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SINGULAR PERTURBATIONS OF ELLIPTIC OPERATORS

E. DYACHENKO AND N. TARKHANOV

This paper is dedicated to our teacher L. R. Volevich.

Abstract. We develop a new approach to the analysis of pseudodifferential
operators with small parameter ε ∈ (0, 1] on a compact smooth manifold X .
The standard approach assumes action of operators in Sobolev spaces whose
norms depend on ε. Instead we consider the cylinder [0, 1]×X over X and study
pseudodifferential operators on the cylinder which act, by the very nature, on
functions depending on ε as well. The action in ε reduces to multiplication by
functions of this variable and does not include any differentiation. As but one
result we mention asymptotic of solutions to singular perturbation problems
for small values of ε.
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1. Introduction

An excellent introduction into asymptotic phenomena in mathematical physics
is the survey [Fri55] which remains to be of current importance.

Most differential equations of physics possess solutions which involve quick tran-
sitions, and it is an interesting task to study those features of these equations
which make such quick transitions possible. A case in point is Prandtl’s ingenious
conception of the boundary layer. This is a narrow layer along the surface of a
body, traveling in a fluid, across which the flow velocity changes quickly. Prandtl’s
observation of this quick transition was the starting point for his theory of fluid
resistance, see [Pra05].

A large class of discontinuity phenomena in mathematical physics may be in-
terpreted as boundary layer phenomena. There was never any doubt that the
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2 E. DYACHENKO AND N. TARKHANOV

boundary layer theory gave a proper account of physical reality, but its mathe-
matical aspects remained a puzzle for some time. Only when this theory is fitted
into the framework of asymptotic analysis, does its mathematical structure become
transparent.

In such a systematic approach one may develop an appropriate quantity in powers
of a parameter ε. This expansion is to be set up in such a way that the quantity
is continuous for ε > 0 but discontinuous for ε = 0. A series expansion with this
character must have peculiar properties. In general these series do not converge.
The idea of giving validity to these formal series is classical and it goes back to
Poincaré [Poi86].

The boundary layer in linear differential equations has been studied in detail in
[VL57]. On using this method it is possible to describe the iteration processes that
formally yield an asymptotic representation of the solution for small ε. To prove this
asymptotic representation one needs a priori estimates for solutions of boundary
value problems in function spaces with weight norms. The well-known method of
construction of such estimates (see [Kon66, S. 4] makes it possible to obtain them
from uniform estimates of boundary value problems with a small parameter in the
higher derivatives.

The asymptotic phenomena of ordinary differential equations have also been
studied in connection with nonlinear equations. An interesting problem concerns
periodic solutions of a differential equation of the form εu′′ = f(u, u′). The ques-
tion is what happens with these periodic solutions as ε → 0, in particular if the
limit equation f(u, u′) = 0 has no periodic solution. Of course there could be no
boundary layer effect in the strict sense since there is no boundary. What happens
is that the limit function, if it exists, satisfies the equation f(u, u′) = 0 except
at certain points where the derivative u′ has a jump discontinuity. Strong results
on asymptotic periodic solutions have been obtained by Levinson since 1942, see
[Lev50].

2. Loss of initial data

In this section we demonstrate the behaviour of solutions of the initial problem
to a first order ordinary differential equation as the parameter ε tends to zero. This
question is extremely elementary, but nevertheless leads in a natural way to the
boundary layer phenomenon.

To wit, {
ε u′(x) + q(x)u(x) = f(x) for x ∈ (a, b),

u(a) = u0,
(2.1)

where q and f are continuous functions on the interval [a, b) and ε a small positive
parameter. We prescribe an initial value u0 for the solution of our differential
equation at the point a and ask how the solution of this initial value problem
behaves as ε → 0.

Note that for ε = 0 the differential equation reduces to the equation of order
zero qu = f in (a, b). One may therefore wonder whether the solution of problem
(2.1) approaches the solution

f(x)

q(x)

of the equation of order zero. Now the solution of the zero order equation is already
determined and one cannot expect that the initial condition will be satisfied in the



SINGULAR PERTURBATIONS OF ELLIPTIC OPERATORS 3

limit. This question and related questions can easily be answered with the aid of
explicit formulas.

An elementary calculations shows that

u(x) = exp
(
− 1

ε

∫ x

a

q(ϑ)dϑ
)
u0 +

1

ε

∫ x

a

exp
(
− 1

ε

∫ x

x′
q(ϑ)dϑ

)
f(x′)dx′

for x ∈ [a, b). The first term on the right-hand side satisfies the homogeneous
differential equation ε u′ + qu = 0 in (a, b) and the initial condition u(a) = u0. If
q is positive in (a, b), then this term converges to zero uniformly away from a, as
ε → 0. The second term on the right-hand side is a solution of the inhomogeneous
solution ε u′ + qu = f in (a, b) and satisfies the homogeneous initial condition
u(a) = 0.

If the solution of the zero order equation is continuously differentiable in [a, b),
then one can transform the formula for the solution u of problem (2.1) to elucidate
the character of convergence of u for ε → 0. Namely, on integrating by parts one
obtains

u(x) =
f(x)

q(x)
+ exp

(
− 1

ε

∫ x

a

q(ϑ)dϑ
)(

u0 − f(a)

q(a)

)
−

∫ x

a

exp
(
− 1

ε

∫ x

x′
q(ϑ)dϑ

)(f(x′)
q(x′)

)′
dx′ (2.2)

for all x ∈ [a, b).
Assume that q is positive in the interval (a, b). Then the second term on the

right-hand side of (2.2) converges to zero uniformly in x ∈ (a, b) bounded from a,
when ε → 0. Moreover, this term vanishes for all x ∈ [a, b), if the solution of the
zero order equation takes on the value u0 at a. The last term on the right-hand side
converges to zero for each x ∈ [a, b), as ε → 0, which is due to Lebesgue’s dominated
convergence theorem. From what has been said it follows that under appropriate
conditions the solution of the initial problem converges to the solution of the zero
order equation in (a, b) indeed. This solution fails to assume the initial value. The
process of losing an initial value takes place through nonuniform convergence. If
the parameter ε is small enough, the solution will run near the limit solution except
in a small segment at the initial point a where it changes quickly in order, as it
were, to retrieve the initial value about to be lost. Thus a “quick transition” is
found to occur. It must occur since an initial condition is about to be lost, and
this loss in turn is necessary since the order of the differential equation is about to
drop, cf. [Fri55].

The leading symbol which controls the asymptotic behaviour of the solution of
initial problem (2.1) for ε → 0 proves to be

σ0(x, ξ, ε) := ıεξ + a(x)

regarded for (x, ξ) ∈ T ∗[a, b) and ε ∈ [0, 1). We get

|σ0(x, ξ, ε)| =
(
ε2|ξ|2 + |a(x)|2)1/2

≥ c 〈εξ〉 (2.3)

where c is the smaller of the numbers 1 and inf |a(x)|, the infimum being over
all x ∈ [a, b). From (2.3) it follows that σ0(x, ξ, ε) is different from zero for all
(x, ξ) ∈ T ∗[a, b) and ε ∈ [0, 1), provided that inf |a(x)| > 0. And vice versa, if (2.3)



4 E. DYACHENKO AND N. TARKHANOV

is fulfilled with some constant c > 0 independent of (x, ξ) ∈ T ∗[a, b) and ε ∈ [0, 1),
then inf |a(x)| > 0.

The first order ordinary differential equations satisfying condition (2.3) are called
small parameter elliptic. This condition just amounts to saying that the equation
is elliptic of order 1 for each fixed ε ∈ (0, 1), and it degenerates to a zero order
elliptic equation when ε → 0.

The results discussed in connection with the simple equation of the first order
are rather typical and they may frequently serve as a guide in understanding other
asymptotic phenomena.

3. A passive approach to operator-valued symbols

Pseudodifferential operators with small parameter are most obviously introduced
within the framework of operator-valued symbols. We describe here the so-called
“passive” approach to operator-valued symbols which was used in [FST02] for edge
and corner theory. In this case it proves to be equivalent to the usual theory
based on the edge and corner Sobolev spaces with group action κλ. However,
it is more convenient to deal with. The passive approach allows one to reduce
pseudodifferential operators with operator-valued symbols to the case of integral
operators in L2 -spaces, so that the calculus of operator-valued symbols becomes
quite similar to that of scalar-valued symbols. To the best of our knowledge it goes
back at least as far as [Kar83].

The term “passive” comes from analogy with transformation theory. Recall that
a geometrical transformation y = f(x) may be treated either from “active” or
“passive” point of view. According to the “active” approach the transformation
moves geometrical points x �→ y = f(x) while in the “passive” approach the points
are fixed and we change only the coordinate system. For example, a linear change
yi = aijx

j (we use the Einstein summation notation) may be thought of as a linear
transformation of the space Rn or as a change of a basis in this space. Of course,
both descriptions are equivalent.

We demonstrate this approach by calculus of pseudodifferential operators on a
product manifold. Consider M = X × Y, where X , Y are smooth compact closed
manifolds with dimX = n and dimY = m. Suppose we work with the usual
symbol classes Sμ on M and corresponding classes of pseudodifferential operators
Lμ acting in Sobolev spaces Hs(M). We are aimed at describing these objects
using a fibering structure. That is, we would like to introduce appropriate classes
of operator-valued symbols on X with values in pseudodifferential operators on Y
to recover the classes Sμ on M. Moreover, we would like to represent Hs(M) as
L2 -spaces L2(X , Hs(Y), ‖ · ‖ξ) to recover the action of pseudodifferential operators
from Lμ in the spaces Hs(M).

A symbol a(x, y, ξ, η) on M is treated as a symbol on the fiber Y with estimates
depending on the base covariable ξ. To any appearances the estimates might include
a group action κλ in function spaces on Y. Our present approach is based on a
“passive” treatment of the group action κλ. The κλ does not act on functions,
instead we introduce a special family of norms in Hs(Y). In more detail, consider
the Sobolev space Hs(Y) with a family of norms ‖ · ‖ξ depending on a parameter
ξ ∈ Rn,

‖u(y)‖2ξ =
∑
j

∫
Rm

| < ξ, η >s ψ̂ju(η)|2 dη. (3.1)
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Here {Vj} is a coordinate covering of Y, {ψj} a subordinate partition of unity,
< υ > is a smoothed norm function, i.e., < υ >:= f(|υ|) where f is a C∞ function
satisfying

f(|υ|) ≥ 1,
f(|υ|) ≡ |υ| for |υ| ≥ 1,

and < ξ, η >= f(
√|ξ|2 + |η|2). The norm (3.1) depends, of course, on s but we

drop it in the notation.
Next, consider a function u(x) on X with values in Hs(Y) equipped with the

family of norms ‖ · ‖ξ given by (3.1).

Definition 3.1. By L2(X , Hs(Y), ‖·‖ξ) is meant the completion of C∞(X , Hs(Y))
with respect to the norm

‖u(x)‖2 =
∑
i

∫
Rn

‖ϕ̂iu(ξ)‖2ξ dξ. (3.2)

Once again {ϕj} is a partition of unity on X subordinate to a coordinate covering
{Uj} of this manifold. Roughly speaking, (3.2) is an L2 -norm of the scalar-valued
function ‖ϕ̂iu(ξ)‖ξ.

We now are in a position to define the desired symbol classes Σm on X with
values in pseudodifferential operators on Y .

Definition 3.2. A smooth function a(x, ξ) on Rn×Rn whose values are pseudodif-
ferential operators on Y is said to belong to Σμ if, for any α, β ∈ Zn

≥0, the operators

∂α
xD

β
ξ a(x, ξ) : H

s(Y) → Hs−μ+β(Y) are bounded uniformly in ξ with respect to the

norms ‖ · ‖ξ in both spaces Hs(Y) and Hs−μ+β(Y). That is, there are constants
Cα,β independent of ξ, such that

‖∂α
xD

β
ξ a(x, ξ)‖ξ ≤ Cα,β . (3.3)

Any symbol a(x, y, ξ, η) ∈ Sμ defines a symbol a(x, ξ) ∈ Σμ on X with values in
pseudodifferential operators on Y.

We can actually stop at this point. All of what follows is a simple consequence
of generalization of these definitions. As mentioned, in a more general context
of pseudodifferential operators with operator-valued symbols these techniques was
elaborated in [Kar83].

It is easy to see that the norms ‖ · ‖ξ in Hs(Y) are equivalent for different values
ξ ∈ Rn, but this equivalence is not uniform in ξ. More precisely, on applying
Peetre’s inequality one sees that the norms vary slowly in ξ.

Lemma 3.3. There are constants C and q such that

‖u‖ξ1
‖u‖ξ2

≤ C < ξ1 − ξ2 >q (3.4)

for all ξ1, ξ2 ∈ Rn and smooth functions u on Y. (In fact, we get C = 2|s| and
q = |s|.)

On the other hand, the norm ‖ ·‖ξ is independent of the coordinate covering and
partition of unity up to uniform equivalence.
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Lemma 3.4. The embedding ι : Hs2(Y) → Hs1(Y) for s1 ≤ s2 admits the following
norm estimate

‖ι‖ξ ≤ C < ξ >s1−s2 . (3.5)

Proof. Since

‖uj‖2Hs1 (Y),ξ =

∫
Rm

| < ξ, η >s1 ûj(η)|2dη

=

∫
Rm

| < ξ, η >s2 ûj(η)|2 < ξ, η >2(s1−s2) dη,

estimate (3.5) follows readily from the fact that

< ξ, η >s1−s2 ∼ (1 + |ξ|2 + |η|2)(s1−s2)/2

≤ (1 + |ξ|2)(s1−s2)/2

∼ < ξ >s1−s2 ,

for s1 − s2 ≤ 0. �

Theorem 3.5. Let a(x, ξ) ∈ Σμ. If μ < 0, then a(x, ξ) : Hs(Y) → Hs(Y) is a
bounded operator and its norm satisfies an estimate

‖a(x, ξ)‖ξ ≤ C < ξ >μ .

Proof. By definition, the mapping a(x, ξ) : Hs(Y) → Hs−μ(Y) is bounded uni-
formly in ξ. On applying Lemma 3.4 we conclude moreover that Hs−μ(Y) is
embedded into Hs(Y) with estimate ‖ι‖ξ ≤ C < ξ >μ. This gives the desired
result. �

This result plays an important role in parameter-dependent theory of pseudodif-
ferential operators.

Lemma 3.6. For each s ∈ R, it follows that

L2(X , Hs(Y), ‖ · ‖ξ) ∼= Hs(X × Y).

As usual, the norm in Hs(X × Y) is defined by

‖u(x, y)‖2 =
∑
i,j

∫∫
Rn×Rm

| < ξ, η >s φ̂iψju(ξ, η)|2 dξdη.

For symbols a(x, ξ) ∈ Σm, we introduce a quantization map a �→ A = Q(a) by
setting

Q(a) =
∑
i

ϕi(x)Op (a(x, ξ)) ϕ̃i(x).

Theorem 3.7. For a(x, ξ) ∈ Σm, the operator A = Q(a) extends to a bounded
mapping

A : L2(X , Hs(Y), ‖ · ‖ξ) → L2(X , Hs−μ(Y), ‖ · ‖ξ).
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Proof. In Fourier representation f = Au gives

f̂(ξ) =

∫
Rn

â(ξ − ξ′, ξ′)û(ξ′)dξ′

whence

‖f̂(ξ)‖Hs−μ(Y),ξ

≤
∫
Rn

‖â(ξ − ξ′, ξ′)û(ξ′)‖Hs−μ(Y),ξdξ
′

≤ C

∫
Rn

< ξ − ξ′ >q ‖â(ξ − ξ′, ξ′)û(ξ′)‖Hs−μ(Y),ξ′dξ
′

≤ C

∫
Rn

< ξ − ξ′ >q ‖â(ξ − ξ′, ξ′)‖L(Hs(Y),Hs−μ(Y)),ξ′‖û(ξ′)‖Hs(Y),ξ′dξ
′

= C

∫
O(< ξ − ξ′ >−∞)‖û(ξ′)‖Hs(Y),ξ′dξ

′.

So, we have reduced the problem to the boundedness of integral operators in L2

with kernels O(< ξ − ξ′ >−∞). This is evident. �

Obviously, the results of this section make sense in much more general context
where the spaces Hs(Y) and Hs−μ(Y) on the fibers of X × Y over X are replaced
by abstract Hilbert spaces V and W endowed with slowly varying families of norms
parametrised by ξ ∈ Rn. In this way we obtain a rough class of pseudodifferential
operators on X whose symbols take their values in L(V,W ) with uniformly bounded
norms and which map L2(X , V, ‖ · ‖ξ) continuously to L2(X ,W, ‖ · ‖ξ). In Section
6 we develop this construction for another well-motivated choice of Hilbert spaces
V and W .

4. Operators with small parameter

In this section we apply the “passive” approach on the product manifold X ×Y,
where X is a smooth compact closed manifold of dimension n and Y = {P} is a
one-point manifold.

Our purpose is to describe a calculus of singularly perturbed differential opera-
tors on X . They are locally in the form

A(x,D, ε) =
∑

|α|−j≤μ
|α|≤m

aα,j(x)ε
jDα, (4.1)

where x = (x1, . . . , xn) are coordinates in a coordinate patch on X , D is the vector
of local derivatives −ı∂x1 , . . . ,−ı∂xn , ε ∈ (0, 1] a small parameter and we use the
standard multi-index notation for higher order derivatives in x. Moreover, μ is
an integer with 0 ≤ μ < m. If μ = 0 then (4.1) reduce to the so-called h -
pseudodifferential operators which belong to the basic techniques in semiclassical
analysis, with h = ε.

Singular perturbations is a maturing mathematical subject with a fairly long
history and a strong promise for continued important applications throughout sci-
ence, see [Pra05], [Bir08], [VL57], [Was66], [MR80], [Fra79b, FW82, FW84], [Fra90],
[Hue60], [Naz81], etc. Volevich [Vol06] was the first to present the small parameter
theory as a part of general elliptic theory.
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Operators of the form (4.1) are given natural domains Hr,s(X ) to be mapped
into Hr−m,s−μ(X ), where r, s are arbitrary real numbers. Seemingly these spaces
were first introduced in [Dem75]. More precisely, Hr,s(X ) is the completion of
C∞(X ) with respect to the norm

‖u‖2r,s =
∑
i

∫
Rn

〈ξ〉2s|〈εξ〉2(r−s)ϕ̂iu|2dξ,

where {ϕi} is a partition of unity on X subordinate to a coordinate covering {Ui}.
By the very definition, Hr,s(X ) is a Hilbert space whose norm depends on the
parameter ε.

Remark 4.1. The space Hr,s(X ) is locally identified within abstract edge spaces
Hs(Rn, V,κ) with the group action κ on V = C given by κλu = λs−ru for λ > 0,
see [ST05].

One easily recovers the spaces Hr,s(X ) and Hr−m,s−μ(X ) as L2(X , V, ‖ · ‖ξ) and
L2(X ,W, ‖ · ‖ξ), respectively, where V = C and W = C are endowed with the
families of norms

‖u‖ξ = |〈εξ〉r−s〈ξ〉su|,
‖f‖ξ = |〈εξ〉(r−m)−(s−μ)〈ξ〉s−μf |

parametrised by ξ ∈ Rn.
Definition 3.2 applies immediately to specify the corresponding spaces Σm,μ

of operator-valued symbols a(x, ξ, ε) on T ∗Rn depending on the small parameter
ε ∈ (0, 1]. We restrict ourselves to those symbols which depend continuously on
ε ∈ (0, 1] up to ε = 0. To wit, let Sm,μ be the space of all functions a(x, ξ, ε) of
(x, ξ) ∈ T ∗Rn and ε ∈ (0, 1], which are C∞ in (x, ξ) and continuous in ε up to
ε = 0, such that

|∂α
xD

β
ξ a(x, ξ, ε)| ≤ Cα,β 〈εξ〉m−μ〈ξ〉μ−|β| (4.2)

is fulfilled for all multi-indices α, β ∈ Zn
≥0, where the constants Cα,β do not depend

on (x, ξ) and ε.
Note that in terms of group action introduced in Remark 4.1 the symbol esti-

mates (4.2) take the form

|κ̃−1
〈εξ〉∂

α
xD

β
ξ a(x, ξ, ε)κ〈εξ〉| ≤ Cα,β 〈ξ〉μ−|β|

for all α, β ∈ Zn
≥0 and ξ ∈ Rn uniformly in x ∈ Rn and ε ∈ (0, 1], cf. [ST05]. Given

any fixed ε ∈ (0, 1], these estimates reveal the order of the operator-valued symbol
a(x, ξ, ε) to be μ. Moreover, they give rise to appropriate homogeneity for symbols
a(x, ξ, ε). To this end, choose α = 0, β = 0 and substitute ξ �→ λξ and ε �→ ε/λ to
(4.2), obtaining

|a(x, λξ, ε/λ)| ≤ C0,0 〈εξ〉m−μ〈λξ〉μ
for all λ > 1, which reduces to

|λ−μa(x, λξ, ε/λ)| ≤ C0,0 〈εξ〉m−μ(λ−2 + |ξ|2)μ/2 (4.3)

(we use tacitly an equivalent expression
√
1 + |ξ|2 for 〈ξ〉). If λ → ∞ then the

right-hand side of (4.3) tends to a constant multiple of 〈εξ〉m−μ|ξ|μ.



SINGULAR PERTURBATIONS OF ELLIPTIC OPERATORS 9

Lemma 4.2. Suppose the limit

σμ(a)(x, ξ, ε) = lim
λ→∞

λ−μa(x, λξ, ε/λ),

exists for some x ∈ Rn and all ξ ∈ Rn, ε > 0. Then σμ(a)(x, ξ, ε) is homogeneous
of degree μ in (ξ, ε−1).

It is worth pointing out that σμ(a)(x, ξ, ε) is actually defined on the whole semi-
axis ε > 0.

Proof. Let s > 0. Then

σμ(a)(x, sξ, ε/s) = lim
λ→∞

λ−μa(x, λsξ, ε/λs),

and so on setting λ′ = λs we get

σμ(a)(x, sξ, ε/s) = lim
λ′→∞

sμλ′−μa(x, λ′ξ, ε/λ′)

= sμσμ(a)(x, ξ, ε),

as desired. �

In particular, Lemma 4.2 applies to the full symbol of the differential operator
A(x,D, ε) given by (4.1).

Example 4.3. By the very origin the full symbol a(x, ξ, ε) of (4.1) belongs to the
class Sm,μ and

σμ(a)(x, ξ, ε) = lim
λ→∞

λ−μ
( ∑

|α|−j≤μ
|α|≤m

aα,j(x)ξ
αεj λ|α|−j

)

=
∑

|α|−j=μ
|α|≤m

aα,j(x)ξ
αεj

is well defined.

In fact, the full symbol of any differential operator A(x,D, ε) of the form (4.1)
expands as finite sum of homogeneous symbols of decreasing degree with step 1.
More generally, one specifies the subspaces Sm,μ

phg in Sm,μ consisting of all polyho-
mogeneous symbols, i.e., those admitting asymptotic expansions in homogeneous
symbols. To introduce polyhomogeneous symbols more precisely, we need a purely
technical result.

Lemma 4.4. Let a be a C∞ function of (x, ξ) ∈ T ∗Rn \ {0} and ε > 0 satisfying

|∂α
xD

β
ξ a(x, ξ, 1)| ≤ Cα,β 〈ξ〉m−|β| for |ξ| ≥ 1 and α, β ∈ Zn

≥0. If a is homogeneous

of degree μ in (ξ, ε−1), then χa ∈ Sm,μ for any excision function χ = χ(ξ) for the
origin in Rn.

Proof. Since each derivative ∂α
xD

β
ξ a is homogeneous of degree μ− |β| in (ξ, ε−1), it

suffices to prove estimate (4.2) only for α = β = 0. We have to show that there is
a constant C > 0, such that

|χ(ξ)a(x, ξ, ε)| ≤ C 〈εξ〉m−μ〈ξ〉μ
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for all (x, ξ) ∈ T ∗Rn and ε ∈ (0, 1]. Such an estimate is obvious if ξ varies in a
compact subset of Rn, for χ vanishes in a neighbourhood of ξ = 0. Hence, there is
no restriction of generality in assuming that |ξ| ≥ R, where R > 1 is large enough,
so that χ(ξ) ≡ 1 for |ξ| ≥ R.

We distinguish two cases, namely ε ≤ 〈ξ〉−1 and ε > 〈ξ〉−1. In the first case we
immediately get

|a(x, ξ, ε)| = 〈ξ〉μ|a(x, ξ/〈ξ〉, ε〈ξ〉)|
≤ C 〈ξ〉μ,

where C is the supremum of |a(x, ξ′, ε′)| over all x, 1/√2 ≤ |ξ′| ≤ 1 and ε′ ∈ [0, 1].
Moreover, 〈εξ〉m−μ is bounded from below by a positive constant independent of
ξ and ε, for ε|ξ| ≤ 1. This yields |a(x, ξ, ε)| ≤ C ′ 〈εξ〉m−μ〈ξ〉μ with some new
constant C ′, as desired.

Assume that ε > 〈ξ〉−1. Then ε−1 < 〈ξ〉 whence
|a(x, ξ, ε)| = |ε−μ a(x, εξ, 1)|

≤ C ε−μ 〈εξ〉m
= C 〈εξ〉m−μ (ε−1〈εξ〉)μ

with C a constant independent of x, ξ and ε. If μ > 0 then the factor (ε−1〈εξ〉)μ
is estimated by

(ε−2 + |ξ|2)μ/2 ≤ 2μ/2 〈ξ〉μ.
If μ < 0 then this estimate is obvious, even without the factor 2μ/2. This establishes
the desired estimate. �

The family Sm−j,μ−j with j = 0, 1, . . . is used as usual to define asymptotic
sums of homogeneous symbols. A symbol a ∈ Sm,μ is said to be polyhomogeneous
if there is a sequence {aμ−j}j=0,1,... of smooth function of (x, ξ) ∈ T ∗Rn \ {0} and

ε > 0 satisfying |∂α
xD

β
ξ aμ−j(x, ξ, 1)| ≤ Cα,β 〈ξ〉m−j−|β| for |ξ| ≥ 1 and α, β ∈ Zn

≥0,

such that every aμ−j is homogeneous of degree μ− j in (ξ, ε−1) and a expands as
asymptotic sum

a(x, ξ, ε) ∼ χ(ξ)

∞∑
j=0

aμ−j(x, ξ, ε) (4.4)

in the sense that a− χ
N∑
j=0

aμ−j ∈ Sm−N−1,μ−N−1 for all N = 0, 1, . . ..

The appropriate concept in abstract algebra to describe expansions like (4.4) is
that of filtration. To wit,

Sm,μ
phg ∼

∞⊕
j=0

(
Sm−j,μ−j
phg � Sm−j−1,μ−j−1

phg

)
.

Each symbol a ∈ Sm,μ
phg possesses a well-defined principal homogeneous symbol

of degree μ, namely σμ(a) := aμ. To construct an algebra of pseudodifferential
operators on X with symbolic structure one need not consider full asymptotic ex-
pansions like (4.4). It suffices to ensure that the limit σμ(a) exists and the difference
a − χσμ(a) belongs to Sm−1,μ−1. For more details we refer the reader to Section
3.3 in [Fra90].
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The class of polyhomogeneous symbols Sm,μ
phg with μ < 0 gains in interest if we

realise that

a(x, ξ, ε) ∼ ε−μχ(ξ)

∞∑
j=0

εj aμ−j(x, εξ, 1)

where aμ−j(x, εξ, 1) are homogeneous functions of degree 0 in (ξ, ε−1). Thus, any
symbol a ∈ Sm,μ

phg with μ < 0 factors through the power ε−μ which vanishes up to
order −μ at ε = 0.

We may now quantise symbols a ∈ Sm,μ as pseudodifferential operators on X in
just the same way as in Section 3. The space of operators A = Q(a) with symbols
a ∈ Sm,μ is denoted by Ψm,μ(X ).

Theorem 4.5. Let A ∈ Ψm,μ(X ). For any r, s ∈ R, the operator A extends to a
bounded mapping

A : Hr,s(X ) → Hr−m,s−μ(X )

whose norm is independent of ε ∈ [0, 1].

Proof. This is a consequence of Theorem 3.7. �
Let Ψm,μ

phg (X ) stand for the subspace of Ψm,μ(X ) consisting of those operators

which have polyhomogeneous symbols. For A ∈ Ψm,μ
phg (X ), the principal homo-

geneous symbol of degree μ is defined by σμ(A) = σμ(a), where A = Q(a).

If σμ(A) = 0 then A belongs actually to Ψm−1,μ−1
phg (X ). Hence, the mapping

A : Hr,s(X ) → Hr−m,s−μ(X ) is compact, for it factors through the compact em-
bedding

Hr−m+1,s−μ+1(X ) ↪→ Hr−m,s−μ(X ).

Theorem 4.6. If A ∈ Ψm,μ
phg (X ) and B ∈ Ψn,ν

phg(X ), then BA ∈ Ψm+n,μ+ν
phg (X ) and

σμ+ν(BA) = σν(B)σμ(A).

Proof. See for instance Proposition 3.3.3 in [Fra90]. �
As usual, an operator A ∈ Ψm,μ

phg (X ) is called elliptic if its symbol σμ(A)(x, ξ, ε)

is invertible for all (x, ξ) ∈ T ∗X \ {0} and ε ∈ [0, 1].

Theorem 4.7. An operator A ∈ Ψm,μ
phg (X ) is elliptic if and only if it possesses

a parametrix P ∈ Ψ−m,−μ
phg (X ), i.e. PA = I and AP = I modulo operators in

Ψ−∞,−∞(X ).

Proof. The necessity of ellipticity follows immediately from Theorem 4.6, for the
equalities PA = I and AP = I modulo Ψ−∞,−∞(X ) imply that σ−μ(P ) is the
inverse of σμ(A).

Conversely, look for a parametrix P = Q(p) for A = Q(a), where p ∈ S−m,−μ
phg

has asymptotic expansion p ∼ p−μ+ p−μ−1+ . . . . The ellipticity of A just amounts
to saying that

σμ(A)(x, ξ, ε) ≥ c 〈εξ〉m−μ|ξ|μ
for all (x, ξ) ∈ T ∗X \ {0} and ε ∈ [0, 1], where the constant c > 0 does not
depend on x, ξ and ε. Hence, p−μ := (σμ(A))−1 gives rise to a “soft” parametrix

P (0) = Q(χp−μ) for A. More precisely, P (0) ∈ Ψ−m,−μ
phg (X ) satisfies P (0)A = I and
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AP (0) = I modulo Ψ−1,−1(X ). Now, the standard techniques of pseudodifferential
calculus applies to improve the discrepancies P (0)A − I and AP (0) − I, see for
instance [ST05]. �

To sum up the homogeneous components p−μ−j with j = 0, 1, . . ., one uses a
trick of L. Hörmander for asymptotic summation of symbols, see Theorem 3.6.3 in
[Fra90].

Corollary 4.8. Assume that A ∈ Ψm,μ
phg (X ) is an elliptic operator on X . Then, for

any r, s ∈ R and any large R > 0, there is a constant C > 0 independent of ε, such
that

‖u‖r,s ≤ C (‖Au‖r−m,s−μ + ‖u‖−R,−R)

whenever u ∈ Hr,s(X ).

Proof. Let P ∈ Ψ−m,−μ
phg (X ) be a parametrix of A given by Theorem 4.7. Then we

obtain

‖u‖r,s = ‖P (Au) + (I − PA)u‖r,s
≤ ‖P (Au)‖r,s + ‖(I − PA)u‖r,s

for all u ∈ Hr,s(X ). To complete the proof it is now sufficient to use the mapping
properties of pseudodifferential operators P and I − PA formulated in Theorem
4.5. �

5. Ellipticity with large parameter

Setting λ = 1/ε we get a “large” parameter. The theory of problems with large
parameter was motivated by the study of the resolvent of elliptic operators. Both
theories are parallel to each other. Substituting ε = 1/λ to (4.1) and multiplying
A by λm−μ yields

Ã(x,D, λ) =
∑

|α|+j≤m
j≤m−μ

ãα,j(x)λ
jDα

in local coordinates in X . For this operator the ellipticity with large parameter
leads to the inequality

|
∑

|α|+j=m
j≤m−μ

ãα,j(x)λ
jξα| ≥ c 〈λ, ξ〉m−μ|ξ|μ,

which is a generalization of the Agmon-Agranovich-Vishik condition of ellipticity
with parameter corresponding to μ = 0, see [AV64], [Vol06] and the references given
there.

6. Another approach to parameter-dependent theory

In this section we develop another approach to pseudodifferential operators with
small parameter which stems from analysis on manifolds with singularities. In this
ares the role of small parameter is played by the distance to singularities and it has
been usually chosen as a local coordinate. Thus, the small parameter is included
into functions under study as independent variable and the action of operators
include also that in the small parameter. Geometrically this approach corresponds
to analysis on the cylinder C = X × [0, 1] over a compact closed manifold X of
dimension n, see Fig. 1. Subject to the problem its base ε = 0 can be thought
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Fig. 1. A cylinder C = X × [0, 1) over X

of as singular point blown up by a singular transformation of coordinates. In this
case one restricts the study to functions which are constant on the base, taking on
the values 0 or ∞. In our problem the base is regarded as part of the boundary
X ×{0} of the cylinder C, and so we distinguish the values of functions on the base.
The top X × {1} is actually excluded from consideration by a particular choice of
function spaces on the segment Y = [0, 1], for we are interested in local analysis at
ε = 0.

Basically there are two possibilities to develop a calculus of pseudodifferential
operators on the cylinder C. Either one thinks of them as pseudodifferential opera-
tors on X with symbols taking on their values in an operator algebra on [0, 1]. Or
one treats them as pseudodifferential operators on the segment [0, 1] whose symbols
are pseudodifferential operators on X . Singularly perturbed problems require the
first approach with symbols taking on their values in multiplication operators in
L(V,W ), where

V = L2([0, 1], ε−2γ),
W = L2([0, 1], ε−2γ)

with γ ∈ R.
Any continuous function a ∈ C[0, 1] induces the multiplication operator u �→ au

on L2([0, 1], ε−2γ) that is obviously bounded. Moreover, the norm of this operator
is equal to the supremum norm of a in C[0, 1]. Hence, C[0, 1] can be specified as a
closed subspace of L(V,W ).

Pick real numbers μ and s. We endow the spaces V and W with the families of
norms

‖u‖ξ = ‖〈ξ〉sκ−1
〈ξ〉u‖L2([0,1],ε−2γ),

‖f‖ξ = ‖〈ξ〉s−μκ̃−1
〈ξ〉f‖L2([0,1],ε−2γ)

parametrised by ξ ∈ Rn, where

(κλu)(ε) = λ−γ+1/2 u(λε),
(κ̃λf)(ε) = λ−γ+1/2 f(λε)

for λ ≤ 1.
The space L2(X , V, ‖ · ‖ξ) is defined to be the completion of C∞(X , V ) with

respect to the norm

‖u‖2s,γ =
∑
i

∫
Rn

‖ϕ̂iu‖2ξdξ,

where {ϕi} is a C∞ partition of unity on X subordinate to a finite coordinate
covering {Ui}.

Remark 6.1. The space L2(X , V, ‖ · ‖ξ) is locally identified within abstract edge
spaces Hs(Rn, V,κ) with the group action κ on V = L2([0, 1], ε−2γ) defined above,
see [ST05].
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In a similar way one introduces the space L2(X ,W, ‖ ·‖ξ) whose norm is denoted
by ‖ · ‖s−μ,γ . Set

Hs,γ(C) = L2(X , V, ‖ · ‖ξ),
Hs−μ,γ(C) = L2(X ,W, ‖ · ‖ξ),

which will cause no confusion since the right-hand sides coincide for μ = 0, as is
easy to check. We are thus led to a scale of function spaces on the cylinder C which
are Hilbert.

Our next objective is to describe those pseudodifferential operators on C which
map Hs,γ(C) continuously into Hs−μ,γ(C). To this end we specify the definition of
symbol spaces, see (3.3). If a(x, ξ, ε) is a function of (x, ξ) ∈ T ∗Rn and ε ∈ [0, 1],
which is smooth in (x, ξ) and continuous in ε, then a straightforward calculation
shows that

‖∂α
xD

β
ξ a(x, ξ, ε)‖L(V,W ),ξ = 〈ξ〉−μ sup

ε∈[0,1]

|(∂α
xD

β
ξ a)(x, ξ, ε/〈ξ〉)|

holds on all of T ∗Rn. We now denote by Sμ the space of all functions a(x, ξ, ε) of
(x, ξ) ∈ T ∗Rn and ε ∈ [0, 1], which are smooth in (x, ξ) and continuous in ε and
satisfy

|(∂α
xD

β
ξ a)(x, ξ, ε/〈ξ〉)| ≤ Cα,β 〈ξ〉μ−|β| (6.1)

for all multi-indices α, β ∈ Zn
≥0, where Cα,β are constants independent of (x, ξ) and

ε.
In terms of group action introduced in Remark 6.1 the symbol estimates (6.1)

take the form

‖κ̃−1
〈ξ〉∂

α
xD

β
ξ a(x, ξ, ε)κ〈ξ〉‖L(L2([0,1],ε−2γ)) ≤ Cα,β 〈ξ〉μ−|β|

for all (x, ξ) ∈ T ∗Rn and α, β ∈ Zn
≥0, cf. [ST05]. In particular, the order of the

symbol a is μ. Moreover, using group actions in fibers V and W gives a direct way
to the notion of homogeneity in the calculus of operator-valued symbols on T ∗Rn.
Namely, a function a(x, ξ, ε), defined for (x, ξ) ∈ T ∗Rn \{0} and ε > 0, is said to be
homogeneous of degree μ if the equality a(x, λξ, ε) = λμκ̃λa(x, ξ, ε)κ

−1
λ is fulfilled

for all λ > 0. It is easily seen that a is homogeneous of degree μ with respect to
the group actions κ and κ̃ if and only if a(x, λξ, ε/λ) = λμa(x, ξ, ε) for all λ > 0,
i.e. a is homogeneous of degree μ in (ξ, ε−1). Thus, we recover the homogeneity of
symbols invented in Section 4.

Lemma 6.2. Assume that the limit

σμ(a)(x, ξ, ε) = lim
λ→∞

λ−μκ̃−1
λ a(x, λξ, ε)κλ

exists for some x ∈ Rn and all ξ ∈ Rn and ε > 0. Then σμ(a)(x, ξ, ε) is homoge-
neous of degree μ.

Proof. Let s > 0 and let u = u(ε) be an arbitrary function of V . By the definition
of group action, we get

σμ(a)(x, sξ, ε)u = lim
λ→∞

λ−μκ̃−1
λ a(x, λsξ, ε)κλu

= sμκ̃s

(
lim

λ′→∞
(λ′)−μκ̃−1

λ′ a(x, λ
′ξ, ε)κλ′

)
κ−1
s u,

the second equality being a consequence of substitution λ′ = λs. Since the expres-
sion in the parentheses just amounts to σμ(a)(x, ξ, ε), the lemma follows. �
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The function σμ(a) defined away from the zero section of the cotangent bundle
T ∗C is called the principal homogeneous symbol of degree μ of a. We also use
this designation for the operator A = Q(a) on the cylinder which is a suitable
quantization of a.

Example 6.3. As defined above, the principal homogeneous symbol of differential
operator (4.1) is

σμ(A)(x, ξ, ε) = lim
λ→∞

λ−μ
( ∑

|α|−j≤μ
|α|≤m

aα,j(x)(λξ)
α
(
κ̃−1
λ εjκλ

) )

=
∑

|α|−j=μ
|α|≤m

aα,j(x)ξ
αεjκλ,

cf. Example 4.3.

Now one introduces the subspaces Sμ
phg in Sμ consisting of all polyhomogeneous

symbols, i.e., those admitting asymptotic expansions in homogeneous symbols. To
do this, we need an auxiliary result.

Lemma 6.4. Let a be a C∞ function of (x, ξ) ∈ T ∗Rn \ {0} and ε > 0 with a ≡ 0
for |x| � 1. If a is homogeneous of degree μ, then χa ∈ Sμ for any excision function
χ = χ(ξ) for the origin in Rn.

Proof. Since each derivative ∂α
xD

β
ξ a is homogeneous of degree μ− |β|, it suffices to

prove estimate (6.1) only for α = β = 0. We have to show that there is a constant
C > 0, such that

‖κ̃−1
〈ξ〉 (χ(ξ)a(x, ξ, ε))κ〈ξ〉‖L(L2([0,1],ε−2γ)) ≤ C 〈ξ〉μ

for all (x, ξ) ∈ T ∗Rn and ε ∈ [0, 1]. Such an estimate is obvious if ξ varies in a
compact subset of Rn, for χ near ξ = 0. Hence, we may assume without loss of
generality that |ξ| ≥ R, where R > 1 is sufficiently large, so that χ(ξ) ≡ 1 for
|ξ| ≥ R. Then

‖κ̃−1
〈ξ〉 (χ(ξ)a(x, ξ, ε))κ〈ξ〉‖L(L2([0,1],ε−2γ)) = ‖a(x, ξ, ε/〈ξ〉)‖L(L2([0,1],ε−2γ))

≤ C 〈ξ〉μ,
where

C = sup
(x,ξ)∈T∗Rn

‖a(x, ξ/〈ξ〉, ε)‖L(L2([0,1],ε−2γ)).

From conditions imposed on a it follows that the supremum is finite, which com-
pletes the proof. �

In contrast to Lemma 4.4 no additional conditions are imposed here on a except
for homogeneity. This might testify to the fact that the symbol classes Sμ give the
best fit to the study of operators (4.1).

The family Sμ−j with j = 0, 1, . . . is used in the usual way to define asymptotic
sums of homogeneous symbols. A symbol a ∈ Sμ is called polyhomogeneous if there
is a sequence {aμ−j}j=0,1,... of smooth function of (x, ξ) ∈ T ∗Rn \ {0} and ε > 0,
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such that every aμ−j is homogeneous of degree μ− j in (ξ, ε−1) and a expands as
asymptotic sum

a(x, ξ, ε) ∼ χ(ξ)

∞∑
j=0

aμ−j(x, ξ, ε) (6.2)

in the sense that a− χ
N∑
j=0

aμ−j ∈ Sμ−N−1 for all N = 0, 1, . . ..

Each symbol a ∈ Sm
phg admits a well-defined principal homogeneous symbol of

degree μ, namely σμ(a) := aμ. We quantise symbols a ∈ Sμ as pseudodifferential
operators on X similarly to Section 3. Write Ψμ(C) for the space of all operators
A = Q(a) with a ∈ Sμ.

Theorem 6.5. Let A ∈ Ψμ(C). For any s, γ ∈ R, the operator A extends to a
bounded mapping

A : Hs,γ(C) → Hs−μ,γ(C).
Proof. This is a consequence of Theorem 3.7. �

Let Ψμ
phg(C) stand for the subspace of Ψμ(C) consisting of all operators with

polyhomogeneous symbols. For A = Q(a) of Ψμ
phg(C), the principal homogeneous

symbol of degree μ is defined by σμ(A) = σμ(a). If σμ(A) = 0 then A belongs to

Ψμ−1
phg (C). When combined with Theorem 6.6 stated below, this result allows one to

describe those operators A on the cylinder which are invertible modulo operators
of order −∞.

Theorem 6.6. If A ∈ Ψμ
phg(C) and B ∈ Ψν

phg(C), then BA ∈ Ψμ+ν
phg (C) and

σμ+ν(BA) = σν(B)σμ(A).

Proof. This is a standard fact of calculus of pseudodifferential operators with oper-
ator-valued symbols. �

As usual, an operator A ∈ Ψμ
phg(C) is called elliptic if σμ(A)(x, ξ, ε) is invertible

for all (x, ξ, ε) away from the zero section of the cotangent bundle T ∗C of the
cylinder.

Theorem 6.7. An operator A ∈ Ψμ
phg(C) is elliptic if and only if there is an operator

P ∈ Ψ−μ
phg(C), such that both PA = I and AP = I are fulfilled modulo operators of

Ψ−∞(C).
Proof. The necessity of ellipticity follows immediately from Theorem 6.6, for the
equalities PA = I and AP = I modulo Ψ−∞(C) imply that σ−μ(P ) is the inverse
of σμ(A).

Conversely, look for an inverse P = Q(p) for A = Q(a) modulo Ψ−∞(C), where
p ∈ S−μ

phg has asymptotic expansion p ∼ p−μ+ p−μ−1+ . . . . The ellipticity of A just
amounts to saying that

σμ(A)(x, ξ, ε) ≥ c |ξ|μ
for all (x, ξ) ∈ T ∗X \{0} and ε ∈ [0, 1], where the constant c > 0 does not depend on
x, ξ and ε. Hence, p−μ := (σμ(A))−1 gives rise to a “soft” inverse P (0) = Q(χp−μ)
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for A. More precisely, P (0) ∈ Ψ−μ
phg(C) satisfies P (0)A = I and AP (0) = I modulo

operators of Ψ−1(C). Now, the standard techniques of pseudodifferential calculus
applies to improve the discrepancies P (0)A − I and AP (0) − I, see for instance
[ST05]. �

We avoid the designation “parametrix” for P since the operators of Ψ−∞(C) need
not be compact in Hs,γ(C).

Corollary 6.8. Assume that A ∈ Ψμ
phg(C) is an elliptic operator on C. Then, for

any s, γ ∈ R and any large R > 0, there is a constant C > 0 independent of ε, such
that

‖u‖s,γ ≤ C (‖Au‖s−μ,γ + ‖u‖−R,γ)

whenever u ∈ Hs,γ(C).

Proof. Let P ∈ Ψ−μ
phg(C) be the inverse of A up to operators of Ψ−∞(C) given by

Theorem 4.7. Then we obtain

‖u‖s,γ = ‖P (Au) + (I − PA)u‖s,γ
≤ ‖P (Au)‖s,γ + ‖(I − PA)u‖s,γ

for all u ∈ Hs,γ(C). To complete the proof it is now sufficient to use the mapping
properties of pseudodifferential operators P and I − PA formulated in Theorem
4.5. �

We finish this section by evaluating the local norm in Hs,γ(C) to compare this
scale with the scale Hr,s(X ) used in Section 4. This norm is equivalent to that in
L2(Rn, V, ‖ · ‖ξ), which is

‖u‖2s,γ =

∫
Rn

〈ξ〉2s‖κ−1
〈ξ〉û(ξ)‖2L2([0,1],ε−2γ)dξ

=

∫
Rn

〈ξ〉2s+2γ−1

∫ 1

0

ε−2γ |û(ξ, ε/〈ξ〉)|2dεdξ.

Substituting ε′ = ε/〈ξ〉 yields

‖u‖2s,γ =

∫
Rn

〈ξ〉2s
(∫ 1/〈ξ〉

0

(ε′)−2γ |û(ξ, ε′)|2dε′
)
dξ

=

∫ 1

0

(ε′)−2(γ+Δγ)
(∫

〈ξ〉≤1/ε′
(ε′〈ξ〉)2Δγ〈ξ〉2(s−Δγ)|û(ξ, ε′)|2dξ

)
dε′,

which is close to

∫ 1

0

ε−2(γ+Δγ)‖u‖2Hs,s−Δγ(X )dε with any Δγ ∈ R.

Remark 6.9. The modern theory of pseudodifferential operators on manifolds with
singularities allows one to study the problem for compact manifolds X with boundary
as well.
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7. Regularization of singularly perturbed problems

The idea of constructive reduction of elliptic singular perturbations to regular
perturbations goes back at least as far as [FW82]. For the complete bibliography
see [Fra90, p. 531].

The calculus of pseudodifferential operators with small parameter developed in
Section 4 allows one to reduce the question of the invertibility of elliptic operators
A ∈ Ψm,μ

phg (X ) acting from Hr,s(X ) into Hr−m,s−μ(X ) to that of the invertibility of

their limit operators at ε = 0 acting in usual Sobolev spaces Hs(X ) → Hs−μ(X ).
To shorten notation, we write A(ε) instead of A(x,D, ε), and so A(0) ∈ Ψμ

phg(X ) is
the reduced operator.

Given any f ∈ Hr−m,s−μ(X ), consider the inhomogeneous equation A(ε)u = f
on X for an unknown function u ∈ Hr,s(X ). We first assume that u ∈ Hr,s(X )
satisfies A(ε)u = f in X .

Since the symbol σμ(A(ε))(x, ξ, ε) is invertible for all (x, ξ) ∈ T ∗X \ {0} and
ε ∈ [0, 1], it follows that A(0) is an elliptic operator of order μ. Hence, the Hodge

theory applies to A(0). According to this theory, there is an operator G ∈ Ψ−μ
phg(X )

satisfying
u = H0u+GA(0)u,
f = H1f +A(0)Gf

(7.1)

for all distributions u and f on X , where H0 and H1 are L2(X ) -orthogonal pro-
jections onto the null-spaces of A(0) and A(0)∗, respectively. (Observe that the
null-spaces of A(0) and A(0)∗ are actually finite dimensional and consist of C∞

functions.)

ApplyingG ∈ Ψ−μ,−μ
phg (X ) to both sides of the equality A(0)u+(A(ε)−A(0))u = f

on X we obtain
u−H0u = Gf −G (A(ε)−A(0))u (7.2)

for each u ∈ Hr,s(X ). (We have used the first equality of (7.1)). This is a far-
reaching generalization of formula (2.2), for the function Gf ∈ Hr−(m−μ),s(X ) is
a solution of the unperturbed equation A(0)Gf = f , which is due to the second
equality of (7.1). Let μ ≤ m. Since the “coefficients” of A(ε) are continuous up
to ε = 0, it follows that (A(ε)−A(0))u converges to zero in Hr−m,s−μ(X ) as
ε → 0. By continuity, G (A(ε)−A(0))u converges to zero in Hr−(m−μ),s(X ), and
so u − H0u ∈ Hr,s(X ) converges to Gf in Hr−(m−μ),s(X ) as ε → 0. If μ > m
then in the same manner we can see that u −H0u ∈ Hr,s(X ) converges to Gf in
Hr,s(X ) as ε → 0.

The solution u of A(ε)u = f need not converge to the solution Gf of the reduced
equation, for both solutions are not unique. Formula (7.2) describes the limit of
the component u − H0u of u which is orthogonal to the space of solutions of the
homogeneous equation A(0)u = 0. This results gains in interest if the equation
A(0)u = 0 has only zero solution, i.e. H0 = 0. The task is now to show that from
the unique solvability of the reduced equation it follows that A(ε)u = f is uniquely
solvable if ε is small enough.

Theorem 7.1. Suppose that A(ε) ∈ Ψm,μ(X ) is elliptic. If the reduced operator
A(0) : Hs(X ) → Hs−μ(X ) is an isomorphism uniformly with respect to ε ∈ [0, 1],
then A(ε) : Hr,s(X ) → Hr,s−μ(X ) is an isomorphism, too, for all ε ∈ [0, ε0] with
sufficiently small ε0.
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Proof. We only clarify the operator theoretic aspects of the proof. For symbol
constructions we refer the reader to Corollary 3.14.10 in [Fra90] and the comments
after its proof given there.

To this end, write I = GA(0) + (I −GA(0)) whence

A(ε) = A(0) + (A(ε)−A(0))GA(0) + (A(ε)−A(0))(I −GA(0))

= (I + (A(ε)−A(0))G)A(0) + (A(ε)−A(0))(I −GA(0))

for all ε ∈ [0, 1]. As mentioned, the difference A(ε)−A(0) is small if ε ≤ 1 is small
enough. Hence, the operator

Q(ε) = I + (A(ε)−A(0))G

= H0 +A(ε)G

is invertible in the scaleHr,s(X ), provided that ε ∈ [0, ε0] where ε0 ≤ 1 is sufficiently
small.

If the operator A(0) ∈ Ψμ(X ) is invertible in the scale of usual Sobolev spaces on
X , then the product Q(ε)A(0) is invertible for all ε ∈ [0, ε0]. Hence, by decreasing
ε0 if necessary, we conclude readily that A(ε) is invertible for all ε ∈ [0, ε0], as
desired. �

The proof above gives more, namely

A(ε) = Q(ε)A(0) + S0(ε),
= A(0)Q(ε) + S1(ε),

(7.3)

where S0(ε) and S1(ε) have at most the same order as A(ε) and are infinitesimally
small if ε → 0.

From (7.3) it follows immediately that for the operator A(ε) to be invertible
for small ε it is necessary and sufficient that A(0) would be invertible. Any rep-
resentation of a singularly perturbed operator A(ε) in the form (7.3) is called a
regularization of A(ε).
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(1886), 295–344.
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