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GENERALISED BELTRAMI EQUATIONS

IBRAHIM LY AND NIKOLAI TARKHANOV

Abstract. We enlarge the class of Beltrami equations by developping a sta-

bility theory for the sheaf of solutions of an overdetermined elliptic system of

first order homogeneous partial differential equations with constant coefficients

in Rn.
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2 I. LY AND N. TARKHANOV

Introduction

In the theory of quasiconformal mappings of domains in the plane and in real
higher-dimensional spaces, the theory of stability of conformal mappings plays an
important role (cf. [Lav58], [Bel74], [Res67, Res70, Res78]). The essence of those
studies forming the basis of this theory can be summarised as follows. Let f be a
quasiconformal mapping and locally close, in some sense, to a conformal mapping.
When can we state that f is globally close to a conformal map, in the same sense
or in a different one?

For our purpose the stability theory for conformal mappings (cf. [Lav58], [Bel74]),
which can be extended to a stability theory for holomorphic mappings, has special
significance and brings us to the basic propositions of the theory having the follow-
ing form.

Theorem 0.1. There exists a non-negative function δ, defined in [0, 1) × (0, 1),
such that:

1) δ(ε, θ) → δ(0, θ) = 0 as ε → 0, and for each θ ∈ (0, 1);
2) if f : U→C is a mapping of a domain U ⊂ C, satisfying a Beltrami equation

(∂/∂z̄)f = Q (∂/∂z)f with supU |Q| ≤ ε, then, for each θ ∈ (0, 1) and disc B ⊂ U ,
there is a holomorphic mapping u : B→C such that |f(ζ)−u(ζ)| ≤ δ(ε, θ) diam f(B)
for all ζ ∈ θB.

Here, by θB is meant the smaller concentric disc with the same centre whose
radius is θ times that of B.

The function u appearing in this theorem can be chosen to be independent of
the parameter θ, but for our purpose this distinction is not important.

Theorem 0.2. There exists a non-negative function ε, defined in [0, 1) × (0, 1),
such that:

1) ε(δ, θ) → ε(0, θ) = 0 as δ → 0, and for each θ ∈ (0, 1);
2) if f : U → C is a mapping of a domain U in the complex plane possessing the

property that, for each disc B ⊂ U , there is a holomorphic mapping u : B → C such
that |f(ζ)− u(ζ)| ≤ δ diam f(B) for all ζ ∈ θB, with some δ ∈ [0, 1) and θ ∈ (0, 1)
independent of B, then f satisfies a Beltrami equation (∂/∂z̄)f = Q (∂/∂z)f with
supU |Q| ≤ ε(δ, θ).

Theorems 0.1 and 0.2 can be proven using general properties of Beltrami systems
and quasiconformal mappings (see for instance [Vek62] and [Ahl66]).

These theorems can be considered to be, in a certain sense, reciprocal. They
express two facts: 1) holomorphic mappings in the plane are stable, i.e., if a mapping
is locally close to a holomorphic mapping, then it is globally close, too; 2) the
class of mappings close to being holomorphic coincides with the class of solutions of
those Beltrami systems (∂/∂z̄)f = Q (∂/∂z)f , for which the coefficient Q is “small”
enough.

Similar facts provide the basis of stability theory for conformal mappings in real
higher-dimensional spaces. The role of mappings which are close to holomorphic
ones is played in this case by the mappings whose quasiconformality coefficients
are close to 1 (cf. [Kop82]). In the ’80s, Kopylov [Kop82] presented a series of
papers which together form a stability theory for holomorphic mappings in higher-
dimensional complex spaces, analogous to the theory of planar and real higher-
dimensional cases discussed above.
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It was a very natural idea of Kopylov to extend the stability theory to those
mappings which are given by solutions of a system of partial differential equations in
R

n. Since the mapping classes he studied should be invariant under translations and
homotheties, the differential equations were required to be of constant coefficients
and homogeneous. As but one step in this direction he suggested his MS student
Bezrukova to investigate a class of solutions of the well-known Moisil-Theodoresco
system in R

3. Her results published in [Bez83] contain in particular a canonical
construction of Beltrami equations related to the Moisil-Theodoresco system. The
paper [Bez83] was explained in the context of solutions to general overdetermined
elliptic systems in [DK85] and [Tar85]. In [DK85], there is no canonical construction
of Beltrami equations but a substitution by a system of rough structure which could
hardly be specified within Beltrami equations. The paper [Tar85] already gives
such a canonical construction, however, it applies only to elliptic (i.e., quadratic)
systems. Complete proof of the results of [Tar85] were first published in the book
[Tar95] where also a canonical construction of Beltrami equations was conjectured
for overdetermined elliptic systems, see Section 9.3.4 ibid. The present paper is
aimed at proving this conjecture. Namely, we develop the stability theory for a
class of solutions of an overdetermined elliptic system of first order homogeneous
partial differential equations with constant coefficients in R

n. As a by-product, we
get a canonical construction of Beltrami equations related to such a system (cf.
also [Bez83], [Tar85], [DK85]).

1. The stability concept

1.1. Basic classes of mappings. Let S be a class of mappings from open sets
in the space R

n into the space R
k. We assume that each open set U in R

n is the
domain of definition of at least one mapping u ∈ S.

For an open set U ⊂ R
n, we denote by S(U) the set of mappings from U to R

k,
belonging to S. In the sequel, we shall endow the class S with some of the following
properties:

P1) The class S consists of locally bounded mappings, i.e., for each open set
U ⊂ R

n, the mappings in S(U) are bounded on compact subsets of U .
P2) The class S is invariant under translations and homotheties of the spaces Rn

and R
k, i.e., if T1x = δ1x+ x0, T2y = δ2y + y0, where δ1, δ2 are positive constants

and x0 ∈ R
n, y0 ∈ R

k are fixed vectors, then, for each open set U ⊂ R
n, the

composition T2 ◦ u ◦ T1 is in S(T−1
1 (U)) whenever u ∈ S(U).

P3) Given an arbitrary open set U ⊂ R
n, any uniformly bounded family in S(U)

is equicontinuous on compact subsets of U .
P4) The class S is closed under uniform convergence on compact subsets of the

domains of definition.
P5) If u ∈ S(U), where U ⊂ R

n is open, then the restriction of u to each open
subset Ω of U belongs to S(Ω).

P6) If u : U → R
k is locally of class S, i.e., for each point x ∈ U , there is a

neighborhood U(x) ⊂ U of x such that u|U(x) ∈ S, then u ∈ S.
Note that an equivalent formulation of P5 is: the correspondence U �→ S(U) is

a presheaf, over R
n, of mappings from open sets in R

n into the space R
k. Then,

P5 and P6 just amount to saying that the presheaf S is actually a sheaf.
A presheaf S with properties P1 and P3 is easily verified to consist of continuous

mappings.
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1.2. Examples. Let us give several examples of classes possessing the properties
P1-P6.

Example 1.1. The class of locally constant mappings from open sets in R
n into

the space R
k satisfies P1-P6.

Example 1.2. The class of holomorphic mappings from open sets in C
n into the

space C
k possesses all the properties P1-P6. In this case we identify the mappings

with those of domains in R
2n into the space R

2k.

Example 1.3. Let S be the class of locally conformal mappings from open sets in
R

n, n ≥ 3, into the same space. Here, by a conformal mapping of a domain U ⊂ R
n

is meant the restriction, to U , of some Möbius transformation of Rn which takes
finite values on U . A locally conformal mapping is either orientation preserving
or not. For the sake of definiteness we shall assume that the mappings of S are
orientation preserving. Then, the class S is easily seen to satisfy all the properties
except P4, for the uniform limit of a sequence of locally conformal mappings may
be a locally constant one.

Example 1.4. The class of harmonic mappings from open sets Rn into the space
R

k possesses the properties P1-P6. By a harmonic mapping we mean any mapping
u = (u1, . . . , uk), whose components uj are harmonic functions.

Example 1.5. The classes of Examples 1.1 1.2 and 1.4 can be characterised from
a unique point of view. Namely, let A be an (l × k) -matrix of homogeneous scalar
differential operators of order m with constant coefficients in R

n. Assume moreover
that the rank of A(ξ) is equal to k for all ξ ∈ R

n \ {0}. We denote by S the sheaf
U �→ Sol (U) of solutions to the system Au = 0 on open sets in R

n. Then, S have all
the properties P1-P6. Indeed, P3 and P4 follow from the Stieltjes-Vitali Theorem.
All the other properties are obvious.

The latter class plays a special role: the principal aim of this chapter is to
construct the foundation of a stability theory for this class.

1.3. Closeness functionals. Returning to the general situation, consider a locally
bounded mapping f : U → R

k of a domain U in the space R
n. For a number

θ ∈ (0, 1) and an arbitrary ball B ⊂ U , construct the following functional:

dθ,B(f,S) =
⎧⎨
⎩

inf
u∈S(B)

(
sup
y∈θB

|f(y)− u(y)|
diam f(B)

)
, if diam f(B) 	= 0,∞;

0, in the opposite case.
(1.1)

where θB stands for the smaller concentric ball whose radius amounts to θ times
that of B.

This functional is a measure of how close the mapping f is to the class S inside
the ball θB, in the uniform metric and relative to the linear size of the image of
the ball B under f . It can take both finite and +∞ values.

If one assumes that the class S satisfies P1, P2 and P4, then, as a rule, we shall
consider that this class contains all constant mappings. Indeed, let u ∈ S(U), where
U ⊂ R

n is open, and express U as a union of an increasing sequence {Uν}ν=1,2,... of
relatively compact open subsets of U . By condition P1, there is a sequence {cν} of
positive numbers, such that, for each ν = 1, 2, . . ., we have |u(x)| ≤ cν for all x ∈ Uν .
Condition P2 shows that uν = (1/νcν)u ∈ S(U), for each ν = 1, 2, . . .. Since
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the sequence {uν} converges uniformly on compact subsets of U to the mapping
0 : U → R

k, identically equal to 0 ∈ R
k, property P4 guarantees that 0 ∈ S. Using

property P2 once again, we reach the desired conclusion.
According to the property of the class S just proved, it is natural to require the

value dθ,B(f,S) to be equal to 0 whenever diam f(B) = 0. The same equality is
even more natural when diam f(B) = ∞.

Lemma 1.6. If the class S has properties P1, P2 and P5, then, for a fixed mapping
f : U → R

k and ball B in U , the value dθ,B(f,S) is a non-decreasing, non-negative
function of the parameter θ in the interval (0, 1), bounded above by 1.

Proof. The fact that the function φ(θ) = dθ,B(f,S) is non-negative follows from
the definition.

Now let 0 < θ1 < θ2 < 1. If the diameter of f(B) is either 0 or ∞, then we have
φ(θ1) = φ(θ2) = 0. If not, consider an arbitrary positive number ε and a mapping
uε : B → R

k, such that

sup
y∈θ2B

|f(y)− uε(y)| < (φ(θ2) + ε) diam f(B).

Since

sup
y∈θ2B

|f(y)− uε(y)| ≥ sup
y∈θ1B

|f(y)− uε(y)|

≥ φ(θ1) diam f(B)

and ε is arbitrary, we get φ(θ1) ≤ φ(θ2).
Therefore, we need only to prove the last claim. Let ε be an arbitrary positive

number. Properties P1 and P5 for the class S show immediately that there exists
a bounded mapping u1 : B(x,R) → R

k of class S. Now property P2 guarantees
that there exists, in S, a mapping u2 : B → R

k bounded by the number ε. Using
property P2, again, we obtain in S(B) the mapping u3(y) = f(x) + u2(y), y ∈ B,
satisfying

|f(y)− u3(y)|
diam f(B)

≤ 1 +
ε

diam f(B)

for all y ∈ B. Consequently,

φ(θ) ≤ 1 +
ε

diam f(B)
,

and passing to the limit, as ε → 0, we arrive at the required estimate.
If diam f(B) is either 0 or ∞, then φ(θ) = 0. This completes the proof of the

lemma. �

Now using the auxiliary functional dθ,B(f,S), we construct a closeness functional
(measuring distance between a mapping f and the class S inside the domain U),
setting

dθ(f,S) = sup
B⊂U

dθ,B(f,S).
Let us list some properties of the functional dθ.

Lemma 1.7. If the class S satisfies condition P2, then the functional dθ is invariant
under the simple transformations appearing in condition P2.

Proof. This is a direct consequence of the definition of the functional dθ and of
property P2 for the class S. �
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Lemma 1.8. If the class S satisfies conditions P1 and P5, then, for each u ∈ S,
we have dθ(u,S) = 0, θ ∈ (0, 1).

Proof. The proof is obvious. �
Lemma 1.9. Suppose the class S satisfies the conditions P1, P2, P4, P5, and P6.
Let θ ∈ (0, 1). Then, for a locally bounded mapping f : U → R

k from a domain
U ⊂ R

n, the equality dθ(f,S) = 0 implies that f ∈ S.
Proof. Pick x ∈ U . Consider a ball B = B(x,R) contained, together with its
closure, in U . Since f is locally bounded, the restriction of f to B is bounded, too.

Assume first that diam f(B) 	= 0. Since dθ(f,S) = 0, for each ν = 1, 2, . . . there
exists a mapping uν ∈ S(B) satisfying

|f(y)− uν(y)| ≤ 1

ν
diam f(B)

for all y ∈ θB. Consequently, the sequence uν |B , ν = 1, 2, . . ., converges to f |B
uniformly in the ball θB. By condition P5, we have uν |B ∈ S for all ν. Then
condition P4 yields f |θB ∈ S.

Now let diam f(B) = 0, i.e., the restriction of f to B be a constant mapping.
As described above, we see that f |B ∈ S. Then condition P5 shows that f |θB ∈ S.

Therefore, we have exhibited, in both cases, a neighborhood θB of the centre of
B, such that the restriction f |θB is of class S. Finally, condition P6 shows that
f ∈ S, and the proof is complete. �

Lemma 1.6 enables us to introduce the functional measuring the closeness of f to
the class S which is basic to our theory. This functional is equivalent, in a certain
sense, to each of the functionals dθ, 0 < θ < 1, and is independent of the actual
values of the parameter θ.

Assume that the class S enjoys properties P1, P2 and P5. Proceeding in the same
way as we did for the functional dθ, we construct the new closeness functionals in
two steps. First, for a locally bounded mapping f : U → R

k of a domain U ⊂ R
n

and an arbitrary ball B ⊂ U , we set

dB(f,S) =
∫ 1

0

dθ,B(f,S) dθ

(the existence of the integral is guaranteed by Lemma 1.6). Secondly, using this
auxiliary functional, we construct the functional

d(f,S) = sup
B⊂U

dB(f,S). (1.2)

The functional dB measures how close f is to the class S inside the ball B ⊂ U ,
while d does the same for all such balls.

As a direct consequence of its definition, the functional d has properties similar
to those of functional dθ, given in Lemmas 1.7, 1.8 and 1.9. Moreover, Lemma 1.6
shows that the values of d are bounded by 1.

The following theorem of [Kop82] gives the asymptotic equivalence of the func-
tional d with each functional dθ, where θ ∈ (0, 1).

Theorem 1.10. Let class S satisfy conditions P1−P6. Then, for each pair of real
numbers ε > 0 and θ ∈ (0, 1), there exists a positive number δ = δ(ε, θ) such that,
for each locally bounded mapping f : U → R

k from a domain U in R
n, we have:

1) if d(f,S) ≤ δ, then dθ(f,S) ≤ ε;
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2) if dθ(f,S) ≤ δ, then d(f,S) ≤ ε.

We understand the asymptotic equivalence of closeness functionals to be precisely
the fact reflected in this theorem: if the values of any of these functionals at f is
small, then so is the value of the other functional at f .

Proof. The first statement of the theorem is an immediate consequence of the def-
inition of d. Indeed,

dB(f,S) ≥
∫ 1

θ

dt,B(f,S) dt
≥ (1− θ) dθ,B(f,S) (1.3)

for each ball B ⊂ U . The last inequality in (1.2) follows from the fact that dθ(f,S)
is a monotonic function of θ (cf. Lemma 1.6). Since B is arbitrary, we obtain

dθ(f,S) ≤ 1

1− θ
d(f,S),

which gives 1).
The proof of the second part of the theorem requires most effort than the proof

of the first part. We refer the reader to the original paper [Kop82]. �

To conclude this subsection, we consider yet another closeness functional D de-
fined by

D(f,S) = sup
x⊂U

(
lim sup
R→0

dB(x,R)(f,S)
)
, (1.4)

for each locally bounded mapping f : U → R
k of a domain U ⊂ R

n.
The functional D measures how close f is to the class S in the uniform norm

and in each of the infinitesimal balls contained in the domain of definition of f .

Remark 1.11. It follows immediately from (1.2) and (1.4) that D(f,S) ≤ d(f,S),
for each locally bounded mapping f : U → R

k from a domain U ⊂ R
n.

1.4. Stability. Suppose S is a class of mappings from open sets in the space R
n

into the space R
k, satisfying conditions P1-P6 of Subsection 1.1. Further, let ε be

a non-negative real number.

Definition 1.12. A locally bounded mapping f : U → R
k from a domain U of the

space R
n is said to be globally ε-close to the class S if d(f,S) ≤ ε.

We obtain a concept of local ε-closeness to the class S by replacing the functional
of global closeness d with the functional of local closeness D.

Remark 1.11 shows that if f is globally ε-close to S, then it is locally ε-close to
this class. This gives rise to the following definition which is basic for our theory.

Definition 1.13. Let C be some class of locally bounded mappings from domains
in the space R

n into the space R
k. The class S is called stable relative to the class

C if there exists a non-negative function δ = δ(ε), defined on some interval [0, ε0),
such that:

1) δ(ε) → δ(0) = 0 as ε → 0;
2) if f ∈ C is locally ε-close to S, then f is globally δ(ε)-close to S, for each

ε ∈ [0, ε0).
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Taking into account the asymptotic character of the notion of stability, we need
not specify the particular semiinterval [0, ε0) where ε takes its values.

In terms of the notions introduced above, the fundamental problem in the sta-
bility theory, that we are discussing, can be formulated as follows: Considering a
class S, satisfying P1-P6, and a class C rich enough, determine whether the class S
is stable relative to the class C.

When giving an affirmative answer, we get the strongest form of the theorem
concerning stability when C is the class of all locally bounded mappings from do-
mains in the space R

n into the space R
k. In this case, we shall simply say that the

class S is stable.

1.5. Problems of the theory of stability. Now we shall clarify how the ba-
sic problem of the stability theory can be answered for the classes considered in
Examples 1.1-1.5.

The role of the class C, relative to whom we establish the stability of the par-
ticular classes of mappings, is played by the class W 1,n+0

loc of mappings f : U → R
k

from open sets in R
n into the space R

k, having first-order generalised derivatives
in U locally summable at a power q > n. 1

Since each mapping of class W 1,n+0
loc becomes continuous, when one changes, if

necessary, its values on a set of measure zero, we shall assume from now on that
the mappings of class W 1,n+0

loc are continuous.

Theorem 1.14. The class of locally constant mappings from open sets in R
n into

the space R
k is stable relative to the class W 1,n+0

loc .

Proof. Denote the class in question by S. Let f : U → R
k be a locally bounded

mapping of a domain U ⊂ R
n, with D(f,S) < 1/16, and let ε > 0 satisfy the

inequality D(f,S) + ε < 1/16.
Pick an arbitrary point x0 ∈ U . By the definition of D, there is a positive

number R such that the ball B(x0, R) lies, together with its closure, in U and
dB(x0,r)(f,S) < D(f,S) + ε/2 for all r ∈ (0, R]. Inequality (1.3) implies

d 1
2 ,B(x0,r)(f,S) < 2

(
D(f,S) + ε

2

)

<
1

8
− ε,

for each r ∈ (0, R].
There are two possibilities: 1) there exists a number r ∈ (0, R] such that

diam f(B(x0, r)) = 0, or 2) diam f(B(x0, r)) 	= 0 for all r ∈ (0, R]. In case 1), the
restriction f |B(x0,r) is constant, and so the differential df(x0) of the mapping f at

the point x0 is identically equal to 0 ∈ R
k. We show now that the same conclusion

holds for case 2).
Indeed, let x be a point in the ball B(x0, R/2), different from x0. Choose a

natural number νx such that

2−(νx+1) R < |x− x0| ≤ 2−νx R. (1.5)

Since the restriction f |B(x0,R) is bounded, the definition of dθ,B(x0,2−νR)(f,S) shows
(cf. (1.1)) that for each ν = 1, 2, . . . there exists a mapping uν ∈ S(B(x0, 2−νR))

1In other words, W 1,n+0
loc = ∪W 1,q

loc (U,R
k), where the union is taken over all open sets U in

Rn and all values q > n of the parameter q.
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such that

|f(y)−uν(y)| <
(
d 1

2 ,B(x0,2−νR)(f,S) +
ε

2

)
diam f(B(x0, 2−νR))

for all y ∈ B(x0, 2−(ν+1)R).
We now use the fact that the mapping uν is constant. From this we obtain the

inequality

|f(y)−f(x0)| < 2
(
d 1

2 ,B(x0,2−νR)(f,S) +
ε

2

)
diam f(B(x0, 2−νR)) (1.6)

holding for the same values of y. According the choice of ε, we have ε < 1/16 and

2
(
d1/2,B(x0,2−νR)(f,S) + ε/2

)
< 1/4− ε. Since

diam f(B(x0, 2−νR)) ≤ 2 sup
y∈B(x0,2−νR)

|f(y)−f(x0)|,

estimate (1.6) yields

|f(y)−f(x0)| <
(1
2
− 2ε

)
sup

y∈B(x0,2−νR)

|f(y)−f(x0)|

for all y ∈ B(x0, 2−(ν+1)R).
Continuing, we get

sup
y∈B(x0,2−νR)

|f(y)−f(x0)| <
(1
2
− 2ε

)ν

sup
y∈B(x0,R)

|f(y)−f(x0)|, (1.7)

and, combining (1.5) and (1.7),

|f(x)−f(x0)| <
(1
2
− 2ε

)νx

sup
y∈B(x0,R)

|f(y)−f(x0)|.

Again, using inequality (1.5), we find that(1
2
− 2ε

)νx

= (1− 4ε)νx 2−νx

< 2
1

R
|x− x0| (1− 4ε)

log(R|x−x0|−1)
log 2 −1.

Consequently,

|f(x)−f(x0)|
|x− x0| < 2

1

R
(1− 4ε)

log(R|x−x0|−1)
log 2 −1 sup

y∈B(x0,R)

|f(y)−f(x0)|.

As the right-hand side of the last inequality tends to zero as x → x0, we see that
df(x0) vanishes.

Since x0 was chosen arbitrarily, we conclude that the mapping f is locally con-
stant. Therefore, for each ε ∈ (0, 1/16], the class of mappings f ∈ W 1,n+0

loc which
are ε-close to the class S coincides with S. Hence, the class S meets Definition 1.13
with δ(ε) ≡ 0, which, in turn, implies that S is stable relative to W 1,n+0

loc . This
proves the theorem. �

Using Theorem 1.10, it is not hard to see that Theorems 0.1 and 0.2 are equivalent
to the following two statements:

1) The class S of holomorphic mappings in the plane is stable relative to the
class C1

loc of all continuously differentiable mappings from domains in C into C.
2) The mappings f ∈ C1

loc which are locally close to S can be characterised as
solutions of Beltrami’s systems with “small” coefficients Q.
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As mentioned, Kopylov [Kop82] carried over these results to the higher-dimen-
sional case in the following strengthened form.

Theorem 1.15. The class of holomorphic mappings from open sets in C
n into the

space C
k is stable relative to the class W 1,2n+0

loc .

In [Kop82] it is also shown that the class of locally conformal mappings from

open sets in R
n, n > 2, into the same space is stable relative to the class W 1,n+0

loc .
On the other hand, the class of Example 1.4 is not stable even in the class of

analytic mappings. More precisely, the following holds true.

Theorem 1.16. Suppose n > 1. Then, the class S of harmonic mappings from
open sets in R

n into the space R
k is not stable relative to the class A of real analytic

mappings.

Proof. Let us consider the mapping f : R
n → R

k, whose first component is
f1(x1, . . . , xn) = arctanx1 and whose other components are all zero. Taking into
account that the differential of a mapping is linear, and thus harmonic, we get
easily that D(f,S) = 0 (see [Kop82] for more details). Since f is not a harmonic
mapping, Lemma 1.9 and the definition of d show that d(f,S) > 0. Hence the
desired conclusion follows. �

Theorem 1.16 suggests that, when discussing the stability theory for the sheaf
of solutions of an elliptic system, one should require the order of the system to be
one.

1.6. Liouville’s theorem. For mappings f : Rn → R
k globally close to a class S

with properties P2, P3 and P5, there is an analog of the classical Liouville Theorem.
The proof of this is based on some technical lemma which is of independent interest.
It gives us an estimate of the modulus of continuity of f in a ball B, i.e.,

mB(f) (δ) = sup
x,y∈B

|y−x|<δ

|u(y)− u(x)|,

via the closeness functional dθ(f,S) and a measure of equicontinuity of uniformly
bounded families in S.
Lemma 1.17. Suppose that the class S meets the conditions P2, P3 and P5. Let
f : B(x0, R) → R

k be a bounded mapping from a ball in R
n, satisfying dθ(f,S) < 1/2

for some θ ∈ (0, 1). Then, for each numbers t ∈ (0, 1) and δ ∈ (0, (1− t)εθR), one
has

mB(x0,tR)(f) (δ)

≤ ((1+2dθ(f,S)) sup
u∈S(B(0,1))

|u|≤1

mB(0,1/2)(u) (ε) + 2dθ(f,S))ν diam f(B(x0, R)),

where

ν =
log(1 + 2 1

δ (1− t)(1− (1/2)εθ)R)

− log((1/2)εθ)
− 1.

Proof. Cf. Theorem 4 in [Kop82]. �
The lemma becomes more interesting when we realise that the number ε ∈

(0, 1/2) can be chosen so that the expression under the power ν is less that 1.
Indeed, condition P3 guarantees that, when ε → 0, the function mB(0,1/2)(u) (ε) is
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infinitely small, uniformly in u ∈ S(B(0, 1)) with |u| ≤ 1, and 2 dθ(f,S) < 1 by
hypothesis.

Theorem 1.18. Assume that a given class S of mappings from domains in the
space R

n into the space R
k has properties P2, P3 and P5. Let f : Rn → R

k be a
bounded mapping such that dθ(f,S) < 1/2 for some number θ ∈ (0, 1]. Then f is a
constant mapping.

Proof. Since dθ(f,S) ≤ d1(f,S), for each number θ ∈ (0, 1) and each mapping
f : U → R

k, it suffices to consider the case when 0 < θ < 1. Suppose that
|f(x)| ≤ C for all x ∈ R

n. Let t = 1/2 and let the number ε ∈ (0, 1/2) be so chosen
that

Δ = (1+2dθ(f,S)) sup
u∈S(B(0,1))

|u|≤1

mB(0,1/2)(u) (ε) + 2dθ(f,S)

< 1.

Given two arbitrary points x, y ∈ R
n, fix a natural number N0 > 2(1/εθ) |y − x|

and consider the sequence of balls B(x,N), N = N0, N0 + 1, . . .. Obviously, each
of the balls B(x, (1/2)N), N ≥ N0, contains the point y. Applying Lemma 1.17 to
the restriction of the mapping f to B(x,N), for N ≥ N0, and the values t and ε
chosen above, we get

|f(y)−f(x)| ≤ mB(x,(1/2)N)(f) (|y−x|)
≤ Δν diam f(B(x,N)), (1.8)

where

ν =
log(1 + |y − x|−1(1− (1/2)εθ)N)

− log((1/2)εθ)
− 1.

However, we have diam f(B(x,N)) ≤ 2C for all N . Consequently, as N → ∞, the
right-hand side of inequality (1.8) tends to 0, and hence f(x) = f(y), as required.

�

Corollary 1.19. Suppose S meets conditions P2, P3 and P5. If f : Rn → R
n is a

bounded mapping of class S, then f is constant.

Corollary 1.20. If one replaces dθ by d in the statement of Theorem 1.18, then
the theorem remains valid.

Proof. Indeed, the inequalities d(f,S) < 1/2 and (1.3) imply the existence of a
number θ ∈ (0, 1), such that dθ(f,S) < 1/2, and we still satisfy the hypothesis of
Theorem 1.18. �

Note that the constant 1/2 in Corollary 1.20 is sharp. More precisely, given any
pair of natural numbers n and k, there exists a bounded mapping f : Rn → R

k,
such that f is not constant while d(f,S) = 1/2 for each class S of mappings from
domains in R

n into the space R
k with properties P1, P2, P3 and P5 (cf. [Bez83]).

2. First order elliptic systems

We now turn to the case when S is the sheaf of solutions of a first order overde-
termined elliptic system Au = 0 over Rn. We write Sol(A) for this sheaf, or simply
Sol when no confusion can arise. One may assume, by separating the real and
imaginary parts of solutions if necessary, that the coefficients of the differential
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operator A are real-valued. Moreover, in order that the sheaf Sol may inherit the
property P2, it is necessary to require A to have constant coefficients and to be
homogeneous. Thus,

A(∂) =

n∑
j=1

Aj∂j ,

where Aj , j = 1, . . . , n, are (l × k)-matrices of real numbers, and ∂j = ∂/∂xj . The
ellipticity condition implies, in particular, that l ≥ k.

We begin with general results on such systems. For more details, the reader may
consult e.g. the book [Tar90] and elsewhere.

2.1. Cauchy’s theorem. For holomorphic functions of a single variable, the fol-
lowing result is known as Cauchy’s theorem. For the convenience of references, we
retain this designation also in the case of first order overdetermined elliptic systems.

Lemma 2.1. Let D ⊂⊂ R
n be a domain with piecewise smooth boundary. Then,

for each solution u ∈ Sol (D) continuous up to the boundary of D, we have∫
∂D

A(ν(y))u(y) ds(y) = 0. (2.1)

Recall that ν(y) stands for the unit outward normal vector to the boundary of
D at a point y.

Proof. Since the (unique) Green operator for the first order differential operator A
is given by

GA(g, u) =
n∑

j=1

g Aju �dxj ,

where � stands for the Hodge star operator, and since �dxj |∂D = νj(x) ds(x),
equality (2.1) follows from Stokes’ formula. �

2.2. Morera’s theorem. The following auxiliary result is an analog of the classical
Morera theorem for holomorphic functions of a single variable.

Lemma 2.2. Let u ∈ Cloc(U)k, where U is an open set in R
n. Then, in order that

u satisfy Au = 0 in U , it is sufficient that∫
∂B

A(ν(y))u(y) ds(y) = 0 (2.2)

for each ball B ⊂⊂ U .

Note that the necessity of condition (2.2) follows from Cauchy’s theorem (cf.
Lemma 2.1).

Proof. We make use of standard regularisation

R(ε)u =
1

εn
ω
( ·
ε

)
∗ u

in R
n, where ω ∈ C∞

comp(B(0, 1)) is a non-negative function depending only on |x|
and normalised by the condition

∫
ω(x) dx = 1. For each ball B lying, along with
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its ε-neighborhood, in U , we have

∫
∂B

A(ν(x))R(ε)u(x) ds(x) =
n∑

j=1

∫
∂B

Aj

(∫
Rn

1

εn
ω
(z
ε

)
u(x− z)dz

)
�dxj

=

∫
Rn

(∫
∂(B−z)

A(ν(y))u(y)ds(y)
) 1

εn
ω
(z
ε

)
dz

= 0,

the last equality being a consequence of condition (2.2). Since R(ε)u is smooth, it
follows that AR(ε)u = 0 at each point of U , whose distance from the boundary is
at least ε.

On the other hand, when ε → 0, we have R(ε)u → u, uniformly on compact
subsets of U . By the Stieltjes-Vitali Theorem, we deduce that Au = 0 in U , as
desired. �

2.3. Cauchy’s formula. Let Φ be the standard left fundamental solution of con-
volution type for the differential operator A. We have

Φ(x) =

∫
Sn−1

w(〈x, ξ〉)A−1
left(ξ) ds(ξ), (2.3)

where ds is the standard area form on the unit sphere S
n−1 in R

n and

w(θ) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)(n/2)+1(n− 2)!

(2π)n
1

θn−1
, if n is even,

(−1)(n−1)/2

2(2π)n−1
δ(n−2)(θ), if n is odd

(cf. [Shi84]).

Lemma 2.3. Suppose D ⊂ R
n is a bounded domain with piecewise smooth bound-

ary. Then, for each solution u ∈ Sol (D) continuous up to the boundary of D, we
have

−
∫
∂D

Φ(x−y)A(ν(y))u(y) ds(y) =

{
u(x), if x ∈ D,
0, if x ∈ R

n \ D.
(2.4)

Proof. This is a very particular case of Green’s formula [Tar95, (8.3.16)], for B0 = Ik
and C0 = (A(ν))T . �

2.4. Some singular integral operators. From (2.3) it follows that each deriva-
tive (∂/∂xj)Φ(x), j = 1, . . . , n, is homogeneous of degree −n in R

n \ 0.
Lemma 2.4. For j = 1, . . . , n, the Calderon-Zygmund kernel (∂/∂xj)Φ (x− y) is
regular, i.e., ∫

Sn−1

(∂/∂xj)Φ (ξ) ds(ξ) = 0.

Proof. It is sufficient to use (2.3). �

Lemma 2.4 makes it obvious that the principal value integral in our next lemma
exists at each Lebesgue point of the section f .
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Lemma 2.5. Suppose f ∈ Lq
comp(R

n)l, where q > 1. Then, for each j = 1, . . . , n,
we have

∂

∂xj

∫
Rn

Φ(x−y)f(y)dy = p.v.

∫
Rn

∂

∂xj
Φ(x−y)f(y)dy +

(∫
Sn−1

Φ(ξ) �dξj

)
f(x)

(2.5)
almost everywhere on R

n.

Proof. Since smooth functions of compact support are dense in the Lebesgue spaces
Lq
comp(R

n), q < ∞, and these spaces behave properly under action of pseudodiffer-

ential operators, it suffices to prove (2.5) for f ∈ C∞
comp(R

n)l.
For such an f , we have (∂/∂xj)Φ ∗ f = Φ ∗ (∂/∂xj)f , so the left-hand side of

(2.5) is equal to the integral ∫
Rn

Φ(x−y) ∂jf(y) dy.

Moreover, since the kernel Φ(x− y) is locally summable in R
n, for fixed x, we see

that ∫
Rn

Φ(x−y) ∂jf(y) dy = lim
ε→0

∫
Rn\B(x,ε)

Φ(x−y) ∂jf(y) dy

=

∫
Rn\B(x,ε)

∂

∂xj
Φ(x−y) f(y) dy −

∫
∂B(x,ε)

Φ(x−y)f(y) �dyj ,

(2.6)

the second equality being a consequence of Stokes’ formula.
In the integral over the sphere ∂B(x, ε), we write f(y) = (f(y)−f(x)) + f(x)

and change the variables by x− y = εξ, where ξ ∈ S
n−1. As det dy(ξ) = (−ε)n and

Φ(x) is homogeneous of degree 1− n, we arrive at the equality∫
∂B(x,ε)

Φ(x−y)f(y) �dyj

= −
∫
Sn−1

Φ(ξ) (f(x−εξ)− f(x)) �dξj −
(∫

Sn−1

Φ(ξ) �dξj

)
f(x).

The first integral in the right-hand side is O(ε), for f is smooth. Thus, letting
ε → 0 in (2.6), we get (2.5), as required. �

2.5. The ellipticity is a necessary condition for the stability. The ellipticity
condition on the differential operator A in question is in fact necessary if we want
to retain the property P3 for the sheaf of C∞ solutions to the system Au = 0.

Theorem 2.6. Suppose A is an (l × k) -matrix of homogeneous scalar differential
operators of order m with constant coefficients in R

n. If the sheaf of C∞ solutions
to the system Au = 0 has property P3, then A has injective symbol.

Proof. Suppose, contrary to our claim, that A is not a differential operator with
injective symbol. Then, there exists a vector ξ on the unit sphere in R

n, such that
the rank of the matrix A(ξ) over R is less than k. This just amounts to saying that
there is a non-zero vector u0 ∈ R

k satisfying A(ξ)u0 = 0.
Let us consider the family

uν = cos (ν〈x, ξ〉)u0, (2.7)



GENERALISED BELTRAMI EQUATIONS 15

where ν = 1, 2, . . ., in E(Rn)k. Since A is homogeneous, we get

Auν = − sin (ν〈x, ξ〉)A(νξ)u0,

= −νm sin (ν〈x, ξ〉)A(ξ)u0

= 0,

for each ν = 1, 2, . . .. Thus, (2.7) is a family of C∞ solutions to the system Au = 0
in R

n.
It is obvious that the family (2.7) is uniformly bounded in R

n. However, when
restricted to any ball in R

n, this family is not equicontinuous, since otherwise some
subsequence of {uν} would converge uniformly on the ball, which is impossible.
This contradicts property P3, and the proof is complete. �

3. Beltrami equation

The ellipticity condition for a first order differential operator A is known to
impose hard restrictions on the symbol of A (cf. [Sol63]). From this we conclude
that the solutions of the homogeneous system Au = 0 may be regarded as analogues
of holomorphic functions of one or several variables. As is already described above,
the mappings locally close to holomorphic mappings in the plane are solutions of
Beltrami systems

(∂/∂z̄)f = Q(z) (∂/∂z)f, (3.1)

with “small” coefficients Q(z). For holomorphic functions of several variables such a
system is studied in [Kop82]. In the general case there is also a system of differential
equations which is related to the system Au = 0 in much the same way as system
(3.1) is related to the Cauchy-Riemann system in the plane.

3.1. A decomposition of the differential. If some equation of the homogeneous
system Au = 0 is a linear combination of others then it can be removed from the
system without changing the space of solutions to this system. The new system
obtained in this way still remains to be overdetermined elliptic. Hence, there is no
restriction of generality in assuming that all equations in the system Au = 0 are
linearly independent. It is easy to see that algebraically this condition just amounts
to saying that the rank of the matrix of coefficients of A is equal to the number of
equations, i.e.

rank (A1, . . . , An) = l. (3.2)

Lemma 3.1. Suppose that A1, . . . , An are (l × k) -matrices. In order that there
might exist (k × l) -matrices C1, . . . , Cn, such that A1C1 + . . . + AnCn = El (the
identity matrix of size l× l) it is necessary and sufficient that condition (3.2) would
be fulfilled.

If the matrices A1, . . . , An are square and commuting, the lemma can be inter-
preted within the framework of the weak Nullstellensatz of Hilbert which establishes
a fundamental relationship between geometry and algebra, cf. for instance [Eis99]
and elsewhere.

Proof. We are thus looking for (k × l) -matrices X1, . . . , Xn of real numbers satis-
fying A1X

1 + . . . + AnX
n = El. Write Ai

j for the i th row of the matrix Aj and

Xj
m for the m th column of the matrix Xj , where i,m = 1, . . . , l. Then the matrix
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equation A1X
1 + . . .+ AnX

n = El reduces immediately to the system of l2 linear
equations

A1
1X

1
i + A1

2X
2
i + . . . + A1

nX
n
i = 0,

. . .
Ai

1X
1
i + Ai

2X
2
i + . . . + Ai

nX
n
i = 1,

. . .
Al

1X
1
i + Al

2X
2
i + . . . + Al

nX
n
i = 0

(3.3)

for l n unknown columns X1
i , . . . , X

n
i , where i = 1, . . . , l. The matrix of each

inhomogeneous system (3.3) is the block matrix (A1, . . . , An). The solvability of
(3.3) for i = 1, . . . , l just amounts to the fact that the rank of (A1, . . . , An) is l, as
desired. �

Example 3.2. If Au := du is the gradient operator then Aj = ej , for j = 1, . . . , n,
where ej is the j th vector of the canonical basis of Rn. We specify ej within n -
columns, and so the matrix (A1, . . . , An) is equal to the identity matrix En. Hence,
the inhomogeneous linear system A1C1 + . . . + AnCn = En has unique solution
Cj = eTj , where j = 1, . . . , n.

In the general case the solution of the system A1C1 + . . .+AnCn = El is by no
means unique, for the number of equations is l2 while the number of unknowns is
l n k.

Assume that f ∈ W 1,n+0
loc (U)k is a mapping from a domain U in R

n into the

space Rk. It is well-known that such a mapping is differentiable almost everywhere
in U (cf. [Ste70, p.286]).

Let x ∈ U be a point of differentiability of the mapping f and let df(x) denote
the differential of f at x. For a fixed x, the differential df(x) is a linear mapping
from R

n to R
k, satisfying |(f(y)−f(x))− df(x) (y−x)| = o(|y−x|) as y → x.

To each linear mapping T ∈ L(Rn,Rk) there corresponds a unique (k×n)-matrix
which represents T in the coordinates with respect to the canonical bases of Rn and
R

k. One can identify this matrix with a multivector in R
kn which is formed from

the columns of the matrix.
Since A is an overdetermined elliptic operator, we deduce that l ≥ k and the

matrix

A(ξ) =
n∑

j=1

Ajξj

possesses a left inverse matrix A−1
left(ξ) for all ξ ∈ R

n \ {0}. By Lemma 3.1, there
are (k× l) -matrices C1, . . . , Cn of real numbers, such that A1C1+ . . .+AnCn = El.
We make use these matrices Cj to construct a decomposition of the differential of
f almost everywhere in R

n.
Let us define the mappings

∂′
Af : U → L(Rn,Rk),

∂′′
Af : U → L(Rn,Rk)

by

∂′′
Af(x) (η) =

n∑
j=1

(Cj Af(x))ηj ,

∂′
Af(x) (η) = df(x) (η)− ∂′′

Af(x) (η),

(3.4)
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for a tangent vector η = (η1, . . . , ηn) ∈ R
n. By the above, the mappings ∂′

Af(x)
and ∂′′

Af(x) are defined almost everywhere on U .

Lemma 3.3. When regarded as differential operators of type Rn×R
k → R

n×R
k×n,

the mappings ∂′
A and ∂′′

A are given by

∂′
Af =

(
∂1f − C1 Af, . . . , ∂nf − Cn Af

)
,

∂′′
Af =

(
C1 Af, . . . , Cn Af

)
.

Proof. This follows immediately from (3.4). �

The definition of ∂′′
Af makes it obvious that ∂′′

Af = 0 whenever Af = 0. On the
other hand, the linear function ∂′

Af(x) (η) satisfies the system Au = 0.

Lemma 3.4. Suppose f ∈ W 1,n+0
loc (U)k. Then, for each differentiability point

x ∈ U of f , we have

A(∂η) ∂
′
Af(x) (η) = 0

for all η ∈ R
n.

Proof. Indeed,

A(∂η) ∂
′
Af(x) (η) = A(∂η) (df(x) (η)− ∂′′

Af(x) (η))

=

n∑
ι=1

Aι
∂

∂ηι

n∑
j=1

(∂jf(x) ηj − Cj Af(x) ηj)

=
n∑

ι=1

Aι∂ιf(x)−
( n∑

ι=1

AιCι

)
Af(x)

= Af(x)−Af(x)

= 0

for all η ∈ R
n, as required. �

Thus, given any mapping f : U → R
k of class W 1,n+0

loc (U), we derive the decom-
position df = ∂′

Af + ∂′′
Af for the differential of f , analogous to the decomposition

df = ∂f + ∂̄f in the case of functions of a single complex variable. Moreover, we
construct first order differential operators ∂′

Af and ∂′′
Af with constant coefficients

in R
n, which are of the same nature as the operators ∂/∂z and ∂/∂z̄ in the complex

plane.

3.2. The Beltrami equation. Consider the system of differential equations

∂′′
Af = Q(x) ∂′

Af, (3.5)

for a mapping f : U → R
k of a domain U ⊂ R

n, where Q is a measurable function
on U with values in L(Rk×n,Rk×n).

If Q ≡ 0, then system (3.5) is equivalent to the system Af = 0, which is clear
from Lemma 3.3.

Lemma 3.5. If sup
x∈U

‖Q(x)‖ is small enough, then (3.5) is a system with injective

symbol.

Here, ‖Q(x)‖ is the norm of the linear mapping Q(x) : Rk×n → R
k×n under the

standard Euclidean structure in R
k×n.
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Proof. Indeed, if Q ≡ 0, then (3.5) is a system with injective symbol. From this
the lemma follows by a familiar argument of topology. �

Similarly to (3.1), system (3.1) is referred to as the Beltrami system related to
the operator A.

By a solution of system (3.5) is meant any mapping f ∈ W 1,n+0
loc (U)k satisfying

(3.5) almost everywhere in U .
For an ε > 0, we denote by SBS (ε) the class of solutions to all possible Beltrami

systems (3.5) with

sup
x∈U

‖Q(x)‖ ≤ ε.

3.3. Local closeness to the sheaf of solutions and the Beltrami equation.
The connection of system (3.5) with the mappings locally close to the sheaf of
solutions Sol is expressed in the following theorem (cf. [Tar85]).

Theorem 3.6. There exists a constant c > 0, depending only on A, such that if
f ∈ W 1,n+0

loc and D(f, Sol) ≤ ε for some 0 ≤ ε < c, then f ∈ SBS(ε/c).

Proof. Let f be a mapping of class W 1,n+0
loc from a domain U ⊂ R

n into R
k and let

x ∈ U be a point of differentiability of f .
We first assume that the differential df(x) of f at x is non-zero. From the

condition D(f, Sol) ≤ ε it follows that, for each sufficiently small R > 0, there is a
solution uR ∈ Sol (B(0, 2)) such that

∂′
Af(x) (η) + ∂′′

Af(x) (η)− ‖df(x)‖uR(η) = ‖df(x)‖ �R(η) (3.6)

for all η ∈ B(0, 1), where �R(η) ∈ R
k satisfies the condition sup

|η|≤1

|�R(η)| → 8ε, as

R → 0.
Indeed, fix an R0 > 0 such that the closure of the ball B(x,R0) lies in U , and

let 0 < R ≤ R0. By the definition of D(f, Sol), we get dB(x,R)(f, Sol) ≤ ε+ O(R),
where O(R) > 0 and O(R) → 0 when R → 0. Estimate (1.3) now shows that
d1/2,B(x,R)(f, Sol) ≤ 2 (ε+O(R)). By assumption, we have ‖df(x)‖ > 0, whence
diam f(B(x,R)) > 0 for all 0 < R ≤ R0. From the definition of the functional
d1/2,B(x,R)(f, Sol) it is clear that, for each R ∈ (0, R0], there exists a solution
ũR ∈ Sol (B(x,R)) such that

f(y)− ũR(y) = 2 (ε+O(R)) diam f(B(x,R)) φ̃R(y)

for all y ∈ B(x,R/2), where |φ̃R(y)| ≤ 1.
Since the mapping f is differentiable at the point x, we arrive at the equality

df(x) (y−x)+f(x)−ũR(y) = 2 (ε+O(R)) diam f(B(x,R)) φ̃R(y)+o(|y−x|), (3.7)

where
o(|y − x|)
|y − x| → 0 as y → x. Setting

uR(η) = 2
1

R‖df(x)‖
(
ũ

(
x+

R

2
η

)
− f(x)

)
,
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for η ∈ B(0, 2), and taking into account that diam f(B(x,R)) = 2R‖df(x)‖+ o(R),
where o(R)/R → 0 as R → 0, we rewrite (3.7) in the following way:

1

‖df(x)‖ df(x) (η)− uR(η)

= 4 (ε+O(R))
(
2 +

1

‖df(x)‖
o(R)

R

)
φR(η) +

2

R‖df(x)‖ o
(R
2
|η|

)
.

Here, we have η ∈ B(0, 1) and |φR(η)| = |φ̃R(x + (R/2)η)| ≤ 1. Denoting
the right-hand side of this equality by �R(η) and using the decomposition df =
∂′
Af + ∂′′

Af , we arrive at (3.6), as desired.
Let us apply the integral operator

u �→
∫
Sn−1

A(ν(η))u(η)ds(η)

to both sides of equality (3.6). Since the restrictions of the mappings ∂′
Af(x) (η)

and uR(η) to the ball B(0, 1) satisfy the condition of Cauchy’s theorem, we get, by
(2.1),∫

Sn−1

A(ν(η)) ∂′′
Af(x) (η) ds(η) = ‖df(x)‖

∫
Sn−1

A(ν(η)) �R(η) ds(η). (3.8)

In our case, ν(η) = η. Hence it follows that

A(ν(η)) ∂′′
Af(x) (η) =

( n∑
ι=1

Aιηι

)( n∑
j=1

Cjηj

)
Af(x)

=
( n∑

ι=1

AιCιη
2
ι +

∑
ι,j=1,...,n

ι �=j

AιCjηιηj

)
Af(x)

=
1

n
|η|2 Af(x) +

( ∑
ι,j=1,...,n

ι �=j

AιCjηιηj

)
Af(x)

and, since

∫
Sn−1

ηιηj ds(η) = 0 for ι 	= j, equality (3.8) becomes

1

n
σn Af(x) = ‖df(x)‖

∫
Sn−1

A(ν(η)) �R(η) ds(η).

Letting R → 0 yields

1

n
|Af(x)| ≤ 8ε

(
sup
|ξ|=1

‖A(ξ)‖
)
‖df(x)‖. (3.9)

Our next objective is to evaluate the “derivative” ∂′′
Af(x). Taking into account

that df(x) = ∂′
Af(x) + ∂′′

Af(x) and

|∂′′
Af(x)| =

( n∑
j=1

|Cj Af(x)|2
)1/2

≤
( n∑

j=1

‖Cj‖2
)1/2

|Af(x)|,
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we conclude that

|∂′′
Af(x)| ≤ 8εn

( n∑
j=1

‖Cj‖2
)1/2(

sup
|ξ|=1

‖A(ξ)‖
)
‖df(x)‖

≤ 8εn
( n∑

j=1

‖Cj‖2
)1/2(

sup
|ξ|=1

‖A(ξ)‖
)
(|∂′

Af(x)|+ |∂′′
Af(x)|) ,

and hence

|∂′′
Af(x)| ≤

8εn
( n∑

j=1

‖Cj‖2
)1/2 (

sup
|ξ|=1

‖A(ξ)‖
)

1− 8εn
( n∑

j=1

‖A−1
j ‖2

)1/2 (
sup
|ξ|=1

‖A(ξ)‖
) |∂′

Af(x)|.

Set

c =
1

16n
( n∑

j=1

‖Cj‖2
)1/2 (

sup
|ξ|=1

‖A(ξ)‖
) ,

then, for ε < c, we obtain

|∂′′
Af(x)| ≤ ε/(2c)

1− ε/(2c)
|∂′

Af(x)|

=
ε

2c− ε
|∂′

Af(x)|

≤ ε

c
|∂′

Af(x)|. (3.10)

In case df(x) vanishes inequality (3.10) is obvious.
We are left with the task of constructing a measurable function Q on the domain

U with values in L(Rk×n,Rk×n), defined almost everywhere in the domain U , such
that ∂′′

Af = Q(x) ∂′
Af and

sup
x∈U

‖Q(x)‖ ≤ ε

c
.

To this end, given a matrix M = (Mij) of Euclidean norm |M | = 1 in R
k×n,

we construct an orthogonal linear transformation OM of Rk×n, sending M to the
first element e11 of the canonical basis of R

k×n, in the following way. Setting
Mij = vi+k(j−1), for i = 1, . . . , k and j = 1, . . . , n, we identify the matrix M with

the vector v ∈ R
kn whose coordinates are vι. Let ι0 be the number of the first

non-zero coordinate of v, i.e., vι0 	= 0 but v1 = . . . = vι0−1 = 0. Consider the
linearly independent system

v, e2, e3, . . . , ekn, if ι0 = 1;
v, e1, e3, . . . , ekn, if ι0 = 2;

v, e2, . . . , eι0−1, e1, eι0+1, . . . , ekn, if ι0 > 2,
(3.11)

in R
kn. With the help of the Gram-Schmidt orthogonalisation, we construct from

the system (3.11) a new orthonormal system e1, . . . , ekn in R
kn. (To shorten no-

tation we use the same letters eι for the vectors in the system just obtained.) By
construction, e1 = v. The transformation matrix from this new basis e1, . . . , ekn to
the canonical basis of Rkn is orthogonal and provides the desired transformation
OM .
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We are now in a position to complete the proof. Indeed, let x ∈ U be a point
of differentiability of f , such that |∂′′

Af(x)| > 0. By (3.10), we can assert that

|∂′
Af(x)| > 0. Then,

∂′
Af(x)

|∂′
Af(x)| and

∂′′
Af(x)

|∂′′
Af(x)| are matrices of Euclidean norm 1 in

R
k×n. We set

Q(x) =
|∂′′

Af(x)|
|∂′

Af(x)|
O−1

∂′′
Af(x) ◦O∂′

Af(x).

In case ∂′′
Af(x) vanishes we simply set Q(x) = 0. The measurability of Q is clear

from its construction because the partial derivatives of f are measurable functions.
The mapping Q so obtained meets all the required conditions, and the theorem
follows. �

4. Stability of the sheaf of solutions

4.1. Statement of the main theorems. The sheaf of solutions to the system
Au = 0 inherits the stability property of holomorphic functions, which is the subject
of our next theorem.

Theorem 4.1. The class of mappings from open sets in R
n into the space R

k,
satisfying the system Au = 0, is stable relative to the class W 1,n+0

loc .

According to Definition 1.13, this means that if a mapping f ∈ W 1,n+0
loc is locally

close to a solution of the system Au = 0, then it is globally close, too. In fact, there
exists a non-negative function δ = δ(ε), defined on some interval [0, ε0), such that:

1) δ(ε) → δ(0) = 0 as ε → 0;

2) if f ∈ W 1,n+0
loc and D(f, Sol) ≤ ε for some ε ∈ [0, ε0), then d(f, Sol) ≤ δ(ε).

Furthermore, the local closeness of a mapping f ∈ W 1,n+0
loc to the class Sol is

asymptotically equivalent to the fact that this mapping is a solution to a Beltrami
system (3.5) with a small value of the norm supx∈U ‖Q(x)‖.
Theorem 4.2. There exists a non-negative function δ = δ(ε), defined on some
interval [0, ε0), such that:

1) δ(ε) → δ(0) = 0 as ε → 0;

2) if f ∈ W 1,n+0
loc and D(f, Sol) ≤ ε for some ε ∈ [0, ε0), then f ∈ SBS (δ(ε)),

and, conversely, if f ∈ SBS (ε) for some ε ∈ [0, ε0), then D(f, Sol) ≤ δ(ε).

In the case l = k both Theorem 4.1 and Theorem 4.2 are contained in [Tar85],
[Tar95].

Since D(f, Sol) ≤ d(f, Sol), Theorems 4.1 and 4.2 are direct consequences of
Theorem 3.6 and the following more hard result.

Theorem 4.3. There exists a non-negative function Δ = Δ(ε), defined on some
interval [0, ε0), such that:

1) Δ(ε) → Δ(0) = 0 as ε → 0;
2) if f ∈ SBS (ε) for some ε ∈ [0, ε0), then d(f, Sol) ≤ Δ(ε).

The remainder of this section will be devoted to the proof of Theorem 4.3. The
proof is based on the study of properties of solutions to Beltrami system (3.5).
The key result is an Lq-estimate for the derivatives of these solutions. Deriving
this estimate is the objective of Subsection 4.5, which builds on the following three
subsections.
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4.2. Generalised Cauchy’s formula. As described in Lemma 3.3, the “differen-
tial” ∂′′

A acts through the differential operator A. Vice versa,

Af =

n∑
j=1

Aj ∂
′′
Af ej , (4.1)

as is easy to check.

Lemma 4.4. Suppose D ⊂ R
n is a bounded domain with piecewise smooth bound-

ary. Then, for each f ∈ W 1,n+0(D)k continuous up to the boundary of D, we
have

−
∫
∂D

Φ(x−y)A(ν(y))f(y) ds(y)

+

∫
D

Φ(x−y)
( n∑

j=1

Aj ∂
′′
Af(y) ej

)
dy =

{
f(x), if x ∈ D,
0, if x ∈ R

n \ D.
(4.2)

In the case of one complex variable this result coincides with the classical gen-
eralised Cauchy (or Cauchy-Green) integral formula for smooth functions due to
D. Pompeiu.

Proof. For f ∈ C1(D)k, formula (4.2) is an easy consequence of Green’s formula
and equality (4.1). In the general case, it is obtained from the case of smooth
mappings.

Indeed, let f ∈ W 1,q(D)k, where q > n. There exists a sequence {fν} in C∞(D)k,
such that fν → f in the norm of W 1,q(D)k and uniformly on D. One can take,

for instance, fν = R(1/ν)f̃ |D, where f̃ ∈ W 1,q
comp(R

n)k is any extension of f to the
whole space.

Consider formula (4.2) for each mapping fν , ν = 1, 2, . . ., and let ν → ∞. Since
fν → f uniformly on ∂D, the integral of fν over the boundary in (4.2) converges
to the corresponding integral of f , uniformly in x on compact sets away from ∂D.
We shall have established the lemma if we prove that the integral of ∂′′

Afν over
the domain in (4.2) converges to the corresponding integral of ∂′′

Af , for each fixed
x ∈ R

n.
To this end, let us denote by Pv∂

′′
Af the integral operator defined by the second

summand in the left-hand side of formula (4.2). We have

|Pv∂
′′
Af (x)− Pv∂

′′
Afν (x)| = |

∫
D
Φ(x− y) (Af(y)−Afν(y)) dy|

≤ ‖Φ(x− ·)‖Lq′ (D) ‖A(f − fν)‖Lq(D),

by the Hölder inequality. Since fν → f in the norm of W 1,q(D)k, we conclude that
‖A(f−fν)‖Lq(D)→0 as ν → ∞. Moreover, the norm ‖Φ(x−·)‖Lq′ (D) is dominated

by c ‖|z|1−n‖Lq′ (x−D), and hence locally bounded in R
n, for q′ < n/(n − 1). It

follows that Pv∂
′′
Afν → Pv∂

′′
Af uniformly on compact sets in R

n, when ν → ∞.
This is the desired conclusion. �

4.3. An estimate for the double layer potential. Let D be a bounded domain
with piecewise smooth boundary in R

n and let f ∈ L1(∂D)k be a given vector-
valued function on the boundary of D.
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We define the Cauchy-type integral (or double layer potential) of f by the first
summand in the left-hand side of (4.2), i.e.

Pdlf (x) = −
∫
∂D

Φ(x− y)A(ν(y))f(y) ds(y), (4.3)

if x 	∈ ∂D.
In the sequel, we use formula (4.2) and potential (4.3) in the case where D = B

is a ball in R
n.

Lemma 4.5. Let B = B(x0, R) be a ball in R
n and let f : B → R

k be a mapping
continuous in the closure of the ball. Then, there is a constant c > 0, depending
only on A (but not on B and f), such that

|∂′
A Pdlf (x)| ≤ c

∫
∂B

|f(y)− f(x0)|
|y − x|n ds(y) (4.4)

for all x ∈ B.

Proof. Since the constant mappings satisfy the conditions of Lemma 2.3, we have,
by (2.4),

Pdlf (x)− f(x0) = −
∫
∂B

Φ(x− y)A(ν(y))(f(y)− f(x0)) ds(y)

for all x ∈ B. If x ∈ B, then

|∂j(Pdlf (x)− f(x0))| = |−
∫
∂B

∂jΦ (x− y)A(ν(y))(f(y)− f(x0)) ds(y)|

≤ ( sup
|ξ|=1

‖∂jΦ (ξ)‖) ( sup
|ξ|=1

‖A(ξ)‖)
∫
∂B

|f(y)−f(x0)|
|y − x|n ds(y),

for each j = 1, . . . , n. Here, we used the fact that the derivative ∂jΦ(x) is homoge-
neous of degree −n away from the origin. Returning to ∂′

A Pdlf , we get

|∂′
A Pdlf (x)| = |∂′

A (Pdlf (x)− f(x0))|
≤ const (A)

∫
∂B

|f(y)− f(x0)|
|y − x|n ds(y)

for all x ∈ B, the constant being independent of B and f , as desired. �

4.4. An estimate for the volume potential. For a matrix-valued function F ∈
Lq(D)k×n, q > 1, we introduce the volume potential of F by

PvF (x) =

∫
D

Φ(x−y)
( n∑

j=1

AjF (y)ej

)
dy, (4.5)

for x ∈ R
n. Unless otherwise stated we identify the density F with its extension as

zero on R
n \ D, thus making use of the equality Lq(D) = Lq

D(R
n). Then, we need

not specify the domain of integration in (4.5).
By Lemma 2.5, the potential PvF is differentiable at almost every point x ∈ R

n.
Thus, the “differential” ∂′

APvF (x) is defined almost everywhere on R
n. The con-

tinuity of the operator ∂′
APv in the spaces Lq(Rn)k×n with non-extreme exponents

q is established by our next lemma.
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Lemma 4.6. Let B be a ball in R
n and let F : B → R

k×n be a mapping of class
Lq(B), 1 < q < ∞. Then, ∂′

APvF ∈ Lq(Rn)k×n and there is a constant c > 0,
depending only on q and A (but not on B and F ), such that

‖∂′
A PvF‖Lq(Rn) ≤ c ‖F‖Lq(Rn). (4.6)

Proof. Lemma 2.5 yields

∂

∂xj
PvF (x) = p.v.

∫
Rn

∂

∂xj
Φ(x−y)

( n∑
j=1

AjF (y)ej

)
dy

+
(∫

Sn−1

Φ(ξ) �dξj

)( n∑
j=1

AjF (x)ej

)
,

for each j = 1, . . . , n.
To estimate the first integral in the right-hand side, we may invoke, by Lemma

2.4, the theory of singular integral operators of Mikhlin-Calderon-Zygmund (cf.
for instance [Ste70]). On the other hand, the second term in the right side is in
Lq(Rn)k. From this we conclude that the potential PvF has first order derivatives
in Lq(Rn)k and there is a constant c > 0, depending only on q and A (but not on
B and F ), such that

‖(∂/∂xj)PvF‖Lq(Rn) ≤ c ‖F‖Lq(Rn)

for all j = 1, . . . , n.
Since ∂′

A is a first order differential operator, we get at once the assertion of the
lemma, possibly with a new constant c(q) independent of B and F . �

4.5. Lq-estimates of the derivatives of solutions to the Beltrami equation.
Using Lemmas 4.4, 4.5 and 4.6, we prove the main technical result of this section.
It plays a crucial role in investigations on the stability of classes of solutions to the
system Au = 0.

Theorem 4.7. Let the real numbers ε ∈ [0, 1), θ ∈ (0, 1) and q > 1 satisfy the con-
ditions ε c(q) (1− θ)−n < 1 and ε c(n) < 1, where c(q) is the constant of inequality
(4.6). Then, for each mapping f : B(x0, R) → R

k of class SBS(ε), the following
inequality holds:

‖∂′
Af‖Lq(B(x0,θR)) ≤ const (A)

σ
1+1/q
n Rn/q−1θ−n

(1− θ)n − ε c(q)
diam f(B(x0, R)). (4.7)

Proof. We can certainly assume that diam f(B(x0, R)) < ∞, since otherwise in-
equality (4.7) is obvious.

Moreover, we shall assume that f is of class W 1,q(B(x0, R))k for some q > n.

For arbitrary f ∈ W 1,n+0
loc (B(x0, R))k, the estimate (4.7) can be derived from this

particular case by a passage to the limit.
Fix an extending sequence of balls Bν = B(x0, (1− (1−θ)ν)R), ν = 1, 2, . . .. By

Lemma 4.4, we have

f(x) = P(ν)
dl f (x) + P(ν)

v ∂′′
Af (x),
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x ∈ Bν , where

P(ν)
dl f (x) = −

∫
∂Bν

Φ(x− y)A(ν(y))f(y) ds(y),

P(ν)
v ∂′′

Af (x) =

∫
Bν

Φ(x− y) (
n∑

j=1

Aj ∂
′′
Af(y) ej) dy.

From Lemma 4.6 we see that the “differential” ∂′
A P(ν)

v ∂′′
Af exists almost every-

where in R
n. Therefore, for each ν = 1, 2, . . ., we have

∂′
Af (x) = ∂′

A P(ν)
dl f (x) + ∂′

A P(ν)
v ∂′′

Af (x) (4.8)

a.e. in R
n.

Let Q : B(x0, R) → L(Rk×n,Rk×n) be the mapping defining system (3.5), and
let F : U → R

k×n be a mapping of an open set U ⊂ R
n. We define the mapping

QF : Rn → R
k×n by

QF (x) =

{
Q(x)F (x), if x ∈ U ∩B(x0, R),
0, in the opposite case.

If F ∈ Lq(U)k×n, then, from supx∈B(x0,R) ‖Q(x)‖ ≤ ε, we deduce that

‖QF‖Lq(U) ≤ ε ‖F‖Lq(U). (4.9)

Moreover, we make use of the following estimate for the potential ∂′
A P(ν)

v F ,
which is clear from Lemma 4.6:

‖∂′
A P(ν)

v F‖Lq(Rn) ≤ c(q) ‖F‖Lq(Bν), (4.10)

provided that F ∈ Lq(Bν)
k×n, 1 < q < ∞.

Having disposed of this preliminary step, we consider, in the ball B1=B(x0,θR),
the series ∞∑

ν=1

Fν , (4.11)

where Fν : B1 → R
k×n are defined in the following way:

F1 = ∂′
A P(2)

dl f |B1
, if ν = 1;

Fν = ∂′
AP(2)

v (Q∂′
AP(3)

v . . . (Q∂′
AP(ν)

v (Q∂′
AP(ν+1)

dl f)) . . .) |B1
, if ν ≥ 2.

Since qν = ‖∂′
A P(ν+1)

dl f‖Lq(Bν) is finite, for each q > 1, we deduce step by step
from (4.9) and (4.10) that

‖Q∂′
AP(ν+1)

dl f‖Lq(Bν) ≤ ε ‖∂′
A P(ν+1)

dl f‖Lq(Bν)

= ε qν ,

‖∂′
AP(ν)

v (Q∂′
AP(ν+1)

dl f)‖Lq(Bν−1) ≤ c(q) ‖Q∂′
AP(ν+1)

dl f‖Lq(Bν)

≤ ε c(q) qν ,

‖Q∂′
AP(ν)

v (Q∂′
AP(ν+1)

dl f)‖Lq(Bν−1) ≤ ε ‖∂′
AP(ν)

v (Q∂′
AP(ν+1)

dl f)‖Lq(Bν−1)

≤ ε2 c(q) qν ,

‖∂′
AP(ν−1)

v (Q∂′
AP(ν)

v (Q∂′
AP(ν+1)

dl f))‖Lq(Bν−2) ≤ c(q) ‖Q∂′
AP(ν)

v (Q∂′
AP(ν+1)

dl f)‖Lq(Bν−1)

≤ ε2 c(q)2 qν ,

for ν ≥ 2. We now proceed by induction obtaining

‖Fν‖Lq(B1) ≤ (εc(q))ν−1 qν , (4.12)
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ν = 1, 2, . . ..
Let us estimate the quantity qν . From Lemma 4.5 it follows that

|∂′
A P(ν+1)

dl f (x)| ≤ const (A)

∫
∂Bν+1

|f(y)− f(x0)|
|y − x|n ds(y)

for all x ∈ Bν+1. If x ∈ Bν , then |y − x| ≥ θ(1− θ)νR for all y ∈ ∂Bν+1, whence

|∂′
A P(ν+1)

dl f (x)|
≤ const (A) θ−n(1−θ)−νnR−n σn(1−(1−θ)ν+1))n−1Rn−1 diam f(B(x0, R))

≤ const (A) θ−n(1−θ)−νn σnR
−1 diam f(B(x0, R)).

Therefore,

qν =
(∫

Bν

|∂′
A P(ν+1)

dl f (x)|q dx
)1/q

≤ const (A) θ−n(1−θ)−νn σnR
−1 diam f(B(x0, R)) (meas (Bν))

1/q

≤ const (A) θ−n(1−θ)−νn σ1+1/q
n Rn/q−1 diam f(B(x0, R)).

Combining these inequalities with estimate (4.12) and taking into account that
ε c(q) (1−θ)−n < 1, we obtain

∞∑
ν=1

‖Fν‖Lq(B1)

≤ const (A) θ−n(1−θ)−n σ1+1/q
n Rn/q−1 diam f(B(x0, R))

∞∑
ν=1

(εc(q)(1−θ)−n)ν−1

= const (A) θ−n(1−θ)−n σ1+1/q
n Rn/q−1 diam f(B(x0, R))

1− εc(q)(1−θ)−n
,

i.e. series (4.11) converges normally in Lq(B1)
k×n.

We next claim that series (4.11) converges to ∂′
Af |B1 in the norm of Lq(B1)

k×n.
Since Lq(B1)

k×n is a Banach space, the normal convergence of (4.11) implies the
convergence of this series in Lq(B1)

k×n. What is left is to show that the sum of
(4.11) is equal to ∂′

Af in the ball B1. To this end, we make use of (4.8) to obtain

∂′
Af |B1

= ∂′
AP(2)

dl f |B1 + ∂′
AP(2)

v ∂′′
Af |B1

= F1 + ∂′
AP(2)

v (Q∂′
Af) |B1

= F1 + ∂′
AP(2)

v (Q∂′
AP(3)

dl f) |B1
+ ∂′

AP(2)
v (Q∂′

AP(3)
v ∂′′

Af) |B1

= F1 + F2 + ∂′
AP(2)

v (Q∂′
AP(3)

v (Q∂′
Af)) |B1

= F1 + F2 + . . .+ Fν + ∂′
AP(2)

v (Q∂′
AP(3)

v . . . (Q∂′
AP(ν+1)

v (Q∂′
Af)) . . .) |B1

.

As f ∈ W 1,q(B(x0, R))k for some q > n, we have ∂′
Af ∈ Ln(B(x0, R))k×n.

Analysis similar to that in the proof of inequality (4.12) shows that

‖∂′
Af −

N∑
ν=1

Fν‖Ln(B1) ≤ (ε c(n))N−1 ‖∂′
Af‖Ln(B(x0,R)),

for N = 1, 2, . . .. By assumption, ε c(n) < 1, hence the latter inequality makes it
obvious that series (4.11) converges to ∂′

Af |B1 in the norm of Ln(B1)
k×n. Now, the
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equality
∞∑
ν=1

Fν = ∂′
Af

in B1 follows from the fact that, if a series converges to Σ1 in Lq1(B) and to Σ2 in
Lq2(B), then Σ1 = Σ2 almost everywhere on B. The proof is complete. �

This theorem provides also an estimate for the “differential” ∂′′
Af , for we have

|∂′′
Af (x)| ≤ ε|∂′

Af (x)| for all f ∈ SBS(ε). Namely, under the hypotheses of Theo-
rem 4.7, we get

‖∂′′
Af‖Lq(B(x0,θR)) ≤ ε const (A)

σ
1+ 1

q
n R

n
q −1θ−n

(1− θ)n − ε c(q)
diam f(B(x0, R)). (4.13)

Theorem 4.7 shows that, if ε > 0 is sufficiently small, then

inf
f∈SBS(ε)

sup{q : ∂′
A(f), ∂

′′
A(f) ∈ Lq

loc} > n,

i.e. the maximal power at which the derivatives of maps f ∈ SBS(ε) are summable
is uniformly bounded away from n.

Corollary 4.8. Suppose the assumptions of Theorem 4.7 are fulfilled and, in ad-
dition, q > n. Then, for each map f : B(x0, R) → R

k of class SBS(ε), it follows
that

|f(x′)− f(x′′)| ≤ c |x′ − x′′|1−n/q diam f(B(x0, R)),

for all x′, x′′ ∈ B(x0, θ′R) with θ′ < θ, where c is a constant depending only on the
operator A and parameters q, θ, θ′ and ε but not on f .

Proof. The assertion follows immediately from the generalised Cauchy formula of
Lemma 4.4, the estimate of Lemma 4.6 and Theorem 4.7 in the same way as The-
orem 6 of [Kop82, Part II] was derived from Lemmas 4 and 6 and Theorem 5 of
that paper. �

4.6. Global closeness to the sheaf of solutions and the Beltrami equation.
The aim of this subsection is to prove Theorem 4.3. For this purpose we introduce
one more closeness functional.

Namely, for a locally bounded mapping f : U → R
k of a domain U ⊂ R

n, a
number θ ∈ (0, 1) and an arbitrary ball B ⊂ U , we set

d̃θ,B(f,S) =
⎧⎨
⎩

inf
u∈S(θB)

(
sup
y∈θB

|f(y)− u(y)|
diam f(B)

)
, if diam f(B) 	= 0,∞;

0, in the opposite case,
(4.14)

and
d̃θ(f,S) = sup

B⊂U
d̃θ,B(f,S).

Note that, in contrast to the definition of dθ,B(f,S) (cf. (1.1)), the infimum in
(4.14) is taken over all the mappings u ∈ S defined on the smaller ball θB, not
just those defined on the whole ball B. From this it is clear that

d̃θ,B(f,S) ≤ dθ,B(f,S). (4.15)

Remark 4.9. The properties of the functionals d̃θ,B(f,S) and d̃θ(f,S) are com-
pletely analogous to those of the functionals dθ,B(f,S) and dθ(f,S), given in Lem-
mas 1.6, 1.7, 1.8 and 1.9.
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The following statement, along with inequality (4.15), allows one to establish the
asymptotic equivalence of the functionals d̃θ(f,S) and dθ(f,S).
Lemma 4.10. Let the class S satisfy conditions P1 − P6. Then, there exists a
function δ : [0, 1/2)× (0, 1) → [0, 1), such that:

1) δ(ε, θ) → δ(0, θ) = 0 as ε → 0, and for each θ ∈ (0, 1);
2) if f : U → R

k is a mapping of a domain U ⊂ R
n and d̃θ(f,S) ≤ ε for some

ε < 1/2, then dθ(f,S) ≤ δ(ε, θ).

Proof. Set δ(ε, θ) = sup dθ(f,S), the supremum being taken over all mappings
f : U → R

k of domains U ⊂ R
n, satisfying d̃θ(f,S) ≤ ε < 1/2.

If D̃θ(f,S) = 0, then f ∈ S, by Lemma 1.9, and so dθ(f,S) = 0, by Lemma 1.8.
We have thus proved that δ(0, θ) = 0 for all θ ∈ (0, 1).

To complete the proof, it suffices to show that δ(ε, θ) → 0 as ε → 0, for each
θ ∈ (0, 1). Suppose, contrary to our claim, that there is a number θ ∈ (0, 1) such
that δ(ε, θ) 	→ 0 as ε → 0. Then, there exist both a number δ0 > 0 and a sequence
εν ∈ (0, 1/2), ν = 1, 2, . . ., such that δ(εν , θ) ≥ δ0 while εν → 0 as ν → ∞. Hence
it follows in turn that there are a sequence of mappings fν : Uν → R

n of domains
Uν ⊂ R

n and a sequence of balls Bν = B(xν , Rν) in Uν , such that d̃θ(fν ,S) ≤ εν
and

sup
y∈B(xν ,θRν)

|fν(y)− u(t)| ≥ δ0
2
diam fν(Bν) (4.16)

for each mapping u ∈ S(Bν). By property P2, we can rewrite inequality (4.16) in
the following form:

sup
y∈B(0,θ)

|φν(y)− u(t)| ≥ δ0
2
, ν = 1, 2, . . . , (4.17)

for each u ∈ S(B(0, 1)), where

φν(y) =
fν(xν +Rνy)− fν(xν)

diam fν(Bν)
.

As but one consequence of Lemma 1.17, we mention that if F is a uniformly
bounded family of mappings from a ball B ⊂ R

n into the space R
k and there

is a number ε0 ∈ (0, 1/2) such that dθ(f,S) ≤ ε0 for each f ∈ F , then F is
equicontinuous on compact subsets of B. Remark 4.9 now shows that this assertion
is still true if we replace dθ(f,S) by d̃θ(f,S).

Pick ε0 ∈ (0, 1/2) and choose N such that εν ≤ ε0 for all ν ≥ N . Consider the
family of mappings

F = {φν |B(0,1)}ν≥N .

Since φν(0) = 0 and diamφν(B(0, 1)) = 1, for each ν = 1, 2, . . ., it follows that the
family F is uniformly bounded. Moreover,

d̃θ(φν |B(0,1),S) = d̃θ(fν |Bν ,S)
≤ εν

≤ ε0

for all ν ≥ N . According to the above remark, the family F is equicontinuous in
each ball B(0, t), t ∈ (0, 1). By the Arzelà-Ascoli Theorem, there is a subsequence
φνi

, i = 1, 2, . . ., and a mapping u : B(0, 1) → R
k such that φνi

converges to u
pointwise in B(0, 1) and uniformly on each ball B(0, t), t < 1.
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We next claim that u ∈ S. To prove this, let x ∈ B(0, 1) and let R < 1 − |x|
be a fixed positive number. Then, B(x,R) ⊂ B(0, t) for each t ∈ (0, 1) larger than
|x|+R. From the inequality

d̃θ(φνi
|B(x,R),S) ≤ d̃θ(φνi

|B(0,1),S)
≤ ενi

we conclude that, for each i = 1, 2, . . ., there is a mapping ui ∈ S(B(x, θR)) such
that

sup
y∈B(x,θR)

|φνi(y)− ui(y)| ≤ 2 d̃θ,B(x,R)(φνi ,S) diamφνi(B(x,R))

≤ 2 ενi diamφνi(B(0, 1))

= 2 ενi .

Since φνi
→ u uniformly in each ball B(0, t), t < 1, and ενi

→ 0, as i → ∞,
it follows that ui → u uniformly in the ball B(x, θR). Property P4 implies that
u|B(x,θR) is of class S, i.e., the mapping u is locally of class S. By P6, we get u ∈ S,
as required.

The existence of a sequence {φνi
}, converging to a mapping u ∈ S(B(0, 1))

uniformly on each ball B(0, t), t < 1 (and, consequently, on the ball B(0, θ)),
contradicts (4.17). This proves the lemma. �

Proof of Theorem 4.3. Consider the function

Δ(ε) = sup
SBS(ε)

d(f, Sol)

for ε in some interval [0, ε0). Using this function, one can reformulate Theorem 4.3
as Δ(ε) → 0 when ε → 0.

On assuming that the last assertion fails and arguing in the same way as in
the proof of the second assertion of Theorem 3 in [Kop82, Part I], we construct a
sequence of maps fν : B(0, 1) → R

k, where ν = 1, 2, . . ., such that fν ∈ SBS(ν−1),
the diameter of fν(B(0, 1)) just amounts to 1 and there are numbers θ ∈ (0, 1) and
d0 > 0 satisfying

sup
y∈B(0,θ)

|fν(y)− u(y)| > d0 (4.18)

for all solutions u to the system Au = 0 in B(0, 1).
Fix a number q1 > n and a sequence (ri)i=1,2,... of real numbers with the property

that r1 = θ, ri+1 > ri for all i and ri → 1 as i → ∞. Consider the ball B(0, r1) =
B(0, θ) and choose a number ε = ε1 satisfying the hypotheses of Corollary 4.8.
Since the diameter of fν(B(0, 1)) is equal to 1 for all ν, we get by Corollary 4.8
that

|fν(x′)− fν(x
′′)| ≤ c1 |x′ − x′′|1−n/q1

for all x′, x′ ∈ B(0, r1), provided that ν−1 ≤ ε1. Therefore, the sequence (fν)
represents a uniformly bounded and equicontinuous family of mappings of the closed
ball B(0, r1) to R

k. According to the Ascoli-Arzel’a theorem the sequence contains

a subsequence (fνj
) which converges uniformly in the ball B(0, r1) to a continuous

mapping u1.
We claim that u1 is holomorphic inside the closure of B(0, r1). Indeed, decom-

pose fνj in B(0, r1) according to the generalised Cauchy formula of Lemma 4.4,
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obtaining

fνj
(x) = Pdlfνj

(x) + Pv∂
′′
Afνj

(x)

for x ∈ B(0, r1). From the uniform convergence of the sequence in B(0, r1) it follows
that Pdlfνj (x) → Pdlu1(x) for all z ∈ B(0, r1). Further, using Hölder’s inequality
we get

|Pv∂
′′
Afνj (x)| ≤

√√√√ n∑
j=1

‖Aj‖2
∫
B(0,r1)

∥∥∥Φ(
x− y

|x− y| )
∥∥∥|x− y|1−n|∂′′

Afνj (y)| dy

≤ const(A)

∫
B(0,r1)

|x− y|1−n|∂′′
Afνj (y)| dy

≤ const(A) ‖|y|1−n‖
Lq′1 (B(0,2r1))

‖∂′′
Afνj

‖Lq1 (B(0,r1))

for ν−1
j ≤ ε1, where 1/q1+1/q′1 = 1. By (4.13), the right-hand side here is majorised

by

n−1
j const (A) ‖|y|1−n‖

Lq′1 (B(0,2r1))

σ
1+ 1

q1
n r−n

1

(1− r1)n − n−1
j c(q1)

, (4.19)

the norm ‖|y|1−n‖
Lq′1 (B(0,2r1))

is finite because of q′1 < n/(n − 1). It follows that

Pv∂
′′
Afνj

(x) → 0 as νj → ∞, whence

u1(x) = Pdlu1(x)

for all x ∈ B(0, r1). Therefore, the mapping u1 is continuous in the closed ball

B(0, r1) and is represented in its interior by the generalised Cauchy formula. Using
the results of Section 3.4 of [Tar90] we conclude that u1 satisfies Au1 = 0 in the
ball B(0, r1).

Iterating this argument successively for the balls B(0, r2), B(0, r3), . . . and using
considerations from the proof of Theorem 1 in [Kop82, Part I], we derive a subse-
quence fνj

of the initial sequence (fν)ν=1,2,... and a solution u : B(0, 1) → R
k to

the system Au = 0, such that fνj
→ u uniformly on compact subsets of B(0, 1) as

νj → ∞. However, this contradicts (4.18), which proves the theorem. �

If l = k, i.e. A is a determined elliptic operator, an effective proof of this theorem
is given in Section 9.4.6 of [Tar95]. It exploits the generalised Cauchy-type integral
u = Pdlf of Lemma 4.4 which satisfies Au = 0 and approximates f with suitable
accuracy. For l > k, i.e. overdetermined elliptic operators A, the proof no longer
works, for the potential u = Pdlf does not satisfy Au = 0. In the general case the
proof runs along more abstract lines elaborated in [Kop82], see Theorem 4 of Part
II ibid.

5. Properties of mappings close to the sheaf of solutions

5.1. Proximity of the derivatives. Let ε be a positive number. Set

q(ε) = inf
f∈SBS(ε)

sup{q ∈ R : ∂′
Af, ∂

′′
Af ∈ Lq

loc}.

Theorem 5.1. As defined above, the function q(ε) satisfies

lim
ε→0

q(ε) = ∞.
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Proof. It is sufficient to show that, for each q > 1, there exists an ε0 > 0 such that
q(ε) ≥ q, provided 0 ≤ ε < ε0. To this end, pick q > 0 and choose ε0 ∈ (0, 1) such
that ε0c(q) < 1 and ε0c(n) < 1, where c(q) is the constant of (4.6). It is a simple
matter to see that there is a number θ ∈ (0, 1) satisfying ε0 c(q) (1−θ)−n < 1. Now,
let f : U → R

k be a mapping of class SBS(ε), with 0 ≤ ε < ε0. Suppose x is an
arbitrary point of the domain U and B(x,R) a ball whose closure lies in U . From
Theorem 4.7 it follows that, for the restriction of f to B(x,R), inequalities (4.7)
and (4.13) hold. Since diam f(B(x,R)) < ∞, these inequalities imply that both
∂′
Af and ∂′′

Af are of class Lq(B(x, θR))k×n. Hence q(ε) ≥ q, which is the desired
conclusion. �

For hypercomplex analogues of the Cauchy-Riemann system, one can prove that
q(ε) = O(1) 1

ε as ε → 0 (cf. [Bez83]).

5.2. Generalised Liouville’s theorem. Let S = Sol be the class of solutions to
the system Au = 0. As described above, it meets conditions P1-P6.

Consider a mapping f : R
n → R

k of class W 1,n+0
loc , such that D(f,S) ≤ ε.

According to Theorem 4.1 on the stability of the class S, we have d(f,S) ≤ δ(ε),
where δ(ε) → 0 as ε → 0. Choose a number ε0 > 0 such that δ(ε) < 1/2, for
each ε ∈ [0, ε0). Then, d(f,S) < 1/2 for all ε ∈ [0, ε0). By Corollary 1.20, we can
assert that if f is bounded, then f is constant. We are thus led to the following
strengthening of Theorem 1.18.

Theorem 5.2. There exists a positive number ε0 such that, if f : Rn → R
k is a

bounded mapping of class W 1,n+0
loc , satisfying D(f, Sol) ≤ ε for some ε ∈ [0, ε0),

then f is constant.
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