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A CLASS OF TOEPLITZ OPERATORS IN SEVERAL

VARIABLES

D. FEDCHENKO AND N. TARKHANOV

Abstract. We introduce the concept of Toeplitz operator associated with the

Laplace-Beltrami operator on a compact Riemannian manifold with boundary.

We characterise those Toeplitz operators which are Fredholm, thus initiating

the index theory.

Contents

Introduction 1
1. Toeplitz operators in one dimension 3
2. Operators of Laplace type 6
3. Green operator 9
4. Bergman projection 10
5. Berezin’s theory 12
6. Fock projection 14
7. Toeplitz operators in n dimensions 16
8. Concluding remarks 17
References 20

Introduction

There are a number of ways in which the theory of Toeplitz operators can be
generalised to n dimensions, see e.g. [Ven72], [Dou73] and the references given
there. The monograph [Upm96] presents much more advanced theory of Toeplitz
operators in several complex variables.

The paper [Gui84] describes precisely how Toeplitz operators of “Bergman type”
are related to Toeplitz operators of “Szegö type.” A remarkable connection between
the theory of Toeplitz operators á la [Ven72] and the standard theory of pseudo-
differential operators emerged from the work [BG81]. This connection in its broad
outlines is elucidated in [Gui84], too.

This work focuses on a new class Toeplitz operators which is more closely related
to elliptic theory. The new Toeplitz operators admit very transparent description
which motivates strikingly their study. To this end, let A be an (l × k) -matrix
of scalar partial differential operators in a neighbourhood of the closed bounded
domain X with smooth boundary in R

n. Assume that A is overdetermined elliptic,
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2 D. FEDCHENKO AND N. TARKHANOV

i.e. the leading symbol of A has rank k away from the zero section of the cotangent
bundle of X . Then, given any solution u of the homogeneous equation Au = 0
in the interior of X which has finite order of growth at the boundary, the Cauchy
data t(u) of u with respect to A possess weak limit values at the boundary. If
A satisfies the so-called uniqueness condition of the local Cauchy problem in a
neighbourhood of X , then the solution u is uniquely defined by its Cauchy data
at ∂X . Let t(u) = {Bju}j=0,1,...,m−1 be a representation of the Cauchy data of u,
where m is the order of A. The space of all Cauchy data Bju = uj of u at the
boundary is effectively described by the condition of orthogonality to solutions of
the formal adjoint equation A∗g = 0 near X by means of a Green formula, see
[Tar95, § 10.3.4]. In this way we distinguish many Hilbert spaces of vector-valued
functions ⊕uj on ∂X which represent solutions to Au = 0 in the interior of X . In
particular, one introduces Hardy spaces H as subspaces of ⊕L2(∂X ,Ck) consisting
of the Cauchy data of solutions to Au = 0 in the interior of X with appropriate
behaviour at the boundary. Pick such a Hilbert space H. By the above, H is a
closed subspace of ⊕L2(∂X ,Ck) and we write Π for the orthogonal projection of
⊕L2(∂X ,Ck) onto H.

On using the Calderón projection one reduces any boundary value problem for
solutions of Au = 0 in X to an equation T t(u) = u0 in the space H, where T
is a continuous selfmap of H. In general, this is a pseudodifferential operator of
order zero on the boundary. The simplest of these are direct generalisations of
classical Toeplitz operators. To introduce them we assume for simplicity that A is
of order one. Then the Cauchy data of a solution u to Au = 0 in the interior of X
reduce to the restriction of u to ∂X in a weak sense, and H is a closed subspace
of L2(∂X ,Ck). If A is the Cauchy-Riemann operator then Π just amounts to the
Szegö projection.

Given a (k × k) -matrix E(x) of smooth function on ∂X , the operator TE on H
given by u �→ Π(Eu) is said to be a Toeplitz operator with multiplier E. If E is
a scalar multiple of the unit matrix, then the theory of Toeplitz operators TE is
much about the same as the classical theory of Toeplitz operators. Otherwise the
theory is much more complicated and even the proof of composition formula for
Toeplitz operators is based on studying a subelliptic problem, such as the Neumann
problem of D. Spencer. Under some convexity conditions on X this implies a very
useful representation

TE = E −A∗G1AE

on X .
Let us shortly dwell on the contents of the paper. In Section 1 we discuss the

well-known interplay between the theory of Toeplitz operators on the circle and
the theory of pseudodifferential operators on the line (Wiener-Hopf operators), cf.
[Gui84]. In Section 2 we introduce operators of Laplace type which go back at least
as far as the Laplace-Beltrami operator. Section 3 elaborates the concept of Green
operator in the Dirichlet problem for a Laplace type equation on a smooth compact
manifold with boundary. As a byproduct of this theory we shortly study in Section
4 the Bergman projection related to the Dirichlet problem. In Sections 5 we present
the results of F. Berezin [Ber72] and [Ber74] who resurrected the largely forgotten
paper [Aro50]. In Section 6 we show an explicit example of reproducing kernel func-
tion. Section 7 is of key importance in this work where we bring together analytic
and geometric tools to introduce a new class of Toeplitz operators in n dimensions
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and show the Fredholm property of elliptic Toeplitz operators. Finally, in Section 8
we briefly discuss Toeplitz operators related to the algebra of quaternions H intro-
duced by W. R. Hamilton (1843). The algebra H holds a special place in analysis
since, according to the Frobenius theorem, it is one of only two finite-dimensional
division rings containing the real numbers as a proper subring, the other being the
complex numbers.

1. Toeplitz operators in one dimension

Assume that X is a set with a measure, H a closed subspace of L2(X ), and
Π : L2(X ) → H orthogonal projection.

Let a : X → C be a measurable bounded function. If the rather prosaic-looking
operator Ma : L2(X ) → L2(X ) given by u �→ au is composed with Π, one gets a
much more interesting operator

Ta : H → H, (1.1)

u �→ Π(au), which one calls the Toeplitz operator with multiplier a. We will
describe in this section two kinds of such operators.

Example 1.1. Take X to be S
1 equipped with the rotation-invariant measure

dμ = dθ/2π, and take for H the Hardy space, i.e. the subspace of L2(S1) consisting
of all u satisfying ∫ π

−π

ueınθdμ = 0 (1.2)

for all n = 1, 2, . . .. Then the operator (1.1) is the classical Toeplitz operator with
multiplier a.

Most people are more familiar with it in terms of its matrix representation. If

a =

∞∑
−∞

ane
ınθ,

then

Ta e
ınθ =

∞∑
k=0

ak−ne
ıkθ (1.3)

for n = 0, 1, . . .. In other words, the matrix of Ta, expressed in terms of the basis
{eınθ}n=0,1,..., is ⎛

⎜⎜⎝
a0 a−1 a−2 · · ·
a1 a0 a−1 · · ·
a2 a1 a0 · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎠ .

Matrices of this form are called Toeplitz matrices. It can be shown that a matrix
defines a bounded operator on H if and only if the numbers an are the Fourier
coefficients of a bounded measurable function a.

It is clear from the matrix representation (1.3) that the composition of two
Toeplitz operators is not necessarily a Toeplitz operator. However, we will show
that if a1 and a2 are smooth functions then Ta1Ta2 is very nearly equal to Ta1a2 .
Recall that by smoothing operators K : L2(S1) → L2(S1) are meant operators with
smooth Schwartz kernels.
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Theorem 1.2. If a1 and a2 are smooth, then Ta1Ta2 differs from Ta1a2 by a smooth-
ing operator.

Proof. Since Π commutes with rotations, there is a distributional function k on S
1,

such that

Πu (θ) = (k ∗ u)(θ) =
∫ π

−π

k(θ − θ′)u(θ′)dμ(θ′).

In fact it is clear that

k(θ) =

∞∑
n=0

eınθ =
1

1− eıθ
.

Thus,

aΠu−Πau = Kau

where

Ka(θ, θ
′) =

1

2π

a(θ)− a(θ′)
1− eı(θ−θ′)

∼ 1

2πı

a(θ)− a(θ′)
θ − θ′

for θ′ close to θ. This shows that Ka is smooth both in θ and θ′. Now

Ta1Ta2u = Π(a1(Π(a2u)))

= Π(a1a2u)−Π(a1Ka2u)

= Π(a1a2u) +Ku

with K smoothing. �

By Theorem 1.2, if a is a smooth nonvanishing function on the circle, then
P = Ta−1 is a parametrix for Ta modulo smoothing operators. Hence, Ta : H → H
is a Fredholm operator. Conversely, the condition a �= 0 on S

1 is also necessary for
the Fredholm property of Ta.

Actually there is a much more advanced result which is based on an explicit
formula for the semicommutator Ta1a2 − Ta1Ta2 in terms of the so-called Hankel
operators Ha : H → H⊥, where H⊥ is the orthogonal complement of H in L2(S1).
Given a fixed bounded function a on the circle, one defines Tau := (I −Π)(au) for
u ∈ H. Then

Ta1a2 − Ta1Ta2 = (Ha1)
∗Ha2 ,

see for instance [Pro88].
One of the main difficulties with dimension > 1 will be finding a substitute for

this very simple composition formula.

Example 1.3. Take X to be the unit disk D = {z ∈ C : |z| < 1} in the complex
plane and let H be the space of holomorphic functions u on D satisfying∫

D

|u|2 1

2πı
dz̄ ∧ dz < ∞.

Then the operator (1.1) is also said to be a classical Toeplitz operator with multiplier
a.
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Note that if the Taylor series of u is

∞∑
n=0

unz
n,

then ∫
D

|u|2 1

2πı
dz̄ ∧ dz =

∞∑
n=0

|un|2
n+ 1

.

Therefore, H contains as dense subspace those holomorphic functions on D for
which

∞∑
n=0

|un|2 < ∞.

Denote this space by H1/2. This is precisely the space of holomorphic functions on
the disk which have well-defined L2 boundary values. In fact, if u ∈ H1/2, then

u �S1=
∞∑

n=0

un e
ınθ

and the right-hand side is in the Hardy space H2(S1). Hence, the operator, that
assigns u �S1 to u, can be thought of as isomorphism of Hilbert spaces

H1/2(D)
∼=→ H2(S1). (1.4)

Now let a be a smooth function on D and let Ta be the Toeplitz operator (1.1).
One can show that Ta maps H1/2 into H1/2. So, by (1.4), it corresponds to an
operator T �

a on H2(S1). It is natural to ask how operators of this type are related
to the Toeplitz operators we considered in Example 1.1. The answer requires a
result which is proved in § 9 of [Gui84] in considerably more generality. We write
D : H2(S1) → H2(S1) for the differential operator (1/ı)d/dθ, i.e. Deınθ = neınθ

for n = 0, 1, . . ..

Theorem 1.4. Let a be a smooth function on D and, for n = 0, 1, . . ., let an be the
restriction to S

1 of (−z̄ d/dz̄)na. Then

T �
a ∼

∞∑
n=0

(D + 1)−nTan . (1.5)

The symbol “∼” in (1.5) can be interpreted in the following sense. The difference
between T �

a and the first N terms on the right-hand side is “smoothing of order
N .” In other words, it is a bounded operator from L2(S1) into the space of all
u ∈ H2(S1), such that

∞∑
n=0

(|n|2N + 1) |un|2 < ∞.

It is clear from Theorem 1.4 that we get from Example 1.3 a much larger class
of operators on Hardy space than that from Example 1.1.
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2. Operators of Laplace type

Let X be a compact Riemannian manifold with boundary of dimension n en-
dowed with a positive-definite metric g. On studying differential operators on man-
ifolds, a key role is played by the operators of Laplace type. These are second-order
elliptic operators with leading symbol given by the Riemannian metric of the base
space X . They also include the effect of an endomorphism of a vector bundle F
over X . An equivalent way of stating this definition is that in any local coordinate
system

ΔF = −
n∑

i,j=1

gi,j(x)IF∂i∂j (2.1)

up to a first-order part, where gi,j(x) = (dxi, dxj)x is the metric on the cotangent
bundle of X , see [BGV96]. We write simply Δ for the Laplace operator ΔF if it
will cause no confusion.

The operator Δ induces a continuous linear map of C∞(X , F ) into itself. To
apply Hilbert space methods for the study of the equation Δu = f in X , we pass
from this map to its closure in L2(X , F ). Denote by DT the set of all sections
u ∈ L2(X , F ), for which there exists a sequence {uν} satisfying 1) uν ∈ C∞(X , F );
2) {uν} converges to u in L2(X , F ); and 3) {Δuν} is a Cauchy sequence in L2(X , F ).
The mapping T : DT → L2(X , F ) defined by Tu = limΔuν , where {uν} is a se-
quence with properties 1)–3), is usually referred to as the maximal operator gener-
ated by Δ.

Note that T is well defined. We will think of T as an unbounded operator from
L2(X , F ) to itself, whose domain is DT . This operator T is densely defined and
closed.

From the lemma of du Bois-Reymond and the uniqueness of a weak limit it
follows that if u ∈ DT then Tu = Δu in the sense of distributions in the interior of
X .

We now define T ∗, the adjoint of T , as usual for unbounded operators. Namely,
let DT∗ be the set of all g ∈ L2(X , F ) with the property that there is v ∈ L2(X , F )
satisfying (Tu, g)L2(X ,F ) = (u, v)L2(X ,F ) for u ∈ DT . Define T ∗ : DT∗ → L2(X , F )

by T ∗g = v. The operator T ∗ is well defined, for DT is dense in L2(X , F ). It
is clear that T ∗g is in general different from Δ∗g in the sense of distributions in
the interior of X , where Δ∗ is the formal adjoint for Δ with respect to the inner
product in L2(X , F ).

Let us introduce operators L0 and L1 on L2(X , F ) with domains DL0 and DL1 ,
which better suit the Hilbert structure of L2(X , F ) than the formal Laplacians
Δ∗Δ and ΔΔ∗, respectively. Namely, write DL0 for the set of all u ∈ DT with the
property that Tu ∈ DT∗ . Then the operator L0 : DL0 → L2(X , F ) is defined by
L0u = T ∗Tu. Similarly, DL1 stands for the set of all g ∈ DT∗ with the property
that T ∗g ∈ DT . Then the operator L1 : DL1 → L2(X , F ) is defined by the equality
L1g = TT ∗g.

We have thus arrived at the dual short complexes of Hilbert spaces and their
closed maps

0 → L2(X , F )
T→ L2(X , F ) → 0,

0 ← L2(X , F )
T∗
← L2(X , F ) ← 0
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on X . We are led to two dual problems which go back at least as far as the theory
of harmonic integrals by Hodge, see for instance [Tar95, Ch. 5]. Assume i = 0, 1.
Given a section v ∈ L2(X , F ), when is there u ∈ DLi such that Liu = v, and how
does u depend on v?

The weak orthogonal decomposition is actually the first step in studying the
problem. Set

H0 = {u ∈ DT : Tu = 0},
H1 = {g ∈ DT∗ : T ∗g = 0}.

Since the operators T and T ∗ are closed, both H0 and H1 are closed subspaces of
L2(X , F ). Denote by Π0 and Π1 the orthogonal projections of L2(X , F ) onto H0

and H1, respectively.

Lemma 2.1.
1) u ∈ H0 if and only if u ∈ DL0 and L0u = 0.
2) g ∈ H1 if and only if g ∈ DL1 and L1g = 0.

Proof. If u ∈ H0 then obviously u ∈ DL0 and L0u = 0. If L0u = 0 then
(L0u, u)L2(X ,F ) = 0, and since

(L0u, u)L2(X ,F ) = ‖Tu‖2L2(X ,F )

we have u ∈ H0. This proves 1), and the proof of 2) is analogous. �

The operators L0 and L1 are selfadjoint, and (L0 + I)−1 and (L1 + I)−1 exist,
are bounded and defined everywhere in L2(X , F ). Combining the selfadjointness
of L0 and L1 with Lemma 2.1, we obtain immediately the weak orthogonal decom-
positions

L2(X , F ) = H0 ⊕ L0DL0 ,

L2(X , F ) = H1 ⊕ L1DL1 ,
(2.2)

the second summands on the right-hand sides being the closures of subspaces in
L2(X , F ).

The elements of H0 need not satisfy any additional conditions at the boundary
of X . More precisely, H0 consists of all sections u ∈ L2(X , F ) satisfying Δu = 0
weakly in the interior of X . Hence, H0 is of infinite dimension unless the boundary
of X is empty. It follows that the first decomposition in (2.2) is not related to any
Fredholm operator. On the contrary, the definition of H1 includes strong boundary
conditions for solutions of T ∗g = 0. Namely, a section g ∈ H2(X , F ) belongs to the
space H1 if an only if it satisfies Δ∗g = 0 weakly in the interior of X and g vanishes
up to the first order at the boundary of X . Therefore, the second equality of (2.2) is
reminiscent of the weak orthogonal decomposition related to the Dirichlet problem
for the Laplace equation L1g = f in X . This latter boundary value problems
is a well understood classical elliptic boundary value problem, see [ADN59]. The
boundary conditions are of Shapiro-Lopatinskii type, and the main a priori estimate
reads as follows.

Lemma 2.2. Let X be a compact Riemannian manifold and ΔF a Laplace operator
on X related to a Riemannian vector bundle F . Then there is a constant c > 0
such that

‖g‖H2(X ,F ) ≤ c (‖T ∗g‖2L2(X ,F ) + ‖g‖2L2(X ,F ))
1/2 (2.3)

for all g ∈ C∞(X , F ) vanishing up the the first order at the boundary of X .
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Proof. See [ADN59] and elsewhere. �
The norm on the right-hand side of (2.3) is called the Dirichlet norm. Beginning

with its classical forms, the norm has been an important technical tool in studying
the Dirichlet problem. For f, g ∈ DT∗ , the Dirichlet inner product of f and g is
defined by

D(f, g) = (T ∗f, T ∗g)L2(X ,F ) + (f, g)L2(X ,F ),

and the Dirichlet norm isD(g) =
√

D(g, g). The space DT∗ with the Dirichlet norm
is a complete (Hilbert) space. From Lemma 2.2 it follows that DT∗ just amounts
to ◦

H2(X , F ),

the closure in H2(X , F ) of C∞ sections of F with compact support in the interior
of X .

Lemma 2.3. Suppose X is a compact Riemannian manifold and ΔF a Laplace
operator on X related to a Riemannian vector bundle F . Then the space H1 is
finite dimensional.

Proof. Observe that if f, g ∈ H1 then D(f, g) = (f, g)L2(X ,F ). Suppose that the

dimension of H1 is infinite. Then there exists an infinite sequence {gν} of orthonor-
mal elements in H1. Since D(gν) = ‖gν‖L2(X ,F ) = 1 the sequence {uν} contains a
convergent subsequence. But this is at variance with the fact that if ν �= μ then
‖uν − uμ‖L2(X ,F ) =

√
2. �

Lemma 2.4. There is a constant c > 0, such that for all u ∈ DT∗ orthogonal to
Hi we have

‖T ∗g‖L2(X ,F ) ≥ c ‖g‖L2(X ,F ).

Proof. Consider the closed operator T ∗ : DT∗ → L2(X , F ). We will prove that
the range of T ∗ is closed. Suppose that T ∗DT∗ is not closed. Then there exists a
sequence {gν} in DT∗ , such that limT ∗gν = v and v �∈ T ∗DT∗ . Set g′ν = gν −Π1gν ,
then g′ν are orthogonal to H1 and limT ∗g′ν = v. If the norms ‖g′ν‖L2(X ,F ) are
bounded then

D(g′ν) = (‖T ∗g′ν‖2L2(X ,F ) + ‖g′ν‖2L2(X ,F ))
1/2

are bounded, too. By the above, {g′ν} has a convergent subsequence with a limit
g, and since T ∗ is closed then T ∗g = v which contradicts the assumption that
v �∈ T ∗DT∗ . Thus by choosing a subsequence, if necessary, we may assume that
lim ‖g′ν‖L2(X ,F ) = ∞.

Now set Gν = g′ν/‖g′ν‖L2(X ,F ). Then lim ‖T ∗Gν‖L2(X ,F ) = 0 and D(Gν) are
bounded. Therefore {Gν} has a convergent subsequence {Gνk

}, such that

limGνk
= G,

limT ∗Gνk
= 0.

Hence T ∗G = 0 so that G ∈ H1. Since Gν is orthogonal to H1 we have G = 0,
but ‖Gν‖L2(X ,F ) = 1. This contradiction proves that the range T ∗DT∗ is closed in

L2(X , F ).
Let R be the restriction of T ∗ to the orthogonal complement of H1 in DT∗ . Then

R is one-to-one and has a closed range. By the closed graph theorem, the inverse
R−1 is bounded. Hence there is c > 0 such that ‖Rg‖L2(X ,F ) ≥ c ‖g‖L2(X ,F ). This
proves the lemma. �
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Theorem 2.5. Let X be a compact Riemannian manifold and ΔF a Laplace op-
erator on X related to a Riemannian vector bundle F . Then L1DL1 is a closed
subspace of L2(X , F ).

Proof. By Lemma 2.4 there exists c > 0 with the property that for all g ∈ DL1

which are orthogonal to H1 we have

(L1g, g)L2(X ,F ) ≥ c ‖g‖2L2(X ,F ),

so that ‖L1g‖L2(X ,F ) ≥ c ‖g‖L2(X ,F ). Set f = limL1gν . We may assume that gν
are orthogonal to H1, and then ‖gν‖L2(X ,F ) are uniformly bounded. Therefore,
{gν} has a subsequence whose arithmetic means converge. Denoting this limit by
g, we get f = L1g, which completes the proof. �

On combining Theorem 2.5 with weak orthogonal decomposition (2.2) we get
the strong orthogonal decomposition

L2(X , F ) = H1 ⊕ TT ∗DL1 . (2.4)

3. Green operator

By Lemma 2.1, equality (2.4) is a direct sum decomposition related to the Fred-
holm operator L1 : DL1 → L2(X , F ). In this section we specify the relevant opera-
tors.

Let f ∈ L2(X , F ), then f = Π1f + L1g where g ∈ DL1 . The Green operator
G1 : L2(X , F ) → DL1 is defined by

G1f = g −Π1g.

Note that G1 is well defined. Indeed, if also f = Π1f + L1g′ where g′ ∈ DL1 then
L1(g − g′) = 0 whence

(g −Π1g)− (g′ −Π1g′) = (g − g′)−Π1(g − g′) = 0.

We summarise the properties of the Green operator. They are reminiscent of
those of the Green operator from Hodge theory on a compact closed manifold, see
[Tar95, Ch. 4].

Theorem 3.1. As defined above, the Green operator G1 : L2(X , F ) → DL1 pos-
sesses the following properties:

1) G1 is bounded, selfadjoint, Π1G1 = G1Π1 = 0, and G1 originates the orthog-
onal decomposition

f = Π1f + TT ∗G1f (3.1)

for all f ∈ L2(X , F ).
2) If f ∈ DT∗ and T ∗f = 0 then T ∗G1f = 0.

Proof.
1) The equalities Π1G1 = G1Π1 = 0 and formula (3.1) follow immediately from

the definition of G1.
Further, by the closed graph theorem there exists a constant c > 0, such that if

g ∈ DL1 is orthogonal to H1 then ‖L1g‖L2(X ,F ) ≥ c ‖g‖L2(X ,F ). Applying this to

G1f , we obtain

‖G1f‖L2(X ,F ) ≤ 1

c
‖L1G1f‖L2(X ,F ) =

1

c
‖f −Π1f‖L2(X ,F ) ≤ 1

c
‖f‖L2(X ,F ).

Hence G1 is bounded.



10 D. FEDCHENKO AND N. TARKHANOV

Finally, the selfadjointness of G1 follows immediately from that of the operator
L1, for

(G1f, g)L2(X ,F ) = (G1f, L1G1g)L2(X ,F ) = (L1G1f,G1g)L2(X ,F ) = (f,G1g)L2(X ,F ).

2) Suppose f ∈ DT∗ . Then from (3.1) we get TT ∗G1f ∈ DT∗ . If T ∗f = 0 then
T ∗TT ∗G1f = 0. Hence it easily follows that T ∗G1f = 0. �

By the very definition of the Green operator, if g ∈ DL1 then G1L1g = g −Π1g
whence

g = Π1g +G1 TT ∗g (3.2)

in X , which is a counterpart to (3.1). Since G1 is selfadjoint, equalities (3.1) and
(3.2) are actually equivalent.

Remark 3.2. From the spectral invariance of Boutet de Monvel’s algebra [BdM71]
it follows that the Green operator G1 is a pseudodifferential operator of order −4
in this algebra on X .

4. Bergman projection

For compact manifolds with boundary X the subspace H0 is usually infinite
dimensional. However, the following result still holds.

Theorem 4.1. Let X be a compact Riemannian manifold and ΔF a Laplace op-
erator on X related to a Riemannian vector bundle F . Then L0DL0 is a closed
subspace of L2(X , F ).

Proof. It is sufficient to prove that there exists a constant c > 0 with the property
that ‖L0u‖L2(X ,F ) ≥ c ‖u‖L2(X ,F ) for all u ∈ DL0 which are orthogonal to H0.

First, if u ∈ DL0 then Tu ∈ DT∗ and Tu is orthogonal to H1. Thus, by Lemma
2.4, we obtain

‖T ∗Tu‖L2(X ,F ) = ‖L0u‖L2(X ,F )

≥ c ‖Tu‖L2(X ,F ).

Further, since u is orthogonal to H0, then by the weak orthogonal decomposition
(2.2) u ∈ L0DL0 . Hence, for each ε > 0 there exists v ∈ DL0 with the property
that ‖u− L0v‖L2(X ,F ) < ε. Thus,

‖u‖2L2(X ,F ) ≤ |(L0v, u)L2(X ,F )|+ ε ‖u‖L2(X ,F )

≤ ‖Tv‖L2(X ,F )‖Tu‖L2(X ,F ) + ε ‖u‖L2(X ,F )

≤ 1

c2
‖L0v‖L2(X ,F )‖L0u‖L2(X ,F ) + ε ‖u‖L2(X ,F )

≤ 1

c2
‖u‖L2(X ,F )‖L0u‖L2(X ,F ) + ε (

1

c2
‖L0u‖L2(X ,F ) + ‖u‖L2(X ,F )).

Since ε can be made arbitrarily small by choosing L0v close enough to u, we
obtain ‖L0u‖L2(X ,F ) ≥ c2 ‖u‖L2(X ,F ), which concludes the proof. �

Let u ∈ L2(X , F ), then u = Π0u + L0v where v ∈ DL0 . The Green operator
G0 : L2(X , F ) → DL0 is defined by

G0u = v −Π0v.
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Note that G0 is well defined. Indeed, if also u = Π0u+ L0v′ where v′ ∈ DL0 then
L0(v − v′) = 0 whence

(v −Π0v)− (v′ −Π0v′) = (v − v′)−Π0(v − v′) = 0.

Theorem 4.2. As defined above, the Green operator G0 : L2(X , F ) → DL0 pos-
sesses the following properties:

1) G0 is bounded, selfadjoint, Π0G0 = G0Π0 = 0, and G0 originates the orthog-
onal decomposition

u = Π0u+ T ∗TG0u (4.1)

for all u ∈ L2(X , F ).
2) If u ∈ DT then TG0u = G1Tu.

Proof. The proof is is analogous to that of Theorem 3.1, the only difference being
in the stronger assertion 2). Let u ∈ DT . Then we have Tu = TT ∗TG0u on the
one hand, which is due to formula (4.1). On the other hand, Tu ∈ L2(X , F ), and
so Tu = TT ∗G1Tu, which is due to formula (3.1), for Tu is orthogonal to H1.
Comparing these two equalities we conclude that L0(TG0u − G1Tu) = 0. Since
TG0u−G1Tu is orthogonal to the null space of L0, it follows that TG0u = G1Tu,
as desired. �

The next result follows readily from from Theorems 4.2. It yields a useful formula
for the projection Π0.

Corollary 4.3. Suppose X is a compact Riemannian manifold and ΔF a Laplace
operator on X related to a Riemannian vector bundle F . Then

u = Π0u+ T ∗G1Tu (4.2)

for any section u ∈ DT .

Since the operator Δ is elliptic, it follows that Δ is hypoelliptic in the interior
of X whence H0 just amounts to the closed subspace of L2(X , F ) which consists
of smooth solutions of Δu = 0 in the interior of X . Thus, the operator Π0 is a
generalisation of the Bergman projector from complex analysis. By Corollary 4.3
we obtain

Π0 = I − T ∗G1T.

A priori estimates for solutions of elliptic systems imply that for each point
x in the interior of X the “evaluation functional” δx(u) = u(x) is bounded on
H0. Therefore, H0 is a Hilbert space with reproducing kernel, the concept being
introduced in [Aro50].

Pick a complete orthonormal system {eν}ν=1,2,... in H0. If u ∈ H0 then this sec-
tion decomposes into the Fourier series u =

∑
cνeν over this basis which converges

in the L2(X , F ) -norm, and hence uniformly along with all derivatives on compact
subsets of the interior of X . In the interior of X × X we now consider the kernel
function

K(x, y) = KΠ0(x, y) =
∞∑
ν=0

∗F eν(x)⊗ eν(y), (4.3)

where ∗F is the Hodge star operator associated with Riemannian bundle F .
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Theorem 4.4. Series (4.3) converges uniformly along with all derivatives on com-
pact subsets of the interior of X ×X , so that KΠ0 is a C∞ section of F ∗ �F over
the interior of X × X . If x ∈ X is fixed, then this series actually converges in the
norm of L2(X , F ∗

x ⊗ F ).

Proof. This is a very particular case of Lemma 11.2.13 in [Tar95]. �

The following formula can be therefore thought of as analogue of the classical
Bergman formula for holomorphic functions of one complex variable, see the survey
[Ber50].

Theorem 4.5. If u ∈ H0 then

u(x) = (u,K(x, ·))L2(X ,F )

for all x ∈
◦
X .

Proof. Let u =
∑

cμeμ. Then by the previous theorem we get for fixed x in the
interior of X

(u,K(x, ·))L2(X ,F ) =
∑
μ,ν

cμ (eμ, eν)L2(X ,F ) eν(x)

=
∑
ν

cν (eν , eν)L2(X ,F ) eν(x)

= u(x),

and the proof is complete. �

In order to discover the properties of Π0 one might study the Green operator
G1, see [BS76].

5. Berezin’s theory

The results we describe in this section are due to F. Berezin and are extracted
from his papers [Ber72] and [Ber74]. These papers seem to be more familiar to
physicists than to mathematicians.

Let X be a set equipped with a measure μ, H a Hilbert subspace of L2(X , μ) and
Π : L2(X , μ) → H orthogonal projection. Recall that, for a a bounded measurable
function on X , the Toeplitz operator with multiplier a is the operator Ta = ΠMa

on H.
Suppose that there is a measurable function K(x, y) on X × X , such that

(Πu)(x) =

∫
X
K(x, y)u(y)dμ(y) (5.1)

for all u ∈ L2(X , μ), and suppose that, for fixed x, the function ex(y) = K(x, y)∗ is
itself in L2(X , μ). In this case we say, that K(x, y) is a reproducing kernel. Such
kernels were first studied systematically by N. Aronszajn in the mid-forties, see
[Aro50]. However, his work seems to have been largely forgotten about until it was
resurrected by F. Berezin.

Notice that by ex(y) = K(x, y)∗ the equation (5.1) can be written in the form

u(x) = (u, ex) (5.2)

for all u ∈ H. In other words, Π is definable by a reproducing kernel if and only if
the evaluation map u �→ u(x) is a continuous functional on H for all x ∈ X . Since
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Π is selfadjoint, we get K(x, y) = K(y, x)∗. Therefore, if u ∈ H, we can rewrite
(5.1) in the form

u(x) =

∫
X
u(y)K(y, x)∗dμ(y)

=

∫
X
(u, ey) ey(x)dμ(y)

or symbolically

u =

∫
X
(u, ey) eydμ(y). (5.3)

Moreover, taking the inner product of this equality with a function v ∈ H, we get
immediately

(u, v) =

∫
X
(u, ey) (v, ey) dμ(y). (5.4)

This formula is reminiscent of the Plancherel formula. Indeed, if {en}n=1,2,... is
an orthonormal basis of H, then just as above

u =
∞∑

n=1

(u, en) en

and

(u, v) =

∞∑
n=1

(u, en) (v, en).

Therefore, even though the functions ey are neither orthonormal nor linearly in-
dependent, one can regard them as a kind of “generalised orthonormal basis” of
H.

Suppose, in particular, that A : H → H is a bounded linear operator. The
“matrix entries” of this operator are (Aex, ey) and, if A and B are two operators,
it is easy to check that the analogue of the usual rule for matrix multiplication,
namely

(AB ex, ey) =

∫
X
(Bex, ez) (Aez, ey) dμ(z), (5.5)

is valid. (Just apply (5.4) to u = Bex and v = A∗ey.)
Following F. Berezin we will define the symbol of an operator A to be the quantity

σ(A)(y) =
(Aey, ey)

(ey, ey)
. (5.6)

Except for the normalising factor (ey, ey), the symbol σ(A) can be thought of as
the “diagonal entries” of the matrix representing A in the basis {ey}. In many
interesting situation A is determined by its symbol and (5.5) can be interpreted as
“composition formula” for symbols.

If A is a Toeplitz operator with multiplier a, then

(Aey, ey) = (Π(aey), ey) = (aey, Πey) = (aey, ey)
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since ey ∈ H. Thus, the symbol of A can be expressed in terms of a by the integral
formula

σ(A)(y) =
1

(ey, ey)

∫
X
a(x)ey(x)(ey(x))

∗dμ(x)

=
1

(ey, ey)

∫
X
|K(x, y)|2a(x)dμ(x).

The most interesting aspect of Berezin’s theory has to do with the application
of this machinery to concrete examples. One very interesting example is that of
a strongly pseudoconvex domain X in a higher-dimensional complex space. If one
takes for H the space of holomorphic functions in X of class L2(X ), the orthogonal
projection of L2(X , μ) on H is the Bergman operator, and is known to have the
reproducing property. Moreover, its kernel K(x, y) is holomorphic in x and anti-
holomorphic in y. So, if A : H → H is a bounded operator, its symbol σ(A)(x)
can, by (5.6), be extended uniquely to a function defined in a neighbourhood of
the diagonal in X × X in such a way that it is holomorphic in the first variable
and anti-holomorphic in the second variable. In fact, such an extension is given
explicitly by

(Aex, ey)

(ex, ey)
.

It is clear, therefore, that the symbol determines (Aex, ey) on a neighbourhood of
the diagonal and, by analyticity, on all of X × X . Thus, by (5.3), the symbol of A
determines A itself. The composition formula (5.5) can be made very explicit if X
is the unit ball in C

n or more generally a “homogeneous complex domain” in the
sense of Cartan.

6. Fock projection

The example we will mainly be interested in in this section is a special case of
Berezin’s theory. Let X = C

n be equipped with the Gaussian measure

dμ =
1

(2πı)n
e−|z|2dz̄ ∧ dz. (6.1)

The space of holomorphic functions on C
n which are square summable with respect

to (6.1) is called Fock space. To accord with conventional usage we will denote
it by F rather than H. Let us determine the reproducing kernel associated with
orthogonal projection of L2(Cn, μ) onto F . By ex(y) = K(x, y)∗, this amounts
to determining the functions eλ for all values λ ∈ C

n. We will do this by first
observing that∫

Cn

zkuve
−|z|2dz̄ ∧ dz =

∫
Cn

uv
(
− ∂z̄ke

−|z|2
)
dz̄ ∧ dz

=

∫
Cn

u
(
∂zkv

)
e−|z|2dz̄ ∧ dz

for all u, v ∈ F . (Since u is holomorphic, ∂z̄ku = 0.) This shows that ∂zk is the
transpose of the operator of multiplication by zk. We will use this to deduce

Lemma 6.1. The function eλ satisfies the equation

∂zkeλ = λ̄keλ. (6.2)
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Proof. If u ∈ F , then by (5.2)

(zku, eλ) = λku(λ) = λk (u, eλ) =
(
u, λ̄keλ

)
.

On the other hand,

(zku, eλ) = (u, ∂zkeλ) .

Hence, the inner product with u of the right-hand and left-hand sides of (6.2) is
the same for all u. �

The most general solution of (6.2) is of the form cλe
λ̄z, hence eλ has to be of

this form. To determine the constant cλ, note that

(eλ, eλ) = eλ(λ) = cλ e
|λ|2 . (6.3)

On the other hand,(
eλ̄z, eλ̄z

)
=

1

(2πı)n

∫
Cn

eλ̄z+λz̄−zz̄ dz̄ ∧ dz

=
e|λ|

2

(2πı)n

∫
Cn

e−|λ−z|2 dz̄ ∧ dz

=
e|λ|

2

(2πı)n

∫
Cn

e−|z|2 dz̄ ∧ dz

= e|λ|
2

.

Thus,
(
eλ̄z, eλ̄z

)
= e|λ|

2

. Combining this with (6.3) we deduce that |cλ|2 = cλ, i.e.

cλ = 1. We have thus proved that

eλ(z) = eλ̄z,

and from ex(y) = K(x, y)∗ we obtain

Theorem 6.2. The reproducing kernel associated with the “Fock projection” is
K(z, w) = ezw̄.

Let a be a bounded measurable function on C
n and let Ta : F → F be the

Toeplitz operator with multiplier a. Our next task is to compute the symbol σ(A)(y)
of Ta. As defined above,

σ(A)(λ) =
1

(eλ, eλ)

∫
Cn

|K(λ, z)|2a(z)dμ(z)

and by Theorem 6.2 the right-hand side is

e−|λ|2

(2πı)n

∫
Cn

eλ̄z+λz̄−|z|2a(z)dz̄ ∧ dz

or
1

(2πı)n

∫
Cn

e−|λ−z|2a(z) dz̄ ∧ dz.

Notice however that this is just the standard formula for the solution at time t = 1
of the heat equation on C

n = R
2n with initial data a. To wit,

σ(Ta)(λ) = (e−Δa)(λ) (6.4)

where Δ =
n∑

k=1

∂z̄k∂zk .
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7. Toeplitz operators in n dimensions

Suppose X is a compact Riemannian manifold and ΔF a Laplace operator on X
related to a Riemannian vector bundle F . From now on we write Π = Π0 for the
orthogonal projection of L2(X , F ) onto the closed subspace H = H0 which consists
of all sections u ∈ L2(X , F ) satisfying Δu = 0 weakly in the interior of X . By
the above, H is a Hilbert space with reproducing kernel and the elements of H are
actually smooth in the interior of X . This space is of infinite dimension unless X
is compact and closed.

Pick an endomorphism E of the vector bundle F . By definition, this is a family
of linear selfmaps E(x) of the fibres Fx of F parametrised by the points x ∈ X of
the base and depending smoothly on x. If the bundle F is trivial over an open set
U ⊂ X , then E can be represented by a (k × k) -matrix of smooth functions on U ,
where k is the rank of F .

Definition 7.1. By a Toeplitz operator in H with symbol E is meant the map
TE : H → H given by TEu = Π(Eu) for u ∈ H.

Obviously, if E is the identity endomorphism, then TEu = u for all u ∈ H,
i.e. TE is the identity operator on H. To study the operator algebra generated by
Toeplitz operators, the main technical tool is formula (4.2).

Lemma 7.2. Assume that E1 and E2 are bundle endomorphisms of F . Then
TE2E1 = TE2TE1 modulo compact operators on H.

Proof. By formula (4.2),

TE1 = E1 − T ∗G1TE1,
TE2 = E2 − T ∗G1TE2

whence

TE2(TE1u) =
(
E2 − T ∗G1TE2

) (
E1u− T ∗G1TE1u

)
= E2E1u− T ∗G1TE2E1u− E2T ∗G1TE1u+ T ∗G1TE2T ∗G1TE1u

= TE2E1u− TE2

(
T ∗G1TE1u

)
for all u ∈ H.

If u ∈ H then Tu = 0 and so TE1u = [T,E1]u, where [T,E1] := TE1 − E1T is
the commutator of T and E1. Since the leading symbol of T is given by a diagonal
matrix, it follows that the commutator [T,E1] is a first order differential operator
on sections of F . Hence

TE2 T ∗G1TE1 = TE2 T ∗G1[T,E1]

and so this mapping factors through the compact embeddingH1(X , F ) → L2(X , F ),
which is due to the Rellich theorem.

Summarising we conclude that TE2E1 − TE2TE1 is a compact operator on H, as
desired. �

We are now in a position to characterise those Toeplitz operators on H which
have Fredholm property. Recall that a bounded operator in Banach spaces is Fred-
holm is and only if it possess a parametrix.

Theorem 7.3. If E is a bundle isomorphism of F , then the Toeplitz operator TE

in H is Fredholm.
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Proof. Suppose E is a bundle isomorphism of F and E−1 is the inverse endomor-
phism of F . By Lemma 7.2, we get

TE−1TE = I,
TETE−1 = I

modulo compact operators onH. Hence, the Toeplitz operator TE−1 is a parametrix
of TE . �

The condition detE(x) �= 0 for all x ∈ X is clearly not necessary for the Fredholm
property of TE . In particular, if the boundary of X is empty, then H is finite
dimensional and so each linear operator in H is Fredholm and has index zero.

The problem of obtaining a general formula for the index of a Toeplitz operator
TE with Fredholm property is still open. However, if X is a bounded domain with
smooth boundary in R

n, it is to be expected that the techniques of Fedosov [Fed74]
applies to yield an analytic formula for the index.

One can also introduce more general Toeplitz operators on H which are of the
form TΨu := Π(Ψu), where Ψ ∈ Ψm

phg(X ;F ) is a polyhomogeneous pseudodifferen-
tial operator of order m ≤ 0 in sections of the vector bundle F on X . However,
this topic exceeds the scope of this paper and we refer the reader to [BdM79] and
[BG81].

8. Concluding remarks

In much the same way we may study a Toeplitz operator related to a Dirac op-
erator A in a neighbourhood of a closed bounded domain X with smooth boundary
in R

n. By this is meant any (l × k) -matrix of first order scalar partial differential
operators near X satisfying A∗A = −ΔEk up to a first-order part, where Δ is the
standard (nonpositive) Laplace operator in R

n and Ek the unit (k×k) -matrix. On
writing

A =
n∑

j=1

Aj(x)∂j

up to a zero-order part, we obtain the equations A∗
iAj + A∗

jAi = −2δi,jEk for
1 ≤ i ≤ j ≤ n, where δi,j is the Kronecker delta.

The matrices A1, . . . , An are thus generators of a noncommutative associative
algebra which is called the Clifford algebra. Clifford algebras have important ap-
plications in a variety of fields including geometry, theoretical physics and digital
image processing.

In the sequel we restrict our attention to the special Clifford algebra correspond-
ing to the case n = 4. This latter is called the algebra of quaternions and denoted
by H. To wit,

A =

⎛
⎜⎜⎝

∂1 −∂2 −∂3 −∂4
∂2 ∂1 −∂4 ∂3
∂3 ∂4 ∂1 −∂2
∂4 −∂3 ∂2 ∂1

⎞
⎟⎟⎠ .

The operator A is obviously elliptic and its fundamental solution of convolution
type is given by Φ(x) = −A∗e(x), where

e(x) =
−1

(2π)2
1

|x|2
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is the standard fundamental solution of convolution type of the Laplace operator
Δ in R

4.

Theorem 8.1. Let u0 ∈ L2(∂X ,R4). In order that there be a solution u to Au = 0
in the interior of X , which has finite order of growth at ∂X and coincides with u0

on ∂X , it is necessary and sufficient that∫
∂X

(A(ν)u0, g)y ds = 0 (8.1)

for all solutions of the formal adjoint equation A∗g = 0 near X , where ds is the
surface measure on ∂X and ν(y) the unit outward normal vector of ∂X at a point
y.

Proof. See Theorem 10.3.14 in [Tar95]. �

We denote by H the (closed) subspace of L2(∂X ,R4), consisting of all functions
u satisfying the orthogonality conditions (8.1). The elements of H can be actually
specified as solutions to Au = 0 of Hardy class H2 in the interior of X , see [Tar95,
11.2.2]. The orthogonal projectionΠ of L2(∂X ,R4) ontoH is therefore an analogue
of Szegö projection.

To specify the class of multipliers we describe all (4×4) -matrices E(x) commut-
ing with A1 = E4, A2, . . . , A4.

Lemma 8.2. A (4× 4) -matrix E of real numbers commutes with A if and only if
E is of the form

E =

⎛
⎜⎜⎝

α −β −γ −δ
β α δ −γ
γ −δ α β
δ γ −β α

⎞
⎟⎟⎠ , (8.2)

where α, β, γ and δ are arbitrary real numbers.

Proof. This is verified by straightforward calculation. �

From Lemma 8.2 it follows readily that matrices E of the form (8.2) constitute
an unital algebra. Since detE = (α2 + β2 + γ2 + δ2)2, a matrix E is invertible if
and only if E �= 0.

Let E(x) be a (4× 4) -matrix of the form (8.2) whose entries are bounded func-
tions on the boundary. By a Toeplitz operator TE with multiplier E is meant the
operator u �→ Π(Eu) in H.

To study the algebra generated by Toeplitz operators we introduce a singular
Cauchy type integral

Cu = −p.v.

∫
∂X

(A(ν)u, Φ(x− ·))yds

for x ∈ ∂X , where u ∈ L2(∂X ,R4). The principal value of the integral on the right
hand side exists for almost all x ∈ ∂X and it induces a bounded linear operator in
L2(∂X ,R4).

Lemma 8.3. The operators (1/2)I ± C are orthogonal projections on the space
L2(∂X ,R4).

Proof. This follows from the equality C2 = 1/4 I by a trivial verification, cf. for
instance [Tar06]. �
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Using Lemma 8.3 we establish a very useful formula for the projectionΠ, namely,
Π = (1/2)I + C. Thus,

TE1 = (1/2)E1 + CE1,
TE2 = (1/2)E2 + CE2,

and so
TE2TE1 = TE2E1 − [C, E2]

(
(1/2)E1 − CE1

)
. (8.3)

Lemma 8.4. Assume that E1 and E2 are (4× 4) -matrices of smooth functions on
∂X . Then TE2E1 = TE2TE1 modulo compact operators on H.

Proof. If a (4 × 4) -matrix E commutes with A, it is of the form (8.2), and so the
adjoint matrix E∗ has the same form. Hence it follows that E∗ commutes with A,
and so E commutes with the adjoint A∗, too. Now an elementary analysis shows
readily that

C(Eu)(x) = −p.v.

∫
∂X

E(y)Φ(x− y)A(ν(y))u(y)ds

= E(Cu)(x) +
∫
∂X

(A(ν(y))(E(x)− E(y))u, Φ(x− y))yds

holds almost everywhere on the boundary for all u ∈ L2(∂X ,R4). In particular, if
u ∈ H, then

C(Eu)(x) = (1/2) (Eu)(x) +

∫
∂X

(A(ν(y))(E(x)− E(y))u, Φ(x− y))yds

for almost all x ∈ ∂X . From these two equalities we conclude that the remainder
[C, E2]

(
(1/2)E1 − CE1

)
in (8.3) is a pseudodifferential operator of order −2 on the

surface ∂X . �
Lemma 8.4 allows one to develop the Fredholm theory of Toeplitz operators with

multipliers of the form (8.2) in just the same way as in Section 7.
One deduces from the proof of Lemma 8.4 that TE2E1 = TE2TE1 holds actually

up to trace operators, if n ≤ 2. Hence, the results of [HH75] apply to evaluate the
index of Fredholm Toeplitz operators with multipliers of the form (8.2) in the case
n ≥ 2.
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