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SummarySummary

Human-induced climate change is impacting the global water cycle by, e.g., causing changes in
precipitation patterns, evapotranspiration dynamics, cryosphere shrinkage, and complex stream-
flow trends. These changes, coupled with the increased frequency and severity of extreme
hydrometeorological events like floods, droughts, and heatwaves, contribute to hydroclimatic
disasters, posing significant implications for local and global infrastructure, human health, and
overall productivity.

In the tropical Andes, climate change is evident through warming trends, glacier retreats, and
shifts in precipitation patterns, leading to altered risks of floods and droughts, e.g., in the upper
Amazon River basin. Projections for the region indicate rising temperatures, potential glacier
disappearance or substantial shrinkage, and altered streamflow patterns, highlighting challenges
in water availability due to these expected changes and growing human water demand. The
evolving trends in hydroclimatic conditions in the tropical Andes present significant challenges
to socioeconomic and environmental systems, emphasizing the need for a comprehensive
understanding to guide effective adaptation policies and strategies in response to the impacts
of climate change in the region.

The main objective of this thesis is to investigate current hydrological dynamics in the
tropical Andes of Peru and Ecuador and their responses to climate change. Given the scarcity
of hydrometeorological data in the region, this objective was accomplished through a compre-
hensive data preparation and analysis in combination with hydrological modeling using the Soil
and Water Assessment Tool (SWAT) eco-hydrological model. In this context, the initial steps
involved assessing, identifying, and/or generating more reliable climate input data to address
data limitations.

The thesis introduces RAIN4PE, a high-resolution precipitation dataset for Peru and Ecuador,
developed by merging satellite, reanalysis, and ground-based data with surface elevation
through the random forest method. Further adjustments of precipitation estimates were made
for catchments influenced by fog/cloud water input on the eastern side of the Andes using
streamflow data and applying the method of reverse hydrology. RAIN4PE surpasses other global
and local precipitation datasets, showcasing superior reliability and accuracy in representing
precipitation patterns and simulating hydrological processes across the tropical Andes. This
establishes it as the optimal precipitation product for hydrometeorological applications in the
region.
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Due to the significant biases and limitations of global climate models (GCMs) in representing
key atmospheric variables over the tropical Andes, this study developed regionally adapted
GCM simulations specifically tailored for Peru and Ecuador. These simulations are known as
the BASD-CMIP6-PE dataset, and they were derived using reliable, high-resolution datasets
like RAIN4PE as reference data. The BASD-CMIP6-PE dataset shows notable improvements
over raw GCM simulations, reflecting enhanced representations of observed climate properties
and accurate simulation of streamflow, including high and low flow indices. This renders it
suitable for assessing regional climate change impacts on agriculture, water resources, and
hydrological extremes.

In addition to generating more accurate climatic input data, a reliable hydrological model is
essential for simulating watershed hydrological processes. To tackle this challenge, the thesis
presents an innovative multiobjective calibration framework integrating remote sensing vegeta-
tion data, baseflow index, discharge goodness-of-fit metrics, and flow duration curve signatures.
In contrast to traditional calibration strategies relying solely on discharge goodness-of-fit metrics,
this approach enhances the simulation of vegetation, streamflow, and the partitioning of flow
into surface runoff and baseflow in a typical Andean catchment. The refined hydrological model
calibration strategy was applied to conduct reliable simulations and understand current and
future hydrological trajectories in the tropical Andes.

By establishing a region-suitable and thoroughly tested hydrological model with high-
resolution and reliable precipitation input data from RAIN4PE, this study provides new insights
into the spatiotemporal distribution of water balance components in Peru and transboundary
catchments. Key findings underscore the estimation of Peru’s total renewable freshwater re-
source (total river runoff of 62,399 m3/s), with the Peruvian Amazon basin contributing 97.7%.
Within this basin, the Amazon-Andes transition region emerges as a pivotal hotspot for water
yield (precipitation minus evapotranspiration), characterized by abundant rainfall and lower
atmospheric water demand/evapotranspiration. This finding underlines its paramount role in
influencing the hydrological variability of the entire Amazon basin.

Subsurface hydrological pathways, particularly baseflow from aquifers, strongly influence
water yield in lowland and Andean catchments, sustaining streamflow, especially during the
extended dry season. Water yield demonstrates an elevation- and latitude-dependent increase
in the Pacific Basin (catchments draining into the Pacific Ocean), while it follows an unimodal
curve in the Peruvian Amazon Basin, peaking in the Amazon-Andes transition region. This
observation indicates an intricate relationship between water yield and elevation.

In Amazon lowlands rivers, particularly in the Ucayali River, floodplains play a significant
role in shaping streamflow seasonality by attenuating and delaying peak flows for up to two
months during periods of high discharge. This observation underscores the critical importance of
incorporating floodplain dynamics into hydrological simulations and river management strategies
for accurate modeling and effective water resource management.

Hydrological responses vary across different land use types in high Andean catchments.
Pasture areas exhibit the highest water yield, while agricultural areas and mountain forests
show lower yields, emphasizing the importance of puna (high-altitude) ecosystems, such as
pastures, páramos, and bofedales, in regulating natural storage.

Projected future hydrological trajectories were analyzed by driving the hydrological model
with regionalized GCM simulations provided by the BASD-CMIP6-PE dataset. The analysis
considered sustainable (low warming, SSP1-2.6) and fossil fuel-based development (high-end
warming, SSP5-8.5) scenarios for the mid (2035-2065) and end (2065-2095) of the century.
The projected changes in water yield and streamflow across the tropical Andes exhibit distinct
regional and seasonal variations, particularly amplified under a high-end warming scenario
towards the end of the century. Projections suggest year-round increases in water yield and
streamflow in the Andean regions and decreases in the Amazon lowlands, with exceptions
such as the northern Amazon expecting increases during wet seasons. Despite these regional
differences, the upper Amazon River’s streamflow is projected to remain relatively stable
throughout the 21st century. Additionally, projections anticipate a decrease in low flows in the
Amazon lowlands and an increased risk of high flows (floods) in the Andean and northern
Amazon catchments.
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This thesis significantly contributes to enhancing climatic data generation, overcoming
regional limitations that previously impeded hydrometeorological research, and creating new
opportunities. It plays a crucial role in advancing hydrological model calibration, improving
the representation of internal hydrological processes, and achieving accurate results for the
right reasons. Novel insights into current hydrological dynamics in the tropical Andes are
fundamental for improving water resource management. The anticipated intensified changes in
water flows and hydrological extreme patterns under a high-end warming scenario highlight
the urgency of implementing emissions mitigation and adaptation measures to address the
heightened impacts on water resources.

In fact, the new datasets (RAIN4PE and BASD-CMIP6-PE) have already been utilized
by researchers and experts in regional and local-scale projects and catchments in Peru and
Ecuador. For instance, they have been applied in river catchments such as Mantaro, Piura, and
San Pedro to analyze local historical and future developments in climate and water resources.





ZusammenfassungZusammenfassung

Menschgemachter Klimawandel beeinflusst den globalen Wasserkreislauf durch Veränderun-
gen in Niederschlagsmustern, Verdunstungsdynamiken, dem Rückgang der Gletscher und
komplexen Trends in den Abflussraten in den Flüssen. Diese Veränderungen, gepaart mit
der zunehmenden Häufigkeit und Schwere von extremen hydrometeorologischen Ereignissen
wie Überschwemmungen, Dürren und Hitzewellen, tragen zu hydroklimatischen Katastrophen
bei und haben erhebliche Auswirkungen auf lokale und globale Infrastruktur, die menschliche
Gesundheit und die Gesamtproduktivität.

In den tropischen Anden zeigt sich der Klimawandel durch Erwärmungstrends, Gletscher-
schmelzen und Verschiebungen in den Niederschlagsmustern, was zu erhöhten Risiken von
Überschwemmungen und Dürren führt, beispielsweise im oberen Amazonas-Einzugsgebiet.
Projektionen für die Region deuten auf steigende Temperaturen, potenzielles Verschwinden
oder erhebliche Schrumpfung von Gletschern und veränderte Abflussmuster hin, was die Her-
ausforderungen bei der Wasserverfügbarkeit aufgrund dieser erwarteten Veränderungen und
des wachsenden menschlichen Wasserbedarfs zeigt. Die Trends in den hydroklimatischen Be-
dingungen in den tropischen Anden stellen erhebliche Herausforderungen für sozioökonomische
und Umweltsysteme dar und unterstreichen die Notwendigkeit eines umfassenden Verständ-
nisses, um effektive Anpassungspolitiken und -strategien im Hinblick auf die Auswirkungen des
Klimawandels in der Region zu steuern.

Das Hauptziel dieser Dissertation ist es, die aktuellen hydrologischen Dynamiken in den
tropischen Anden von Peru und Ecuador und ihre Reaktionen auf den Klimawandel zu unter-
suchen. Aufgrund der Knappheit von hydrometeorologischen Daten in der Region wurde dieses
Ziel durch eine umfassende Datenvorbereitung und -analyse in Kombination mit hydrologische
Modellierung mithilfe des ökohydrologischen Modells Soil and Water Assessment Tool (SWAT)
erreicht. Die ersten Schritte umfassten die Bewertung, Identifizierung und/oder Generierung
zuverlässigerer Klimadaten, um Datenbeschränkungen zu bewältigen.

Die Arbeit beginnt mit der Vorstellung von RAIN4PE, einen hochauflösenden Niederschlags-
datensatz für Peru und Ecuador, der durch die Zusammenführung von Satelliten-, Reanalysen-
und bodengestützten Daten mit der Geländeoberfläche durch die Methode des Random Forest
entwickelt wurde. Weitere Anpassungen der Niederschlagsschätzungen erfolgen unter Verwen-
dung von Abflussdaten für Einzugsgebiete, die durch den Einfluss von Nebel-/Wolkenwasser
auf der östlichen Seite der Anden beeinflusst werden, und mit Hilfe der Methode der Reverse-
Hydrologie. RAIN4PE übertrifft andere globale und lokale Niederschlagsdatensätze und zeigt
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eine überlegene Zuverlässigkeit und Genauigkeit bei der Darstellung von Niederschlagsmustern
und der Simulation hydrologischer Prozesse in den tropischen Anden. Dies etabliert ihn als das
optimale Niederschlagsprodukt für hydrometeorologische Anwendungen in der Region.

Aufgrund der signifikanten Ungenauigkeiten und Beschränkungen globaler Klimamodelle
(GCMs) bei der Darstellung wichtiger atmosphärischer Variablen über den tropischen An-
den entwickelte diese Studie regional angepasste GCM-Simulationen, die speziell für Peru
und Ecuador maßgeschneidert wurden. Diese Simulationen sind als der BASD-CMIP6-PE-
Datensatz bekannt und wurden unter Verwendung zuverlässiger, hochauflösender Datensätze
wie RAIN4PE als Referenzdaten abgeleitet. Der BASD-CMIP6-PE-Datensatz weist gegenüber
rohen GCM-Ergebnissen bedeutende Verbesserungen auf, zeigt eine verbesserte Darstel-
lung beobachteter Klimaeigenschaften und eine genaue Simulation des Wasserabflusses
einschließlich seiner Hoch- und Niedrigflussindizes. Dies macht ihn geeignet, regionale
Auswirkungen des Klimawandels auf Landwirtschaft, Wasserressourcen und hydrologische
Extremereignisse zu bewerten.

Zusätzlich zur Generierung genauerer klimatischer Eingabedaten ist ein zuverlässiges hy-
drologisches Modell für die Simulation hydrologischer Dynamiken im Einzugsgebiet unerlässlich.
Um diese Herausforderung zu bewältigen, stellt die Arbeit einen innovativen multiobjektiven
Kalibrierungsrahmen vor, der fernerkundungsbasierte Vegetationsdaten, Basisabfluss-Index,
Abflussgütemaße und Kennzeichen der Abflussdauerkurve integriert. Im Gegensatz zu tradi-
tionellen Kalibrierungsstrategien, die ausschließlich auf Abflussgütemaße beruhen, verbessert
dieser Ansatz die Simulation von Vegetation, Wasserabfluss und Aufteilung des Abflusses
in Oberflächen- und Basisabfluss in einem typischen Anden-Einzugsgebiet. Die verfeinerte
Kalibrierungsstrategie des hydrologischen Modells wurde angewendet, um zuverlässigere Simu-
lationen zu erzielen und aktuelle und zukünftige hydrologische Entwicklungen in den tropischen
Anden zu verstehen.

Aufbauend auf einer der Region angepassten hydrologischen Modell mit hochauflösenden
und zuverlässigen Niederschlagsdaten von RAIN4PE liefert diese Studie neue Einblicke in die
räumlich-zeitliche Verteilung von Wasserbilanzkomponenten in Peru und grenzüberschreiten-
den Einzugsgebieten. Die wichtigsten Erkenntnisse betonen die Schätzung der Gesamtmenge
an erneuerbarem Süßwasser in Peru (Gesamtwasserabfluss von 62.399 m3/s), wobei das
peruanische Amazonasbecken 97,7% dazu beiträgt. Innerhalb dieses Beckens wird die Über-
gangsregion Amazonas-Anden als zentraler Hotspot für Wasserertrag (Niederschlag minus
Evapotranspiration) hervorgehoben, geprägt durch reichlichen Niederschlag und eine gerin-
gere atmosphärische Wassernachfrage/Evapotranspiration. Diese Erkenntnis unterstreicht
ihre herausragende Rolle bei der Beeinflussung der hydrologischen Variabilität des gesamten
Amazonasbeckens.

Unterirdische hydrologische Komponenten, insbesondere der Grundwasserabfluss, beein-
flussen deutlich die Abflussbildung in Tiefland- und Anden-Einzugsgebieten und unterstützen
den Abfluss in den Flüssen, insbesondere während der verlängerten Trockenzeit. Wasserertrag
zeigt einen höhen- und breitengradabhängigen Anstieg im Pazifikbecken (Einzugsgebiete, die
in den Pazifik münden), während er im peruanischen Amazonasbecken einer unimodalen Kurve
folgt und im Übergangsgebiet Amazonas-Anden seinen Höhepunkt erreicht. Dieses Ergebnis
verdeutlicht den Zusammenhang zwischen Abflussbildung und Geländehöhe.

In Flüssen der Tiefebenen des Amazonas, insbesondere im Ucayali-Fluss, spielen Über-
schwemmungsgebiete eine bedeutende Rolle bei der saisonalen Wasserflussdynamik, indem
sie Spitzenflüsse für bis zu zwei Monate während Perioden hoher Abflüsse abschwächen und
verzögern. Dieses Ergebnis unterstreicht die Wichtigkeit der Einbeziehung von Überschwem-
mungsdynamiken in hydrologische Simulationen und Flussmanagementstrategien für eine
präzise Modellierung und effektive Wasserressourcenbewirtschaftung.

Hydrologische Reaktionen variieren je nach Landnutzungstypen in hohen Anden-
Einzugsgebieten. Weideflächen zeigen den höchsten Wasserertrag, während land-
wirtschaftliche Flächen und Bergwälder geringere Wasserertrag aufweisen, was die Bedeutung
von Puna (hochgelegenen) Ökosystemen wie Weiden, Páramos und Bofedales bei der Reg-
ulierung natürlicher Speicher betont.

Projektierte zukünftige hydrologische Entwicklungen wurden analysiert, indem das hydrol-
ogische Modell mit regionalisierten GCM-Simulationen des BASD-CMIP6-PE-Datensatzes
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angetrieben wurde. Diese Analyse berücksichtigte nachhaltige (geringe Erwärmung, SSP1-2.6)
und auf starker Nutzung fossiler Brennstoffe basierende (hochgradige Erwärmung, SSP5-8.5)
Szenarien für die Mitte (2035-2065) und das Ende (2065-2095) des 21. Jahrhunderts. Die
projektierten Veränderungen in Wasserertrag und Wasserabfluss in den tropischen Anden
zeigen deutliche regionale und saisonale Variationen, insbesondere unter einem Szenario mit
hoher Erwärmung gegen Ende des Jahrhunderts. Diese Projektionen deuten auf ganzjährige
Zunahmen im Wasserertrag und Wasserabfluss in den Andenregionen und Rückgänge in den
Tiefebenen des Amazonas hin, mit Ausnahmen wie im nördlichen Amazonasgebiet, wo Zunah-
men während der Regenzeiten projektiert werden. Trotz dieser regionalen Unterschiede wird
der jährliche Wasserabfluss des oberen Amazonas voraussichtlich im gesamten 21. Jahrhun-
dert relativ stabil bleiben. Darüber hinaus deuten die Projektionen auf eine Abnahme der
Niedrigabflüsse in den Tiefebenen des Amazonas und ein erhöhtes Risiko von Hochwasser-
abflüssen (Überschwemmungen) in den Anden- und nördlichen Amazonas-Einzugsgebieten
hin.

Diese Arbeit trägt erheblich zur Verbesserung der Datenlage bzgl. des Klimas in dieser Re-
gion bei, überwindet regionale Datenbegrenzungen, die zuvor hydrometeorologische Forschung
behinderten, und schafft neue Möglichkeiten. Sie trägt zur Fortentwicklung der Kalibrierung
hydrologischer Modelle bei, der Verbesserung der Darstellung interner hydrologischer Prozesse
und damit der Erzielung hydrologisch konsistenter Simulationsergebnisse. Diese neuen Erken-
ntnisse zu den hydrologischen Dynamiken in den tropischen Anden sind grundlegend für eine
verbesserte Bewirtschaftung der regionalen Wasserressourcen. Die erwartete Intensivierung
des regionalen Wasserkreislaufs unter einem Szenario mit hoher Erwärmung unterstreichen
die Dringlichkeit der Umsetzung von Maßnahmen zur Emissionsminderung und Anpassung,
um den verstärkten Auswirkungen auf Wasserressourcen zu begegnen.

Tatsächlich wurden die neuen Datensätze (RAIN4PE und BASD-CMIP6-PE) bereits von
Forschern und Experten in regionalen und lokalen Projekten und Einzugsgebieten in Peru
und Ecuador genutzt. Zum Beispiel wurden sie in Flusseinzugsgebieten wie Mantaro, Piura
und San Pedro angewendet, um lokale historische und zukünftige Entwicklungen in Klima und
Wasserressourcen zu analysieren.





1. Introduction1. Introduction

1.1 Motivation

1.1.1 Global climate change impacts

In its narrow sense, climate represents the long-term statistical portrayal of prevailing weather
conditions, encompassing temperature and precipitation (IPCC, 2023a). In a broader context,
climate extends to the overall state of the climate system, a result of intricate interactions among
its components: the atmosphere, hydrosphere, cryosphere, lithosphere, and biosphere (IPCC,
2023a). These components continuously exchange elements such as heat, water, and gases,
contributing to the complex dynamics of the climate system.

Over time, the climate system undergoes changes influenced by internal dynamics and
external forcings, ranging from volcanic eruptions and solar variations to human-induced factors
such as changes in land use and atmospheric composition (IPCC, 2023a). This interplay
results in the current positive energy imbalance within the climate system, primarily attributed
to escalating concentrations of greenhouse gases, particularly carbon dioxide and methane,
which impedes the escape of infrared radiation, inducing warming across the atmosphere, land,
cryosphere, and ocean (Hansen et al., 2011; Hansen et al., 2005; IPCC, 2023b; Trenberth and
Cheng, 2022).

Human-induced climate change has altered the global water cycle, evident in warming,
altered precipitation patterns and/or evapotranspiration dynamics, intensified rainfall, and a
reduction in the global area of rainfall (Benestad et al., 2022; IPCC, 2023e). Rising temperatures
have significantly impacted the global cryosphere, leading to the shrinkage of mountain glaciers,
land and sea ice, and snow cover (IPCC, 2023d). Streamflow trends follow complex patterns
(Gudmundsson et al., 2019), with certain regions experiencing drying trends (e.g., South
Europe/Mediterranean, Southern Africa, and South Australia), while others exhibit wetting
trends (e.g., Central North America, Southeastern South America, North Europe, and North
Asia).

Concurrently, the frequency and severity of extreme hydrometeorological events, such as
heatwaves, heavy precipitation, floods, and droughts, have increased globally, attributed to
climate change (IPCC, 2023f; Vicente-Serrano et al., 2022; Zhang et al., 2022). The impact of
increased floods is particularly evident in regions prone to rainstorm-induced and excessive soil
moisture-induced floods, especially in tropical areas (Zhang et al., 2022). Regarding droughts,
in some regions there is an increase in severity, particularly in agricultural and ecological
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Figure 1.1: Study domain area in the Tropical Andes and simulated river catchments draining
into the Amazon River (Amazon Basin), the Pacific Ocean (Pacific Basin), and Titicaca Lake
(Titicaca Lake Basin).

droughts, influenced by the rise in atmospheric evaporative demand and/or reduced regional
precipitation (Vicente-Serrano et al., 2022).

Consequently, these climate change effects can lead to hydroclimatic disasters, altering the
distribution of water availability and damaging local and global infrastructure, human health,
and total productivity (Abbass et al., 2022). In light of these global climate change effects, it
becomes crucial to investigate the specific regional-scale impacts.

1.1.2 Climate change impact on the tropical Andes

The investigation conducted in the framework of this doctoral thesis addresses changes in
the regional terrestrial water cycle in the tropical Andes region (19°S–2°N and 82°–67°W; see
Fig. 1.1), covering Andean and Amazon lowland catchments. The primary focus is on changes
in water budget components (precipitation, evapotranspiration, water yield (precipitation minus
evapotranspiration), and streamflow) and hydrological extremes (low and high flows) across
Peru and Ecuador, including transboundary catchments. The tropical Andes region is marked
by complex, highly variable, and changing hydrological and climatic conditions, showcasing
diverse ecosystems like deserts, punas, páramos, glaciers, mountain forests, tropical montane
cloud forests, and rainforests (Espinoza et al., 2020; Pabón-Caicedo et al., 2020).

Peru includes three natural drainage basins (the Amazon basin, the Pacific basin, and the
Titicaca Lake basin; Fig. 1.1) defined by the topography of the Andes mountain range. Despite
being home to 66% of the population, the Pacific basin has natural access to only 2% of the
country’s total water resources (ANA, 2012; Bergmann et al., 2021); this highlights the uneven
distribution of water across these basins. Climate change exacerbates this disparity.
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Regionally, the impact of climate change includes warming along the tropical Andes, the
retreat of the tropical Andean glaciers (loss of 42% of the total glacier area during the 1990-
2020 period), alterations in summer precipitation and rainy season duration in the southern
Peruvian Andes and southern Peruvian Amazon, and positive changes in precipitation and
discharge over the west northern region of the Amazon (Cayo et al., 2022; Espinoza et al.,
2019; Espinoza Villar et al., 2009a; Gloor et al., 2013; Imfeld et al., 2021; Lavado Casimiro
et al., 2012; Marengo et al., 2018; da Motta Paca et al., 2020; Pabón-Caicedo et al., 2020;
Segura et al., 2020; Torres-Batlló and Martí-Cardona, 2020). Additionally, floods and droughts
have intensified in the Amazon River basin in recent decades, as documented by Marengo and
Espinoza (2016).

Projections indicate an increased likelihood of more severe global and regional hydro-climatic
conditions due to climate change. In the tropical Andes, temperatures are projected to rise
throughout the 21st century, with expected changes in precipitation patterns—decreasing over
the Amazon lowland and increasing over the Andes (Bradley et al., 2006; Pabón-Caicedo et al.,
2020; Seiler et al., 2013; Vuille et al., 2018). Glaciers are projected to either disappear entirely
or undergo substantial shrinkage by the end of the century (Masiokas et al., 2020). While
hydrological projections are confined to specific Andean basins, the overall trend suggests a
future increase in wet-season streamflow linked to climate change (Andres et al., 2014; Juen
et al., 2007; Lavado Casimiro et al., 2011; Motschmann et al., 2022; Olsson et al., 2017; Zulkafli
et al., 2016). Conversely, a reduction in dry-season flow is expected due to the retreat of glaciers
and the rising demand for water resulting from anthropogenic activities (Goyburo et al., 2023;
Motschmann et al., 2022). Additionally, there is an elevated risk of extreme hydrometeorological
events, including heavy precipitation, floods, and droughts in the tropical Andes (Potter et al.,
2023; Zubieta et al., 2021; Zulkafli et al., 2016).

Current and projected changes in hydroclimatic conditions pose significant challenges to
regional socioeconomic and environmental systems, particularly fragile ecosystems. Hence, a
comprehensive understanding of these trajectories is imperative to inform the development of
adaptation policies and strategies addressing climate change impacts in this region.

1.1.3 Data limitation and uncertainty
Ground-based hydrometeorological observations, encompassing temperature, precipitation,
and streamflow, are essential to meteorological, climatological, and hydrological studies. They
support activities such as generating retrospective gridded products, conducting trend analyses,
and driving and evaluating hydrological models. However, regions characterized by uneven and
sparse observational gauges, such as the tropical Andes, pose challenges to these applications.

Researchers have explored alternative sources such as reanalysis data or satellite prod-
ucts in these regions. Nevertheless, uncertainties associated with estimating meteorological
variables in these datasets, involving errors, biases, and underrepresenting annual cycles, un-
derscore the indispensable role of ground-based data in mitigating such uncertainties (Condom
et al., 2020).

Recent developments have generated global and regional products integrating satellite
and/or reanalysis information with gauge-based data through merging procedures (e.g., Aybar
et al., 2020; Beck et al., 2019b; Funk et al., 2015a). Despite these advancements, challenges
persist, especially in data-sparse and complex terrain regions like the Andes-Amazon transition
zone (Condom et al., 2020). In this zone, uncertainties in meteorological variables, particularly
precipitation—a crucial water cycle component—result in poor hydrologic model performances
and water budget imbalances (Aybar et al., 2020; Manz et al., 2016; Strauch et al., 2017;
Zubieta et al., 2015, 2017; Zulkafli et al., 2014).

This imbalance can be attributed to the underestimation of precipitation due to the scarcity
of meteorological gauges in these areas. Furthermore, this issue is aggravated by the fact
that existing gauges do not account for cloud/fog water—a significant water source in tropical
Andes ecosystems such as páramos and tropical montane cloud forests (Cárdenas et al., 2017;
Clark et al., 2014; Gomez-Peralta et al., 2008). This source remains unquantified in existing
precipitation datasets.

Hence, there is an urgent need for reliable and accurate meteorological datasets to en-
hance our understanding of hydrological processes in the tropical Andes and to facilitate the
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regionalization of climate models for climate change impact assessments. In this context, a
new precipitation dataset for Peru and Ecuador is developed, merging different precipitation
sources and refining estimates using streamflow data through reverse hydrology.

The combined application of historical climate simulations and future climate projections
from global climate models are crucial for evaluating the impact of climate change on the water
sector. This assessment follows a standard modeling procedure (Krysanova et al., 2016), which
includes bias adjustment and downscaling global climate model outputs to a regional scale.
These outputs are then integrated into hydrological models for catchment-scale processes
simulation. The results are subsequently utilized to assess impacts and guide decision-making
for sustainable water resource management under diverse climate scenarios.

Regionalization can be achieved through either dynamical downscaling using regional
climate models or statistical downscaling. Bias adjustment is necessary for global and regional
climate model outputs, particularly in the tropical Andes, where high biases have been reported
(Arias et al., 2021a; Firpo et al., 2022; Gutierrez et al., 2024; Monteverde et al., 2022).
Consequently, bias adjustment and downscaling of raw global climate model outputs are
imperative to produce reliable climate simulations and projections for finer-scale impact studies.

In alignment with this requirement, a high-resolution climate dataset containing historical
climate simulations and future climate projections has been generated for Peru and Ecuador
in this thesis. Generating reliable historical and projected meteorological data is crucial for
comprehensive understanding of historical hydroclimatic conditions and developing future
projections.

1.1.4 Hydrological modeling and calibration
Global and regional environmental changes, particularly in climate and land use, significantly
impact hydrological processes and water resources. A comprehensive understanding of
historical hydrological conditions and projections in the appropriate spatial scale (i.e. the
hydrological meso-scale) is essential for informed water resources decision-making in the face
of these changes.

In regions with limited data availability, such as the tropical Andes, hydrological models
play a crucial role in simulating continuous time series of water balance components. These
models, varying in complexity from lumped to distributed spatial representation of the basins,
require calibration to identify parameters. This calibration becomes necessary due to limitations
in measuring parameters of physical systems and data availability. Ensuring the accuracy of
hydrological models through calibration and validation is crucial for improving their performance,
increasing confidence in the projected impacts of climate change, and reducing uncertainty
associated with hydrological model projections (Krysanova et al., 2018).

Calibration poses a significant challenge due to data input, model structure, and model
parameter uncertainties. Interactions between parameters further intensify these challenges
(Wang et al., 2020; Zhang et al., 2018b). Equifinality (Beven, 2006), where different model
configurations and/or parameter values may yield equally acceptable performance, adds identi-
fiability problems to the calibration process.

Addressing equifinality in calibration involves implementing strategies, such as incorporating
additional target variables beyond streamflow data (Krysanova et al., 2018). This approach
enhances the representation of specific hydrological cycle processes. Previous studies have
employed multiobjective calibrations, including earth observations, in-situ measurements, and
additional calibration metrics. These include evapotranspiration (Conradt et al., 2013; Rajib
et al., 2018), vegetation data (Rane and Jayaraj, 2023), snow (Di Marco et al., 2021), soil
moisture (Eini et al., 2023), and hydrological signatures based on the flow duration curve
(Chilkoti et al., 2018; Shafii and Tolson, 2015).

Nonetheless, as argued by Shafii et al. (2017), these approaches do not always ensure
accurate partitioning of flow among various pathways, which is critical when modeling hydrology-
related processes such as solute transport, erosion, surface runoff, and baseflow contribution.
To advance in addressing this issue, this thesis introduces a novel approach by integrating mul-
tiobjective calibration with vegetation data (e.g., leaf area index), flow duration curve signatures,
and baseflow index. This innovative method aims to provide valuable insights into Andean
catchment hydrological systems.
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1.2 Objectives

As stated in the title, this thesis aims to enhance our understanding of the hydrological dynamics
in the tropical Andes, with a specific focus on their responses to climate change. To achieve
this, the following specific research questions are formulated:

1. How well do state-of-the-art regional and global precipitation datasets perform in the
tropical Andes for hydrometeorological applications?

2. What is the performance of raw and regionally adapted global climate model simulations
over the tropical Andes?

3. How does hydrological model calibration influence the model’s reliability regarding vegeta-
tion, streamflow, and flow partitioning simulations?

4. How does the current spatiotemporal distribution of water balance components look like
across Peru?

5. How do hydrological responses vary across areas with different land use types in the
tropical Andes?

6. How do projected changes in water balance components vary spatially, along elevation,
and over the seasons?

7. What is the potential impact of climate change on extreme hydrological conditions in the
region?

Four studies outlined in the following section have been conducted to address these questions.
Chapter 2 addresses Objective 1, Chapter 3 tackles Objective 2, Chapter 4 covers Objectives 3
and 5, and Objectives 4, 6, and 7 are explored in Chapter 5.

1.3 Thesis outline and author contribution

This cumulative thesis integrates three published articles and one manuscript under review
by a scientific journal. These manuscripts were developed during my doctoral research at the
University of Potsdam and the Potsdam Institute for Climate Impact Research and represent
collaborative work involving various teams of authors. Below is an overview of the four papers,
including a description of my contributions.

Chapter 2: "A novel high-resolution gridded precipitation dataset for Peruvian and
Ecuadorian watersheds: development and hydrological evaluation"

This study introduces RAIN4PE (Rain for Peru and Ecuador), a new daily precipitation dataset
tailored for the regions of Peru and Ecuador. The dataset is developed using a novel approach
that employs a machine learning algorithm to merge various precipitation data sources (satellite,
reanalysis, and ground-based measurements) with terrain elevation and the reverse hydrology
technique to adjust the precipitation estimates over montane catchments based on streamflow
data. Furthermore, this study presents a comprehensive evaluation of the accuracy and
reliability of RAIN4PE by comparing it with other state-of-the-art local and global precipitation
datasets, utilizing observed precipitation data and hydrological modeling. The study has been
published as:

Fernandez-Palomino, C. A., Hattermann, F. F., Krysanova, V., Lobanova, A., Vega-Jácome, F.,
Lavado, W., Santini, W., Aybar, C., et al. (2022). “A Novel High-Resolution Gridded Precipitation
Dataset for Peruvian and Ecuadorian Watersheds: Development and Hydrological Evaluation”.
In: Journal of Hydrometeorology 23.3, pp. 309–336. DOI: 10.1175/JHM-D-20-0285.1

Own contribution: study design, implementation, analysis, and manuscript writing with input
from all co-authors.

https://doi.org/10.1175/JHM-D-20-0285.1
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Chapter 3: "High-resolution climate projection dataset based on CMIP6 for Peru and
Ecuador: BASD-CMIP6-PE"

This study introduces BASD-CMIP6-PE, a high-resolution climate dataset for Peru and Ecuador
based on the bias-adjusted and statistically downscaled CMIP6 climate projections of 10
global climate models (GCMs). Furthermore, this study presents a comprehensive evaluation
of the reliability of both regionalized and raw CMIP6-GCM simulations in the historical pe-
riod using observation-based data and hydrological modeling. The study has been published as:

Fernandez-Palomino, C. A., Hattermann, F. F., Krysanova, V., Vega-Jácome, F., Menz, C.,
Gleixner, S., and Bronstert, A. (2024). “High-resolution climate projection dataset based on
CMIP6 for Peru and Ecuador: BASD-CMIP6-PE”. in: Scientific Data 11.1, pp. 1–14. DOI:
10.1038/s41597-023-02863-z

Own contribution: I conceived the study and wrote the first version of the manuscript with inputs
from all co-authors, and all authors contributed significantly to further revisions.

Chapter 4: "Towards a more consistent eco-hydrological modelling through multiobjec-
tive calibration: a case study in the Andean Vilcanota River basin, Peru"

This study presents a comprehensive multiobjective calibration framework for hydrological
models using remote sensing vegetation data, discharge, and hydrological signatures to
understand the hydrological responses of Andean catchments. The study has been published
as:

Fernandez-Palomino, C. A., Hattermann, F. F., Krysanova, V., Vega-Jácome, F., and Bronstert,
A. (2020). “Towards a more consistent eco-hydrological modelling through multi-objective
calibration: a case study in the Andean Vilcanota River basin, Peru”. In: Hydrological Sciences
Journal 66.1, pp. 59–74. DOI: 10.1080/02626667.2020.1846740

Own contribution: study design, implementation, analysis, and manuscript writing with input
from all co-authors.

Chapter 5: "Pan-Peruvian simulation of present and projected future hydrological
conditions using novel data products and CMIP6 climate projections"

For the first time, this study provides insights into the spatiotemporal distribution of water
balance components and hydrological extremes under both current and future climate
scenarios across Peru. These insights are derived from state-of-the-art hydrological simulations
conducted in Peruvian catchments, including transboundary river catchments, incorporating
novel data products and CMIP6 climate projections. The study has been submitted to the
Journal of Hydrology, and a preprint has been published as:

Fernandez-Palomino, C. A., Hattermann, F. F., Krysanova, V., Vega-Jácome, F., Lavado, W.,
Santini, W., Gutiérrez, R. R., and Bronstert, A. (2023a). “Pan-Peruvian Simulation of Present
and Projected Future Hydrological Conditions Using Novel Data Products and CMIP6 Climate
Projections”. In: SSRN. DOI: 10.2139/SSRN.4602668

Own contribution: study design, implementation, analysis, and manuscript writing with input
from all co-authors.

In addition to the manuscripts mentioned above, the author also participated in the following
publications, which are not included in the thesis:

https://doi.org/10.1038/s41597-023-02863-z
https://doi.org/10.1080/02626667.2020.1846740
https://doi.org/10.2139/SSRN.4602668
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Aybar, C., Fernández, C., Huerta, A., Lavado, W., Vega, F., and Felipe-Obando, O. (2020).
“Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day”.
In: Hydrological Sciences Journal 65.5, pp. 770–785. DOI: 10.1080/02626667.2019.1649411

Bergmann, J., Vinke, K., Fernandez Palomino, C., Gornott, C., Gleixner, S., Laudien, R.,
Lobanova, A., Ludescher, J., et al. (2021). Assessing the Evidence: Climate Change and
Migration in Peru. Potsdam and Geneva: Potsdam Institute for Climate Impact Research (PIK)
and International Organisation for Migration (IOM)

Harifidy, R. Z., Hiroshi, I., Kazuyoshi, S., Jun, M., Zy, R., Harivelo, M., and Fernández-Palomino,
C. A. (2024). “Multi-gauge calibration comparison for simulating streamflow across the Major
River Basins in Madagascar: SWAT + Toolbox, R-SWAT, and SWAT + Editor Hard calibration”.
In: Hydrology Research. DOI: 10.2166/NH.2024.188

https://doi.org/10.1080/02626667.2019.1649411
https://doi.org/10.2166/NH.2024.188




2. A novel high-resolution gridded precipitation
dataset for Peruvian and Ecuadorian
watersheds – development and
hydrological evaluation

2. A novel high-resolution gridded precipitation
dataset for Peruvian and Ecuadorian
watersheds – development and
hydrological evaluation

Abstract
A novel approach for estimating precipitation patterns is developed here and applied to generate
a new hydrologically corrected daily precipitation dataset, called RAIN4PE (Rain for Peru and
Ecuador), at 0.1° spatial resolution for the period 1981–2015 covering Peru and Ecuador. It
is based on the application of 1) the random forest method to merge multisource precipitation
estimates (gauge, satellite, and reanalysis) with terrain elevation, and 2) observed and modeled
streamflow data to first detect biases and second further adjust gridded precipitation by inversely
applying the simulated results of the ecohydrological model SWAT (Soil and Water Assessment
Tool). Hydrological results using RAIN4PE as input for the Peruvian and Ecuadorian catchments
were compared against the ones when feeding other uncorrected (CHIRP and ERA5) and
gauge-corrected (CHIRPS, MSWEP, and PISCO) precipitation datasets into the model. For
that, SWAT was calibrated and validated at 72 river sections for each dataset using a range of
performance metrics, including hydrograph goodness of fit and flow duration curve signatures.
Results showed that gauge-corrected precipitation datasets outperformed uncorrected ones
for streamflow simulation. However, CHIRPS, MSWEP, and PISCO showed limitations for
streamflow simulation in several catchments draining into the Pacific Ocean and the Amazon
River. RAIN4PE provided the best overall performance for streamflow simulation, including flow
variability (low, high, and peak flows) and water budget closure. The overall good performance
of RAIN4PE as input for hydrological modeling provides a valuable criterion of its applicability
for robust countrywide hydrometeorological applications, including hydroclimatic extremes such
as droughts and floods.

Significance statement
We developed a novel precipitation dataset RAIN4PE for Peru and Ecuador by merging mul-
tisource precipitation data (satellite, reanalysis, and ground-based precipitation) with terrain
elevation using the random forest method. Furthermore, RAIN4PE was hydrologically cor-
rected using streamflow data in watersheds with precipitation underestimation through reverse
hydrology. The results of a comprehensive hydrological evaluation showed that RAIN4PE
outperformed state-of-the-art precipitation datasets such as CHIRP, ERA5, CHIRPS, MSWEP,
and PISCO in terms of daily and monthly streamflow simulations, including extremely low and
high flows in almost all Peruvian and Ecuadorian catchments. This underlines the suitability of
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RAIN4PE for hydrometeorological applications in this region. Furthermore, our approach for
the generation of RAIN4PE can be used in other data-scarce regions.

Published as:
Fernandez-Palomino, C. A., Hattermann, F. F., Krysanova, V., Lobanova, A., Vega-Jácome, F.,
Lavado, W., Santini, W., Aybar, C., et al. (2022). “A Novel High-Resolution Gridded Precipitation
Dataset for Peruvian and Ecuadorian Watersheds: Development and Hydrological Evaluation”.
In: Journal of Hydrometeorology 23.3, pp. 309–336. DOI: 10.1175/JHM-D-20-0285.1

https://doi.org/10.1175/JHM-D-20-0285.1


2.1 Introduction 29

2.1 Introduction

Precipitation is an essential component of the water cycle and reliable and accurate information
about its spatiotemporal distribution is decisive for a multitude of scientific studies and opera-
tional applications. Rain gauge observations are the most used and—on a local scale—direct
and accurate precipitation data sources. In addition, precipitation data can be derived from other
sources such as rainfall radar stations, satellites, reanalysis products, or based on merging
procedures (Sun et al., 2018). In many developing countries like Peru and Ecuador, rain gauges
are unevenly and sparsely distributed (Aybar et al., 2020; Hunziker et al., 2017; Manz et al.,
2016; Ochoa et al., 2014; Scheel et al., 2011). These features limit the precise estimation of
spatial and temporal variability of precipitation using only gauge-based measurements in the
tropical Andes.

Precipitation information derived from satellite data, e.g., CMORPH (Joyce et al., 2004),
TMPA (Huffman et al., 2007), CHIRP (Funk et al., 2015b), and IMERG (Huffman et al., 2019),
with a high spatiotemporal resolution, near-global coverage, and near-real-time availability have
been produced in the last decades (see appendix 2.A.1 for abbreviations). These satellite-based
precipitation products are promising alternative sources for regions with sparse observations.
However, previous studies for the Andes domain (Baez-Villanueva et al., 2018; Chavez and
Takahashi, 2017; Erazo et al., 2018; Kneis et al., 2014; Mantas et al., 2014; Manz et al., 2017;
Ochoa et al., 2014; Satgé et al., 2016; Scheel et al., 2011; Zulkafli et al., 2014) have reported
that precipitation estimates from satellites can be erroneous or biased, and that ground-based
data are often needed to reduce their bias. Furthermore, the current short length of satellite
records in this region constitutes an important restriction for the use of most of these products
for long-term applications.

Reanalysis precipitation data, such as CFSR (Saha et al., 2010), JRA-55 (Kobayashi et al.,
2015), and MERRA (Reichle et al., 2017), rely on uncertain parameterizations, and their spatial
resolution is too coarse to represent orographic precipitation (Beck et al., 2020b). Recently, the
state-of-the-art climate reanalysis ERA5 (Hersbach et al., 2020) was released, which has been
shown to outperform previous reanalyses for precipitation estimation (Beck et al., 2019a; Fallah
et al., 2020; Gleixner et al., 2020; Tall et al., 2019; Xu et al., 2019a), and has shown acceptable
performance for hydrological modeling over North America (Tarek et al., 2020), the Amazon
River basin (Towner et al., 2019), and at the global scale (Alfieri et al., 2020).

In recent years, global merged precipitation products that incorporate satellite and reanalysis
information with gauge-based datasets such as CHIRPS (Funk et al., 2015a) and MSWEP
(Beck et al., 2017, 2019b) have been published and are available. Many studies worldwide
have shown that these products have higher accuracy than precipitation estimates based on
one source only (e.g., either satellite- or reanalysis-based precipitation products) and have
significant potential for hydrometeorological studies (Bai and Liu, 2018; Beck et al., 2019a;
Wu et al., 2019; Xu et al., 2019b). CHIRPS has been used successfully to understand the
precipitation variability over the Andes (Segura et al., 2019) and Amazonia (Espinoza et al.,
2019; da Motta Paca et al., 2020; Paccini et al., 2018). In South America, the accuracy
of merged precipitation products has been tested only in a few studies using ground-based
precipitation (Baez-Villanueva et al., 2018; Satgé et al., 2019; Zambrano-Bigiarini et al., 2017)
and hydrological modeling (Satgé et al., 2019; Wongchuig Correa et al., 2017). CHIRPS
and MSWEP showed good performance for streamflow simulation in the Amazon River basin
(Wongchuig Correa et al., 2017) and in catchments draining into Titicaca Lake (Satgé et al.,
2020, 2019). To the best of our knowledge, there are no case studies in the literature on the
hydrological evaluation of CHIRPS and MSWEP in Peruvian and Ecuadorian watersheds, which
is addressed in this study.

At the regional scale, recently a high-resolution (0.1°) daily gridded precipitation dataset for
Peru as part of PISCO datasets was developed (PISCO hereafter) (Aybar et al., 2020). PISCO
is based on the merging of satellite estimates (CHIRP) and ground-based observations. It
is used by SENAMHI for operational purposes in Peru for droughts and floods monitoring at
the national scale, and was applied for hydrological modeling of the Andean Vilcanota River
catchment (Fernandez-Palomino et al., 2020), catchments draining into the Pacific Ocean
(Asurza-Véliz and Lavado-Casimiro, 2020), and Peruvian catchments (Llauca et al., 2021).
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As the method used to generate PISCO mainly corrects the biases of CHIRP using in situ
precipitation data, the higher accuracy of precipitation estimates is constrained to gauged
regions such as the Pacific coast and the eastern and western slopes of the Andes of Peru
(Aybar et al., 2020; Llauca et al., 2021). Hence, the application of PISCO for Peruvian
Amazon and transboundary river catchments is limited. This motivated us to generate a new
rainfall dataset for hydrometeorological applications at the national scale of Peru and Ecuador,
exploiting the lessons learned from precipitation estimates derived not only from gauges and
satellites but also from the state-of-the-art reanalysis ERA5. Indeed, ERA5 and CHIRP, which
has long-term daily precipitation data available (1981–present) and hence appropriate for long-
term hydrological applications, were used for the precipitation merging procedure in this study.
Moreover, terrain elevation, which was reported to be a key physical variable with a strong
influence on precipitation patterns in mountainous regions (Beck et al., 2020b; Bhuiyan et al.,
2019; Chavez and Takahashi, 2017), was considered as an additional predictor variable.

Besides sparseness and uncertainty of rainfall observations in complex tropical mountain
ranges, in some of those regions depositing fog and clouds may contribute significantly to
precipitation, but cannot be recorded with conventional measurements. In páramos (grassland
ecosystems extending from northern Peru to Venezuela and occurring between the tree line
and glaciers) and tropical montane cloud forest (TMCF) such precipitation plays a key role in
the water cycle as the cloud/fog interception by the páramos/forest constitutes an important
water source to the system (Bruijnzeel et al., 2011; Cárdenas et al., 2017; Clark et al., 2014;
Gomez-Peralta et al., 2008; Strauch et al., 2017). Modeled contributions of cloud water varying
from less than 5% of total precipitation in wet areas to more than 75% in low-rainfall areas in
TMCF were reported by Bruijnzeel et al. (2011). Fog water contribution of up to 30% of bulk
precipitation (rainfall plus fog water) was estimated in tropical montane forests in the eastern
Andes of Central Peru using fog gauges (Gomez-Peralta et al., 2008). Cloud water contribution
of up to 15% of streamflow was reported for the montane Kosñypata catchment in the eastern
Peruvian Andes using an isotopic mixing model (Clark et al., 2014). Fog water contribution of
up to 28% of the total precipitation to páramos in the Colombian Andes was measured using
fog gauges (Cárdenas et al., 2017). To correct the underestimation of precipitation by gridded
precipitation products, adjustment of precipitation data for regions covered by cloud forests has
been proposed (Strauch et al., 2017) with reported increases of up to 50% of the precipitation
values in the WFDEI dataset (Weedon et al., 2014) required to improve streamflow simulation
in the tropical montane watersheds.

However, the cloud/fog water component is not represented in the aforementioned precipita-
tion data sources. This lacuna, together with the dearth of precipitation gauges, could explain
some of the poor hydrologic model performances and problems with water budget closure
reported in previous studies in páramo and/or montane catchments draining into the Amazon
River (Aybar et al., 2020; Manz et al., 2016; Strauch et al., 2017; Zubieta et al., 2015, 2017;
Zulkafli et al., 2014). Thus, for reliable and accurate estimation of precipitation in regions such
as the TMCF and páramos, it is important to consider the contribution of cloud/fog water to the
terrestrial hydrological system.

Correcting potential errors in gridded precipitation datasets for these areas requires the
application of other types of observations and estimates. Corrected estimates of precipitation
using satellite soil moisture products have been derived in recent years (Brocca et al., 2013;
Brocca et al., 2019; Román-Cascón et al., 2017). However, the utility of these products could
be limited due to their low accuracy in regions with dense forests (Brocca et al., 2020), such
as TMCF and rainforest areas. Streamflow observations, which are spatially integrative and
could be another source of data supplementing information from sparse rain gauges, offer
an additional method to infer precipitation patterns and evaluate precipitation datasets (Henn
et al., 2018; Le Moine et al., 2015). In this study, we applied regional streamflow observations
inversely to infer or correct the precipitation input for the corresponding regional hydrological
simulations. This approach has been termed "hydrology backwards" or "reverse hydrology"
by Kirchner (2009) and has so far been applied in mountainous catchments like Rietholzbach
in Switzerland (Teuling et al., 2010), Alzette in Luxembourg (Krier et al., 2012), Schliefau and
Krems in Austria (Herrnegger et al., 2015), and the Sierra Nevada mountain range of California
(Henn et al., 2015, 2018). These studies used a simple lumped hydrological model to do
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reverse hydrology. In our case, we applied a process-based hydrological model to correct
precipitation biases using streamflow data. We hypothesize that the correction of precipitation
using streamflow data can improve closing the observed water budget gap over complex tropical
mountainous catchments such as páramo and montane watersheds.

This study is the first attempt to generate a precipitation dataset for Peru and Ecuador
by merging different sources of precipitation and correcting precipitation estimates through
reverse hydrology. Furthermore, we evaluate the applicability of the precipitation dataset
generated in this study, uncorrected precipitation datasets used for merging procedure (CHIRP
and ERA5), and current state-of-the-art local (PISCO) and global (CHIRPS and MSWEP)
merged precipitation products for hydrological modeling of Peruvian and Ecuadorian river
catchments. This will demonstrate the effectiveness of the new methods combined here
and will help illustrate the appropriateness of multiple precipitation datasets for countrywide
hydrometeorological applications in both Peru and Ecuador. The objectives of this study are
1) to generate a high-spatial-resolution and hydrologically adjusted precipitation dataset for
Peru and Ecuador and 2) to assess and compare the applicability of this precipitation data
and the current state-of-the-art uncorrected and merged precipitation products for hydrological
modeling.

Figure 2.1: (left) Study area and spatial distribution of precipitation gauges with record length
greater than 10 years for the 1981–2015 period used for the merging procedure. (right) Drainage
systems, river networks, and streamflow stations used for hydrological model calibration based
on the cascading calibration approach. Red polygons show the gauged catchments with water
budget imbalance where gridded precipitation datasets are corrected using streamflow data
through reverse hydrology. Nueva Loja station gauges the catchment “A”, San Sebastian (B),
Francisco De Orellana (C), Santiago (D), Borja (E), Shanao (F), Chazuta (G), Puerto Inca
(H), and Lagarto (I). Boundaries of the páramo and tropical montane cloud forest (TMCF)
ecosystems were obtained from Helmer et al. (2019).
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2.2 Study area and data

2.2.1 Study area

The study area covers Peru and Ecuador with elevations ranging from 0 to 6518 m MSL
(Fig. 2.1). The new precipitation dataset [Rain for Peru and Ecuador (RAIN4PE)] is generated
for the terrestrial land surface between 19°S–2°N and 82°–67°W. The study area has complex
hydroclimatic conditions related to its variable climate zones and the Andes Cordillera, which
acts as a topographic barrier between the cold and dry eastern Pacific and the warm and moist
Amazon region. The Andes divides the study area into three natural drainage basins (Fig. 2.1):
(i) the Pacific basin (watersheds located on the western side of the Andes that convey water to
the Pacific Ocean); (ii) Amazon basin (watersheds located on the eastern side of the Andes
that drain to the Amazon River); and (iii) Titicaca Lake basin (catchments draining into Titicaca
Lake).

In the region, the great spatial variability of precipitation patterns is modulated by the
interplay among large-scale (e.g., latitudinal migration of Atlantic intertropical convergence
zone, South American monsoon systems, Hadley, Walker cell, marine currents, Bolivian high)
and local circulation patterns (e.g., upslope and downslope moisture transport) and the complex
Andean orography (Espinoza et al., 2020; Laraque et al., 2007; Segura et al., 2019; Tobar
and Wyseure, 2018). Furthermore, El Niño–Southern Oscillation (ENSO) is a major modulator
of hydroclimatology at interannual time scales along the Andes (Poveda et al., 2020). The
study area hosts a diversity of ecosystems such as deserts, punas (high mountain grasslands),
páramos, glaciers, mountain forests, TMCFs, and rainforests. From these, páramo and TMCF
(Fig. 2.1) are ecosystems where an important cloud/fog water input to the system was reported
(Bruijnzeel et al., 2011; Cárdenas et al., 2017; Clark et al., 2014; Gomez-Peralta et al., 2008).
This is an important precipitation source to consider in hydrological modeling of páramo and
montane watersheds, as it was carried out herein.

2.2.2 Data

Ground-based precipitation data

The precipitation data of a total of 804 precipitation gauges with record length greater than
ten years for the 1981–2015 period were used for this study (Fig. 2.1), out of which 587 (217)
gauges have daily (only monthly) precipitation data. The data were collected from different
sources such as national hydrometeorological institutions and previous studies in the region.
The data for Peru were obtained from the Peruvian ANA (Autoridad Nacional del Agua) and
Aybar et al. (2020); for Ecuador from Morán-Tejeda et al. (2016), Tamayo (2017), Tobar and
Wyseure (2018); for Brazil from Xavier et al. (2016, 2017); and for Colombia from IDEAM
(Instituto de Hidrología, Meteorología y Estudios Ambientales). We used 587 (804) precipitation
gauges with daily (monthly) data for the merging of precipitation datasets at the daily (monthly)
time step.

Table 2.1: List of gridded precipitation datasets used in this study. In uncorrected datasets,
their temporal dynamics depend entirely on satellite (S) or reanalysis (R) data, while in gauge-
corrected datasets, their temporal dynamics depend at least partly on gauge (G) data. In the
spatial coverage column, “Global” means fully global coverage including oceans, while “Land”
indicates that the coverage is limited to the terrestrial land surface.

Dataset
(Version)

Data
source(s)

Spatial
resolution

Spatial
coverage

Temporal
resolution

Temporal
coverage

Reference

Non-gauge-corrected datasets
CHIRP (V2.0) S 0.05° Land, 50° N/S Daily 1981–present Funk et al. (2015b)
ERA5 R 0.25° Global Hourly 1950–present Hersbach et al. (2020)

Gauge-corrected datasets
CHIRPS (V2.0) G, S 0.05° Land, 50° N/S Daily 1981–present Funk et al. (2015a)
MSWEP (V2.2) G, S, R 0.1° Global 3-hourly 1979–present Beck et al. (2017, 2019b)
PISCO (V2.1) G, S 0.1° Peru Daily 1981–2016 Aybar et al. (2020)
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Discharge data

Discharge data of 72 streamflow stations (Fig. 2.1) with record lengths ranging from one to
33 years for 1983–2015 were obtained from different sources, such as the Peruvian ANA
and SENAMHI for catchments draining into the Pacific Ocean and located in the Andes.
For the Amazon lowland, data were obtained from the Critical Zone Observatory HYBAM
(Hydrogéochimie du Bassin Amazonien, www.so-hybam.org). This hydrological network has
been operated by an international team from IRD (Institut de Recherche pour le Développement;
France), SENAMHI (Peru), INAMHI (Instituto Nacional de Meteorología e Hidrología; Ecuador),
and the Brazilian ANA (Agência Nacional de Águas; Brazil) since 2003 (Armijos et al., 2013;
Santini et al., 2019).

Gridded precipitation data

Table 2.1 presents the five precipitation datasets used in this study. We used the non-gauge-
corrected datasets (CHIRP and ERA5) for the merging procedure to generate RAIN4PE dataset.
The satellite-based CHIRP precipitation dataset (Funk et al., 2015a) is obtained by considering
infrared-based precipitation estimates and corresponding monthly precipitation climatology
generated for Funk et al. (2015b). We selected CHIRP since it has high spatial resolution
and long-term (from 1981 onward) daily precipitation data, which is appropriate for long-term
hydrometeorological applications. ERA5 (Hersbach et al., 2020) is the latest climate reanalysis
dataset produced by the European Centre for Medium Weather Forecasts (ECMWF). Compared
with its predecessor ERA-Interim (Dee et al., 2011) that became operational in 2006, ERA5 is
based on the ECMWF’s Integrated Forecasting System Cycle 41r2 which was operational in
2016. ERA5 thus benefits from a decade worth of numerical weather prediction developments

Table 2.2: Data used for hydrological modeling.

Data type Resolution Description/source
Elevation 90 m Surface elevation (m MSL) from

Multi-Error-Removed Improved Terrain (MERIT;
Yamazaki et al., 2017)

Land use 100 m Land use classification representative for the year
2015 obtained from Copernicus Global Land
Service (Buchhorn et al., 2019)

Soil 1000 m Soil parameters for SWAT based on the
Harmonized World Soil Database version 1.21 soil
data (Abbaspour and Ashraf Vaghefi, 2019)

Soil thickness 1000 m Soil thickness data (Pelletier et al., 2016) were used
to implement variable soil thicknesses at
hydrological response units (HRUs)

Groundwater
table depth

1000 m Groundwater table depth data (Fan et al., 2013)
were used to constrain soil thickness in shallow
water tables across the rain forest region

Temperature Daily/10 km
(1981–2016)

Gridded temperature (maximum and minimum)
dataset for Peru (Huerta et al., 2018) as provided by
SENAMHI (ftp://publi_dgh2:
123456@ftp.senamhi.gob.pe/)

Solar radiation 3-hourly/10 km
(1983–2018)

Long-term monthly averages of solar radiation
based on the global surface solar radiation data
(Tang, 2019; Tang et al., 2019) were used

Evapotranspiration Daily/0.25°
(1980–2020)

Evapotranspiration data from the Global Land
Evaporation Amsterdam Model (GLEAM v3.5a;
Martens et al., 2017; Miralles et al., 2011)

Evapotranspiration 8-day/1 km
(2000–14)

Evapotranspiration data from the Moderate
Resolution Imaging Spectroradiometer Global
Evaporation (MOD16; Mu et al., 2011)

www.so-hybam.org
ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/
ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/
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in model physics, core dynamics, and data assimilation relative to ERA-Interim. Moreover,
ERA5 has a much higher temporal and spatial resolution than previous global reanalyses. The
hourly ERA5 precipitation data were downloaded and aggregated to obtain daily time step
records matching the local gauge observations (from 0700 to 0700 local time).

To compare RAIN4PE against other gauge-corrected precipitation datasets besides the
uncorrected ones (CHIRP and ERA5), we selected three merged products (CHIRPS, MSWEP,
and PISCO) widely used in data evaluation and hydrometeorological applications in the region
(Asurza-Véliz and Lavado-Casimiro, 2020; Baez-Villanueva et al., 2020; Bhuiyan et al., 2019;
Espinoza et al., 2019; Fernandez-Palomino et al., 2020; Llauca et al., 2021; da Motta Paca
et al., 2020; Paccini et al., 2018; Satgé et al., 2020, 2019; Wongchuig Correa et al., 2017).
CHIRPS (Funk et al., 2015a) and PISCO (Aybar et al., 2020) are obtained by merging CHIRP
and gauge estimates through deterministic and geostatistical interpolation methods. Finally,
MSWEP is derived by optimally merging a range of gauge, satellite, and reanalysis precipitation
estimates, where satellite and reanalysis datasets are merged using weights for each one based
on the coefficient of determination between 3-day mean gauge- and grid-based precipitation
time series (Beck et al., 2017, 2019b). The daily MSWEP precipitation data were provided for
this study.

Additional data
In addition to various precipitation products, Table 2.2 presents other datasets that were used for
the hydrological modeling process. The surface elevation data were used both for the merging
procedure and setting up the hydrological model.

2.3 Methods
The framework of this study involves three main steps (Fig. 2.2): (i) merging procedure through a
machine learning technique at the daily and monthly scales; (ii) calibration of model parameters
and hydrological adjustment through the reverse hydrology concept; and (iii) evaluation of all
precipitation products through hydrological modeling.

2.3.1 Merging procedure
In this section, the merging procedure to obtain RAIN4PE at 0.1° spatial resolution for the
1981–2015 period is described; see Fig. 2.2 for a scheme.

Covariates
For the merging procedure at the daily (monthly) scale, we used daily (monthly) precipitation
estimates of CHIRP and reanalysis ERA5, surface elevation (Yamazaki et al., 2017), and buffer
distances from observation points as covariates. The latter is to account for geographical
proximity effects in the prediction process using the random forest (RF) method as suggested by
Hengl et al. (2018). The elevation is taken into account because it is a key physical variable with
a strong influence on precipitation patterns (Beck et al., 2020b; Chavez and Takahashi, 2017).
We selected these covariates: satellite precipitation, reanalysis precipitation, and elevation, all
of them based on recent studies (Baez-Villanueva et al., 2020; Beck et al., 2020b; Bhuiyan
et al., 2019; Hong et al., 2021). To match the 0.1° spatial resolution of the final precipitation
product, the covariates with grid cell size < 0.1° (> 0.1°) were regridded to 0.1° spatial resolution
applying the bilinear interpolation (nearest neighbor) method.

Random forest modeling to combine different data sources
In this study, the RF method (Breiman, 2001) was applied to produce a gridded precipitation
dataset by merging multiple precipitation sources (gauge, satellite, and reanalysis). RF has
been used and proved recently to have similar or superior performance in the interpolation of
environmental variables such as precipitation, temperature, and evapotranspiration compared
to traditional spatial interpolation techniques, e.g., regression kriging and inverse distance
weighting (Hengl et al., 2018; Sekulić et al., 2020; da Silva Júnior et al., 2019). Last, RF-based
methodologies (Baez-Villanueva et al., 2020; Bhuiyan et al., 2019) to merge precipitation
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products with ground-based measurements were developed and applied successfully in data-
scarce and complex terrain regions such as the Peruvian and Colombian Andes (Bhuiyan et al.,
2019) and Chilean territory (Baez-Villanueva et al., 2020).

RF is a multivariate and nonparametric machine learning algorithm, in which the prediction
is generated as an ensemble estimate from a number of regression trees (Breiman, 2001) as
shown in Eq. (1.1):

f̂ (x) =
1
N

N∑
b=1

Tb(x) (2.1)

where f̂ (x) is the final prediction, b is the individual bootstrap sample, N is the total number
of trees, and Tb is the individual regression tree.

In RF, each tree is constructed from the random selection of covariates, which ensures that
trees are decorrelated with each other, and a bootstrap sample of the observations (Breiman,
2001). The unsampled data, called out-of-bag, can be used to test the prediction accuracy
and the importance of input variables, eliminating the need for an extra independent validation
dataset (Breiman, 2001).

We implemented RF using the R package randomForest (Liaw and Wiener, 2002) and the
following RF parameters: 1) the number of trees (set at 1000); 2) the number of predictor
variables randomly selected at each node (set at one-third of the number of variables, default
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Figure 2.2: Flowchart for (i) the generation of gridded precipitation dataset, (ii) hydrological
model calibration and adjustment of precipitation datasets, and (iii) hydrological evaluation.
Here d (m) indicates the daily (monthly) time step, BD(i),...,(n) are buffer distances (distance from
any point to all precipitation gauges), BCF is the bias correction factor, OFs are the objective
functions for hydrological model calibration, and GOFs are the goodness of fit measures. BCF
is optimized only over catchments with water budget imbalance. Note that for hydrological
evaluation (step iii), the model was rerun using the respective corrected precipitation data and
optimum model parameters values with BCF set to 1.
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value); 3) the minimum number of observations in a tree’s terminal node (set at 5, default value);
and 4) the out-of-bag portion to test the accuracy of the predictions (set at one-third of the
total number of observations). These parameter values were successfully used in other studies
(Baez-Villanueva et al., 2020; Fox et al., 2020; Sekulić et al., 2020).

In the merging procedure (see Fig. 2.2), an RF model was trained using ground-based
observations as the dependent variable and the selected covariates as predictor variables for
each day and month in the 1981–2015 period. The trained RF models were then applied to
covariates, yielding preliminary daily precipitation data (Pd0) and monthly precipitation data
(Pm1). Finally, Pd0 was corrected to match Pm1. For that, the ratio of Pm1 over the monthly
precipitation derived from Pd0 was computed on each grid cell for each month, and this ratio
was then applied to multiply the Pd0 values on the grid for the month to generate the RF-based
RAIN4PE dataset. This correction was because the interpolation of precipitation patterns at a
monthly scale is more reliable and accurate than the daily interpolation (Aybar et al., 2020; He
et al., 2020).

2.3.2 Hydrological modeling and adjustment of precipitation datasets

This section describes the approaches applied for hydrological model calibration and validation
and hydrological adjustment of precipitation datasets using streamflow data through the reverse
hydrology concept. The hydrological correction is applied only for nine catchments (Fig. 2.1)
having a water budget imbalance due to underestimated streamflow in the simulations with
uncorrected precipitation inputs, as reported in previous studies (Strauch et al., 2017; Zubieta
et al., 2015, 2017; Zulkafli et al., 2014). We applied the reverse hydrology using the Soil and
Water Assessment Tool (SWAT; Arnold et al., 1998) model in which both the bias correction
factor (BCF) for precipitation fields and model parameters were calibrated jointly (Fig. 2.2).

SWAT model

Hydrological simulations were performed with the SWAT 2012 model (Arnold et al., 1998),
updated for improved representation of tropical vegetation dynamics (Alemayehu et al., 2017).
SWAT is one of the most widely used ecohydrological models in the world (Gassman et al.,
2014; Tan et al., 2020), and had been applied successfully already for ecohydrological modeling
of an Andean basin of Peru (Fernandez-Palomino et al., 2020). SWAT is a process-oriented,
semidistributed and time-continuous river basin model used to simulate hydrological processes
as well as vegetation dynamics, nutrients, pesticides, and sediment loads within a basin (Arnold
et al., 1998; Neitsch et al., 2011). SWAT divides a basin into subbasins, which are then further
subdivided into hydrological response units (HRUs) representing unique combinations of land
use, soil type, and slope classes (Neitsch et al., 2011). The water balance computation is
performed at the HRU level considering four water storage types (snow, soil profile, and shallow
and deep aquifers), as follows:

∆S =
N∑

i=1

(BCF × P − WYLD − ET − GWL) (2.2)

where ∆S is the change in water storage (mm); N is the time in days; and P, WYLD, ET,
and GWL are the amount of precipitation (mm), water yield (mm), evapotranspiration (mm), and
groundwater losses (mm), respectively. BCF introduced herein is the bias correction factor to
infer the precipitation fields from observed streamflow data.

In SWAT, flow routing in river channels can be computed using the Muskingum or the variable
storage method, considering the flow velocity to be the same across the channel and floodplain
section (Neitsch et al., 2011). This approach has been shown to be inefficient for flow routing
in Amazon rivers (Santini, 2020), where flows are largely affected by floodplains that act as
reservoirs, causing significant flood peak delay and attenuation (Paiva et al., 2011; Santini
et al., 2015; Santini, 2020; Yamazaki et al., 2011). To exclude this limitation, Santini (2020) has
implemented a new flow routing method for SWAT to consider the river–floodplain dynamics,
where the associated floodplain of each river reach was treated as a simple storage model, as
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Table 2.3: Parameters and their ranges for model calibration for evapotranspiration (ET),
streamflow (Q), and precipitation (P). In the “Change type” column, R (V) refers to a relative
(absolute) change of parameter values during the calibration. Parameter set 1 was applied
for Andean catchments draining into the Pacific Ocean and Titicaca Lake and for Andean
catchments upstream the montane watersheds. Montane watersheds having a water budget
imbalance were calibrated using parameter set 2. Catchments downstream the montane
watersheds were calibrated using parameter set 3. Note that BCF is applied only for catchments
with water budget closure problems to infer precipitation from streamflow data. See Neitsch
et al. (2011) for detailed parameter definitions.

Parameter Description (unit) Calibrated
output Range Change

type
Set

1 2 3
SOL_AWC Soil available water capacity (mm H2O/mm soil) ET [–0.8, 0.8] R X
GW_REVAP Groundwater “revap” coefficient ET [0, 0.2] V X
SURLAG Surface runoff delay coefficient Q [0.1, 2] V X X X
GW_DELAY Groundwater delay time (days) Q [1, 100] V X X X
RCHRG_DP Deep aquifer percolation fraction Q [0, 1] V X X X
GWQMN Threshold for return flow from shallow aquifer (mm) Q [500, 1000] V X X X
ALPHA_BF Baseflow recession constant Q [0.01, 1] V X X X
CH_K2 Hydraulic conductivity of main channel (mm h-1) Q [0, 50] V X
CHD Main channel depth (m) Q [–0.1, 0.5] R X
FP_W_F Ratio of floodplain width over bankfull width Q [1, 5] V X
BCF Bias correction factor P, Q [0, 1] R X

in other hydrological models (Paiva et al., 2011; Yamazaki et al., 2011). This approach was
used in our study.

SWAT model setup, calibration, and validation

The SWAT model was set up for Peruvian and Ecuadorian catchments (total of 1,638,793 km2)
based on the input data listed in Table 2.2. The model includes 2,675 subcatchments and 6,843
HRUs. Channel cross-section parameters such as the bankfull width (B) and channel depth
(CHD) were estimated using geomorphologic equations based on upstream drainage areas
derived for Amazon rivers (Paiva et al., 2011). Floodplain width is estimated by multiplying the
bankfull width by a factor (set at 5, default value). We assigned Manning’s n values of 0.03
(0.10) for channels (floodplains). The modified Soil Conservation Service curve number, the
Priestley–Taylor equation, and the variable storage methods were used to simulate surface
runoff and infiltration, potential evapotranspiration, and river flow routing, respectively.

The simulation period was from 1981 to 2015. The first two years were considered for the
model spinup. For the model calibration, all flow data were used for stations with a record
lower than 10 years, and for those with longer, two-third of the data were used. In the latter
case, the remaining flow data were used for model validation (53 out of 72 streamflow stations).
The model calibration for each precipitation product was performed applying the multisite
cascading calibration approach (Xue et al., 2016) in nine sequences (Fig. 2.1), where the
calibrated discharge from the upstream catchments was used as input for the downstream. The
model parameters and BCFs for each (sub)catchment were calibrated using the respective
set of parameters defined in Table 2.3 for Andean, montane, and lower Amazon catchments.
Moreover, plant parameters were adopted from our previous study (Fernandez-Palomino et al.,
2020).

The optimum values of model parameters and BCFs were obtained through multiobjective
calibration. For that, the model was calibrated against observed discharge using the Nash–
Sutcliffe efficiency log (lNSE) and aggregated flow duration curve signature (FDCsign) as
objective functions (see Table 2.4). We selected lNSE and FDCsign since these have been
shown sufficient to test the model for simulating all hydrograph aspects in the calibration
(Fernandez-Palomino et al., 2020). Moreover, the application of FDC-based signatures provides
more information about the hydrological behavior of the modeled basin (Hrachowitz et al.,
2014; Yilmaz et al., 2008) and leads to better parameter identifiability, more accurate discharge
simulation, and reduction of predictive uncertainty (Chilkoti et al., 2018; Fernandez-Palomino
et al., 2020; Hrachowitz et al., 2014; Pfannerstill et al., 2017, 2014; Pokhrel and Yilmaz, 2012;
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Sahraei et al., 2020; Yilmaz et al., 2008). Following Chilkoti et al. (2018) and Fernandez-
Palomino et al. (2020), we estimated percent bias for four segments of the FDC [peak flow
(0%–2%), high flow (2%–20%), midsegment (20%–70%), and low flow (70%–100%)], and
then the absolute values of the bias percentages were averaged to obtain the FDCsign to
take into consideration the hydrological signatures for model calibration. The respective FDC
segmentation represents peak flow events occurring rarely, quick runoff (due to snowmelt
and/or rainfall), the flashiness of a basin’s response, and the streamflow’s baseflow components.
The Borg multiobjective evolutionary algorithm (Borg MOEA; Hadka and Reed, 2013) was
used to optimize the objective functions (maximization of lNSE and minimization of FDCsign)
with 1000 iterations as the maximum. The Borg MOEA parameterization was the same as in
Fernandez-Palomino et al. (2020). The parameters for ungauged catchments (at HRU level)
were obtained applying the spatial proximity approach (Guo et al., 2021) using the inverse
distance weighting (Shepard, 1968). For regionalization of parameters, donor catchments
(gauged) within a radius of 150 km were used to avoid the influence of Amazonian catchments
in the estimation of parameters for Andean basins draining into the Pacific Ocean and Titicaca
Lake.

Hydrological adjustment of precipitation datasets
The optimum BCFs obtained for each catchment with water budget imbalance (Fig. 2.1) in the
calibration procedure were applied to the respective daily gridded precipitation data to obtain
the hydrologically corrected daily precipitation dataset (Fig. 2.2). For that, a continuous BCF
map at 0.1° spatial resolution was produced where grid cells within the respective catchment
retained the respective BCF, and for cells on the boundary, the area-weighted BCFs were
estimated. It is noteworthy that applying the resulting BCF map to gridded precipitation data
can result in spatial discontinuities of precipitation patterns at the border of the catchments. To
reduce such discontinuities, we further applied a 5 × 5 mean filter to the BCF map. Finally, the
corrected precipitation data were used as input to SWAT to run the model with the respective
optimum parameters for the simulation period to compute the model performance measures for
the hydrological evaluation of precipitation datasets.

2.3.3 Evaluation methods
Evaluation using out-of-bag sample
The prediction accuracy of preliminary daily precipitation data (Pd0) and monthly precipitation
data (Pm1) produced by the RF method (see Fig. 2.2) was assessed using the mean absolute
error (MAE) and determination coefficient (R2) based on the out-of-bag sample.

Hydrological evaluation
We evaluated the accuracy of precipitation estimates through hydrological modeling for the three
drainage systems in the study area. It is an adequate approach evaluating gauge-corrected
precipitation datasets since streamflow observations are independent from ground precipitation
observations that are used in these datasets (Beck et al., 2020a; Brocca et al., 2020; Satgé
et al., 2020).

For hydrological evaluation, a multicriteria evaluation of SWAT-simulated streamflow using
all precipitation products was carried out. For that, both hydrograph goodness of fit metrics
and hydrological signatures (Table 2.4) were considered for both calibration and validation
periods. The modified Kling–Gupta efficiency (KGE) and percent bias (PBIAS) were used for
assessing model skills in representing general discharge dynamics and over or underestimation
tendencies, respectively; lNSE and percent bias in FDC low segment volume (Slow) for low flows;
Nash–Sutcliffe efficiency (NSE) and percent bias in FDC high segment volume (Shigh) for high
flows; and percent bias in FDC peak segment volume (Speak) for extremely peak flow conditions.
This multicriteria evaluation aims to assess model skills representing all aspects of the observed
FDC and hydrographs, which is important for assessing the reliability of precipitation products
for hydrometeorological applications such as the analysis of water budget and hydroclimatic
extremes (floods and droughts). The hydrological model performance was ranked based on
the rating performance criteria of Moriasi et al. (2007). Thus, for simplicity, the absolute values
of PBIAS, Slow, Shigh, and Speak < 10 were considered as very good, (10–15) good, (15–25)
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Table 2.4: Mathematical formulation of the goodness of fit metrics and hydrological signatures.
Here, O and S are observed and simulated flow (m3/s), respectively; EP is the exceedance
probability; P, H, and L are the indices of the minimum flow of the peak flow, high flow, and
low flow segments, respectively. In the optimization process for hydrological model calibration,
lNSE was maximized, whereas FDCsign was minimized.

Criterion (reference) Equation Description
Discharge-related performance measures

Nash–Sutcliffe efficiency
(Nash and Sutcliffe,
1970)

NSE = 1 −
∑n

i=1 (Si − Oi )2∑n
i=1 (Oi − Oa)2 Oa is the average of the

observed flow and n is the
number of observations on
evaluation

Nash–Sutcliffe efficiency
log (Krause et al., 2005)

lNSE = 1 −
∑n

i=1 (ln (Si ) − ln (Oi ))2∑n
i=1 (ln (Oi ) − ln (Oa))2

Percent bias (Gupta
et al., 1999)

PBIAS =

∑n
i=1 (Si − Oi )∑n

i=1 Oi
× 100

Kling–Gupta efficiency
(Gupta et al., 2009; Kling
et al., 2012)

KGE =
√

(r − 1)2 + (β − 1)2 + (γ − 1)2 r is the Pearson
product-moment correlation
coefficient and beta (gamma)
indicates the bias (relative
dispersion) between observed
and simulated flows

Signature measures

Percent bias in FDC
peak segment volume
(Yilmaz et al., 2008)

Speak =

∑P
p=1 (Sp − Op) × 100∑P

p=1 OP

p = 1, 2, ... , P are flow indices
located within the FDC peak
flow segment (EP lower than
2%)

Percent bias in FDC high
segment volume (Yilmaz
et al., 2008)

Shigh =

∑H
h=1 (Sh − Oh) × 100∑H

h=1 Oh

h = 1, 2, ... , H are flow indices
located within the high flow
segment (2%–20% flow EP)

Percent bias in FDC
midsegment slope
(van Werkhoven et al.,
2009; Yilmaz et al.,
2008)

Smid =
((Sm1 − Sm2) − (Om1 − Om2)) × 100

(Om1 − Om2)
m1 and m2 are the lowest
and highest flow EP within the
midsegment (20%–70%)

Percent bias in FDC low
segment volume (Yilmaz
et al., 2008)

Slow =

∑L
l=1 (Sl − Ol ) × 100∑L

l=1 Ol

l = 1, 2, ... , L are flow indices
located within the low flow
segment (70%–100% flow
EP)

FDC signature (Chilkoti
et al., 2018)

FDCsign =
1
4

(
|Speak| + |Shigh| + |Smid| + |Slow|

)
FDCsign is the aggregated
FDC signature

satisfactory, and (>25) unsatisfactory, and KGE, NSE, and lNSE > 0.75 were considered very
good, (0.65–0.75) good, (0.50–0.65) satisfactory, and (<0.50) unsatisfactory.

Furthermore, in this study, we analyzed the distribution of model parameters and compared
the evapotranspiration (ET) simulated by SWAT with remotely sensed ET from Global Land
Evaporation Amsterdam Model (GLEAM) and Moderate Resolution Imaging Spectroradiometer
Global Evaporation (MOD16). The ET estimates from MOD16 and GLEAM are based on the
Penman–Monteith and Priestly–Taylor equations, respectively. This comparison is to verify the
plausibility of ET estimates which is one of the largest components of the water budget besides
precipitation and difficult to estimate over complex terrain. Results of the analysis of parameter
distribution and ET estimates are described in appendices 2.A.2 and 2.A.3.
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Figure 2.3: Performance of the random forest algorithm for spatial interpolation of (left) daily
and (right) monthly precipitations. Here, R2 is the coefficient of determination, and MAE is the
mean absolute error. The middle and bottom graphs show the performance measures averaged
for each day or month in the 1981–2015 period.

2.4 Results
2.4.1 Performance of the merging algorithm

The skill of the RF method for predicting daily and monthly precipitation patterns was evaluated
using performance measures (R2 and MAE) based on the out-of-bag sample. Figure 2.3
shows that based on the temporal distribution of R2, the RF performance does not have a
seasonal pattern for the daily precipitation prediction, whereas it exhibits better performance in
the period from April to December for monthly prediction. Furthermore, R2 shows that prediction
is better for the monthly (mean R2 = 0.72) than the daily (mean R2 = 0.25) precipitation.
This result supports the correction of daily-predicted precipitation values to match the monthly
predictions performed in our study as described in the methods. MAE is much lower in the period
June–September for both daily and monthly precipitation prediction, indicating that precipitation
is more easily predictable when most of the study area experiences lower precipitation during
the dry season. It is important to mention that satellite precipitation (CHIRP) was often the
most important covariate in the merging procedure both at daily and monthly scale, followed
by reanalysis precipitation (ERA5) and terrain elevation, while buffer distances were negligible
(Fig. 2.13).

2.4.2 Hydrological correction of the gridded precipitation datasets
The spatial variation of the obtained bias correction factors (BCFs) for six precipitation datasets
is shown in Fig. 2.4. This differs from the method of Strauch et al. (2017), who applied a unique
correction factor to WFDEI (Weedon et al., 2014) dataset for all montane regions. The lower
values of BCFs for ERA5 are related to significant precipitation overestimation along the Andes
by ERA5 (Figs. 2.5 and 2.6). The results for the other datasets (Fig. 2.4) show that higher BCFs
were the result for MSWEP (mean BCF = 1.66) and lower for RAIN4PE (mean BCF = 1.38).
For a BCF of 1.38, on average, 28% of total precipitation is the precipitation underpredicted
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Figure 2.4: (top) Bias correction factors (BCFs) for six precipitation datasets and (bottom)
long-term mean seasonal streamflow (Q) dynamics in the period 1983–2015 after SWAT model
calibration over nine catchments with underestimation of precipitation amounts in comparison
with the observed mean seasonal discharge. The mean BCF was computed using the catchment
areas as weights. Note that both observed and seasonal streamflow were computed only for
the months with available streamflow data.

in páramo and montane watersheds in the study area which falls in the range (0%–30%) of
cloud/fog water contribution to total precipitation reported in previous studies of the region
(Cárdenas et al., 2017; Gomez-Peralta et al., 2008). Figure 2.4 also shows that significant
benefits of precipitation correction made for RAIN4PE are obvious in a good representation of
streamflow seasonality for all nine catchments. The correction of CHIRPS also works relatively
well in most of the catchments in terms of seasonal streamflow prediction, although it fails over
the southern Ecuadorian Amazon (at Santiago station). The hydrological correction of the other
datasets (CHIRP, ERA5, MSWEP, and PISCO) performs well for southern catchments (from
Borja to Lagarto station) but not in Ecuadorian catchments (from Nueva Loja to Santiago station)
since the streamflow seasonality change is underestimated, indicating a serious drawback of
these datasets.

2.4.3 Spatial patterns of precipitation

In general, the spatial variability of the long-term average annual precipitation (1981–2015)
portrayed by all precipitation datasets looks quite similar (Fig. 2.5), although PISCO shows
distinct precipitation patterns and magnitudes in the rain forest regions. Figure 2.5 also shows
the spatial patterns of the estimated precipitation underestimates for each precipitation dataset.
As can be seen, these patterns look quite similar over the Peruvian Amazon for five datasets
(CHIRP, CHIRPS, MSWEP, PISCO, and RAIN4PE) but vary over the northern Amazon basin in
Ecuador. The substantial precipitation underestimation (ranging from 0 to 3369 mm, Fig. 2.5)
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Figure 2.5: The spatial patterns of average annual precipitation for the period 1981–2015
based on (top) raw and (middle) hydrologically adjusted precipitation data of ERA5, CHIRP,
CHIRPS, MSWEP, PISCO, and RAIN4PE. (bottom) The underestimated precipitation fields
for each precipitation dataset. The numbers in brackets represent the precipitation ranges. In
the case of ERA5, precipitation values exceeding 8000 mm are in purple (distributed over the
Ecuadorian Andes mainly).

found here suggests that precipitation correction was necessary to achieve the closure of the
water budget and appropriate hydrological modeling of the páramo and montane watersheds.

In addition, a comparison of the unadjusted precipitation data with gauge observation was
done (Fig. 2.6) to assess precipitation datasets’ reliability or critical shortcomings. It shows that
ERA5 overestimates precipitation significantly over the Andes. CHIRP, CHIRPS, MSWEP, and
PISCO (CHIRP and CHIRPS) underestimate (overestimate) precipitation over the northern (arid
southern) Pacific coastal areas. Furthermore, ERA5, CHIRP, CHIRPS, MSWEP, and PISCO
have inconsistent temporal distribution of precipitation over the northern Amazon, which is
confirmed by low values of correlation and determination coefficients that result from comparing
these products with gauge observations at a monthly scale (Fig. 2.6) and SWAT-simulated
seasonal streamflow using these datasets (Fig. 2.4). Therefore, these datasets are less suitable
for characterizing spatiotemporal variability of precipitation over the Ecuadorian Amazon than
RAIN4PE. However, it should be kept in mind that the comparison measures in Fig. 2.6 could
be biased toward datasets (CHIRPS, MSWEP, PISCO, and RAIN4PE) that used data from the
assimilated precipitation gauges in their production (see Table 2.1).

2.4.4 Hydrological evaluation

In this section, we evaluate the performance of the SWAT model driven by the hydrologically
adjusted CHIRP (CHIRP-SWAT), ERA5 (ERA5-SWAT), CHIRPS (CHIRPS-SWAT), MSWEP
(MSWEP-SWAT), PISCO (PISCO-SWAT), and RAIN4PE (RAIN4PE-SWAT) for calibration and
validation periods. For that, we used multiple performance measures to assess the model skills
in representing discharge dynamics including all flow conditions (low, high, and peak flows). It
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Figure 2.6: Performance of the unadjusted precipitation datasets in comparison with gauge
observations: MAP is the mean annual precipitation, ME is the mean error, r is the Pearson’s
correlation coefficient, and R2 is the coefficient of determination. The comparison measures
(ME, r , and R2) were computed using monthly precipitation time series for 1981–2015.

is important to mention that temporal mismatches in the daily precipitation accumulation may
influence the model performance at the daily scale since CHIRP, CHIRPS, and MSWEP were
delivered using different daily time window aggregation than the local one (from 0700 to 0700
local time). Furthermore, our analyses are based on the results of the only one hydrological
model, SWAT, and the application of other hydrological models could be done in future to verify
and refine the obtained results.

Performance evaluation for daily streamflow and extremes

We investigated the spatial variability of hydrological model performance for streamflow sim-
ulation forced by six precipitation products in calibration (Fig. 2.7, Table 2.6) and validation
(Fig. 2.14, Table 2.7) periods. These figures present the Kling–Gupta efficiency spatial distri-
bution and show results in terms of seven criteria for all streamflow stations and catchments
draining into the Titicaca Lake, the Pacific Ocean, and the Amazon River as boxplots. Table 2.5
shows each criterion’s median values for each drainage system and precipitation product for the
simulation period (1981–2015). The results described in this section are based on the outputs
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Figure 2.7: Hydrological model performance metrics for daily streamflow simulations by SWAT
driven by six precipitation datasets in the calibration period: (top) spatial patterns of KGE and
(bottom) boxplots showing seven criteria for all streamflow (Q) stations and stations located in
catchments draining into the Amazon River, Pacific Ocean, and Titicaca Lake. The datasets
are sorted in ascending order of the median KGE for all Q stations. Values exceeding 0.5
(between ±25%) for KGE, lNSE, and NSE (PBIAS, Slow, Shigh, and Speak) are considered skillful
(marked by light gray background in boxplots). Black points in the upper part represent negative
values of KGE. Note that the x axis starts at 0 for KGE, NSE, and lNSE to improve visualization,
whereas PBIAS, Slow, Shigh, and Speak were constrained between ±50%.

for calibration period (Fig. 2.7) but they are also valid for the validation period (Fig. 2.14), as
results for both periods are similar.

Results for catchments draining into Titicaca Lake show that SWAT driven by gauge-
corrected precipitation datasets performs satisfactorily to very good for daily streamflow simu-
lation (median KGE ≥ 0.79), including all flow conditions. The good performance of MSWEP
and CHIRPS for hydrological modeling in the Titicaca Lake basin shown here coheres with the
performance demonstrated in Satgé et al. (2020, 2019). However, RAIN4PE (median KGE =
0.86) was shown in our simulation to be the best choice for this drainage system. Regarding
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Table 2.5: Median values of each performance measure for daily streamflow simulation for
the period 1983–2015 (without the spinup period). Values in bold denote the best performing
product in each drainage system and the study area according to the specific score on the left.

Basin Product KGE NSE lNSE |PBIAS| |Slow| |Shigh| |Speak|
Titicaca Lake ERA5 –1.1 –3.04 –0.07 205.9 47.8 197.5 44.5
Titicaca Lake CHIRP 0.62 0.29 0.67 17.5 31.4 18.2 7.2
Titicaca Lake CHIRPS 0.81 0.64 0.76 6.1 16 9 7.3
Titicaca Lake MSWEP 0.79 0.67 0.8 14.6 20 15.2 8.8
Titicaca Lake PISCO 0.84 0.74 0.82 7.2 18.5 7.6 13.9
Titicaca Lake RAIN4PE 0.86 0.77 0.86 6.8 14.3 6.7 14.1
Pacific ERA5 –2.29 –7.2 –1.47 325.6 238 293.9 117.9
Pacific CHIRP 0.55 0.44 0.62 28.9 14.1 35.8 43.5
Pacific CHIRPS 0.66 0.5 0.66 15.2 11.1 12.1 18.7
Pacific MSWEP 0.68 0.55 0.66 17.4 14.8 21 27.5
Pacific PISCO 0.74 0.57 0.73 10.2 11.4 10.7 17.3
Pacific RAIN4PE 0.78 0.67 0.74 5.2 6 7.5 7.7
Amazon ERA5 0.63 0.46 0.6 12.5 19.5 17.2 18.8
Amazon CHIRP 0.63 0.4 0.45 7.7 12 9.6 12.6
Amazon CHIRPS 0.67 0.31 0.38 13.7 15.3 14.5 14.6
Amazon MSWEP 0.69 0.47 0.48 15.4 15.2 11.8 12.2
Amazon PISCO 0.49 0 –0.11 21.9 23.9 18 18.9
Amazon RAIN4PE 0.8 0.7 0.73 6.2 10.8 7.3 10.7
All watersheds ERA5 –0.58 –2.26 –0.3 148.4 55 115.1 44.2
All watersheds CHIRP 0.58 0.43 0.57 13.2 13.9 16.3 21.4
All watersheds CHIRPS 0.67 0.41 0.58 13.6 15 13 15.8
All watersheds MSWEP 0.7 0.53 0.63 15.3 16.5 15.2 15.1
All watersheds PISCO 0.7 0.51 0.66 12.8 18.6 12.7 17.7
All watersheds RAIN4PE 0.8 0.7 0.74 5.9 9.7 7.3 9.6

two non-gauge-corrected datasets, CHIRP-SWAT has unsatisfactory performances for high-flow
dynamics, and ERA5-SWAT significantly overestimates streamflow (Fig. 2.16).

In the Pacific basin, CHIRPS-SWAT, MSWEP-SWAT, and even PISCO-SWAT have low KGE
(≤0.5), high biases, and poor performance for high and peak flows for some stations. The
outcome for MSWEP and PISCO aligns with the findings of previous studies (Asurza-Véliz and
Lavado-Casimiro, 2020; Bhuiyan et al., 2019; Derin et al., 2019). CHIRP-SWAT has more skill
than ERA5-SWAT, which shows a significant overestimation of streamflow; however, they both
are outperformed by the gauge-corrected precipitation datasets. The overall good performance
of RAIN4PE-SWAT (median KGE = 0.78) allowed us to conclude that RAIN4PE is the most
suitable precipitation product for daily streamflow simulation (including all flow conditions and
water budget closure) in the catchments draining into the Pacific Ocean.

In the Amazon basin, among the six precipitation products driving SWAT, RAIN4PE (median
KGE = 0.80) provided the best performance measures for daily streamflow simulation (including
all flow conditions). PISCO (median KGE = 0.49) provided the worse measures, particularly
over the lower Amazon catchments which is consistent with previous studies (Aybar et al.,
2020; Llauca et al., 2021). Despite the fact that median KGE (>0.5) is satisfactory for CHIRP,
CHIRPS, ERA5, and MSWEP, the other measures such as the lNSE and NSE show that they
tend to perform unsatisfactorily for the simulation of low- and high-flow dynamics. However,
KGE patterns (Fig. 2.7) show unsatisfactory scores over the Ecuadorian Amazon catchments,
showing the limitations of all products (including RAIN4PE) in portraying the actual daily
precipitation variability there.

In general, SWAT performance for all streamflow stations (Fig. 2.7 and Fig. 2.14 and
Table 2.5, Tables 2.6 and 2.7) suggests that RAIN4PE (e.g., median KGE = 0.80) is the most
appropriate product for daily streamflow simulation, including all flow conditions in the study
area.



46 Chapter 2. A novel precipitation dataset for Peruvian and Ecuadorian watersheds

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

Median KGE: −0.66

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

Median NSE: −2.96

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

Median lNSE: −0.36

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.69

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.53

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.63

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.73

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.68

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.72

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.73

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.64

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.71

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.76

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.67

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.72

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.86

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.82

●
●

●
●

●
● ●

●●

●
●●

● ●

● ●

●
●

●

●
●

●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

0.82

K
G

E
N

S
E

lN
S

E
ERA5 CHIRP CHIRPS MSWEP PISCO RAIN4PE

0.00 0.25 0.50 0.75 1.00

KGE, NSE, lNSE

●

●

●●

●●

●

● ●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●
●●●

●
●

●●
●

●●●
●●

●●
●●

●●
●
●

●

●

●

●

●

●

●

Median |PBIAS|: 162.9

●●

●●
●●

●●
●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

● ●
●

●
●

●

●

● ●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

14.8

●

● ●
●●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●
●

●

●●

●

●
●

●

●

● ●

●

●

●
●●●

●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●

10.0

●
●

●●●
●

●

●

●

●

● ●
●●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

● ●

●
●

●
●●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

14.6

●

●
●●●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●●●

●

●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

11.6

●

●

●
●

●

●
●

●
● ●

●●

●

● ●

● ●

●

●

●
●

●

●●

●
●●●

●
●

●●

●●
●

●●
●●

●●
●
●

●

●

●

●

●

●

●
●

●

●

5.4

P
B

IA
S

 [
%

]

● ● ● ● ● ● ●−Inf to −25 −25 to −15 −15 to −10 −10 to 10 10 to 15 15 to 25 25 to Inf

Figure 2.8: Hydrological model performance metrics KGE, NSE, lNSE, and PBIAS for monthly
streamflow simulations by SWAT driven by six precipitation datasets in the validation period.
Black points represent negative values of KGE, NSE, and lNSE.

Performance evaluation for monthly streamflow

Fig. 2.8 and Fig. 2.15 display the spatial distribution of KGE, NSE, lNSE, and PBIAS to assess
the SWAT model skill for the monthly streamflow simulation in the calibration and validation
periods. These figures show that results in both periods are quite similar, although the overall
performance of PISCO-SWAT and MSWEP-SWAT is a bit lower in the validation period. Based
on results of model performance in the validation period (Fig. 2.8), among the six precipitation
products driving SWAT, overall RAIN4PE (median KGE = 0.86, NSE = 0.82, lNSE = 0.82, and
|PBIAS| = 5.4%) provided the best performance measures for monthly streamflow simulation in
all evaluated catchments. Despite the median KGE, NSE, and lNSE were satisfactory (>0.5,
Fig. 2.8) for CHIRP, CHIRPS, MSWEP, and PISCO, the spatial patterns of these measures
show the limitation (e.g., NSE < 0.5) of these products for hydrological modeling over the
Ecuadorian Amazon, lower Amazon, and some catchments draining into the Pacific Ocean,
which is in agreement with the results for the daily outputs. Otherwise, ERA5-SWAT was found
to perform unsatisfactorily for Andean basins, although its performance improved for larger
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catchments in the Amazon basin. The overall very good performance in accordance with criteria
by Moriasi et al. (2007) obtained by RAIN4PE-SWAT highlights the increased utility of RAIN4PE
for countrywide hydrometeorological applications in Peru and Ecuador.

2.5 Discussion
2.5.1 Advantages of the merging methodology

This study demonstrates a successful method for merging multiple precipitation sources (based
on gauge, satellite, and reanalysis data) with surface elevation using the RF method to gen-
erate a spatially gridded precipitation dataset RAIN4PE. This is supported by the significant
improvement of RAIN4PE for hydrological simulations compared to the non-gauge-corrected
datasets (CHIRP and ERA5) used for the merging procedure. Furthermore, the superiority
of RAIN4PE regarding the gauge-corrected datasets (CHIRPS, MSWEP, and PISCO) for hy-
drological simulations suggests that the methodology applied herein to generate RAIN4PE is
much more robust than that of the other merged precipitation products. This means that the
RF method is more effective in merging multiple precipitation data sources than deterministic
and geostatistical interpolation methods (Aybar et al., 2020; Funk et al., 2015a) and merging
approaches that use weights for each source (Beck et al., 2017, 2019b). Compared to the
aforementioned merging approaches, RF has the flexibility to include multiple precipitation
sources and environmental variables (e.g., surface elevation) that explain precipitation patterns.
Besides this advantage, RF can capture nonlinear dependencies and interactions of variables,
such as the nonlinear interactions among the precipitation and terrain elevation due to the
complex Andes morphology (Figs. 2.1 and 2.5, Chavez and Takahashi, 2017), which could be
challenging to model using geostatistical techniques. However, it is important to keep in mind
the RF limitation for predicting value beyond the range in the training data (Hengl et al., 2018).
Overall, the results of our study provide a reference for merging multisource precipitation data
and environmental variables using RF in complex data-scarce regions.

2.5.2 Hydrological correction of the gridded precipitation datasets
The high BCF values (Fig. 2.4) obtained to correct gridded precipitation biases make evident
that most of the datasets evaluated (CHIRP, CHIRPS, MSWEP, PISCO, and RAIN4PE) often
have precipitation underestimation over the páramo and montane watersheds in the Amazon
(Fig. 2.5). This underestimation, especially by gauge-corrected datasets, could be caused by
the low number of precipitation gauges available (Fig. 2.1), which is further amplified by the
fact that the gauges do not account for the important cloud/fog water input into the system
(Cárdenas et al., 2017; Clark et al., 2014; Gomez-Peralta et al., 2008).

A substantial precipitation underestimation over the páramo and montane watersheds is
critical since it might even lead to physically unrealistic runoff ratios above 1 in water budget
estimates as reported in previous studies (Aybar et al., 2020; Builes-Jaramillo and Poveda,
2018; Manz et al., 2016; Strauch et al., 2017; Zubieta et al., 2015; Zulkafli et al., 2014).
Furthermore, precipitation errors in the upstream catchments can negatively affect simulation
results for downstream river catchments. For instance, the assignment of unrealistic model
parameter values to counterbalance precipitation uncertainty can lead to misrepresentation
of the basinwide water budget (see more details in appendix 2.A.2). To overcome these
deficiencies, we used streamflow data to adjust precipitation biases.

Our results show that the hydrological correction of precipitation datasets was more efficient
over the regions with the strongest rainfall seasonality such as the Peruvian catchments
(Espinoza Villar et al., 2009b; Segura et al., 2019). This suggests that actual spatiotemporal
precipitation fields over these regions are well depicted by the assessed datasets, whereas the
correction efficiency over the Ecuadorian Amazon catchments, which experience precipitation
throughout the year with high spatial regime variability (Laraque et al., 2007; Tobar and Wyseure,
2018), is more variable and depends more strongly on the precipitation product. For instance,
the correction was not feasible for CHIRP, ERA5, MSWEP, PISCO, and even CHIRPS (at
southern Ecuadorian Amazon) which led to the underrepresentation of the seasonal streamflow
patterns and hence the true seasonal precipitation patterns as well (Figs. 2.4 and 2.6). This is a
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critical drawback of these products, and our findings here could be helpful for their revision and
improvement. Even though the hydrological correction of CHIRPS resulted in the improvement
of the seasonal streamflow simulations for the northern Ecuadorian Amazon, CHIRPS-SWAT
still performed unsatisfactorily for the daily and monthly discharge dynamics (Figs. 2.7, 2.8 and
Figs. 2.14 and 2.15), indicating that CHIRPS does not represent well the actual precipitation
patterns over the Ecuadorian Amazon catchments. In these catchments, other datasets such
as gauge-based ORE HYBAM (Guimberteau et al., 2012), gauge-corrected WFDEI, reanalysis
ERA-Interim, and satellite-based PERSIANN (Hsu et al., 1997), TMPA, CMORPH, and IMERG
have also been reported to perform unsatisfactorily for streamflow simulation (Strauch et al.,
2017; Towner et al., 2019; Zubieta et al., 2015, 2017; Zulkafli et al., 2014). Overall, when
comparing RAIN4PE to CHIRP, ERA5, MSWEP, PISCO, CHIRPS, and other datasets mentioned
above, we can see that it shows satisfactory performance for monthly (Fig. 2.8) and seasonal
(Fig. 2.4) streamflow simulations with SWAT over the Ecuadorian Amazon. However, its
performance for daily simulation is still unsatisfactory (Fig. 2.7), which highlights that estimation
of precipitation at a daily resolution over data-scarce regions such as the equatorial Amazon
region is very challenging. The exposed shortcomings of precipitation datasets suggest the
urgent implementation and densification of precipitation and cloud/fog gauge networks over
the Ecuadorian Amazon and Peruvian montane watersheds. These could help to improve the
depiction of rainfall amounts and their spatiotemporal distribution and hence could be useful
for improving streamflow simulations. It is important to keep in mind that the correction of the
proposed precipitation product through the reverse hydrology concept was performed using the
SWAT hydrological model, and therefore the performance of the RAIN4PE dataset may change
if another hydrological model is used. Though, as SWAT is a widely used comprehensively
verified model, we expect only minor deviation.

2.5.3 Implications for hydrological modeling
The results of the hydrological evaluation clearly show the advantages and shortcomings of
each evaluated precipitation dataset for streamflow simulation, including low, high, and peak
flows. Moreover, we presented the comparison of SWAT-simulated seasonal streamflow using
all evaluated datasets against observed seasonal streamflow for the three drainage systems
(Titicaca Lake basin, Pacific basin, and Amazon basin) in Figs. 2.16–2.18. These figures can
assist practitioners in selecting the appropriate precipitation product for hydrological applications.
In general, the hydrological evaluation highlighted RAIN4PE as the best precipitation dataset
for hydrological modeling of the Peruvian and Ecuadorian watersheds. RAIN4PE is the only
gridded precipitation product for Peru and Ecuador, which benefits from maximum available
in situ observations, multiple precipitation sources, environmental variable (elevation data),
and is supplemented by streamflow data to correct the precipitation underestimation over
páramos and montane catchments. The exploitation of all these variables using state-of-the-
practice methods to generate RAIN4PE proved that RAIN4PE-SWAT was capable of closing
the (hitherto) observed water budget imbalance over Peruvian and Ecuadorian catchments
which, eventually, makes the RAIN4PE a good candidate for hydrological applications in the
region. Despite this, we consider that RAIN4PE is still subject to uncertainties, especially in
regions where precipitation was inferred from the observed streamflow data. For these regions,
precipitation estimates should be viewed with some care due to uncertainties in streamflow
data, inferred evapotranspiration, gridded precipitation data, and hydrological model structure.

In this study, besides evaluating precipitation datasets for streamflow simulation, we show
that uncertainties associated with precipitation estimates have implications in estimating hydro-
logical model parameters (see appendix 2.A.2) and water budget components (e.g., evapotran-
spiration, see appendix 2.A.3). This is critical for the regionalization of parameters and reliable
estimation of the water budget for water resources management. Furthermore, an aftermath
verification of RAIN4PE-SWAT-simulated evapotranspiration with GLEAM and MOD16 estimates
(appendix 2.A.3) shows that GLEAM and MOD16 return higher estimated values of evapo-
transpiration which would not allow the water budget closure and bring inconsistencies in the
temporal evapotranspiration distribution over northern Amazon in Ecuador. This suggests that
evapotranspiration estimation is still a challenge for remotely sensed based evapotranspiration
products in the region.
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It is important to highlight that this study is the first applying SWAT updated for improved
representation of tropical vegetation dynamics (Alemayehu et al., 2017) and river–floodplain
dynamics. These improvements are crucial to model the hydrological processes of Andean
and Amazonian river catchments appropriately. The benefits of appropriate representation of
tropical vegetation dynamics were demonstrated in previous studies (Alemayehu et al., 2017;
Fernandez-Palomino et al., 2020; Strauch and Volk, 2013), while the benefit of flow water
routing that considers river–floodplain dynamics can be observed in the good representation of
discharge dynamics of the Amazonian rivers in this study. For instance, in the Ucayali River
(a tributary of the Amazon River), the significant observed flood peak delay (on a scale of
months) from Lagarto to Requena station is well reproduced by SWAT (see Fig. 2.18), which is
consistent with the findings of Santini (2020).

It is also important to highlight that this study is the first applying SWAT at the country-level
of Peru and performing a multiobjective calibration and validation using hydrograph goodness
of fit and FDC signatures for large-domain modeling (1.6 million km2) in a region with complex
hydroclimatic conditions. Our results show the robustness of signature-based calibration
guiding the model to reproduce not only one common objective function (e.g., high flows given
by NSE) but all aspects of the hydrograph and FDC as supported by RAIN4PE-SWAT good
performances reproducing all flow conditions. This is crucial for robust hydrometeorological
applications including extremes such as droughts and floods as well as for the assessment
of precipitation dataset reliability. Furthermore, our results reinforce previous study findings
(Chilkoti et al., 2018; Fernandez-Palomino et al., 2020; Shafii and Tolson, 2015), which proved
the robustness of a signature-based calibration approach in the hydrological modeling of small
watersheds. We consider that our approaches can be helpful for future studies related to
precipitation estimates as well as to hydrological model calibration, evaluation, and application.

2.5.4 Future development and application
Based on the experiences we gained, our future investigations will focus on applying RAIN4PE-
SWAT to analyze the water budget at the national scale of Peru, as well as climate change
impacts on water resources using RAIN4PE as the basis for bias adjustment, and trends in
frequency and intensity of meteorological and hydrological droughts. The current RAIN4PE data
availability (1981–2015) is planned to be extended in the future. Moreover, the methodology
presented in the paper will also be extended to the entire Amazon basin.

2.6 Summary and conclusions
We developed a new hydrologically adjusted daily precipitation dataset (1981–2015, 0.1° res-
olution) called RAIN4PE by merging three existing datasets for a domain covering Peru and
Ecuador. This dataset takes advantages of ground-, satellite-, and reanalysis-based precipita-
tion datasets, including CHIRP and ERA5, which are merged with terrain elevation using the
random forest (RF) method to provide precipitation estimates. Furthermore, streamflow data
was used to correct precipitation estimates over catchments with water budget closure problems
(e.g., the páramo and montane watersheds) through the reverse hydrology methods, for which
the SWAT model was applied for the first time herein. Moreover, a comprehensive hydrologi-
cal evaluation of RAIN4PE, CHIRP, ERA5, and the existing state-of-the-art gauge-corrected
precipitation datasets—CHIRPS, MSWEP, and PISCO—in the Peruvian and Ecuadorian river
catchments using a range of performance metrics was performed. For that, SWAT was cali-
brated and validated with each precipitation dataset in a number of catchments. We summarize
our findings as follows.

• The good RAIN4PE-SWAT performance for streamflow simulation suggests the effective-
ness of the RF method to merge multisource precipitation estimates with terrain elevation
to develop a reliable spatially gridded precipitation dataset. As all datasets (CHIRP, ERA5,
and terrain elevation) used to develop RAIN4PE are freely available, this approach can be
used in other data-scarce regions.

• The utility of streamflow data to improve both precipitation and streamflow simulations over
the páramo and montane watersheds with precipitation underestimation was demonstrated
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herein. This highlights that the reverse hydrology approach offers a new effective way
of understanding the hydrological processes of the Andean–Amazon catchments, which
have a key role in the hydrological variability of the entire Amazon basin.

• The hydrological evaluation results from uncorrected precipitation datasets forcing SWAT
for streamflow simulation revealed that CHIRP outperformed ERA5, which significantly
overestimate precipitation along the Andes. However, these products were outperformed
by the gauge-based precipitation datasets.

• Among the gauge-corrected precipitation datasets forcing SWAT for streamflow simulation,
all products performed well in the catchments draining into the Titicaca Lake. For catch-
ments draining into the Pacific Ocean and Amazon River, CHIRPS, MSWEP, and PISCO
performed unsatisfactorily in several catchments, indicating the limitations of these prod-
ucts for hydrological modeling over these drainage systems. In contrast, RAIN4PE was
the only product that provided consistently good performance for the daily and monthly
streamflow simulations, including all discharge conditions (low, high, and peak flows) and
water budget closure in almost all Peruvian and Ecuadorian river catchments.

• We found that CHIRP, CHIRPS, ERA5, MSWEP, and PISCO cannot represent the sea-
sonal distribution of precipitation and hence the seasonal streamflow over the Ecuadorian
Amazon. This is a critical drawback that can have implications in hydrometeorological
applications in the Amazon basin.

• We found that uncertainties in precipitation data in existing datasets affect the estima-
tion of model parameters and water budget components, suggesting the importance of
developing high-quality meteorological forcing datasets in mountainous regions. Our
contribution is in line with this and marks progress in developing precipitation datasets in
the region.

The overall good performance of the RAIN4PE highlights its utility as an important new gridded
precipitation dataset, which opens new possibilities for numerous hydrometeorological applica-
tions throughout Peru and Ecuador. Examples are streamflow simulations, estimation of the
water budget and its evolution, water resources management, understanding spatiotemporal
variations of droughts and floods, and exploring spatial variations and regimes of precipitation.
We consider that RAIN4PE and our RAIN4PE-SWAT model can be adopted as a benchmark to
evaluate precipitation datasets in Peru and Ecuador.
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2.A Appendix

2.A.1 Glossary

CHIRP: Climate Hazards Group InfraRed Precipitation
CHIRPS: CHIRP with Station data
CMORPH: Climate Prediction Center morphing technique
IMERG: Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals
MSWEP: Multi-Source Weighted-Ensemble Precipitation
SENAMHI: Servicio Nacional de Meteorología e Hidrología del Perú
PISCO: Peruvian Interpolated data of SENAMHI’s Climatological and Hydrological Observations
TMPA: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis
WFDEI: WATCH Forcing Data methodology applied to ERA-Interim data

Figure 2.9: Calibrated parameter values for the soil available water capacity (SOL_AWC) for
topsoil (1) and subsoil (2), the surface runoff delay coefficient (SURLAG), and the groundwater
delay time (GW_DELAY). The HWSD map shows SOL_AWC values derived from the Harmo-
nized World Soil Database, which were used for setting up the SWAT model.
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Figure 2.10: Calibrated parameter values for the deep aquifer percolation fraction
(RCHRG_DP), the threshold for return flow from the shallow aquifer (GWQMN), the groundwater
“revap” coefficient (GW_REVAP), and the baseflow recession constant (ALPHA_BF).

2.A.2 Evaluating the distribution of model parameters

In this section, we analyze the distribution of calibrated model parameters to see the regional
parameter behavior and to elucidate potential input errors as they were identified to achieve
the water budget closure using different precipitation datasets. Thus, unrealistic parameter
values could be linked to input error. We advise readers to see Table 2.3 for the description of
parameters and Neitsch et al. (2011) for detailed parameter definitions. Among the calibrated
SWAT parameters, only two (SOL_AWC, GW_REVAP) can alter the water budget since they
influence evapotranspiration and, subsequently, runoff estimation. The remaining parameters
influence the surface runoff (SURLAG), groundwater (GW_DELAY, RCHRG_DP, GWQMN,
ALPHA_BF), and flow routing (CH_K2, CHD, FP_W_F) not affecting water loss from the system.
We illustrate in Figs. B1–B3 the spatial patterns of the calibrated parameters related to six
precipitation datasets.

Figure B1 shows that the SOL_AWC, which constrains the maximum amount of plant
available water a soil can provide and was derived from the Harmonized World Soil Database
(HWSD; Abbaspour and Ashraf Vaghefi, 2019), was adjusted mainly for the Andean catchments.
This is a critical parameter since higher values can lead to higher evapotranspiration and vice
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Figure 2.11: Calibrated parameter values for the main channel depth (CHD), the ratio of
floodplain width over bankfull width (FP_W_F), and the hydraulic conductivity of main channel
(CH_K2). Reaches in gray indicate that the parameter was not important in these reaches.

versa. The results show that high SOL_AWC values were identified for compensating the ERA5
precipitation overestimation (see positive errors in Fig. 6). However, despite this trade-off,
discharge overestimation by ERA5-SWAT remains (see PBIAS in Fig. 8), suggesting that ERA5
precipitation estimates must be bias-corrected for the Andean regions prior to hydrological
applications. Otherwise, unrealistic low SOL_AWC values (≈0) and the prevalence of discharge
underestimation (Fig. 8 and Fig. S5) over the northern pacific coastal catchments suggest that
precipitation could be underestimated there, particularly by CHIRP, CHIRPS, MSWEP, and even
PISCO (see negative errors in Fig. 6).

For the remaining parameters, we describe each one briefly based on the calibrated param-
eters for RAIN4PE-SWAT. Figure B1 shows overall low values (ranging from 0.05 to 0.5) for
SURLAG in the study area, which is important for smoothing the simulated hydrograph due to
the delay in surface runoff released from the HRUs (Neitsch et al., 2011) to match the peaks in
the observed hydrograph. The GW_DELAY values (ranging from 1 to 50 days) reflect the lag
in time that water in soil profile needs to enter shallow aquifer; high (low) values are usual for
most of the Andean (Amazonian) catchments.

Figure B2 shows spatial distribution of the calibrated groundwater-related parameters. The
RCHRG_DP parameter reflects the water volume percolated into the deep aquifer relative
to the total recharge entering aquifers (both shallow and deep). Therefore, the calibrated
RCHRG_DP values provide an insight into the important recharge entering deep aquifers in
Peruvian Andean catchments, which subsequently sustain the prolonged dry season flow in
these catchments (Clark et al., 2014; Fernandez-Palomino et al., 2020). The GW_REVAP
values greater than zero reflect the areas (lower Amazon) where water is re-evaporated from
the shallow aquifer (water entering the soil for evaporation and transpiration). In these areas,
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Figure 2.12: Comparison of evapotranspiration (ET) estimates from the calibrated SWAT model
using different precipitation datasets as input with the remotely sensed based ET estimates
from GLEAM and MOD16: (top) average annual ET for the period 2000–14 and Pearson’s
correlation coefficient (r ) between SWAT-simulated ET and ET estimates from (middle) GLEAM
and (bottom) MOD16. The comparison measure (r) was computed using monthly ET time
series at the subcatchment scale for 2000–14.

deep-rooted evergreen forests can draw water from the shallow aquifer to meet their demands
if available water in the soil profile is insufficient. All calibrated GWQMN values favor the return
flow from aquifers and the re-evaporation from the shallow aquifer in areas (lower Amazon)
where GWQMN values are greater than 750 mm (default water depth threshold in the shallow
aquifer to allow re-evaporation). The high ALPHA_BF values (∼1) show shallow aquifers quickly
contributing return flow to streams (e.g., lower Amazon catchments), whereas the low values
(∼0) show those with slow contributions (e.g., most of the Andean catchments draining into the
Pacific Ocean).

Figure B3 shows the calibrated reach and floodplain parameters (CHD, FP_W_F, and
CH_K2). Among these parameters, the FP_W_F values can reflect the occurrence of flow
over floodplains during the high discharge season in the lower Amazon rivers. The CH_K2
values greater than zero show reaches where water is infiltrated at the floodplain surface from
floodplain flow or ponded water during overbank flood events. Then water stored at floodplain
alluvium flows back to the channel when flood wave has passed and water levels in the channel
have dropped, and the hydraulic gradient is reversed. This interaction between floodplains and
reaches can explain the significant observed flood peak delay (on a scale of months) from
Lagarto to Requena station (See Fig. S6), which is consistent with the findings of Santini
(2020).

2.A.3 Comparison of SWAT and remotely sensed based evapotranspiration

Figure C1 compares evapotranspiration (ET) estimates from the calibrated SWAT model driven
by different precipitation datasets with the GLEAM and MOD16 estimates. All ET estimates
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show similar spatial patterns with increasing ET gradients from west to east. The differences
in SWAT-simulated ET volumes can be attributed to inappropriate parameter estimation due
to precipitation biases and uncertainties. The higher ET values for CHIRPS-SWAT are likely
due to the prevalence of dry conditions in CHIRPS which affect the estimation of daily relative
humidity and subsequently potential evapotranspiration, vapor stress on plant growth, and ET.

We compared GLEAM and MOD16 against the simulated ET by RAIN4PE-SWAT since it
represents the water budget well (see PBIAS in Fig. 8). Figure C1 shows a general tendency
for GLEAM and MOD16 to overestimate ET in the study area, and even their estimates are
greater than precipitation along the Andes (see Figs. C1 and 6), which would not allow the
water budget closure in the Andean catchments. The correlation coefficient (Fig. C1, middle
panel) shows better agreement between GLEAM and SWAT-simulated ET, which are based
on the same equation (Priestley–Taylor) for potential evapotranspiration estimation. Spatially,
both GLEAM and MOD16 agree well with the SWAT-simulated ET in areas with strong seasonal
precipitation variability, as the Peruvian Andes and southern region of the Peruvian Amazon.
However, negative correlation values over the northern Amazon basin areas with a bimodal
rainfall regime (Laraque et al., 2007) can indicate inconsistency in the temporal distribution in
GLEAM and MOD16 ET estimates there. This is in line with the findings of Dile et al. (2020),
who reported that remotely sensed based ET did not respond well to the rainfall in areas
with a bimodal rainfall pattern in Ethiopia. Furthermore, the ET estimates could be affected
by the inherent uncertainties in methods and input data. Our results demonstrate that the
ET estimation by the remotely sensed ET products is still a challenge in the region, and the
ground-based measurements are required for better understanding the ET spatiotemporal
patterns and for a more reliable evaluation of the ET estimates.
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2.B Supporting information

Table 2.6: Median values of each performance measure for daily streamflow simulation for the
calibration period. Values in bold denote the best performing product in each drainage system
and the study area according to the specific score on the left.

Basin Product KGE NSE lNSE |PBIAS| |Slow| |Shigh| |Speak|
Titicaca Lake ERA5 –1.05 –2.7 –0.07 201.7 47.8 192.4 47.2
Titicaca Lake CHIRP 0.68 0.47 0.7 10.7 13.4 16.1 13.6
Titicaca Lake CHIRPS 0.84 0.68 0.8 3.4 10.8 6.9 4.3
Titicaca Lake MSWEP 0.82 0.66 0.8 9.6 13.5 13.7 8.8
Titicaca Lake PISCO 0.85 0.77 0.84 2.2 13.3 5.4 13.5
Titicaca Lake RAIN4PE 0.87 0.78 0.87 3.5 11.2 6.4 12.5
Pacific ERA5 –2.34 –7.01 –1.52 330.6 285.3 292.4 113
Pacific CHIRP 0.54 0.43 0.61 32.5 14.8 39.6 47.2
Pacific CHIRPS 0.7 0.55 0.7 10.3 7.9 16.9 30.6
Pacific MSWEP 0.7 0.57 0.7 17.5 16.3 19.8 25
Pacific PISCO 0.74 0.61 0.76 9.9 14.6 12.8 20.1
Pacific RAIN4PE 0.8 0.68 0.78 4.4 5.3 6.8 11.1
Amazon ERA5 0.62 0.4 0.53 11.5 22.4 13.4 22.5
Amazon CHIRP 0.64 0.41 0.46 10.6 11.5 12.1 18.8
Amazon CHIRPS 0.66 0.29 0.27 15.1 15.8 15 14
Amazon MSWEP 0.68 0.41 0.44 20.1 18.2 14.8 15.4
Amazon PISCO 0.51 0.02 –0.26 22.5 22.1 18.6 18.2
Amazon RAIN4PE 0.81 0.7 0.71 5.8 7.4 5.4 10.1
All watersheds ERA5 –0.49 –2.16 –0.3 145.5 64.9 113 46
All watersheds CHIRP 0.62 0.42 0.57 14.1 11.9 17.2 22.5
All watersheds CHIRPS 0.67 0.44 0.58 10.5 12.5 14.5 18.4
All watersheds MSWEP 0.7 0.53 0.62 15.7 17.2 15.1 15.9
All watersheds PISCO 0.71 0.54 0.67 11.6 16.1 13.9 17.9
All watersheds RAIN4PE 0.81 0.7 0.74 5.6 7.8 6.5 10.2
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Table 2.7: Median values of each performance measure for daily streamflow simulation for the
validation period. Values in bold denote the best performing product in each drainage system
and the study area according to the specific score on the left.

Basin Product KGE NSE LNSE |PBIAS| |Slow| |Shigh| |Speak|
Titicaca Lake ERA5 –1.08 –2.96 –0.11 205.1 39.5 230.9 56.7
Titicaca Lake CHIRP 0.66 0.44 0.66 12.5 17.4 10.2 16.2
Titicaca Lake CHIRPS 0.84 0.72 0.77 3.3 14.5 10.4 7.6
Titicaca Lake MSWEP 0.82 0.69 0.79 9.2 12 12.8 8.5
Titicaca Lake PISCO 0.86 0.78 0.8 1.8 10.6 3.5 9.5
Titicaca Lake RAIN4PE 0.88 0.78 0.81 2.6 11.4 7.3 13.6
Pacific ERA5 –2.23 –5.74 –1.57 320.4 263.4 308.5 104
Pacific CHIRP 0.53 0.43 0.6 31.7 16.3 40.5 43.5
Pacific CHIRPS 0.72 0.6 0.73 9.4 8.1 16.7 31.5
Pacific MSWEP 0.71 0.6 0.72 20.3 25.3 18.7 16.2
Pacific PISCO 0.74 0.62 0.73 9.9 19 14.8 19.1
Pacific RAIN4PE 0.81 0.69 0.78 4.3 5.1 6.5 14.8
Amazon ERA5 0.68 0.52 0.6 8.8 21.6 8.2 19.5
Amazon CHIRP 0.66 0.42 0.46 8.6 10.9 12 20.1
Amazon CHIRPS 0.66 0.29 0.26 17.2 16.5 18.2 16
Amazon MSWEP 0.68 0.4 0.4 17.9 17.6 14.1 15.4
Amazon PISCO 0.36 –0.08 –0.3 26.4 28.7 19.2 18.9
Amazon RAIN4PE 0.81 0.69 0.7 4.5 6.4 4.1 7.7
All watersheds ERA5 –0.36 –1.24 –0.07 120.4 53.1 82.4 37.3
All watersheds CHIRP 0.62 0.42 0.57 14.6 11.8 16.7 23.6
All watersheds CHIRPS 0.69 0.53 0.56 11.2 12.9 16.7 21.4
All watersheds MSWEP 0.69 0.53 0.59 14.2 18.7 14.8 15.4
All watersheds PISCO 0.71 0.47 0.65 11.5 22.1 14.8 18.2
All watersheds RAIN4PE 0.82 0.71 0.74 4.2 6.3 5.9 12.4
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Figure 2.13: Distributions of the scaled permutation importance measure. Only the results
for two buffer distances (BD) are shown in the figure. The most important predictor variable is
CHIRP, followed by ERA5 and Elevation both for the daily and monthly merging procedures.
Buffer distances are negligible. Negative values for permutation importance mean that there
were some days when the covariate was not important for the prediction.
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Figure S2. Hydrological model performance metrics for daily streamflow simulations by SWAT driven by 6 
precipitation datasets in the validation period: spatial patterns of KGE (upper part) and boxplots showing seven 
criteria for all streamflow [Q] stations and stations located in catchments draining into the Amazon River, Pacific 
Ocean, and Titicaca Lake (lower part). The datasets are sorted in ascending order of the median KGE for all Q 
stations. Values exceeding 0.5 (between ±25%) for KGE, lNSE, and NSE (PBIAS, Slow, Shigh, and Speak) are 
considered skillful (marked by light gray background in boxplots). Black points in the upper part represent 
negative values of KGE. Note that x-axis starts at 0 for KGE, NSE, and lNSE to improve visualization, whereas 
PBIAS, Slow, Shigh, and Speak were constrained between ±50%.

Figure 2.14: Hydrological model performance metrics for daily streamflow simulations by
SWAT driven by 6 precipitation datasets in the validation period: spatial patterns of KGE (upper
part) and boxplots showing seven criteria for all streamflow [Q] stations and stations located
in catchments draining into the Amazon River, Pacific Ocean, and Titicaca Lake (lower part).
The datasets are sorted in ascending order of the median KGE for all Q stations. Values
exceeding 0.5 (between ±25%) for KGE, lNSE, and NSE (PBIAS, Slow, Shigh, and Speak) are
considered skillful (marked by light gray background in boxplots). Black points in the upper
part represent negative values of KGE. Note that x-axis starts at 0 for KGE, NSE, and lNSE to
improve visualization, whereas PBIAS, Slow, Shigh, and Speak were constrained between ±50%.
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Figure S3. Hydrological model performance metrics KGE, NSE, lNSE and PBIAS for monthly streamflow simulations by 
SWAT driven by 6 precipitation datasets in the calibration period. Black points represent negative values of KGE, NSE, and 
lNSE.

Figure 2.15: Hydrological model performance metrics KGE, NSE, lNSE and PBIAS for monthly
streamflow simulations by SWAT driven by 6 precipitation datasets in the calibration period.
Black points represent negative values of KGE, NSE, and lNSE.
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Figure S4. Mean seasonal streamflow (Q) simulated by SWAT in the period 1983-2015 driven by 6 precipitation datasets in 
comparison with the observed mean seasonal discharge in the same period for stations located in catchments draining into 
Titicaca Lake. The streamflow stations are ordered from south to north. Note that both observed and seasonal streamflow were 
computed only for the months with available streamflow data.

Figure 2.16: Mean seasonal streamflow (Q) simulated by SWAT in the period 1983–2015
driven by 6 precipitation datasets in comparison with the observed mean seasonal discharge in
the same period for stations located in catchments draining into Titicaca Lake. The streamflow
stations are ordered from south to north. Note that both observed and seasonal streamflow
were computed only for the months with available streamflow data.
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Abstract
Here, we present BASD-CMIP6-PE, a high-resolution (1d, 10 km) climate dataset for Peru and
Ecuador based on the bias-adjusted and statistically downscaled CMIP6 climate projections of
10 GCMs. This dataset includes both historical simulations (1850–2014) and future projections
(2015–2100) for precipitation and minimum, mean, and maximum temperature under three
Shared Socioeconomic Pathways (SSP1-2.6, SSP3-7.0, and SSP5-8.5). The BASD-CMIP6-PE
climate data were generated using the trend-preserving Bias Adjustment and Statistical Down-
scaling (BASD) method. The BASD performance was evaluated using observational data and
through hydrological modeling across Peruvian and Ecuadorian river basins in the historical
period. Results demonstrated that BASD significantly reduced biases between CMIP6-GCM
simulations and observational data, enhancing long-term statistical representations, including
mean and extreme values, and seasonal patterns. Furthermore, the hydrological evaluation
highlighted the appropriateness of adjusted GCM simulations for simulating streamflow, includ-
ing mean, low, and high flows. These findings underscore the reliability of BASD-CMIP6-PE in
assessing regional climate change impacts on agriculture, water resources, and hydrological
extremes.

Published as:
Fernandez-Palomino, C. A., Hattermann, F. F., Krysanova, V., Vega-Jácome, F., Menz, C.,
Gleixner, S., and Bronstert, A. (2024). “High-resolution climate projection dataset based on
CMIP6 for Peru and Ecuador: BASD-CMIP6-PE”. in: Scientific Data 11.1, pp. 1–14. DOI:
10.1038/s41597-023-02863-z
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3.1 Background & summary

Reliable hydro-climate data are essential for understanding the effects of observed and projected
climate change on social and natural systems and developing effective adaptation and mitigation
strategies. Several global and regional observation datasets exist at different temporal and
spatial resolutions (Aybar et al., 2020; Beck et al., 2017, 2019b; Fernandez-Palomino et al.,
2021; Funk et al., 2015a,b; Harris et al., 2020; Hersbach et al., 2020; Huerta et al., 2018; Huerta
et al., 2022). At the regional scale, the Servicio Nacional de Meteorología e Hidrología del Perú
(SENAMHI) has developed the Peruvian Interpolated data of Climatological and Hydrological
Observations (PISCO). The PISCO dataset includes precipitation (Aybar et al., 2020), maximum
and minimum temperature (Huerta et al., 2018), and reference evapotranspiration (Huerta et al.,
2022) data. SENAMHI uses this dataset for drought and flood monitoring at the countrywide
level of Peru. Recently, a new hydrologically corrected daily precipitation dataset, called
RAIN4PE (Rain for Peru and Ecuador), was developed and is available (Fernandez-Palomino
et al., 2021, 2022). RAIN4PE has proved to be superior to other existing precipitation datasets
such as CHIRP (Funk et al., 2015b), CHIRPS (Funk et al., 2015a), ERA5 (Hersbach et al.,
2020), MSWEP (Beck et al., 2017, 2019b), and PISCO-precipitation (Aybar et al., 2020) for
hydrometeorological applications and suggested to be a basis for bias adjustment of Global
Climate Models (GCMs) output in Peru and Ecuador (Fernandez-Palomino et al., 2022).

GCMs have become important tools for historical climate simulation and future climate
projection (IPCC, 2007). As part of the Coupled Model Intercomparison Project (CMIP) of the
World Climate Research Programme (WCRP), GCMs’ output has contributed to the assessment
reports produced by the Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2007,
2014, 2023c). Output from the latest generation of GCMs participating in the sixth phase of
the CMIP (CMIP6) is now available (Eyring et al., 2016). CMIP6 models have better spatial
resolution ( 100 km in the horizontal dimension) and physical process representation than earlier
generations, as well as better simulation of recent mean climate compared to the previous CMIP
phases (Eyring et al., 2021). Nevertheless, such resolution is still coarse for regional and local
management decisions, which need more detailed climate information. Namely, such coarse-
resolution data are useless for providing a reliable base for real-world water management,
particularly related to extreme hydrological conditions (Bronstert et al., 2007). Moreover, even
the latest generation of GCMs shows substantial biases (Arias et al., 2021b; Firpo et al., 2022;
Monteverde et al., 2022). Therefore, it is important to bias-adjust and downscale the raw GCM
outputs to produce reliable climate simulations and projections for finer-scale impact studies. To
date, few studies have performed the bias adjustment and downscaling of the output of CMIP6
models, e.g., at a global scale (Lange and Büchner, 2021, 2022; Noël et al., 2022; Thrasher
et al., 2022; Xu et al., 2021), for South Asia (Mishra et al., 2020), and for Brazil (Ballarin et al.,
2023). To the best of our knowledge, there is currently no gridded dataset based on CMIP6
results bias-adjusted and downscaled for Peru and Ecuador using reliable reference data from
the local observation datasets. To close this gap, we generated the new high-resolution climate
dataset BASD-CMIP6-PE based on the bias-adjusted and statistically downscaled CMIP6
climate projections over Peru and Ecuador.

The BASD-CMIP6-PE dataset was generated using the trend-preserving Bias Adjustment
and Statistical Downscaling (BASD) method (Lange, 2019, 2021b). BASD effectively reduced
biases between CMIP6-GCM simulations and observational data, resulting in improved rep-
resentations of long-term statistical properties, including mean and extreme values, as well
as seasonal patterns. BASD also demonstrated its capability to approximately preserve the
projected trends and the intermodel spreads of climate variables in future climate scenarios.

A hydrological evaluation, which compared raw and adjusted GCM simulations through
hydrological modeling, provided additional support for the appropriateness of adjusted GCM
simulations in simulating streamflow, including mean, low, and high flows.

These advantages underscore the dataset’s reliability for assessing regional climate change
impacts on agriculture, water resources, and hydrological extremes, thereby supporting the
development of comprehensive adaptation strategies. Notably, the BASD-CMIP6-PE dataset
has already played a pivotal role in conducting the first-ever investigation into projected future
changes in various components of the regional hydrological cycle and hydrological extremes
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across Peru, including the analysis of transboundary river catchments (Fernandez-Palomino
et al., 2023a).

Table 3.1: List of the 10 CMIP6 models used in this study.

No. Model Resolution (lon. by lat.) Member Citation
1 CanESM5 2.8°× 2.8° r1i1p1f1 Swart et al., 2019
2 IPSL–CM6A–LR 2.5°× 1.3° r1i1p1f1 Boucher et al., 2020
3 UKESM1–0–LL 1.9°× 1.3° r1i1p1f2 Sellar et al., 2019
4 CNRM–CM6–1 1.4°× 1.4° r1i1p1f2 Voldoire et al., 2019
5 CNRM–ESM2–1 1.4°× 1.4° r1i1p1f2 Séférian et al., 2019
6 MIROC6 1.4°× 1.4° r1i1p1f1 Tatebe et al., 2019
7 GFDL–ESM4 1.3°× 1° r1i1p1f1 Dunne et al., 2020
8 MRI–ESM2–0 1.1°× 1.1° r1i1p1f1 Yukimoto et al., 2019
9 MPI–ESM1–2–HR 0.9°× 0.9° r1i1p1f1 Müller et al., 2018
10 EC–Earth3 0.7°× 0.7° r1i1p1f1 Döscher et al., 2022

Table 3.2: Climate observed data used in this study.

Variable Resolution Description and source
Precipitation Daily/0.1° Rain for Peru and Ecuador (RAIN4PE, Fernandez-Palomino

et al., 2021, 2022)
Temperature Daily/0.1° Maximum and minimum temperature data for Peru (Huerta

et al., 2018), as provided by SENAMHI
(ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/).

3.2 Methods
3.2.1 Study area

The study area encompasses Peru and Ecuador. The new BASD-CMIP6-PE dataset is gen-
erated for the land surface between 19°S–2°N and 82°–67°W, matching the observational
data domain of the RAIN4PE and PISCO datasets. This region exhibits complex hydroclimatic
patterns resulting from its diverse climate zones and the Andes Cordillera, acting as a topo-
graphic barrier that separates the cold, arid eastern Pacific from the warm, humid Amazon.
These patterns arise from the interplay of large-scale factors (e.g., latitudinal migration of the
Atlantic Intertropical Convergence Zone, South American Monsoon Systems, marine currents,
Bolivian High) and local circulation patterns (e.g., upslope and downslope moisture transport),
in conjunction with the complex Andean orography (Espinoza et al., 2020; Laraque et al., 2007;
Segura et al., 2019; Tobar and Wyseure, 2018). El Niño-Southern Oscillation (ENSO) also
significantly influences interannual hydroclimatic conditions in the Andes (Poveda et al., 2020).

3.2.2 Climate simulation data
Daily climate model output data for precipitation (pr) and minimum (tasmin), mean (tas), and
maximum (tasmax) temperature were obtained from the CMIP6 ensemble (Eyring et al., 2016)
for 10 GCMs (Table 3.1). Data were obtained for the historical simulation (1850–2014) and
future projections (2015–2100), with projections run under SSP1-2.6, SSP3-7.0, and SSP5-8.5
scenarios (Riahi et al., 2017). These ten models were also used by phase 3b of the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP3b) for climate impact assessment
studies (Lange and Büchner, 2021, 2022). In terms of climate sensitivity (i.e., magnitude of the
warming signal at the end of the century), the selected models are considered an appropriate
choice since they approximately cover the full range of CMIP6 projections, including models with
low (GFDL-ESM4, MPI-ESM1-2-HR, MRI-ESM2-0) and high (IPSL-CM6A-LR, UKESM1-0-LL)
climate sensitivity Lange, 2021a. The selected three greenhouse gas emissions scenarios span

ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/
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Figure 3.1: Flow chart for the BASD-CMIP6-PE dataset variables (pr, tasmin, tas, tasmax)
for 10 GCMs. The bias adjustment was applied at: (a) 2° for CanESM5, IPSL-CM6A-LR, and
UKESM1-0-LL; (b) 1° for CNRM-CM6-1, CNRM-ESM2-1, GFDL-ESM4, MIROC6, MPI-ESM1-
2-HR, and MRI-ESM2-0; and (c) 0.5° for EC-Earth3. GCM (RD) is Global Climate Model
(reference) data. Note that RD are aggregated observation data.

from one with mitigation policy (SSP1-2.6) to one without mitigation (SSP5-8.5) to sample future
climate uncertainty from anthropogenic forcing. The SSP1-2.6 is close to the Paris Agreement
goal, where global warming is limited to 2 °C above pre-industrial levels. The scenario is
characterized by declining greenhouse gas (GHG) emissions to net zero until 2050, followed
by varying levels of net negative CO2 emissions. The SSP3-7.0 scenario is a high, and the
SSP5-8.5 a high-end global warming scenario with continuing high fossil fuel development
throughout the 21st century and consequently strong increases in GHG emissions. For a
detailed description of SSPs scenarios, refer to the Sixth Assessment Report of the IPCC IPCC,
2023c.

3.2.3 Climate observation

The observational reference datasets used for the evaluation, bias adjustment, and statistical
downscaling (BASD) of CMIP6 climate simulations are listed in Table 3.2. Data of precipitation
(pr) were obtained from the RAIN4PE dataset (Fernandez-Palomino et al., 2021, 2022), mini-
mum (tasmin) and maximum (tasmax) temperature from the SENAMHI-PISCO dataset (Huerta
et al., 2018), and mean temperature (tas) was estimated as the average of tasmin and tasmax.
RAIN4PE precipitation data (available for 1981-2015) are generated by merging multisource
precipitation data (satellite, reanalysis, and ground-based precipitation from 804 gauges) with
surface elevation using the random forest method. Additionally, total precipitation was adjusted
using streamflow data through the reverse hydrology method for catchments influenced by
fog/cloud water input, such as páramo and montane watersheds. The PISCO temperature data
(available for 1981-2016) are generated by merging information from 178 observed climate
stations, satellite-derived surface temperatures, and topographic variables. The data integrate
spatially gridded estimates of normal climate (estimated using weighted regression Kriging)
with daily anomalies (estimated using regression splines). These observational datasets have
been validated by simulating streamflow through hydrological modeling for the Peruvian and
Ecuadorian catchments (Fernandez-Palomino et al., 2022).

3.2.4 Bias adjustment and statistical downscaling

The software used for BASD is ISIMIP3BASD v2.5 (Lange, 2021b), which implements the
BASD method described in Lange (Lange, 2019). In ISIMIP3, this method was applied to
generate bias-adjusted and downscaled CMIP6 projections, utilizing the global observational
dataset W5E5 (available at a spatial resolution of 0.5°) as reference data (Lange and Büchner,
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Table 3.3: Statistical metrics and hydrological signatures. Here, R and S are the reference and
simulated flow (m3/s), respectively; EP is the exceedance probability; H, and L are the indices
of the minimum flow of the high flow and low flow segments, respectively.

Criterion (reference) Equation Description
Discharge-related performance measures

Kling–Gupta efficiency
(Gupta et al., 2009; Kling
et al., 2012)

KGE =
√

(r − 1)2 + (β − 1)2 + (γ − 1)2 r is the Pearson product-moment
correlation coefficient and beta
(gamma) indicates the bias
(relative dispersion) between
observed and simulated flows

Percent bias (Gupta
et al., 1999)

PBIAS =

∑n
i=1 (Si − Ri )∑n

i=1 Ri
× 100 n is the number of observations on

evaluation
Signature measures based on the flow duration curve (FDC)

Percent bias in FDC high
segment volume (Yilmaz
et al., 2008)

Shigh =

∑H
h=1 (Sh − Rh) × 100∑H

h=1 Rh

h = 1, 2, ... , H are flow indices
located within the high flow
segment (0–5% flow EP)

Percent bias in FDC low
segment volume (Yilmaz
et al., 2008)

Slow =

∑L
l=1 (Sl − Rl ) × 100∑L

l=1 Rl

l = 1, 2, ... , L are flow indices
located within the low flow segment
(95–100% flow EP)

2021, 2022; Lange et al., 2021). In our study, we adopted a different approach, employing highly
reliable, region-specific, high-resolution datasets, namely PISCO-temperature and RAIN4PE
precipitation, to develop BASD-CMIP6-PE. The BASD method uses 1) a trend-preserving
quantile mapping approach to bias-adjust climate simulation data at their original spatial
resolution using spatially aggregated climate observation data, and 2) a stochastic statistical
downscaling approach to increase their spatial resolution using climate observation data, which
consequently have to be available with the higher resolution. Note that bias adjustment (BA)
and statistical downscaling (SD) are applied after one another and not together. Further details
on the BASD method are given in Lange (Lange, 2019).

Figure 3.1 shows the bias adjustment and downscaling strategy to generate the BASD-
CMIP6-PE dataset following the ISIMIP protocol (Lange, 2021a). This dataset includes both
historical simulations (1850-2014) and future projections (2015-2100) for four variables (pr,
tasmin, tas, tasmax) and three future CMIP6 scenarios (SSP1-2.6, SSP3-7.0, SSP5-8.5) for 10
GCMs. To apply the ISIMIP3BASD method, the original CMIP6 output (observational data) was
interpolated (aggregated) onto regular latitude-longitude grids with 0.5°, 1.0°, or 2.0° resolutions
using the first-order conservative remapping (Jones, 1999); Fig. 3.1 shows which resolution
was used for each climate model. The interpolated CMIP6 data were bias-adjusted using
the respective aggregated observational data and then downscaled in multiple steps. Finally,
the downscaled data (0.125°) were interpolated onto 0.1° with the first-order conservative
remapping method to match the spatial resolution of the observational data. This interpolation
was carried out instead of downscaling due to the small resolution difference from 0.125° to
0.1°.

The training period used for bias adjustment and statistical downscaling was 1981-2014
(34 years), constrained by the availability of observed data and historical CMIP6 simulations.
After training, we applied the bias adjustment and downscaling on the climate simulations
over historical and future periods using contiguous 36-yr segments. This decomposition
is recommended to keep a similar sample size in the training and application steps. Bias
adjustment was applied using a running window with a width of 31 days and moved over the
annual cycle in steps of 1 day, where results for the central day of each window constitute the
overall result. This application pattern aimed to improve the annual cycle representation and
reduce discontinuities at time window edges, as suggested in previous studies (Gennaretti et al.,
2015; Grenier, 2018; Themeßl et al., 2012; Thrasher et al., 2012).
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3.2.5 Evaluation approach

We conducted a comprehensive evaluation of the BASD method’s performance and the reliability
of the BASD-CMIP6-PE dataset for the historical period. This assessment included comparing
the simulations from both unadjusted and adjusted CMIP6 models with observational data
and employing hydrological modeling. Our primary focus was on the evaluation of the models’
capability in representing long-term statistical aspects, including mean values, extreme values,
and the mean annual cycle. Moreover, we examined whether the BASD method influenced the
preservation or alteration of the projected GCM trends (or changes) and the inter-model spread.

Model simulations and observations were compared using widely applied climate modeling
statistics (e.g., mean error, correlation coefficient) and the Taylor diagram (Taylor, 2001) for
the overlapping time period 1981–2014. Mean error was used to show biases in GCM data,
while the correlation coefficient assessed models’ capability to represent the mean annual
cycle of observations, a crucial aspect for hydrological modeling purposes. The Taylor diagram
was used to summarize the performance of both unadjusted and adjusted CMIP6 models
in simulating long-term climatological spatial fields, including mean and extreme values of
precipitation and temperature across the entire study domain. According to the Taylor diagram,
the closer the model points are to the reference point, the better the model performance is
with relatively high correlation and low standard deviation and root-mean-square error (RMSE)
values. Extreme values were determined by calculating the 95th percentile for precipitation and
maximum temperature and the 5th percentile for minimum temperature. Note that simulations
and reference data were conservatively interpolated to a 2°× 2° latitude-longitude grid to
facilitate the comparison.

The reliability of both raw GCM data and BASD-CMIP6-PE dataset for describing the
climatology of climate variables (pr, tas, tasmax, and tasmin) was also evaluated through
hydrological modeling since the response of the watershed’s flow is primarily driven by the
variations in precipitation and temperatures. This approach was used in recent years to evaluate
gauge-corrected precipitation datasets in data-scarce regions (Beck et al., 2020a; Brocca et al.,
2020; Fernandez-Palomino et al., 2022; Satgé et al., 2020), as well as raw and bias-adjusted
GCM simulation data (Hakala et al., 2018).

Hydrological simulations were performed using the Soil and Water Assessment Tool (SWAT)
model (Arnold et al., 1998). SWAT is one of the world’s most widely used ecohydrological models
(Gassman et al., 2014; Tan et al., 2020), and it has been successfully applied for ecohydrological
modeling of Andean and Amazonian catchments in Peru and Ecuador (Fernandez-Palomino et
al., 2022, 2020). SWAT is a process-oriented, semi-distributed, and time-continuous river basin
model applied to simulate hydrological processes as well as vegetation dynamics, nutrients,
pesticides, and sediment loads within a basin (Arnold et al., 1998; Neitsch et al., 2011). We
used the SWAT model that was set up for the Peruvian and Ecuadorian watersheds (total of
1,638,793 km², including 2675 river segments), calibrated and validated over 72 stream gauges
in our previous study (Fernandez-Palomino et al., 2022). It was forced by the observational
reference climate data listed in Table 3.2 and was proven to represent well the water budget
closure of catchments as well as discharge dynamics, including mean, low, and high flows
(Fernandez-Palomino et al., 2022). In this study, the SWAT model was run for 1981-2014
to derive the following streamflow series for the hydrological evaluation for a selected period
(1984-2014):

• Qref, streamflow simulated by SWAT driven by the reference climate data listed in Ta-
ble 3.2,

• Qgcm, the ensemble mean of the streamflow series simulated by SWAT employing raw
GCM data (pr, tasmin, and tasmax) from 10 models.

• Qbasd, the ensemble mean of the streamflow series simulated by SWAT using BASD-
CMIP6-PE climate data (pr, tasmin, and tasmax) from 10 models.

The comparison between Qgcm (Qbasd) and Qref reflects the reliability of the raw GCM
data (BASD-CMIP6-PE dataset). For that, we used various comparison metrics based on
hydrological signatures and hydrograph goodness of fit (Table 3.3), which were calculated using
the daily values of the seasonal streamflow for the 1984-2014 period. The modified Kling-Gupta
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Figure 3.2: Performance of the unadjusted CMIP6 models in simulating mean temperature
was compared with reference temperature data from PISCO-temperature for the 1981–2014
period. ME is the mean error, r is Pearson’s correlation coefficient, and R2 is the coefficient
of determination. r and R2 show the agreement between the simulated and observed mean
annual temperature cycle.

efficiency (KGE) and percent bias (PBIAS) were used for assessing model skills in representing
general discharge dynamics and over or underestimation tendencies, respectively; and percent
biases in flow duration curve (FDC) low segment volume (Slow) and FDC high segment volume
(Shigh) for low flows and high flows, respectively. In this multicriteria evaluation, all aspects of the
FDC and hydrographs are assessed, which is important for assessing the reliability of climate
simulation data for hydroclimatic applications, including extremes (floods and low flows). The
best-fit value for PBIAS, Slow, and Shigh is 0, and the best fit for KGE is 1.

3.3 Data records
The BASD-CMIP6-PE dataset (Fernandez-Palomino et al., 2023b) is freely available under the
CC BY 4.0 license at https://doi.org/10.5880/pik.2023.001. BASD-CMIP6-PE provides
bias-adjusted and statistically downscaled CMIP6 climate projections, encompassing four
meteorological variables: precipitation (pr), minimum temperature (tasmin), mean temperature
(tas), and maximum temperature (tasmax). These data cover both the historical period (1850-

https://doi.org/10.5880/pik.2023.001
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Figure 3.3: Performance of the unadjusted CMIP6 models in simulating precipitation is com-
pared with reference precipitation data from RAIN4PE for the 1981–2014 period. ME is the
mean error, r is Pearson’s correlation coefficient, and R2 is the coefficient of determination. r
and R2 show the agreement between the simulated and observed mean annual precipitation
cycle.

2014) and future projections (2015-2100) under three different CMIP6 experiments (SSP1-2.6,
SSP3-7.0, and SSP5-8.5) for 10 CMIP6-GCMs. Precipitation data is reported in millimeters
(mm), while temperature data is presented in degrees Celsius (°C). The total size of the dataset
is 374 GB.

The BASD-CMIP6-PE dataset is organized within a "daily" folder, denoting its avail-
ability at a daily temporal resolution. Within this directory, four subfolders are present:
"historical" containing historical data, "ssp126" for SSP1-2.6, "ssp370" for SSP3-7.0, and
"ssp585" for SSP5-8.5. Each of these subfolders further includes ten distinct folders, corre-
sponding to different GCMs: CanESM5, IPSL–CM6A–LR, UKESM1–0–LL, CNRM–CM6–1,
CNRM–ESM2–1, MIROC6, GFDL–ESM4, MRI–ESM2–0, MPI–ESM1–2–HR, and EC–Earth3.
These folders store the data in the NetCDF format arranged by model, model member,
experiment, variable, temporal resolution, and subset period, resulting in file names like
"canesm5_r1i1p1f1_ssp126_pr_daily_2015_2020.nc".
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Figure 3.4: Mean Errors [ME] in (Top) unadjusted [ENSMEAN] and (Bottom) adjusted [ENS-
MEANbasd] CMIP6 multimodel ensemble means, and (Middle) Taylor diagrams, both comparing
simulated and reference climate means for 1981–2014. Adjusted models were excluded from
the Taylor diagrams as they closely match ENSMEANbasd and the reference data. The bottom
panel displays ME in ENSMEANbasd, computed by comparing BASD-CMIP6-PE and observa-
tional data at a 0.1° spatial resolution.

3.4 Technical validation
3.4.1 Comparison of unadjusted and adjusted CMIP6 models for the historical period

Mean climate and seasonality
Outputs of the atmospheric variables (pr, tasmin, tas, and tasmax) obtained from CMIP6-GCMs
exhibit biases (Figs. 3.2-3.4) and limitations in capturing the mean annual cycle (Figs. 3.2, 3.3).
Figure 3.4 (top panel) shows that CMIP6 models are generally biased cold (warm) for tas and
tasmax (tasmin) over the Andes (Peruvian coastal areas) and tend to overestimate (under-
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Figure 3.5: Mean Errors [ME] in (Top) unadjusted [ENSMEAN] and (Bottom) adjusted [ENS-
MEANbasd] CMIP6 multimodel ensemble means, and (Middle) Taylor diagrams, both comparing
simulated and reference climate extremes for 1981–2014. Adjusted models were excluded
from the Taylor diagrams as they closely match ENSMEANbasd and the reference data. The
bottom panel displays ME in ENSMEANbasd, computed by comparing BASD-CMIP6-PE and
observational data at a 0.1° spatial resolution.

estimate) pr over the Andes (Amazon lowlands). Models simulate better the annual cycle of
precipitation (Fig. 3.3) than temperature (Fig. 3.2). However, models cannot capture the annual
cycle of pr over Ecuador and northwest Amazon (Fig. 3.3). This is critical as unadjusted data
from models are useless, for example, for evaluating the hydrological impact of Peruvian and
Ecuadorian catchments under climate change. The Taylor diagrams (Fig. 3.4, middle panel)
show that the GCMs simulate the spatial patterns of temperature (tasmin, tas, and tasmax)
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better than the precipitation patterns. The models simulate a realistic spatial variability (standard
deviation similar to that of reference) of precipitation, but the correlation between the spatial
patterns is weak for most models (between 0.13 and 0.86). In the same Fig. 3.4 (middle panel),
the Taylor diagram component values (correlation, standard deviation, and RMSE) indicate
that the MPI-ESM1-2-HR (CanESM5) model has the best (worst) performance in simulating
all atmospheric variables analyzed in this study. This distinction is emphasized by the general
proximity of MPI-ESM1-2-HR points to the reference point, while CanESM5 points are situated
farther away.

Overall, our results reveal that CMIP6 simulations (pr, tas, tasmin, and tasmax) are biased
when compared to reference datasets over Peru and Ecuador, with larger biases over the
Andes (Figs. 3.2-3.4). Such CMIP6 biases were also reported in previous studies (Almazroui
et al., 2021; Arias et al., 2021b; Fiedler et al., 2020; Ortega et al., 2021). The precipitation
overestimation is likely related to the too-pronounced double ITCZ in the models, a complex error
in models produced by anomalous warming over the southern tropical Pacific in association with
a misrepresentation of ocean-atmosphere couplings (Li and Xie, 2014; Ortega et al., 2021). Our
results also reveal the limitation of CMIP6 models to reproducing the annual cycle of temperature
and precipitation (Figs. 3.2, 3.3). CMIP6 models simulate the annual precipitation cycle better
over regions with the strongest rainfall seasonality, such as the Peruvian Andes and lowlands,
and poorly over equatorial regions, such as Ecuador and the northwest Amazon (Fig. 3.3).
Poor representation of the annual precipitation cycle by CMIP6 models was also reported over
Colombia (Arias et al., 2021b) and Northern Amazon (Firpo et al., 2022; Monteverde et al.,
2022). Our results show significant limitations of CMIP6 models in reproducing regional climate
features over equatorial regions and terrains with complex topography, such as the Andes.
Further improvements of these models are necessary to permit their usage in impact studies.

To exclude the aforementioned limitations in climate model outputs, we applied the BASD
method in order to adjust biases, increase spatial resolution, and improve representation of the
annual cycle of atmospheric variables. The comparison of the ensemble mean of unadjusted
(ENSMEAN) and adjusted (ENSMEANbasd) outputs of 10 GCMs shows that the BASD method
largely reduced the biases in the GCM data for all climate variables (pr, tasmin, tas, and tasmax)
as shown in Fig. 3.4 (middle panel). However, biases remain after the application of BASD at
the spatial resolution of the reference datasets at 0.1° (Fig. 3.4, bottom panel). Small biases of
precipitation remain over precipitation hotspots and small temperature biases (tasmin, tas, and
tasmax) along the Andes. These results indicate that the application of BASD to the output of
CMIP6 models is challenging in terrains with complex topography, such as the Andes. Despite
some remaining biases, the purpose of the method - to create a dataset suitable for hydrological
modeling - has been achieved, as the following hydrological section demonstrates.

Extreme values

The assessment of the models’ performance in simulating precipitation and temperature ex-
tremes, both before and after applying BASD, is shown in Fig. 3.5. In this figure, Taylor diagrams
compare the degree of similarity in spatial patterns of extremes, considering their correlation,
RMSE, and standard deviation.

Results show that CMIP6 models, particularly CanESM5, exhibit poor performance in
simulating extreme values, as indicated by Taylor diagrams (Fig. 3.5, middle panel). Figure 3.5
(top panel) shows notable biases in the unadjusted multimodel ensemble (ENSMEAN), with
distinct spatial patterns. ENSMEAN tends to overestimate extreme precipitation along the
Andes while underestimating it over the Amazon lowland regions. Moreover, it exhibits a warm
bias in extreme minimum temperatures in coastal areas and the Brazilian lowlands, while
concurrently revealing a cold bias in the transitional zone between the Andes and the Amazon.
A cold bias is also observed in extreme maximum temperatures across the entire study area.

These biases are substantially reduced by the adjusted multimodel ensemble (ENSMEAN-
basd) for all extreme climatic variables assessed herein, as demonstrated by Taylor diagrams
(Fig. 3.5, middle panel) and the adjusted CMIP6 multimodel mean errors (Fig. 3.5, bottom
panel). The results clearly show that the BASD method improves the variability and extremes
of precipitation and temperature, thereby establishing the reliability of the BASD-CMIP6-PE
dataset for studying the impacts of climate change on extreme events.
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Figure 3.6: Comparison of simulated streamflow dynamics, including extreme events of both
low flows (Slow) and high flows (Shigh), from raw GCM simulations (Qgcm) and reference climate-
based simulated streamflow (Qref). (top) Statistical metrics and hydrological signatures and
(bottom) daily values of climatological seasonal streamflow (Q) in the period 1984–2014 for
representative river catchments draining into the Titicaca Lake (a,b), the Pacific Ocean (A:D),
and the Amazon River (1:6). Note that observed seasonal streamflow was computed only using
the days with available streamflow data.

3.4.2 Hydrological evaluation of unadjusted and adjusted CMIP6 models for the historical
period

In Fig. 3.6 (or Fig. 3.7), a comparison is presented between the long-term mean annual
streamflow cycle at a daily resolution derived from Qgcm (or Qbasd) and that derived from
Qref. The comparison is made through statistical metrics (KGE and PBIAS) and hydrological
signatures (Slow and Shigh). These figures also show climatological seasonal streamflow plots
for representative river catchments draining into the Titicaca Lake, the Pacific Ocean, and the
Amazon River.

In Fig. 3.6, the comparison metrics (with median values of KGE = 0.19, |PBIAS| = 37%,
|Slow| = 57%, and |Shigh| = 30%) alongside seasonal streamflow plots reveal significant discrep-
ancies in the mean annual streamflow cycle between Qgcm and Qref. These disparities indicate
that hydrological model simulations using raw GCM data tend to overestimate mean, low,
and high flows along the Andean rivers while underestimating them over Amazonian lowland
tributaries, especially in the northern Peruvian Amazon and Ecuadorian Amazon. Additionally,
these simulations underrepresent seasonal streamflow in these regions, as evidenced by the
seasonal plots for the Marañón, Napo, and Putumayo rivers. These issues underscore how
biases and regional seasonal underrepresentation in GCM simulations impact the accurate
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Figure 3.7: Comparison of simulated streamflow dynamics, including extreme events of both
low flows (Slow) and high flows (Shigh), from adjusted GCM simulations (Qbasd) and reference
climate-based simulated streamflow (Qref). (top) Statistical metrics and hydrological signatures
and (bottom) daily values of climatological seasonal streamflow (Q) in the period 1984–2014 for
representative river catchments draining into the Titicaca Lake (a,b), the Pacific Ocean (A:D),
and the Amazon River (1:6). Note that observed seasonal streamflow was computed only using
the days with available streamflow data.

representation of hydrological processes, rendering them unsuitable for hydrological impact
assessments.

In Fig. 3.7, median KGE = 0.97 and median |PBIAS| = 1.4% demonstrate good agreement
between Qbasd and Qref. This agreement is further supported by long-term mean seasonal
streamflow plots for representative rivers across the three drainage systems. Low KGE (< 0.5)
and large negative |PBIAS| values (< −25%) indicate relatively poor BASD performance over
northern and southern Peruvian arid coastal areas in the Pacific drainage system. It is worth
noting that these areas have mean annual precipitation of less than 15 mm and are not relevant
for runoff processes. Median |Slow| = 5.1% and median |Shigh| = 2.7% also indicate that overall
low and high flows are well represented, suggesting that the BASD method is able to represent
also precipitation extremes to some extent. However, there is a tendency to overestimate
low flows over river segments in the eastern slopes of the Peruvian Andes, especially over
mountainous catchments.

Overall, the hydrological comparisons reveal much better agreement between Qbasd and
Qref (median KGE = 0.97) compared to Qgcm and Qref (median KGE = 0.19) across different
hydroclimate regimes in Peru and Ecuador. This indicates that the BASD method is effective,
and the BASD-CMIP6-PE dataset is reliable for hydroclimatic applications, including extremes
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Figure 3.8: Comparison of projected multimodel median changes and spreads in precipitation
and mean temperature for Ecuador and Peru using raw (CMIP6 raw) and adjusted (CMIP6
basd) GCM simulations.

such as floods and droughts. However, it is important to keep in mind that the hydrological
evaluation was performed for the period where the BASD method was trained, and our evaluation
results could be overconfident. Nevertheless, we believe that our hydrological evaluation is still
plausible in the study area featured by data scarcity and lack of long-term time series.

3.4.3 Projected changes and inter-model spread

The assessment of the BASD method’s impact on preserving or altering the projected GCM
trends and the inter-model spread is presented in Fig. 3.8. This figure presents the projected
multimodel median changes and spreads in precipitation and mean temperature for both
Ecuador and Peru, using both unadjusted and adjusted CMIP6 data.

Results show that temperature trends and spreads show a significant degree of similarity
between the two datasets in each country, highlighting the effectiveness of the BASD method in
preserving future temperature trends. For Ecuador, the projected changes in mean temperature
for the end of the century (2065-2095) relative to the reference period of 1985-2015, based on
both raw and adjusted multimodel median data, are 1.2 °C (SSP1-2.6), 3.1 °C (SSP3-7.0), and
3.9 °C (SSP5-8.5). For Peru, these values are 1.4 °C (SSP1-2.6), 3.6 °C (SSP3-7.0), and 4.4
°C (SSP5-8.5).

However, the projected multimodel median changes and spreads for precipitation undergo
minor modifications. The differences in projected changes for the end of the century, based on
raw and adjusted CMIP6 data, are less than 2% across all SSPs for both Ecuador and Peru.
These small differences suggest that the BASD method alters precipitation patterns without
adversely affecting the ensemble median. Projected multimodel median changes in precipitation
can range up to 8% in Ecuador and 3% in Peru, with variations within these countries.
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It is noteworthy that intermodel spread increases towards the distant future, with low uncer-
tainty under SSP1-2.6 and high uncertainty under SSP5-8.5.

In summary, our analysis indicates that the BASD method effectively preserves projected
temperature trends while making only minor adjustments to precipitation patterns. This un-
derscores the reliability of the BASD-CMIP6-PE dataset for evaluating regional and local
hydrological impacts of climate change.

3.5 Code availability
The software used for bias adjustment and statistical downscaling is ISIMIP3BASD v2.5 (Lange,
2021b).
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Abstract
Most hydrological studies rely on a model calibrated using discharge alone. However, judging
the model reliability based on such calibration is problematic, as it does not guarantee the
correct representation of internal hydrological processes. This study aims (a) to develop a
comprehensive multi-objective calibration framework using remote sensing vegetation data and
hydrological signatures (flow duration curve – FDC, and baseflow index) in addition to discharge,
and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a
typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-
based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and
flow partitioning simulation. New hydrological insights for the region are the following: baseflow
is the main component of the streamflow sustaining the long dry-season flow, and pasture areas
offer higher water yield and baseflow than other land-cover types. The proposed approach
could be used in other data-scarce regions with complex topography.
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4.1 Introduction

The understanding of hydrological processes and vegetation dynamics within a basin is crucial
for better water resources management. For this purpose, hydrological models that integrate
hydrological processes, vegetation, and biogeochemical cycles (carbon, nitrogen, and phospho-
rus) have been used, often called eco-hydrological river basin models (Krysanova and Arnold,
2008). Examples of well-supported models are the Soil and Water Assessment Tool (SWAT,
Arnold et al., 1998), Soil and Water Integrated Model (SWIM, Krysanova et al., 1998), Variable
Infiltration Capacity (VIC, Liang et al., 1994), and Hydrological Predictions for the Environment
(HYPE, Lindström et al., 2010). In this study, SWAT is applied since it is internationally accepted
as a robust tool for interdisciplinary modeling of basin water resources (Abbaspour et al., 2017;
Gassman et al., 2007) and ecosystem services (Francesconi et al., 2016). It has been applied
and evaluated in diverse climates from arid and semi-arid regions (Brouziyne et al., 2017;
Jajarmizadeh et al., 2017) to wet and tropical areas (Alemayehu et al., 2017; Strauch and Volk,
2013).

Regardless of the choice of hydrologic model, one primary task in any hydrological modeling
is the determination of model parameters during the model calibration procedure, owing
to the mismatch between model complexity and available data (Devak and Dhanya, 2017;
Razmkhah et al., 2017). Estimation of model parameters is commonly performed using manual
and automatic calibration approaches, with discharge-related measures (e.g., Nash–Sutcliffe
efficiency, NSE) most commonly used as the objective function because discharge at the basin
outlet integrates all hydrological processes upstream. However, it has been argued that model
calibration based solely on discharge does not guarantee the credibility of a hydrological model
since the water balance components can be misrepresented despite the performance statistics
being accurate (Acero Triana et al., 2019; Guse et al., 2016; Hattermann et al., 2005; Larabi et
al., 2018; Pfannerstill et al., 2017; Pokhrel and Yilmaz, 2012). Recognizing this deficiency, other
strategies have focused on improving the calibration to better represent hydrological processes
and system dynamics. For this, hydrological signatures mostly derived from streamflow time
series, e.g., the flow duration curve (FDC), have been used. The application of signatures
related to FDC provides more information about the hydrological behaviors of the modeled basin
(Hrachowitz et al., 2014) and their underlying processes (Gupta et al., 2009; Yilmaz et al., 2008).
FDC has often been used for model evaluation (Hrachowitz et al., 2014; Pfannerstill et al., 2017;
Pokhrel and Yilmaz, 2012; Yilmaz et al., 2008) and lately as an objective in model calibration
(Chilkoti et al., 2018; Sahraei et al., 2020; Shafii and Tolson, 2015). These studies have
demonstrated that signature-based calibration approaches (using discharge and FDC) lead
to a more accurate discharge simulation and the reduction of predictive uncertainty. However,
Shafii et al. (2017) argued that these approaches do not necessarily guarantee correct flow
partitioning among the different flowpaths, which is critical when modeling hydrology-related
processes like solute transport, erosion, surface runoff, and baseflow contribution. Therefore, to
properly reproduce flow partitioning, the inclusion of another hydrological signature such as the
baseflow index (the ratio of long-term mean base flow to total streamflow) in the multi-objective
calibration framework is proposed in this study. The baseflow index represents the baseflow
component of streamflow, which is critical for regulating seasonal distribution of river flows
and is associated with climatic and physiographic characteristics of the basin (Beck et al.,
2013; Mohammed and Scholz, 2018; Singh et al., 2019). Baseflow, or the baseflow index,
is crucial to develop appropriate water resources management strategies, such as aquatic
ecosystem preservation, hydropower generation, and low-flow forecasting (Beck et al., 2013;
Singh et al., 2019). Previously mentioned and proposed calibration approaches have focused
mainly on the identification of physical parameters related to streamflow, evapotranspiration,
and flow components. However, additional identification of vegetation parameters is crucial
for models integrating vegetation dynamics. Indeed, leaf area index (LAI) is a key driver of
the water balance of a landscape and is considered in SWAT for subsequent estimation of
other processes, such as evapotranspiration, biomass accumulation, sediment, baseflow, and
surface runoff (Ma et al., 2019). Only a few hydrological studies in general and SWAT-related
publications in particular have considered the combined model calibration of LAI and streamflow
dynamics and proved that this calibration leads to improved streamflow and evapotranspiration
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simulations (Alemayehu et al., 2017; Ha et al., 2018; Rajib et al., 2018; Strauch and Volk,
2013). These studies also showed the utility of remotely sensed LAI data to calibrate the
SWAT LAI-related parameters (i.e., plant parameters) in data-scarce basins. It is important
to mention that the SWAT LAI estimation is based on heat units (Neitsch et al., 2011), and
for that, the total number of heat units needed to bring the plant to maturity (PHU_PLT) must
be estimated by the user for the vegetation growth simulation. Previous studies have used
satellite-based LAI to identify SWAT plant parameters considering a constant PHU_PLT value
for each plant type throughout the basin. However, this could be critical, especially in basins
with complex topography – in particular high altitudinal differences – since the air temperature
(biophysical variable) that controls the PHU_PLT (Neitsch et al., 2011) depends on the altitude.
To overcome this, we used the satellite-based LAI data to identify not only plant parameters
but also PHU_PLT for each plant in each hydrological response unit (HRU). Moreover, we
investigated the relationship between the elevation and PHU_PLT, which could be useful for
application in other data-scarce regions with complex topography.

In general, some previous studies have reported the benefits of incorporating hydrological
signatures (e.g., FDC signatures) and remote sensing data (e.g., LAI) in the calibration of
hydrological models (Chilkoti et al., 2018; Ha et al., 2018; Rajib et al., 2018; Sahraei et al.,
2020; Shafii and Tolson, 2015). However, to the best of our knowledge, no previous study has
taken into account both datasets for hydrological model calibration. We consider that inclusion
of these variables, in addition to streamflow, in the calibration can improve the model reliability
in representing the hydrological system. Hence, one of the objectives of this study is to develop
a multi-objective calibration framework that exploits the benefits of using both hydrological
signatures and satellite-based LAI data for eco-hydrological models. This study is the first of its
kind considering these benefits for a more realistic hydrological modeling not only of streamflow
but also of vegetation dynamics and flow partitioning. As such, we hope to contribute to
hydrological modeling science with a new way of understanding the eco-hydrological processes
of basins with complex topography for efficient water resource management.

We conducted our study in the tropical Andes of Peru where there is a paucity of research.
Most existing studies related to Andes hydrology have focused mainly on Andean basins
dominated by páramo ecosystems, which span the Andean region of Venezuela, Colombia,
Ecuador, and northern Peru (Buytaert et al., 2007; Carrillo-Rojas et al., 2019; Guzmán et al.,
2015; Hill et al., 2018; Mosquera et al., 2015). Only a few studies have focused on the hydrology
of Peruvian Andean basins, and most of these in small catchments dominated by a glacier
(Somers et al., 2019), forest (Clark et al., 2014), páramo and puna biome (Ochoa-Tocachi et al.,
2016). Therefore, another objective of this study is to contribute to the basic understanding of
hydrological processes of the tropical Andes of Peru. To this end, we selected the Vilcanota
River basin (VRB), which is dominated by land uses such as pasture of the puna biome, forest,
and agriculture, to better understand its hydrology (e.g., water budget) and to analyze the
hydrological services offered by each land-use type regarding the water yield and baseflow.

For this purpose, our proposed novel multi-objective calibration framework for eco-
hydrological models such as SWAT, and for basins with complex terrain such as the VRB,
consists of a step-wise calibration scheme. First, SWAT LAI-related parameters are calibrated
using satellite LAI data. In the second step, parameters related to streamflow, evapotranspi-
ration, and flow components are calibrated. For the latter step, we propose the inclusion of
the baseflow index in addition to discharge-related performance metrics and signatures based
on FDC within a multi-objective calibration approach to better constrain the flow partitioning
during the calibration process. This approach is compared to conventional discharge-based and
signature-based calibration approaches in order to test the model’s ability to simulate vegetation
dynamics, streamflow, and flow partitioning in the Andean VRB. Furthermore, we address how
streamflow calibration strategies impact parameter identifiability and equifinality.
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Figure 4.1: (a) Location of the Vilcanota River Basin (VRB); (b) Terrain elevation, sub-basins,
and river network ; and (c) land-use map. Dashed areas represent sample site locations for the
major vegetation classes (1: FETZ, 2: AGRL, 3: FRST and 4:PAST) which were used to mask
the MODIS (Moderate Resolution Imaging Spectroradiometer) LAI.

4.2 Materials and methods
4.2.1 Study area

The VRB is located in the southern Andes of Peru in the Cuzco region (Fig. 4.1). Its drainage
area is 9617 km2, and the topography within the basin is characterized by a terrain with steep
slopes and elevations that range from 2136 to 6301 m a.s.l. Predominant soils are Lithosols
(67%) and Kastanozems (23%) (FAO-UNESCO, 1988). The land use is dominated by natural
pasture (68%) with a minor contribution of mixed forest (15%), agriculture (8%), and evergreen
forest (4%). The latter mainly spans the area which is close to the basin outlet (Fig. 4.1)
and experiences higher amounts of precipitation. The annual mean precipitation is 748.5
mm/year (1985–2015), with more than 80% of the rainfall occurring during the rainy season
(October–March). Hydrologically, VRB shows high variability of daily discharge, ranging from
20 m3/s in the dry season to 1100 m3/s in the rainy season, and an average daily discharge of
120 m3/s (1985–2015 period). In VRB, there are several natural lakes, but since 1996, Lake
Sibinaccocha (Fig. 4.1) has been dammed for water storage during the wet season and to
supply water to the Machu Picchu Hydroelectric Power Plant (EGEMSA company) during the
dry season (Catacora-Acevedo, 2008). This dam has 120 hm3 active storage volume with
a small sub-drainage basin surface (137 km2 being 1.4% of the VRB area). The Vilcanota
River provides water for drinking, irrigation, and energy production, hence understanding the
hydrologic system and accurate simulation of streamflow are important for appropriate water
resources management.

4.2.2 SWAT model
The SWAT model is a process-oriented, semi-distributed, and time-continuous river basin model
used to simulate hydrological processes as well as vegetation dynamics, nutrients, pesticides,
and sediment loads within a basin (Arnold et al., 1998; Neitsch et al., 2011). It is also possible to
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include water management activities such as reservoirs for hydrological simulation of managed
basins (Neitsch et al., 2011). SWAT divides a basin into sub-basins, which are then further
subdivided into HRUs representing unique combinations of land use, soil type, and slope
classes (Neitsch et al., 2011). SWAT differentiates between the land phase that controls the
water, sediment, and solute loads to the main channel in each sub-basin and the routing phase
that defines water, solute, and sediment movement through the channel network to the basin
outlet (Arnold et al., 1998; Neitsch et al., 2011).

The water balance computation is performed at the HRU level considering four water storage
types (snow, soil profile, and shallow and deep aquifers), as follows:

∆S =
N∑

i=1

(P − WYLD − ET − losses) (4.1)

where ∆S is the change in water storage (mm), N is the time in days, and P, WYLD, ET,
and losses are the amounts of precipitation (mm), water yield (mm), evapotranspiration (mm),
and groundwater losses (mm), respectively. Water yield (WYLD) is given by the contribution of
surface runoff (Qsurf), lateral flow (Qlat), and return flow (Qgw) from the aquifers (shallow and
deep).

In SWAT, the vegetation dynamics (e.g., LAI) are simulated based on the simplified version
of the Environmental Policy Integrated Climate (EPIC) plant growth model (Neitsch et al.,
2011). The vegetation growth is simulated based on daily cumulative heat units (plant heat
requirements) reflecting the fact that plant growth only occurs on the days when the daily mean
temperature exceeds the base temperature for growth (Neitsch et al., 2011). This means
that temperature is the main vegetation growth controlling factor in SWAT but is restricted by
temperature, water, and nitrogen or phosphorus stress (Neitsch et al., 2011). For a detailed
description of the SWAT vegetation module, readers are advised to read Neitsch et al. (2011).

In this study, we used SWAT-T (Alemayehu et al., 2017), a modified SWAT version based
on SWAT 2012 (Rev. 627), which provides an improved vegetation growth module for a better
simulation of plant growth dynamics in tropical regions. SWAT-T uses the soil moisture index –
a quotient of rainfall and potential evapotranspiration – as an indicator to initiate a new growth
cycle within a predefined period, such as the months when the rainy season starts, e.g., October
to November for Andean basins. This SWAT-T feature was introduced to overcome SWAT’s
shortcomings in simulating the seasonal growth cycles for trees and perennials in the tropics,
where rainfall rather than temperature is the dominant plant growth controlling factor (Alemayehu
et al., 2017; Strauch and Volk, 2013). Moreover, SWAT-T uses a logistic function to simulate
the LAI curve during the senescence stage (Strauch and Volk, 2013), instead of the linear
decreasing LAI curve which could underestimate evapotranspiration (Wei et al., 2018). SWAT-T
is referred to as SWAT in this paper.

4.2.3 Input data
The inputs (e.g., topography, land use, soil, and meteorology) and their sources are summarized
in Table 4.1. As geographical input data, a digital elevation model (DEM) of 90 m resolution, a
land-use map obtained from the European Space Agency and Climate Change Initiative – Land
Cover Project (ESA CCI-LC), and a soil map from the Harmonized World Soil Database (HWSD)
that includes soil properties were used for the hydrological model. The daily gridded PISCO
(Peruvian Interpolated data of SENAMHI’s Climatological and Hydrological Observations)
meteorological forcing data (precipitation, and maximum and minimum temperature) for driving
SWAT model simulations was used, as provided by the National Service of Meteorology and
Hydrology of Peru (SENAMHI). Controlled outflow data from the Sibinaccocha Dam was used
to consider its impact on downstream runoff since 1996.

4.2.4 Reference data for model calibration and verification
The leaf area index
The satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product
(Yuan et al., 2011) was used as a reference to calibrate LAI dynamics of perennial plants.
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Table 4.1: Data type, resolution, and data source.

Data type Resolution Description/source
Topography 90 m Digital elevation of the Shuttle Radar Topography Mission

(SRTM V4.1) product (Jarvis et al., 2008)
(http://srtm.csi.cgiar.org/)

Land use 300 m Land-use classification representative for the year 2010
obtained from ESA CCI-LC
(http://maps.elie.ucl.ac.be/CCI/viewer/)

Soil 1000 m Horizon-specific soil properties for each soil type based on
the HWSD (Abbaspour and Ashraf Vaghefi, 2019)

Soil
thickness

1000 m Gridded global data of soil thickness (Pelletier et al., 2016)
used to implement variable soil thicknesses at HRUs

Hydrologic
soil group

250 m Global gridded hydrologic soil group data (Ross et al., 2018)
used to update the curve number (CN) parameter at HRUs
after the model creation. This step helped to identify
appropriate CN values, mainly in current urban areas

Temperature Daily/10 km
(1981–2016)

Gridded temperature (maximum and minimum) dataset for
Peru (PISCO temperature V1.1, Huerta et al., 2018)
provided by SENAMHI
(ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/)

Precipitation Daily/10 km
(1981–2016)

Gridded rainfall dataset for Peru (PISCO precipitation V2.1,
Aybar et al., 2020) provided by SENAMHI
(ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/)

Reservoir Daily
(1996–2015)

Controlled outflow data from Sibinaccocha Dam obtained
from Electricity Generation Company of Machupicchu
(EGEMSA)

Discharge Daily
(1958–2015)

Flow data at Km-105 hydrological station (EGEMSA)

LAI 8 d/1000m
(2000–2016)

Improved MODIS LAI data based on the MODIS collection 5
LAI product (MOD15A2) (Yuan et al., 2011)
(http://globalchange.bnu.edu.cn/research/lai)

MODIS LAI has been proven capable of reproducing vegetation timely and accurately (Ma et al.,
2019; Yuan et al., 2011) and has been used successfully in the calibration and/or validation of
SWAT plant parameters (Alemayehu et al., 2017; Ha et al., 2018; Rajib et al., 2018; Strauch
and Volk, 2013).

To derive the reference LAI data, we selected 200 pixels for pasture, 100 for the mixed
forest, 405 for the evergreen forest, and 35 for agriculture, using as a mask the corresponding
representative area (polygon) defined in Fig. 4.1 with the help of the land-use map and Google
Earth images. Then, from these subsets, we derived the 8-day median LAI time series for
each of the land-use types. Note that the identified representative areas for evergreen forest
and mixed forest span areas outside of the basin (Fig. 4.1). This was necessary to obtain
MODIS LAI pixels with better LAI temporal patterns because forest areas located inside the
basin mostly present noisy LAI time series with breaks, which could be attributed to the cloud
contamination of the MODIS LAI in those areas.

Streamflow
Daily observed discharge series (1958–2015) at the km-105 gauging station located at the VRB
basin outlet was used (Fig. 4.1) for model calibration and validation of streamflow simulation.

4.2.5 SWAT model setup
The SWAT model was set up for the VRB based on the available input data listed in Table 4.1.
The model includes one reservoir, 53 sub-basins, and 320 HRUs (Fig. 4.1). The modified Soil
Conservation Service Curve Number method, the Hargreaves method, and the variable storage

http://srtm.csi.cgiar.org/
http://maps.elie.ucl.ac.be/CCI/viewer/
ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/
ftp://publi_dgh2:123456@ftp.senamhi.gob.pe/
http://globalchange.bnu.edu.cn/research/lai
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method were used to simulate surface runoff and infiltration, potential evapotranspiration, and
river flow routing, respectively. The Sibinaccocha Reservoir outflow was simulated using a
predefined daily outflow option in SWAT to account for the effects of this dam on downstream
runoff. For more details about the SWAT model configuration, see Neitsch et al. (2011).

The periods considered for model warm-up, calibration, and validation for simulation of LAI
were 2001–2004, 2005–2010, and 2011–2015, and those for streamflow were 1981–1984,
1985–1990, and 1991–2015, respectively. Note that the model calibration for streamflow was
carried out in the pre-damming period of the river, while the LAI calibration and validation
periods were constrained based on LAI data availability.

SWAT
model

Change
plant parameters
(see Table 4.4)

and run the model

Optimum plant
parameters values

(plant.dat)

Change
PHU_PLT parameter
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Comparison of
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Figure 4.2: Flowchart of the SWAT model calibration framework. OF: objective function,
PHU_PLT: total number of heat units needed to bring the plant to maturity. In the case of
LAI calibration, the Nash-Sutcliffe efficiency (NSE) is the OF. The OF for streamflow and flow
partitioning calibration is defined in Table 4.2 for each calibration strategy applied in this study.

4.2.6 SWAT calibration and evaluation framework
We propose the following step-wise framework for SWAT model calibration for basins with
complex terrain (Fig. 4.2).

First, SWAT LAI-related parameters are calibrated using 8-day MODIS LAI as a reference
for each perennial tropical vegetation type (e.g., pasture, mixed forest, forest evergreen, and
agriculture) at the HRU level. To do so:

(a) The simulated LAI is calibrated against MODIS LAI to identify SWAT LAI-related parame-
ters (see Section 4.3.2) for a specific HRU. This procedure helps to build a SWAT plant
database (plant.dat) for the study area, which is used for the next steps.

(b) The total number of heat units needed to bring the plant to maturity parameter (PHU_PLT)
depends on temperature data (Neitsch et al., 2011). PHU_PLT is calibrated for each HRU
using MODIS LAI as a reference since the temperature varies with height in mountainous
regions. This step is important for better modeling of vegetation LAI dynamics in HRUs
defined by trees and perennials.

In this study, NSE is used as the objective function for LAI and PHU_PLT calibration.
The second part of the calibration strategy deals with the calibration of the SWAT parameters

that mainly control streamflow, evapotranspiration, and discharge components. For this purpose,
we propose a multi-objective calibration approach that includes the baseflow index to constrain
the model calibration in addition to discharge-related performance metrics and hydrological
signatures related to FDC (Flow Duration Curve). This approach is compared to approaches
applied before, where only hydrograph goodness-of-fit metrics (e.g., NSE or the log NSE, lNSE)
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Table 4.2: Optimization problems. In the optimization process, NSE and lNSE (log NSE)
were maximized while the absolute values of FDCsign (FDC signature) and BIAS_BFI (bias of
baseflow index) were minimized.

Number Approach Formulation Optimization problem
1 Applied before Single-objective NSE
2 Applied before Single-objective lNSE
3 Applied before Bi-objective lNSE, FDCsign
4 Proposed in this study Multi-objective lNSE, FDCsign, BIAS_BFI

and signatures related to FDC were used. Table 4.2 shows the single- and multi-objective
optimization approaches tested in this study, and Table 4.3 shows the objective metrics.

In the formulation of multi-objective calibration approaches, we selected lNSE instead of
NSE as part of the objectives for flow timing and magnitude to avoid overfitting discharge peaks
since NSE is more sensitive to larger errors that often occur in high-flow periods (Gupta et al.,
2009; Krause et al., 2005). To quantify catchment overall behavior and flashiness, several
aspects of FDC were considered to evaluate the model performance in emulating the FDC.
Following Chilkoti et al. (2018), FDC is divided into four segments, of peak flow volume (0–2%),
high flow volume (2–20%), mid-segment slope (20–70%), and low flow volume (70–100%). The
respective FDC partitioning represents peak flow events occurring rarely, quick runoff (due to
snowmelt and/or rainfall), the quickness of a basin’s response, and baseflow components of
the streamflow (Chilkoti et al., 2018; McMillan et al., 2017; van Werkhoven et al., 2009; Yilmaz
et al., 2008). To properly reproduce flow partitioning, the baseflow index is used to constrain
the slow-flow component.

For the model evaluation, discharge statistics and individual hydrological signatures defined
in Table 4.3 are used. The conventional hydrograph goodness-of-fit metrics (NSE, lNSE, and
Percent bias (PBIAS)) are used to evaluate the model performance in streamflow simulation
(Krause et al., 2005; Moriasi et al., 2007). Note that in this study, PBIAS is not included as
an objective function for model calibration but is only used to evaluate model performance.
PBIAS measures the average tendency of the simulated discharge, which can be larger
or smaller than the measured values. The optimal value of PBIAS is 0.0, with low values
indicating accurate model simulation. A positive (negative) value of this measure indicates
overestimation (underestimation). FDC signatures (Speak, Shigh, Smid, and Slow) are used to
assess the model performance through biases in the flow distributional response (Chilkoti et al.,
2019). PBIAS_BFI (introduced in this study) is used to evaluate the model capability in the
simulation of flow partitioning in terms of the baseflow index. The overall goal of this multi-criteria
evaluation design is to assess how realistically the model represents the hydrologic system
response, which is crucial both for hydrological models intended to operate in a predictive mode
and for projecting climate change impacts (Krysanova et al., 2018).

4.2.7 Baseflow index estimation

The reference baseflow index (BFI) was estimated from streamflow using two baseflow separa-
tion techniques. The baseflow filter program (BFLOW, http://swat.tamu.edu/) (Arnold and
Allen, 1999) and the Eckhardt filter using the Web GIS-based Hydrograph Analysis Tool system
were applied (WHAT, https://engineering.purdue.edu/mapserve/WHAT/) (Lim et al., 2005).
For a detailed description of filter methods, the reader is referred to Arnold et al. (1995), Arnold
and Allen (1999), and Lim et al. (2005). BFLOW and WHAT have been used successfully in
many studies related to the SWAT model (e.g. Jang et al., 2018; Luo et al., 2012; Meaurio et al.,
2015; Yesuf et al., 2016).
Following Jang et al. (2018), the simulated baseflow index (SWAT_BFI) was computed as
follows:

SWAT_BFI =
Qlat + Qgws + Qgwd

Qsurf + Qlat + Qgws + Qgwd
(4.2)

http://swat.tamu.edu/
https://engineering.purdue.edu/mapserve/WHAT/
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Table 4.3: Mathematical formulation of goodness-of-fit metrics and hydrological signatures. O
and S are observed and simulated flow, respectively (in m3/s). EP is the exceedance probability,
while P, H, and L are the indices of the minimum flow of the peak-flow, high-flow, and low-flow
segments, respectively.

Criterion (reference) Equation Description
Discharge-related performance measures

Nash–Sutcliffe efficiency
(Nash and Sutcliffe,
1970)

NSE = 1 −
∑n

i=1 (Si − Oi )2∑n
i=1 (Oi − Oa)2 Oa is the average of the

observed flow and n is the
number of observations on
evaluation

Nash–Sutcliffe efficiency
log (Krause et al., 2005)

lNSE = 1 −
∑n

i=1 (ln (Si ) − ln (Oi ))2∑n
i=1 (ln (Oi ) − ln (Oa))2

Percent bias (Gupta
et al., 1999)

PBIAS =

∑n
i=1 (Si − Oi )∑n

i=1 Oi
× 100

Signature measures

Percent bias in FDC
peak-segment volume
(Yilmaz et al., 2008)

Speak =

∑P
p=1 (Sp − Op) × 100∑P

p=1 OP

p = 1, 2, ... , P are flow indices
located within the FDC
peak-flow segment (EP lower
than 2%)

Percent bias in FDC
high-segment volume
(Yilmaz et al., 2008)

Shigh =

∑H
h=1 (Sh − Oh) × 100∑H

h=1 Oh

h = 1, 2, ... , H are flow indices
located within the high-flow
segment (2–20% flow EP)

Percent bias in FDC
mid-segment slope
(van Werkhoven et al.,
2009; Yilmaz et al.,
2008)

Smid =
((Sm1 − Sm2) − (Om1 − Om2)) × 100

(Om1 − Om2)
m1 and m2 are the lowest
and highest flow EP within the
mid-segment (20–70%)

Percent bias in FDC
low-segment volume
(Yilmaz et al., 2008)

Slow =

∑L
l=1 (Sl − Ol ) × 100∑L

l=1 Ol

l = 1, 2, ... , L are flow indices
located within the low-flow
segment (70–100% flow EP)

FDC signature (Chilkoti
et al., 2018)

FDCsign =
1
4

(
|Speak| + |Shigh| + |Smid| + |Slow|

)
FDCsign is the aggregated
FDC signature

Bias of baseflow index BIAS_BFI = SWAT_BFI − BFI SWAT_BFI is the simulated
baseflow index and BFI the
reference

where Qsurf is the surface runoff, Qlat is the lateral flow, Qgws is the return flow from the
shallow aquifer, and Qgwd is the return flow from the deep aquifer.

4.2.8 Multi-objective optimization algorithm
We applied the Borg Multi-Objective Evolutionary Algorithm (Borg MOEA) (Hadka and Reed,
2013) to achieve the optimum solutions of SWAT parameters based on the calibration strategies
defined in Section 4.2.6, as Borg MOEA has superior performance when compared with a
range of state-of-the-art multi-objective algorithms (Hadka and Reed, 2012, 2013). Moreover,
it was applied successfully in the calibration of SWAT in which hydrograph goodness-of-fit
metrics and signatures related to FDC were included in the objective function (Chilkoti et al.,
2018). The Borg MOEA is an auto-adaptive optimization algorithm that uses a population-based
search to find the archived non-dominated solutions (Pareto approximate set) at the end of
the optimization. The Borg MOEA parameterization was based on its default recommended
parameter values (Hadka and Reed, 2013). The initial population size was set to 100, generated
based on random parameter sampling. To achieve a reasonable trade-off between objectives,
the ε-precision level was set to 0.01 for the NSE family and a difference of 1% for FDCsign and
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BIAS_BFI. The total number of objectives for the evaluation was set to 500 for LAI calibration,
500 for PHU_PLT, and 1000 for streamflow. For more details on Borg MOEA theory and features,
readers are advised to see Hadka and Reed (2013).

4.3 Results and discussion
4.3.1 BFI estimation

Baseflow index estimation (the ratio of long-term mean baseflow to total streamflow) was
conducted from daily streamflow data recorded at the km-105 hydrological station for 1964–
1990 since this period does not include the potential effects of the Sibinaccocha Dam on runoff
(from 1996 onwards). The baseflow indices estimated by BFLOW and WHAT were 0.76 and
0.78, respectively. The mean of these values was considered the reference baseflow index (BFI
= 0.77); it means that around 77% of the river discharge at gauge km-105 can be attributed to
baseflow. The latter is consistent with the baseflow index reported for the neighbouring Andean
Kosñypata basin with similar geology, topography, and vegetation, where 77% of annual flow
was attributed to baseflow (Clark et al., 2014). In addition, BFLOW estimated the flow recession
constant from the shallow aquifer (ALPHA_BF equal to 0.0351) which was used to replace the
default ALPHA_BF value of the model.

4.3.2 Performance of LAI simulation
Table 4.4 presents the optimized plant parameter values for mixed forest (FRST), evergreen
broadleaf forest (FETZ), pasture (PAST), and agricultural areas (AGRL). Using these optimal
parameter values, the PHU_PLT (head unit) parameter was calibrated for all HRUs covered
by perennial plants so that the SWAT-simulated LAI mimics the MODIS 8-day LAI as close as
possible. Note that AGRL was considered perennial in this study to simulate the LAI decline
during senescence using a logistic function (a feature of the SWAT version used here), since the

Table 4.4: Calibrated SWAT plant parameter values for HRUs with perennial plants: mixed forest
(FRST), evergreen broadleaf forest (FETZ), pasture (PAST), and agricultural areas (AGRL).

Parameter Parameter description Calibrated values
PAST AGRL FRST FETZ

BIO_E Radiation-use efficiency ((kg/ha)/(MJ/m2)) 17.04 13.92 1.10 0.56
BLAI Maximum potential leaf area index (m2/m2) 1.10 2.74 1.70 5.30
FRGRW1 Fraction of PHU corresponding to the first

point on the optimal leaf area development
curve

0.06 0.07 0.02 0.10

LAIMX1 Fraction of BLAI corresponding to the first
point on the optimal leaf area development
curve

0.02 0.17 0.10 0.20

FRGRW2 Fraction of PHU corresponding to the
second point on the optimal leaf area
development curve

0.49 0.38 0.44 0.50

LAIMX2 Fraction of BLAI corresponding to the
second point on the optimal leaf area
development curve

0.90 0.92 0.98 0.90

DLAI Fraction of total PHU when leaf area
begins to decline

0.48 0.59 0.40 0.48

ALAI_MIN Minimum leaf area index for plant during
dormant period (m2/m2)

0.31 0.58 0.32 0.90

T_BASE Minimum temperature for plant growth (°C) 2.07 3.46 2.00 0.05
T_OPT Optimal temperature for plant growth (°C) 18.16 10.00 14.50 13.18
PHU_PLT Total number of heat units needed to bring

plant to maturity
Variable for each HRU
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Figure 4.3: (a) Scatterplot of PHU_PLT against elevation. (b) Simulated daily LAI (range over
HRUs and area weighted HRU mean) and the 8-day MODIS LAI. (c) Long-term (2005–2015)
average daily (8-day) LAI based on SWAT (MODIS). The vertical grey line marks the end
of the calibration period and the beginning of the validation period. R2 is the coefficient of
determination.

AGRL MODIS LAI curve follows a logistic curve instead of a linear curve during the senescence
stage (Fig. 4.3(b,c)). This is in agreement with Wei et al. (2018), who recommended the use of
the logistic LAI curve during senescence for agricultural crops.

Figure 4.3(a) shows the strong negative relationship (R2 ≥ 0.83) between calibrated
PHU_PLT values and elevation for PAST, AGRL, and FRST. This means that the total number
of heat units required for a plant to reach maturity (PHU_PLT) decreases with altitude, and this
can be used as a descriptor variable to estimate PHU_PLT in basins showing high elevation
gradients. As a result, the plant parameters and the relationship between PHU_PLT and
elevation derived in this study can be used in other Andean basins.

Comparing the temporal variation of LAI dynamics (Fig. 4.3(b)), in general, SWAT-simulated
LAI corresponds well with MODIS LAI data during both calibration and validation periods for all
perennial plants. This observation is supported by good model performance statistics (NSE
≥ 0.63, R2 ≥ 0.76, and PBIAS within reasonable limits ±15%) in simulating LAI dynamics for
both evaluation periods as shown in Table 4.5. In addition, Figs 4.3(c) and 4.8 (see Appendix)
show that the spatio-temporal variability of the seasonal LAI simulated by SWAT agrees well
with MODIS LAI for all perennials. Since LAI in SWAT influences the simulation of hydrological



92 Chapter 4. Towards a more consistent eco-hydrological modelling

Table 4.5: Performance metrics for the SWAT for simulating LAI in the calibration (validation)
period. Note that performance refers to 8-day aggregated data. R2 is the coefficient of
determination.

PAST AGRL FRST FETZ
NSE 0.78 (0.72) 0.77 (0.63) 0.91 (0.83) 0.81 (0.81)
R2 0.79 (0.76) 0.81 (0.76) 0.91 (0.85) 0.82 (0.81)
PBIAS % –0.90 (–6.20) 0.20 (–1.10) 1.90 (0.00) 1.00 (2.20)

and vegetation processes such as evapotranspiration, biomass accumulation, streamflow, and
sediments (Alemayehu et al., 2017; Ha et al., 2018; Ma et al., 2019; Rajib et al., 2018; Strauch
and Volk, 2013), the good model performance in LAI simulation found here increases the quality
of the simulation of these processes.

Figure 4.3(c) shows a similar seasonal LAI pattern for PAST, FRST, and AGRL, and it follows
the seasonal rainfall pattern of the Andes. However, the onset/end (February–March/October–
November) of LAI development for FETZ is delayed regarding the onset/end (October/March)
of the rainy season in the rainforest area. This behavior was also observed in other tropical
regions with natural ecosystems (e.g. Alemayehu et al., 2017).

We found in the literature that only a few SWAT-related studies have reported the calibration
of plant parameters, and most of these have only considered a constant PHU_PLT value for
each plant type. To simulate appropriately the vegetation dynamics and hydrological processes
that depend on LAI, however, the calibration of plant parameters is crucial, particularly the
parameter that controls plant development such as the PHU_PLT, which varies with altitude in
mountain basins, as demonstrated in this study. We believe that our results and proposed LAI
calibration strategy can support modelers for a better simulation of vegetation dynamics.

4.3.3 Model performance in streamflow simulation

The Borg MOEA approach (see Section 4.2.8) was used to calibrate the SWAT model according
to the aforementioned calibration strategies (see Table 4.2), and the parameters obtained
are shown in Table 4.6. These model parameters were chosen to correct the deficiencies of
the uncalibrated model (e.g., systematic flow underestimation being higher during low-flow
periods, strong simulated peak discharges, etc.), for which the authors’ knowledge about basin
characteristics, model structure, and how each model parameter influences the hydrological
processes was important.

For single-objective, bi-objective, and multi-objective calibration, the Pareto front solution
consisting of one, three, and six sets of parameters were obtained, respectively. Figure 4.4
summarizes the results of different calibration strategies. Furthermore, the hydrographs, the

Table 4.6: Selected parameters and their ranges for model calibration for streamflow. In the
“Change type” column, R refers to a relative change of parameter values during the calibration,
and V to absolute change. “Adjusted value” refers to the parameter mean values associated
with the Pareto set obtained in the multi-objective scenario.

Parameter Description Range Change
type

Adjusted
value

CN2 Runoff curve number for moisture
condition II

[–0.15, 0.15] R 0.06

SURLAG Surface runoff delay coefficient [0.1, 2] V 0.11
SOL_BD Wet bulk density [–0.25, 0.25] R 0.09
SOL_K Soil hydraulic conductivity [–0.25, 0.25] R –0.15
SOL_AWC Available water capacity of the soil layer [–0.5, 0.25] R –0.31
GW_DELAY Groundwater delay time [1, 100] V 42.16
RCHRG_DP Deep aquifer percolation fraction [0.05, 1] V 0.52



4.3 Results and discussion 93

0.
15

2 0.
25

0.
25

0.
25

10
0

1 1 1 1 1 10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

1 1 20
0

20
0

−
0.

15 0.
1

−
0.

25

−
0.

25

−
0.

5 1

0.
05 0 0 0 0

−
10

0

−
10

0

−
10

0

−
10

0

−
10

0

−
10

0

−
10

0

−
10

0

−
10

0

−
10

0

−
1

−
1 0 0

C
N

2

S
U

R
LA

G

S
O

L_
B

D

S
O

L_
K

S
O

L_
A

W
C

G
W

_D
E

LA
Y

R
C

H
R

G
_D

P

N
S

E
_c

al

N
S

E
_v

al

lN
S

E
_c

al

lN
S

E
_v

al

P
B

IA
S

_c
al

P
B

IA
S

_v
al

S
pe

ak
_c

al

S
pe

ak
_v

al

S
hi

gh
_c

al

S
hi

gh
_v

al

S
m

id
_c

al

S
m

id
_v

al

S
lo

w
_c

al

S
lo

w
_v

al

B
IA

S
_B

F
I_

ca
l

B
IA

S
_B

F
I_

va
l

Q
su

rf
_c

al

Q
su

rf
_v

al

OF: NSE lNSE lNSE and FDCsign lNSE, FDCsign and BIAS_BFI

Figure 4.4: Parallel coordinates plot of the Pareto front optimal solutions obtained by different
calibration strategies. For each solution, optimal parameter values, discharge-based perfor-
mance measures (NSE, lNSE, and PBIAS), and hydrological signatures (Speak, Shigh, Smid, Slow,
and BIAS_BFI) are displayed. _cal (_val) indicates the measurements for the calibration (valida-
tion) period. Qsurf is the mean surface runoff in mm. A description of the SWAT parameters is
provided in Table 4.6. A description of objective functions (OFs) is provided in Table 4.3.

FDCs, and the mean seasonal flow dynamics of the different objective calibrated simulations
are shown in Figs 4.5(a,b), and 4.6, respectively.

In terms of the temporal variation of discharge dynamics (Fig. 4.5(a)), FDCs (Fig. 4.5(b)), and
seasonal discharge dynamics (Fig. 4.6), the NSE calibrated simulation corresponds well with
observed daily discharge during high discharge season but fails (flow underestimation) during
the low discharge season. This observation is supported by the higher (lower) performance
value for NSE (lNSE) as shown in Fig. 4.4. Moreover, hydrological signatures based on FDC
(Fig. 4.4) show that this calibration approach is primarily focused on the peak, high, and mid
flows at the expense of improvements to the low-flow predictions. This finding is congruent with
previous studies (Chen et al., 2018; Krause et al., 2005; Zhang et al., 2018b).

Nevertheless, lNSE calibrated simulations match well with observed discharge in all aspects
of the hydrograph (Fig. 4.5) although discharges are moderately underestimated during high-
discharge season (Fig. 4.6). Hence, lNSE is used in this study as part of the multi-objective
calibration approaches to drive the model in simulating all hydrograph aspects in the calibration.

The results for bi-objective and multi-objective approaches show that the observed and
simulated hydrographs match each other to a high degree (Fig. 4.5), and all performance
measures (goodness of fit and FDC signature metrics; Fig. 4.4) show that these formulations
are superior to the results of single-objective approaches. This finding demonstrates that the
inclusion of FDC signatures in addition to discharge-based performance measures within a
multi-objective calibration leads to improved discharge simulation, which is in agreement with
previous studies (Chilkoti et al., 2018; Hrachowitz et al., 2014; Pfannerstill et al., 2017, 2014;
Pokhrel and Yilmaz, 2012; Sahraei et al., 2020; Shafii and Tolson, 2015).

Regarding the model performance in simulating the flow components, Fig. 4.4 shows the
smaller values of PBIAS_BFI for the multi-objective calibration approach, which demonstrates
that our approach leads to a more accurate representation of the flow partitioning into surface
runoff and baseflow. Whereas approaches applied before (single-objective and bi-objective
approaches) fail in simulating the partitioning into flow components according to the baseflow
index, this agrees with the findings of Shafii et al. (2017), who reported that traditional signature-
based calibration (using discharge and FDC) does not necessarily guarantee correct flow
partitioning in a Hydrologic Model (HYMOD) hydrology model application.
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Figure 4.5: Comparison of the observed (black line) and simulated (red line/area) (a) daily
discharges and (b) simulated and observed FDC for four calibration strategies. In the case
of the bi-objective (lNSE and FDCsign) and multi-objective (lNSE, FDCsign, and BIAS_BFI)
optimization, the red area indicates optimal Pareto solutions and NSE and PBIAS are the mean
of Pareto solutions. The grey line marks the end of the calibration period and the beginning of
the validation period.

Considering the rating performance criteria of Moriasi et al. (2007), NSE greater than
0.75 and PBIAS less than 10% are indicative of very good model performance for streamflow
simulation; therefore, model performance was very good in both calibration (NSE ≥ 0.8, |PBIAS|
≤ 10%) and validation (NSE ≥ 0.8, |PBIAS| ≤ 8.7%) for daily streamflow simulation in all
calibration strategies performed in this study. The results of this study (Fig. 4.4), however,
clearly demonstrate that practitioners must be careful judging model credibility using only these
discharge-based metrics, since good model performance for streamflow and FDC simulation
does not guarantee internal consistency of all simulated processes (e.g. surface runoff and
baseflow).

In this study, additional calibration strategies (Appendix Fig. 4.9) that do not include FDC
signatures were performed, and their results suggest that our proposed multi-objective approach
is much more robust.

4.3.4 Parameter identifiability
The identification of physically plausible, representative, and robust model parameter sets
for the basin under investigation is an important task in hydrologic modelling (Shafii and De
Smedt, 2009; Wagener et al., 2001). For this purpose, we focused on the range of parameter
values associated with the Pareto optimal solutions, as suggested by Gupta et al. (1998), and
particularly on the parameters retained by bi-objective and multi-objective calibration strategies.
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Figure 4.6: The mean seasonal dynamics of simulated discharge (red line/area) and observed
discharge (black line) for each calibration strategy in the calibration period (left) and validation
period (right).

A parameter becomes more identifiable when the parameter range is narrower and/or its
optimum values are located in a particular region of the feasible range.

Figure 4.4 shows that in the bi-objective calibration scenario, four parameters (Wet bulk
density (SOL_BD), Soil hydraulic conductivity (SOL_K), Available water capacity of the soil layer
(SOL_AWC), and Groundwater delay time (GW_DELAY)) are identifiable and three parameters
(Runoff curve number for moisture condition II (CN2), Surface runoff delay coefficient (SURLAG),
and Deep aquifer percolation fraction (RCHRG_DP)) are barely or not identifiable, since different
values of these parameters give similar results in combination with the other parameters.
Otherwise, six parameters (CN2, SURLAG, SOL_K, SOL_AWC, GW_DELAY, and RCHRG_DP)
– influencing main hydrologic processes such as surface runoff, lateral flow, evapotranspiration,
and return flow from aquifers – are well identifiable, and only the parameter SOL_BD is
hardly identifiable in the multi-objective calibration strategy. The larger number of identifiable
parameters in the latter approach is due to the inclusion of the baseflow index in the multi-
objective calibration, which guides the optimization algorithm to identify parameters related to
processes that impact the baseflow index. Therefore, when more information (objectives) is fed
(required) into model calibration, the number of identifiable parameters will also increase.

Comparing the robustness of parameter sets obtained by each calibration strategy, the
parameter sets of models calibrated based on single-objective and bi-objective optimization
performed satisfactorily in simulating streamflow but for the unrealistic representation of surface
runoff (Fig. 4.4) as well as of the basin baseflow index. On the contrary, the parameter sets
obtained by a multi-objective strategy led to appropriate representation of the baseflow index as
well as streamflow and FDC simulation, and hence these parameter sets can be catalogued as
representative for the study basin. The superiority of the multi-objective strategy in simulating
flow partitioning is related to the better identification of the CN2 parameter, which directly
impacts surface runoff and infiltration partition and alters water balance components (Arnold
et al., 2012; Qi et al., 2020). Here, only representative parameters are described, and the
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narrower ranges of CN2, SURLAG, and RCHRG_DP obtained by the multi-objective approach
indicate that the basin response is very sensitive to surface runoff and deep aquifer contribution.
The obtained optimum values for CN2 (Fig. 4.4) must lead to the increase of surface runoff, and
consequently to simulated high peaks. Hence, SURLAG values contributed to smoothing the
simulated hydrograph in the channel due to the delay in surface runoff release from the HRUs
(Neitsch et al., 2011). The resulting optimal values of SOL_K (SOL_AWC) were identified to
overcome the initial issue of the fast water movement through the soil (flow underestimation).
Optimal values of RCHRG_DP (mean value 0.52) indicate that from the total water for aquifer
recharge, approximately 52% (48%) recharges the deep aquifer (shallow aquifer). The high
percentage of water reaching the deep aquifer is important for return flow from this aquifer to
improve the streamflow simulation in the low-flow period. This agrees with the finding of Clark
et al. (2014), who demonstrated the importance of return flow from deep aquifers to explain the
sustained dry season flow in the neighbouring Andean Kosñypata basin.

4.3.5 Equifinality
Figure 4.4 shows that each calibration strategy produces a model or several models with good
performance in streamflow simulation despite each model having a different set of parameters.
This result demonstrates that model outputs are subjected to the effects of equifinality or the
non-uniqueness issue (different sets of parameters in the calibration procedure resulting in
similar simulations – see Beven, 2006). This issue is common in complex nonlinear models
such as SWAT (Ficklin and Barnhart, 2014; Her and Chaubey, 2015; Shen et al., 2012; Zhang
et al., 2018a), which presents interactions among its parameters as reported by Zhang et al.
(2018a).

Controlling the equifinality to arrive at meaningful parameter sets and solutions is a challenge.
For instance, Fig. 4.4 shows that conventional calibration strategies based on hydrograph
goodness-of-fit optimization (approaches 1 and 2 with NSE or lNSE only) produce pseudo-
accurate models (with unrealistic parameter values), showing accurate performance statistics in
streamflow simulation while incorrectly representing some internal basins processes. This study
also reveals that even the bi-objective calibration strategy including FDC signature as criterion
in addition to lNSE does not improve the equifinality. However, our proposed multi-objective
calibration strategy improves parameter identifiability and reduces the equifinality because the
inclusion of the baseflow index as part of the objective function leads to better identification of
the CN parameter, which controls the flow partitioning into surface runoff and baseflow.

Overall, model calibration using only discharge is not sufficient to judge the validity of a
model in representing the hydrologic system. Therefore, we suggest including more variables
(e.g. LAI, evapotranspiration, snow, baseflow, and hydrological signatures) to better constrain
the calibration process (which was also suggested by Krysanova et al., 2018). Likewise, we
suggest the use of multi-objective evolutionary algorithms that search for acceptable trade-offs
between objectives, since these methods can help to mitigate the parameter uncertainty partly
due to equifinality during the calibration. Otherwise, practitioners must be careful using single-
objective optimization algorithms, since no sampling design schemes used in these algorithms
consider the interactions among the parameters (Devak and Dhanya, 2017; Razmkhah et al.,
2017; Song et al., 2015), and hence the solution can be subjected to equifinality.

4.3.6 Basin water balance and vegetation response
For a better understanding of the water budget for VRB, Table 4.7 shows the long-term average
annual values (1985–2015 period) for the most relevant water balance and flow components.
The results show that annual precipitation in the basin is 748 mm, of which about 50% is lost
from the system by evapotranspiration (ET = 375 mm), and 50% is the water yield of the basin
(WYLD = 373 mm). Similar ratios (44.6–51%) of ET over precipitation in Ecuadorian Andean
basins were reported (Carrillo-Rojas et al., 2019; Guzmán et al., 2015; Mosquera et al., 2015).
Regarding the WYLD components, the contribution of baseflow (BF = 291 mm, 78%) is higher
than that of surface runoff (Qsurf = 82 mm, 22%). The main component of baseflow is the
lateral flow (Qlat = 137 mm, 47%), followed by return flow from the deep aquifer (Qgwd = 79
mm, 27%) and the return flow from the shallow aquifer (Qgws = 75 mm, 26%). Our results
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Table 4.7: Long-term average annual water balance (1985–2015 period) for the VRB

Water balance components Value
Precipitation, P (mm) 748
Evapotranspiration, ET (mm) 375
Water yield, WYLD (mm) 373
Surface runoff, Qsurf (mm) 82
Baseflow, BF = Qlat + Qgws + Qgwd (mm) 291
Lateral flow, Qlat (mm) 137
Return flow from the shallow aquifer, Qgws (mm) 75
Return flow from the deep aquifer, Qgwd (mm) 79
Checks
BFI 0.77
SWAT_BFI 0.79
BIAS_BFI 0.02
ET/P 0.50

indicate that the large baseflow contribution plays a key role in modulating the flow regime
of VRB, and the important groundwater contribution explains the dry-season baseflow. This
outcome is consistent with the findings for Peruvian Andean basins draining into the Amazon
River, such as the Kosñypata (Clark et al., 2014) and upper Marañon River basin (Hill et al.,
2018), where the substantial dry-season discharge was attributed to return flow from deep
aquifers.

To assess the role of tropical Andean vegetation on water yields and baseflow, we examined
the variability of the ratio of water yield over precipitation (Fig. 4.7b,d) and the SWAT-estimated
baseflow index (SWAT_BFI; Fig. 4.7c,e) across HRUs and different land-use types. The
results show that the greatest ratio (∼0.63) of water yield over precipitation is produced in
pasture (PAST) areas which span the middle and upper part of the basin mainly (Fig. 4.1). Urban
(URML) and barren (BARR) areas can produce water yields of ∼43% and ∼52% of precipitation,
respectively, contributed by surface runoff mainly, as the baseflow index (SWAT_BFI) values
are very low in these land uses. Although the evergreen broadleaf forest (FETZ) areas located
around the basin outlet experience the greatest amount of precipitation, the water yield in those
areas is lower (<37% of precipitation), as for example in agricultural areas (AGRL) and mixed
forest (FRST).

Figure 4.7(e) shows lower values of baseflow indices for agricultural areas, compared to
pasture for instance, which may indicate the poor hydrological regulation capacity of cultivated
areas. Otherwise, mixed forest, evergreen broadleaf forest, and pasture exhibit higher rates
(>∼0.89) of baseflow to water yield, which highlights the features of these land uses in improving
the infiltration and subsurface processes. We observed, however, that pasture presents
important hydrological services such as greater water yields and higher rates of baseflow
simultaneously in comparison to forest, which shows higher baseflow but poor water yields in
VRB. The negative impacts of forest on water yield are consistent with the findings of previous
studies in Andean basins (e.g. Buytaert et al., 2007; Ochoa-Tocachi et al., 2016).

Finally, the verification of BIAS_BFI being equal to 0.02 (2%; Table 4.7) highlights the SWAT
model’s capability in simulating surface runoff and baseflow, which is essential to help the local
water resources management including water supply services, identification of critical areas
for soil conservation intervention, hydroelectric energy production, and preventing floods and
droughts.

4.3.7 Limitations and perspectives
Despite the efforts of this study to reduce parameter uncertainty during the calibration procedure,
we note that our results are still subject to uncertainties in the input data (e.g. climate, soil, and
land use), data used for model calibration (e.g. discharge, BFI, and LAI), and model structure
due to the simplification of hydrologic processes as well as to uncertainties in remaining
model parameters. For instance, despite the utility of the climate data used in this study to
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Figure 4.7: Above is (a) the spatial variability at HRU level of precipitation, (b) ratio of water
yield (WYLD) over precipitation, and (c) simulated baseflow index (SWAT_BFI). Below is (d) the
ratio of WYLD over precipitation and (e) SWAT_BFI for each land-use type.

drive hydrologic model in a basin with data scarcity, such as VRB, gridded climate data are
subject to uncertainties in the observed data and spatial interpolation procedures. In particular,
precipitation may have systematic bias caused by wind, which is inherent in precipitation
measurements and introduces an unquantified error (Pollock et al., 2018). We assumed that
BFI, which was estimated using digital filter methods based on daily discharge and used to
constrain the flow partitioning, gives a physically plausible result. However, future work should
involve the use of tracers and/or stable isotopes to estimate BFI and validate the indirect
methods used in this study. We rely on discharge data from the km-105 hydrometric station for
model calibration and validation. However, discharge data may have errors because of inherent
uncertainties in flow measurement and rating curves (Tomkins, 2014). Uncertainties up to ±20%
in flow measurement using the traditional area-velocity method and the current meter were
reported in Andean basins of Colombia (Parra et al., 2016). Hence, future studies are needed
to quantify uncertainties in hydrologic modelling owing to errors in observed discharge data in
Andean basins. Finally, in this study, only one streamgauge was used for model calibration and
validation because of data scarcity, but we are confident in the robustness of our methodology
which can be used in instrumented basins to perform the calibration/validation at multiple sites
within the catchment, and even in ungauged basins where FDC and baseflow index can be
obtained through regionalization approaches (e.g. Atieh et al., 2017; Beck et al., 2013).

4.4 Summary and conclusions
This study developed a step-wise, multi-objective calibration framework applied to the SWAT
model for the simulation of vegetation dynamics, streamflow, and flow partitioning. The first part
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of the framework deals with model calibration of leaf area index dynamics, for which the SWAT
LAI-related parameters of perennial plants were calibrated using MODIS LAI data as a reference
and following the LAI calibration scheme proposed in this study (see Section 4.2.6). The second
part of the calibration strategy deals with model calibration of streamflow and flow partitioning,
for which the inclusion of the baseflow index as well as discharge and FDC signatures within
a multi-objective calibration approach is proposed. This approach is compared to discharge-
based (single-objective, e.g. NSE) and signature-based (bi-objective, which includes criterion
for discharge and FDC signatures) calibration strategies. The data-scarce Vilcanota River basin
located in the Peruvian Andes served as a case study to demonstrate the advantages of the
proposed model calibration framework, with a view to providing a better understanding of the
basin’s internal hydrological processes. The following conclusions can be drawn from the study:

• The LAI calibration scheme led to good model performance in the simulation of LAI when
compared to MODIS LAI. Moreover, our findings shed light on the fact that in basins with
high elevation gradients, heat units change with altitude; therefore, the SWAT parameter
that controls the plant growth (PHU_PLT) decreases with height, and its calibration is
crucial for correct LAI simulation in mountainous regions.

• Our results also show that better model performance in streamflow, FDC, and flow
partitioning simulation is achieved when the model is calibrated using the proposed multi-
objective calibration approach, whereas calibration approaches applied previously led to
an unrealistic representation of flow partitioning even though good model performance for
streamflow simulation is achieved with these strategies.

• The proposed methodology was observed to increase the identifiability of SWAT pa-
rameters related to evapotranspiration, streamflow, and flow partitioning, whereas the
parameter values obtained by previous calibration approaches were unrealistic.

• This study shows that the solution of the SWAT model, which presents interactions among
its parameters (Zhang et al., 2018a), using previous calibration approaches is subjected
to equifinality since these approaches produced pseudo-accurate models, showing good
model performance for streamflow simulation while incorrectly representing some internal
basin processes. In contrast, the proposed multi-objective calibration, which includes the
baseflow index, was observed to reduce the parameter equifinality.

• Regarding the eco-hydrology of the Andean Vilcanota River basin, it was found that
evapotranspiration represents 50% of the average annual precipitation. The baseflow is
the main component of the long-term streamflow (78% of it, on average) with an important
contribution from deep aquifers that sustains the dry-season baseflow. Our findings further
illustrate that areas covered by pasture offer better hydrological services regarding the
water yield and baseflow in comparison to other land uses. The ability of the SWAT model
to realistically simulate vegetation dynamics, streamflow, and baseflow can contribute to
improving water resources management of the VRB and similar water catchments.

Overall, our proposed calibration and validation framework for hydrologic models such as
SWAT increases the chances of obtaining the right answer for the right reason in hydrologic
modelling, which is a crucial step toward more realistic hydrological applications. Examples
include a better understanding of basin hydrology and water resources and an evaluation of
the impacts of land-use changes and climate change. The proposed calibration framework can
be applied in any mountain basin and can be adapted to the calibration of other physically or
process-based hydrological models.
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Figure 4.8: Spatio-temporal variability of average monthly LAI values for the period 2005–2015
estimated by MODIS and SWAT at HRU level. The spatial correlation (r) between MODIS and
SWAT LAI is shown in parentheses.
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Figure 4.9: Parallel coordinates plot of the Pareto front optimal solutions obtained by additional
calibration strategies: the traditional biobjective function based on discharge only (NSE and
PBIAS) and the objectives defined by discharge measures and baseflow index, such as “NSE
and BIAS_BFI,” “lNSE and BIAS_BFI,” and “NSE, PBIAS, and BIAS_BFI.” For each solution,
optimal parameter values, discharge-based performance measures (NSE, lNSE and PBIAS),
and hydrological signatures (Speak, Shigh, Smid, Slow, and BIAS_BFI) are displayed. _cal (_val)
indicates the measurements for the calibration (validation) period. Qsurf is the mean surface
runoff in mm. A description of SWAT parameters is provided in Table 4.6. A description of
objective functions (OFs) is provided in Table 4.3. All calibration strategies shown in this figure
perform worse than those calibration strategies that include lNSE, FDC signatures, and baseflow
index within a multiobjective calibration framework as shown in Fig. 4.4.
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Abstract
Peru faces climate change, and its consequences include retreating glaciers and more frequent
severe droughts and floods. This study intends to analyze current and projected hydrological
conditions in Peruvian and transboundary river catchments using novel hydrometeorological
datasets and state-of-the-art regional climate projections. The objective is to investigate the
various components of the regional terrestrial hydrological cycle and hydrological extremes
under current conditions and scenarios for the mid (2035-2065) and end (2065-2095) of the
century. The study utilizes novel observational data and bias-adjusted CMIP6 projections for
sustainable (SSP1-2.6) and fossil fuel-based (SSP5-8.5) development scenarios, employing a
well-calibrated and regionally adapted and extended regional-scale hydrological model.

Key findings reveal the Amazon-Andes transition region as a significant hotspot for water
yield, driven by abundant rainfall and lower atmospheric water demand/evapotranspiration.
Subsurface hydrological pathways, particularly baseflow from aquifers, strongly influence water
yield in lowland and Andean catchments. The Pacific Basin exhibits an elevation- and latitude-
dependent increase in water yield, while the Amazon Basin follows an unimodal curve peaking
in the Amazon-Andes transition region. The study emphasizes the importance of floodplains in
the Ucayali River in mitigating flood peaks.

Climate change projections indicate spatiotemporal and elevation-dependent shifts in the
dynamics of hydrological variables and extremes. Andean regions are expected to experience
amplified precipitation, water yield, and streamflow year-round, whereas Peruvian Amazon
lowland catchments may see reductions in these variables during the wet season onset,
particularly in central and southern regions. Additionally, there is an anticipated decrease in
low flows in the Amazon lowlands and an increase in high flows in the Andean and northern
Amazon catchments. These findings have crucial implications for water resource management,
climate change adaptation, and the development of strategies to mitigate the risks associated
with hydrological extremes.

Highlights

1. State-of-the-art simulations of current and projected hydrological conditions across Peru.
2. The Amazon-Andes transition region is highly relevant for South American water yield.
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3. Floodplains in the Ucayali River play a vital role in mitigating flood peaks.
4. Water yield is projected to increase in Andean basins and decrease in Amazon lowlands.
5. Projections suggest more floods in Andean basins and more droughts in Amazon lowlands.

Published as:
Fernandez-Palomino, C. A., Hattermann, F. F., Krysanova, V., Vega-Jácome, F., Lavado, W.,
Santini, W., Gutiérrez, R. R., and Bronstert, A. (2023a). “Pan-Peruvian Simulation of Present
and Projected Future Hydrological Conditions Using Novel Data Products and CMIP6 Climate
Projections”. In: SSRN. DOI: 10.2139/SSRN.4602668
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5.1 Introduction

Peru heavily relies on the available water resources for agriculture, energy, human well-being,
and natural ecosystems. However, water availability is unevenly distributed across its three
natural drainage basins (the Amazon basin, the Pacific basin, and the Titicaca Lake basin;
Fig. 5.1), with climate change exacerbating this situation. In the Pacific basin, home to 66% of
the population, only 2% of the total water resources are available, posing a risk of water scarcity
for major coastal cities like Lima, which has over 10 million inhabitants (ANA, 2012; Bergmann
et al., 2021). Climate change-induced rising temperatures and altered precipitation patterns
are accelerating the hydrological cycle, leading to intensified floods, droughts, changes in river
flow regimes, and limiting the operational capabilities of water infrastructure (Gloor et al., 2015;
Marengo and Espinoza, 2016; Pabón-Caicedo et al., 2020; Rosas et al., 2020). To address
these challenges, comprehensive knowledge of current and projected future hydroclimatic
conditions at a national scale is crucial for sustainable water management, long-term planning,
and successful adaptation. However, obtaining such knowledge in the tropical Andes is
challenging due to the region’s complex, highly variable, and changing hydrological and climatic
conditions (Espinoza et al., 2020; Pabón-Caicedo et al., 2020; Russell et al., 2017), sparse and
poor-quality hydrometeorological measurements (Condom et al., 2020), and particular uncertain
precipitation datasets (Fernandez-Palomino et al., 2022). Moreover, global hydrological and
even more global climate models (GCMs) have shown that their capabilities in simulating
regional-scale processes in these terrains are too limited to base meaningful and responsible
water resources management actions on Fernandez-Palomino et al., 2024; Towner et al., 2019.

Peru’s hydroclimatic conditions, influenced by the Andes and various large-scale and local
factors, are complex and crucial for regulating the country’s climate. The Andes act as an
orographic barrier, separating the comparatively cold and dry eastern Pacific region from
the warm and moist Amazon region. These conditions are further modulated by large-scale
factors (e.g., Atlantic intertropical convergence zone, South American monsoon systems,
marine currents, Bolivian high) and local circulation patterns (e.g., upslope and downslope
moisture transport) as well as the complex Andean orography (Espinoza et al., 2020). The
El Niño-Southern Oscillation significantly impacts hydroclimate at the interannual timescale
(Poveda et al., 2020). This intricate interplay of factors has resulted in Peru’s remarkable
ecological diversity, with diverse ecosystems like deserts, punas, páramos, glaciers, mountain
forests, tropical montane cloud forests, and rainforests, which reflect the country’s unique
characteristics Espinoza et al., 2020; Fernandez-Palomino et al., 2022. Importantly, these
hydroclimatic conditions are currently changing (see below), affecting Peru’s ecological diversity
and calling for increased attention and understanding of these changes.

Peru is already experiencing hydroclimatic intensification due to warming and changes in
precipitation patterns. Since the mid-20th century, significant warming has been observed,
particularly in higher elevations and the southern Peruvian Andes, with a trend of up to 0.3°C per
decade (Aguilar-Lome et al., 2019; Bergmann et al., 2021; Imfeld et al., 2021; Lavado Casimiro
et al., 2013; Pabón-Caicedo et al., 2020; Vicente-Serrano et al., 2018; Vuille et al., 2015).
This warming, along with other factors such as increased El Niño events and local conditions
(slope, aspect, altitude, and albedo), has significantly impacted Peru’s glaciers (Cai et al.,
2023; Juřicová and Fratianni, 2018; Rabatel et al., 2013; Veettil and Kamp, 2019; Vuille et al.,
2018). From 1962 to 2016, Peruvian glaciers have rapidly reduced in area, shrinking by 54%
(INAIGEM, 2018; Masiokas et al., 2020). The shrinking glaciers initially lead to increased runoff
but eventually reach a ’peak water’ turning point, after which runoff declines. Peak water has
already been reached in 82-95% of the tropical Andes glacier area (Hock et al., 2019; Huss and
Hock, 2018), indicating a rise in water stress during the dry season in glaciated catchments
(Buytaert et al., 2017; Vuille et al., 2018).

Several studies show changes in precipitation and discharge patterns, with noticeable
regional and seasonal variations. While mean and maximum precipitation and discharge in
the Pacific and Titicaca Lake basins show no significant trends under current conditions, there
has been an increase in minimum discharge, attributed to glacier melting or water regulation
infrastructures (Fernández-Palomino and Lavado-Casimiro, 2017; Lavado Casimiro et al., 2012;
Rau et al., 2019; Vega-Jácome et al., 2018). Southern Peruvian Andes have experienced
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increased summer precipitation and shortened rainy season duration, with the wet season
beginning later and ending earlier (Imfeld et al., 2021; Segura et al., 2020; Torres-Batlló and
Martí-Cardona, 2020). In the Peruvian Amazon basin, the northern region (north of 8°S) has
experienced an increase in precipitation, discharge, and wet-day frequency, while the southern
region has seen a decrease in these variables, along with an increase in dry-day frequency and
a month-longer dry season since the 1970s (Espinoza et al., 2019, 2016; Espinoza Villar et al.,
2009a; Gloor et al., 2013; Lavado Casimiro et al., 2012; Marengo et al., 2018; da Motta Paca
et al., 2020; Pabón-Caicedo et al., 2020). Furthermore, floods and droughts have intensified
in the Amazon River basin in recent decades (Marengo and Espinoza, 2016). These findings
highlight the ongoing intensification of Peru’s hydroclimatic conditions, with the potential for
further amplification in the future.

Climate projections based on CMIP Phase 3, 5, and 6 models indicate that Peru will likely
face more severe hydro-climatic conditions due to climate change. These models suggest a
temperature increase throughout the 21st century in Peru, with seasonal and regional variations
(Bradley et al., 2006; Fernandez-Palomino et al., 2024; Pabón-Caicedo et al., 2020; Seiler
et al., 2013; Vuille et al., 2018). By the end of the century, temperatures are expected to
rise by 1.4°C to 4.4°C under low and high-end CMIP6 scenarios, reaching up to 7°C during
September-November in the Peruvian Amazon lowlands (Fernandez-Palomino et al., 2024).
This is a matter of concern, as temperature increase exceeding 4°C in the Amazon will likely
disrupt the forest-climate equilibrium and may cause significant loss of tropical forests (Lenton,
2011; Nobre et al., 2016; Salazar and Nobre, 2010). Even in the most optimistic climate
scenario, the Peruvian tropical glaciers are projected to disappear or shrink substantially by the
end of the century (see Masiokas et al., 2020 and references therein). Precipitation projections
vary by region and CMIP class, with notable changes under high-warming scenarios. CMIP3, 5,
and 6 models project a drier lowland and wetter Andes response, but CMIP3 models anticipate
a reduction in precipitation in the southern Peruvian Andes (Altiplano) during the 21st century
(Fernandez-Palomino et al., 2024; Pabón-Caicedo et al., 2020; Seiler et al., 2013). Further
investigation is needed to reduce uncertainties in precipitation projections over Altiplano.

The hydrological projections for limited Andean catchments, including Llanganuco, Vilcanota,
Chancay-Huaral, and Santa River, indicate increased wet-season streamflow attributed to
higher precipitation under high-emission scenarios, and reduced dry-season flow resulting
from diminishing glaciers and rising water demand for various water uses (Andres et al., 2014;
Juen et al., 2007; Motschmann et al., 2022; Olsson et al., 2017). These changes raise
concerns regarding water scarcity during the dry season due to anticipated future increases in
water demand in the Andean catchments. Marañón, the main tributary of the Amazon River,
including the Huallaga River, is expected to experience increased river flow under high-warming
scenarios (Lavado Casimiro et al., 2011; Zulkafli et al., 2016), while the Purus catchment in the
southern lowlands is likely to have a decrease in discharge (Dalagnol et al., 2017). Hydrological
projections for extremes indicate a higher risk of wet-season floods in the Marañón river basin
and increased drought frequency, intensity, and duration in the Titicaca Lake basin (Zubieta
et al., 2021; Zulkafli et al., 2016) as well as in the glaciated Santa and Vilcanota-Urubamba river
catchments (Potter et al., 2023). These hydroclimatic projections suggest that the acceleration
of the hydrological cycle will continue in the future.

To effectively address the challenges posed by climate change, reliable hydrometeorological
data is crucial. However, the only coarse observational network and unreliable gridded meteoro-
logical datasets, particularly for precipitation—a critical factor in the water cycle and hydrological
studies—hinder progress (Condom et al., 2020; Fernandez-Palomino et al., 2022). Regional
studies consistently report biases and inaccuracies in global precipitation datasets derived from
various sources for Peru, including satellite data, reanalysis, and merging procedures (see
Fernandez-Palomino et al., 2022 and references therein). These uncertainties significantly
affect the estimation of hydrological model parameters and water balance components, empha-
sizing the need for improved data quality (Fernandez-Palomino et al., 2022; Wang et al., 2023;
Ye et al., 2012).

The Peru’s National Meteorology and Hydrology Service (SENAMHI) has recently developed
the Peruvian Interpolated data of SENAMHI’s Climatological and Hydrological Observations
(PISCO) dataset, which provides gridded meteorological data, including precipitation, maximum
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and minimum temperature (Aybar et al., 2020; Huerta et al., 2018). PISCO has been used
for hydrological modeling at various scales, ranging from specific catchments like the Andean
Vilcanota River catchment and those draining into the Pacific Ocean to the national level
(Asurza-Véliz and Lavado-Casimiro, 2020; Fernandez-Palomino et al., 2020; Llauca et al.,
2021, 2023). SENAMHI evaluated the current and future national water balance using climate
data from PISCO and three CMIP5-GCMs (Lavado-Casimiro et al., 2021). However, our
understanding of countrywide hydrological conditions remains incomplete due to the primary
reliability of PISCO precipitation data limited to Peruvian Andean catchments (Aybar et al.,
2020; Fernandez-Palomino et al., 2022). Additionally, relying on a few climate models restricts
the robustness of hydroclimatic projections, potentially overlooking significant variations and
uncertainties.

To bridge this gap, Fernandez-Palomino et al. (2022) successfully developed the ’Rain for
Peru and Ecuador (RAIN4PE)’ dataset, providing the most reliable and accurate precipitation
data for countrywide hydrological applications. In addition, Fernandez-Palomino et al. (2023b,
2024) introduced the BASD-CMIP6-PE dataset, offering bias-adjusted and statistically down-
scaled climate projection data based on the latest CMIP6 climate models. This dataset utilizes
PISCO-temperature and RAIN4PE precipitation as its foundation, enabling reliable climate
impact assessments in Peru and Ecuador.

Building upon state-of-the-art and reliable climate datasets, our study intends to comprehen-
sively analyze current and projected hydrological conditions in the Peruvian and transboundary
river catchments for the first time. The objective is to investigate the different components of the
regional hydrological cycle and hydrological extremes for current conditions and for scenarios
of the mid (2035-2065) and end (2065-2095) of the century addressing the following research
questions:

1. What is the current spatial distribution and pattern of water balance components?
2. How does the distribution between water yield components vary?
3. How does the current seasonal water yield vary?
4. What is the relationship between water yield and elevation across different basins?
5. How does streamflow vary seasonally, and how do floodplains influence this variation?
6. How do projected changes in precipitation, evapotranspiration, and water yield vary

spatially and with elevation?
7. How do projected precipitation, evapotranspiration, and water yield vary throughout the

seasons?
8. How does projected streamflow vary spatially and seasonally?
9. How will climate change impact extreme hydrological conditions in Peru?

By evaluating the present situation (points 1-5) and future projections (points 6-9) for low and
high warming scenarios, we believe that our findings will provide valuable insights for regional
and national water resource management, climate change adaptation, and the development of
effective strategies to mitigate the risks associated with hydrological extremes such as floods
and droughts.

5.2 Methods
5.2.1 Hydrological model and observation-based driving data

We employed the process-based, semi-distributed, continuous, and widely-used hydrological
model Soil and Water Assessment Tool (SWAT 2012 Rev. 664; Arnold et al., 1998) with recent
improvements to better represent tropical vegetation and river-floodplain dynamics (Alemayehu
et al., 2017; Fernandez-Palomino et al., 2022; Santini, 2020). SWAT has been successfully
applied in Peru for ecohydrological modeling, assessing and improving precipitation data through
reverse hydrology, and evaluating various precipitation datasets and bias-adjusted GCM outputs
(Fernandez-Palomino et al., 2022, 2020, 2024). The basin is divided into subbasins and further
into hydrological response units (HRUs) based on land use, soil type, and slope classes (Neitsch
et al., 2011). Water balance computations are performed at the HRU level considering four
water storage types (snow, soil profile, shallow aquifers, and deep aquifers).



108 Chapter 5. Pan-Peruvian hydrological simulation

Figure 5.1: SWAT model performance in simulating monthly streamflow for 72 gauges in Peru
in terms of Kling-Gupta efficiency (KGE) and percent bias (PBIAS) for the 1983-2015 period,
based on Fernandez-Palomino et al. (2022). The figure also depicts the three natural drainage
basins: (i) the Pacific basin (located on the western side of the Andes and draining water to the
Pacific Ocean); (ii) the Amazon basin (located on the eastern side of the Andes and draining
into the Amazon River); and (iii) the Titicaca Lake basin (catchments draining into Titicaca
Lake).

∆S =
N∑

i=1

(P − WYLD − ET − GWL) (5.1)

where ∆S is the change in water storage (mm); N is the time in days; and P, WYLD, ET,
and GWL are the amount of precipitation (mm), water yield (mm), evapotranspiration (mm), and
deep groundwater losses (mm), respectively.

Water yield (WYLD) is considered to be the sum of the following components of the hydro-
logical cycle: surface runoff (Qsurf), lateral flow (Qlat), and return flow from shallow (Qgws) and
deep (Qgwd) aquifers.

WYLD = Qsurf + Qlat + Qgws + Qgwd (5.2)

In this study, we used the calibrated and validated SWAT model by Fernandez-Palomino et al.
(2022) for Peruvian and transboundary river catchments, covering a total area of 1,638,793
km2, comprising 2,675 subbasins and river segments and 6,843 HRUs.

The model was driven by high-resolution (1d, 10km) observation-derived novel data, includ-
ing daily precipitation from the RAIN4PE dataset (Fernandez-Palomino et al., 2021, 2022) and
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minimum and maximum temperature from the PISCO dataset (Huerta et al., 2018). Figure 5.1
presents the model’s performance in simulating streamflow during the historical period (calibra-
tion and validation) in terms of modified Kling-Gupta efficiency (KGE, Kling et al., 2012) and
percent bias (PBIAS, Gupta et al., 1999) for 72 gauges. The KGE values range from 0.65 to
0.96, and 89% of the gauges show PBIAS between -15% to 15%. Overall, the model exhibited
very good performance according to the criteria set by Moriasi et al. (2007), with a median KGE
of 0.85 and a median |PBIAS| of 7.2% for simulating streamflow and achieving water balance
closure across most of the streamflow stations. The model was also verified for high and low
flows and showed good performance as well (Fernandez-Palomino et al., 2022). For a better
understanding of the SWAT model’s application for Peruvian catchments, including details on its
setup, calibration, validation, and parameter regionalization, we refer to Fernandez-Palomino
et al. (2022).

5.2.2 Driving climate model data

We utilized meteorological forcing data (precipitation, minimum and maximum temperature)
from the BASD-CMIP6-PE dataset (Fernandez-Palomino et al., 2023b, 2024). This dataset,
tailored for the region, incorporates historical and projected climate data from 10 CMIP6-GCMs.
Employing Lange’s trend-preserving method for bias adjustment and statistical downscaling
(Lange, 2019, 2021b), the dataset achieves a high-resolution representation (1d, 10km) that
aligns and optimizes with observational data.

The BASD-CMIP6-PE climate data, designed for assessing climate impacts in Peru and
Ecuador, reliably captures spatial patterns of atmospheric variables and streamflow dynamics,
including mean, low, and high flows (Fernandez-Palomino et al., 2024). The dataset includes
regional data from the following GCMs: CanESM5 (Swart et al., 2019), CNRM–CM6–1 (Voldoire
et al., 2019), CNRM–ESM2–1 (Séférian et al., 2019), GFDL–ESM4 (Dunne et al., 2020),
IPSL–CM6A–LR (Boucher et al., 2020), MIROC6 (Tatebe et al., 2019), MPI–ESM1–2–HR
(Müller et al., 2018), MRI–ESM2–0 (Yukimoto et al., 2019), and UKESM1–0–LL (Sellar et al.,
2019).

The hydrological simulations in this article incorporate data from all 10 CMIP6-GCMs,
considering historical and future scenarios based on two Shared Socioeconomic Pathways
(SSPs): SSP1-2.6 (sustainable, 2.6 W/m2 by 2100) and SSP5-8.5 (fossil fuel-based, 8.5 W/m2

by 2100). This approach addresses model uncertainty by utilizing the multimodel median and
spread, exploring future, model-based climate uncertainty from anthropogenic forcing through
the selected CMIP6 scenarios.

5.2.3 Analysis of current hydrological dynamics and projected hydrological changes

We analyzed current hydrological conditions using the calibrated SWAT model driven by ob-
servational climate data and projected future conditions using the aforementioned 10 GCMs
and subsequent bias-adjustment of the climate data. To assess the impact of climate change
on hydrological processes and extremes, we computed the multimodel median changes in
water balance components and river flows (average, low, and high) for two future time slices
(2035–2065, the 2050s, and 2065–2095, the 2080s) under SSP1-2.6 and SSP5-8.5, relative
to the reference period of 1985-2015 (the 2000s). These future periods represent projected
hydroclimatic conditions for the mid-century (2050s) and end-of-century (2080s). High and low
flows were determined using Q5 and Q95, respectively, representing flows exceeding the 5%
and 95% thresholds of the analysis period. These indices were computed based on simulated
daily mean flows.

Our analysis defines the Amazon-Andes transition region as encompassing areas above
500 meters above sea level (m a.s.l.) within the Amazon basin, and Amazon lowland refers
to lower elevations. Within the transition region is a tropical montane forest zone known as
the ’montane zone/catchments,’ spanning elevations ranging from 500 to 3000 m a.s.l.. These
catchments are characterized by tropical montane cloud forests and páramo ecosystems, which
receive a significant proportion, up to 30%, of their precipitation from cloud and fog water
sources (Cárdenas et al., 2017; Fernandez-Palomino et al., 2022; Gomez-Peralta et al., 2008).
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Table 5.1: SWAT-simulated average annual water balance (1985–2015) for Peru and three
drainage systems, including transboundary basins

Component Amazon
basin

Pacific
basin

Titicaca Lake
basin

Peru

Area (km2) 1361958 234824 42011 1638793
Precipitation, P (mm) 2491 414 693 2147
Evapotranspiration, ET
(mm)

1075 252 528 943

Water yield, WYLD (mm) 1416 162 165 1204
Streamflow, Q (m3/s) 60967 1212 220 62399
Ratios
ET/P (%) 43 61 76 44
WYLD/P, Q/P (%) 57 39 24 56
Q basin/Q Peru (%) 97.7 1.9 0.4 100

In general, the basins located in the Amazon-Andes transition region, the Pacific basin, and the
Lake Titicaca basin are considered Andean regions/basins in the literature.

5.3 Results and discussion
5.3.1 What is the current spatial distribution and pattern of water balance components?

The simulated water balance for Peru, including its transboundary basins, provides information
about the country’s water resources and its distribution for the different large basins (Table 5.1).
They show that Peru receives an average annual precipitation of 2,147 mm, with water yield
(evapotranspiration) accounting for 56% (44%) of the total precipitation. The Amazon basin
exhibits the highest water yield among the basins, representing 57% of the precipitation, while
the Pacific and Lake Titicaca basins have lower percentages of 39% and 24%, respectively.
These lower percentages indicate a larger share of evapotranspiration in the Pacific and Titicaca
Lake basins. The runoff ratios in each drainage system were similar to the water yield values
over precipitation, indicating minimal long-term water storage and a balanced regional water
cycle.

Regarding total freshwater resources, Peru has a combined discharge of 62,399 m3/s leaving
Peruvian catchments, underlining its importance as a water tower in the region. The Amazon
basin contributes 97.7% (60,967 m3/s) of this total, followed by the Pacific basin accounting for
1.9% (1,212 m3/s), and the Titicaca Lake basin contributing 0.4% (220 m3/s). These findings
align with the observation-based (river gauging data) estimation of water availability in Peru by
the National Water Authority of Peru (ANA, 2012), which reported 54,535 m3/s in the Amazon
basin, 1,140 m3/s in the Pacific basin, and 222 m3/s in the Titicaca Lake basin. In contrast,
our findings differ from the previous countrywide simulation-based study conducted by Lavado-
Casimiro et al. (2021). They reported lower water supply in the Pacific basin (1,010 m3/s) and
the Amazon basin (40,538 m3/s), and higher water supply in the Titicaca basin (285 m3/s).

Other local studies have also reported a similar lower water supply in the Pacific basin. For
instance, Rau et al. (2019) estimated a value of 747 m3/s, while Asurza-Véliz and Lavado-
Casimiro (2020) estimated 990 m3/s. These differences can be partly attributed to the exclusion
of transboundary catchments between Peru and Ecuador, such as the Tumbes and Chira,
in the study by Rau et al. (2019). It is possible that both Asurza-Véliz and Lavado-Casimiro
(2020) and Lavado-Casimiro et al. (2021) underestimated streamflow in the Pacific basin
due to the underestimation of precipitation over the northern Andean region when using
the PISCO-precipitation product as a driver for hydrological modeling, as demonstrated in
Fernandez-Palomino et al. (2022). Additionally, the PISCO-precipitation product substantially
underestimates precipitation over the Amazon lowlands (Fernandez-Palomino et al., 2022),
which can explain the significant underestimation of water supply in the Amazon basin by
Lavado-Casimiro et al. (2021). Despite these differences, our estimated water availability for
Peru and across the three drainage systems is consistent with observation-based estimations,
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enhancing the reliability of our water balance estimations and providing valuable information for
effective water resource management.

The spatial pattern of water balance components in Peru shows an increasing trend for
all hydrological components from west to east, with notable concentration areas (hotspots)
of precipitation (P) and water yield (WYLD) in the montane zone (Fig. 5.2a,d). In this zone
and the northern Amazon lowlands, water yield exceeds evapotranspiration (WYLD/P > 0.5).
Conversely, in the highlands of the Amazon basin (>3000 m a.s.l.), as well as in the Pacific
and Titicaca Lake basins and the southern Amazon lowlands, evapotranspiration dominates
(WYLD/P < 0.5), signifying less available water for runoff and potential anthropogenic water
use.

Mean annual streamflow shows a wide range (Fig. 5.3a, left panel), ranging from low values
in the dry catchments of the Pacific basin to high values of approximately 52,000 m3/s in the
Amazon River at Santo Antonio Do Ica hydrological station downstream of the Peru-Colombia-
Brazil border. Specific streamflow (Fig. 5.3a, center panel), which accounts for streamflow
per unit area, highlights the Amazon basin catchments as nearly ten times more productive
on average (with a median value of about 43 l/s/km2) compared to the Pacific (4 l/s/km2) and
Titicaca Lake (6 l/s/km2) basins. Montane catchments generally have high specific streamflow
values, up to 143 l/s/km2.

Previous studies have emphasized the Amazon-Andes transition region as the wettest area
(Chavez and Takahashi, 2017; Espinoza et al., 2015), with higher runoff compared to the
Amazon lowland (Builes-Jaramillo and Poveda, 2018). In this study, we show, for the first time,
that the montane zone (500-3000 m a.s.l.) in the Amazon-Andes transition region also exhibits
the highest water yield and streamflow per unit area. This is attributed to abundant precipitation
(up to 5700 mm/year) from rainfall and cloud/fog water, along with reduced evapotranspiration
resulting from persistent low-level cloud cover and cooler temperatures compared to the
surrounding lowlands. These wet atmospheric conditions minimize evaporative losses and
contribute to a higher water yield and streamflow. Overall, our findings emphasize the significant
role of the montane catchments in shaping the hydrological variability of the entire Amazon
basin.

5.3.2 How does the distribution between water yield components vary?
The simulated water yield components highlight the dominant influence of subsurface hydro-
logical pathways over surface runoff in determining water yield in Peruvian and Ecuadorian
catchments (Fig. 5.2b). Baseflow, primarily driven by return flow from the shallow aquifer (Qqws),
emerges – according to our model results – as the primary contributor to water yield in Amazon
lowland catchments. In contrast, Andean catchments exhibit a complex system with multiple
sources, including lateral flow (Qlat) and return flows from both shallow (Qqws) and deep (Qgwd)
aquifers. The return flow from deep aquifers plays a crucial role in regulating the baseflow
regime in Andean catchments, ensuring substantial discharge even during the extended dry
seasons. Previous studies conducted in Peruvian Andean basins, such as Kosñypata (Clark
et al., 2014), upper Marañon (Hill et al., 2018), and Vilcanota River basin (Fernandez-Palomino
et al., 2020; Wunderlich et al., 2023), have also highlighted the importance of this flow. Although
there is uncertainty in quantifying water yield components due to the inability to directly verify
or compare these flows with measurements, these results provide valuable information for
improved water resource management and sustainable use by recognizing the significance of
subsurface hydrological flows.

5.3.3 How does the current seasonal water yield vary?
The simulated seasonal distribution of water yield shows spatial variations across the study
area, with different timing of water yield peaks from south to north (Fig. 5.2c). In the Ecuadorian
and northern Peruvian Amazon, water yield follows a weak annual cycle (with small differences
in water yield between seasons), while the southern catchments, including both Andean and
lowland areas, experience a strong annual cycle, with high (low) yields during December-May
(June-November). The timing of water yield peaks varies spatially, occurring in December-
February over southern catchments, March-May over northern Andean catchments draining
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Figure 5.2: (a) The distribution of water budget components, including precipitation (P), evapo-
transpiration (ET), water yield (WYLD), and the WYLD/P ratio; (b) the ratio of WYLD components,
such as surface runoff (Qsurf), lateral flow (Qlat), and return flow from shallow (Qgws) and deep
(Qgwd) aquifers, relative to the total WYLD; (c) the seasonal-to-annual WYLD ratio; and (d) the
elevation-dependent distribution of WYLD/P, with the shaded region (gray) representing the
montane zone and the x-axis showing increasing (decreasing) elevation values for the Pacific
and Titicaca Lake basins (Amazon basin), mirroring the western and eastern slopes of the
Andes.
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Figure 5.3: (a) Distribution of mean annual streamflow (Q) and specific streamflow (per unit
area) for 1985-2015 period, (b) seasonal distribution of streamflow, represented by the ratio
of seasonal mean streamflow to annual mean streamflow, and (c) streamflow seasonality
in Ucayali River for 2009-2015 (common period with available observed data). The specific
streamflow map shows intervals containing 12.5% of the total river segments. The LAG + PIN
represents the combined streamflow observed at the Lagarto and Puerto Inca hydrological
stations.

into the Pacific, and March-August over the Ecuadorian and northern Peruvian Amazon. These
variations in peak timing are influenced by precipitation fluctuations associated with the latitudi-
nal migration of the Intertropical Convergence Zone, the mature phase of the South American
Monsoon system, and the influence of the Andes topography on precipitation (Arias et al.,
2021a; Espinoza et al., 2020). These results highlight the complexity of water availability
dynamics and emphasize the importance of considering seasonal dynamics in water resource
management, infrastructure development, and planning efforts.
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5.3.4 What is the relationship between water yield and elevation across different basins?
Water yield distribution exhibits diverse patterns related to elevation across different basins
(Fig. 5.2d). In the Pacific Basin, there is a gradual increase in WYLD/P with elevation for
similar latitudes, and water yield generally increases from south to north, which is consistent
with the findings of Asurza-Véliz and Lavado-Casimiro (2020). Conversely, no clear pattern
emerges in the Titicaca Lake basin. In the Amazon Basin, WYLD/P and elevation follow an
unimodal curve, with a peak occurring at 1000-1500 m a.s.l. (mean WYLD/P = 0.68) in the
Amazon-Andes transition region. These findings highlight the complex relationship between
water yield distribution and elevation in different basins.

5.3.5 How does streamflow vary seasonally, and how do floodplains influence this variation?
Simulated streamflow exhibits seasonal variations, following a pattern of water yield from south
to north and from summer (December-February) to winter (June-August) (Figs. 5.2c, 5.3b).
The annual seasonal streamflow variation in the Ecuadorian and northern Peruvian Amazon is
relatively attenuated but more pronounced in southern catchments.

In the Amazonian rivers of the Amazon lowlands, the floodplain (a landscape that is pe-
riodically inundated by water from an adjacent river) plays a crucial role in attenuating peak
discharge due to the water connection between the channel and floodplain (De Paiva et al.,
2013; Opperman et al., 2010; Yamazaki et al., 2011). We observed in measured discharge data
that the Ucayali River, a tributary of the Amazon River, exhibits the most pronounced delay in
peak flows during the high discharge season (Fig. 5.3b,c). Upstream at the Lagarto and Puerto
Inca hydrological stations, peak flow occurs during summer (February), while downstream at
the Requena hydrological station, it is observed in autumn (April). This two-month delay could
be attributed to floodplains acting as reservoirs, causing significant delays and attenuations of
flood peaks (Fernandez-Palomino et al., 2022; Santini et al., 2015; Santini, 2020).

Previous studies have modeled this phenomenon by considering floodplains as surface
reservoirs connected to the main river channel (De Paiva et al., 2013; Yamazaki et al., 2011;
Zulkafli et al., 2016). However, this approach could not fully explain the delay from Lagarto to
the Requena station, which can last several months.

Fernandez-Palomino et al. (2022) and Santini (2020) have incorporated additional interac-
tions between floodplains and reaches into the SWAT model. These interactions encompass
factors such as water infiltration from floodplain flow or ponded water during overbank flood
events, storage of water in floodplain alluvium, and subsequent backflow into the channel as
the flood wave subsides and water levels decrease. Incorporating these additional processes
into the SWAT model has shown improvement in the agreement between the observed and
simulated streamflow, as depicted in Fig. 5.3c.

One has to acknowledge the significant influence of floodplains on the delay and attenuation
of flood peaks in the Ucayali River. Neglecting this aspect in hydrological modeling can have
significant negative implications (e.g., misrepresentation of flood peak magnitude and timing)
for flow simulation in the Amazon River. Therefore, incorporating these processes into the
hydrological models is essential for proper modeling and predicting the river system’s behavior.

5.3.6 How do projected changes in precipitation, evapotranspiration, and water yield vary
spatially and with elevation?
Projected changes in precipitation, evapotranspiration, and water yield exhibit spatial variability
and are influenced by elevation across the study area (Figs. 5.4a,b). The Andean regions are
expected to experience increased precipitation, while a decrease is projected over the Amazon
lowlands, especially noticeable under the high warming scenario towards the end of the century.
In the Pacific basin, precipitation is anticipated to increase by 6-11% (2035-2065) and 6-23%
(2065-2095) under the SSP1-2.6 and SSP5-8.5 scenarios, with greater increases towards lower
elevations. Caution is advised when interpreting percentage changes over coastal and arid
regions (<2000 m a.s.l.), as small changes in precipitation can lead to significant percentage
variations in precipitation, evapotranspiration, and water yield (Fig. 5.4b). In the Titicaca Lake
basin, precipitation is projected to increase by 5% (2035-2065) under both scenarios, with a
persistent increase of 4% (SSP1-2.6) or an amplified increase of 14% (SSP5-8.5) for 2065-2095.
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Figure 5.4: (a) Spatial and (b) elevation distribution of projected multimodel median changes
in water budget components under SSP1-2.6 and SSP5-8.5 scenarios for 2035–2065 and
2065-2095, relative to the reference period (1985–2015). The shaded region (gray) represents
the montane zone, and the x-axis shows increasing (decreasing) elevation values for the Pacific
and Titicaca Lake basins (Amazon basin), mirroring the western and eastern slopes of the
Andes. Note that multimodel median values of water balance components for 1985-2015 are
similar to those derived from SWAT driven by observational data.

The greater precipitation changes (up to 24%) are expected in lower elevations in the northern
areas of Titicaca Lake. In the Amazon basin, overall changes in precipitation are negligible, but
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they vary with elevation, with an increase (of up to 36%) in the Andean region and a decrease
(of up to -12%) in the lowlands, particularly in central and southern areas.

Projected evapotranspiration changes indicate that the Amazon lowlands are expected to
experience a more significant increase than the Andean region, except for the Altiplano region in
the Titicaca Lake basin, where a decrease is anticipated. In the Pacific basin, evapotranspiration
is projected to increase by 3-6% (2035-2065) and 3-13% (2065-2095) under SSP1-2.6 and
SSP5-8.5 scenarios, with greater increases towards lower elevations. Conversely, the Titicaca
Lake basin is anticipated to experience a decrease in evapotranspiration of -4% to -3% (2035-
2065) and -6% to 0% (2065-2095), with greater reductions (of up to -40%) in lower elevations
surrounding Titicaca Lake. This paradoxical evapotranspiration reduction can be linked to
the projected rise in humidity and cloud cover due to projected increased rainfall and wet
days. Ground measurements also suggest that evaporation decreases with higher rainfall in
the Titicaca Lake region (Delclaux et al., 2007). In the Amazon basin, evapotranspiration is
expected to increase by 3-5% (2035-2065) and 3-9% (2065-2095), with the montane zone
between 1000-3000 m a.s.l. showing lower increases compared to 500-1000 m a.s.l., as well
as the lowlands (<500 m a.s.l.) and highlands (>3000 m a.s.l.).

Projected water yield changes expose regional variations in response to shifts in precipitation
and evapotranspiration. The Pacific basin is expected to experience a water yield increase
of 11-19% (2035-2065) and 12-40% (2065-2095) under SSP1-2.6 and SSP5-8.5 scenarios,
with some sub-catchments showing even higher than 75% increase. Also, for the Titicaca
Lake basin, the model projects a rise of 34-32% (2035-2065) and 38-60% (2065-2095). In the
Amazon basin, the high Andean basins (>3000 m a.s.l.) may even see water yield increases
exceeding 75%, while lowland areas (<500 m a.s.l.) could experience a decline of up to -50%
by the end of the century under SSP5-8.5. Although the montane zone (500-3000 m a.s.l.) is
expected to undergo less pronounced changes, the significant reduction in water yield (under
future drier conditions) below 1000 m a.s.l. (see Fig. 5.4b) could lead to an upward shift in the
minimum elevations of tropical montane cloud forests. This aligns with a previous report by
Helmer et al. (2019), highlighting the shrinking of these forest habitats due to climate change.

The simulated overall increased (decreased) water yield over the Andean regions (Amazon
lowland) in the future, as presented in this study, aligns with the findings of Brêda et al. (2020).
Their study, based on an ensemble of 25 CMIP5-GCMs at the South American level, also
reported similar patterns of water yield over the tropical Andes under medium and high warming
scenarios. Additionally, Lavado-Casimiro et al. (2021) observed similar patterns over northern
Andean catchments (>8°S) draining into the Pacific Ocean, using three CMIP5-GCMs. However,
their projections suggest a negative change signal towards the southern Andean catchments.
This discrepancy may be attributed to the use of a limited number of climate models, which
could potentially limit the robustness of hydroclimate projections.

We consider that the use of 10 CMIP6-GCMs in this study and the agreement of our results
with the findings of Brêda et al. (2020) enhances the plausibility of the projected hydroclimatic
changes.

5.3.7 How do projected precipitation, evapotranspiration, and water yield vary throughout
the seasons?
Projected changes in seasonal precipitation (Fig. 5.10), evapotranspiration (Fig. 5.11), and
water yield (Fig. 5.5) reveal distinct patterns in the study area, with pronounced changes,
particularly under fossil fuel based development (SSP5-8.5) towards the end of the century.
Precipitation decreases in the Amazon lowlands at the beginning (September-November) and
end (June-August) of the hydrological year, with no significant changes during the wet seasons
(December-March). In contrast, Andean regions would experience increased precipitation
almost year-round. Evapotranspiration shows consistent increases in the lowlands and minimal
changes in the Andean regions year-round. These changes in precipitation and evapotran-
spiration have significant implications for water yield across the study area. The Amazon
lowlands witness a decrease in projected water yield throughout the year, except during the wet
season (June-August) in the Ecuadorian and northern Peruvian Amazon. In contrast, Andean
regions exhibit increased water yield year-round, with only minor changes in the montane zone.
These projections underscore the seasonal variability of water yield in response to changes
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Figure 5.5: Projected seasonal multimodel median changes in water yield under SSP1-
2.6 and SSP5-8.5 scenarios for 2035–2065 and 2065-2095, relative to the reference period
(1985–2015).

in precipitation and evapotranspiration, emphasizing the importance of understanding water
resources in the study area.

5.3.8 How does projected streamflow vary spatially and seasonally?
The projected changes in mean annual and seasonal flow show spatiotemporal variations
that align with projected patterns in water yield, with notable impacts, particularly under fossil
fuel intense development (Figs. 5.6, 5.7, 5.8, 5.9, 5.12). Figs. 5.6 and 5.12 illustrate the
spatial distribution of annual and seasonal streamflow changes. Fig. 5.7 presents the seasonal
streamflow projections and annual changes for specific river catchments across the three
drainage systems, ordered from south to north. Similarly, Figs. 5.8 and 5.9 display the results
for other river catchments. These figures (Figs. 5.7, 5.8, and 5.9) may be valuable resources for
users interested in examining specific river catchments and comparing past and future studies.

The projections show an increase in streamflow in Andean rivers year-round, with significant
rises in the wet season and minor increases in the dry season (Figs. 5.6, 5.12). This positive
trend is evident in the Andean rivers of the Pacific basin (e.g., Ocoña, Chancay-Huaral, Santa,
and Chira rivers, see Figs. 5.7, 5.8), the Titicaca Lake basin (Ilave, Ramis, Coata, Huancane,
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Figure 5.6: Spatial distribution of projected multimodel median changes in mean, high (Q5),
and low (Q95) flows under SSP1-2.6 and SSP5-8.5 scenarios for the periods 2035–2065 and
2065–2095, relative to the reference period (1985–2015).

see Figs. 5.7, 5.8), and the Amazon basin (e.g., Upper Marañon at Borja station, Mantaro,
Pampas, Vilcanota, Apurimac, see Fig. 5.9). The multimodel projections indicate that median
changes in streamflow can reach up to 70% in Andean rivers, especially in the Titicaca Lake
catchments under the SSP5-8.5 scenario. Among the Andean catchments, the montane
catchments, including Mayo and Pachitea rivers (Fig. 5.9), are projected to have minimal
streamflow changes (less than 7%) throughout the year under both warming scenarios (SSP1-
2.6 and SSP5-8.5).

The positive change in streamflow in Andean catchments aligns with previous research
(Andres et al., 2014; Juen et al., 2007; Lavado Casimiro et al., 2011; Motschmann et al., 2022;
Olsson et al., 2017), which consistently indicated increased wet-season streamflow under high
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Figure 5.7: Seasonal streamflow projections for 2035–2065 and 2065–2095 under SSP1-2.6
and SSP5-8.5 scenarios in representative river catchments draining into the Pacific Ocean
(P1:P4), the Titicaca Lake (T1:T2), and the Amazon River (A1:A8), arranged from south to
north. Boxplots display mean streamflow changes with multimodel median values relative to the
reference period (1985–2015). River catchments (indicated by gauges specified in numbers)
are shown in brackets.

emissions scenarios in catchments such as Llanganuco, Mantaro, Vilcanota, Chancay-Huaral,
and Santa River. However, the minor increase in water availability during the dry season will be
insufficient due to anticipated future increases in water demand in Andean catchments (Goyburo
et al., 2023; Motschmann et al., 2022). Therefore, to mitigate potential water shortages during
dry periods, it is recommended to focus on adaptation strategies that enhance both natural and
artificial water storage and regulation capacity.

The Amazon lowland tributaries generally experience a decrease in projected streamflow
throughout the year, except during the wet season (June-August) in the Ecuadorian and northern
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Peruvian Amazon (Figs. 5.6 and 5.12). Specifically, those near the Brazilian border (e.g., Purus,
Jurua, Javari, see Fig. 5.9) are projected to have significant year-round reductions, with expected
decreases of up to 28%. These findings align with the negative anomalies reported for these
tributaries by Brêda et al. (2020). Additionally, Dalagnol et al. (2017) projected a decrease in
discharge in the Purus catchment, further supporting the evidence of declining streamflow in
the region.

Our projections indicate that the overall streamflow of the upper Amazon River will remain
relatively stable during the 21st century, except for its northern tributaries under the worst-case
scenario (Fig. 5.7). Specifically, we anticipate significant annual streamflow reductions of up to
-10% in the transboundary rivers such as Napo and Putumayo in the north, primarily occurring
between September and February. The Marañón River will exhibit minimal fluctuations, ranging
from 1% to 6%, with a decrease observed from September to November. Conversely, the
southern tributaries, such as the Ucayali and Madre de Dios rivers, are projected to experience
negligible changes throughout the year, with streamflow anomalies ranging from -4% to 5%.
Similarly, at the Tabatinga hydrological station, the Amazon River is projected to undergo
marginal variations, ranging from -3% to 1%, with a decrease from September to November.
These projections align with similar future anomalies reported for the upper Amazon River,
ranging from -5% to 5%, by Brêda et al. (2020), further supporting our projections of the future
streamflow dynamics in the upper Amazon River system.

Our projections also show significant changes in the Ecuadorian Amazon under SSP5-8.5
(Fig. 5.7). The northern Napo river at the Nuevo Rocafuerte station is expected to experience
a streamflow decrease of up to -7% between September and November, while the southern
Santiago river will undergo a substantial increase of up to 19% in streamflow. These projections
provide valuable insights into the future streamflow dynamics in the Ecuadorian Amazon which
is crucial for transboundary water management.

5.3.9 How will climate change impact extreme hydrological conditions in Peru?
Projected changes show significant alterations in extreme hydrological conditions, especially
under fossil-fueled development, towards the end of the century (Fig. 5.6). These changes
exhibit spatial variability across Peru. Low flows (Q95) are projected to decrease further over
the Amazon lowlands but increase in the Andean catchments. On the other hand, high flows
(Q5) are expected to decrease in the central and southern Peruvian Amazon lowlands while
increasing in the Andean and northern Amazon catchments, which agree with the projected
higher risk of wet-season floods in the Marañón river basin (Zulkafli et al., 2016). These
projections indicate the potential for increased water exposure during flood events in the
Andean catchments and water scarcity during droughts in the lowlands. The projected changes
in hydrological extremes emphasize the urgent need for developing adaptation measures to
mitigate the impacts of floods and droughts. Under the sustainable pathway (SSP1-2.6), the
future impacts on hydrological extremes are relatively minor, highlighting the benefits of climate
adaptation and mitigation efforts.

5.3.10 Limitations and perspectives
We conducted an analysis of current and projected hydrological conditions in Peruvian and
transboundary river catchments, utilizing reliable observational and projected climate datasets
for Peru and Ecuador that were generated in our previous studies (Fernandez-Palomino et al.,
2021, 2022, 2023b, 2024). The SWAT model, adapted for Andean and Amazonian regions, was
carefully calibrated and validated in our previous study by Fernandez-Palomino et al. (2022) to
simulate streamflow effectively, including both low and high flows.

Despite the overall good performance of SWAT in simulating streamflow, uncertainties
persist in the results of water balance components (e.g., evapotranspiration, water yield, surface
runoff, lateral flow and return flows from both shallow and deep aquifers) due to the lack of
direct observations to verify these variables. These uncertainties are influenced by factors
such as the quality of input data (e.g., climate, soil, and land use) and data used for model
calibration (e.g., discharge). We used discharge data from stations located upstream of the
largest dams and reservoirs (primarily situated in the Pacific basin), which have also been
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used in previous studies to simulate natural hydrological processes (Asurza-Véliz and Lavado-
Casimiro, 2020; Llauca et al., 2021; Rau et al., 2019). However, these discharge data might
incorporate influences from water management infrastructures (e.g., small man-made reservoirs
and irrigation) not accounted for in our hydrological modeling. Additionally, the simplification
of hydrologic processes in the model structure and uncertainties in model parameters and
parameter regionalization contribute to overall uncertainties in the results.

Furthermore, it’s crucial to recognize that projected changes in hydrological variables
are also subject to future climate uncertainty incorporated in GCMs, anthropogenic forcing
scenarios (Hattermann et al., 2018), and bias adjustment and downscaling of GCM outputs.
These additional sources of uncertainty must be considered when interpreting the study’s
findings and implications. To compare and verify the projected hydrological changes in this
study—derived from bias-adjusted and statistically downscaled CMIP6-GCM simulations for
Peru—we recommend future studies incorporating simulations from regional climate models.
These models dynamically downscale GCM outputs, enhancing the depiction of complex terrain-
related processes, like precipitation (Dereczynski et al., 2020; Lloyd et al., 2021). Naturally,
these regional model simulations should undergo bias adjustment using dependable local
observational climate datasets before their incorporation into climate impact assessments.

Additionally, our study was conducted at the national scale, and certain small-scale hydro-
logical processes, particularly in glaciated catchments, may not have been fully accounted for
in the modeling. To better understand these specific areas and their contributions to the overall
hydrology of Peru, future studies should focus on improving hydrological modeling at smaller
scales.

In this study, we showed the potential impacts of climate change on hydrological variables.
To gain deeper insights, future research should explore how changes in land use might affect
these water processes.

5.4 Summary and conclusions
We comprehensively analyzed current and projected hydrological conditions in Peruvian and
transboundary river catchments using observational data and bias-adjusted CMIP6 projections
for sustainable (SSP1-2.6) and fossil fuel-based development (SSP5-8.5) pathways. Our
findings can be summarized as follows:

1. Peru’s total renewable freshwater resource, including total river runoff, is estimated at
around 62,399 m3/s, with the Amazon basin contributing 97.7%, the Pacific basin 1.9%,
and the Titicaca Lake basin 0.4%. The montane zone (500-3000 m a.s.l.) in the Amazon-
Andes transition region has the highest water yield and streamflow per unit area (up to
143 l/s/km2), playing a significant role in shaping the hydrological variability of the entire
Amazon basin.

2. The distribution of water yield components highlights the dominant influence of subsurface
hydrological pathways in determining water yield. Baseflow, driven by return flow from
aquifers, is crucial in water yield in lowland and Andean catchments.

3. In the study area, seasonal water yield patterns show an attenuated annual cycle in the
Ecuadorian and northern Peruvian Amazon and a strong varying annual cycle in southern
catchments. The timing of peak water yields differs spatially and temporally, emphasizing
the significance of considering these variations in water resource management and
planning efforts.

4. The relationship between water yield and elevation differs across different basins. In the
Pacific Basin, water yield increases with elevation and latitude. The Titicaca Lake basin
does not show a clear pattern, while in the Amazon Basin, water yield follows an unimodal
curve with a peak in the montane zone, highlighting the complex relationship between
water yield and elevation.

5. Floodplains significantly impact streamflow seasonality in the Ucayali River, attenuating
and delaying peak flows for up to two months during the high discharge season. Consid-
ering the impact of floodplains is crucial for managing and predicting river behavior in the
Ucayali River and downstream in the Amazon River.
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6. Projected changes in hydrological variables exhibit spatial and elevation-dependent vari-
ations, particularly by the end of the century under the high-end scenario (SSP5-8.5).
Andean regions are expected to receive increased precipitation, whereas the Amazon
lowlands, particularly in central and southern areas, may experience a decrease. Evapo-
transpiration is projected to increase throughout the study area, except in the Altiplano
region, where a decrease is anticipated. Water yield changes align with precipitation
patterns, resulting in significant increases in high Andean basins and potential declines in
lowland areas.

7. Projected changes in water balance components show distinct seasonal patterns. In
the Amazon lowlands, precipitation is projected to decrease at the beginning and end of
the hydrological year (during the dry seasons), while Andean regions would experience
increased precipitation year-round. Evapotranspiration consistently may increase in
the lowlands and minimally changes in the Andean regions year-round. Consequently,
water yield may increase in the Andean regions and decrease in the Amazon lowlands
throughout the year, except for the northern Amazon, where an increase is projected
during the wet season.

8. Projected streamflow changes show spatial and seasonal variability. Andean rivers
are expected to have increased streamflow throughout the year, while Amazon lowland
tributaries may experience a decrease in river flow, especially during the wet season
onset (September-February). Despite these regional differences, the overall streamflow
of the upper Amazon River is expected to remain relatively stable over the course of the
21st century.

9. Climate change is projected to have significant impacts on extreme hydrological conditions.
Low flows are projected to decrease further in the Amazon lowlands but increase in the
Andean catchments. High flows are expected to decrease in the central and southern
Amazon lowlands while increasing in the Andean and northern Amazon catchments.
These changes call for adaptation measures to mitigate flood and drought risks.

10. In conclusion, the projected increase in precipitation, water yield, and low flows antici-
pates greater water availability for Andean ecosystems and water usage within Andean
catchments. Nevertheless, the projected rise in precipitation and high flows could lead to
increased flooding and sediment load, potentially causing economic and human impacts,
as well as shortening the lifespan of water reservoirs, as highlighted by Potter et al. (2023)
and Rosas et al. (2020). Conversely, within Amazon lowland catchments, the anticipated
decrease in precipitation, water yield, and low flows, particularly during dry seasons,
points to heightened dry season water stress in the future. This could significantly im-
pact Amazon rainforest ecosystems, exacerbating the currently marked loss of rainforest
resilience (Boulton et al., 2022), and affecting fluvial transportation and food supplies.

11. It is crucial to highlight that the projected changes in hydrological variables (precipitation,
evapotranspiration, water yield, and streamflow) and hydrological extremes (high and
low flows) are more pronounced in the SSP5-8.5 pathway than in SSP1-2.6, especially
toward the end of the century. This highlights the urgent need to implement robust climate
policies to promote sustainable development and address the impacts posed by fossil
fuel-based development.

The study has clearly shown the high level of spatiotemporal details and variations in
the regional-scale/meso-scale hydrological cycle. Understanding such nuances is crucial for
adequate water management and precautionary adaptation to expected hydrological changes
driven by global climate change. This also emphasizes the necessity for hydro-climate change
projections tailored to the region, as highlighted by studies such as Bronstert et al. (2007)
and Vormoor et al. (2015). When considering potential water management and adaptation
measures for such a region, global-scale analysis can hardly provide the required level of detail
(Hattermann et al., 2017).
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5.A Appendix

Figure 5.8: Seasonal streamflow projections for catchments draining into the Pacific Ocean
(1:20) and Titicaca Lake (21:22). Boxplots show mean streamflow changes with multimodel
median values. River catchments (indicated by gauges specified in numbers) are shown in
brackets.
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Figure 5.9: Seasonal streamflow projections for catchments draining into the Amazon River.
Boxplots show mean streamflow changes with multimodel median values. River catchments
(indicated by gauges specified in numbers) are shown in brackets.

5.B Supporting information
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Figure 5.10: Projected seasonal multimodel median changes in precipitation under SSP1-
2.6 and SSP5-8.5 scenarios for 2035–2065 and 2065-2095, relative to the reference period
(1985–2015).
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Figure 5.11: Projected seasonal multimodel median changes in evapotranspiration under
SSP1-2.6 and SSP5-8.5 scenarios for 2035–2065 and 2065-2095, relative to the reference
period (1985–2015).
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Figure 5.12: Projected seasonal multimodel median changes in streamflow relative to the
baseline (1985-2015)
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6.1 Synthesis and conclusion

This thesis aimed to enhance the understanding of the hydrological dynamics in the tropical
Andes of Peru and Ecuador with a specific emphasis on their responses to climate change. To
achieve this, existing research gaps have been identified and analyzed in more detail. This
section summarizes and discusses the main findings and conclusions related to the specific
research questions.

How well do state-of-the-art regional and global precipitation datasets perform in the tropical
Andes for hydrometeorological applications?

The developed novel high-resolution (1d, 10km) precipitation dataset for Peru and Ecuador,
called RAIN4PE, emerges as the most reliable precipitation product in the region for hydrometeo-
rological applications (Chapter 2). RAIN4PE was created by integrating multisource precipitation
data (satellite, reanalysis, and ground-based precipitation) with surface elevation using the
random forest method. Furthermore, precipitation estimates underwent adjustments using
streamflow data through the reverse hydrology method for catchments influenced by fog/cloud
water input, such as páramo and montane watersheds on the eastern side of the Andes.

The assessment of the reliability and accuracy of RAIN4PE, alongside other precipitation
products (CHIRP, ERA5, CHIRPS, MSWEP, and PISCO), utilizing observed precipitation data
and hydrological modeling, reveals that the latter products exhibit greater biases and inade-
quately represent the temporal dynamics (seasonality) of precipitation, especially in equatorial
regions such as the Ecuadorian Amazon (Fig. 2.6). It is demonstrated that these errors prop-
agate in streamflow simulations, resulting in the poor performance of the hydrological model
(Figs. 2.7,2.8).

Contrarily, RAIN4PE proves to be more reliable and accurate when compared to precipitation
gauge data and when used as a forcing input for hydrological modeling. This is evidenced by
the satisfactory performance of the hydrological model in simulating mean, low, and high stream-
flows in most Peruvian and Ecuadorian watersheds (Figs. 2.7,2.8). Furthermore, RAIN4PE is
the only product ensuring the closure of the water balance in most simulated basins (Fig. 2.8).
These results underscore that the precipitation product generated as part of this thesis is
currently the most suitable in the tropical Andes for hydrometeorological applications, including
hydrological extremes.
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Indeed, RAIN4PE has been utilized in several research studies. For example, it has been
employed as a reference dataset to evaluate the effectiveness of regional climate simulations in
reproducing historical rainfall patterns across the Andes-Amazon transition region (Gutierrez
et al., 2024). Additionally, it has been instrumental in simulating discharges in the San Pedro
River catchment in Quito, Ecuador (Núñez Mejía et al., 2023).

What is the performance of raw and regionally adapted global climate model simulations over
the tropical Andes?

Chapter 3 comprehensively evaluates raw and regionalized global climate model (GCM) sim-
ulations, focusing on their performance over the tropical Andes. The regionalized climate
simulations belong to the developed BASD-CMIP6-PE dataset, presenting results derived from
applying the bias adjustment and statistical downscaling method to the CMIP6-GCM simulations
at high resolution (1d, 10km) tailored to the region of Peru and Ecuador. It is worth mentioning
that the adjusted simulations were derived using reliable regional observational datasets, such
as RAIN4PE, as reference data.

Significant shortcomings were identified in the performance of raw GCM simulations when
evaluated using observation-based data and hydrological modeling. Raw simulations exhibit
notable biases and limitations in capturing the mean annual cycle of atmospheric variables,
particularly falling short in representing the annual precipitation cycle over the equatorial region
(refer to Figs. 3.2-3.5). These errors are critical as they propagate in streamflow simulations,
making raw GCM data unsuitable for hydrological impact assessments (refer to Fig. 3.6).

In contrast, results from the BASD-CMIP6-PE dataset showed substantial improvements.
The regionalized outputs demonstrated improved representations of long-term observed
climate statistical properties, including mean and extreme values and seasonal patterns
(Figs. 3.4,3.5,3.7). Hydrological simulations utilizing the regionalized GCM outputs under-
scored the appropriateness of regionalized GCM simulations in accurately depicting streamflow,
including mean, low, and high flows (Fig. 3.7). These findings highlight the reliability of the
BASD-CMIP6-PE dataset in assessing regional climate change impacts on agriculture, water
resources, and hydrological extremes. In fact, BASD-CMIP6-PE has been utilized in local-scale
projects within river catchments, such as Mantaro and Piura, to examine historical and potential
future changes in climate and water resources.

In summary, the findings expose challenges GCMs face in accurately representing key hydro-
climatic variables, such as precipitation and temperature, within the present-day climate of the
tropical Andes, emphasizing the significance of regionalization for reliable impact assessments
at the regional level.

How does hydrological model calibration influence the model’s reliability regarding vegetation,
streamflow, and flow partitioning simulations?

This research question is addressed in Chapter 4 by employing various calibration strategies
for the Soil and Water Assessment Tool (SWAT) eco-hydrological model within a typical Andean
catchment, the Vilcanota River catchment. The evaluation includes traditional single-objective
calibration approaches, relying on discharge data metrics like Nash-Sutcliffe Efficiency (NSE or
log NSE), and bi-objective approaches that incorporate flow duration curve (FDC) signatures
in addition to discharge metrics (log NSE). Additionally, a newly developed multiobjective
calibration framework integrates remote sensing vegetation data, baseflow index, discharge
metrics, and FDC signatures.

The NSE-calibrated simulation matches observed daily discharge well during high discharge
seasons but underestimates flow during low discharge seasons, suggesting that this calibration
approach prioritizes mid and high flows, reducing accuracy in low-flow predictions (Figs. 4.4-
4.6). These findings support previous studies by Chen et al. (2018), Krause et al. (2005), and
Zhang et al. (2018b). Log NSE calibrated simulations match well with observed discharge in
all aspects of the hydrograph and FDC, although moderate underestimations exist during the
high-discharge season (Figs. 4.4-4.6).

Including FDC signatures in bi-objective calibration improves discharge (hydrograph and
FDC) simulation compared to single-objective approaches (Figs. 4.4-4.6). However, both
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strategies fail to simulate the partitioning of precipitation between surface runoff and baseflow
(Fig. 4.4).

The developed multiobjective calibration framework enhances the simulation of vegetation,
streamflow, and flow partitioning into surface runoff and baseflow (Figs. 4.4-4.6). Furthermore,
it improves the identification of model parameters, mitigating parameter uncertainty partly due
to equifinality during the calibration (Fig. 4.4). I consider these outcomes a crucial progress in
understanding catchment hydrological responses and the underlying hydrological processes.

In conclusion, incorporating more variables (e.g., vegetation, evapotranspiration, soil mois-
ture, snow, and hydrological signatures) is crucial for better constraining the calibration process.
However, using remotely sensed data, such as evapotranspiration, should be approached
with care, as these sources are biased and may lead to overestimation of SWAT-simulated
evapotranspiration and precipitation along the Andes (Chapter 2, Fig. 2.6,2.12), potentially
hindering water budget closure in Andean catchments.

How does the current spatiotemporal distribution of water balance components look like across
Peru?
For the first time, the current hydrological conditions across Peru and transboundary river
catchments were investigated through hydrological modeling using the most reliable developed
climate input data, such as RAIN4PE, as outlined in Chapter 5 (Table 5.1 and Figs. 5.2,5.3).
The results of this investigation improve understanding how water sources behave and provide
insights that can be important for managing water resources.

Peru’s total renewable freshwater resource (total river runoff) is estimated at approximately
62,399 m3/s. The Amazon basin is the predominant contributor, constituting 97.7%, while
the Pacific and Titicaca Lake basins contribute 1.9% and 0.4%, respectively. Notably, the
montane zone in the Amazon-Andes transition region stands out with the highest water yield
and streamflow per unit area (up to 143 l/s/km2), playing a pivotal role in shaping the hydrological
variability of the entire Amazon basin.

A thorough analysis of water yield components underscores the significant influence of
subsurface hydrological pathways. Baseflow, attributed to aquifer return flow, is a critical
determinant of water yield, particularly in Amazon lowland and Andean catchments.

Distinct seasonal water yield patterns characterize the study area. The Ecuadorian and
northern Peruvian Amazon exhibit an attenuated annual cycle, contrasting with strongly varying
annual cycles in southern Peruvian catchments.

The intricate relationship between water yield and elevation unfolds uniquely across the
basins (drainage systems). In the Pacific Basin, water yield increases with elevation and latitude.
Conversely, the Titicaca Lake basin lacks a clear pattern, while the Amazon Basin features
a complex unimodal curve, emphasizing the nuanced connection between water yield and
elevation.

In the Amazon lowlands, floodplains substantially impact streamflow seasonality, as ob-
served in the Ucayali River. They attenuate and delay peak flows for up to two months during
high discharge seasons, underscoring their crucial role in managing and predicting river behav-
ior in the Ucayali River and downstream in the Amazon River.

In conclusion, these research outcomes provide distinct insights into the hydrological
dynamics in the tropical Andes. The findings underscore the need for sophisticated water
resource management approaches to address spatial and temporal variations, elevation-related
complexities, and the influence of key factors such as baseflow and floodplains. This study
enhances our understanding of sustainable water resource planning, particularly in the context
of climate change and varying development pathways.

How do hydrological responses vary across areas with different land use types in the tropical
Andes?
This study investigated hydrological responses, including evapotranspiration, water yield, and
baseflow, across various land use categories—urban, barren, pasture, agricultural areas, and
high mountain forests (mixed forest)—within a typical high Andean catchment, the Vilcanota
River basin (Chapter 4, Fig. 4.7). Chapter 5 (Fig. 5.2) extended the analysis to water yields
across elevational gradients in Peru, providing insights into hydrological responses in tropical
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montane cloud forests (Amazon-Andes transition region, 500-3000 m a.s.l.) and rainforests
(Amazon lowlands, <500 m a.s.l.).

In high Andean catchments, pasture areas exhibited the highest ratio (∼0.63) of water
yield over precipitation, driven predominantly by baseflow. Urban and barren areas contributed
approximately 43%-52% of precipitation to water yield, primarily through surface runoff. Agricul-
tural areas and mountain forests exhibited the lowest water yields (<∼25% of precipitation),
suggesting significant evapotranspiration in these land use types. Agricultural areas also exhib-
ited lower baseflow indices than pasture and mountain forests, indicating reduced hydrological
regulation capacity.

Despite the hydrological benefits of mountain forests in enhancing infiltration and subsurface
processes, their high evapotranspiration demand negatively impacted water yield. Therefore,
introducing new mountain forest ecosystems for soil conservation and climate change adaptation
may adversely affect downstream water yield, as also reported in other regional studies. In
contrast, pastures provided higher water yields and baseflow rates than forests in Andean
catchments, underscoring the importance of conserving puna ecosystems to address climate
impacts.

In the Peruvian and Ecuadorian Amazon, the Amazon-Andes transition zone, dominated by
montane forest ecosystems, exhibited the highest water yields at 1000-1500 m a.s.l. (mean
water yield over precipitation = 0.68). Abundant precipitation (up to 5700 mm/year), including
rainfall and cloud/fog water, combined with reduced evapotranspiration due to persistent low-
level cloud cover and lower temperatures, contributes to elevated water yields in this transition
region. Meanwhile, water yields were lower in the Amazon lowland rainforest than in the
montane forest, decreasing towards the low latitudes.

In conclusion, puna ecosystems, such as pastures and páramos, play a crucial role in
regulating natural storage and distributing flow during extended dry periods in the region. A
recent observation-based study has emphasized the significance of these ecosystems and
bofedales (peat-forming wetlands) in natural hydrological regulation in high Andean catchments
(Wunderlich et al., 2023). Additionally, this thesis underscores, for the first time, that the highest
water yields in the region are observed in the Amazon-Andes transition zone, dominated by
montane forests, highlighting the importance of this ecosystem in the overall hydrological
regulation of the Amazon basin.

How do projected changes in water balance components vary spatially, along elevation, and
over the seasons?

Chapter 5 (Figs. 5.4-5.12) analyzes projected hydrologic trajectories in Peruvian and transbound-
ary river catchments, considering sustainable (low warming, SSP1-2.6) and fossil fuel-based
development (high-end warming, SSP5-8.5) scenarios for the mid (2035-2065) and end (2065-
2095) of the century.

The projected changes reveal distinct spatial and elevational patterns, notably amplified
under high-end warming, especially towards the century’s end. Projections indicate increased
precipitation in the Andean regions, contrasting with potential decreases in the Amazon lowlands,
especially in central and southern areas. Evapotranspiration is projected to increase throughout
the study area, except in the Altiplano region, where a decrease is anticipated. Water yield
changes closely align with precipitation patterns, resulting in substantial increases in high
Andean basins and potential declines in the Amazon lowlands, with minimal changes in the
Amazon-Andes transition region (500-3000 m a.s.l.).

Seasonal changes further emphasize hydrological complexity in the tropical Andes region.
In the Amazon lowlands, a decrease in precipitation is projected at the hydrological year’s onset
and end, suggesting dry season amplification. Conversely, Andean regions anticipate increased
year-round precipitation. Evapotranspiration consistently rises in the lowlands throughout the
year, with minimal changes in the Andean regions. Water yield is expected to increase in
the Andean regions and decrease in the Amazon lowlands across all seasons, except for the
northern Amazon, where an increase is projected during the wet season. Similarly, Andean
rivers could expect year-round increased streamflow, while Amazon lowland tributaries may
undergo a decrease, especially during the onset of the wet season (September-February).
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Despite these regional differences, the upper Amazon River streamflow is expected to remain
relatively stable over the 21st century.

In conclusion, this research offers valuable insights for addressing future water balance
challenges. The spatial and seasonal variation in water yield and streamflow shifts highlight the
need for tailored water management strategies. The amplification of changes, particularly under
high-end warming scenarios, underscores the urgency for emissions mitigation and adaptation
measures to address negative impacts on water resources.

What is the potential impact of climate change on extreme hydrological conditions in the region?
Chapter 5 (Fig. 5.6) presents the projected changes in hydrological extremes, including low
and high flows, considering sustainable and fossil fuel-based development scenarios for the
mid (2035-2065) and end (2065-2095) of the century. High and low flows were determined
using Q5 and Q95, respectively, representing flows exceeding the analysis period’s 5% and
95% thresholds.

Projections show significant changes in extreme hydrological conditions, with more severe
impact under high-end warming and towards the century’s end. The magnitude of low flows is
projected to decrease in the Amazon lowlands but increase in the Andean catchments. High
flows are expected to decrease in the central and southern Amazon lowlands while increasing
in the Andean and northern Amazon catchments. These changes call for adaptation measures
to mitigate flood and drought risks.

6.2 Outlook
This thesis represents a significant advancement to enhance the reliability of data and hydrolog-
ical models, deepening our understanding of current and potential future hydrological trends in
the tropical Andes. Although some progress has been made, future investigations are crucial
for further improving climate data, understanding hydrological extremes (such as droughts and
floods) and local hydrological processes, and assessing the impact of land use changes. Addi-
tionally, it is imperative to focus on implementing effective mitigation and adaptation measures
to address the impacts of climate change.

6.2.1 Improvement of meteorological data
Improving the representation of precipitation patterns and other meteorological variables in-
volves assimilating all available data from hydrometeorological services and private sector
entities. Specifically, daily data from numerous rain gauge stations in Ecuador and the private
sector (e.g., electricity company of ELECTROPERU) were not incorporated into the generation
of RAIN4PE due to difficulties in accessing the data. Their inclusion can further enhance the
product. Additionally, the next step is to extend the RAIN4PE product to make it available over
a longer time period for monitoring droughts and floods in the region, taking into account that
RAIN4PE data are currently available only for the period 1981-2015. Furthermore, hydrometeo-
rological services and agencies should expand the station network in areas with low station
density, such as the Amazon lowlands, the Amazon-Andes transition region, and the highlands.
This expansion will enable future studies to assimilate these data, improving the representation
of meteorological patterns in the region. Constructing new and improved gridded observational
datasets will also enhance the regionalization of climate model simulations and understanding
local hydrological processes.

6.2.2 New opportunities in research
The climatic products developed as part of this thesis (RAIN4PE and BASD-CMIP6-PE) have
proven to be the most reliable in the region, opening up new avenues for research. For
instance, future investigations could comprehensively analyze the spatiotemporal variability of
meteorological droughts in historical periods and under climate change scenarios. Similarly,
the hydrological model implemented for the region can be applied to comprehend hydrological
droughts, including future scenarios. Given their impact on agriculture and the economy of Peru
and Ecuador, these hydrological extremes deserve heightened attention. Undoubtedly, the data
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generated here presents numerous research opportunities in hydrometeorological applications
in the region, which have been hindered by the scarcity of observational data and the poor
reliability of existing local and global gridded climate datasets.

This study concentrated on the regional-scale/meso-scale in the tropical Andes. However,
certain small-scale hydrological processes may not have been reflected thoroughly in the
modeling, especially in glaciated catchments. Future research should focus on refining water
process modeling at a smaller scale to enhance our understanding of these specific catchments.

In this study, we highlighted the potential effects of climate change on hydrological variables
of such a tropical mountain region. To gain a deeper understanding, future research should
investigate how land-use changes could additionally impact these water processes.

6.2.3 Climate change adaptation measures
Anticipated changes in water availability and extreme hydrological conditions underscore the
need for a comprehensive set of adaptation measures. This is particularly crucial given the
heightened impact of climate change, especially under high-end warming scenarios towards
the end of the century. Here are potential adaptation measures for decision-makers:

• Conservation and restoration of natural ecosystems: In regions with projected de-
creases in water yield, streamflow, and low flows, priority should be the conservation and
restoration of primary rainforests in the Amazon lowlands. These rainforests contribute
significantly to moisture recycling, providing up to 50% of regional rainfall and serving
as a vital moisture source for South America (Staal et al., 2018). Conversely, scenarios
involving a 30% to 50% reduction in the Amazon rainforest may lead to a 40% reduction in
rainfall in non-deforested parts of the western Amazon (Boers et al., 2017). Similarly, con-
servation and restoration efforts should extend to puna ecosystems (pastures, páramos,
and bofedales) in Andean catchments. These initiatives can reduce greenhouse gas
emissions, enhance overall ecosystem health, and promote groundwater recharge, a
crucial water source during the extended dry season when water availability is limited due
to the anticipated rise in anthropogenic water uses.

• Water storage and reservoir management: Enhancing water storage capacity through
reservoirs and sustainable water management practices is crucial to counteract the
projected decrease in streamflow and low flows in the Amazon lowlands. This approach
also applies to Andean catchments to buffer water for the dry season and mitigate floods,
ensuring a more reliable water supply during periods of reduced flow.

• Climate-resilient agriculture practices: In regions facing changes in water availability,
promoting climate-resilient agricultural practices is crucial. This involves encouraging
water-efficient irrigation systems, adopting drought-resistant crop varieties, and implement-
ing sustainable land management practices to adapt to altered hydrological conditions.

• Floodplain management and infrastructure: In areas projected to experience increased
high flows, effective floodplain management is crucial. This involves planning, regulation,
and the implementation of strategies to mitigate the impacts of flooding. Measures may
include the development of sustainable land-use planning, zoning regulations, as well as
the implementation of levee systems and construction of flood barriers.

• Community engagement and early warning systems: Developing robust community
engagement programs and early warning systems are essential for enhancing prepared-
ness and response to increased high flows and decreased low flows. This includes
educating communities on adaptive practices and providing timely information to facilitate
effective decision-making.

• Integrated water resource management: Adopting an integrated approach to water
resource management that considers surface and groundwater sources is essential. This
involves coordinated planning and governance to ensure sustainable water use across
different sectors.

• International collaboration: Given the transboundary nature of many river catchments,
fostering international collaboration is vital. Shared strategies for adapting to changing hy-
drological conditions can enhance the effectiveness of adaptation measures and promote
regional resilience.
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These adaptations, tailored to the specific challenges presented by changing hydrological
patterns, can contribute to building resilience in the face of climate change and minimizing
potential impacts on communities, ecosystems, and economies.
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