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Definitions

Scale out: To scale out (scale horizontally) is to add more nodes to the

system. An example might be adding more web instances to web tier.

Scale up: To scale up (scale vertically) is to add resources to the same node

in a system. An example might be to add more physical memory (i.e., RAM) to

a database node.

Scale down: To scale down is to release some acquired resources, either by

releasing some nodes or by removing some of the node’s resources.

Scalable architecture: It is an architecture enables the Internet application

to scale rapidly, automatically, and transparently.

Service Level Agreement (SLA): SLA is an agreement outlining a specific

service commitment made between contract parties – a service provider and its

customer. The agreement describes the overall service, support details, finan-

cial aspects of service delivery, penalties, terms and conditions, and performance

metrics that govern service delivery.

Service Level Objective (SLO): SLO is specific measurable characteristic

of the SLA such as availability, throughput, response time, or quality. An example

of response time as an objective is: ”95% of the requests to an Internet application

should be answered in less than 100 milliseconds measured over 24 hours”.

On premises infrastructure: It is an infrastructure hosted in the facility

of an organization, such as a university datacenter hosted within the university

buildings.

Off premises infrastructure: It is an infrastructure hosted in the facility

of another organization, such as the public cloud provided by Amazon EC2.
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Abstract

Cloud computing is a model for enabling on-demand access to a shared

pool of computing resources. With virtually limitless on-demand re-

sources, cloud environments enable the hosted Internet applications

to quickly cope with the spikes in workload. However, the overhead

caused by the dynamic resource provisioning exposes the Internet ap-

plications to periods of under-provisioning and performance degrada-

tion. Moreover, the performance interference, due to the consolidation

in cloud environments, complicates the performance management of

Internet applications.

In this dissertation, we propose two approaches to mitigate the im-

pact of the resource provisioning overhead. The first approach em-

ploys control theory to scale resources vertically and cope fast with

workload. This approach assumes that the provider has knowledge

and control over the platform running in the virtual machines (VMs),

which limits it to Platform as a Service (PaaS) and Software as a Ser-

vice (SaaS) models. The second approach is a customer-oriented one

that deals with the horizontal scalability in an Infrastructure as a Ser-

vice (IaaS) model. It addresses the trade-off problem between cost and

performance with a multi-goal optimization solution. This approach

finds the scale thresholds that achieve the highest performance with

the lowest increase in the cost. Moreover, the second approach em-

ploys a proposed time series forecasting algorithm to scale the appli-

cation proactively and avoid under-utilization periods. Furthermore,

to mitigate the interference impact on the Internet application per-

formance, we developed a system which finds and eliminates the VMs

suffering from performance interference. The developed system is a

light-weight solution that does not imply provider involvement.



To evaluate our approaches and the designed algorithms at large-scale

level, we developed a simulator called (ScaleSim). In the simulator,

we implemented scalability components acting as the scalability com-

ponents of Amazon EC2. The current scalability implementation in

Amazon EC2 is used as a reference point for evaluating the improve-

ment in the scalable application performance. ScaleSim is fed with

realistic models of the RUBiS benchmark extracted from the real en-

vironment. The workload is generated from the access logs of the

official website of 1998 world cup. The results show that optimizing

the scalability thresholds and adopting proactive scalability can mit-

igate 88% of the resources provisioning overhead impact with only a

9% increase in the cost.
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Chapter 1

Introduction

Internet applications’ usage is crucial part of everybody’s cyber life. Whether

provided as profit (e.g., online retailer) or non-profit services (e.g., Wikipedia),

Internet applications are likely to be delivered with a high quality of service

(QoS). The workload of an Internet application varies according to the time of

the day and rises sharply on occasions. For example, an online retailer faces

a daily cyclical workload variation and high spikes at special occasions such as

Christmas. On the other hand, a video games discussion forum endures a cyclical

workload variation, but experiences spikes of workload with each release of a new

game, which is hard to predict. In fact, these applications are exist even before

the cloud computing emergence. However, the cloud infrastructure provides an

elastic environment for these applications to scale up and down according to

workload variation.

With virtually limitless on-demand resources, cloud computing offers a scal-

able and fault tolerant environments that enable applications to handle workload

variations. In current cloud computing environments, scalability and performance

management of an Internet application running in Software as a Service (SaaS)

model or in Platform as a Service (PaaS) model are the provider’s responsibility.

On the other hand, scalability and performance management of an Internet appli-

cation running in the Infrastructure as a Service (IaaS) model is the customer’s

responsibility. Therefore, we concentrate our research on Internet applications

hosted in IaaS environment.

1



1. Introduction

1.1 Motivation

Cloud computing is a model enabling the Internet application to cope rapidly

with workload variations. Nevertheless, provisioning resources in the cloud im-

plies an overhead. The overhead can lead to periods of over-utilization that

degrade the performance [76]. Moreover, due to workload consolidation in cloud

infrastructures, the performance of an Internet application can be influenced by

other co-located applications [74] [100] [108] [44].

1.2 Internet Application Performance Manage-

ment Challenges

In this section, we explain several challenges confronting managing the perfor-

mance of Internet applications. Dealing with these challenges properly is neces-

sary for maintaining a high QoS.

1.2.1 Complex Resource to Performance Mapping

Modeling the relationship between computing system resources, such as the CPU

utilization, and the system performance metrics, such as the response time, is

important to manage a system performance dynamically. In mechanical systems,

control theory is efficiently used for modeling systems, while the relation between

a mechanical system input and output is governed by physical laws (e.g., Newton’s

law). In computing systems, the relationship between the system inputs and

the system outputs is not clearly defined [47]. Moreover, some models, such as

CPU utilization, show a bimodal behavior according to request rate and CPU

entitlement [114]. Also, the rapid development and the diversity of Internet

applications make it inappropriate to set a uniform threshold as an indicator for

abnormal performance [90], as we explain empirically in Section 6.1.

2



1. Introduction

1.2.2 Complexity of Multi-tier Systems

Typically, an Internet application is implemented as a multi-tier system. The

multi-tier system provides a flexible, scalable, and modular approach for design-

ing Internet applications. Each tier in the multi-tier system provides certain

functionality. Nevertheless, the inter-tier’s dependency propagates the perfor-

mance degradation in one tier to the whole system. Moreover, some tiers employ

replication and caching, which makes understanding the system behavior and

managing the performance a non-trivial task [103].

1.2.3 Overhead of Resource Allocation

The overhead of resource allocation is a problem associated with Internet appli-

cations hosted in IaaS environment. Part of the overhead is attributed to the

provider [76], where a complex management process is taken with each request

for a new VM. According to Mao et al. [76], the initialization time of a VM in

the cloud depends on many parameters including the provider, the location, the

operating system, and the VM type. Another part of the overhead is attributed

to the client’s setup, which is controllable, as we explain in Section 5.2.1. Practi-

cally, the overhead of initializing computation power resources results in periods

of resource over-utilization that hurt the application performance. A proactive

scaling algorithm that predicts the coming workload and provision the resources

in advance can help mitigating the QoS degradation, as we explain in Chapter 7.

1.2.4 Highly Variable Workloads

The workload of Internet applications varies dynamically over multiple periods of

time. A period of a sudden increase in workload can lead to overloading resources

when the volume of the workload exceeds the capacity of available resources. The

length of overload periods increases proportionally with the overhead of resources

provisioning. During overload periods, the response time may grow to very high

levels where the service is degraded or totally denied. In production environments,

such behavior is harmful for the reputation of Internet application providers.

3



1. Introduction

1.2.5 Large-scale Management

Managing resources at large-scale in both public and private clouds is quite chal-

lenging. Many approaches developed towards managing Internet applications’

performance are prototypes implemented at small-scale controlled environments.

However, it is not necessarily that these approaches will work well at large-scale

production environments. Moreover, the enormous number of the hosted VMs

and the possible combinations of the hosted software within each VM make it

hard or even impossible for the IaaS provider to maintain the performance of

individual customers’ applications.

To ease the resource management at a very large-scale infrastructure, some

providers (e.g., Amazon EC2) apply a one-to-one mapping between virtual and

physical CPU and memory resources [52]. In other words, the large-scale public

cloud providers may sacrifice exploiting higher levels of utilization, looking for a

better isolation and a feasible management tactic.

In the private cloud, resource management solutions like VMware DRS [5] and

Microsoft PRO [2] lead to better performance isolation and higher utilization of

hardware resources [52]. Nevertheless, according to Gulati et al. [52], during

prototyping and evaluating a scaled version of VMware DRS, they realized the

complexity of managing cloud-scale systems. As a team responsible for VMware

DRS shipment, Gulati et al. [52] believe that increasing the consolidation ratio

and improving the performance isolation at a large-scale (i.e., cloud-scale) still in

need for more research.

1.2.6 Performance Interference

Performance interference in the cloud is a problem inherited from the virtual-

ization technology [70] [78] [64] [53]. The contention for shared resources (e.g.,

memory bus and I/O devices) exposes the performance of competing VMs to

degradation. Unfortunately, the contention for resources is typically hidden and

cannot be measured by the conventional monitoring metrics provided by cloud

providers. However, it can lead to unpredictable increase in the response time

of Internet applications [89] [74]. Currently, the typical SLA of an IaaS provider

describes only the annual up time of VM instances, but it does not discuss the

4



1. Introduction

potential performance degradation caused by performance interference.

1.3 Research Questions

During our research, we investigate a set of questions that construct this disser-

tation storyline. The questions are:

1. What is a scalable application? How to build an Internet application scaling

efficiently?

2. Virtualization technology provides dynamic management of resources. What

is the possibility of exploiting that for maintaining Internet applications’

performance?

3. What about the current implementation of the scalability in public IaaS

environments? Is it efficient? Is there a way to improve it?

4. Performance interference is common in public IaaS environments. How to

discover and avoid that?

1.4 Contributions, Assumptions, and Research

Methodology

Towards an efficient scalability and performance management of an Internet ap-

plication in cloud environments, we address the challenges mentioned in Section

1.2. At the beginning of our research, we exploit the control theory and the de-

velopment of virtualization technologies to scale resources rapidly. Using control

theory to scale resources vertically was a trend in the years between 2005 and

2009 [114] [123] [88] [113] [56]. The idea depends on redistributing the physi-

cal host resources dynamically (i.e., scale vertically) among the hosted VMs and

scaling up overloaded VMs on account of the VMs with a low workload. The

vertical scalability shows efficiency for maintaining Internet application perfor-

mance. Nevertheless, it carries out complex management task to the provider,

which makes it infeasible for large-scale environments.
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Keeping in mind the fact that the cloud provider already deals with many

complex management tasks, we start investigating customer-oriented solutions

that do not imply the provider involvement in the performance management of

Internet applications. We assume that the provider does its part by providing

the possible, but not the best, performance isolation nowadays. We also assume

that the customer is aware of his/her application performance thresholds and

requirements. On the light of these assumptions, we direct our research towards

understanding the available scalability components and finding the optimal con-

figurations that maintain the performance of an Internet application. Moreover,

we suggest proactive scalability to mitigate the impact of the overhead of re-

sources provisioning on an Internet application performance. In our approach,

we consider the trade-off between the performance and the cost as an optimization

problem. Finally, to avoid the performance interference in public infrastructure

we designed a system that detects and replaces the contended VMs automatically.

Our research depends on both physical and simulation environments for im-

plementing and validating our contributions. We use the physical environment for

modeling the performance of Internet applications, and then feeding these mod-

els to simulation environment. In our simulation environment (ScaleSim), we

examine running Internet applications at large-scale, where we can examine the

efficiency of our designed algorithm. The results show that optimizing scalability

thresholds and adopting proactive scalability can mitigate 88% of the impact of

resource provisioning overhead with only 9% increase in the cost. The results are

promising, while we propose a customer-oriented solution applicable for current

IaaS environments.

1.5 Dissertation Organization

• In Chapter 2, we present the development of Internet application hosting

during the last decade.

• In Chapter 3, we summarize the research done towards maintaining the per-

formance of Internet applications and express our research position among

the related work.
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• In Chapter 4, we investigate employing vertical scalability in the cloud to

offer an agile scalability for Internet applications.

• In Chapter 5, we investigate the facts that can degrade the performance of

an Internet application hosted in IaaS model.

• In Chapter 6, we model the performance of an Internet application at phys-

ical environment, and then run a large-scale simulation to evaluate current

reactive scalability of Internet applications in the IaaS model.

• In Chapter 7, we study improving the current reactive scalability by tuning

the scalability parameters. It is followed by the design and the evaluation

of our proactive scalability.

• In Chapter 8, we study the possibility of degrading the performance of an

Internet application due to contention on resources by other applications

hosted in the public cloud. We build a system to detect and eliminate

contentions in IaaS environments.
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Chapter 2

Foundations

In this chapter, we review the concepts and technologies that contribute to the

emergence of cloud computing as a paradigm enabling a rapid scalability for

Internet applications. The chapter starts by defining the Internet application,

then in Section 2.2, we explain the typical design of a scalable Internet application.

In Section 2.3 we explain the service level agreement (SLA) in general, and then

we explain what we mean by it in this dissertation. Section 2.4 presents the

Internet application hosting development before the cloud computing emergence.

Finally, in Section 2.5, we briefly introduce the cloud computing and explain what

it offers for Internet applications.

2.1 Internet Applications

An Internet application, sometimes called an Internet service [102] [62], is an

application accessed over the Internet. Internet applications can be separated

into many types including: online media (e.g., news websites), online informa-

tion search, online communities (e.g., social websites, blogs, and forums), online

communications (e.g., emails and instance messaging), online education, online

entertainment (e.g., online gaming), and e-business (e.g., online retailing and

online auctions).

Typically, Internet applications are hosted on many servers which simulta-

neously provide services to a large number of users. The simplicity of updating
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and managing Internet applications compared with desktop application is the key

reason for Internet applications popularity. Web-based applications, which are

accessed by web browsers, are popular type of Internet applications. However,

not all Internet applications are web-based. For example, online games and me-

dia streaming can be accessed by software client that is downloaded and run at

the client side. However, in this dissertation, we concentrate on the web-based

Internet applications.

Last decade has witnessed moving many applications that are known to be

desktop applications, such as document management and spreadsheets, into the

Software as a Service (SaaS) model, which also increases the number of Internet

applications. We are increasingly dependent on the Internet applications for both

our personal and business affairs.

The parties that are involved in an Internet application hosting, management,

and usage can be defined as follows:

• Internet application’s user: An Internet application’s user can interact

with the Internet application through a web browser. The interaction may

include browsing, submitting text, or uploading files.

• Internet application’s provider: Typically, an Internet application’s

provider is a company or organization that runs an Internet application

for profit purposes, such as on-line retails, or non-profit purposes, such as

Wikipedia. In this dissertation, we assume that the Internet application is

hosted in the cloud infrastructure, therefore, we refer to the owner as the

cloud customer.

• Cloud provider: A cloud provider is the company that offers the Infras-

tructure and the tools for the cloud customers to host and maintain the

performance of their applications in the cloud environment (e.g., Amazon

EC2 [12]).

2.2 Multi-tier Systems

A multi-tier architecture provides a flexible, scalable, and modular approach for

designing Internet applications. As seen in Figure 2.1, the system is divided
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into multiple tiers. Each tier does a certain function. For instance, the web tier

consists of web servers that respond to users requests and render the results into

a format understandable by clients’ browsers. Application tier consists of servers

running the business logic of the Internet application. Finally, the database

tier stores the incoming data persistently and also offers it to the other tiers on

request.

Multi-tier Enterprise Applications 

Application  
users 

Primary  
load-balancer 

VM1 

VMn 

VM1 

VMn 

VM1 

VMn 

Secondary load-balancers 

Web tier App tier Database tier 

Figure 2.1: A typical multi-tier architecture

The type of the incoming request determines the participating tiers in the

request processing. For example, a request for a static page can be handled only

by the web tier. On the other hand, a search for items in an online retailer store

results in interactions between all tiers.

Typically, each tier is hosted on one or more physical machines (replicas) that

are running the same copy of software. To balance the workload among these

machines, each tier hosts a load-balancer. The load-balancer redirects the in-

coming traffic to the proper machine considering the current utilization of each

machine and the active sessions. The database tier can also be scaled out into

several nodes using Master/Slave architecture, where a Master node receives up-

dating request and the other Slaves handling only the read requests. Splitting

the requests according their type can be done by a load-balancer at database tier.

Before the emergence of cloud computing, scaling a multi-tier system is con-
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ducted by adding more physical replicas to the overloaded tier, which is a time

consuming process. The emergence of cloud computing models, specifically the

IaaS model, enables provisioning more VM instances rapidly on-demand. Provi-

sioned instances are charged based-on pay-as-you-go concept, which exploits the

chance for reducing the cost.

The traffic of an Internet application is usually session-based, where a session

consists of a sequence of requests issued by a client with thinking times in between.

The session is often stateful, which makes it necessary to serve a session by the

same server during all the session life-time. The load-balancer can guarantee that

using ”sticky session” (a.k.a. ”session affinity”). Nevertheless, ”sticky sessions”

can result in unbalanced workload on replica servers. Moreover, terminating an

instance dynamically will lead to losing the sessions directed to it. This may

flush a user’s shopping cart or require several logins, as examples. To solve this

problem, the application should be modified to store the session context in a

shared location accessible by all replicas (e.g., a database or a shared cache such

as ”memcached”1).

2.3 Service Level Agreement (SLA)

The SLA is a contract between a service provider and its customers. The SLA con-

sists of one or more service-level objectives (SLOs). In some contracts, penalties

may be agreed upon in case of non-compliance to the SLA. In this dissertation,

we deal with two providers: First, the cloud provider. Second, the Internet ap-

plication provider hosting the application in the cloud environment. The SLA

between the cloud provider and the Internet application provider is out of the

scope of this dissertation. We consider only the SLA of the Internet application

provider, and specifically the response time as a quality of service (QoS) metric.

An example of a SLO in this dissertation is: ”The response time of 95% of the

requests to an Internet application should be no longer than 100 milliseconds”.

As seen, the SLO consists of three parts: QoS metric (e.g., response time), the

bound (e.g., 100 milliseconds), and a relational operator (e.g., no longer than).

1 http://www.memcached.org/
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2.4 Internet Applications’ Hosting

2.4.1 Models of Hosting

Before the cloud emergence, according to the intended level of QoS and security,

there were two models of hosting:

1. Dedicated Hosting: In the dedicated hosting service, the customer leases

one or more servers for hosting an Internet application. The servers are

managed and maintained by administrators of the hosting service. However,

the client has full control over the servers. The dedicated hosting is often

used for Internet applications demanding a high security or QoS.

2. Shared Hosting: The shared hosting allows many customers to share

same physical servers. However, each customer has a control panel that

enables an access to the controlled resources. For example, through the

control panel, the customer can upload the files to his own folder in the

shared web server. Similarly, the customer can create one or more database

instances in the shared database server. The shared hosting is a suitable

model for small Internet applications that have a small budget and endure

QoS degradation.

Both models are hosted in data centers that are administrated by highly

qualified engineers.

2.4.2 Data Centers

A data center is a facility housing computing, communication, and storage equip-

ments. It is maintained by an organization to handle the core business and opera-

tional data of the organization. The size and the location of a data center depend

mainly on its function. For example, a data center hosted within a university is

relatively small compared with data centers of a big corporation spanning many

continents. However, in all cases, a data center should have the following char-

acteristics:

1. The hosted applications in data center should be 24/7 accessible.
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2. The equipments of the data center should be reliable and fault-tolerant,

which implies replicating the equipments and finding more reliable but prob-

ably more expensive hardware.

3. The data center should be physically secured, which requires a restricted

access to the facility and equipments. This can be implemented using elec-

tronic access cards, video cameras, finger print recognition, etc.

4. The data center should be operated by experts who are equipped with the

required tools and monitoring software.

5. The data center should be designed in a way enabling the scalability.

As a matter of fact, the cost for building and managing a data center with a

high availability can exceed the budget of small to medium organizations. There-

fore, many companies investing in building data centers that offer hosting plat-

forms for customers. Hosting platforms enable emerging companies to focus on

the core of their business rather than building and managing a hosting platform

[102].

Recently, there is a trend towards moving data centers to geographical spots

having plenty of renewable resources [8]. This move can contribute to CO2 emis-

sion reduction. For quick deployment, modular data centers, typically shipped

as containers, became available in the market by big providers such Cisco Sys-

tems, Sun Microsystems, IBM, HP, and Google [25]. These modular data centers

provide efficient consumption of power and are a reliable solution against natural

disasters.

2.4.3 Virtualization Technologies

Virtualization is one of the key enabling-technologies for cloud computing. The

goal of virtualization is to improve utilization, enable fault-tolerance, and ease

administration. The last few years have witnessed rapid migration to virtualized

infrastructures. Statistics shows that by the end of 2011, 50% of server appli-

cations run on virtual rather than on physical infrastructure 1. This number

1Announced by Paul Maritz, CEO of VMware, at the VMworld 2011 conference
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increases to 80% in Australia and New Zealand1, and we are moving towards

infrastructures that are completely virtualized 2.

Definition and Categories: In computing terminology, virtualization means

the creation of a virtual, rather than actual, version of resources. The virtualized

resources can be accessed by operating systems, applications, devices, or even by

human users. Resource virtualization can be categorized into storage, servers,

and operating systems virtualization:

1. Storage virtualization: It maps several network storage devices into one

single logical resource, which allows transparent provisioning of storage ca-

pacity and simplifies data mobility and management.

2. Server virtualization: It partitions physical server (host) resources such as

CPU, storage, memory, and I/O devices among many smaller virtual servers

(guests). This can be done using a virtual machine monitor (VMM) layer

(a.k.a, a hypervisor) running between the operating system of each guest

and the hardware, as seen in Figure 2.2 and Figure 2.3.

3. Operating system virtualization: It offers an abstraction of operating sys-

tem resources using a virtualization layer that does not run directly on the

hardware, but on top of an operating system running on the hardware. Ex-

amples of such products are Oracle VM VirtualBox, VMware workstation,

and Parallels workstation. In our research, we do not consider operat-

ing system virtualization while it implies a higher overhead compared with

server virtualization. Due to the overhead, operating system virtualization

can be more suitable for applications development and testing but not for

production environments.

Virtualization techniques: Server virtualization has been developed rapidly

during the last few years. The competition for improving virtualization perfor-

mance is not limited to virtualization technology software developers (e.g., Xen

1Announced by Raghu Raman, senior VP & GM, cloud infrastructure & management at
VMware

2Dr. Pradeep Padala, VMware, http://ga.soe.ucsc.edu/events/event/193
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and VMware) but also extended to hardware companies (e.g., Intel and AMD),

which implement virtualization’s support to the hardware level.

Before discussing the virtualization types, we review the rings concept as a

way to manage the access level of operating systems and applications to the

computer hardware. In x86 architecture, there are four level of privileges known

as Ring 0, 1, 2, and 3. The ring 0 has the highest privilege, where the operating

system runs. On the other hand, applications run in the lowest privileges rings

(typically, ring 3). Understanding the rings concept is necessary for realizing the

difference in performance between the virtualization techniques.

1-Paravirtualization: The Paravirtualization (PV) is a virtualization tech-

nique developed by Xen [20], which is an open source project started at Cam-

bridge University laboratories. Xen hypervisor runs a thin privileged domain

(i.e., dom0) at Ring 0. It is the only domain that has access to hardware. There-

fore, it is used to manage the hypervisor and the other domains. Beside dom0

runs user domains, where the user can host the applications. A user domain (i.e.,

domU) is a VM running at Ring 1, with a modified operating system (OS) and

special drivers. DomU is modified to use special hypercalls. Hypercalls provide a

communication channel between the hypervisor and the guest operating system

through front-end and back-end drivers, as shown in Figure 2.2.

The hypercalls enable the guest OS to perform at near-native speed, which

makes PV technique outperform the other virtualization techniques for some

workloads [20]. Nevertheless, PV implies modifying the guest OS, which makes

it impossible to host unmodified operating systems, such as Microsoft Windows.

Currently, Paravirtualization is used by both Xen and VMware.

2-Full-virtualization without hardware assist: Full-virtualization is de-

veloped to allow unmodified OS to run in virtualized environment. In full-

virtualization, the hosted OS is decoupled from the underlying hardware. To

execute binary transactions by OS guest on hardware, the hypervisor intercepts

instructions done in unprivileged level (Ring 1) by unmodified OS and run them

in privileged level (i.e., Ring 0). The OS guest is not aware that it is being

virtualized while it executes privileged operations as if it is running in Ring 0.

Practically, full-virtualization allows hosting unmodified OS such as Microsoft

Windows, but at the same time the online interception and translation of operat-
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Host Hardware 

Hypervisor 

Control domain 
(dom0) 

Guest VM #1 
(domU) 

Apps 

Modified 
Guest OS 

PV Front-end 
PV Back-end 

HW Drivers 

Guest VM #n 
(domU) 

Apps 

Modified 
Guest OS 

PV Front-end 

Ring 3 

Ring 1 

Ring 0 

Ring 0 

Figure 2.2: A machine running Xen hypervisor. It is an example for a paravirtu-
alized architecture
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Figure 2.3: Full-virtualization

ing system instructions add more workload to the hypervisor. Consequently, the

performance of some applications, especially input/output intensive applications,

can be degraded using full-virtualization without hardware assistance. Currently,

this type of full-virtualization is supported by VMware, Microsoft, and Parallels1.

1VMware. Understanding full virtualization, paravirtualization, and hardware assist;
http://www.vmware.com/files/pdf/VMware paravirtualization.pdf
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3-Full-virtualization with hardware assist: In the mid 2000s, many hard-

ware providers implemented virtualization support at the hardware level. Intel

and AMD implemented extensions to their CPUs called Intel VT and AMD-V,

respectively. Sun Microsystems (now Oracle) also added similar extensions to

their UltraSPARC T-Series processors.

The new processors supporting virtualization introduce an additional privilege

mode (Ring 1) below Ring 0, which allows the unmodified guest OS to run in Ring

0. A direct run of guest OS in Ring 0 mitigates the underlying overhead in full-

virtualization technique. Full-virtualization with hardware assist is supported by

VMware, Xen, Microsoft (Microsoft Hyper-V), and Parallels.

2.4.4 Virtualized Data Centers

A virtualized data center is a data center adopting virtualization technology.

Statistics by International Data Corporation (IDC) showed that the number of

servers in USA alone jumped from 2.6 million in 1997 to 11.8 million in 2007. Most

of those servers run at 15% or less of the total capacity of the physical machine

[50]. Virtualized data centers emergence is a legitimate outcome of the increase

in the number of servers and the need for more efficient resource management

solutions. However, the number of the VM instances increases proportionally to

the number of the physical servers. As the number of VM instances increases,

efficient management solutions become a necessity for virtualized infrastructure

providers’ success.

As a matter of fact, virtualization technologies add many advantages to data

centers. We summarize them as follows:

1. Compatibility: in virtualized data centers, different applications with dif-

ferent platforms and libraries can be hosted on one physical host, each

application runs in isolated VMs.

2. Easy management: virtualization technology come with a number of tools

that simplify monitoring and management of virtualized resources. More-

over, many of the virtualization technology providers have developed APIs

that allow virtualization technology users to build their controllers and au-

tomate resource management.
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3. Increase revenue: the possibility of consolidating several servers (i.e., VMs)

into one physical host can also raise server utilization rates to as high as

80 percent1. Consolidation enables data center providers (i.e., hosting plat-

forms) to pack the virtual servers with low workload into a lower number

of physical servers. In consequence, the power consumption by both the

physical servers and the cooling systems can be reduced.

4. Fault tolerance: A failed machine can be recovered quickly form a VM

image or from a snapshot.

5. Adaptability: The allocated resources to a VM can be dynamically changed

to cope with the demand. For example, if the system administrator recog-

nizes that a database VM requires more memory, he/she can reconfigure

the VM’s memory settings without replacing the physical server. More-

over, if a physical server is unable to satisfy a VM’s demand, the VM can

be migrated to another server with adequate resources.

While virtualization offers many benefits for data centers, security and per-

formance are the main challenges in virtualized environments. In a former study,

we investigated the potential challenges of using virtualization [43]. Moreover,

we examined the security of Xen 3.x in [58] and offered suggestions for avoid-

ing possible threats. Nevertheless, in this dissertation, we focus on application

performance.

2.5 Cloud Computing

Cloud computing is a natural outcome of the rapid development of many foun-

dation technologies especially virtualization, networking, storage, multi-tenant

architectures, and distributed systems management [28]. The quick adoption of

the cloud is driven by the invented service consumption models and delivery mod-

els that support a rapid business development [50]. However, cloud computing

lasted as a buzzword for the last few years. The National Institute of Stan-

dards and Technology’s (NIST), after 15 drafts, published their final definition

1http://www-03.ibm.com/systems/virtualization/news/view/vdc.html
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of cloud computing as follows: ”Cloud computing is a model for enabling ubiq-

uitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort

or service provider interaction. This cloud model is composed of five essential

characteristics, three service models, and four deployment models” [79].

The five essential characteristics of the cloud, according to NIST, are as fol-

lows:

1. On-demand self-service: On-demand self-service is an essential charac-

teristic of cloud computing. It allows cloud computing users to provision

computing power, storage, and networks in a simple and flexible way. For

this purpose, cloud providers offer dashboards that authorize the users to

control their resource provisioning. Also, resources can be managed through

Applications Interfaces (APIs) that allows automating resources manage-

ment without human interaction. Utility computing and pay-per-use sub-

scription models are associated with on-demand characteristic. Rather than

paying for owning an infrastructure, users are billed only for the period of

time they consume resources in an infrastructure owned and maintained by

a provider.

2. Broad network access: Provisioning resources in the cloud to host ap-

plications implies accessing these applications through the Internet by a

vast number of clients. To offer a high QoS for all clients, cloud providers

should have standardized network connections that have large enough ca-

pacity coping with the increase in the number of hosted applications and

clients.

3. Resource pooling: A resource pool is a collection of unassigned resources

(e.g., CPU, Memory and Network) that are available to different users and

applications. The resources are assigned to the cloud user upon request.

The exact location of the resource is not revealed to the customer. However,

the customer can specify the location at a higher level (i.e., country and

data center).
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4. Rapid elasticity: Elasticity is the ability of scaling up and down resources

to cope with the demand. Elasticity is very important for nowadays Internet

applications, where predicting the coming workload became more difficult

due to the social networks emergence that increases the probability of flash

crowds. The size of the resource pools in public clouds is unlimited theoret-

ically. However, cloud customers should build their applications in a proper

way to benefit from the cloud elasticity.

5. Measured service: From the provider side, a detailed monitoring for

cloud resources is crucial for capacity planning, resource optimization, and

billing. From customers side, monitoring provisioned resources is crucial

for performance management and resource provisioning optimization. In

all cases, the monitoring should be light-weight to avoid influencing the

hosted applications performance.

2.5.1 Cloud Computing Delivery Models

Cloud computing services are classified into three abstracted delivery models

(layers) [79] [28]: Software as a Service (SaaS), Platform as a Service (PaaS)

and Infrastructure as a Service (IaaS). These abstracted delivery models can be

composed from services of the underlying layers [28]. For example, PaaS layer

can be a platform hosted on several VMs running in IaaS layer. However, as seen

in Figure 2.4, Lamia et al. [118] shows that the two highest levels in the cloud

stack (i.e., SaaS and PaaS layers) can bypass the IaaS for better performance.

Nevertheless, this comes at the cost of simplicity and development efforts.

The details of the basic three service models are as the following:

• Software as a Service (SaaS): The SaaS is a delivery model for many

applications ranging from very specialist business applications, such as in-

voicing, customer relationship management (CRM), and human resource

management (HRM) to web-based applications that can be accessible by

any Internet’ users, such as web-based email and web-based office suites.

The principal point for a company to move to SaaS applications is to concen-

trate more on the business design than IT support by outsourcing hardware
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SaaS 
(e.g., Google Apps, Salesforce CRM, and Video processing)   

PaaS  
(e.g., Google App Engine  and Salesforce Apex System)   

 

Physical Infrastructure 

Software Kernel 

IaaS 
(e.g., Amazon EC2, GoGrid, and Windows Azure) 

Figure 2.4: Cloud computing delivery models’ stack [118]

and software maintenance and support to the SaaS provider. Nevertheless,

SaaS providers offer their customers dashboards that allow managing and

customizing the SaaS applications to suit their needs.

• Platform as a Service (PaaS) The PaaS is a delivery model for many

platforms such as programming languages execution environments, databases

as a service, and web hosting platforms. PaaS customers need not to worry

about the complexity of managing and operating the underlying hardware

and software layers. The scalability and performance management is the

provider’s job. However, some PaaS providers ask the customers to config-

ure some parameters that help maintaining the performance. For example,

Google app engine ask the customer to select the front-end instance class

from three different classes of instances, each class has different CPU fre-

quency and Memory size. Moreover, it enables the customer to predict the

number of required instances. This number helps the provider to prepare

VM images in advance and avoid the delay of copying the code when a new

instance is needed.

• Infrastructure as a Service (IaaS) The computation power in IaaS

model is often delivered as virtual machines running in the provider cloud
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infrastructure. According to the hosted application and the expected work-

load, the customer can decide about the operating system and the virtual

machine capacity specifications, respectively. Additional resources are of-

fered to IaaS customers such as virtual machine images library, monitoring

services, block and file-based storage, IP addresses, virtual network, load-

balancers, and firewalls [17]. In IaaS models, the customers are free to install

the platform and the software, but on the other hand they are responsible

for patching, securing, updating, and maintaining the performance of the

operating system, the platform, and the application.

As seen in Figure 2.4, the three models are built on top of software layer

called ”Software Kernel” [118]. This software layer is necessary to manage the

physical servers and components at physical infrastructure layer; it can be for

example a hypervisor, clustering middleware, or scalability controllers that scale

applications at PaaS and SaaS layers.

2.5.2 Cloud Computing Deployment Models

According to the organization size, location, and the purpose of operating com-

putational resources, cloud services can be deployed in different ways, namely

private, community, public, or hybrid.

• Private cloud: A private cloud typically deployed to be used by a single

organization. However, it can be hosted on-premises (i.e., within the or-

ganization itself) or by a third party. The capacity of the private cloud is

known contrary to the public cloud capacity. Nevertheless, private cloud

offers more privacy, control on resources, and guaranteed performance.

• Community cloud: A community cloud typically serves organizations

that have the same interest and concerns. For example, different research

or educational organizations can federate their private clouds to have one

community cloud that is available to every organization in the community.

The cloud can be managed and operated by one or more of the organizations

in the community.
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• Public cloud: A public cloud is deployed to be used by public users.

It is typically owned and operated by business, academic, or governmental

organization. It is hosted on the premises of the provider but can span many

geographical locations. Public clouds owned by business organizations offer

an attractive environment for the emerging business.

• Hybrid cloud: The hybrid model of cloud deployment helps the organi-

zations that already have their own infrastructure (e.g., private cloud) but

approach occasional spikes in demand. Such organizations can keep using

their secure and full controlled infrastructure, and in the same time benefit

from pay-per-use concept of the public cloud.

2.5.3 Cloud Computing Advantages

In this section we list some of the advantages of hosting an Internet application

in the cloud.

• Reduction of the cost: Customers can avoid spending large amounts of

their budget on purchasing and installing an IT infrastructure by moving to

the cloud. Administration cost also can be reduced while the cloud provider

is responsible for managing, patching, and upgrading both the software

and hardware systems. Cloud computing paradigm allows customers to

focus on business management and development instead of human resource

management and training. From the provider side, the huge number of

customers increases the possibility of consolidating much workload to less

physical hardware. The consolidation reduces the expenses of the provider

and allows it to offer lower price services.

• Scalability on-demand: Scalability, a highly valuable characteristic in

cloud environments, enables customers to react quickly to IT needs. More-

over, the on-demand model, in which the costs are based on the actual

consumption, allows the customers to benefit from the scalability while op-

timizing the cost.

• Disaster recovery/backup: Public clouds are developed to serve global

business. Therefore, data centers of a public cloud provider are typically
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distributed to several geographical locations, regions, and sometimes zones

[12] to isolate the failure propagation. The virtualization of the data centers

allows recovering the failure of a VM instance by initiating a new instance

from the machine image. In case of the physical host failure, the VMs can be

migrated to another physical host. Additionally, the cloud storage services

(e.g. Amazon S3) are replicated automatically for more durability and

reliability, with the option of reducing the number of replicas and reducing

the cost.

2.5.4 Cloud Computing Issues

In spite of the fact that many advantages can be gained by moving to cloud

environments, many concerns can influence the business owners’ decision about

moving to the cloud. The main issues are summarized as the following:

• Privacy: Privacy is a big concern in cloud environment while cloud systems

process and store valuable data from different individuals on same physical

servers. Much research [106] [59] [9] is conducted to assure users that their

data will not be released or accessed even by the service provider under any

circumstances. Encryption can protect the data but it is always a trade-off

between security and performance [27].

• Security: Security of cloud computing services is an issue that may be

delaying its adoption. In a former study [43], we showed that security, as

an issue, is inherited from the foundation technologies of the cloud such

as networking, virtualization, and web services. However, the efficiency

of traditional protection mechanisms should be reconsidered when applied

to cloud environments. Improving virtualization isolation, auditing, imple-

menting public key infrastructure (PKI), and maintaining cloud software

security in general [19] are necessary for a secure cloud environment.

• Data Lock-In: Hosting as system in the cloud makes it vulnerable to

lock-in problem, which means that the system cannot be easily moved to

another provider. This makes customers exposed to many problems includ-

ing the following: (i)Price increase. (ii)Reliability problems. (iii) Or even
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the probability of the provider’s absence by going out of the business [19].

The lock-in problem is very severe in SaaS and PaaS model. In IaaS model it

has less severity. However, customers who plan to provision resources from

different providers should implement application that is able deal with the

APIs of the different providers. Standardizing the APIs can be the solution

for the lock-in problem. However, the challenge is to convince the big cloud

providers to standardize their interfaces.

• Performance Isolation: Virtualization, a foundation technology for the

cloud computing, enables consolidating many VMs machine into same phys-

ical host. Each VM can be owned by a different organization and run

different workload. Each VM has its share of the physical host resources

(e.g., CPU, Memory, I/O). The hypervisor multiplexes physical resources

between VMs to isolate their performance. However, shared resources iso-

lation (e.g., I/O) is a challenging problem demanding much research [64]

[78] [70]. For example, Armbrust et al. [19] measured the average disk

write rate of 75 instances in Amazon EC2 as 52 Mbytes/s with a standard

deviation of about 16%, which means that the I/O performance is exposed

to influence by other customers’ workload in the cloud.
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Related Work

Typically, managing Internet applications’ performance focuses on the overload-

ing times of Internet applications. Provisioning plenty of resources is straightfor-

ward way to guarantee applications performance at overloading times. Neverthe-

less, business is always adhered to a limited budget. A successful online business

sticks to its budget without losing the clients satisfaction or/and paying penalties.

Toward this goal, much research is conducted during the last years. This chapter

presents the most related work and concentrates on the techniques that benefit

from the emergence of cloud computing models (specifically the IaaS model). For

example, the service degradation, as a performance management technique, does

not get a big attention nowadays due to the possibility of provisioning resources

rapidly, with relatively a low price, during overloading time.

We classify the related work according to a taxonomy proposed by [51]. The

first classification of the related work depends on the techniques used for manag-

ing resource dynamically. The second classification depends on the mechanisms

used to drive each resource management technique. The related work is illus-

trated in Table 3.1 considering both classifications.

Figure 3.1 shows performance management techniques, at the left side, in

addition to the mechanisms driving performance management, on the right side.

The figure also highlights the techniques and mechanisms that we depend on in

this dissertation.

Before studying the dynamic resource management techniques, we start in

Section 3.1 with an overview of the traditional performance management tech-
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Figure 2. Performance Management Techniques of an Internet Application 
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Figure 3.1: Performance management techniques for Internet applications and
the driving mechanisms

niques used for many years before the emergence of the on-demand resource

provisioning. In Section 3.2, we study the development of dynamic resource

management techniques with the emergence of virtualization technologies and

cloud computing. In Section 3.3, we review the approaches developed to mitigate

the impact of the interference in public IaaS environments. In Section 3.4, we

overview some of the commercial performance management tools that are used

nowadays. Finally, in Section 3.5, we summarize the chapter.

3.1 Traditional Performance Management Tech-

niques

For many years, and before the emergence of virtualization technologies and

cloud computing, the admission control, the service differentiation, the service

degradation, and sometimes combinations of them have been practical techniques

for maintaining Internet applications performance during overloading periods of

time. Admission control technique maintains the availability and performance of

a server by controlling the number of admitted requests to the server. At specific

threshold of utilization, any additional requests are dropped to keep the server

utilization within the threshold. Typically, computing systems have different

performance thresholds that are importantly measured by the system adminis-

trator for maintaining the system performance, as we explain in Section 6.1. In
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contrary to admission control, service differentiation technique differentiates cus-

tomers into classes and provides different QoS for each class. For example, at

overloading time, an online retailer can give more priority (i.e., dedicate more

resources or decline other classes) for buying request over browsing requests. Ac-

tually, admission control is a special case of the service differentiation technique

[51]. Therefore, it is usually combined with service differentiation techniques [110]

[61] [121] [109] to prevent overloading servers and offer different QoS for clients

[51].

In spite of the emergence of the cloud computing paradigm, which promises

a virtually limitless scalability, the traditional techniques are still needed for the

following reasons: First, resources in the cloud are limited per an account (e.g., 20

EC2 instances limit associated with each Amazon AWS account). However, the

user can ask for raising this limit. Second, if the system scalability is not limited

by the resources, it will be limited by a specific budget [116]. Finally, raising the

resources’ limit does not protect the Internet application from the denial of service

attack (DoS). It also exposes the company budget to an unexpected increase. To

protect the Internet application from attacks that target the service availability,

performance, or budget, GoGrid load-balancer [1] for example limits the number

of accepted connections per a client. Liu et al. [72] used a queuing model predictor

and an online adaptive feedback loop that maintains the response time within a

specific limit by enforcing admission control of the incoming requests. Other

researchers [32] [67] use profit-based policies that consider the trade-off between

the QoS and the profit.

3.2 Dynamic Resource Management Techniques

and the Driving Mechanisms

Dynamic provisioning of resources (i.e., allocation and deallocation) to cope with

workload had much interest especially after the widely usage of virtualized data

centers and the cloud. Significant prior research has been sought to map QoS

requirements (e.g., response time) into low level resources (e.g., CPU, Memory,

and I/O). Response time is the most considered performance metric in many
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studies [47] [114] [105] [56], since it is the metric that can easily be noticed by

the end user. Towards managing resources dynamically, the used techniques are

as follows:

3.2.1 Vertical Scalability

The advance of the virtualization technology allows system administrators to

redistribute resources among the hosted VMs on the same physical host dynami-

cally. This allows the administrator to scale overloaded VM vertically on-the-fly,

without interrupting the service. The vertical scalability depends on the proba-

bility of that the VMs sharing the same host do not consume all the allocated

resources. Examples of the resources that are scaled dynamically is the CPU

capacity (i.e., frequency) [47] [114] [38] [95] [105]; number of cores [40] [117]; and

memory capacity depending on the balloon driver [56] [95] [38]. Generally, the

limitations of vertical scalability are: (i) It requires the cloud provider involve-

ment in the resources redistribution, which is a complex management task in the

large-scale shared infrastructure. (ii) It can lead to conflicts on resources that

cannot be solved instantly. For example, an additional memory given to a VM,

can’t be recovered in a small time as same as the CPU capacity can be recovered.

Control theory has been widely used for performance management of Internet

applications. The first step towards implementing a feedback controller (a.k.a.

loop-back controller) is the selection of the control input(s) and the system out-

put(s) [47]. Typically, control inputs are resource allocation (e.g., memory and

CPU allocation), while the system outputs are resource utilization (e.g., memory

or CPU utilization). The second and most importantly step is to distinguish

between the operational regions. For example, Wang et al. [114] showed that the

relation between CPU utilization, as output, and the CPU entitlement, as input,

behaves differently in overloaded regions than it behaves in the under-loaded re-

gions (i.e., a bimodal behavior). The third step is determining the reference point

for the controller. Gandhi et al. [47] suggested determining CPU and memory

reference allocation by the administrator. Nevertheless, Zhu et al. [123] showed

that maintaining the response time within a specific limit requires adapting the

reference point dynamically. Therefore, they developed a nested loop feedback
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controller that calculates the reference CPU utilization dynamically considering

the workload variation. The controller designed by Wang et al. [114] is used by

Padala et al. [88] to keep the CPU utilization of individual VM instances around

80%. Moreover, the controller designed by [123] is integrated with a memory

feedback controller in [56] to keep the memory allocation within a reference point

(i.e., 90%). In our work [38], we integrate a CPU controller [123], a memory

controller [123], with a proposed heuristic application controller. The application

controller optimizes the Apache server parameter MaxClients with each vertical

scalability of resources, as we explain in Chapter 4.

Based on synthesis queuing model and loop-back controllers, Wang et al. [113]

developed a dynamic resource management system that maintains the application

response time by automatically determining the utilization targets and the size

of the VM. Nevertheless, the authors assume hosting a VM in one physical host

and do not consider the possible conflicts on resources by the other co-located

VMs.

Using the observed utilization of the CPU, we built in [40] a scalable architec-

ture that depends on static scaling thresholds. However, instead of scaling per a

VM instance, as coarse-grain scaling unit, we scale up by increasing the number

of cores (on-the-fly) of the overloaded VM dynamically. The vertical scalability

allowed the system to avoid the overhead of initializing more VMs horizontally.

Yazdanov et al.[117] investigated improving vertical scalability by integrating pri-

oritizing technique and employing proactive scaling. Nevertheless, our empirical

observations showed that proactive scaling does not improve vertical scalability,

while it is already coping fast with workload variation. Han et al. [54] and Shen

et al. [95] integrated the vertical scaling at the resource level (CPU and Memory

allocation), with the horizontal scaling at the VM level. Moreover, [54] supports

VMs migration to solve the resource conflicts in case of the lack of adequate

resources in the physical host.

Statistical Learning means building models describing the application per-

formance. These models can be built online or offline to guide the resource

management. By online statistical learning, Padala et al. [87] developed a linear

model that captures the relation between resources allocation and performance.

Additionally, a multiple input multiple output (MIMO) controller is integrated to
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calculate the right allocation that maintains the performance. Padala et al. [87]

considered controlling both the CPU and Disk utilization by the co-located VMs

in the same physical host to control the performance of the multi-tier system.

3.2.2 Horizontal Scalability

Horizontal scalability provides coarse-grain scalability to the Internet application.

As seen in Figure 2.1, the multi-tier application scales out by provisioning more

VM instances in the overloaded tier. The problems that are approached by the

researchers implementing the horizontal scalability are as follows: (i) Determining

the trigger for a scale out or down. (ii) Finding the optimal number of VMs in

each tier that minimizes the cost and maintains the performance simultaneously.

Using feedback controllers to guide a horizontal scalability of applications

exposes the controlled system to the oscillation around the reference utilization

[69]. The oscillation is due to coarse-grain scaling. For example, considering the

value 80% as a reference CPU utilization causes a tier with one VM to scale out

to two VMs when the utilization goes over 80% (e.g. 90%). In the next control

period, the controller will measure the average utilization as 45%, which is much

lower than the reference point. A scale down process is initiated followed by

another scale out. This oscillatory behavior can continue indefinitely. To address

this problem, Lim et al. [69] propose an initial range of the CPU utilization.

Depending on the measured CPU utilization, a different targeted utilization is

calculated. Lim et al. [68] extended their previous work in [69] by implementing

their approach to storage tier to maintain a specified bandwidth.

Urgaonkar et al. [103] use queuing theory to model multi-tier Internet applica-

tions analytically. Their approach also determines the number of needed servers

in each tier. Urgaonkar et al. [105] extended their previous work [103] by propos-

ing dormant VMs (i.e., VMs assigned minimal server resources) concept. The

dormant VMs are prepared with the required software and scaled rapidly when

the workload increase, which eliminates the overhead of resource provisioning. A

multi-tier system is modeled in [103] and [104] as a closed network of queues.

However, because the authors consider a single queue per a tier, their system is

able to capture a single resource bottleneck at a time (e.g., CPU utilization or
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network bandwidth). To go over this limitation, Stewart, et al. [98] modeled a

server as a network of queues representing multiple resources (i.e., CPU, Network,

and Disk). This enabled their technique to predict different resources bottlenecks.

Nevertheless, modeling the multi-tier system as an open network, as in [98] [23]

[32], neglects the impact of the user thinking time, which is an unrealistic as-

sumption for Internet applications [71] [103] [104]. In general, implementing the

scalability to Internet applications using queuing theory is complex. The com-

plexity lies in the need for estimating many model parameters such as the arrival

rate and the service time of requests at each tier, and other parameters related

to congestion effects [98]. This questions the efficiency of implementing queuing

theory mechanisms in the production environment.

Many observation-based mechanisms are developed to drive horizontal scala-

bility and maintain multi-tier systems performance. Typically, researchers con-

sider one or combination of metrics, such as the profit [94] [75] [67], the response

time [57] [75] [54] [39] [67], and the throughput [75] [67]. In fact, the horizontal

scalability driven by online observation is highly suitable for production environ-

ments. Therefore, we see a big IaaS provider such as Amazon EC2 [12] employ-

ing simple scaling policies with static thresholds to drive a reactive scalability.

However, Han et al. [54] proposed combining the horizontal with the vertical

scalability to scale application rapidly with fine-grain scaling units. Nevertheless,

vertical scalability is not a mechanism provided by public IaaS providers.

Malkowski et al. [75] propose a multi-model controller containing several

models that cooperate to optimize the profit and maintain the performance. The

multi-model controller interacts with a repository, which contains records of pre-

viously observed application system behavior and the configuration. The goal

of the repository is to find the configuration that leads to a better performance.

Iqbal et al. [57] considered the response time as a metric to drive horizontal

scalability. Our practical experience shows that the response time in public IaaS

is not a reliable metric for resource management [39]. A similar observation by

[74] shows that the response time of a multi-tier system can spike to three times

the accepted response time’s value despite a stable throughput.

In [39], we implemented a scalable system depends on modeling the application

performance. The approach can predict the required number of VMs in each tier.
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Moreover, it is able to detect and avoid the performance interference in public

IaaS environments. Our approach is a combination of both the statistical learning

and the observation-based mechanisms.

3.2.3 VMs Live Migration

Much research has exploited the VM live migration mechanism for coping with

dynamic workload fluctuations, as well as providing scalability and load balancing

techniques. VMs migration is also used to optimize the power consumption within

a data center by packing VMs into less physical hosts and terminating the idle

servers. Towards handling dynamic workload changes, many researchers [115]

[94] [95] [63] implemented approaches considering migrating overloaded VMs to

underutilized hosts. The efficiency of the migration depends on selecting the

source and destination host. Typically, migration planning is solved as a bin-

packing problem, which is NP-hard problem [63].

Khanna et al. [63] developed a heuristic algorithm for VMs placement. They

consider both migration cost and capacity residues as parameters for their algo-

rithm. Beloglazov et al. [21] designed an energy-aware system to help the cloud

provider to optimize the power consumption by the data center, while maintain-

ing the performance. VMs migration is used by Sharma et al. [94] and Shen et

al. [95] to solve conflict on resources caused by vertical scalability. Das et al. [37]

focus on live migration of databases. They developed a technique to minimize

the migration’s impact on the database performance during migration.

Wood et al. [115] developed statistical learning mechanisms to guide VMs

migration. Nevertheless, the live migrating of a VM consumes I/O and CPU

and network resources which might contribute in performance degradation of

other VMs. Moreover, the migrating of applications that have long-running in-

memory state or frequently updated data, such as database, might take too long

time causing SLO violations during migration. Additionally, security restrictions

might increase overhead during migration process [86].
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3.2.4 Software’s Parameters Tuning

Choosing the correct parameters for software is crucial for maintaining perfor-

mance. However, it is not a straightforward job, while it depends on both resource

allocation and workload [47]. The workload is typically variable. On the other

hand, the vertical scalability exposes the software to different values of resource

allocation. If software was unaware of the increase of resources, it may not benefit

from this increase. For example, MaxClients is a parameter for the Apache web

server software. It controls the number of processes that can run concurrently

to serve client requests. An Apache sever with a very low MaxClients will not

benefit from increasing CPU or Memory allocation. Nevertheless, we observed

that MaxClients has an optimal value for each resource allocation that maintains

a higher throughput and better performance [38].

Using a loop-back controller, Gandhi et al. [47] developed a system that tunes

two parameters of Apache web server: MaxClients and KeepAliveTimeout. The

system’s outputs are the CPU and Memory utilization. The reference points of

the CPU and memory utilization are determined by the administrator. However,

these reference points are inconsistent when the system experiences variant rates

of workload [114] [123]. Chess et al. [34] developed an agent-based solution to

automate system tuning; the agents do both controller design and feedback con-

trol. However, their system converges slowly, which impedes the system of coping

with sudden changes of the workload. Liu et al. [73] compared three types of

controllers to optimize MaxClients of Apache web server online: (i) an optimizer

based on the Newton’s method, (ii) a fuzzy controller, and (iii) a heuristic con-

troller. The optimizer based on Newton’s method suffered inconsistency with the

highly variable data. The fuzzy controller is more robust but converges slowly.

Finally, the heuristic controller works well under specific conditions. In Chapter

4, we develop an online heuristic application controller that searches for the op-

timal value of MaxClients by exploiting the gathered measurements during the

run time of the system.

Using queuing theory along with optimization techniques, Jung et al. [60]

presented off-line techniques to predict system behavior and automatically gen-

erate optimal system configurations. The result is a set of rules that can be
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inspected by human system administrators and used directly with a rule-based

system management engines.

Resource management
techniques

Driving
mechanisms

Publications

Vertical scalability

Control theory
[114] [123] [88] [113]

[56] [38]
Queuing models [113]

Observation-based [40] [117] [54] [95]
Statistical learning [87]

Horizontal scalability

Control theory [69] [68]
Queuing models [103] [105] [23] [32]

Observation-based
[57] [39] [67] [54] [94]

[75] [12]
Statistical learning [75] [39]

VMs’ migration

Control theory
Queuing models

Observation-based [94] [95] [63] [21]
Statistical learning [115] [95]

Software’s parameters tuning

Control theory [47] [34] [73]
Queuing models [73] [60]

Observation-based [38]
Statistical learning

Table 3.1: The state of the art towards the dynamic scalability of Internet ap-
plications. The bold references are our papers published in the course of this
dissertation. The appearance of an approach in multiple row means that it em-
ploys more than a scalability technique or/and driving mechanism.

In Table 3.1, we summarize the most related approaches to our research. The

approaches considering several resource management techniques or employing

different management mechanisms can be shown multiple times in different rows

of the table.
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3.3 Mitigating Performance Interference in IaaS

Environments

Much research has been done towards effective performance isolation among VMs

in the virtualized environment [70] [78] [64] [53], which is a demanding problem

for public IaaS environments. Nevertheless, the applications still exposed to the

interference by other co-located applications [89] [66] [108] [65]. High-level solu-

tions [24] [100] [44] [39] are developed to distinguish the abnormal VM instances

depending on their behavior. These solutions are practical in public environ-

ments, where the customer can abandon an abnormal VM instance and replace it

with new and healthy one. Nevertheless, the proposed approach by Bodik et al.

[24] requires a prior knowledge about the anomalies (i.e., signatures). This fact

limits the approach to a set of pre-known anomalies. Tan et al. [100] and Dean

et al. [44] designed scalable approaches depending on a VM self-learning (i.e.,

decentralized learning). The learning allows a VM to distinguish between normal

and abnormal states. The approach by Dean et al. [44] outperforms the one in

[100] because it does not require training with samples covering both normal and

abnormal states. Nevertheless, the additional workload by training process inside

the VM can influence the main application performance. To avoid influencing the

performance of the running application in the VM, we build performance models

of VM instances depending on external monitoring metrics [39]. Our approach is

explained in details in Chapter 8.

3.4 Commercial Solutions

Many IaaS providers, such as Amazon EC2 [12], Windows Azure [81], Rackspace

[3], and GoGrid [1], offer application programming interfaces (APIs) that allow

customers to build their own controllers and automate the scalability in the cloud.

However, a cloud customer can hire a third-party provider who automates

the cloud resource management and scaling. Typically, the resource manage-

ment providers host the management services on their servers and use APIs of

each provider remotely, which allows them to manage resources in different IaaS
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providers. Customers of third-party scalability providers have web interfaces

that allow them to monitor and setup the scalability at different IaaS providers.

The providers charge customers monthly for their services. Examples of such

providers are RightScale [4] and Scalr [97]. However, Scalr has an open source

version that can be hosted freely on customers’ servers. Nevertheless, monitoring

and controlling resources remotely through the Internet can imply an overhead.

On the other hand, Amazon EC2 [12] provides scalability components and ser-

vices that can be consumed as same as the other computing and storage services.

Integrating scalability services into IaaS environment increases the reliability and

reduces the control overhead. On the other hand, it limits the clients to one IaaS

provider. In Chapter 5, we explain in details the scalability in Amazon EC2, as

a provider enables the scalability to a large number of Internet applications that

are already in production environment.

3.5 Summary

In this chapter, we reviewed the approaches that are developed during the last

years for managing the scalability and performance of multi-tier applications. We

started with the approaches that have been used before the emergence of virtual-

ization technology and cloud computing. Afterwards, we discussed the approaches

that exploit the virtualization technology and the IaaS model to scale Internet

applications rapidly. Vertical scaling, as a management technique, got the re-

searchers intention due to its rapid response to workload change. Nevertheless,

implementing it in big production environments, such as public IaaS environ-

ments, is very complex. Similarly, VMs’ migration can be used for distributing

the workload and maintaining the application’s performance. Nevertheless, both

VM migration and vertical scalability approaches imply the provider involvement

in complex management tasks. On the other hand, in spite of the overhead of

provisioning new resources, the horizontal scalability is the widely used resource

management technique in production environments nowadays.
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On-premise Hosting for Internet

Applications

Virtualization technology has been adopted by many present data centers due to

its features, which include workload consolidation, live migration, and on-the-fly

virtual machine scaling. Workload consolidation allows hosting multiple VMs

with different workload into a single physical host. Using live migration allows

moving VMs between physical servers in data centers for balancing workload

without interrupting the service. Workload consolidation increases resource uti-

lization which is an opportunity for increasing data centers’ revenue. Moreover,

it exploits the possibility of maintaining Internet applications performance by re-

distributing virtualized resources dynamically (i.e., scale vertically) among VMs

depending on the workload intensity.

In this chapter, we investigate managing an Internet application scalability

and performance using vertical scalability driven by control theory. Currently, the

IaaS environment provides a horizontal scalability for Internet applications. Nev-

ertheless, horizontal scalability has several disadvantages: First, it is coarse-grain

scaling where a VM is the scale-step size unit. Second, provisioning resources

horizontally implies an overhead. Third, scaling some tiers horizontally such as

database tier is a complex process. On the other hand, vertical scalability enables

a fast and fine-grained scalability (e.g., CPU percentage and Memory in MB) for

all tiers of Internet applications.
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Nevertheless, scaling resources vertically requires control over the virtual ma-

chine manager (VMM) (a.k.a, hypervisor), which is not available by the public

IaaS providers. Therefore, in this chapter we consider an on-premise virtualized

data center that is fully controlled by the Internet application’s provider. Virtu-

alization offers APIs that enable managing and distributing resources among the

hosted VMs in a data center. The VMs running an Internet application receive

variable workload. We exploit the probability of co-locating underloaded VM

with other overloaded VMs in the same physical host to maintain our SLO by

redistributing resources between VMs according to the actual demand. However,

we study cases when applications compete on resources, and show our approach

ability to mitigate the impact of the competition on applications performance.

We implement our approach into Xen environment and consider scaling the

web tier which runs Apache web server. The scalability and performance man-

agement is driven by a CPU [114] and a Memory [56] feedback controllers. In

parallel to them, an application controller is developed to tune the Apache web

server’s parameters dynamically. Our SLO in this chapter is to keep the response

time of the web requests less than a specified threshold. Nevertheless, our archi-

tecture can be extended for applications that have tunable parameters such as

database applications.

The key contributions of this part of research are as follows:

• We analyzed Apache application performance under different configuration

and different CPU and Memory allocation values.

• We developed a dynamic application controller for Apache application to

maintain the application performance.

• We built CPU and Memory controllers based on [56], then have inte-

grated the three controllers CPU, Memory, and application optimization

controllers for a rapidly scalable application.

• Finally, the proposed architecture was evaluated with extensive experiments

on several synthetic workload and experimental setups.

The results show that our proposed architecture can maintain the performance

of the controlled application in terms of throughput and response time.
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The chapter is organized as follows: Section 4.1 is an analysis of systems and

concepts that drive our research. In Section 4.2, we explain our proposed system

architecture. In Section 4.3, we describe the experimental setup and analyze the

results.

4.1 Overview

In this section, we give an overview of the investigated systems and concepts

during our research; we start with a detailed study of Apache web server [92], then

we discuss the complexity of using feedback control systems in computing systems,

and finally we explain the concerns that accompany using vertical scalability to

cope rapidly with the workload variation.

4.1.1 Apache Web Server

Apache web server [92] is one of the most popular web servers. Currently, it

powers over 63% of sites on the World Wide Web1. Apache [92], is structured

as a pool of workers processes that handle HTTP requests. Currently, Apache

supports two modes, workers and prefork modes. In our experiments we use

Apache with prefork mode to handle dynamic requests (e.g., php pages), because

it is more reliable for high rates of traffic. In prefork mode, requests enter the

TCP Accept Queue where they wait for a worker. A worker processes a single

request to completion before accepting a new request. The number of worker

processes is limited by MaxClients parameter.

Figure 4.1 shows the result of an experiment in which the Apache web server

was tested with different settings of Memory, traffic rate, and MaxClients. By

monitoring the throughput, we noticed that there was a value of MaxClients (e.g.

75) that gives the highest throughput (e.g., 450 req/sec) for specific Memory set-

tings (e.g., 512MB). Before this value there were no enough workers to handle

requests, and after this value, performance degraded because of one of the follow-

ing problems: The CPU spends much time switching between many processes, or

the Memory is full so the paging to the hard disk consumes most of the CPU time.

1http://loadstorm.com/2011/web-performance-optimization-part-5-apache-server
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Figure 4.1: Throughput v.s. MaxClients under different hardware settings

To find the optimal value for MaxClients dynamically, we developed a heuristic

Apache controller running in parallel with the CPU and Memory controllers.

4.1.2 Feedback Control of Computing Systems

Controllers are mainly designed for three purposes [55]: First, regulating an out-

put to be equal or near to a reference input; for example, maintaining the Memory

utilization to 90%. Second, disturbance rejection which means that if the CPU

is regulated to be 70% utilized, then it must not affected by any other running

applications like backup or virus scanning. Third, optimization which can be

translated in our system as finding the best value of MaxClients that optimize

Apache server performance. In terms of the feedback controllers, SLO enforce-

ment often becomes a regulation problem where SLO metric is the measured

output, and SLO bound is the reference input.

The choice of the control objective typically depends on the application. More-

over, the same system may have multiple controllers with different SLOs. Un-

fortunately, identifying Input-output models for computing systems is complex

because of the absence of the first-principle models [122]. As a replacement, many

researchers [115] [87] [56] [114] considered the black-box approach where the re-

lation between the input and output is inferred empirically. According to Zhu et

al. [122], to build a feedback controller able to adjust input-output of a black-box

model, a developer has to deal with many challenges: first, the controller may

not converge to equilibrium if the system does not have a monotonic relationship
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between a single input and a single output. Second, without an estimate of the

sensitivity of the outputs with respect to the inputs, the controller may become

too aggressive or too slow. Third, the controller cannot adapt to different op-

erating regions in the input-output relationship. For example, Zhu et al. [122]

shows that the mean response time is controllable when the CPU consumption

is close to the allocated capacity and uncontrollable when the CPU allocation is

more than adequate. The ”uncontrollable” in this context means that the output

is insensitive to changes in the input.

4.1.3 Scaling Resources Vertically

Our approach depends on the ability of virtualization technologies to reallocate

the virtualized resource dynamically. However, isolation is a prerequisite for vir-

tualized resources dynamic reallocation. In this section, we discuss the isolation

and the scalability of CPU, I/O, and Memory as the following:

The computation power of the physical CPUs (pCPU) is distributed among

the VMs by a scheduler. Each VM has one or more virtual CPUs (vCPUs). The

vCPU is mapped to run on a pCPU by the scheduler according to specific policies.

These policies determine the scheduler characteristics that make it suitable for

some environments than others. For instance, Xen [20] has three schedulers:

Borrowed Virtual Time (BVT), Simple Earliest Deadline First (SEDF), and the

Credit scheduler [33]. Among these schedulers, only SEDF and Credit scheduler

have a non-work-conserving mode, which enable the scheduler to cap the capacity

of the CPU to specific value (e.g., 50% of the CPU capacity) and prevent an

overloaded VM from consuming the CPU capacity of other VMs. Venkatanathan

et al. [108] indicate that Amazon EC2 uses Xen Credit scheduler in a non-

work-conserving mode. In this chapter, we use the Credit scheduler in non-work-

conserving mode to scale the capacity of the vCPU dynamically.

As in the case of CPU isolation, I/O isolation is also the scheduler’s job.

However, current hypervisors show that an I/O-intensive VM can influence the

performance of other VMs. For instance, in Xen [20], I/O device follows a split-

driver model. Therefore, only an Isolated Device Domain (IDD) has access to

the hardware using native device drivers. Cherkasova [33] and Gupta et al. [53]
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demonstrated that the split-driver model of Xen complicates the CPU allocation

and accounting. In split-driver-model, the IDD processes I/O operations on be-

half of guests’ VMs. This behavior allows an I/O intensive VM to overload the

whole system. To enhance the accounting mechanism, [53] proposed SEDF-DC.

It accounts the CPU usage of an IDD into corresponding guest domains that

trigger I/O operations. However, SEDF-DC is still a prototype and it is not

implemented to the deployed version of Xen. The fair-sharing of the I/O devices

is the default behavior in Xen hypervisor [20]. Nevertheless, the fair-sharing in

Xen does not guarantee limiting each VM to its share.

At the initialization time of a VM, the hypervisor allocates an isolated virtual

Memory for it. Memory isolation makes the VM unaware of other VMs Memory

demand. A Ballooning technique is developed to enable passing Memory pages

back and forth between hypervisor and hosted VMs. However, it requires the

cooperation of the VM’s operating system. Therefore, a VM’s operating system

should be plugged with the balloon driver to enable the communication between

the VM’s operating system and the hypervisor. Whenever a hypervisor decides

to reduce a VM’s Memory size (i.e., reclaim pages from VM and inflate the bal-

loon [111]), it determines the target balloon size. If the VM’s operating system

has plenty of free Memory, inflating the balloon will be done by just pinning

free Memory pages (i.e., prevent access to these pages). However, if the VM’s is

already under Memory pressure, the operating system should decide about the

Memory pages that should be paged out to the virtual swap device[111]. Both

VMware and Xen enable dynamic Memory allocation using balloon driver tech-

nique. Nevertheless, communication between balloon driver and the hypervisor,

in VMware, goes through a private channel, which limits scaling the Memory to

the hypervisor. On the other hand, Xen hypervisor provides an interface that al-

lows scaling the VM’s Memory size dynamically. It is important to note that the

VM cannot acquire virtual Memory bigger than the assigned Memory at booting

time. For example, if a VM is initialized with 1GB Memory size, the possible

values that can be assigned dynamically are 1GB or lower. Therefore, to give

a VM a wide range of possible allocation values, we start the VM with a high

Memory allocation to be changed later.
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4.2 Proposed Architecture
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Figure 4.2: Our proposed architecture shows CPU, Memory, and Application
controllers running in parallel

Our architecture is centralized around the QoS controller, which communi-

cates with several modules implemented into both the VMM’s level and VM’s

level as the following:

• Resources monitor module dynamically measures the resources consump-

tion and updates the QoS controller with new measurements. The module

depends on xentop tool to get the CPU consumption of each VM.

• CPU scheduler is implemented to dynamically change the CPU allocation

of the VMs according to determined values by QoS controller, this module

depends on Xen credit scheduler as an actuator for setting the CPU shares

for VMs. The credit scheduler has a non-work-conserving-mode which en-

ables determining a limited portion of the CPU capacity for each VM. The

credit scheduler prevents an overloaded VM from consuming the whole CPU

capacity of the VMM and degrading the other VMs’ performance.

• Memory manager is implemented with the help of the balloon driver in

Xen. This allows online changing of the VMs Memory. To have a wide
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range of the Memory size, we gave the variable maxmem an initial high

value (i.e. 500MB) in all user domains configuration files then use the

mem-set command to change the Memory size into the value determined

by the controller.

• Performance monitor also keeps the controller updated with performance

metrics (i.e. the average response time and the throughput). The perfor-

mance monitor is implemented on network device of the VMM, so it can

monitor both the incoming and outgoing traffic.

• Application manager (App manager) is implemented into the VM’s level. Its

job is to get a new configuration value for MaxClients from the Application

controller (App controller), then to update and restart the Apache server

with the new configuration.

As seen in Figure 4.2, the input to QoS controller is the SLOs. In our ap-

proach, the SLO is to keep average response time of Apache web server within

specific range, regardless of the workload variation. The outputs of the QoS

controller are the calculated CPU capacity, Memory allocation, and MaxClients

that satisfy the SLO. Inside the QoS controller, we implemented the following

controllers:

CPU controller: It is a nested loop controller developed in [123]. The inner

controller (CPU utilization controller) is an adaptive-gain integral (I) controller

designed in [114]:

acpu(k + 1) = acpu(k)−K1(k)(urefcpu − ucpu(k)), (4.1)

where

K1(k) = α.ccpu(k)/rrefcpu (4.2)

The controller is designed to predict the next CPU allocation acpu(k+1) depending

on the last CPU allocation acpu(k) and CPU consumption ccpu(k), where the last

CPU utilization ucpu(k) = ccpu(k)/acpu(k). The parameter α is the constant gain

that determines the aggressiveness of the controller. In our experiments, we set

β=1.5 to allocate CPU aggressively at overloading time and decrease it slowly

with the workload decrease.
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Equation 4.1 requires determining urefcpu value. Nevertheless, Figure 4.3 shows

that the response time is not only dependent on the CPU utilization, but also on

the request rate. Therefore, it is more realistic to have urefcpu value automatically

driven by the application’s QoS goals rather than being chosen manually for each

application.
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Figure 4.3: Mean response time v.s. CPU utilization under different request rates

For this goal, another outer loop controller is designed by [123] to adjust the

urefcpu value dynamically and ensure that the QoS metric (i.e., response time) is

around the desired value. This outer loop controller can be interpreted into the

following equation:

urefcpu(i+ 1) = urefcpu(i) + β(RT ref
cpu −RTcpu(i))/RT ref

cpu (4.3)

Where urefcpu(i + 1) is the desired CPU utilization, RTcpu(i) is the measured

response time, and RT ref
cpu is the desired response time determined by SLO.

The outer controller (i.e., response time controller) ensures that the value fed

to the CPU controller is always within an acceptable CPU utilization interval

[Umin, Umax].

In our experiment, we set β to 1.5. The CPU allocation and CPU utilization

are limited to the interval [10, 80]. The desired response time is 20 milliseconds.

Memory controller: In our experiments we noticed that increasing the number
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of Apache processes can increase the throughput. However, the performance is

degraded drastically when the Apache processes consumes the whole available

Memory. This enforces the system to swap parts of the Memory into the hard-

disk. Consequently, additional workload is added to the overloaded CPU by

the big number of processes. To keep the system away from bottlenecks, we

implemented the Memory controller designed in [56]:

amem(i+ 1) = amem(i) +K2(i)(u
ref
mem − umem(i)) (4.4)

Where

K2(i) = λ.umem(i)/urefmem (4.5)

The controller aggressively allocates more Memory when the previously al-

located Memory is close to the saturation (i.e. more than 90%), and slowly

decreases Memory allocation in the underloaded region. During our experiments,

we set urefmem and λ 90 and 1, respectively. The limits of the controller were set to

[64, 512], where the 64 MB is the minimum allowed Memory allocated size, and

the 512 MB is the maximum allowed allocated Memory size.

Application controller: Experimentally , we noticed that there was a specific

value of MaxClients giving the best throughput and the minimum response time,

as seen in Figure 4.1. Towards finding this value dynamically, we designed a

heuristic Apache controller that monitors four measured values to determine the

best MaxClients. The monitored values are: response time, throughput, CPU

utilization, and number of running Apache processes. The controller saves the

best record of these values. The best record is the one satisfies SLO and gives

the highest throughput with less CPU utilization. Searching for a better record,

Application controller increases MaxClients by 10 every five minus.

With each new measurement of monitored values, Apache web server compares

the current record with the best record. The current record overrides the best

record if it showed better performance. Furthermore, if the App controller noticed

a violation of the SLO (i.e., response time) it detect the occurrence of one of two

cases:

Case (i) Apache processes starving problem: Apache processes starving

problem occurs when Apache server runs a large number of processes, as a result,
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the CPU spends most of the time switching between these processes while giving

a small slot of time to each process. Such behavior causes requests to spend

longer time in application queue, which end up with a high response time or

requests timed out. To eliminate this problem, the Apache controller reloads

the Apache server with the last best record, this reload reduces the number of

running processes, reduces CPU utilization, and consequently reduces response

time.

Case (ii) Resources competition problem: A competition on resources

is marked by Apache controller when the following states coincide: (i) The re-

sponse time increases. (ii) Number of running apache processes reaches Max-

Clients value. (iii) CPU utilization decreases (i.e. less than 90%). The reason

behind the low utilization in the competition case is that the CPU controller

proposes a higher allocation for the CPU, but the competition prevents applying

that allocation. In this case, the scheduler (i.e., The Xen’s Credit Scheduler)

employs its fair share (e.g., 50% in case of two VMs). The reaction in case of the

competition on resources is to reduce the number of MaxClients by 10, every five

minutes, until the SLO is satisfied again.

4.3 Evaluation

Our experiment conducted on a testbed of two physical machines (Client and

Server) connected by 1 Gbps Ethernet. Server machine has Intel Quad Core i7

Processor, 2.8 GHz and 8GB of Memory; it runs Xen 3.3 with kernel 2.6.26-2-

xen-686 as hypervisor. On the hypervisor are hosted VMs with Linux Ubuntu

2.6.24-19. These VMs run Apache 2.0 as a web server in prefork mode. For

workload generation, httperf tool [83] was installed on client machine.

In our experiments we deal with two kinds of VMs. First, a static VM that

has a fixed allocation of resources during its run time. Second, an elastic VM

initialized with specific allocation of resources that can be changed dynamically

by the CPU and Memory controllers according to the workload variation.

The examined scenarios are as the following: The first scenario compares a

static VM and an elastic VM coping with workload increase. The second scenario

considers two elastic VMs, equipped only with CPU and Memory controllers, and
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competing on resources. The third scenario considers two elastic VMs, equipped

with CPU, Memory, and application controller; and competing on resources. In

all our experiments, the SLO is to keep the mean response time less than 20

milliseconds.

4.3.1 Static VM v.s. Elastic VM

In this part, we assume that the elastic VM is hosted on a physical server with a

plenty of resources. So, the server is able to fulfill all requests for more resources.

In this experiment, we would like to study our elastic VM ability to cope with the

traffic variation and maintaining the specified SLO. To express the improvements,

we ran the same experiment onto a static VM with similar but static resources.

As a basis for our experiments; we used dynamic web pages requests, in each

request, the web server executes a public key encryption operation to consume

a certain amount of CPU time. The step traffic initiated with autobensh tool

[99], it is started with 20 sessions, each session contains 10 connections. The

number of sessions have been increased by 10 with each step. The total number

of connections for each step is 5000, and the timeout for the request is 5 seconds.

The measured throughput for the generated web traffic is seen in figure 4.4(b).

Each step of the charts in Figure 4.4(b) represents the throughput of a specific

traffic rate. For example, in the period (0 to 210) seconds, both VMs respond to

200 req/sec successfully without any lost or timed-out requests. In this period of

time, both VMs were able to allocate the required CPU capacity that copes with

coming requests. In the first period, we notice in Figure 4.4(a) how the elastic

VM started releasing the over-allocation of CPU slowly from the highest starting

allocation (i.e. 80%) to the predicted suitable value.

This behavior of the elastic VM, allocating resources aggressively then con-

verging slowly to the optimal allocation, enabled it to respond to the whole traffic

rates successfully.

On the other hand, the static allocation of CPU enabled the static VM to

maintain the SLO until the second 780. Afterwards, the static VM’s CPU is

overloaded causing requests to wait longer in the application queue, and conse-

quently the response time increased. The overutilization results in a continues
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Figure 4.4: A static VM v.s. an elastic VM responding to a step traffic

period of SLO violation as seen in Figure 4.4(c).

Requests rate(req/sec) Static VM (timeout %)
900 7.232
1000 15.328
1100 18.258
1200 27.772

Table 4.1: The timeout started after the Static VM received 900 req/sec.

Furthermore, some of the queued requests timed out before being served, the

percentage of timed-out requests with the corresponding traffic rate is illustrated

in Table 4.1. The table started at 900 req/sec because there was no significant

timed-out traffic before this rate. If it is compared to the elastic VM’s throughput

for the same high traffic rate (i.e. 800 to 1200 req/sec), Figure 4.4 shows how the

elastic VM was able to borrow more resources dynamically, serve more requests,

maintain a low response time, and prevent SLO violation.
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4.3.2 Two Elastic VMs Competing on CPU resources -

Without Application Controller

In the previous experiment, we studied the ideal case where the host was able

to satisfy the elastic VM’s need for more resources to cope with the increase of

incoming requests. In this experiment, we study the competition on the CPU

between two elastic VMs. Unlike experiments that have been done by [56], where

each VM’s virtual CPU has been pinned into a different physical core, we pinned

the virtual CPUs of two elastic VMs into same physical core to raise the com-

petition level. The same step-traffic has been simultaneously run to the elastic

VMs. Nevertheless, in this experiment we ran the elastic VM with only CPU and

Memory controllers.

20

40

60

80

100

PU
 c

on
su

m
pt

io
n 

%

VM1
VM2

0

20

40

60

80

100

0 180 360 540 720

CP
U 

co
ns

um
pt

io
n 

%

Time interval (sec)

VM1
VM2

(a) CPU consumption

200

400

600

800

1000

1200

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

VM1
VM2

0

200

400

600

800

1000

1200

0 180 360 540 720

Th
ro

ug
hp

ut
 (r

eq
/s

ec
)

Time interval (sec)

VM1
VM2

(b) Throughput

100

200

300

es
po

ns
e 

tim
e 

(m
se

c)

VM1
VM2

0

100

200

300

0 180 360 540 720

R
es

po
ns

e 
tim

e 
(m

se
c)

Time interval (sec)

VM1
VM2

(c) Response time

Figure 4.5: Two elastic VMs (without) Apache controller responding to step
traffic

The result of the experiment is illustrated in Figure 4.5. The figure shows that

elastic VMs were not able to cope with the traffic rate higher than 800 req/sec

while the host committed only 50% of the CPU power for each VM starting from

second #660 as seen in Figure 4.5(a). Due to competition on the CPU, many
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requests are queued for a long time causing a high response time and continues

violation of SLO, as seen in Figure 4.5(c). Moreover, many other requests are

timed-out before being served as seen in second and third columns of table 4.2.

From the above experiment, we can conclude that elastic VM can improve the

performance when the host has more resource to redistribute. However, in case

of competition on resources and under the fair scheduling, elastic VM (without)

Apache controller merely behaves as a static VM.

4.3.3 Two Elastic VMs Competing on CPU Resources -

With Application Controller

The previous experiment is repeated on two elastic VMs (with) Apache controller,

Figure 4.6(a) shows that in spite of the limited CPU capacity (i.e., 50%) available

to each VM, starting from second #660, the Apache controller do two improve-

ments. First, the moment of the Apache reload was a good chance for the other

Apache server to have more processing power and serve more requests, as seen

in Figure 4.6(a). Second, after the reload, the Apache servers are tuned with the

last best MaxClients value.

VM1 VM2 VM1 VM2
(req/sec) Timeout requests(without) Timeout requests(with)

800 4.0% 0% 0% 0.2%
900 13.3% 23.8% 8.8% 8.2%
1000 20.5% 23.2% 16.52% 17.0%
1100 25.0% 35.0% 21.0% 22.0%
1200 31.0% 37.0% 26.2% 27.8%

SLO violation(without) SLO violation(with)
23.9% 26.4% 14.7% 16.8%

Table 4.2: Two elastic VMs (without) Application controller v.s. two elastic VMs
(with) Apache controller responding to step traffic

As seen above, the proposed Apache controller not only looks for the opti-

mal MaxClients value, but also eliminates performance bottlenecks by keeping a

history of the last best running configurations.
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Figure 4.6: Two elastic VMs (with) Application controller responding to step
traffic

4.4 Use-cases for Vertical Scalability

4.4.1 Database Vertical Scalability

Database scale out (i.e., scaling horizontally) have been discussed in literature

[57][48]. Nevertheless, a little attention has been given to the overhead of initi-

ating new replicas in database tier. Some providers offer vertical scalability for

relational database (e.g., Amazon RDS [13]). Nevertheless, Amazon RDS implies

restarting the VM instance to apply the new assigned capacity, which interrupts

the service of Internet applications.

The last few years have witnessed the emergence of very large-scale Internet

applications, such as Twitter and Facebook, that manipulate a massive and highly

distributed amount of data. To cope fast with the increase of the data size, a

new database system called NoSQL (interpreted as ”not only SQL”) had been

emerged. NoSQL database is not built primely on tables and relations as the

relational database systems. It is built on the key-value pairs, which gives it
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the possibility to scale linearly and maintain high performance. Nevertheless,

NoSQL database is known by non-adherence to the transaction characteristics:

ACID (Atomicity, Consistency, Isolation, Durability), which makes it suitable

for some applications rather than others. For example, losing the transactions’

atomicity or consistency can cause big problems for an travel agencies, banking

systems, or online retailer.

In prior research [40], we considered scaling a relational database instance

vertically without interrupting the service. The scalability is controlled by static

thresholds to increase or decrease number of cores, according to workload varia-

tion. The vertical scalability allowed the database tier to cope rapidly with the

workload increase. Typically, public cloud providers deal with different periods

of workload. A good management of the workload (e.g., hosting complementary

workload on the same physical host) exploits the possibility of providing more re-

sources to the overloaded VM instances without impacting the other customers.

It also allows selling the spare capacity in the provider’s infrastructure, as we

explain in next section.

4.4.2 Increasing Spot Instances Reliability

Typically, IaaS providers deliver their services as reserved or On-Demand in-

stances. Spot instances, a purchasing model invented by Amazon EC2, is a

complementary service that allows customers to bid on the free capacity in the

provider data centers. Spot instances offer the customers a reduction in the price

over the other services. Nevertheless, the reduction in the price is on account of

the reliability, which limits the Spot instances to time-insensitive workloads (i.e.,

batch jobs).

To provision a Spot instance, a customer determine a bid value. Whenever the

bid value is greater than or equal the Spot instance’s price, the provider initializes

the instance for the customer. Whenever the price goes over the bid value, the

VM instance is terminated. To ensure fair trading, the provider does not charge

customers for the interrupted partial hours. Our experiments [42] [41] show that

uncharged time could rise up to 30% of the instance total run time, which means

a reduction in the provider’s revenue.
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In prior research [42] [41], we investigated scaling the VM instance capacity

dynamically with the market price. So, instead of initiating new instances (i.e.,

scale horizontally), additional capacity can be purchased dynamically for the

already running systems (i.e., scale vertically), such as databases. Our approach is

evaluated using real historical traces from the Spot instances market. It increases

the VM instance reliability, and in the same time increases the provider revenue.

4.5 Limitations of the Proposed Approach

The limitations of our approach are inherited from the limitations of the ver-

tical scalability. First, it assumes the provider involvement in the application

performance management, which is a complex task in large-scale infrastructures.

Second, the vertical scalability can lead to conflict on resources, which exposes

the performance of other costumers’ applications to degradation. Third, vertical

scalability is limited to one physical host. The live migrating of VMs into other

hosts can solve conflicts on resources and the limited capacity of physical host

problems. Nevertheless, live migration implies an overhead. Moreover, planning

the migration of VMs with a dynamically changing workload is a complex prob-

lem. The above problems have been studied intensively during the last few years.

Nevertheless, they still a hot research topics.

4.6 Summary

In this chapter, we employed the control theory to provide a fast coping with

the workload variation in consolidated environments. Our system includes three

controllers CPU, Memory, and Application running in parallel to preserve the

intended SLO. The Application controller dynamically tune the web server pa-

rameter MaxClients to achieve a high throughput, mitigate the SLO violation,

and reduce the ratio of lost requests. We evaluated our system in a Xen-based

virtualized environment. The Application controller showed efficiency for miti-

gating the impact of competition on resource on an application’s performance.
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Chapter 5

Cloud Hosting for Internet

Applications

The last few years have witnessed the emergence of cloud computing as a rapid,

limitlessly scalable, and cost-efficient alternative in contrast to the in-house (i.e.,

on-premise) data centers. The IaaS model delegates more control to the cus-

tomers over the provisioned resources. Hosting Internet applications in the IaaS

environment is an efficient way to start a new and a sustainable business that

expands the IT infrastructure gradually with the business growth. Moreover, on-

demand provisioning provides a cost-efficient way for already running businesses

to cope with unpredictable spikes in the workload. Nevertheless, an efficient scal-

ability for an Internet application in the cloud requires a broad knowledge of

several areas, such as scalable architectures, scalability components in the cloud,

and the parameters of scalability components.

Multi-tier architecture has been used for decades to provide scalability for In-

ternet applications. The emergence of the IaaS model enriches the multi-tier ar-

chitecture with components (i.e., services) that help scaling resources dynamically

(based on the actual demand) to maintain the Internet application performance.

To automate the performance management, IaaS’s customers are provided with

tools that enable provisioning and terminating resources remotely. In this chap-

ter, we study the impact of the introduced components and their parameters on

the performance of Internet applications. We focus in our study on Amazon EC2
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[12] since it is a pioneer of dynamic scalability in the IaaS environment. Never-

theless, we map Amazon EC2 concepts to other well known IaaS providers for

comparison purposes.

Our contributions in this chapter are as the following:

• Study and compare the scalability components in several IaaS providers.

• Define the scalability parameters that have crucial impact on an Internet

application performance.

• Investigate the problems that can impact the performance of an Internet

application hosted in the IaaS layer.

In the next section, we study the architectures, components, and parameters

necessary to implement a scalable Internet application in IaaS layer. In Section

5.2, we investigate the possible sources of the performance degradation of Internet

applications. Finally, we conclude our study in Section 5.3.

5.1 A Scalable Internet Application in IaaS

Dynamic scalability is not only crucial for IaaS customers, but also for PaaS and

SaaS providers [107]. IaaS providers offer architectures and components that ease

scaling applications. On the other hand, a non-trivial part of the task lies in the

customer’s side. For example, the customer should design policies that control

provisioning resources dynamically. Designing these policies depends mainly on

the customer’s understanding of Internet application behavior and demand. Due

to the vast number of the hosted applications in the IaaS environment and the

variant behavior and demand of each application, customers should not expect

IaaS providers to monitor the performance of each hosted application. In fact,

what an IaaS provider describes in the Service Level Agreement (SLA) is the run-

ning time of VM instances. For that reason, maintaining the performance of an

application hosted in IaaS remains the customer’s responsibility. In this section

we begin with a detailed scalable architecture and then define the main compo-

nents followed by the related parameters that can have impact on application

performance.
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5.1.1 The Scalable Architecture

Before the cloud emergence, multi-tier architecture has been used to provide the

scalability for the Internet applications. Each tier of the multi-tier architecture

has a cluster of physical nodes. The tier can be scaled out by adding more nodes.

However, adding a physical node is time consuming job that cannot be done

without human interaction.

The later development of IaaS model has been enriched the multi-tier archi-

tecture with many components that can be consumed as web services to provide

a reliable and a dynamically scalable architecture. For example, instead of run-

ning physical servers in each tier, customers can run a number of VM instances

that can be increased or decreased dynamically according to the workload. For

fault tolerance, many VM instances in Amazon IaaS model can be grouped into

one Auto-Scaling group that maintains running a specific number of healthy VM

instances all the time. In addition to VM instances as computation units, Fig-

ure 5.1 shows auxiliary components, such as the Elastic Load Balancer (ELBs),

network storage (e.g., S3 and EBS), and monitoring and notification services.

Consuming these services may include additional cost. However, the offered

services are manageable, reliable, and fault-tolerant compared to customers self-

created components. We study in details the components that are developed to

improve the Internet application scalability in next section.

5.1.2 Scalability Components

With the advance of cloud computing infrastructure, many services and concepts

have emerged to facilitate and support scalable and reliable Internet applications.

In this section, we explain the services and concepts that are related to application

scalability using Amazon EC2’s terminology while also mapping them to other

providers’ terms.

1. Amazon Machine Image (AMI): AMI is a pre-configured operating

system image that can be used to create a VM instance. Windows Azure,

[81] as well as Amazon EC2, allow the clients to upload their own image or

select from a list of available images. Different providers and communities
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Figure 5.1: A detailed multi-tier scalable architecture

offer images with software stacks to deliver their software on-demand. These

images are stored in a non-volatile repository (e.g., Amazon S3 [12]). Most

of the IaaS providers also allow users to customize VM images and create

their own images as snapshots.

2. Amazon Simple Storage Service (S3): S3 is a simple web service that

provides a fault-tolerant and durable data storage. The data is stored as
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objects replicated across different geographical regions for higher availabil-

ity. Stored objects can be accessed using URLs. S3 is optimal for storing

static data that is delivered to users directly without manipulation. In ad-

dition, it is used to store VM images. The rate of data transfer varies from

one provider to another according to the used technology. For example, the

data transfer rate in RackSpace [3] is measured as 22.5 MB/s[76]. This is

due to the low overhead of running a VM instance compared with Amazon

EC2 and Windows Azure, as we explain in Section 5.2.2.

3. Amazon Elastic Block Store (EBS): EBS is a block level storage vol-

ume that persists independently from the VM instance life. Unlike the local

storage which can be lost after a failure or a planned termination of a VM

instance, the EBS volume lasts permanently. Consequently, it is used for

applications that need permanent storage like databases. At any time a VM

instance fails, the EBS volume can be re-attached to another healthy VM

instance. Despite the fact that the EBS volumes are stored redundantly, to

reduce the recovery time from a failure, users can periodically take snap-

shots of these volumes. In addition, for high durability, the snapshots also

could be stored in S3 storage. As an example, in Figure 5.1, a best practice

is to map the Master database to EBS storage. Whenever the database

instance fails, we can remap the storage volume to another instance and

restore the database to operational mode quickly. To balance the workload

on database tier we can dump the database into S3 storage that can be

used to initiate Slave instance as we explained in Section 5.2.2.

4. Regions and Availability Zones: Cloud infrastructure is designed to

offer a fast and reliable service globally. As a result, data centers of a

cloud provider are distributed to span more geographical location areas (i.e.,

Regions). Within each Region, there are many Availability Zones that are

engineered to be isolated from failure propagation. The networking between

the Availability Zones within the same Region is inexpensive and induces

a low networking latency. On the other hand, the networking between

VM instances within Availability Zones located in different Regions implies

networking through the Internet. As a result, the cloud customers are not
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advised to split application tiers into different Regions, even for reliability

and fault-tolerance.

5. Static Load Balancer (SLB): Also referred to as a Load Balancer (LB)

or a dispatcher. Usually, it is a VM running a third-party software (e.g.,

HAProxy, Nginx, and Apache-proxy) to distribute workload across many

back-end VM instances (i.e., replicas). The redirection of requests to the

back-end instances follows a specific algorithm. Round robin is a widely

used algorithm in Load Balancers. In case of unequal size of back-end in-

stances, weighted round robin can be used to direct a quantity of the traffic

proportional to the instance capacity. In case of databases, especially when

the majority of the requests dispatch read queries, a load balancer can be

stood in front of the database tier. The database tier itself can be split into

a Master database instance, and one or more Slave instances. The write

quires are directed by the load balancer to the Master database while the

read queries are directed to the Slave instances. To keep data consistent,

the Master and Slave instances should not be located in different Regions to

avoid high latency synchronization through the Internet. Nevertheless, to

scale database into different Regions, other techniques like database shard-

ing [36][6] can be used.

6. Elastic Load Balancing: The challenge with the SLB is that they are

in need to have up to date lists of the available healthy replicas behind it.

Whenever a replica fails or does not work properly, it should be excluded

from the list to avoid losing or delaying the routed traffic. On the other

hand, whenever a new replica is initiated, it receives a new IP address

that is unknown to SLB. For third-party load balancers, it is the Internet

application owner’s job to mange registering and de-registering instances to

the SLB. This implies running an additional component to interface with

the load balancer and update the replicas list with each exclusion or addition

of a replica. Moreover, SLB owners should run additional components to

allow the balancer to distinguish between healthy and non-healthy replicas.

Alternatively, Elastic Load Balancer of Amazon EC2 is supported with

additional control component that keeps watching the status of the replicas,
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whenever a VM instance does not respond properly; it is excluded from the

replicas to prevent routing traffic to it. When the instance recovers to

healthy mode, ELB can consider it in the possible replicas again. It is

important to note that registering and de-registering instances to the Load

Balancer is not part of the ELB job. They are accomplished by using the

so-called - Auto-Scaling Group, which is explained next. On the contrary to

ELB as a software load balancer, GoGrid [1] offers a hardware load balancer

that has a rich interface with many functions. One of the distinguishing

features of the GoGrid load balancer is the ability to have log files format

similar to apache style access log. Furthermore, it has an important feature

called connection throttling, which allows the load balancer to accept only

a pre-defined number of connections per an IP address. By this, the load

balancer can mitigate malicious or abusive traffic to the applications.

7. Auto scaling group: It is a concept by Amazon EC2 that keeps a healthy

group of instances running under a unique name. At the creation time of the

group, the user can specify the minimum number of the healthy instances

that should be available all the time. Whenever a VM instance does not

work well, the group controller replaces it automatically with a new one.

Connecting the auto scaling group with an ELB is necessary to provide

the ELB with an updated list of the available running replicas within the

scaling group.

8. Auto scaling policies: Auto scaling policies should be attached to a

specific scaling group. They describe how the scaling group should behave

whenever it receives a scale out or down trigger.

9. CloudWatch: A web service that enables monitoring various performance

metrics, as well as configuring alarm actions based on the status of the

monitored metrics. For example, the user can set up CloudWatch to send an

email or trigger scalability when the CPU utilization of a database instance

goes over 70%.

10. Route 53: In reality, ELB is limited to one region. As a result, Amazon

offers Route 53 [16] as a scalable and highly available Domain Name System
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(DNS). It allows scaling an Internet application globally for less latency

and higher reliability. With Route 53, Internet application users can be

directed to the closest region according to their geographical location and

therefore, the users will be served from the closest data center. This allows

a geographical distribution of the load and reduces the traffic latency.

We summarize the main scalability components that are implemented by ma-

jor public IaaS providers in Table 5.1.

Amazon EC2
Windows
Azure

Rackspace GoGrid

AMI Images N/A
GoGrid Server
Images (GSIs)
and PartnerGSIs

ELB N/A
Cloud Load
Balancer

F5 Load Balancer
(Hardware)

EBS
Windows Azure
Drives

Only a local
storage

N/A

S3
Azure Blob
Storage

Rackspace (cloud
files)

Cloud Storage

Regions and
Availability zones

Regions but no
Availability zones

Regions but no
Availability zones

Regions but no
Availability zones

Scalability Group N/A N/A N/A
Scalability
Policies

N/A N/A N/A

Table 5.1: Scalability components of Amazon EC2, Windows Azure, Rackspace,
and GoGrid

As shown in Table 5.1, Amazon EC2 has all the components that are neces-

sary for efficient scalability. For the other providers, third parties like RightScale

[4], open source management tools like Scalr [97], or internally implemented con-

trollers are necessary to implement an automated scalability.

5.1.3 Scalability Parameters

After explaining the scalability components in Table 5.2, we highlight some of

the parameters that should be set by the customer and have crucial impact on

the application performance.
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Component Parameter Description

Auto Scaling
Group

default-
cooldown

The time period that should pass after a
successful scaling to consider a new one. This
value can be determined globally per
scalability group or individually per each
scaling policy.

Auto Scaling
Policy

cooldown

Depending on the incoming workload’s
fluctuation, customers can determine the best
cooldown period of time that should pass after
each scale either up or down.

Auto Scaling
Policy

adjustment

This parameter determines the size of the
scaling step. The positive values means
scaling out, while negative values means
scaling down. In Section 7.1.3, we study the
impact of the size of the step on both the cost
and the performance.

CloudWatch
metric-
name

The metric to be monitored. In Section 7.1.1,
we concentrate on the the CPU utilization.

CloudWatch threshold

The threshold value at which a determined
arrangement will be carried, such as initiating
a new instance when the monitored metric
(e.g., CPU utilization) is higher than the
threshold 70%.

CloudWatch period
The time frame (in seconds) in which Amazon
CloudWatch metrics are collected.

CloudWatch
evaluation-
periods

The number of consecutive periods for which
the value of the metric must be compared to
the threshold.

Table 5.2: Scalability parameters that have impact on the scalable application
performance

In the next section, we explain a practical example for configuring scalability

for one tier of an Internet application using Amazon EC2 scalability components.
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5.1.4 Configuring Automatic Scaling in the IaaS Layer

In the following example, we summarize how a cloud’s customer can enable the

scalability to specific tier using the components offered by Amazon EC2. The

purpose of this example is to express the parameters that have a high impact on

the application performance. In this example, we assume a web tier that should

maintain at least two VM instances, and can scale out to fifteen instances of type

m1.small. The group adds one instance per a scale out operation, and terminates

one instance per a scale down operation. The scale out is triggered when the

aggregated CPU utilization of all the instances in the scalability group goes over

70%. On the other hand, the scale down is triggered when the aggregated CPU

utilization of all the instances in the scalability group goes under 30%. The

system will not scale out before three minutes of the last scale out operation, and

will not scale down before five minutes of the last scale down.

Auto scaling group 

VM VM 

Launch 
configuration 

ELB: mybalancer 

Auto scaling 
group 

configuration 

Auto scaling policies 

CloudWatch 

3 

2 4 

5 

6 

S3 

ami-4f35f826 
1 

Figure 5.2: The main components that support automatic scalability in Amazon
EC2

1. Prepare an image to run: As explained in Section 5.1.2, customers can

create their own instance or pick one of the available images offered by the
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provider. For example, we consider running an instance from the image

ami-4f35f826, where the customer is supposed to install a web server and

configure it with the IP or the DNS of the load balancer of the application

tier. The customer can copy the html pages to the web server folder in

the VM image. If the html code is updated frequently, it is more practical

to keep the code in external storage (e.g., S3) and retrieve it at the VM

initializing time.

2. Launch configuration: For auto scaling, the customer should predeter-

mine the launch configurations. To create launch configurations, customers

should determine a unique name of the configurations, a valid instance id,

the type of the instance, the name of the key pair, and the security group.

An example of creating a launch configuration is as follows:

as-create-launch-config my_launch_conf_group

--image-id ami-4f35f826 --instance-type m1.small

--key my_key --group my_group --monitoring-enabled

The key and security group can be created using the dashboard. More

details can be found in Amazon [12].

3. Running a load balancer: If a user decided to run ELB, the CNAME

of the Internet application should point to the DNS name of the ELB not

the IP. It appears that, Amazon EC2 does not dedicate a public IP for

each ELB. In our example, we consider running an ELB called mybalancer.

It is necessary to determine both the incoming port of the ELB and the

forward port that the replicas are listening to. The elastic load balancer

should also be configured with metrics that help it to abandon non-healthy

replicas depending on predetermined criteria. Running and managing an

ELB can be done either by command line [15] or through the dashboard.

4. Auto scaling group configuration: To create a scaling group, customers

should determine a unique name for it, a launch configuration, an availabil-

ity zone, a minimum number of instances, a maximum number of instances,

and a grace period in seconds. The purpose of the grace period is to give the
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system a time to stabilize after each initialization of a VM instance within

the group. The command of creating a scaling group can be as follows:

as-create-auto-scaling-group my_scaling_group

--launch-configuration my_launch_conf_group

--availability-zones us-east-1a --min-size 2

--max-size 15 --load-balancers mybalancer

--health-check-type ELB --default-cooldown 120

5. Auto scaling polices: In our example, to create a scale out policy that

should be triggered by the CloudWatch whenever a specific condition is

fulfilled, we run the following command:

as-put-scaling-policy --auto-scaling-group

my_scaling_group --name scale-out --adjustment 1

--type ChangeInCapacity --cooldown 180

A similar policy, but for scale down can be as follows:

as-put-scaling-policy --auto-scaling-group

my_scaling_group --name scale-down

"--adjustment=-1" --type ChangeInCapacity

--cooldown 300

As displayed above, to create a scaling policy, the customer should config-

ure these parameters: the name of the auto scaling group, a unique scaling

policy name, the size of the scaling step, the type, and the cooldown time

in seconds. If the cooldown is not determined at the creation time of the

scaling policy, the value of –default-cooldown scaling group will be consid-

ered as a cooldown value. The positive scaling step (i.e., adjustment) means

adding the specified number of instances to the scaling group, while neg-

ative adjustment means removing the specified number from the scaling

group. More details about the command parameters can be found in [14].

6. CloudWatch: provides monitoring service that allows customers to watch

their application performance. To trigger scaling policies, CloudWatch
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should be configured either with CloudWatch command line [11] or through

the web interface. Amazon offers an easy web interface that enables creating

metric alarms. There are many metrics to monitor, including single instance

metrics or aggregated metrics. In our example, we select the aggregated

metric of an auto scaling group while it describes the whole group perfor-

mance. The command that is necessary to trigger ”scale-out” policy when

the aggregated CPU utilization of the scaling group ”my scaling group” is

measured three times consecutively higher than or equal 70%, is as the

following:

mon-put-metric-alarm --alarm-name HighCPUAlarm

--alarm-description "Alarm when the aggregated CPU

utilization of my_scaling_group is greater than or equal 70%"

--metric-name CPUUtilization --namespace "AWS/EC2"

--statistic Average --period 60 --evaluation-periods 3 --threshold 70.0

--comparison-operator GreaterThanOrEqualToThreshold

--dimensions "AutoScalingGroupName=my_scaling_group"

--unit Percent --alarm-actions = "arn:aws:autoscalin.."

The parameter alarm-actions contains the Amazon Resource Number (ARN),

which is a unique identifier for each scaling policy. It is generated at creation

time of the scaling policies and can be retrieved with the command line as-

describe-policies. A similar alarm is necessary for scaling down at low CPU

utilization but with different comparison-operator, threshold, evaluation-

periods, and alarm-actions.

Currently, CloudWatch provides a free mode where the metrics are mea-

sured at five-minute interval. Based on our experience, free mode is not

efficient for those applications having frequent changes in the workload.

The other choice offers more frequent measurement (i.e., one-minute inter-

val) by setting what is called a detailed monitoring of an instance; however

it is charged monthly per an instance. Furthermore, for both modes, cus-

tomers will be charged monthly per alarm and per thousand API requests.

More details about the CloudWatch can be found in [10].
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5.2 Facts Impacting the Performance of Scal-

able Applications in IaaS Environments

An Internet application hosted in IaaS layer is exposed to periods of performance

degradation due to two main facts: First, the performance interference which

is caused by consolidating different workloads belonging to different customers

on the same physical host. We studied it intensively and proposed a solution

to mitigate its impact on application’s performance in Chapter 8. Second, the

resources provisioning overhead which leads to periods of under-provisioning with

each trigger to the scale out process.

Facts impact the scalable application's 
performance in the IaaS 

Performance 
interference (Chapter 8)  

Resources provisioning 
overhead 

Reactive scalability 
(Chapter 7) 

Overhead of a VM’s 
initialization 

Monitoring periods’ 
size 

Network 
throughput 

Figure 5.3: Facts impacting the scalable application’s performance in IaaS envi-
ronments

According to our practical experience, we attribute the overhead of resources

provisioning in IaaS layer to three facts:

1. The reactive implementation of the scalability in the cloud (i.e., Amazon

EC2).

2. The overhead of a VM’s initialization which itself is influenced by the net-

work throughput.

3. The monitoring periods’ size.
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Because of the reactive implementation of the scalability in the cloud, the

scale out is triggered only when the system experiences an overloading state. For

example, a web tier scale out can be triggered when the CPU utilization is equal

to or higher than the scale out threshold 70%. But, what is the best scale out

threshold? What happens if we rise up the scale out threshold to 80%? Will this

reduce the cost? And what is the application performance for each scalability

threshold? We answer these questions in Chapter 7.

In the following sections, we explain the impact of the underlined facts, seen

in Figure 5.3, on the provisioning overhead of resources in the IaaS layer.

5.2.1 Initializing a VM in IaaS Environment

In this section, we explain the stages of initializing a VM in the IaaS layer. The

goal is to identify the sources of the overhead, then to classify them according

to the contributor. In other words, we want to distinguish between the stages at

which the customer behavior can impact the time of bringing a VM to operational

state from the stages that are fully influenced by the provider behavior.

In Figure 5.4, we use two types of boxes to refer to two types of stages.

The dotted line boxes refer to the stages where customers can have impact on

the completion time of the stage. The solid line boxes show stages that are

completed entirely by the provider, and its completion time is totally dependent

on the provider algorithms and the current demand on the data centers.
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Figure 5.4: Initializing a VM in the cloud

The stages can be explained as follows:
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1. The request for a new VM is initiated by the user either manually or by a

scalability controller.

2. After receiving the request, the provider runs an algorithm to find the

best physical host for hosting the new VM instance. Mao et al. [76] have

shown that machine size, operating system, time of the day, and number of

instances have different weights of impact on the VM’s start up times

3. After finding a suitable physical host, the VM image is copied through the

network.

4. Once the VM image is copied completely to the physical host, the hypervisor

starts it. Running a VM in the cloud includes: booting the operating

system, configuring the network setup (e.g., assigning a private IP and

public domain name for a VM running instance), copying the public key

for accessing the VM in case of Linux, or generating a random password in

case of Windows operating system.

5. The best practice to assure that the new initiated VM has up-to-date data

is to store data in a network storage. For instance, to run a web server with

the last version of html pages, at run time, the server should be pointed to

the repository where a tar ball of html files can be retrieved and extracted to

the proper folder on the web server. Same procedures should be followed for

the application and database instances. This can be implemented through

scripts that executed at the VM start up time. However, customers should

avoid retrieving huge amounts of data that may delay bringing VM instances

into an operational mode. A long delay can make the dynamic scalability

non-efficient as we explain in Section 5.2.2.

6. Whenever the user gets the domain name of the initiated VM, he can access

it for configuring the hosted software. Users should avoid installing soft-

ware at VM’s start up time, while this can delay bringing the VM to the

operational mode. The best practice is to pre-install the required software

and packages to the VM image and prepare a script that runs automatically

at the VM start up time to do the required configurations. These config-
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urations may include passing the acquired private IP (i.e., internal IP) to

another VM (e.g., the static load balancer).

As seen above, part of the delay in VM initialization is attributed to the

provider. However, user should avoid any practices that can delay moving the

initiated VM instance to the operational state.

5.2.2 Network Throughput Impact on the Application Scal-

ability

A practical study by [76] shows that initiating a Linux instance at Rackspace [3]

takes half of the time in comparison to Amazon EC2 [12]. It is due to the data

transfer rate between VM and network storage (i.e., images repository), where it

is 22.5 MB/s at Rackspace, while it is measured as 10.9 MB/s at Amazon EC2.

Considering the network throughput limit, we discuss scaling out a database

tier horizontally by adding more Slave instances (i.e., read only instances). For

this purpose, we calculate the time required to bring a new Slave database in-

stance to operational mode. In our setup, we consider the typical setup for a

scalable database in the cloud. Consequently, we assume an old dump of the

whole database is stored in cloud storage (e.g., Amazon S3). Furthermore, an

incremental backup of the binary files is also stored periodically to the storage

as described in [45]. The non-compressed dump of our database is 1.1GB. To

reduce the transferring time from the networking storage to the new VM, the

database can be compressed to a lower size (i.e., 153MB). We assume that the

Slave instance has a new and up-to-date MySQL installation. At the initialization

time of the VM, we run a script that copies the compressed dump file from S3

storage to the VM local storage. The dump file is extracted and used to restore

the database. Afterwards, we retrieve all binary log files that had been uploaded

to S3 during the Master database running time. Theses logs also applied to the

new database. Until this moment; new Slave instance do not know the Master

database node. To point the new Slave VM to the Master node we should run a

command similar to the below at the Slave node:

CHANGE MASTER TO

->MASTER_HOST=’master_host_name’,

->MASTER_USER=’replication_user_name’,
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->MASTER_PASSWORD=’replication_password’,

->MASTER_LOG_FILE=’recorded_log_file_name’,

->MASTER_LOG_POS=recorded_log_position;

This command keeps the Slave node up-to-date with any changes to the Master

node. We now consider the Slave node is ready to receive queries. It is now

the time to update the static load balancer with the new available Slave replica

and start it in operational mode. The average time required to run a new Slave

database on m1.small instance at Amazon EC2 can be measured as follows:

1. Initializing a small instance in Amazon EC2: 100 seconds

2. Copying the compressed dump of database to the new VM instance: 16

seconds

3. Extracting the database dump and importing it to the new database: 255

seconds

4. Retrieving and applying the incremental binary logs: 130 seconds

5. Get the last updates from the Master node, restart the Slave, and update

the load balancer with the IP address of the new Slave node: 68 seconds

As shown above, initializing a relatively small Slave database instance can

be done, at best, in 569 seconds, which can be estimated as 10 minutes. Our

measurements are exposed to increase if the size of the database dump is bigger

or the number of incremental binary logs is higher. We should remember that

our database is considered very small compared to large databases running in a

production environment. Large databases require longer time to initialize a Slave

VM from scratch, which raises the question about the efficiency of scaling-out a

database Slave instances dynamically.

5.2.3 Control Window’s Size

Understanding the workload characteristics is crucial to determine the control

window’s size (CWS). A small CWS allows the system to cope faster with the
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workload; however, it can lead to either inconsistent scale out steps and conse-

quently a higher total cost, or inconsistent scale down steps that degrades the

performance. On the other hand, a large CWS causes the system to react slowly

with the workload, which leads to periods of under-provisioning (i.e., performance

degradation).

CWS is determined by two parameters. The first parameter is the period,

which is 60 seconds at minimum in CloudWatch. The second parameter is

evaluation-periods, which determines the number of the consecutive periods at

which the measured value exceeds the threshold. The control window’s size is

calculated by the following relation CWS = period ∗ evaluation-periods. To in-

crease the scaling steps consistency, customers can use default-cooldown at the

level of the scaling group, or override it by cooldown for individual scaling poli-

cies. Typically, the cooldown time should be less than or equal to the CWS,

otherwise it can interfere the CWS as the following: ĈWS = CWS − cooldown,

where ĈWS is the new control window’s size after a scale out or down.

5.3 Summary

In this chapter we summarize our practical experience in hosting a scalable Inter-

net application in IaaS. As seen above, a deep understanding of many concepts,

components, and parameters are necessary to run applications in IaaS properly.

We invest this experience in Chapter 6 to develop our simulator ScaleSim, which

considers the main components and parameters that have impact on the appli-

cation performance. In Chapter 7, we go further by optimizing some parameters

for better performance.
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Chapter 6

A Large-scale Internet

Application Evaluation

Many approaches are developed to improve Internet applications performance in

the cloud [57] [67] [54] [94] [75]. Nevertheless, less attention is given for evaluating

the scalability implementation in the current running production environments.

Thus, we evaluate the current implementation of the scalability in the large-

scale production environments, namely, Amazon EC2. Amazon EC2 is one of

the biggest cloud providers offering an infrastructure for hundreds of satisfied

customers1. The current scalability implementation in Amazon EC2 is used as a

reference point for evaluating our proposed improvement in scalable applications

performance.

As a matter of fact, large-scale experiments in the public IaaS imply a big

cost, and are hard to repeat. On the other hand, prototyping systems on small

test-beds do not guarantee their feasibility at large-scale. To overcome these

issues, we develop ScaleSim simulator. It simulates the scalability components

of Amazon EC2 [12]. The simulator is implemented into modules to allow other

researchers to implement, run, and compare their algorithms at a large-scale level.

To realize our results, we imparted the simulator with models that are extracted

from a real cloud environment. In this chapter, we simulated RUBiS benchmark

[31] at a large-scale level. However, the same procedures are applicable to any

1https://aws.amazon.com/solutions/case-studies/
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Internet application running in production environment.

This chapter is organized as follows: In Section 6.1, we model the application

performance in real environment, which is necessary to achieve realistic simulated

results with an affordable cost. In Section we describe and evaluate the developed

simulator (ScaleSim). Finally, in Section 6.3, we summarize our contributions in

this chapter.

6.1 Modeling an Internet Application

Modeling an application behavior is crucial for maintaining the Internet applica-

tion performance and avoiding resource bottlenecks. Nevertheless, modeling an

Internet application is complex due to the nature of their architecture. For in-

stance, each tier in the Internet application runs different software which itself has

a different behavior. Moreover, the dependency between the Internet application

tiers propagates the impact of resource bottlenecks from one tier to the others

[57][103][119]. For instance, a database tier is known to be an I/O intensive ap-

plication that requires a huge memory. At any time the allocated RAM exceeds

90%, the operating system starts paging into the virtual memory allocated at the

hard disk. The swapping results in more I/O operations and consumes much of

the CPU time. Consequently, it degrades not only the performance of database

tier, but also the performance of the whole Internet application. In Chapter 4,

we have avoided resource overloading by the vertical scalability. However, in this

chapter we consider the public IaaS model, which allows only the horizontal scal-

ability. In public IaaS model, a customer can set scalability policies with static

thresholds that guide resource provisioning for maintaining the utilization within

a specific limit.

However, what are the thresholds that maintain a high performance? Com-

monly used thresholds are (70% for scale out, 30% for scale down) and (80%

for scale out, 40% for scale down)1. Nevertheless, our experiments show that

the scale out and scale down thresholds have big impact on the system perfor-

mance. These thresholds should be defined carefully for each tier depending on

the running software, as we explain in Section 6.1.1.

1http://awsdocs.s3.amazonaws.com/AutoScaling/latest/as-dg.pdf
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In our experiments, we used RUBiS benchmark [31] as an Internet application.

It is an online auction web site developed at Rice University to model basic

functions of ebay.com system. It is widely used for modeling multi-tier systems

[87] [88] [95] [105] [44] [95] [23]. The original implementation of RUBiS uses a

variety of open source software products including JBoss, JOnAS, Tomcat, and

Apache. In our experiments, we considered the RUBiS implementation consisting

of Apache as a web server, Tomcat as an application server, and MySQL as a

database.

6.1.1 Physical Setup

To reduce the experiment budget, we installed both the workload generator and

the load balancer inside Amazon EC2 infrastructure. Both the web and the

application were run on instances bundled to Amazon S3. A write only database

(i.e., Master database) was created from an instance mapped to EBS storage for

permanent storage, while a read only a database (i.e., Slave database) was created

from a bundled image stored at Amazon S3. We chose a small instance for the

web, the application, the Slave databases, and the load balancers. For the Master

database and the load generator we ran medium instances (i.e., m1.medium). To

avoid the impact of other tiers on the tier that is under analysis, we created many

replicas in the other tiers that keep the CPU utilization in these tiers around 30%.

As an example, to model CPU utilization of the web tier, we ran four instances

of application tier and two instances of Slave database.

The generated workload was step traffic increasing the number of simultaneous

clients gradually. In our experiments, we considered the 95th percentile response

time, which means that 95% of the measured response times of all requests is

less than or equal to a given value (e.g., 95% of the requests is less than 100

milliseconds).

6.1.2 Web Tier and Application Tier Thresholds

The CPU utilization increases, as the number of requests increases. The rela-

tion between the number of requests and the CPU utilization is linear during the

experiment run time. On the other hand, the response time increases exponen-

77



6. A Large-scale Internet Application Evaluation

tially with the CPU utilization. At some high values of the CPU utilization, the

response time increases dramatically because the requests spend longer time in

the queue of the system waiting for processing. Our goal from this analysis is

to determine the CPU threshold that keeps the response time within a specific

limit. In our system, we consider 100 ms as a higher limit of response time,

meanwhile a response time around this value gives the user the feeling that the

system is reacting instantaneously [85]. Figure 6.1 demonstrates the following:

to keep the response time of 95% of the requests less than or equal to 100 ms,

the CPU utilization of each VM instance at web tier and application tier should

be less than or equal to 70% and 62
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Figure 6.1: Web tier performance threshold

6.1.3 Database Tier Thresholds

Internet applications experiencing a high workload on the database tier should

increase the database tier capacity by either scaling up vertically into more com-

plex and expensive hardware server; or scale out horizontally into low-commodity

hardware. Wikipedia is one of the big systems that adopted the horizontal scal-

ing approach to the database tier using Master/Slave architecture. Wikipedia

receives 50,000 http requests per second that results in 80,000 SQL query per a

second [82].
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Figure 6.2: Application tier performance threshold

In our setup, we assumed only modeling the Slave instances. To split the

workload according to the query type (i.e., write or read-only), we used MySQL

proxy [84]. Although MySQL proxy is still in Alpha release, it showed robustness

in splitting the queries and balancing the load among the Slave replicas in our

experiments.
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Figure 6.3: Read only (i.e. Slave) database tier performance threshold

For the same setup but with five instances at web tier and four at application

tier, the result in Figure 6.3 shows the following: to keep the response time of

95% of the requests less than or equal to 100 ms, the CPU utilization of each
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instance of read only databases should be less than or equal to 72%.

Our experiment shows that each tier has a different performance threshold.

If the customer failed to determine the proper threshold for each tier, the whole

Internet application performance will be degraded. For example, in the case of

our setup, the auction website owner (i.e., RUBiS) has a Service Level Objective

(SLO) to keep the response time of 95% of the requests less than 100 milliseconds.

If the commonly used scale out threshold (e.g., 70%) is set up for the scale out

of the application tier, the system will violate the SLO during the periods when

the CPU utilization of VM instances at application tier is higher than 62% but

less than 70% (i.e., High, but not high enough to scale out).

6.1.4 ARX Models Extraction

In this section, we model the VM instance resource utilization as a black-box.

The relation between the input (i.e., URL requests to the Internet application)

and the output (e.g., CPU utilization) is inferred empirically. To have online

measurements of the VM instance under analysis, we built a Java client contin-

uously monitor the basic metrics: CPU utilization, Memory allocation, Network

IN/OUT rate, and Disk read/write rate. In addition to the monitored metrics,

we enabled the load balancer to log URL requests. The monitored metrics are

synchronized with the request log file. For each monitoring interval (i.e., one

minute in our case) we count the number of requests of each type. We consider

18 types of requests in RUBiS benchmark depending on the URL. The vector of

requests rate is the input for our multiple-input, single-output (MISO) model,

while the output is the modeled metric (e.g., CPU utilization of the web tier). To

have accurate models, we had the samples only from the area where the system

runs linearly. In other words, we discard the regions where the response time

increases unexpectedly. More details about the models extraction and validation

are presented in Section 8.3.2.

We start with a single-input, single-output (SISO) ARX model to learn a

linear relationship between input u and output y as y = f(u), then we extend

the SISO to MISO model. The input u and output y are sampled at time k as

uk and yk respectively. The input-output relationship can be represented by the
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following difference equation:

yk + a1yk−1+...+ anayk−na

= b1uk−nk
+ ...+ bnb

uk−nk−nb+1 + εk (6.1)

The parameters na and nb reflect how strongly previous steps affect the current

output, while nk represents the delay between the effective input uk and output

yk. For instance, nk = 0 means a direct coupling between input and output. A

compact way to write the difference equation is:

A(q)yk = B(q)uk + εk (6.2)

If we consider q as a delay operator, we can interpret A(q) and B(q) as follows:

A(q) = 1 + a1q
−1 + ...+ anaq

−na (6.3)

B(q) = b1q
−nk + ...+ bnb

q−nk−nb+1 (6.4)

The white noise term εk is usually small for a model with high fitness score,

so we can extract the adjustable parameters to the following:

θ = [ a1 a2 .... ana b1 b2 ... bnb
]T (6.5)

If we define a column ϕk as follows:

ϕk =
[
−yk−1 .... − yk−nan

uk−nk
... uk−nk−nb+1

]T
(6.6)

Then, the estimator ŷk of yk can be calculated as follows:

ŷk = ϕT
k θ (6.7)

If we have N measurements of input uk and output yk, then the goal is to find
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θ that results in the lowest quadratic error:

ε =
1

N

N∑
k=1

(ŷk − yk)2 (6.8)

Using Least Squares Method (LSM) for θ, we can find θ̂k that minimizes the

estimated error ε as follows:

θ̂k =

[
1

N

N∑
k=1

(
ϕkϕ

T
k

)]−1

f (N) (6.9)

where:

f (N) =
1

N

N∑
k=1

ϕkyk (6.10)

The SISO model shown in equation 6.1 can be extended to the MISO model,

which considers C categories of requests. Each category rate results in a different

consumption of resources. If we refer to category i of requests as ui, then we

should derive the new relationship y = f(u1, u2, ..., uC). In this case, the coeffi-

cients of request i can be presented as
[
bi1 b

i
2 ... b

i
nb

]
. The equation 6.1 is updated

to consider multiple inputs as follows:

yk + a1yk−1+...+ anayk−na

= b11u
1
k−nk

+ ...+ b1nb
u1k−nk−nb+1

+ ...

+ bC1 u
C
k−nk

+ ...+ bCnb
uCk−nk−nb+1 (6.11)

Accordingly, new values of θ and ϕ that consider multiple inputs are as follows:

θ =
[
a1 a2 .... ana b

1
1 b

1
2 ... b

1
nb
...... bC1 bC2 ... bCnb

]T
(6.12)
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ϕk = [ −yk−1 .... − yk−nan
u1k−nk

... u1k−nk−nb+1

......

uCk−nk
... uCk−nk−nb+1 ]T (6.13)

After extracting θ parameter and defining ϕk for multiple inputs model, we can

use equations 6.7 to 6.10 of SISO model to find θ̂k that minimizes the estimated

error ε of MISO model.

In our experiments, we observed that setting na = 2 and nb = 2 reduced the

parameters search space without degrading model’s accuracy. Moreover, we did

not consider any time delay by setting nk value to zero while the sampling window

size is 60 seconds, which is long enough to hide small delays of request impact

on each tier. Typically, common least square algorithms have polynomial time

complexity O(u3v) when solving v equations with u variables [119]. However, we

solve these equations once at off-line time for each resource. At run time, we

calculate ŷk with a linear complexity O(n), where n = na + nb ∗ C.

6.2 Developed Simulator (ScaleSim)

Our simulator (ScaleSim) is built on top of the CloudSim [29]. CloudSim [29] is a

framework for modeling and simulating cloud computing infrastructures and ser-

vices. It allows a fast evaluation of the new developed algorithms. Nevertheless,

it does not contain the scaling components that are required for our research;

therefore we implemented our components as external modules interacting with

the core of the CloudSim.

We implemented ScaleSim to examine the current implementation of the scal-

ability in Amazon EC2. Our simulator was built as components that can be

easily customized by other researchers. Moreover, we depend on meta-data files

(i.e., xml files) for configuration. With each new run, the components fetch the

last update for the configuration file. Figure 6.4 shows the components of our

developed simulator. The interaction between the components is explained as

follows:
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Figure 6.4: Our implementation for cloud computing scalability (ScaleSim)

1. Training file (e.g., training.csv) contains real measurements of an applica-

tion in a physical environment. The measurements consist of the rate of

each considered URL request and the utilization of the monitored resources.

The file is built as described in Section 6.1.4. However, the same procedures

can be implemented to any other Internet application.

2. Running file (e.g.,running.csv) contains an artificial generated workload. To

achieve more realistic results, the workload should be generated to mimic

the real behavior of the Internet applications. We explain in details the

workload generation for our experiment in Section 6.2.1.

3. Models extraction and workload generation modules do two tasks: first,

it reads the training files to extract models. Second, it calculates the con-

sumption of resources. The expected consumption of the resources is passed

to CloudProfiler object. It is an object resides in CloudSim to build the

data centers and the brokers that manage the coming workload.

4. In CloudSim we implemented a simple Datacenter to avoid internal opti-

mization of resources (e.g., VM migration) that might influence our simu-

lation results. At the start of the simulation, a new object of Utilization-

Manager is created.
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5. Whenever UtilizationManager is started, it creates an object of AutoScale-

Manager class. In fact, UtilizationManager is considered as the actuator

for the scalability commands that are received from AutoScaleManager.

UtilizationManager has a direct monitoring of resources in CloudSim envi-

ronment. It passes these measurements to AutoScaleManager that decides

about scaling out or down to cope with incoming workload. Usually, start-

ing a new VM commands are passed to CloudSim including the profile of

the VM image to be started. In our simulator, the VM profile also includes

the total required time to put a VM to the operational mode.

6. AutoScaleGroups is an object implementing the same concept of the scal-

ability groups in Amazon EC2. It maintains the number of the VMs in a

group to the number predetermined by the Internet application owner. For

example, it can be configured to guarantee that the minimum number of

instances at each tier is one. Moreover, it can be configured to prevent the

number of instances in a specific tier from exceeding a pre-defined number

of instances.

7. AutoScaleManager is the component that is responsible for the scalability

algorithm intelligence. In case of reactive scaling (e.g., current implantation

in Amazon EC2), the scalability is controlled by both the scaling policies

as input from the application owners (i.e., scaling polices.xml) and the Au-

toScaleGroups. To employ proactive scaling algorithm, AutoScaleManager

can be developed to consider historical measurements for coming workload

prediction, as we present in Chapter 7.

8. AlarmsManager is a queue receiving a continued stream of alerts. The

alerts are initiated at AutoScaleManager whenever the utilization matches

any of scaling polices. Each alert contains attributes (e.g., timestamp, scal-

ing group, scale direction, and evaluation periods) that help the Alarms-

Manager manager to group the alerts and pass the scalability decision to

AutoScaleManager at the proper time.
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6.2.1 Workload Generation

To simulate a realistic large-scale running of an Internet application, we need

both a real request arrival rate and a real user behavior (e.g., flow pattern and

thinking time) to keep results consistent [80]. RUBiS benchmark has flow prob-

ability matrix M which is NxN matrix describes N states of the system. Each

element of the probability matrix (i.e., Mij) describes the probability that the

workflow j follows workflow i [96]. According to probability matrix, a website

receives a specific percentage of each request type [30]. Similarly, we calculate

the probability of the appearance (i.e. the requests rate) of each request type.

To mimic a realistic arrival rate of users and workload variation, we used the

world cup 1998 workload [77] traces. They are apache log style traces of 1.35 bil-

lion requests initiated to the world cup 1998 official website for over three months

period. For each period of time (i.e., one minute in our case) we multiply the

number of requests by the probability of each of the RUBiS benchmark requests.

The result is the rate of each considered request of RUBiS benchmark (i.e., 18

requests in our case), which is stored in running.csv file, as explained in Figure

6.5. The rates vector for each time window is used to calculate the consumption

of resources at each tier.
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Figure 6.5: The rate of requests to the official website of the world cup 1998 for
one week started at June 15th, 1998
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6.2.2 Evaluation

The simulation is run with the parameters described in Table 6.1. The explana-

tion of each parameter is shown in Table 5.2.

Parameter Web tier App tier Db tier
cooldown 300 seconds af-

ter scale out or
down

300 seconds af-
ter scale out or
down

300 seconds af-
ter scale out or
down

adjustment 1 for scale out, -1
for scale down

1 for scale out, -1
for scale down

1 for scale out, -1
for scale down

metric-name CPU utilization CPU utilization CPU utilization
threshold 70% for scale

out, 30% for
scale down

62% for scale
out, 30% for
scale down

72% for scale
out, 30% for
scale down

period 1 minute 1 minute 1 minute
evaluation-periods 5 5 5

Table 6.1: The parameters used for the simulation results seen in Figure 6.6

As shown in the Table 6.1, we used a different scale out threshold for each

tier depending on the observations in Sections 6.1.2 and 6.1.3. The considered

metric in our simulation is the CPU utilization. The scale out or down step

size is one VM instance for all tier. The CPU utilization is compared with the

threshold every minute. However, the scale out or down is only triggered when

the threshold is exceeded five times in sequence. After a scale out or down, the

system counts five minutes before accepting a new scaling trigger.

In addition to parameters in Table 6.1, we consider the initialization time of

the VM instance. In all tiers, we consider the small Linux textitm1.small VM

instance described by Amazon EC2 [12]. Mao et al. [76] measured the initial-

ization time of Linux instances at Amazon EC2 to be 96.9 seconds in average,

meanwhile it is measured to be 44.2 seconds in RackSpace in average. In our

experiments, we used 60 seconds interval as the initialization time of instances.

Clearly, the initialization time value mainly depends on the adopted technology

by the provider. So, in our simulator, we keep it as a modifiable parameter as-

sociated with the VM type. Nevertheless, as we explain in Section 5.2.2, the
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database instance initialization may require longer time compared with web and

application tiers. In this experiment, we consider the required time to bring a

database VM instance to operational mode is 10 minutes.

The result of running the simulation with the parameters in Table 6.1 is seen

in Figure 6.6 .

Figure 6.6 shows simulating our Internet application with the parameters in

Table 6.1. It shows Aggregated CPU utilization, which is the sum of the CPU

utilization (i.e., the workload) of all instances running in a specific tier (i.e., the

workload); and Available CPU Capacity, which is the accumulated CPU capacity

by all instances running in a specific tier.

The Available CPU Capacity is calculated by the following formula:

Available CPU capacity = Number of VMs ∗ the performance threshold (6.14)

For example, if five instances are running in the application tier, the Available

CPU capacity = 5 ∗ 62 = 310. We consider the performance threshold value,

because any CPU utilization higher than this value results in SLO violation.

Our goal is to keep the Available CPU Capacity always higher than the Ag-

gregated CPU utilization. However, Figure 6.6 shows some moments when the

Aggregated CPU utilization coincides or goes the Available CPU Capacity. We

marked these moments for the first day simulation. These moments record SLO

violation. The percentage of the SLO violation time to the total run time of the

system is presented in Table 6.2.

Tier Web Application Database All (total)
Cost ($) 28.56 21.36 14.80 64.72

SLO violations (%) 1.9 2.4 1.39 5.29

Table 6.2: Results of the simulation described in Section 6.2.2 for one week

A multi-tier system behaves as a network of queues [103], so the delay in one

tier influences the response time of the whole system. Therefore, we record a

violation whenever any of the three tiers violates the SLO.

In addition to the SLO percentage, in Table 6.2, we calculated the total cost

of running VM instances at each tier. The cost was calculated by counting the
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(a) Web tier dynamic scalability simulation
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(b) Application tier dynamic scalability simulation
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(c) Database tier dynamic scalability simulation

Figure 6.6: Simulating scalability of the multi-tier system with the parameters in
Table 6.1

running hours of each instance multiplied by the price of the m1.small instance

running at Amazon EC2 east-coast data centers, which is $0.08 at the time of

writing this dissertation. However, the price and the parameters of the instances
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can be easily modified in our developed simulator. As same as Amazon EC2, we

charges the partial hours as full hours. Moreover, we observed that whenever the

Scaling groups in Amazon EC2 initiates a termination command for an instance

to scale down, the instance with the longest runtime is terminated. We use the

same selection way in our simulator. However as a future work, we plan to study

optimizing the cost by terminating instances that are more close to the end of

the charging unit (i.e., one hour) of the on-demand instances.

According to the scalability policy in Table 6.1, whenever the CPU utilization

of the database tier goes over than or equal to 72%, the system starts a scale

out to prevent the SLO violation. However, the scale out is not triggered before

five evaluation periods of CPU utilization, as set in Table 6.1. After triggering

a scale out, the system goes into the sequence described in Section 5.2.2, which

is measured as 10 minutes. So, with the current setting, database is supposed to

contribute mostly to the SLO violation in the simulated applications. Neverthe-

less, the violation caused by database tier is less than the violations by web tier

and application tier. The results are explained as the following:

1. Due to our workload, there were few scales per a day (i.e., two at most) in

the database tier compared to the web and the application tier.

2. Due to parameters shown in Table 6.1, each scale out in the web tier or the

application tier cannot be accomplished in less than 6 minutes calculated as

5 minutes (as a control period time) plus one minute (as the VM instance’s

initialization time) .

According to our experience, implementing dynamic scalability to the rela-

tional databases is not common in production environments. Most likely, this is

due to the sensitivity of the database tier whereas any corruption or missing of the

data can be harmful for the whole business. Furthermore, huge databases require

longer times to create read only replicas dynamically. So, in the next chapter, we

consider running an adequate number of the database replicas in the database

tier all the time, and concentrate our analysis to the web and application tiers.
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6.3 Summary

Our main goal of this chapter is to evaluate the current implementation of the

scalability in the public IaaS (i.e., Amazon EC2). However, the large-scale ex-

periments in the cloud are costly. On the other hand, the small test-beds and the

prototypes may not express the Internet application behavior at large-scale. To

overcome these issues, we built our simulator (ScaleSim). The ScaleSim simulates

the scalability components of Amazon EC2. To achieve a realistic simulation re-

sults, we modeled the tiers of the Internet application in the physical environment.

Then, we fed the extracted models to the simulator. The modeled application in

this chapter was RUBiS benchmark, and the initiated workload was a workload

generated from the access logs of the 1998 world cup website. With this setup,

the SLO violations percentage is measured as 5.29% of the total system run time.

In the next chapter, we study reducing SLO violations to improve the QoS.
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Chapter 7

Reactive v.s. Proactive

Scalability in IaaS layer

In the previous chapter, we evaluated running an Internet application at large-

scale level. The scalability is implemented using static thresholds, which is a com-

monly used technique in the IaaS production environments. The static thresholds

enable the application to scale dynamically and cope with the workload varia-

tion. Nevertheless, the results in the previous chapter show periods of the SLO

violation with each sudden increase of the workload. The SLO violation occurs

due to the resources provisioning overhead, as we explained in Section 5.2.

In this chapter, we propose two approaches for mitigating the impact of the

overhead of initializing resource on the scalable Internet applications’ perfor-

mance. The proposed approaches are customer-oriented solutions contrary to

many other approaches [117] [54] [95] [94] [63] [21] considering the provider in-

volvement in the application performance management. Being customer-oriented

solutions makes our approaches feasible in current IaaS environments.

The first approach assumes keeping the current reactive scalability and only

tuning the scalability thresholds for a better performance. The second approach

considers a proactive scalability to provision resources in advance and reduce the

SLO violations. Both approaches exploit the trade-off between the cost and the

performance. As in the previous chapter, the SLO is to keep the response time

less than 100 milliseconds.
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In Section 7.1.1 we study the impact of tuning scale thresholds on the system

performance and the total cost. In Section 7.2, we study the proactive scalability

using several prediction algorithms and determine the pros and cons of each

algorithm. In the same section, we develop our prediction algorithm to overcome

the drawbacks of the other prediction algorithms. In Section 7.3, we compare

the performance of our proposed prediction algorithm with the other prediction

algorithms. Finally, we wrap up our contributions in Section 7.4.

7.1 Reactive Scalability

7.1.1 Scalability Parameters Tuning

In this section, we study tuning the scalability thresholds of an application to

mitigate the impact of resource provisioning overhead. As a start, we should

distinguish between two terms used frequently in this chapter: First term is the

performance threshold, which is the threshold after which the system performance

degrades dramatically (i.e., SLO is violated with high probability). Second term

is the scalability threshold, which is the threshold after which the system will scale

out or scale down regardless of the performance. For example, as shown in Section

6.1.2, web tier in RUBiS benchmark has 70% CPU utilization as a performance

threshold and scalability thresholds as well. However, we try different values of

scalability thresholds to find the best performance with the lowest cost.

In Figure 7.1, we assume that 70% is the performance threshold. If we pick up

a scale out threshed lower than the performance threshold by ∆h, we can increase

the probability of scale out before approaching the performance threshold. This

implies longer periods of over-provisioning and therefore increases the cost. On

the other hand, a higher scale out threshold exposes the VMs to higher values

of CPU utilization ranges between 70% and 70%+ ∆h, which can lead to SLO

violation. Nevertheless, a higher scale out threshold implies running less VMs

and a lower total cost. Same concept is applied to scale down threshold. A very

low scale down threshold will keep more running VMs, which increases the cost,

but allows the system to cope better with the workload increase. On the other

hand, a very high scale down threshold will increase the probability of turning
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off VMs (i.e., reduces the cost), but will expose the system to under-provisioning

whenever the workload increases.

So, the question is, what are the best values for ∆h and ∆l to reduce the

SLO violation and do not increase the cost dramatically? We consider this as a

multi-objective optimization problem.

70% 

30% 
SLO violation 

Price increment 

40% 

20% 

80% 

60% 

SLO violation 

Price increment 

Δh 

Δl 

Figure 7.1: Scalability threshold values as a trade-off between cost and perfor-
mance

Our optimization problem has two goal functions: Gc, that represents the

minimum cost and Gv, that represents the minimum SLO violation. An optimal

decision need to be taken in the presence of trade-offs between the two goals. How-

ever, building mathematical model of our optimization functions is very complex.

As a solution, we first convert the original multi-objective function into many

single-objective optimization problems, then we compute all representative set of

Petro optimal solutions [46] [35]. Therefore, we depend on the simulation as a

method to calculate yc, the feasible cost for an input x, and yv, the feasible SLO

violation percent for input x, where x is a subset of I.

The set I is the possible inputs. In our case, possible inputs for scale out

threshold is a range of integer values including the performance threshold as a

median. Fortunately, these inputs are limited by the computing resources nature.

For example, CPU utilization ranges from 0% to 100%. Moreover, as seen in
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Section 6.1, we observe that high CPU utilization values, such as 80% or higher,

are harmful to the system performance, which reduces the range of the possible

inputs.

Generally, the scale out and scale down thresholds ranges should not overlap.

In our experiments, we consider 30% as the median value for the scale down

threshold range, and a value close to performance threshold as the median for

scale out threshold range.

Since we have different parameters in the system, we fix them all and only vary

one parameter per a simulation. As an example, with fixed scalability thresholds

of application tier (i.e., 62%, as a scale out threshold and 30%, as a scale down

threshold) we evaluate a range of a scale out thresholds for web tier starts at 60%

and ends at 80%. For each value we run a complete simulation and calculated

the cost and the number of SLO violations. To be sure about the observations

consistency, we run individual simulation for the first three days in our generated

workload described in Section 6.2.1. Moreover, we tried different values of scale

down threshold ranges between 20% and 40%. So, the x-axis of all sub-figures

7.2(a) to 7.2(f) is the tested values for scale down threshold, while y-axis is the

tested values for scale out threshold. The same setup is repeated to the applica-

tion tier. With fixed scalability thresholds of the web tier (i.e., CPU utilization

70%, as a scale out threshold and 30%, as a scale down threshold) we evaluate a

range of a scale out thresholds for application tier starts at 50% and ends at 70%.

For the scale down threshold, we tried different values range between 20% and

40%. The results of the described settings are seen in Figure 7.3. In all experi-

ments, we consider adequate number of database instances (i.e., three instances),

which prevents any SLO violation by database tier.

The SLO violation describes the percentage of time where the response time

of the Internet application (95th response time) is probably higher than 100 mil-

liseconds. It is calculated by finding the percentage of the number of minutes at

which the measured CPU utilization is higher than the performance threshold to

the total run time (i.e., 1440 minutes).

From Figures 7.2 and 7.3, we have the following observations:

1. Scale out threshold tuning:
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Figure 7.2: The impact of scalability thresholds on cost and SLO violations at
the web tier. The performance threshold of web instances is 70%
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Figure 7.3: The impact of the scalability thresholds on cost and SLO violations
at the application tier. The performance threshold of the application instances is
62%
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• A scale out threshold higher than the performance threshold decreases

the cost slightly, but increases the SLO violation.

• A scale out threshold lower than the performance threshold increases

the cost slightly but reduces the SLO violation strongly.

• A very low scale out threshold increases the probability of over-provisioning

which increases the cost but without remarkable decrease in SLO vi-

olation. However, if a very low scale out threshold coincides with a

high scale down threshold the probability of oscillating increases, as

we will discuss in Section 7.1.2.

2. Scale down threshold

• A high scale down threshold results in a high violation of the SLO.

However, it does reduce the cost.

• A very low scale down threshold does not reflect an increase in the

cost as expected in Figure 7.1. However, it reduces the SLO violation.

According to our observations, we suggest the following scalability thresholds

for our application:

• For scale out, picking a value slightly lower than the performance threshold

reduces the probability of SLO violation. For example, we select 66% as

a scale out threshold for the web tier, while the performance threshold is

70%. On the other hand, we select 58% as a scale out threshold for the

application tier, while the performance threshold is 62%.

• For the scale down, any value less that 30% keeps the SLO violation to the

lowest if the scale out threshold is set as in the previous observation.

The impact of the scalability thresholds tuning on both cost and performance

will be evaluated empirically in Section 7.3.

7.1.2 The Impact of Selecting Bad Thresholds

Looking for less SLO violations, IaaS customers may select a very low scale out

threshold value. However, this behavior may not lead to the expected improve-

ment. Figure 7.4 shows our application run for three days. The aggregated CPU
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is the summation of the CPU utilization of the VM instances in the application

tier. The available CPU capacity = Number of VM instances * the performance

threshold. The figure shows how a very low scale out value leads to an oscillating

in the number of the provisioned VM instances, which leads to short but charge-

able runs of VMs instances. This explains the early increase of the cost seen in

Figures 7.3(a) to 7.3(e) for scale out threshold 51% and scale down threshold

30%.
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Figure 7.4: The bad scalability thresholds’ impact on the performance of the
application tier

What also increases the probability of the oscillation is the workload itself.

For instance, we see in Figure 7.4 that most of the oscillation happens when

the aggregated CPU utilization of VM instances in the application tier oscillates

around 51%. The oscillation is due to the following: when the CPU utilization is

a little higher than the scale out threshold (e.g., 53%); the system will scale out

to two instances. For the next control period of time, the CPU utilization per an

instance will be (53/2 = 26.5, which is less than 30%). According to the scale

down policy, the system should start a scale down process causing the system

under-provisioning and starting another scale out process. Similarly, for web tier,

we observe many periods of aggregated CPU utilization oscillate around 66%,

which makes selecting close values of scale out and scale down thresholds (e.g.,

66%, as scale out threshold, and 33%, as scale down threshold) a bad choice,

as seen in Figures 7.2(a) to 7.2(e). One solution is to increase the cooldown
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parameter described in Table 6.1. However, a big cooldown value delays the

system response to the spikes in workload and may results in longer periods of

under-provisioning (i.e., SLO violation). Nevertheless, a higher cooldown may

reduce the oscillation but will not eliminate it totally.

According to our observations, we can emphasize considering the following

rules to reduce the probability of resource provisioning oscillation:

• Avoiding very low scale out thresholds that increase the cost dramatically

without a remarkable reduction in SLO violation.

• Avoiding very high scale down threshold that increases both the cost and

the SLO violation.

• Avoiding scale out or down thresholds (i.e., scale threshold) that satisfy

the following relation for long periods of the monitored metric (e.g., ag-

gregated CPU utilization): mean(aggregated CPU utilization) = n *

scale threshold, where n is a positive integer.

7.1.3 The Impact of Scalability Step Size

One of the proposed solutions to cope fast with the workload increase is to increase

the scaling step size. For example, instead of scaling out gradually (i.e., one VM

instance per the scale), the system can be configured to scale out with two or more

instances per a scale. At first glance, a bigger scaling step size looks as an efficient

solution for mitigating the impact of the resource initialization overhead on the

application performance. Therefore, we dedicate this section to exploit using the

scale out step size for improving the system performance, and also analyze its

impact on cost. Towards this goal, we repeat the last simulation of web tier

but with different adjustment values. The adjustment parameter determines the

scaling step size, a described in Table 5.2.

By experiments, we noticed that a fast scale down has a severe impact on the

SLO violation. So, we only examined different values for the scale out step size

(i.e., only positive adjustment).

Because Figures 7.2(a) and 7.2(b) already present web tier scale out, we only

repeat the web tier simulation with adjustment values one, two, three, and four
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(e) Cost ($) - Four instances
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(f) SLO violation (%) - Four instances

Figure 7.5: The impact of the scale out step size on the cost and the SLO viola-
tions at the web tier
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for the first day, with one VM per scale out. The cost and SLO violation of

each case are depicted in Figure 7.5. The results show no reduction in SLO

violation, but an increase in the cost for the adjustment values two, three, and

four. The scale out threshold for web tier is 66% and the scale down is 30%, in

all experiments. In Table 7.1.3, we present the scale out step size, the cost, and

the SLO violations for the first day’s simulation.

Step size Cost ($)
SLO violation

(%)
Cost increase

(%)
SLO violation
decrease (%)

One 5.36 1.67 N/A N/A
Two 6.96 1.18 29.85 29.34

Three 7.12 1.18 32.84 29.34
Four 7.43 1.11 38.62 33.52

Table 7.1: For the scaling thresholds 66% and 30%, we calculate the cost and the
SLO (%) violation for different scale out step sizes (i.e., adjustment)

The results in Table 7.1.3 show 29% reduction in the SLO violation when

using 2 VM for each scale out step, and almost the same percentage (i.e. 30%)

increment in the cost. For the scale out step values three and four, the reduction

in the SLO is tiny compared to the increase in the cost. To analyze the results,

we plot the system scalability for each scale step size in Figure 7.5.

In Figure 7.6(a), when adjustment = 1, we recognize four scales out, in ad-

dition to the first scale out at simulation start up time. Due to the overhead of

initializing new instance, the SLO is violated until initiating adequate number

of VMs. In Figure 7.5(c) the scale step size is increased to two VM instances

per the scale out, which reduces the total SLO violation periods to two. We can

recognize periods of over provisioning that explain the increase in the cost seen

in Figure 7.5(a). In Figures 7.6(c) and 7.6(d), the step size is increased to three

and four, respectively. However, we notice the same number of SLO violations,

but extra periods of over-provisioning, which explains why we cannot recognize a

significant decrease in the SLO violation in Figure 7.5(d) and Figure 7.5(f), but

an increase in the total cost due to over-provisioning.

Our results express that increasing the step size is not an efficient way to

mitigate the overhead of resources initialization on the application performance.
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(b) Two VMs
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(c) Three VMs
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(d) Four VMs

Figure 7.6: Scale out step size impact on cost and SLO violations at the web tier
for the first day

It increases the cost without a significant decrease in the SLO violation.

7.2 Proactive Scalability

In the previous section, we studied tuning scalability thresholds of the reactive

controllers to reduce SLO violation without modifying the current implementation

of the cloud infrastructure. Tuning scalability parameters improved the reactive

scalability performance. Nevertheless, in this section, we employ the proactive

scalability looking better performance of Internet applications.

7.2.1 Time Series Forecasting Algorithms

Implementing a proactive scalability requires a forecasting algorithm predicting

coming workload and provisioning adequate resources in advance. In this sec-

tion, we study several forecasting algorithms looking for the fit algorithm to our

need. Practically, we need an algorithm scaling up fast with the workload in-
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crease, but in the other hand scaling down slowly to avoid terminating instances

quickly, which can lead to resources under-provisioning. The studied time-series

forecasting algorithms are as the following:

Naive algorithm: It predicts a next value equals to the previous value:

ut+1 = ut. The algorithm results in a lag between the current and the predicted

measurment. Accordingly, it does not help coping fast with the workload increase.

Nevertheless, the lag can be useful in the case of the scale down to reduce the

probability of under-provisioning, as we explain in Section 7.2.2.

Simple Moving Average algorithm: It calculates the next value ut+1

as the average of the recent n values: ut+1 = 1
n

∑n−1
k=0 ut−n. The choice of the

integer n has a big impact on the algorithm responsiveness. A small value for

n causes the algorithm to behave as the naive algorithm. On the other hand, a

big value for n causes the algorithm to respond slowly to the recent changes of

the measured values, which is not useful in case of an unexpected increase in the

workload. Choosing the best window size of the recent measured data, is one of

the challenges that we had approached during designing our algorithm in Section

7.2.2.

Exponential Moving Average algorithm: It gives a weight α ( 0 < α < 1)

to the last measured value Yt, and lower weights to the former values. The

weight for the former values decays with the time, which makes the algorithm

responsive to the recent changes in the measured values. Nevertheless, both

exponential moving average and the simple moving average algorithms assume

stationary and not trending time series, therefore, both algorithms lagging behind

the trends causing a slow response to the unexpected increase in the workload.

Double Exponential Moving Average algorithm: It avoids the limita-

tion of the exponential moving average algorithm when there is a trend in the

data. In addition to α, the algorithm considers β (0 < β < 1) as a smoothing

factor for the trend in the data. For more details about exponential and double

exponential moving average, we refer the reader to [26].

For comparison purposes, the studied algorithms are implemented into a mod-

ule called ProactiveAutoScaleManager, which substitutes the reactive controller

AutoScaleManager seen in Figure 6.4. Actually, there is a huge literature on

the topic of time-series forecasting including the artificial intelligence concepts
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(b) Comparison of Exponential and Double Exponential Moving Average Algorithms

Figure 7.7: Web tier - first day (the minutes 800 to 1040), reactive v.s. proactive
scalability

such as neural networks, genetic algorithms, and fuzzy logic. However, in the

production environments, the light-weight algorithms that do not imply a high

computation or an intensive training are more suitable.

7.2.2 The Proposed Prediction Algorithm

The lag in the prediction algorithms: Naive, simple moving average and expo-

nential moving average does not help mitigating the SLO violation. On the other

hand, finding optimal values for α and β, for the double exponential algorithm is

dependent on the workload.

Our proposed algorithm is designed to cope fast with the workload increase.

It finds the next value ut+1 by calculation the simple regression of the last mea-

sured values n. However, a very large window results in slow reaction to workload

variations. On the other hand, a very small window results in unreliable predic-
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tions. Our solution is to calculate the window size depending on the statistical

analysis of the historical measurements. For example, we start with a small win-

dow of the historical measurements (e.g., five values: [ut, u(t−1), . . . , u(t−4)]), then

we iterate through the previous values to include measured values that have the

same statistical characteristics. The first iteration compares [ut, u(t−1), . . . , u(t−4)]

with [ut, u(t−1), . . . , u(t−5)] to examine if the two groups have the same statistical

attributes. If the compared groups showed high similarity, the test continues to

compare [ut, u(t−1), . . . , u(t−4)] with [ut, u(t−1), . . . , u(t−6)].

We use t-test to compare the results. It is a test used to compare two groups

of samples, even if they have different numbers of elements. Our null hypothesis

is that there is no difference in measured values between the two groups. For

each compared groups, we calculate pV alue. We stop appending new elements to

the second group when the pV alue is less than 0.05 (i.e., hypothesis is rejected).

The algorithm is represented in Algorithm 1.

Algorithm 1 The Proposed Prediction Algorithm

Algorithm: Prediction of the next utilization value
Input: A list of the last n measured utilizations, [ut, u(t−1), . . . , u(t−n−1)]
Output: The next utilization value ut+1

Initialization: pV alue = 1, n = 5, j = 1, limit = 100
while pV alue > 0.05 && j < limit do
pV alue = tTest([ut, u(t−1), . . . , u(t−n−1)], [ut, u(t−1), . . . , u(t−n−1−j)])
j + +

end while
// Calculate the regression of the new window [ut, u(t−1), . . . , u(t−n−1−j)]
slope = regression.getSlope()
if slope > 0 then
ut+1 = regression.predict(t+ 1)

else
ut+1 = ut //Naive algorithm

end if

During the evaluation of our algorithm, we noticed some periods of unchange-

able workload, e.g., the period from 0 to 360, as seen in Figure 7.4. For such

periods, considering more historical measurements will not improve the predic-

tion accuracy. Therefore, we determined a limit for the window size to reduce

the computation (i.e., limit = 100). After determining the best historical win-

106



7. Reactive v.s. Proactive Scalability in IaaS Layer

dow size, we calculate the simple regression and find both the slop and the next

predicted value.

In spite of the fact that the fast scale out is crucial for coping with the sudden

increase in the workload, the fast scale down is harmful for the system per-

formance. Therefore, at scale down (i.e., negative slopes) time, we use naive

algorithm (i.e., ut+1 = ut ) to delay the scale down and increase its consistency.

7.3 Evaluation

The first part of this section evaluates the scalability thresholds’ tuning impact

on the system performance. The second part evaluates substituting the reactive

scalability with proactive scalability on both the system performance and the

total cost.

For evaluating the scalability thresholds’ tuning impact on the system per-

formance, we repeat the experiment in Section 6.2.2, but with tuned scalability

parameters. The first row in Table 7.3 is an evaluation of one week simulation

with scale out thresholds 70% and 62% for the web tier and application tier, re-

spectively. For scale down, we set 30% as a threshold for both tiers. The second

row of the Table 7.3 is an evaluation for the same simulation period but with

tuned thresholds 66% and 58% for the web tier and application tier, respectively.

The scale down threshold is 30% for both tiers.

As we explained in Section 7.1.1, the reduction of the SLO violation is a trade

of the total cost. However, the results in the second row show a high reduction

in the SLO violation (i.e., 72.29%) with a small increase in the total running cost

(i.e., 3.81%). The reduction in SLO violation is appreciated when we recall that

1% SLO violation means that for each 100 running hours there is an accumulated

one hour where the response time of the system is higher than 100 milliseconds.

In the second part of the experiment, we substituted the reactive scalability

by proactive scalability. The naive (N) and the moving average (MA) algorithms

show no change to the result archived by reactive scalability with tuning (RT).

The exponential moving average (E), with α = 0.9, results in higher SLO violation

compared to RT, due to longer periods of the under-provisioning, as seen in Figure

7.7(b). On the other hand, both double exponential moving average (DE) and
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Algorithm Cost ($)
SLO violation

(%)
Cost increase

(%)
SLO violation
decrease (%)

R 49.84 4.72 N/A N/A
RT 53.36 1.30 7.06 72.46

N 53.36 1.30 7.06 72.46
MA 53.44 1.30 7.22 72.46
E 53.43 2.82 7.20 40.25

DE 55.32 0.56 11.00 88.14
O 54.24 0.55 8.83 88.35

Table 7.2: Results of the simulation described in Section 6.2.2 for one week. The
algorithms are: R-Reactive (without tuning). RT-Reactive with tuning. N-Naive
algorithm. MA-Moving average (n=5). E-Exponential moving average (α = 0.9).
DE-Double exponential moving average (α = 0.9 and β = 0.3). O-Our algorithm.

our proposed algorithm (O) outperform the other algorithms. Nevertheless, our

algorithm shows a lower cost compared with DE algorithm.

To understand the improvement achieved by tuning the scaling thresholds, we

plot the period of time between the minutes 800 and 1040 of the system run time.

This period is selected while it shows a fast increase in the workload. Figure 7.8(a)

shows the system scale out in five steps. The system scale only when the CPU

utilization exceeds the scalability thresholds. Therefore, with each scale out, we

notice a period of under-provisioning (i.e., SLO violation), where the aggregated

CPU utilization is higher than the available CPU capacity. On the other hand,

Figure 7.8(b) shows that tuning the scalability thresholds causes an early scale

out for the system. For example, the first scale out step in Figure 7.8(b) toke

place at the minute 837 instead of the minute 848 in Figure 7.8(a). Similarly, the

third, forth, and fifth scales out also occurred earlier in the case of tuning the

scalability thresholds. Nevertheless, tuning the thresholds did not help with the

second scale out step where the workload increases very fast.

To explain the achieved improvement by our algorithm, we draw the system

scaling in Figure 7.8(c), for the same period of time (i.e., 800 to 1040). The figure

shows an early occurrence of the third, fourth, and fifth scale out of the system.

On one hand the early scaling-out reduces the SLO violation, on the other hand

it leads to a longer run of the VMs and a higher total cost. Nevertheless, with our
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(b) Reactive scalability - with tuning
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(c) Proactive scalability - with our algorithm

Figure 7.8: Web tier - first day (the minutes 800 to 1040), reactive (without
tuning) v.s. reactive (with tuning) v.s. proactive scalability

approache, the improvement in the performance is much bigger than the increase

in the cost.
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7.4 Summary

In this chapter, we studied reducing the impact of the resource provisioning over-

head on the applications’ performance in the IaaS layer. We developed two ap-

proaches. Both of them exploit the trade-off between the performance and the

cost. However, the improvement in performance was significant compared to the

increase in the cost.

The first approach extracts the optimal scalability thresholds for an application

considering the workload statistics, the application’s performance thresholds, and

the initialization time of resources. The results showed that tuning the scalability

thresholds can eliminate 72% of the SLO violation with only 7% increase in the

cost. The novelty of this approach lies in the fact that it does not imply any

modification to IaaS provider infrastructure.

The second approach employs the proactive scalability to provision resources

in advance and avoid the overloading periods. The results showed that the proac-

tive scalability reduces the SLO violation 88% with only 9% increase in the total

cost.

Our approaches are evaluated using models extracted from RUBiS benchmark

at a physical environment. The models are fed into our developed simulator

(ScaleSim), which is described in Section 6.2. Nevertheless, our approaches can

be applied to any other application. Our approaches help IaaS customers, as

well as SaaS and PaaS providers, to optimize the cost and performance of their

applications, and consequently maximize the profit.
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Chapter 8

Performance Interference in

Public IaaS Environments

The advance of cloud computing services has attracted many customers to host

their applications in the cloud. The Infrastructure as a Service (IaaS) model

provides the customers a higher control over the provisioned resources compared

to other models (i.e., PaaS and SaaS). Moreover, workload consolidation in cloud

environments is an opportunity for service providers to increase resource uti-

lization in their data centers. Nevertheless, workload consolidation exposes the

VMs’ performance to interference due to a possible contention on resources by

the co-located VMs in the same physical host, as shown in Figure 8.1.

Typically, the IaaS providers offer high-level monitoring for several metrics

(e.g., CPU, Memory and Network). The high-level monitoring is necessary for

customers to manage their applications’ scalability and performance. Neverthe-

less, it does not help detecting performance interference due to the following

facts: First, contention on resources is typically hidden and cannot be measured

by the high-level metrics. Second, according to the multi-tier architecture, the

influence of a contention in one tier migrates to other tiers [119], that makes it

difficult to determine and manipulate the main source of the contention. Finally,

a contention on some resources results in misleading monitoring values for other

metrics of the VM instance. For example, co-locating two VM instances compet-

ing on the memory bus, on the same physical host, limits their consumption of
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Figure 8.1: Public cloud infrastructure exposes a VM’s performance to the influ-
ence by other VMs

the CPU, that is considered as a reduction in the CPU utilization, while in fact

the system approaches performance degradation, as we explain by our experiment

in Section 8.3.3.

On the light of above facts, we investigate maintaining the application perfor-

mance in public IaaS environment by abandoning the contended VM instances

automatically. The first step towards this goal is to determine the contended

VM instances. To do that, we built models describing a VM’s performance at

normal case. At run time, we measure VMs’ deviation from extracted models.

The level and the period of the deviation are used to recognize the permanent

contentions. Whenever a VM is marked as a contended VM, another VM in the

same tier is initialized to take the place of the contended VM. Practically, cus-

tomer has no control over the VM location in the IaaS provider’s data center.

Nevertheless, initializing a new VM instance exploits the possibility of locating

it into another free-of-contention host. Our approach is a customer-oriented so-

lution that does not imply provider involvement, and therefore it is suitable for

production environments.

In the next section, we present the motivation and the real need for this study.
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In Section 8.2, we explain our proposed system. Next, in Section 8.3, we evaluate

our system using RUBiS benchmark. In Section 8.4 we describe the limitations

and challenges in our proposed system. Finally, in Section 8.5, we conclude our

work and present the intended future work.

8.1 Motivation

A VM running in IaaS is treated as a black-box. Neither the provider nor the

co-located customers are aware or have control over the running software within

other customers VMs. In fact, providers can use low level metrics to predict

the software pattern (e.g., memory intensive or CPU intensive). Nevertheless,

the enormous number of hosted VMs and the huge possible combinations of the

hosted software within these VMs make it hard or even impossible for a provider

to maintain individual customers’ applications performance in IaaS model. As a

result, the typical SLA of an IaaS provider describes only the annual up time of

the instances, but it does not discuss potential performance degradation caused

by the performance interference.

Virtualization technology is the main source of the interference in public

clouds. A straight forward solution for eliminating the interference is to strengthen

the isolation in virtualized environment. Memory and CPU isolation is relatively

simple [89] [91] [112] compared to other shared resources [33] (e.g., memory bus

and I/O devices), which exposes system performance to interference. For exam-

ple, all virtualization technologies are able to dedicate specific pages for a VM.

However, when two VMs in the same physical host are competing on memory

bandwidth or hard drive access, there will be an interference [66] degrading both

VMs performance. An experiment by Armbrust et al. [19] measured the average

disk write rate of 75 instances in Amazon EC2 as 52 Mbyte/s with 16% standard

deviation, which means that the I/O performance is very exposed to influence by

the other customers in the cloud. Venkatanathan et al. [108] showed empirically

that interference can degrade the performance of a cache-sensitive benchmark by

more than 80%. Moreover, they introduced the concept ”resource freeing attack”

(RFAs). The attack depends on understanding and modifying the workload on

a victim’s VM to free up resources for the attacker’s VM. Their attack was also
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possible on public environments, such as Amazon EC2. Malkowski et al. [74]

showed empirically that increasing the workload of an n-tier application may un-

expectedly spike the overall response time of another co-located system by 300%

despite stable throughput. A statistical study by Benson et al. [22] showed that

several performance and virtualization issues were intensively discussed in a mes-

sage forum of one of large IaaS providers. The study classified the threads for

three years period started from 2007.

8.2 The Proposed System

Our proposed system integrates the proactive scalability architecture, designed

in Section 7.2, with the models extracted in Section 6.1.4 to have a system coping

rapidly with the workload variation and automatically replacing the VMs that

can degrade the performance. The proposed system architecture is presented in

Section 8.2.1, while the operational details are explained in Section 8.2.2.

8.2.1 System Architecture

Our system assumes that the application is hosted in a public IaaS environment

and deployed as a multi-tier architecture. A typical multi-tier architecture is

illustrated at the upper part of Figure 8.2. The rounded rectangles show running

instances in each tier. Whenever the customer submits a request for an instance,

the provider finds the best host according to the instance type and workload

on physical hosts. The same host can run instances of different customers with

different demands. The number of instances at each tier should be determined

by the IaaS’s customer according to the workload variation.

The services of the IaaS provider can be consumed through APIs. The cus-

tomers can develop clients with different programming languages to interact with

the IaaS provider. Figure 8.2(b) illustrates our proposed system. To reduce the

overhead, the proposed control system can be hosted in a VM running in the IaaS

environment. The main modules of our system are the Sampler module, the Pre-

dictor module, and the Provisioner module. The Sampler module periodically

makes queries to the load balancer VM (”nginx” in our case) to get the last web
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Figure 8.2: Our dynamic scalability and contention detection architecture

traces. To make the traces accessible remotely, we modified the load-balancer

to log into a MySQL database. The Predictor module predicts the utilization

of each resource according to the traces from the load-balancer. Moreover, it

has a prediction component that help the system to scale proactively using our

algorithm designed in Section 7.2. The only module that consumes IaaS services

is the Provisioner module. The interfaces allow the Provisioner module to get

on-line measurement of resource utilization, and decide accordingly about the

number of instances in each tier and the VM instances that should be replaced.

The details and the interaction between these modules are explained in Section

8.2.2.4.

8.2.2 Operational Phases

The architecture of our proposed solution is shown in Figure 8.2(b) and explained

in details in Figure 8.3. It integrates the monitoring of resource utilization with

requests logging. Our proposed system incorporates the following phases: moni-

toring, sampling, models building, and running.
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Figure 8.3: Details of modules composing our proposed architecture for dynamic
scalability and contention detection

8.2.2.1 Monitoring Phase

Beside the monitored resources that are provided by current IaaS providers, we

consider the log files that describe the transactions handled by the application.

Typically, these logs locate at a single point where all traffic passes (e.g., load

balancer). However, to avoid single point of failure, some providers offer hardware

load balancers or Elastic Load balancers [12] as we will discuss in Section 8.3.4.

Even in such cases, the logs collected by different web servers can be synchronized

to one log file that describes the total workload. The access log file can be

configured to log access time, response time, and URLs of requests.

8.2.2.2 Sampling Phase

As the transactions continuously arrive to the system, we consider a sampling win-

dow that describes the transactions’ behavior at specific period of time. Within

the sampling window, we classify the transactions into categories, and then de-

termine the rate of each category. The categories are determined depending on

the URL. In fact, types of requests depending on URL can be very large in a
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real application. However, classifying these requests to coarse-grained categories:

cacheable, non-cacheable, and demanding [18] reduces the number of categories

that really have an impact on the system utilization. For example, Zhang et

al. [119] showed that using only 20 types of a requests with a system of total

756 types of requests leads to accurate prediction of resource utilization. In our

experiments, we considered 18 types of requests using RUBiS benchmark and

ignored the cacheable requests (i.e., static pages and images), since they show a

negligible impact on web tier’s performance. The output of the sampling phase

for the sampling period k is a vector describes the number of requests of each

category (k[u1, u2, . . . , un]). These sampled vectors are used for both training and

running the system.

8.2.2.3 Modeling Phase

In the modeling phase, to avoid any influence from the other tiers, we run several

replicas in all tiers except the modeled one. For instance, to model a web tier, we

run a single VM instance at the web tier but many replicas at both application and

the database tiers. The collected traces are CPU utilization, Memory allocation,

Network IN/OUT rate, and Disk read/write rate. Afterwards, we synchronize

the collected traces with the access logs that are collected in the sampling phase.

A vector of requests’ rate is the input of our models, while the output is one

performance metric at a time (e.g., CPU utilization). More details about the

ARX models are presented in Section 6.1.4.

8.2.2.4 Running Phase

At running phase, the modules Sampler, Predictor, and Provisioner are in contin-

ues interaction. The Sampler module, seen in Figure 8.3, continuously extracts a

raw vector of requests’ rate for each sampling period k. These rates are passed to

the Predictor module as a vector k[u1, u2, . . . , un]. The Predictor module has two

outputs: First, the calculated utilization ŷk depending on the models extracted

at modeling phase. Second, the prediction of the resources utilization ŷk for the

next period of time (i.e., one step ahead). The two outputs of Predictor as well

as the actual utilization are passed as inputs to the Provisioner module. The
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error |yk − ŷk| (e.g., the absolute difference between the actual measure CPU uti-

lization and the CPU utilization calculated by the CPU model) is calculated for

each monitored resource of each VM instance. The on-line measured utilization

yk, the average of the measured utilization y, as well as the modeled utilization

ŷk are used in Equation 8.1 to calculate F , which describes the fitness of the

measured to the modeled values of resources utilization of VMs instances at each

tier.

F = 1−

√∑N
k=1 |yk − ŷk|

2∑N
k=1 |yk − yk|

2
(8.1)

Actually, Equation 8.1 is applied for each resource r of the VM instance n,

that runs at tier m. To formalize this, we consider M tiers. Each tier runs N VM

instances, while each VM instance has R resources. Practically, we implemented

ŷk, ŷk+1, yk, and yk using ArrayList object, while each tier can have a different

number of instances. Nevertheless, we represent ArrayLists as three dimensional

arrays for simplicity.

Whenever the error |yk − ŷk| is very high, the fitness value F will be very low,

that is an induction of a degradation in VM performance due to a contention for

a resource.

The Provisioner module periodically calculates F value (e.g., every 20 sec-

onds in our setup). Each time a resource of a VM shows a very low fitness to

the modeled values, the VM is marked as a contended VM. However, to main-

tain the system stability, no action is triggered until the number of low-fitness

states registered by a VM in temp VMs[ ] is higher than ConfWindow value,

which is 48 in our setup. Whenever a VM instance records deviations from the

model higher than the determined Confwindow, the algorithm add the id of

that VM instance to VMs[ ] vector for replacement and remove its records from

temp VMs[ ] vector.

In parallel to the contention prediction algorithm, the provisioning algorithm

(i.e., Algorithm 3) continuously checks the contented VMs list VMs[ ]. The first

step to eliminate a contented VM is to run a new VM instance in the same tier.

Afterwards, the algorithm continues its run looking for any overloaded tier m.

The minimum and maximum thresholds of each resource r at tier m are described
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Algorithm 2 Contention Prediction Algorithm

Input: yk[M ][N ][R], ŷk[M ][N ][R], yk[M ][N ][R], and ConfWindow
Output: VMs[ ]
Initialization: temp VMs[ ] ← null (Local vector contains candidate VMs
for replacement)
loop

// Find VMs with potential contention
for m = 1 to M do

for n = 1 to N do
for r = 1 to R do

//Calculate F at Equation 8.1 for each resource r
if F < 0 then

insert VM id into temp VMs[ ]
end if

end for
end for

end for
if count(VM id in temp VMs[ ]) > ConfWindow then

insert VM id into VMs[ ]
remove VM id from temp VMs[ ]
pass VMs[ ] to Provisioning controller

end if
end loop

by system administrator as min[m][r] and max[m][r], respectively. Determining

these thresholds is studied intensively in Section 7.1.1.

A tier is scaled out when the average predicted utilization ŷk−1[m][n][r] is

higher than the predetermined maximum thresholds max[m][r]. To be sure that

each tier is scaled up once per a control interval, we keep a tag scale up[m] for

each tier m. Similarly we have scale down[m] tag for scaling down. These tags

are reset for next control period (i.e., after 5 minutes in our setup). At scaling

down, the algorithm gives the priority for terminating contended instances.

In our algorithms we assume that each load-balancer, seen in Figure 8.2,

routes the same amount of traffic for each replica. In other words, to calculate

ŷk and ˆyk−1, the model should divide the input vector [u1, u2, . . . , un] by number

of replicas. We will validate this assumption in Section 8.3.2.
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Algorithm 3 Dynamic Provisioning Algorithm

Input: ŷk−1[M ][N ][R], max[M ][R], min[M ][R], Current[M ], and VMs[ ]
Output: Next[M ]
Initialization: scale up[M ] = scale down[M ] = false
loop

for m = 1 to M do
if VMs[ ] 6= null then

// Add new VM instances sibling to contented VMs
end if
for n = 1 to N do

for r = 1 to R do
// Check if scaling up is required
if ŷk+1[m][n][r] >= max[m][r] and scale up[m] 6= true then

// Add new VM instance to tier m
Next[m]← Current[m] + 1
scale up[m]← true

end if
// Check if scaling down is possible
if ŷk+1[m][n][r] < min[m][r] and scale up[m] 6= true and
scale down[m] 6= true then

// Turn off a VM instance at tier m
if VMs[ ] 6= null then

// Schedule terminating the contented VM
else

// pickup any VM for scheduled termination
end if
Next[m]← Current[m]− 1
scale down[m]← true

end if
end for

end for
end for

end loop

8.3 Evaluation

Due to infeasibility of controlling the VMs location in the cloud, we hosted the

system in our infrastructure. Co-locating VMs in the same physical host is nec-

essary to imitate a contention for resources. However, no big modifications are
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required to run our system in real IaaS while we implemented clients for both the

vShpere and Amazon EC2 environments.

8.3.1 Physical Setup

Our physical infrastructure consists of three Dell OptiPlex 980 servers with In-

tel Core i5-2400 CPU @ 3.10GHz. Memory size was 8 GB on all machines.

These machines are connected using a Gigabit-Ethernet switch. The installed

hypervisor is VMware ESX 4.1. To monitor VMs utilization, we implemented a

java-based client that consumes the web services of each VMware server to get

online measurements of VMs resources utilization. We implemented each tier into

a different physical host. Moreover, we depend on the vCPU affinity to isolate

performance. The running application is RUBiS benchmark [31] implemented as

multi-tier system runs Apache as a web server, Tomcat as an application server,

and MySQL as a database.

8.3.2 Models Extraction and Validation

To cover a variety of workload intensity, we ran RUBiS client with different values

of number of clients that range from 100 to 1200. Moreover, we ran RUBiS with

both browsing and updating requests. The online measurements are merged and

synchronized with the logs from load balancer to build a model for each monitored

resource. These models are used for contention prediction and system scalability.

To validate the extracted models, we run the experiment again but with dif-

ferent steps ranging from 150 to 1250 to have a different dataset for validation. In

this experiment we intended to validate extracted models and at the same time

measure the scalability impact on models fitness. Therefore, we ran two replicas

in both web and application tiers. Figure 8.4 shows the cumulative distribution

function (CDF) of absolute error of CPU utilization of web1, app1, and database.

We do not show CDF of web2 and app2 since they are almost identical to CDF

of web1 and app1, respectively. The figure shows that 90% of the measured ab-

solute errors are less than or equal 2 for web and application replicas. On the

other hand, 90% of the measured absolute errors are less than or equal 4.5 for
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database. In addition to CDF, we calculate the fitness F , using Equation 8.1 for

each VM instance.
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Figure 8.4: CDF of absolute error of CPU utilization of web1, app1, and database
instances

Instance: web1 web2 app1 app2 db
Fitness (%): 95.60 95.75 94.67 94.09 86.85

Table 8.1: Fitness of CPU utilization model for two web replicas, two application
replicas, and a database calculated by Equation 8.1

The fitness values shown at table 8.1 validate the assumption that each replica

behind a load-balancer running round robin balancing algorithm has similar

amount of the workload. Practically, session-based load balancing can result

in non-equally distributed traffic to the replicas. However, in all our experi-

ments, even though sticky sessions are enabled at load balancers, the fitness of

the models is still high. This confirms the statement of Zhang et al. [119]: ”a

multi-tier system with a complex session-based workload can be modeled with a

transaction-based mix”.

Another interesting observation was that among several experiments on dif-

ferent system structures, we noticed that the fitness of the CPU model for web

and application instances is always higher than it for the database. For instance,

the fitness of web and application tiers ranges from 90% to 95%, while it ranges
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from 85% to 90% for the database tier. Zhang et al. [119] and Ahmad et al.

[7] have the same observation. Therefore, [7] applied a heuristic approach to

increase the model’s accuracy. The heuristic approach ignores the difference be-

tween the predicted and measured values if it does not have an impact on the

system performance. According to [7], their approach decreases the mean error

of CPU model from 12.83 to 11.10. By experiments, we observed that stopping

the binary logging in MySQL database can raise the fitness of database tier from

88% to 93%. Nevertheless, binary logging is necessary for database replication,

which makes turning it off impractical.

To increase the database’s model accuracy, we investigate more measured

metrics that are related to database performance. The query cache hit-ratio is

one of the metrics that influences the CPU utilization of the database. The query

cache stores the text of a SELECT statement together with the corresponding

result of the query. Any following identical SELECT statements will get the same

results, which reduces the need for parsing and executing the same query for each

SELECT statement. Moreover, the query cache can be shared among sessions,

so many users can benefit from caching a frequently used SELECT statements1.

Nevertheless, whenever a table is updated, all the cached queries from that table

are flushed for consistency.

To measure the impact of the query cache hit-ratio on the CPU model,

we evaluated the models again, but with disabling the query caching in our

MySQL database. The fitness of the models showed no change, which means

that the query caching has no significant impact on the CPU models. To in-

vestigate our observation, we calculated the cache hit-ratio as the following:

Qcache hits/(Com select+Qcache hits). It is measured for RUBiS benchmark

as 10% to 12% for a mix of read/write workload, which is relatively low. This

low hit ration explains why the caching of the queries does not show a significant

impact on the CPU model. In other words, considering it as an input for our

model will not improve the model accuracy.

1http://dev.mysql.com/doc/refman/5.1/en/query-cache.html
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8.3.3 Contention Detection

In this section, we demonstrate the system ability to predict and eliminate con-

tention of resources. First we consider running RUBiS with 1000 simultaneous

clients. The experiment run time is divided into four epochs. Each epoch de-

scribes a different performance state: epoch1 (0 to 140), epoch2 (140 to 1100),

epoch3 (1100 to 1500), and epoch4 (1500 to the end of experiment). Figure 8.5

shows that both web1 and web2 VMs were able to utilize around 48% of the

physical core capacity until the end of epoch1. At that moment, a VM called

stress started competing on the physical core with web2. Stress is a VM mapped

to the same physical core with web2. It runs the command: “stress –cpu 10 –io

8 –vm 2 –vm-bytes 256M”. The command implies intensive access to the hard

drive and memory. As seen in Figure 8.5, stress VM has an impact on the entire

system performance explained as the following: First, the response time jumped

to 1400 ms second at the moment of starting stress VM and stabilized along the

time interval (380 to 1100 seconds) to be 369 ms, which is 230% higher than the

expected response time (i.e., 160 ms). Second, the contention caused by stress

VM also decreased slightly the CPU utilization of the balancer instance, even

though they are mapped to different physical CPUs. This decrease is due to the

high overhead at the web tier, which consequently decreased the ability of the

entire multi-tier system to accept more requests. Third, the contention had the

most impact on web2, where the average CPU utilization dropped down to 35%

instead of 48%. This is a practical example shows how a contention on resources

can lead to misleading monitoring values.

Using Equation 8.1, the controller predicts the degradation in web2 perfor-

mance and starts resolving it at epoch3. As seen in Algorithm 3, the first step

is to run another replica web3 to take the place of web2. At that moment, the

model of the web tier instances is updated to predict 3 replicas at web tier, as

seen in Figure 8.6. Also, the fitness is calculated using Equation 8.1 to insure that

web3 has no contention with the other VMs on the physical host. Afterwards,

the provisioning controller schedules the contended VM (i.e., web2 ) termination

and keeps running web1 and web3. This brings down the response time to 160

ms as it was at the beginning of experiment. Finally, we should notice that at
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Figure 8.5: Detecting and eliminating contention that affected web2 VM instance

epoch3, even though the system has three web replicas, the VM with contention

has influence on the response time, while a portion of the traffic is still routed to

web2.
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Figure 8.6: CPU utilization of web tier replicas

Figure 8.6 shows both the measured and the predicted CPU utilization of each

web instance. Epoch 1 and 4 show that the measured CPU utilization closely
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Figure 8.7: Fitness of web tier replicas calculated by Equation 8.1

fits the modeled utilization. However, at Epoch 2, according to contention at

web2, the balancer routes more traffic to web1, which results in an increase in

measured CPU utilization compared with the modeled one. Figure 8.7 shows

the fitness of each web instance model. Epoch 4 shows that after replacing the

contended instance (i.e., web2 ), the fitness of web1 and web3 models comes close

to ”one”, where ”one” is the highest fitness value. The value of yk in Equation 8.1

is calculated from the last five measurements of a VM lifetime; therefore, there

is discontinuity in fitness charts in Figure 8.7.

8.3.4 Technical Discussion

In this section, we discuss some of the technical details that were confronted

during our system implementation.

First, Nginx showed much better performance compared with Apache as a

load balancer. During our experiments, we noticed that Apache performance

degrades drastically at a high rate of traffic. Moreover, either in process-driven

or thread-driven modes, Apache consumes much memory to spawn more processes

or threads. On the other hand, as an event-driven application, Nginx was able
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to outperform Apache performance even with fewer processes.

Second, in an IaaS environment, running a new VM instance implies assigning

a new IP address to the new instance, which is unknown to load balancer. This

requires updating the load balancer with the new IP addresses online. In fact,

both Apache and Nginx enable online reloading of the configuration file, which

contains replications details. However, Nginx showed no degradation in perfor-

mance compared to Apache, that interrupts the service temporarily by killing

current processes and creating them again.

Third, we implemented our prototype into a local infrastructure to have more

control over resources during experiments. However, Amazon EC2 [12] has all

the tools that support implementing our approach. For example, using Amazon

AWS client, a user can monitor, provision, and terminate instances remotely. For

load balancing, a customer can either use static load balancers, as seen in our ex-

periments, or an Elastic Load Balancer [101]. Elastic Load Balancer is a service

available at Amazon EC2 to increase the applications reliability. It has many

advantages while it allows distributing load among different zones. Moreover,

the provider is responsible for its reliability and dynamic scalability to cope with

workload demand. Currently, using Amazon CloudWatch, clients can get the

number of requests that are manipulated by Elastic Load Balancer and the re-

sponse time of each request. However, there is no information about the request’s

URL. We hope that Amazon considers such a metric in their development. Until

then, our approach remains valid using static load balancer, or by collecting and

synchronizing access logs from web tier instances.

8.4 Challenges

Adapting the models dynamically is one of the challenges that confront our sys-

tem. For example, the database size growths gradually with the usage causing a

deviation from the models. Moreover, modifying the application or adding new

contents requires building new models considering the recent updates. One so-

lution is to have a copy of the current system and repeat the steps in sections

8.3.1 and 8.3.2 with each modification or a significant increase in the database

tables size. Another solution is to allow the system to adapt automatically (i.e.,
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rebuild new models) from the traces collected from production environment. In

other words, allow the system to discover the appearance, the absence, or the

modification of services, then to categorize the URLs according to their influence

on the system utilization.

Towards automatic categorization and more accurate models, Zhang et al.

[120] suggested improving the models’ accuracy by iteratively splitting and merg-

ing the categories depending on estimated resource usage. Their approach is in-

spired by [93] approach. The Sharma et al. [93] approach successfully discovered

two workload categories of PetShop benchmark using a machine learning tech-

nique called Independent Component Analysis (ICA). The approach does not

require any information about requests URL. Nevertheless, the ICA approach

limits the possible number of categories to the number of measurable resources.

Zhang et al. [120] overcome this restriction by proposing transaction ICA. In-

stead of using ICA solely, they start initial categorization of requests using URL,

then improve it iteratively by merging homogeneous categories and splitting het-

erogeneous categories. The proposed approach ”Transaction ICA” by Zhang et

al. [120] is a promising solution. However, ICA assumes that the sources (i.e.,

inputs) must be non-Gaussian and independent. In our case, there is a corre-

lation between requests arrival that violates the ICA assumption of the inputs

independence. Ghanbari et al. [49] suggest classifying requests depending on

the response time. They validated their approach on two tier system (i.e., web

and database server). During our experiments, we noticed that the response

time is not a reliable metric for categorization, since it is very sensitive to the

performance influence in the public infrastructures.

The second challenge for our system is the noise in public environments. The

noise caused by performance interference can influence the accuracy of the built

models. To mitigate the impact of the noise on the models accuracy, we extracted

the models depending on big datasets of monitoring values. Moreover, we filtered

these datasets manually. For example, we remove any records showing resource

saturation. Also, we remove records showing a transient states such as the start

or the end of the benchmark run; or the moments of increasing or decreasing the

intensity of the workload.
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8.5 Summary

The IaaS providers offer their customers the control and the tools to manage

their application performance. On the other hand, IaaS environment leaves the

customers’ VM instances exposed to the influence by the other VMs’ workload.

Virtualization technology struggles to improve the performance isolation espe-

cially for resources such as Memory bandwidth and I/O resources. In the same

time, provider is unable to monitor every customer application performance due

to the enormous number of the applications and the different requirements for

each one.

Until improving the shared resources isolation in virtualized infrastructures,

IaaS customers are in need for a customer-oriented solution to mitigate the degra-

dation in performance caused by other customers’ workloads. At this point, our

solution stands as a practical and light-weight solution to escape the highly po-

tential contention in public infrastructures. Even it does not handle the isolation

problem directly, it exploit the probability that not all physical hosts in the cloud

provider data centers hosting VMs with intensive workload.

In our approach, we categorized the requests depending on the URLs and

employed prior coarse-grain classification (i.e., cacheable, non-cacheable URLs).

Our observations show that prior coarse-grain classification and a careful selection

of the queries that are considered in the models extraction have much impact on

the model’s accuracy. We used RUBiS benchmark to build and validate our

approach. The extracted models of the CPU utilization showed fitness ranges

from 90% to 95% for web and application tier, and from 85% to 90% for the

database tier. However, we intend to evaluate iterative categorizing techniques

suggested by [120] and [49] to exploit the possibility of automatic categorization

of the models’ inputs.
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Chapter 9

Conclusions and Future Work

Techniques of Hosting Internet applications have been developed rapidly during

the past few years. This development was driven by the need for scalable infras-

tructures coping with the requirements of Internet applications and the workload

variation. Before the emergence of the virtualization technology, data centers

were providing either shared or dedicated hosting platforms for Internet applica-

tions. Virtualization technology added many features to data centers including

workload consolidation, live migration, and dynamic management of resources.

Cloud computing is a business model exploiting virtualization technology to en-

able on-demand access to a shared pool of resources that can be easily provisioned

and released without provider intervention.

Nevertheless, the performance of the hosted applications in cloud environ-

ments is exposed to two main issues. The first issue is the resource provisioning

overhead, which exposes the application to periods of under-provisioning. The

second issue is the performance interference in public cloud infrastructures. In

this chapter, we summarize our contributions towards solving these issues, high-

light the limitations, and discuss directions for future work.

9.1 Summary of Research Contributions

In this dissertation, we made the following contributions:

1. Scaling resources vertically to maintain performance: The vertical scala-

bility provides a rapid scaling for Internet applications over the horizon-
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tal scalability. We exploit this advantage to scale an Internet application

rapidly and avoid performance degradation. The scalability is driven by

CPU and Memory loop-back controllers running in parallel with application

controller. The main difference with respect to the pre-existing solutions is

the Application controller, which helped maintaining a better performance

even during the presence of competition on resources.

2. Efficient use-cases for vertical scalability: Scaling relational database tier

horizontally is complex compared to web and application tiers. A part of

our research was to scale the database tier with policies similar to horizontal

scaling polices on the level of virtual cores rather than VMs. The results

showed an efficient coping with the workload variation.

The second use-case was improving the business model for selling the spare

capacity in the provider’s data centers, namely spot instances. The pro-

posed idea was to scale the VM instance resources vertically with the

price which is calculated dynamically according to the free capacity in the

provider’s data center. The proposed solution showed benefits for both

providers and customers.

3. Taking the best of reactive scalability in public IaaS environments: Nowa-

days, IaaS environments provide reactive scalability for a huge number of

applications. Reactive scalability depends on static thresholds to provision

or terminate VM instances. Employing static thresholds is not the optimal

solution to handle the dynamic provisioning process. Nevertheless, it is

commonly used in large production environment due to its simplicity. Con-

sidering this fact, we investigated tuning scalability parameters to achieve

better performance. The results showed 72% reduction in SLO violation

and only 7% increase in the cost by optimizing scalability thresholds.

4. Proactive scalability to improve the performance: To reduce the impact of

resource provisioning overhead on performance, we developed a prediction

algorithm that proactively calculates the inbound workload depending on a

dynamic window-size of historical measurements. The results showed 88%

reduction in SLO violation and only 9% increase in the cost.
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5. Avoiding performance interference in public IaaS environments: Although

the economic benefits of workload consolidation, it exposes the performance

of VMs to interference. Virtualization technology efficiently isolates some

resources (e.g., CPU allocation) but struggles to isolate others, such as

memory bus and I/O devices. Accordingly, many studies showed VMs’

vulnerability to performance interference in public cloud environments [19]

[108] [74]. In the course of this dissertation, we developed a system to detect

the VMs that suffer from performance interference and replace them with

new VMs. The main advantage of this solution is being a customer-oriented

solution that does not require providers’ involvement.

6. A platform for extended research: Running large-scale experiments in real

environments is costly. On the other hand, testing a system on small test-

beds does not guarantee its feasibility at large-scale level. To overcome this,

we developed the ScaleSim simulator. It simulates the scalability compo-

nents of Amazon EC2. ScaleSim is implemented into modules to allow other

researchers to implement, run, and compare their algorithms at a large-scale

level. To achieve realistic results, we imparted the simulator with models

extracted from a real cloud environment.

9.2 Future Research Directions

This dissertation opens several opportunities for short and long-term research.

We summarize future directions as follows:

1. Improving the efficiency of vertical scalability: The vertical scalability is an

opportunity for fast scaling and optimal consumption of resources. How-

ever, it is exposed to several limitations. We plan to extend our research

towards an efficient usage of the vertical scalability. The statistical analysis

of the workload history can be the first step towards an efficient consolida-

tion of the workload. For example, consolidating complementary workloads

on one physical host allows an overloaded machine to scale up rapidly and

maintain the performance without impacting the performance of other ma-

chines. Moreover, building a pricing model considering the vertical scala-
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bility helps the customers to maintain their applications’ performance and

allows the providers to increase their revenue.

2. Adapting models dynamically: Currently, our approach implies much ad-

ministrative work, therefore we investigate automating models extraction

and adaption. Moreover, we plan to consider heterogeneous types of replicas

as a technique to optimize resources provisioning.

3. Fully automating the performance management of Internet applications: As

a future work, we plan to fully automate the optimization process for scal-

ability parameters. Moreover, we are looking forward to mathematically

modeling the relation between the scalability thresholds and the applica-

tion performance. In this dissertation, we considered the CPU utilization

as a scaling metric. However, we plan to consider other metrics such as

memory and network.

4. Investigating more applications: In our research, we focused on RUBiS as

a widely used benchmark to model multi-tier systems. We plan to consider

other types of Internet applications to generalize our findings.

9.3 Summary

This dissertation solved several open questions in the field of cloud resource man-

agement to provide an efficient scalability and performance management for In-

ternet applications. Our study advocates customer-oriented solutions because of

their feasibility in public cloud environments. The results of our study provide a

motivation for interesting future research.
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