
Privacy Enforcement with Data Owner-defined
Policies

Dissertation

eingereicht von

Diplom-Informatiker Thomas Scheffler

vorgelegt der

Mathematisch-Naturwissenschaftlichen Fakultät
der Universität Potsdam

zur Erlangung des Akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

angefertigt am
Institut für Informatik der Universität Potsdam

Professur Betriebssysteme und Verteilte Systeme

Potsdam, den 2. September 2013

This work is licensed under a Creative Commons License:
Attribution 3.0
To view a copy of this license visit
http://creativecommons.org/licenses/by/3.0/

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2013/6793/
URN urn:nbn:de:kobv:517-opus-67939
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67939

Abstract

Data privacy continues to be a very important topic, as our dependency on electronic communi-
cation maintains its current growth and private data is shared between multiple devices, users and
locations. The growing amount and the ubiquitous availability of personal private data increases
the likelihood of data misuse, where private data may be used against the privacy preferences of
the person that is identified by it and personal information might be revealed.

Documented cases of privacy breaches show that misuse of data has multiple causes, malicious
intent is only one of them. A substantial number of privacy breaches also occur due to carelessness
of data users and disregard of the original privacy requirements for the data. Privacy advocates
like Goldberg [2003] and Stytz [2005] have long requested that technical measures should be
used for the privacy protection of data in applications and data exchange protocols. Documented
data breaches, such as the illegitimate sharing of airline passenger data in open conflict with the
agreed privacy policy [Anton, He, and Baumer, 2004], have raised the demand for effective privacy
protection.

Early privacy protection techniques, such as anonymous email and payment systems that have
been developed by Chaum [1981, 1985], focused on data avoidance and anonymous use of ser-
vices. They did not take into account that data sharing can not be avoided if people want to
participate in electronic communication scenarios that involve social interactions. Many data pri-
vacy protagonists still focus their efforts on data avoidance and limiting data collection, while
society has moved on. People use social networking platforms, store personal private data online
and make private data available to ‘friends’ that participate in the same ‘network’. This leads to a
situation where data is shared widely and uncontrollably and in most cases the data owner has no
control over the further distribution and use of data that has been submitted to such services.

Previous efforts to integrate privacy awareness into data processing workflows have focused
on the extension of existing access control frameworks with privacy aware functions [Park and
Sandhu, 2004; Sevinç and Basin, 2006] or have analysed specific individual problems such as
the expressiveness of policy languages [Karjoth, Schunter, and Herreweghen, 2003; Ashley and
Karjoth, 2003]. So far very few implementations of overarching privacy protection mechanisms
exist and can be studied to prove their effectiveness for privacy protection. Second level issues
that stem from practical application of the implemented mechanisms, such as usability, life-time
data management and changes in trustworthiness have received very little attention so far, mainly
because they require actual implementations to be studied.

This thesis proposes a mechanism for the controlled distribution and use of personal private
data that combines existing concepts for the specification, distribution and enforcement of access
control policies with novel ideas to build a privacy protection framework with unique properties.

Most existing privacy protection schemes silently assume that it is the privilege of the data user
to define the contract under which personal private data is released. Such an approach simplifies
policy management and policy enforcement for the data user, but leaves the data owner with a
binary decision to submit or withhold his or her personal data based on the provided policy. It
is also far from clear to the people that are providing personal data, what happens when the data
user changes the rules of this contract at a later time. In many cases it was shown that the stated

privacy policy amounts to a simple privacy promise, because the legal text of the declaration is not
directly tied to reliable practical enforcement.

Our framework changes this assumption. We argue that granted rights must be automatically
enforceable in order to be effective against carelessness and oversight on the side of the data user. If
a privacy policy is agreed, this policy should be valid for all further access to the data. Furthermore,
we want to empower the data owner to express his or her privacy preferences though privacy
policies that follow the so called Owner-Retained Access Control (ORAC) mechanism. ORAC has
been proposed by McCollum, Messing, and Notargiacomo [1990] as an alternate access control
mechanism that offers the originator of the data, in our case the data owner, a way to express their
own access control policies. A data access rule in our framework is bound to a particular subject,
which could be an individual person or an organisation. The permission that is expressed in this
rule is not transitive. This means that access rules strictly apply to the named subject in the policy
and can not be delegated.

The data owner is given control over the release policy for his or her personal data and he or she
can set permissions or restrictions according to individually perceived trust values. Such a policy
needs to be expressed in a coherent way and must allow the deterministic policy evaluation by
different entities. We compared different privacy policy languages and came to the conclusion that
the eXtensible Access Control Markup Language (XACML) [XACML-2.0, 2005] offers a rich set
of features that can be used for the expression of privacy preferences. Our privacy policies are
therefore written as a set of rules in the XACML policy description language.

The privacy policy has to be communicated from the data owner to the data user, so that the
data user can act accordingly. Our data protection framework augments private data with an ex-
plicit privacy policy in order to fulfil this requirement. Data and policy are stored together as
a Protected Data Object that follows the Sticky Policy model as defined by Mont, Pearson, and
Bramhall [2003] and Karjoth, Schunter, and Waidner [2003]. Data access policies can be refer-
enced whenever data access is about to happen – independent of time and location of the access.

We developed a unique policy combination approach that takes usability aspects for the creation
and maintenance of policies into consideration. Our privacy policy consists of three parts:
A default policy provides basic privacy protection if no specific rules have been entered by the data
owner. An owner policy part allows the customisation of the default policy by the data owner. A
third part of the policy, the so called safety policy, guarantees that the data owner can not specify
disadvantageous policies, which, for example, exclude him or her from further access to the private
data. We believe that this precaution is necessary, because the creators of the privacy policy are
ordinary computer users and not trained privacy policy experts and giving the policy administrator
complete control over the policy rule base may also lead to cases where the created rules are
erroneous or harmful. The combined evaluation of these three policy-parts yields the necessary
access decision.

The automatic enforcement of privacy policies is another important building block in our protec-
tion framework. We started our work with the development of a client-side protection mechanism
that allows the enforcement of data-use restrictions after private data has been released to the
data user. The client-side enforcement component for data-use policies is based on a modified
Java Security Framework [Scheffler, Geiß, and Schnor, 2008], where XACML privacy policies
are translated into corresponding Java permissions that can be automatically enforced by the Java
Security Manager. This approach allows the privacy-aware usage of existing Java applications
without implementing policy checks in the application itself. Our reference monitor implementa-

iv

tion uses a modified Java class loader to bind the policy-derived permissions to a loaded class and
thereby allows privacy enforcement for individual instances of an application class.

After evaluating benefits and drawbacks of the client-side solution we extended our work to
also offer data privacy protection for scenarios that require server-side protection mechanisms.
A number of usage scenarios today require the processing of sensitive private data by service
providers. Prominent examples of such a use case are location-based services.

Our approach of policy enforcement through Java permissions requires the re-load of applica-
tion classes for different data-sets, because once a Java class is loaded by the class loader, the set
of permissions is fixed and can not be adapted. We found that server-side protection mechanisms
can not be easily based on the enforcement of Java permissions by the Java Security Framework,
because business applications usually follow a tiered architecture that separates different functions
such as business logic, data access and data representation. Data access in a tiered business ap-
plication is handled by Data Access Objects (DAOs) that might be shared by different services.
Reloading a DAO for every data access is not an option.

We solved this problem by extending our reference monitor design to use Aspect-oriented Pro-
gramming (AOP) and the Java Reflection API to intercept data accesses in existing applications
and provide a way to enforce data owner-defined privacy policies for business applications [Schef-
fler, Schindler, and Schnor, 2012].

v

Contents

1 Introduction 1
1.1 Defining Private Data Releases . 3
1.2 Data Release Taxonomy . 5
1.3 Motivation . 7

1.3.1 Client-Side Mechanisms: Privacy Protection at the Network Edge 8
1.3.2 Server-Side Mechanisms: Privacy Protection by Service Providers 9

1.4 Summary and Thesis Overview . 10
1.4.1 Thesis Structure . 12
1.4.2 Preliminary Presentations and Publications 12

2 Background and State-of-the-Art 15
2.1 Defining Data Privacy . 15
2.2 Privacy Enhancing Technologies . 16

2.2.1 Data Collection Principles . 17
2.2.2 Anonymisation and Pseudonymisation Techniques 17
2.2.3 Privacy Recognition Schemes . 19
2.2.4 Data Encryption . 20
2.2.5 Privacy Policy Schemes . 20
2.2.6 Summary . 21

2.3 Access Control Models . 22
2.3.1 Mandatory Access Control . 22
2.3.2 Discretionary Access Control . 23
2.3.3 Owner-Retained Access Control . 24
2.3.4 Usage Control . 25

2.4 Authorising Data Access . 26
2.4.1 Authorisation Policy . 26
2.4.2 Authorisation Decision Function . 27
2.4.3 Representation of Authorisations . 27

2.5 Distributed Access Control . 30
2.5.1 Generalised Framework for Access Control 31
2.5.2 ISO/OSI - Access Control Framework 31
2.5.3 Framework for Policy-based Admission Control 32

2.6 Privacy Policy Languages . 32
2.6.1 Platform for Privacy Preferences (P3P) 33
2.6.2 Enterprise Privacy Authorisation Language (EPAL) 37
2.6.3 eXtensible Access Control Markup Language (XACML) 40
2.6.4 GEOPRIV Common Policy . 46

vii

2.6.5 Summary . 49
2.7 Conflicts in Authorisation Specifications . 49

2.7.1 Conflict-free Authorisations . 50
2.7.2 Conflict-resolution Mechanisms . 50

2.8 Enforcement of Authorisations . 52
2.8.1 Inline Policy Enforcement . 52
2.8.2 External Policy Enforcement . 52
2.8.3 Summary . 55

2.9 Conclusion . 56

3 Owner-Retained Access Control Policies 59
3.1 Data Release under a Privacy Policy defined by the Data User 59
3.2 Data Release under a Privacy Policy defined by the Data Owner 61
3.3 Using the ORAC Access Control Model for the Definition of Data Owner-defined

Privacy Policies . 63
3.4 Trust Model . 65

3.4.1 Sources of Trust . 65
3.4.2 Properties of Trust Relationships . 66
3.4.3 Dynamics of Trust . 67
3.4.4 Managing Trust Domains . 67

3.5 Precedence Relation for Sub-Policies . 69
3.5.1 Implementing Precedence Relations for Sub-Policies 70
3.5.2 Assigning Explicit Priorities to Sub-Policies 71

3.6 Managing Default Protection through Template-based Privacy Policies 74
3.7 Managing Authorisation Policies and Safety Rules in the Policy Rule-base 75

3.7.1 Tool-based Approach . 76
3.7.2 Conflict-resolution Approach . 77

3.8 Conclusion . 78

4 Privacy Enforcement Framework 81
4.1 Reference Monitor . 81
4.2 Policy Storage . 85
4.3 Data and Policy Protection . 87
4.4 User Authentication . 89
4.5 Application Program . 89
4.6 Related Projects . 90

4.6.1 Key Concepts . 90
4.6.2 Architectural Frameworks . 91
4.6.3 Server-based Solutions . 91
4.6.4 Client and Server-based Solutions . 91
4.6.5 Expiring Data . 92

4.7 Summary . 92

5 Java PrivMon - Privacy Protection for Personal Health Records 95
5.1 Java Security Architecture . 95

viii

5.1.1 Invoking the Java Security Manager . 96
5.1.2 Java Policies and Permissions . 96
5.1.3 Java Protection Domain . 97

5.2 Java PrivMon Architecture . 98
5.3 Personal Health Records . 99

5.3.1 Data Model of the Personal Health Record 101
5.3.2 Protection of the Personal Health Record 102

5.4 Policy Decision Component . 102
5.4.1 Extended Authorisations . 102
5.4.2 Use Case Policy Example . 103
5.4.3 Dynamic Referencing and XPath Evaluation 104

5.5 Policy Enforcement Component . 105
5.5.1 Enforcing XACML-Policies through the Java Security Manager 106
5.5.2 Translating an XACML-Policy into Java Permissions 107
5.5.3 Assigning Instance-Level Permissions 109

5.6 Resource Browser . 111
5.7 Implementation of a Health Record Viewer . 112

5.7.1 Results . 112
5.7.2 Restrictions . 114

5.8 Performance Measurements . 114
5.9 Summary . 116

6 Privacy Protection for Server-based Information Systems 119
6.1 Privacy for Location-based Services . 119

6.1.1 Comparison between XACML and GEOPRIV Common Policy 121
6.1.2 KopAL Mobile Orientation System . 124
6.1.3 Findings and Discussion . 127

6.2 Enforcing Location Privacy Policies through an AOP-based Reference Monitor . 127
6.2.1 Exemplary Use-Case: Theme Park . 128
6.2.2 Service Architecture . 129
6.2.3 Aspect-oriented Programming . 130
6.2.4 A Reference Monitor based on AOP . 131
6.2.5 Performance Tests . 136

6.3 Summary and Discussion . 136

7 Conclusion and Future Work 139
7.1 Research Contribution . 139
7.2 Discussion . 141
7.3 Future Work . 143

7.3.1 Delegation of Authority . 143
7.3.2 Revocation of Access Rights . 144
7.3.3 Knowledge Representation in Privacy Policies 144

7.4 Final Words . 147

OECD Privacy Guidelines 151

ix

Priority Policy Algorithm 153

List of Figures 157

List of Tables 159

Listings 161

Abbreviations 163

Bibliography 165

Index 175

Eidesstattliche Erklärung 179

x

1 Introduction

After many years of research in Privacy Enhancing Technologies there still hardly passes a day
when no loss of sensitive personal data needs to be reported: networked computer systems are
compromised, laptops or physical storage media containing private data are lost, personal data are
copied and used against stated privacy policies. The rise of Internet-connected smart-phones and
social media platforms only extends the problem further. Personal data is collected, analysed and
stored in computer systems throughout the world.

Non-profit consumer organisation such as “The Privacy Rights Clearinghouse”1, as well as
the “Open Security Foundation”2, have compiled lists of known cases of intended or unintended
releases of personal data for the US, the EU and other parts of the world. These organisations
started collecting privacy related incidents systematically in 2005. As of April 2012, the Privacy
Rights Clearinghouse lists 3602 events of data breaches, involving more than 500 million data-
records. These statistics show no sign that the number and consequences of data breaches affecting
sensitive personal data, also called data spills or data leaks, is reducing.

A high number of the data release cases in these lists can be classified as consequences of
direct or indirect attacks from third parties that want to monetize sensitive data, such as credit card
numbers (cf. Figure 1.1). However, there is also a significant number of cases where private data
was released as a consequence of carelessness and neglect by the custodian of the data. Simple
examples include the misconfiguration of databases and web servers that lead to disclosure of
personal private data to the public, the misplacement of backup-tapes, as well as unauthorised
data access by insiders.

This raises the question how this problematic situation can be resolved. A naïve proposal would
ask for the installation and enforcement of privacy policies by the affected organisations. But
again, a close inspection of the data release cases in these lists shows that such incidents also
occur within organisations that have installed privacy and security policies.

For example the privacy policy of the University of Texas states:

The University of Texas at Austin (U. T. Austin) is committed to ensuring the privacy
and accuracy of your confidential information.

...the U. T. Austin has deployed extensive security measures to protect against the loss,
misuse, or alteration of the information under our control. These security measures
and our systems are audited by certified independent security specialists.

[University of Texas, 2008]

1http://www.privacyrights.org/data-breach
2http://datalossdb.org

1

1 Introduction

!"#$%&'())$%&"*$+, --
!"#$%&'.+,$)$/0# 12
!"#$%&'3"),+##$4$&% 5
3"6"/7" 8
90*#$%& ::

122

--;<

12;<

5;<

8;<

::;<

!"#$%&'())$%&"=+,<

!"#$%&'.+,$)$/0#<

!"#$%&'3"),+##$>&%<

3"6"/7"<

90*#$%&<

Figure 1.1: Incident Vectors of Data Loss Events - The DataLossDB collects information about
known data breaches. In addition to scope and technical details such as type of data and
data breach, it also classifies events according to the incident vector. The statistics show
that 22% all events are caused through carelessness or neglect. [DataLossDB, 2012]

Nevertheless, the privacy policy of the University failed to prevent the public disclosure of 2500
data records containing personal information of students and faculty members in mid 2008 [Pri-
vacy Rights Clearinghouse, 2012].

Anton, He, and Baumer [2004] have documented and analysed an exemplary case where 5 mil-
lion private customer travel records collected by the JetBlue airline company were shared between
different private companies in full breach of the stated privacy policy and against governmental
regulations.

A more recent, well published privacy breach is the excessive collection and potential distribu-
tion of geo-location data within mobile phones as described by Allan and Warden [2011].

These published cases of privacy breaches are only the tip of an iceberg of similar incidents
happening all over the world and have been made publicly known because of their severity or
the high profile of the involved persons or organisations. They show, however, that there exists
a mismatch between stated and implemented privacy practices, because they should never have
happened if the stated privacy policy had been followed.

Service-providers regularly define Privacy Policies that are part of their terms of services. These
policies are intended to safeguard the private data of their clients by restricting their use. This is
usually done by defining a number of purposes for which the data can be used and by restricting
the entities that may access this data.

When we examine the privacy policy of the University of Texas more closely, we find two
characteristic features that are shared by many installed privacy policies:

1. This privacy statement is a human-readable policy that makes broad promises to the person
that leaves confidential data with the University: The policy states that everything possible
is done to make collected private data secure.

Not only is this claim difficult to prove or disprove, it is also difficult for the University to
keep the stated promise. The claim in the policy would have to be made concrete in order

2

1.1 Defining Private Data Releases

to enforce it: Who has access to the data? What protection mechanisms are to be deployed?
How can illegitimate data access be detected and denied?

The textual representation of the privacy policy gives no answers to this question to the
person that entrusts their personal data with the University. Equally, a system designer that
would need to implement this policy in the IT-systems of the University receives only vague
guidance from such a policy description.

2. The scope and authority of this policy is set by the University, the entity that receives the
private data, and not by the person who’s data is collected. Furthermore all persons and data
are treated equally by the installed policy - the policy does not enforce individual protection
preferences.

A common privacy policy for all customers does not allow to take individual preferences
and protection requirements into considerations. It also raises questions for the person that
entrusts his or her personal data: What happens if the privacy policy is changed once I
have submitted my data? Do I have to accept different protection policies and protection
standards for my personal data when I need to use different services from different organi-
sations?

Nevertheless, it is a convenient and well established practice to install a common privacy
policy for personal data and leave the authority over this policy by the receiver of the data.
Many privacy policies by large companies such as Google3 and Amazon4 implement their
privacy policies in this way. This practice is so common that it becomes difficult to envision
a different procedure for the creation of privacy policies.

Existing implemented privacy protection mechanisms seem to be not fully effective in the safe-
guarding of private data, as accidental data spills also affect companies and organisations with
installed privacy policies.

These questions and observed deficits in existing privacy protection approaches were the moti-
vation to research new and alternative ways for the specification and automatised enforcement of
personal privacy preferences. In this thesis we analyse existing methods and assumptions for pri-
vacy protection and develop an integrated privacy protection mechanism that enforces individual
privacy preferences. It is our goal to deliver a better level of protection for sensitive private data
than existing policy-based mechanisms.

In order to aid the discussion and analysis of existing and new solutions for privacy protection
we will use the next section to define some key terms and principles of protection properties
typically found in such systems.

1.1 Defining Private Data Releases

Personal private data differs from other forms of sensitive and valuable data, because private data is
inherently connected to a particular human being and might serve to identify and qualify the orig-
inator of the data. Such data is commonly described as Personal Information, or more precisely
as Personally Identifiable Information (PII) and can be defined as follows:

3http://www.google.com/policies/privacy/
4http://www.amazon.com/gp/help/customer/display.html?nodeId=468496

3

1 Introduction

Definition 1: Personally Identifiable Information (PII)

Information about a particular person, especially information of an intimate or critical nature,
that could cause harm or pain to that person if disclosed to unauthorised parties.
Examples include medical record, arrest record, credit report, academic transcript, training
report, job application, credit card number, Social Security number. [Shirey, 2007]

The definition given by Shirey is unnecessarily strict, because not only data that causes harm
or pain constitutes as PII, but rather any identifying data. The special nature of this data and
its protection requirements has been recognised very early during the development of electronic
communication media and manifests itself in a number of legal requirements for the handling and
safekeeping of private personal data, such as the Universal Declaration of Human Rights from
1948, where Article 12 states:

No-one should be subjected to arbitrary interference with his privacy, family, home or
correspondence, nor to attacks on his honour or reputation. Everyone has the right to
the protection of the law against such interferences or attacks. [UDHR, 1948]

While it seems that the best protection for PII would be to keep personal data strictly confidential,
there are cases when such data needs to be collected, handled and exchanged with third parties,
such as government agencies, service providers, employers and others. This does not mean that
this data now becomes publicly known, but rather, that a certain person or organisation is trusted
to receive and use PII in accordance with agreed principles for the safekeeping and protection of
the data.

Definition 2: Data Release

We define a data release as the restricted distribution of personal data. A data release differs
from a publication, in that there exists a controlled set of trusted recipients and constrains
(implicitly or explicitly defined) guard the release of the data.

The following definitions name and identify the principals that are involved in these data release
cases:

Definition 3: Data Owner

The data owner is the subject of personally-identifiable data and usually has an interest to
control the release and use of this data.

The term owner was chosen to reflect the fact that, even when usage is granted to third parties, this
data contains personal facts that are legally still under the control of the person that is identified
by this data. The literature here also uses the term data subject.

4

1.2 Data Release Taxonomy

Definition 4: Data User

The data user is the subject that accesses and uses personal data of the data owner. It should
honour the privacy requirements set by the data owner and follow its own stated privacy poli-
cies. In dealing with organisations the term data user usually represents a collection of users
inside this organisation or the organisation itself.

Sometimes the data user is also called custodian - this would be the entity to which personally-
identifiable information is entrusted. During a data release, private data passes to a data user that
is trusted by the data owner. Whenever private data is passed to untrusted parties or made public
against the interest or desire of the data owner the same act is called a data breach.

Definition 5: Data Breach

The act of distributing personal data beyond the set of trusted data users. A data breach can be
the result of a malicious act of information access, a disregard of the defined usage constrains
or simple neglect by the custodian of the data that makes PII available to untrusted data users.

We already mentioned that a data release is usually guarded by constrains on the usage and
further distribution of PII. These constrains do not necessarily have to be specifically defined and
many social contexts define implicit rules and conventions. If we want to respect these constraints
in an automatic enforcement scheme, these rules and constraints need to be made explicit.

Definition 6: Privacy Policy

The privacy policy defines the constraints that guard the use of personally-identifiable data.
Potential data uses might be the accessing, storing, processing and forwarding of data. A
privacy policy could be set by the data owner, but most commonly it is defined by the data user
and authorised by the data owner.
A privacy policy can be explicitly or implicitly defined and should be enforced by relevant
security mechanisms.

The privacy policy defines the rights and permissions that the data owner grants the data user
and is an integral part in any privacy enforcement approach.

1.2 Data Release Taxonomy

Data releases can be separated in cases where data is released actively by the data owner, such as
filling in forms on web-sites and enabling access to private documents and passive data release,
where the private data is released as by-product of other activities (see Figure 1.2).

5

1 Introduction

Data Release Type

activepassive

conditionalunconditional

owner defined
policy

user defined
policy

data
correlation

by-product of
other activities

Figure 1.2: Data Release Taxonomy - data release cases can be broadly classified into active and
passive release cases, as seen from the perspective of the data owner. The focus of this
work lies with conditional release cases under an owner-defined policy

Passive data releases occur when personal data is gathered, collected and used without the ac-
tive involvement of the data owner. These types of data release are called passive because
the data release is not the main intent of the data owner, but is happening while pursuing
other activities. We distinguish between:

Data release as by-product, where personal private data is released as a side-effect of
other activities such as Web-browsing, usage of personalised services, Web-searches,
the use of loyalty cards, Geo-location requests, etc. Often there is no malicious intent
behind the collection of this data. It is just common that web-server generate log-files
and network access for most networks is closely monitored.

Data correlation occurs when private data is further analysed and correlated with other
events, as well as previously released or publicly available data in order to gain en-
hanced information about the data owner.

Active data releases take place when people release data knowingly and intentionally to a data
user such as a service provider. It is assumed that the data owner is consciously initiating
this data release. The data owner trusts the data user to receive his or her private data and
use the data sensibly.
Example activities include the posting CVs on online job sites, the sending of confidential
email messages and the presentation of medical examination records.

The release of private data can be further divided into release scenarios where private data
is released conditionally or unconditionally.

Unconditional release - Data is released unconditionally by the data owner if he or she
does not care about special privacy protection or no adequate privacy protection mech-
anism is available and the releasing partner is forced to release the data anyway. There
still exists a basic form of privacy protection from the legal framework that has been

6

1.3 Motivation

put in place by different countries.

Conditional release - In the conditional case the data owner releases private data under
a specific privacy policy that is known to the data user. The data user can employ
available privacy protection measures for the safeguard of the data, such as protection
against unintended release.

We can distinguish two sub-cases, depending on the origin of the privacy policy:

User defined policy - In most current systems the policy is set by the data user. This
makes it easy to tailor the policy to the privacy enforcement mechanisms of the
data user. The data owner usually has very limited means to influence such a
policy through the expression of choices and can usually only approve or disprove
the policy.

Owner defined policy - In cases where the data owner has very specific privacy re-
quirements he or she might want to implement their own privacy policy to which
the data user should be bound. The data user must be willing to accept this policy
and needs to follow and enforce it. The challenge lies in the fact that the data
user needs to maintain a strong link between the policy and the protected data.
Otherwise no adequate protection could be guaranteed.

1.3 Motivation

The work in this thesis has been motivated by the desire to enable privacy-aware data sharing
between communication partners that generally trust each other, but might have different ideas
about protection requirements for shared private data.

Most existing privacy protection schemes let the data user define the privacy policy and give
the data owner little choice, to either accept this policy or refrain from data sharing. We want
to empower the data owner by providing him or her with the ability to express personal privacy
preferences that are closely bound to the data and can be enforced at every data access location.
It was our desire to build a policy protection framework that offers strict enforcement for data
owner-defined privacy policies.

Our study of the existing literature and solutions (see Chapter 2: Background and State-of-
the-Art) showed that different building blocks for such a system existed, however, an integrated
approach was missing. For example, the UCONABC usage control model defines a suitable sys-
tem architecture, but leaves the important area of policy administration and management undefined
(cf. Section 2.3.4).

Without an integrated privacy protection scheme it becomes difficult for the data user to honour
stated privacy policies during normal data processing. This, in turn, leads to privacy breaches that
are not intentional and violate stated policies.

It was our goal to make the privacy policy automatically enforceable, so that no conscious effort
from the data user was required to comply with the policy. There exist several challenges to reach
that goal. We needed to find a mechanism for the expression of policies that is specific enough
to be automatically enforceable, offers consistent policy evaluation and can be safely used by
non-experts to formulate adequate privacy statements. Other challenges lie in the design of the
enforcement system itself.

7

1 Introduction

We needed to find out if it is possible to re-use and adapt existing access-control and rights-
enforcement schemes for the protection of personal private data or if a complete new enforcement
approach is needed. If at all possible, we favoured the usage and adaptation of proven mechanisms
because this approach reduces development time and minimises security issues that arise from
completely new and untested designs.

We like to stress that our data release model assumes that a data user is a legitimate receiver
of private data. Each data user under this model thus represents a trusted data user that has been
granted the right to use private personal data for a certain purpose. We further assume that any data
use outside of this grant is regarded a data breach and must be prevented. Our privacy enforcement
framework should have the following characteristics:

Owner-controlled privacy policies Starting with the ruling of the Federal Constitutional Court
of Germany in 1984 [BVerfG 65,1, 1984], it is now the general consensus in Germany that
the data owner has the right to control data release. This right includes the disclosure and
usage of data and is usually called the right for informational self-determination.

The data owner must be able to specify and revoke the necessary authorisations for data
access and use. The authorisations reflect the trust relationship between the data owner and
the data user, e.g. patient and general practitioner, and give greater power to the data user.

Consistent policy evaluation The private data will be presented to different parties and the pri-
vacy policy for the data must be evaluated consistently across the different parties. This
means that access control decisions derived from the privacy policy must be deterministic
and should capture the intentions of the data owner, regardless of the specific operations of
the different data users.

Guaranteed policy enforcement The privacy policies for data repositories must be directly en-
forceable in order to restrict data access and provide data flow control. Policies must be en-
forceable equally against all involved parties. A distributed enforcement architecture might
be needed to implement this requirement.

We evaluated three distinct usage scenarios that implement different typical workflow scenarios
concerning personal private data and that enabled us to develop and validate our design. We started
to study the development of a client-side enforcement mechanism for the protection of Personal
Health Record (PHR) and later extended this work to also offer server-side privacy protection for
the processing of location data. The differences between client-side and server-side enforcement
are discussed next, based on the requirements of their individual use cases.

1.3.1 Client-Side Mechanisms: Privacy Protection at the Network Edge

Data stored in medical health records belongs to the most privacy sensitive types of data. Histor-
ically, health records have been created, stored and accessed locally by practitioners or hospital
staff. Data access was restricted by the fact that patient records were only locally available and
accessible only by authorised personnel. With the ongoing deployment of IT-centric solutions and
workflows, there is now a strong move to store medical data as a Personal Health Record (PHR),
an electronic repository, that allows collaborative access to vital patient information.

8

1.3 Motivation

When health and treatment data will be stored in such a repository, a similar level of separation
between the different data sources, as offered by the current paper-based solutions, needs to be
maintained. It is therefore necessary that a privacy solution for PHRs supports fine grained data
access control below the document level in order to provide adequate views on the data. Further-
more, the patient expects the execution of the same privacy policy, independently of diverging
practices at individual practitioners or health care organisations.

Modern patient health cards have the ability to store personal health record data, so that it can
be accessed and analysed by different practitioners participating in the treatment process and act
as a repository for future diagnosis5. A person could choose to store their PHR on a patient smart
card to have important health record data readily available and facilitate data sharing between
different practitioners and episodes of illness. It is easy to understand that in this usage scenario
the data owner (the patient) has a direct interest to make highly sensitive private data available
to a treating medical person. However, it is equally plain to understand that data access and data
sharing needs to be controllable by the patient in order to communicate and enforce legitimate
privacy requirements. These privacy requirements may differ during periods of illness and health
and the level of trust awarded towards a visited primary care practitioner on a vacation trip might
be different than the trust in the long-time family doctor at home, so any privacy protection system
needs to reflect these changes in trust and dependency.

This use case requires decentralised, data owner-based privacy policy management, especially
when the data needs to be accessed and used by many different principals and organisations in
a distributed manner. Data access should be limited on a need-to-know basis – it is usually not
necessary for a visited practitioner to have access to the complete medical history of the patient.

We developed a privacy enforcement scheme and a corresponding reference monitor implemen-
tation based on the Java Security Framework [Gong, Mueller, Prafullchandra et al., 1997]. The
approach uses so called sticky policies [Mont, Pearson, and Bramhall, 2003] written in the eX-
tensible Access Control Markup Language (XACML) [XACML-2.0, 2005] to formulate access
rules for protected resources. The policies are data owner-defined privacy policies because they
represent the privacy preferences of the data owner. They are called sticky, because they stay at-
tached to the protected resource and are distributed alongside it to the data user, where they will
be referenced and enforced.

1.3.2 Server-Side Mechanisms: Privacy Protection by Service Providers

Location data is another type of privacy sensitive data that is used within business and private
applications and has seen phenomenal growth rates [Manyika, Chui, Brown et al., 2011]. The
continuously growing smartphone market, as well as the emerging ‘Internet of Things’ enable
service providers to very accurately track and map persons and their devices through a variety of
different localisation mechanisms. The unbroken interest in social networks entices users to make
their private data available to various services and it is not uncommon that devices and applications

5Note: The currently proposed German health card ‘Gesundheitskarte’ [GKV 2003, 2003] stores the personal health
record data on a server infrastructure and only links to it via the patient smart card.
Similarly is the proposed Google Health service [Google Health, 2008] a purely server-based solutions that requires
online access for the retrieval of patient records. Server-based solutions can offer a centralised access control service
but fail to provide data-flow and usage control for data that has been released to distributed clients (decentralised
policy enforcement).

9

1 Introduction

indiscriminately collect location data [Allan and Warden, 2011].
Most location services are server-based solutions in which a user sends location information to

a service provider, where it is processed and correlated with other available data. Location data
might also be forwarded to third parties for further processing and storage. A user cannot be sure
that collected data is only used for the fulfilment of a particular service and that no data is used for
further purposes like market analysis, targeted advertising or others.

In order to remedy this situation, it has been our approach to extend our work on data owner-
defined privacy policies to server-based solutions that can be automatically enforced by the re-
quested service. We re-use our sticky policy approach to communicate privacy policies for loca-
tion data to the service provider. Policies and data will be stored and processed together as a single
data object.

We developed two different enforcement solutions based on two independent usage scenarios.
Our first use case is a privacy-aware localisation service which has been developed to fulfil the
privacy requirements of an assistance system for elderly people. The use of information technol-
ogy to enhance the safety, well-being and independence of elderly patients under care is known
as Ambient Assisted Living (AAL). A recent study by Schneider and Häusler [2011] with 33 par-
ticipants highlighted every-day situations, in which participants could imagine or would wish for
assistance. However, the study also showed that the interviewed participants were afraid of being
monitored.

A research team at Potsdam University has developed the KopAL mobile orientation sys-
tem [Fudickar and Schnor, 2009; Fudickar, Schnor, Felber et al., 2011], which is aimed to support
elderly patients and patients suffering from mild forms of dementia in their daily activities. The
patient is assisted by a mobile device, the KopAL Assistant, which provides a localisation function,
for cases where patients are in distress and can not identify their current location, or where patients
suffering from dementia simply walk away from the nursing home.

When we tried to adapt our existing client-side enforcement solution to this server-based sce-
nario, we found that direct privacy policy enforcement through the Java Security Framework has
some serious limitations. We needed to develop another enforcement mechanism that allowed us
to execute policy decisions within existing application frameworks.

The Aspect-oriented Programming (AOP) paradigm and its ability to intercept method-calls led
us to the idea of intercepting and monitor data access to protected resources within existing appli-
cations. We built a hypothetical ‘theme-park location service’ that allowed us to highlight problem
areas and develop concrete solutions for privacy enforcement in server applications. AOP was used
to design a privacy architecture that combines the flexibility of the AOP method interception with
a generic policy evaluation component and lead to the construction of an AOP-based reference
monitor. This approach makes it possible that different people can have their individual privacy
preferences enforced, while still being able to use a common service.

1.4 Summary and Thesis Overview

This thesis researches active data release cases under a data owner-defined policy. It is our goal
to control the sharing of personally identifiable data and protect data from unintended passive
release at the site of the data user. Electronic data sharing and processing has become the norm
and is also found in very private areas that involve a high level of personal trust. A number

10

1.4 Summary and Thesis Overview

of well documented high profile privacy breaches in recent years have shown that there is still
a mismatch between privacy requirements and adequate protection technologies, especially for
cases that require the active release of private data. Our analysis of these privacy breaches has
shown that for a number of cases it was not malicious intend that lead to the release of private
data, but rather a mixture of carelessness, lack of communication and the not existing enforcement
of stated privacy policies.

Human-readable privacy policies, which are defined by the data user, make protection state-
ments that are not strongly tied with actual privacy enforcement practices. It therefore happens
that the stated privacy policy is actively or passively ignored and private data is used for other pur-
poses than originally intended and announced by the data user. Human readable privacy policies
are expressing a promise to the data owner that is hard to validate by the data owner, but also hard
to keep for the data user, because the published privacy policy has to be reliably translated into
enforceable rules for the access and usage control system of the data user.

We therefore propose an integrated approach, where enforceable privacy policies are strongly
tied to the private data and where a privacy protection mechanism takes care of the automatic en-
forcement of the policy. Keeping privacy policies and data together as a single data object greatly
improves flexibility of data storage and processing. We further challenge the existing practice that
privacy policies are defined by the data user. We want to empower the data owner to state their
own privacy requirements and have them automatically enforced by the access control systems of
the data user. We propose to use a generic policy language that can be coherently evaluated by all
parties and which allows us to form access decisions independently from implementation aspects.

Policy administration and management by non-experts is also a challenge that needed to be
solved within our system. We therefore propose the use of a privacy policy scheme that uses
separate sub-policies with a clearly defined Privacy Policy Precedence Relation (P3R) to protect
the data owner from the formulation of harmful policies and provide basic protection in standard
cases, where the data owner has not specified an explicit policy.

The results of our work have convinced us that our privacy enforcement framework offers better
privacy protection than similar existing approaches. However, the following limitations exist and
must be taken into consideration when personal privacy data is released within the system:

Data flow protection - The distributed enforcement of access restrictions requires the implemen-
tation of effective data flow protection. Current computer operating systems are not well
suited to automatically enforce such restrictions and general limits exist. For example, if
data is displayed on a computer screen, the screen content can be photographed and dis-
played data can be memorised or noted down.

Trust in enforcement mechanisms - The data owner has to trust the implementation of the en-
forcement function to protect data from unauthorised access. Ascertaining the correct func-
tioning of the enforcement mechanism could be performed by independent audit, however
this would only be feasible for large organisational installations.

Policy referencing - Policies and data have to be stored and referenced simultaneously by the pri-
vacy enforcement scheme and have to be equally protected. Privacy protection breaks down,
if the policy can be altered or the link between privacy policy and data can get separated.

11

1 Introduction

1.4.1 Thesis Structure

The remainder of the thesis is structured as follows:

Chapter 2: Background and State-of-the-Art surveys the different protection technologies and ac-
cess control models that are relevant for the protection of private electronic data. This chapter
provides the scientific and technological base on which we develop our privacy enforcement ar-
chitecture.

Chapter 3: Owner-Retained Access Control Policies discusses policy design and usability issues
that are particularly important when privacy policies are developed and maintained by the data
owner. We develop a prioritised policy model based on a Privacy Policy Precedence Relation that
divides a policy into separate sub-policies which can provide default protection and safety rules
for data owner-defined policies.

Chapter 4: Privacy Enforcement Framework defines and describes the elements of our enforce-
ment framework for the specification and enforcement of owner-controlled privacy policies. It
develops the architectural building blocks and explains which properties enable the controlled
exchange of private data under a data owner-defined policy.

Chapter 5: Java PrivMon - Privacy Protection for Personal Health Records explains how the Java
Security Architecture can be adapted so that it provides client-side policy enforcement and data-
flow protection within our privacy enforcement framework. Personal Health Records (PHRs) are
used as an example for highly sensitive personal data that is distributed and used within informa-
tion systems.

Chapter 6: Privacy Protection for Server-based Information Systems extends the work from the
previous chapter and develops enforcement solutions for situations, where owner-defined privacy
policies need to be enforced in server-based scenarios. We develop the concept of a privacy-aware
localisation server and implement two different solutions that make use of this concept. The first is
the localisation component of the KopAL ambient assisted living system, the other solution uses
aspect-oriented programming (AOP) techniques for the privacy enforcement in tiered business
applications.

Chapter 7: Conclusion and Future Work provides a discussion of the key results and remaining
issues that can serve as the base for further work. It summarises and concludes the findings of this
thesis.

1.4.2 Preliminary Presentations and Publications

Important key elements of this thesis have been presented at international conferences:

• A protection model for health records using semi-structured XML-data was presented and
discussed at HEALTHINF 2008, Funchal, Portugal [Apitzsch, Liske, Scheffler et al., 2008].

• The implementation of client-side privacy protection mechanism using a modified Java
class-loading mechanism was presented at the 23rd International Information Security Con-
ference (SEC 2008), Milano, Italy [Scheffler, Geiß, and Schnor, 2008].

12

1.4 Summary and Thesis Overview

• A secondary use-case that discusses privacy protection for location data in an Ambient As-
sistant Living scenario was presented at the 3rd Workshop on “Privacy and Security in Per-
vasive Environments” at the PETRA2011, Crete, Greece [Scheffler, Schindler, Lewerenz
et al., 2011].

• We finally presented a server-based enforcement solution using Aspect-Oriented Program-
ming for the enforcement of privacy policies in an tiered business application at the World
Congress on Internet Security 2012 in Guelph, Canada [Scheffler, Schindler, and Schnor,
2012].

A working prototype of the privacy protection system for Personal Health Records was presented
at CeBIT 2008 in Hannover, Germany, at the 3rd Telematik-Konferenz 2009 in Potsdam, Germany
and conhIT 2009 in Berlin, Germany.

13

1 Introduction

14

2 Background and State-of-the-Art

Protection of information through the controlling of data access is not an altogether new paradigm.
Research into access control mechanisms reaches back into the very first commercial and govern-
mental uses of computer systems. Different protection schemes have been proposed and imple-
mented in the past that aid in the task of protecting access to electronic computer systems and
safeguard the sensitive data stored on these systems.

This chapter surveys different paths that have been taken in the protection of electronic data
and system security. It starts with an examination of privacy threats and gives an overview over
established Privacy Enhancing Technologies. We further examine data protection approaches, as
well as access control and information security models that can be used for the reliable definition
and enforcement of privacy protection. The chapter than provides a background on related con-
cepts such as authorisation, access-control frameworks and policy languages. It identifies building
blocks and potential problem areas for the implementation of data owner-defined privacy policies.

2.1 Defining Data Privacy

The need for personal privacy has its roots in the concept of individual liberty as a political and
philosophical concept and as such is not a new phenomenon. Controversies about data privacy
even predate the computer age, as can be seen in the famous article by Warren and Brandeis
[December 15, 1890] that was influenced by the new technical abilities to record and reproduce
pictures and sound. A good overview of the different aspects of privacy and computer technology
can be found in Agre and Rotenberg [1997].

One of the guiding principles for privacy protection and the development of privacy enabling
technologies has been in the past the principle of data sparseness and limitation of data collection,
targeted at the preventing of a Big Brother scenario [Fair Information Principles, 1973; OECD,
1980].

During the 1970s and 1980s, when these privacy principles were developed, the computerisation
of households and private lives had not yet begun and electronic data collection and processing by
large corporations or governmental agencies were seen as the main privacy threat. The reasoning
behind these recommendations was the following: if data is not collected electronically, it can not
be abused and collecting and storing less information minimises the potential for misuse.

This primary assumption, while still valid, can no longer guide the development of new privacy
protection systems. With the current integration of electronic communication into almost every
social and economic domain it is no longer sensible to focus on the data sparseness principle for
the protection of private data. There exists now a wide range of social interactions conducted
via electronic media that involve the direct exchange of personal data, such as personal elec-
tronic mail, processing of tax refunds, personal electronic health records, geo-location services
and the like, that can only function if people actively make personal private data available to ser-

15

2 Background and State-of-the-Art

vice providers and people sharing their personal network. Governments issue electronic ID cards1

and e-Government initiatives are launched worldwide to offer Internet-based access to citizen data.
The focus for privacy protection has shifted from anonymous service-use to the provisioning

of privacy policies and trust building. The current guiding principles for the collection and use of
personal data under a privacy policy are Notice and Consent. The data owner must be given the op-
portunity to agree to a published privacy policy before data can be collected and used. Policy-based
privacy protection schemes have been developed to reflect this practice. Well known examples are
the Platform for Privacy Preferences [P3P v1.0, 2002; P3P v1.1, 2006] and the Enterprise Privacy
Authorization Language [EPAL 1.2, 2003] that will be discussed later in this chapter. Service
provider can publish their privacy policy and give the data owner the ability to evaluate this policy
before agreeing to release private data.

The acceptance of the reality of electronic processing of personal private data by trusted service
providers does not mean that the need for data privacy has vanished. However, the focus for data
privacy protection has moved from data avoidance to a type of data release that provides the data
owner with better control over the release and usage of personal private data. Several definitions
of data privacy focus on the aspect of control over the data release:

Definition 7: Data Privacy

(i) To control who has access to information about the individual, to be able to estimate what
is known about the individual by others. [Rössler, 2001]

(ii) Privacy is the right of individuals to determine for themselves when, how and to what
extent information about them is communicated to others. [Ashley and Karjoth, 2003]

2.2 Privacy Enhancing Technologies

There exist a number of technical protection mechanisms that were specifically developed to pro-
tect and control the dissemination of personal information. Such mechanisms are generally known
as Privacy Enhancing Technologies or PET.

Development and application of Privacy Enhancing Technologies is extensively discussed by
different authors (e.g. Tavani [1999], Fischer-Hübner [2001]). The following sections provide an
overview of existing technologies. The properties of the techniques are briefly discussed in respect
to the requirements of our proposed protection system.

Not all the mentioned techniques described here implement software mechanisms. A number
of proposed PET rely also on external mechanisms, such as legislative frameworks and reputa-
tion mechanisms that correspond to implemented protection schemes, but are also useful without
them. We will include these techniques in our discussion because they often have had a formative
influence on research and development of protection techniques, as well as the general discussion
about the problem space.

1The German government has mandated the use of patient smart cards for general health care in 2003 [GKV 2003,
2003]

16

2.2 Privacy Enhancing Technologies

2.2.1 Data Collection Principles

Early discussion about protection of electronically stored data ensued from centralised data col-
lections of censuses and other governmental bodies. The debate started with the goal to establish
privacy guidelines that allowed the beneficial use of electronic data under a framework of princi-
ples that guard the privacy of the data.

In 1973 a task force of the U.S. Department of Health Education and Welfare formulated the Fair
Information Practice Principles that developed several now well-accepted principles concerning
the sharing and collecting of personal information, such as Collection Limitation and prevention
of Secondary Usage [Fair Information Principles, 1973]. Other countries enacted similar data
protection laws. In 1980 these principles were incorporated into an international privacy code
by the Organization of Economic Cooperation and Development: the OECD Guidelines on the
Protection of Privacy [OECD, 1980].

The OECD guidelines have been influential for the development of data protection techniques
and it can be shown that many protection goals for Privacy Enhancing Technologies can be linked
back to one or more principles from the guidelines. From the standpoint of data protection the
following principles are especially important:

1. Collection Limitation Principle There should be limits to the collection of per-
sonal data and any such data should be obtained by lawful and fair means and,
where appropriate, with the knowledge or consent of the data subject.

3. Purpose Specification Principle The purposes for which personal data are col-
lected should be specified not later than at the time of data collection and the
subsequent use limited to the fulfilment of those purposes or such others as are
not incompatible with those purposes and as are specified on each occasion of
change of purpose.

4. Use Limitation Principle Personal data should not be disclosed, made available
or otherwise used for purposes other than those specified in accordance with
Paragraph 3 except:

(a) with the consent of the data subject; or
(b) by the authority of law.

5. Security Safeguards Principle Personal data should be protected by reasonable
security safeguards against such risks as loss or unauthorised access, destruction,
use, modification or disclosure of data.

[OECD, 1980] (See Appendix OECD Privacy Guidelines for an overview over all
principles in the guideline.)

The remaining principles Data Quality, Individual Participation, Openness and Accountability are
not directly related to the topic of data protection and will therefore not be researched in this thesis.

2.2.2 Anonymisation and Pseudonymisation Techniques

Data privacy can be strengthened substantially by following a simple observation: Private data
that has never been disclosed can not be compromised and used against the intentions of the data
owner.

17

2 Background and State-of-the-Art

This idea has found its way into the Fair Information Practice Principles that states several well-
accepted principles concerning the sharing and collecting of personal information, such as Col-
lection Limitation and Purpose Specification [Fair Information Principles, 1973], [OECD, 1980]
and was implemented in privacy law [Directive 95/46/EC, 1995]. Early research into privacy
enhancing technologies concentrated on the following reasoning:

If an activity can not be traced back to an individual - no personal data about the
individual is revealed and privacy is not breached.

It is therefore still possible to collect and use Personally Identifiable Information (PII), if the link
between originating individual and the data can be broken. Techniques that hide the user iden-
tity against service providers and snoopers can be implemented and preserve privacy (cf. Chaum
[1981]). This observation has lead to the development of anonymisation and pseudonymisation
tools such as anonymous remailers2, mix networks3 and onion-routers4 that protect the true iden-
tity of the data owner from being disclosed to service providers and external attackers.

Anonymisation

Anonymisation is a technique that hides the true identity of the data owner. Any information that
the data user might gain must be void of directly identifiable data. Privacy protection is reached
through the fact that any data that is gathered can not be attributed to a particular individual and
therefore the privacy principle of Collection Limitation is observed.

Anonymous use of services is widely accepted in real world scenarios, where it is normal to
pay for goods and services in cash and to make anonymous phone calls through a public pay-
phone. There exist different applications that might be used to send anonymous E-mail or anony-
mously browse the information content of web-servers. Goldberg, Wagner, and Brewer [1997]
and Goldberg [2003] give a good overview of different anonymisation techniques, their different
development phases and potential problem areas for such services.

The user of anonymisation services can hide its identity against the service provider and any
potential eavesdropper on the communication link. It should also not be possible to link individual
communication acts together. Anonymity is lost, when through the course of the transaction the
communicating parties need to reveal their identity. Anonymisation provides no protection if the
transmitted information itself is of identifying nature or if enough communication acts can be
linked together to form an identifying profile that can later be used to identify the individual.

Effective anonymisation can be surprisingly difficult to achieve and must also look at recur-
ring and identifying data patterns such as IP-addresses and geographic location information, to
eliminate the risk of re-identification.

Pseudonymisation

Pseudonymisation techniques aim to provide the same level of identity protection as anonymisa-
tion techniques while addressing some of the weaknesses of anonymisation. The complete hiding
or randomisation of user identity through anonymisation makes it easy to abuse or vandalise these

2http://mixminion.net/
3http://www.jondos.de/
4http://www.torproject.org/

18

2.2 Privacy Enhancing Technologies

services. Since the users can not be re-identified they run little risk to be caught in unfair or
criminal behaviour. Several of the early anonymous E-mail servers (remailers) had to shut down
because of Spam abuse.

The use of digital pseudonyms has been first suggested by Chaum [1981,1985] to provide un-
linkability between different actions of the individual in different contexts while maintaining the
ability to authenticate the individual and attribute their actions to them. The users are issued with
one ore more persistent identities, called nym, that can not be directly linked back to their true
identity. Under a pseudonym an individual is able to exert control over the release of informa-
tion about themselves. Individual actions under different pseudonyms can not be linked, however,
the provider of the pseudonymisation service has the knowledge to re-map the identity with a
particular pseudonym.

Pseudonym systems overcome the weaknesses of anonymous systems, where system abuses
can not be detected and attributed to the individual. Pseudonyms are most useful in situations
where authentication is required, but not identification. Because the provider of the pseudony-
mous system can attest the true identity of a user, there can be extended trust between the service
provider and the pseudonymous user. If clear identification is necessary, such as in the case where
a postal address is needed to deliver goods, pseudonyms can only work if there is an independent
clearinghouse in operation which re-translates pseudonyms into postal addresses.

The use of pseudonymous services requires a strict management of nyms. Otherwise there
exists the danger that through the prolonged use of a pseudonym the user can be re-identified.
Pseudonyms must be periodically changed and the usage scope for individual pseudonyms must
be limited (different nyms for different services). The prime project [PRIME, 2006-2008] has
developed some solutions for privacy enabled identity management.

Conclusion

Anonymisation and pseudonymisation technologies share a common attacker model. Their threat
model assumes that the service provider itself is an untrusted recipient and should only be able to
see anonymised or pseudonymised user data.

Anonymisation and pseudonymisation systems are generally not suited for the exchange and
protection of sensitive, identifiable data, such as health care or financial transaction data. The
privacy protection offered by these systems breaks down when the data owners need to reveal
their true identity and other identifying data to the service provider.

2.2.3 Privacy Recognition Schemes

Privacy Recognition Schemes such as eTrust [Benassi, 1999] are an initiative from the industry to
enhance user trust through the creation of privacy standards, independent control and attestation of
adherence to these standards. Trust building is usually done through the display of a recognisable
privacy seal on websites. These initiatives collect feedback from users and conduct audits to ensure
that privacy standards are met.

Participation in these initiatives is voluntary for an organisation. Most of these schemes are
targeted at larger organisation and are not suitable for small businesses and private data exchanges.
Recognition schemes do not offer any privacy protection themselves. Their main focus is the

19

2 Background and State-of-the-Art

independent verification of privacy protection measures and thus supports the Openness principle
of the OECD guidelines.

2.2.4 Data Encryption

Encrypting the communication channel or encrypting the private data itself is standard practise for
information security on the Internet today. A wide range of different encryption technologies, such
as IPsec [Kent and Seo, 2005], Transport Layer Security [Dierks and Rescorla, 2008] and secure
E-mail encryption such as OpenPGP [Callas, Donnerhacke, Finney et al., 2007] and S/MIME
[Ramsdell and Turner, 2010] exist and are in active use.

Encryption offers privacy protection to the extent that an eavesdropper can not gain knowledge
about the transmitted encrypted private information. Effective data encryption can therefore realise
the implementation of the Security Safeguard principle of the OECD guideline.

Privacy protection requires protection at the time of data transport and during storage of the
data. Many data encryption standards only specify a secure communication channel because data
transport over a network is seen as the main security threat. Data that has passed through a pro-
tected communication channel is secure, but is usually decrypted as it leaves the secure channel
and is stored for further use.

In order to preserve data privacy it is necessary to protect stored data. However, even if we as-
sume that data is stored in encrypted form, it needs to be decrypted, at least temporarily, for further
processing. Encryption schemes for E-mail or file systems usually have a single encryption key
for the file system or E-mail message-base of a user and do not provide fine grained control over
access to individual private files. Any data encryption scheme that is used for privacy protection
must therefore be augmented to derive the authorisation for the decrypting operation directly from
the corresponding privacy policy and must provide fine grained access to the data.

2.2.5 Privacy Policy Schemes

The ability to communicate privacy requirements and formulate a meaningful privacy policy is an
important prerequisite for the protection of data privacy. The Openness and Purpose Specification
principles of the OECD guidelines require the information of the data owner about the purpose of
data collection and the data privacy practices of the data user. Privacy policies are an ideal tool for
this purpose and can be specified in different forms:

Human Language Policies Privacy policies can be stated as human readable text on websites,
where they describe the privacy practices of the targeted organisation. Their character is mainly
informational and can have a collection limiting effect if the data owner evaluates and understands
the policy prior to data release and refrains from using services with questionable privacy policies.

Human readable privacy policies have several weaknesses. First, they must be translated into
security measures and authorisation rules by the data user in order to offer any enforceable pro-
tection. Jensen and Potts [2004] showed in their study that many websites now display privacy
policies, however, it is still very difficult for the data owner to derive meaningful value from this
practice. The stated policies are difficult to understand and compare because they lack standardis-
ation. Furthermore, there exists a mismatch between the information needs of the data owner and
the policy data provided by the data user, which limits the usefulness of such policies.

20

2.2 Privacy Enhancing Technologies

Privacy Policy Languages are formal languages that are specifically designed to facilitate the
expression of privacy policies, practices and requirements. Privacy Policy Languages have the po-
tential for automatic policy enforcement of the Use Limitation and Collection Limitation principle,
if it becomes possible to derive access control decisions directly from the formal policy descrip-
tion. Privacy Policy Languages also offer the potential to ease privacy decisions for the data owner,
because they also offer greater standardisation and automatic policy evaluation, something which
is not possible with policies expressed in human language.

Specific Privacy Policy Languages will be discussed in greater detail in their own sections be-
cause they are highly important for the protection of privacy in cases where personal private data
is actively released by the data owner. The following languages will be evaluated in Section 2.6:

• Platform for Privacy Preferences (P3P)

• Enterprise Privacy Authorization Language (EPAL)

• eXtensible Access Control Markup Language (XACML)

• GEOPRIV Common Policy

2.2.6 Summary

The previous section has shown that existing Privacy Enhancing Technology implement several
principles from the OECD Privacy Guidelines and can be helpful tools for privacy protection.
However, the section has also shown that many existing techniques focus on the principle of data
sparseness and identity hiding that offer no protection in cases, where private personal data needs
to be distributed. Table 2.1 shows an implementation summary for the main principles from the
OECD Privacy Guidelines.

Table 2.1: Privacy enhancing technologies implementing the principles from the OECD Privacy
Guidelines

Collection Purpose Use Security Openness
Limitation Specification Limitation Safeguard Principle

Encryption (x) against x
outside attacker

Anonymisation/ x (x) owner not
Pseudonymisation identifiable
Recognition x
Schemes
Privacy Policies (x) x (x) x

release limiting if enforceable

Privacy policies, in the form of policy languages, offer the widest support for the principles from
the OECD privacy guidelines. Directly enforceable privacy policy schemes derive access decisions

21

2 Background and State-of-the-Art

from the formalised privacy policy. When they are bundled with adequate security mechanisms,
they can enforce the execution of the privacy policy on protected data and provide protection even
in cases, where data needs to be actively released by the data owner.

The next section will discuss some general aspects of access control and access control lan-
guages before different privacy policy languages and their properties are analysed in detail.

2.3 Access Control Models

Access control can be described as the prevention of unauthorised use of a resource, through the
process of controlling access to resources within a system [ISO 7498-2, 1991]. The entities that
perform the access activities in the system are called Subjects, while the resources that are ac-
cessed are called Objects. The controlled activities are called Actions. An access control scheme
determines if an access request is granted on the base of Authorisations. Access is allowed to sub-
jects that have permission to use the resource and denied otherwise. The access control decision is
enforced by a security mechanism that mediates access to the resources in the system. A compre-
hensive overview of existing mechanisms and models can be found in Samarati and di Vimercati
[2001]. A selection of the most important mechanisms will be discussed in the following.

2.3.1 Mandatory Access Control

Mandatory Access Control (MAC) systems enforce a central access control policy equally for all
subjects in the system. The system security policy is controlled by a security policy administrator
and individual users have no ability to override this policy.

To support a MAC policy, all subjects are assigned security attributes, as are all objects
which are controlled by the policy. Every security policy decision is a function of
the attributes of the subjects and objects involved in a particular attempted access.
The definition of these policy functions and the assignment of security attributes are
defined into the system, or when configurable, are tightly controlled by a security
administrator. An ordinary user may be allowed to make changes, but only if they
further restrict the policy. [DTOS, 1997]

Multilevel Security Systems are security systems where some information in the system has a
higher classification than certain users of the system and are prominent examples of the Mandatory
Access Control paradigm.

”Mandatory Access Control: A means of restricting access to objects based on the
sensitivity (as represented by a label) of the information contained in the objects and
the formal authorisation (i.e., clearance) of subjects to access information of such
sensitivity.” [DoD 5200.28-STD, 1985]

A well known example is the Bell-LaPadula model for the control of information flow [Bell and
LaPadula, 1973], [Landwehr, 1981]. Labels are used to classify system users according to their

22

2.3 Access Control Models

security clearance, objects are assigned a sensitivity level. Two principles guarantee the security
of the system:

a) The simple security property states that no process may read data at a higher level
b) The *-property allows no process to write data at a lower level

These properties ensure that sensitive data does not get accessed by users with a low security
clearing and will not be written to objects that are readable by users with lower security clearing.

Critique

Mandatory access control schemes have their origin in the protection of military data and property.
The access control system can protect data and information flow, since the assigned labels can
not be changed by the system subjects and can always be referenced. However, the mandatory
enforcement of simple system rules leads to inflexible schemes that require frequent administrator
override in order to be usable. These systems usually employ the notion of a Trusted Subject that
has special privileges to act outside of the system rules.

2.3.2 Discretionary Access Control

For many real world systems the restrictions imposed by the Mandatory Access Control model
are to rigid. They implement the so called Discretionary Access Control (DAC) model, where
the subjects themselves have the authority to generate permissions for objects under their control.
Discretionary Access Control is characterised by the ability of subjects with access permission to
pass that permission on to other subjects. Assuming that a subject is authorised to access a specific
object in the system, it can create new objects based on this object or modify the existing object.

"Discretionary Access Control: A means of restricting access to objects based on the
identity of subjects and/or groups to which they belong. The controls are discretionary
in the sense that a subject with a certain access permission is capable of passing that
permission (perhaps indirectly) on to any other subject."

[DoD 5200.28-STD, 1985]

Typical systems implementing DAC therefore do implement a number of discrete access poli-
cies defined by the authorised system users and not a single, centrally-defined policy. It thus
becomes the responsibility of the respective object owner to implement an adequate access policy.

Critique

Systems implementing DAC do not attempt to control information flow. UNIX and BSD operating
systems, for example, allow a file to be copied, as soon as the user has been granted read-access
to the file. The copy operation does not even preserve the attributes of the original file, instead the
copy has a new owner (the subject that carried out the copy operation), who in turn has full control
over the operating systems permissions for this file.

23

2 Background and State-of-the-Art

Example: Data owner Owner wants to limit data sharing with data user User0 but continues to
share data with data user User1 −UserN :

Owner maintains a data release policy that grants no access permissions to User0, but
various permissions to User1 −UserN .

As data is distributed between the users it is possible for User0 to get access to this data indirectly
via some User1 −UserN , since no information is maintained by the access control systems about
the fact that Owner had originally intended not to share data with User0.

It therefore seems that discretionary access control schemes are not suited for cases, where the
original data owner wants to maintain control over the further distribution of private data.

2.3.3 Owner-Retained Access Control

McCollum, Messing, and Notargiacomo demonstrated in 1990 the existence of several access
control models that could not be represented through the well-known Mandatory and Discretionary
Access Control mechanisms [McCollum, Messing, and Notargiacomo, 1990].

One of these access control models is the so called Owner-Retained Access Control (ORAC),
where the access policy for a resource is determined by its owner or creator and not by a system
rule or the security administrator. The creator of an object sets the access policy, which can not be
revoked or changed later by other users that have access to the object.

This policy model combines features from the Mandatory as well as the Discretionary Access
Control model. It looks to the resource owner similar to a DAC model, because he or she has
complete freedom to define any permissions for this object. To subsequent users of the resource it
behaves similar to a MAC model, because these users are bound by the owners policy and can not
modify or override it.

ORAC provides a stringent, label-based alternative to DAC for user communities,
where the original owners of data need to retain control of the data as they propagate
through copying, merging, or being read by a subject that may later write the data into
other objects.
. . . The user who creates a data object is considered its owner and has the right to
create an ACL (Access Control List) on the object.”

[McCollum, Messing, and Notargiacomo, 1990]

Critique

The ORAC model is a very attractive access control model for the protection of sensitive private
data. It is, however, not as widely known and implemented as the other access control models.

Sevinç and Basin [2006] describe a formal access control model for documents that employs a
similar concept of control and ownership over data. Instead of assigning labels they propose to
associate policy language objects directly with the relevant data to form a so called sticky policy.
In their work they focus on document-related actions such as read, print, change and delegate.
Their model supports multiple owners and sub-policies for document parts and takes document
editing into account, where merging and splitting of document content also influences the attached
policies.

24

2.3 Access Control Models

2.3.4 Usage Control

Traditional research on access control has largely focused on the protection of server-side re-
sources, that typically form a single security domain executing a common security policy. These
access control models work well when the protected resource is a fixed physical instance or a
controlled service, where access can be granted or revoked depending on the underlying access
control policy. If the protected resource is a moveable and cloneable asset, e.g. a data item, it be-
comes necessary to also control the dissemination of this resource and the subsequent usage. This
requirement is immediately obvious in the area of distribution of digital content, where Digital
Rights Management (DRM) techniques are also providing client-side protection for the necessary
enforcement of usage control.

The growing importance of distributed, dynamic computing environments emphasises the ne-
cessity for client-side control over locally stored data across different security domains. Park
and Sandhu [2004] proposed the UCONABC usage control model that incorporates the dis-
tinct approaches of traditional Access Control, Trust Management and Digital Rights Manage-
ment (DRM) to define a unifying access control model (see Figure 2.1).

Server-Side
Reference Monitor

Traditional
Access Control

Trust
Management Client-Side

Reference
Monitor

Usage Control

Figure 2.1: UCON scope - The UCON model for usage control recognises the necessity of a client-
side reference monitor for privacy protection. [Park and Sandhu, 2004]

The UCONABC model targets the protection of information secrecy, the protection of property
rights as well as privacy protection. It incorporates recent approaches of trust management and
modern access control that base authorisation decisions not only on the identity of the subject,
but incorporate additional attributes (such as trustworthiness) in the decision process. Access
decisions can be made dependent on additional external data, policies and conditions.

Digital rights protection and data privacy protection share a very similar goal: a data provider
wants to control the dissemination and use of protected data. DRM rules and privacy policies
can be expressed with similar policy language constructs as has been shown by Apitzsch, Liske,
Scheffler et al. [2008].

However, the enforcement properties of data owner-defined privacy protection systems and
DRM systems differ. DRM protected content is made available by a content provider to an end-
user, while privacy protected content may be provided by the end-user to a service provider. This
asymmetry in bargaining power allows the content owner in DRM systems to enforce the distribu-
tion of necessary cryptographic keying material to all client-installations, while the data owner in a
privacy enforcement system has no such power and requires cooperation from the data user. DRM
systems usually enforce a simple access control policy that may not even be based on the true

25

2 Background and State-of-the-Art

identity of the user and relies on external attributes such as the possession of a valid license key
or proof of payment. Client-side reference monitors for DRM systems are usually closed-source
solutions that enforce predefined actions on atomic resources (e.g.: view movie, play MP3-song,
etc.) and have no need to communicate an extensive policy from the policy administration system
to the client-side reference monitor.

Critique

UCONABC explicitly recognises the need for client-side access control through the use of a ref-
erence monitor. However, it does not provide any discussion or guideline on architectural or
implementational issues. The important area of policy administration, management and distribu-
tion is mentioned by the authors, but they assume a suitable policy already exists and leave the
other issues to further examination.

The privacy enforcement scheme that is developed in this thesis conforms to the basic architec-
ture of the UCONABC model as described by Park and Sandhu. We extend this work especially in
the area of policy management, where we develop a solution for policy creation issues that result
from a data-owner based approach to policy writing and we go far beyond in our discussion of
practical and implementational issues.

2.4 Authorising Data Access

The discussion in the previous section has shown that the protection requirements of private data
can be modelled using existing access control models and that the authority over the protection
policy of the system is an important differentiation factor between these access control models.

An authorisation policy governs the administration of data access policies. The choice of access
control model usually implies a certain authorisation policy and implementation strategy. The
following sections will elaborate on the subproblems of authorising data access, representation of
authorisations, decision making and decision enforcement.

2.4.1 Authorisation Policy

Authorisation policies, also sometimes called Administrative policies, determine who is authorised
to set or modify permissions in the access control scheme. These policies can be fixed, such as in
the case of Mandatory Access Control schemes, or flexible.

Mandatory access schemes usually employ the concept of a Trusted Subject. They assume that
there exists the role of a Security Administrator or Privacy Officer that has the power and legiti-
macy to grant or deny data access and override system rules (cf. Karjoth and Schunter [2002]).
The trusted subject, usually a system administrator, might also set and modify policy rules and
information about objects and subjects in the system, depending on the properties of the access
control scheme. The trusted subject is not bound by any administrative policy themselves.

In distributed policy schemes it is preferable to have explicit system authority rules that are
part of an Administrative Policy and have a subset of rules governing the policy creation process,
rather than rely on trusted subjects that have unbounded authority. Explicit authority rules make it
possible to evaluate and enforce a privacy creation and management policy. Policy schemes can be

26

2.4 Authorising Data Access

differentiated depending on whether they support authorisation rules that guarantee that the policy
administrator operates within the specified restrictions.

In the context of privacy enforcement that uses data-owner controlled policies, the data owner
must be given the authority over protection policies of personal data. These schemes must ensure
that the authority does not change as the data is released to the data user. If this constraint can be
enforced, the data owner can be sure that data can not be misappropriated.

2.4.2 Authorisation Decision Function

From a mathematical standpoint an authorisation policy can be regarded as the set of all possible
access decisions over the sets of subjects S and objects O supported by this policy. A definition of
such an authorisation policy is given by Woo and Lam:

An authorisation policy is the 4-tuple (P+,P−,N+,N−) where each component is a
subset of {(r,s,o) | r ∈ R,s ∈ S,o ∈ O} over the set of subjects S, objects O and access
rights R. P+ and N+ record the rights that are explicitly granted or denied. Whereas
P− and N− record the rights that should not be explicitly granted or denied and are
needed to define the semantics of policy composition.

[Woo and Lam, 1993]

A policy Auth = (P+,P−,N+,N−) is sound if there exists no request (r,s,o) such that
(r,s,o) ∈ P+∩P− or (r,s,o) ∈ N+∩N−.

The following authorisation decision function is defined for an authorisation request (r,s,o)
over a sound policy Auth = (P+,P−,N+,N−):

Auth grants (r,s,o) iff (r,s,o) ∈ P+

Auth denies (r,s,o) iff (r,s,o) ∈ N+

Auth fails (r,s,o) iff (r,s,o) /∈ P+∪N+

(2.2)

A decision request is granted if a positive authorisation can be found and denied if a negative
authorisation is derived. The decision function fails if the authorisation request does not match the
authorisation base. It will be shown later how an default policy can be used to change the decision
result in this case.

The explicit inclusion of rights that should never be granted or denied (P−,N−) allows to check
the consistency of the authorisation base. Conflicts in policies must be resolved in this model prior
to the authorisation decision.

2.4.3 Representation of Authorisations

Over the history of access control systems many different approaches for authorisation specifi-
cation have been developed. A suitable authorisation specification must be powerful enough to
capture the intentions of the policy writer – the protection goal of the security policy. The rep-
resentation must be easy to implement and should aid the task of policy management through a
clear conceptional model that should be easy to understand. It should be easy and fast to derive an
authorisation decision from the system.

27

2 Background and State-of-the-Art

Access Control Matrix

One of the best understood policy representation is the Access Control Matrix (cf. [Lampson,
1971], Graham and Denning [1972], Sandhu and Samarati [1994]), where rows represent subjects,
columns represent objects and the matrix entries are used to store the access rights (see Figure 2.2).

Inquire, DebitRead, WriteUser C

Own, Read,

Write
ReadUser B

Inquire, Credit
Own, Read,

Write
User A

Account 1File 2File 1

Capabilities

Access Control List

Figure 2.2: Exemplary Access Control Matrix - The Access Control Matrix has long served as
the reference model for the formulation and execution of access control statements and
decisions.
Capabilities represent the Access Control Matrix by row, whereas Access Control Lists
represent the matrix read by column.

An Access Control Matrix in its basic form lists only positive permissions and defines an im-
plicit deny rule for access requests that do not correspond to a permission entry in the matrix. On a
typical system with many objects and users an access matrix would only be sparsely populated and
would allocate to much memory. Actual implementations therefore store access rights as Access
Control Lists or as Capabilities:

Access Control Lists (ACL) can be seen as a representation of the Access Control
Matrix read by column. An ACL belongs to an object and lists the set of permis-
sions for this given object. These permissions define the subjects and operations
that are allowed by the subjects. ACLs have the drawback that it now becomes
difficult to determine the set of authorisations that are held by a particular sub-
ject, because all object in the system would need to be examined to get this
information.

Capabilities store the permissions of the Access Control Matrix by row. It thus be-
comes easy to capture all the permissions for one specific subject, but now it is
difficult to find all the subjects that might have access rights associated with a
certain object.

Access Control Lists are the most popular implementation of the Access Control Matrix because
they are easy to implement and understand, but have limitations when it comes to expressiveness
and maintainability of policies:

Expressiveness ACLs have difficulties to capture hierarchies and external depen-
dencies. Certain security models, such as the Chinese Wall security policy

28

2.4 Authorising Data Access

[Brewer and Nash, 1989], introduce dependencies that can not be directly mod-
elled at the level of expressiveness found in ACLs (e.g.: a financial analyst that
has access to files from Company A must not have simultaneous access to files
from Company B).
Similarly, it is difficult to express permission-sets that contain the all-permission
with only a small set of exceptions (e.g. granting read access to the whole de-
partment, with the exception of one person). Support for wild-cards and neg-
ative permissions have subsequently been added to enhance the expressiveness
of Access Control Lists but have thus added complexity to this simple model.

Maintainability Every single object in the system must be attached with access rights
at creation time and must be updated if the trust level for a subject changes. This
can be a resource intensive task for systems containing numerous objects and
can lead to errors if external dependencies are not correctly resolved.

Enhancements of expressiveness for ACLs have lead to the fact that the interpretation of the ACL
now depends on rule-ordering and evaluation strategy, where more specific permissions need to
be defined before general permissions and ACLs have to be evaluated in a defined order (usually
top-down). Different ACLs can no longer be easily combined, because the simple concatenation
that was possible for ACLs that express only positive authorisations becomes problematic when
ACLs express exceptions and negative permissions.

Authorisation Languages

Authorisation languages provide syntactical elements for greater expressiveness and maintain-
ability than simple Access Control Lists (ACLs) or Capabilities. They allow the expression of an
access control policy in a declarative language and thus provide an abstraction from the actual
authorisation decision.

The Access Control Matrix directly stores authorisations as an entry of an ACL or Capability.
An authorisation decision can be made simply by finding and retrieving the action entry for an
object and subject match. Authorisation languages usually do not store the individual authorisa-
tions, but rather create a policy rule-base that forms the basis for authorisations. This rule-base
must be evaluated by a decision mechanism at the time an access request is made, in order to
derive at the appropriate access decision. Since this evaluation needs to be executed every time
an access is requested, the decision mechanism needs to derive at this decision quickly or else the
responsiveness of the system suffers.

Attribute-based authorisations Authorisation languages allow flexible authorisation decisions
that can also be based on other attributes than the identity of the requesting subject [Woo and Lam,
1993]. For instance an authorisation could depend on the identity of a subject, its current location
and the local time at the current location. Abrams, LaPadula, Eggers et al. [1990] calls this the
Access Control Context and remarks that this information is independent of the set of particular
subjects or objects specified in the rule base.

29

2 Background and State-of-the-Art

Structural properties Authorisations can be highly structured and thus reflect real world sys-
tems that themselves have a high degree of structure [Woo and Lam, 1993]. Authorisation lan-
guages allow the specification of dependencies in access decisions through logical constructs that
would not be possible to express in an ACL, where every entry constitutes an independent access
decision.

Default policy To simplify the creation and maintenance of access specifications, access policies
regularly implement a default policy. The default policy will be used if no authorisation decision
can be made from the consulted rule base. Default policies can be defined in two different ways
as either a permissive or a restrictive policy (also called open or closed policy). A restrictive or
closed policy denies all actions that are not explicitly authorised. The permissive or open policy
allows all actions that are not explicitly denied.

Default policies ease the task for the policy administrator. However, the exclusive reliance
on an implicit default policy can lead to the situation, where absent authorisations can not be
distinguished from authorisations in line with the default policy [Tschantz and Krishnamurthi,
2006]. If for whatever reason the default policy of a rule base changes, these rules would not be
present and could lead to erroneous authorisations.

Critique

Policy rule-sets must be evaluated at the time of access in order to determine the access decision.
This evaluation process can be computational intensive for large policy bases. This additional
computational overhead of evaluating the authorisation rule-base is outweighed by the ability to
base an authorisation decision on a richer set of attributes than a simple Access Control Matrix.
Policy-rules can contain conditions that must be fulfilled for the granting of an access request and
obligations that are requirements that will be passed to the enforcing entity. Access control lan-
guages allow the expression of dependencies between different policy decisions. The ability of
these languages to logically group objects and subjects, as well as the ability to evaluate environ-
mental conditions allows the creation of concise policies.

The support for explicit positive and negative authorisations improves expressiveness in policy
languages. Potential evaluation conflicts (as described in Section 2.7) can be resolved through the
implementation of conflict resolution strategies in the decision mechanism.

2.5 Distributed Access Control

When we move away from a centralised system architecture to access control in distributed sys-
tems new requirements arise. From a security perspective we can distinguish between two different
scenarios: a) small and medium scale distributed systems that enforce a single security policy for
all members of the system, and b) large scale distributed systems that are composed from multiple
independent security domains that typically enforce their own security policy but may have trust
relationships with each other.

The joint evaluation of policies in distributed systems requires the development of a common
policy semantics and the deployment of a framework for authorisation requests and responses.
This common framework must be flexible enough to support different usage scenarios, but rigid

30

2.5 Distributed Access Control

enough to enforce system interworking. Reliance on such a policy framework would enable dis-
tributed systems to be bound by a centralised common policy, although distributed policy decisions
can be made and enforced at the individual host level.

Distributed evaluation and enforcement requires externally defined policies. The externalisation
of policies has the following benefits:
• Policy representations can be chosen to represent the problem at hand and can be changed

without any modifications at the implementation .
• Policies can be evaluate externally and are independent from the actual implementation.
• Run-time evaluation allows support for dynamic policy changes and the evaluation of addi-

tional attributes for policy decisions.

2.5.1 Generalised Framework for Access Control

Abrams, LaPadula, Eggers et al. [1990] proposed to separate the policy decision component from
the rest of the security and access mechanisms of the system. The access control policy is con-
structed from Access Control Rules (ACR) that are used to derive access decisions for access
requests made by subjects to objects of the system. This functional decomposition makes it pos-
sible to separate the access control functions from the actual enforcement functions and evaluate
additional context information. This work has lead directly to the distributed access control frame-
work described in the next section.

2.5.2 ISO/OSI - Access Control Framework

In 1996, the International Organization for Standardization (ISO) specified a distributed access
control framework [ISO/IEC 10181-3, 1996] as part of the Open Systems Interconnection (OSI)
security framework for open systems [ISO/IEC 10181-1, 1996]. The standard identified specific
access control functions that can be part of a distributed access control service.

The basic entities of the access control model are the Initiator, the Access Control Enforcement
Function (AEF), Access Control Decision Function (ADF) and the Target. The AEF enforces
compliance with access control decisions made by the ADF for resource access from the initiator
to the target. The architecture separates the access control from other systems functions. It pro-
vides a generic decision function as a common service that can be used for the provisioning of
enforcement functions throughout the distributed system.

AEFInitiator Target

ADF

Submit
Access Request

Present
Access Request

Decision
Request

Decision
Response

Figure 2.3: Access control functions as defined by ISO/IEC 10181-3 [1996] - The framework mod-
els the different functional elements of access control as separate entities that can serve
generic access requests issued within a distributed system.

31

2 Background and State-of-the-Art

Figure 2.3 shows the abstract access control elements as they are defined by the standard. No
specific access control policy or policy representation is assumed, although several possible alter-
natives are discussed in the ISO access control framework document.

2.5.3 Framework for Policy-based Admission Control

The Internet Engineering Taskforce (IETF) has defined a framework for providing policy con-
trolled admission control to networks offering different Quality-of-Service categories in RFC 2753
[Yavatkar, Pendarakis, and Guerin, 2000]. The framework has the goal to provide an abstract
architectural framework that does support many styles of policies and support a distributed im-
plementation where the actual policy decisions are made by specific entities in the network. The
framework does not mandate the use of a specific policy mechanism to achieve this goal.

Yavatkar, Pendarakis, and Guerin [2000] specify two main architectural elements for policy
control: a Policy Decision Point (PDP) and a Policy Enforcement Point (PEP) (cf. Figure 2.4).
The PDP uses mechanisms and protocols for user authentication, accounting, policy information
storage and may support additional functions which are not defined in the standard.

Policy
Enforcement
Point

Policy
Decision Point

Application

Resource

Policies
Policies

Policies

Attributes
Attributes

Attributes

1. Access request

2. Decision request

5. Decision response

6. Resource access
 grant/fail

4. Applicable attributes

3. Applicable policies

Figure 2.4: Distributed Access Control Framework as defined by Yavatkar, Pendarakis, and
Guerin [2000] - The distributed access control framework for policy controlled network
access, as defined by the IETF, serves now as a reference model for other distributed
frameworks, such as XACML-2.0 [2005].

The standard provides a very generic framework and makes no restrictions on the deployment
of the framework elements. The PDP can be a central server – accessible by a large number of
PEP’s, or it could be collocated with the PEP on the same machine.

2.6 Privacy Policy Languages

In section 2.2.5 we already talked about the importance of policy languages for the expression of
privacy policies. This section now discusses the advantages and disadvantages of different policy

32

2.6 Privacy Policy Languages

languages in greater detail.
There exists a variety of policy specification languages that differ in their expressiveness, ma-

turity and applicability to certain problem domains. For the purpose of this thesis we are going to
analyse three dedicated privacy policy languages, the Platform for Privacy Preferences (P3P), the
Enterprise Privacy Authorization Language (EPAL) and the GEOPRIV Common Policy and com-
pare them to a general purpose authorisation language: the eXtensible Access Control Markup
Language (XACML). We are focusing on these languages because they are standardised, have
clear support for the expression of privacy preferences and some have been actively deployed (P3P
and XACML). Their use for the formulation access control and privacy policies has been exten-
sively discussed in the literature, e.g. by Vimercati, Samarati, and Jajodia [2005]; Langendörfer,
Maaser, Piotrowski et al. [2008]; Anderson [2005]; Gupta and Bhide [2005]; Ashley and Karjoth
[2003]; Karjoth, Schade, and Herreweghen [2008] and others.

There exist other policy languages, like the Flexible Authorisation Framework [Jajodia, Sama-
rati, Sapino et al., 2001] and the eXtensible rights Markup Language [XrML, 2001], that have a
lesser degree of popularity and are not examined in further detail in this thesis.

2.6.1 Platform for Privacy Preferences (P3P)

The Platform for Privacy Preferences project of the World Wide Web Consortium (W3C) has
defined a standard for the expression of privacy policies for websites – together with a protocol
that enables web browsers and other tools to evaluate privacy policies automatically.

The first version of P3P [P3P v1.0, 2002] has been ratified as a W3C Recommendation in 2002.
In 2006, the P3P working group issued a W3C Group Note [P3P v1.1, 2006] with the specification
for a revised standard that picks up feedback to the standardisation committee. The specification
includes updated definitions for some key elements of the language. P3P 1.1 introduces a new
binding mechanism that allows privacy policies for content that is not referenced through an URI,
such as requests to Web Services.

Work on the P3P standard started in the mid-1990s and followed the aim to let users define the
conditions under which they accept the release of their personal information. The initial idea was
to rate websites according to their information practices and negotiate agreements about website
privacy practices. The standardisation process was far from smooth and many important features,
such as the ability to negotiate privacy levels, got dropped from the final standard. An account of
the development and changing requirements for the first version of the standard can be found in
Cranor [2002].

Protection Goal

The owner of a website (data user) describes the terms of conduct for data that is collected while
the user (data owner) is browsing the site, filling in forms and submitting data. The protection goal
consists of the following main areas:

• Specification of terms for data collection and data retention
• Acceptable use of collected data for current and additional purposes
• Definition of terms for the transfer of data to other departments, partners and third parties

33

2 Background and State-of-the-Art

The data owner (service user) is given the ability to evaluate the privacy policy of a website prior
to any data release. He or she should be able to decide whether to accept this policy or to refrain
from interacting with this website if the stated privacy practice does not match with personal
privacy preferences. P3P follows the principle of informed choice, where the data owners retain
control over their personal data and can decide under which conditions they are willing to release
it. Service providers can use P3P policy statements to make the privacy practices of their websites
explicit in a standardised way.

Mechanism

A P3P policy is encoded as an XML document that can be found at a well known location at
the website5. This mechanism allows a P3P enabled web browser to check for the availability
of a suitable policy prior to the loading of the page for every site the user visits. P3P defines a
base data schema for classification of release cases and data categories that allows the creation
of standardised policies. This data schema can be extended by the policy creator to incorporate
domain specific attributes in their policies if needed.

The P3P consortium simultaneously developed A P3P Preference Exchange Language (APPEL)
[P3P APPEL, 2002] that allows the creation of rule-sets for the expression of privacy preferences
by the data owner. A P3P aware web browser can then be used to automatically check the compli-
ance of a site policy with the privacy preferences of the data owner.

Language Elements

The <POLICIES> element is the top-level element of the P3P language. More than one policy can
be specified for the support of multiple human languages or sub-policies for individual parts of the
website. Figure 2.5 gives an overview of the P3P language model (showing only required policy
elements). P3P-enabled sites can make the following general assertions about their privacy policy:

Policy The <POLICY> element allows the specification of the location of a human-readable pri-
vacy policy via a Disclosure URL discuri and an optional opt-out mechanisms opturi for
data collection.

Entity The <ENTITY> element contains contact information for the legal entity that is responsible
for the website privacy policy and data collection.

Access If the website collects identifiable data the <ACCESS> policy element states the type of
access that the data owner has to the identifying data. It does not specify an access method
to the data.

Disputes Contact information for possible dispute resolution is provided via the <DISPUTES>
section. Remedy actions for erroneous privacy claims can be stated via the <REMEDIES>
element.

P3P policies also make the following data-specific assertions that specify the scope of data col-
lection and usage. These assertions are combined within a <STATEMENT>:

5The P3P specification mandates the following location for the policy reference file: /w3c/p3p.xml

34

2.6 Privacy Policy Languages

Policy

Entity

Access

Disputes-
Group

1

1

1
1

0/1
1

1

Policies

1..*

1

Data-Group

Data
1..*

1

Disputes
1..*

1

Remedies

Statement
1..*

1

Data-Group

Data
1..*

1

1

1

0/1

1

Purpose

Recipient

Retention
1

1

1

1
1

1

1..*

1

Figure 2.5: P3P language model - The figure shows a simplified language model for the P3P lan-
guage. Optional language elements have been omitted. The P3P language is concep-
tionally closer to an ontology than a true privacy authorisation language. Enforcement of
privacy requirements require the formulation of privacy preferences using the P3P Prefer-
ence Exchange Language [P3P APPEL, 2002]

Purpose The reasons for data collection is specified via the <PURPOSE> element. P3P defines a
vocabulary of 12 pre-defined purposes. Examples include:

- Research and development <develop/>
- Marketing <telemarketing/>

- Completion and support of the current activity by the service provider <current/>

Recipient The <RECIPIENT> element specifies who has access to the collected data. This can be
the entity referenced in the privacy policy together with agents acting for this entity, other
specified partners as well as public forums and directories.

Retention Terms for data usage and data retention are published via the <RETENTION> element.
The data retention policy is defined by one of five predefined values ranging from <no-
retention/> to <indefinitely/>. It does not specify a specific time when collected data
will be purged.

Data The type of collected data is specified via one or more <DATA> elements inside a <DATA-
GROUP> element. P3P includes a base data schema that identifies data items frequently
entered in web forms such as name, phone-number and others. P3P also specifies 17 data
categories that provide hints to the data owner about intended use of the collected data. This
list includes contact and purchase information, user health data and preferences as well as

35

2 Background and State-of-the-Art

navigation and clickstream data generated by the browser visiting the website.

The example in Listing 2.1 defines a privacy policy for the website at www.example.com. It spec-
ifies that www.example.com/BrowsingPolicy.html a human readable version of this policy can
be found. Navigational data will be collected, stored and used for administrative and development
purposes only by the Example Corporation. Any disputes about this policy should be resolved via
the ’PrivacySeal’ organisation and should lead to an adaptation of the current practice.

Listing 2.1: P3P Policy Example
1 <POLICIES xmlns="http://www.w3.org/2002/01/ P3Pv1">
2 <POLICY name="Privacy Policy"
3 discuri="http://www.example.com/BrowsingPolicy.html" xml:lang="en">
4 <ENTITY>
5 <DATA-GROUP>
6 <DATA ref="#business.name">Example Corp.</DATA>
7 <DATA ref="#business.contact -info.online.email">p3p@example.com

</DATA>
8 <DATA ref="#business.contact -info.postal.city">New York </DATA>
9 ...

10 </DATA-GROUP>
11 </ENTITY>
12 <DISPUTES resolution -type="independent" service="http://www.PrivacySeal.org">
13 <REMEDIES><correct/></REMEDIES>
14 </DISPUTES>
15 <STATEMENT>
16 <PURPOSE><admin/><develop/></PURPOSE>
17 <RECIPIENT><ours/></RECIPIENT>
18 <RETENTION><stated -purpose/></RETENTION>
19 <DATA-GROUP>
20 <DATA ref="#dynamic.clickstream"/>
21 </DATA-GROUP>
22 </STATEMENT>
23 </POLICY>
24 </POLICIES>

Critique

P3P policies provide a privacy promise that specifies a protection goal targeted at data collected
from web-forms and user behaviour.

The creation of a P3P policy is entirely voluntary for the data user – the data owner can not force
the creation of a (specific) privacy policy. The ability to negotiate the privacy level for released
data has been dropped from the P3P standard. In the absence of the ability to negotiate, the data
owner can only approve or disapprove the site policy as a binary decision. The data owner has
to either accept the policy or refrain from any further transaction with the data user. The stated
privacy policy may also change at a later time, while the data owner has agreed to a previous
version of the policy.

The granularity level for protection specifications is the web-site/page level. P3P does not take
into account that there might be different sensitivity levels for individual data items or categories
and that these might have a higher protection need. Specification of protection properties for
individual data items is not supported.

P3P policies can not be directly enforced, because they do not specify concrete actions and
conditions for data access. To make a P3P directly enforceable, the policy would have to be

36

2.6 Privacy Policy Languages

interpreted and translated into a suitable access policy. No such translation mechanism currently
exists. Ashley and Karjoth [2003] have analysed P3P with respect to the automatic generation
of authorisations from stated policies. They found that the use of pre-defined data categories
and types, as well as the vague and limiting categories for purpose binding and actions make
P3P unsuitable as an authorisation language. Certain necessary elements, such as support for
conditions, are missing from the language.

The original P3P data schema can be extended to incorporate domain specific attributes, how-
ever this may lead to policy evaluation problems, as not all P3P agents might be able to interpret
these extensions.

2.6.2 Enterprise Privacy Authorisation Language (EPAL)

IBM has developed the Enterprise Privacy Authorization Language (EPAL) as a language for
the exchange and propagation of privacy policies within and between organisations. The lan-
guage specification [EPAL 1.2, 2003] has been submitted as a Member Submission to the W3C in
November 2003 to be considered as a privacy policy language standard. W3C has declared EPAL
as being out of scope of the chartered P3P 1.1 working group, but relevant for further P3P working
groups [W3C Comment, 2003]. This status has not changed to date.

Protection Goal

EPAL has been developed to describe enterprise-internal privacy practices and enforce these poli-
cies throughout the company workflow. EPAL can potentially be used to link internal enforce-
ment procedures of the organisation with an external privacy policy. Karjoth, Schunter, and Her-
reweghen [2003] proposed a mechanism for the automatic and dynamic translation of authorisa-
tions specified in the Enterprise Privacy Authorisation Language into a corresponding P3P Policy,
so that the externally displayed privacy policy could always in line with the internal enforcement
practices.

Mechanism

EPAL is a declarative policy language that can express positive and negative authorisation. Rule
ordering is important for policy evaluation because a First match evaluation strategy is used to
resolve potential conflicts in the rule base. Rules describing exceptions must be listed before
general rules in the policy base, because evaluation is stopped when a matching entry is found.

EPAL supports the distributed policy decision/enforcement architecture defined in Section 2.5.
A decision component using EPAL policies can generate implementation independent access de-
cisions. EPAL rules support the specification of conditions and the specification of obligations for
every rule in the policy.

EPAL rules use subject, object and purpose categories (user-categories, data-categories
and purpose-categories) for the expression of authorisations that provide an abstraction from
actual data-models and system users, which can lead to a significant reduction of the number of
rules in the policy.

The abstract attributes used in rules and conditions that are required for policy evaluation are
defined in a vocabulary. EPAL does not define a global terminology, such as the one used by P3P.

37

2 Background and State-of-the-Art

Vocabularies could, however, be used to define sector specific terminologies. The exchange of
policies between different partners requires matching vocabularies.

Language Elements

EPAL policies are defined under the <epal-policy> top-level element. Figure 2.6 provides an
overview of the elements in the language model.

EPAL-Policy Each policy has a required attribute default-ruling that implements a default
policy (cf. Section 2.4.3) in case no authorisation decision can be derived from the policy.
Default-rulings are ‘allow’, ‘deny’ or ‘not-applicable’.

EPAL-Vocabulary EPAL uses vocabularies to define sector specific language elements. Enter-
prises will typically define their own vocabulary. Merging of policies from different enter-
prises is only possibly if all partners can agree upon a common subset of the vocabulary.
The <epal-vocabulary> element defines all attributes that will be referenced in the policy.

Rule The main building block for a privacy policy is the <rule> element. The ruling attribute
determines if the rule describes a positive or negative authorisation. Allowed values are
’allow’ and ’deny’.

User, data and purpose categories can be defined as hierarchical categories. Access deci-
sions are always granted for the complete sub-tree of the hierarchy specified in the rule.
Rules must be ordered in the policy so that specific rules precede general rules (e.g. permis-
sion of access to category ’health/medication’ needs to be placed before the more general
prohibition on the category ’health’).

An EPAL rule uses language elements defined in the <epal-vocabulary>. The used ele-
ments must be known by the interpreting system through their definition in the vocabulary
prior to evaluation. Rules contain the following elements:

Data Category - One or more <data-category> element defines the matching data cate-
gory.

User Category - One or more <user-category> element defines the matching user cate-
gory.

Purpose - The request will also be matched against one or more <purpose> element defin-
ing privacy relevant purposes.

Action - The <action> element defines the privacy relevant actions of the policy.

Condition - The <condition> element defines the pre-condition for the applicability of
the rule.

Obligation - Rules may include <obligation> elements. The obligations are not pro-
cessed by EPAL, but are passed on to the environment and specify additional activities
that need to be performed, when an action is granted.

38

2.6 Privacy Policy Languages

EPAL Policy

0..*

1

Action

Condition

Vocabulary

Rule

1

1

Policy
Info

Vocabulary
Info

Data
Categoy

User
Category

Purpose

Obligation

11

1..*

1

1..*

1

0..*

1

0..*
1

Container

1

1..*

1

1..*

1

1..*

1

0..*

1

0..*

1
0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1 0..*

0..*

0..*
1

Figure 2.6: EPAL language model [EPAL 1.2, 2003] - The language elements of the EPAL language
and their interrelations are shown in the figure. Not all elements must be present in a
particular EPAL policy.

Condition evaluation Conditions determine if a rule applies to the decision request. Only if
all the stated conditions are satisfied does the rule apply, otherwise it is ignored. Conditions are
evaluated to a boolean value and EAPL defines a number of functions and predicates based on an
earlier draft of the XQuery standard [XQuery, 2007].

Critique

EPAL is not designed as a general access control language. Access requests need to be translated
by the Policy Enforcement Point (PEP) before a policy decision can be made. Policy requests and
decisions are based on abstract data and user categories that must match against the pre-defined
categories in the EPAL vocabulary. The PEP has the task to reliable map actual subjects, objects
and purposes into the supported categories before an decision request can be issued. This mapping
operation is outside the scope and control of EPAL and could potentially lead to different access
decisions between implementations. EPAL does not define how privacy-categories and policies
are associated with collected data. The PEP would need to be very application and data aware to
support EPAL policy evaluation.

EPAL does not allow policy nesting and combining. It should be possible to evaluate several
EPAL policies independently. However, EPAL does not define a policy combination mechanism
within the standard.

Policy management is very difficult due to the rule-ordering requirement. Additions to or dele-

39

2 Background and State-of-the-Art

tion from the policy rule-base can have unforeseen consequences for the policy writer because the
First Match evaluation potentially hides rules further down in the rule-base. The same would be
true for the merging of different policy rule-bases.

2.6.3 eXtensible Access Control Markup Language (XACML)

The eXtensible Access Control Markup Language (XACML) is a declarative access control policy
language and a processing model that is standardised by OASIS [XACML-2.0, 2005]. The current
version 2.0 was ratified in 2005 and there is ongoing work on the specification of XACML_3.0.
XACML provides a core specification which is enhanced by profiles that define best practices
on how to use XACML for specific well-defined scenarios such as role-based access control and
privacy protection. The implementation of XACML profiles is optional.

Protection Goal

XACML has been defined as a general purpose access control language that should be able to
express arbitrary access control policies. It defines a rich policy language model for the expression
of access policies together with a standardised policy evaluation approach.

XACML has been developed to support policy evaluation in distributed environments where
multiple policy sources exist and an access decision from joint policy evaluation must be reached.
XACML supports attribute-based authorisations, where additional information taken from the en-
vironment can be taken as input into the access control decision. Decisions can be based on and
directly applied to the content of an XML-resource.

Mechanism

XACML is a declarative language that supports positive and negative authorisations. The decision
mechanism evaluates the whole policy rule base for an access decision. Policy evaluation is not
dependent on a particular rule ordering, although ordered evaluation options exist for the resolution
of policy conflicts. Potential conflicts in the rule base can be resolved through the application of
dedicated conflict resolution strategies provided by specific combining algorithms.

Distributed Policy Support XACML supports a distributed decision/enforcement architecture,
which can be seen in Figure 2.7. The communication between Policy Enforcement Point (PEP)
and Policy Decision Point (PDP) is based on a dedicated Request/Response Language, although
combined PEP/PDP elements are also possible. Policies and policy decisions are implementation
independent and need to be enforced by the PEP.

The XACML reference model separates authorisation policies from the resources. However,
it makes no assumptions about the origins of the policies, other than that they are provided by
an abstract entity called Policy Administration Point (PAP). This opens the possibility to include
XML-based resources within the XACML policy objects and reference the resources directly from
the policy via XPath [XPath, 1999].

40

2.6 Privacy Policy Languages

Access
Requester

Policy
Enforcement
Point (PEP

Obligation
Service

Policy
Decision

Point (PDP)
Context
Handler Resource

Policy
Information
Point (PIP)

Policy
Administration

Point (PAP)
Subjects Environment

Resource
Content

Subject Attributes

Resource Attributes

Environment Attributes
Policy

ObligationsAccess Request

Attribute
Querry Attribute

Request Notification

Response Context

Request
Response

Figure 2.7: XACML Architecture Framework - The XACML Architecture framework defines the
interworking of the different, possibly distributed architectural elements that are needed
for the formulation and successful execution of XACML authorisation requests and re-
sponses. This architectural model can have different instantiations depending on the ac-
tual requirements. Crucial elements are the Policy Enforcement Point (PEP) and the Policy
Decision Point (PDP).

Language Elements

Figure 2.8 provides an overview of the language elements. The top level element of an XACML
policy is the <Policy> element. Different individual policies can be jointly evaluated by defining
their combined evaluation inside a <PolicySet>. Figure 2.9 illustrates the formation of policy
sets and policies from sub-elements.

PolicySet The <PolicySet> element contains a set of <Policy> or other <PolicySet> elements
and a policy combining algorithm to determine the outcome from the joint evaluation of
different elements.

Policy The <Policy> element represents a single access control policy. It contains a set of rule
elements and a rule combining algorithm to determine the joint evaluation result of the
policy. The <Policy> forms the basis of an authorisation decision.

Rule The <Rule> element contains an authorisation expression that can be evaluated in isolation
and provides the basic unit of policy management. Rules can grant positive or negative au-
thorisations. The attribute Effect is used to define a positive (‘permit’) or negative (‘deny’)
authorisation expression. Rules may contain a Condition element that defines the applica-
bility of the rule.

41

2 Background and State-of-the-Art

Policy Set

0..*

1

Rule

Obligation

Target

Policy

1

1

Policy
Combining
Algorithm

Subject

Resource

Action

Environment

Rule
Combining
Algorithm

11

1..*

1

0..*

1

1
1

0..*
1

Condition

Effect
1

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

1
1

1

0..*

Figure 2.8: XACML language model [XACML-2.0, 2005] - The XACML language model consists
of the language elements and their interrelation shown in the figure. Not all elements must
be present in a particular XACML policy.

Applicability of Policies and Rules XACML implements a special feature to identify which
policy rules have to be evaluated for a given request. The language uses the <Target> element to
specify the set of applicable <Subject>, <Resource>, <Action> and <Environment> attributes.
Targets are supported for the <Rule>, <Policy> and<PolicySet> elements and decision requests
will only be evaluated against policies and rules with a matching <Target>. Targets in <Policy>
and<PolicySet> elements can be used to narrow the evaluation scope of the policy rule-base.

Matching attributes are determined through the use of a matching function that compares the
attribute-values of the XACML decision request to the attribute-values stored in the policy. If no
specification has been made in the <Target>, the element will match against any value in the
request. This part of the policy will therefore have global evaluation scope.

Target The following child-elements are contained in a <Target> element:

Subject matches the identifying attributes of the requesting actor against the
values stored in the policy.

Resource defines the attributes of the requested data, service or component.

Action matches on attributes defining an operation on a resource.

Environment is an optional element used for the specification of additional at-
tributes in the request context that are not directly associated with the sub-
ject, resource or action of the request.

42

2.6 Privacy Policy Languages

Rule 1

Rule n

XACML Policy

Target: Rule applies
to requested Subject,
Action, Ressource

Rule Effect: permit/
deny

Rule Condition:
satisfied if true

Target: Policy applies to
requested Subject, Action,
Resource

XACML Policy Set

Target: PolicySet applies to
requested Subject, Action,
Resource

Policy Combining
Algorithm

Policy n

Policy 1

Obligation

Rule Combining Algorithm

...

...

XACML Rule

(a) Composition of language elements

<Policy...CombAlg >
<Rule ... Effect >

<Target >
...

</Target >
<Condition >

...
</Condition >

</Rule >
</Policy>

(b) Code Example

Figure 2.9: Formation of XACML Policies - XACML Polices are formed from a combination of
<PolicySet> , <Policy> and <Rule> elements. The joint evaluation of these entities
is guided by the appropriate Combining Algorithms. The <Target> element allows the
dynamic inclusion/exclusion of rule-sets for a given request by the decision mechanism.
Only rule-sets that are relevant and apply to a query need to be evaluated.

Condition Evaluation Conditions determine if a rule applies to a decision request. A rule only
applies to the request, if the stated condition is satisfied, otherwise the rule is ignored. Conditions
are evaluated to a boolean value and XACML defines a large number of functions and predicates
based on an earlier draft of the XQuery standard [XQuery, 2007] that can be used for the creation
of sophisticated expressions.

Combining Algorithms XACML allows explicit positive and negative evaluation of rules, as
well as the combination of policies from different sources within a PolicySet. Combining al-
gorithms, as an essential part of the language specification, are needed to derive an authorisation
decision from potentially conflicting individual rules and policies. Their application is controlled
via the RuleCombiningAlgId and PolicyCombiningAlgId attributes.

Standard combining algorithms are:

Deny-overrides implements a pessimistic default that prioritises access denial. As soon as one
rule evaluates to a deny, the policy evaluation results in a Deny, even if other rules are
present that permit the action.

Permit-overrides implements a optimistic default that prioritises access permission. As soon as
at least one rule evaluates to a permit, the whole policy evaluation results in a Permit.

First-applicable evaluates the policy sequentially in the listed order. Policy evaluation is based
on the first rule that matches the target and where the condition of the rule evaluates to true.

Only-one-applicable this combining algorithm ensures that there exists exactly one applicable
policy. In this case the evaluation result is determined by the evaluation of this policy. If the
request matches more than one policy the evaluation result is Indeterminate.

43

2 Background and State-of-the-Art

Table 2.2 shows which standard combining algorithms are applicable to different XACML policy
elements:

Table 2.2: Applicability of XACML Combining Algorithms

applicable on
Combining Algorithm Rule Policy PolicySet
Deny-overrides (ordered / unordered) x x
Permit-overrides (ordered / unordered) x x
First-applicable x x x
Only-one-applicable x x

Policy Evaluation

The Policy Decision Point (PDP) receives a decision request, evaluates the policy and generates a
decision response. During the policy evaluation, the PDP analyses the policy-base to find applica-
ble policy and rule elements. Depending on the evaluation of these elements it might generate one
of the following results:

Permit - the access request is allowed.

Deny - the access request is denied.

Indeterminate - the PDP can not evaluate the decision request and signals an eval-
uation error. An evaluation error might be caused by missing attributes, syntax
errors in rules, or others.

NotApplicable - the PDP can not find a single target policy (rule) that matches the
decision request. It is now up to the PEP to implement a suitable default policy
to either allow or forbid the requested action. Depending on the general prefer-
ences the PEP could implement an Open Policy or a Closed Policy model (cf.
Section 2.4.3).

1 <Policy RuleCombiningAlgId="deny -overrides">
2 <Rule Effect="Permit">
3 <Target>
4 <Subject><AnySubject/></Subject>
5 <Resources>
6 <ResourceMatch MatchId="xpath -node -equal"> /HealthRecord/fileData </

ResourceMatch >
7 </Resources>
8 <Action>view </Action>
9 </Target>

10 </Rule>
11 <Rule Effect="Permit">
12 <Target>
13 <Subject>Dr. CD</Subject>
14 <Resources>

44

2.6 Privacy Policy Languages

15 <ResourceMatch MatchId="xpath -node -equal"> /HealthRecord/medHistory/event[
Diagnosis="Gonorrhoea"]

16 </ResourceMatch >
17 </Resources>
18 <Action>view </Action>
19 <Condition FunctionId="date -less -than -or-equal">
20 <Apply FunctionId="date -one-and-only"> </Apply>
21 <AttributeValue >2012-03-22</AttributeValue >
22 </Condition>
23 </Target>
24 </Rule>
25 </Policy>

Listing 2.2: Example of an XACML Policy protected EHR. [Apitzsch, Liske, Scheffler et al., 2008]

Critique

XACML is a general purpose access control language and thus not specifically targeted at the
expression of privacy policies. Anderson [2005] has shown that XACML can express all the
relevant concepts that are required from a dedicated privacy language like EPAL, while at the
same time being much more flexible and expressive. An exemplary XACML policy can be seen
in Listing 2.2. Here we used standard language constructs to specify a privacy policy for an
Electronic Health Record (EHR), that allows a certain practitioner to view the patients examination
data related to a specific diagnosis until a final date.

XACML also defines a privacy extension [XACML Privacy Profile, 2005] that implements the
additional attribute resource:purpose to express the purpose for which the data resource was
collected. The corresponding attribute action:purpose indicates the purpose of the decision
request that must be matched against the resource:purpose attribute.

In general, XACML uses abstract attribute values in the decision request and the corresponding
policy and is agnostic to the mechanisms that are used by the PEP or the environment to determine
these attributes. However, in the case of XML-resources, XACML provides support for XPath
[XPath, 1999] that allows attribute extraction directly from XML-documents.

The matching functions that are used in XACML are based on XQuery [XQuery, 2007] and
thus condition evaluation currently does not support higher order functions, since XQuery does
not support such functions. It is therefore not possible to pass a function as an argument to another
function or to specify recursive evaluation strategies.

XACML is defined as a statically-typed language and provides no function overloading or type
casting. This means that the matching of expressions other than the ones supported by the pre-
defined functions requires the implementation of a custom function. If, for example, we wanted
to match x500name attributes against string attributes, we would have to write a custom function.
While the standard supports language extensions, this practice may lead to incompatible imple-
mentations.

XACML provides support for distributed policy evaluation, however, the evaluation model of
XACML seems to be targeted mainly at intra-organisational policy evaluation, since the following
limitations apply:

• There is weak support for dynamic policy finding. Policy locations must be known at policy
creation time to be correctly referenced. There exists no discovery mechanism for dynamic
resources and attributes.

45

2 Background and State-of-the-Art

• There exists no support for policy prioritisation based on advanced metrics. If, for example,
we wanted to prioritise policies depending on their origin from trustworthy sites, we would
have to develop our own policy combining algorithm.
• The standard does not mandate authentication and integrity protection between the architec-

tural building blocks. These would have to be provided by the individual implementations
and could again lead to incompatibilities.

2.6.4 GEOPRIV Common Policy

The Internet Engineering Taskforce (IETF) has developed a privacy framework for the protection
of location and presence information of resources and entities. This work was motivated by the
insight that nowadays many applications access and use geographic location data and that the
representation and transmission of such data raises privacy and security issues.

The privacy framework was developed within the GEOPRIV working group and consist of
a core specification that defines the key elements of the language, its representation and eval-
uation algorithm and several application specific extensions. The core specification RFC4745
[Schulzrinne, Tschofenig, Morris et al., 2007] has been submitted as a Proposed Standard to the
IETF standards process.

Protection Goal

The GEOPRIV privacy framework has been developed to unify efforts for the protection of sensi-
tive location and presence data within a number of different networking contexts, such as instant
messaging or location-based services. The work was initiated to integrate different approaches
that had been taken for the expression of authorisation policies for location and presence data and
to create a suite of protocols that allow such applications to represent and transmit location objects
[Geopriv-Charter, n.d.].

The approach taken by GEOPRIV differs from other policy frameworks insofar, as it does not
define a generic privacy policy which is used to derive access decisions for resources, instead
it focuses on the currently available location data on a presence or location server and adds a
description on what constitutes legitimate access by the data user. It is usually the owner or
originator of the data that defines the policy on how this data should be exposed.

Schulzrinne, Tschofenig, Morris et al. [2007] state that goals for the Common Policy have been
efficient rule representation, permission-only rules and additive permissions, extendability of the
framework and individual rule-bases. External references in the rule-base, regular expressions and
repeated time intervals are currently not supported because the authors felt that they introduce
complexity that might lead to inconsistencies and false assurances in the policies.

Mechanism

The GEOPRIV Common Policy is a declarative policy language that can only express positive
authorisations. This allows the easy combination of distributed rule sets and eases policy manage-
ment. Rule ordering is not important for policy evaluation. The whole rule base will be evaluated
to make a decision, because permissions are additive. The Common Policy supports distributed
policy evaluation and enforcement. However, it only describes an abstract architectural model that

46

2.6 Privacy Policy Languages

might be implemented in the application itself or through a distributed framework such as defined
in Section 2.5.

Common Policy rules differ from other policy description rules insofar, as they do not include a
direct reference to the actual resource. It is assumed that the policy is targeted at the complete set of
location and presence data that would currently be available on the server, such as the last position
update or location information. Subsequent protection of this data, after it has been exposed, is
not part of the GEOPRIV privacy protection model.

Rules have the ability limit the visibility of certain parts of this data set, as well as to modify lo-
cation data before it is exposed (e.g. in order to reduce data granularity). The exact transformation
mechanisms are defined by application specific extensions to the Common Policy. The Common
Policy itself defines very few attributes, namely the identity and domain of the data user and a
valid time range. The policy framework must be extended by the definition of conditions, actions
and transformations for specific application domains.

Language Elements

The Common Policy uses an XML representation for the description of the elements of the lan-
guage, but makes it clear that the policy is targeted at being represented in a database form, where
each rule represents a table row that can be easily evaluated.

We will continue to use the XML representation for the description of the language to ease
the comparison. Privacy policies following the Common Policy are defined under the <ruleset>
top-level element. Figure 2.10 provides an overview of the language elements.

Ruleset A policy is defined as the set of rules within a ruleset. Since the Common Policy
explicitly only defines positive authorisations it is not possible to define a different default
behaviour. Permissions from individual rules are combined to a permission-set. A common
procedure for the combining of permissions from multiple matching rules is defined within
the standard. It computes the union of all permissions and finds the highest permission value
for numerical permission. It is not foreseen to deploy additional algorithms.

Rule The main unit of authorisation is a rule. Each rule carries an id-Attribute that is used to
uniquely identify a rule. Rules define one precondition and two post-conditions. The action
post-condition can be compared to the obligations found in other privacy and authorisation
languages, while the transformation allows the specification on how the current location
data needs to be manipulated by the server before it is exposed.

Rules contain the following elements:

Conditions A condition determines if a rule applies to the decision request. Only if all the
stated conditions are satisfied does the rule apply, otherwise it is ignored. Conditions
are structured using the following elements:

Identity The <identity> element defines the data user that has access to the location
data. It is possible to define a list of known data users by using the <one> element.
The <many> element bases the authorisation decision on the domain part of the
authenticated entity. An empty <many> element authorises any authenticated data
user. Exceptions may be specified through the <except> element.

47

2 Background and State-of-the-Art

rule

conditions

actions

transformations
0..1

1

0..1

1

0..1

1

Geopriv
ruleset

0..*
1

identity

validity
0..1

1

0..1

1

sphere
0..1

1

Figure 2.10: GEOPRIV language model [Schulzrinne, Tschofenig, Morris et al., 2007] - The lan-
guage elements of the GEOPRIV Common Policy and their interrelation are shown in
the figure. The Common Policy only provides a base framework for authorisation speci-
fications that must be extended through application specific specifications.

Sphere The <sphere> element defines the current location state of the data owner.
It is used to convey information about the current status, such as ‘work’, ‘home’,
‘meeting’, etc. and matches only if the data owner is currently in the described
state. Different subsets of rules may apply for different spheres and allow the data
owner to control data release.

Validity The <validity> element defines the time period within a rule is valid. It
uses two elements <from> and <until> to set a start and end time within this
rule condition evaluates to true.

Transformations The <transformations> element describes operations that must be ex-
ecuted by the location server after access has been granted in order to modify the result
that is returned to the data user.

Actions The <actions> element defines all other operations that the location server has
to perform after access has been granted and which are not <transformations>.
They closely correspond to the concept of obligations in other privacy frameworks.
<transformations> and <actions> are application specific extensions to the Com-
mon Policy.

Critique

The GEOPRIV Common Policy is not designed as a general access control language. The focus
on expression of policies for location and presence data simplifies the generation and evaluation
of targeted policies. However, it also limits the usefulness of the policy language if other types

48

2.7 Conflicts in Authorisation Specifications

of access and usage policies need to be described or systems need to be designed to include such
policies in future implementations. There are currently no known implementations of the stan-
dard and substantial work would have to be invested to define application specific attributes and
transformation operations.

2.6.5 Summary

Most existing implementations of policy-based privacy protection schemes have so far followed
the approach that the effective policy is set by the party that is collecting the data - the data user,
with GEOPRIV the only exception to this rule.

P3P is a privacy language that only informs the data owner about the privacy promises that the
data user is willing to make. In P3P there exists no direct link between the promises about the
treatment of collected data to the actual data protection mechanisms.

EPAL was constructed to remediate this situation and provide enforceable policies. EPAL is an
expressive privacy language that is able to capture the semantics of privacy policies and generate
appropriate access decisions from a policy-base created by an enterprise privacy manager. How-
ever, the approach to base policies exclusively on semi-fixed data- and user-categories makes an
implementation in an open and distributed environment difficult.

Anderson [2005] compares EPAL and XACML and comes to the conclusion that although
EPAL is directly targeted at the expression of privacy policies, all relevant privacy policies could
also be expressed by using XACML. XACML also has the great advantage to allow policy deci-
sions based on actual resource content (for XML-data) and flexible user attributes. EPAL offers
only a subset of the functionality of XACML and the GEOPRIV Common policy is to narrowly
scoped. We can therefore conclude that XACML is a very powerful policy language that is well
suited to the expression of generic privacy policies.

2.7 Conflicts in Authorisation Specifications

Authorisation specifications are the basis of authorisation decisions. In order to form a conclusive
decision, it must be possible to derive a non-ambiguous evaluation from the given specification -
the specification must be decidable.

One way to reach the decidability criterion would be to make sure that the authorisation specifi-
cation itself is free of conflicting authorisations - the policy should be consistent. Alternatively, we
could use a conflict resolution mechanism to resolve authorisation conflicts as they occur during
the evaluation of the policy base.

Conflicts in specifications arise from a number of reasons such as errors in the specification,
unreachable goals, differences in policy sources and scope, or through changes to the policy dur-
ing lifetime management. Distributed systems can contain multiple subsets of the authorisation
specifications that introduce inconsistencies, while each one alone is conflict free. For example, an
enterprise policy could contain different conflicting departmental policies that in itself are conflict
free. Another source of conflicts comes from the evaluation of dynamic attributes, whose value
are only known at evaluation time.

The underlying source of conflicts is typically the simultaneous support for positive and negative
authorisations in the policy. While the support for negative authorisations can greatly simplify the

49

2 Background and State-of-the-Art

task of policy writing, it can also introduce inconsistencies in the policies where an action upon a
resource might be simultaneously allowed and denied for a given access request.

We already hinted at the two approaches that are generally taken to resolve conflicts in the
authorisation specification: a) avoid conflicts through careful policy creation and selected policy
language features and b) try to solve conflicts as they arise.

2.7.1 Conflict-free Authorisations

If it is possible to guarantee that the policy rule base itself is conflict free, no conflicting authori-
sations can be derived from it. The following approaches might be used to generate conflict free
policies:

Monotonic authorisations An authorisation policy using monotonic authorisation
has a policy base that exclusively grants P+ or denies N+ access rights. Since
it will not be possible to grant or deny an access right at the same time, it is
not possible to derive conflicting authorisations from such a policy base (cf.
Formula 2.2 in Section 2.4.2).
Granting only monotonic authorisations in the policy eliminates the underlying
source of conflicting rules. However, it also makes a policy language much
less expressive. The easy specification of exceptions to general rules (e.g. all
members of the department have access, except Mr. Jones) is no longer possible.
Permissions either have to be spelled out completely for each subject or subjects
need to classified into groups with identical permissions. This then generates
additional administrative overhead because subject might need to be reclassified
as authorisations change.

Explicit priorities Another approach for the generation of conflict free policies is
the assignment of explicit and unique priorities to authorisations by the policy
author in order to define a precedence relation. This way any policy can be made
consistent, because simple rule ordering can be used to derive an authoritative
decision. However, it is hard for the policy administrator to assign meaningful
priorities and inconsistencies can arise in distributed systems that have more
than one policy source. Inconsistencies may also occur over the lifetime of the
policy when rules will be inserted or deleted [Lupu and Sloman, 1999].

2.7.2 Conflict-resolution Mechanisms

Policies for distributed systems have to be managed by different entities and there might exist con-
siderable overlap between the sets of subjects, actions and resources that are used within different
policy-bases [Lupu and Sloman, 1999]. It is also often valuable to have the ability to express
positive and negative permissions in policy rule bases. So, it is not always possible or desirable to
define policies that are completely conflict free.

Another strategy is therefore to allow conflicts in policies to exists and to solve occurring con-
flicts when they arise during actual access requests. A meaningful access-decision is derived
through the application of some decidable algorithm that determines which authorisations apply

50

2.7 Conflicts in Authorisation Specifications

to a particular access decision and which can be ignored. These conflict resolution schemes can be
roughly classified in schemes that deploy a fixed resolution strategy and schemes, where conflicts
are resolved using changeable algorithms.

Fixed conflict resolution strategy

Several different conflict resolution strategies have been found to be useful. The most widely
implemented and used are the ordered execution and the negative authorisations take precedence
mechanisms that will be explained next. Several other mechanisms can be found in the literature,
e.g. in Vimercati, Samarati, and Jajodia [2005].

Ordered execution Policy rules can be evaluated in a deterministic, sequential fash-
ion and policy evaluation is stopped once an authorisation decision is reached.
This strategy ensures that no conflicting decisions can be derived from the pol-
icy base. However, some negative effects exist: Policy evaluation now depends
on rule ordering. It becomes the responsibility of the policy author to ensure
that more specific rules precede general rules in the policy base, otherwise these
rules could become unreachable. Policies from different sources can not be
merged automatically, because different results would be derived depending on
the evaluation order of sub-policies [Barth, Mitchell, and Rosenstein, 2004].

Negative authorisations take precedence Negative authorisations are mainly used
to express exceptions to a general rule. For example all member of the devel-
opment team are allowed to check-in software builds, except for newly hired
software developers. This authorisation can be described through a general pos-
itive rule that grants permission to check-in software builds and a more specific
rule that forbids check-in for a subset of the developers. Precedence is assigned
to the negative authorisations that deny access. One drawback of this approach
lies in the fact that this is an implicit, inflexible solution that does not work if
some policies need to define positive exceptions.

Dynamic conflict-resolution through explicit algorithm definition

The most flexible handling of authorisation conflicts can be achieved through the use of explic-
itly defined conflict resolution algorithms that can be applied to the whole policy base or parts of
it. Jajodia, Samarati, Sapino et al. [2001] have developed a framework that allows the dynamic
definition of a conflict resolution and decision strategy depending on the requirements of the par-
ticular authorisation scheme. The policy decision component analyses conflicting authorisations
and derives a decision in accordance with the conflict-resolution algorithm that has been set for
the policy or the policy part.

A policy can explicitly specify the dynamic conflict-resolution algorithm that will be used to
evaluate different parts of the policy rule base. Examples for such algorithms include: Permit-takes
precedence, where permissive rules take precedence over rules that deny access and Denial-takes
precedence, where rules that deny access take precedence over permissions. It is also possible to

51

2 Background and State-of-the-Art

define more elaborate algorithms such as the Most-specific takes precedence, where more specific
rules take precedence over general rules.

The XACML policy language [XACML-2.0, 2005] uses so called combining algorithms to
allow the policy administrator to set the current conflict resolution strategy. It is also possible to
define and implement new algorithms for use with a particular policy base.

2.8 Enforcement of Authorisations

Policy languages provide the basis for the determination of an access control decision. They ex-
press the constraints that are in effect if subjects want to use resources on the protected system.
However, an authorisation decision in itself only describes the course of actions that our enforce-
ment system should take and requires the presence of an enforcement mechanism that makes this
decision effective through the implementation of an enforcement function.

The literature distinguishes between two types of enforcement mechanisms, depending on where
the enforcement function is located in respect to the application that requires access to the pro-
tected resource: inline and external policy enforcement.

2.8.1 Inline Policy Enforcement

The inline enforcement mechanism places the enforcement functions directly into the application
code to enforce policy decisions. Policy checks are implemented as a policy checking function
that, if invoked, returns a policy decision. Alternatively the policy check can also be implemented
as a wrapper function that encapsulates the protected function.

The hard-coding of policy enforcement functions ensures very efficient policy checking with
comparatively little overhead. Authorisations can be tailored to the access control needs of the in-
dividual application. However, the reuse of inline mechanisms between different applications can
be difficult. Implementing inline policy checks requires great care from the application designer,
because a missing or incorrectly implemented policy check might compromise application secu-
rity or bypass the privacy protection for application data. If a workflow requires the interworking
of different applications, all these applications need to implement consistent policy checks. If pro-
grams change and are rewritten the policy enforcement functions must be adapted to reflect any
new or changed access restrictions.

Inline mechanisms usually require access to the source code, which makes the reuse of exist-
ing code-libraries and object-level code difficult. There are some research projects under way
that study the feasibility of adding policy checking code after the actual implementation stage.
Lehmann and Thiemann [2006] describe the possibility to add Bytecode-checks for Java programs
at run-time.

2.8.2 External Policy Enforcement

Section 2.5 has outlined different access control architectures for distributed systems. These ar-
chitectures commonly separate the policy decision functions from the enforcement functions in
separate architectural modules. Under the Framework for Policy-based Access Control [Yavatkar,
Pendarakis, and Guerin, 2000] a Policy Decision Point (PDP) implements an access decision
function that evaluates the current policy. The architectural counterpart for the enforcement is the

52

2.8 Enforcement of Authorisations

Policy Enforcement Point (PEP) that makes the policy decisions effective. The PEP controls and
effectively restricts all data accesses from principals in the system in accordance with the access
policy.

Such an enforcement function is usually implemented as a Reference Monitor (see [Anderson,
1972]). A reference monitor enforces the access authorisations between the principals and the
other elements of a system. According to Anderson, a reference monitor implementation must
have the following properties:

tamper-proof it should not be possible to alter it, otherwise the integrity can not be
guaranteed (possible alterations must be reliably detected and reported)

non-bypassable it must mediate all accesses to the system and its resources and
must always be invoked

verifiable it must be of limited size to be susceptible of rigorous verification methods
to ensure its correctness

Definition 8: Reference Monitor

A trusted system component that validates each and every request to system resources against
those authorised for the subject.

Access control mechanisms based on the Reference Monitor principle can be implemented at
different levels in the computer system architecture [Anderson, 2001]. Figure 2.11 distinguishes
four different levels where access control systems might be implemented. Each system level has
distinct advantages and disadvantages for the implementation of access control mechanisms.

Hardware

Operating System

Middleware

Application

Figure 2.11: Access Control Mechanisms at different system levels - it makes sense to implement
protection mechanisms at different system levels, depending on their protection require-
ments. Access control mechanisms at higher layers are conceptionally closer to the pro-
tection requirements of the user, while low-level hardware mechanisms can effectively
control memory and device access.

53

2 Background and State-of-the-Art

Hardware Level Access Control

Access control mechanisms that are implemented at the hardware level can provide very effective
protection and enforce access decisions independent of any software-support from the operating
system or application software. The protection mechanisms are hard to circumvent and can guar-
antee policy enforcement. However, since hardware mechanisms operate at a very low conceptual
level they have difficulties to enforce data usage restrictions for access decisions that are dependent
on multiple high-level attributes, such as the support for roles, the evaluation of external attributes
and others. In order to support such concepts the hardware mechanisms need to rely on the op-
erating system to provide a mapping between the entities and attributes known by the hardware
protection mechanism and those known by the operating system. The Trusted Computing Group
[Trusted Computing Group, 2007] has developed a specification that provides a dependable inter-
face between security functions provided by a Trusted Platform Module and higher-level functions
provided by the operating system.

Hardware mechanisms are the ideal choice for the protection of very sensitive information that
require a certified security level. However, the strong protection properties of hardware mecha-
nisms can become a burden if dynamic policies and access control models need to be supported.
The implemented mechanisms are strongly tied to the actual hardware and it might be difficult or
impossible to update if new access control models need to be supported.

Operating System Level Access Control

Mechanisms that operate at the operating system level implement standard access control mecha-
nism, such as Access Control Lists. These mechanisms are usually very efficient and can provide
strong protection properties. Their main drawback lies in the fact that they are mainly targeted
at the requirements of the operating system. They provide protection from unauthorised system
access and process separation for different users of the system. The granularity of access restric-
tions is usually file or device based. Access restrictions are formulated and enforced for whole
documents, so that it is not possible to enforce fine-grained access restrictions that offer different
protection properties for certain document-parts. Access control mechanisms for operating sys-
tems must be very performant since they are invoked for every resource access. This has a limiting
effect on the complexity of the implemented mechanisms.

Most general purpose operating systems follow the Discretionary Access Control model and
do not enforce data flow protection (cf. Section 2.3.2). Adapting or changing operating system
protection mechanisms is difficult because they are usually under the control of the OS vendor and
must support other legacy applications that might require the presence and expected behaviour of
certain mechanisms.

Middleware Level Access Control

Middleware components are usually placed between the operating system and the applications.
The most widely implemented access control mechanisms at the middleware level are access con-
trol features in database systems.

The generation of access decisions at the middleware level can implement advanced access con-
trol mechanisms for the generation of access decisions and can evaluate complex access policies.

54

2.8 Enforcement of Authorisations

The mechanisms are comparatively easy to adapt and can provide a better granularity for access
restrictions down to the level of individual data records for most database-systems.

Application Level Access Control

Application level access control mechanisms provide the greatest flexibility for the creation, eval-
uation and enforcement of data access restrictions, because at this level exists the greatest knowl-
edge about data access patterns and usage purposes. Access control mechanisms can be precisely
tailored to the specific problem domain.

However, the implementation of application level access control mechanisms also requires di-
rect access to either the application code base or a dedicated API, which is not always possible.
Uniform implementation of protection mechanisms would be required for different classes of ap-
plications. Otherwise it is not possible to offer effective data protection in work-flow scenarios.
When access control components are directly referenced from the applications, the changing of
functionality may require the patching and secure distribution of many dependent applications.

2.8.3 Summary

The concept of a reference monitor is a useful abstraction for the implementation of the enforce-
ment function of an access control mechanism, because it provides a clean separation of duties.
The policy enforcement through a separate enforcement module also makes the implementation
more robust, since it allows to develop and test the enforcement function independently from the
application logic. The reference monitor can be implemented at different architectural levels in
the system. Deciding which is the most suitable level is not easy because a number of tradeoffs
have to be made.

Enforcing access control decisions at higher layers provide useful abstractions and is concep-
tionally closer to the protection requirements of the user, while low-level hardware mechanisms
provide protection for function calls and can effectively control memory and device access. Lower
level mechanisms have difficulties to incorporate high level abstractions such as roles and condi-
tions and usually only enforce a relatively simple (binary) access policy. Low-level as well as
high-level protection mechanisms require operation system support for the identification of prin-
cipals and other system attributes, such as the current system time and geographic location. The
protection from the enforcement function becomes ineffective, if these functions of the operating
system can be compromised.

When we compare the general protection strength of the system layer implementations, it can
be noted that attacks that are started from a lower system layer are usually able to bypass the
higher layer access control: an attacker that has full access to the operating system of a machine
can install debugging software to analyse memory dumps from applications that are protected via
middleware or application-level access controls.

Table 2.3 gives an overview of the different properties of access control mechanisms. In Chap-
ter 5: Java PrivMon - Privacy Protection for Personal Health Records we will propose an approach
for a client-side reference monitor implementation where policy evaluation and enforcement are
based on the unique features of a language-based security model that supports application sand-
boxing and merges middleware with application-level access control mechanisms to provide a
platform that can be used by different applications.

55

2 Background and State-of-the-Art

This approach is later extended to also cover cases where data processing is done in a server-
based scenario where we use Aspect-oriented Programming (AOP) and the Java Reflection API to
intercept data accesses in existing application frameworks and provide a way to enforce data user
defined privacy policies for business applications [Scheffler, Schindler, and Schnor, 2012].

Table 2.3: Comparison of Access Control Mechanisms

Hardware Operating System Middleware Application
Granularity Device access Files + Devices Records Sub-document

+ Devices
Policy flexibility Very Low Low High Very High
Scope & Highest High Medium Low
Protection Level
Circumvention Very difficult Difficult Difficult Easier
Portability Low Low/Medium High Language dependent

2.9 Conclusion

Our analysis of available privacy enhancing technologies, access control methods and privacy
policy languages comes to the conclusion that currently no privacy protection framework exists
that can offer protection for data release scenarios where the data owner defines his or her privacy
preferences and wants to base privacy protection on the Owner-Retained Access Control (ORAC)
model.

Electronic data is easily copyable and electronic copies are indistinguishable from the original
data. These copies can be easily distributed without the knowledge of the data owner. The Dis-
cretionary Access Control (DAC) mechanism, implemented by most current operating systems,
does not implement data flow restrictions and anybody who can access data is also able to copy
it. Intentional or unintentional misuse of data by authorised subjects thus becomes very easy. The
sustained protection of data access and data use over the lifetime of sensitive private data is the
main challenge for privacy protection.

An externalised data access and usage control, based on the Reference Monitor model, is there-
fore needed to enforce the privacy requirements for electronic data. The reference monitor ensures
that data access can not bypass the authorisation system and data flow restrictions are enforced.
The UCONABC model is one representation of an access control model that recognises the need
for data flow control through the incorporation of trusted, server-side and client-side protection
measures. Data access by users is mediated via a client-side reference monitor to provide data
usage control, making it suitable for the enforcement of privacy policies.

The access control mechanisms (both, client- and server-side) must be able to automatically
enforce authorisations. It therefore becomes necessary to explicitly formulate the required autho-
risations in a policy. Policy languages provide powerful and flexible authorisation specification

56

2.9 Conclusion

mechanisms that can also be used for the description of privacy policies. Based on our evaluation
of policy languages in Section 2.6, we have chosen to use the eXtensible Access Control Markup
Language (XACML) within our own privacy enforcement framework. All privacy policies of our
use cases can be expressed as XACML policies (cf. Sections 5.4.2 and 6.2.4).

An important part that is missing from the literature is the discussion of usability and safety
issues of privacy policy creation and management. Many privacy protection schemes require the
existence of a dedicated policy administrator or simply assume the pre-existence of a suitable set
of authorisations. This approach may be suitable for privacy enforcement schemes that deploy
data user-defined privacy policies, but it creates problems for our approach of data owner-defined
policies, where ordinary people have to define their privacy requirements.

In the following chapters we will rectify this omission and develop and discuss our approach to
policy administration for data owner-defined privacy policies. This approach will then be used for
policy administration and maintenance within our own privacy enforcement framework.

57

2 Background and State-of-the-Art

58

3 Owner-Retained Access Control Policies

In this thesis we assume the position that privacy is the right of individuals to determine for them-
selves when, how and to what extent information about them is communicated to others [Ashley
and Karjoth, 2003]. The Federal Constitutional Court of Germany confirmed this view in its ruling
against the 1983 census and established the principle of informational self-determination for its
citizens.

The German Federal Constitutional Court ruled1 that:

”The free development of the individual in the context of modern data processing
requires the protection of the individual against unlimited collection, storage, use and
disclosure of his/her personal data. This protection is based upon the basic rights
specified by Article 2 (1) and Article 1 (1) in the Basic Law for the Federal Republic
of Germany. This basic right safeguards the authority of the individual to generally
decide about the disclosure and use of his or her personal data.

[. . .]

The right to informational self-determination is not without bounds. [. . .] The indi-
vidual has to accept limitations in his or her right to informational self-determination
in case of overriding public interest.” [BVerfG 65,1, 1984]

In the following sections we analyse the different approaches of authority over privacy policy
creation in more detail, where we distinguish between policies that are controlled by the data user
and policies controlled by the data owner. We analyse challenges and solutions for the problem
of policy creation and maintenance in an owner controlled scheme and evaluate trust relationships
for privacy policies.

3.1 Data Release under a Privacy Policy defined by the Data User

Data user-defined policies, where the user and custodian of the personal private data defines the
protection properties are well established. The data user has a clear understanding of the type

1Original text of the ruling found in [BVerfG 65,1, 1984], Part C, Section II:
“Freie Entfaltung der Persönlichkeit setzt unter den modernen Bedingungen der Datenverarbeitung den Schutz
des Einzelnen gegen unbegrenzte Erhebung, Speicherung, Verwendung und Weitergabe seiner persönlichen Daten
voraus. Dieser Schutz ist daher von dem Grundrecht des Art. 2 Abs. 1 in Verbindung mit Art. 1 Abs. 1 GG
umfaßt. Das Grundrecht gewährleistet insoweit die Befugnis des Einzelnen, grundsätzlich selbst über die Preisgabe
und Verwendung seiner persönlichen Daten zu bestimmen.

[. . .]
Dieses Recht auf "informationelle Selbstbestimmung" ist nicht schrankenlos gewährleistet. [. . .] Grundsätzlich
muß daher der Einzelne Einschränkungen seines Rechts auf informationelle Selbstbestimmung im überwiegenden
Allgemeininteresse hinnehmen.”

59

3 Owner-Retained Access Control Policies

and amount, as well as the potential uses of the data that need to be collected. Based on this
information the data user defines a privacy policy and announces this policy to the data owner
in form of a privacy promise [Barth and Mitchell, 2005]. It is the responsibility of the data user
to enforce this promise and refrain from using the data for other than the intended and agreed
purposes.

Data user-defined policies are widely used. Examples for this type of privacy policies include
informal privacy policies, such as described in Section 1, as well as policies that use a more formal
representation such as the privacy policy language defined by the Platform for Privacy Preferences
[P3P v1.1, 2006].

Benefits of data user-defined policies

Data-use policies that are defined by the user of the data have the following advantages over
policies defined by the data-owner:

Efficiency - The data use policy has to be declared and referenced only once. The operation and
effectiveness of the policy is relatively easy to audit, all possible restrictions are known at
policy creation time. There is no need to store and reference different policies between data
owner and data user. The data user has no need to negotiate policies and provide protection
properties that are stronger than an average protection profile.

Conformity - Policies can be very well adapted to the organisational procedures and there is no
risk that certain workflows can not be executed because of policy restrictions.

However, data owner-defined policies have deficits and we show in the following that the current
approach does not always deliver adequate privacy protection.

Challenges for data user-defined policies

It is possible to identify several areas of concern that are not adequately covered by policies gen-
erated under the control of the data users. The following list provides an overview of potentially
problematic areas:

Unfounded trust - A data user defined policy scheme, such as a P3P policy, states only a privacy
promise that has no obligatory link to privacy enforcement. Data owners can not be certain
that an adequate protection enforcement exists.

The data owner has to trust that the data user competently enforces the privacy policy and has
deployed effective data access protection. It has been shown that data user-defined privacy
protection schemes are not effective in their protection against a trusted, but careless data
user [Anton, He, and Baumer, 2004].

Weak enforcement - Data release policies specify a so called purpose-binding. Data should be
collected and used for a specified purpose only [Ashley and Karjoth, 2003]. As purposes
specify very domain specific concepts, the data owner needs to make a judgement about the
validity of the stated purpose. The policy enforcement scheme needs to map data access
requests against these defined purposes. However, most access control mechanisms do not
easily support the interpretation and enforcement of purposes.

60

3.2 Data Release under a Privacy Policy defined by the Data Owner

Policy interpretation - It becomes the responsibility of the data owner to understand, compare
and verify different privacy policies created by different data users that might utilise differ-
ent, incompatible schemes. If, for example, a patient is sharing medical data with various
healthcare providers, practitioners and insurance companies, each of these entities might
use their own tools and mechanisms to manage their privacy policy [Cranor and McDonald,
2008].

Jensen and Potts [2004] have shown that privacy policies differ greatly from site to site and
often address issues that are not relevant to the data owner. They find that form, location and
legal context of published privacy policies make them unusable as decision-making aids for
a person that is concerned about privacy.

Diverging goals - The data user might collect, use and share more data than necessary and store
data longer than strictly necessary for the completion of the task.

Limited choice - The privacy policy is set by the user of the data, which could have other goals
for data protection than the data owner. The data user could be forced to accept a privacy
policy that is sub-optimal for the protection of their own protection requirements. The data
owner has no power to force the application of a privacy policy.

Weak negotiation position - With data user generated privacy policies the data owner can not
negotiate or force a specific requirement in the privacy policy of the data user. If the data user
offers no or only an unacceptable privacy policy, the data owner can only choose between
refraining from the data release or releasing data without adequate protection.

Unstable policies - The privacy policy is set by the data user and can be changed anytime to offer
a different level of privacy protection.

Changing authority - The authority over data protection rules and the collected data is handed
over to the data user. Control by the data owner is only exercised at the time of data release.

This list of problematic issues makes clear that even with trusted service provider offering data
user-defined privacy policies, there still exist areas for improvement. Especially the weak enforce-
ment binding opens the possibility for intentional and unintentional data breaches.

In the data release taxonomy presented in Section 1.1, we have made the distinction between
data releases under privacy policies set by the data owner and policies that are set by the data user.
The following section analyses the advantages and disadvantages of policies that are under the
control of the data owner.

3.2 Data Release under a Privacy Policy defined by the Data Owner

Data owner-defined policies derive their name from the circumstance that it is the data owner
that defines the data release policy. The data owner might have a clear understanding of his
or her privacy preferences and requirements. If private data is collected by the data user, the data
owner should be able to formulate these requirements in a privacy policy and distributed the policy
together with the data to the data user.

61

3 Owner-Retained Access Control Policies

Benefits of data owner-defined policies

The following advantages can be identified for data owner-defined policies in comparison to poli-
cies that are defined by the data user:

Higher specificity - Data owner-defined policies have the ability to specify very detailed policies
for individual data items. It is no longer necessary that a privacy policy needs to apply for
all data items collected over all data owners. Policies can be specifically adapted to reflect
the personal requirements of the data owner.

Expressiveness - The data owner actively formulates the data release policy through the ex-
pression of his or her specific privacy requirements, rather than silently consenting to the
uniform policy of the data user.

Extended referencing - The data user needs to store and retain an individual policy together with
the data that has been received from the data owner. This policy can be passed to other data
users when the data is moved, allowing for distributed policy referencing.

Direct trust - With data owner-defined policies it becomes possible to express direct trust rela-
tionships between the entity that owns the personal identifying data and the user of this
data.

Challenges for data owner-defined policies

The application of owner-defined privacy policies is not without hurdles. Data owner-defined
policies requires a higher level of cooperation between the involved parties. Besides the technical
difficulties of expressing and communicating the privacy policy, it must be made certain that the
actual privacy policy is enforceable:

Efficiency - Many data owner specific privacy policies need to be stored, referenced and evaluated
over all collected data items, whereas a data user-defined policy scheme only requires the
referencing of a single privacy policy.

Enforceability - Data owner-defined policies are usually not well adapted to the organisational
procedures of the data user. The defined policies are typically not tied to the procedures of
the data users. It might even be possible for the data owner to specify a policy that is not
enforceable by the data user.

Policy creation effort - The data owner needs to define suitable privacy policies that capture his
or her privacy requirements. This creates an additional burden for the data owner and data
owner must be educated about the protection properties of privacy policies. Policies need to
be revised as privacy requirements change over time.

Default protection - The policy scheme must provide at least minimal protection, even when data
owner choose to opt-out of protection or mistakenly create a faulty protection profile.

62

3.3 Using the ORAC Access Control Model for the Definition of Data Owner-defined Privacy Policies

This analysis shows that data owner-defined policies offer interesting properties that might enable
privacy protection that is tailored to the privacy preferences of the data owner. We base our prefer-
ence of data owner-defined privacy policies on the advantages these policies possess over policies
that are defined by the data user. However, their application in the area of privacy enforcement
has some consequences and challenges that must be understood and solved in order to reach the
best possible privacy protection. Usability aspects of policy creation and policy management tasks
have to be analysed and taken into account for the development of our particular policy protection
scheme. The next section highlights these aspects and presents our particular solutions for some
of the potential problems.

3.3 Using the ORAC Access Control Model for the Definition of Data
Owner-defined Privacy Policies

McCollum, Messing, and Notargiacomo described in 1990 an alternative access control scheme
where the access policy for a resource is determined by its owner or creator and not by a system
rule or the security administrator (cf. Section 2.3.3). The creator of an object sets the access policy
which can not be revoked or changed later by other users that have access to the object.

When we base a privacy protection scheme on the implementation of the Owner-Retained Ac-
cess Control (ORAC) model, we give the data owner the ability to create privacy policies that
reflect their personal protection needs, as was already discussed in Section 3.2. However, the
implementation of the ORAC model burdens the data owner with the responsibility to create an
adequate protection policy and manage this policy over time. This is an extra effort that is not
required if data is released under a data user-defined policy. The following list explains some of
the challenges for data owner generated policies and compares them to data user defined policies:

Convenience - Privacy policies defined by the data user are convenient. The data owner simply
accepts or denies an existing policy. He or she does not have to create their own policy from
scratch every time some data item is released to the data user.

Global reach - If the data user has defined a privacy policy, all data items that are released by the
data owner automatically fall under the protection of this policy. This is not the case with
ORAC policies. The data owner has to choose and compose an adequate policy each and
every time, otherwise released data might not be protected.

Safety - ORAC policy administrators are ordinary people that have no particular training in pri-
vacy policy creation and maintenance. This could lead to situations, where defined policies
do not correspond to the intention of the data owner or might actually be harmful, such when
privacy protection is lost through the accidental deletion of rules.

With greater power there also comes greater responsibility and several challenges need to be ad-
dressed in order to implement a data owner-defined policy scheme:

• The data owner needs to be guided in his authority to specify permissions to provide safe-
guards against the specification of disadvantageous policies.

• It should not be possible to opt-out of basic protection.

63

3 Owner-Retained Access Control Policies

• It should not be possible to specify policies that are not enforceable by the data user.

• Authorised data use should be influenced as little as possible to achieve a high acceptance
rate for the system, while at the same time reliably prohibiting unauthorised data access.

Traditional access control models focus on the evaluation and enforcement of authorisations and
to a large extent assume the pre-existence of an access control policy. The access policy itself is
created and exists outside of the access control architecture that enforces it.

The XACML specification recognises the importance of the policy administration process through
the definition of a special entity in the XACML architecture, the Policy Administration Point (PAP)
[XACML-2.0, 2005]. It is the purpose of the PAP to provide the policy object to the Policy De-
cision Point (PDP). The PAP has complete authority over policy creation and the standard does
not further specify the administrative actions and its implementation – there are no restrictions
imposed on the policy creation process itself. Figure 3.1 shows the location of the architectural
elements within the XACML architecture.

Access
Requester

Policy
Enforcement
Point (PEP

Obligation
Service

Policy
Decision

Point (PDP)
Context
Handler Resource

Policy
Information
Point (PIP)

Policy
Administration

Point (PAP)
Subjects Environment

Resource
Content

Subject Attributes

Resource Attributes

Environment Attributes
Policy

ObligationsAccess Request

Attribute
QuerryAttribute

Request Notification

Response Context

Request
Response

Figure 3.1: Policy Administration in the XACML Architecture - The XACML Architecture (see
Section 2.6.3) defines a Policy Administration Point (PAP) that provides the policy object
to the Policy Decision Point (PDP). The PAP has full authority over the policy and is not
restricted in its administrative power by the architecture.

Other current authorisation architectures assume the presence of a policy administrator who is
responsible for the design and assessment of privacy policies. The standards for EPAL [EPAL 1.2,
2003] and P3P [P3P v1.1, 2006] explicitly specify the role of a Privacy Administrator.

The privacy policy administrator creates and maintains the access rules that are later evaluated
by the PDP and enforced by the PEP. The policy administrator has unrestricted administrative
powers over the policy administration process, which results in the ability to create, modify and
delete arbitrary policy specification rules.

64

3.4 Trust Model

As we have already discussed, one important prerequisite for the usage of owner-defined poli-
cies, is the necessity for the data owner to create an adequate protection policy and manage this
policy over time. While a professional policy administrator is expected to have the necessary skills
to create, review and adapt formal access policies, the same can not be said about the ordinary
computer users that want to protect his or her personal data.

Usability aspects for policy creation and policy management tasks have to be taken into account
when a protection scheme for data owner-defined policies is developed. We think that we can fulfil
this requirement by restricting the administrative authority of the policy administrator (the data
owner) to the formulation of valid, favourable and enforceable policies, so that the task of policy
creation can be handled safely by non-experts. The developed mechanism should be flexible, so
that it can be adapted as needed to different requirements and many application domains. The
implemented restrictions should be directly visible, so that they can be questioned and evaluated
by the data owner as well as external reviewers.

3.4 Trust Model

Privacy policies can be seen as the expression of trust relationships between data owner and data
user. The implementation of a privacy protection mechanism serves as a trust building tool be-
tween data owner and data user and lets data owners exercise control over who has access to their
personal private data. The policy allows the data owner to explicitly formulate his or her trust
relationship with the data user. A privacy protection mechanism based on the ORAC model en-
sures that an authenticated, non-malicious user will be granted data access - in accordance to the
owner-defined policy. Not authorized data usage will be prohibited by the system.

The expression of granular trust relationships in the form of privacy policies serves the following
purposes:

a) It lets the data owner articulate and document personal privacy concerns.

b) The explicit definition of the privacy policy allows the data owner to reason about
the trust relationship with the data user.

The support of Owner-Retained Access Control policies is also beneficial for the data user. It
allows the data user to focus on the guaranteed enforcement of individual data owner-defined
policies, without having to develop a single privacy policy that applies to all data owners and is
based on a compromise between the individual privacy requirements of the data owners and the
data processing needs of the data user.

3.4.1 Sources of Trust

An important prerequisite for the correct attribution of trust is the successful and reliable enforce-
ment of restrictions on data usage by the reference monitor. The data owner needs to trust the
reference monitor to securely enforce the stated privacy policy – it acts as a trusted system:

65

3 Owner-Retained Access Control Policies

Definition 9: Trusted System

A system that operates as expected, according to design and policy, doing what is required
– despite environmental disruption, human user and operator errors, and attacks by hostile
parties – and not doing other things. [Shirey, 2007]

Beyond the trust in the correct operation of the privacy enforcement, the data owner also has
a certain level of personal trust in the data user itself. While the trust in the policy enforcement
system is usually a binary decision between trust and no trust, which could be influenced by
external attestation and audits, the personal level of trust in the data user is a more complex matter:

Definition 10: Trust

Generally, an entity is said to ’trust’ a second entity when the first entity makes the assumption
that the second entity will behave exactly as the first entity expects. This trust may apply only
for some specific function.
... [Shirey, 2007]

The level of personal trust a data owner shows towards the data user will be expressed in the
privacy policy. The properties of this particular type of trust will be explored in the following
sections.

3.4.2 Properties of Trust Relationships

Trust relationships can be categorised depending on their level of transitivity. Many technical
systems use a transitive definition of trust, because it lets the system designers reason about the
security properties of a trusted system. In a transitive trust relationship such as the chain of cer-
tificates issued by different Certificate Authorities (CA) of a Public Key Infrastructure (PKI), the
following assumption holds (� is used to notice a trust relationship between subjects):

(A � B)∧ (B �C)⇒ (A �C) (3.1)

Many data user-defined privacy polices assume such a transitive relationship to some degree. They
allow the passing of personal private data to associated organisations for purposes such as data
processing and marketing. This can be seen in the following example:

"We employ other companies and individuals to perform functions on our behalf.
Examples include fulfilling orders, delivering packages, sending postal mail and e-
mail, removing repetitive information from customer lists, analysing data, providing
marketing assistance, providing search results and links (including paid listings and
links), processing credit card payments, and providing customer service. They have
access to personal information needed to perform their functions, but may not use it
for other purposes." [Amazon, 2008]

66

3.4 Trust Model

When we examine the privacy statement from Amazon, we find that it contains no identifying
information about these potential other data users. The data owner therefore has no direct knowl-
edge about data handling practices of the data users other than the information that these entities
are trusted by Amazon.
Marsh [1994] has shown that trust relationships between independent agents are typically not
transitive. Each trust relationship reflects an independent decision made by an agent and this
decision is made separately for each pair of subjects. This can be explained by a simple example:
If a person trust a certain individual, this trust does not automatically extend to other individuals
trusted by this person. We must therefore assume that personal trust is not transitive and it is safe
to conclude that the following equation expresses the trust-relationship between individuals:

(A � B)∧ (B �C) 6⇒ (A �C) (3.2)

It also follows that trust relationships are not symmetric. If person A trusts person B, this does not
mean that B similarly trusts A:

(A � B) 6= (B � A) (3.3)

3.4.3 Dynamics of Trust

Trust relationships between subjects are not static. As privacy requirements change over time,
it becomes necessary to re-value the current privacy policy. A change in trust could result in an
update to the privacy policy or the complete withdrawal of the data usage decision. Depending on
the origin of the privacy policy we find strong differences in the handling of change in trust:

Data user-defined policies assume a stable trust relationship between data user and data owner.
The data owner has effectively handed the authority over the access policy to the data user, it
becomes very difficult to change or suspend this trust relationship at a later time. If no opt-out
mechanisms are supported by the data user, the data owner has no mechanism to revoke his trust.

Data owner-defined policies are better suited to handle dynamic changes in the trust relation-
ship. A data owner can start with a very restrictive privacy policy, which can be loosened at a later
time when the data user has been proven trustworthy. Similarly it is possible to tighten access
policies if trust wanes. Fine-grained permissions allow the construction of access policies that
correspond to the personal trust level of the data owner.

The data owner needs to communicate these changes to the data user and this generates two
problems: The data user may find ways to use the old privacy policy and ignore the new one, or it
may not even possible for the data owner to contact the data user about these changes.

For the reliable support of changing trust values it is therefore necessary, that the privacy scheme
supports mechanisms to limit the lifetime of a policy during which the data user has access to the
data. The policy lifetime has to be renewed in regular intervals and this allows the data user to
review and adapted the trust-relationship, if necessary.

3.4.4 Managing Trust Domains

Real world trust in subjects, organisations and services is typically limited to certain areas of
expertise and experience. This means that trust is bound to a specific domain and does not extend

67

3 Owner-Retained Access Control Policies

automatically and equally over different domains.
If, for example, a medical practitioner is trusted by the patient to correctly diagnose and treat

a specific illness, the patient may not trust the same practitioner to be a computer security expert
that can install and maintain a secure and trusted computing environment for the safe storage of
the medical data.

From the perspective of privacy protection this means that the patient trusts the practitioner to
see and read the private medical report. But, he or she does not trust the practitioner that this report
will be stored safely on the computer system, so that it can not also be accessed by other parties
and data is protected from inadvertent exposure.

Partial Trust and Trust Domains

Trust domains can be build around the domain of competence of a data user. Pretty Good Pri-
vacy (PGP), for example, reflects such a split trust-domain in its key signing model [Callas, Don-
nerhacke, Finney et al., 2007]. A user can trust the key to correctly attest the identity of a person,
but does not trust other keys that are signed by this key, because the user has no trust in the com-
petence of the key-holder to securely sign the keys of other users.

Managing separate trust domains has already been proposed, for example, by the Electronic
Health Record (EHR) communication standard EN-13606-4 [2007]. The standard defines several
Access Domains for Electronic Health Record data, as can be seen from Table 3.1.

Table 3.1: Access Domains for Electronic Health Record Data as defined by EN-13606-4

Access Domains for Health Record Data
1. Private entries shared with General Practitioner
2. Entries restricted to sexual health team
3. Entries accessible to administrative staff
4. Entries accessible to clinical support staff
5. Entries accessible to direct care teams
6. Private entries shared with several named parties
7. Entries restricted to prison health services

Such standards normally only capture a very narrow and specific domain knowledge. It might
be possible to base such trust domains on ontologies to make them independent from a particular
field of expertise. However, it is not clear if people, which are no domain experts in this particular
field, will find it easy to make the right decisions for privacy protection based on these ontologies.

We think that a better way for the management of different trust domains consists in the sepa-
ration of data into domain specific containers and the binding of authorisations to a specific data
user, since it is very unlikely that an ordinary data owner can understand and maintain sensible
privacy policies based on domain-specific, formalised specifications. The separation of data in
domain specific containers enables the data owner to effectively build and manage separate trust
domains that are within their own field of expertise.

68

3.5 Precedence Relation for Sub-Policies

3.5 Efficient Policy Specification and Maintenance through the Use
of a Precedence Relation for Sub-Policies

Giving unrestricted administrative power to the data owner might create problems when delete
operations on the policy base lead to data protection loss or cause permissions for the data owner
to be revoked. If, for example, a data owner could revoke his or her permissions to access the
policy, the working order of the system could be seriously affected. Similarly, a data owner could
decide to delete all existing policy rules, creating a state, where no privacy protection is provided.

One approach to make policy creation and maintenance more user friendly could be the restric-
tion of the administrative power of the policy creator. These restrictions could be implemented
through rules that are implicitly defined in policy management tools or through the use of meta
policies. These options have certain limitation that are discussed in Section 3.7.

We choose to develop a new approach for the controlled restriction of administrative power
in data owner-generated policies, which is based on the conflict resolution approach of modern
policy languages. These languages can tolerate inconsistencies in the rule-base and still derive
a valid access decision. Our main idea consists in the structuring of the policy base in different
functional modules. Each module will contain its own set of policy rules that can be independently
managed. There exists a strong precedence relationship between the functional modules, which
will be jointly evaluated in order to reach an access decision. We propose the following modules:

1. Default policy rules - generate a minimum level of data protection even if the data
owner is not able or willing to generate a specific data protection policy. A
default policy always applies, even if no data owner-defined policy is specified.

2. Owner policy rules - are actively managed rules that express privacy protection
statements made by the data owner.

3. Safety and compliance rules - protect the data owner against the creation of un-
safe policies that are potential harmful (e.g. creation of access rules that prevent
data access for the data-owner itself). They can guarantee a minimal set of rights
for other actors and/or the compliance with legal requirements.

Different priority values will be given to the individual modules. We define a Privacy Policy
Precedence Relation ≺ that prefers access decisions from policies carrying higher priority values.
In our use case safety policy rules will have a higher precedence value than default priority rules
and owner policy rules.

Default policy≺ Owner policy≺ Safety policy (3.4)

Each sub-policy may contain identical authorisations, however, only the authorisation decision
from the sub-policy with the highest priority value applies. This setup allows us to define a very
broad default policy that provides general data protection. This default policy can be overwritten
by access decisions from policy parts with a higher priority.

We assume different administrative authorities for the individual sub-policies:

• The default policy is designed by a professional policy administrator and attached to any
data item as soon as it is created. The policy itself cannot be adapted by the data owner. The

69

3 Owner-Retained Access Control Policies

default policy will be typically a ‘closed’ policy. Every action that is not explicitly allowed
will be denied.
• The owner policy rules can be modified arbitrarily by the data owner. It adjusts the default

policy to reflect any privacy decision by the data owner. This policy part can be used to
define the privacy preferences of the data owner and make exceptions to the default policy.
If the owner policy is deleted, the default policy will again provide basic privacy protec-
tion. It is therefore not possible to accidentally lose complete privacy protection through the
deletion of the owner policy.
• The safety policy again is not under the administrative authority of the data owner. The

rules of the safety policy describe specialised authorisations, where it must be guaranteed
that these restrictions or permissions persist. The rules in this policy part are meant to
safeguard the integrity of a privacy policy. An example would be a safety rule that prevents
the data owner from revoking his or her right to access the data.

3.5.1 Implementing Precedence Relations for Sub-Policies

XACML offers a suitable mechanism for the creation and maintenance of different policy parts.
Sub-policies can be expressed via <Policy> elements. The joint evaluation of different <Policy>
elements is guided by an adequate policy combining algorithm under a common <PolicySet> el-
ement. See Listing 3.1, where separate policies for the data owner and the data user are maintained
in separate sub-policies:

1 <PolicySet PolicySetId="FirstExample" PolicyCombiningAlgId="deny -overrides">
2 <Target/>
3 <Policy RuleCombiningAlgId="deny -overrides">
4 <Target>
5 <Subjects>Data Owner </Subjects>
6 <Resources/>
7 <Actions/>
8 </Target>
9 <Rule RuleId="urn:oasis:names:tc:xacml:2.0:example:rule_id:1" Effect="Permit">

10 </Rule>
11 </Policy>
12
13 <Policy RuleCombiningAlgId="deny -overrides">
14 <Target>
15 <Subjects>Data User </Subjects>
16 <Resources/>
17 <Actions/>
18 </Target>
19 <Rule RuleId="urn:oasis:names:tc:xacml:2.0:example:rule_id:2" Effect="Deny">
20 </Rule>
21 </Policy>
22 </PolicySet>

Listing 3.1: Separation of XACML Policy Parts through the use of a <PolicySet>

The precedence relation could be implemented through a simple ordering operation where poli-
cies with a higher priority are evaluated first and policy evaluation is stopped, once an access deci-
sion has been derived. XACML already defines the FirstApplicable combining algorithm that
implements such an evaluation strategy. However, implementing our precedence relation through
the FirstApplicable combining algorithm has some undesired side-effects. In a declarative pol-

70

3.5 Precedence Relation for Sub-Policies

icy language, such as XACML, rule ordering usually has no effect on the applicability of a rule.
All rules are jointly evaluated and a decision is reached through the use of an explicit combining
algorithm that decides potentially conflicting authorisations. The same is true for the evaluation of
sub-policies: individual sub-policies have no particular ordering, a policy decision is derived from
the joint evaluation of all applicable sub-policies.

If the precedence relation is implemented using the FirstApplicable combining algorithm,
this property is lost. We would have to make sure that our sub-policies are specified in exactly
the right order or wrong authorisations could be derived from their joint evaluation. We think
that re-using the existing policy combining method is to fragile and may lead to future problems,
especially when we plan to support distributed policy management and automatic policy merging.

We therefore decided to extend the current language specification to allow the specification
of explicit priority values for sub-policies and support the prioritised evaluation of sub-policies
in XACML through the definition of a new <PolicyCombiningAlgorithm> that derives the ap-
plicable access decision from the <Policy> that has the highest priority value within a <Pol-
icySet>. The XACML implementation from Sun [SunXACML, 2006] allows the extension of
existing datatypes, functions and combining algorithms through a simple system of factories. We
implemented our Privacy Policy Precedence Relation (P3R) by defining a new policy combining
algorithm class named PriorityPolicyAlg, which extends PolicyCombiningAlgorithm and
implements the decision algorithm shown in Figure 3.3. The full implementation of this algorithm
is given in Appendix Priority Policy Algorithm.

This implementation must be announced to the XACML framework before it can be used. Our
PDP implementation uses an API defined by the CombiningAlgFactory to add the algorithm to
the set of standard combining algorithms, as can be seen from Listing 3.2:

1 CombiningAlgFactory combFactory = CombiningAlgFactory.getInstance();
2 try {
3 combFactory.addAlgorithm(new PriorityPolicyAlg());
4 } catch (URISyntaxException e1) {
5 System.out.println("URISyntaxException has occured in MyPdP.class");
6 e1.printStackTrace();
7 }

Listing 3.2: Registration of the new P3R policy combining algorithm with the SunXACML
CombiningAlgFactory in MyPDP.java

The next Subsections present short examples that highlight particular policy management issues
and explain how they might be resolved and implemented as XACML policies using our approach.

3.5.2 Assigning Explicit Priorities to Sub-Policies

Explicit priority values can now be assigned to specific sub-policies using the <PolicyCombiner-
Parameters> element of XACML. We define a new parameter Priority that carries an integer
value which specifies the priority value of the sub-policy.
Listing 3.3 shows the assignment of an explicit priority value to the named <Policy> element
"DefaultPolicy".

1 <PolicyCombinerParameters PolicyIdRef="DefaultPolicy">
2 <CombinerParameters >
3 <CombinerParameter ParameterName="Priority">
4 <AttributeValue DataType= "http://www.w3.org/2001/ XMLSchema#integer">
5 1

71

3 Owner-Retained Access Control Policies

6 </AttributeValue >
7 </CombinerParameter >
8 </CombinerParameters >
9 </PolicyCombinerParameters >

Listing 3.3: Specification of explicit priority value using XACML <PolicyCombinerParameters>

Instead of relying on sub-policy ordering, we can now explicitly define the priority of a <Policy>
element, so that the combining algorithm knows if a sub-policy is considered more specific than
the other. This has the benefit that the different policy parts are clearly named and the evaluation
order can not be changed accidentally through insertions and deletions in the policy base. Figure
3.3 shows our custom combining algorithm for multiple <Policy> elements in a <PolicySet>
and it can be easily seen, that the combining algorithm does not assume or require a specific
element ordering in the policy base.

Table 3.2 and Figure 3.2 list the different priority values and their interpretations as they are
currently recognised by our implementation. Explicit policy prioritisation allows us to enforce
different semantics for the individual parts of the policy. The Figure also shows the intended
authorisation scope for the policy parts. The data owner will have control over one particular level
of the precedence hierarchy, the OwnerPolicy, while the DefaultPolicy and the SafetyPolicy
are generated by an external policy designer and are pre-installed on the system.

Table 3.2: Defining priority values for policy combining

Priority Value Interpretation
low 1 Default policy
medium 2 Owner policy
high 3 Safety policy

Policy Set

Policy

Policy
Combining Algorithm

1

1

1..*

1

0..*

1

Default Policy
Scope: System
Priority: Low

Owner Policy
Scope: User
Priority: Medium

Safety Policy
Scope: System
Priority: High

Figure 3.2: Priority Policy Combining - The diagram shows the different policy parts carrying differ-
ent priority values and scopes. Explicit priority values are assigned to different <Policy>
elements and jointly evaluated within the XACML <PolicySet>.

72

3.5 Precedence Relation for Sub-Policies

Access decision ≠
indeterminte?

Start

Set return value to indeterminte,
priority value to undefined

Stop

Determine next applicable XACML
sub-policy

Store access decision and priority
value

Derive access decision from current
applicable XACML sub-policy

More applicable policies? Return derived access decision

Sub-policy priority higher
than previous decision?

yes

yes

yes

no

no

no

Figure 3.3: Priority Policy Combining Algorithm - The diagram visualises the policy decision pro-
cess for an XACML <PolicySet> that consists of <Policy> elements with differing pri-
ority values. If more than one policy applies the decision from the policy with the highest
priority value is returned.

73

3 Owner-Retained Access Control Policies

We now have all the elements needed for the implementation of an ORAC Policy Administration
Point that fulfils our usability requirements for a ordinary computer user:

1. Different <Policy> elements of a <PolicySet> can belong to different administrative au-
thorities and a unique priority value is attached to each <Policy> element.

2. The policy base is split into three distinct sub-policies with rising priority level: Default-
Policy, OwnerPolicy and SafetyPolicy.

3. The data owner can only manage the user OwnerPolicy. DefaultPolicy and SafetyPol-
icy are predefined and protect the policy administration process.

4. Rules in the different policy parts can be missing or contradicting. Rules in different policy
parts are not overwritten by rules in other parts that apply to the same data entities. Policy
access is determined if at least one part contains an applicable rule. Contradicting decisions
are resolved through the priority-combining algorithm according to the priority value of the
<Policy> element.

Discussion

Lupu and Sloman [1999] have argued that assigning meaningful explicit priorities to policy rules is
difficult for the policy creator and might result in inconsistent policies. They therefore discourage
the use of explicit prioritisation for policy rules.

Our approach prioritises <Policy> elements in an XACML <PolicySet> rather than individual
authorisation rules. There exists only a very small number of possible prioritisation values, so that
it should be easy to understand and manage them. It should also be noted that the priority values
are used to define a meta policy that guards the policy administration process itself. It is only
very seldom necessary to manipulate policy parts other than the OwnerPolicy, which is under the
direct control of the data owner. For the data owner are the different priorities not even visible,
so explicit policy values have no influence on his or her task of privacy policy management. We
are confident that the introduction of the Privacy Policy Precedence Relation for individual sub-
policies is a valuable contribution to the management of data owner-defined privacy policies. We
will discuss relevant applications to specific use cases in Section 5.4.2 and Section 6.2.4.

3.6 Managing Default Protection through Template-based Privacy
Policies

The initial process of policy creation for the release of a private data item is carried out by the
Policy Administration Point (PAP). The PAP installs a suitable DefaultPolicy representation
into the <PolicySet>. The DefaultPolicy in our privacy protection scheme is a policy-part that
defines an initial protection settings for the data, even if no OwnerPolicy has been configured.

The data owner can not change the default protection rules. It is, however, possible to override
the default rules through rules in the OwnerPolicy, because this sub-policy has a higher priority.
If the data owner decides to delete rules in the OwnerPolicy, the DefaultPolicy will again be
visible for the decision mechanism and data will still be protected.

The prioritised handling of sub-policies makes it easy to support the handling of different pro-
tection profiles through so called Policy Templates. The DefaultPolicy representation could be

74

3.7 Managing Authorisation Policies and Safety Rules in the Policy Rule-base

based on one of several predefined templates that implement different protection properties. The
data owner could then choose the DefaultPolicy from a set of meaningful, pre-defined template
policies according to his or her privacy protection needs.

To show the opportunities of this arrangement, we present two distinct default policies in Listing
3.4 and 3.5 that could be chosen by people according to their personal privacy preferences. A very
privacy conscious person might want to closely monitor data usage and explicitly authorise every
data access, while a more liberal-minded person only wants to restrict data access from certain
subjects and generally allows others to access his or her data. The data owner now can decide
which policy behaviour better describes his or her privacy needs, making the management of the
OwnerPolicy easier:

Restrictive Default Policy A restrictive policy template would implement the closed policy
model. Data access is prohibited unless explicitly granted via a data owner-defined rule with a
higher priority than the default rule.

1 <Policy PolicyId="DefaultPolicy" RuleCombiningAlgId="permit -overrides">
2 <Description>Default policy: restrictive </Description>
3 <Target />
4 <Rule RuleId="defaultAccessPermission" Effect="Deny">
5 <Target />
6 </Rule>
7 </Policy>

Listing 3.4: Example of a restrictive DefaultPolicy

Permissive Default Policy A permissive policy template implements the open policy model.
Data access is allowed unless a data owner-defined rule is defined that prohibits data access.

1 <Policy PolicyId="DefaultPolicy" RuleCombiningAlgId="deny -overrides">
2 <Description>Default policy: permissive </Description>
3 <Target />
4 <Rule RuleId="defaultAccessPermission" Effect="Permit">
5 <Target />
6 </Rule>
7 </Policy>

Listing 3.5: Example of a permissive DefaultPolicy

3.7 Managing Authorisation Policies and Safety Rules in the Policy
Rule-base

Privacy policies usually reflect the personal trust of the data owner in some other person or organ-
isation. This trust might change as personal relationships evolve and this leads to the necessity to
alter and adapt exiting privacy policies. The resulting policies may therefore change significantly
over time as an authorisation rule base is created, extended and modified.

Policy modification may also introduce conflicts, when newly generated permissions contra-
dict existing ones. We have discussed in Section 2.7 the importance of consistent authorisation
specifications that allow the successful derivation of a policy decision. It is therefore important to
develop a strategy to prevent or manage these conflicts as they arise.

75

3 Owner-Retained Access Control Policies

3.7.1 Tool-based Approach

Using a graphical tool as Policy Administration Point can make the generation of policies easier
for the human policy administrator. It can supply visual clues regarding expected input values and
provide immediate feedback on the syntactical correctness of the specified rules. There have been
some experiences with tool based generation of P3P policies, such as the IBM Privacy Editor2.
Consistency checks could be directly incorporated into the policy management tool. If a data
owner wanted to create or modify an authorisation rule that might contradict existing rules or
might otherwise be considered harmful, the tool could prevent the user from manipulating the
policy.

We researched the possibility to check the policy management activities against an externalised
administration policy. Dedicated administration rules could be incorporated into the policy as part
of a management policy in the rule base.

Definition 11: Policy Administration Rules

Special rules in the policy base that have the purpose to restrict and guide the policy adminis-
tration process. Policy Administration Rules do not specify access decisions, but rather restrict
the creative power of the policy creator, to specify only such access rules that are permitted
under the Administrative Policy.

When a Policy Administration Point (PAP) tries to incorporate a new access rule in the rule-
base, we could now use the Policy Decision Point (PDP) to check this newly created access rule
against the set of policy administration rules and prohibit the inclusion of conflicting rules in
the policy base. Only such rules could be added to the policy base that do not conflict with the
administrative policy. Navarro, Firozabadi, Rissanen et al. [2003] have used a similar technique
for the management of delegation rights that have to be treated independently from the actual
access rights.

This approach is expected to work, as long as the set of policy administration rules remains
static. However, there exists a high probability that also the administrative policy might change
over time. Changes in the administrative policy can lead to the circumstance that the policy-base
contains already existing rules that are no longer compatible with the current administrative policy.
The question then arises, how to detect and treat those conflicting rules?

The existing authorisation rule base would have to be re-evaluated in order to derive any possible
conflicts. If existing rules were found that are in conflict with the new administrative policy, two
alternatives exist: The conflict resolution mechanism could simply erase conflicting rules from
the policy base. In this case the data owner would find a changed policy rule-set which might
no longer represent his or her privacy requirements. If for some reason our administrative policy
becomes corrupted and inaccurate, this would be reflected in the rule-set of the policy base, which
will now also be defective. A second approach would be to go interactively through the rule set
and resolve potential conflicts together with the data owner. This may take time for large policy
bases and the data owner might not be able to resolve all arising issues.

Both approaches have the drawback that a changing administrative policy will permanently alter
the existing rule-base. Since we can not guarantee that our administrative policy will stay static,

2IBM Privacy Editor: http://www.alphaworks.ibm.com/tech/p3peditor

76

3.7 Managing Authorisation Policies and Safety Rules in the Policy Rule-base

we choose a different approach for the treatment of conflicts in the authorisation base, as will be
described next.

3.7.2 Conflict-resolution Approach

Conflicts in authorisation rule-bases can also be handled through a conflict-resolution strategy
that is able to derive a policy decision from contradicting rules and policies (cf. Section 2.7.2).
Conflict-resolution algorithms specify how policy decisions will be derived from potentially con-
flicting rules or policies without the need to alter the existing rule base. XACML uses so called
combining algorithms to solve potential conflicts.

XACML allows us to use a flexible combination of different algorithms for conflict resolution
at different levels in the privacy policy. We can use rule-combining algorithms within a sub-policy
and separate policy-combining algorithm between sub-policy elements of the privacy policy.

Our implementation of a policy creation tool makes use of the Privacy Policy Precedence Re-
lation to limit the authoritative power of the data owner and enforces only the following basic
restrictions:

a) Only the data owner can alter the privacy policy.
b) The data owner can choose a suitable DefaultPolicy.
c) The data owner can only modify the OwnerPolicy part of the rule-base.
d) A predefined SafetyPolicy protects substantial access rights of the data owner,

as well as other important rights and restrictions.

Our priority-based combining algorithm will be used to resolve conflicts between policy parts
by giving precedence to policy decisions from parts with a higher priority. We can now include a
SafetyPolicy that has a higher priority than all the other sub-policies and can be used to specify
policy administration rules within our rule-base. This SafetyPolicy overrides decisions that are
derived from the editable OwnerPolicy and thus can resolve problematic authorisations that have
been made by the data owner. However, if for some reason our SafetyPolicy changes, the data-
owner generated rules will still exist in the rule-base and can be used to derive an updated access
decision.

The SafetyPolicy allows the construction of policies, where the data owner is not able to
revoke certain basic permissions, such as his or her own access to the data. Listing 3.6 shows a
policy example that guarantees data access for the data owner under all circumstances. Even if the
data owner enters a restricting rule in the OwnerPolicy, he or she would still be able to access all
their private data.

1 <PolicySet PolicySetId="urn:uni -potsdam:healthrecord:example:policysetid:1"
PolicyCombiningAlgId="urn:policy -combining -alg:priority">

2 ...
3 <Policy PolicyId="SafetyPolicy" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0

:rule -combining -algorithm:deny -overrides">
4 <Rule RuleId="dataOwnerRule1" Effect="Permit">
5 <Target>
6 <Subjects>
7 <Subject>DataOwner </Subject>
8 </Subjects>
9 <Resources>

10 <AnyResource />

77

3 Owner-Retained Access Control Policies

11 </Resources>
12 <Actions>
13 <AnyAction />
14 </Actions>
15 </Target>
16 </Rule>
17 </Policy>
18 ...
19 <PolicyCombinerParameters PolicyIdRef="SafetyPolicy">
20 <CombinerParameters >
21 <CombinerParameter ParameterName="Priority">
22 <AttributeValue DataType="http://www.w3.org/2001/ XMLSchema#

integer">3</AttributeValue >
23 </CombinerParameter >
24 </CombinerParameters >
25 </PolicyCombinerParameters >
26 </PolicySet>

Listing 3.6: Example of a SafetyPolicy that enforces an administrative policy for the data owner.
It guarantees data access for the data owner itself, even if restricting rule have been
entered in the OwnerPolicy policy part.

Figure 3.4 shows the different approaches to conflict resolution in authorisation rule-bases. Our
implementation uses a combination of tool-based and conflict-resolution approach to derive a con-
sistent policy decision. We keep the data owner-defined rules in the rule-base because it conserves
the intentions of the data owner, even if they might not be currently enforced. We use a policy cre-
ation tool to enforce the syntactic correctness of a rule, without applying an administrative policy
to the rule creation process.

This approach eases the construction of the policy creation tool, because it does not have to re-
solve potential conflicts in the policy. Conflicting rules will not be removed from the authorisation
base and could later be used to understand and re-evaluate the privacy intensions of the data owner
without impeding the ability to derive a valid policy decision.

3.8 Conclusion

The use of Owner-Retained Access Control (ORAC) policies for the expression of privacy policies
offers a number of benefits for the data owner but also holds some challenges that must be solved
in order to become a usable and safe alternative to data user-defined policies.

Our trust model for data owner-defined policies assumes a direct trust relationship between the
data owner and the data user. The data owner must be able to specify and revoke the necessary
authorisations for data access and use the privacy policy to reflect his or her trust relationship
with the data user. The trust model for our privacy enforcement framework makes the following
assumptions about the relationship between data owner and data user :

• The data user is a non-malicious user that has a mutual interest to comply with the owner-
defined privacy policy.

• The trust relationships is not transitive. This means that data forwarding by the data user to
not directly unauthorised principals is not supported.

78

3.8 Conclusion

 Policy rules

Policy Creation Policy Storage Policy Evaluation

Derive
consistent

policy decision

 Policy rules

 Policy rules

Policy Creation
Tool conforming rules

non-conforming
rules

Creation Policy

Administrative Policy

non-conforming
rules

 Decision

Conflict Resolution
Strategy

Tool-based
Approach

Consisent Policy
Approach

Conflict Resolution
Approach

Enforce
consistent
policy base conforming rules

Figure 3.4: Maintaining consistency in the policy rule-base - The figure shows the different ap-
proaches that might be used to derive consistent decisions from the policy base. The first
two approaches try to eliminate existing rules from the rule-base and are applied when
policies are created or changed. The last approach keeps conflicting rules in the rule-base
and creates a consistent decision at policy evaluation time.

We defined a Privacy Policy Precedence Relation (P3R) and extended the specification of the
eXtensible Access Control Markup Language (XACML) with a priority-based combining algo-
rithm. The algorithm uses explicit priority values for individual sub-policies to derive a policy
decision. Policy decisions with a higher priority override decisions from policies with lower pri-
ority.

We then defined three sub-policies DefaultPolicy, OwnerPolicy and SafetyPolicy that cor-
respond to the priority levels low, medium and high. Short examples were presented that highlight
particular policy management issues and explain how they might be resolved using our approach:

• Authorisation rules in the DefaultPolicy will be used to form a default policy and provide
privacy protection when the data owner has not specified an explicit OwnerPolicy.

• The data owner can express his or her protection preferences in the OwnerPolicy at the
medium priority level. The policy decisions from this sub-policy have a higher priority
than the decisions from the default policy and take precedence without changing the default
policy. So, even if the data owner later decides to delete all rules from the OwnerPolicy,
the joint evaluation of the privacy policy would again protect the data through the default
policy.

• A third element of our privacy policy is the SafetyPolicy, which can be used to describe
specialised authorisations, where it must be guaranteed that these restrictions or permissions
persist during the lifetime of the policy. It allows the creation of non-deniable access rights
that can not be revoked through authorisation rules generated by the data owner.

79

3 Owner-Retained Access Control Policies

80

4 Privacy Enforcement Framework

A very important prerequisite for the implementation of our Owner-Retained Access Control pri-
vacy protection scheme is the reliable enforcement of the data owner-defined privacy policy. Sec-
tion 1.3 of the introductory chapter argued that an effective privacy protection scheme must provide
consistent policy evaluation and guaranteed policy enforcement, as personal private data will be
used by different data users and the privacy policy must be evaluated and enforced consistently
across these parties.

The following points need to be addressed by the privacy enforcement framework when we
want to implement our protection scheme:

Communication of the policy - we need to communicate the individual privacy policy of the data
owner to the data user in a reliable way. This is a prerequisite for the referencing, evaluation
and execution of the policy by the enforcement system.

Protection of policy and data - personal private data must be protected from illegitimate access.
It is therefore necessary to encrypt data when it is transferred via the network and during
storage on the system of the data user. We similarly have to protect the privacy policy itself
from alterations by the data user.

Client-side enforcement component - it was already discussed in Section 2.3 and 2.5, that the
enforcement of data-use policies in a distributed environment requires a protection frame-
work that implements client-side protection mechanisms, where each instance of the pro-
tection system supports the common access control scheme.

The following sections will model a privacy protection framework for the necessary privacy en-
forcement that makes private data available under a data owner-defined policy and uses a common
mechanism for the enforcement of this policy.

Important building blocks for a distributed privacy enforcement scheme are a distributed client-
side reference monitor implementation and the combination of the data use policy with the privacy
data to form a so-called sticky policy object. The protection scheme must effectively prohibit any
unauthorised data access. Authorised data use, on the other hand, should be influenced as little
as possible to achieve a high acceptance rate for the system. Data access is granted on data items
that are relevant to the data user and access to all other data items is denied. Enforcement of this
simple principle allows us to limit the consequences of unintentional misuse of data by authorised
data users.

4.1 Reference Monitor

It is our goal to reliably enforce data protection policies for private data that has been distributed
to different computer systems.

81

4 Privacy Enforcement Framework

A commonly used mechanism for the enforcement of access control decisions is the reference
monitor concept (see Definition 8, Anderson [1972]). A trusted system component (the reference
monitor) controls every request to system resources and can not be bypassed. The reference mon-
itor guarantees that access to private data conforms to the data access restrictions specified to the
privacy policy. It intercepts every user activity and allows the access request if the privacy policy
grants access and denies the request if the policy prohibits data access.

Figure 4.1 shows the reference monitor as the central component of the access control frame-
work. Auxiliary components provide user authentication, policy and data storage. Data access is
only possible via the reference monitor functions.

Application (User)

Policy Enforcement

Resource

Access Request

Permit / Deny Access

Policy Decision

Policy

User-Authentication

Reference Policy

Subject Information

Decision Request

Decision Response
Reference Monitor

Figure 4.1: Access Control Architecture - The Reference Monitor is structured in a Policy Decision
and a Policy Enforcement component. The access request of the data user is intercepted
by the Policy Enforcement and triggers a Decision Request to the Policy Decision. The
decision component will issue an appropriate Decision Response based on the evaluation
of the available policy. The enforcement component then grants or denies resource access
to the user in accordance with this policy decision.

Current distributed access control architectures, such as the UCONABC usage control model
[Park and Sandhu, 2004], recognise that it is not enough to provide access restrictions only at
the system or server where the data is initially stored. A client-side enforcement component is
necessary for comprehensive data protection, usage and information flow control.

Most commonly used operating systems implement access control schemes that follow the Dis-
cretionary Access Control model (cf. Section 2.3.2) and therefore require the presence of an
additional trusted policy enforcement element for privacy protection at the site of the data user.
Our protection system must implement client-side controls that enforce the owner-defined privacy
policy as data propagates from the system of the data owner to the data user.

82

4.1 Reference Monitor

Structure of the Reference Monitor

A reference monitor can be represented conceptually by two dedicated modules that can be sepa-
rately modelled and implemented:

Policy Decision Component - is responsible for the generation of an access control decision
based on the currently defined policy, the actual access request and the state of the envi-
ronment, such as the current time, authentication information, access location and possibly
other attributes.

Policy Enforcement Component - imposes the access control decision, thus allowing or disal-
lowing access to the protected resource. The enforcement component needs to be system
specific insofar as it interfaces directly with the actual execution environment.

This separation of components mirrors best practice requirements from Saltzer and Schroeder
[1975] and Woo and Lam [1993] that request the separating of policies from the mechanisms that
implement the policy decisions. The functional separation of decision and enforcement compo-
nent is beneficial in many ways:

(a) It enforces the externalisation of policies. The policies have to be defined explicitly and thus
can be evaluated, updated and changed independently of the implementation mechanisms.

(b) Implemented enforcement mechanisms can be system specific and still enforce a common
policy across different systems.

(c) The modularisation of reference monitor implementations allows the construction of flexible
solutions where the decision component can be implemented on a different machine and can
be consulted by many different enforcement implementations.

This functional separation is now an integral objective for the design of modern access control
schemes (cf. Section 2.5). It allows the construction of distributed policy enforcement systems but
may also be implemented within a monolithic system.

Client-side Reference Monitor

The implementation of a client-side reference monitor requires the controlled distribution of the
privacy policy and the associated private data. Distributed networking architectures can be broadly
categorised into peer-to-peer and client-server based architectures. Participating nodes in peer-to-
peer architectures simultaneously act as provider and consumer of resources, whereas client-server
architectures provide a clean separation of duties: servers offer access to their resources, whereas
clients request access to those resources.

Requests are initiated differently in the two architectures: a client-server system requires the
client to initiate the communication session - the server passively waits for a connection attempt by
a client. In peer-to-peer systems communication sessions can be initiated by every communication
partner.

83

4 Privacy Enforcement Framework

Peer A Peer B

Client A
Server

Initiates Communication

Accesses Resource

Client B

Initiates Communication

Accesses Resource

Initiates Communication
Initiates Communication

Reveals Private Data
Reveals Private Data

Peer-to-Peer Communication Model

Client-Server Communication Model

Access
Control

Access
Control

Access
Control

Figure 4.2: Access Control for different communication models - Stationary resources can be pro-
tected through a central access control model as it is implemented by existing client-server
infrastructures. Protection of data that is inherently mobile and might also be distributed
between peers requires a distributed client-side reference monitor at every data access
location.

These networking architectures typically deploy corresponding access control structures. Client-
server systems implement centralised access control mechanism at the server location. A connect-
ing client needs to authenticate itself and can than request access to certain resources on the server.
The corresponding access control component will be installed at the server and forms an access
decision based on a policy available to the server. There usually is no client-side reference monitor
installed that would further limit the use and redistribution of the accessed data.

This central access control model works well for stationary resources that can not be moved or
distributed freely. For resources that are inherently mobile, such as data, the central access control
model is not well suited. When data is accessed from a central repository it is usually copied to the
accessing client. There exist now two copies of the data that must be equally protected and thus
require a separate client-side reference monitor that is able to reference and enforce the access
policy. Similarly, when private data is copied between data users, a distributed access control
architecture is needed that can enforce the data privacy policy at every peer that is allowed to
access the data.

Figure 4.2 compares the two communication and access control models. It shows that each
peer needs to contain an access control module - a client-side reference monitor. This access
control module needs to be trustworthy and must enforce any access control decision specified
in the privacy policy. However, the deployment of a client-side reference monitor is only the
necessary condition for distributed privacy enforcement. The reference monitor must also be able
to reference the current privacy policy in order to derive an access decision. The next section
explains how this requirement can be solved.

84

4.2 Policy Storage

4.2 Policy Storage

The decision component of the reference monitor must be able to access the current privacy policy
to evaluate it, and inform the enforcement component about the access decision. The storage loca-
tion and distribution model for the privacy policy is an important design criterion that influences
the implementation of our protection framework. A client-side reference monitor evaluates the
policy whenever personal private data needs to be accessed and it is therefore necessary to easily
and reliably reference, retrieve and evaluate the corresponding privacy policy.

The privacy enforcement framework should provide protection under the assumption, that pri-
vate data could be copied between different data users. This means that it must be possible to
share the privacy policy (or a reference to it) together with the data and ensure that the reference
monitor can access the policy. Two principal alternatives exist for the storage location of access
policies:

Separated policy and data storage - private data and the corresponding policies can be stored
in different repositories and each client-side reference monitor instance consults the policy
store before an access decision is made. A policy repository offers a central point of ref-
erence for the policy decision component and allows the easy maintenance of a coherent
policy for all data objects.

This storage model has the advantage that the policy repository could be implemented as
a service that can be accessed by the data owner and the data user simultaneously, which
would ease the administration of privacy policies – it would be simple for the data owner
to change or revoke permissions. It must be ensured that the repository is reachable by the
reference monitor to derive an access decision and the reference to the policy is maintained
, when private data is copied between data users.

Combined policy and data storage - data privacy policies can also be stored together with the
data that this policy is protecting. A policy distribution method, which is well suited to han-
dle distributed policy and data storage, is the sticky policy concept (cf. Karjoth, Schunter,
and Waidner [2003]; Mont, Pearson, and Bramhall [2003]). The data access policy is stored
and distributed together with the data that it is protecting and therefore can always be refer-
enced.

The sticky policy paradigm provides a high level of flexibility for the dissemination of access
control policies. The direct attachment of the policy object to the data object allows the
creation of multiple protected objects with very focused policies. It becomes possible to
share similar data objects with different recipients and implement recipient-specific policies.
So could, for example, the policy grant temporal or unlimited access to the data object
depending on the trustworthiness of the recipient (cf. Section 3.4.4).

This model has the advantage that any policy can be directly referenced from the data and
can also move with the data when the data is copied or transferred between data users.
Having potentially multiple copies of data and policies in unknown locations makes policy
administration more difficult. The existence of multiple copies of policies and data can lead
to diverging policies, when changes are made to a subset of the distributed data and policy
items. It might become impossible to reliably revoke access to already distributed data. It

85

4 Privacy Enforcement Framework

is therefore advisable to limit the timeframe in which the data can be accessed by the data
user.

Figure 4.3 shows the interworking of the different policy enforcement components under the
sticky policy model. Access to data and policy is again mediated through the reference monitor.
The protected resource and its access policy are created, stored and referenced together. The
sticky object can be disseminated to different data users without having to fear that policy and
data become separated. If a sticky object is deleted, both data and access policy are removed from
the system.

Policy Enforcement

Resource

Permit / Deny Access

Policy Decision

Sticky Policy

Reference Policy

Decision Request

Decision Response
Reference Monitor

Figure 4.3: Access Control Architecture using Sticky Policies - The generic architecture is adapted
so that the data and the corresponding privacy policy are now contained inside a single
object. This architecture allows the controlled distribution of data under the assumption
that data and policies can only be accessed via a trusted reference monitor and will never
be separated during data usage.

When we analyse the binding between data and policies in the different storage models, we find
that the separated policy and data storage enforces only a weak connection between policies and
data. We find this storage strategy typically in data user-defined policies, where the common policy
of a data user organisation is stored, maintained and referenced throughout the organisation. If data
is shared across access domains, e.g. as part of a workflow that involves different organisational
entities, it becomes difficult to maintain the link between the data and the original privacy policy. If
the reference between the policy and the data breaks, the reference monitor can no longer enforce
the data access restrictions. This type of event can easily lead to a data breach as described by
Anton, He, and Baumer [2004].

The combined data and policy storage of the sticky policy enforces a strong binding between
data and policy. If data and policy are stored together, e.g. as an XML-file, all operations at
the file-level influence policy and data simultaneously. Policies stay attached to individual data
items as they are distributed to the intended data-users and can be much more focused than global
policies for all data objects. Policies stay connected to the data object as it is copied between data
users. Policy decisions can be made locally and do not depend on the reachability of the policy
store. We therefore decided to use in our implementation of the privacy enforcement framework a
combined policy and data store.

86

4.3 Data and Policy Protection

4.3 Data and Policy Protection

The security of our privacy enforcement scheme depends on the fact that only the trusted reference
monitor has direct access to the protected resource as well as to the included privacy policy. The
reference monitor reads and interprets the privacy policy and derives an access control decision that
allows or disallows the data user access to the data. If an attacker could otherwise extract private
data or alter the included policy, the privacy protection offered by our enforcement framework
would be lost. The attacker could then copy, alter and delete private data or change the privacy
policy to be less strict and allow data usage in ways that have not been authorised by the data
owner.

A scenario, where data access becomes possible without control of the reference monitor con-
stitutes a privacy violation and potential data breach. The consequences of privacy violations are
much more difficult to handle and contain than other computer security events. Recovery from
data breaches almost ever requires the identification and cooperation of all the involved parties.
Simple recovery measures such as the changing of passwords and sanitation of compromised sys-
tems can not restore the safe state of compromised private data, because copies have been made
of the data that might reside on systems outside the access of the data owner.

Protected Data Object

In order to guarantee that data access is only possible through the reference monitor it is necessary
to store the data and policy always in an encrypted form inside a protected data object. The choice
of encryption mechanism influences the security properties of our enforcement framework. Ideally
we could use a Public Key Infrastructure (PKI) that gives the data owner access to the public key
of the data user. In this case it is possible to use a asymmetric encryption mechanism such as RSA
[Rivest, Shamir, and Adleman, 1978] and encrypt the data under the public key of the data user, so
that only the reference monitor of the legitimate data user has access to the protected data object.
Another alternative might be the use of Identity-Based Encryption (IBE) that does not require the
sharing of the public key of the data user and instead derives a suitable encryption key directly
from the identity of the data user [Boneh and Franklin, 2003].

If we can not use asymmetric encryption because no PKI is available, or the data user has no
suitable public/private key pair, each trusted reference monitor could share a common encryption
key and use the Advanced Encryption Standard (AES) [FIPS PUB 197, 2001] to access the pro-
tected data object. This method is less secure than the asymmetric encryption mechanism, because
now all reference monitors share a common secret that might be extracted from the reference mon-
itor by a capable attacker. Countermeasures such as the use of a Trusted Platform Module (TPM)
as proposed by Sevinç, Strasser, and Basin [2007] are not yet widely deployed and usable.

We implemented two different solutions in our use cases. The protected data object for the
Personal Health Record is encrypted by a symmetric key that is shared between all instances of
the reference monitor, while the theme park scenario uses a public-private key pair based on RSA
to secure the distribution of location data. Sections 5.3.1 and 6.2.4 provide implementational
details for each approach. Figure 4.4 shows the data and policy access by different instances of
the reference monitor using a shared symmetric key.

For the rest of the chapter we assume that our encryption keys can be managed securely and have
not been compromised. If this assumption holds, the protected data object can now be distributed

87

4 Privacy Enforcement Framework

Reference Monitor 1 Reference Monitor N
...

Resource Policy

Protected Data Object

Figure 4.4: Data and Policy Protection using Shared Key Access - The Privacy Enforcement
Framework uses data and policy encryption to build a protected data object. A shared
encryption key could be used to restrict access to the protected object to trusted reference
monitors.

and copied freely between peers without privacy concerns.

Policy management

The reference monitor bases all access decisions on the privacy policy that is explicitly docu-
mented in the protected data object. The encryption and secure distribution of the protected data
object is not sufficient for the secure enforcement of privacy policies. The framework must also
support the secure creation and management of policies.

This means that the policy itself must be suitably protected and any access to the policy rule
base (e.g. for the purpose of policy creation and maintenance) must be made through the reference
monitor. Policy management must be guided by an administrative policy that only allows the
data user to make changes to the policy rule base. Otherwise an attacker could gain data access
indirectly through the manipulation of the access control policy. The attacker could then access
protected data and compromise data integrity through a number of different attacks on the policy
rule base:

Insertion Attacks - the attacker inserts an additional rule into the policy base that
grants data access, where previously no access was granted.

Deletion Attacks - the attacker deletes a restrictive rule in the policy base, thus al-
lowing access, where previously access had been forbidden.

Cut & Paste Attack - the attacker substitutes a restrictive policy with a copy of a
permissive policy that has been stored previously.

Denial-of-Service Attack - the attacker alters rules in the policy base, so that legiti-
mate use through authorised users is no longer possible.

88

4.4 User Authentication

4.4 User Authentication

Human users are represented in computer systems as principals - entities to which authorisations
are granted [Saltzer and Schroeder, 1975]. A single human user can be represented through dif-
ferent principals depending on the current role of the user, e.g. a human can be logged into a
computer system simultaneously as an ordinary user and as the system administrator.

It is the responsibility of the authentication system to create a reliable and secure association
between the identity of the human user and the principals known by the system. A subject is "a
process in a computer system that represents a principal and that executes with the privileges that
have been granted to that principal" [Shirey, 2007].

The reference monitor mediates data access based on the identity of the principal that is issuing
an access request to the resource. The decision component of the reference monitor bases access
decisions, amongst other factors, on the subject that issues the access request. For the secure and
trustworthy operation of the privacy protection scheme it is important that only fully authorised
subjects are able to access and manipulate resources. The policy enforcement therefore requires
the secure and reliable authentication of the human user that started this process. Otherwise it
might be possible for an attacker to gain illegitimate access to a resource through the adoption of
a spoofed identity.

The privacy enforcement framework presented in this thesis does not mandate the use of a
specific authentication mechanism. Several secure authentication mechanisms, such as public-
key, smartcard or password authentication might be implemented as long as they can securely
bind the user identity to the principal issuing the access request.

It is important to note that secure authentication is equally important for the identification of the
data user as well as the data owner. If a data user can spoof the identity of the data owner, it can
gain additional rights that would allow him or her to alter the privacy policy.

4.5 Application Program

The last major component of the privacy enforcement framework that needs to be discussed is
the application component. Privacy protection differs from traditional access control insofar, as
it introduces the special requirement that it is necessary to still enforce usage control restrictions
after the data has been released to the data user.

We already described that actions of the data user are carried out by the computer system
through processes that are associated with a principal known to the system. These processes typ-
ically belong to an application program that executes certain application-specific tasks under the
responsibility and control of a human user. The application program itself can not be a predefined
part of the privacy enforcement framework, since its implementation is usually domain specific
and not controlled by the framework. Therefore, the application is regarded as an untrusted com-
ponent that needs to be restricted in its interaction with the private data.

Once data access has been granted to the application, it must be guaranteed that private data
is only used according to the usage restrictions implied by the policy. The application must be
restricted in its ability to process, store, copy or forward data arbitrarily. It is the responsibility
of the reference monitor to restrict data-usage by controlling interactions of the application with
external processes and systems (e.g. making changes in the filesystem, writing to devices and

89

4 Privacy Enforcement Framework

network sockets, etc.).
A popular approach that limits the execution capabilities of untrusted applications on a host-

platform is the sandboxing of applications. The Java programming language first made this pro-
tection model popular, because it protected hosts from the potentially malicious actions of Applets
that were downloaded from a web-server and executed on the local machine [Gong, Mueller, Pra-
fullchandra et al., 1997]. Systrace [Provos, 2009] and AppArmor [AppArmor, 2007] are more
recent sandboxing approaches that restrict the capabilities of arbitrary application programs ac-
cording to a protection profile.

Chapter 5 “Java PrivMon - Privacy Protection for Personal Health Records” will introduce
a framework that uses a modified Java Security Manager to provide data privacy protection for
Java applications. It requires only minimal adaptation to existing application components and
can enforce the required data usage protection. It will be shown how privacy policies can be
dynamically mapped to Java policies in order to enforce the owner defined privacy policies. The
application component is started under the control of the Java Security Manager and thus can be
trusted to execute only functions allowed by the privacy policy.

Chapter 6 “Privacy Protection for Server-based Information Systems“ extends this work to also
offer privacy protection for server-based business applications that follow a tiered architecture
where different functions such as business logic, data access and data representation are separated.
We extended our reference monitor design to use Aspect-oriented Programming (AOP) and re-
flections to intercept data accesses in existing applications and provide a way to enforce data user
defined privacy policies for business applications.

4.6 Related Projects

The following section gives a short overview of alternative approaches that either directly targeted
at data privacy issues or exhibit interesting properties that have been tried in the implementation
of data privacy schemes. This is not a complete list of all available solutions and approaches, but
highlights interesting concepts that have had an influence on our work.

4.6.1 Key Concepts

Karjoth, Schunter, and Waidner [2003] describe a Sticky Policy scheme that allows the direct
association of a privacy policy with a data record, so that privacy requirements can be honoured
consistently by different data users and different processing systems. We make extensive use of
this concept for data and privacy storage in our privacy enforcement framework.

Lehmann and Thiemann [2006] have developed a field access analyser that is able to analyse
existing Java programs in order to determine the points in the program code where object methods
are accessed. Static policy checking code is inserted to enforce access controls in accordance with
the access-control policy for the program. In our work we choose to clearly separate the policy
enforcement from program execution. No access to the application source code is necessary for
the policy enforcement and policies can be expressed, evaluated and enforced independently from
the application.

90

4.6 Related Projects

4.6.2 Architectural Frameworks

Sevinç and Basin [2006] describe a formal access control model for documents based on the
sticky policy paradigm. In their work they focus on document related actions such as read, print,
change and delegate. Their model supports multiple owners and sub-policies for document parts
and takes document editing into account, where merging and splitting of document content also
influences the attached policies. Our work fits within their problem definition, but we focus more
on the issues of policy generation by the data owner and on implementation issues that need to be
resolved for practical deployment.

Mont, Pearson, and Bramhall [2003] propose a privacy architecture that uses sticky policies and
obfuscated data that can only be accessed if the requester can attest compliance with the requested
privacy policy for this data. Data access is mediated via a Trusted Third Party that can reliably
enforce time-restricted access. Our work aims to provide similar protection but does not depend
on functions provided by an Third Party. We use the functions of a trusted reference monitor to
enforce policies and provide data-flow protection.

4.6.3 Server-based Solutions

Author-X [Bertino, Braun, Castano et al., 2001] is a Java-based data protection solution that allows
the definition and enforcement of access restrictions on (parts of) XML-documents. It is a server-
based solution, where the document access is mediated by the access component, based on the
collocated authorisation store. Access can be restricted to certain parts of the complete document.
Author-X does not provide client-side data protection. Once data access has been granted, the data
user has complete control over the data.

Damiani, De Capitani di Vimercati, Paraboschi et al. [2002] developed an access control sys-
tem for XML documents that is able to describe fine grained access restrictions for the structure
and content of XML documents. Their system generates a dedicated user view according to the
permissions granted in a server-side authorisation file: the XML Access Sheet (XAS). The system
does not implement any control over data that has been released by the server to the client. Con-
sequently any data that can be read by a data user could be locally stored, copied and processed
by the client. The generated view restricts data processing for single action classes only, e.g. the
‘read’ action. No support is given for orthogonal action sets, e.g. restricting a document to be
read, but not to be printed.

4.6.4 Client and Server-based Solutions

Gupta and Bhide [2005] describe an XACML-based authorisation scheme for Java that is based on
the Java Authentication and Authorisation Service. The work describes a generic implementation
that extends the Java policy class with the ability to interpret XACML policies. While this work
allows the Java Security Framework to enforce permissions for different users of an application, it
might not be possible to enforce ORAC policies where different permissions need to be enforced
depending on the data object that is currently accessed.

The authors Hohl and Zugenmaier [2006] describe an implementation for data owner-based
privacy policies using DRM technology. The data owner sends private data to a service provider
and restricts the use of the data to fulfil a particular service. Once the data owner stops using the
service, the data is deleted from the server. The system provides only very limited action support.

91

4 Privacy Enforcement Framework

The data owner can grant the service to view and anonymise the data. The implementation is
based on the Microsoft Rights Management Service for Windows Server and therefore limited by
the enforcement functions provided by this particular platform. Data user and data owner must
agree to use the same server for the issuing of data usage permissions and server must be online,
in order to issue a license to the data user.

4.6.5 Expiring Data

A reoccurring demand for privacy protection is the ability to support expiration dates for dis-
tributed private data after which this data is no longer available.

Geambasu, Kohno, Levy et al. [2009] have developed a practical approach for the forced expi-
ration of data called Vanish. It protects private data by making it unavailable to any potential data
user after a certain time period and requires no actions from the data owner after the data has been
released. Vanish encrypts the private data locally using a secret sharing scheme [Shamir, 1979].
The key shares are distributed in the form of index entries across different large-scale distributed
hash tables (DHT) for P2P networks and the local copy of the data encryption key is deleted. A
special data access key is used to reference these individual indexes. This approach ensures that
after a certain amount of time less and less elements of the encryption key are available, as the
hash tables evolve and old hash entries are deleted. The access time for data decryption can be
influenced by modifying the threshold value for the used key sharing scheme. The developers of
Vanish have implemented a Firefox plugin for Gmail and other web sites and a Vanishing File ap-
plication which can be used to protect local content on computers. Vanish is safe against attackers
that may obtain a copy of the original, encrypted data.

The Vanish system operates under a similar assumption than our system: the data user is non-
malicious and has a mutual interest to safeguard the privacy of the shared data. It trusts the
legitimate receiver of the data not to make local copies of the unencrypted data and does not
protect against attacks, where a legitimate data user choose to forward or use the unencrypted
private data against the intentions of the data owner. It provides no usage restrictions or policy
support on the shared data other than the enforcement of an expiration date for the encrypted data.

4.7 Summary

The proposed privacy enforcement framework combines existing elements of distributed access
control systems and builds a new framework for the enforcement of owner-defined privacy poli-
cies. The framework is targeted at the controlled and secure distribution of private data – some-
thing that has been requested by privacy advocates [Stytz, 2005; Sevinç and Basin, 2006], but has
not yet become widely available for common usage.

We rely on a distributed reference monitor and a protected data object for the distribution and
access to private personal data under the assumption that the reference monitor implementation
can reliably enforce the defined privacy policy in arbitrary data access locations. Our protected
data object contains the private data together with the corresponding access policy. This simplifies
the referencing of the policy and enables fine-granular permissions for individual data items in the
protected data object. No central infrastructure or third-party is required for the determination of
the data access decision. This makes the framework useable in situations where no access to the

92

4.7 Summary

Internet is available.
The private data and corresponding Sticky Policy are protected through a suitable encryption

mechanism and form a Protected Data Object that can be stored and distributed freely between
potential data users without privacy concerns. The reference monitor must be installed at every
data access location and consists of a Policy Decision component that interprets the privacy policy
and a local Policy Enforcement component, which is responsible for the secure data access by the
data user. Data and policy access happens exclusively via the reference monitor and we assume
that every reference monitor is a fully trusted implementation. A suitable encryption and key-
sharing mechanism is implemented by all reference monitor instances.

93

4 Privacy Enforcement Framework

94

5 Java PrivMon - Privacy Protection for
Personal Health Records

The realisation of our Privacy Enforcement Framework requires the presence of trusted system
components at every data access location. A Client-Side Reference Monitor acts as such compo-
nent in our framework and it has the responsibility to reliably evaluate and enforce the data privacy
policies for the data owner.

The implementation and maintenance of a trusted, distributed reference monitor infrastructure
is the main challenge in our proposed privacy protection scheme, because every participating data
user needs to trust, install and maintain the necessary components. We therefore decided to base
our first implementation of the Privacy Enforcement Framework on a widely deployed, popular
and proven platform – the Java programming language and virtual machine concept. We assumed
that the Java Security Framework can be used directly for the enforcement of our privacy policies.
After some experimentation, we found, that our assumption was only partially true. The Java
Security Framework can be used for privacy enforcement, but we had to define and implement our
own extensions, such as a specific class loader that allowed us to bind different Java Protection
Domains to instances of a class.

This chapter describes our extensions to the standard Java and XACML mechanisms that are
used for the expression and enforcement of authorisations for distributed access to private personal
data. We assume that a reliable authentication mechanism is used for the identification of prin-
cipals in the system. Authentication issues will not be discussed further in this chapter, because
our use case has no special requirements that can not be handled by standard mechanisms and
therefore authentication issues are not in the scope of our research activities.

5.1 Java Security Architecture

The Java programming language provides a Security Framework that is aimed to protect the local
system from threats that may arise from the execution of untrusted Java code [Gong, Ellison, and
Dageforde, 2003; Oaks, 2001]. This security framework has its origin in the protection require-
ments for untrusted program code that is downloaded from Internet sources and executed on the
local system, such as Java Applets. Untrusted programs will be run under the supervision of the
Java Security Manager within a sandbox environment and are restricted in their access to system
resources. For each Java virtual machine there exists exactly one instance of the SecurityMan-
ager class.

With the introduction of the Java 2 Security Architecture the early sandbox model became much
more refined and flexible [Gong, Mueller, Prafullchandra et al., 1997]. The first version of the
language specification restricted the control of the Java Security Manager to Java applets that had
been downloaded from a web-server. The Java 2 security architecture removed this restriction and
it is now possible to control the execution of all Java programs. Whereas before the support for fine

95

5 Java PrivMon - Privacy Protection for Personal Health Records

Programm Code

Java API

Operating System

Native
Libraries

Security Manager

Access Controller
Program

Resouces

Figure 5.1: Java Security Architecture - The Security Manager and the Access Controller are the
main building blocks of the Java Security Architecture. The Access Controller has been
introduced with the Java 2 Security Architecture. [Oaks, 2001]

grained authorisations required the sub-classing and customising the SecurityManager class, it
is now possible to use a hierarchy of typed and parameterised access permissions for this purpose.
The SecurityManager now only provides the interface that is used by the core Java API. The
implementation of the necessary mechanisms has been moved into the AccessController and
its related classes, as can be seen in Figure 5.1, where the different elements of the Java Security
Architecture are shown.

5.1.1 Invoking the Java Security Manager

The Java 2 security framework allows the definition of application-specific security policies for
local programs. However, local programs are not started under the control of the Java security
manager by default. This means they are fully trusted and operate with the full set of rights to
access any resource on the system. To restrict the permissions of a local program, it must be
explicitly started under the control of the security manager. This can either be done through the
-D java.security.manager command line option or programmatically with the code given in
the following listing:

1 SecurityManager sm = System.getSecurityManager();
2 if (sm == null) {
3 sm = new SecurityManager();
4 System.setSecurityManager(sm);
5 }

Listing 5.1: Programmatically invoking the Java Security Manager

5.1.2 Java Policies and Permissions

The default Java policy implementation uses text-based configuration files (java.policy) to de-
termine the actual set of permissions for a program. The policy file(s) grant only positive permis-
sions to avoid the problem of conflicting specifications. Grants specify what permissions are given
to an application from a specified source and executed by different principals. Java supports fine
grained permissions for method calls that try to access the filesystem, network sockets, specific
system resources and the Java virtual machine itself.

96

5.1 Java Security Architecture

Listing 5.2 shows the basic format of a grant entry in the java.policy file. The codeBase
identifies the location of the code source, the signedBy value points to a certificate stored in the
keystore and the principal value specifies the subject that is executing the code. The signedBy,
codeBase, and principal values are optional. If they are omitted from a grant, it means that this
grant applies to any code signer and principal, and it does not matter where the code originated
from.

1 grant signedBy "signer_names", codeBase "URL",
2 principal principal_class_name "principal_name",
3 principal principal_class_name "principal_name",
4 ... {
5

6 permission permission_class_name "target_name", "action",
7 signedBy "signer_names";
8 permission permission_class_name "target_name", "action",
9 signedBy "signer_names";

10 ...
11 };

Listing 5.2: Basic format of a grant entry in the java.policy file

5.1.3 Java Protection Domain

The default implementation of the Java Security Framework uses different classes to represent the
individual elements of an access control policy. The Permission class contains the name and a
list of possible actions of the permission. Individual permissions can be grouped together by the
PermissionCollection class. This makes the handling of permissions easier, because usually a
whole set of permissions applies to an application.

Permissions are granted depending on the origin of the code, a potential code signer and the
user of the application. The Principal class represents an authenticated user or service that is
associated with the current execution context of the code. The CodeSource class encapsulates the
origin of the code in the form of an URL and the set of certificates that have been used to sign the
code.

When a class is loaded its protection domain is set and can not be changed later. The Java
ProtectionDomain class encapsulates the following [Gong, Ellison, and Dageforde, 2003, p. 75]:

• A CodeSource describing the code origin and signing certificates.

• A Principal array that may be set during execution to indicate who is executing
the code

• A ClassLoader reference, possibly null, to the class loader defining the class.

• A PermissionCollection containing permissions granted to the code stati-
cally when the class was loaded. The dynamic permissions for the protection
domain are determined by consulting the policy.

The ProtectionDomain is determined and irrevocably bound to the class at class-loading time
by the Java class loader. Protection domains can be used to isolate different applications within
the Java runtime environment. “This could be done by using distinct class loaders to load classes

97

5 Java PrivMon - Privacy Protection for Personal Health Records

belonging to different domains in such a way that any permitted interaction either must be through
system code or explicitly allowed by the domains concerned.” [Gong, Ellison, and Dageforde,
2003, p. 79]

5.2 Java PrivMon Architecture

The Java runtime environment already provides reference monitor functionality for the safe exe-
cution of untrusted code and it was our aim to re-use this proven mechanisms for the enforcement
of privacy policies. We had to solve the problem that all the existing Java security mechanisms are
class-based. This means that policies and permissions are bound to the codebase of the program
and not to the principals that executes the code or the resources that are accessed by this pro-
gram. If we wanted to use the existing Java Security Framework for the enforcement of privacy
policies, we had to extend it, to support different security policies for different code instances.
Instance-based protection was needed, because the same application might be used to access dis-
tinct data-sets with different privacy policies.

Figure 5.2 shows the main elements of the Java PrivMon that closely match the architectural
framework presented in Chapter 4 Privacy Enforcement Framework:

DOM
Data Object

Process XACML
Response

User
Authentication

List Resources

Resource Browser Policy Enforcement

Access Request

Custom Class
Loader

Generate XACML
Request

Policy Decision

Policy Decision
Algorithm

XACML
Protected Data

access XML Data Object

Application

Java Security Manager

Java PrivMon

Figure 5.2: Java PrivMon Architecture - The Java PrivMon reference monitor consists of three dis-
tinct elements: Resource Browser, Policy Decision and Policy Enforcement. Access to
private data is initiated from the Resource Browser. The Policy Enforcement starts an
application component under the control of the Java Security Manager with the set of
permissions that have been derived from the privacy policy by the Policy Decision com-
ponent.

98

5.3 Personal Health Records

The private data of the data owner is encoded into a suitable XML record format and stored
together with the corresponding policy as a single, encrypted Protected Data Object. Privacy
policies are specified using the eXtensible Access Control Markup Language [XACML-2.0, 2005].

The Policy Decision component (see Section 5.4) evaluates the XACML privacy policy that has
been defined by the data owner and generates an access decision.

The Policy Enforcement (see Section 5.5) is conceptionally different from the simple reference
monitor concept. Instead of directly intercepting data access from the application, the policy en-
forcement of the Java PrivMon relies on the Java Security Manager to intercept data access and
enforce the privacy policy. It was our idea to provide a mapping between XACML policies and
Java permissions. The Policy Enforcement component builds a controlled execution environment
that is entirely based on the existing Java Security Framework. It builds a dedicated Protec-
tionDomain and starts the application under the control of the Java SecurityManager.

The Resource Browser (see Section 5.6) is an additional component that has not been discussed
previously. It lets the data user interact with the private data in order to select interesting data
items from the Protected Data Object.

All the components of the Java PrivMon are fully trusted, this means they have full access to
the private data in the Protected Data Object. The following sections explain the architectural
components of the Java PrivMon in greater detail.

5.3 Personal Health Records

The discussion of the features of a privacy protection scheme benefits from a practical example
that clarifies the concepts and determines crucial features that need to be available. One applica-
tion domain where privacy issues are obvious and have been discussed, long before widespread
electronic processing of patient data became available, is the medical domain.

Practitioner records contain sensitive personal data about patients and special provisions have to
be made for their protection. Typical health care situations require interactions between different
actors, which must enter a very private trust-relationship with the patient in order to make a di-
agnosis, administer treatment, provide rehabilitation and aftercare. A study conducted by Evered
and Bögeholz [2004] showed the complexity of modelling an access control system for even a
small health information system.

In the past, medical records have been kept at practitioners offices and it was seldom possible
to access previous examination results made by other practitioners. With the ability to store and
access health records electronically, the idea developed to create Personal Health Records (PHRs),
where different health related information about a single person can be kept together. The Personal
Health Working Group of the Markle Foundation defined a Personal Health Record as following:

The Personal Health Record (PHR) is an Internet-based set of tools that allows people
to access and coordinate their lifelong health information and make appropriate parts
of it available to those who need it. PHRs offer an integrated and comprehensive
view of health information, including information people generate themselves such as
symptoms and medication use, information from doctors such as diagnoses and test
results, and information from their pharmacies and insurance companies. Individuals
access their PHRs via the Internet, using state-of-the-art security and privacy controls,

99

5 Java PrivMon - Privacy Protection for Personal Health Records

Electronic
Health Record

Patient Data
1

1

Practitioners
1

1

Rule

Target

XACML-
Policy

Subject

Resource

Action

0..*

1

0..*

1

0..*

1
0..*

1

1
0..*

1
1

Practitioner
0..*

1

Demographic
Data

1

1

Examination
0..*

1

Figure 5.3: Data model of a Personal Health Record - The PHR is stored as a semi-structured XML-
document. The document consists of a XACML policy part that encodes the access policy
for the data part of the document. Medical data is stored in the data part of the document,
which is structured as a document tree, where each practitioner owns a separate branch.

at any time and from any location. Family members, doctors or school nurses can
see portions of a PHR when necessary and emergency room staff can retrieve vital
information from it in a crisis. People can use their PHR as a communications hub:
to send email to doctors, transfer information to specialists, receive test results and
access online self-help tools. [Markle Foundation, 2003]

According to the definition, a PHR has the following distinct characteristics that differentiate it
from other electronic health records that are kept by doctors or health care organisations:

• Each person controls his or her own PHR. Individuals decide which parts of their PHR can
be accessed, by whom and for how long.
• PHRs contain information from the patients entire lifetime.
• PHRs contain information from all health care providers.
• PHRs are private and secure.
• PHRs are transparent. Individuals can see who entered each piece of data, where it was

transferred from and who has viewed it.
• PHRs permit exchange of information with other health information systems and health

100

5.3 Personal Health Records

professionals.

Several implementations of PHR systems exist and can be used by patients. Google [Google
Health, 2008] and Microsoft [Microsoft HealthVault, 2010] are the largest players in this field,
however in Germany also health insurance companies provide Personal Health Portals for the
storage of PHRs [Barmer, 2010].

The German government has mandated the use of patient smart cards for access to the general
health care system [GKV 2003, 2003]. The health cards will have the ability to store personal
health record data of the patient, so that it can be accessed and exchanged by different practitioners
participating in the treatment process and act as a repository for future diagnosis.

Despite promised privacy controls, most PHRs have only rudimentary privacy settings. Google
Health allows to share a health profile with arbitrary other users. Profile sharing is limited to 30
days and can be revoked earlier; a data user can make no changes to the shared profile. However,
no other restrictions exist: The data user has full access to any data that is currently stored in the
profile. They can print or export the profile to a PDF document and can download files and images
that have been stored in the profile by the patient without restriction. Profile sharing is complete,
which means that no fine grained policies are supported that would limit the visibility to certain
items in the profile.

In the case of Google Health, the data owner has to trust the data user that the data in the shared
profile is not copied, printed, stored and reused for purposes never intended by the patient. The
potential life-long history of the patient data and the ability to link external events with the health
record would make the patient profile a favourite target for data correlation attacks. Different
direct or indirect attacks can be envisioned and can be executed with or without the cooperation
of the data owner. For example, one could imagine that employers force their employees to allow
access to their Google Health profile as part of their job application and store the available data
for later reference.

5.3.1 Data Model of the Personal Health Record

Several standards exist for the structured data representation in Electronic Health Records (EHRs)
(cf. CEN/TS-15211 [2006]; ISO/HL7-21731 [2006]). Since the focus of this work is not the exact
representation of medical data, but rather the creation, management and enforcement of access
decisions, the PHR is represented as a simple XML document structure, which is flexible enough
to incorporate standard-based data representations if necessary. Health record data are stored in a
structured way and data access policies can be applied to these structures.

Hierarchical grouping is a widely used concept in the field of access control. It minimises
the effort for policy management - rules can be defined and enforced at the group level, thus
minimising the number of rules in the policy.

All treatment records generated by the same practitioner are stored as virtual examinations in
the document tree (cf. Figure 5.3). All treatment records generated by the practitioner (a 1 : m
relationship between practitioner and examination is assumed) are stored under this particular
node and form a single zone of trust similar to the existing patient – practitioner relationship. The
practitioner, as data author, has specific access rights for his or her sub-tree in the personal health
record of the patient. These rights can be specified as a generic rule affecting all groups of a certain
type and are applied consistently for every instantiation of this type.

101

5 Java PrivMon - Privacy Protection for Personal Health Records

5.3.2 Protection of the Personal Health Record

The patient data and the included XACML policy form a Protected Data Object (cf. Section 4.3).
Our prototypical implementation uses the XML Encryption standard [XML Encryption, 2002]
to protect data and policies from access and modification when they are stored on the system or
during transit.

XML Encryption is a very flexible encryption standard that can be used to encrypt individual
XML elements, XML elements including their child elements or whole XML documents. Our
system uses a symmetric encryption key that is shared between all reference monitor instances
in the framework and encrypts privacy sensitive data in the PHR using the Advanced Encryption
Standard (AES) [FIPS PUB 197, 2001] in Cipher Block Chaining (CBC) mode.

The current implementation does not offer a very high level of security and it may be possible to
extract the shared key through memory or byte-code analysis. Since we have not implemented any
re-keying mechanism the security of our Protected Data Object can be broken. The implementa-
tion can be made much more secure through the inclusion of a Trusted Platform Module [Trusted
Computing Group, 2007] for secure key storage and encryption and decryption support.

5.4 Policy Decision Component

Owner-defined policies in our privacy enforcement architecture are described using XACML and
must be evaluated at the time of data access in order to determine the access decision. It is the
responsibility of the Policy Decision component to evaluate the current policy and generate an
access decision through a deterministic policy evaluation algorithm.

We used an existing Java-based XACML implementation that had been provided by Sun un-
der a liberal open-source license [SunXACML, 2006]. This implementation already supports the
main elements of XACML-2.0 [2005] and can be modified and extended freely. We implemented
our priority-based policy combining algorithm for the support of precedence relationships within
policies (cf. Section 3.5) and further extended the capabilities of the XACML language to support
dynamic referencing, as will be described in Section 5.4.3.

5.4.1 Extended Authorisations

It is a distinctive feature of the use case that data ownership and authorship for PHRs are shared
between patient and practitioner. The principals in the medical use case have shared responsibili-
ties and rights that are derived from the legal context of medical practice. While the patient is the
owner of the data, he or she is not the author of medical data. Only authorised practitioners are
allowed to create medical entries in the repository. Otherwise it would be possible for the owner
of the PHR to forge examination results, which might lead to misdiagnosis or other unintended
consequences.

We model this distinction through the additional role of data author which is assigned to the
diagnosing practitioner and gives special rights to this role:

102

5.4 Policy Decision Component

Definition 12: Data Author

The data author is the subject that contributes medical data to the Personal Health Record of
the data owner. Information about the data author is recorded so that it can be clearly identified.
Data authors should always be able to access the data that they have created themselves.

The data user is usually a practitioner, who wants to access a prior diagnosis or treatment report
that has been created by a different author. Other data users, such as physiotherapists, pharmacists,
etc., could be supported but are not explicitly mentioned in the current design.

5.4.2 Use Case Policy Example

The following list of rights and restrictions explains some essential properties of our implementa-
tion of a PHR policy:

Patient rights and restrictions The patient is the owner of the Personal Health Record and
administrates the sharing policy for the document. Instead of the sharing policy by Google Health,
which reveals the complete document, our policy model supports fine grained control, where the
patient can allow and restrict access to different parts of the document.

• Patients can grant access rights for practitioners to read examination entries of other practi-
tioners

• Patients can grant the right to export entries from the health record into the medical infor-
mation system of the practitioner

• Patients have no right to create/modify entries in the Patient Data branch of the document.

Practitioner rights and restrictions In our use case, practitioners can add medical data from
examinations and treatment processes to the electronic repository. For this purpose the repository
is sub-structured into separate compartments that will be guarded by an appropriate access policy.
The implementation of a suitable policy-set guarantees the same level of privacy between the
different visits to practitioners that the patient can currently expect.

• Practitioner can create new examination entries in his/her practitioner sub-tree

• Practitioner can read examination entries from his/her personal practitioner sub-tree

Use of prioritised Sub-Policies for Policy Management

We use our Privacy Policy Precedence Relation (P3R) from Section 3.5 to define different priori-
tised sub-policies that are evaluated by the Policy Decision Point:

• A default policy is attached to the PHR as soon as it is created and can not be altered by the
data owner. The default policy will be a ‘closed’ policy that denies every data access that is
not explicitly allowed.

103

5 Java PrivMon - Privacy Protection for Personal Health Records

• The owner policy rules can be modified by the patient to reflect the privacy preferences of
the patient. For example, a patient grants a practitioner access to the examination results
from a previous period of illness.
If the owner policy is deleted, the PHR will again be protected by the default policy.

• The safety policy is not under the administrative authority of the data owner and describes
authorisations that need to be guaranteed, such as the Data Author Rule shown in Listing 5.3.
Other examples are the rules that ensure that the patient as data owner can always access the
stored data, but is not able to modify medical data.

5.4.3 Dynamic Referencing and XPath Evaluation

Based on the requirements of our use case, new resource-nodes and permissions can be added
and deleted from the XML document-tree at any time. We therefore need to base authorisations
on XML attributes within this dynamic document structure and have to find, access and process
XML attribute values as part of the XACML policy evaluation.

An example for this requirement comes directly from our use case, where we gave a data author
the right to access data that had been provided by him or her. The PHR contains the identities of all
the practitioners that have contributed to the patient health history. In order to allow access to the
sub-tree of the health record that contains the data that has been provided by this data author, we
need a rule that compares the current data user with the recorded practitioner-id of the currently
selected resource sub-tree.

The XACML standard provides XPath expression-based functions for the selection of XML at-
tributes and uses the <AttributeSelector> element to identify a particular attribute value based
on its location in the request context. The RequestContextPath attribute of the <Attribute-
Selector> element takes a static XPath expression and evaluates it to a bag of values, given by
the DataType attribute. However, this function has the drawback that the attribute value for the
RequestContextPath attribute handles only fixed XPath expressions that must be fully known at
policy creation time.

In our example this does not work, since we need to evaluate the request relative to the cur-
rently selected resource. We therefore had to define and implement a new XPath-based function
that enables dynamic referencing and comparing of XML nodes relative to the currently selected
resource.

Our function <function:xpath-node-element-x500-compare> takes two arguments:

• The first argument is of data type: urn:oasis:names:tc:xacml:1.0:data-type:x500Name
• The second argument is of data type: http://www.w3.org/2001/XMLSchema#string

and this argument is interpreted as an XPath expression and evaluates to a
urn:oasis:names:tc:xacml:1.0:data-type:x500Name

This function allows us to dynamically create XPath expressions for the second argument, using
the standard XACML string manipulation functions. In our case we concatenate a partial location
path with the currently selected resource in order to access an element relative to the currently
selected one. Both arguments of the function are treated as X500Name-values. The function com-
pares the arguments and returns the result of the comparison as a boolean.

104

5.5 Policy Enforcement Component

Listing 5.3 shows the application of this function in a specific policy rule that grants data authors
access to their own sub-tree in the PHR. If there is a match between the subject-id of the access
request and the practitioner-id of the selected resource, the function evaluates to true and
data access is granted.

1 <Rule RuleId="dataAuthorRule0" Effect="Permit">
2 <Target>
3 <Subjects>
4 <AnySubject />
5 </Subjects>
6 <Resources>
7 <AnyResource />
8 </Resources>
9 <Actions>

10 <AnyAction />
11 </Actions>
12 </Target>
13
14 <Condition FunctionId="function:xpath -node -element -x500 -compare">
15 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:x500Name -one-and-only"

>
16 <SubjectAttributeDesignator DataType="urn:oasis:names:tc:xacml:1.0:data -

type:x500Name" AttributeId="urn:oasis:names:tc:xacml:1.0
:subject:subject -id" />

17 </Apply>
18 <Apply FunctionId="urn:oasis:names:tc:xacml:2.0:function:string -concatenate">
19 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string -one-and-

only">
20 <ResourceAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0

:resource:resource -id" DataType="http://www.w3.org/2001/ XMLSchema#
string" />

21 </Apply>
22 <AttributeValue DataType="http://www.w3.org/2001/ XMLSchema#string"

>/../../../../@id </AttributeValue >
23 </Apply>
24 </Condition>
25 </Rule>

Listing 5.3: Default Permit Rule for Data Authors

5.5 Policy Enforcement Component

The Policy Enforcement component is a very important item in the privacy enforcement frame-
work, because its enforcement properties strongly influence the ability to write meaningful policies
and have consequences for the security and trust that such a framework can provide. The enforce-
ment mechanism must support the separation of policies and protection mechanisms [Saltzer and
Schroeder, 1975; Woo and Lam, 1993], and must be flexible in its deployment on different com-
puting platforms. Based on the requirements of our use case, it is necessary to support access
control restrictions that work at the sub-document level and enforce different access restrictions
for different document parts.

The Java programming language has been build from the ground up with a dedicated security
and trust model that supports the fine grained specification of access permissions for different
system resources. It also has an efficient and tested reference monitor in the form of the Java
Security Manager.

105

5 Java PrivMon - Privacy Protection for Personal Health Records

We therefore developed the idea to implement a mapping between XACML privacy policies and
Java permissions and use the existing Java Security Manager to enforce privacy protection at the
level of Java permissions. Our own Policy Enforcement component translates the XACML privacy
policy into a corresponding set of Java permissions, which is the basis of a dedicated Permission-
Collection. It then binds this PermissionCollection to the application class that is processing
the private data and starts the application under the control of the Java SecurityManager.

The enforcement of privacy restrictions at the level of the Java virtual machine has many advan-
tages: We require only very little adaptation at the application level. We can work with untrusted
application code-bases, because the Java Security Manager will enforce the necessary access pro-
tection. No application code checks are necessary, a method-call succeeds if access is granted and
fails with an exception from the Java security framework if it has not the necessary permissions.

Several problems had to be solved in order to build a practical privacy enforcement from this
ideas. Java permissions are typically class-based (all application instances share the same policy
setting), but we wanted to restrict the application depending on the user and the data that this
application is accessing. A second problem is that XACML policies are much more expressive
than Java permissions. A suitable translation had to be found and it needed to be shown that Java
permissions have sufficiently strong protection properties for the expression of privacy policies.

5.5.1 Enforcing XACML-Policies through the Java Security Manager

The Java security manager can not directly enforce our XACML privacy policy. We need to map
the XACML policy actions into a corresponding set of Java permissions, so that our privacy policy
can be enforced through the Java Security Framework. It therefore becomes the responsibility of
our policy enforcement component to generate an appropriate PermissionCollection from the
XACML privacy policy, bind this PermissionCollection to the application code and safely
launch the application program under the protection of the Java security manager.

The permissions of a Java application are normally derived from the standard java.policy file,
which is not a very flexible way to handle dynamically changing permissions. Our enforcement
framework needs to change this standard behaviour and derive the set of permissions for the Per-
missionCollection from the XACML policy of the currently accessed data object. Two alterna-
tives exist to base permissions for Java classes on XACML policies rather than the java.policy
file:

1. We could write a new implementation of the Policy class that derives permissions directly
from XACML policies, rather than policy files and uses the standard Java class loader, or

2. we could implement our own class loader that is able to assign a custom PermissionCol-
lection when we load the class. The PermissionCollection will be derived from an
XACML policy by our own code and does not use the standard Policy class.

Writing a new Policy class would allow us to derive a PermissionCollection directly from
XACML. This PermissionCollection would then become part of a ProtectionDomain and
could be bound to the application code via the Java class loader (see Section 5.1.3). The drawback
of this solution lies in the fact that this PermissionCollection applies equally to all instances
of the application code, because a normal class loader caches the ProtectionDomain and reuses
it for all instances of the class.

106

5.5 Policy Enforcement Component

We therefore choose the second approach and implemented our own custom class loader.1 Each
ProtectionDomain also includes a reference to the class loader that was used to load the class. If
we can use a different class loader instance for every application instance that we load, we have the
ability to differentiate protection domains and assign different policies for application instances.
Section 5.5.3 describes the exact changes to the Java class loading process that is implemented
in our solution. When we use the Java security manager for policy enforcement and want to
bypass the Java Policy class, we also need to adapt our XACML policy evaluation strategy. A
policy decision request is normally issued at the time when an application function accesses the
protected resource. This is also the case within the Java Security Framework. The Java security
manager consults the PermissionCollection of the current ProtectionDomain to make an
access decision. The ProtectionDomain, however, must have been determined and set already at
class loading time.

We therefore have to translate our XACML policy into a Java PermissionCollection before
a new application instance is loaded. This transformation requires the issuing of an XACML de-
cision request for the currently requested resource, user and every potential action. The policy
decision included in each XACML response is then used to populate the Java PermissionCol-
lection. If an action is granted an adequate permission is added to the PermissionCollection
and left out otherwise. The peculiarities of this translation process will discussed in the next
section.

The timing of the decision requests is problematic, because when we issue the XACML requests
we do not yet know which methods will be invoked later in the application program. All we
know is the current user and the resource that needs to be accessed. We solved this problem in
the following way. Our Policy Decision component determines an XACML policy decision for
the complete set of actions that are supported within our policy. Several XACML requests are
executed in rapid succession, which evaluate every potential action for the currently active data
user. This action set is currently static and includes the read, copy, save, print, append and delete
action, but could also be determined dynamically from the consulted XACML policy object.

5.5.2 Translating an XACML-Policy into Java Permissions

The translation of the XACML policy in Java permissions generates a restricted execution envi-
ronment that enforces access control decision through the Java security manager without support
from the application itself. The application can implement a full set of functions for data handling
without awareness or consideration for the specific privacy policies that will be enforced by the
security manager.

This policy translation process, is not without problems. Java policies and XACML policy
differ in their level of expressiveness. While an XACML policy can express abstract concepts of
subjects, resources and actions, a Java policy needs to be a concrete instantiation of that policy that
can be enforced within the current runtime environment. We therefore have to map our XACML
decisions into corresponding Java permissions that can be enforced by the Java security manager.
This mapping is not arbitrary and we need to make sure that the concepts that are expressed in our
XACML policy match the enforcement properties of the Java Security Framework. Furthermore,
there might be certain actions that can not be expressed as simple single-step permissions or might

1A first implementation was developed as part of the diploma thesis of Stefan Geiß [Geiß, 2007]. The system was
later extended to support explicit priorities for sub-policies and the corresponding conflict resolution approach.

107

5 Java PrivMon - Privacy Protection for Personal Health Records

require additional support from the execution environment. An example is the append action for
non-sequential XML documents that can not be enforced at the level of the Java FilePermission.

Such actions can only be partially mapped to a corresponding Java permission and need ad-
ditional enforcement support from the policy enforcement framework or the application itself.
Which requires that we need to trust the application to implement and enforce access checks in the
methods that handle private data. Table 5.1 shows the mapping that we use to translate XACML
policy responses into Java permissions.

Table 5.1: Mapping of XACML policy actions against Java Permissions
XACML policy actions

read copy save print append delete

Ja
va

Pe
rm

is
si

on

AWT:accessClipboard x
Runtime:queuePrintJob x

FilePermission:read x
FilePermission:write x x
FilePermission:delete x

Semantics of action attributes and data-flow protection

One extended goal for our privacy enforcement framework is the support for data-flow protection.
If our application issues a function call that is not supported under the current access policy, the
Java security manager intercepts and blocks the execution of this call. However, this behaviour
alone does not yet enforce data-flow protection.

As we have seen from the example of the Discretionary Access Control (DAC) model in Sec-
tion 2.3.2, if we grant the permission to read a particular file, this also gave the user the ability
to redistribute the file-content, because we could not further restrict the access to the filesystem,
the network or the printing system. The execution environment of the Java sandbox allows the
definition of such restrictions depending on the sensitivity of the accessed data. If we want to
enforce data-flow protection, we can define of a very narrow meaning for the granted actions and
can enforce them as described in the following:

Read The application has read-access to the protected resource. The data can be
transiently visualised on the local system, such as displaying it on-screen for the
purpose of reading or viewing by a human user. The data can not be used for
any other purpose, such as writing it to a file under the control of the data user.

Write/Save/Append The application can write to the protected resource. User input
or other data accessible to the application can be written to the protected re-
source. It needs to be further defined if write-access also implies the ability to
delete and/or modify existing data or if new data can only be appended to the
existing data.

Print The application has read-access to the protected resource. The data can be
processed and send to the system printer.

108

5.5 Policy Enforcement Component

Execution Environment
(operations)

Application

Reference Monitor
(permissions)

PrinterProtected
Document Document Screen

read write write writewrite

read copy print readwrite

Figure 5.4: Restricted application execution - The reference monitor implements and enforces a
narrow action semantics to support data flow protection for specific access primitives.

Copy The application can read-access the data. The data can be further processed
and copied to resources outside the protected resource. Data flow is no longer
protected, although it might also be possible to copy policy and data owner
information and create a new Protected Data Object (see the work of Sevinç and
Basin [2006] for an extended discussion of such functionality).

Figure 5.4 shows how this actions could be implemented in the protection environment of the
Java Security Framework. If the policy defines data-flow protection (authorising read-only data
access), the reference monitor restricts the interaction of the application with external processes,
files, devices such as printers, remote filesystems and network sockets and the system clipboard.

The definition of a narrow meaning for granted actions has the benefit that this model supports
the intuition of the data owner. Because in most real-world situations restricting data access to
read-only is associated with the property of data confinement and restricted distribution. Under
the narrow meaning, the copy action is the only action that breaks data-flow restrictions. But even
here can the data owner trust its intuitive understanding of the policy and can grant this permission
only if the data user is fully trusted to handle copying and forwarding of private data.

5.5.3 Assigning Instance-Level Permissions

The current Java Security Architecture is targeted towards class-based policing. Trust is attributed
to the origin of the code and not to the running instance based on this code. This behaviour is
a consequence from the distinctive Java threat model which attributes trust on the creator of the
code and severely restricts permissions for code that stems from unknown sources such as Applets

109

5 Java PrivMon - Privacy Protection for Personal Health Records

that have been downloaded from the Internet. The application user, on the other hand, is fully
trusted to run and operate any program on his or her computer and modify the Java policy settings
accordingly.

For the realisation of the Owner-Retained Access Control (ORAC) we need to make changes in
this trust model. We now want to limit access to resources depending on the privacy policy of this
resource and need to limit the actions of the application user. This means that the reference monitor
has to enforce different policies depending on who is accessing a resource (the data user) and the
privacy settings of this particular resource. The application (code source) no longer determines the
applied protection preferences. We may even invoke the same application code while enforcing
different privacy policies and protection preferences.

An instance-based policing is necessary to distinguish between multiple invocations of an ap-
plication that accesses different data items with varying privacy policies. Data users need to be
restricted in their actions, based on the privacy policy of the data that they are trying to access.
When a data user accesses different data objects during one session, it becomes necessary to en-
force more than one access policy simultaneously and keep application instances separate.

We already mentioned that we decided to develop our own class loader for the privacy enforce-
ment of XACML policies. The assignment of a new ProtectionDomain to a class is only possible
at class loading time. It is important to know that Java provides no mechanism to change or re-
voke a ProtectionDomain after the class has been loaded, so it should not be possible for the
application to break out of the Java sandbox. We started our implementation with the extension
of the ClassLoader class. The ProtectionDomain class has at least two different constructors,
whereby one of them ignores any permissions defined by the java.policy file and creates a static
set of permissions. Our class loader overrides the getPermissions() method, which allows us
to create the PermissionCollection directly from the decisions of our XACML policy.

The default implementation of the loadClass() method in ClassLoader loads a class in the
following order (cf. Gong, Ellison, and Dageforde [2003]):

1. Call findLoadedClass() to check if the class is already loaded. If this is the case, return
that object. Otherwise,

2. call the loadClass() method of the parent class loader, in order to delegate the task of class
loading to the parent (this is done to ensure that system classes are only loaded by system
class loaders).

3. If none of the parent class loaders in the delegation hierarchy is able to load the class, the
findClass() method of this class loader is called in order to find and load the class.

Dynamic policy enforcement requires the construction of a new ProtectionDomain for every data
object that will be accessed. Under the default behaviour of the loadClass method, the existing
class would be found and re-used and we would end up with the same ProtectionDomain for
each application instance.

This behaviour needs to be changed when we want to support instance-based privacy policies.
In order to decide how such a feature could be implemented without minimal impact, we analysed
how Java implements the separation of namespaces. Namespace separation for applets loaded
from different websites is enforced in Java through the use of different class loaders. Two classes
are considered distinct if they are loaded by different class loaders and therefore can have a differ-
ent set of permissions. We decided to use a similar approach and modified our own class loader,

110

5.6 Resource Browser

so that it creates a new class loader instance each time we need to load the application class with
a different policy.

Our privacy class loader uses a modified loadClass() method that no longer calls findLoad-
edClass() to check if the parent class loader already knows this class. Instead findClass() is
called directly to load the application class with a new ProtectionDomain. Figure 5.5 shows the
resulting class loader hierarchy, both for classes loaded from different code sources and classes
loaded with different privacy policies for their data.

System class loader
 (rt.jar)

Secure class loader
 (classpath)

URL class loader
 (classpath)

XACML class loader
 (project path)

Applet class loader
 (www.sun.com)

Applet class loader
(www.ora.com)

XACML class loader
(Policy 1)

XACML class loader
(Policy 2)

Figure 5.5: Java class loader hierarchy - Java normally loads classes from different code sources
with dedicated class loader instances (left side) [Oaks, 2001]. With our modified class
loader (right side) each instance of the application is loaded with a dedicated protection
domain that enforces resource access checks through the Java Security Manager.

5.6 Resource Browser

The current Java implementation of our enforcement framework has a small bootstrap problem.
Whereas normal applications can be started and documents can be loaded from the application
itself, our privacy protection framework requires that the document is selected first, the corre-
sponding privacy is referenced and resolved and only then can the application be started under the
control of the Java security manager. If the data user wants to access a new or additional document,
a new ProtectionDomain has to be constructed and the application class has to be reloaded.

This requirement has consequences for the application workflow. We need an additional com-
ponent in our framework that accesses and loads the private data from the protected data object
and starts the application with the necessary policy. Policy and data resources use a suitable XML-
representation and are stored together in a Protected Data Object (cf. Section 4.3). We assume
that a Protected Data Object contains multiple data elements that might have different permission
settings and will be referenced via XPath [XPath, 1999]. The Resource Browser component in our

111

5 Java PrivMon - Privacy Protection for Personal Health Records

PrivMon privacy enforcement framework allows the data user to securely interact with the private
data of the data owner (see Figure 5.2).

The data user needs to authenticates itself, so that the policy decision component can evalu-
ate the decision request correctly. The data user utilizes the Resource Browser to identify the
requested resource node within the XML document-tree. Once this selection is made, the Re-
source Browser invokes the Policy Enforcement component that requests a policy decision from
the Policy Decision component and subsequently launches the application.

5.7 Implementation of a Health Record Viewer

So far we have focused our discussion on the implementation of the PrivMon privacy monitor. In
order to test our assumptions about the protection properties of the privacy enforcement framework
it became necessary to also provide an application component.

We implemented a so called Health Record Viewer (HRV) that is able to display graphical
medical data, such as X-ray images, which have been stored as XML-encoded resources in the
Protected Data Object. Depending on the privacy policy, the graphical data can be viewed, saved
as a JPEG-file, copied to the system clipboard, printed on paper or a combination of the above.
The append and overwrite functions were added as placeholder for further development, whereby
we wanted to support the insertion and change of data in the Personal Health Record itself. Figure
5.6 visualises the implemented functions within our Health Record Viewer (HRV) application.

The Resource Browser component of the PrivMon lets the data user authenticate and select
interesting events in the Personal Health Record. If a suitable resource has been selected, the data
user invokes an application component, such as the Health Record Viewer. The HRV application
will be started under the control of the Java security manager and is given access to the selected
data element.

An appropriate permission setting will be derived from the XACML policy stored in the Per-
sonal Health Record. If the privacy policies allows it, the HRV will visualise the medical images
contained in the personal health record, store local copies of the data or print the images. The
application itself can implement the full set of functionality without having to care about privacy
settings and no special trust is required into the safe implementation of these functions. Execution
of the functions will be restricted at runtime according to the specified data-use policy by the Java
security manager.

Multiple instances of the HRV can be started simultaneously for different data objects and may
allow the visual comparison of different diagnoses or illnesses. Each instance of the HRV will
carry its individual set of permissions based on the data that is being accessed and is not influenced
by other running instances of the HRV.

5.7.1 Results

The XACML policy is evaluated at the moment before the application is loaded via the PrivMon
privacy monitor. The PrivMon iterates through the set of actions contained in the policy-base for a
given subject/resource pair to gather all the related permissions and generates an appropriate set of
Java permissions. The actual policy enforcement is offloaded to the Java Security Framework and
XACML requests have to be evaluated at the time of resource access of the HRV. The performance

112

5.7 Implementation of a Health Record Viewer

Policy Enforcement
Custom Class

Loader

Health Record Viewer

View Picture

Java Security Manager

Safe Local Copy

Copy to Clipboard

Print

(a) Application example implements different
functions

(b) Application screen shot

Figure 5.6: Privacy-aware Applications: Personal Health Record Viewer - Application compo-
nents are started under the control of the Java Security Framework and support the privacy-
aware execution of application functions.

Figure 5.7: Java AccessControlException - An exception is thrown if the application component
tries to access a method that requires permissions that have not been granted to the class.

of the application component therefore does not depend on the parsing and evaluation of XACML
policies.

Privacy policy enforcement works as expected. The application component is effectively con-
trolled through the Java Security Framework without any cooperation from the application itself.
If a necessary Java permission is not available while the user tries to exercises a particular func-
tion, the Java security manager throws an AccessControlException, which can be intercepted by
the application to show a meaningful error message to the human user (cf. Figure 5.7). Different
instances of the application can be started simultaneously with different sets of permissions and
allow the effective protection from unintended data-flow between different applications and the
application and the operating system.

A working prototype of the privacy protection system for Personal Health Records was pre-
sented at CeBIT 2008 in Hannover, Germany, at the 3rd Telematik-Konferenz 2009 in Potsdam,
Germany and conhIT 2009 in Berlin, Germany.

113

5 Java PrivMon - Privacy Protection for Personal Health Records

5.7.2 Restrictions

The direct enforcement of privacy policies is currently limited by the support of native permissions
in the Java Security Framework – which is primarily focused to support the original Java threat
model.

We could extend the Java permission model through application specific extensions, however in
this case the application needs to be trusted to correctly implement the necessary access checks.
Implementation of new permissions would therefore require that we extend our trust also to the
application, whereas currently only the PrivMon privacy monitor needs to be trusted.

Policies that can not be directly enforced through the native Java permission mechanism include
the support for controlled write and change operations within the data structure of the Personal
Health Record. These functions currently need specific support from the PrivMon. Another ex-
ample are time-dependent policies, which enforce access restrictions based on the current date or
time. Time-dependent policies can currently only be enforced at application start-up. Their correct
enforcement requires reliable access to a trusted time-base, because it would otherwise be possible
to trick the reference monitor into incorrectly permitting data access.

5.8 Performance Measurements

One open question for the practical generation of the set of Java permissions from the XACML
policy description is the expected performance of this approach. It must be possible to derive
the Java PermissionCollection quickly, so that a human user can use the system in an inter-
active manner, without experiencing delays at application launch. Once a Java permission set is
generated, the Java Security Manager automatically enforces these permissions. Since the pol-
icy enforcement from the security manger is standard Java behaviour for any Applet, we expect
that the enforcement of these permissions will be highly optimised and does not slow down the
execution of our application component.

When the data user selects a certain data-set from the Resource Browser, the Policy Enforce-
ment component will issue a series of XACML-requests, gathering the access decisions for all the
supported actions from the XACML-policy description and forms a Java PermissionCollection
from the response.

We needed to measure the additional delay this operation incurs on the loading of the application
via our custom class loader. This required the adaptation of our implementation. We implemented
an additional method generateRequests() in our Reference Monitor class, which repeatedly
calls the original generateJavaPermissions() method and measures the execution time of the
XACML-request using System.nanoTime(). The measurement platform consisted of a single-
core Pentium-M 1.73 GHz, using 1 GByte RAM and the Java 2 Runtime Environment - Standard
Edition (build 1.5.0_14-b03) running on OS Windows XP SP3.

We formed the hypothesis that the execution time for XACML requests depends on two fac-
tors: a) the number of rules contained in the XACML policy and b) the number of resources that
these policies need to be matched against, since the policy decision process always considers the
complete XACML without stopping the evaluation after a first match has been found.

For the test we generated two sets of files, one containing a single data-set and two exem-
plary rules, the other containing 25 data-sets together with 20 XACML rules. The policy rules

114

5.8 Performance Measurements

were mainly permit rules so no conflicts needed to be solved by the XACML rule-combining-
algorithm. In policies that contained multiple resources, each rule contained multiple references
to the resources in order to reference every resource in the data-set.

Each policy was tested repeatedly 100 times, against a set of 6 different action attributes, gen-
erating 600 XACML-requests. The repetitions were done in order to offset singular effects and
gain a level of confidence in the reliable reproduction of the measurement results. The test results
(see Figure 5.8 and 5.8) show that a single XACML-request can be evaluated in approximately
120-250 microseconds2. Further, the execution time shows almost no influence by the amount
of rules that had to be processed. Similar results were obtained for policies that contain multiple
resources. Figures 5.9 shows the results for the XACML policy evaluation with multiple resources
in the policy. We see a little bit more variance in the execution time of the policy decision for
read-requests with multiple resources.

We currently use the standard SunXACML implementation [SunXACML, 2006] and do not
employ any optimisation, such as support for XACML-requests that include more than one action
attribute, or caching of decision results. The measurements have shown that the current execution
time is fast enough, even when several requests have to be made in sequence to generate the Java
PermissionCollection.

In very few cases (<1%) we saw some outliers in the execution time, notably in the processing of
the larger resource files, where the evaluation of an XACML-request took up to 3 ms. These out-
liers were randomly distributed and do not seem to be caused directly by the XACML-evaluation
code.

Execution time for XACML-requests against a policy with
one resource and 2 XACML-rules (100 samples)

0

50

100

150

200

250

append copy overwrite print save read

Action

T
im

e
 [

µ
s

]

(262µs) (261µs) (252µs)

Figure 5.8: Execution times for XACAML requests - single resource / two XACML rules

2The error bars represent the distribution of 95% of the observation results. The boxes contain 75% of our observa-
tions.

115

5 Java PrivMon - Privacy Protection for Personal Health Records

Execution time for XACML-requests against a policy with
25 resources and 20 XACML-rules (100 samples)

0

50

100

150

200

250

append copy overwrite print save read

Action

T
im

e
 [

µ
s

]

(3167µs) (2658µs) (1624µs) (1589µs) (1936µs) (1727µs)

Figure 5.9: Execution times for XACAML requests - multiple resources / multiple XACML rules

5.9 Summary

The development of the PrivMon privacy monitor is the main proof for our concept of a client-side
privacy enforcement architecture of owner-defined policies.

We choose to base our implementation on the Java Security Framework and use the permission
concept of the Java security manager for the enforcement of privacy policies. This allows us to
treat the application as untrusted code that could be contributed by external parties. The application
can implement a full set of functions, even functions that are likely to be disallowed by the policy.
The application does not need to implement and perform any permission checks against the policy
itself. It has full control over its internal data-structures and can make arbitrary function calls.

Our client-side privacy enforcement framework forces the application to treat data from the
Personal Health Record (PHR) as ephemeral data. The data can be accessed freely within the
sandboxed environment, but data-flow outside the sandbox is restricted and the data object is
deleted from memory, once the application finishes using it. The application is part of a contain-
ment architecture, where data access is only possible through a reference monitor that enforces the
privacy policy for each and every access request.

The privacy settings are documented as declarative policies and are bound together with the
medical data in the XML structure of the Personal Health Record as sticky policies. The policies
support fine-grained control over individual data-elements in the XML-document structure.

XACML policy decisions are translated into Java Permission Collections that control resource
access and use. These policies apply to the running instance of the application class. Our custom
class loader generates a new class loader instance for every application instance and creates a
unique Java ProtectionDomain for each application instance. Client applications will be started

116

5.9 Summary

by the adapted class loader and run under the full control of the Java security manager. If the
application tries to invoke a method for which it has not been granted the necessary permissions
by the current privacy policy, the Java Security Framework intercepts the call and throws a security
exception.

The enforcement framework uses a very narrow definition for the read action attribute in the
policy rules that deviates from the usual interpretation of the attribute in the Discretionary Access
Control model (cf. Section 2.3.2). Private data with a read-only permission can only be visualised
on the computer screen of the data user. Data-flow protection prohibits the storing, processing or
forwarding of this data outside the protected environment. We think that this narrow interpretation
is better suited to capture the intuition of the data owner and prohibits unintended data breaches
through carelessness and neglect from the side of the data user.

117

5 Java PrivMon - Privacy Protection for Personal Health Records

118

6 Privacy Protection for Server-based
Information Systems

The previous chapters presented our solution for a client-side privacy enforcement scheme and a
corresponding reference monitor implementation based on the Java Security Framework. The ap-
proach uses sticky policies written in the eXtensible Access Control Markup Language (XACML)
to formulate access rules for protected resources under the Owner-Retained Access Control model.
The reference monitor converts the XACML policy of the accessed resource into Java permis-
sions. These permissions will be attached to the application class when they are loaded with our
custom class loader. This solution has the advantage that it supports the easy implementation of a
client-side reference monitor. Application developers do not need to evaluate privacy policies and
enforce security checks, because they are already done by the Java Security Manager.

A growing number of applications are now based on the client-server model, where a lightweight
client, such as a web-browser, uses services and resources stored on a network connected server.
Client-side data privacy protection can not provide sufficient privacy protection for such scenarios,
because private data is processed by and forwarding between different service instances. We need
to answer the question, if our solution can be applied to the problem of enforcing privacy policies
in server-based usage scenarios or if it is necessary to extend our work and develop enforcement
solutions that offer enforcement for owner-defined privacy policies in such scenarios.

We base our evaluation on the implementation of two privacy-aware localisation services. The
first is the localisation component of the KopAL ambient assisted living system, the other solution
uses aspect-oriented programming (AOP) techniques within a hypothetical theme park localisation
service for the privacy enforcement in tiered business applications.

6.1 Privacy for Location-based Services

Location data belong to the fastest growing data types within business and private applications
[Manyika, Chui, Brown et al., 2011]. The continuously growing smartphone market, as well
as the emerging ‘Internet of Things’ enable service providers to very accurately track and map
persons and their devices through a variety of different localisation mechanisms. The unbroken
interest in social networks entices users to make their private data available to various services and
it is not uncommon that devices and applications indiscriminately collect location data [Allan and
Warden, 2011].

In most cases, a user has no ability to disallow data access or to restrict the data collection
to a specific purpose. Additionally, location data might also be forwarded to third parties for
processing and storage. A user cannot be sure that collected data is only used for the fulfilment of
a particular service and that no data is used for further purposes like market analyses or generation
of movement profiles.

119

6 Privacy Protection for Server-based Information Systems

The privacy problems that emerge when location-based services have access to the geographic
coordinates of a person have been studied by different groups of researchers. Location services
that are privacy aware, typically try to incorporate anonymisation, reduction of data granularity or
one-time-use of data in order to limit the possibilities of profile building and other attacks on data
privacy. However, many current localisation services are still developed without explicit support
for privacy functions. The referenced projects in this section stand exemplarily for the different
data protection approaches taken by the community.

The GEOPRIV working group of the IETF developed a Common Policy for the expression of
privacy preferences of location data by a presence and location server [Schulzrinne, Tschofenig,
Morris et al., 2007]. We already presented this work in section 2.6.4 and will extensively compare
the Common Policy with XACML in the next section.

Maaser and Langendörfer [2009] use the Java Security Framework for the safe execution of pri-
vate location services by service providers. They define a Privacy Guaranteeing Execution Con-
tainer (PGEC) that allows the service user to have private location data processed by the service
provider while enforcing a privacy contract. The privacy contract is negotiated between service
provider and user and uses extensions to P3P [P3P v1.1, 2006]. The Java permissions that are
needed for the enforcement of the privacy contract are predefined for a number of data usage sce-
narios. A PGEC protects location information from being extracted by the service running inside
the container as well as malicious programs running outside of the container. As soon as the ser-
vice finished processing the private data, the container implementation deletes it. The private data
is never stored permanently in the Execution Container and only used once. Privacy Guaranteeing
Execution Container are targeted at the provisioning of location services to the service user itself.
It is explicitly not intended to pass location data to other users or protect these data exchanges.
This approach is suitable if a service only needs temporary access to location data, e.g. to com-
pute a path or offer services based on the current location. It does not offer protection for location
data that needs to be available for later processing.

Kung Chen and Da-Wei Wang describe a privacy protection approach for Struts-based1 enter-
prise web applications using Aspect-oriented Programming (AOP) [Chen and Wang, 2007]. Their
solution implements a modular enforcement mechanism that enables fine-grained access control
for private data. Accesses to resources are monitored using advices. The provided concept en-
ables a user to restrict data accesses to a certain purpose. This is achieved by binding advices
to all important methods of the monitored application. These advices are aware of their methods
purpose and add it to a table as soon as the corresponding method gets called. A further advice
which needs the purpose to compute the access decision can use the aforementioned table to ob-
tain it. The authors state that their concept can be used with different policy languages like EPAL.
However, the provided example implementation contains hard coded decision logic instead of a
sophisticated policy language.

In Kruppa [2011] the authors presented a user localisation component for the Smart Senior
Project. The project tries to help elderly people to stay as long as possible in their familiar envi-
ronment. The main purpose of the localisation component is the detection of disoriented or even
unconscious people at home or outdoor. Each participant gets a mobile phone running Windows
mobile 6.5. The systems uses the Global Positioning System (GPS) to determine the outdoor lo-
cation of a person. GSM is used in cases where GPS is not available. The position of a user is

1http://struts.apache.org/

120

http://struts.apache.org/

6.1 Privacy for Location-based Services

collected every 30 seconds and a set of collected locations is sent every 30 minutes via UMTS or
GSM. Because GPS is not working indoor, Smart Senior uses a combination of WiFi and Blue-
tooth for the indoor localisation. The current solution is not privacy aware. The localisation data
is gathered, sent and processed without privacy protection for the data owner.

6.1.1 Comparison between XACML and GEOPRIV Common Policy

Our solution for a location privacy service should again be based on the sticky policy model that
requires the attachment of a privacy policy to the location data. There exist different policy de-
scription languages that can be used for the expression of authorisation rules and we had to choose
a suitable language for our server-based implementation. We decided to reevaluate our initial
choice for XACML and compare XACML [XACML-2.0, 2005] with the Common Policy of the
GEOPRIV working group of the IETF [Schulzrinne, Tschofenig, Morris et al., 2007], to deter-
mine potential benefits and drawbacks of each language. The Common Policy has been developed
specifically for the expression of privacy preferences for location data, while XACML is a generic
policy description language. Most of the comparison criterions are based on the work by Ander-
son [2005] that evaluated EPAL and XACML and have been augmented where we felt that this is
important for our work.

Rule syntax

Both languages use rules as the basic building block on which authorisation decisions are made.
XACML allows the specification of positive and negative authorisations that grant or deny access
to a resource. XACML uses the Effect attribute to define the outcome of an applying rule.
Possible outcomes are Permit and Deny to allow or forbid access to a resource. In contrast, a rule
in GEOPRIVs Common Policy can only grant permission. It is not possible to define a rule which
denies access to a resource.

XACML policies can be filtered by the <Target> elements before evaluating their conditions.
The <Target> element of an XACML rule is used to define to which set of subjects, actions,
resources or environments a rule applies. Further conditions can be defined in the <Condition>
element of a rule. In both languages the rule order does not influence the permission decision.

XACML rules follow the standard convention found in many access control schemes, where a
clear structuring of authorisations in subjects, objects and access rights is provided (cf. Section
2.4.2). The GEOPRIV Common Policy uses a implicit definition of objects and access rights. A
Common Policy is directly targeted at the referenced location data of a particular location service
and does not allow the specification of an external resource object. Access restrictions for subjects
are specified through the rule conditions, which are placed in the <conditions> element of that
rule. The assumed access rights are access and use of the data itself and can not be explicitly
specified.

Obligations

XACML as well as the Common Policy rules may define obligations. Obligations are actions that
must be performed if resource access is granted. For example, an obligation may state that is has
to be logged when and to whom access was granted.

121

6 Privacy Protection for Server-based Information Systems

The Common Policy distinguishes between obligations which perform a resource transforma-
tion before granting access to it <transformations> and other obligations <actions>. Trans-
formations can be applied to obfuscate location data before giving access to it. XACML does not
make this distinction between actions and transformations.

Resolving rule conflicts

Both privacy policy languages use rule combining algorithms to resolve rule conflicts. A rule
conflict occurs when two rules with different outcomes are applicable.

It can happen, even though GEOPRIV Common Policy rules contain only positive permissions,
that a set of applying rules has different actions or transformations. If multiple rules apply to a
request, then the proposed combining mechanism generates a combined permission. The com-
bining algorithm defined by the Common Policy separately analyses each group of actions and
transformations. The resulting combined permission for this group depends on the data type of
the permission. For boolean permission the combined permission is TRUE if at least one match-
ing rule evaluates to TRUE and FALSE otherwise. Integer, real-value and date-time values are
evaluated to the maximum value across the matching rule set. The resulting permissions from
the individual action and transformation groups are then combined to the permission-set for this
specific request.

XACML allows explicit positive and negative evaluation of rules (permit/deny), as well as the
combination of policies from different sources for distributed policy evaluation. Combining algo-
rithms are needed to derive an authorisation decision from potentially conflicting individual rules
and policies and may not always be able to make a decision. A rule or policy combining algo-
rithm may have an “indeterminate” outcome that can be resolved through a default policy rule (cf.
Section 2.4.3). XACML allows the definition of custom combining algorithms. The following
combining algorithms are defined by the language standard (cf. Section 2.6.3):

• Deny-overrides
• Permit-overrides
• First-applicable
• Only-one-applicable

Attributes

XACML as well as the Common Policy may use resource, environment or data user attributes
to evaluate a policy. In contrast to XACML, GEOPRIV does not define how the attributes are
retrieved and assigned.

Furthermore, XACML supports XPath references [XPath, 1999] and allows a policy to directly
enclose the requested resource, which can be used to directly reference the elements of this XML
resource when evaluating the policy.

Data types and functions

XACML is a strongly typed policy language that implements a set of data types from the subset of
XML schema types and some XACML specific types. It is possible to combine the simple types
to form complex data types.

122

6.1 Privacy for Location-based Services

Each attribute in the language has a well defined data type. Conversion functions have to be
used when working with different types, for example in comparison functions. The GEOPRIV
Common Policy does not define data types and provides no mechanism for the specification of
data types without extending the policy.

The XACML standard specifies a number of strongly typed functions. They can be used to
perform operations on attributes, e.g. a function could be used to restrict access to a resource
to certain time spans by performing time-based operations. It is possible to use a combination
of simple functions to achieve complex operations, however their function types have to match,
because XACML is statically typed and has no support for type-casting. Functions are currently
not supported in the Common Policy.

Purpose

The optional XACML privacy profile [XACML Privacy Profile, 2005] defines two attributes that
can be used to define restrictions on the access by a purpose attribute.

The attribute “urn:oasis:names:tc:xacml:2.0:resource:purpose” can be used to describe
the purpose for which this resource can be used or has been collected. This purpose definition is
then matched against the attribute “urn:oasis:names:tc:xacml:2.0:action:purpose” in the
XACML access request to find out if the resource can be used for this particular purpose. The
GEOPRIV Common Policy does not provide a purpose attribute.

Request and Response Language

Besides defining the structure and semantics of security policies, XACML also defines a message
format for the exchange of decision requests and responses in a distributed authorisation archi-
tecture. A Policy Enforcement Point (PEP) can use this format to send a decision requests to a
Policy Decision Point (PDP) for evaluation and get a well defined answer back. The GEOPRIV
working group does not define a message format for decision requests and responses. RFC 5491
only specifies a "Location Object" that can be used to represent location information and may be
contained in a response from the location server [Winterbottom, Thomson, and Tschofenig, 2009].

Implementation

There exist many implementations to ease the creation, evaluation and validation of XACML
policies under a wide variety of licences, some of them Open Source2. Implementations of policy
decision and support tools for the Common Policy are not yet available. The IETF expects that
the GEOPRIV Common Policy will be applied in their future standards, especially in their VoIP
protocols [Morris and Peterson, 2007]. An implementation that is comparable to the XACML
implementation from SUN [SunXACML, 2006] does not yet exist.

Suitability for Privacy Policies

After comparing the GEOPRIV Common Policy and XACML we found that XACML is a richer
policy description language that offers greater flexibility for the generation of privacy policies.

2A list of available XACML implementations is provided on the OASIS XACML project website:
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

123

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

6 Privacy Protection for Server-based Information Systems

Figure 6.1: Map of the Stahnsdorf area - shows the surroundings of the nursing home and the differ-
ent areas that are accessible by patients. The two critical regions ‘Highway’ and ‘Wood’
present risks for certain patients. [Fudickar, Schnor, Felber et al., 2011]

GEOPRIV focuses on creating a simple and extensible policy language. This results in a language
where many features stay undefined. The lack of functions and data types requires the implemen-
tation of non-standard extensions and the implicit definition of the object and action elements in
the authorisation rules limits the usefulness of the Common Policy outside its narrowly defined
application domain.

The advantage of GEOPRIVs differentiation between transformations and actions is not needed
in our use-cases, because we have no need to reduce the granularity or precision of our location
information prior to the data release.

A Common Policy condition may specify data access depending on data users, spheres (do-
main) or valid access times. We would need to extend the Common Policy in order to evaluate
a policy depending on other attributes. XACML provides a richer set of attributes and functions
that can immediately be used for the policy creation and evaluation and can be extended as easily
as the Common Policy. So, we came to the conclusion, that the Common Policy does not offer
any particular advantage over the use of XACML other than the less complex policy description.
Since XACML policies will be automatically generated and parsed, and implementations for the
creation, parsing and evaluating policies are already available, the decision has been made to use
XACML for the description of the privacy policies in server-based scenarios.

6.1.2 KopAL Mobile Orientation System

A research team at Potsdam University developed the KopAL mobile orientation system [Fudickar
and Schnor, 2009; Fudickar, Schnor, Felber et al., 2011] that tries to support elderly patients
and patients suffering from mild forms of dementia. KopAL assists people in everyday activities
and offers support for problems, like remembering appointments and keeping track within their
surroundings. The KopAL team is operating at a nursing home in Stahnsdorf (Germany) that
resides next to a forest and a highway, as shown in Figure 6.1.

Each patient is assisted by a mobile device, the KopAL Assistant, which acts as an appointment
reminder and features an emergency button that can be activated by the patient to inform caretakers
about critical situations. During the trial of the system it became clear that the system needs to

124

6.1 Privacy for Location-based Services

Figure 6.2: Network components of KopAL - the graphic visualises the different components and
their interworking in the KopAL network architecture. Mobile devices use the OLSR
routing protocol to form an Ad-hoc network and send position updates to the central server
[Fudickar, Schnor, Felber et al., 2011].

provide a localisation function for cases where patients are in distress and can not identify their
current location, or where patients suffering from dementia simply walk away from the nursing
home. If such a dangerous situation develops, the KopAL Assistant should be able to inform the
caretakers and provide helpful localisation data.

Network Architecture

The KopAL system uses a distributed architecture of connected nodes in a local network environ-
ment (see Figure 6.2) and consists of the following components:

Mobile devices (KopAL Assistants) are given to the patients and communicate with other de-
vices via the Wi-Fi network.

A central server hosts the software components for the management system and the location
database. The central server receives position updates from the KopAL Assistants.

WLAN routers provide the required network coverage within important regions of the building
and surrounding area. In addition they act as localisation beacons. Since the position of the
routers is fixed we use their visibility for location determination of the mobile device.

The network utilises the Optimized Link State Routing (OLSR) protocol [Clausen and Jacquet,
2003], which has been defined by the Mobile Ad-hoc Network (MANET) working group of the
IETF, for the routing between nodes that have not direct visibility. If a KopAL Assistant device is
outside the coverage area of the stationary Wi-Fi routers, it may still communicate in a hop-by-hop
manner via other mobile devices.

The KopAL Privacy-Aware Localisation Service

Extending the KopAL system with the ability to localise the KopAL Assistance device has serious
implications for the privacy of the patient. It becomes technically possible to constantly track the
position of device and the patient who carries it. It is therefore important to implement privacy

125

6 Privacy Protection for Server-based Information Systems

KopAL
Assistant KopAL Server

1. Policy Creation2. Policy Transfer

3. Localisation
4. Location Data Transfer

5. Location Data Storage

Caretaker
Patient

Caretaker
Location Data Storage

...

...

6. Location
Access

Figure 6.3: Sequence diagram of the KopAL privacy function - the diagram visualises the privacy
creation process and the resulting flow of localisation data within KopAL. Privacy settings
are configured via the KopAL Server on the Assistant device. Location data flows from
the KopAL Assistant to the Server.

protection techniques that make sure that the localisation function respects the privacy of the pa-
tient. The patient or a responsible custodian should be able to decide the acceptable use policy for
the private location data.

The use of the localisation service in KopAL starts with the policy creation process (cf. Step 1
in Figure 6.3). The responsible caretaker discusses the different privacy options with the patient
or a responsible custodian before handing out the KopAL Assistant. The caretaker explains what
data is collected for what purpose and the patient decides between the different privacy options.

This creates a privacy policy file, which is moved to the KopAL Assistant (Step 2). The Server
does not store any copy of the policy. If the patient later wants to change the privacy policy, he or
she can repeat this process to update the privacy settings of the device.

The KopAL Assistant evaluates the local policy file and sends a position update to the server
only when the patient has allowed the processing of location data. The KopAL Assistant deter-
mines the current position of the patient and sends a location update to the KopAL location server
(Step 3 & 4). No data is send when the patient has chosen to disallow localisation.

The system follows the sticky policy paradigm in the composition of the messages from the
client to the server. With every location update we also send the currently valid privacy policy to
the KopAL server. This has the advantage that the policy is originating from the device of the data
owner. If the privacy policy changes, these changes would be communicated in a timely manner to
the KopAL location server and no additional mechanisms are needed to manage privacy settings
on the server.

KopAL provides a light-weight PKI that issues self-signed certificates to all devices. An RSA-
Key pair is generated for each device of the system, including the server and KopAL Assistant.
We use the public key of the KopAL localisation server to cryptographically protect our position
updates. The mobile device encrypts the location and the attached policy with the public key of
the KopAL Server.

Individual position updates are stored directly in the file-system of the location server (Step 5).

126

6.2 Enforcing Location Privacy Policies through an AOP-based Reference Monitor

The stored location data object contains all the necessary authorisation information in the form of
the attached policy rules and will not be accidentally processed without consulting the policy. A
caretaker has to authenticate him or herself before requesting access to location data. The policy
of the location data is checked for the necessary access permission (Step 6) before the certain
location of a patient is shown to a caretaker via the KopAL web interface.

6.1.3 Findings and Discussion

KopAL is a server-based system, where distributed mobile clients send private localisation data to
a central server, where it is processed. When we tried to adapt our enforcement solution from the
Java PrivMon to a server-based scenario, we found that we could not use our custom classloader
to automatically enforce different privacy policy settings within a server-based scenario.

We already mentioned in Section 5.5.3 that the Java Security Framework does not support dy-
namic updates of protection domains without reloading a class. Our approach so far has been to
reload the class of the location service with a different Java ProtectionDomain to take advantage
of the automatic privacy policy enforcement via the Java Security Manager. Reloading the applica-
tion class is feasible for interactive use by a human operator, where application components have
to be restarted relatively infrequently as different data sets are accessed. In server-based usage
scenarios the server process is usually a long-running instance that needs to quickly handle data
from different user devices with different privacy settings and reloading the application class has
serious performance implications and might not even be possible.

Since the localisation component had to be integrated into the already running KopAL system
we had to find a different enforcement solution to build our privacy-aware localisation server
component. We decided to implement the necessary enforcement functions directly in the server
code and build a separate solution that could be used to study other policy enforcement options
for server-based systems.

6.2 Enforcing Location Privacy Policies through an AOP-based
Reference Monitor

The experiences from the KopAL system showed us that privacy policies which follow the Owner-
Retained Access Control (ORAC) principle can be implemented and enforced in server-based in-
formation systems. However, the requirements for their enforcement functions differ from client-
side protection systems.

Modern server frameworks are typically build on service-oriented architectures and provide
well-defined business functionality through the interworking of distinct service objects. Direct ac-
cess to source code and retrofitting of access control checks to these service objects is not possible
in most business scenarios. It is also frequently the case that a single service object is providing
functionality for a number of requesting services and the object itself has no information other
than the identity of the calling service to make an access decision.

In order to study the enforcement of data owner-defined privacy policies in such systems, we
developed the hypothetical use-case scenario of a theme-park location service. This use-case
allowed us to highlight problem areas and research solutions for the server-based privacy enforce-

127

6 Privacy Protection for Server-based Information Systems

ment3. Our example implements the popular Model-View-Controller paradigm [Reenskaug, 1978]
and uses a layered service architecture to encapsulate data access and storage.

The following section introduces our enforcement mechanism which is based on Aspect-oriented
Programming (AOP) methods. We combine the flexibility of the AOP method interception with
a generic policy evaluation component to build an AOP-based reference monitor that controls the
interactions and data-flows between different services in the architecture. The policy evaluation
component uses data owner-defined privacy policies that are directly attached to the relevant data
objects as sticky policies. We will show how this approach allows the enforcement of individual
privacy policies by a common service object.

6.2.1 Exemplary Use-Case: Theme Park

Before we explain our enforcement solution, we want to quickly introduce the properties of our
use-case. We designed a hypothetical theme park location service that highlights privacy pro-
tection issues and allowed us to test the applicability of our reference monitor concept in tiered
applications.

People typically visit theme parks as groups of families and friends. The park area tends to
be geographically dispersed, crowded and it is easy to loose contact to members of the group. If
group members could see each others locations, they could visit different attractions individually
and use the system to meet each other again. Such a system would also be beneficial for the theme
park operator. The operator could advertise new or under-utilised attractions and get live updates
of crowd movement.

Localisation

Localisation is achieved by handing out electronic guides to visitors entering the park or installing
a dedicated app on visitor smart-phones. While the group is visiting the park, each mobile device
is sending its location to a central server. The server receives, stores and processes these location
updates and distributes the processed location information to clients of the same group. The loca-
tion server is able to provide additional location-based information, like the distance to the next
restaurant or a nearby event.

Privacy Settings

To make the service privacy friendly, the visitor should have the ability to adjust privacy settings.
He or she can decide for what particular purpose location data might be used. For example,
the visitor can decide whether the theme park operator is allowed to analyse the location data
to improve the park quality, etc. The individual privacy preferences are constructed as XACML
policies. Each location update that is send to the central server also carries the current policy
information.

3This section is based on joint work with Sven Schindler [Scheffler, Schindler, and Schnor, 2012]

128

6.2 Enforcing Location Privacy Policies through an AOP-based Reference Monitor

6.2.2 Service Architecture

The theme park server is designed as a multi-layered JavaEE application to find out whether our
concept of a privacy reference monitor is compatible with the design of modern business appli-
cations. Figure 6.4 shows a simplified server application architecture. It illustrates the different
components that will be used to provide the theme park location service.

Figure 6.4: Layered application server architecture - modern business applications employ a lay-
ered service architecture, where data access is encapsulated through so called Data Access
Objects (DAOs).

Theme park employees should be able to compose new visitor groups and analyse visited lo-
cations using a web interface on the web layer. Each activity, like creating a new visitor entry
in the system, triggers a service in the service layer. A service contains the business logic of the
application. It does not operate directly on the datasource but uses one or more data access objects
(DAOs), so that the implementation details of the datasource are hidden from the service layer.

A visitor’s mobile device is continuously sending its current position together with the sticky-
policy to the central server. The server distributes the received location data to the visitor’s group
members and stores a copy in the data source. The responsible service for the distribution of
location data, the LocationBroadcastingService, is periodically accessing the stored locations in
order to find new position updates. The theme park operator may analyse the stored locations by
using the web interface to trigger the LocationAnalysisService.

A visitor is able to express his or her privacy preferences and can choose to prohibit access
to the location data for certain purposes. Our enforcement architecture needs to restrict data ac-
cess by services depending on the evaluation result of the individual privacy policy that is at-
tached to the data. We could not use the existing Java PrivMon reference monitor implementation
within the theme park server application, because every visitor regularly produces new position
updates that need to have their individual privacy policies enforced. The Java PrivMon implemen-
tation would require the reloading of the DAO classes when location data for different customers
have to be processed, because the Java Security Framework is not able to dynamically update the

129

6 Privacy Protection for Server-based Information Systems

Figure 6.5: Access permissions in the DAO layer - depend on the identity of the calling service
and not the identity of the DAO. We use Aspect-oriented Programming (AOP) and Java
Reflections to decide if data access by the service is allowed or not.

ProtectionDomain of a class.
A further issue lies in the determination of the subject of an access request. Figure 6.5 visualises

this problem. The depicted architecture contains two services Service1 and Service2 trying to
access object O3 that has an attached policy P3. Assume that P3 contains a rule that allows
Service1 to access O3 but does not allow Service2 to access the resource. For example, a theme
park visitor may decide to deny the operator to analyse his location, but still wants to receive
service notifications. Ordinary service oriented architectures can not enforce this distinction at the
level of the data access objects. DAOs provide no data access control to services and both services
are using the same DAO to access the location data. When we are evaluating a privacy policy, we
also have to take the calling service into account.

We decided to tackle this problem by changing our existing reference monitor implementation
and replace the Java Security Framework with a custom security layer based on aspect-oriented
programming (AOP) and the use of the Java Reflection API. The next section provides a short
introduction to aspect-oriented programming and explains how it can be used to develop a security
and privacy layer.

6.2.3 Aspect-oriented Programming

Aspect-oriented programming (AOP) is a programming paradigm that can be used to improve
source code modularity. Even though the object-oriented programming paradigm provides plenty
of features like inheritance and encapsulation to increase the modularity of a program, there are
still certain cases where it is not possible to avoid code repetition.

Consider, for example, an object of a business application that adds or removes customers from
a database. The class would have two methods deleteCustomer and insertCustomer which are
used to delete or add a customer. Each operation should be executed within a database transaction
to avoid an inconsistent database state. Hence it is necessary to add at least one line of code to

130

6.2 Enforcing Location Privacy Policies through an AOP-based Reference Monitor

open and close a transaction before each of the mentioned operations.
AOP resolves that issue by encapsulating repeating source code segments in so-called aspects.

An aspect is a modularisation of a concern [Spring Framework, 2011], which can be bound to
different points, so called join points, in the source code. Figure 6.6 shows an overview over
the most important terms and definitions of AOP using the afore mentioned transaction handling
example.

Basically, an aspect is a set of functional units called advices. The aspect TransactionManage-
ment contains one advice beginAndEndTransaction to define a transaction. The advice needs to be
executed before the insertCustomer method gets called as well as when the method is finished in
order to properly open and close a database transaction. Therefore the advice is bound to a point
in the source code between the two methods. In this example, the advice can be considered as a
wrapper around the insertCustomer method.

Figure 6.6: AOP-Components overview - the diagram shows how an aspect that starts and ends a
database transaction is weaved into the program flow of the transaction management ex-
ample.

A set of join points is also called a point cut. The binding of an aspect is called weaving and can
be done at compile- or loadtime depending on the framework and programming language. There
exist different AOP frameworks for different languages that software developers can use to create
and bind their aspects. Many AOP frameworks are using so-called interceptors to model advices
[Spring Framework, 2011]. An interceptor is an object that wraps around a method call.

The ability of AOP to intercept methods of existing applications led us to the idea of using it
to intercept and monitor accesses of classes to protected resources. The following sections show
how AOP can be used in Java and presents a privacy architecture that uses AOP to monitor and
control policy protected resources.

6.2.4 A Reference Monitor based on AOP

We are using the capabilities of the AOP concept to monitor and control access to protected re-
sources. This is done by implementing a privacy protection layer that enforces the data owner-
defined policies for privacy protected location data.

131

6 Privacy Protection for Server-based Information Systems

Concept

AOP provides a very flexible way to interact with existing methods in our code-base. Additional
code can be executed before and after a method invocation. We can access and manipulate the
parameters of the target method if needed and it is also possible to stop the target method from
executing at all. So, instead of using the Java Security Framework for the enforcement of pri-
vacy policies, we based our server-side policy enforcement component on AOP. A custom privacy
framework implementation, which is encapsulated in aspects, is responsible for the enforcement
of access control decisions.

The access decisions are provided by our existing XACML decision component that is able to
evaluate the sticky XACML policies. Figure 6.7 depicts the AOP-based reference monitor concept.
It shows an object trying to access a resource that has an attached sticky-policy. The resource may,
for example, be a file in the file system or a data item in a database.

Figure 6.7: An AOP-based reference monitor - task specific advices I are used to monitor access to
resource R and allow or deny access depending on the evaluation of policy P. Available
context information can also be considered in the policy evaluation process.

The reference monitor uses a set of task-specific advices to monitor the access to the resource
R and interrupt it, if necessary. Before granting access to a resource R, an advice I evaluates the
sticky policy P. If the evaluation is not successful, the advice prohibits the access to the resource
by cancelling the method invocation that is trying to access the resource. The monitored system is
able to provide additional information for the policy evaluation to the reference monitor by using
a context object.

Furthermore, it is possible to include the calling services into the policy evaluation. We are
using the Java Reflection API to evaluate the call stack, so that we can determine all accessing
objects. The determined Java objects are added as subject when evaluating the XACML policy.

132

6.2 Enforcing Location Privacy Policies through an AOP-based Reference Monitor

1 <?xml version ="1.0" encoding="UTF -8"?>
2 <aop xmlns="urn:jboss:aop -beans:1.0">
3 <interceptor class="org.mobilePositioningSystem.aop.security.LocationDAOInterceptor"

/>
4
5 <bind pointcut="execution(* org.mobilePositioningSystem.daos.location.impl.

LocationDAOImpl ->loadLocationFile (..))">
6 <interceptor -ref name="org.mobilePositioningSystem.aop.security.

LocationDAOInterceptor"/>
7 </bind >
8
9 </aop >

Listing 6.1: Definition of an interceptor and point cut in JBoss AOP for our theme park example
implementation

Implementation

AOP frameworks are available for various programming languages. This section explains one
possible way of weaving aspects into the source code by using the JBoss AOP framework for
Java [JBoss Inc., 2012]. JBoss AOP can be used to define and bind aspects during compiletime,
loadtime and runtime. Our example implementation uses the AOP framework to load a security
layer at loadtime.

JBoss AOP provides the org.jboss.aop.advice.Interceptor interface which enables pro-
grammers to develop their own advices. The interface contains a signature for an invoke method
which is called when a defined join point is reached. An Invocation object is passed to the method
that can be used to invoke the target method. Therefore, an object implementing the interface is
able to execute code before or after it uses the Invocation object to invoke the actual target method
and acts like a wrapper around the method.

There are several ways to define the point cuts for the implemented interceptors. One way is
to create an external XML file which contains the associations between interceptors and point
cuts. Consider the example file in Listing 6.1. The file contains one point cut that includes all
loadLocationFile-calls of our locationDAO and one interceptor that is bound to that point cut.
When running Java with the JBoss AOP framework and the example definition above, each call
to a file constructor will be intercepted. In this way, the interceptor can monitor and interrupt
all file accesses by the application. Because the weaving is done at loadtime, there is no need
to recompile the underlying application. Hence, with the example interceptor above, it is even
possible to monitor file accesses of foreign and proprietary Java applications.

Java provides several ways that enable AOP frameworks to interact with the JVM and to weave
advice code into the classes at loadtime. JBoss AOP is using the java.lang.instrument package
for loadtime weaving. The package is an instrumentation API for the Java programming language
and was introduced in Java 5. It allows the development of so-called Java agents that are able to
register byte-code transformers to manipulate the behaviour of a class. An agent gets passed to the
JVM on startup.

Our theme park example implementation stores all locations for one user in a single location
file. The location data is stored together with the sticky-policy. As soon as a location DAO
tries to access a location, our reference monitor implementation intercepts the access attempt and

133

6 Privacy Protection for Server-based Information Systems

1 <Rule RuleId="lostDeviceRule" Effect="Permit">
2 <Target>
3 <Subjects>
4 <Subject>
5 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:x500Name -match">
6 <AttributeValue
7 DataType="urn:oasis:names:tc:xacml:1.0:data -type:x500Name">
8 CN=object_org.mobilePositioningSystem.services.location.analysisImpl.

LocationAnalysisServiceImpl
9 </AttributeValue >

10 <SubjectAttributeDesignator
11 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject -id"
12 DataType="urn:oasis:names:tc:xacml:1.0:data -type:x500Name"/>
13 </SubjectMatch >
14 </Subject>
15 </Subjects>
16
17 ...
18
19 <Actions>
20 <Action>
21 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string -equal">
22 <AttributeValue DataType="http://www.w3.org/2001/ XMLSchema#string">
23 read
24 </AttributeValue >
25 <ActionAttributeDesignator
26 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action -id"
27 DataType="http://www.w3.org/2001/ XMLSchema#string"/>
28 </ActionMatch >
29 </Action>
30 </Actions>
31 </Target>
32 </Rule>

Listing 6.2: This XACML policy excerpt of our ‘theme park location system’ permits our location
analysis service to analyse the corresponding location.

evaluates the corresponding policy. A policy, like the XACML policy in Listing 6.2, may define the
services that are allowed to access the location. The reference monitor implementation detects the
service which uses the DAO to access the location by using the Java Reflection API and includes
it into the evaluation progress.

Use of prioritised Sub-Policies for Policy Management

Within the use case of the theme park we can again use our Privacy Policy Precedence Relation
(P3R) from Section 3.5 to define different policy parts that aid the policy management task of the
data owner and offer protection against accidental mistakes in the policy management process.

We propose to use the following sub-policies:

• A default policy is attached to any data item as soon as it is created and can not be altered
by the data owner. The default policy will be a ‘closed’ policy that denies every data access
that is not explicitly allowed.
For example, a default policy for a very privacy conscious person defines that no subject
except the visitor itself is allowed to access the location data.

134

6.2 Enforcing Location Privacy Policies through an AOP-based Reference Monitor

The theme park visitor should be able to choose a suitable default policy for his or her
privacy needs from a number of templates. A less privacy conscious person might also allow
location data access to the theme park operator for the purpose of marketing or evaluation
of service quality.

• The owner policy rules can be modified arbitrarily to reflect any privacy decision by the data
owner. This policy part will usually define exceptions to the default policy.
For example, a visitor should be able to allow other persons to access the personal loca-
tion, when for example, a larger troop of visiting people want to define or re-define ad-hoc
groups. Another example is the override of the default policy, where a visitor may decide to
change his or her mind in respect to the initial protection choice of the default policy.
If the owner policy is deleted, the default policy will again provide basic privacy protec-
tion. It is therefore not possible to accidentally lose complete privacy protection through the
deletion of the owner policy.

• The safety policy is not under the administrative authority of the data owner and describes
specialised authorisations, where it must be guaranteed that these restrictions or permissions
persist. For example, a theme park employee in our use case must always have the ability to
locate a device that has been reported lost. An access rule defined by a visitor should not be
able to remove this permission.
The safety policy can also be used to define persistent visitor grouping, e.g. between parents
and their children, that must not be deleted because this would distress or hurt the involved
people.

Protection of the Location Update

The location update and the included policy form a Protected Data Object (cf. Section 4.3) that
has to be cryptographically protected during data transit and storage. Our system provides an
individual RSA public key pair for each device in the system [Rivest, Shamir, and Adleman,
1978]. Client and server will establish a unique symmetric session key KSess that stays valid for
the duration of the theme park visit. Client and Server will each have a pre-established key pair
KCpriv, KCpub and KSpriv, KSpub which is used for encryption and message signing.

The session key will be generated and transferred to the device just before the theme park guide
is handed out to the park visitor. The server will also send a sequence number SEQ to the client
that is used to detect and fend off replay attacks on the key exchange procedure, where an attacker
has gained knowledge of the current session key and replays the initial key exchange on further
theme park visitors that use the same device:

S−→C : {SignKSpriv{KSess,SEQ}}KCpub

This session key is used to symmetrically encrypt the location updates as they are send by the
client using the AES encryption algorithm [FIPS PUB 197, 2001]:

C1 −→ S : {LocationC1}KSess_C1

The server relays this location data to other clients in the same group, using their individual
session keys.

135

6 Privacy Protection for Server-based Information Systems

S−→C2 : {LocationC1}KSess_C2
S−→C3 : {LocationC1}KSess_C3

Location data that is stored on the server by the Location DAO will use a secret encryption key
that is only known to this particular service.

6.2.5 Performance Tests

The AOP privacy layer performs a policy evaluation for each access to a protected resource. Since
this requires the acquisition, parsing and evaluation of an XML-encoded XACML policy, we
needed to quantify the performance impact of the privacy protection layer on a live system. A
number of performance measurements were conducted using the afore mentioned theme park
location system. The system collects location data from theme park visitors in simple text files.
The location system contains a statistics function that analyses the location file of a visitor and
determines how much time the visitor spent at each attraction.

Each location entry in the file also contains the XACML privacy policy, which must be eval-
uated by the AOP security layer. In order to measure the performance of our privacy protection
mechanism, we compared the time this analysis took with and without an active security layer. Our
test system had 4096 MB of memory and an Intel Core 2 Quad Q9550 processor with 4x2.83GHz
and was running Ubuntu 8.04 on a SATA hard disk with 5400 rpm.

A visitors mobile device sends its computed location three times a minute to our theme park
location server. Hence, a four hour visit results in 720 locations which need to be stored and
analysed. We measured the time needed to analyse up to 50 location files, each containing 720
locations. As shown in Figure 6.8, the location analysis of 50 location files takes about 380 seconds
to complete if our privacy layer is enabled. An analysis without the access control needs about
half the time.

6.3 Summary and Discussion

With this part of our work we have shown that it is possible to implement automatic privacy
enforcement mechanisms based on sticky policies in modern business applications, which are
build on tiered architectures, using an AOP-framework and XACML-polices.

One of the major advantages of the AOP access control layer is its transparency to the existing
application layer. Applications that are developed in a language which supports loadtime weaving,
such as Java, do not even have to be recompiled, the AOP privacy enforcement layer can simply
be added on application start-up. The XACML processing in the reference monitor allows us to
evaluate dynamic policies without requiring changes to the application or the enforcement layer.
Since we use the Java Reflection API to base our access decision on the identity of the requesting
service and can therefore keep the number of advices to a minimum: there is no need to define
different advices for different purposes of data access. Our exemplary implementation is able to
work with a single interceptor for three defined access purposes, which are:

• location update to group members
• generation of statistics for the theme park management

136

6.3 Summary and Discussion

Figure 6.8: Measurement results - Evaluation duration for up to 50 location files each containing 720
locations.

• localisation of misplaced devices

An important criteria for the applicability of any proposed mechanism is its performance under
real-world conditions. We have conducted several tests based on our use case scenario. We found
that especially the XACML parsing takes a lot of time and can be improved by using appropriate
caching mechanisms, since both, resources and policies, are encoded in XML. Overall, our test
results have shown that the performance impact of our privacy layer is acceptable and can be
controlled, so that this is no hurdle for potential deployment.

Our privacy framework is not restricted to a certain policy or programming language. Every
object oriented language that supports AOP and reflections can be used to implement this security
framework. Similarly, other policy languages than XACML could be used for the expression of
privacy policies as long as they are expressive enough and can be evaluated consistently.

The use of the sticky policy concept, which keeps policy and private data together, is a key
element of our privacy framework. We think that it could also be used in the future to ease dis-
tributed policy enforcement, where the computationally intensive location analysis is outsourced
to external service provider infrastructures and compute-clusters without risking the users privacy.

137

6 Privacy Protection for Server-based Information Systems

138

7 Conclusion and Future Work

Martin R. Stytz demanded in an article for the IEEE Security and Privacy Magazine 2005 that
“Individual ownership of PPI [Personally Private Information] should be permanent, and owners
should receive the same rights over their personal data as they would over any other property”. He
made suggestions on possible changes that would be required to achieve better privacy protection
for personal data:

To let owners control access to their personal information, we must change the funda-
mental way in which information transfer occurs. Currently, organizations can trans-
fer an individual’s PPI, such as bank-account balances, bill-payment history, and even
income, to another company without the individual’s knowledge, much less his or her
permission. [Stytz, 2005]

It this thesis we have shown that giving control to data owners and enabling privacy-aware data
exchanges are indeed possible. We analysed a possible solution for the specification of priorities in
data owner-defined privacy policies and constructed a Privacy Enforcement Framework that takes
the policy administration and client-side data protection into consideration. We conceived, build
and analysed several prototypes to confirm our initial hypothesis that access to personal private
data can be controlled even when data is shared with a data user.

The presented work also shows the broad scope of our undertaking. A complete, deployable
solution extends well beyond the realm of computer science and must answer questions from the
economic, legal and psychological domains to become a viable privacy protection tool in the hand
of ordinary computer users. Several of these issues go far beyond the scope of this thesis and need
to be taken up by further research projects.

The next sections will summarise the findings of this thesis. During the work on this thesis
several topics arose that constitute interesting questions for further research but were clearly out
of scope for this body of work. Several of these topics will be presented here as further research
directions.

7.1 Research Contribution

This thesis makes the following contributions to the field of research into privacy enhancing tech-
nologies:

Motivation and Requirements: We identified weaknesses with the currently deployed privacy
protection approaches when personal private data needs to be exchanged between data
owner and data user. Most existing privacy protection approaches use a privacy policy
that is set by the data user and offers no enforcement guaranties, because it is only loosely

139

7 Conclusion and Future Work

connected to the collected data items and the deployed enforcement mechanisms.
We motivate our solution through the description of three use cases that highlight privacy
issues in data exchanges that offer access to Electronic Health Records (EHRs) as well as
privacy issues in location-based services, where location data is used to support social inter-
actions and assisted living.

Privacy Protection Concepts and Principles: We identified key principles and concepts for a
privacy enforcement infrastructure under the control of the data owner through the analysis
of existing Privacy Enhancing Technologies, Access Control Frameworks and Privacy Pol-
icy Languages. We also contributed a comparison between the GEOPRIV Common Policy
and XACML with respect to their applicability for location-based services.
There exists a substantial body of related work for this thesis, however, many previous
projects focused on organisational privacy practices and are not directly applicable to data
owner-defined policy description and enforcement mechanisms.

Owner-Retained Access Control (ORAC): We provided an in-depth comparison between pri-
vacy policies that were defined by data users and policies that have been defined by the
data owner. Several areas were found, where ORAC policies offer better support for privacy
preferences of the data owner.
However, giving administrative power to the data owner burdens the individual with the
non-trivial task of policy management. The user-friendly maintenance of ORAC policies is
an important prerequisite for the reliable operation of privacy protection within our frame-
work and needs to be solved for a practical implementation.
We created a novel approach to policy management, which is based on prioritisation of spe-
cific policy parts. We propose a Privacy Policy Precedence Relation (P3R) that specifies a
ordering relationship between sub-policies through the assignment of explicit priority values
to these policy parts. We implemented the Privacy Policy Precedence Relation as a conflict
resolution mechanism for the XACML language. The use of sub-policies makes it possible
to define default protection profiles and safety rules that augment owner-defined policies and
aid and protect the data owner in its policy management duties. We further use the sticky
policy model to support secure policy distribution and storage for Owner-Retained Access
Control policies of individual data items.

Java PrivMon: It was our plan to use standard access control enforcement mechanisms, such as
the Java Security Framework, to implement privacy policy enforcement. The Java Security
Framework with its standard policy and sandboxing mechanisms looked like an ideal en-
forcement platform, because it is widely deployed and offers robust access control.
During our work we found out that the current Java policy enforcement offers little support
for the enforcement of dynamic access decisions that change as different data items with
different privacy policies will be accessed. The Java Security Framework operates under the
assumption that the computer user has complete control over any program behaviour and it
is the program-code that is assigned different levels of trust.
We had to develop our own class-loading behaviour to support different access control poli-
cies for instances of the same code-base. Our implementation allows the start of untrusted
Java programs under the control of the Java Security Framework. The relevant access per-
missions of the application are derived at runtime from the policy of the data object that is

140

7.2 Discussion

being accessed. We tested our framework with a prototypical privacy protection system for
personal health records.

Privacy Protection for Server-based Information Systems With the growing numbers of mo-
bile devices, more and more usage scenarios nowadays use server-based or server-assisted
data processing and it is no longer the human data user that must be restricted in its ability
to access private data. We therefore extended our client-side reference monitor to a server-
based solution that uses Aspect-oriented Programming (AOP) for the enforcement of data
owner-defined privacy policies. We still use the sticky policy approach for the communica-
tion and storage of the privacy policy element.

The XACML policy language was used for the definition of data-use policies by the data owner.
The developed privacy enforcement framework provides support for fine grained privacy policies
for the expression of privacy preferences.

Private personal data is translated into a suitable XML record format and stored together with
the corresponding XACML policy as a single XML data object. Data access policies are defined
and bound to the data at creation time and revised later as access decisions need to be granted
or revoked. Policy management is aided through the separation of generic default-policies from
user-editable specific policies. The private data is referenced from the XACML policy via XPath.

7.2 Discussion

Our privacy enforcement framework operates under the assumption that private data is released to
a non-malicious data-user that has a strong interest to cooperate with the data owner. This would
be the case for the typical practitioner that treats different patient over the course of the day and
needs to protect the privacy of the electronic data that is generated.

Although this assumption sounds as if it might limit the usefulness of our framework, this is
not the case. When we compare our approach of data owner-defined policies to the more common
data user-defined policies, we notice that both approaches require trust in the data user to deploy
the necessary policy enforcement. When we look at private interactions between persons, we
find again that a non-malicious communication partner is assumed. People reveal very personal
information to close friends and trust them to respect the privateness of this information. If a
person does have no trust in the other person, it usually tries to reveal less or nothing about him-
or herself.

Our privacy enforcement framework follows the same pattern. We want to enable the commu-
nication of personal private data to the data user, however, the data owner must be able to control
to what extend private data is visible and limit the actions of the data user. Other projects use the
same assumption about the data user. Vanish [Geambasu, Kohno, Levy et al., 2009], for exam-
ple, assumes that a data user never stores an unencrypted copy of the sensitive private data and
implements no mechanism that prohibits such an attempt.

Our privacy enforcement framework automatically enforces the privacy preferences of the data
owner and allows data access that is conforming to the policy. It is our intention to make con-
forming data access as easy as possible in order to raise the level of acceptance of the framework.
Nonconforming access, however, such as unintended data release due to carelessness or unin-
tended copying of data is no longer possible.

141

7 Conclusion and Future Work

However, no protection mechanism can guarantee perfect enforcement. If we must assume a
malicious data user, there are several attack vectors that could lead to a successful compromise of
our protection scheme. We therefore recommend that in data release cases, where the data owner
has no trust in the data user he or she should refrain from the data release. Data that has not been
released can not be compromised.

We can, however, identify certain areas that need to be considered. These include:

Attacks on the Java Virtual Machine: The implementation of the reference monitor based on a
Java Virtual Machine has different potential attack vectors. Encryption keys can be extracted
through a memory dump from the underlying operating system or the virtual machine imple-
mentation itself could be manipulated so that necessary access control checks are bypassed.
Maaser and Langendörfer [2009] propose to check the hash values of the sandbox environ-
ment and the operating system before private data is processed on the system. However, a
full solution would require a secure bootstrap process assisted by a Trusted Platform Mod-
ule [Trusted Computing Group, 2007] in order to have a reliable reference that can not be
altered by the attacker.

Social engineering attacks: In most cases of data processing final or intermediate results will
be made known to a human data user. The main way of presenting data is done through
the rendering of text and images on a computer display. Normal operating systems usu-
ally allow the copying of displayed text or images between applications. The Java Security
Framework can control access to the system clipboard and it might also be possible to sup-
press the ability to take screen-shots. Rendering text output in an image format such as
JPEG or PNG could further complicate the subsequent electronic processing. However, a
determined attacker could still photograph the computer screen or take hand-written notes
of the displayed data.

Timing Attacks: Different time interpretations between the data owner and data users systems
(different timezones, daylight saving time, etc.) could be used to gain access to data that
is protected by rules that enforce time-based access restrictions. Synchronisation issues be-
tween different devices might result in situations, where it is difficult to determine the exact
meaning of a rule with time related permissions. Possible attacks might arise if an attacker
can manipulate time and date information on the reference monitor system. Therefore, the
enforcement systems needs to have access to a trusted time-base.

Privacy Considerations: In our PrivMon prototype implementation we allow the browsing of
meta-data by every practitioner, even if the entry itself is not accessible, certain information
about an event can be gathered and conclusions can be made.
This is a general problem for many privacy critical systems. Access to meta-data already
allows the data user to draw certain conclusions. If, for example, a certain oncologist has
made a number of entries in the PHR, it is safe to assume that the patient has been diagnosed
with cancer.
A potential solution for our system would be to generate a restricted resource browser-view
that only includes entries that can are attributed to a certain practitioner. Such a solution
has better privacy properties than our current implementation, because no conclusion can be
made about other events. We could even differentiate this view according to personal trust

142

7.3 Future Work

values. So could, for example, the family doctor be allowed to see all entries in the health
record and advice the patient on comprehensive medical issues.

Conclusion

At the end of this thesis we try to answer a question that arises from the motivation of our work:
“Could the application of our privacy enforcement framework and the consequent usage of Owner-
Retained Access Control policies have avoided the data breaches at the University of Texas and
the Jet Blue airline passenger data?”

Our privacy enforcement framework can eliminate privacy breaches that are the result of care-
less data handling practices or that originate from cases where the data usage policy is ignored or
simply unknown by the data user. If we assume that the mentioned cases fall into this category of
data breaches and were not maliciously conducted, we can answer this question with "Yes, these
data breaches could have been avoided if our privacy protection approach would have been used".

We have given strong evidence in this thesis that storing private data together with the applicable
policy in a protected object improves privacy-aware data handling. The protected object can still
be copied, however, the policy and protection settings are copied as well. Access to the encrypted
data is only possible through a server- or client-based privacy monitor that automatically enforces
data flow protection by restricting the data user to the execution of authorised actions.

Our system is not designed to offer protection against a capable attacker that has full access to
the machines where the private data is used. It may, however, make the life of such an attacker
more difficult, because the simple copying of personal private data no longer automatically leads
to a data breach.

7.3 Future Work

This thesis makes important contributions to the field of privacy protection techniques and extends
currently available mechanisms. Our privacy enforcement framework incorporates elements from
very many areas of privacy and security research, such as access control, safe execution of code
and others. We think that it is only natural that this body of work leads to new questions and
opens up possibilities for further research. In the following, we therefore want to describe several
research areas that are directly relevant to or derived from our work.

7.3.1 Delegation of Authority

Delegation can be described as the assignment of authority from one entity to another. The dele-
gatee acquires the ability to carry out functions and make decisions in accordance with the granted
authority including the right to further delegate this authority.

Delegation of authority is a powerful concept for the management of permissions. However, in the
context of privacy protection it can potentially violate the trust relationship between data owner
and data user. Assume that subject Owner wanted to prohibit subject Userb from accessing a
certain document. If Owner grants Usera the authority to further delegate rights, Usera might then
be able to grant Userb access to the protected document. A potential solution would be for the
Owner to explicitly specify the set of subjects Udeny that should not have access to the document.

143

7 Conclusion and Future Work

In the case of access restrictions on private documents the set of permitted subjects Upermit is
usually much smaller than the set of denied subjects:

|Upermit |�|Udeny |

This makes the enumeration of subjects unpractical and if we wanted to implement a closed
policy it is not even possible to enumerate the set of denied subjects. In our privacy protection
framework we therefore directly authorise the trusted subjects and do not implement delegation
support.

However, Navarro, Firozabadi, Rissanen et al. [2003] have shown that delegation support is
possible within XACML and it should be an interesting task to further examine the problem of
enabling restricted delegation within a privacy enforcement system.

7.3.2 Revocation of Access Rights

Personal trust levels change over time and we foresee the need to adjust existing policies to reflect
the changing personal trust between data owner and data user. It is therefore important to support
the ability to revoke currently existing permissions.

Revoking access to electronic data is inherently difficult, since data can be easily copied, pro-
cessed, forwarded and stored. Unknown data copies might exist in forms of computer backups,
which can be used even if access to the original data source is no longer possible.

The main protection property of our privacy enforcement scheme demands that data should be
stored as a protected object that includes the corresponding privacy policy. Nevertheless, it will
be possible to make copies of the protected data object itself. Revoking access that has already
been granted would require to trace all possible copies of the protected data object and change the
attached policy.

A possible solution could be the maintenance of revocation lists for protected data objects on a
central repository. However, we would lose some of the benefits of distributed data access, because
a centralised revocation infrastructure would be required that would need to be maintained. If
we do not mandate revocation checks, an attacker could simply prevent access to the revocation
service in order to retain its original authorisations.

For our use case we assume that policy changes that lead to rights revocation are rather rare.
Once a trust relationship is formed between a patient and a practitioner it remains stable over a
long period of time and authorisations need not be revoked. In cases, where this trust relationship
has not been fully formed and policy changes might be likely, we propose a different approach
for the granting of authorisations: Data users that are not fully trusted should be only granted
temporary authorisations. This can be implemented directly at the policy level. The condition
element of XACML data access rules can facilitate time-based functions for the expression of
temporary restrictions.

7.3.3 Knowledge Representation in Privacy Policies

During the course of this thesis we have treated policies as instruments for privacy protection
that are used by the data owner to communicate privacy preferences and that allow the reference
monitor to derive access decisions for sensitive data.

144

7.3 Future Work

During our research we found that data owner-defined privacy policies have an additional pur-
pose. They also document the current privacy preferences and expectations of the data owner.
This documentation aspect is important, because privacy preferences might change over time, and
different circumstances might require the adaptation of an existing privacy policy. The data owner
needs a frame of reference upon which he or she can re-evaluate their initial choice and former
believes.

Privacy policies in organisational contexts are commonly expressed and documented in the form
of high-level, informal textual expression, similar to the privacy policy found in Section 1 of this
thesis:

The University of Texas at Austin (U. T. Austin) is committed to ensuring the privacy
and accuracy of your confidential information.

...

U. T. Austin also complies with the Family Educational Rights and Privacy Act
(FERPA), which prohibits the release of education records without student permis-
sion....

[University of Texas, 2008]

High-level privacy policies are mainly written down as human readable text (based on a suit-
able encoding such as HTML) and can be directly posted on a website or referenced through the
discuri element of a P3P policy. They are the basis for the construction of low-level, enforceable
policy representations that consists of data structures that facilitate fast policy evaluation. They
also often have the mentioned documentation purpose, in that they capture and explain the original
intentions of the privacy policy, potential restrictions and make references to applicable regulations
and legal frameworks.

This clear differentiation between high-level and low-level policies is typical for data user-
defined policies, where a dedicated privacy administrator maintains these policy representations.
In the case of data owner-defined policies we normally find no documented high-level policy
representation that could be used to reference the intended protection properties of the enforceable
low-level policy. The data-owner typically has some intuitive personal preferences that will be
expressed through the rules of the current privacy policy, but no formal documentation. We think
that it is therefore important to find a policy representation that supports policy enforcement and
that is expressive enough to also enable the data-owner to reason over the enforcement properties
of the privacy policy.

High-level policies are not directly enforceable by the underlying policy enforcement mecha-
nisms due to their informal specification and rather broad meaning. They must be refined into
low-level expressions that correspond to the granularity of objects, subjects and actions known
by the authorisation scheme and implemented in the enforcement system. Figure 7.1 shows this
process, which closely involves the Policy Administrator, who must create the necessary low-level
policy and has complete control over this process.

Low-level policy representations, such as Access Control Lists (ACL), are optimised for rapid
policy evaluation and direct enforcement. They are derived from the corresponding high-level

145

7 Conclusion and Future Work

High-Level
Privacy Policy

Low-Level
Privacy Policy

Law

Best
Practices

Privacy
Promises

Refinement

Validation

Policy
Administrator

Figure 7.1: Policy Refinement and Validation Process - Privacy policies are usually documented as
high-level, human readable policies. The Policy Administrator is responsible for a suitable
transformation into an enforceable low-level policy that can later be validated against the
high-level representation.

policy but the individual rules typically contain no link to the high-level policy part that was re-
sponsible for their creation. The specific knowledge about the high-level policy goals is eliminated
from the resulting low-level policy during the policy refinement process – rules in the low-level
policy don’t carry information from which part of the high-level policy they were derived. It is
usually not necessary to preserve this information in the low-level policy representation, because
it is not needed for the enforcement and still available in the high-level policy.

However, for the reliable lifetime management of policies the connection between high-level
and low-level policies is important. It must be made certain that a low-level policy truly corre-
sponds to its high-level counterpart and changes in the policy representation do not violate any
higher level goal. Similarly, it is necessary to adapt the low-level policy if some accepted pro-
tection goals change. The high-level policy is documented separately from the low-level policy
and must be able to be referenced so that their correspondence can be ascertained. Organisational
procedures specify the role of a policy administrator that is responsible for the policy refinement
process and the maintenance of both policies.

Knowledge Representation in Owner-Generated Privacy Policies

The policy management process for owner-generated policies differs from the preceding descrip-
tion insofar, as there typically exists no separately documented high-level policy. Therefore, the
process of generating and maintaining an enforceable policy representation can not be aided by it.

We assume that the typical data owner has only an intuitive knowledge about potential privacy
threats and a naïve concept of trust that builds the foundation of his or her individual privacy
requirements. The low-level policy representation itself must be expressive enough to capture
and document high-level policy goals for the data owner and the data owner needs tool-support
to formally specify his or her privacy requirements in the policy. Figure 7.2 visualises the policy
maintenance process for ORAC policies where only one policy representation exists.

A policy validation tool should be developed that lets the data owner test assumptions about
the protection properties of the policy and check for weaknesses and errors in the policy. We

146

7.4 Final Words

Creation
Low-Level

Privacy Policy

Perceived
Threats

Personal
Trust ValidationData

Owner

Tool-based

Privacy
Requirements

Figure 7.2: ORAC Policy Creation and Validation Process - It is the responsibility of the Data
Owner to express his or her privacy requirements as a low-level, enforceable policy. No
separate documentation exists if policies need to be verified or adapted at a later time.

envision that it would be possible to interrogate the formal privacy policy by answering questions
about what actions are allowed or denied for a particular data user. Potential weaknesses and
inconsistencies in the policy could be listed, e.g. when user rules are masked or overwritten by the
safety rules of the policy. If an existing policy needs to be adapted, the validation tool could be
used to find out if the policy corresponds to the intentions of the data owner. The tool should be
able to generate a human readable summary of the privacy policy.

7.4 Final Words

Privacy-aware sharing of data is possible. Our research has shown that a privacy framework can be
build that respects and automatically imposes privacy requirements that have been set by the data
owner. Uptake of our scheme depends on a number of factors that are no longer under our control,
such as the implementation of our ideas in open data sharing infrastructures and the testing of
these solutions with a diversified number of users to make privacy-aware data sharing robust and
user friendly.

We very much hope that it soon becomes possible to have a level of control over the distribution
and release of electronic personal data that is similar to the level of privacy that we enjoy and value
in personal interactions with people around us.

147

7 Conclusion and Future Work

148

Appendix

150

OECD Privacy Guidelines

OECD Privacy Guidelines

The OECD Privacy Guidelines [OECD, 1980] define the following eight principles for the collec-
tion of personal identifiable data:

1. Collection Limitation Principle There should be limits to the collection of personal data and
any such data should be obtained by lawful and fair means and, where appropriate, with the
knowledge or consent of the data subject.

2. Data Quality Principle Personal data should be relevant to the purposes for which they are to
be used, and, to the extent necessary for those purposes, should be accurate, complete and
kept up-to-date.

3. Purpose Specification Principle The purposes for which personal data are collected should
be specified not later than at the time of data collection and the subsequent use limited to
the fulfilment of those purposes or such others as are not incompatible with those purposes
and as are specified on each occasion of change of purpose.

4. Use Limitation Principle Personal data should not be disclosed, made available or otherwise
used for purposes other than those specified in accordance with Paragraph 3 except:

(a) with the consent of the data subject; or
(b) by the authority of law.

5. Security Safeguards Principle Personal data should be protected by reasonable security safe-
guards against such risks as loss or unauthorised access, destruction, use, modification or
disclosure of data.

6. Openness Principle There should be a general policy of openness about developments, prac-
tices and policies with respect to personal data. Means should be readily available of estab-
lishing the existence and nature of personal data, and the main purposes of their use, as well
as the identity and usual residence of the data controller.

7. Individual Participation Principle An individual should have the right:

(a) to obtain from a data controller, or otherwise, confirmation of whether or not the data
controller has data relating to him;

(b) to have communicated to him, data relating to him
• within a reasonable time;
• at a charge, if any, that is not excessive;
• in a reasonable manner; and
• in a form that is readily intelligible to him;

(c) to be given reasons if a request made under subparagraphs (a) and (b) is denied, and to
be able to challenge such denial; and

(d) to challenge data relating to him and, if the challenge is successful to have the data
erased, rectified, completed or amended.

151

OECD Privacy Guidelines

8. Accountability Principle A data controller should be accountable for complying with mea-
sures which give effect to the principles stated above.

152

Priority Policy Algorithm

The following code shows the implementation of the Privacy Policy Precedence Relation (P3R)
as a policy combining algorithm within the SunXACML framework [SunXACML, 2006]:

1 /**
2 * @(#) PriorityPolicyAlg.java
3 */
4 package de.uni_potsdam.reference_monitor.pdp;
5

6 import java.net.URI;
7 import java.net.URISyntaxException;
8 import java.util.ArrayList;
9 import java.util.HashSet;

10 import java.util.Iterator;
11 import java.util.List;
12 import java.util.Set;
13

14 import com.sun.xacml.AbstractPolicy;
15 import com.sun.xacml.EvaluationCtx;
16 import com.sun.xacml.Indenter;
17 import com.sun.xacml.MatchResult;
18 import com.sun.xacml.combine.CombinerParameter;
19 import com.sun.xacml.combine.PolicyCombinerElement;
20 import com.sun.xacml.combine.PolicyCombiningAlgorithm;
21 import com.sun.xacml.ctx.Result;
22 import com.sun.xacml.ctx.Status;
23 import com.sun.xacml.attr.IntegerAttribute;
24

25 import de.uni_potsdam.reference_monitor.helper.DEBUG;
26

27

28 /**
29 *
30 * This is the standard Priority Policy combining algorithm. It looks
31 * through the set of policies , derives an access decision from each of the applicable

policies ,
32 * and returns the evaluation result for the policy with the highest priority.
33 *
34 * @author Thomas Scheffler
35 * @version 1.1
36 */
37

38

39 public class PriorityPolicyAlg extends PolicyCombiningAlgorithm {
40

41 /**
42 * The standard URN used to identify this algorithm
43 */
44 public static final String algId =
45 "urn:policy -combining -alg:" +
46 "priority";
47

48 /**
49 * Standard constructor.
50 */

153

Priority Policy Algorithm

51 public PriorityPolicyAlg() throws URISyntaxException {
52 super(new URI("urn:policy -combining -alg:priority"));
53 }
54

55 /**
56 * Applies the combining algorithm to the set of policies based on the
57 * evaluation context.
58 *
59 * @param context the context from the request
60 * @param parameters a (possibly empty) non-null <code >List </code > of
61 * <code >CombinerParameter <code >s
62 * @param policyElements the rules to combine
63 *
64 * @return the result of running the combining algorithm
65 */
66 public Result combine(EvaluationCtx context , List parameters , List policyElements)

{
67

68 if (DEBUG.LEVEL2){
69 System.out.println("\n in Methode "
70 + "PriorityPolicyAlg.combine");
71 }
72

73 boolean atLeastOnePermit = false;
74 Set permitObligations = new HashSet();
75 AbstractPolicy selectedPolicy = null;
76 Iterator it = policyElements.iterator();
77 long policyPriorityParameter=-1;
78 Result policyResult = null;
79

80

81 while (it.hasNext()) {
82 long currentPolicyPriority = -1;
83 PolicyCombinerElement policyCombElement = (PolicyCombinerElement)(it.next()

);
84 // get the policy
85 AbstractPolicy policy = policyCombElement.getPolicy();
86 // get the associated Combining Parameters for this policy
87 List parList = policyCombElement.getParameters();
88 // check if Combining Parameters are present , get value of parameter named

"Priority"
89 for(int i=0, size=parList.size(); i < size; i++){
90 CombinerParameter combPar = (CombinerParameter)parList.get(i);
91 if (combPar.getName().equals("Priority")){
92 IntegerAttribute intAttr = (IntegerAttribute)combPar.getValue();
93 currentPolicyPriority = (long) intAttr.getValue();
94 if (currentPolicyPriority < 1){
95 List code = new ArrayList();
96 code.add(Status.STATUS_PROCESSING_ERROR);
97 String message = "Policy prioity out of bound. Must be > 0";
98 return new Result(Result.DECISION_INDETERMINATE ,
99 new Status(code , message),

100 context.getResourceId().encode());
101 }
102 if (currentPolicyPriority == policyPriorityParameter){
103 //INFO: we assume a strict hierarchy and do not combine

multiple policies
104 // at the same priority level.
105 List code = new ArrayList();
106 code.add(Status.STATUS_PROCESSING_ERROR);
107 String message = "Policies using same prioity level found! Must

be different.";
108 return new Result(Result.DECISION_INDETERMINATE ,
109 new Status(code , message),

154

Priority Policy Algorithm

110 context.getResourceId().encode());
111 }
112 if (DEBUG.LEVEL2){
113 System.out.println("Current Policy Priority:" +

currentPolicyPriority);
114 }
115 }
116 else{
117 List code = new ArrayList();
118 code.add(Status.STATUS_PROCESSING_ERROR);
119 String message = "No policy prioity level found! Must be set.";
120 return new Result(Result.DECISION_INDETERMINATE ,
121 new Status(code , message),
122 context.getResourceId().encode());
123 }
124

125 if (DEBUG.LEVEL2){
126 System.out.println("End Policy Priority:" + currentPolicyPriority);
127 }
128 }
129

130 // see if the policy matches the context
131 MatchResult match = policy.match(context);
132 int matchResult = match.getResult();
133

134 // if there is an error in trying to match any of the targets ,
135 // we always return INDETERMINATE immediately
136 if (matchResult == MatchResult.INDETERMINATE)
137 return new Result(Result.DECISION_INDETERMINATE ,
138 match.getStatus(),
139 context.getResourceId().encode());
140

141 if (matchResult == MatchResult.MATCH) {
142 Result evalResult = policy.evaluate(context);
143 int effect = evalResult.getDecision();
144 if (DEBUG.LEVEL2){
145 System.out.println("PolicyEvaluation: " + effect);
146 }
147 // if this policy has a higher priority than the previously visited

policy ,
148 // and decision is permit or deny , remember it for later
149 if (effect <2 && (policyPriorityParameter == -1 ||
150 currentPolicyPriority > policyPriorityParameter)){
151 policyPriorityParameter = currentPolicyPriority;
152 policyResult = evalResult;
153 }
154 }
155 }
156

157 // if we got through the loop and found one or more matches , then
158 // we return the evaluation result of the policy with the highest
159 // priority.
160 // Otherwise it’s NOT_APPLICABLE
161 if (policyPriorityParameter > 0)
162 return policyResult;
163 else
164 return new Result(Result.DECISION_NOT_APPLICABLE ,
165 context.getResourceId().encode());
166 }
167 }

Listing 1: Implementation of the Privacy Policy Precedence Relation as a policy combining
algorithm within the SunXACML framework [SunXACML, 2006]

155

Priority Policy Algorithm

156

List of Figures

1.1 Incident Vectors of Data Loss Events . 2
1.2 Data Release Taxonomy . 6

2.1 UCON scope . 25
2.2 Exemplary Access Control Matrix . 28
2.3 Access control functions as defined by ISO/IEC 10181-3 [1996] 31
2.4 Distributed Access Control Framework as defined by RFC 2753 32
2.5 The P3P language model . 35
2.6 EPAL language model . 39
2.7 The XACML Architecture Framework . 41
2.8 XACML language model . 42
2.9 Formation of XACML Policies . 43
2.10 GEOPRIV language model . 48
2.11 Access Control Mechanisms at different system levels 53

3.1 Policy Administration in the XACML Architecture 64
3.2 Priority Policy Combining . 72
3.3 Policy Combining Algorithm . 73
3.4 Maintaining consistency in the policy rule-base 79

4.1 Access Control Architecture . 82
4.2 Access Control for different communication models 84
4.3 Access Control Architecture using ‘Sticky Policies’ 86
4.4 Data and Policy Protection using Shared Keys 88

5.1 Java Security Architecture . 96
5.2 Java PrivMon - Privacy Monitor architecture . 98
5.3 Data model of a Personal Health Record . 100
5.4 Restricted application execution . 109
5.5 Java class loader hierarchy . 111
5.6 Privacy-aware Applications: Personal Health Record Viewer 113
5.7 Java AccessControlException . 113
5.8 Execution times for XACAML requests - single resource/single rule 115
5.9 Execution times for XACAML requests - multiple resources/multiple rules 116

6.1 Map of the Stahnsdorf area . 124
6.2 Network components of KopAL . 125
6.3 Sequence diagram of the KopAL privacy function 126

157

List of Figures

6.4 Layered application server architecture . 129
6.5 Access permissions in the DAO layer . 130
6.6 AOP-Components overview . 131
6.7 An AOP-based reference monitor . 132
6.8 Measurement results . 137

7.1 Policy Refinement and Validation Process . 146
7.2 ORAC Policy Creation and Validation Process 147

158

List of Tables

2.1 Privacy enhancing technologies implementing the principles from the OECD Pri-
vacy Guidelines . 21

2.2 Applicability of XACML Combining Algorithms 44
2.3 Comparison of Access Control Mechanisms . 56

3.1 Access Domains for Electronic Health Record Data as defined by EN-13606-4 . . 68
3.2 Defining priority values for policy combining 72

5.1 Mapping of XACML policy actions against Java Permissions 108

159

List of Tables

160

Listings

2.1 P3P Policy Example . 36
2.2 Example of an XACML Policy protected EHR. [Apitzsch, Liske, Scheffler et al.,

2008] . 44

3.1 Separation of XACML Policy Parts through the use of a <PolicySet> 70
3.2 Registration of the new P3R policy combining algorithm with the SunXACML

CombiningAlgFactory in MyPDP.java . 71
3.3 Specification of explicit priority value using XACML <PolicyCombinerParam-

eters> . 71
3.4 Example of a restrictive DefaultPolicy . 75
3.5 Example of a permissive DefaultPolicy . 75
3.6 Example of a SafetyPolicy that enforces an administrative policy for the data

owner. It guarantees data access for the data owner itself, even if restricting rule
have been entered in the OwnerPolicy policy part. 77

5.1 Programmatically invoking the Java Security Manager 96
5.2 Basic format of a grant entry in the java.policy file 97
5.3 Default Permit Rule for Data Authors . 105

6.1 Definition of an interceptor and point cut in JBoss AOP for our theme park exam-
ple implementation . 133

6.2 This XACML policy excerpt of our ‘theme park location system’ permits our lo-
cation analysis service to analyse the corresponding location. 134

161

Listings

162

Abbreviations

AAL Ambient Assisted Living

ACL Access Control List

ACR Access Control Rules

ADF Access Control Decision Function

AEF Access Control Enforcement Function

AES Advanced Encryption Standard

AOP Aspect-oriented Programming

API Application Programming Interface

CA Certificate Authority

EPAL Enterprise Privacy Authorization Language

DAC Discretionary Access Control

DAO Data Access Object

DRM Digital Rights Management

EHR Electronic Health Record

GPS Global Positioning System

HRV Health Record Viewer

HTML Hypertext Markup Language

IBE Identity-Based Encryption

IETF Internet Engineering Taskforce

ISO International Organization for Standardization

MAC Mandatory Access Control

MANET Mobile Ad-hoc Network

163

Listings

OLSR Optimized Link State Routing

ORAC Owner-Retained Access Control

OSI Open Systems Interconnection

P3R Privacy Policy Precedence Relation

P3P Platform for Privacy Preferences

PAP Policy Administration Point

PDP Policy Decision Point

PET Privacy Enhancing Technology

PEP Policy Enforcement Point

PGP Pretty Good Privacy

PHR Personal Health Record

PII Personally Identifiable Information

PPI Personally Private Information

PKI Public Key Infrastructure

RSA Rivest, Shamir, & Adleman (public key encryption technology)

TPM Trusted Platform Module

W3C World Wide Web Consortium

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

164

Bibliography

Abrams, Marshall D., Leonard J. LaPadula, Kenneth W. Eggers, and Ingrid M. Olson. 1990. A
generalized framework for access control: An informal description. Proceedings of the 13th
National Computer Security Conference, 135–143.

Agre, Philip E. and Marc Rotenberg, eds. 1997. Technology and Privacy: The New Landscape.
MIT Press.

Allan, Alasdair and Pete Warden. 2011. iPhone Tracking "What Your iPhone Knows About You".
O’Reilly Where 2.0 Conference.

Amazon. 2008. Privacy notice. http://www.amazon.com/gp/help/customer/display.html?
nodeId=468496.

Anderson, Anne. 2005. A Comparison of Two Privacy Policy Languages: EPAL and XACML.
Tech. Rep. Technical Report 2005-147, Sun Microsystems Laboratories. http://research.
sun.com/techrep/2005/abstract-147.html.

Anderson, J. P. 1972. Computer security technology planning study. Technical Report ESD-TR-
73-51. Tech. Rep., Electronic System Division/AFSC.

Anderson, Ross J. 2001. Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley &Sons, Inc.

Anton, Annie I., Qingfeng He, and David L. Baumer. 2004. Inside JetBlues’s Privacy Policy
Violation. IEEE Security and Privacy 2, no. 6: 12–18.

Apitzsch, Felix, Stefan Liske, Thomas Scheffler, and Bettina Schnor. 2008. Specifying Security
Policies for Electronic Health Records. Proceedings of the International Conference on Health
Informatics (HEALTHINF 2008), vol. 2, 82 – 90. Funchal/Madeira, Portugal.

AppArmor. 2007. AppArmor Application Security for Linux. http://www.novell.com/linux/
security/apparmor/.

Ashley, Paul and Günter Karjoth. 2003. Shortcomings of P3P for Privacy Authorization - Lessons
learned when Using P3P-based Privacy Manager 1.1. http://www.w3.org/2003/p3p-ws/
pp/ibm1.html.

Barmer. 2010. Barmer - Gesundheitsakte. https://www.lifesensor.com/de/barmer.

Barth, Adam and John C. Mitchell. 2005. Enterprise privacy promises and enforcement. Proceed-
ings of the 2005 workshop on Issues in the theory of security, 58–66. Long Beach, California:
ACM Press.

165

http://www.amazon.com/gp/help/customer/display.html?nodeId=468496
http://www.amazon.com/gp/help/customer/display.html?nodeId=468496
http://research.sun.com/techrep/2005/abstract-147.html
http://research.sun.com/techrep/2005/abstract-147.html
http://www.novell.com/linux/security/apparmor/
http://www.novell.com/linux/security/apparmor/
http://www.w3.org/2003/p3p-ws/pp/ibm1.html
http://www.w3.org/2003/p3p-ws/pp/ibm1.html
https://www.lifesensor.com/de/barmer

Bibliography

Barth, Adam, John C. Mitchell, and Justin Rosenstein. 2004. Conflict and combination in privacy
policy languages. Proceedings of the 2004 ACM workshop on Privacy in the electronic society,
45–46. Washington DC, USA: ACM Press.

Bell, D. Elliot and Leonard J. LaPadula. 1973. Secure computer systems: Mathematical founda-
tions. Tech. Rep., MITRE Technical Report 2547, Volume I.

Benassi, Paola. 1999. TRUSTe: an online privacy seal program. Communications of the ACM 42:
56–59.

Bertino, Elisa, M. Braun, Silvana Castano, Elena Ferrari, and Marco Mesiti. 2001. Author-X: A
Java-Based System for XML Data Protection. Proceedings of the IFIP TC11/ WG11.3 Four-
teenth Annual Working Conference on Database Security: Data and Application Security, De-
velopment and Directions, 15–26. Kluwer, B.V.

Boneh, Dan and Matthew Franklin. 2003. Identity-based encryption from the weil pairing. SIAM
J. Comput. 32, no. 3: 586–615.

Brewer, D. F. C. and M. J. Nash. 1989. The Chinese Wall security policy. Proceedings of the 1989
IEEE Symposium on Security and Privacy, 206–214. doi:http://dx.doi.org/10.1109/SECPRI.
1989.36295. http://dx.doi.org/10.1109/SECPRI.1989.36295.

BVerfG 65,1. 1984. Bundesverfassungsgericht: BVerfGE 65, 1 "Volkszählung". Neue Juristische
Wochenschrift, 419. Verlag C. H. Beck.

Callas, J., L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. 2007. OpenPGP Message Format.
RFC 4880, Internet Engineering Task Force. http://tools.ietf.org/html/rfc4880.

CEN/TS-15211. 2006. Health informatics - Mapping of hierarchical message descriptions to
XML. European Committee for Standardisation, http://www.cen.eu.

Chaum, David. 1985. Security without identification: transaction systems to make big brother
obsolete. Communications of the ACM 28, no. 10: 1030–1044. http://doi.acm.org/10.
1145/4372.4373.

Chaum, David L. 1981. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24, no. 2: 84–90. http://doi.acm.org/10.1145/358549.
358563.

Chen, Kung and Da-Wei Wang. 2007. An Aspect-Oriented Approach to Privacy-Aware Access
Control. Machine Learning and Cybernetics, 2007 International Conference on, vol. 5, 3016
–3021. doi:10.1109/ICMLC.2007.4370665.

Clausen, T. and P. Jacquet. 2003. Optimized Link State Routing Protocol (OLSR). RFC 3626,
Internet Engineering Task Force. http://tools.ietf.org/html/rfc3626.

Cranor, Lorrie and Aleecia McDonald. 2008. The Cost of Reading Privacy Policies. Proceedings
of 36th Research Conference on Communication, Information & Internet Policy (TPRC). http:
//tprcweb.com/files/CostOfReadingPrivacyPolicies.pdf.

166

http://dx.doi.org/10.1109/SECPRI.1989.36295
http://tools.ietf.org/html/rfc4880
http://doi.acm.org/10.1145/4372.4373
http://doi.acm.org/10.1145/4372.4373
http://doi.acm.org/10.1145/358549.358563
http://doi.acm.org/10.1145/358549.358563
http://tools.ietf.org/html/rfc3626
http://tprcweb.com/files/CostOfReadingPrivacyPolicies.pdf
http://tprcweb.com/files/CostOfReadingPrivacyPolicies.pdf

Bibliography

Cranor, Lorrie Faith. 2002. Web Privacy with P3P. O’Reilly.

Damiani, E., S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. 2002. A Fine-Grained
Access Control System for XML Documents. ACM Transactions on Information and System
Security 5, no. 2: 169–202.

DataLossDB. 2012. DataLossDB. Open Security Foundation. http://datalossdb.org/.

Dierks, T. and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246, Internet Engineering Task Force. http://tools.ietf.org/html/rfc5246.

Directive 95/46/EC. 1995. On the protection of individuals with regard to the processing of per-
sonal data and on the free movement of such data. http://ec.europa.eu/justice_home/
doc_centre/privacy/law/index_en.htm.

DoD 5200.28-STD. 1985. Trusted computer system evaluation criteria. Department of Defense
Standard 5200.28-STD.

DTOS. 1997. DTOS General System Security and Assurability Assessment Report. Tech.
Rep. MD A904-93-C-4209 CDRL A011, Secure Computing Corporation. http://www.
securecomputing.com/randt/HTML/dtos.html.

EN-13606-4. 2007. Health informatics - Electronic health record communication - Part 4: Secu-
rity. European Committee for Standardisation. http://www.cen.eu.

EPAL 1.2. 2003. Enterprise Privacy Authorization Language (EPAL 1.2). W3C Member Submis-
sion. http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/.

Evered, Mark and Serge Bögeholz. 2004. A case study in access control requirements for a Health
Information System. Proceedings of the second workshop on Australasian information secu-
rity, Data Mining and Web Intelligence, and Software Internationalisation - Volume 32, 53–61.
Dunedin, New Zealand: Australian Computer Society, Inc.

Fair Information Principles. 1973. A Review of the Fair Information Principles: The Foundation
of Privacy Public Policy. http://www.privacyrights.org/ar/fairinfo.htm.

FIPS PUB 197. 2001. Specification for the Advanced Encryption Standard (AES). Federal In-
formation Processing Standards Publication 197. http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf.

Fischer-Hübner, Simone. 2001. IT-Security and Privacy: Design and Use of Privacy-Enhancing
Security Mechanisms, vol. 1958 of Lecture Notes in Computer Science. Springer-Verlag New
York, Inc.

Fudickar, S. and B. Schnor. 2009. KopAL - A Mobile Orientation System For Dementia Patients.
Communications in Computer and Information Science, Int. Conf. Intelligent Interactive As-
sistance and Mobile Multimedia Computing, vol. 53, 109–118. Berlin Heidelberg, Germany:
Springer.

167

http://datalossdb.org/
http://tools.ietf.org/html/rfc5246
http://ec.europa.eu/justice_home/doc_centre/privacy/law/index_en.htm
http://ec.europa.eu/justice_home/doc_centre/privacy/law/index_en.htm
http://www.securecomputing.com/randt/HTML/dtos.html
http://www.securecomputing.com/randt/HTML/dtos.html
http://www.cen.eu
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
http://www.privacyrights.org/ar/fairinfo.htm
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Bibliography

Fudickar, Sebastian, Bettina Schnor, Juliane Felber, Franz J. Neyer, Mathias Lenz, and Manfred
Stede. 2011. KopAL - An Orientation System For Patients With Dementia. Behaviour Moni-
toring and Interpretation - BMI, 83–104. IOS Press.

Geambasu, Roxana, Tadayoshi Kohno, Amit Levy, and Henry M. Levy. 2009. Vanish: Increasing
data privacy with self-destructing data. Proceedings of the 18th USENIX Security Symposium.

Geiß, Stefan. 2007. Realisierung eines Referenzmonitors für die kontrollierte Nutzung verteilter
elektronischer Daten. Diplomarbeit, Universität Potsdam.

Geopriv-Charter. n.d. Charter of the Geographic Location/Privacy Working Group. http://
datatracker.ietf.org/wg/geopriv/charter/.

GKV 2003. 2003. Gesetz zur Modernisierung der gesetzlichen Krankenversicherung, SGB V,
§291a. Bundesgesetzblatt, vol. 55. Bundesgesundheitsministerium.

Goldberg, Ian. 2003. Privacy-enhancing technologies for the internet, II: five years later. PET’02:
Proceedings of the 2nd international conference on Privacy enhancing technologies, 1–12.
Berlin, Heidelberg: Springer-Verlag.

Goldberg, Ian, David Wagner, and Eric A. Brewer. 1997. Privacy-enhancing technologies for
the Internet. Proceedings of the 42nd IEEE International Computer Conference, 103. IEEE
Computer Society.

Gong, Li, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers. 1997. Going Beyond
the Sandbox: An Overview of the New Security Architecture in the Java Development Kit.
USENIX Symposium on Internet Technologies and Systems. Monterey, California.

Gong, Li, Gary Ellison, and Mary Dageforde. 2003. Inside Java 2 Platform Security - Second
Edition. Boston: Addison-Wesley.

Google Health. 2008. Google - personal health record. https://www.google.com/health.

Graham, G. Scott and Peter J. Denning. 1972. Protection - Principles and Practice. Spring Joint
Computer Conference, vol. 40, 417–429. AFIPS Press.

Gupta, Rajeev and Manish Bhide. 2005. A Generic XACML Based Declarative Authorization
Scheme for Java. Lecture Notes in Computer Science: Computer Security - ESORICS 2005,
vol. 3679. Springer Berlin / Heidelberg.

Hohl, A. and A. Zugenmaier. 2006. Safeguarding Personal Data using Rights Management in
Pervasive Computing for Distributed Applications. Technical Report, University of Freiburg.
http://www.telematik.uni-freiburg.de/opendownloads/hozu06.pdf.

ISO 7498-2. 1991. Security Architecture for Open Systems Interconnection for CCITT Applica-
tions. Obtainable from http://www.itu.int/itudoc/ itu-t/rec/x/x500up/x800.html.

ISO/HL7-21731. 2006. Health informatics - HL7 version Reference information model Release
1).

168

http://datatracker.ietf.org/wg/geopriv/charter/
http://datatracker.ietf.org/wg/geopriv/charter/
https://www.google.com/health
http://www.telematik.uni-freiburg.de/opendownloads/hozu06.pdf

Bibliography

ISO/IEC 10181-1. 1996. Information technology - Open Systems Interconnection - Security
frameworks for open systems: Overview.

ISO/IEC 10181-3. 1996. Information technology - Open Systems Interconnection - Security
frameworks for open systems: Access control framework.

Jajodia, Sushil, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian. 2001. Flexible
support for multiple access control policies. ACM Trans. Database Syst. 26, no. 2: 214–260.

JBoss Inc. 2012. JBoss AOP - Aspect-Oriented Framework for Java. http://docs.jboss.org/
aop/1.1/aspect-framework/reference/en/html/index.html.

Jensen, Carlos and Colin Potts. 2004. Privacy policies as decision-making tools: an evaluation of
online privacy notices. Proceedings of the SIGCHI conference on Human factors in computing
systems, 471–478. Vienna, Austria: ACM Press.

Karjoth, Günter and Matthias Schunter. 2002. A privacy policy model for enterprises. Proceedings
of the 15th IEEE Computer Security Foundations Workshop (CSFW’02), 271. IEEE Computer
Society.

Karjoth, Günter, Matthias Schunter, and Els Van Herreweghen. 2003. Translating Privacy Practices
into Privacy Promises-How to Promise What You Can Keep. POLICY ’03: Proceedings of the
4th IEEE International Workshop on Policies for Distributed Systems and Networks, 135–146.
Washington, DC, USA: IEEE Computer Society.

Karjoth, Günter, Matthias Schunter, and Michael Waidner. 2003. Platform For Enterprise Privacy
Practices: Privacy-enabled Management Of Customer Data. 2nd Workshop on Privacy Enhanc-
ing Technologies (PET2002), vol. 2482 of Lecture Notes in Computer Science, 69–84. Springer
Verlag.

Karjoth, Günter, Andreas Schade, and Els Van Herreweghen. 2008. Implementing ACL-Based
Policies in XACML. Proceedings of the 2008 Annual Computer Security Applications Con-
ference, ACSAC ’08, 183–192. Washington, DC, USA: IEEE Computer Society. http:
//dx.doi.org/10.1109/ACSAC.2008.31.

Kent, S. and K. Seo. 2005. Security Architecture for the Internet Protocol. RFC 4301, Internet
Engineering Task Force. http://tools.ietf.org/html/rfc4301.

Kruppa, Michael. 2011. Emergency indoor and outdoor user localization. Demographischer
Wandel - Assistenzsysteme aus der Forschung in den Markt (Proceedings 4. Deutscher AAL-
Kongress). Berlin: VDE Verlag.

Lampson, Butler W. 1971. Protection. Proceedings of the 5th Princeton Symposium on Infor-
mation Sciences and Systems, 437–443. Princeton University. Reprinted in ACM Operating
Systems Review, 8, 1, January 1974, pp. 18-24, http://doi.acm.org/10.1145/775265.
775268.

Landwehr, Carl E. 1981. Formal models for computer security. ACM Comput. Surv. 13, no. 3:
247–278. http://doi.acm.org/10.1145/356850.356852.

169

http://docs.jboss.org/aop/1.1/aspect-framework/reference/en/html/index.html
http://docs.jboss.org/aop/1.1/aspect-framework/reference/en/html/index.html
http://dx.doi.org/10.1109/ACSAC.2008.31
http://dx.doi.org/10.1109/ACSAC.2008.31
http://tools.ietf.org/html/rfc4301
http://doi.acm.org/10.1145/775265.775268
http://doi.acm.org/10.1145/775265.775268
http://doi.acm.org/10.1145/356850.356852

Bibliography

Langendörfer, Peter, Michael Maaser, Krzysztof Piotrowski, and Steffen Peter. 2008. Privacy En-
hancing Techniques: A Survey and Classification. Handbook of Research on Wireless Security.
Hershey, PA: Information Science Reference - Imprint of: IGI Publishing.

Lehmann, Kathrin and Peter Thiemann. 2006. Field Access Analysis for Enforcing Access Control
Policies. Proceedings of the International Conference on Emerging Trends in Information and
Communication Security (ETRICS 2006), vol. 3995 of Lecture Notes in Computer Science,
337–351. Berlin, Heidelberg: Springer-Verlag.

Lupu, Emil C. and Morris Sloman. 1999. Conflicts in policy-based distributed systems manage-
ment. IEEE Trans. Softw. Eng. 25, no. 6: 852–869. doi:http://dx.doi.org/10.1109/32.824414.

Maaser, Michael and Peter Langendörfer. 2009. Privacy from Promises to Protection: Privacy
Guaranteeing Execution Container. Mobile Networks and Applications 14, no. 1: 65–81. doi:
http://dx.doi.org/10.1007/s11036-008-0116-7.

Manyika, James, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles
Roxburgh, and Angela Hung Byers. 2011. Big data: The next frontier for in-
novation, competition, and productivity. Tech. Rep., McKinsey Global Institute.
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/
Big_data_The_next_frontier_for_innovation.

Markle Foundation. 2003. Connecting for health. The Personal Health Working Group Final
Report. http://www.connectingforhealth.org/resources/final_phwg_report1.pdf.

Marsh, Stephen Paul. 1994. Formalising trust as a computational concept. Ph.D. thesis, University
of Stirling.

McCollum, Catherine Jensen, Judith R. Messing, and LouAnna Notargiacomo. 1990. Beyond
the pale of MAC and DAC-defining new forms of access control. IEEE Computer Society
Symposium on Research in Security and Privacy, 190–200. http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=63850.

Microsoft HealthVault. 2010. Microsoft HealthVault - Personal Health Record. http://www.
healthvault.com/Personal/index.aspx.

Mont, Marco Casassa, Siani Pearson, and Pete Bramhall. 2003. Towards accountable management
of identity and privacy: Sticky policies and enforceable tracing services. Proceedings of the 14th
International Workshop on Database and Expert Systems Applications, 377. IEEE Computer
Society.

Morris, John and Jon Peterson. 2007. Who’s watching you now? IEEE Security and Privacy 5:
76–79. doi:http://doi.ieeecomputersociety.org/10.1109/MSP.2007.24.

Navarro, Guillermo, Babak S. Firozabadi, Erik Rissanen, and Joan Borrell. 2003. Constrained
Delegation in XML-based Access Control and Digital Rights Management Standards. CNIS03,
Special Session on Architectures and Languages for Digital Rights Management and Access
Control, ed. M. H. Hamza, 271–276. Acta Press.

170

http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.connectingforhealth.org/resources/final_phwg_report1.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=63850
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=63850
http://www.healthvault.com/Personal/index.aspx
http://www.healthvault.com/Personal/index.aspx

Bibliography

Oaks, Scott. 2001. Java Security. Sebastopol: O’Reilly, 2nd edn.

OECD. 1980. OECD Guidelines on the Protection of Privacy and Transborder Flows of Personal
Data. http://www.oecd.org/document/18/0,2340,en_2649_34255_1815186_1_1_1_1,
00.html.

P3P APPEL. 2002. A P3P Preference Exchange Language 1.0 (APPEL1.0). W3C Draft. http:
//www.w3.org/TR/2002/WD-P3P-preferences-20020415.

P3P v1.0. 2002. The Platform for Privacy Preferences 1.0 (P3P 1.0) Specification. W3C Recom-
mendation. http://www.w3.org/TR/2002/REC-P3P-20020416/.

P3P v1.1. 2006. The Platform for Privacy Preferences 1.1 (P3P 1.1) Specification. W3C Group
Note. http://www.w3.org/TR/2006/NOTE-P3P11-20061113/.

Park, Jaehong and Ravi Sandhu. 2004. The UCONABC usage control model. ACM Transactions
on Information and System Security 7, no. 1: 128–174. doi:http://doi.acm.org/10.1145/984334.
984339.

PRIME. 2006-2008. PRIME - Privacy and Identity Management for Europe. https://www.
prime-project.eu/.

Privacy Rights Clearinghouse. 2012. A chronology of data breaches. http://www.
privacyrights.org/data-breach.

Provos, Niels. 2009. Systrace - Interactive Policy Generation for System Calls. http://www.
citi.umich.edu/u/provos/systrace/.

Ramsdell, B. and S. Turner. 2010. Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.2. RFC 5751, Internet Engineering Task Force. http://tools.ietf.org/html/
rfc5751.

Reenskaug, T. M. H. 1978. MVC XEROX PARC 1978-79. http://heim.ifi.uio.no/
~trygver/themes/mvc/mvc-index.html.

Rivest, Ronald L., Adi Shamir, and Leonard Adleman. 1978. A method for obtaining Digital
Signatures and Public Key Cryptosystems. Communications of the ACM 21, no. 2: 120–126.

Rössler, Beate. 2001. Der Wert des Privaten. Suhrkamp.

Saltzer, Jerome D. and Michael D. Schroeder. 1975. The Protection of Information in Computer
Systems. Proceedings of the IEEE 63, no. 9: 1278–1308.

Samarati, Pierangela and Sabrina De Capitani di Vimercati. 2001. Access control: Policies, mod-
els, and mechanisms. FOSAD ’00: Foundations of Security Analysis and Design, vol. 2171 of
Lecture Notes In Computer Science, 137–196. London, UK: Springer-Verlag.

Sandhu, Ravi S. and Pierrangela Samarati. 1994. Access control: Principles and practice.
IEEE Communications Magazine 32, no. 9: 40–48. http://citeseer.ist.psu.edu/
sandhu94access.html.

171

http://www.oecd.org/document/18/0,2340,en_2649_34255_1815186_1_1_1_1,00.html
http://www.oecd.org/document/18/0,2340,en_2649_34255_1815186_1_1_1_1,00.html
http://www.w3.org/TR/2002/WD-P3P-preferences-20020415
http://www.w3.org/TR/2002/WD-P3P-preferences-20020415
http://www.w3.org/TR/2002/REC-P3P-20020416/
http://www.w3.org/TR/2006/NOTE-P3P11-20061113/
https://www.prime-project.eu/
https://www.prime-project.eu/
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.citi.umich.edu/u/provos/systrace/
http://www.citi.umich.edu/u/provos/systrace/
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc5751
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html
http://citeseer.ist.psu.edu/sandhu94access.html
http://citeseer.ist.psu.edu/sandhu94access.html

Bibliography

Scheffler, Thomas, Stefan Geiß, and Bettina Schnor. 2008. An Implementation of a Privacy En-
forcement Scheme based on the Java Security Framework using XACML Policies. Proceedings
of the IFIP TC 11, 23rd International Information Security Conference, vol. 278/200, 157–171.
Springer Boston. doi:10.1007/978-0-387-09699-5_11.

Scheffler, Thomas, Sven Schindler, Marcus Lewerenz, and Bettina Schnor. 2011. A Privacy-
Aware Localization Service for Healthcare Environments. Privacy and Security in Pervasive
Environments (PSPAE’11) Workshop at PETRA 2011. Crete, Greece.

Scheffler, Thomas, Sven Schindler, and Bettina Schnor. 2012. Enforcing Location Privacy Policies
through an AOP-based Reference-Monitor. Proceedings of the World Congress on Internet
Security (WorldCIS-2012). Guelph, Canada.

Schneider, Cornelia and Elisabeth Häusler. 2011. Mobilitätssichernde Assistenzsysteme - Ergeb-
nisse einer Akzeptanzstudie, Mobility safeguarding assistance systems - Results of an accep-
tance test. Demographischer Wandel - Assistenzsysteme aus der Forschung in den Markt (Pro-
ceedings 4. Deutscher AAL-Kongress). Berlin: VDE Verlag.

Schulzrinne, H., H. Tschofenig, J. Morris, J. Cuellar, J. Polk, and J. Rosenberg. 2007. Common
Policy: A Document Format for Expressing Privacy Preferences. RFC 4745, Internet Engineer-
ing Task Force. http://tools.ietf.org/html/rfc4745.

Sevinç, Paul E. and David Basin. 2006. Controlling Access to Documents: A Formal Access
Control Model. Technical Report No. 517, Department of Computer Science, ETH Zürich,
8092 Zürich, Switzerland.

Sevinç, Paul E., Mario Strasser, and David Basin. 2007. Securing the distribution and stor-
age of secrets with trusted platform modules. WISTP 2007, vol. 4462 of LNCS, eds.
Damien Sauveron, Konstantinos Markantonakis, Angelos Bilas, and Jean-Jacques Quisquater,
53–66. Springer. http://www.springer.com/dal/home/computer/mathematics?SGWID=
1-151-22-173738321-0.

Shamir, Adi. 1979. How to share a secret. Communications of the ACM 22, no. 11: 612–613.
http://doi.acm.org/10.1145/359168.359176.

Shirey, R. 2007. Internet Security Glossary, Version 2. RFC 4949, Internet Engineering Task
Force. http://tools.ietf.org/html/rfc4949.

Spring Framework. 2011. Spring - The Standard for Enterprise Java Development. Tech. Rep.,
VMware Inc. http://www.springsource.com/developer/spring.

Stytz, Martin R. 2005. Protecting Personal Privacy: Hauling Down the Jolly Roger. IEEE Security
and Privacy 3, no. 4: 72–74.

SunXACML. 2006. Sun’s XACML implementation. http://sunxacml.sourceforge.net/.

Tavani, Herman T. 1999. Privacy online. SIGCAS Comput. Soc. 29: 11–19.

Trusted Computing Group. 2007. TCG Architecture Specification v1.4. http://www.
trustedcomputinggroup.org/resources/tcg_architecture_overview_version_14/.

172

http://tools.ietf.org/html/rfc4745
http://www.springer.com/dal/home/computer/mathematics?SGWID=1-151-22-173738321-0
http://www.springer.com/dal/home/computer/mathematics?SGWID=1-151-22-173738321-0
http://doi.acm.org/10.1145/359168.359176
http://tools.ietf.org/html/rfc4949
http://www.springsource.com/developer/spring
http://sunxacml.sourceforge.net/
http://www.trustedcomputinggroup.org/resources/tcg_architecture_overview_version_14/
http://www.trustedcomputinggroup.org/resources/tcg_architecture_overview_version_14/

Bibliography

Tschantz, Michael Carl and Shriram Krishnamurthi. 2006. Towards reasonability properties for
access-control policy languages. SACMAT ’06: Proceedings of the eleventh ACM symposium
on Access control models and technologies, 160–169. New York, NY, USA: ACM Press. doi:
http://doi.acm.org/10.1145/1133058.1133081.

UDHR. 1948. Universal declaration of human rights. http://www.ohchr.org/EN/UDHR/Pages/
Language.aspx?LangID=eng.

University of Texas. 2008. The University of Texas at Austin Web Privacy Policy. http://www.
utexas.edu/policies/privacy/.

Vimercati, Sabrina De Capitani di, Pierangela Samarati, and Sushil Jajodia, eds. 2005. Policies,
Models, and Languages for Access Control. Proc. 4th International Workshop on Databases
in Networked Information Systems (DNIS 2005). Japan: Springer Lecture Notes in Computer
Science Vol. 3433.

W3C Comment. 2003. W3C Team Comment on EPAL 1.2. http://www.w3.org/Submission/
2003/07/Comment.

Warren, Samuel D. and Louis D. Brandeis. December 15, 1890. The right to privacy. Harvard Law
Review IV, no. 5: 193–220. http://www.lawrence.edu/fast/boardmaw/Privacy_brand_
warr2.html.

Winterbottom, J., M. Thomson, and H. Tschofenig. 2009. GEOPRIV Presence Information Data
Format Location Object (PIDF-LO). RFC 5491, Internet Engineering Task Force. http://
tools.ietf.org/html/rfc5491.

Woo, Thomas Y. C. and Simon S. Lam. 1993. Authorizations in distributed systems: A new
approach. Journal of Computer Security 2, no. 2-3: 107–136.

XACML-2.0. 2005. eXtensible Access Control Markup Language (XACML). OASIS-Standard.
http://www.oasis-open.org/committees/xacml.

XACML Privacy Profile. 2005. Privacy policy profile of XACML v2.0. http:
//docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-privacy_
profile-spec-os.pdf.

XML Encryption. 2002. XML Encryption Syntax and Processing. W3C Recommendation. http:
//www.w3.org/TR/2002/REC-xmlenc-core-20021210/.

XPath. 1999. XML Path Language (XPath). W3C Recommendation. http://www.w3.org/TR/
1999/REC-xpath-19991116.

XQuery. 2007. XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Recommendation.
http://www.w3.org/TR/xpath-functions/.

XrML. 2001. eXtensible rights Markup Language (XrML) 2.0 Specification. http://www.xrml.
org.

Yavatkar, R., D. Pendarakis, and R. Guerin. 2000. A Framework for Policy-based Admission Con-
trol. RFC 2753, Internet Engineering Task Force. http://tools.ietf.org/html/rfc2753.

173

http://www.ohchr.org/EN/UDHR/Pages/Language.aspx?LangID=eng
http://www.ohchr.org/EN/UDHR/Pages/Language.aspx?LangID=eng
http://www.utexas.edu/policies/privacy/
http://www.utexas.edu/policies/privacy/
http://www.w3.org/Submission/2003/07/Comment
http://www.w3.org/Submission/2003/07/Comment
http://www.lawrence.edu/fast/boardmaw/Privacy_brand_warr2.html
http://www.lawrence.edu/fast/boardmaw/Privacy_brand_warr2.html
http://tools.ietf.org/html/rfc5491
http://tools.ietf.org/html/rfc5491
http://www.oasis-open.org/committees/xacml
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-privacy_profile-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-privacy_profile-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-privacy_profile-spec-os.pdf
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/xpath-functions/
http://www.xrml.org
http://www.xrml.org
http://tools.ietf.org/html/rfc2753

Bibliography

174

Index

Aspect-oriented Programming, 120, 130

A P3P Preference Exchange Language, 34
Access Control Lists, 28
Access Control Matrix, 28
Access Control Models, 22

Discretionary Access Control, 23
Mandatory Access Control, 22
Owner-Retained Access Control, 24
Usage Control, 25

AOP, see Aspect-oriented Programming
APPEL, see A P3P Preference Exchange Lan-

guage
Authorisation Conflicts, 49

Conflict Management, 75
Conflict resolution approach, 77
conflict-free authorisations, 50
conflict-resolution mechanisms, 50
decidable, 49

Authorisation Enforcement, 52
external, 52
inline, 52

Authorisation Languages, 29
Authorisation Policy, 26

Big Brother scenario, 15

Capabilities, 28
Combining Algorithm

PriorityPolicyAlg, 71
Deny-overrides, 43
FirstApplicable, 43, 70
Only-one-applicable, 43
Permit-overrides, 43
XACML, 43

DAC, see Discretionary Access Control
DAO, see Data Access Object
Data Access Object, 129
Data Breach, 1, 5
Data Leak, see Data Breach
Data Privacy (Def.), 16
Data Release, 4
Data Release Types, 5

Active Data Release, 6
Conditional Data Release, 6

Passive Data Release, 5
Unconditional Data Release, 6

Data Spill, see Data Breach
Data Author, 102
Data Owner, 4
Data User, 5
Declaration of Human Rights, 4
Default policy, 30

Closed policy, 30, 44
Open policy, 30, 44

Delegation of Authority, 143
Digital Rights Management, 25
Discretionary Access Control, see Access Con-

trol Models, 23, 82
Distributed Access Control, 30
DRM, see Digital Rights Management

Enforcement of Authorisations, see Authori-
sation Enforcement

Enterprise Privacy Authorisation Language,
37

EPAL, see Enterprise Privacy Authorisation
Language

eXtensible Access Control Markup Language,
40

Generalised Framework for Access Control,
31

GEOPRIV - Common Policy, 46, 121

High-Level Privacy Policies, 145

ISO/OSI - Access control framework, 31

Java
java.policy, 96
Instance-Level Permissions, 109
ClassLoader, 97
ClassLoader (modified), 110

175

Index

CodeSource, 97
loadClass, 110
PermissionCollection, 97, 110
Permissions, 97, 106
Protection Domain, 97, 110
Security Framework, 95
Security Manager, 95, 96
Virtual Machine, 95

KopAL, 124

Low-Level Privacy Policies, 145

MAC, see Mandatory Access Control
Mandatory Access Control, see Access Con-

trol Models, 22

ORAC, see Owner-Retained Access Control
Owner-Retained Access Control, 24, 63

Policies, 59

P3P, see Platform for Privacy Preferences
P3R, see Privacy Policy Precedence Relation
PDP, see Policy Decision Point
PEP, see Policy Enforcement Point
Personal Health Record, 99
Personally Identifiable Information, 4
PET, see Privacy Enhancing Technologies
PHR, see Personal Health Record
PII, see Personally Identifiable Information
Platform for Privacy Preferences, 33
Policy Administration Rules, 76
Policy Decision

Implementation, 102
Policy Decision Point, 32, 40
Policy Enforcement

Implementation, 105
Policy Enforcement Point, 32, 40
Privacy Enhancing Technologies, 16
Privacy Policies

Data Owner defined, 61
Data User defined, 59

Privacy Policy, 5
Privacy Policy Administrator, 64
Privacy Policy Languages, 20, 32
Privacy Policy Precedence Relation, 69, 103,

134

Privacy Protection
Anonymisation, 17
Data Collection Principles, 17

Collection Limitation, 17
Purpose Specification, 17
Security Safeguards, 17
Use Limitation, 17

Data Encryption, 20
Privacy Policy Schemes, 20
Privacy Recognition Schemes, 19
Pseudonymisation, 17

Protected Data Object, 87, 102, 135

Reference Monitor, 53, 81
Policy Decision, 83
Policy Enforcement, 83

RFC 2753 - A Framework for Policy-based
Admission Control, 32

RFC 3626 - Optimized Link State Routing
Protocol (OLSR), 125

RFC 4745 - Common Policy: A Document
Format for Expressing Privacy Pref-
erences, 46

RFC 4880 - OpenPGP Message Format, 20,
68

RFC 5751 - Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.2,
20

RFC5246 - The Transport Layer Security (TLS)
Protocol Version 1.2, 20

Sticky Policy, 85–86, 126

Trust, 66
Dynamics, 67
non-transitive, 67
transitive, 66

Trust Domains, 68
Trust Model, 65
Trusted Data User, 8
Trusted System, 66

UCONABC, 25

XACML, see eXtensible Access Control Markup
Language, 121

XML Encryption, 102

176

Index

177

Index

178

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst, noch nicht anderweitig für Prü-
fungszwecke vorgelegt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel
benutzt habe.

Berlin, 02.09.2013

Thomas Scheffler

179

	Title
	Imprint

	Abstract
	Contents
	1 Introduction
	1.1 Defining Private Data Releases
	1.2 Data Release Taxonomy
	1.3 Motivation
	1.3.1 Client-Side Mechanisms: Privacy Protection at the Network Edge
	1.3.2 Server-Side Mechanisms: Privacy Protection by Service Providers

	1.4 Summary and Thesis Overview
	1.4.1 Thesis Structure
	1.4.2 Preliminary Presentations and Publications

	2 Background and State-of-the-Art
	2.1 Defining Data Privacy
	2.2 Privacy Enhancing Technologies
	2.2.1 Data Collection Principles
	2.2.2 Anonymisation and Pseudonymisation Techniques
	2.2.3 Privacy Recognition Schemes
	2.2.4 Data Encryption
	2.2.5 Privacy Policy Schemes
	2.2.6 Summary

	2.3 Access Control Models
	2.3.1 Mandatory Access Control
	2.3.2 Discretionary Access Control
	2.3.3 Owner-Retained Access Control
	2.3.4 Usage Control

	2.4 Authorising Data Access
	2.4.1 Authorisation Policy
	2.4.2 Authorisation Decision Function
	2.4.3 Representation of Authorisations

	2.5 Distributed Access Control
	2.5.1 Generalised Framework for Access Control
	2.5.2 ISO/OSI - Access Control Framework
	2.5.3 Framework for Policy-based Admission Control

	2.6 Privacy Policy Languages
	2.6.1 Platform for Privacy Preferences (P3P)
	2.6.2 Enterprise Privacy Authorisation Language (EPAL)
	2.6.3 eXtensible Access Control Markup Language (XACML)
	2.6.4 GEOPRIV Common Policy
	2.6.5 Summary

	2.7 Conflicts in Authorisation Specifications
	2.7.1 Conflict-free Authorisations
	2.7.2 Conflict-resolution Mechanisms

	2.8 Enforcement of Authorisations
	2.8.1 Inline Policy Enforcement
	2.8.2 External Policy Enforcement
	2.8.3 Summary

	2.9 Conclusion

	3 Owner-Retained Access Control Policies
	3.1 Data Release under a Privacy Policy defined by the Data User
	3.2 Data Release under a Privacy Policy defined by the Data Owner
	3.3 Using the ORAC Access Control Model for the Definition of Data Owner-defined Privacy Policies
	3.4 Trust Model
	3.4.1 Sources of Trust
	3.4.2 Properties of Trust Relationships
	3.4.3 Dynamics of Trust
	3.4.4 Managing Trust Domains

	3.5 Precedence Relation for Sub-Policies
	3.5.1 Implementing Precedence Relations for Sub-Policies
	3.5.2 Assigning Explicit Priorities to Sub-Policies

	3.6 Managing Default Protection through Template-based Privacy Policies
	3.7 Managing Authorisation Policies and Safety Rules in the Policy Rule-base
	3.7.1 Tool-based Approach
	3.7.2 Conflict-resolution Approach

	3.8 Conclusion

	4 Privacy Enforcement Framework
	4.1 Reference Monitor
	4.2 Policy Storage
	4.3 Data and Policy Protection
	4.4 User Authentication
	4.5 Application Program
	4.6 Related Projects
	4.6.1 Key Concepts
	4.6.2 Architectural Frameworks
	4.6.3 Server-based Solutions
	4.6.4 Client and Server-based Solutions
	4.6.5 Expiring Data

	4.7 Summary

	5 Java PrivMon - Privacy Protection for Personal Health Records
	5.1 Java Security Architecture
	5.1.1 Invoking the Java Security Manager
	5.1.2 Java Policies and Permissions
	5.1.3 Java Protection Domain

	5.2 Java PrivMon Architecture
	5.3 Personal Health Records
	5.3.1 Data Model of the Personal Health Record
	5.3.2 Protection of the Personal Health Record

	5.4 Policy Decision Component
	5.4.1 Extended Authorisations
	5.4.2 Use Case Policy Example
	5.4.3 Dynamic Referencing and XPath Evaluation

	5.5 Policy Enforcement Component
	5.5.1 Enforcing XACML-Policies through the Java Security Manager
	5.5.2 Translating an XACML-Policy into Java Permissions
	5.5.3 Assigning Instance-Level Permissions

	5.6 Resource Browser
	5.7 Implementation of a Health Record Viewer
	5.7.1 Results
	5.7.2 Restrictions

	5.8 Performance Measurements
	5.9 Summary

	6 Privacy Protection for Server-based Information Systems
	6.1 Privacy for Location-based Services
	6.1.1 Comparison between XACML and GEOPRIV Common Policy
	6.1.2 KopAL Mobile Orientation System
	6.1.3 Findings and Discussion

	6.2 Enforcing Location Privacy Policies through an AOP-based Reference Monitor
	6.2.1 Exemplary Use-Case: Theme Park
	6.2.2 Service Architecture
	6.2.3 Aspect-oriented Programming
	6.2.4 A Reference Monitor based on AOP
	6.2.5 Performance Tests

	6.3 Summary and Discussion

	7 Conclusion and Future Work
	7.1 Research Contribution
	7.2 Discussion
	7.3 Future Work
	7.3.1 Delegation of Authority
	7.3.2 Revocation of Access Rights
	7.3.3 Knowledge Representation in Privacy Policies

	7.4 Final Words

	OECD Privacy Guidelines
	Priority Policy Algorithm
	List of Figures
	List of Tables
	Listings
	Abbreviations
	Bibliography
	Index

