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Chapter 1: Introduction 
 

 
The hierarchy in levels of biological organisation is one of the most pervasive 

themes in ecology. This hierarchy influences how ecologists perceived research 
questions in ecology to such an extent that major disciplines within ecology were 
often defined by the biological scale of interest (e.g. population ecology, 
community ecology). In early work within the field of ecology, the natural 
tendency when confronted by a problem of a given level of organisation was to 
seek an explanatory mechanism at the same level. For example the early work in 
population ecology aimed to answer key questions such as the regulation of 
populations by considering the population itself as the unit of interest. The 
different branches delineated along levels of biological organisation in ecology 
have led to important insights in their respective fields (optimal foraging theory at 
the individual level, exploration of causes of population cycles through use of 
population models, etc.). However, in recent decades the role of scale in ecology 
has shifted from that of a delineator of research interests, to that of the critical link 
for both basic understanding and useful predictions. This shift has been primarily 
motivated by the realization that patterns observed at one scale are often the 
emergent result of processes occurring at smaller scales (Levin 1992; Grimm and 
Railsback 2005). A second reason for the shift in the role of scaling among levels 
of biological organisation in ecology is based on more pragmatic argumentation. 
Generally, as one shifts from lower to higher levels of biological organisation, 
relevant time and spatial scales increase the time and costs required to collect 
useful data. In most cases, it is much easier to collect data on individuals than 
populations, and still more challenging to monitor communities. Thus the 
availability of quality data becomes more rare, necessitating the development of 
theory and methods to use lower-level data to understand and predict higher-level 
patterns. 

One problem that exemplifies both of these challenges, and the example that 
serves as the motivation for this thesis, is the risk assessment of chemicals. 
Currently, most data on the toxicity of chemicals is collected at the individual 
level or lower. Typically, a series of tests are conducted on individuals to monitor 
survival or to measure changes in sub-lethal endpoints such as reproductive output 
in response to exposure to a toxicant. However, the protection directives for most 
species (at least within the European Union) are aimed at achieving sustainable 
populations. Thus, relevant questions for risk assessment are: what effects will a 
given exposure to a chemical have on population density or size structure? How 
long will it take the population to recover after an exposure? Thus, for risk 
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assessment of chemicals, understanding the link between individuals and 
populations is critical. 

Due to the logistical, financial, and ethical constraints of conducting large-scale 
population experiments for each pesticide is impractical, ecological modelling has 
been suggested as a tool to link individual and population levels for chemical risk 
assessment. With this aim, many models have been developed for chemical risk 
assessment using a variety of methods: with most either using classical differential 
equation models, matrix models, or individual-based models (IBMs; Galic et al. 
2010, Schmolke et al. 2010, Thorbek et al. 2010). In this thesis I use the latter. 
Unlike classical population models, which use state variables of populations such 
as population density, individual-based models consider individuals in the 
population explicitly. In IBMs, individuals are discrete and unique entities. These 
individuals follow a set of rules in which their state variables are updated, (e.g. eat, 
move, reproduce) and the dynamics of the system as a whole emerge from the 
interactions of individuals with each other and their environment. Thus, IBMs are 
advantageous when variation between individuals, local interactions, or adaptive 
behavior of individuals is important for a particular research question (DeAngelis 
and Mooij 2005, Railsback and Grimm 2012). IBMs are especially useful for 
chemical risk assessment, where data is available at the individual level, but 
predictions are needed at the population level.  

One criticism of the use of IBMs is that they are often complex and species 
specific. This creates two major problems. First, in a basic context, the complexity 
and specificity of many IBMs hinders the development of general theory. Because 
IBMs differ so widely in structure it is difficult to generalize the finding from one 
model or species to another (Grimm 1999, Grimm et al. 1999). The fact that IBMs 
are usually species-specific may reflect their broad use by biologists with more 
empirical backgrounds. Compared to theoretical ecologists, empirical ecologists 
often are most interested in what makes species unique rather than what makes 
them similar. Secondly, for applied research, the time and costs required to 
develop and test a new model will be prohibitive for most species. This is 
especially relevant for chemical risk assessment were developing a new model for 
each species is impossible, and extrapolations among species are needed. While 
there are several good examples of predictive and useful IBMs (e.g., Railsback and 
Harvey 2002, Stillman and Goss-Custard 2010), these models were generally the 
result of up to a decade of guided model development. Thus one major goal of my 
research in addition to developing methodology for predicting the effects of 
chemicals on populations using individual-level data, is to generalize the link 
between individuals and populations. In that respect, I use the generic Dynamic 
Energy Budget theory (DEB) as a basis for my IBM.  



 

 3 

DEB is a generic theory that aims to provide a common framework for 
understanding the dynamics of individuals (Kooijman 2010). DEB describes the 
life-history of individuals using a mass-balance approach. Here the processes of 
energy acquisition through feeding, and allocation to growth and reproduction are 
represented using a set of coupled differential equations. The use of a common 
framework for all species is motivated by the observation that key metabolic 
pathways are highly conserved through evolution, and thus a common set of rules 
can be used to model how animal gather and use energy. This assumption is 
supported by the surprising generalities among a diverse range of animal taxa, for 
example the ubiquity of von Bertalanffy growth at constant environmental 
conditions. Therefore, rather than using a new model framework for each species, 
in DEB the framework is conserved and differences between species are 
represented through variation in parameter values (see Chapter 2 for an broader 
introduction to DEB theory). 

Thus, combining DEB and IBM allows the advantages of using IBMs, but with 
the potential for generality. However, to date, little work exists combining DEB 
theory and IBMs to understand the dynamics of higher levels of biological 
organisation. Additionally, while predictions of DEB have been tested at the 
individual level, the ability of DEB to accurately scale from the individual to 
population level has rarely been tested.  Thus the goal of my thesis is twofold: 
first, to develop methodologies to encourage further use of DEB in an IBM 
context, and secondly to test the ability of DEB to scale from individuals to 
populations in both basic and applied contexts. Below I give a brief outline of 
these two themes divided into three research chapters. 

First, to motivate the use of DEB and IBMs together, I developed a generic 
implementation of DEB theory for use in an IBM context in NetLogo (DEB-IBM) 
(Chapter 2). DEB-IBM serves as a framework for investigating population-level 
research questions, with DEB serving as the base model for individual 
performance. The DEB-IBM framework was designed to be easily adaptable to 
address specific research questions. In addition to the manuscript and code, I have 
also provided a framework description and user manual with examples of how to 
adapt the model to a specific research question. 

 I then use this generic framework to develop a model for the water flea, 
Daphnia magna and test the ability of the model to capture population-level 
processes (population density and size structure over time) using data at the 
individual level to parameterise the model (Chapter 3). The goal of this chapter 
was not only to test the ability of DEB to scale from individual level to the 
population level, but also to develop theory. Here I use information from the 
mismatches between model predictions and data to further guide theory 
development.  
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Finally, I test the ability of the model adapted for Daphnia to predict the 
population response to chemical stressors using individual-level data (Chapter 4). 
To accomplish this, I use data sets collected for both individual and population 
response to 3,4 dichloroaniline. I use the individual-level data to identify the 
physiological mode of action, calibrate the effect of the toxicant, and to use this 
information to make predictions for the effect at the population level. 
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Chapter 2: Dynamic Energy Budget theory meets individual-
based modelling: a generic and accessible implementation 
As appears in Methods in Ecology and Evolution, 3: 445-449, 2012 

Benjamin Martin, Elke Zimmer, Volker Grimm, Tjalling Jager 

 

Abstract 
Dynamic Energy Budget (DEB) theory was designed to understand the 

dynamics of biological systems from cells to populations and ecosystems via a 
mass balance approach of individuals. However, most work so far has focused on 
the level of the individual. To encourage further use of DEB theory in a population 
context, we developed DEB-IBM, a generic individual-based model (IBM) that is 
based on DEB theory. The generic IBM is implemented as a computer program 
using NetLogo, a free software platform that is accessible to biologists with little 
programming background. The IBM uses DEB to represent assimilation, 
maintenance, growth and reproduction of individuals. The model description 
follows the overview, design and details (ODD) protocol, a generic format for 
describing IBMs, and thereby provides a novel and accessible introduction to DEB 
theory and how it works in a population context. Dynamic Energy Budget-
individual-based model can be used to explore properties of both individual life-
history traits and population dynamics, which emerge from the set of DEB 
parameters of a species, and their interaction with environmental variables such as 
food density. Furthermore, DEB-IBM can be adapted to address specific research 
questions, for example by including spatial effects. A user manual explains how 
this can be done. Dynamic Energy Budget-individual-based model is designed to 
both facilitate use and testing DEB theory in a population context and to advance 
individual-based modelling by basing the representation of individuals on well-
tested physiological principles. 



 

 6 

Introduction 
Understanding how population dynamics emerge is one of the fundamental 

challenges in ecology. As the influence of individual variation, local interactions 
and adaptive behaviour on population dynamics has become more appreciated, 
individual-based models (IBMs) are playing an increasing role in both basic and 
applied disciplines (DeAngelis & Mooij 2005; Grimm & Railsback 2005; Stillman 
& Goss-Custard 2010). IBMs represent individual organisms as unique entities 
that differ from each other and change over their life cycle. Individuals are 
characterized by a set of state variables and attributes, which are chosen according 
to the problem addressed with the model (Grimm et al. 2010). Individuals behave 
as autonomous entities according to behavioural rules. They interact with each 
other and their abiotic environment, including habitat structure and environmental 
drivers such as temperature, humidity or disturbances. Population dynamics 
emerge from these interactions. 

Individual-based models have been shown to be powerful and flexible tools. 
However, they have also been criticized for often being based on ad 
hoc assumptions and representations of individual dynamics and behaviour 
(Grimm 1999). This makes the development of IBMs inefficient and the field of 
individual-based modelling incoherent (Grimm & Railsback 2005). To facilitate 
re-usability of IBMs and their elements and to facilitate distilling general insights 
from specific IBMs, it is desirable to base IBMs more on standardized and well-
tested approaches for individual behaviour (Berger, Hildenbrandt, & Grimm 
2002). 

Dynamic Energy Budget (DEB) theory (Kooijman 2010) is such an approach. 
It has been developed with the goal of understanding the dynamics of biological 
systems, from cells to ecosystems, via a balance approach for mass and energy. As 
in IBMs, in DEB theory, individuals are considered the key unit of interest for 
understanding dynamic systems at higher levels of organization. Focusing on the 
individual is motivated by the fact that mass and energy balances are easier to 
calculate for individuals than for higher or lower levels of biological complexity. 
Additionally, natural selection occurs at the level of the individual, which shapes 
the life-history traits of a species, and ultimately drives dynamics at higher levels 
of biological organization. DEB theory provides a quantitative framework for 
modelling the acquisition and use of resources for organisms over the entire life 
cycle. It thereby generates a quantitative explanation for the time patterns of life-
history traits such as growth, maturity and reproduction in dynamic environments. 

An overview of DEB theory and its applications can be found 
in Nisbet et al. (2008), Kooijman (2001), Van der Meer (2006) and Sousa, 
Domingos, & Kooijman (2008). A key assumption in the theory is that the 
mechanisms governing metabolic organization are similar among species. 
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Therefore, the same basic model structure can be used for, in principle, all animal 
species; species differ in life history primarily as a result of differences in their set 
of DEB parameters, not because of differences in model structure. The generality 
of DEB facilitates a growing understanding of how life-history traits covary 
among and within taxa. In spite of DEB’s generality, it is an empirically grounded 
and well-tested theory and has been applied in a range of disciplines, including 
ecotoxicology (Jager, Heugens, & Kooijman 2006) and aquaculture (Alunno-
Bruscia, van der Veer, & Kooijman 2009), and to species from a wide range of 
taxonomic groups including bacteria, yeast, arthropods, fish and mammals. Yet to 
understand behaviour at higher levels of biological organization, tools are needed 
to scale from the individual model to populations. 

We believe both DEB and IBMs can benefit each other; however, to date, these 
approaches have rarely been used in combination. Below, we discuss how each of 
these approaches can benefit each other and then describe the DEB-IBM 
framework, which we have developed to facilitate the use of DEB in an 
individual-based context. 

How can DEB benefit IBMs? 

A common problem with the application of IBMs is their complexity. IBMs are 
often developed for very specific research questions, and the structure and 
parameterization of models defining the life history of organisms differ widely. 
This creates a problem not only for model developers who often start from scratch 
when modelling a new species but also for the scientific community, which must 
try to reconcile different models or try to understand how conclusions for one 
species relate to another. DEB is appropriate as a building block for IBMs because 
it is a relatively simple model that translates environmental conditions to 
individual performance (growth, survival and reproduction) and is consistent with 
first principles such as conservation of energy. This is important because the trade-
offs in life-history traits that DEB specifies (growth vs. reproduction, time and size 
to maturation) turn out to strongly influence population dynamics (Sæther & 
Bakke 2000; Denney, Jennings, & Reynolds 2002). Moreover, because DEB is a 
generic theory, it can be applied to virtually all species, which would facilitate 
broader insight from specific studies and comparisons between species. 

How can IBMs benefit DEB? 

Because DEB models specify behaviour of an individual, tools are needed to 
extrapolate to the population level. So far, most of such population predictions 
based on DEB theory were made using matrix models (Klok & de Roos 
1996; Klanjscek et al. 2006; Billoir, Péry, & Charles 2007) or the Euler–Lotka 
equation (Kooijman & Metz 1984; Jager et al. 2004). The disadvantage of these 
approaches is that only one state variable can be easily considered (age, stage or 
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size), whereas the consistent application of DEB often requires considering more 
state variables, especially in time-varying environments. Another method for 
simulating population dynamics based on a model of individual performance is 
provided by physiologically structured population models (PSPM) [e.g. the 
escalator boxcar train from De Roos, Diekmann, & Metz (1992)]. PSPMs can be 
used to model population dynamics in dynamic environments. However, for all of 
these approaches (Matrix, Euler–Lotka equation, PSPM) as opposed to IBM’s, 
variation among individuals, local interactions or adaptation cannot be easily 
considered in a rigorous manner. IBMs are the natural link to the population for 
DEB because both approaches focus on the behaviour of individuals, as a key 
aspect in understanding higher levels of biological complexity. Additionally, use 
of DEB in a population context has generally used a deterministic approach. DEB-
IBM allows for the inclusion of stochasticity and thus provides a framework to 
investigate its effect at the population level. 

DEB-IBM links DEB theory with IBMs 

Despite this potential, so far DEB theory has not been widely used in IBMs. 
We only know of three published examples (Kooijman, Hoeven, & Werf 
1989; Alver, Alfredsen, & Olsen 2006; Bacher & Gangnery 2006). A reason for 
this might be that to implement DEB theory in IBMs, skills in both mathematics 
and computer programming are required, which many ecologist lack. Therefore, to 
encourage further development and use of DEB theory, we have developed a 
generic framework for DEB-based IBMs using a software platform that is 
accessible to biologists with little programming background: NetLogo (Wilensky 
1999). DEB-IBM is a generic IBM, which can be linked to specific species by 
using species-specific parameters. It is thus rather a framework than a specific 
model. We here focus on the general framework, which is designed to facilitate 
using DEB and IBM in combination for tackling all kinds of generic and specific 
questions for a wide range of species. We present a transparent and complete yet 
concise implementation of the DEB model for a generic isomorphic (i.e. 
organisms retain the same shape during growth) and ectothermic animal 
(Kooijman et al. 2008) within an IBM. In the following, we first briefly describe 
the DEB-IBM framework and then present the IBM and its scope. 

The DEB-IBM Framework 
We implemented a scaled version of the standard DEB model as described 

in Kooijman et al. (2008). A full description of the model, following the overview, 
design and details (ODD) protocol for describing IBMs (Grimm et al. 2006, 2010), 
a user manual and the NetLogo file of DEB-IBM are all included in the 
supplementary material (http://cream-itn.eu/projects/wp-1/daphnia-2/deb-ibm). In 
the following, we provide a brief overview of DEB-IBM and describe how it can 
be used. 



 

 9 

Each model individual is characterized by four primary state variables (called 
‘DEB state variables’ hereafter) that describe the energy content of four different 
compartments: ‘structure’, which determines actual size, feeding rates and 
maintenance costs; ‘reserves’, which serve as a buffer between feeding and 
metabolic processes that require energy; ‘maturity’, a continuous state variable 
that regulates transitions between the three development stages (embryo, juvenile 
and adult) at fixed maturity levels, and a ‘reproduction buffer’, into which mature 
individuals direct energy for reproduction and which is converted into embryos 
during reproductive events. 

In DEB theory, metabolic processes are mechanistically driven by 
surface/volume ratios. Individuals update their DEB state variables based on a set 
of differential equations. Individuals assimilate food from the environment, which 
enters the reserve. Energy is mobilized from the reserve and is distributed to two 
distinct pathways: somatic growth and maintenance on one side, and maturity 
maintenance, development (for immature individuals) or reproduction (for mature 
individuals) on the other (maintenance costs need to be satisfied first). Here, κ is 
the proportion of the mobilized energy allocated to the soma, and 1 − κ the 
proportion allocated to maturity maintenance, development or reproduction. Based 
on the updated DEB state variables, a set of discrete events may occur. An 
individual dies when it cannot mobilize enough energy to pay somatic 
maintenance. At each time step, for each mature individual, it is calculated 
whether the individual has enough energy for an offspring, if it does, it produces 
one offspring. In the next time step of the numerical simulation, this individual is 
added to the population; it will start to feed exogenously when the maturity level 
reaches the threshold for birth; however, this default reproduction process can be 
easily adapted to replicate other types of reproduction behaviour. In addition to 
this standard model, we have included optional submodels for the ageing process, 
intraspecific variation and simple predator–prey dynamics. 

Species in the model are specified by the 8 ‘scaled’ DEB parameters (see user 
manual), with two additional parameters for the ageing submodel (optional), and 
two parameters needed for the foraging submodel [you also need the two 
parameters (r and K) of the logistic growth formula of the prey to run the 
population dynamics under logistic prey dynamic conditions]. 

Our implementation is compatible with a database of DEB parameters for a 
rapidly growing number of species: ‘Add_my_pet’ 
(http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/index.php). In the user manual, 
we provide a detailed explanation of how to obtain parameters from this database 
and input them into DEB-IBM. The ‘Add_my_pet’ database is relatively new, 
with parameters values for approximately 60 species, with varying degree of 
support. However, users can assess the degree of support for a species in the 
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database, because the data used to derive the parameter set for each species are 
given in a corresponding data file, and within the file the references from which 
the data were taken are listed. 

Many users still will have to obtain DEB parameters themselves. There are 
currently two thorough reviews and guides for parameterizing a DEB model for a 
species (Van der Meer 2006; Kooijman et al. 2008). If data are very limiting, a 
general set of parameters can be estimated from maximum body size of an 
individual (Kooijman et al. 2008). While users can cope with less, generally data 
for growth and reproduction at multiple food densities provides enough 
information to get a good set of parameters for use in DEB-IBM. Parameterization 
tools, DEBtool (available in both Matlab and the free software Octave) and 
DEBtoxM (specific for toxic stress, Matlab only), can be obtained 
from http://www.bio.vu.nl/thb/deb/deblab/, which perform the required 
optimization techniques for varying levels of data availability. This level of use 
requires deeper investment into DEB theory. 

There are two levels of application for our generic framework. First, it can be 
used to explore properties of both individual life-history traits and population 
dynamics, which emerge from the set of DEB parameters of a species, and their 
interaction with environmental variables such as food density. For this, no 
programming or technical understanding of DEB theory are required. Users need 
only input DEB parameters and environmental conditions in the graphical user 
interface, from which they can monitor and record various individual and 
population-level output such as fecundity, population density and size structure. 

The second level of use, involves adapting DEB-IBM to address a specific 
research question. For this, users must learn how to change the code of the generic 
model. For example, the research question might be: how are the population 
dynamics of a species influenced by changes in land use? In this case, the user 
would adapt the generic DEB-IBM to include space and movement behaviour of 
individuals, with DEB theory acting as the energetic model for the individual. We 
provide detailed examples of how the model can be adapted to include both spatial 
and behavioural aspects. The NetLogo implementation is flexible enough to add 
all kinds of modules or alter existing ones, including ones that are in DEBtool or 
DEBtoxM. 

This more advanced use of the model requires users to learn programming in 
NetLogo. However, NetLogo is an exceptionally well-documented software 
platform that was specifically designed for implementing IBMs; moreover, a 
recent textbook on individual-based modelling, which is based on NetLogo is 
available (Railsback & Grimm 2012). NetLogo comes with powerful built-in 
procedures, leading to a shallow learning curve. This makes both IBMs and DEB 
more accessible to ecologists without formal training in computer programming. 
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NetLogo has some limitations, in particular regarding computation time, number 
of agents and spatial units it can deal with, and the lack of a tool for debugging the 
software. However, these limitations turn out to not be constricting for many 
models and problems in population ecology. Moreover, because NetLogo slowly 
but surely is turning into a standard platform for implementing IBMs, we expect 
that these limitations will be overcome in the near future (see, for example, the 
recent link between NetLogo and the computationally more powerful platform 
RePast: http://repast.sourceforge.net/repast_simphony.html). 

For DEB-IBM, we did not chose a general programming language such as C++ 
or Java because learning these languages to the point were users can implement or 
modify IBMs would usually be too time-consuming for most ecologists. Likewise, 
we considered none of the alternative software platforms, e.g. Repast 
(repast.sourceforge.net) or MASON (Luke et al. 2005) suitable because they are 
much harder to learn and not as thoroughly documented (for comparative reviews 
of software platform for individual-based or agent-based models, see Railsback, 
Lytinen, & Jackson 2006; Nikolai & Madey 2009). 

Discussion 
Dynamic Energy Budget-IBM can be used without modification to make 

general estimations of population characteristics, such as population growth rate, 
in simple environments, and as a learning tool for understanding how the 
physiological properties of individuals can influence population dynamics. While 
other tools, such as matrix models or the Euler–Lotka equation can be used to 
estimate population growth rates in constant environments, they cannot as easily 
be extended to dynamic environments. A further advantage of DEB-IBM is that 
we can consider the interactions between a predator population and its prey. In the 
default version of DEB-IBM, we have allowed the option to model dynamic 
predator–prey population dynamics, assuming the prey follows a logistic growth 
pattern and is depleted via predation; however, this can be adapted when needed to 
model prey dynamics of a specific system. Thus, DEB-IBM can be used to 
estimate carrying capacity of the predator population as a function of its 
environment. Because DEB-IBM predicts dynamics in time, it lends itself to more 
rigorous testing with population-level data, which often consist of time series 
observations of population density and/or size structure. This is important because 
validation of models against population data is necessary to build confidence in 
the model for applied uses. 

It should be noted that although DEB-IBM facilitates applying DEB theory in 
individual-based population models, using it still requires commitment. For 
specific research questions, DEB-IBM merely serves as a starting point. 
Researchers will have to consider species-specific processes such as the rules for 
converting the reproduction buffer into offspring. In the generic model, individuals 
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reproduce when they have enough energy to produce one offspring. However, 
many animals produce clutches of offspring, either at fixed time intervals or when 
triggered by an environmental cue. These differences in life-history strategy can 
easily be incorporated into the generic model, and in the user manual, we give 
examples of how to do so. Additionally, relevant behaviours such as dispersal or 
habitat selection may have to be considered. Users of DEB-IBM should thus be 
prepared to learn basic skills in NetLogo, but this requires, owing to the design 
and excellent documentation of NetLogo, usually not more than a few days. 

Like any useful theory, DEB theory is not static, and there are still plenty of 
open questions within DEB that require dedicated research. A growing 
international community is currently working with this theory, so we can expect 
new developments in the near future. One benefit of using DEB in a population 
context is that it highlights aspects of the individual dynamics, which are 
especially relevant for population dynamics. Often these are areas that have been 
overlooked by those focusing solely on individuals. Our own initial use of DEB-
IBM has highlighted important questions where further research is needed. For 
example, within DEB, a general pattern of intraspecific variation in parameter 
values has been suggested (Kooijman, Hoeven, & Werf 1989); however, little 
research to date has investigated how DEB parameters (co)vary among individuals 
within a population. Additionally, little research has so far been carried out on the 
process of starvation. Kooijman (2010) offers some possibilities to handle 
starvation within a DEB context, but these rules are probably highly species-
specific and require further evaluation. 

Nevertheless, the advantage of using a mechanistic framework like DEB is that 
once these questions are addressed, and the major processes understood, they are 
more likely to apply in untested conditions, whereas phenomenological 
approaches can only be applied within the range of tested conditions. Additionally, 
research on starvation within a DEB context may help shed light on how similar 
the mechanisms of the starvation process are among a wide range of taxa. DEB 
has a lot to offer for solving specific problems, but to exploit its benefits as a 
general theory, it needs to be used and tested more widely at the population level. 
This would increase confidence in the model, clarify its limitations and possibly 
lead to further improvement. 
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Abstract 
Individual-based models (IBMs) are increasingly used to link the dynamics 

of individuals to higher levels of biological organization. Still, many IBMs are 
data hungry, species specific, and time consuming to develop and analyse. 
Many of these issues would be resolved by using general theories of individual 
dynamics as the basis for IBMs. While such theories have frequently been 
examined at the individual level, few cross-level tests exist which also try to 
predict population dynamics. Here we perform a cross-level test of DEB theory 
by parameterizing an individual-based model using individual-level data of the 
water flea, Daphnia magna, and comparing the emerging population dynamics 
to independent data from population experiments. We found that DEB theory 
successfully predicted population growth rates and peak densities, but failed to 
capture the decline phase. Further assumptions on food-dependent mortality of 
juveniles were needed to capture the population dynamics after the initial 
population peak. The resulting model then predicted, without further 
calibration, characteristic switches between small- and large-amplitude cycles, 
which have been observed for Daphnia. We conclude that cross-level tests 
help detecting gaps in current individual-level theories and ultimately will lead 
to theory development and the establishment of a generic basis for individual-
based models and ecology. 
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Introduction 
A major objective in ecology is to link processes at different scales through an 

understanding of how behaviour at a macro scales emerges from the behaviour of 
individual components of the system. This is especially apparent in population 
ecology, where individual-based modelling (IBM) has been proposed as a tool to 
cross between scales and unify their associated subdisciplines, for example, 
physiological and population ecology (Huston et al. 1988; DeAngelis and 
Mooij 2005; Grimm and Railsback 2005). However, a well-known drawback of 
IBMs is that they can be complex and data hungry. Consequently, they often are 
designed for specific species where sufficient data exist. Model designs are then 
tied to these species and thus lack generality. This makes model development and 
analysis inefficient because different models are hard to relate to each other, 
impeding distillation of general insights from IBMs (Grimm 1999; Grimm et 
al. 1999). 

In contrast to this species-specific approach, some theoretical approaches 
attempt to deduce the diversity among organisms and ecological systems from 
generic models of individual-level processes, for example, Dynamic Energy 
Budget (DEB) theory (Kooijman 1993, 2010) or the Ontogenetic Growth Model 
(OGM) based on metabolic scaling theory (Hou et al. 2008). These approaches are 
based on first principles of bioenergetics and thus focus on common and species-
independent aspects of organisms and their performance. They apply the same 
generic model structure for all species and use variation in parameter values to 
explain differences in life-history patterns among species. 

Such standardized generic models hold great potential for advancing the field 
of individual-based ecology (IBE; Berger et al.2002). First, they make model 
development and communication more efficient. This is important for both 
theoretical and applied models. Instead of designing models from scratch, standard 
designs can be used that do not need to be justified in detail, because they have 
been tested and used before. Second, they facilitate comparing models addressing 
different species and systems. Differences in model behaviour can be more easily 
ascribed to differences in species-specific traits or system-specific controls, 
whereas without standard submodels they could be ascribed to virtually any detail 
of the models’ structure. Conversely, when the same model structure is used to 
model different species, we can understand the differences in population level 
output as a function of differences in individual-level parameters. 

Despite the great potential of generic individual-level models as the foundation 
for IBMs, their ability to accurately capture the dynamics of higher levels of 
biological organization remains largely untested. Here we focus on performing a 
cross-level test for one general theory, Kooijman’s dynamic energy budget theory 
(Kooijman 2010; Sousa et al. 2010). DEB is a general theory that describes life-
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history traits over time over a range of environmental conditions. DEB theory has 
been used to model individual-level processes for a wide range of animal species, 
for example, molluscs (Ross and Nisbet 1990; van Haren and Kooijman 1993; 
Saraiva et al. 2011), zooplankton (Nisbet et al. 2010), and fish (Pecquerie et 
al. 2009, 2011), and to model population-level processes for microorganisms, for 
example, bacteria (Kooi and Kooijman 1994; Hanegraaf and Muller 2001) and 
phytoplankton (Muller 2011). Yet, a primary motivation for the development of 
DEB theory was to explain population dynamics in terms of individual life-history 
traits, that is, to obtain unified theory across levels of biological organization 
(Nisbet et al. 2000). Surprisingly, so far tests of DEB theory that link individual 
and population process have been sparse and of limited scope (literature reviewed 
in Nisbet et al. 2010) or have focused on modelling equilibria or population 
growth rates, for example, de Roos (2008). Here we therefore develop an IBM for 
a cross-level test of DEB theory. Our cross-level test serves two purposes: to test 
how well individual-based population models based on DEB theory predict 
population dynamics and structure and to use possible deviations between model 
output and data to identify elements of DEB theory that might need to be 
improved to better capture population-level phenomena. 

For implementing our IBM, we used the software tool DEB-IBM (Martin et 
al. 2012), which is a generic IBM-based DEB theory. As a model system, we use 
laboratory populations of Daphnia magna, for which we collected independent 
data sets on individual performance and population dynamics under different 
environmental conditions. We first use individual-level data to parameterize a 
model of individuals that is based on DEB theory. Then we use these DEB 
individuals to simulate population dynamics and compare them to results from 
independent population experiments. Our initial comparison of DEB-IBM model 
output and data revealed a mismatch between the model and data after the initial 
peak in population density for all population experiments. Specifically, the model 
did not capture the decline in population density and the subsequent change in 
density and size structure following the initial population peak. Our conclusion 
was that the dynamics of the starvation and recovery mechanisms are poorly 
understood. We therefore discussed and tested several new alternative size-
selective submodels of food-dependent mortality and also formulated and tested a 
new recovery model. Finally, we compared the model’s ability to reproduce 
additional qualitative patterns, for example, the characteristic occurrence of both 
small- and large-amplitude cycles under certain resource conditions (McCauley et 
al. 2008). 

Methods 
DEB theory is designed to capture the energy budget of a wide range of 

organisms, environments, and questions. Using DEB theory in a specific context 
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requires setting up specific model equations. Here we introduce the core concepts 
of DEB theory and then briefly explain our model, which includes the “standard” 
DEB model (see Sousa et al. 2008 for an in-depth introduction) plus specific 
submodels of processes that are not fully covered by the standard model. A full, 
detailed description of our model, following the ODD (overview, design concepts, 
details) protocol for describing individual-based models (Grimm et al.2006, 2010), 
and the implementation of the model in NetLogo (Wilensky 1999) are provided in 
the supplementary material. 

DEB Theory 

Conceptually, DEB theory is based on three elements: the rate of energy 
acquisition of an individual scaling with surface area while maintenance costs 
scales with volume; the “kappa rule” of diverting a fixed proportion, κ, of 
assimilated energy to maintenance and growth, with the remainder used for 
development and reproduction; and the inclusion of “reserve.” What makes the 
theory look more complicated is its unique notation system, which allows the 
theory to be consistent in notation across applications involving properties with 
different dimensions, for example, energy, mass, volume, proportions of elemental 
matter, and more. The user manual of DEB-IBM (Martin et al. 2012) gives a 
straightforward introduction to the notation and conversion among the various 
versions and parameterizations of DEB theory. In the following, the three elements 
of DEB theory and the corresponding model are briefly explained. 

First, DEB theory recognizes different components of the biomass of an 
organism: structural biomass, reserve, and a reproduction buffer in adults. Only 
structure requires energy for maintenance; reserve does not but is used to fuel 
other metabolic processes. A key assumption in the “standard” DEB model is that 
the rate of energy acquisition is proportional to the structural surface area of the 
organism, which could relate to, for example, the area of filtering appendages or 
gut surface. Maintenance costs are linked to body volume, which is proportional to 
structural biomass. These assumptions for assimilation and maintenance provide a 
mechanistic explanation for the widely used growth model developed by von 
Bertalanffy (1957). 

Second, regarding reproduction, DEB theory assumes that throughout their life 
cycle, individuals allocate a fraction, κ, of their mobilized energy to somatic 
maintenance and growth and the remainder to maturation and reproduction (fig. 1). 
In juveniles, there is therefore a constant flux of energy to “maturation”  
(increasing the organism’s complexity to enable reproduction), which is switched 
to the investment in offspring at “puberty.” 
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Fig. 1 Schematic diagram of the primary DEB state variables (boxes) and fluxes (italics) of the 
standard DEB model. The circles containing “b” and “p” denote maturity switches for birth and 
puberty, where feeding and allocation to reproduction begin respectively. 

 

 

The kappa rule provides a novel explanation for why organisms do not deviate 
from von Bertalanffy growth when they begin to reproduce. There are three basic 
life stages: embryo (feeds on an embryonic reserve, not capable of reproduction), 
juvenile (feeds exogenously, not capable of reproduction), and adult (feeds 
exogenously, capable of reproduction). Transitions between these stages are 
assumed to be marked by fixed maturity thresholds. 

Third, DEB theory assumes that assimilated energy first enters a reserve 
compartment, which serves as a buffer. The rate of energy mobilization depends 
only on body size and reserve density, that is, the ratio of reserve energy over 
structural body volume, and is calculated using a homeostasis assumption: at 
constant food levels, the reserve density should, after some initial equilibration, be 
constant over the juvenile and adult life stages. The derivation of this argument is 
the most challenging part of DEB theory (Kooijman 2000, p. 37). DEB theory 
often uses the term “scaled reserve density,” e, which is the reserve density 
relative to the maximum reserve density that is obtained if individuals are fed ad 
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lib. Because mobilization of energy depends on the reserve density and not on the 
instantaneous assimilation rate, it is to some extent buffered from rapid changes in 
food level. The capacity for buffering depends on a parameter called “energy 
conductance,” , which determines the mobilization of the reserve. At the same 
feeding rate, a larger value of  will lead to lower maximum reserve density and 
thus less buffering capacity for changes in food availability. 

The Model 

In the standard DEB model, individuals are primarily characterized by four 
state variables: structural length, L, which determines actual size, feeding rates, 
and maintenance costs; scaled reserve, UE, which serves as an intermediate storage 
of energy between feeding and mobilization processes; scaled maturity, UH, a 
continuous state variable that regulates transitions between the three maturity 
stages (embryo, juvenile, adult) at fixed maturity levels; and scaled buffer UR, 
which is an energy buffer of mature individuals for reproduction; this buffer 
energy is converted into offspring during reproductive events. Four differential 
equations specify how these state variables change depending on their current 
values and environmental conditions, such as food level and temperature. Two 
additional state variables are needed to characterize the aging process (app. A). 
We implemented a discretized version of the differential equations using the Euler 
method. At each time step, individuals forage, then assimilated energy first enters 
a reserve compartment, from which energy is mobilized to fuel all other processes 
(see app. A for details). Then, based on the updated DEB state variables, a set of 
discrete events may occur, such as reproduction or death. 

General DEB theory makes no assumptions about how the reproduction buffer 
is converted into offspring, because too many different strategies exist. We here 
assumed that Daphnia reproduce in clutches, where energy allocated to embryos is 
accumulated over one molt period (assumed to have a fixed value throughout the 
life cycle). The embryos develop during the next molt and hatch at the end of that 
molting period. We augmented the standard DEB model with a submodel 
describing response to starvation. Within DEB theory, there are several proposed 
ways to include mortality via starvation (Kooijman 2010), which occurs when the 
energy mobilized from the reserve and allocated to the soma is not sufficient to 
pay somatic maintenance costs. A possible starvation submodel assumes that 
animals can redirect energy from the (1 − 𝜅) portion normally allocated to 
maturation (embryos and juveniles) or reproduction (adults; Kooijman 2010). Our 
analysis of this set of starvation submodels revealed starvation times far too short 
(<1 day at 20°C), and they were thus ruled out. This point was previously noted 
for Daphnia pulex (McCauley et al.1990). 

We selected an alternative starvation submodel for our simulations, which 
assumes that when there is not enough energy to pay somatic maintenance costs, 
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individuals can “burn” structure to pay these costs (“shrinking”). Daphnia can 
survive extended periods of starvation, where their body mass can fall to 30%–
50% of their previous maximum body mass (Perrin et al. 1990; Bradley et al.1991; 
Cleuvers et al. 1997; Vanoverbeke 2008). We selected a mortality submodel 
similar to those of Vanoverbeke (2008) and Rinke and Vijverberg (2005), where 
death occurs when organisms’ mass falls below some threshold of its previous 
maximum mass. We selected a critical threshold (Vcrit) of 40% of maximum 
weight achieved so far, after which individuals experience a high per capita death 
rate of 0.35 day−1 (Rohrlack et al. 1999; Rinke and Vijverberg 2005). 

Parameterisation 

The scaled DEB model used by DEB-IBM has eight parameters, with two 
additional parameters needed for the aging submodel and two parameters for the 
feeding submodel (table 1). The processes in DEB theory are abstractions; 
therefore, most of the parameter values cannot be measured directly. Rather, 
parameters influence various fluxes, which determine observable output like body 
size over time, reproduction, or survival (Kooijman 2010; Nisbet et al. 2012). 
Thus, DEB model parameters for a species can be obtained by fitting the model to 
observed life-history traits over time (Lika et al. 2011). We used a data set 
for Daphnia magna comprising individual growth and reproduction data at four 
food levels (Sokull-Kluettgen 1998; details of parameterization given in app. B). 

Simulation Experiments 

Simulations were designed to mimic the experimental settings described in 
Preuss et al. (2009). Population dynamics were driven by “semi-batch” feeding 
conditions, that is, a normal portion of food was added each day Monday–
Thursday to a 900-mL beaker containing a Daphnia population, and three times 
the normal food level was added on Friday. Three times a week the population was 
counted in three size classes. The experimental data sets consisted of two 
experiments conducted at a “low” food level (0.5 mg C day−1), starting with either 
5 neonates <24 h old (low-N) or 3 adults and 5 neonates (low-NA), and one 
experiment conducted at “high” food level (1.3 mg C day−1) that began with 3 
adults and 5 neonates (high-NA), resulting in three treatments, with 4 replicates 
each. For each experimental setup, we ran the model for 42 days and 100 
replicates and compared the mean, maximum, and minimum of total population 
abundance and the abundance of three size classes to corresponding experimental 
observations. For details of the experimental setups in the model, see the ODD 
model description in appendix A. 
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Table 1. Parameters of the DEB model for Daphnia magna along with confidence intervals 
determined. The unit for time (t) is days, for structural length of animals (L) in mm, for the 
abundance of prey (#) in cells, and for length of the environment (l) in cm. A dot over a symbol 
indicates a rate parameter (two dots represent t-2). Curly brackets around a symbol represent the 
parameter is per unit surface area (see Martin et al. 2012 for the full explanation of notation). 

Symbol Description Dimension Value 95% confidence 
interval 

κ Fraction of mobilized energy 
to soma - 0.678 0.657-0.700 

κR Fraction of reproduction 
energy fixed in eggs - 0.95 Fixed value 

 Somatic maintenance rate 
coefficient t-1 0.3314 0.327 - 0.336 

 Maturity  maintenance rate 
coefficient t-1 0.1921 0.150-0.236 

 Scaled maturity at birth tL2 0.1108 0.0989 - 0.123 

 Scaled maturity at puberty tL2 2.555 2.36 - 2.844 

 Energy conductance Lt-1 18.1 17.89 - 18.3 

g Energy investment ratio - 10 Fixed value 

Ageing parameters 

 Weibull ageing acceleration t-2 3.04E-6 1.70E-6 -  4.60E-6 

 Gompertz stress coefficient - .019 0.00911-0.0273 

Prey dynamics parameters 

 Surface-area-specific max 
ingestion rate #L-2t-1 3.80E+05 3.7E+5 - 4.0E+5 

K Half-saturation coefficient #l-3 1585 1571 - 1600 

Daphnia specific parameter values 

Molt-time Time between reproductive 
events t 2.8 - 

Vcrit 
Proportion of structural mass 

below which Daphnia experience 
starvation mortality 

- 0.4 - 

M Reserve dependent mortality 
coefficient t-1 Varied - 
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jk
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Fig. 2 Data for growth (A) and reproduction (B) at four food levels (100000, 25000, 5000, and 1000 
cells/ml) and the DEB model fit. The experiment was conducted in a flow-through system in 500 ml 
ADAM medium at a flow-through rate of 360 ml h−1. 

 

Stochasticity enters the simulations in three ways. First, all mortality either due 
to aging or starvation is probabilistic. Second, individuals vary in parameter 
values. We followed the method used in Kooijman et al. (1989), where individuals 
have a log-normally distributed scatter multiplier that affects the maximum surface 
area specific assimilation rate. This parameter is scaled out of the model, but the 
two maturity threshold parameters, UH

b  and UH
p (where superscripts b and p 

denote birth and puberty); the maximum surface-area-specific ingestion 
rate, { JXAM} ; the half-saturation coefficient, K; and the compound parameter, g, 
which is the cost of synthesizing one unit of structure over the product of κ and the 
maximum reserve density, are all affected by the scatter multiplier 
(Kooijman 1989; Martin et al. 2012; and ODD of this article). Finally, we assume 
the amount of food added each day varies due to experimental error, with a 
standard deviation equal to 10% of the desired food concentration. 

Results 
Individual-Level Parameterization 

Parameterization revealed that the parameters g and v  (table 1) could not be 
specified individually (app. B; fig. 2). Further analysis revealed that these  
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Fig. 3 Comparison of data and DEB-IBM predictions at the population level for the lowN 
experiment. Experiments were initiated with 5 neonates in a 900ml beaker, and 0.5mgC was added 
per day. Simulations with DEB-IBM replicated the experimental conditions. Figures show the mean 
(think black line) and max and min (dashed grey lines) of 50 simulations. Simulations for the lowNA 
and highNA experiments are shown in figure S1. 

 

parameters positively covaried and their ratio was well determined. This indicates 
that, at least for Daphnia in the given settings, one of these parameters is 
redundant. An increase in v  and g together indicates an increasing rate of reserve 
mobilization and simultaneously a decrease in the size of the reserve. As both 
parameters increase toward infinity, one ultimately ends up with a “reserveless” 
DEB model. 

To determine the population-level effect of using different values for 
parameters linked to the reserve dynamics, we ran simulations using parameter 
sets where the value of g was fixed at incrementally higher values and all other 
parameter values were estimated (app. B). We found that using fixed values  
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Table 2. R2 values for the default DEB-IBM and various adapted models the before (Growth Phase), 
after (Decline phase) the population peak, and the entire data set for total abundance, and each of the 
3 size classes, over 42 day population experiments at 3 experimental setting. Additionally the 
negative log-likelihood (- ) is given for the Standard DEB model and the three modified mortality 
submodels. 

 R2 -  

 
Growth 
Phase Decline Phase Total Total 

Standard DEB model 0.878 -0.2013 0.318 199643 

Food-dependent mortality sub-models     

     Neutral (all) 0.920 0.873 0.903 28249 

     Negative (juveniles only) 0.921 0.897 0.916 24358 

     Positive (adults only) 0.910 0.342 0.618 111757 

 

 

of g within the likely range (10 to infinity) had negligible influence on population 
level output. Therefore, the results from our analysis would be independent of the 
value chosen for g, and we used the parameter set with g fixed at 10 for all further 
simulations. Using the resulting parameter set, the DEB model explained most of 
the variation in growth (R2 = 0.986) and reproduction (R2 = 0.967; fig. 2). 

Population-Level Results for the “Standard” DEB-IBM Daphnia Model 

The model closely matched observations during the initial population growth 
phase, capturing population growth rate, size distribution, and peak population 
density for all experimental settings (fig. 3 for the low-N setting; low-NA and 
high-NA shown in fig. S1). However, after the initial population peak, model 
predictions and data diverged. This mismatch was not resolved by changing the 
model parameters within their confidence intervals. We quantified the overall fit 
by dividing each time series into two periods, the population growth phase and the 
population decline phase. All predictions after the population peak in the 
simulations were grouped into the decline phase and all before into the growth 
phase. We then compared overall agreement of the predictions and observations of 
total density and the three size classes for each of the two periods, for all 
experimental setups (fig. 4). As a way of comparing goodness of fit, we report 
“prediction” R2 values for each period (growth and decline phases), as well as for 
the data set as a whole (see app. B). Our analysis revealed a much poorer fit 
between model predictions and observations during the decline phase (table 2). 







 

 27 

 
Fig. 4 Observed vs. predicted values for all three population experiments for total abundance (open 
circles), and three size classes: large (black diamonds), juveniles (grey squares), and neonates (open 
triangles) for the standard model (a) and the adapted model (NegSS) with the additional juvenile 
food-dependent mortality submodel (b). The data are divided into two panels, for data before the 
population peak (Growth Phase), and after (Decline Phase).  

 

Alternative Models of Starvation and Recovery 

We implemented an additional starvation submodel (Daphnia still have a high 
probability of dying if they fall below a critical proportion of their previous mass), 
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where mortality was inversely linked to reserve density, e, which is a time-
weighted average of feeding history (app. A): 

)1()Pr( 1 eMdmortality −=−  

where M is the reserve-dependent mortality coefficient. To check whether 
starvation was size selective in the experimental systems, we compared three 
versions of this new submodel by applying it only to juveniles (negative size 
selection [NegSS]), only to adults (positive size selection [PosSS]), or to 
all Daphnia (neutral size selection [NeutSS]). 

Because we also wanted some indication of how well the starvation models, 
once parameterized, were able to capture the dynamics of population in other 
experimental settings, we restricted our parameterisation data set to one of the 
population experiments (low-N). We then compared the goodness of fit of the 
three starvation submodels and to the complete data set (all three population 
experiment setups; see app. B for details). 

Furthermore, standard DEB theory assumes that a Daphnia that has shrunk to, 
for example, 50% of its previous maximum mass behaves physiologically the 
same as a Daphnia with the same state that has not shrunk. This is, however, in 
disagreement with experimental observations at the individual level, 
as Daphnia recover mass much faster than expected following the standard DEB 
equations (Perrin et al. 1990; Bradley et al. 1991). One possible explanation is that 
although Daphnia shrink, they maintain their ability to ingest and assimilate 
energy according to their previous maximum size. This may be due to the fact 
that Daphnia do not shrink in physical length, as they live within a rigid carapace, 
and thus their feeding appendages keep their previous size even as the mass of the 
individual shrinks. This can be modelled in DEB by using the maximum achieved 
value of length in the assimilation formula. By using this modified recovery 
model, we found (data not shown) a large improvement in predictions for the 
timing of individual-level recovery compared to data and predictions from Perrin 
et al. (1990). Although both models underpredict time to recovery compared to the 
data, the “fast” recovery model predicts a time to recover (4 days) much closer to 
the data (between 1 and 3 days) than the “default” recovery (7 days). 

Population-Level Results for the Modified DEB-IBM Model 

Parameterization of the three starvation submodels on the low-N data set 
resulted in values of 0.085, 0.39, and 0.090 day−1 for M, the mortality constant for 
the NeutSS, PosSS, and NegSS submodels, respectively. The NeutSS (R2 = 0.938) 
and NegSS (R2 = 0.929) submodels led to substantially better fits on the 
parameterization data set (low-N) than the PosSS. On the complete data set (all 
three population experiments), all three modified starvation submodels better  
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Fig. 5 Comparison of the performance of three starvation submodels with data from the highNA 
experiment. In each of the three models, a 1 parameter food-dependent mortality submodel, was 
applied, but models differed in that it was either applied only to juveniles (black solid), only adults 
(black dashed), or all Daphnia (grey solid). Simulations for the lowN and lowNA experiments are 
shown in figure S2. 

 

matched the data relative to the standard model, and most of this improvement in 
model fit relates to increased predictive power during the decline phase (table 2). 
While the NeuSS and NegSS models fit the parameterization data set nearly 
equally well (fig. S2), the NegSS model provided the best fit to the complete data 
set (table 2). This was driven by a better agreement of model and data for the 
independent data sets, specifically for the high-NA experiment (fig. 5). 

The results of the starvation recovery submodel showed an improved fit over 
the standard recovery model (fig. 6; fig. S3). This result is mainly due to the lack 
of production of offspring for the standard dynamics compared to the revised 
model and experimental observations. This lack of production of new offspring 
then ultimately leads to almost no Daphnia in the intermediate size class and 
results in a population dominated by large Daphnia. 
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Discussion 
Having a generic model relating population dynamics to the size, maturity, 

energy reserves, and current food intake of its constituent organisms would raise 
individual-based ecology (IBE) to a completely new level. IBE would be then 
based on firm and increasingly tested theory (Grimm and Railsback 2005). Species 
would still be expected to show different physiological and behavioral strategies, 
but with IBMs based on DEB theory or any other kind of generic theory, we 
would have a much better idea of where and when to use standard approaches and 
where to look for more specific submodels. 

Did our attempt to predict population dynamics from what individuals do 
indicate that DEB theory is such a generic theory for IBE? The answer is both yes 
and no. On the one hand, the standard DEB model without ad hoc modifications 
accurately predicted the population growth rate and peak density of 
laboratory Daphnia populations in different conditions from a model 
parameterized at the individual level. Our study provides at least one point of 
evidence suggesting that the DEB model with little modification may be used for 
many applied purposes requiring an understanding of how population growth rate 
varies as a function of the environment. For example, in ecotoxicology, population 
growth rate often is proposed as a composite indicator of toxicity of chemicals, 
which simultaneously takes into consideration reductions in growth, reproduction, 
and survival (Forbes and Calow2002). DEB theory can easily be used to link 
individual performance under toxicant stress to effects on the population growth 
rate (see Jager and Klok 2010), and thus this work further supports its use. 

On the other hand, the unmodified model did not accurately capture the 
dynamics after the population peak, where there was little food per Daphnia. In 
contrast to the model predictions, the experimental observations showed a sharp 
decline in Daphnia density. This decrease in density also decreased competition 
for food, allowing those Daphnia that survived to consume more and thus grow at 
faster rates. For this reason, we saw a discrepancy not only in the population 
density between model predictions and observations but also in the size 
distribution. 

The discrepancy between model predictions and observations for declining 
populations turned out to be highly informative. It was our hope that cross-level 
testing DEB would lead us to identify potential limitations of standard DEB theory 
and possibly find ways to overcome these limitations. Due to the lack of data on 
starvation, we had to do this inversely, that is, infer from population-level patterns 
to the individual-level process of starvation. We contrasted three 
phenomenological starvation models, which differed in their size selectivity. We 
found that if we assumed negative size selection, that is, starvation of smaller  
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Fig. 6 Comparison of alternate starvation-recovery assumptions against the highNA data set. The 
grey line show the scenario where individuals feed at a rate proportional to their current length, while 
the black line shows the average of 100 model simulations when individuals feed at a rate 
proportional to their maximum length attained. Simulations for the lowN and lowNA experiments 
are shown in figure S3. 

 

individuals, agreement between predicted and observed population dynamics and 
structure was improved. One notable contradiction between predictions and 
observations for the PosSS model was a lack of neonate production after the initial 
population growth phase. This trend is best observed in the high-food-level 
experiment (fig. 5). The NeutSS model captured the dynamics and size structure of 
the population in that it predicted bursts of neonate production; however, 
compared to the NegSS model, these bursts were too small as there were fewer 
adults due to the non-size-selective mortality. Consequently, prediction of neonate 
production in the NegSS model was most appropriate, also leading the more 
accurate predictions of the total population abundance (table 1; fig. 4B). 

The outcome of our analysis is supported by the previous work on the same 
population data set using an empirical individual-based population model (Preuss 
et al. 2009), in which the decline of the population density after the peak was 
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explained as a mixture of starvation and crowding. Crowding causes negative 
interference (Goser and Ratte 1994) among daphnids, leading to life-strategy shifts 
and reduced feeding even at the same level of food (Goser and Ratte 1994; 
Cleuvers et al. 1997). Within this model a crowding submodel was used, calibrated 
on individual-level data. One of the main factors in this crowding submodel was 
the increased mortality of juveniles (Preuss et al. 2009), as was also found in this 
analysis and attributed to starvation. 

Increased juvenile food-dependent mortality also was proposed in a different 
model and experimental system for capturing another aspect 
of Daphnia populations (McCauley et al. 2008). It has been found in experimental 
systems (McCauley et al. 1999, 2008) that when Daphnia feed on a dynamic prey 
source, the Daphnia population and its algal resource may exhibit either small-
amplitude (SA) cycles or large-amplitude (LA) cycles. Replicate populations may 
exhibit either dynamic pattern and on occasion may alternate between these two 
multiple attractors. When cycles are observed in the field, the predominant pattern 
is SA cycles (Murdoch et al. 1998). Besides the magnitude of the fluctuations, the 
key diagnostic feature of the two cycle types is that in SA cycles, the juvenile 
development time (time from birth to reproducing adult) is longer than the period 
of the population cycles, while in the LA cycles, the juvenile development time is 
shorter then the cycle period (McCauley et al. 2008). 

To explore the origin of these dynamics, McCauley et al. (2008) developed a 
deterministic, two-stage-structured (juveniles and adults) bioenergetic model that 
includes food-dependent mortality rates estimated separately for adults and 
juveniles. Their parameterization generated higher food-dependent mortality 
coefficients for the juvenile stage class than the adults; however, it was not 
identified as the driver of the bistability. More recently, Ananthasubramaniam et 
al. (2011) attributed the stabilizing mechanism responsible for generating the 
small-amplitude cycles to the presence of adults that survived through the 
population decline phase and were able to reproduce shortly after the algae 
population began to recover. This is remarkably similar to the pattern we see in the 
high-food experiment where the bursts of neonate production observed during the 
decline phase and the subsequent leveling off of the population decline were 
predicted only by the NegSS model. 

To test whether our model captures, without any further calibration or 
modification, the SA/LA cycle patterns explored by McCauley et al. (2008), we 
used the NegSS model, but instead of simulating the populations in batch-fed 
environments, we let them feed on a prey following logistic growth. In agreement 
with previous models, the populations exhibit exclusively SA cycles when the 
carrying capacity of prey is low and LA cycles when the carrying capacity of the  
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Fig. 7 Two characteristic simulations, showing the switches between multiple attractors of LA and 
SA cycles. Simulations were run using the NegSS model where the Daphnia feed on a prey source 
following logistic growth (r = 1.5, K = 5e-5 mgC ml-1) in a 30 liter system. Simulations were 
initiated with 5 neonate Daphnia. 

prey is high. Most interestingly, the model also captures the dynamic at 
intermediate prey carrying capacities where the population exhibits the multiple 
attractors (LA and SA cycles) proposed for previous models and observed in the 
lab populations. Particularly convincing is that, as in experimental observations, 
the model also captures the key diagnostic feature, that under SA cycles the mean 
juvenile development time was longer than the cycle period, while the opposite 
was found for LA cycles (fig. 7). We take this finding as strong evidence that our 
modified DEB model is a realistic and comprehensive representation of 
laboratory Daphnia populations and is able to reproduce population-level patterns 
for a wide range of environmental settings. 

Our results highlight the importance of understanding resource-dependent 
mortality for making accurate cross-level predictions. Surprisingly however, this 
remains a poorly developed area of research. From our analysis of size-dependent 
mortality submodels, it is clear that not only the overall starvation tolerance of a 
species is important but that relative tolerance of small and large individuals in a 
population greatly influences the dynamics (see also de Roos and Persson 2013). 
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Our initial assumption was that mortality is triggered when mass falls below some 
threshold of the previous maximum mass, so the size dependence of resource-
dependent mortality is determined largely by how two fluxes, assimilation and 
maintenance, scale with body mass. The two most popular theories for individual 
growth, DEB and OGM, always infer either neutral starvation tolerance or a 
greater starvation tolerance in juveniles depending on the food conditions. In the 
case of absolute starvation (going from high food to no food immediately), both 
theories predict that time to starvation will be independent of body size. In partial 
starvation, when there is some food level available but where the assimilation flux 
is less than the energy needed to satisfy the maintenance flux, smaller individuals 
have an advantage over larger ones because both theories assume decreasing mass-
specific assimilation rate with size. Thus, both theories contradict our findings. 

While there is relatively little information on the ontogeny of starvation 
tolerance, the few data that do exist support the indirect conclusions, made from 
population-level analyses, that starvation tolerance increases with size 
intraspecifically (McCauley et al.2008; this study). For two species of Daphnia, 
adults survived longer without food than neonates (Tessier et al. 1983). 
Additionally, two separate studies on copepods found a clear monotonic pattern of 
increasing starvation tolerance with size/development for Calanoides 
carinatus (Borchers and Hutchings 1986) and Pseudocalanus newmani (Tsuda 
1994). If these observed trends turn out to be general, it would suggest both 
formulations (DEB and OGM) of individual resource dynamics need revisiting. 
Several hypotheses could explain increasing starvation tolerance with increasing 
size within a species: (1) Vcrit could decrease as a function of size; larger 
individuals can shrink to a lower proportion of their previous maximum mass 
before they starve. (2) Specific energy storage may increase with size. (3) Mass-
specific maintenance costs may decrease with size. (4) Energy utilization to 
development may be partially inflexible (smaller individuals continue to catabolize 
energy stores to continue development for some time after food levels decrease). 
There are not enough data available to test which if any of these mechanisms may 
be a valid explanation of the observed trends. What is clear is that due to the 
importance of the mechanism in determining the types of population dynamics that 
emerge, no generic theory will be able to capture dynamics at the population level 
from a generic individual model without accurately capturing the dynamics of how 
resource-dependent mortality scales with size. 

In addition to the size-selective nature of food-dependent starvation risk we 
also investigated the consequence of assumptions of recovery after a long period 
of starvation. The standard DEB model does not distinguish between “novel” 
somatic growth and recovery somatic growth. We tested this assumption against 
individual-level data (Perrin et al. 1990) and revealed that this assumption grossly 
underestimated recovery of somatic mass. We thus used an alternate assumption 
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where recovering individuals retain the performance abilities of their previous 
maximum size. This modified model performed much better at both levels of 
biological organization tested, although recovery of somatic growth was still 
underestimated at the individual level. With the new assumption, 
adult Daphnia were able to assimilate food more quickly when food levels began 
to recover, resulting in neonate production in agreement with observations from 
the low-NA and, to a greater extent, high-NA experiments. The poor performance 
of the default recovery submodel highlights the fact that “novel” and “recovery” 
somatic growth cannot be treated as equivalent. As most animals can survive 
periods of starvation by burning existing biomass, this conclusion may not be 
unique to Daphnia. 

Our results also bring into question the need to include the state variable 
“reserve” for the purpose of predicting population dynamics from the 
characteristics of individuals. We found that the parameters associated with the 
speed of reserve mobilization and hence the size of the reserve are not easily 
specified using growth and reproduction data at multiple food levels. Thus, 
parameterizing the reserve accurately would require some additional data or strong 
assumptions, for example, relating to the duration of the embryonic period. From 
our analysis for Daphnia, it appears allowing individuals to burn structural body 
mass to pay maintenance costs is an adequate substitute for reserve to capture how 
fluctuating food levels affect growth and reproduction output at the individual and 
population level. However, if reserve is not included, our results suggest mortality 
should be linked to energy assimilation rather than death occurring only when 
animals fall below some proportion of their previous mass, as was assumed by 
McCauley et al. (2008). 

In the population experiments, variation in food levels during the day were 
quite extreme, transitioning from ad lib. feeding conditions during the first few 
hours after food was added to no food. Yet the reserveless model performed nearly 
identically to the model with reserve without the resource-dependent mortality 
submodel at all experimental conditions tested (fig. B2), a finding consistent with 
previous work using biomass-based models (reviewed by Nisbet et al. 2010). 
Including the resource-dependent mortality term with the parameters derived when 
reserve dynamics were fixed to be very fast (g fixed to 100) results in negligible 
deviations in the population dynamics from those resulting from the parameter set 
used in this study (g fixed to 10; data not shown). This may be because the “true” 
maximum reserve density for Daphnia is small enough that the time lag between 
changing food levels and changing mobilization is small. There is some limited 
evidence of this relating to energy allocated to reproduction; see Tessier et al. 
(1983) and related discussion by McCauley et al. (1990). The interspecific scaling 
laws of DEB predict that maximum reserve density will increase with the 
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maximum size of the species, and thus, for larger species the inclusion of reserves 
may be important. 

Whether or not a reserveless model is still actually a DEB model is a matter of 
semantics. Our concern lies more with identifying the most useful general models 
as a basis for IBE. One may question, without the reserve state variable, how the 
theory differs from other generic models of individual metabolism such as the 
OGM. Here the biggest advantage of using DEB as opposed to the OGM is not the 
inclusion of reserve but other distinctive aspects of DEB. For example, OGM does 
not consider how or from where energy is allocated for reproduction or what 
mediates life-stage transitions; clearly these are required for capturing population 
dynamics. With additional assumptions, the OGM might perform similarly to 
DEB—but this would mean the two descriptions were themselves converging. 

How far we can go with generic theory in an IBM context? It may be that the 
deviations between model predictions and data at the population level are due to 
species-specific deviations from the DEB model. If species-specific submodels are 
unavoidable, having a generic model at least reduces the number of structural 
differences among models of different species and thus increases their 
comparability. However, it is also possible that generic theory may be able to 
account for starvation and recovery, but this theory has not been developed. It 
seems most likely that the answer is some combination of both; there may always 
be some situations where species-specific models are needed when highly accurate 
predictions are required; however, it is also likely that with further testing and 
development we can vastly improve the predictive capabilities of our generic 
models. What is promising is that the processes that required modification in our 
study are not species specific; starvation and recovery from starvation are 
ubiquitous in natural populations. Further experiments at the individual level to 
guide theory development, especially relating to starvation and recovery, and 
cross-level experiments to tests theory at the population level are needed. Until 
these theories are developed, DEB-IBM still serves as a useful starting point that 
handles the majority of other relevant aspects of individual life history (growth, 
development, and reproduction). 
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Chapter 3 (Appendix A): DEB-IBM Model Description (ODD) 
 
The model description follows the ODD protocol for describing individual-

based models (Grimm et al. 2006, 2010) and is adapted from Martin et al. (2012). 

Purpose 
The purpose of this model is to perform a cross-level test of DEB theory by 

parameterizing a DEB model adapted for Daphnia at the individual level and 
comparing the emergent population dynamics to independent experimental data. 

Entities, State Variables, and Scales 
The model includes two types of entities, Daphnia and the environment. 

Each Daphnia is characterized by four primary state variables, henceforth referred 
to as DEB state variables: structure (L, unit: mm), which determines actual size, 
feeding rates, and maintenance costs; scaled reserves (UE, unit: days mm2), which 
serve as an intermediate storage of energy between feeding and mobilization 
processes; scaled maturity (UH unit: days mm2), a continuous state variable that 
regulates transitions between the three development stages (embryo, juvenile, 
adult) at fixed maturity levels; and finally, a scaled reproduction buffer (UR, unit: 
days mm2) that is converted into eggs during reproductive events. The term 
“scaled” in reserves, maturity, and buffer refers to the fact that in this “scaled” 
version of the model the dimension of energy or mass (either as joules or moles of 
reserve) are scaled out (see Kooijman et al. 2008 and sec. 2 of the DEB-IBM user 
manual from Martin et al. 2012). 

In addition to these DEB state variables, intrinsic variation among individuals 
is created by including a random component in some of the individuals’ eight 
“DEB-IBM parameters.” Each individual has a state variable we refer to as a 
“scatter multiplier” which is a lognormally distributed number, by which four of 
the standard DEB parameters are multiplied to get the individual-specific set of 
DEB parameters (see “Stochasticity”). 

Additionally, the model includes an aging submodel based on DEB theory that 
includes two state variables, damage-inducing compounds ( q ) and damage ( h ). 
The aging process is tightly linked to energetics in that the production of damage-
inducing compounds is proportional to mobilization (energy utilization). Damage-
inducing compounds produce damage and thereby affect survival probability. In 
addition to directly producing damage, damage-inducing compounds also can 
proliferate by inducing their own production (see “Aging Submodel”). 

The second entity in the model is the environment, which is defined by the 
state variables food density and temperature. The simulations are designed to 
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replicate the “batch-fed” experiments conducted by Preuss (2009), where a 
specific amount of food (algal cells) is added on fixed days. Food is depleted from 
the environment via feeding by the Daphnia. 

All simulations represent dynamics in a 90-mL vessel, and the model is 
nonspatial, as we assume food and Daphnia are well mixed within the container. 

Process Overview and Scheduling 
Individuals update their DEB state variables based on a discretized form of the 

differential equations. At each time step, a set of discrete events may occur. If an 
organism can no longer pay all maintenance costs (the growth equation becomes 
negative), individuals cover maintenance costs by burning structure (shrink). If 
individuals shrink below a specific proportion of their previous maximum body 
size (crit-mass) they have a high probability of dying (0.35 per day). The second 
source of mortality is death via aging. At each time step, individuals have a 
probability of dying that is proportional to their damage state variable, h . Finally, 
mature individuals reproduce at fixed intervals equivalent to the length of a typical 
molt period for a Daphnia (2.8 days). At the reproduction time step, 
mature Daphnia convert all energy accumulated during the previous molt period to 
embryos; the number of embryos produced is equal to energy accumulated in the 
reproduction buffer divided by the cost of producing an embryo (see 
“Reproduction Submodel” for details). 

The following pseudo-code describes the scheduling of events within one time 
step of the numerical solution of the model equations (see “go” procedure 
in NetLogo implementation):  
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For each individual 

 [ 

  Calculate change in reserves 

  Calculate change in length 

  If mature 

   [ 

    Calculate change in reproduction buffer 

   [ 

  Else 

   [ 

    Calculate change in maturity 

   [ 

  Calculate change in ageing acceleration 

  Calculate change in hazard 

 [ 

For the environment 

 [ 

  Calculate food depletion 

 [ 

For mature individuals 

 [ 

  Update molt-time 

  if molt-time >= time-between-molts 

   [ 

    Release offspring created at last molt 

    Create embryos from reproduction buffer that will hatch 

    the next brood 

    Set molt-time 0 

    Set reproduction buffer back to 0 

   ] 

 ] 

Update individual state variables 

Update environmental state variables 
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Design Concepts 
Basic Principles 

The model is based on the dynamic energy budget theory 
(Kooijman 1993, 2000, 2010). An overview of the concepts can be found in 
Kooijman (2001) or Nisbet et al. (2000). The theory is based on the general 
principle that the rates of fundamental metabolic processes are proportional to 
surface area or body volume and a full balance for mass and energy. 

Emergence 

Traits of the individual and structure and dynamics of the population emerge 
from the properties of metabolic organization and indirect interactions of 
individuals via competition for food. 

Adaptation 

The framework does not include adaptive behaviour; in particular, DEB 
parameters vary among individuals but remain constant over an individual’s life 
span. Consequently, the design concepts “objectives,” “learning,” “prediction,” 
and “sensing” do not apply to this framework. 

Interaction 

Individuals interact indirectly via competition for food. 

Stochasticity 

There are three sources of stochasticity in the model. The first source is 
intraspecific differences in parameter values. We followed the method outlined in 
Kooijman (1989) where the surface-area-specific maximum assimilation rate of an 
individual (referred via index i) is given by multiplying the corresponding species-
specific rate { JEAm}  with the individual-specific “scatter multiplier” SMi. The 
scatter multiplier is a lognormally distributed random number with a standard 
deviation that is user defined. However, since DEB-IBM is based on the scaled 
and not the standard DEB model where { JEAm}  is scaled out of the 

model, { JEAm} is a “hidden” parameter affecting four other scaled and compound 
parameters. These interrelationships are described in detail in section 2 of the 
DEB-IBM user manual of Martin et al. (2012). For our simulations, we used a 
value of 0.05 for the standard deviation for the scatter multiplier. The second 
source of stochasticity is that all mortality processes are probabilistic. Finally, the 
last source of stochasticity is in the submodel representing food input. Although in 
the experiments a fixed amount of cells is added each day, we assume some 
variation in the actual amount of food added to the experimental vessel by 
assuming a standard deviation of 10% of the daily food input. 



 

 46 

Observation 
Over the course of the 42 days of simulation we kept track of both the 

total Daphnia abundance and the abundance of three size classes of Daphnia. In 
the experiments, size classes were grouped by filtering the Daphnia through 
various-sized mesh filters. Size classes were calculated based on the diameter of 
the mesh size multiplied by a factor of 1.25. Previously it has been assumed 
Daphnia pass through the mesh with their smallest side, so we used value 1.6, 
which corresponds to the length-to-width ratio of the clone of Daphnia used in the 
study. We calculated the value 1.25 by comparing the number of Daphnia in each 
size class to a replicate experiment where each Daphnia was measured (Agatz et 
al. 2012). Using a conversion factor of 1.25 provided the greatest agreement 
between the individually measured data (Agatz et al. 2012) set and the grouped-
by-mesh-size-class data set (Preuss2009). This corresponds to size classes of small 
(<1.1 mm), medium (1.1–2.0 mm), and large (>2.0 mm). 

Initialization 
Simulations are initialized with conditions corresponding to the experimental 

conditions they are supposed to represent. Our simulation model experiments with 
two different initial conditions. The first type starts with 5 
newborn Daphnia (neonates) less than 24 h old. The second starts with 3 adults, in 
addition to 5 neonates. We mirror these initial conditions for neonates by starting 
with newly hatched Daphnia and simulating a random amount of development 
time between 0 and 24 h, selected from a uniform distribution. For adults we 
simulated growth at ad lib. conditions until each was 4 mm in length, as were 
those used in the experiments. Moreover, as in the experimental setup, each 
individual was bearing eggs at different levels of development, 1 nearly complete 
(0.1 days from hatching), 1 with eggs midway through development (1.55 days 
from hatching), and 1 with eggs just beginning development (2.65 days from 
hatching). When food level was given as carbon content, we recalculated in cell 
mL−1, assuming that Desmodesmus subspicatus has an average carbon content of 
1.95 × 10−8 mg C cell−1 (Sokull-Kluettgen 1998; Preuss et al. 2009). 

Input Data 
The framework does not include input data representing external driving 

processes. 

Submodels 
Calculate Change in Reserve 

The change in energy reserves UE of an individual in a time step is determined 
by the difference in scaled assimilation SA and mobilization SC fluxes: 



 

 47 

( )CAE SSU
dt
d

−=  , 

The assimilation flux is given by 
2fLSA = , 

where f, the scaled functional response, is assumed to follow a Holling type II 
functional response for individuals that have surpassed the maturity threshold for 
birth, UH

b : 
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where X is prey density and K the half-saturation coefficient. The mobilization 
flux is given by 
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where e is the scaled reserve density (falls between 0 and 1, with 1 representing 
maximum reserve density), g is the energy investment ratio (a compound 
parameter which is a ratio of the costs to synthesize a unit of structural biomass 
and the product of the maximum reserve density and the proportion of mobilized 
energy allocated to the soma, κ), km  is the somatic maintenance rate coefficient, 
and v  is energy conductance (see Martin et al. 2012 for detailed discussion of 
DEB parameters). 

Because embryos do not feed exogenously, when 
b
HH UU <     0=f  

the assimilation flux will be zero and the change in reserves is reduced to: 

CE SU
dt
d

−=  

Rationale. DEB theory includes a state variable “reserve” that acts as an 
intermediate between the feeding and mobilization process. Reserves allow for 
metabolic memory, that is, the metabolic behavior of individuals is not solely 
dependent on the current food availability but rather the “recent” feeding history 
of an individual. For example, animals can continue to grow for a short period of 
time when food has been removed from their environment. 

Calculate Change in Maturity 
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Individuals begin with a maturity level UH of 0, which increases each time step 
according to the differential equation 

HjCH UkSU
dt
d −−= )1( κ   when p

HH UU <
  

else  

=HUdt
d 0 

Transitions between development stages occur at set values of maturity. An 
embryo that feeds exclusively on reserves becomes an exogenously feeding 
juvenile when UH = UH

b  and a reproducing adult when UH = UH
p . Once puberty is 

reached, maturity is fixed and energy previously directed toward maturity is now 
allocated to the reproduction buffer. Before Daphnia reach puberty, if mobilized 
energy is not enough to pay maturity maintenance costs, the maturity flux can 
become negative, and animals decrease in maturity. 

Rationale. Immature individuals divert mobilized energy from reserves 
between competing functions of growth and development, with the 
proportion 1−κ  of mobilized reserves allocated to development. Individuals first 
pay maintenance costs associated with maintaining their current level of maturity 
(the maturity maintenance rate coefficient, kj , multiplied by the current level of 
maturity, UH) from the fraction of mobilized reserves directed toward development 
(1−κ )SC . The remainder represents the increase in development during a time 
step. 

Calculate Change in Reproduction Buffer 

When an individual has reached puberty, energy from the maturity flux is 
diverted into a reproduction buffer, UR: 

p
HJCR UkSU

dt
d −−= )1( κ  for p

HH UU >   

else  

0=RUdt
d  

If mobilized energy is not enough to pay maturity maintenance costs, the 
reproduction buffer flux becomes negative to pay maturity maintenance costs. If 
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the reproduction buffer flux is negative but there is no energy remaining in the 
reproduction buffer, maturity maintenance is not paid (UR cannot be <0). 

Rationale. This submodel is basically the same as for the delta maturity 
calculation but is calculated only for mature individuals whose maturity does not 
increase. The energy that accumulates in the reproduction buffer in a given time 
step is the difference between mobilized energy allocated toward reproduction and 
the fixed maturity maintenance costs. 

Calculate Change in Length 

During a time step, energy needed for somatic maintenance costs are paid from 
mobilized energy allocated for soma. The remainder is converted from reserve to 
structural length. Under non-starvation conditions, 
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The parameter κ, which determines the fraction of mobilized energy directed to the 
soma, is not explicit in this formula; however, κ, is in the compound 
parameter g (see sec. 2.4 in the user manual of Martin et al. [2012] for a discussion 
of compound parameters). 

If mobilized energy allocated toward somatic growth and maintenance is 
insufficient to pay somatic maintenance costs, growth becomes negative. 
Essentially the Daphnia pay maintenance costs by “burning” their structure. When 
an individual shrinks below 40% of its previous maximum mass, the individual 
then has a mortality rate of 0.35 day−1. 

Rationale. When mobilized reserves allocated to the soma are insufficient to 
pay somatic maintenance costs, animals may respond in many ways, which can be 
represented in DEB, for example, by shrinking in structure (see 
Kooijman 2010 for discussion of starvation strategies). Our implementation of the 
starvation model assumes that Daphnia get 100% of the energy invested in growth 
back to pay maintenance costs when shrinking. 

Reproduction Submodel 

DEB theory makes no general assumptions about the reproduction buffer 
handling rules, and these must therefore be defined for each 
species. Daphnia release clutches of embryos during the molt, using energy 
accumulated over the intermolt period. These embryos develop in the brood 
chamber over the next intermolt period and are released during the next molt, at 
which time they begin feeding exogenously. Below we describe how this process 
is replicated mathematically. 
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At the time step where Daphnia reach maturity (UH = UH
p ), they set a state 

variable “molt-time” to 0. In each subsequent time step, the state molt-time ticks 
up by the amount of time transpired until it reaches the parameter “time-between-
molts.” We estimated the time-between-molts to be 2.8 days from the average time 
to between reproductive events for individually cultured Daphnia kept at 20°C. 
When molt-time ≥ time-between-molts, the Daphnia convert energy accumulated 
in the reproduction buffer (UR) into embryos. The number of embryos produced is 
given by 

⎥
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= 0

E
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U
UN κ

 

Here κR represents the conversion efficiency of the reproduction buffer to the 
reserves of the embryo, which is assumed to be high as both in DEB theory are 
assumed to have the same composition. The cost of producing one embryo, UE

0 , is 
the amount of energy needed to create one offspring that will reach the maturity 
for birth threshold (UH = UH

p ) with a reserve density, e, equal to 1. This value is 
dependent on the DEB parameters of a species and is calculated numerically using 
the bisection method during the setup procedure. The initial bounds for the 
bisection method were set to 0 and an unrealistically high number to ensure the 
true value was contained within the initial bounds. Values of UE

0  were tested by 
simulating the embryonic period following the mass balance equations of DEB 
theory. In DEB theory embryos start out as nearly all reserves and a very small 
amount of structure. During the embryonic period, embryos mobilize reserves to 
grow and gain maturity. The selection criteria for the value of UE

0 was that 
embryos were within 5% of a reserve density e = 1 when the maturity threshold 
for birth was surpassed. With the parameter values used for Daphnia in our 
simulations, this corresponded with a length at birth of 0.851 mm. This later value 
falls well within the range of observed hatching sizes of Daphnia magna. 

In the simulations, after the calibration of the UE
0  value we do not simulate the 

embryonic period. Rather we use the UE
0  value to determine how many offspring 

are produced, then in the subsequent molt offspring are created equal to the 
number of embryos produced in the previous molt, and their state variables are set 
to the values determined in the calibration period (Lb  = 0.851, e = 1, UH = UH

b ). 

Prey Dynamics Submodel 

Prey dynamics were modelled to replicate the experimental design. In the 
experiments food was added at the nominal amount Monday–Thursday and at 
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triple the normal amount on Friday, and there was no feeding on Saturday or 
Sunday. We matched this pattern by updating the food state variable (X) with the 
appropriate amount. Food is depleted from the environment via feeding of 
Daphnia. The sum of all feeding by Daphnia is given as 

iXAm
i

iX JfLP }{2 ∑=  

Aging Submodel 

The basic premise of the DEB aging submodel is that damage-inducing 
compounds are created at a rate proportional to reserve mobilization. Damage-
inducing compounds induce more damage-inducing compounds also at a rate 
proportional to mobilization. The hazard rate for mortality due to aging of an 
individual is proportional to density of the accumulated damage in the body. 
Additionally, the concentration of both damage-inducing compounds and damage 
are assumed to be diluted via growth. The aging submodel includes two new 
parameters: the Weibull aging acceleration parameter, ha , and the Gompertz stress 
coefficient, SG. To reduce the total number of parameters, the equations for 
damage-inducing compounds, damage and hazard rate are scaled and combined to 
two ordinary differential equations, for “scaled acceleration” ( q ) and hazard rate (
h ): 
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Rationale. In our framework aging processes are linked tightly to energetics as 
the production of damage-inducing compounds are proportional to mobilization. 
One interpretation of this assumption is that the production of free radicals or other 
reactive oxygen species is proportional to the use of dioxygen in metabolic 
processes. The inclusion of energetics in the aging process allows differences in 
aging of animals in feeding conditions or physiological phenotypes to be explained 
without altering aging parameters. 

Alternative Models of Starvation and Recovery 

In addition to the standard model we tested alternative models of starvation and 
recovery. These modifications are explained in the main text. 
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Chapter 3 (Appendix B): Model parameterization 
 
Parameterization of the DEB model was conducted using the DEB3 version of 

DEBtox (http://www.debtox.info/debtoxm.php) developed by T. Jager. Overall, 
the approach compares the model predictions of a parameter set θ for growth, 
reproduction, and survival over time to data for each of these. This involves 
calculating the goodness-of-fit indicator for each data type and combining the 
goodness-of-fit measures for each data type into a maximum likelihood value. We 
then search the parameter space to find the parameter set that maximizes the 
likelihood given the data for growth, reproduction, and survival. Below we 
describe in detail how goodness of fit was calculated for each data type, how they 
were combined to give the likelihood of a parameter set, and finally how we 
searched the parameter space to find the most likely parameter set and determine 
the confidence intervals for each parameter. 

The data used for parameterization for all parameters except the surface-area-
specific maximum assimilation rate,{ JXAm} , and the two aging submodel 
parameters, consisted of body size and reproduction data at four food levels over 
the course of 42 days (Sokull-Kluettgen 1998). 

DEB-IBM has eight basic parameters, plus two parameters for the foraging 
submodel and two parameters for the aging submodel. The strategy we employed 
was to first specify the basic DEB parameters and then specify the parameters of 
the two submodels. Of the eight basic DEB parameters, we fixed one of the 
parameters, the conversion efficiency from the reproduction buffer to embryonic 
reserves, κR, at 0.95. The parameter was fixed at a high value because the 
reproduction buffer and the reserves of an embryo are assumed in DEB theory to 
have the same composition, and thus, there is a high conversion efficiency. Our 
parameterization began by simultaneously estimating the remaining seven DEB 
parameters (κ , Mk , jk , b

HU  , p
HU  , v  , and g). Additionally we allowed the 

scaled food density parameter, f, to be estimated separately for each food level. 
The variable, f, takes a value between 0 (no feeding) and 1 (feeding at the 
maximum rate). The value is dependent on the ambient food level and is generally 
determined by some functional response. When the food levels are known, one can 
estimate the half-saturation coefficient (K) of the scaled Holling type 2 functional 
response: 

 

XK
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While the food levels were known, we instead let f be estimated independently 
for each food level. This is because it is known that over longer time 
periods Daphnia can modify their feeding appendages to forage at higher rates at 
low food conditions, thus imposing a Holling type 2 functional response would 
lead to an imperfect fit, and we did not want this lack of fit to be compensated for 
in the eight DEB parameters. Thus after we determined the eight DEB parameters 
of an individual, we fixed these values and then parameterized K, with all other 
parameters fixed. Aging parameters ( ha , SG) were determined from survival data 
of 10 individually cultured Daphnia at three food levels (0.2, 0.05, and 0.01 mg C 
day−1; Preuss et al. 2009). Because aging is dependent on mobilization (utilization 
of reserves), which is linked to feeding, organisms can age at different rates at 
different food levels. 

Likelihood Estimation of DEB Parameters 

The log likelihood of one data type, assuming normal independent errors, is 
given by (see Jager and Zimmer 2012) 
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where an observation Yijr represents the observation at ith time point, for the jth 
food level, and for the rth individual. However, in our case we do not have data for 
each individual but rather have the means for the body size and reproduction 
output for individuals at the ith time point of the jth food level. Thus, we cannot 
estimate σ 2  directly from the data. To circumvent this problem, we use a separate 
data set where individual measures of growth and reproduction were measured. 
We then estimate the variance of each data type (growth and reproduction) and 
fix σ 2  in our estimation procedure. When the variance is known, the first term no 
longer depends on the model parameters, and thus equation (1) reduces to 
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Then we can work with the means, ijY , instead of individual data points, ijrY : 
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where wSSQ = the weighted sum of squares. From here, getting the log likelihood 
of the complete data set, Y+, is a matter of summing the log likelihoods of each 
data set, Ys: 
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For the growth data set we compared the predictions of the model to the mean size 
of Daphnia for each combination of food level and time. For the reproduction data 
set we compare the average number of offspring produced between observation 
intervals to the predictions of parameter set θ integrated reproduction rate over that 
same interval (see Jager and Zimmer 2012): 
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However, for reproduction, only the data before 21 days were used because after 
21 days (after the fifth brood) there was a significant reduction the reproduction 
rate of Daphnia, which was not accounted for in the DEB model. We did not use 
these data because we did not want the model fit to be influenced by reproduction 
data points after the fifth brood, as Daphnia in natural contexts rarely survive to 
produce more than 5 broods. 

Survival data used for parameterizing the aging submodel follow a multinomial 
distribution. The log likelihood is given by (see Jager et al. 2011) 
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where Sij  is the number of individual at time point i of food level j and Si+1 j  is the 
number of survivors at the next observation time. 

Optimization and Confidence Intervals 

Optimization was conducted using a Nelder-Mead simplex method (Nelder and 
Mead 1965). Confidence intervals were calculated using the profile likelihood 
method (Venzon and Moolgavkar 1988; Meeker and Escobar 1995), which is 
more appropriate for nonlinear models (Pawitan 2000). 

Parameterization of { JXAm}  

Once these parameters were fixed we estimated the final feeding submodel 
parameter, the maximum surface-area-specific feeding rate, { JXAm} . This 
parameter determines at what rate food (algal cells) are depleted from the 
environment by Daphnia predation. To fit this parameter we used a data set of 
growth and reproduction at three food levels in batch cultures (Coors et al.2004). 
In batch cultures, in contrast with the flow-through experiments, all or much of the 
food is removed each day via predation at all but very high food levels. How much 
food is depleted is highly dependent on the { JXAm}  parameter; therefore, we used 
these data to estimate this parameter by running simulations replicating the 
experimental conditions of the Coors experiments, with incrementally increasing 
values of { JXAm} . Experiments and model were run in 80-mL M4-Elendt medium, 
and daphnids were daily fed Desmodesmus subspicatus at one of three different 
food levels (0.05, 0.075, and 0.2 mg C day−1). Desmodesmus subspicatushas an 
average carbon content of  1.95 x 10-8 mg C cell−1. After an initial range finding 
test we evaluated values of { JXAm}  ranging from 2.0 to 5.0 x 105 (cells 
mm−2 day−1) with a resolution of 1 x 104. Maximum likelihood estimation was 
used to select the appropriate value in the same manner as in the previous section. 

Results of Individual Parameterization 

Analysis of the confidence intervals for each parameter revealed that most 
parameters were well specified within a narrow range with the exception 
of v  and g. For each of these parameters, there was no narrow peak in the profile 
likelihood. Instead, as the values of v  and g were fixed at higher values, the 
likelihood increased but at a decreasing rate (fig. B1). An increase in these  
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Fig. B1 Confidence intervals for the energy investment ratio, g (A) and energy conductance,  (B) 
using the profile likelihoods method (Meeker and Escobar 1995). For both g and  the model fit 
continued to improve at a decreasing rate as their values increased. 
 

parameters together indicates an increase in speed in the reserve dynamics, as v  is 
the mobilization rate of reserves and g is a compound parameter 
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where [EG ]  is the cost to produce one unit of structure and [EM ]  is the maximum 
reserve density. Thus, an increase in v  and g together indicates a faster rate of 
reserve mobilization and a simultaneous decrease in the size of the reserves. As 
both v  and g increase toward infinity, you ultimately end up with a “reserveless” 
DEB model. Here we no longer have the parameters g and v , but we use 
maximum length LM as a primary parameter. The differential equation for length is 
then reduced to dL dt = ( km 3)(LM f − L) , and the equations for maturity and 
reproduction now differ only in that instead of mobilized energy being allocated to 
each state variable, it is assimilated energy, fL2. 

dUH

dt
= (1−κ ) fL2 − kjUH  

when UH <UH
p , and 

 

v
v
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dUR

dt
= (1−κ ) fL2 − kjUH  

when UH >UH
p . The embryonic stage requires a slight modification. Instead of a 

reserve we use an embryonic buffer, UB, from which embryos assimilate energy at 

their maximum rate:  dUB

dt
= −L2 . Embryos grow and mature following the same 

dynamics as juveniles and adults. Mothers allocate enough energy into the 
embryonic reserve so that the buffer is depleted as embryos reach the maturity 
threshold for hatching (UH

b ). 

Based on the confidence profiles of g and v , the goodness of fit was not 
significantly worse to a range down to 10 for g. Because we were unable to 
specify the value of g and v  exactly, we instead fixed the parameter g at 10. For 
computational reasons, having g fixed to a lower value means we need less 
resolution in the time steps, thus we wanted to select the lowest possible value. To 
determine the consequence of fixing g to 10 as opposed to higher values, we also 
parameterized the model with g fixed to 100 and a reduced model with no reserves 
(table B1). We then ran the population simulations using each of the parameter 
sets representing increasing speed of reserve dynamics (fig. B2). The resulting 
comparison indicated that using parameter sets with faster reserve dynamics, or no 
reserve state variable at all, had negligible effects on the population dynamics. 

As the goal was to test DEB theory, we did not want to deviate from the 
inclusion of reserves. With g fixed to a value of 10 all parameter values were well 
specified for the standard DEB model (fig. B3), the aging submodel (fig. B4), and 
the feeding submodel (fig. B5). Additionally for the feeding submodel we show 
simulations of growth and reproduction at the individual level at the three batch-
fed food levels (Coors et al. 2004) with the same assumptions of stochasticity as 
used in the population simulations (fig. B6). 

Parameterization and Analysis at the Population Level 

We parameterized the new starvation model by fitting the M parameter using the 
same “multidata type” likelihood approach used for parameterizing the DEB 
model. However for parameterizing M at the population level, the data sets used 
were the total abundance and the abundance of three size classes over time. We 
used weighted sum of squares to normalize variances within and among data 
types. Residuals between model and data were first weighted by the square root 
plus 1 (1 was added to avoid division by 0 for some observations), as there was 
higher variance for higher population abundances. After this transformation there 
was still heteroscedasticity among the data types (total population abundance and  



 

 59 

Fig. B2 Comparison of mean of 100 simulations of 3 DEB-IBM models parameterized with g fixed 
at 10 (black solid), 100 (grey solid), or the modified reserveless model (black dashed) at the lowN 
(a), lowNA (b), and highNA (c) population experiments 
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Fig. B3 Confidence intervals for DEB parameters using the profile likelihoods method with g fived 
at a value of 10 (Meeker and Escobar 1995). 
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Fig. B4 Confidence interval for Weibull ageing rate,  (A), and the Gompertz aging rate,   

(B). Note that for use in DEB-IBM we use the aging parameters  and , where  

and .  

 
 

 

 

Figure B5. Confidence interval for feeding submodel parameters: the half saturation coefficient (K) 

and the maximum surface area-specific ingestion rate . 
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Table B1 Parameter values used in comparing the sensitivity of population dynamics to the speed of 
reserve dynamics. Increasing values of g mean faster reserve dynamics (i.e. faster turnover of the 
reserve compartment). For each set we wither fixed g to 10, 100, or removed the reserve 
compartment completely g = . The unit for time (t) is days, for structural length of animals (L) in 
mm, for the abundance of prey (#) in cells, and for length of the environment (l) in cm. 

DEB parameters 

symbol dimension g fixed at 10 g fixed at 100 reserveless DEB 

κ - 0.678 0.682 0.645 

κR - 0.95 0.95 0.95 

 t-1 0.3314 0.308 0.3054 

 t-1 0.1921 0.207 0.2109 

 tL2 0.111 0.118 0.134 

 tL2 2.547 2.80 2.876 

 Lt-1 18.1 177.4 - 

g - 10 100 - 

LM L - - 5.42 

Feeding submodel parameters 

 #L-2t-1 3.80E+05 3.40E+05 3.80E+05 

K #l-3 1585 1511 1505 

 

 

the abundances of the three size classes for the three population experiment), thus 
we weighted each data type by its variance. In addition to giving the weighted 
SSQ for each model type, we also present R2, which was taken as the 1 − root 
mean square error, with the root mean square error equal to the wSSQ divided by 
the weighted variance of the data (Kendall et al. 2005). We parameterized each of 
the three starvation submodels only using data from the low-N treatment. To 
compare which model best explained the data, we then compared the three 
mortality submodels using the complete data set. 
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Chapter 3 (Appendix C): Supplementary figures 
 

Fig. S1 Comparison of data and DEB-IBM predictions at the population level for the lowNA (A) and 
highNA (B) experiments. Simulations with DEB-IBM replicated the experimental conditions. 
Figures show the mean (think black line) and max and min (dashed grey lines) of 100 simulations. 
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Fig. S2 Comparison of the performance of three starvation submodels with data from the lowN (A) 
and lowNA (B) experiments. In each of the three models, a 1-parameter food-dependent mortality 
submodel, was applied, but models differed in that it was either applied only to juveniles (black 
solid), only adults (black dashed), or all Daphnia (grey solid). 
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Fig. S3 Comparison of starvation-recovery assumptions at the high food population level for the 
lowN (A) and lowNA (B) experiments. The grey line show the average of 100 model simulations 
when individuals feed at a rate proportional to their current length, while the black line represents the 
average of 100 model simulations when individuals feed at a rate proportional to their maximum 
length attained. 
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Chapter 4: Extrapolating ecotoxicological effects from 
individuals to populations: a generic approach based on 
Dynamic Energy Budget theory and individual-based modeling 
As appears in Ecotoxicology 22: 574-583, 2013 

Benjamin Martin, Tjalling Jager, Roger M. Nisbet, Thomas G. Preuss, Monika 
Hammers-Wirtz, Volker Grimm 

 

Abstract 
Individual-based models (IBMs) predict how dynamics at higher levels of 

biological organization emerge from individual-level processes. This makes them 
a particularly useful tool for ecotoxicology where the effects of toxicants are 
measured at the individual level but protection goals are often aimed at the 
population level or higher. However, one drawback of IBMs is that they require 
significant effort and data to design for each species. A solution would be to 
develop IBMs for chemical risk assessment that are based on generic individual-
level models and theory. Here we show how one generic theory, Dynamic Energy 
Budget (DEB) theory, can be used to extrapolate the effect of toxicants measured 
at the individual level to effects on population dynamics. DEB is based on first 
principles in bioenergetics and uses a common model structure to model all 
species. Parameterization for a certain species is done at the individual level and 
allows to predict population-level effects of toxicants for a wide range of 
environmental conditions and toxicant concentrations. We present the general 
approach, which in principle can be used for all animal species, and give an 
example using Daphnia magna exposed to 3,4–dichloroaniline. We conclude that 
our generic approach holds great potential for standardized ecological risk 
assessment based on ecological models. Currently, available data from standard 
tests can directly be used for parameterization under certain circumstances, but 
with limited extra effort standard tests at the individual would deliver data that 
could considerably improve the applicability and precision of extrapolation to the 
population level. Specifically, the measurement of a toxicants effect on growth in 
addition to reproduction, and presenting data over time as opposed to reporting a 
single EC50 or dose response curve at one time point. 



 

 68 

Introduction 
A central question in ecological risk assessment of chemicals is: how likely are 

adverse ecological effects if a population is exposed to a toxicant (Munns 2006)? 
This is difficult to answer empirically because for most (non-microbial) species of 
interest population data are scarce and conducting experiments at the population 
level is usually impossible for logistic, financial, or ethical reasons. Consequently, 
the effect of a toxicant is commonly measured on individuals as a proxy for the 
effect on populations, for example by measuring how a given concentration of a 
chemical affects reproduction, growth, or survival of individuals. However, it is 
usually hard to determine the implications for populations of a stress-induced 
change in individual performance. As a tool to help aswer this question, ecological 
modelling has been discussed for a long time (Kooijman and Metz 1984; Kendall 
and Lacher 1994; Pastorok et al. 2001), but over the last 5 years or so interest in 
using this approach for ecological risk assessment has increased considerably 
(Grimm et al.2009; Forbes et al. 2009; Preuss et al. 2009; Thorbek et al. 2010). 

This development was probably triggered both by the increasing demand for 
ecological realism in regulatory risk assessment (Forbes et al. 2009, 2010) and by 
recent advances in predictive ecological modelling. Modern simulation models 
that can take into account spatial aspects, stochasticity as well as individual 
differences, interactions, and behaviour, allow for a level of structural realism 
(Wiegand et al.2003; Grimm et al. 2005; Grimm and Railsback 2012) which 
seemed impractical 10 or 20 years ago. Particularly relevant are individual-based 
models (IBMs), often also referred to as agent-based models, of populations or 
communities, because they are designed to let population dynamics emerge from 
what individuals do. 

There are an increasing number of successful examples of well-designed and 
tested IBMs which accurately extrapolate from data on individuals to predict 
population dynamics (e.g., Railsback and Harvey 2002; Preuss et al. 2010; 
Stillman and Goss-Custard 2010). However the development of these models 
required large quantities of data, that even for species which are relatively well-
studied and easy to observe, such as Daphnia (Preuss et al. 2010), trout (Railsback 
and Harvey 2002), or shorebirds (Stillman and Goss-Custard 2010), took 5–
10 years to gather and use for parameterization and testing. Obviously, we cannot 
afford to collect such data, and invest so much time, for every species and 
environment of concern. 

Using a generic theory of how individuals perform could help to reduce the 
amount of data needed and to make model development more efficient (Martin et 
al. 2012; Martin et al., in press). Generic models focus on commonalities rather 
than differences and thus conserve model structure from one species to the next. 
This allows the modeller to spend less time focusing on basic model structure and 



 

 69 

to focus on system- and species-specific aspects. For ecological risk assessment of 
chemicals, we propose using one generic theory, Dynamic Energy Budget theory 
(DEB) (Kooiman 2010), which is especially well-suited for extrapolating 
individual effects of stressors to populations for three main reasons. 

First, the major thrust of DEB theory is understanding patterns of growth, 
reproduction, and mortality of individuals. The theory attempts to define the 
simplest framework that can explain these patterns as a function of internal states 
and environmental conditions. The link to classical theoretical population ecology 
is via the two processes: reproduction and mortality. Because DEB also considers 
body size, it accounts for size-structured interactions which have been shown to be 
important at the population level (de Roos and Persson 2013). Secondly, we have 
auxiliary theory and tools to fill in the generic framework with species-specific 
parameter values. Parameterization for a DEB model can be flexible to the amount 
of data available (Kooijman et al. 2008; Lika et al. 2011). Additionally, 
parameterization software (DEBtoolhttp://www.bio.vu.nl/thb/deb/deblab/debtool/, 
DEBtox http://www.debtox.info/) is freely available with a growing user 
community. Once parameterization is complete, there is also a generic 
implementation of DEB theory (DEB-IBM) in an individual-based population 
model (Martin et al. 2012), which is freely available, comes with a user manual 
and guide for parameterization, and is implemented in NetLogo (Wilensky 1999), 
a free software platform which does not require a computer science background to 
be used (Railsback and Grimm 2011). Finally, DEB has a strong track record in 
interpreting data from toxicological tests and other studies on individuals (e.g., 
Jager et al. 2006 and references therein). 

In this paper we present a generic approach for representing effects of chemical 
stressors at the individual level using a DEB model, and extrapolating these effects 
to populations via IBMs. We use DEB-IBM to parameterize and represent 
individual Daphnia magna and then predict the population level response to a 
chemical stressor, 3,4-dichloroaniline (3,4-DCA). We use independent data at the 
individual level (to parameterize the effect of the toxicant), and at the population 
level (to test the ability of the model to predict population dynamics from 
individual level data). Finally we discuss the limitations of standard 
ecotoxicological tests for extrapolating individual effects to populations and make 
suggestions to dramatically improve experimental test design for individuals 
without a large increase in effort. 

Methods 
The goal of our analysis is to test how well using a DEB-IBM approach can 

predict the effects of a stressor at the population level based on data measured on 
individuals. To do this, we parameterized the effect of a toxicant using individual 
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data and compared simulations of an adapted DEB-IBM model for Daphnia to 
population experiments (Preuss et al. 2010). 

DEB-IBM model for Daphnia 

We used a DEB model of Daphnia magna (Martin et al., in press) adapted from 
the generic DEB-IBM framework (Martin et al. 2012). The model for individual 
animals is non-spatial and consists of a number of coupled differential equations 
describing the dynamics of state variables which characterize the energetic and 
developmental state of each individual. It is thoroughly described in Martin et al. 
(in press), and a full, detailed model description following the ODD protocol 
(Grimm et al. 2006, 2010), a standard format for describing IBMs, is given in 
Online Resource 1. For a general introduction to DEB theory see Nisbet et al. 
(2000) and Sousa et al. (2008). 

Stress at the individual level 

Toxicants once absorbed by an individual are assumed to affect one or more 
physiological processes. This is manifested in DEB theory via an effect on an 
individual parameter which in turn alters life-history output over time. Thus the 
type of sub-lethal effect invoked by a toxicant depends both on the physiological 
process (which parameter is affected), and the magnitude of the effect on that 
parameter. We refer to effects on different parameters as different “Physiological 
Modes of Action” (PMoA) (Álvarez et al. 2006) (Table 1). The term “stress 
level”, s, quantifies the magnitude by which a parameter is altered by a chemical. 
The stress level is determined by the internal concentration of a toxicant. For all 
toxicants DEB assumes that there is a concentration below which the chemical 
will have no effect (No Effect Concentration, NEC), and above this, the stress 
level increases linearly with increasing internal concentration, qc , with a slope 

determined by a “tolerance parameter”, TC . 

Tq CNECcs ),0max( −=  

The first step in predicting the population response to a stressor is identifying 
the model parameter that is affected by the toxicant of interest. The parameters of 
a species, along with the environmental conditions determine the growth or 
reproductive output over time. Conversely, we can use information on 
reproduction and growth over time at different levels of toxicant exposure to 
identify the affected parameter or PMoA (Fig. 1).  
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Fig. 1 The left panel shows a schematic diagram of energy flow in a DEB model. The parameter 
values for a species and the state of the environment (characterized here by food density) determine 
the magnitude of the energy fluxes into, within, and out of the organism. These fluxes specify the 
change over time of measurable quantities such as growth or reproductive output. Stressors are 
modelled in DEB as changes in the value of one or more parameters thereby modifying one or more 
of the energetic fluxes leading to different patterns in growth and or reproduction. The pattern of the 
stressed life history output depends on the physiological mode of action (PMoA). In the right panel, 
the black line shows the predicted body size and cumulative reproduction for Daphnia magna in ad 
libitum feeding conditions over the course of 35 days, using the DEB model parameterized 
for Daphnia (Martin et al., in press). For all other lines in the right panel we calculated the needed 
stress level for each PMoA shown in the left panel that would result in 50 % reduction in 
reproduction in a 21 day Daphnia reproduction test. Then, for each PMoA in the left panel, we used 
the stressed values for a parameter to simulate growth and reproduction under the same conditions as 
the control to compare the patterns of life-history output predicted by the different PMoAs. 
The colours of each line in the right panel correspond the PMoA that is simulated from the left panel. 
The vertical black line represents where the end of a 21 day Daphnia reproduction test would occur 
and data would be recorded. 

 
3,4-dichloraniline (3,4-DCA), has a 48 h LC50 of 220 µg l−1 (Preuss et 

al. 2010). However, at concentrations an order of magnitude lower, sub-lethal 
effects on reproduction have been recorded (Sokull-Kluettgen 1998). 
Figure 2 shows how reproduction is reduced with increasing concentrations of 3,4-
DCA. However these data alone are not enough to deduce the PMoA, as all 
PMoAs in a DEB context will normally result in a reduction in reproduction 
(Fig. 1). Previously, it has also been shown that 3,4-DCA has negligible affects on 
growth and time to first reproduction (Elendt 1990a, b). This ruled out PMoAs  
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with an effect on feeding or assimilation rate, increased maintenance costs, or 
increased costs of growth, because for each of these PMoAs we should also expect 
to see an effect on growth, provided the standard DEB model assumptions hold. 
For example at 40 µg l−1 the “Feeding/Assimilation”, “Maintenance costs”, and 
“Growth Costs” PMoAs would predict a reduction in body length, at the end of a 
21 day Daphnia reproduction test (OECD 211) of 39, 48 and 46 % respectively, 
while Elendt (1990a, b) found no significant differences in the length 
of Daphnia between the control (4.32 mm) and the highest concentration tested, 
48 µg l−1 (4.28 mm). This leaves only direct effects on reproduction as a possible 
PMoA (Fig. 1). Assuming rapid toxicokenetics, the stress-induced reduction in 
reproduction will be constant over time and we can calculate the stress coefficient 
directly from the cumulative reproduction as a function of the concentration after 
21 days. 
Table 1. Core DEB parameters of the DEB-IBM model for the DEB-IBM model for Daphnia magna 
(A). And their link to various PMoAs through the stress level (B). The DEB-IBM model is based off 
the scaled DEB model (Kooijman et al. 2008).  

A. 

DEB parameters 

Symbol Description Dimension Value PMoA 

κ Fraction of mobilized 
energy to soma - 0.678 - 

κR 
Fraction of reproduction 

energy fixed in eggs - 0.95 Reproduction costs 
and embryonic hazard 

 
Somatic maintenance 

rate coefficient t-1 0.3314 Maintenance costs, 
growth costs 

 
Maturity  maintenance 

rate coefficient t-1 0.1921 Maintenance costs 

 Scaled maturity at birth tL2 0.1108 - 

 Scaled maturity at 
puberty tL2 2.555 - 

 Energy conductance Lt-1 18.1 - 

g Energy investment ratio - 10 Growth costs 

f Scaled functional 
response - 0-1 Feeding/assimilation 
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B. 

DEB parameters under stress 

PMoA Description Affected 
parameter Stressed value 

Feeding / 
assimilation Decrease in feeding ability f a 

Maintenance Increase in maintenance 
costs ,  

b 

 

Growth costs Increase in overhead costs of 
growth , g 

c 

 

Reproduction costs Increase in cost per egg κR  

Embryonic hazard Decrease in survival during 
embryonic period κR  

Parameter values in combination with environmental conditions determine the magnitude of energy 
fluxes as governed by a set of coupled differential equations (given in Online Resource 1). For all 
parameters with a dimension in time (t), the unit is day, and for length (L), centimeters, a “–”denotes 
the parameter is dimensionless 
a This form assumes the stressor equally impairs the attack rate and the handling time in the context 
of a Holling type II functional response. Other forms, where either the attack rate, or handling time 
are affected independently are also possible (see Müller et al. 2010) 
b Here we show the assumption that both maturity and somatic maintenance costs are both equally 
affected, however effects on each parameter independently are also possible. 
c The growth costs PMoA affects the parameter, [EG ] the volume-specific costs of structure. This 

parameter is indirectly included in the scaled DEB through the two compound parameters km  and g 
(see Jager and Zimmer 2012 for details). 
 

 

Within DEB there are two different PMoAs that can act directly on 
reproduction (Table 1). First the effect can be on the conversion efficiency of 
reproduction buffer into new offspring (“Reproduction Costs” PMoA) or it can be 
an effect on mortality of offspring (“Embryonic Hazard” PMoA, EH). The 
Reproduction Costs and Embryonic Hazard PMoAs differ subtly in the 
relationship between the stress level and reproductive output under stress, that is  
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Fig. 2 Comparison of the fitted dose responses “embryonic hazard” and the “reproduction costs” 
PMoA for 3,4 DCA. For each model the No Effect Concentration (NEC), and the Tolerance ( ) 
were fitted to the dose response curves. 

 

captured in both cases by changes in the reproduction efficiency parameter, Rκ  
(Kooijman and Bedaux 1996; Jager et al. 2010) and are given by: 
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and 

( )sRsR −= exp, κκ  

respectively. 

At the population level, the only difference between the two is that the 
Reproduction Costs PMoA is a deterministic reduction in reproduction, while 
Embryonic Hazard PMoA is stochastic, with each Daphnia having a certain 
probability of surviving the embryonic period (see Online Resource 1 for details). 
To determine the PMoA we fit the two parameters (NEC and C T ), for each 
PMoA. These two parameters in combination with the exposure concentration 
determine the stress level and ultimately predict reproductive output as a function 
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of exposure concentration. We compared the resulting dose response curve to the 
output from a 21 day Daphnia reproduction test and selected the model with the 
highest likelihood. Parameterisation was conducted using a Nelder-Mead simplex 
in MATLAB. 

Population experiments and simulations 

The simulations of the DEB-IBM for Daphnia were run using conditions that 
matched exactly the experimental setup of population experiments conducted by 
Preuss et al. (2010). These experiments were initiated with 5 newly 
hatched Daphnia (<24 h), and 3 adult Daphnia (>4 mm). Feeding dynamics in the 
experiment were “semi-batch”, i.e. food was added each day Monday–Thursday 
(0.5 mg C d−1, and 3× the normal food level on Friday to a 900 ml beaker. Three 
times a week the total population density and the number of Daphnia in three size 
classes were counted. The experiments were carried out for 42 days. Each 
population experiment was conducted with either no 3,4-DCA (control), or at 
continuous exposure to a concentrations of 2.5, 5.0, 10.0, 20.0, and 40 µg l−1. We 
ran 100 population simulations with DEB-IBM for each concentration and 
compared the model results to independent experimental data. 

Results 
Of the two PMoAs tested for fitting the dose response curve for 3,4-DCA, the 

Embryonic Hazard PMoA resulted in the highest likelihood, however both PMoAs 
resulted in relatively good fits to the dose–response curve (Fig. 2). Before 
continuing with our analysis we compared the two PMoAs at the population level 
to test the population consequences of assuming one PMoA over the other. We 
thus tested individual reduction in reproduction of 25, 50 and 75 % via each 
PMoA and compared the results of the simulations for total population density and 
size structure over the simulated 42 day experiments. At the population level, for 
the same level of effect, each PMoA resulted in the same expected reproductive 
output for Daphnia. The results from this analysis revealed negligible differences 
between the two PMoAs (Fig. 3), and therefore we used the Embryonic Hazard 
PMoA for all further analysis. However we observed a slightly increased variation 
among simulation runs for the Embryonic Hazard PMoA relative to the 
Reproduction Costs PMoA at the 50 and 75 % effect levels, with a 28 and 32 % 
higher average standard deviation in daily population abundance at the 50 and 
75 % effect levels respectively, as might be anticipated from the extra stochasticity 
associated with this PMoA. There were negligible differences in the average 
standard deviation of daily abundance at the lowest effect level (<1 % difference). 
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Fig. 3 Comparison of predictions at the population level for total population density, and the three 
size classes by the “Embryonic hazard” and the “Reproduction costs” parameterized for ECx values 
of 25 (A.), 50 (B.), and 75 (C.) in a standard 21 day Daphnia reproduction test. Each data point 
represents the mean value of 100 simulations at a point in time for either total population abundance, 
or abundance of the size classes of Daphnia (data recorded once per day over the 42 day simulations) 
for each of the two submodels. 
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Fig. 4 Comparison of the mean (black solid line) and the maximum and minimum of 100 simulations 
(dashed gray lines) and experimental data from 42 day population experiments with Daphnia magna 
exposed continuously to increasing concentrations of 3,4-DCA. For each exposure concentration the 
predicted and observed total population density (upper left panel) and the abundance of three size 
classes (neonates [upper right], juveniles [lower left], and adults [lower right]) are shown. 

 

Total

ab
un

da
nc

e

0

50

100

150

200

Juveniles

0 10 20 30 40
0

50

100

150

200

Neonates

Adults

0 10 20 30 40

Total

Juveniles

0 10 20 30 40

Neonates

Adults

0 10 20 30 40

Total

ab
un

da
nc

e

0

50

100

150

200

Juveniles

0 10 20 30 40
0

50

100

150

200

Neonates

Adults

0 10 20 30 40

Total

Juveniles

0 10 20 30 40

Neonates

Adults

0 10 20 30 40

Total

ab
un

da
nc

e

0

50

100

150

200

Juveniles

time (d)

0 10 20 30 40
0

50

100

150

200

Neonates

Adults

0 10 20 30 40

Total

Juveniles

time (d)

0 10 20 30 40

Neonates

Adults

0 10 20 30 40

Control

40 µg/l20 µg/l

5 µg/l 10 µg/l

2.5 µg/l



 

 78 

The model predictions for the population dynamics showed the same patterns 
as were observed in the experimental population data sets (Fig. 4). First both 
model and data showed that for 3,4-DCA concentrations up 10 µg l−1 there were 
no differences in the population dynamics among the treatments. The model 
predictions for the control, 2.5, 5, and 10 were identical, as the concentration of 
3,4-DCA is below the NEC as determined from individual data (Fig. 2). The 
experimental data confirmed this prediction. The model predicted for the highest 
two concentrations a deviation from control conditions, which was also observed 
in the experiments. Most notably the shape of the dynamics over time and the size 
structure of the population were altered at the highest two concentrations where 
the differences between the low concentration treatments and the higher two were 
greatest during the early phase of the test (between 8 and 14 days) in both the 
model predictions and the experimental data. 

Discussion 
Using DEB theory gave us a coherent framework for extrapolating the effects 

of stress from the individual to population level. The strength of having a generic 
framework was that we were able to use existing theory and methods for 
identifying the Physiological Mode of Action and quantifying how individuals 
responded to increasing concentrations of a toxicant. While we were not able to 
differentiate between two PMoAs, Embryonic Hazard and Reproduction Costs, the 
differences between these two modes of action are negligible at the population 
level. Therefore it seems appropriate that in future studies, where identifying 
population responses to stressors is the major aim, these two PMoAs should be 
grouped together as “direct reproduction effects”. One point of caution in grouping 
these PMoAs is that the Embryonic Hazard predicts higher variability in 
population response compared the Reproduction Costs PMoA, likely reflecting the 
additional source of stochasticity inherent to the Embryonic Hazard PMoA. This 
increase in stochasticity may be relevant in cases involving species with low 
fecundity at low population densities. 

Because DEB is a model of individuals, extrapolation to the population level 
was straightforward using IBM simulations. We have shown that with little 
modification of the generic approach and by using DEB-IBM it was possible to 
accurately predict population-level effects of a stressor using only data obtained at 
the individual level. Not only was the model able to capture the total density, the 
model also captures the altered dynamics of the size structure. We would like to 
stress that this was achieved without any further fitting or calibration at the 
population level. Additionally, the model was able to make extrapolations to 
environmental conditions not included in the parameterization process. 
Specifically, in the 21-day Daphnia reproduction test, Daphnia are fed ad libitum. 
Conversely, in the population experiments, while the amount of algal food given 
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to each population remained constant, the amount of food per Daphnia fluctuated 
dramatically throughout the duration of the experiments as the population densities 
increased and decreased due to reproduction and mortality. This highlights a 
significant benefit of using well constructed, process-based models: the ability to 
extrapolate to untested scenarios. 

Although DEB theory has proven to be a useful framework for extrapolating 
toxic stress from individuals to populations, there are still open questions, and 
more development is needed to increase and facilitate its broader use for 
ecological risk assessment. One notable challenge is the size dependence of 
resource-dependent mortality. Martin et al. (in press) found that the “standard” 
DEB model does not accurately capture the size dependence of resource-
dependent mortality for Daphnia, thus the relative starvation tolerance of juveniles 
and adults had to be estimated from population level data. This analysis revealed 
that contrary to the predictions of many generic energetic models, juveniles are 
more sensitive to starvation than adults. Using the size-dependent starvation 
submodel parameterised at one population-level experiment, Martin et al. (in 
press) were able to predict the dynamics at other food levels and initial conditions. 
Additionally we were able to use the model in novel contexts without further 
modifications such as the presence of multiple attractors in Daphnia consumer 
resource systems (Martin et al., in press) or the population response of Daphnia to 
a toxicant (this study). However because of the importance of resource-dependent 
mortality in shaping the dynamics of populations, further work is needed both 
experimentally and theoretically to develop generic model for resource-dependent 
mortality. 

We were able to parameterize the effect of 3,4-DCA using a data from a single 
point in time, however for all other PMoAs this would not be possible as the ECx 
values for both reproduction and growth vary as a function of time (Baas et 
al. 2010). This leads to two main challenges. First, many PMoAs can lead to the 
same ECx for reproduction, and secondly for most PMoAs the effect is time 
dependent. 

Currently, body size is not measured in any standard OECD biotest conducted 
for risk assessment (Table 1 in Ashauer et al. 2011). Only in 
the Daphnia reproduction test (OECD 211) size is mentioned as optional endpoint, 
which, due to cost reduction, is rarely measured. This leads to a problem, as 
illustrated by Fig. 1, in identifying the PMoA, because most PMoAs will lead to an 
effect on reproduction, and thus additional data on body size is required to 
differentiate between possible PMoAs. For example, in addition to direct effects 
on reproduction, stressors can affect reproduction indirectly through via a decrease 
in feeding rate, an increase in maintenance costs, and/or an increase in costs for 
growth. If body size is not measured over time, differentiating between these 
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PMoAs is impossible as each of these modes of action can lead to the same ECx 
for reproduction at a given point in time. Simultaneously measuring a second 
endpoint, such as growth, would require some extra work, however the increase in 
information it would provide is necessary to identify the PMoA; a critical step in 
linking the individual and population levels of biological organization. Also, 
having data for effects on body size and growth eventually may even help to 
identify patterns across chemicals and species for the PMoA. 

Even if the PMoA is known, the parameterization of the effect of the toxicant is 
dependent on when the measurement was recorded in time (Baas et al. 2010). In 
other words, for most PMoAs, a 21 day EC50 is typically the not same as a 14 day 
EC50. This problem is further complicated as slow toxicokenetics can add an 
additional source of variation in effects through time. The time-dependence of 
effects creates a huge barrier for purely statistical approaches, because unique ECx 
values need to be calculated for every biologically relevant time point. 
Fortunately, alternative process-based approaches exist, such as DEB, which use 
the information over time, to quantify time-independent effects (Baas et al. 2010; 
Heckmann et al. 2010). Often as in the Daphnia 21 day reproduction test, the data 
over time is collected but not reported. Thus reporting the data over time can 
already vastly improve our understanding of sub-lethal effects without additional 
time or effort. 

We have shown a simple example where generic theory allows extrapolation of 
information on toxic effects from the individual level to the population level. 
However this represents only one species and one physiological mode of action. 
The assumption that there is a single PMoA operating over the entire range of 
exposures requires further exploration. For example, Muller et al. (2010) fitted 
data from several organisms considering two possible PMoAs, a combination of 
the two but with a single stress parameter and a combination with different stress 
parameters. In most cases, the individual data could be adequately described by 
any of the representations, but no population consequences beyond long term 
population growth rate were modelled or tested. There are strong hints in the 
theoretical ecology literature that differences in priorities for energy allocations 
and in energetic costs may profoundly affect population dynamics (e.g., Gurney et 
al. 1996; de Roos and Persson 2013) Further testing of DEB predictions against 
population data is needed. This will require conducting individual and population 
level experiments for stressors with different PMoAs, or patterns of effects on life 
history over time. There is also a challenge for theorists—to develop further 
generic theory relating different PMoAs to qualitative change in population 
dynamics. 
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Chapter 5: General conclusions 
 

In this thesis, I developed a generic implementation of DEB theory in an IBM 
context, DEB-IBM (Chapter 2). Using DEB-IBM as a starting point, I 
parameterized a model for Daphnia and then tested the ability of the model to 
capture dynamics at the population level (Chapter 3). The result of this comparison 
revealed that while DEB was able to accurately predict the population density and 
size structure during the population growth phase, and to predict the peak 
population achieved in experiments with multiple food-levels and initial 
conditions, after this population peak, when the population began to decline, the 
model predictions and data diverged. In the experiments, the daily dose of algae 
cells given to an experimental tank remained constant, thus when the number of 
Daphnia in a tank reached high levels the amount of food per Daphnia was very 
low. This suggests that DEB currently does not capture the relevant processes for 
Daphnia when resources are very low. Our preliminary analysis revealed that the 
population dynamics during the population decline phase were very sensitive to 
the size selectivity of resource-dependent mortality. I therefore tested several 
hypotheses where either the juveniles, adults, or all Daphnia were subjected to an 
additional source of resource-dependent mortality, where the probability of dying 
is inversely related to the reserve density of the Daphnia. Our analysis revealed 
that the best agreement with the data was given by the model where only juveniles 
had increased resource-dependent mortality. Using this adapted model I was able 
to correctly predict population dynamics during the population growth and decline 
phase for multiple food levels and initial conditions. Additionally I was able to 
predict, without further calibration, an additional qualitative pattern exhibited by 
Daphnia: the presence of bistability in intermediate prey carrying capacities.  

The next goal of this thesis was to test the ability of the model to extrapolate 
chemical stress measured at the individual level to populations. For this I used 
information  on the effect of 3,4-dichloroanailine at the individual level (Chapter 
4). The individual data suggested a direct effect on reproduction, as previous 
individual-level data sets found no significant effects on growth. Assuming direct 
effects on reproduction, the model was able to accurately predict the population 
response to increasing concentrations of 3,4-dichloroaniline. 

Individual performance at low food levels 

A major result of this thesis is the importance of how resource-dependent 
mortality scales with size. Currently, starvation is one of the least studied aspects 
of DEB theory, and of population ecology in general. There have been several 
suggestions made for how starvation can be included in a DEB context, however 
most of these possibilities have not been experimentally tested (Kooijman 2010). 
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The ambiguity about which starvation rules should be used and when, makes 
accurate a priori extrapolation from individuals to populations unlikely. Thus, 
critical for DEB or any generic model hoping to link the individual and population 
levels of biological organization, is an understanding of individual dynamics at 
low food levels. 

Below I discuss several of the starvation hypothesis outlined in Kooijman 
(2010), and discuss their plausibility for Daphnia. 

Starvation rule 1: 

Do not deviate from standard rules. If an individual cannot mobilize enough 
energy to pay somatic maintenance then the individual dies. This condition is met 
when scaled reserve density (e) falls below scaled length (length as a proportion of 
maximum length): 

ML
Le <  

This rule has the consequence that fully-grown individuals will die immediately if 
feeding is not ad libitum. I rejected this hypothesis for Daphnia and likely all other 
species, as adult Daphnia can survive days without food (Tessier et al. 1983).  

Starvation rule 2: 

The second starvation rule described in Kooijman (2010) is one where the 
individual deviates slightly from standard rules by using energy previously 
allocated to reproduction to pay maintenance (κ is the allocation fraction to 
somatic maintenance and growth). This buys individuals extra time and the new 
threshold for death is given by: 

ML
Le κ<  

Assuming no changes in size, the time to starvation is given by: 

mkg
llstarvetotime 
)log(__ κ−

=         eq.1 

(Kooijman 2010). This results in a hump-shaped relationship between the time to 
starvation and body size, with intermediate-sized individuals having the greatest 
starvation resistance. However, with the parameter set used for Daphnia, energy 
investment ratio, g, was fixed to 10, which results in extremely short starvation 
times (Figure 1). This is because a g of 10 corresponds with a high value for the  
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Fig. 1 Predicted time to starvation for Daphnia after being switched from ad libitum food to no food 
as a function of scaled length (length/ maximum length) by eq 1. The three lines represent the 
predicted starvation times using parameter values where g was fixed to 0.1, 1.0, or 10 (Chapter 3; 
Table B1). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

energy conductance parameter v , which makes reserve turnover, and thus reserve 
depletion, very rapid. Fixing g or v  to a lower value increases the time to 
starvation, however g needed to be fixed to values below 0.1 to generate starvation 
times consistent with those observed for Daphnia magna. With g fixed at such a 
low value, resulting parameter sets do not provide satisfactory fits to the growth 
and reproduction data. Thus, g can be fixed to produce either good fits to 
dynamics under high food conditions, or low food conditions, but not both 
simultaneously. 

Because the starvation times were too short when using reserve as a trigger for 
starvation, I invoked another mechanism, by allowing individuals to burn somatic 
mass to pay maintenance costs. Mortality now was triggered by shrinking below a 
critical proportion (VCrit) of the individual’s previous maximum structural 
volume. I chose a threshold of 40% of the previous maximum mass based on the 
midpoint of the range observed for Daphnia magna (Perrin et al. 1990; Bradley et 
al. 1991). This assumption leads to starvation times within the range observed for 
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Daphnia  (mean time to starvation was approximately 5 days with negligible 
differences among sizes). However, at the population level, this model led to poor 
agreement between model and data. The resulting dynamics were sensitive to the 
value of VCrit, but no value of Vcrit led to qualitatively similar patterns between 
model and data. At lower values of Vcrit, very few individuals die, and for higher 
values there was very high mortality but in choppy phases. This may be because 
the state variables of individual Daphnia tended to converge during resource-poor 
conditions (small individuals kept growing for some time while larger individual 
could not grow). Additionally, because starvation was not absolute (going from ad 
libitum food to no food instantaneously) but rather gradual, the balance of 
starvation tolerance was shifted in favor of juveniles, and thus larger individuals 
were the first to starve. Daphnia that died from starvation in the simulations were 
on average more than 90% of the length of the largest Daphnia in the simulation 
for all three experimental conditions simulate. 

One possibility I have not investigated in this thesis is that maintenance costs 
are not fixed, but they rather decrease during starvation, possibly at the expense of 
decreased probability of survival. This could allow for starvation tolerance curves 
similar to those in Figure 1 while still providing a satisfactory fit to growth and 
reproduction. The challenge however, is knowing exactly by how much and in 
what manner maintenance costs are reduced, and how this trades off with survival. 
Unfortunately, while this still remains a plausible explanation, currently the data 
needed to answer these questions are not available. 

Because of these data challenges I worked the other way around, and tried to 
test various hypotheses about starvation tolerance in Daphnia at the population 
level to infer something about how individuals perform. I tested three submodels 
where either juveniles, adults or all Daphnia were subjected to mortality with a 
probability inversely related to reserve density. The result of our analysis revealed 
that only assuming the additional mortality sub-model for juveniles resulted in the 
best agreement at the population level. This is also in agreement with studies of 
individual Daphnia. Although in our study we linked starvation probability to 
reserve density, reserve in this context merely played the role as an aggregate 
measure of feeding history. Qualitatively identical results were achieved when 
starvation probability was dependent on recent feeding history (e.g. average f 
experienced by the Daphnia over the molt period). Thus below I broaden the 
discussion by considering starvation in the context of a reserveless model. 

When the speed of reserve turnover increases toward infinity, reserve becomes 
infinitely small and falls out of the model resulting in a simple model for growth: 

( )bmfam
dt
dm

−= 3/2κ                 eq.2 



 

 89 

where a is related to surface area-specific assimilation rate, b is related to the 
mass-specific maintenance costs, and  f denotes the scaled functional response. 
Under constant conditions the model is equivalent to the von Bertalanffy growth 
equation. This is also strikingly similar to the ontogenetic growth model, with the 
exception that energy allocation to maturation and reproduction is not considered 
in the OGM model (assumed 1=κ ) and in the power of the first term which is 3/4 
rather than 2/3 (Hou et al. 2008). Here, body mass serves as a “reserve” during 
starvation and when the assimilation flux cannot meet maintenance costs the 
individual will shrink, with death occurring when an individual falls below a 
certain threshold of its previous maximum mass.  

Under these assumptions and  due to the proportionality of maintenance costs 
with body mass, both models predict that starvation tolerance will be independent 
of size. In the case that food availability decreases from high food to no food more 
gradually, the advantage shifts toward smaller individuals which will continue to 
grow at food levels where larger individuals are already beginning to shrink in 
mass.  

These two predictions seem to go against the limited data available on 
starvation. For individual data sets, where individuals underwent absolute 
starvation (ad libitum to complete starvation), the majority of studies have found 
that larger individuals of a species survive longer than smaller individuals (Tessier 
et al. 1983; Borchers and Hutchings 1986; Tsuda 1994). Additionally at the 
population level, the presence of small amplitude cycles observed for Daphnia in 
dynamic consumer resource systems, driven by the survival of adults through the 
decline phase of the population cycle, seems to indicate that often adults maintain 
a survival advantage during periods of gradual food reduction 
(Ananthasubramaniam et al. 2011). 

In Chapter 3, I outlined several potential mechanisms that could confer an 
advantage toward larger individuals: 

1) The proportion of the previous maximum mass that an individual can shrink 
to before death could decrease as a function of size (larger individuals can 
shrink to a lower proportion of their previous maximum mass before they 
starve). 

2) Specific energy storage or reserves may increase with size.  

3) Mass specific metabolic rates may decrease with size.  

4) Energy utilization may be partially inflexible (smaller individuals continue 
to catabolize energy stores to continue to develop for some time after food 
levels decrease). 
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Currently there are not enough data available to test these hypotheses, but well 
designed experiments to test these hypotheses may lead to critical insight needed 
to understand and predict the ontogeny of starvation tolerance. Even more needed 
are multi-species studies examining starvation tolerance over the range of body 
sizes observed for a species. Because so few studies have examined how size 
affects starvation tolerance within a species, it is currently unknown if general 
patterns exist. If general patterns do exist, measuring over a continuous range of 
body sizes is critical to identify the shape of the relationship (e.g., is the 
relationship hump-shaped, or monotonically increasing or decreasing).  

Our results have highlighted how critical it is to correctly understand patterns 
in resource-dependent mortality for predicting population dynamics. Because 
different assumptions about starvation tolerance can lead to quite different 
dynamics, and because currently so little is known about which assumption is 
correct in a specific situation, this remains an important but overlooked area of 
research in population ecology. It remains to be seen if generic models will be able 
to predict patterns of starvation for various species without extensive 
experimentation for each species, but the role of generic models in connecting the 
individual and population level depends on it. One hope is that the ubiquity of von 
Bertalanffy growth under constant resource conditions will be mirrored by another 
general pattern during poor resource conditions. 

Is representing reserve necessary?  

Another significant outcome of this thesis is that parameters relating to the 
speed of reserve turnover, specifically v (which tightly covaries with g), are 
difficult to specify using growth and reproduction data alone. Additionally I 
showed that for at least one species, fixing g or v  to given parameter values within 
the range that still provides satisfactory fits to individual growth and reproduction 
data sets has negligible affects at the population level. This is due to the fact that 
the most likely parameter sets based on fits to individual growth and reproduction 
data produced values of v  in which reserve dynamics were so rapid that the 
resulting model predictions could hardly be distinguished from infinitely rapid 
reserve dynamics at neither the individual or population level. With either g or v  
fixed, or in a reserveless model in general, all other parameters could be well 
specified by the individual data sets. Our results call into question the practicality 
and utility of including a reserve state variable in a population context (at least for 
Daphnia).  

In a population context, the most compelling argument for the inclusion of 
reserve as a state variable set apart from structure is its capacity to act as a 
metabolic memory. Obviously, there is a time lag between consumption of a 
resource and its allocation to growth or reproduction. If this lag time is significant, 
this could lead to important consequences at the individual level when food is 
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variable. Because food availability is rarely ever constant in natural environments 
and because populations generally have strong feedbacks on their environment, 
these consequences could translate to significant effects at the population level. 
Additionally, if the function of reserve as a metabolic memory extends to 
prolonged periods of starvation, reserve dynamics can be used to understand and 
predict size dependence of starvation tolerance, which is so critical to 
understanding population dynamics. Both of these arguments would be convincing 
reasons for the inclusion of a reserve. However, the work from this thesis 
challenges both of these points. 

The first problem is that for Daphnia at least, the time lags in relation to 
changing feeding conditions seem to be rather insignificant. Figure 2 shows a 
dataset for individual growth where individual Daphnia were raised at a high (a) 
or low (b) food level (data from Kooijman 1986). The remainder of the 
experiments started out with one of the two food levels and then was switched at 
either day 7, 14, or 21 to the other food level. The lines in each of these figures 
represent the fit of the DEB model using the same parameter set as used in Chapter 
3 and 4, where g was fixed to 10. The only datasets used to parameterize the 
model were the experiments where food was kept constant at either the high or 
low algal density. These datasets were used to estimate the scaled functional 
response (f) for each food concentration. These values were then used to predict 
body sizes in the remaining experiments where Daphnia were switched from one 
algal density to another.  

With this parameter set, reserve turnover is extremely fast and thus there is 
negligible lag time in response to changing food. Therefore, if delays between 
food level and allocation to growth are important, a poor match between model 
and data should be expected. However, this does not seem to be the case as the 
model and data are in fairly good agreement. The largest discrepancy between 
model and data can be accounted for by the fact that I assumed a constant f for 
each food level. However, these were semi-batch experiments where a fixed 
amount of food was given to each Daphnia at the beginning of the day. Because of 
this, food is depleted throughout the day, and thus the food level experienced 
throughout the day may change. As Daphnia grow we should expect food 
depletion to be larger, due to increasing assimilation abilities. Thus, even when 
algae cells given per day is constant, the actual f experienced by a Daphnia 
decreases with size. Therefore, when fitting a model assuming a fixed f, we should 
expect an underestimation of growth at small sizes, and an overestimation at larger 
sizes. This is in fact the exact pattern observed in the experiment under constant 
food conditions, that also explains the deviation in the changing food treatments in 
Figure 2d.  
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Fig. 2 Observed (open squares) and predicted (lines) body sizes over time for Daphnia magna at 20C 
fed either a constant daily dose of green algae at either a high (a.) or low (b.) density, or switched 
from one feeding level to another (c.-h.). Panels c., g., and e. show the scenario where Daphnia were 
switched from the low food concentration to the high food concentration at 7, 14, or 21 days after 
birth, respectively. Panels d., f., h., show the scenario were Daphnia were initially feed at the high 
daily food density and switched to the low food density on days 7, 14, or 21 respectively. The model 
predictions used parameter values from Table 1, in Chapter 3. Only panels a. and b. were used to 
estimate f for each food concentration. 
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This highlights an even stronger argument for not including reserves. As 
Daphnia approach larger sizes in non-ad libitum conditions, depletion of food 
becomes quite severe throughout the day (from ad libitum to no food in a 24 hr 
period), yet the model is still able to capture patterns in growth and reproduction in 
batch-fed conditions (Appendix 3B, Figure 6). The same dynamics occurred at the 
population experiments (Chapter 3 and 4), which were also semi-batch 
experiment. Throughout the population growth phase, individuals in the 
population experienced feeding conditions ranging from complete starvation to ad 
libitum feeding, yet the predictions at the population level remained accurate even 
in the reserveless model. This seems to highlight that using somatic mass rather 
than reserve as a form of metabolic memory seems equally capable of handling 
changing feeding conditions. One caveat is that for my analysis I used Daphnia, a 
relatively small species. According to DEB theory maximum reserve density 
scales with length. Therefore, for larger species, the importance of reserve may be 
more significant, and for smaller species reserveless models more appropriate.  

 In addition to not being necessary to capture short-term changes in food 
conditions, reserve dynamics, for Daphnia at least, is not able to capture patterns 
in long-term starvation-induced mortality. As discussed previously, parameter 
values of g and v  that gave reasonable fits to growth and reproduction data, 
grossly underpredicted starvation times using the two common DEB starvation 
rules. Thus, the reserve concept alone (death occurs when reserve mobilization is 
not enough to match maintenance costs) without further modification of the 
starvation rules, is not sufficient to explain patterns of resource dependent-
mortality. Because to date, the combination of reserve with more complex 
starvation rules has not been systematically tested for a wide range of species, 
including reserve currently provides little predictive capabilities for modelling 
population dynamics. 

I have shown that for at least one species including a reserve compartment has 
little benefit in modelling short-term responses to changing feeding conditions, or 
predictions for when starvation should occur. These two points, in addition to the 
difficulty in specifying the parameter values associated with reserve turnover rates, 
call into question the practicality of including reserve in a population context. I 
found that using growth and reproduction data alone was not enough to specify 
reserve parameters for Daphnia. Other approaches use information about the 
length of the embryonic period to specify the value of v .However for many 
species DEB does not make accurate predictions for embryonic development time, 
and this has been attributed to either diapause (Jager et al. 2010) or metabolic 
acceleration (Augustine et al. 2011).  If reserve is to be used, further work is 
needed in accurately specifying the parameters v  and g without a large increase in 
data requirements and in identifying the relative contribution of reserve and 
structure during prolonged periods of starvation. 
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Implications for risk assessment 

The work from this thesis represents the first combined use of IBM and DEB to 
predict the effect of a toxicant at the population level using only individual level 
data. The strong agreement between model predictions and data show the strength 
of the approach. However, for this approach to be used in standard risk 
assessment, more comprehensive data collection and reporting is needed. As I 
outlined in Chapter 4, reproduction data at one time point is not enough to specify 
the Physiological Mode of Action, PMoA, which is a critical step in extrapolating 
from the individual to population level. The first and easiest problem to solve in 
using DEB and IBM for risk assessment is thus reporting data over time. For the 
21 day Daphnia magna  reproduction test, reproductive output is measured every 2 
to 3 days, thus the only change required is reporting cumulative reproduction over 
time rather than at one time point. This is critical because toxicity is a dynamic 
process in time (Baas et al.2010; Heckmann et al. 2010). The effect over time can 
be due to slow toxicokinetics where the internal concentration is not constant over 
time, or additionally due to the changes in the individual (i.e. change in body size 
over the duration of the exposure). In both DEB and real individuals, the 
magnitude of various energy fluxes changes over time. For example, the 
proportion of energy allocated to growth or maintenance costs changes with body 
size. Thus the percentage reduction compared to a control in a measurable 
quantity, such as growth is not constant over time. Because in DEB different 
fluxes change differently with respect to body size, this information is very useful 
when specifying the most likely PMoA. Measuring body size in addition to 
reproduction is critical to identifying the most likely PMoA. First, the effects for 
the various PMoAs on body size are much more differentiated than on 
reproduction (Chapter 4, Figure 1). Additionally because energy acquisition, and 
therefore energy availability for reproduction, is highly dependent on body size, 
effects on reproduction in isolation are impossible to interpret from an energy 
budget perspective.  

Lastly, although our model made accurate predictions for one chemical-species 
combination, if linking DEB and IBMs is to be a truly generic approach, we need 
further testing of chemicals and models at both the individual and population level. 
Specifically, it is important to test chemicals with different PMoAs that result in 
effects on both body size and reproduction.    

Concluding remarks 

Overall this thesis shows the potential for developing generic representations of 
individuals that in combination with IBMs can be used to link the individual and 
population levels. The results of this thesis give some promise for standardizing 
the link between individuals and populations, however further work is needed in 
investigating patterns of resource-dependent mortality. When I included a 
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submodel to account of patterns of size-dependent, resource-dependent mortality, 
we were able to use the DEB to accurately predict population dynamics in 
laboratory experiments. I also demonstrated the potential power of the approach 
for applied contexts, such as extrapolating chemical stress from the individual to 
population level. Using cross-level tests, I was able to identify areas where theory 
development and experimentation are needed. Further research identified by our 
cross-level tests may allow for both generic and accurate extrapolations between 
the individual and population level. 
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Summary 
 

Understanding how the structure and dynamics of populations emerge is 
one of the fundamental challenges in ecology. As the influence of individual 
variation, local interactions, and adaptive behaviour on population dynamics 
have become more appreciated, individual-based models (IBMs) are playing 
an increasing role in both basic and applied disciplines. IBMs represent 
individual organisms as unique entities that differ from each other and change 
over their life cycle. Individuals are characterized by a set of state variables 
and attributes that are chosen according to the problem addressed with the 
model. Individuals behave as autonomous entities according to behavioural 
rules. They interact with each other and their abiotic environment, including 
habitat structure and environmental drivers such as temperature, humidity, or 
disturbances. Population dynamics emerge from these interactions. 

IBMs have been shown to be powerful and flexible tools. However, they 
have also been criticized for often being based on ad hoc assumptions and 
representations of individual dynamics and behaviour. This makes the 
development of IBMs inefficient and the field of individual-based modelling 
incoherent. To facilitate re-usability of IBMs and their elements, and to 
facilitate distilling general insights from specific IBMs, it is desirable to base 
IBMs more on standardized and well-tested approaches for individual 
behaviour.  

Dynamic Energy Budget (DEB) theory is such an approach. It has been 
developed with the goal of understanding the dynamics of biological systems, 
from cells to ecosystems, via a balance approach for mass and energy. As in 
IBMs, in DEB theory individuals are considered the key unit of interest for 
understanding dynamic systems at higher levels of organisation. Focusing on 
the individual is motivated by the fact that mass and energy balances are easier 
to calculate for individuals than for higher or lower levels of biological 
complexity. DEB theory provides a quantitative framework for modelling the 
acquisition and use of resources for organisms over the entire life cycle. It 
thereby generates a quantitative explanation for the time patterns of life-history 
traits such as growth, maturity, and reproduction in dynamic environments.  

Thus, the use of IBMs in combination with DEB theory has the potential to 
strengthen the field of population ecology. Because DEB theory provides a 
generic framework for modelling the life-history of an individual, the same 
modelling framework can be used for all species. This increases the generality 
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of model results, as the differences in the behaviour of models of different 
species can be ascribed to differences in parameter values, rather than to 
differences in any part of the model structure. IBMs, in turn, allow those 
working with DEB theory at the individual level to test the consequences of 
individual-level processes at the population level via simulations. 

Despite the great potential of Dynamic Energy Budget theory as the 
foundation for IBMs, their use together has been limited. To facilitate their 
combination, I developed a framework for using DEB theory in connection 
with IBMs: DEB-IBM. DEB-IBM is an accessible implementation of DEB in 
which a user can enter the DEB parameters of a species and evaluate their 
dynamics at the population level under various resource conditions. More 
importantly however, users can adapt the code to address specific research 
question, for example, how the distribution of resources over space alters the 
stability of populations in time, or how stressors, such as pesticides alter the 
dynamics of populations. 

Using the DEB-IBM framework I tested the ability of the DEB theory to 
predict population-level dynamics from the properties of individuals. I used 
Daphnia magna as a model species, where data at the individual level was 
available to parameterise the model, and population-level predictions were 
compared against independent data from controlled population experiments.  

I found that DEB theory successfully predicted population growth rates and 
peak densities of experimental Daphnia populations in multiple experimental 
settings, but failed to capture the decline phase, when the available food per 
Daphnia was low. Thus, the analysis revealed that correctly representing 
resource-dependent mortality is critical for linking individual and population 
levels. The fact that the standard DEB model was unable to capture patterns of 
resource-dependent mortality reflects the fact that most work on individuals 
has been conducted under relatively favourable food conditions. Further 
assumptions on food-dependent mortality of juveniles were needed to capture 
the population dynamics after the initial population peak.  Specifically, the 
assumption that juveniles were more vulnerable to resource dependent 
mortality than adults. The resulting model then predicted, without further 
calibration, characteristic switches between small- and large-amplitude cycles, 
which have been observed for Daphnia populations. I conclude that cross-level 
tests help detecting gaps in current individual-level theories and ultimately will 
lead to theory development and the establishment of a generic basis for 
individual-based models and ecology. 



 

 98 

In addition to theoretical explorations, I tested the potential of DEB theory 
combined with IBMs to extrapolate effects of chemical stress from the 
individual to the population level. For this I used information at the individual 
level on the effect of 3,4-dichloroaniline on Daphnia. The individual data 
suggested direct effects on reproduction but no significant effects on growth. 
Assuming such direct effects on reproduction, the model was able to accurately 
predict the population response to increasing concentrations of 3,4-
dichloroaniline. Interestingly, the model was able to make extrapolations to 
environmental conditions not included in the parameterization process. 
Specifically, in the 21-day Daphnia reproduction test, Daphnia are fed ad 
libitum however, in the population experiments the food amount of food per 
Daphnia fluctuated dramatically. This highlights a significant benefit of using 
well-constructed, process-based models: the ability to extrapolate to untested 
scenarios. 

In addition to showing the potential for linking individual and population 
levels, our result also highlight several shortcomings of current standard risk 
assessment tests. The practice of measuring chemical effects on reproduction 
without concurrently measuring body size is insufficient to predict population 
level effects. This is because stress on many physiological processes can result 
in a reduction in reproduction (reduced feeding, increased maintenance costs, 
mortality of embryos, etc.). However, these processes can have very different 
effects at the population level. With limited extra effort, standard tests at the 
individual level could deliver data that could considerably improve the 
applicability and precision of extrapolation to the population level. 
Specifically, the measurement of a toxicants effect on growth in addition to 
reproduction, and presenting and analysing data over time as opposed to 
relying on a single number to represent the toxicity at the end of the test (such 
as NOEC or EC50). 

In conclusion, this thesis shows the potential of DEB and IBMs in 
combination to help illuminate the links between individual and population 
levels in both basic and applied contexts. The advantage of using a generic 
approach is that the lessons learned are directly transferable to other species. 
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Zusammenfassung 

 
Für die ökologische Risikobewertung von Chemikalien sind 

individuenbasierte Populationsmodelle ein vielversprechendes Werkzeug um 
heutige Bewertungen ökologisch realistischer zu gestalten. Allerdings ist die 
Entwicklung und Parametrisierung derartiger Modelle zeitaufwendig und oft 
wenig systematisch. Standardisierte, geprüfte Untermodelle, die 
Einzelorganismen beschreiben, würden die individuenbasierte Modellierung 
effizienter und kohärenter machen. In meiner Dissertation habe ich daher 
untersucht, inwieweit sich die Dynamic Energy Budget-Theorie (DEB) als 
Standardmodell innerhalb individuenbasierter Populationsmodelle eignet, und 
zwar sowohl für die ökologische Risikobewertung als auch für die theoretische 
Populationsökologie. 
 

Zunächst habe ich eine generische Implementierung der DEB-Theorie im 
Rahmen individuenbasierter Modellen (IBM) erstellt: DEB-IBM. Dieses 
Werkzeug nutzend habe ich dann untersucht, ob es mit Hilfe der DEB-Theorie 
gelingt, ausgehend von den Eigenschaften und Aktivitäten einzelner 
Individuen, Populationsdynamik vorherzusagen. Wir nutzten dabei Daphnia 
magna als Modellart, für die Daten auf der Individuenebene verfügbar waren, 
um das Modell zu parametrisieren, sowie Populationsdaten, mit denen 
Modellvorhersagen verglichen werden konnten. 
 

DEB-Theorie war in der Lage, beobachtete Populationswachstumsraten 
sowie die maximalen Abundanzen korrekt vorherzusagen, und zwar für 
verschiedene Umweltbedingungen. Für Phasen des Rückgangs der Population 
allerdings, wenn die für die Daphnien verfügbare Nahrungsmenge gering war, 
kam es zu Abweichungen. Es waren deshalb zusätzliche Annahmen über 
nahrungsabhängige Sterblichkeit von juvenilen Daphnien erforderlich, um die 
gesamte Populationsdynamik korrekt vorherzusagen. Das resultierende Modell 
konnte dann, ohne weitere Kalibrierungen, den für Daphnien 
charakteristischen Wechsel zwischen Populationszyklen mit großen und 
kleinen Amplituden richtig vorhersagen. Wir folgern daraus, daß Ebenen 
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übergreifende Tests dabei helfen, Lücken in aktuellen Theorien über 
Einzelorganismen aufzudecken Dies trägt zur Theorieentwicklung bei und 
liefert Grundlagen für individuenbasierte Modellierung und Ökologie. 
 

Über diese Grundlagenfragen hinaus haben wir überprüft, ob DEB-Theorie 
in Kombination mit IBMs es ermöglicht, den Effekt von chemischem Streß auf 
Individuen auf die Populationsebene zu extrapolieren. Wir nutzten Daten über 
die Auswirkungen von 3,4 Dichloroanalin auf einzelne Daphnien, die zeigten 
daß im Wesentlichen die Reproduktion, nicht aber das Wachstum 
beeinträchtigt ist. Mit entsprechenden Annahmen konnte unser Modell den 
Effekt auf Populationsebene, für den unabhängige Daten vorlagen, korrekt 
vorhersagen. DEB-Theorie in Kombination mit individuenbasierter 
Modellierung birgt somit großes Potential für einen standardisierten 
modellbasierten Ansatz in der ökologischen Risikobewertung von 
Chemikalien. 
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