local optima.

Related to market segmentation is the task of estimating
a mixture model for observations (6). Introducing selector
variables encoding probabilistic cluster-memberships, maxi-
mizing the log-likelihood by marginalizing over the selector
is usually straightforward. The selector can be modeled in a
data-dependent or data-independent fashion but the prob-
abilistic nature of the cluster-memberships render a direct
application for market segmentation tasks impossible.

Discriminative clustering simultaneously computes a seg-
mentation of the data at hand and a classifier that discrim-
inates the resulting clusters well. Existing approaches in-
clude projections into lower-dimensional subspaces (5), joint
optimization of max-margin classifiers and clusterings (20;
24), the optimization of scatter metrics (21), and the max-
imization of an information theoretic criterion to balance
class separation and classifier complexity (8). Sinkkonen
et al. (17) aim to find clusters that are homogeneous in
auxiliary data given by additional discrete variables. The
above mentioned approaches do not predict any output vari-
able but focus on the discrete cluster variable. Moreover, in
our generalized problem setting, instances are represented as
input-output pairs. The classifier discriminates the clusters
given only the input, whereas the cluster parameters need to
accurately estimate the outputs of the contained instances.
Previous work on discriminative clustering does not split in-
stances into two parts. They represent instances as a single
input which consequently allows the classifiers to access the
whole example at decision time. The same assumption is
commonly being made in market segmentation studies that
involve model-based clustering approaches, (9; 16; 22) but
prohibits a natural solution for market segmentation tasks.

This problem setting can be seen as an alteration of the
setting which the Mixture of Experts approach (10; 12) aims
to solve, where the behavior y is predicted given the at-
tributes z as a mixture model where the mixture component
weights depend again on x. In our case, mixture component
weights have to be always point distributions as demanded
by the application. Framing the distribution of y given the
mixture component as a pure generative model allows us to



derive a more efficient algorithm than that of the Mixture
of Experts approach.

Zhao et al. (23) proposed a maximum-margin cluster-
ing for multivariate loss functions. Minimizing the complex
losses allows for capturing structural differences that cannot
be expressed in terms of standard misclassification rates.
In principle, by defining a loss function that captures the
differences of two clusterings, one could possibly solve mar-
ket segmentation tasks as their approach implicitly favors
clusterings that are easily discriminable. However, the loss
function cannot be expressed in terms of the contingency ta-
ble of the two clusterings, and the decoding problem in the
inner loop of the algorithm, that is finding the most violated
constraint, becomes intractable in practice.

Also related to our problem setting are multi-view clus-
tering approaches, where the data is split into two disjoint
feature sets, which are sometimes also called views. Bickel
and Scheffer (2) present an intertwined Expectation Maxi-
mization algorithm to compute the maximum likelihood so-
lution for one view using the expectations provided by its
peer view. The two data views are modeled generatively
and the algorithm maximizes the joint marginal likelihood.
By contrast, we aim to find a discriminative classifier on the
input view and instead of maximizing the marginal likeli-
hood of the output view we seek to maximize the likelihood
conditioned on a hard cluster assignment.

3. DISCRIMINATIVE SEGMENTATION

We now present our main contribution, the generalization
of discriminative clustering for structured output variables
to solve market segmentation problems. We introduce the
problem setting in the next section and present a straightfor-
ward solution in terms of mixtures of experts in Section 3.2.
An efficient approximation is devised in Section 3.3 and Sec-
tion 3.3.3 discusses scalability issues.

3.1 Preliminaries

We are given a sample M from a market where individuals
are represented by tuples (z,y) € X x Y encoding attributes
x and behavior y. Attributes x may encompass individual
features like gender, income, etc while the expressed historic
behavior is captured by y € Y and represented as a graph-
ical model. The behaviors y are governed by a family of
distributions denoted by P(y|0) with natural parameter 6.

In our running example on segmenting user navigation on
the Web, attributes = encode meta-information about the
session such as the timestamp, the referrer domain, and the
first page request and is represented as a feature vector.
The behavior y encodes sequences of the subsequent Web
navigation and can for instance be represented as a Markov-
chain where nodes correspond to pageviews and connecting
edges visualize clicks.

We aim to find an appropriate segmentation of the mar-
ket M. Formally, the goal is to find a classifier h : X —
{1,...,k} that maps attributes = to one of k clusters, pa-
rameterized by @ = (01,...,60k), where the 6; are chosen to
maximize the likelihood of the observed behaviors y of the
respective segment. The number of clusters k is assumed
to be given by the application at hand, because it consti-
tutes a trade-off between predictive power and effort spent
for developing multiple market strategies. As h and 6 are
not independent they need to be optimized jointly. Hence,
over all classifiers h and parameter collections 8, we aim at

maximizing the expected risk functional R that is defined in
terms of the segmented log-likelihood

R(h,0) = / log P(y]0h(2))dP(z, y). (1)

Since the true joint distribution P(z,y) is unknown, we re-
place Equation (1) by its empirical counterpart on the finite
market sample of size n given by M = {(z, i) }iz1

R(0,h) = 1og P(yslOn(z,))- (2)

i=1

Directly maximizing Equation (2) in terms of the compo-
nent parameters @ and the classifier h is infeasible, since the
objective function is not only highly non-convex and non-
continuous but an NP-hard problem because of combinato-
rial assignments. However, if the classifier h was fixed, the 6;
could be optimized directly, as h provides the segmentation
and for each segment j optimal parameters 6; are trivially
computed by

éj = argmax Z log P(y:|6). ()

0 . .
i:h(zi)=j

For many common distribution families, the maximum like-
lihood estimates P(y|6) can be computed easily by counting
or averaging over the observations in the segment, respec-
tively. Vice versa, keeping the segment parameters 01, . . ., 0
fixed, learning the classifier h results in a standard multi-
class classification scenario. Using linear models, h can be
written as

h(z) = argmax w, =, (4)
je{l, ...k}
where each segment has its own weight vector w;. In the re-
mainder, we will use h and w = (wy,...,ws) " interchange-
ably. The next section exploits this observation and presents
a joint alternating optimization scheme.

3.2 An Alternating Optimization Scheme

A straightforward approach to solve market segmentation
problems is to alternate the optimization of the classifier
and the clustering while fixing the other, respectively. As
shown in Equation (3), keeping the classifier fixed allows to
apply standard maximum likelihood techniques to compute
the natural parameters of the segments. We thus focus on
deriving the classifier h for a fixed clustering. We make
use of the maximum-margin framework and deploy a re-
scaled variant of the hinge loss to deal with uncertain cluster-
memberships (or class labels).

The idea is as follows. Intuitively, an individual (z,y)
should be assigned to the segment that realizes the high-
est log-likelihood with respect to y. However, two or more
segments might be competing for the instance and realize

Algorithm 1 Alternating Optimization
: Input: (z1,y1), -+ (Tn,Yn), A >0,k > 1
: Initialize 6 randomly
repeat
E-step: w < argmin,,, ¢>¢ %Hw'“2 + %Z?:l &

s.t. (w;; —wj)Te>1- sf;)
M-step: 0 < argmaxgs 3, 3=, 1 (5= 108 P(yil0")
until convergence

NP g @




similar log-likelihoods, in which case a winner-takes-all de-
cision is prohibitive. We thus treat the difference of the log-
likelihoods between the most likely segment j* and cluster
j' # j* as a misclassification score, given by

s(y) = log P(y|0;+) — log P(y|0;/). (5)

These scores can be incorporated in a support vector ma-
chine by re-scaling the hinge loss and act like example-de-
pendent costs (3). The re-scaled hinge loss becomes a convex
upper bound of the difference of the log-likelihoods,

U(z) = (6)
Stacking up w = (wi,...,ws)' and & = (&1,...,&,) ", we
arrive at the following maximum-margin optimization prob-
lem

s(y) max (O, 1— (wyx — w]-/)Tx) .

. A oo 1
iy el 2 &
(wj; - ’lUj)TfL' >1—

&
s(y)’

for1 <i<mn,je{l,....,k},j#7j", ji =argmax; P(y0;),
and regularizaion parameter A > 0.

Hence, Equation (2) can be optimized by randomly initial-
izing 6 and subsequently alternating between optimizing w
and 60; while fixing the respective peer. Algorithm 1 instan-
tiates the pseudo-code as a member of the Expectation Max-
imization framework. The alternating optimization scheme
can also be interpreted as an adaptation of the EM algorithm
for a mixture of experts (12). The classifier h, given as the
weight vectors w;, corresponds to the gating networks. In
contrast to the conventional mixture of experts model, it
is trained using an SVM to output deterministic decisions,
instead of soft decisions. The generative distribution over
behaviors differs from the expert networks only in the fact
that in our problem setting the prediction of the behavior y
is not allowed to depend directly on the attributes x, only
via the cluster assignment.

A major drawback of the alternating approach is however
the discrete assignment of individuals to only a single seg-
ment, even during the intermediate optimization steps. As
a consequence, the algorithm is prone to degenerate solu-
tions and poor local optima. Additionally, the optimization
is expensive in terms of computational time as it requires
the computation of a multi-class SVM until convergence in
every step.

s.t.

3.3 Collapsed Optimization

We now present an efficient approximation of the discrim-
inative segmentation problem by using a continuous relax-
ation to the original problem formulation. We first show that
the parameters of the classifier can be computed in closed-
form so that the joint optimization problem depends only
on the segment parameters. Second, we devise an EM-like
algorithm (6) to optimize the remaining objective.

3.3.1 Eliminating the Classifier Parameters

As the discrete cluster assignments cause many difficul-
ties, we now replacing them by soft assignments using an
adjustable soft-max function. The parameter p controls the
degree of reproducing the maximum, that is for p — co we
precisely obtain the maximum operator. Incorporating the
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soft-max in Equation (2) yields the optimization problem

explpw] 21

n k
max log »  P(v:l6;) ; (7)
6,w ; ; J > exp(pw)ai)

which still contains the mutually dependent variables 8 and
w. To obtain an efficiently solvable optimization problem,
we express the objective as a continuous function of w so
that w can be eliminated using collapsed inference. Instead
of the hinge loss in Equation (6), we employ another tight
convex upper bound in terms of the squared loss,

{(z) = (log P(y0;) —

Implicitly, introducing the squared loss converts the classi-
fier into a regressor that aims at predicting the log-likelihood
for an individual (x,y) and the j-th segment as accurate
as possible. Assuming the log-likelihoods were predicted
perfectly, the parameters w would not only be optimal for
the regression but also for Equation (2) as the classifier h
in Equation (4) would still return the most likely segment.
Changing the loss function also has the advantage that now
the optimal solution for w can be computed analytically.
The corresponding regularized optimization problem is also
known as regularized least squares regression (RLSR) or
ridge regression and is given by

ijx)Q.

n k
min Sl + 303 (log Puilty) —w]w) . (®)

i=1 j=1

for A > 0. Setting the derivative with respect to w to zero
and solving for w;, we obtain the optimal solution that can
be computed in closed-form

w; =X (XX + ) "x(6;), (9)
where X € R™*¢ contains the stacked attribute vectors and
7(0;) = (log P(y1]6;), . .., log P(y,|0;)) " is the vector of log-
likelihoods for the j-th segment. The computation of the
inner product

wjz=70;) (XXT + M) ' Xz

can effectively be sped-up by precomputing the linear trans-
formation of the attributes. Introducing auxiliary variables
Z given by

T=(XX" 4+ X)Xz,

allows to efficiently rewrite the inner product as ij:v =
7(0;) " Z. Further note that # depends only on inner prod-
ucts of individual attributes. Hence, the kernel trick can be
applied to incorporate non-linearity. Introducing a Mercer
kernel k, the auxiliary matrix X can be written in terms
of the corresponding kernel matrix K with elements K;; =
{k(zi,2;)}ij as (K + M) K. The classifier can then be
expressed in terms of a set of dual multipliers « and the ker-
nel function as h(x) = argmax; Y . ojik(zi, ;). The dual
multipliers can be obtained explicitly as a function of the
component parameters as
a;(0;) = m(0;) " (K + )" (10)
Substituting the obtained observations in Equation (7)
results in a simplified optimization problem that does no



longer depend on w and that has only the 6; as free param-
eters,

exp(pm(6;) " 7:)
sexp(pm(6;)T i)

n k
mnglogZP(yilﬂj) (11)
i=1 j=1

3.3.2  Optimizing the segment parameters

The optimization problem in Equation (11) can be solved
with an EM-like algorithm (6) using auxiliary variables z; ; >
0, with 37, z;,; = 1, encoding the belief that the i-th exam-
ple belongs to the j-th cluster. EM-like algorithms consist
of two phases which assign instances to generating segments
(E-step) and maximize the segment parameters with respect
to the associated instances (M-step), respectively. In the E-
step, it therefore suffices to identify the auxiliary variables
with the true posterior probabilities given the current 6,

exp(pm(6;) " i)
> exp(pm(0;)TT:)

Following the general EM framework, we express the empir-
ical risk functional in Equation (11) in terms of the expec-
tations z; ;. This allows us to effectively pull the logarithm
into the sum over segments for the M-step; we arrive at the
optimization problem

3|

max ZZZZJ lOg |: y7,|i9 )ZeXP(PW(Q ) 7;)_

zi,5 o< P(yil0;)

exp(pm(6;) @

which can be rewritten as
max E Zi,j
0 —
i,j

[o7(65) 7@ — 108> exp(pm(8;0) ") + log P(yi[65)].

5’

The above Equation is to be maximized with respect to 6.
Compared to conventional M-steps for mixture model esti-
mation problems, 6 appears not only in P(y;|6;), but also
in what are usually the segment weights for each example.
This renders the objective function non-concave and, conse-
quentially, there is no exact analytical solution.

As aremedy, we derive an approximation that is linear and
non-decreasing in the m(6;), rendering the objective concave
in #; and thus analytically solvable for common choices of
P(y|9j). We begin with approximating the normalization
term Z(0) =log3}_ exp(pm(0;:) " 7;) by its first-order Tay-

lor expansion around the current 8°'% which is given by
0) ~ Y tiyipm(6;) T + C, (12)

exp(pm (094 T 2;)
> cxp(rﬂf@"”)'r z;)
cients and C' is a constant. Substituting Equation (12) into
the objective function of the M-step and collecting the coef-

ficients gives us

arggmx Z Z log P(y;|6;)
g

where the t;;; = are the Taylor coeffi-

Zig+pY T (Zi/,j)—

il

> Zi',j/ti'j')} (13)
]'/
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Algorithm 2 Collapsed Optimization Algorithm
1: Input: (z1,91),---, (Tn,Yn), A
2: p < 1, t < 1, initialize ® randomly
3: repeat
4: E-step: Q(ZZ :]) A P(’Z’L :j|mi7yi7pa)‘70(til))
5 M-step: 8% < argmaxg Y, > Qzi = j)x
6
7
8
9

IOgP(y“ Zi = ]|17z, P )‘7 0)
pi—px1llt+t+1
: until convergence
: @ = argmax, R(0, «(0))
10: o + «(0)

which is a linear function of log P(y;|0,). For increasing p,
the Taylor coefficients for each instance approach a point dis-
tribution exponentially fast, i.e. t;. — (0,...,0,1,0,...,0)".
The same holds for the auxiliary variables z; ;, which ap-
proach t;;. Thus, the second summands of the coefficients
in Equation (13) approach zero, and hence for large p all the
log P(y;]0;) have either positive or very small negative coef-
ficients. We clip coefficients below zero to guarantee that the
objective function is non-decreasing in the log P(y;|6;) and
obtain an approximation that approaches the exact solution
with increasing p.

The softmax factor p therefore constitutes a trade-off be-
tween accurately approximating the original optimization
problem of maximizing R(6, h) and smoothing the objective
function to facilitate finding good local optima.

We deal with this tradeoff by starting the EM-algorithm
with p = 1, and multiplying it by a constant factor each iter-
ation. Preliminary experiments have shown the factor 1.1 to
work well. Due to the approximation of the hard decisions
with a soft-max, the algorithm is not guaranteed to mono-
tonically increase the true objective value. We thus select
the intermediate result with the highest objective value as
the final solution for the cluster parameters.

Algorithm 2 shows the collapsed optimization algorithm
in pseudo code. In line 2, the cluster parameters € are ini-
tialized randomly. Line 4 performs the expectation step
of the EM-algorithm, computing the current posterior es-
timates, given the soft-max factor p, the cluster parame-
ters, and implicitly also the classifier h. The maximization
step in line 5 boils down to an optimization problem of the
form 37, >° cijlog P(y:|6;), which for non-negative coeffi-
cients ¢;; can be solved analytically for many choices of dis-
tribution families. For example if P(y|6) is a multinomial
distribution over y € {1,...,m} with P(y = ¢|0;) = 0,4,
the maximum is attained for ;4 = > . ci;[ys = q]/>_; cij
for all j, g, where [-] is the indicator function. Finally, lines
9 and 10 select the best intermediate solution in terms of
the true objective, and re-obtain the explicit classifier using
Equation (10).

3.3.3  Scalability

The computational bottlenecks of the collapsed optimiza-
tion algorithm are the computation of the Z;, involving ma-
trix inversions and multiplications, and the computation of
the coefficients in Equation (13), where we have to sum over
all pairs of examples, leading to an overall complexity of the
algorithm of O(n?3"® 4 n2kT).

For applications with a large number of examples the
super-quadratic dependence on the sample size n makes the



algorithm effectively intractable. We can alleviate this by
randomly partitioning the examples in the least-squares es-
timation in Equation (8) into s disjoint subsets S 8
of size m. For each subset the weight vectors w® are esti-
mated separately, and thus within each subset the vectors
m(0;) and the transformed examples Z have only m compo-
nents. Consequently, in Equation (13) the inner summation
over the examples only runs over the m examples in the
subset to which example (x;,y;) belongs. Finally, we obtain
the parameters of the classiﬁer h by averaging the weight
vectors over all subsets, w; = 1 3 w (l)

Mixing the separately learned welght vectors is identical
to the mixture weight method by Mann et al. (15) that has
been shown, theoretically and empirically, to yield results
close to learning a weight vector using all examples at once.
Note however that 0 is still learned from the whole, unparti-
tioned training sample. Using the partitioned estimation for
the weight vectors, the overall complexity of the algorithm
becomes O(nm*3"® +nmkT). For m < n, the computation
becomes tractable even for very large sample sizes n.

4. EMPIRICAL EVALUATION

In this section, we evaluate the proposed algorithm using
a large data sample from Yahoo! News United Kingdom®.
The click log contains browsing session logs, where events
from the same user are identified by their browser cookies
and sessions are split after 25 minutes of inactivity. We use
all sessions from June 2011 for training and the first week
of July 2011 for testing. Figure 1 shows the categories, such
as politics/world, politics/uk, science/space, in the training
set, averaged over the four weeks where different colors cor-

respond to different categories?.

Relative volume

Mon Tue Sat Sun

Figure 1: Click volume of categories over time.

The goal of our study is threefold: Firstly, we aim to seg-
ment the user sessions of Yahoo! News according to their
interests expressed by clicks. Secondly, new sessions need
to be classified to one of the segments so that every seg-
ment accurately predicts subsequent clicks of the respective
user. Finally, the segments need to be interpretable to allow
for devising target strategies from the segment description.

! All processing is anonymous and aggregated
2Colors occur more than once due to the large number of
categories.
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A typical targeting strategy in our Yahoo! News example
could for instance be a dynamic layout of the Web site to
advertise news articles of categories that the respective user
is probably interested in.

From a data perspective, modeling sequences of clicked
categories by Markov processes is straightforward. How-
ever, Markov processes, e.g., visualized by transition matri-
ces, are difficult to interpret as the entries encode interests
with respect to the previous category. Taking the inferred
Markov model properly into account would imply changing
the website layout within a session depending on the previ-
ous category. A simpler way to obtain interpretable clusters
is to use multinomial distributions for the output variables
of interest. We use the sequences of user clicks enriched with
the respective locations of the clicks. That is, the behavior
y consists of the multi-set of subsequently clicked categories
¢ and link sections s. The distribution P(y|6;) is defined as
the product of multinomial distributions

P =TT Peln [ el

where 1 and v are the parameter vectors governing the dis-
tributions over categories and link sections, respectively.

The attributes x of a session is represented as a binary
feature vector encoding the most common referrer domains,
the respective category of the first pageview, as well as fea-
tures encoding the timestamp; we use binary indicators for
every day of the week, for each hour of the day, and for each
hour of the week. For the collapsed algorithm, we use a
linear kernel and randomly partition the training data into
disjoint subsets of size 1,000 for computing the predicted
log-likelihoods.

4.1 Baselines

We compare the collapsed algorithm with three baselines,
the alternating optimization scheme in Section 3.2, a mix-
ture of experts model and a k-means based solution. The
mixture of experts model (12) minimizes the squared error
in terms of the within-cluster log-likelihoods and optimizes
the marginal likelihood

ZlogZP@iwj)P

Instead of the prior P(z = j) we have a conditional distribu-
tion P(z = j|x) which is defined in analogy to the collapsed
algorithm as

P(z = jlz) exp(z ajik(zi, x)).

(21 = jlx).

The mixture of experts model is optimized with a standard
EM-algorithm and therefore provides only probabilistic clus-
ter assignments and does not take into account that sessions
need to be assigned to only a single cluster.

The third baseline is derived from the straightforward, yet
somewhat naive, approach to segment the input space first
and only then optimize the generative model in each cluster.
The drawback of this non-iterative approach is that it does
generally not lead to homogeneous behavior within clusters
because the segments are fixed when estimating the genera-
tive models. We use k-means for finding the clustering, and
estimate segment paramters @ by maximum likelihood based
on the hard cluster assignments. The classifier h classifies a
new instance into the cluster with the nearest centroid.



In each setting, every algorithm is deployed 10 times with
random parameter initializations and in the remainder we
only report the results of the run with highest training like-
lihood.

4.2 Convergence

In this section, we evaluate the convergence behavior of
the collapsed algorithm. Recall that the collapsed algorithm
optimizes an approximate objective, where the hard clus-
ter assignments are replaced by a soft-max controlled by
an increasing factor p. To cancel out effects caused by the
approximation, we substitute the resulting 6 into the ex-
act optimization criterion in Equation (2) and measure the
respective objective value. Note that the results do not nec-
essarily increase monotonically.

-3 T T

-3.2

-3.4
-3.6

-3.8 |

Objective value

-4

-4.4 ' L
1 10

Iteration

Figure 2: Objective values for the collapsed algo-
rithm (solid) and the mixture of experts baseline
(dashed), for different numbers of clusters k.

Figure 2 shows the results for different numbers of clus-
ters for the collapsed algorithm (solid curves). For compar-
ison, we also added the mixture of experts baseline (dashed
curves). As expected, the true objective value is not mono-
tonic, since both algorithms optimize an approximation to
the exact optimization criterion. The figure also shows that
the best values are obtained after at most 20 iterations.

4.3 Predictive Performance

To evaluate the performance of the collapsed algorithm,
we measure its predictive accuracy in terms of how well fu-
ture behavior can be predicted. The classifier and the seg-
mentation are learned jointly as described in Section 3 us-
ing the training set and then deployed to the test set. The
sessions in the test set are first classified by the classifier
in one of the segments which is then used to predict the
future clicks of the user. Since the final prediction is a com-
plex variable, we refrain from expressing the performance in
terms of error rates and measure the predictive log-likelihood
log P(y|0h(s)) instead. We compare the collapsed algorithm
to the alternating optimization scheme, the mixture of ex-
perts model, and the k-means based solution. We report on
averages and standard errors over 10 repetitions with differ-
ent random initializations.

Figure 3 shows the predictive performance for varying
numbers of clusters. Not surprisingly, all methods perform
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Figure 3: Averaged predictive performance and

standard error.

equally worse for only a single cluster. For only a few clus-
ters, the mixture of experts baseline performs about as well
as the collapsed algorithm. We credit this finding to the
existence of easy-to-reach solutions that do not necessarily
require hard cluster assignments in the 0-steps. However,
when the number of clusters grows, the performance of the
mixture of experts approach decreases slightly while that of
the collapsed model increases. Here it becomes more and
more important to select the parameters in a way that al-
lows to discriminate well between the clusters, and thus the
collapsed algorithm outperforms the baselines significantly.
The alternating algorithm and the k-means baseline perform
significantly worse than the collapsed algorithm. Only for 20
and more clusters the alternating algorithm produces bet-
ter results than the mixture of experts model. Note that
the k-means performs worst as it does not use an alternat-
ing update schema but first learns the clustering and then
estimates the generative models using the fixed segments.

It is apparent that the predictive performance levels oft
after increasing the number of clusters beyond 10. Intu-
itively, this observation can be explained by a trade-off be-
tween classification and segmentation: even if a more fine-
grained clustering would be able to predict the future behav-
ior more accurately, the classifier cannot discriminate well
between a larger number of similar clusters to identify the
best-matching segment. We observe a natural trade-off be-
tween predictive power and the effort that has to be spent
for developing and maintaining target strategies for a large
number of market segments.

The execution time of the collapsed algorithm for a solu-
tion with 10 clusters is within the range of 3 hours, compared
to about an hour each for the mixture of experts and the
k-means baselines. The alternating optimization however
takes about 11 hours which renders its application infeasi-
ble in practice.

4.4 Discussion

Market segmentation aims at grouping similar individu-
als of a population together that share the same needs or
that have similar demands. The goal is to target individu-
als within the same segment jointly e.g., to advertise a new
product. To this end, the segments need to be interpretable
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Figure 5: Click volumes of categories over time for the four clusters.
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Figure 4: Visualization of click frequencies for the
five most frequent link locations using four clusters.

to derive a concise description of the segments that can be
converted into a segment-specific targeting strategy.

In our collapsed algorithm, generative models in each seg-
ment encode the contained behavior and interest. The flex-
ibility of the probabilistic inference machinery allows us to
project the behavior onto discriminative variables to visu-
alize different characteristics of the clusters. In this section
we give two examples for such projections to visualize dif-
ferently distributed user behavior across the clustering. For
simplicity, we use a solution with four clusters.

The first example shows a visualization of segment-specific
user clicks in terms of their location on the Web page. In-
cluding the location of clicks is necessary for altering the lay-
out dynamically as changes in frequently clicked areas will
have impact the behavior more than substituting a redun-
dant and less clicked widget. We focus on the five modules
of the Web site that receive the highest number of clicks in
the data.

Figure 4 shows the results. Segments 2, 3, and 4 exhibit
very similar click behavior in terms of the clicked modules.
By contrast, cluster 1 differs significantly in the usage of the
Web components. On average, users in cluster 1 prefer the
location visualized in black over the alternatives compared
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to users in the other segments. This observation could be ex-
ploited to directly devise target strategies. While members
of cluster 2—4 should be addressed by changing the content
of the modules visualized in gray or dark blue, users in the
first segment could also be triggered by the module encoded
in black.

Analogously, the behavior could be projected on the cat-
egories to visualize the respective distribution of categories
for each segment. However, we choose to show a more inter-
esting projection for lack of space. The incorporation of the
timestamps of the sessions allows us to visualize the clus-
ters in time. As the feature representation of timestamps
encompasses one week, Figure 5 shows the average category
distribution across the days of the week where different col-
ors correspond to different categories.®

Apparently, the clusters do not only differ in terms of the
categories but also specialize on certain periods in time be-
cause the segments are optimized using all available data,
that is, attribute and behavior encoding variables. The first
cluster clearly specializes on Sundays and is characterized by
a clean topic distribution. The three other cluster also pos-
sess dominant categories but focuses more on working days
than on weekends. Cluster 4 contains the most diverse set of
categories and acts like a basin for categories that are not as
easy to discriminate. Here it becomes obvious that a solu-
tion with only four clusters may not be optimal for the task
at hand. When we increase the maximal number clusters,
the category distribution of clusters becomes cleaner that is
less categories are likely. Additionally, clusters adapt better
to specialized periods such as working days or weekends for
larger k.

Taking various such projections into account describes
segments from different angles and helps to find a concise
targeting strategy. For instance, knowing the articles that
are likely to be read in an ongoing session helps to address
the respective user in various ways including displaying ads.
Incorporating context informations such as the click behav-
ior of the segments, finally allows for tailoring web pages to
each segment and to increase the overall user experience.

5. CONCLUSION

We studied discriminative clustering for structured and
complex response variables that can be represented as gen-
erative models. The problem setting matches market seg-
mentation tasks where populations are to be segmented into
disjoint groups. Solving market segmentation-like problems
appropriately not only involves a clustering of the individu-
als but also learning a classifier that discriminates well be-

3Colors are again reused due to the large number of cate-
gories.



tween the segments, for instance to allow for classifying new
customers to one of the groups. The two components need
to be learned jointly and have access to different pieces of
information about the individuals: the classifier needs to
group individuals on the basis of a priori available infor-
mations while the clustering aims at grouping people with
similar (future) needs or behavior.

We devised two algorithms based on alternating optimiza-
tion and collapsed inference, respectively. Empirical results
showed that the collapsed variant is not only more efficient
but also predicts accurately the click behavior of users for
Yahoo! News. The generative nature of the clustering led
to interpretable clusters. We showed how projections of the
clustering on only a few variables allowed for targeting the
detected segments individually and contributed to user un-
derstanding.

Our approach is not restricted to Yahoo! News and can
generally be applied to arbitrary market segmentation tasks
and other Web sites to improve the overall user experience.
As our approach is orthogonal to personalized approaches,
future work will study the integration of both frameworks.
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Chapter 6

Discussion

All presented papers advance the state of the art in prediction with mixture models
in specific ways. The following chapter discusses how the thesis as a whole relates
to previous literature and how the contributions of the individual papers fit into the
overall picture. At first a discussion about existing general approaches to prediction
with mixture models is necessary.

Mixture of experts [Jordan 94] is a generic framework for learning predictive mix-
ture models, used e.g. successfully for EEG signal classification [Subasi 07], pedes-
trian classification [Enzweiler 11|, and protein structure prediction [MacDonald 12].
It makes use of the fact that the models in each mixture component are efficiently
tractable, while the learned model overall is complex. The mixture components are
optimized with respect to the predictive accuracy of the overall model. However,
this generic approach can not take into account domain-specific knowledge about the
actual cluster structure in the data without additional feature engineering.

Deep neural networks [Hinton 06], which have recently been successfully applied
to various applications, e.g. [Mohamed 11|, [Mohamed 12], [Socher 12], and [Yu 12],
can also be interpreted as mixture models. They consist of multiple layers, each with
a predetermined number of binary feature detectors. The bottom-most layer encodes
the input data. Within each layer, the feature detectors are trained to maximize the
probablity of the states of the lower layers. Finally, the top-most layer has additional
weights that are optimized to predict a target variable. Each feature detector in the
top layer is a predictor for the target variable. Viewing the approach in terms of
mixture models provides an insight into why deep belief networks work so well. One
can regard each subset of feature detectors within a layer of the network as a mixture
component c. Predictions for the activations in the layer above y given the layer
below z are computed with the usual P(y|z) = > . P(c|x)P(y|c), using sampling
or mean-field approximation [Lee 09] to approximate the sum over ¢. Now finding
good parameters for both P(c|x) and P(y|c) is a challenge, because in general the
optimization problem is highly non-convex, and optimization procedures can easily
get stuck in poor local optima. But because the subsets of feature detectors in deep
belief networks share parameters with each other, in effect one can utilize a number
of components that is exponential in the number of detectors. Thus even if most
components have little predictive power due to poor local optima, there is a high
chance that at least some of the components are useful. Furthermore, P(c|z) is
defined in terms of the joint probability distribution P(x,¢), which can be optimized
using unlabeled data, which is usually available in much greater abundance than
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labeled data. Thus, unsupervised pre-training can be leveraged to obtain a good
initialization for the component parameters. The recently studied improvement of
deep neural networks called dropout provides an indication for the correctness of this
hypothetical explanation [Hinton 12]. Here, for each stochastic gradient update step,
each detector is removed with probability 0.5. This makes training different subsets
of detectors more explicit, and consequently improves accuracy. Thus far deep neural
networks have been used for applications like visual object recognition and speech
recognition. Adapting them to other types of data like text is still an open challenge.
Though they have been used for textual data with some success [Socher 11], the
problem of capturing the complex sequential dependencies of natural language is still
not generally solved.

A conceptually similar, but methodically different approach are support vector
machines for structured outputs with latent variables [Yu 09]. Here, a set of hidden
variables is introduced, where each possible realization ¢ can be seen as a mixture
component. For prediction, the decision function is maximized over the components,
instead of averaged. Compared to deep belief networks, the relationship between
input and hidden variables can not be pre-trained using unlabeled data, because it is
a purely discriminative approach and there is no notion of a distribution over inputs.
This does, however, make it easier to utilize all sorts of data types.

A large class of generative mixture models can be subsumed under the term
topic models, overviewed in [Steyvers 07] and [Teh 10]. Often-used frameworks are
hierarchical dirichlet processes [Teh 06] and Indian Buffet processes [Griffiths 06].
Mostly used for textual data, mixture components are topics ¢, which are defined as
distributions over words in the vocabulary. Words ¢ in a document z are predicted
in the usual fashion as P(y|z) = ). P(c|x)P(y|z). For example in the application of
document retrieval, the match of a document x to a query word y can be computed
via P(y|z) [Wei 06]. In order for topic models to work as intended, the distributions
over topics given a document P(c|x) are often enforced to be sparse via a Dirichlet
prior [Blei 03]. Each document is thus associated with only a small number of topics,
while not being as restrivtive as requiring a single topic for each document.

In most cases, learning mixture models involves either solving a non-convex opti-
mization problem, for which the globally optimal solution can not be found efficiently,
or in the fully Bayesian setting, computing an intractable integral. There are sev-
eral general approaches to address this problem. One of them is the EM algorithm
[Dempster 77], which alternates between maximizing a lower bound of the complete
data likelihood and constructing a new lower bound at the current solution. It is
guaranteed to find at least a local optimum of the optimization problem. Another
class of approaches are variational methods [Attias 99|, which approximate the joint
data distribution with a combination of simpler distributions for which the solution
can be found efficiently. Furthermore there have been developed Markov chain Monte
Carlo algorithms such as the Gibbs sampler [Smith 93] which in the limit of infinitely
many sampling iterations generates samples from the true posterior distribution over
the model parameters. The methods in this thesis use several variants of those ap-
proaches, as well as a simple greedy procedure when it is appropriate such as in
Section 2.5.
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6.1 Application-oriented Modelling

In order to use the available training data as effectively as possible, the used model
has to be tailored to each application specifically. The papers of this thesis follow
this principle for four different applications and thereby provide new methods to deal
with them more effectively.

In Chapter 2 [Haider 09], the framework of Bayesian model-based clustering is
extended to handle vectors of binary features that are not independent. For textual
data, the independence assumption is clearly unjustified. Hence the demonstrated
increase in predictive accuracy through allowing dependencies in the input space was
expected. Tractability of the model is maintained by using a novel pretrained feature
transformation, which is specifically optimized in order to minimize the approxima-
tion error induced by the independence assumption in the transformed space. Thus
the paper broadens the spectrum of classes of observations for which a proper mixture
model can be formulated and efficiently inferred.

For observations that can be abstracted into a graph where the presence of edges
constitutes evidence for shared cluster membership and the absence of edges con-
situtes only weak evidence against, Chapter 3 [Haider 12b] provides a novel way of
modeling the posterior distribution over clusterings. It depends only on the cliques of
the graph, and does not have to make any assumptions about the process generating
the observations. Compared to previous approaches for graph partitioning [Ng 02],
it does not provide only a point estimate, but a complete distribution. Furthermore,
the number of clusters does not have to be specified in advance.

In Chapter 4 [Dick 08] the main advance is that the developed method not only
estimates a single set of imputations for the missing values, but instead a distribution
over imputation sets. This is more appropriate because it reflects the remaining
uncertainty about the imputed values. This is similar to replacing a maximum-a-
posteriori point estimate with full Bayesian inference.

The optimization problem stated in Chapter 5 [Haider 12a] is the first formulation
of the market segmentation problem that neither needs to define the classification
criteria or the cluster parameters beforehand nor neglects the fact that each training
example has to be predicted by a single cluster. By combining the goals of separability
and homogeneity into a single objective function, there is no intermediate step that
relies on heuristics involved.

6.2 Improvement of Predictive Power

In full Bayesian approaches of mixture models, there is no set of parameters that
gets optimized. Thus there is only one way of pursuing that the resulting mixture
model (respectively distribution over mixture models) is useful for prediction: the
constructor of the model has to ensure that it matches the real generative process
or the dependencies between observables and latent variables as closely as possible.
However if the models include hyperparameters, those can be optimized with respect
to the predictive accuracy. In Chapter 2 [Haider 09] this is accomplished through
the use of the precision parameter o that governs the probability of deviations of
feature frequencies compared to the training set. Indirectly this parameter controls
the granularity of the resulting clusterings, which greatly influences predictions. By
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tuning it on a hold-out dataset, see Section 2.6, we can maximize predictive accuracy.

The concentration hyperparameters «, and a4 in Chapter 3 [Haider 12b] play
a similar role. They control how likely it is that a new email originated from a
different botnet than all previous emails from the same IP address or spam campaign,
respectively. They, too, can be tuned on a hold-out set as in Section 3.4 to optimize
predictive power of a model that by itself does not include an optimization criterion
that takes prediction accuracy into account.

Approaches based on expected risk minimization provide the possibility to define
the risk and the resulting objective funtion in terms of the prediction accuracy. In Sec-
tion 4.3 [Dick 08] the risk is defined as a function of a decision function which depends
on the estimated mixture, such that the mixture itself is optimized with regard to
accuracy. The same is true for the optimization problem in Chapter 5 [Haider 12a].
There the relationship between the clustering and the resulting prediction is more
direct than in previous work.

All four presented papers include evidence that in their respective applications
the use of mixture models leads to an improvement compared to the corresponding
single-component models. Single-component baselines are either explicitly mentioned
or covered as special cases of one of the reference methods:

In the spam campaign detection application of Chapter 2 [Haider 09], the hyper-
parameter o controls the granularity of the clustering. In the limit of ¢ — oo the
solution degrades to a single cluster, and thus to prediction with a single-component
model. Since ¢ is tuned with respect to predictive accuracy, this case is implicitly
included in the evaluation and shown to perform worse than the mixture model. An-
other single-component baseline is the one-class support vector machine, which is
explicitly shown to perform worse, see Section 2.6.

The case with the application of botnet detection in Chapter 3 [Haider 12b] is
similar. Here the hyperparameters also enforce in the limit of o, — 0 and a; — 0
a single-cluster solution. As with o above, they are tuned with respect to predictive
accuracy, such that the single-component model is implicitly part of the evaluation.

In the application of classifying emails with missing values in Chapter 4 [Dick 08],
we compare the method of finding a mixture of imputations for the missing values to
several methods for finding a single set of imputations. In each case, the single set of
imputations is used as a prior for the distribution over imputations. The evaluation
in Section 4.6 shows that for almost all combinations of single imputation methods
and datasets learning a distribution over imputations increases predictive accuracy
significantly.

In Chapter 5 [Haider 12a] about market segmentation, we evaluate the method
for different numbers of clusters, including one. The results in Section 5.4 show that
predictive accuracy rises steeply with increasing number of clusters in the beginning,
and then levels off.

6.3 Evaluability

The third aspect of the overall research question of this thesis is how prediction with
mixture models can serve as a means to evaluating the cluster structure underlying the
mixture. One of the approaches that can be taken in order to evaluate the accuracy of
clusterings found by a method is to use synthetic data [Thalamuthu 06]. One simply
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generates artificial data that is assumed to have the same characteristics as the real
data, and compares the found clustering to the clusters in the generated data. But
this approach suffers from the flaw that one has to make strong assumptions about
the characteristics of the real data. If those assumptions are wrong, the obtained
evaluation is also incorrect.

Generative models such as topic models can be evaluated by computing the joint
likelihood of the training set, see e.g. [Heller 05]. In the same fashion one can select
different models or optimize their hyperparameters. This is reasonable for choosing
few parameters of a single generative model family, but it can not be reliably used
for choosing the family of the model: It is always possible to construct a model with
a prior that assigns maximum probability mass to all training examples and zero
probability to all others. Thus it compares favorably to all other models under the
criterion of training set likelihood, but is actually useless. Consider for example a
mixture model that assigns each example to its own cluster, with parameters that
assign probability one to the example in the cluster, and a prior over cluster param-
eters that is only supported on the values taken by those clusters. Here, the sum
of marginal likelihoods over training examples is one. Consequentially, the marginal
likelihood of an example not included in the training set is zero. It is more accu-
rate to evaluate a mixture model by computing (approximately) the probability of
held-out documents [Wallach 09]. This is a special case of assessing the accuracy of a
clustering by measuring its predictive power. However this works only for generative
models, and thus can not be used to compare, e.g., a generative model to a heuristic
clustering algorithm.

In Chapter 2 [Haider 09], the found clustering of emails into campaigns could in
principle be evaluated by itself, although that would involve costly manual labeling of
the test data. Using the usefulness of the clustering as an intermediate step of spam
filtering is much cheaper, since emails labeled as spam or non-spam are readily avail-
able. And this is better than using some intrinsic measure of clustering quality, like
Bayesian information criterion [Schwarz 78]. Intrinsic measures are not application-
specific, and there is no guarantee that a particular criterion works well in a certain
domain.

The application of finding botnets in Chapter 3 [Haider 12b] does not lend itself
to a supervised evaluation of the found clusterings by itself. Emails arrive from
arbitrary hosts that are not under the experimenter’s control, and thus he or she
cannot obtain the information to which botnet each host actually belongs. In Section
3.4 we evaluate the clusterings using only observable information, by measuring the
accuracy of predicting the campaign of an email given its IP address, utilizing the
distributions over campaigns and botnets arising from the inferred clustering. This
method of evaluation is the only alternative to intrinsic evaluation criteria, which
have the aforementioned drawbacks. Prior published work does not evaluate the
found clusterings at all, and instead is restricted to qualitative analysis.

For the application of learning a classifier from data with missing values studied in
Chapter 4 [Dick 08], there exists the theoretical possibility of evaluating the process
that generates the distribution over imputations, but not the imputations per se.
If one would take a subset of the training examples with complete data, eradicate
some of the observations, and then apply any method that deals with missing values
by imputing one or more values, then one could compare the found imputations
with the original, erased values. We have not done so in our experiments because,
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in the application, only the resulting predictive accuracy is of importance. In this
case, measuring predictive accuracy not only allows us to indirectly evaluate the
distribution over imputations for training examples which are actually incompletely
observed, but the evaluation criterion is even more relevant to the application than
a direct evaluation of the imputations.

A different case presents itself with the abstract problem setting of market segmen-
tation in Chapter 5 [Haider 12a]. There exist many suggestions of a priori criteria
to segment markets. But these are mostly concerned about homogeneity and not
separability. Even homogeneity is only directly pursued with respect to for example
demographic attributes, when in fact homogeneity is desired with respect to future
behavior that is relevant to the vendor-client relationship. In Section 5.3 the seg-
ments are optimized with respect to exactly the observed behavior of the training
examples. Also, separability is taken into account in the only natural way. Instead
of trading off separability and homogeneity in an ad hoc way, the predictive power
of the model when actually applied to separating the training examples is optimized.
Thus the optimization criterion itself takes into account the usefulness of the found
partitioning.
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