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Abstract

State space models enjoy wide popularity in mathematical and statistical modelling
across disciplines and research fields. Frequent solutions to problems of estimation
and forecasting of a latent signal such as the celebrated Kalman filter hereby rely
on a set of strong assumptions such as linearity of system dynamics and Gaussian-
ity of noise terms.
We investigate fallacy in mis-specification of the noise terms, that is signal noise
and observation noise, regarding heavy tailedness in that the true dynamic fre-
quently produces observation outliers or abrupt jumps of the signal state due to
realizations of these heavy tails not considered by the model. We propose a formali-
sation of observation noise mis-specification in terms of Huber’s ε-contamination as
well as a computationally cheap solution via generalised Bayesian posteriors with a
diffusion Stein divergence loss resulting in the diffusion score matching Kalman fil-
ter - a modified algorithm akin in complexity to the regular Kalman filter. For this
new filter interpretations of novel terms, stability and an ensemble variant are dis-
cussed. Regarding signal noise mis-specification, we propose a formalisation in the
frame work of change point detection and join ideas from the popular CUSUM algo-
rithm with ideas from Bayesian online change point detection to combine frequent
reliability constraints and online inference resulting in a Gaussian mixture model
variant of multiple Kalman filters. We hereby exploit open-end sequential proba-
bility ratio tests on the evidence of Kalman filters on observation sub-sequences for
aggregated inference under notions of plausibility.
Both proposed methods are combined to investigate the double mis-specification
problem and discussed regarding their capabilities in reliable andwell-tuned uncer-
tainty quantification. Each section provides an introduction to required terminol-
ogy and tools as well as simulation experiments on the popular target tracking task
and the non-linear, chaotic Lorenz-63 system to showcase practical performance of
theoretical considerations.

Key Words:
Statistical Model Mis-Specification, Robust Filtering, State Space Change Point
Detection, Bayesian Filtering, Bayesian Modelling
Category:
Data Assimilation, Machine Learning, Statistical Methodology, Signal Processing
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Abbreviations and Frequent Notation

The following is an non-exhaustive list providing abbreviations and frequent notation.
iid Independent and identical distributed; frequent assumption in statistical modelling

ARL Average run length; expectation of a stopping time under the null hypothesis

BOCPD Bayesian online change point detection; see (Adams and MacKay, 2007) and (Fearnhead
and Liu, 2007)

CADD Conditional average detection delay; see (Pollak, 1985)

CR-BOCPD CUSUM restarted BOCPD; proposed in this work via connecting ideas from R-BOCPD
and CUSUM strategies

CUSUM Cumulative sum algorithm; popular approach for sequential change point detection via
open-end SPRTS

EnKF Ensemble Kalman filter

FAR False alarm rate or rate of false alarm; reciprocal of ARL; substitute for PFA

FFS Fixed sample size; usually referring to classical hypothesis test settings

GLR Generalized likelohood ratio; usually in combination with the CUSUM rule

GMM Gaussian mixture model; a weighted sum of densities functions of Gaussian random vari-
ables

IMQ Inverse multi-quadratic; usually referring to the shape of the kernel in the diffusion weight
matrix

innovation The difference between an observation and the forecast observation mean; usually via
γn = yn −Hnm

f
n

KF Kalman filter

LLR Log-likelihood ratio; the logarithm of the fraction of two density functions

PFA Probability of false alarm; probability of supposedly detecting a change when there is non

R-BOCPD Restarted BOCPD; see (Alami et al., 2020)

RV Random vector or random variable depending on dimension

SPRT Sequential probability ratio test; open-end or closed depending on null hypothesis

UBCP Uniformly best constant power; usually referring to a notion of optimality for statistical test
with "rich" hypotheses

UMP Uniformly most powerful; usually referring to a notion of optimality for statistical tests with
simple hypotheses
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Abbreviations and Frequent Notation

WADD Worst average detection delay; see (Lorden, 1971)

α0 FAR of a detection rule; in [0, 1]

α∗0 Type-I error or PFA of a detection rule; in [0, 1]

α∗1 Type-II error; in [0, 1]

ŵ(y) Scalar diffusion weight; see w(y)

1p×p Identity or unit matrix of dimension p× p

X Signal state space; usually X = Rd

Y Signal state space; usually Y = Rp

Σn Time-varying innovation and marginal observation covariance matrix via Σn = HnP
f
nH

T
n +

Rn

Σi• Row i of the matrix Σ

K̃n(yn) Adjusted Kalman gain matrix balancing forecast and adjusted observation uncertainty

{x(l)n }l∈{1,2,...,M} An ensemble with ensemble members x(l)n at time n and total number of ensemble
membersM

An Time-varying linear signal process operator of the state space model

Hn Time-varying forward or observation map of the state space model

Kn Kalman gain matrix balancing forecast and observation uncertainty

Lk,n Cumulative loss of the scenario initialized at time k up to a time n; Lk,n =
∑n

s=k lk,s

n(x;m,P ) Multivariate Gaussian random variable with mean vectorm and covariance matrix P in
covariance form; X ∼ N (m,P )

n−1(x; θ, J) Multivariate Gaussian random variable with potential vector θ = Jm and precision
matrix J = P−1 in information or precision form; X ∼ N (J−1θ, J−1)

Qn Time-varying signal noise covariance matrix via Qn = CnC
T
n

Rn Time-varying observation noise covariance matrix via Rn = ΓnΓT
n

Vn Observation noise, usually standard Gaussian

w(y) Diffusion matrix in diffusion score matching; a point wise invertible matrix valued function
Y; w(y) = ŵ(y)R

1
2

Wn Signal noise, usually standard Gaussian

Xn Random vector of the time-varying latent signal state of the dynamical system;

Yn Random vector of the observation at time n

πn(·) True data generating process at time n and a measure on Y

+C
= Equality up to a constant additional term independent of the variable of interest
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Abbreviations and Frequent Notation

∝ Proportionality up to a constant factor independent of the variable of interest

D(π(·), p(·, x)) Discrepancy of two measures; usually on Y; with empirical estimator D̂

det(P ) Determinant of the matrix P

1{a = b} Indicator function taking value 1 for true statements and value 0 for false statements

Tr(P ) Trace of the matrix P; the Sum of the diagonal entries

∇f Jacobian matrix of the function f ; usually reduces to the gradient, so the vector of the partial
derivatives

∇ · f Divergence operator of the function f ; the dot product of the partial derivative operator and
the columns of f

sp(y) Score function via the gradient of the log density function; sp(y) = ∇ log(p(y)
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1. Introduction

Volatile values,
Low-key data masks their grace,
Detection unveils.

The fundamental ideas of this work are rooted in the practice of mathematical
and statistical modelling. Both are essential to modern scientific convention and
are thus subject to understanding modern science as a social construct (Ritchie,
2020). This is not as in the methods of science and scientific results are socially
constructed, but in that scientific progress is a social process. Research enables us
to move towards a truth, yet we may never fully get there with knowledge evolving
and changing with new realizations. This evolution takes place and is driven in
social context - it takes convincing a scientific community in communal review and
eventually mutual agreement to progress (Ritchie, 2020).
Scientific models are central to precisely this social aspect of science. Further, the
practice of modelling itself is subject to this discourse, even more so for intersecting
fields in between theory and application with applied mathematics and statistics
at the frontier. Exclamations such as Box’s «All models are wrong, but some mod-
els are useful» and Wiener’s «The best model of a cat is a cat» are both popular
and widely debated for their implications and (mis-)interpretations, but regardless
provide an insightful glimpse of the diversity of philosophical takes on the matter.
These takes directly impact theory and practice in that they utilize the philosoph-
ical understanding for interpretation and completeness (see (Gelman and Shalizi,
2013) for details).
The presented work is motivated by one such philosophical take on statistical mod-
elling and its implications, more precisely on frequent interpretations of Bayesian
modelling and its theory. In (Gelman and Shalizi, 2013) the authors argue that
associating Bayesian statistics with inductive approaches of learning in «the rise
and fall of posteriors» as contrary to the hypothetico-deductive interpretation of fre-
quentist methods is wrong - not regarding its inference or theory, but this specific
perceived view. Further, they argue that Bayesian approaches are not inherently
more inductive than any other approach and they should instead also be understood
in a hypothetico-deductive framework. The central criticism of Gelman and Shalizi
in (Gelman and Shalizi, 2013) is in the frequently neglected central assumption of
Bayesian models in being well-specified - assuming that the model covers a ground
truth and that it can be recovered given sufficient information. As important as this
assumptions is, it can also only be satisfied or confirmed to very limited extent.
Thismaster thesis ismotivated in developing theory and algorithms addressing this
criticism in the context of Bayesian filtering of (linear) dynamical systems. Picking
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1. Introduction

up on (Gelman and Shalizi, 2013), wewant to address two aspects inwhichBayesian
filtering may fail under mis-specification and tackle particular errors challenging
reliable inference and forecasting. To specify on Box’s models being inherently
wrong, we want to work towards Gelman’s and Shalizi’s «[All] models have errors
of approximations. Statistical models, however, typically assert that their errors
of approximation will be unsystematic and patternless». The work presented and
its results propose adapting the popular Kalman filter to maintain patternless in
error even under reduced assumptions on the noise terms or substantial threat of
mis-specification.

1.1. Problem Statement

Pattern and system in error may plausibly result from mis-specification in statis-
tical models. In Bayesian filtering there are two different sources of stochasticity
and accordingly two potential instances of mis-specification - the system noise and
the observation noise. Both are frequently assumed to be Gaussian for simplicity as
well as lacking better knowledge, resulting in the popular Kalman filter for linear
system and observation dynamics (Kalman, 1960). However, for mis-specification
in tailedness in that the true data generating process has noise terms with much
heavier tails, this quickly results in high potential for volatility and mistakes in
inference and especially in forecasting.

Assume a model for a dynamical system and a corresponding model producing ob-
servations from that system. In many applications the system dynamics and for-
ward map or observation map can be derived from first principles to some extent,
however, the noise terms can then only be estimated experimentally or from prior
knowledge as given in (Morzfeld and Reich, 2018). This leads to a somewhat semi-
parametric intuition of the setting. The dynamics can be assumed to be fairly accu-
rate or at least good enough in that errors may be assumed patternelss, ideally only
carrying negligible inaccuracies of the system dynamics. On the flip-side, the noise
terms, i.e. the signal noise and observation noise, therefore carry high potential
volatility under mis-specification, i.e. when they still encompass relevant system
behavior. It is a fairly debatable practice to force Gaussian noise just to suit the
framework of the Kalman filter given linear system dynamics yet it is often most
practicable if not the only practical solution from a feasibility perspective.
To go more in depth on this volatility introduced via mis-specified noise terms, it is
of major concern when modelling Gaussian noise yet with the true noise generating
process being heavy-tailed or prone to outliers. The resulting unexpected behavior
impacts inference in filtering and forecasting mainly in two ways.
At the heart of the Bayesian filtering problem is the name-giving Bayes’ theorem.
While Bayesian inference obeys certain desirable concepts with the likelihood prin-
ciple and Zellner’s information optimality (Zellner, 1988) by utilizing Kullback-
Leibler divergence to incorporate newly obtained information, this intuitive choice
of loss function is also a major source of volatility regarding observation outliers as
it tends to substantially overweight observations subject to mis-specification of the

2 Reimann



1.2. Contribution

likelihood. The idea proposed is to re-build theKalman filter with breaking open the
involved Bayesian inverse inference problem and utilizing a more robust divergence
measure in a generalized Bayesian inference framework. As will be shown in ad-
dressing the issue, observation noise mis-specification can generally be understood
as likelihood mis-specification regarding variance or shape for the investigated type
of problems and is best addressed this way.
Ideally, only after having ensured robustness regarding observation noisemis- spec-
ification, we can reliably target mis-specification in the signal noise. The choice of
Gaussian noise terms with the true noise being a lot more heavy-tailed will result
in sudden jumps and rapid changes of the true signal much more frequent then the
assumed noise term may suggest an account for. Accordingly, these jumps are not
fully covered by the model, however, may have important implications in practice
with popular interpretations being system faults, outside shocks and phase tran-
sitions. The tool of choice we employ to detect these instances of impactful signal
noise mis-specification is the popular field of sequential change point detection. In-
ference and forecasting with calibrated uncertainties therefore needs detection of
instances of the model failing to adjust in reasonable time.
To summarize, in the popular linear Gaussian Kalman setting the signal and ob-
servation noise are subject to potential mis-specification. While signal noise mis-
specification in tailedness has meaningful implications for practice, observation
noise mis-specification needs being a general concern in Bayesian filtering and may
specifically hinders detection of instances of signal mis-specification.

1.2. Contribution

The sketched idea of this thesis is to tackle noise mis-specification in two separate
steps to then be combined following a rather basic intuition: Observation noise is
hindering, but signal noise is a feature. Accordingly, we will first build provably
robust Bayesian inverse inference regarding the observation noise via generalized
Bayesian posteriors utilizing weighted score matching as a specific type of diffu-
sion Stein discrepancy. This will be the central result of the first part of this work.
The succeeding second part will investigate sequential probability ratio based de-
tection of signal noise mis-specification instances showing in disruption or jumps
at unknown times via CUSUM type sequential change point detection. Either has
its own implications for adapted schmes and algorithms with both finally combined
into a novel Gaussianmixture model of robust Kalman filters incorporating the pre-
viously obtained robust Bayesian inverse inference as well as Gaussian mixtures
weighted via plausibility of change at specific time steps.
In other words, the first part provides the method to reduce observation noise influ-
ence undermis-specification regrading tailedness and contamination to then enable
reliably detecting instances of strong influence of signal noise mis-specification for
adjustment. The desired result will be concrete algorithms with supporting the-
oretical results as adaptations of the popular Kalman filter under considerations
of viability of assumptions and computational feasibility in practice. These novel

Reimann 3



1. Introduction

filters proposes approaches for reliable inference and forecasting under threat of
noise mis-specification.
We hereby take recent ideas and results based on Bayesian online change point de-
tection in (Adams and MacKay, 2007) regarding online structure of change point
detection, in (Altamirano et al., 2023b) for robust, scalable Bayesian online change
point detection and in (Alami et al., 2020) for the restart Bayesian online change
point detection procedure and adapt them for the time-varying discrete Bayesian fil-
tering problem with linear dynamics, forward maps and supposed Gaussian noise,
so the classical linear Gaussian Kalman filtering setting. This is achieved by deriv-
ing recursive formulaswith proven robustness to observation noisemis-specification
and incorporating them in adapted change detectionmethods providing uncertainty
about change points for inference and forecasting. Related work was done in (Bous-
tati et al., 2020) investigating generalized Bayesian filtering sequentialMonte Carlo
from amore data science driven perspective andmuch-less motivated by robustness
concerns. The presented master thesis is foremost a stepping stone and careful ex-
ploration of combining recent advances in several fields. It will provide novel ap-
proaches and results for the larger field of Bayesian filtering undermis-specification
as described above, exploring and discussing promising directions for further re-
search such as robust ensemble Kalman methods for noise mis-specification via
generalized Bayesian filtering as well as opportunities in open-end sequential prob-
ability ratio testing for non-linear, regime-type dynamical systems.

Results in (Boustati et al., 2020) and other recent works on generalized Bayesian
inference frequently focused on β−divergence measures to replace the Kullback-
Leibler divergence in classical Bayesian inference. The weighted diffusion score
matching Bayesian inference, initially introduced in (Barp et al., 2019) and devel-
oped in (Anastasiou et al., 2023) via Stein discrepancies, further adapted and ap-
plied in (Altamirano et al., 2023b) and (Altamirano et al., 2023a) provides promising
results regarding robustness as well as computational feasibility with the latter be-
ing the main downside of β-divergence Bayesian inference. Accordingly, this work
aims to utilize these results to develop the described Kalman filter adaptation open-
ing up new directions and connections.
For detection of signal jumps we will mainly focus on adapting recent popular ap-
proaches in (Alami et al., 2020) and (Altamirano et al., 2023b) based on (Adams
and MacKay, 2007) and (Fearnhead and Liu, 2007) and adapt it to the Kalman set-
ting. To additionally obtain desired properties in reliability via controlled rate of
false alarm and detection delay as well as computational feasibility we will utilize
classical results such as in (Lai, 1998) on the popular CUSUM procedure. A central
result will be in combining ideas from either in the context of Bayesian filtering for
a novel approach to change point detection in dynamical systems via conditional
evidence. Furthermore, including the previously derived robust posteriors is then
also easily incorporated.

To conclude, the contribution of this thesis is not the majority of the body of theory
neither the majority of the machinery at work. Much of it is adapted from (Altami-
rano et al., 2023b), (Alami et al., 2020) and their sources as well as milestone histor-
ical results. The central contribution is two-fold: It is the adaptation to the popular
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1.3. Structure

Kalman setting in deriving a closed form solution, providing update formulas, sim-
ilar to the original Kalman paper (Kalman, 1960), and providing desirable proper-
ties such as the global bias robustness in filtering for the first case. Moreover, it is
in combining this result as well as results form adjacent fields to obtain the desired
inference and forecasting with robustness properties in mis-specification regarding
heavy-tails and outliers of the noise terms, that is the Gaussian signal noise and the
Gaussian observation noise, assuming the popular Kalman setting. To pick up on
the initial motivation, the contributions are in adapting the popular Kalman filter
to have calibrated uncertainty for errors of approximation without pattern or sys-
tem as motivated in (Gelman and Shalizi, 2013) even under mis-specification of the
model in challenging aspects, working towards tolerance regarding the fundamen-
tal yet only partly feasible assumption of well-specified models. The key enabling
tools herein is in bringing together results and arguments from different research
communities to enable new, curious perspectives.

1.3. Structure

We aim to foster three layers of understanding with this work. We want everybody
with a general interest in mathematical and statistical modelling to gain a basic
understanding of the matter and problems presented. Additionally, we want ev-
erybody with a background in the natural and engineering sciences to obtain an
intuition of the problems as well as their solutions for application. Finally, we want
everybody with a background in statistics, mathematics or quantitative research
fields to grasp the problems and the proposed solutions, to be convinced by their
arguments and to be able to detect connections as well as resulting directions for
research in adjacent fields.

The presented master thesis is structured accordingly. We will round up the in-
troduction by providing context and superficial relevance via embedding the in-
vestigated problem in the general context of statistical forecasting adn data as-
similation. The main body is divided in the two outlined parts already sketched
with the additional part bringing both together. Again, the first part will recall the
Bayesian inverse inference step in Kalman filtering and derive the diffusion score
matching Kalman filter. The second part, investigates connections of classical and
modern approaches to sequential change point detection and arising opportunities
via Gaussian mixture model filtering evaluating uncertainty of jumps. Major re-
sult are presented in the respective sections with the third part then incorporating
the results of the previous chapters for reliable detection of signal jumps in the
Kalman setting. Each part will provide respective results in concrete algorithms
accompanied by theoretical derivations or statements and simulation experiments.
The presented work will end in providing a summary of all acquired results and
discussing the obtained intuitions and solutions as well as discuss them in their
potential regarding the initial context of robust inference and forecasting under po-
tential of abrupt signal jumps.

Reimann 5



1. Introduction

Each of the three major chapter will have a fairly closed structure on its own. For
the first part on observation noise mis-specification we will start with shortly re-
capping the popular Kalman formula to highlight vital steps of deriving the closed
form posterior or analysis step which will later be adapted for the diffusion score
matching Bayes posterior. Afterwards we will provide a short introduction to gener-
alised Bayesian inference and more specifically the diffusion score matching Bayes
posterior. We will use these results to derive the closed form of the posterior or
analysis step of the Dw-Kalman filter via weighted diffusion score matching. With
the posterior at hand we can prove the observation outlier robustness of the Dw-
Kalman filter under given assumptions for the resulting choice of weight function.
Finally, we showcase the results via simulation experiments and briefly discuss the
results in the scope of feasibility and the initial motivation regarding observation
noise mis-specification as well as chances and limitations.
For the second part, we will introduce the sequential change point problem and
provide a notion of frequent reliability criteria and recall arguments of the popular
CUSUM procedure. The focus will then be on recent advances in Bayesian online
change point detection. The main body of work will be in connecting both exploiting
the structure and idea of scenarios in Bayesian online change point detection with
the versitility and reliability of CUSUM schemes resulting in suitable adaptations
for detecting signal jumps in the Kalman setting. A major focus herein is in main-
taining desirable reliability criteria in detection while reformulating approaches to
suit quantification of uncertainty about potential jumps in inference and forecast-
ing. To emphasize, while the employed tools are not necessarily new, the idea of
utilizing the conditional evidence in Bayesian filtering is. Again, we showcase the
results via simulation experiments and discuss the results in the scope of feasibility
and the context of signal noise mis-specification as well as chances and limitations.
The thirdmajor chapter explores the doublemis-specification setting ofmis-specification
in heavy tailedness in both noise terms. We start with a discussion on compatibility
of results in the previous chapters as well as corresponding fallacies, however, the
main results will be in simulation experiments. As the third main chapter, chapter
4), introduces no new concepts and is much shorter. Again, it ends with a discus-
sion of insights regarding feasibility, limitations and chances as well as directions
for further investigations.

1.4. Relevance and Context Regarding Forecasting

[We] have a prediction problem.
We love to predict things
- and we aren’t very good at it

Nate Silver

This part will provide a brief introduction to the broader context on mathematical
and statistical modelling with a focus on practice in time series forecasting at the
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intersection to data assimilation.

Starting with an intuitive notion on the process of statistical modelling, we want
to pick up on the ideas in (Kokko, 2005). Hereby, creating a statistical or predic-
tive model is compared to drawing a map. The model, just as the map, needs to
contain enough detail to be useful, suit its purpose and have practical use. Yet too
much detail can be overwhelming, misleading or distract from the relevant infor-
mation and initial aims. Everything not contained in our map must be negligible
for its purpose, i.e. pattern-less error. This intuition generally holds quite well and
ties in with higher education teaching on statistical modelling in introductory lec-
tures on mathematical statistics. A basic scheme of what and how things interact
in mathematical and statistical modelling is shown in figure (1.1) taken from one
such lecture (Husiniga, 2021).

Research
Question

Experiment

Reality Knowledge &
Assumptions

Data
Statistical
Model

Result Inner Mathematical Modelling with

Mathematical & Statistical Guarantees

Conclusion

Figure 1.1.: Concept chart of mathematical and statistical modelling as taken from
(Husiniga, 2021).

It portrays how Kokko’s map ties in with a larger process and how the mentioned
crucial degree of detail is necessarily bound to several influences and factors. On a
more subtle note, it also adds that a model is part of an inner mathematical frame-
work limited by feasibility in evaluation and computation. The problems addressed
in the work at hand are best understood in that bigger picture. Mis-specification
in modelling heavy tails or outliers in data as two sides of the same coin frequently
matter whenever knowledge and reality end up not matching. Missing knowledge
broadly speaking hereby encompasses not knowing about potential for outliers pro-
duced by heavy tails, not knowing better about noise specification or simply not
being able to adequately evaluate or account for better noise specification with the
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available tools. For the most part, this last issue is addressed in this work in the
context of the popular Kalman filter - while one might even be aware about po-
tential for outliers in measurement and heavy tails of noise distributions, it might
be unfeasible and costly to incorporate this knowledge. Accordingly, we want to
pick up there and provide easy to implement solutions to reduce the impact of mis-
specification in heavy-tailedness as previously described and enable adjustments in
modelling - we want to provide pencil strokes to add important details to the notion
of the map, yet without cluttering it.

Modelling in statistical forecasting is even more so a suitable topic in that regard
as it is very strongly bound to its assumptions and limitations. It is a diverse field
across disciplines with different takes, approaches and methods in each of them.
To provide a general introduction and understanding of the topic we want to re-
call some intuitions fromHyndman’s Forecasting: Priciples and Practice (Hyndman
and Athanasopoulos, 2018). In his words, the shared aim in forecasting problems
is predicting a future scenario as accurate as possible given available information
and knowledge. Hereby knowledge and available information combine andmatch to
produce valuable insights - or in other words, we need the right forecasting method
and tools for the given question and data. The quality of a forecast, the «predictabil-
ity», then depends on several aspects that tie in with the upper part of the modeling
scheme in figure (1.1). Following (Hyndman and Athanasopoulos, 2018), there are
three main aspects:
• How well do we understand the factors that contribute,
• the data availability and
• whether the forecast can impact itself.

The aspects are mainly concerned with outer mathematical modelling as they do
not consider our ability to translate our knowledge of factors and data into math-
ematical models that can be evaluated reliably. Yet, especially the last aspect is
interesting regarding the work at hand. Outliers in signal noise may occur as re-
actions to past predictions not covered by the initial model: Say our forecasting
system warns of a traffic jam and we publicly announce it. Consequently, drivers
may change their route to a popular alternative producing a traffic jam there but
not at the initially location forecast. This issue is addressed in the popular Lucas
critique in econometrics (Lucas Jr, 1976) and may also be considered a sudden sig-
nal jump, an outlier behavior, not covered by the model. To conclude, Hyndman
finishes his introduction with a heads up, saying «forecasters need to be aware of
their own limitations and not claim more than is possible» bringing us back to the
start.
The main assumption in forecasting is that the way in which an environment is
changing will continue into the future, so a past pattern is assumed to repeat (Hyn-
dman and Athanasopoulos, 2018). This idea is deeply intertwined in model based
forecasting and even more so for systems with prior model knowledge. The lat-
ter are central subjects of this work as we assume there is some knowledge about
the dynamics of a system, usually via a state space model of a signal process.
While the concepts have long been frequent in engineering since Kalman’s ground
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breaking publication (Kalman, 1960), state space models were only beginning to be
widely used by statisticians for forecasting in the early 1980s (Gooijer and Hynd-
man, 2005). They provide a unifying framework especially suiting linear time series
modelling and with Kalman’s contribution, a closed form recursive algorithm for
computing forecasts via combining prior knowledge about linear system dynamics
and observations was easily available. The term Bayesian Forecasting arose for the
general approach of combining a-priori system knowledge and observations into an
a-posteriori forecast (Harrison and Stevens, 1976). Harrison and colleagues contin-
ued formulating an essential foundation for the practice of Bayesian forecasting.
• A parametric (or state space) model, not a functional model,
• information on probabilistic properties of the parameters for any given time,
• a sequential model on how parameters evolve through time systematically as
well as stochastically and
• general uncertainty in the underlying model itself are required.

This basic set of properties includes the popular Kalman setting for a linear dynam-
ical system with an independent Gaussian signal noise driving term, i.e. white
noise or Brownian motion, and observation as linear combinations of the signal
with additional independent Gaussian observation noise. Even for a system with
little or no prior history, this framework enables quantified forecasts (Harrison and
Stevens, 1976). As a note on the assumption of linearity, Harrison and colleagues
comment that «linear combinations of linear models are itself a linear model. The
obvious is singled out as a principle because of its far reaching implications for the
construction of large-scale and apparently complex models. The essential point is
that a large linear model may be considered the linear combination of a number
of simpler models» (Harrison and Stevens, 1976) arguing for the still far reaching
potential and wide applicability of this approach.
Jumping into the much more recent past with (Morzfeld and Reich, 2018), we have
the context of Bayesian forecasting embedded in the wider field of data assimila-
tion researching the mathematical and numerical foundation of combining models
and data - this is also where this work places itself. Systems, such as frequent
in weather forecasting or climate prediction as well as the cognitive sciences have
long since become so large, that modelling comes with several challenges such as
the popular curse of dimensionality. The aim is still about the same:«An elegant
way of performing data assimilation is to compute the conditional probabilities, as
described above, that describe the mathematical model in view of the data you col-
lected» (Morzfeld and Reich, 2018). For a simple model, as in a linear model, with
Gaussian probabilities, data assimilation is straight forward resulting in the pre-
viously mentioned Kalman filter. The contemporary, real challenges rarely fit that
formula motivating modern research to address this reality. A popular approach
also repeatedly picked up in the work at hand is the ensemble Kalman filter as a tool
to manage non-linearity (Evensen et al., 2009). Data assimilation requires state-
ments in precise mathematical manner, also about unknown things such as exact
error distributions. Recalling Kokko’s map and the general approach to mathemat-
ical and statistical modelling, this missing knowledge often leads to first resorting
to assumptions which simplify the problem (Morzfeld and Reich, 2018). This work
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is contributing towards this specific challenge in researching how to address the
difficulty of only vague knowledge of error or noise distributions via dampening the
impact of wrongly simplified assumptions. To close, some claim data assimilation
is among the main contributors to improving forecast over the past decade (Bauer
et al., 2015). Further, data assimilation enables a unified formulation for a wide
variety of different applications in conditional probabilities of the system or signal
state given the available observations yet often requiring simplified assumptions for
feasibility and lack of knowledge (Morzfeld and Reich, 2018). The relevance of this
master thesis lies in its contribution of providing algorithms for data assimilation,
akin to the popular Kalman filter and ensemble Kalman filter, with reduced impact
of mis-specification in heavy tailedness of the noise distributions, so in simplified
assumptions, as opposed to other approaches directly modelling heavy tailed noise
terms via t-distributions (see (Bai et al., 2022) and (Tang et al., 2024) for additional
details).
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2. Addressing Observation Noise
Mis-Specification:

Robust Bayesian Inverse Inference in
Filtering

2.1. Background

2.1.1. Revisiting the Kalman Filter

Recalling the classical Kalman filter, we want to adapt the notation and results in
(Stannat, 2023) and (Reich and Cotter, 2015) with some additions from (Słupiński,
2023). We hereby switch fluently between covariance forms and information forms
of multivariate Gaussian random variables, generally noting the distribution den-
sity function in covariance form p(x) ∼ n(x;m,P ), the distribution density in in-
formation form p(x) ∼ n−1(x; θ, J), covariance P , mean m, precision J = P−1 and
potential θ = Jm ⇐⇒ m = Pθ. Additionally, we will frequently use the scaling
notation ∝ for proportionality up to a constant factor independent of the variable
of interest and +C

= for equality up to a constant additional term independent of the
variable of interest.

Given a probability space (Ω,F ,P), let Xn be a multivariate random variable to
model our noisy signal at discrete time steps n = {1, 2 . . . , N}. Xn cannot be observed
directly, however, we can measure it via another random variable Yn = gn(Xn, Vn),
the observation, with Vn denoting the observation noise term. Given the Kalman
filter setting we assume Xn and Yn to be jointly Gaussian with the following lin-
ear, time discrete, time-varying signal evolution equation and linear observation
equation:

Xn = AnXn−1 + CnWn

Yn = HnXn + ΓnVn
(2.1)

with
• Xn : Ω→ X = Rd - the d-dimensional signal random vector at time n,
• Yn : Ω→ Y = Rp - the p-dimensional observation random vector at time n,
• Wn : Ω → Rd and Vn : Ω → Rp - independent standard Gaussian distributed
random vectors at time n (white noise) of the corresponding dimensions,
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• An, Cn, Hn and Γn of appropriate dimensions with non-singular Qn = CnC

T
n

and Rn = ΓnΓTn and
• p(x0) ∼ n(x0;m0, P0), the initial Gaussian prior distribution.

The crucial property for the Kalman filter to work is that linear combinations of
Gaussian random variables as well as the posterior of the involved Bayesian inverse
inference problem remain Gaussian throughout time. Hence deriving a closed form
recursive formula for the parameters of the signal forecast and signal posterior in-
corporating the observations is sufficient (see (Stannat, 2023) for additional details).

We produce the forecast density via forward propagating the current signal distri-
bution given the available observations according to the signal evolution equation:

p(xn|y1:(n−1)) ∝ exp[−1

2
(xn − Anmn−1)T (AnPn−1A

T
n +Qn)−1(xn − Anmn−1)]

= exp[−1

2
(xn −mf

n)T (P f
n )−1(xn −mf

n)]

∝ exp[−1

2
xTnJ

f
nxn + xTnθ

f
n],

(2.2)

so p(xn|y1:(n−1) ∼ n(xn;mf
n, P

f
n ) or p(xn|y1:(n−1) ∼ n−1(xn; θfn, J

f
n ) with forecast co-

variance P f
n = AnPn−1A

T
n + Qn, forecast mean mf

n = Anmn−1, forecast precision
Jfn = (P f

n )−1 and forecast potential θfn = Jfnm
f
n obtained via direct calculation taking

(2.1).

The observation likelihood is then given as a conditional distribution on the cur-
rent signal:

p(yn|xn) ∝ exp[−1

2
(yn −Hnxn)TR−1

n (yn −Hnxn)]

= exp[−1

2
xTnH

T
nR
−1
n Hnxn + yTnR

−1
n Hnxn −

1

2
yTnR

−1
n yn]

∝ exp[−1

2
xTnH

T
nR
−1
n Hnxn + xTnH

T
nR
−1
n yn],

(2.3)

so p(yn|xn) ∼ n(yn;Hnxn, Rn), see (Reich and Cotter, 2015) for additional details.
In Kalman filtering the aim is now to obtain the posterior distribution of the signal
p(xn|y1:n) via Bayes theorem utilizing the forecast as a prior of the signal at time n
thus solving the involved Bayesian inverse inference problem

p(xn|y1:n) ∝ p(xn|y1:(n−1)) · p(yn|xn) (2.4)

with p(xn|y1:n) ∼ n(xn;mn, Pn).

As stated we desire to express closed form updates of the parameters of the pos-
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terior:
p(xn|y1:n) ∝ p(xn|y1:(n−1)) · p(yn|xn)

∝ exp[−1

2
xTnJ

f
nxn + xTnθ

f
n] · exp[−1

2
xTnH

T
nR
−1
n Hnxn + xTnH

T
nR
−1
n yn]

= exp[−1

2
xTn (Jfn +HT

nR
−1
n Hn)xn + xTn (θfn +HT

nR
−1
n yn)]

= exp[−1

2
xTnJnxn + xTnθn]

(2.5)

obtaining the Gaussian posterior density via (2.2) and (2.3) with parameters in in-
formation form p(xn|y1:n) ∼ n−1(xn; θn, Jn) and recursive updates of the precision
and potential at time n via

Jn = Jfn +HT
nR
−1
n Hn

θn = θfn +HT
nR
−1
n yn.

(2.6)

The remaining challenge is to re-parameterize the obtained Gaussian posterior
from information form to covariance form to obtain the classical recursive Kalman
update formula. Via employing the Sherman-Morrison-Woodbury matrix inversion
formula (see (Reich and Cotter, 2015) and (Golub and Van Loan, 2013) for details)
we get for the covariance matrix

Pn = J−1
n = [Jfn +HT

nR
−1
n Hn]−1

= [(P f
n )−1 +HT

nR
−1
n Hn]−1

= P f
n − P f

nH
T
n [Rn +HnP

f
nH

T
n ]−1HnP

f
n

= P f
n −KnHnP

f
n

with Kalman gain matrix

Kn = P f
nH

T
n [Rn +HnP

f
nH

T
n ]−1.

Using this result aswell as repeated applications of theSherman-Morrison-Woodbury
matrix inversion formula we then get for the mean vector

mn = Pnθn = Pn[θfn +HT
nR
−1
n yn]

= Pn[(P f
n )−1mf

n +HT
nR
−1
n yn]

= [P f
n −KnHnP

f
n ][(P f

n )−1mf
n +HT

nR
−1
n yn]

= mf
n −KnHnm

f
n + [P f

n −KnHnP
f
n ]HT

nR
−1
n yn

= mf
n −KnHnm

f
n + P f

nH
T
n [Rn +HnP

f
nH

T
n ]−1yn

= mf
n −KnHnm

f
n +Knyn = mf

n −Kn(Hnm
f
n − yn).

The overall result is the classical recursive Kalman filter formula updating the pa-
rameters in covariance form with forecast step building the prior distribution via
propagating the signal

mf
n = Anmn−1

P f
n = AnPn−1A

T
n +Qn

(2.7)

Reimann 13



2. Addressing Observation Noise Mis-Specification:
Robust Bayesian Inverse Inference in Filtering
and analysis step incorporating the new observation and thus obtaining the poste-
rior distribution of the involved Bayesian inverse inference problem

Kn = P f
nH

T
n [Rn +HnP

f
nH

T
n ]−1

mn = mf
n −Kn(Hnm

f
n − yn)

Pn = P f
n −KnHnP

f
n .

(2.8)

There is a large variety of different ways to derive the Kalman filter equations and
the one presented is not necessarily the most intuitive or most elegant one. How-
ever, the chosen approach is suited best to showcase the changes for the general-
ized Bayesian adaptation. More specific, it is equation (2.5) where we will apply the
generalization and change of divergence from Kullback-Leibler to diffusion score
matching.

As a short remark on notation, in literature ŷn = Hnm
f
n is frequently referred to

as the observation forecast mean and γn = yn − ŷn = yn −Hnm
f
n with p(γn|y1:(n−1)) ∼

n(γn; 0,Σn) as innovation, a zeromean distributionwith known varianceΣn = HnP
f
nH

T
n +

Rn. Furthermore, the conditionalmarginal distributions of the observation p(yn|y1:(n−1)) ∼
n(yn;Hnm

f
n,Σn) is denoted evidence and argued to be a key quantity to evaluated in-

ference in practice with the latent state not available.

2.1.2. Introducing Generalized Bayesian Inference and Diffusion
Score Matching

Motivating and Generalizing Bayesian Inference

For this section, we heavily rely on information and results in (Matsubara et al.,
2023), (Altamirano et al., 2023b), (Altamirano et al., 2023a) and (Pacchiardi, 2021).
We will start briefly highlighting the strong points of regular Bayesian inference
before considering when they do not apply and the suggested work-around. We then
draw from these results utilizing diffusion score matching in generalised Bayesian
inference and prepare them for adaptation to the given setting. Hereby we will
mainly use a simplified time-invariant notation to better focus on the changes to
the Bayesian inverse inference problem in a specific analysis step via the introduced
generalisation to Bayesian inference. Recall Bayes’ theorem

p(x|y) =
p(x) · p(y|x)

p(y)

∝ p(x) · p(y|x)

(2.9)

with prior p(x), likelihood p(y|x) and posterior p(x|y) as used in the previous section.
For now we want to leave out the evidence p(y) via proportionality as we focus on
inference on the random vector X.
The general popularity of Bayesian approaches is tied to its desirable properties as
nicely summarized in (Pacchiardi, 2021). For one, the likelihood principle applies
in that new observations are incorporated only via the likelihood that contains all
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relevant information of an observation about the model parameters, which also ap-
plies to frequentist methods. Bayesian approaches additionally are optimal in the
way they process and integrate information in that they make use of all available
information contained by an observation (see (Zellner, 1988) for details). Finally,
the Bernstein-von Mises theorem applies to Bayes’ posteriors as an adapted version
of the Central Limit Theorem in that the posterior distribution converges to a Gaus-
sian distribution which is centered in the parameters of the true data generating
process with asymptotically vanishing variance. However, these useful properties
strictly require the strong assumption, that the statistical model is well specified
- that is, the true data generating process is part of or covered by the statistical
model. In mathematical terms, let π(·) be the true data generating process. Then
the statistical model (Y , {p(·|x) : x ∈ X}) is well specified if and only if

∃x0 ∈ X : p(·|x0) = π(·).

The existence of such a true parameter x0 given the statistical model is the main is-
sue. It is a broad and important discussion that this most fundamental assumption
is frequently neglected in Bayesian modelling, recall (Gelman and Shalizi, 2013).
Yet, as soon as it is not given, Zellner’s optimal information processing no longer
holds and the Bernstein-von Mises theorem instead tries to recover the model pa-
rameter closest to the true data generating process in KL-divergence (Pacchiardi,
2021). This is the key insight regarding mis-specification of the likelihood. As soon
as the fundamental assumption is hurt, Bayesian inference aims to recover the best
parameter such that x0 = arg min

x∈X
DKL(π(·), p(·, x)). While this might still be useful

in some cases, it is likely not what is desired in others. Additionally and more im-
portant, posterior uncertainties are then also no longer well calibrated. The idea of
generalized Bayesian inference starts right here with the question that given mis-
specification of the likelihood, which type of divergence do we want to minimize to
obtain desired properties given a modelling context.

In the introduced problem of this work, we aim for robustness regarding obser-
vation likelihood choice in tail behaviour, outliers and contamination, all of which
essentially translating to mis-specification of the observation noise distribution re-
garding heavy tailedness. As stated in (Jewson et al., 2018) and further inspected
in (Altamirano et al., 2023a), the KL-divergence is especially bad in that case by giv-
ing large importance and emphasizing tail behavior of distributions. As Pacchiardi
explicitly puts it in (Pacchiardi, 2021):

«With a finite amount of samples, that translates into saying that Bayes’
posterior is highly sensitive to outliers in the data.»

This is the exact kind of mis-specification we are interest in and want to focus on
for this first part regarding observation noise. Furthermore, we want to focus on
how its impact is best avoided. Supposed observation outliers actually produced
by heavy tails of the true generating process can heavily distort the sequential in-
ference of the Kalman filter, or for that, Bayesian filters in general. Recalling the
second part, for reliably detecting rapid change and jumps in the signal, we have
to strongly control the impact of these observation outliers on the signal estimation
introduced via the Bayesian inverse inference. At the core, we want to utilize the
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same approach as in the robust change point detection algorithm in (Altamirano et
al., 2023b) with their scalability being an essential requirement, translating into a
form of conjugacy of parameters in practice - so similar to the regular Kalman filter.
Accordingly, the results are of great value for the general probabilistic forecasting
problem involving Bayesian filtering.

Generalized Bayesian inference, as researched in (Grünwald, 2012), (Bissiri et al.,
2016), (Jewson et al., 2018), (Pacchiardi and Dutta, 2021) and (Matsubara et al.,
2022) among others, is mainly a generalization in producing the posterior via intro-
ducing choice in loss function, however, regularly resulting in choosing a discrep-
ancy measure between an assumed likelihood and the true data generating process.
Further, this approach thereby dips into the realm of machine learning via intro-
ducing additional tuning parameters, such as a learning rate, and often requiring
additional computational tools. Adapting the notation in (Altamirano et al., 2023b),
the generalised Bayes posterior is given by

p(x|y) ∝ p(x) · exp[−β · D̂(π(y), p(y|x))]. (2.10)

with learning rate β > 0. Following (Altamirano et al., 2023b), we aim for D to be a
discrepancymeasure on probabilitymeasures onY given a parameter x ∈ X and the
true data generating process π and D̂ its empirical estimator via an observation y.
Taking β = 1 and D̂KL(π(y), p(y|x)) = − log(p(y|x)) as estimator of the KL-divergence
via cross-entropy between model likelihood p(y|x) and the true data generating pro-
cess as reference distribution π generating the observation y, we recover (2.9), the
regular Bayes posterior as stated in (Altamirano et al., 2023b). There is a long list
of research applications successfully employing generalised Bayesian posteriors for
robustness or computational feasibility in a wide variety of contexts (see (Altami-
rano et al., 2023b) and (Altamirano et al., 2023a) for examples). The robustness in
observation outliers considered in this work will be introduced further down. Next
to generalised Bayes posteriors, generalised Bayesian inference also covers other
approaches such as non-parametric concepts.

Estimating Divergence via Diffusion Score Matching

The choice of divergence measure here, can be loosely understood as switching from
a Shannon information based measure with KL-divergence, so relative entropy, to
a Fisher divergence based measure. Again, we hereby follow (Altamirano et al.,
2023b) in their argumentation. Starting with the idea of score matching as initially
introduced in (Hyvärinen and Dayan, 2005), we want to choose parameters such as
to minimise the Fisher divergence between a statistical model and a reference, the
true data generating process. Define the score functions as sp(y) = ∇ log(p(y)) for
densities p on Y. The Fisher divergence for the introduced inverse inference is then
given via

DId((π(·), p(·|x)) = EY∼π[||sp(·|x)(Y )− sπ(Y )||22]. (2.11)
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Minimising means therefore matching the statistical model, here the likelihood
p(·|x), to the true data generating process π(·) with respect to the expected squared
L2-distance of their score functions. (Altamirano et al., 2023b) highlights two main
reasons supporting this approach. First, the score function can be used for un-
normalized likelihoods as sp(y) = ∇ log(p(y)) = ∇ log( 1

Z
p̃(y)) = ∇ log(p̃(y)) since for

normalizing constant Z > 0 it follows ∇ log( 1
Z

) = 0. Much more important however,
the Fisher divergence can be rewritten not needing to estimate sπ(·) for computation
under mild constraints in usual regularity conditions on boundary and smoothness.
This enables comparably simple implementation, hence score matching has since
been further developed and applied to a variety of contexts such as Bayesian model
selection or change point detection. Interestingly however, there seems to be no
immediate research on score matching for Bayesian inverse inference such as in
Bayesian filtering problem.

For the presented problem we want to utilize diffusion score matching as intro-
duced in (Barp et al., 2019) as a generalisation via introducing a weight matrix
w(Y ) to the score function difference:

Dw(π(y), p(y|x)) = EY∼π[||w(Y )T (sp(·|x)(Y )− sπ(Y ))||22].

Hereby w : Y → Rp×p is a point-wise invertible matrix valued function. Follow-
ing (Anastasiou et al., 2023), w is the name-giving diffusion matrix for interpreting
the diffusion score matching divergence in the framework of diffusion Stein discrep-
ancy with diffusion Stein operator w (see (Anastasiou et al., 2023 for details). Dw
is a divergence measure on Y = Rp given the expected square difference is finite,
so
∫
Y π(y)(sp(·|x)(y)−sπ(y))2dy <∞. Additionally assuming appropriate smoothness

and boundary conditions on themeasures, this can then be relaxed to simply require
that Y is a connected subset in Rp (see (Liu et al., 2022) and (Zhang et al., 2022)).
The idea of introducing the weight function w is hereby rather direct in highlighting
areas of Y in which we want to put more emphasis on matching scores. Moreover, it
will be our main tool obtaining the desired robustness via controlling the influence
of heavy tailed behavior of the data generating process in comparison to the model
likelihood by staunching its impact.

As said before, the main result enabling the work in (Altamirano et al., 2023b)
and (Altamirano et al., 2023a) are the insights in (Liu et al., 2022) and (Matsubara
et al., 2022) which allow to work around directly estimating Dw. Given the men-
tioned smoothness and boundary conditions, the expression can be rewritten via
integration by parts to not explicitly include π(·), the usually unknown true data
generating process, via

EY∼π[||w(Y )T sp(·|x)(Y )||22 + 2∇ · (w(Y )w(Y )T∇sp(·|x)(Y ))]

up to a constant independent of our parameter of interest x - so similar to KL-
divergence. The true data generating process π(·) is still included implicitly, how-
ever, allowing the natural Monte Carlo estimator

D̂w(y;x) = D̂w(π(y), p(y|x)) = ||w(y)T sp(·|x)(y)||22 + 2∇ · (w(y)w(y)T∇sp(·|x)(y)). (2.12)
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Thementioned smoothness and boundary conditions are usually given for Gaussian
distributions according to (Altamirano et al., 2023b) however, as they also put con-
ditions on the true data generating process π we want to briefly cover them. The
likelihood needs to be twice differentiable, this is easily achieved in the Kalman
setting. More restrictive, [πwwT sp(·|x)], [∇ · (πwwT sp(·|x))] ∈ L1(Rp). In other words,
we need to assume for the true data generating process to still be measurable after
the given transformation or rather for both terms containing π to be measurable
functions.

At that point a short comment on the notation as taken from (Altamirano et al.,
2023b). While ∇f(x) is the usual Jacobian matrix with the partial derivatives on
a vector field f , ∇ · f(x) is the divergence operator which can be understood as the
dot-product of the vector of partial derivative operators and f (or its columns).

The diffusion score matching estimator obtained in (2.12) enables two new insights.
For one, it specifies how we obtain our new generalized Bayes posterior (2.10) by
specifying the divergence in

pDwβ (x|y) ∝ p(x) · exp[−β · D̂w(y;x)] (2.13)

resulting in the diffusion score matching Bayes posterior as in (Altamirano et al.,
2023b). Furthermore, we can also analytically evaluate D̂w(y;x) for model observa-
tion likelihoods in the exponential family, such as used in the setting of this work.
In other words, we can state a closed form of the Dw-posterior, pDwβ (x|y), for an adap-
tation of the analysis step in (2.5).

Constructing a Gaussian Posterior

While π(·) is still unknown, we can explicitly state the assumed likelihood p(yn|xn)
as in (2.3) and go from there. Again, the mentioned boundary and smoothness
conditions generally hold for our case as is stated in (Altamirano et al., 2023a). As
an intermediate step, wewant to briefly inspect the score function of the observation
likelihood as in (2.3) with

sp(·|xn)(yn) = ∇yn log(p(yn|xn))

∝ ∇yn log(exp[−1

2
xTnH

T
nR
−1
n Hnxn + yTnR

−1
n Hnxn −

1

2
yTnR

−1
n yn])

= ∇yny
T
nR
−1
n Hnxn −

1

2
∇yny

T
nR
−1
n yn

= R−1
n Hnxn −R−1

n yn.

(2.14)

Taking (2.14) and D̂w(y;x) as in (2.12), then

D̂w(yn;xn) = ||w(yn)T sp(·|xn)(yn)||22︸ ︷︷ ︸
(a)

+2∇ · (w(yn)w(yn)T∇sp(·|xn)(yn))︸ ︷︷ ︸
(b)

(2.15)
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with

(a) = ||w(yn)T sp(·|xn)(yn)||22
= ||w(yn)T (R−1

n Hnxn −R−1
n yn)||22

= xTnH
T
nR
−1
n w(yn)w(yn)TR−1

n Hnxn + yTnR
−1
n w(yn)w(yn)TR−1

n yn

− 2xTnH
T
nR
−1
n w(yn)w(yn)TR−1

n yn
+C
= xTnH

T
nR
−1
n w(yn)w(yn)TR−1

n Hnxn − 2xTnH
T
nR
−1
n w(yn)w(yn)TR−1

n yn

(2.16)

using the symmetry of Rn and its inverse. Further,

(b) = ∇ · (w(yn)w(yn)T∇sp(·|xn)(yn))

= ∇ · (w(yn)w(yn)T (R−1
n Hnxn −R−1

n yn))

= ∇ · (w(yn)w(yn)TR−1
n Hnxn)−∇ · (w(yn)w(yn)TR−1

n yn)

+C
= xTn∇ · (w(yn)w(yn)TR−1

n Hn)

(2.17)

with +C
= referring to equality up to an additive constant independent of xn, our pa-

rameter of interest. We now recombine (2.16) and (2.17) in (2.15) to explicitly eval-
uate (2.12) for the given setting:

D̂w(yn;xn) = xTnH
T
nR
−1
n w(yn)w(yn)TR−1

n Hnxn − 2xTnH
T
nR
−1
n w(yn)w(yn)TR−1

n yn

+ 2xTn∇ · (w(yn)w(yn)TR−1
n Hn)

= xTnH
T
nR
−1
n w(yn)w(yn)TR−1

n Hnxn

+ 2xTn (−HT
nR
−1
n w(yn)w(yn)TR−1

n yn +∇ · (w(yn)w(yn)TR−1
n Hn))

= xTnΛn(yn)xn + 2xTnνn(yn)

(2.18)

with

Λn(yn) = HT
nR
−1
n w(yn)w(yn)TR−1

n Hn

νn(yn) = −HT
nR
−1
n w(yn)w(yn)TR−1

n yn +∇ · (w(yn)w(yn)TR−1
n Hn).

(2.19)

The machinery at work here was largely developed in (Altamirano et al., 2023b)
and can be adapted for exponential family likelihoods. There are changes mainly
concerning the forward map Hn and deriving the multivariate Gaussian case in
order to adapt it for the context of this work. Also, the diffusion score matching
estimator was reduced to take a single observation at a time suiting the sequential
setting at hand, however, it can easily be adapted to take multiple observations in
each step via expanding the Monte Carlo estimator for the expectation, so

D̂w(y1:t;x) =
1

t

t∑
i=1

[||w(yi)
T sp(·|x)(yi)||22 + 2∇ · (w(yi)w(yi)

T∇sp(·|x)(yi))] (2.20)

for t ≥ 1 many observations at every time step. Moreover, this is also the aggre-
gated estimate whenever there is no signal process and the forward propagation is
obsolete, i.e. for the regular Bayesian inverse inference over multiple observations.
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2. Addressing Observation Noise Mis-Specification:
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With a closed form of the diffusion score matching estimator available with (2.18),
obtaining the adapted posterior is rather straight forward since (Altamirano et al.,
2023b) states that for a squared exponential prior, the posterior will be (truncated)
Gaussian. Taking the prior as in (2.2) and the Dw-posterior as in (2.13), then

pDwβ (xn|y1:n) ∝ p(xn|y1:(n−1)) · exp[−β · D̂w(xn, yn)]

∝ exp[−1

2
xTnJ

f
nxn + xTnθ

f
n] · exp[−β(xTnΛn(yn)xn + 2xTnνn(yn))]

= exp[−1

2
xTn (Jfn + 2βΛn(yn))xn + xTn (θfn − 2βνn(yn))]

= exp[−1

2
xTnJ

a
nxn + xTnθ

a
n],

(2.21)

with

Jan = Jfn + 2βΛn(yn)

θan = θfn − 2βνn(yn)
(2.22)

resulting in the recursive Gaussian posterior pDwβ (xn|y1:n) ∼ n−1(x; θan, J
a
n) in infor-

mation form, parallel to (2.5). The remaining challenge, again, is to transform the
obtained precision and potential into covariance and mean. As stated in (Altami-
rano et al., 2023b), we essentially obtain a form of Gaussian conjugacy. Moreover,
as we can give a recursive formula of this update step, this renders the resultingDw-
posterior Kalman filter fairly competitive in scalability compared to similar meth-
ods - such as the regular Kaman filter. An extension for an ensemble adaptation to
avoid the remaining inversion is also right around the corner.

2.2. Deriving a Robust Kalman Filter

The involved Bayesian inverse inference problem of the Kalman filter is the only
step we address with major changes for this part. This makes intuitive sense as
it is also the only part where observation noise mis-specification matters. While
we obtained a recursive update for the diffusion score matching Bayes posterior, we
have yet to make it robust via the choice of the point-wise invertible matrix valued
function w, the diffusion matrix. We hereby follow the argumentation in (Altami-
rano et al., 2023b) with additional tools from (Altamirano et al., 2023a).

2.2.1. Global Bias Robustness Regarding Observation Outliers

Following (Altamirano et al., 2023b), when speaking about mis-specification and
robustness in the context of observations, we want to refer to the terms as in the
framework of ε-contamination models (see (Huber, 2004) for details). Contamina-
tion hereby resembles the observation outliers or observations produced by heavy
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2.2. Deriving a Robust Kalman Filter

tails of the true observation noise in robustness referring to finite impact on estima-
tion by observations produced via contamination or the othermechanism. Inmathe-
matical terms, for a given distributionQ on observation spaceY, the ε-contaminated
version is described by Qε,y0 = (1 − ε)Q + εδy0 with δy0 the Dirac-measure at point
y0 ∈ Y and ε ∈ [0, 1]. In frequentist analysis, we are interested in understanding
the impact of ε on an appropriate point estimator T via

lim
ε→0

1

ε
||T (Q)− T (Qε,y0)||2, (2.23)

the influence function, which reduces under mild assumptions to

∂

∂ε
||T (Qε,y0)||2

∣∣∣∣
ε=0

. (2.24)

It is a fairly classical and established tool to capture outlier robustness of an es-
timator in both parametric and non-parametric contexts but requires adapting for
insights on Bayesian posteriors. The general idea, however, is still the same. To
specify, in the Bayesian case the estimator extends to T : P(Y) → P(X ) with P(·)
describing the respective space of distributions, observation space Y, and param-
eter space X (here the signal space). In words, for estimating Bayesian posteriors
via observations we are not interested in estimates on X , but require our estima-
tor to map into P(X ), so to estimate non-finite-dimensional objects, distributions,
over X . Taking the ansatz in (Altamirano et al., 2023b), we approach this problem
in two steps. We define the influence function point-wise over X , introducing an
additional sensitivity parameter, to then take the double supremum and check for
a bound. Our estimator of choice is the Dw-posterior depending on the likelihood
and true data generating process, so pDwβ (x|y; π) = pDwβ (x|y) and pDwβ (x|y; πε,y0), its
contaminated version. The point-wise posterior influence function is then given by

PIF(y0, x, π) =
d

dε
pDwβ (x|y; πε,y0)

∣∣∣∣
ε=0

(2.25)

with sensitivity in parameters x for the estimator and contamination point y0. The
posterior is globally bias-robust if

sup
x∈X ,y0∈Y

PIF(y0, x, π) <∞, (2.26)

so if for every combination of parameter x and contamination point y0 the influence
on the estimator is finite, hence, the impact of contamination is uniformly bounded
both over all parameters and all locations of contamination. Studying the robust-
ness of generalised posteriors via the PIF was introduced in (A. Ghosh and Basu,
2016) and extended in (Matsubara et al., 2022).

Following (Altamirano et al., 2023b), we choose w(y) to guarantee existence of such
a bound to obtain the desired robustness to outliers for our posterior. As key result
of their work, they show that the double supremum over the PIF is bound, given
there is a function γ(x) such that

1. supy0∈Y |Dw(y0;x)| ≤ γ(x),
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2. supx∈X p(x)γ(x) <∞ and
3.
∫
x∈X p(x)γ(x)dx <∞ with prior p(x).

As it is nicely put in (Altamirano et al., 2023a), condition 1 is our tool to design w
and ensures that outliers are sufficiently weighted down to obtain robustness. Con-
dition 2 and 3 ensure that our posterior does not blow up in any single point and
first moment of the bound given the Bayesian model, so adding the uniform bound
in parameter x given a prior.

Designing the Diffusion Matrix w and Bound

Accordingly, we now want to construct w for it satisfying such a boundary function
γ(x) using the first condition:

sup
y0∈Y
|Dw(y0;x)| = sup

y0∈Y
||w(y0)T (sp(·|x)(y0)− sπ(y0))||22 ≤ γ(x)

⇐⇒ sup
y0∈Y

[||w(y0)T sp(·|x)(y0)||22︸ ︷︷ ︸
(a)

+2∇ · (w(y0)w(y0)T∇sp(·|x)(y0))︸ ︷︷ ︸
(b)

] ≤ γ(x) (2.27)

via (2.12). We want both parts to be bound depending on x to then obtain γ(x).
Starting with

(a) = ||w(y0)T sp(·|x)(y0)||22
= ||w(y0)T [R−1Hx−R−1y0]||22

=

p∑
i=1

(w(y0)TR−1[Hx− y0])2
i

(2.28)

via (2.16), we again use a non-time varying simplified version of our likelihood in
this step. The term in (a) is bound, if every additive term is bound, so if |(w(y0)TR−1[Hx−
y0])i| <∞ for every i ∈ {1, 2, . . . , p}. Choose w(y0) = R

1
2 w̃(y0) ⇐⇒ w(y0)T = w̃(y0)R

1
2

with w̃ : Y → Rp×p a new point-wise invertible diagonalmatrix valued function with
positive entries, the weights. Let Mmax = max

i,j∈{1,2,...,p}
|Mij| for arbitrary matrices M ,

then

|w(y0)TR−1[Hx− y0]|i = |w̃(y0)R
1
2R−1[Hx− y0]|i = |w̃(y0)R−

1
2 [Hx− y0]|i

+C
= |w̃(y0)R−

1
2y0|i = |

p∑
j=1

w̃(y0)iiR
− 1

2
ij (y0)j|

4
≤ w̃(y0)ii

p∑
j=1

|R−
1
2

ij ||(y0)j| ≤ R
− 1

2
maxw̃(y0)ii

p∑
j=1

|(y0)j|

= R
− 1

2
maxw̃(y0)ii||y0||1 ≤

√
cR
− 1

2
maxw̃(y0)ii||y0||2

∝ w̃(y0)ii||y0||2.

(2.29)
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2.2. Deriving a Robust Kalman Filter

We hereby utilize several things implicitly. R is symmetric and positive definite
and has exactly one decomposition R 1

2R
1
2 = R with R 1

2 also symmetric and positive
definite, the positive square root of R. Further, R−1 = (R

1
2R

1
2 )−1 = R−

1
2R−

1
2 with

R
1
2R−1 = R−

1
2 as used above. In the last equation we use the inequality of L1- and

L2-norms in ||y||2 ≤ ||y||1 ≤
√
c||y||2 for y ∈ Rp.

Accordingly, each diagonal entry of w̃(y0) must weight down y0 by at least 1
1+||y0||2

with the additional 1 ensuring non-zero denominator. This is akin to the conditions
in (Altamirano et al., 2023a) for robustness in their univariate Gaussian process
regression setting. Therefore, we want to apply similar arguments for the choice of
weight function of the diagonal entries of w̃(·) in that we want plausible observa-
tions to have high weights with weights decreasing for less plausible observations.
So what is plausibility given the Kalman filter setting? Assuming an observation is
an outlier produced by heavy tails of the true data generating process but not cov-
ered in the observation likelihood of themodel - a realization of themis-specification
- wewant to leanmore towards the forecast estimator via the prior instead of the em-
pirical estimator from the observation to not distort the posterior or analysis mean
(see (Stannat, 2023) for the intuition on the Kalman gain). Accordingly, we want to
employ a notion of distance of an observation from the observation forecast mean
via the forward map, i.e the euclidean distance in observation space ||y0 − (Hmf )||2
in a simplified notation. Additionally, we need to ensure the weight matrix is point-
wise invertible and smooth for cheap differentiability. Finally, we want outliers
weighted down without being made obsolete, robustness yet also maintaining ap-
propriate relevance, so some form of heavy tailed behavior should be included in
the weight kernel keeping approximately linear weights. For the one dimensional
problem (Altamirano et al., 2023a) suggest inverse multi-quadratic kernels (IMQ)
as they satisfy all desired properties. They are smooth for differentiability which is
not the case for direct linear down-weighting yet they have heavier tails and slower
decay compared to a (squared) exponential kernel. Sharing their intuition as well
as desired properties, we also want to utilize IMQ-kernels in the diffusion matrix
w(·) via

ŵ(y0) = (1 +
〈y0 −Hmf , y0 −Hmf〉

q2
)−

1
2 = (1 +

||y0 −Hmf ||22
q2

)−
1
2 ,

w̃(y0) = ŵ(y0) · 1p×p and

w(y0) = ŵ(y0)R
1
2

(2.30)

with outlier thresholds q > 0 steering the kurtosis of the kernel and 1p×p the p × p
identity matrix. The resulting weight matrix w̃(y0) is diagonal, the point-wise in-
verse exists as ||y−Hmf ||22 ≥ 0 and is easily obtained, just like its square and their
partial derivatives. Further, 0 < ŵ(y0) ≤ 1 with w(y0)ij ≤ R

1
2
ij.

Returning to (2.28), recallingMmax = max
i,j∈{1,2,...,p}

|Mij|, we can now find a bound on (a)
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via

(a) =

p∑
i=1

(w(y0)TR−1[Hx− y0])2
i

=

p∑
i=1

(w̃(y0)R
1
2R−1[Hx− y0])2

i =

p∑
i=1

(R−
1
2 ŵ(y0)[Hx− y0])2

i

=

p∑
i=1

(ŵ(y0)

p∑
j=1

R
− 1

2
ij [Hx− y0]j)

2
4
≤

p∑
i=1

(ŵ(y0)

p∑
j=1

|R−
1
2

ij |(|Hx|j + |y0|j))2

≤ R−1
max

p∑
i=1

(

p∑
j=1

ŵ(y0)(|Hx|j + |y0|j))2 ≤ R−1
max

p∑
i=1

(

p∑
j=1

(|Hx|j + c̃(a)))2

= R−1
max

p∑
i=1

(||Hx||1 + pc̃(a))2 = c̃
(a)
1 (||Hx||1 + c̃

(a)
2 )2 ≤ c

(a)
1 (||Hx||2 + c

(a)
2 )2 = γ(a)(x)

(2.31)

with ŵ(y0) · |y0|i ≤ c̃(a) <∞ for all i ∈ {1, 2, . . . , p} by construction.
In order to obtain the bound γ(x) ≥ γ(a)(x) + 2γ(b)(x) to satisfy the first condition as
in (2.27) we still need to inspect the second part, (b), regarding the choice of w. For
that step as well as later derivations, we want to briefly inspect two terms:

R−1w(y0)w(y0)TR−1 = R−1ŵ(y0)R
1
2R

1
2 ŵ(y0)R−1

= ŵ2(y0)R−1RR−1 = ŵ2(y0)R−1 and

w(y0)w(y0)TR−1 = ŵ(y0)ŵ(y0)RR−1

= ŵ2(y0),

(2.32)

then

(b) = ∇ · (w(y0)w(y0)T∇sp(·|x)(y0))

= ∇ · (w(y0)w(y0)TR−1[Hx− y0])

= ∇ · (ŵ2(y0)[Hx− y0])

=

p∑
i=1

∂

∂(y0)i
(ŵ2(y0)[Hx− y0])i

=

p∑
i=1

∂

∂(y0)i
ŵ2(y0)(Hx)i −

p∑
i=1

∂

∂(y0)i
ŵ2(y0)(y0)i,

(2.33)

so in order to obtain a bound γ(b)(x) on (b), we have to show a bound on the partial
derivatives. We have
• ŵ2(y0) = (1 +

||y0−Hmf ||22
q2 )−1 ∈ (0, 1],

• | ∂
∂(y0)i

ŵ2(y0)| = |−2(y0−Hmf )i
q2 (1 +

||y0−Hmf ||22
q2 )−2| ≤ c̃(b)ŵ(y0) ≤ c̃

(b)
1 and

• | ∂
∂(y0)i

(ŵ2(y0) · (y0)i)| ≤ | ∂
∂(y0)i

ŵ2(y0)| · |y0|i + |ŵ2(y0)| ≤ c̃(b)(ŵ(y0) · |y0|i) + 1 ≤ c̃
(b)
2
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2.2. Deriving a Robust Kalman Filter

with appropriately chosen constants via the down-weighting properties of the IMQ-
kernel regarding y0. Then

(b) =

p∑
i=1

∂

∂(y0)i
ŵ2(y0)(Hx)i −

p∑
i=1

∂

∂(y0)i
ŵ2(y0)(y0)i

4
≤

p∑
i=1

| ∂

∂(y0)i
ŵ2(y0)||Hx|i +

p∑
i=1

| ∂

∂(y0)i
ŵ2(y0)(y0)i|

≤ c̃
(b)
1 ·

p∑
i=1

|Hx|i + p · c̃(b)
2

≤ c̃
(b)
1 · ||Hx||1 + c

(b)
2 ≤ c

(b)
1 · ||Hx||2 + c

(b)
2 = γ(b)(x).

(2.34)

Bringing the gathered insights back to 2.27, we have
sup
y0∈Y
|Dw(y0;x)| = sup

y0∈Y
[||w(y0)T sp(·|x)(y0)||22︸ ︷︷ ︸

(a)

+2∇ · (w(y0)w(y0)T∇sp(·|x)(y0))︸ ︷︷ ︸
(b)

]

≤ γ(a)(x) + 2γ(b)(x) = c
(a)
1 (||Hx||2 + c

(a)
2 )2 + 2(c

(b)
1 ||Hx||2 + c

(b)
2 )

= c
(a)
1 ||Hx||22 + 2c

(a)
1 c

(a)
2 ||Hx||2 + c

(a)
1 (c

(a)
2 )2 + 2c

(b)
1 ||Hx||2 + 2c

(b)
2

= c1||Hx||22 + c2||Hx||2 + c3 ∝ (||Hx||2 + c)2 = γ(x)

(2.35)

with appropriately chosen constants for each c. With the Gaussian prior in the
Kalman setting, thus we have that each of its moments exists as well as squared
exponential decay in the tails, we can now satisfy conditions 2 and 3 in (2.2.1) for
the resulting γ(x).
For a slightly more sophisticated approach on condition 3,

E[(||HX||2 + c)2] = E[||HX||22] + 2cE[||HX||2] + c2

≤ E[||HX||22] + 2c
√

E[||HX||22] + c2
(2.36)

with
E[||HX||22] = E[(HX)T (HX)] = E[Tr((HX)T (HX))]

= E[Tr((HX)(HX)T )] = Tr(E[(HX)(HX)T ])

= Tr(Cov(HX) + E[HX]E[HX]T )

= Tr(HP fHT +Hmf (mf )THT ) <∞

(2.37)

via linearity of the expectation, using Jensen’s inequality for the expectation of the
concave square root and the trace trick (the expectation of a trace is the trace of the
expectation) this way showing a direct bound for condition 3 in EX∼p(x)[γ(X)] <∞.

Resulting Considerations

Given the choice of diffusion matrix w as above, we obtain the desired global bias
robustness of the posterior distribution via the uniform bound on the posterior in-
fluence function. We achieved this without major additional constraints, however,
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so far we introduced two new parameters. As said, the learning rate β drags the
approach into the realm ofmachine learning, however, since learning rates in gener-
alised Bayesian inference as in (2.10) are fairly unresolved according to (Altamirano
et al., 2023a) referring to (Lyddon et al., 2019), (Wu and Martin, 2023) and (Fra-
zier et al., 2023) among others, we will fix β as a default at 1 for now and instead
focus on the outlier threshold q as it has a direct interpretation for the IMQ-kernel
in kurtosis. For q → ∞ and β = 1 we recover R 1

2 , the positive root of the original
observation noise covariance, as diffusion matrix independent of y ∈ Y. For finite
choice of q2 > 0 we get the desirable property that y0 with a distance ||y0 − Hmf ||22
exceeding q2 is increasingly weighted down. In (Altamirano et al., 2023a) it is sug-
gested to choose the q as the corresponding empirical quantile absolute deviation
centered on the prior mean. This is only of limited use in our case, so instead we
choose to pick q2 related to the popular Mahalanobis distance (see (Mahalanobis,
2018) and (De Maesschalck et al., 2000) for details). This shares similarity with the
approach in (Chang, 2014) for robust Kalman filtering via covariance scaling as will
be discussed later. Recall Y −Hmf ∼ N (0,Σ) with Σ = HP fHT +R. Currently, the
IMQ-kernel considers the centered, squared euclidean distance (y−Hmf )T (y−Hmf )
of an observation y0 ∈ Y. Re-scaling this distance with the knowledge about obser-
vation covariance in Σ via z = (y − Hmf )TΣ−1(y − Hmf ) leads to a standardized
distance akin to the Mahalanobis distance with known distribution Z ∼ χ2(p) for
Y = Rp. On a side note, this needs assuming HT has full column rank for ensur-
ing Σ is positive definite. Using this result we can build a heuristic for the outlier
threshold q2 via the resulting Chi-square distribution, however, needing to adapt
the euclidean distance estimation in the IMQ-kernel. Choosing

(y −Hmf )TΣ−1(y −Hmf ) = 〈y −Hmf , y −Hmf〉Σ−1 = ||y −Hmf ||2Σ−1 (2.38)

instead of ||y − Hmf ||22 does only change the constants in the derivation of the
bounds, but nothing on the desired outcomes regarding robustness as it is only a re-
weighting independent of the parameters of interest - the down-weighting property
still holds in

sup
y0∈Y

y0 · (1 +
||y0 −Hmf ||2Σ−1

q2
)−

1
2 <∞ (2.39)

for all q > 0. Accordingly, we now want to choose q2 = E[χ2(p)] = p or q2 = χ2
1−α(p)

for a desired confidence threshold with confidence value α ∈ (0, 1).
In essence, we make the covariance matrix of the observation noise, R, out to be the
main source of error introduced via the mis-specification. Accordingly we want to
dynamically adjust its effect using ŵ and thus the inverse multi-quadratic kernel to
control its impact and adapt to outliers.
At this moment, it may seem somewhat counter-intuitive to choose R 1

2 over R, how-
ever, the first leads to better properties down the line as the diffusion matrix only
appears in squared form. Similarly, choosing the IMQ-kernel currently leads to a
range of values in [ 1√

2
, 1] for observation distances within the confidence threshold,

so ||y0−Hmf ||2Σ−1 < q2. Appropriate re-scaling by factor 2 and squaring the diffusion
matrix yields more intuitive values recovering 2w2(y0) ≈ R for ||y0 −Hmf ||2Σ−1 ≈ q2

motivating the choice of q2 = p, the expected squared Mahalanobis distance.
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2.2. Deriving a Robust Kalman Filter

On a side note, the choice of diffusion matrix w made here is by no means unique.
Really, the key insight is that it needs to achieve the desired scaling in w(y0) ∝ 1

||y0||
given the knowledge that all norms are equivalent in Y = Rp and the additional
constraints on point-wise non-singularity and smoothness. The respective bounds,
here (a) and (b), are then obtained fairly straight forward. Accordingly more daring
choices of diffusion matrix should be explored and may improve performance.
Additionally, using similar arguments as before but for the regular Bayesian poste-
rior, superficially inspecting

sup
y0∈Y
| − log(p(y0|x))| = sup

y0∈Y
[
1

2
(y0 −Hx)TR−1(y0 −Hx)] (2.40)

yields that there can not be such a bound γ(x) to provide global bias robustness via
this approach. This agrees with similar results in (Altamirano et al., 2023a).
As a remark, alternatively borrowing concepts from Tsallis statistical mechanics
(see (Umarov et al., 2008) for additional details) with Tsallis information via q-
logarithms logq(p) = p1−q−1

1−q (equivalent to Box-Cox transformation in (Box and Cox,
1964)), a parallel line of work for robust posteriors via Tsallis information might be
worth exploring as

sup
y0∈Y
| − logq(p(y0|x))| <∞ (2.41)

for all q ∈ (0, 1) and y0 ∈ Y with p(y0|x) <∞. However, further exploration will not
be subject of this work.

Before formulating the results in theorems and propositions as well as stating the
Dw-Kalman formula in the next section, we want to use the obtained results on w
to evaluate the divergence term in ν in (2.19). The first term on the right hand side
in

νn(yn) = −HT
nR
−1
n w(yn)w(yn)TR−1

n yn +∇ · (w(yn)w(yn)TR−1
n Hn)

is similar to updating the potential in the regular Kalman filter by HT
nR
−1
n yn, see

(2.6), which now reduces to −HT
n [ŵ2

n(yn)R−1
n ]yn. It is the second part that is new

and in the divergence operator also somewhat more difficult to evaluate. However,
parts of it are already known from deriving part of the bound for robustness in
(2.33). Recall (∇ · g(y))k =

∑p
i=1

∂gik
∂yi

(y) for k ∈ {1, 2, . . . , d} as g(y) = w(y)w(y)TR−1H

maps from Y to Y ×X . So (∇· g(y))k = ∇· gk(y) with gk(y) is the k-th column of g(y).
Again, we want to use a simplified time-invariant notation for that step. Inspecting
g(y), we find that

gik(y) = (w(y)w(y)TR−1H)ik

= (ŵ2(y)R
1
2R

1
2R−1H)ik

= (ŵ2(y)H)ik = ŵ2(y)Hik

(2.42)

via previous arguments. Further, adapting previous results on the derivative, we
now have partial derivatives of quadratic forms via the introduction of the stan-
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dardization resulting in

∂ŵ2(y)

∂yi
= −

∑p
j=1 Σ−1

ij (y −Hmf )j +
∑p

j=1(y −Hmf )jΣ
−1
ji

q2
(ŵ2(y))2

= −
2
∑p

j=1 Σ−1
ij (y −Hmf )j

q2
(ŵ2(y))2 = −2〈Σ−1

i• , (y −Hmf )〉
q2

ŵ4(y)

(2.43)

withΣ = HP fHT+R as above andMi• the i-th row of amatrixM . When additionally
utilizing that Σ−1 is symmetric, then

∂gik
∂yi

(y) =
∂ŵ2(y)

∂yi
Hik

= −2〈Σ−1
i• , (y −Hmf )〉

q2
ŵ4(y)Hik.

(2.44)

Taking everything together, we obtain

(∇ · (w(yn)w(yn)TR−1
n Hn))k =

p∑
i=1

∂ŵ2(y)

∂yi
Hik

= −2ŵ4(y)

q2

p∑
i=1

〈Σ−1
i• , (y −Hmf )〉Hik

= −2ŵ4(y)

q2

p∑
i=1

Hik(

p∑
j=1

Σ−1
ij (y −Hmf )j)

= −2ŵ4(y)

q2

p∑
i=1

HT
ki(Σ

−1(y −Hmf ))i

= −2ŵ4(y)

q2
(HTΣ−1(y −Hmf ))k or

=

p∑
i=1

HT
ki

∂ŵ2(y)

∂yi

(2.45)

leading to two strains of thought in

∇ · (w(yn)w(yn)TR−1
n Hn) = −2ŵ4(y)

q2
HTΣ−1(y −Hmf )

= −2ŵ4(y)

q2
HT (HP fHT +R)−1(y −Hmf ) or

= HT∇ŵ2(y)

(2.46)

with ∇ŵ2(y) ∈ Y, and ŵ4(y) = (1 +
||y−Hmf ||2

Σ−1

q2 )−2. The first derivation includes the
innovation precision Σ−1 = (HP fHT + R)−1 in the potential update introduced via
the adaptation of the distance which may offer opportunities for the resulting re-
cursive solution. However, the second derivation with the gradients of the weight
kernel is much more general and provides a more direct interpretation.
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2.2. Deriving a Robust Kalman Filter

2.2.2. Deriving the Dw-Kalman Filter

The only thing left before we can finally state the recursive update formula is the
parameter transformation from information form to covariance form in the analysis
step. Picking up at (2.22) we want to work alongside (2.6) to (2.8). Let

Σn = HnP
f
nH

T
n +Rn,

ŵn(yn) = (1 +
||yn −Hnm

f
n||2Σ−1

n

q2
)−

1
2 ,

wn(yn) = ŵn(yn)R
1
2
n and

Nn(yn)−1 = 2βR−1
n wn(yn)wn(yn)TR−1

n = 2βŵ2
n(yn)R−1

n

(2.47)

with Nn(yn) symmetric and pointwise-invertible as Rn is symmetric and invertible.
To obtain the covariance of the diffusion score matching Bayes posterior, we basi-
cally take the same approach as before but substituting R−1

n with N−1
n (yn). Again,

the key is the Sherman-Morrison-Woodbury matrix inversion formula (see (Golub
and Van Loan, 2013) for details). The resulting covariance is

P a
n = (Jan)−1 = [Jfn + 2βΛn(yn)]−1

= [Jfn + 2β(HT
nR
−1
n w(yn)w(yn)TR−1

n Hn)]−1

= [(P f
n )−1 +HT

nNn(yn)−1Hn]−1

= P f
n − P f

nH
T
n [Nn(yn) +HnP

f
nH

T
n ]−1HnP

f
n

= P f
n − K̃n(yn)HnP

f
n

(2.48)

with adjusted Kalman gain

K̃n(yn) = P f
nH

T
n [Nn(yn) +HnP

f
nH

T
n ]−1

= P f
nH

T
n [

1

2βŵ2
n(yn)

Rn +HnP
f
nH

T
n ]−1.

(2.49)

We hereby note for the diffusion weight to appear via the previously mentioned
squared form with factor 2. Additionally note

P a
n = P f

n − K̃n(yn)HnP
f
n

= [1d×d − K̃n(yn)Hn]P f
n

⇐⇒ P a
n (P f

n )−1 = 1d×d − K̃n(yn)Hn.

(2.50)

As before, we use the result on the analysis covariance and repeated applications
of the Sherman-Morrison-Woodbury matrix inversion formula to transform from
potential to mean with

ma
n = P a

nθ
a
n = P a

n [θfn − 2βνn(yn)]

= P a
n [θfn − 2β(−HT

nR
−1
n w(yn)w(yn)TR−1

n yn +∇ · (w(yn)w(yn)TR−1
n Hn))]

= P a
n [θfn +HT

nNn(yn)−1yn − 2β∇ · (w(yn)w(yn)TR−1
n Hn)]

= P a
n [(P f

n )−1mf
n]︸ ︷︷ ︸

(a)

+P a
n [HT

nNn(yn)−1yn]︸ ︷︷ ︸
(b)

−P a
n [2β∇ · (w(yn)w(yn)TR−1

n Hn)]︸ ︷︷ ︸
(c)

.

(2.51)
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Part (a) is the same as for the regular Kalman filter apart from the adapted Kalman
gain, so

(a) = mf
n − K̃n(yn)Hnm

f
n. (2.52)

Similar for part (b) with

(b) = P a
n [HT

nNn(yn)−1yn]

= P a
n [HT

nNn(yn)−1yn]

= [P f
n − K̃n(yn)HnP

f
n ][HT

nNn(yn)−1yn]

= P f
nH

T
n [Nn(yn) +HnP

f
nH

T
n ]−1yn

= K̃n(yn)yn.

(2.53)

This leaves part (c) containing the divergence operator. This part was already pre-
pared in 2.54 and for each choice of formulation we recover different, yet equivalent,
formulations.

(c) = P a
n [2β∇ · (w(yn)w(yn)TR−1

n Hn)]

= 2βP a
n [−2ŵ4

n(yn)

q2
HT
n (HnP

f
nH

T
n +Rn)−1(yn −Hnm

f
n)]

= P a
n [−4βŵ4

n(yn)

q2
HT
n (HnP

f
nH

T
n +Rn)−1(yn −Hnm

f
n)]

= [P f
n − K̃n(yn)HnP

f
n ][−4βŵ4

n(yn)

q2
HT
n (HnP

f
nH

T
n +Rn)−1(yn −Hnm

f
n)]

=
4βŵ4

n(yn)

q2
K̃n(yn)HnP

f
nH

T
n (HnP

f
nH

T
n +Rn)−1(yn −Hnm

f
n)

− 4βŵ4
n(yn)

q2
P f
nH

T
n (HnP

f
nH

T
n +Rn)−1(yn −Hnm

f
n)

=
4βŵ4

n(yn)

q2
K̃n(yn)HnKn(yn −Hnm

f
n)− 4βŵ4

n(yn)

q2
Kn(yn −Hnm

f
n)

=
4βŵ4

n(yn)

q2
[K̃n(yn)Hn − 1d×d]Kn(yn −Hnm

f
n)

=
4βŵ4

n(yn)

q2
[1d×d − K̃n(yn)Hn]Kn(Hnm

f
n − yn)

=
4βŵ4

n(yn)

q2
P a
n (P f

n )−1Kn(Hnm
f
n − yn)

(2.54)

or

(c) = P a
n [2β∇ · (w(yn)w(yn)TR−1

n Hn)]

= P a
nH

T
n∇(2βŵ2

n(yn)) = (∇(2βŵ2
n(yn))HnP

a
n )T

(2.55)

with Kn = P f
nH

T (HnP
f
nH

T
n + Rn)−1 the usual Kalman gain. Again, notice the scal-

ing factor and square on the diffusion weight. The first result is very interesting
in its structure showing a relation to the regular Kalman gain for this particular
choice of kernel with standardization via Mahalanobis distance. Furthermore, as
similar result may be expected for any kernel employing Mahalanobis distance in
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2.2. Deriving a Robust Kalman Filter

some inner function via a chain rule in the derivative. Next to the explicit diffusion
weight in the factor, it is hereby also implicitly contained in the analysis covariance
matrix. For its simplicity and interpretation we want to maintain and highlight the
second form including the gradient .

Taking everything together for the analysis mean formula, we obtain

ma
n = P a

nθ
a
n

= mf
n − K̃n(yn)Hnm

f
n + K̃n(yn)yn − 2βP a

nH
T
n∇ŵ2

n(yn)

= mf
n − K̃n(yn)(Hnm

f
n − yn)− 2βP a

nH
T
n∇ŵ2

n(yn),

= mf
n − K̃n(yn)(Hnm

f
n − yn)

− 4βŵ4
n(yn)

q2
P a
n (P f

n )−1Kn(Hnm
f
n − yn) or

= mf
n − K̃n(yn)(Hnm

f
n − yn)− P a

nH
T
n∇(2βŵ2

n(yn)),

(2.56)

for equivalent forms of the mean update recovering the usual Kalman filter analy-
sis mean update up to the adjusted observation-dependent Kalman gain and with
the additional diffusion term.

With covariance and mean available, we can now state the update formula for the
Dw-Kalman filter as in (2.7) and (2.8) with forecast step

P f
n = AnP

a
n−1A

T
n +Qn

mf
n = Anm

a
n−1

(2.57)

and analysis step

q2 = E[χ2(p)] = p

Σn = HnP
f
nH

T
n +Rn

ŵn(yn) = (1 +
||yn −Hnm

f
n||2Σ−1

n

q2
)

∂ŵ2
n(yn)

∂(yn)i
= −

2〈Σ−1
n,i•, (yn −Hnm

f
n)〉

q2
ŵ4
n(yn)

wn(yn) = R
1
2
n ŵn(yn)

Nn(yn)−1 = 2βŵ2
n(yn)R−1

n ⇐⇒ 1

2βŵ2(yn)
Rn

K̃n(yn) = P f
nH

T
n [Nn(yn) +HnP

f
nH

T
n ]−1

P a
n = P f

n − K̃n(yn)HnP
f
n

ma
n = mf

n − K̃n(yn)(Hnm
f
n − yn)− P a

nH
T
n∇(2βŵ2

n(yn)).

(2.58)

The result is the full desired recursion formula for updating the Gaussian mean
and covariance .
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Gathering Obtained Results

The overall result of this part now consists of two propositions and an algorithm - the
first proposition presents the diffusion score matching posterior in the Kalman fil-
ter setting, the second proposition presents the global bias robustness property and
its conditions and finally everything is combined into the Dw-Kalman algorithm.

Recall the Kalman setting:
Given a probability space (Ω,F ,P), let Xn be a multivariate random variable to
model our noisy signal at discrete time steps n = {1, 2 . . . , N}. Xn cannot be observed
directly, however, we can measure it via another random variable Yn = gn(Xn, Vn),
the observation, with Vn denoting the observation noise. Given the Kalman filter
setting we assume Xn and Yn to be jointly Gaussian with the following linear time
discrete, time varying signal evolution equation and linear observation equation:

Xn = AnXn−1 + CnWn

Yn = HnXn + ΓnVn
(2.59)

with
• Xn : β → X = Rd - the d-dimensional signal random vector at time n,
• Yn : β → Y = Rp - the p-dimensional observation random vector at time n,
• Wn : β → Rd and Vn : β → Rp - independent standard Gaussian distributed
random vectors at time n (white noise) of the corresponding dimensions,
• An, Cn, Hn and Γn of appropriate dimensions with non-singular Qn = CnC

T
n

and Rn = ΓnΓTn and
• p(x0) ∼ n(x0;m0, P

a
0 ), the initial prior distribution.

Proposition 1 The Diffusion Score Matching Bayes Posterior
Given the above setting, then

pDwβ (xn|y1:n) ∝ p(xn|y1:(n−1)) · exp[−β · D̂w(yn;xn)]

∝ exp[−1

2
xTnJ

a
nxn + xTnθ

a
n]

for

Jan = Jfn + 2βΛn(yn)

θan = θfn − 2βνn(yn)

with

Λn(yn) = HT
nR
−1
n w(yn)w(yn)TR−1

n Hn

νn(yn) = −HT
nR
−1
n w(yn)w(yn)TR−1

n yn +∇ · (w(yn)w(yn)TR−1
n Hn)
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leading to a Gaussian distribution pDwβ (xn|y1:n) ∼ n(x;ma
n, P

a
n ) with

Σn = (HnP
f
nHn +Rn), q > 0

ŵn(yn) = (1 +
||yn −Hnm

f
n||2Σ−1

n

q2
)−

1
2

wn(yn) = R
1
2
n ŵn(yn)

Nn(yn)−1 = 2βŵ2
n(yn)R−1

n

K̃n(yn) = P f
nH

T
n [Nn(yn) +HnP

f
nH

T
n ]−1

P a
n = P f

n − K̃n(yn)HnP
f
n

ma
n = mf

n − K̃n(yn)(Hnm
f
n − yn)− 2βP a

nH
T
n∇ŵ2

n(yn).

The proof is given via the construction in section 2.1.2 and the beginning of 2.2.2.

Proposition 2 Global Bias Robustness
Given the above setting, then pDwβ (xn|y1:n) is globally bias robust if w : Y → Rp×p is
chosen such that

wn(yn) = R
1
2
n ŵn(yn)

with

ŵn(yn) = (1 +
||yn −Hnm

f
n||2(HnP fnHn+Rn)−1

q2
)−

1
2

and q > 0.

The proof is given in section 2.2.1 via the bound on the double supremum of the
posterior influence function. Adaptations of the diffusion matrix w are possible and
need exploring.

2.3. Interpretation and Extension

2.3.1. Understanding Novel Terms

With proposition 2 providing the desired robustness property and algorithm 1 sum-
marizing the necessary parameters and computations, we nowwant to focus on con-
crete interpretations of the novel terms and changes with some of them implicit in
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Algorithm 1 The Diffusion Score Matching Kalman Filter

Input:

• initial condition p(x0) ∼ n(x0;ma
0, P

a
0 ),

• signal model Xn = AnXn−1 +QnWn,

• observation model Yn = HnXn +RnVn,

• learning rate β := 1 > 0 (default) and

• outlier threshold q2 := E[χ2(p)] = p > 0 (default).

Output:

• signal forecast at time n

p(xn|y1:(n−1)) ∼ n(xn;mf
n, P

f
n )

and

• signal posterior at time n

p(xn|y1:n) ∼ n(xn;ma
n, P

a
n )

for n ≥ 1 do
forward step:

P fn = AnP
a
n−1A

T
n +Qn

mf
n = Anm

a
n−1

receive observation: yn
analysis step:

Σn = HnP
f
nH

T
n +Rn

ŵn(yn) = (1 +
||yn −Hnm

f
n||2Σ−1

n

q2
)−

1
2

Nn(yn) =
1

2βŵ2
n(yn)

Rn

K̃n(yn) = P fnH
T
n [Nn(yn) +HnP

f
nH

T
n ]−1

P an = P fn − K̃n(yn)HnP
f
n

Kn(yn) = P fnH
T
n [Rn +HnP

f
nH

T
n ]−1

ma
n = mf

n − K̃n(yn)(Hnm
f
n − yn)

− 4βŵ4
n(yn)

q2
P an (P fn )−1Kn(Hnm

f
n − yn)

or

∂2βŵ2
n(yn)

∂(yn)i
= −

4β〈Σ−1
n,i•, (yn −Hnm

f
n)〉

q2
ŵ4
n(yn)

ma
n = mf

n − K̃n(yn)(Hnm
f
n − yn)− P anHT

n∇(2βŵ2
n(yn))

end for
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the algorithm but explicit in proposition 1.
There are no changes in the forecast step which may leave room for usual adap-
tations to non-linearity in the signal propagation. We only adapted the Bayesian
inverse inference for the posterior involved in the analysis step. The newly intro-
duced terms are the substitute Nn(yn) ∝ Rn for the observation noise covariance
in the adapted Kalman gain and the divergence term introduced with the analysis
mean update. Both share an interesting relationship in their interaction with the
diffusion weight and provide a good intuition on their contribution to estimating
mean and covariance. On a side note, the diffusion score matching Kalman gain is
now explicitly dependent on the observation. While this might be highly desirable
in some contexts, it also disables pre-computation of the Kalman gain and covari-
ance matrices. Further, adaptations similar to the steady state Kalman filter (see
(Stannat, 2023) for details) are less accessible.

(a) Inverse multi-quadratic kernel and
squared exponential kernel.

(b) Scalar local inverse of the square of the
IMQ kernel.

Figure 2.1.

Recall the IMQ-kernel as in figure (2.1a)

ŵn(yn) = (1 +
||yn −Hnm

f
n||2Σ−1

n

q2
)−

1
2

with threshold q2 > 0, its square and the scalar inverse of the square (see figure
(2.1b). It was chosen due to its desirable behavior in fairly heavy tails to not straight
up delete outliers, especially compared to squared exponential kernels, yet weight
them down for satisfying robustness and keeping required properties in easily ac-
cessible derivatives. The threshold q2 allows for easy control of the kurtosis and this
way balancing which observations are considered outliers and to what degree. Yet,
it only sparsly appears directly in the diffusion score matching Kalman equations.
In the new analysis step it only directly appears squared, so in scale of the variance
which makes sense considering its objective. Recall the new Kalman gain

K̃n(yn) = P f
nH

T
n [Nn(yn) +HnP

f
nH

T
n ]−1
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with

Nn(yn)−1 = 2βŵ2
n(yn)R−1

n ⇐⇒ Nn(yn) =
1

2βŵ2
n(yn)

Rn.

Here, the re-scaled inverse IMQ kernel in Nn(yn) directly scales the covariance
matrix Rn. For outliers, so ||yn − Hnm

f
n||2Σ−1 � q2, this term blows up and in-

flates the observation noise covariance matrix, see figure 2.1b, and accordingly
decreases the Kalman gain to a minimum putting all the trust in the forecast
mean. For observations with Mahalanobis distance close to the expected error,
so ||yn − Hnm

f
n||2Σ−1 ≈ q2, Nn(yn) approximately recovers the the regular observa-

tion noise covariance matrix Rn and thus the regular Kalman filter behavior. An
interesting new insight is in that for observations and observation forecast mean
aligning, so ||yn −Hnm

f
n||2Σ−1 � q2, the original covariance matrix is scaled down by

up to a factor of 1
2β
. In practice, this translates to putting more trust in these obser-

vations via increasing the adapted Kalman gain compared to the regular Kalman
gain. This has interesting implications on the long term stability and need further
exploring in that regard. The update of the analysis or posterior mean and covari-
ance directly use this observation dependent calibration. Looking at the analysis
mean update in more detail, for observations close to the forecast mean, so within
the confidence interval, the adaptedKalman gain increases and the innovation term
is fallingmuchmore into weight for themean update. In short, the adapted Kalman
gain utilizes the observation to dynamically re-scale the variance according to its
reliability. Outliers are weighted down so their innovation term does not distort the
mean estimate while plausible observations yn are processed similar to the regular
Kalman filter with small observation noise covariance Rn. This is directly reflected
in the analysis covariance update. Suspected outliers lead to a small K̃n(yn) and
hence to a small reduction from forecast covariance to analysis covariance while
plausible observations lead to a reasonable adjustment that may surpass the re-
duction in signal covariance matrix of the regular Kalman filter.
The newly introduced divergence term makes also use of this notion of plausibil-
ity. Taking the second formulation in (2.54) P a

nH
T∇ŵ2

n(yn). The resulting vector
additionally steers the mean update in the analysis step processing the observation
implicitly via the analysis covariance and explicitly via the gradient ∇ŵ2

n(yn). The
actual adjustment on the analysis mean is best understood entry-wise:

(P a
nH

T
n∇ŵ2

n(yn))k =
d∑
i=1

(P a
nH

T
n )ki(∇ŵ2(yn))i

= 〈(P a
nH

T
n )k,•,∇w̃2(yn)〉

= 〈(HnP
a
n )•,k,∇w̃2(yn)〉

(2.60)

recalling Ak,• denoting the respective k-th row or column vector of some matrix A.
Writing the divergence vector like this provides insight on what is happening. Look-
ing at the partial derivatives of the squared IMQ-kernel in 2.43, it explicitly intro-
duces the plausibility of an observation yn as the driving force via the gradient. On
the other hand, (HnP

a
n )ik =

∑d
j=1(Hn)ij(P

a
n )jk, so the i-th entry of the k-th column

is the combination of all analysis covariances involving the k-th dimension of the
signal effecting the i-th dimension of the observation via the forward map Hn. Ac-
cordingly, the column vector (HnP

a
n )•,k collects the entry-wise summed effects of the
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analysis covariances involving entry k in P a
n overHn, so Cov((Hn[Xn|y1:n])i, [Xn|y1:n]k)

- a notion of total variation effects on entry i of the observation from signal en-
try k. The dot product now sums over the collected effects of the covariances in-
volving signal entry k in P a

n produced by Hn and the partial derivatives, result-
ing in the observed impact of the divergence on the mean estimate. To put it
different, the step size (HnP

a
n )ik and the gradient involving yn describe a vector

field of flow summarizing all impacts on the k-th entry of the signal analysis mean
caused by covariances in P a

n given all observations y1:n via the forward map Hn,∑p
i=1

∂ŵ2(yn)
∂(yn)i

Cov((Hn[Xn|y1:n])i, [Xn|y1:n]k), so the sum over the corresponding partial
derivatives inferring a notion of plausibility of the covariance effects via the obser-
vation, to describe the total change in flow density for that dimension - the initial
divergence in a classical sense as change of density of a liquid. To conclude, the new
divergence term combines all information we have about change in the k-th entry
of the signal analysis mean encoded in the analysis covariances and combines them
with direction and impulse strength via plausibility of a observation yn to nudge
and adjust the mean estimate. For plausible observations, the entries of P a

n will be
smaller due to the adjusted Kalman gain allowing for reduction in analysis covari-
ance compared to the forecast covariance, and the gradients will have larger values
(see figure 2.1a). For suspected outliers it is the other way around. The key in-
sight is in that the divergence term takes its information from where it deems most
reliable, either the gradient or the forecast variance with the sign of the gradient
flow always decided by the observation regardless of plausibility to steer the mean
update even for supposedly unreliable observations.

2.3.2. Considerations on Long-Term Stability and Learning Rate

Approaches to Long-Term Stability

With the changes in the recursive formula well understood, especially regarding
the novel covariance update, we want to address the long term stability of the filter.
The approach as with the regular Kalman filter in solving an algebraic Riccati-
equation does not immediately work here due to the introduced stochasticity via
the observation dependent Kalman gain. Again, we want to utilize the concept
of ε-contamination to describe observations produced by heavy tails and outliers
for a basic intuition. Generally speaking, the result for the regular Kalman fil-
ter still holds for observations with Mahalanobis distance within the χ2 expecta-
tion and even improves with the down-scaling in noise covariance for observations
close to the observation forecast mean. The regular observations with large Ma-
halanobis distance as well as observations produced by contamination are what is
falling into weight and destabilize the covariance. However, similar issues have al-
ready arisen with the variety of other adaptive filtering techniques and alongside
them approaches to formulate adjusted stability requirements. In works such as
(Solo, 1996), (Zhen-Wei and Hai-Tao, 2013) and (Gan and Liu, 2020) the long-term
stability of the Kalman filter with random or faulty coefficients is investigated. This
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motivates an interpretation of the adapted observation noise covariance Nn(yn) to
be such a random parameter with certain aspects of pattern and scaling known.
The key insight is then that Nn(yn) replacing Rn in the discrete algebraic Riccati
equation occurring in the stability analysis is only stochastically bound for observa-
tion distributions with finite second moments and cross-terms. Deriving the weak
stochastic bound on N(Y ) for arbitrary random vectors Y leads to deriving a weak
stochastic bound on 1

ŵ2(Y )
, a uni-variate non-negative random variable. Accordingly,

a bound can then be derived using Markov’s inequality with a simplified notation
in

P[
1

ŵ2(Y )
≤ b] = P[(1 +

||Y ||2Σ−1

q2
) ≤ b] ≥

E[(1 +
||Y ||2

Σ−1

q2 )]

b
=

1

b
+

1

bq2
E[||Y ||2Σ−1 ]

+C∝ 1

b
E[Y TΣ−1Y ] =

1

b
E[

p∑
i=1

p∑
j=1

YiΣ
−1
ij Yj]

∝ 1

b

p∑
i=1

p∑
j=1

E[YiYj]

(2.61)

⇐⇒ P[
1

ŵ2(Y )
≥ b] ≤

E[||Y ||2Σ−1 ]

b

=⇒ lim
b→∞

P[
1

ŵ2(Y )
≤ b] ≤ lim

b→∞

E[||Y ||2Σ−1 ]

b
= 0

(2.62)

for E[||Y ||2Σ−1 ] <∞.
This cheap bound only provides limited insight and is by no means exhaustive,
however, it still conveys a first idea: If all entries of the SSCP matrix Y Y T are
finite, the expected Mahalanobis distance is finite and we obtain a weak stochas-
tic bound which then is sufficient for long-term stability of the filter with results
in (Solo, 1996) under usual assumptions and conditions for stability in detectabil-
ity and stabilizability of the Kalman filter components. However, it is the class
of super-heavy tailed distributions such as Cauchy distributions or t-distributions
with df ≤ 2 which have non-finite secondmoments and therefore non-finite expected
Mahalanobis distance we are also interested in. They are likely not stochastically
bound and their impact on the stochastic discrete algebraic Riccati equation needs
further investigation. To summarize, we observe two cases: If Nn(yn) has a weak
stochastic bound, i.e via the Markov inequality with finite second moments, we can
substitute Rn with this bound in usual stability arguments with conditions on de-
tectability and stabilizabilty of the signal to recover long-term stability. If there is
no such weak stochastic bound on Nn(yn), there is essentially no reliable reduction
of the covariance in the analysis step and stability solely depends on the asymptotic
stability of the signal process with usual conditions. For rigorous analysis of long-
term stability of the Kalman filter with the respective conditions see (Anderson and
Moore, 2012) and (Stannat, 2023).

This problem may then be generalized to the more broad discussion of stability
in combination with robustness via diffusion score matching posteriors. In order
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for the likelihood to be of use, an observation y0 needs at least linear order repre-
sentation. To obtain robustness in the posterior influence function, the loss func-
tion needs to weight down observations of appropriate order of y0 in the likelihood,
also considering the derivative in the score matching loss. This is what makes the
approach in (Altamirano et al., 2023b) strong as they restrict their investigated
exponential family members to linear order representations of the observation in
the likelihood. As long as a weight balancing with at least linear order then ap-
pears in squared scalar inverse form in the covariance update, we necessarily end
up with existence requirements for higher order moments such as here regarding
finite expected Mahalanobis distance. In short, the price we pay for obtaining prov-
able robustness via the posterior influence function while still aiming to obtain as
many information from an observation as possible is likely at least partially paid
in stability. If outliers are too frequent, so the respective moments of the true data
generating process are not finite, stability has to come solely with system dynam-
ics. This brief and superficial intuition is by no means rigorous or exhaustive and
thorough sophisticated investigation has yet to be done.

Tuning the Learning Rate β

We also want to pick up on discussing the learning rate β. In the final equations
in proposition 1 it only appears coupled to the squared diffusion weight. A default
choice of β = 1 is reasonable to recover the desired intuitions as scaling of the ob-
servation noise covariance is related to expected Mahalanobis distance. Yet, a brief
discussion is in place. A large learning rate causes the inverse substitute Nn(yn) to
be toned down in value reducing its impact on the adjusted Kalman gain and thus
supports trust in observation - likely at risk of over-fitting fr too large choices of β.
Regarding the analysis covariance this leads to a larger reduction from the forecast
covariance and similarly to a larger impact of the innovation term on the analysis
mean. Further, a large learning rate increases the impact of the divergence term,
however, this also needs considering the then smaller analysis covariance. On the
other hand, a too small learning rate 0 < β � 1 is prone to over-smoothing and
under-fitting in that it further inflates the observation covariance matrix and re-
duces weight of recent observations. Accordingly, the learning part can be taken to
be an important parameter that needs considering.
Recall, tuning of the learning rate is an open problem in generalised Bayesian in-
ference motivating several approaches with ongoing research (see (Lyddon et al.,
2019), (Matsubara et al., 2023) and (Wu and Martin, 2023) among others for de-
tails). The issue is picked up in (Altamirano et al., 2023b) stating for the learning
rate β to offset sensitivity in q2. This makes intuitive sense in that tuning β much
different from its default makes the choice in threshold q2 somewhat arbitrary. In
that case then, the choice of q2 is fairly robust while requiring strong arguments for
tuning β. In (Altamirano et al., 2023a) they suggest fixing β and solely focusing on
q2 via directly coupling both parameters. Our setting allows to do so as well to sim-
ilar extend, yet we want to also discuss the approach to tuning β in (Altamirano et
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al., 2023b) regardless. There they argue that most developed methods are computa-
tionally expensive and usually strive to satisfy frequentist, asymptotic properties.
These do not apply for the overarching purpose of detecting change in the signal
caused by mis-specification of the signal noise. Instead they suggest matching the
uncertainty of the diffusion score matching posterior to that of the regular poste-
rior counterpart ideally on a controlled/un-contaminated set of N∗ observations.
Depending on the context, it may be feasible to simulate a certain number of N∗
observations from the assumed model not taking contamination into consideration
and matching both posteriors on the simulated data. This is explicitly possible for
the Kalman setting as we have access to an assumed data generating process to
simulate from and we will therefore implement it this way in the experiments. In
(Altamirano et al., 2023b) Kullback-Leibler divergence is suggestedthe suggested
measure for matching as it is reliable in the absence of outliers, with the authors
claiming to produce well calibrated uncertainties this way. Further, the regular
Bayesian posterior and the regular Kalman filter are optimal in that case and there-
fore offer an easy choice as reference. To formalise, we want to pick β∗ such that

β∗ = arg min
β>0

DKL(p(xN∗|y1:N∗)||pDwβ (xN∗ |y1:N∗)). (2.63)

This argument makes heuristic sense for the Kalman setting and furthermore, as
we deal with Gaussian distributions for both the diffusion score matching poste-
rior and the regular posterior, the evaluation can be done via the closed formula
following (Duchi, 2007):

DKL(p(xN∗|y1:N∗)||pDwβ (xN∗|y1:N∗)) = EX∼p(·|y1:N∗ ))[log(pDwβ (xT ∗|y1:N∗))− log(p(xT ∗ |y1:N∗))]

=
1

2
log(

det(P a
N∗)

det(PN∗)
)− d

+ Tr(JaN∗PN∗) + (ma
N∗ −mN∗)

TJaN∗(m
a
N∗ −mN∗).

(2.64)

The convexity of the KL divergence for fixed reference distribution is hereby an ad-
ditional useful feature for optimization.
Instead of minimizing Kullback-Leibler divergence, maximizing mutual informa-
tion also seems like a reasonable heuristic. While the general problem in applica-
tion is that it is an open problem to estimate it reliably with good uncertainty quan-
tification, there are analytic derivations of the mutual information of two multi-
variate Gaussian random variables (see (Carrara and Ernst, 2020) for details). The
main issue arising then with the result applicable to the case at hand is in requiring
the covariance matrix of the joint distribution of p(xN∗|y1:N∗) and pDwβ (xN∗|y1:N∗). So
while it might not be as suitable for tuning the diffusion score matching Kalman
filter right away, it has potential via sampling and estimating the joint covariance
from joint samples.

Another, likely more fruitful approach to choosing the learning rate β arises in the
Kalman setting via aiming to recover the regular Kalman filter and its learning
rate on average, i.e. E[2βŵ2(Y )] ≈ 1, assuming no contamination. A much more so-
phisticate approach would then employ this result for an analysis on E[K̃(Y )]. The
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case here is mainly a preliminary result in that regard and lays ground for future
work.
A straight forward observation lies then in that we recover this desired result for
a choice of β = 1 up to tightness of a Jensen’s inequality. Let p(y) = n(y;Hmf ,Σ),
Y = Rp and q2 = p, then

2ŵ2(y) = 2(1 +
||y −Hmf ||2Σ−1

p
)−1

=
2

1 + z
= f(z)

(2.65)

with ||Y − Hmf ||2Σ−1 ∼ χ2(p) hence Z ∼ ||Y−Hmf ||2
Σ−1

p
= Gamma(k = p

2
, θ = 2

p
) for

shape k and scale θ with E[Z] = 1 and V ar(Z) = 2
p
. Further, f is convex and d2f(z)

d2z
=

4
(1+z)3 > 0 for z ≥ 0. Accordingly, the expectation of interest can be reformulated
to E[f(Z)] ≥ f(E[Z]) = 1, hence the motivation of β = 1 up to that tightness of a
Jensen’s inequality. Utilizing results in (Liao and Berg, 2018) for sharpness of the
inequality exploiting Taylor approximations and curvature, we obtain the valuable
insight

0 = 0 · V ar(Z) ≤ E[f(Z)]− 1 ≤ 1

2
V ar(Z) =

1

p

⇐⇒ f(E[Z]) ≤ E[f(Z)] ≤ f(E[Z]) +
1

p

(2.66)

via inf and sup of a help function h(z) = f(z)−f(E[Z])
[z−f(E[Z])]2

− f ′(E[Z])
z−f(E[Z])

= f(z)−1
(z−1)2 − f ′(1)

z−1
.

For large observation dimensions p, we can take 1 = f(E[Z]) ≈ E[f(Z)] and easily
justify the choice of β = 1. However, for smaller dimensions it can make sense to
evaluate the resulting integral in E[f(Z)] =

∫∞
0
f(z)p(z)dz numerically. Taking the

least ideal case in p = 1, we then obtain

E[f(Z)] =
2√
2π

∫ ∞
0

(1 + z)−1z−
1
2 exp[−z

2
]dz =

√
2 exp(1)πerfc(

1√
2

) ≈ 1.31, (2.67)

with erfc the complementary error function and choose then β ≈ 3
4
to approximately

recover E[2βŵ2(Y )] ≈ 1. This integral can be numerically evaluated for other small
values of p, however, with the intuition on approaching equality with increasing ob-
servation dimension, we can conclude to obtain a learning rate β ∈ [3

4
, 1] to approx-

imately recover expectation. For better understanding, additional investigation on
the choice of learning rate regarding variance of the approximation is required and
will be subject of future work next to embedding the obtained result for investiga-
tions on the expected adjusted Kalman gain.

2.3.3. Expanding to Ensemble Implementation

One more immediate adaptation we want to address is the extension to the field of
sequential Monte Carlo methods, particle filters or ensemble methods. The ensem-
ble Kalman filter (EnKF) with perturbed observations is popular and favored for a
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variety of applications over the regular Kalman filter due to not needing analytical
evaluation of the forecast covariance. The diffusion score matching Kalman filter
can easily be extended to suit the EnKF framework of a particle approximation
that recovers the analytic filter in mean field limit under slight adjustments. Fol-
lowing (Reich and Cotter, 2015), we want to start with an ensemble {xa,(l)n−1}l∈{1,2,...,M}
of size M sampled from p(xn−1|y1:(n−1)), so Xa,(1:M)

n−1 ∼iid p(xn−1|y1:(n−1)). The ensem-
ble is propagated according to the signal model to produce the forecast ensemble
{xf,(l)n }l∈{1,2,...,M}. Again, up to this point we want to follow the regular EnKF pro-
cedure with the diffusion score matching EnKF as we only make changes in the
next step to the Bayesian inverse inference problem. In the regular EnKF with
perturbed observations the ensemble is updated with the new observation via

xa,(l)n = xf,(l)n − K̂n(Hnx
f,(l)
n + ε(l)n − yn) (2.68)

for l ∈ {1, 2, . . . ,M} with {ε(l)n }l∈{1,2,...,M} independent and identically distributed
draws from N (0, Rn) resulting in the updated ensemble {xa,(l)n }l∈{1,2,...,M}. The corre-
sponding mean and covariance are then evaluated empirically from the ensemble
after the respective step providing estimates m̂f

n, P̂ f
n , m̂a

n and P̂ a
n . Dependent quan-

tities such as K̂n or Σ̂n are then calculated via these estimates. The EnKF with
perturbed observations as shortly given here can be understood as a Monte Carlo
implementation of a best, linear, unbiased estimator given the Kalman setting. The
empirical estimators hold in the mean field approximation and recover the regular
Kalman filter.
The main change for the diffusion score matching EnKF with perturbed observa-
tions from the regularDw-KF is in substituting the forecast meanmf

n with the indi-
vidual members of the forecast ensemble {xf,(l)n }l∈{1,2,...,M} in the novel analysis step.
This majorly influences ŵ in that it now needs taking both yn and x

f,(l)
n as argu-

ments and thus also impacts every computation implicitly and explicitly taking ŵ.
The resulting equations with changes are then

ŵn(yn;xf,(l)n ) = (1 +
||yn −Hnx

f,(l)
n ||2

Σ−1
n

q2
)−

1
2

Nn(yn;xf,(l)n )−1 = 2βŵ2(yn;xf,(l)n )R−1
n

K̃n(yn;xf,(l)n ) = P̂ f
nH

T
n [Nn(yn;xf,(l)n ) +HnP̂

f
nH

T
n ]−1

P̃ a
n (yn;xf,(l)n ) = P̂ f

n − K̃n(yn;xf,(l)n )HnP̂
f
n

xa,(l)n = xf,(l)n − K̃n(yn;xf,(l)n )[Hnx
f,(l)
n + ε(l)n − yn)− 2βP̃ a

n (yn;xf,(l)n )
(∗)

HT
n∇ynŵ

2
n(yn;xf,(l)n )

(2.69)

for l ∈ {1, 2, . . . ,M}. The corresponding estimators are then again taken empir-
ically for mean and covariance after the forecast and analysis step. As the em-
pirical analysis covariance in (∗) is not yet available, we need taking the individ-
ual analysis covariance matrix computed in the previous equation to update each
ensemble member. The {ε(l)n }l∈{1,2,...,M} are hereby now independent samples via
ε

(l)
n ∼ N (0, Nn(yn;x

f,(l)
n )). Again, the result recovers the regular diffusion score

matching Kalman filter in the mean field limit.
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What is the intuitive upside of this approach? Next to not having to propagate the
signal covariance from analysis to forecast, the ensemble members seem to explore
the signal space and the signal dynamicmuchmore. Ensemblemembers reasonably
close to an observation are steered towards it while ensemble members much fur-
ther away stay close to where they were propagated to in the forecast step. For the
linear case we expect no major differences from the regular diffusion score matching
Kalman filter. However, the approach is promising in managing non-linear signal
dynamics under observation mis-specification concerns. Observations with large
deviation from the forecast mean produced by chaotic behavior of the non-linear dy-
namic can easily be confused with outliers, however, the exploration of this chaotic
behavior via the ensemble members can account for that to reasonable extend un-
der uncertainty. The fairly direct problem is the loss of Gaussianity of the forecast
distributions and thus the analysis distributions drawing into the realm of particle
filters and sequential Monte Carlo. However, the EnKF is surprisingly helpful even
then and the diffusion score matching EnKF with perturbed observation ideally
keeps this property. Assuming not needing to tune the learning rate by keeping the
default choice of β = 1, this avoids a major issue as the approach for the linear case
in matching β in KL divergence to the regular Bayesian case is no longer reliable
in non-linear system.

2.4. Experiments: Linear and Non-Linear Simulations

To showcase the theoretical approaches and results we conduct four experiments
A-D each aiming to provide a different focus and insight. Hereby we are mainly
interested in mean estimates after the analysis step as there were no changes done
to the forecast step.
Experiment A focuses on the influence of the learning rate in a simple implementa-
tion of a one-dimensional Ornstein-Uhlenbeck process with contaminated observa-
tions. Experiment B implements theDw-Kalman filter for a four-dimensional target
tracking model with contaminated observations to provide insight on unobserved
velocities highlighting the robustness. Experiment C implements a linear Rössler-
system with contaminated partial observations. The generated signal is estimated
with an EnKF with perturbed observations and the Dw-EnKF with perturbed ob-
servations with small ensemble size for direct comparison. Lastly, Experiment D
employs the popular chaotic Lorenz-63 model and again puts the EnKF and the
Dw-EnKF next to each other while also providing first insights at performance of
the Dw-EnKF for non-linear systems.
The experiments are partially inspired and taken from (Reich and Cotter, 2015) and
(Evensen et al., 2022). Similarly, we either use a forward Euler or Euler-Murayama
scheme for simulation. Additional graphs on each experiment are provided in the
appendix.

All simulations were done in R version 4.2.2.
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2.4.1. Experiment A: One-Dimensional

Ornstein-Uhlenbeck-Process

Figure 2.2.: Kullback-Leibler divergence of Kalman Filter and Dw-Kalman filter
with learning rate β after T ∗ = 1.5.

The first experiment aims to investigate the effect of tuning learning rates as well
as showcasing the general robustness against observation contamination. For the
model we chose a simple uni-variate Ornstein-Uhlenbeck-process discretized and
simulated via an Euler-Murayama scheme - essentially resulting in a uni-variate
AR(1)-process. The underlying model is given as

dxt = −θxtdt+ σdWt (2.70)

with state xt, initial value x0 = 5, mean reversion parameter θ = 2.5, volatility σ = 2
and standard Brownian motion Wt. We simulate over an interval [0, 1.5] with step
size δt = 0.005 for the discretized model

xt+1 = xt − δtθxt + δtσεt (2.71)

with εt iid standard Gaussian noise. The contaminated observations are generated
at tout = 1, so at every time step via

yt = xt + ελt (2.72)

with contaminated observation noise ελt ∼ N (0,
√
δtR)+λN (0,

√
5 · δtR), observation

variance R = 5 and contamination parameter λ = 0.15. In practice this resulted in
generating yt via drawing q ∼ Ber(p = λ) with ε(1)

t and ε(2)
t standard Gaussian noise

and ελt = δtRε
(1)
t + qδt10Rε

(2)
t .

The learning rate β was tuned by generating observations without contamination
and matching the posterior of the Dw-KF to to the one of the regular KF in KL-
divergence at T ∗ = 1.5. The obtained curve is nicely convex leading to an approxi-
mate β∗ ≈ 0.45 (see figure 2.2). Notice hereby that this values is fairly different from
the suggested choice of β ≈ 3

4
from the considerations on approximately recovering

E[2βŵ2(Y )] ≈ 1. We also included the posterior mean estimates and variance for a
default choice of β = 1 for comparison.
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The results are shown in figure 2.3 (see figure A.1 and figure A.2 in the appendix
for additional graphs). As can be seen, they align nicely with the considerations in
the previous section on the learning rate. Especially comparing the choice of β = 1
with the tuned choice β∗ we see only little impact on the adapted Kalman gain and
the divergence term. The smaller learning rate leads to potentially larger values of
Nn(yn)−1 and thus to smaller values of the adapted Kalman gain showing in slightly
larger variance and reduced impact of the observation. The divergence term can
then only provide little impulses. Yet, although tuning may improve performance
of the Dw-Kalman filter, the effect is mostly negligible and the desired robustness
is also acquired with the default choice of β = 1. More important, the results agree
with (Altamirano et al., 2023b) in that they produce well-calibrated uncertainties -
fairly regardless of learning rates via balancing mean estimates and variances.

Regarding the main emphasis of this chapter, the outlier robustness or impact of
mis-specification, this first experiment convincingly portrays the theoretical results
in that contaminated observations do not majorly impact the mean estimates. This
also reflects in the naive MSE evaluation over all estimates and the squared error
plots (see A.3 and A.4), however, we have to keep in mind that the MSE is sensible
especially to outliers itself and it was only aggregated over time, not over repeated
simulations.

2.4.2. Experiment B: Two-dimensional Target Tracking

For the second experiment we choose a simplification of the popular target tracking
task with signal space X = R4 containing x-position, x-velocity, y-position as well
as y-velocity, and observation space Y = R2 containing the measured x-position, as
well as y-position. We design the signal model discrete and instead focus for this
experiment on the robustness in the unobserved velocity dimensions. Given the
usual Kalman setting up to contamination, we have

Xn+1 = AnXn +Q
1
2
nWn

Yn = HnXn +R
1
2
nV

λ
n

(2.73)

with Wn standard Gaussian noise and V λ
n contaminated noise in the respective di-

mensions. As usual for these kind of models, yet much more simplified, we choose
An =

(
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
, Hn = ( 1 0 0 0

0 0 1 0 ) and signal noise covariance Qn = 0.1 ·
(

1 0.5 0.5 0
0.5 1 0 0
0.5 0 1 0.1
0 0 0.1 1

)
.

The initial signal is chosen as X0 = (0, 1, 0, 0)T . The contaminated observations are
generated via R

1
2
nV λ

n ∼ N (0, Rn)+λN (0, 100Rn) with Rn = ( 0.1 0.01
0.01 0.1 ) and λ = 0.2. The

contaminated observations are generated as before. We simulate Xn for n in [0, 2]
with step-size dn = 0.01 resulting in 200 positions with nout = 1, so 200 observations.
The learning rate β was chosen as its default 1. The object trajectory and analysis
mean estimates for the regular Kalman filter simulation can be seen in figure A.5
and figure A.6 in the appendix.
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Figure 2.3.: Side-by-side graph comparison of the simulated signal and contami-
nated observations with the analysis/posterior mean estimates of the
regular KF (top) and the Dw-KF for β = 1 (middle) and tuned β∗ (bot-
tom) each with the respective 95%-CI. Dotted lines signal instances of
observation contamination.

The results of the main experiment presented in figure 2.4 and figure 2.5 support
the theoretical robustness of the Dw-Kalman filter as the estimated trajectory is
much more reliable in following the true simulated trajectory. Further, while the
velocity dimensions are in much smaller scale compared to the positions, the impact
of the contamination on the estimation of the regular Kalman filter shows clearly
with the Dw-Kalman filter being much more stable. Accordingly, the diffusion score
matching posterior approach seems reliable under contamination of the observa-
tions or observation noise mis-specification.
Additional graphs for the regular Kalman filter with contaminated observations
are provided in figure (A.5) and (A.6) in the appendix.

2.4.3. Experiment C: Rössler Model and Ensemble Simulation

With experiments A and B providing evidence for the theoretical results on robust-
ness and the considerations on the effect of the learning, we want to focus on in-
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Figure 2.4.: True object trajectory in x and y-coordinate (blue), measured object tra-
jectory (red) and estimated object trajectory for the regular KF (black)
and tuned Dw-KF (green).

vestigating the sketched diffusion score matching ensemble Kalman filter with per-
turbed observations with experiments C and D. A major issue hereby may lie in
tuning the learning rate, however, with the previous results supporting good per-
formance for a default choice of β = 1, we will repeat the choice here as well.

As an initial test for the Dw-EnKF we chose the popular Rössler model with pa-
rameter choices such that it results in a linear system. We take this example from
(Evensen et al., 2022) and implement it in similar fashion. We start with the linear
Rössler matrix M =

(
0 −1 −1
1 a 0
0 0 −c

)
with a = 0.1 and c = 0.05 resulting in an oscillatory

trajectory in the x-y-plane with reverting behavior in the z-coordinate. Again, we
discretize and simulate the system via an Euler-Murayama scheme resulting in a
signal propagation via A = Id− δtM and

Xt−1 = AXt + δtQ
1
2Wt (2.74)

with Q = 0.05
(

1 0.1 0
0.1 1 0
0 0 0.005

)
, Wt standard Gaussian noise of appropriate dimension,

step size δt = 0.1 and initial value X0 = (1, 1, 0)T . The observations are generated
at tout = 10 by

Yt = HXt +R
1
2V λ

t (2.75)

with R = ( 2 0
0 2 ) and H = ( 1 0 0

0 0 1 ) so that the second dimension cannot be observed
directly and V λ

t is contaminated standard Gaussian noise as before with variance
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Figure 2.5.: Side-by-side graph comparison of the simulated signal (true), gener-
ated observations (obs), the KF analysis mean (kal) and the tuned Dw-
KF analysis mean (dw). Dotted lines signal instances of observation
contamination.

factor 25
(

1 0 0
0 1 0
0 0 0.2

)
and λ = 0.25.

As we wanted to investigate the capabilities of the Dw-EnKF also regarding small
ensemble sizes, we picked M = 10. An initial investigation of the Dw-EnKF to in-
spect general performance given the defautl learning rate with no contamination
was done over a window [0, 40]. The actual simulation with contaminated observa-
tions was done over a window [0, 50].

The main results shown in 2.6 agree with especially the unobserved dimension ben-
efiting from the robustness of the diffusion score matching approach. The results
look very promising for further investigations on ensemble implementation of the
approach also for unfeasible or very challenging forecast covariance propagation. A
comparison on uncontaminated observations as well as the individual graphs for
each dimension can be found in figure (A.7) to (A.13) in the appendix.
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Figure 2.6.: Side-by-side graph comparison of the simulated signal (Refrence), gen-
erated observations (Observation), the EnKF analysis mean (EnKF)
and the Dw-EnKF analysis mean (Dw-EnKF). Dotted lines signal in-
stances of observation contamination.

2.4.4. Experiment D: The Lorenz-63 Test

Finally, we want to test the performance of the sketched Dw-EnKF with perturbed
observations for the chaotic Lorenz-63model. We hereby take the simulationmainly
from (Reich and Cotter, 2015). Recall, let z be the signal variable, we then have the
vector field f given by

f(z) :=

 σ(z2 − z1)
z1(ρ− z3)− z2

z1z2 − βz3

 (2.76)

with parameters σ = 10, ρ = 28 and β = 8
3
. We chose a step-size of δt = 0.001

and the initial value z0 = (−0.587,−0563, 16.870)T . To implement a forward Euler
scheme as numerical approximation, we include a non-autonomous forcing term gn
that essentially comes down to a tent map iteration. We set a = (δt)−

1
2 and the

initial forcing term as g0 = (a(2−
1
2 − 1

2
), a(3−

1
2 − 1

2
), a(5−

1
2 − 1

2
) with the entry-wise

recursive definition

gn+1,i =

{
1.99999gn,i + a

2
if gn,i < 0

−1.99999gn,i + a
2

otherwise.
(2.77)
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The signal is then propagated via

zn+1 = zn + δt(f(zn) + gn) (2.78)

over a window [0, 5] for investigating performance for the default choice of tuning
parameter and [0, 10] for the experiment. Observations were generated at tout = 100
via

Yn = Hnzn +
√

2V λ
n (2.79)

withHn = ( 1 0 1
0 0 1 ) and V λ

n contaminated standard Gaussian noise as before with vari-
ance factor 10 and λ = 0.1. We chose an ensemble size ofM = 5 to mimic application
for highly expansive forward models. While a default choice of β = 1 generally re-
sults in good performance, it can still be improved as shown in the first experiment.
As the EnKF is no longer optimal or that reliable for the non-linear system, the
tuning heuristic via matching KL-divergence no longer holds. The default learning
rate managed to recover results of the regular EnKF and no contamination (see
figure A.14 to figure A.17 in the appendix for graphs of the uncontaminated simu-
lation).

Figure 2.7.: Side-by-side graph comparison of the simulated signal (Refrence), gen-
erated observations (Observation), the EnKF analysis mean (EnKF)
and the Dw-EnKF analysis mean (Dw-EnKF). Dotted lines signal in-
stances of observation contamination.
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The result of a single simulation can only reach so far. Accordingly conclusions
should be drawn with great care. Still, from the presented trajectory it seems that
while both filters eventually get off track, theDw-EnKFwith perturbed observations
manages to noticeably recover contrary to the regular EnKF. The contaminated ob-
servations hereby seem to throw the EnKF off-track much earlier compared to the
simulation with no contamination. Similarly, the Dw-EnKF is thrown off in the in-
terval [4, 5], yet, manages to catch on again. The hypothesis that the robustness
helps in dealing with non-linearity still stands and needs further investigation.

Additional graphs for uncontaminated observations as well as individual dimen-
sions can be found in figure (A.14) to (A.20) in the appendix.

2.5. Discussion and Conclusion

Let us take a step back at this point. The aim of this part was to adapt the popular
Kalman filter to achieve robustness regarding observation noise mis-specification
regarding heavy tails and measurement outliers. The overarching goal is still in re-
ducing impact ofmis-specification, including instances of signal noisemis-specification
showing in jumps and rapid change of the signal.

To achieve the desired robustness in observation outliers, we introduced the concept
of generalized posteriors andmore specific diffusion scorematching posteriors given
the usual Kalman setting. We proved robustness of the diffusion score matching
posterior for Gaussian prior and likelihood via the framework of ε−contaminated
observation distribution and a bound on the double supremum over the posterior
influence function under mild constraints. In the process we chose an adapted IMQ-
kernel utilizing Mahalanobis distance and the positive root of the observation noise
covariance for the diffusion matrix and managed to provide a recursive formula for
closed form updating of the posterior, so a form of conjugacy, alike to the regular
Kalman filter. We discussed the ideas and workings of the adapted and novel terms
as well as addressed potential in tuning the learning rate parameter β. We ex-
tended on the results by addressing the open problem of long-term stability of the
posterior and outlined an ensemble based implementation of the recursive formula,
however, with further investigation needed. The intuitions and theoretical results
were supported via experiments A and B with experiments C and D providing first
ideas about the chances and challenges regarding the particle approach and non-
linearity.

It is reasonable to conclude that the approach of the Dw-Kalman filter is a success
in its main idea of targeting observation noise mis-specification and thus opens up
a variety of directions to go from here - the main direction of this work is in next
targeting signal noise mis-specification to combine both later. We are still aware of
the initial motivation by the philosophical approach in (Gelman and Shalizi, 2013)
on the challenges in Bayesian statistics and modelling. Further, also taking the
perspectives in (Morzfeld and Reich, 2018) into consideration, having to assume a
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model to be well-specified is a strong constraint yet it can often only be addressed to
limited extend also for reasons of practicability. The presented results contribute
towards reducing the need of this assumption while maintaining this practicability.
For further research apart from detecting instance of signal noise mis-specification,
we propose investigations on particle approaches similar to what was sketched here,
also recalling first results in (Boustati et al., 2020). Further, the theoretical results
should also hold for truncated Gaussian distributions on bound subsets of real vec-
tor spaces, however, likely need to adapting some details. Next to the idea of fil-
tering, an adaptation along the lines of the popular Rauch-Tung-Striebel smoother
seems rigth around the corner in investigating joining backwards propagation and
the previous posteriors of the dynamical system. Finally, the long term stability is
of major concern. While briefly discussed it still needs more sophisticated evalua-
tion. While the approach presented here produced good results, there are several
aspects that can be changed and adjusted with an emphasis on the design of diffu-
sion matrix w(y) in combination with tuning the learning rate β.

This leads to the limits of this work. With the explicit dependency on the obser-
vations in the Kalman gain and thus the analysis/posterior covariance, we lose the
ability to pre-compute and thus need to put a stronger focus on numerical complex-
ity. The main bottleneck hereby then lies in the inversion required for the Kalman
gain, however, this is similar for the regular Kalman filter. Apart from that, all
required operations are straight forward with linear complexity of the observation
dimension Y with some even reducing to simple matrix operations depending on the
implementation. This agrees with the results in (Altamirano et al., 2023b) claiming
the diffusion score matching approach as scalable and cheap compared to previous
robust posteriors.

This work is not exhaustive in its comparison to other approaches for robust Kalman
filtering such as in (Zhu et al., 2002), (Agamennoni et al., 2011), (Chang, 2014),
(Wang et al., 2018) and (Li et al., 2020). Approaches hereby cover Huber’s M-
estimators, concepts from robust regression and explicitly modelling heavy tailed
noise via t-distributions among others. However, due to the ambiguity of the term
robustness in literature comparison is not as straight forward. To give an example,
(Wang et al., 2018) proposes an adaptation to the Kalman filter regarding outlier
robustness. While their problem may be similar to mis-specification of observation
noise in practice, they aim for a detect-and-reject approach explicitly not incorporat-
ing outliers in their filtering while the proposed approach of this work aims to still
get as many information as possible from them. Either approach might be desired
for some applications and lacking in others depending on context. The majority of
approaches produce a recursive formula and usually confirm their robustness via
simulation results, but rarely in a robustness framework such as contaminated ob-
servation distributions.
To close this first part, the research area seems lacking a unified understanding of
its terms and problems as well as an overview of established results. While topics
like change point detection in the next chapter are also scattered across research
fields, they frequently provide summaries and overviews for shared understandings
of the similar problem varieties. Accordingly, this work contributes to the body of
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literature on robust Kalman filtering, but is yet to be placed within. An overview
of methods addressing a similar problem formulation as we did is given in (Das et
al., 2021) experimentally comparing them for an application in wheel odometry. In
their experiments, they compared a Huber Kalman filter utilizing M-estimators as
MLEs for robust loss functions, a covariance scaling Kalman filter also employing
Mahalanobis distance and variational filters such as the previously mentioned one,
however, their experimental results show no clear edge in RMSE of one over the
other. This puts emphasis on tuning giving a slight edge to the covariance scaling
approach as it only takes a confidence level while all other methods require several
tuning parameters with some needing empirical tuning.
Thementioned covariance scaling Kalman filter introduced in (Chang, 2014) is sim-
ilar to the presented approach in that it also introduces Mahalanobis distance to
address modelling errors. Still, there are several significant differences especially
in derivation and implementation. Chang utilizes the χ2-distribution to test for
normality and only after rejecting the null-hypothesis of normality a scaling factor
is employed to adjust the observation noise covariance via Newton’s method until
the testing criterion can no longer be rejected with the adjusted covariance. The
resulting algorithm is then evaluated empirically. This is fundamentally different
from the presented approach via generalised Bayesian posteriors, employing dif-
fusion score matching with Mahalanobis distance utilized in the IMQ-kernel and
the observation noise covariance scaling as a result of this fundamental change
of the inner workings. Accordingly, the presented approach here is a bottom-up
derivation addressing the inherent source of outlier sensitivity resulting from the
Kullback-Leibler divergence while the approach in (Chang, 2014) being a top down
adjustment to the symptoms.

The diffusion score matching Kalman filter derived in this first part is a rigorous
and novel result with a high potential for further investigation.
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Constructing an Approach

Change point detection is a multifaceted, divers and widely spread research topic
across disciplines. The various notions of change are hereby as different as what
may change in a statistical model and reach far beyond the scope of this work. How-
ever, the general idea is similar all across - breaking with certain in repetitive struc-
ture of distribution in statistical modelling via relaxations allowing for some form
of change at an unknown point in a data generating process. In practice, this may
frequently translate to not assuming identical distribution throughout a whole sam-
ple. For the scope of this second part, we want to pick up the intuition put forward
in (Adams and MacKay, 2007) in change point detection as «the identification of
abrupt changes in the generative parameters of sequential data». This short and
on point notion puts emphasizes on the idea of detecting the presence of change and
recovering the temporal location of an instance of change in at least one aspect of
the data generating process from an observations sequence. This adequately suits
the introduced Kalman setting with the signal as the single most central aspect of
the data generating process in that it directly translates into the observation mean
for the lienar Guassian setting, and thus, into the resulting challenge of detecting
sudden jumps in the signal via detecting change in mean from sequential obser-
vations. As initially introduced, we want to interpret these jumps to be results of
mis-specification in heavy tailedness of the signal noise, so realization of theses
heavy tails not accounted for by Gaussian signal noise. In the scope of this chap-
ter we will introduce them as additional driving terms δη,kuk in the signal process
at unknown, yet not necessarily random times η, the temporal change point loca-
tions, with δη,n providing some form of emergence criteria such as δη,n = 1{η = n}
or δη,n = 1{η ≥ n} in what will be introduced as the minimax detection problem, or
δη,k = πn with πn non-negative, discrete random variable, e.g. πn ∼iid Ber(ϕn), in the
Bayesian setting, similar to the ε-contamination in the previous chapter regarding
observation noise mis-specification. To put in different terms, δη,k ∈ {0, 1} is an in-
dicator for the additional driving term un depending on η ∈ N indicating instances
of change and the regular discrete time index n ∈ N.

As said, the field of change point detection is vast and divers. Accordingly, we want
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to hone in on methods and results relevant for the aim of this section. Detecting in-
stances of abrupt jumps, or change, in the signal is hereby a crucial stepping stone
towards the central aim in accounting for signal noise mis-specification in inference
and forecasting procedures - therefore, similar to the previous section, the desired
result will be an adaptation of the popular Kalman filter incorporating potential sig-
nal jumps under considerations of uncertainty. In the scope of this chapter we will
not consider observation noisemis-specification and only focus on challenges arising
with signal noise mis-specification for the regular Kalman setting and correspond-
ing required additional assumptions. To suit the Kalman setting, we are therefore
mainly interested in sequential and online approaches to detecting change in mean
of stochastic sequences.

This chapter will first provide a brief introduction to the broader setting of sequen-
tial change point detection with its most central results providing required tools
for considerations further down. The main references hereby are recent reviews
and popular monographs as well as single key publications. The popular CUSUM
approach related to sequential hypothesis testing and its variations, frequent opti-
mality criteria and adaptations to different assumptions and better computational
feasibility will hereby be the main focus. Next, we will introduce the more recent,
successful approach of Bayesian online change point detection via run-length pos-
teriors as well as an adaptation in restarted BOCPD and adapt them and their
intuition for exploiting results on CUSUM schemes in deriving tuning criteria sat-
isfying notions of asymptotic optimality. The resulting scheme, denoted CUSUM
restarted BOCPD (CR-BOCPD) is hereby the central result of this chapter. After-
wards, we want to finish by deriving current state-of-the-art via χ2 strategies for
linear Gaussian systems. Both will be related back to detecting abrupt signal jumps
in Kalman filtering and utilized in constructing Gaussian mixture model filters un-
der relaxed assumptions.
Taking everything together in a concrete road-map: We provide valuable results
on CUSUM strategies. We modify BOCPD and R-BOCPD to exploit these results
on CUSUM strategies. We explore current state-of-the-art strategies for detect-
ing change in linear Gaussian systems. We propose strategies for inference under
change in the Kalman setting via Gaussian mixture models of multiple Kalman fil-
ters.

3.1. Motivating CUSUM Strategies in Sequential
Change Point Detection

As put in (Niu et al., 2016), «there exists a massive number of research papers on
change-point detection or closely related topics». The field enjoys relevance across
research areas, e.g. in engineering, climatology, the bio-sciences and linguistics
among others, with frequent terminology including anomaly, event, outlier and ir-
regularity detection (Namoano et al., 2019). The sequential change point detection
approaches we are interested in are closely related to the broader problem of se-
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quential probability ratio testing (SPRT) of hypotheses and therefore have their
roots in pioneering work in (Wald, 1947) and (Girshick and Rubin, 1952) on se-
quential decision making. Our focus will be with the celebrated and widely used
CUSUM approach introduced in Page’s line of work in (E. S. Page, 1954) and (E.
Page, 1955) which was later related to open-end SPRTs in milestone works such
as (Lorden, 1971). As it is a crucial contribution to the field of sequential change
point detection, we want to adapt the notation in (Lai, 1998) of the cumulative sum
(CUSUM) procedure for non-iid random variables via conditional density functions.
Moreover, its also the results in (Lai, 1998) providing the most relevant results of
this section and the ideas of this chapter.
Let Y1:(η−1) be random vectors with a common density function f0 and let Yη:n be
RVs with common density function f1. Pη and Eη denote the probability measure
and expectation for change at 1 ≤ η ≤ n and P0 and E0 denote the probability mea-
sure and expectation for no change, so η = ∞. We are explicitly interested in non-
independent random variables. Let f0(·|Y1:(n−1)) be the conditional density function
of Yn under P0 for n ≥ 1 with the conditional density function under Pη given by
f0(·|Y1:(n−1)) for n < η and f1(·|Y1:(n−1)) for n ≥ η. As a key quantity, introduce the
log-likelihood ratio (LLR) statistic

Sn = log[
f1(Yn|Y1:(n−1))

f0(Yn|Y1:(n−1))
] = log[f1(Yn|Y1:(n−1))]− log[f0(Yn|Y1:(n−1))]. (3.1)

Note hereby the role of Kullback-Leibler divergence as expectation of the LLR. The
generalized CUSUM rule is a stopping time

N = inf{n ≥ 1 : max
1≤k≤n

n∑
s=k

Ss ≥ c}

= inf{n ≥ 1 : max
1≤k≤n

n∑
s=k

log[
f1(Ys|Y1:(s−1))

f0(Ys|Y1:(s−1))
] ≥ c}

(3.2)

for a threshold c chosen such that it achieves desired criteria. Define inf{} =∞, so
that for the empty set we maintain the assumption of no change. Further, for n ≥ η
we assume that 1

n−η+1

∑n
s=η Ss converges in probability under Pη to some constant I.

In the iid-case, so assuming independence of the corresponding distributions, this
constant is given by the Kullback-Leibler divergence of the pre- and post change
density functions. Another frequent sequential change point detection procedure,
however not focus of this work, is the Shiryaev-Roberts-Pollak procedure also based
on the LLR and with similar properties.

3.1.1. Considering Notions of Optimality

The popularity of the CUSUM procedure is rooted in its simplicity, especially for
independent observations, as well as its performance regarding optimality crite-
ria popular in some research communities . In (Xie et al., 2021), authors provided
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a well written summary which will be the basis for a brief introduction to these
notions of optimality here. In sequential change point detection procedures are
subject to a trade-off. Overly sensitive methods quickly fall victim to a high false
alarm rate in that they flag instances of change when there is non present. On the
other hand, more conservative methods may be subject to long delay times between
emergence and detection of change. In essence, both quantities, probability of false
alarm (PFA) and detection delay resemble the usual type-I and type-II errors in
statistics in that we work with the null hypothesis of no change versus multiple
alternative hypothesis of change at respective instances. Accordingly, the PFA, so
the type-I error of supposedly detecting change when there is non, is what we want
to control via a fixed bound with detection delay, akin to the type-II error of not de-
tecting a present change, minimised or equivalently maximised in power for a given
sample size. The PFA constraint generally translates into the detection threshold
value of a procedure such as the value c in (3.2). Therefore, the choice of a threshold
value directly influences the detection delay in the sketched trade off. The central
challenge is in finding procedures balancing both regarding some notion of detection
delay via finding threshold values minimising this detection delay for a given, fixed
probability of false alarm. Hereby two settings are distinguished: The setting of
the minimax or non-Bayesian change point detection problem assumes the change
point η ≥ 1 to be deterministic and unknown. The Bayesian change point detection
setting on the other hand assumes a change point to be a realisation of an integer
valued random variable with non-negative support.

Taking the Frequentist Perspective

Minimax optimality faces the problem that both probability of false alarm and op-
timal detection delay are more challenging to precisely define. This is to an even
greater extent the case when considering the stretched body of literature with dif-
ferent notions present in different research communities. Following (A. G. Tar-
takovsky, 2009), we want to start with a basic notion of loss measured via proba-
bility of false alarm (PFA) Pη[N < η] or Eη[N · 1{N < η}], the expected time to false
alarm. We observe that controlling these quantities for all η ≥ 1 is equivalent to
controlling the corresponding quantities under the null hypothesis in P0[N < ∞]
and E0[N ]. A central insight is then that P0[N < ∞] ≤ α∗0 for 0 < α∗0 < 1 leads to
E0[N ] = ∞ and vice versa E0[N ] < N∗ for N∗ < ∞ leads to P0[N < ∞] = 1. Either
offers their own approaches and challenges and has arguments for and against. For
the literature and line of workwewant focus on, the latter in choice of a constraint in
finite expected time to false alarm, so P0[N <∞] = 1, is considered. It indicates that
the stopping rule, such as (3.2), will necessarily activate in finite time. A central
reason hereby lies in choosing constant threshold values of detection procedures to
obtain theoretical results in notions of asymptotic optimality of interest. Address-
ing this issue (Borovkov, 1999) and (Alami et al., 2020), among others, investigated
curvilinear thresholds achieving similar notions of asymptotic optimality under ad-
ditional strict assumptions while maintaining P0[N <∞] ≤ α∗0 for 0 < α∗0 < 1.
Back to (Xie et al., 2021), a frequent quantity given the limitations is the average
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run length ARL(N) = E0[N ]. Its reciprocal is then what is generally referred to as
false alarm rate FAR(N) = 1

ARL(N)
= 1

E0[N ]
with the corresponding interpretation

via rate of false alarms occurring for repeated procedures. We want to think of it
as a substitute for the PFA given from a choice of constant threshold c. While we
know that the process will necessarily terminate with probability 1, we still want to
impose some sort of control on the frequency of such an event this way. Analogue to
the hypothesis testing framework, we want to find a minimax most powerful change
detection procedure minimizing measures of detection delay over all procedures T
satisfying FAR(T ) ≤ α0 with α0 ∈ (0, 1]. Over time, two central measures of detec-
tion delay in a minimax sense have been established. The first was introduced by
Lorden in (Lorden, 1971) relating CUSUM procedures to open-end SPRTs. His idea
was in a notion of worst average detection delay via the supremum of the average
detection delay conditioned on the worst possible realizations:

WADD(T ) = sup
n≥1

ess supEn[(T − n)+|Y1:(n−1)]. (3.3)

Deemed an overly pessimistic measure of detection delay in considering the worst
possible pre-change sample, the second measure was brought forth by Pollak in
(Pollak, 1985):

CADD(T ) = sup
n≥1

En[T − n|T ≥ n]. (3.4)

For any procedure T we observe WADD(T ) ≥ CADD(T ). As the exact evaluation
of both measures is highly challenging, mainly first-order asymptotically optimal
solutions were investigated. To specify, first order asymptotic optimality hereby
refers to the fraction of optimal and achieved detection delay approaching 1 as α0 →
0, e.g. CADD(N)

inf
T

CADD(T )
→ 1 as α0 → 0. In his milestone work (Lai, 1998), Lai proved the

asymptotic lower bound for the CADD, and thus also for the WADD, in the general
non-iid setting introduced above via

WADD(T ) ≥ CADD(T ) ≥ | log(α0)|
I

(1 + o(1)) (3.5)

with positive constant I from the above convergence constraint and reducing to
I = DKL(f0||f1) in the iid-case, for all procedures T withFAR(T ) ≤ α0 as α0 → 0. Fur-
thermore, Lai proved that the CUSUMprocedure (3.2) attains this asymptotic lower
bound for appropriately chosen threshold c ∼ | log(α0)| and is first-order asymp-
totic minimax optimal in both the sense of Lorden’s WADD and Pollak’s CADD (Lai,
1998).

As an important remark, the introduced notions of minimax optimality here are
just two among many introduced in literature under a large variety of constraints
and assumptions. It grew from a classical line of work, however, has not seen much
development in recent years. Wemainly want to focus on this specific notion of first-
order asymptotic optimality under constraints on the rate of false alarms as it has
previous investigation and results regarding change in linear Gaussian state space
models. Other notions of minimax optimality for this context need exploring with
additional concepts for shared optimality regarding inference combining filtering
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and change point detection.

Taking the Bayesian Perspective

The notion of Bayesian optimality is fairly more direct in comparison, as location
of change can be quantified via their random character. As given in (Xie et al.,
2021), let η be an integer valued random variable with non-negative support and
probability mass function πn = P[η = n]. To give an example, a frequent assumption
is then for η to follow a geometric distribution via πn = P[η = n] = ϕ(1−ϕ)n−11{n ≥ 1}
with 0 < ϕ < 1 and π0 = 0. Note that this intuition is more sophisticated than the
idea sketched in the introduction, yet resembles the same idea in practice. Given
a detection procedure T , the average detection delay (ADD) and the probability of
false alarm (PFA) are then given via

ADD(T ) = E[(T − η)+] =
∞∑
n=0

πnEn[(T − η)+]

PFA(T ) = P[T < η] =
∞∑
n=0

πnPn[T < η].

(3.6)

Again, we want to focus on all detection procedures with PFA(T ) ≤ α∗0 for fixed
α∗0 ∈ (0, 1). In (Lai, 1998), Lai proved an asymptotic lower bound for the ADD
given the constraint on the PFA and proved first-order asymptotic optimality of the
CUSUM procedure in (3.2) for adequately chosen threshold c and certain additional
conditions.

Against this Background we want to critically emphasize the concept of this proba-
bility mass function πn. While it is as valuable and highly useful tool for theoretical
analysis, there is usually no reliable access to it in practice. It frequently needs
assuming in corresponding strategies for application, however, we then necessarily
face the issue that we are very likely going to be wrong about this random quan-
tity loosing theoretical results and guarantees. Accordingly, we want to lean more
towards the minimax setting as introduced here to not rely on such a crucial as-
sumption.

3.1.2. Versatility of the CUSUM Rule

A key takeaway lies in the incredible power and versatility of the CUSUM proce-
dure. It achieves first-order asymptotic optimality in all three popular senses for
corresponding choices of threshold value c. The main approach hereby is to utilizes
Doob’s sub-martingale inequality (see (Basseville, Nikiforov, et al., 1993) for addi-
tional details) and choice of c ∼ | log(α0)|.
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Given all desirable properties, where are the limitations, there are two major draw-
backs which are both also addressed in (Lai, 1998). The first lies in computational
cost. For the iid-case, the log likelihood ration statistic Sn reduces to a simple re-
cursion in Sn = (Sn−1 + log(f1(Yn)

f0(Yn)
))+ with detection rule N = inf{n ≥ 1 : Sn ≥ c}.

However, for the generalized CUSUM rule in (3.2) no such recursion is available. In-
stead, it requires maximization in index k ∈ {1, 2, . . . , n} at time n and for every time
step leading to linear increasing computational complexity in the observations. The
popular workaround initially introduced in (A. S. Willsky and Jones, 1974) utilizes
a window-limited adaptation only tracking the lastmmany time points as potential
candidates for change, so k ∈ {m− n,m− n+ 1, . . . , n}.
A second limitation lies in that the CUSUM procedure as given in (3.2) requires
explicit knowledge of the post change density f1. To tackle this wide reaching chal-
lenge in application, there are two popular adaptations of the CUSUM procedure.
Following (Lai, 1998), instead of assuming an explicit post-change density f1, we in-
stead want to assume the post-change density to be a member of some parametric
family fθ with θ ∈ Θ. Accordingly, we also want to adapt the probability measures to
Pη,θ and the corresponding expectation to Eη,θ. Addressing the resulting estimation
problem, we either want to assume some distribution of the unknown parameter
or need estimating it with every step. For the first approach, let G be a probability
distribution on Θ. We then obtain the mixture likelihood ratio statistics

S̃k:n =

∫
Θ

∏n
t=k fθ(Yt|Y1:(t−1))dG(θ)∏n
t=k f0(Yt|Y1:(t−1))

(3.7)

and accordingly the weighted CUSUM procedure

Ñ = inf{n ≥ 1 : max
1≤k≤n

S̃k:n ≥ exp(c)}. (3.8)

If no such probability distribution on the space of the unknown post-change den-
sity parameter is available or reasonable, the second approach wants to employ
maximum likelihood estimation. Define the parameter dependant likelihood ratio
statistics

Sn(θ) = log(
fθ(Yn|Y1:(n−1))

f0(Yn|Y1:(n−1))
). (3.9)

Combining both estimation of θ ∈ Θ and testing then results in the generalized
likelihood ratio (GLR) CUSUM procedure

N̂ = inf{n ≥ 1 : max
1≤k≤n

sup
θ∈Θ

n∑
s=k

Ss(θ) ≥ c}. (3.10)

Both adaptations maintain the first-order asymptotic optimality via attaining the
asymptotic lower bound in detection delay for c ∼ | log(α0)| and α0 → 0 as proven in
(Lai, 1998) under additional assumptions and constraints.
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Making CUSUM Computationally Feasible

Going back to the issue of numerical complexity, the CUSUM procedure (3.2), the
weighted CUSUMprocedure (3.8) andmost of all the GLRCUSUMprocedure (3.10)
are affected by this issue. The window-limited scheme was developed for the GLR
CUSUMapproach regarding detection of abrupt jumps in linear dynamical systems,
such as we are interested in, as the corresponding community has an additional
emphasize on computational feasibility. Introduced in (A. S. Willsky and Jones,
1974) and (A. Willsky and Jones, 1976) to keep complexity to a predetermined fi-
nite limit, it was initially lacking statistical theory. As put forward and proven in
(Lai, 1998), when choosing the window sizem = m(α0) carefully as a function of the
rate of false alarm α0 additionally satisfying strict constraints, the window-limited
CUSUM strategies maintain desired properties in their first-order asymptotic op-
timality. Carefully chosen hereby requires for m(α0) that

m(α0)

| log(α0)|
→ ∞

log(m(α0)) = o(log(α0)) ⇐⇒ log(m(α0))

| log(α0)|
→ 0

as α0 → 0.

(3.11)

One such choice ofm(α) meeting the criteria is therefore given by a poly-logarithmic
function m(α0) = | log(α0)|l with l > 1.

To summarize, the CUSUM procedures attain the asymptotic lower bound under
all three established detection delay notions with respective constraints. More-
over, they do so also for their limited size window variants. Let c ∼ | log(α0)| and
m = m(α0) such that (3.11) holds. We can then adapt the previous procedures such
that max

1≤k≤n
is replaced by max

(n−m)≤k≤n
reducing to the m(α0) most recent hypotheses of

change, e.g

N = inf{n ≥ 1 : max
(n−m)≤k≤n

n∑
s=k

Ss ≥ c} (3.12)

for (3.2), resulting in powerful tools for sequential change point detection - this is,
assuming we can match their requirements on density functions.

3.2. Grasping Bayesian Online Change Point Detection

Effective online implementation of change point detection procedures is of major
concern in practice. As given in (Xie et al., 2021), the introduced sequential proce-
dures allow for that to only some degree. Taking the GLR CUSUM procedure for
example, even for the window-limited adaptations, the parameter estimation with
incorporating novel observations poses a major challenge for effective implementa-
tion.
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Addressing this hurdle, approaches from sequential learning were investigated.
Among them, two highly cited works exploited forward message passing structure
and Bayesian computation resulting in the popular Bayesian online change point
detection (BOCPD) scheme. The approach was developed independently in (Adams
and MacKay, 2007) and (Fearnhead and Liu, 2007) with both approaches founda-
tion for several follow up publications. Among them are (Altamirano et al., 2023b)
and (Alami et al., 2020) as key results to the work at hand. For this section we will
focus on the formulation of Bayesian online change point detection as introduced
in (Adams and MacKay, 2007) and sequential notation as well as simplifications
similar to analysis in (Alami et al., 2020).

Core Ideas in BOCPD

The central intuition of BOCPD lies in evaluating different scenarios about sup-
posed instances of change via run-length posteriors counting time steps since a last
presumed instance of change. Using Bayes theorem, a prior probability of change
is combined with a parametric model for a conditional observation likelihood of spe-
cific instance of supposed change to obtain the desired posterior on time-steps since
the last change. The utilized structure hereby is very similar to a forward message-
passing algorithm for hidden Markov models. Alongside, conjugacy properties of
exponential family distributions are exploited as observation likelihoods for easy
and implicit online estimation of post-change parameters. In the original approach
in (Adams and MacKay, 2007), assumed change points at k are transformed to run-
lengths rn of a regime since that last assumed change up to current time n via
rn = n− k.
For a latent parameter θ ∈ Θ subject to change, assume the conjugated likelihood-
prior pair P[yn|θ] and P[θ] with posterior P[θ|y1:(n−1)] and cheap access to the cor-
responding marginal distribution P[yn|y1:(n−1)], also called model predictive in the
BOCPD context. Accordingly, the pre- and post-change distributions are assumed
to be recovered for some θ0, θ1 ∈ Θ. Bayes theorem is utilized to obtain the discrete
posterior distribution of run-lengths rn, so a notion of plausibility about a change
point rn time steps ago, via

P[rn|y1:n] =
P[rn, y1:n]

P[y1:n]
. (3.13)

Hereby, we can decompose the joint distribution of run-lengths and available obser-
vations in

P[rn, y1:n] =
∑
rn−1

P[rn, rn−1, y1:n]

=
∑
rn−1

P[rn, yn|rn−1, y1:(n−1)]P[rn−1, y1:(n−1)]

=
∑
rn−1

P[rn|rn−1]P[yn|rn−1, y1:(n−1)]P[rn−1, y1:(n−1)].

(3.14)
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In (Adams and MacKay, 2007), the conditional observation likelihood is reduced to
P[yn|rn−1, y1:(n−1)] = P[yn|rn−1, y(n−rn):(n−1)], so only taking recent observations y(n−rn):(n−1),
thus combining both conditions. The intuition lies in that the implicit Bayesian dis-
tribution of the post-change latent parameter θ1 in P[yn|rn−1, y1:(n−1)] via the under-
lying conjugacy will be most accurate when taking the most amount of observations
available from the post-change distribution with the least amount of observations
from the pre-change distribution. So for the ideal case of rn = n − η for an actual
instance of change at η, the observation yn is most likely for P[yn|rn−1, y1:(n−1)] con-
ditioned only on the observations yη:(n−1). For n = η this reduces to the marginal
distribution over the prior.

The implementation is a recursive update taking the joint distribution at the pre-
vious time step P[rn−1, y1:(n−1)], the conditional likelihood of observing yn given the
observations and the corresponding run-length P[yn|rn−1, y1:(n−1)] and the change
point prior P[rn|rn−1]. The main challenges with BOCPD are in formulating the con-
ditional observation likelihood and in justifying a suitable change point prior. Both
contribute to making the approach fast, however, we deem the latter to impose a
strong assumption. Accordingly, it is also this assumption we want to address with
modification.
The understanding as the model predictive of the marginal or conditional obser-
vation likelihood also arises with its use in predicting a novel observation yn+1 via
marginalizing over all current run-lengths in

P[yn+1|y1:n] =
∑
rn

P[yn+1|rn, y1:n]P[rn|y1:n]. (3.15)

Moreover, it is exactly this weighted sum we are interested in for adjusting the
Kalman filter regarding abrupt jumps in the signal. It is part of what makes
BOCPD attractive for our purpose of estimation and forecasting under potential
signal noise mis-specification next to similarity in structure via conjugacy.
As a short remake on notation, we are currently using P, staying with the original
notation in (Adams and MacKay, 2007). It hereby refers respectively to the contin-
uous density function on yn, the discrete probability measure on rn or the mixture
for the joint measure over both. Later on we will adapt notation to align with the
previous chapter.

As stated in (Adams and MacKay, 2007), the conditional change point prior is em-
phasized as a main contributor for computational efficiency of the approach. It
is essentially a binary random variable providing conditional probabilities of the
run-length to either increasing by one, so no change, or directly being set to zero,
an instance of change occurring, given the current run-length. More precise, let
H(τ) = φ(τ)

1−Φ(τ)
be some hazard function of the run-length with discrete density func-

tion φ and cumulative distribution function Φ. Let P[rn = 0|rn−1] = H(rn−1 + 1),
P[rn = rn−1 + 1|rn−1] = 1 −H(rn−1 + 1) and 0 otherwise. Choosing a geometric den-
sity function for φwith parameter ϕ̃ yields the popularmemory-less hazard function
H(τ) = 1

ϕ̃
= ϕ - a constant probability for an instance of change independent of time.

Note hereby the similarity to the previous notions of probabilistic change. In the
message-passing algorithm, the probability of each positive run-length is only in
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extending a previous run-length while the probability of the run-length dropping
to zero, so change at that instance, is aggregated over all run-lengths at the previ-
ous time step.
The resulting approach requires an initial condition for the observation likelihood
and for the run-length at time zero. When there are no past observations of the
sequence available, (Adams and MacKay, 2007) suggests setting the initial run-
length to zero. If there are past observations with instances of change available,
the run-length prior may be adapted based on the survival function. In the case of
the memory-less hazard function it makes no difference.

To summarise, Bayesian online change point detection combines probability of a
run-length rn at time n describing the time steps since a assumed last instance
of change at k with an observation likelihood conditioned on past observation and
change occurring a given run-length ago, so P[yn|rn−1, y1:(n−1)]. Via marginalizing
over all run-lengths we obtain posterior probabilities of run-lengths given the ob-
servations. In parallel to message-passing, we assume run-length probabilities to
distribute along a trellis according to the change point prior, tracking all previous
possible instances of change.
Herein also arises a central limitation. Similar to the CUSUM procedure, at time
step n, we have to track n + 1 different run-lengths via rn ∈ {0, 1, . . . , n}. The solu-
tion suggested in (Altamirano et al., 2023b), is in pruning the observed run-lengths
either with a threshold or by only tracking a specified number of the most probable
run-lengths. Both may distort the posterior probabilities in the iterative algorithm,
however, seem to have little impact in practical application judging by popularity.

A Note on Bayesian Prediction of Change Points

A direct extension alongside the idea of modelling the change point prior via a haz-
ard function is to then investigate a notion of time until the next instance of change.
Given the intuition of the run-length as a survival process, we want to evaluate
probabilities of when the survival process described by the hazard function might
die - the next instance of change given the current run-lengths. In (Agudelo-España
et al., 2020), the authors develop this idea calling it Bayesian online prediction of
change points. The number of time steps until the next change point is herein de-
noted as residual time. Let on be this residual time expressed via the run-lengths
as the event

rn+1, rn+2, . . . , rn+on > 0 and rn+on+1 = 0. (3.16)

The residual time posterior proposed in (Agudelo-España et al., 2020) is then the
probability of this event via accumulating the hazard function given a current run-
length, so P[on|rn] = H(rn+on)

∏rn+on−1
τ=rn

(1−H(τ)), and marginalized over all current
run-length posteriors P[rn|y1:n], resulting in

P[on|y1:n] =
∑
rn

P[on|rn]P[rn|y1:n]. (3.17)
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Note hereby, the switch from additive term in the index of the event to additive term
of the run-length for evaluation of the probability of the event is intended.
In a remark, the authors emphasize the ability to pre-compute P[on|rn] as it does
not depend on the observations given the implicit assumption on independence of
observation model regarding residual time . Further, for the memory-less hazard
function of a geometric random variable, it is observed that the event in (3.16) re-
duces to the somewhat trivial case P[on|rn] = ϕ(1−ϕ)on which may only hold limited
insight.
In (Agudelo-España et al., 2020) a specific hidden semi-Markov structure is as-
sumed for transitions between regimes of the data generating process. While adapt-
ing to the context at hand is possible and potentially interesting, it is not a concern
here. Moreover, the same holds for the broad idea of Bayesian online change point
prediction. Itmay be interesting depending on application and can likely be incorpo-
rated with little additional effort, yet it requires explicit knowledge or assumptions
on the change point prior. As discussed, this is a strong and limiting assumption
we want best avoided.
Still, we want to make use of this idea whenever there is access to such run-length
prior for a one-step ahead forecast of run-length posteriors, so on = 1. Similar to the
intuition of the forecast step in the Kalman filter, we want to adjust the equation
in (3.14) to obtain

P[rn|y1:(n−1)] ∝
∑
rn−1

P[rn|rn−1]P[rn−1|y1:(n−1)], (3.18)

the run-length forecast for a point in time n based on the available past observa-
tions - essentially leaving out the model predictive in (3.14) as observation yn is not
yet available.

Putting BOCPD in Perspective

At this point, there are threemajor observations about BOCPDwewant to point out.
As already said, the essence of the approach lies in tracking posteriors of different
scenarios resembling instances of change at specific time steps via P[yn|rn−1, y1:(n−1)].
Taking the notion of scenarios in (Alami et al., 2020) with rn = n − k ⇐⇒ k =
n − rn, we want to interpret the conditional observation likelihood in the sense of
a hypothetical scenario of presumed instances of change having occurred at time
k ∈ {1, 2 . . . , n} with P[yn|y1:(n−1), k] but no difference in computation. In line with
that change in interpretation, we want to adapt the idea of run-length posteriors to
the concept of scenario weights.
The second observation was also pointed out in (Alami et al., 2020). The approach
does not perform change point detection in a classical sense of making an explicit
decision about the presence of change. Instead, it provides a notion of plausibility
of an assumed change at a time point k = n − rn given the available observations
via the run-length posterior for rn or scenario weight. The BOCPD approach avoids
concrete decision making, however, it introduces the weighted sum useful in esti-
mation and prediction of observations and the latent parameter of the underlying

Reimann 65



3. Addressing Signal Noise Mis-Specification:
Change Point Inference and Inference Under Change
Bayesian model via (3.15), quantifying uncertainty induced by considering change.
Lastly, as stated in the concluding remarks of (Adams and MacKay, 2007), the run-
length posteriors are exact in the sense that all performed computations are exact.
However, that is only so, assuming the change point prior is a good representation
of the actual occurrence of change points and up to computational reductions such
as pruning. The approach explicitly requires both for application, yet especially
the run-length prior is something we deem difficult to obtain for the applications in
mind.
BOCPD was well received and enjoys large popularity regardless. Yet, as stated
in (Alami et al., 2020), there was no sophisticated, thorough analysis of BOCPD in
some classical sense of sequential change point detection introduced in the begin-
ning of this chapter with measures of false alarm and detection delay. The mod-
ification in (Knoblauch and Damoulas, 2018) and (Altamirano et al., 2023b) via
addressing volatility to outliers of the conjugacy with robust posteriors addressed a
well known issue of a tendency of false alarms of BOCPD, but again results are only
evaluated empirically. Detection in the sense of decision making about instances of
change is only done implicitly by tracking the maximum a-posteriori (MAP) estima-
tor of run-lengths in (Altamirano et al., 2023b) and avoided in (Adams andMacKay,
2007).

Some of the observations go hand in hand. In order to evaluate the approach with
measures of false alarm and detection delay, an explicit decision making rule is re-
quired. Further, exactly evaluating such a rule is highly difficult with the trellis like
structure passing down part of the scenario weights, the run-lengths posteriors, at
every time step. Accordingly, the authors in (Alami et al., 2020) opted for an adap-
tation of the BOCPD approach to what they call restarted BOCPD (R-BOCPD) via
modifying major components and introducing an explicit detection rule. For their
adapted procedure, they proved first-order asymptotic minimax optimality regard-
ing a adjusted measure of detection with the constraint of fixed probability of false
alarm α∗0 ∈ (0, 1) both for data generated fromBernoulli processes and a correspond-
ing likelihood model in Laplace predictors. Further, they showed for R-BOCPD to
outperform the regular BOCPD strategy with the same detection rule and to com-
pare favourably with an improved GLR-CUSUM strategy introduced in (Maillard,
2019) for their specific problem via evaluation of simulation studies. We construct
an approach similar to their adaptation via utilizing results in (Lai, 1998) and mak-
ing use of their wide-reaching implications.

3.3. Modifying BOCPD for CUSUM Versatility

The main ideas in Bayesian online change point detection we want to exploit are in
its intuitive way of implicit estimation of pre- and post-change parameters via con-
jugacy to access conditional pre- and post-change density functions as well as the
aggregation of uncertainty for different scenarios via a weighted sum. It is only in
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that sense that the proposed approach is still Bayesian. There seems to be a promis-
ing similarity to the Kalman setting via utilizing cheap conjugacy and conditional
marginal distribution of the observations available. Furthermore, the marginals
in (3.15) share a strong resemblance in interpretation to the observation evidence
in the Kalman setting up to the condition in run-length rn or equivalently in sce-
nario k. The evidence in the Kalman context, akin to the model predictive in the
BOCPD context, is hereby often taken to be the best quantity for evaluating online
performance in practice with the latent signal not available. Accordingly, it makes
intuitive sense to investigate BOCPD for inference in the Kalman setting when
considering change, i.e. via signal noise mis-specification. However, as discussed,
requiring access to the change point prior is a strong and restrictive assumption. As
applicability is a central concern for Bayesian filtering, we want this requirement
best avoided, especially given that we already consider specifying the signal noise
a challenging task.
Moreover, recalling the versatility of the CUSUM procedures, its access to evalua-
tion regarding reliability and its modification via the window-limitation to control
computational complexity, we ideally want to make use of all of these properties.
The idea then lies in working towards a formulation similar to BOCPD in exploiting
conjugacy and marginals as well as uncertainty aggregation while losing requiring
a change point prior and instead employing the versatility of the CUSUM strategies
and its properties in reliability and computational feasibility.
The desired result will then be what we denote CUSUM restarted BOCPD (CR-
BOCPD). It utilizes ideas in BOCPD for cheap access to pre- and post-change con-
ditional density functions of the observations, the restart rule and ideas in adapta-
tion from R-BOCPD and the statistical guarantees base on open-end SPRTs from
non-iid CUSUM strategies.

Expressing BOCPD in Loss

Starting along the lines in (Alami et al., 2020), we alsowant to initially alter BOCPD
similar to their R-BOCPD procedure. For choosing the geometric change point prior
as above with parameter ϕ ∈ (0, 1), we observe for the run-length posterior with
adapted notation that

p(rn 6= 0|y1:n) ∝ (1− ϕ)p(yn|rn−1, y1:(n−1))p(rn−1|y1:(n−1))

p(rn = 0|y1:n) ∝ ϕ
∑
rn−1

p(yn|rn−1, y1:(n−1))p(rn−1|y1:(n−1)), (3.19)

so utilizing proportionality again. Similarly, the run-length forecasts in (3.18) can
be rewritten leaving out the model predictive in (3.19) to obtain p(rn|y1:(n−1)). We
already observed rn = n − k ⇐⇒ k = n − rn to change intuition from run-lengths
rn ∈ {0, 1, . . . , n − 1} to scenarios with a supposed change at time k ∈ {1, 2, . . . , n}.
The scenario rn = n ⇐⇒ k = 0 can be included to explicitly state the scenario of
no change. We switch notation in p(yn|rn, y1:(n−1)) = p(yn|y1:(n−1), k) and define a loss
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lk,n and cumulative loss Lk,n via

lk,n := − log[p(yn|y1:(n−1), k)]

Lk,n :=
n∑
s=k

lk,s = −
n∑
s=k

log[p(ys|y1:(s−1), k)] = − log[
n∏
s=k

p(ys|y1:(s−1), k)]
(3.20)

at time n and for the scenario of assumed change at k. For the run-length posterior
of length rn, we want to write p(rn = n − k|y1:n) = κ̃k,n and its un-normalized form
κk,n to obtain the recursive, sequential learning formulation

κ̃k,n ∝ κk,n = (1− ϕ) exp(−lk,n)κk,n−1, ∀k < n

κ̃k,n ∝ κk,n = ϕ

n−1∑
s=1

exp(−ls,n)κs,n−1, k = n.
(3.21)

Both, (3.19) and (3.21) provide a form to write the BOCPD approach, leaving out
the evidence as it reduces to a normalization constant. In parallel we also want to
adapt the one-step ahead forecasts from (3.18) to

κ̃fk,n ∝ κk,n = (1− ϕ)κk,n−1, ∀k < n

κ̃fk,n ∝ κk,n = ϕ
n−1∑
s=1

κs,n−1, k = n.
(3.22)

As argued in (Alami et al., 2020), the sum over all current scenarios and its propa-
gation is very challenging to evaluate theoretically yet provides a lot of the power of
the BOCPD approach. It combines the likelihood of a change occurring with every
scenario into the likelihood of change at the current time step over all scenarios,
this way providing the prior for the new scenario κk,k. Exact evaluation of this ini-
tial weight for each scenario at every time step needs evaluating a combinatorial
number of cumulative losses and is fairly intractable for theoretical work. Different
from the R-BOCPD procedure in (Alami et al., 2020), we instead want to suggests
a simplified initial weight given via

κ̄r,k−1 = exp(−Lr,k−1) =
k−1∏
s=r

p(ys|y1:(s−1), r). (3.23)

Adding the Restart Rule

The addition of a (re-)starting time r ∈ N0, not to be confused with the run-lengths
rn, hereby allows for the procedure to adapt to the last detected change point via a
restart procedure for decision making as introduced in (Alami et al., 2020). κ̄r,k−1 is
a reduced baseline of the initial weight in the second line of (3.21), much simplified
without the sum passing down weight from the other scenarios but only from the
current null hypothesis scenario of no change since the last restart at r. In essence,
it describes the scenario of no change since the last detected change at time r > 0
or no change for r = 0. In this simplification lies the key for controlling evaluation
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criteria. With the introduction of the starting time, we also want to change nota-
tion of the scenario weights to κr,k,n explicitly stating the initial weight κ̄r,k−1 via the
index r. Accordingly, the additional index in r is required further down to indicate
the current baseline explicitly depending on r at the time a respective scenario was
initialized. For the adapted scenario weight κr,k,n the indices denote (a) the last de-
tected instance of change, thus the last restart, at time r (b) for the scenario of a
new instance of change assumed at time k and (c) the current time n. While the
triple indices seem clunky, they are required to convey all relevant information for
the adapted scheme. Exact definition of the triple index scenario weights will follow.

Next, we want to also utilize the decision rule introduced in (Alami et al., 2020)
via comparing the baseline scenario weight of no change since a restart at time r,
so κr,r,n with r ≤ n, with each respective scenarios weight assuming instances of
change at some later time k with r < k ≤ n given by κr,k,n, resulting in the stopping
time

Nκ = inf{n ≥ 1 : max
r<k≤n

κr,k,n > κr,r,n}. (3.24)

The idea is straight forward in that for time steps n < η with no change present, the
weight tends to concentrate on the baseline weight κr,r,n. Contrary, when a scenario
weight κr,k,n overtakes the baseline weight, it is reasonable to assume for a change to
have occurred at time k or in close proximity. To expand on the notion of the restart
in the R-BOCPD procedure, we then want to delete all scenarios before time k, set
r = k and make it the new baseline for comparison, so again max

r<k≤n
κr,k,n > κr,r,n with

the new value in r. In practice, this decision rule is very similar to tracking the
MAP estimator over run-lengths posteriors in BOCPD as both mark the most plau-
sible value as the most recent change point. The difference lies in making a decision
whenever a more recent scenario overtakes the previously dominant scneario.

Specifying CR-BOCPD Scneario Weights in Tuning

The last difference introduced in (Alami et al., 2020), and this is also what mainly
makes their approach interesting for us, lies in dropping the change point prior
and introducing a new tuning parameter βr,k,n in its place. However, it also par-
tially erases the Bayesian idea from BOCPD leaving only the implicit conjugacy.
To keep similar asymptotic behavior to (1−ϕ) ≈ 1, so small hazard rate or probabil-
ity of change, we want to choose βr,k,n such that βr,k,n

βr,k,n−1
→ 1 as n→∞. Accordingly,

it is also this fraction replacing the change point prior. Notice again the triple index
indicating that it can depend on all three relevant time points. While they can be
required for matching tuning parameter and respective scenario weight, in practice
they will likely be simplified to a constant value akin to the constant threshold in
CUSUM startegies such as in (3.2).

Taking everything together, the result we want to propose is similar to the R-
BOCPD procedure in (Alami et al., 2020), yet with one major difference. R-BOCPD
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procedure reduces to cross-sectional terms passing down in the last step via κ̄R−BOCPD

r,k−1 =∑k−1
s=r ls,k−1 for its simplification. Our approach simplifies to a longitudinal term, so

passing down only from the most plausible scenario via − log(κ̄r,k−1) =
∑k−1

s=r lr,s. We
want to put emphasis on the scenario currently describing the data best and, more
important, we want to bring together insights from established results in sequen-
tial change point detection via CUSUM strategies with the intuition in BOCPD of
change in a latent Bayesianmodel. The result is the CUSUMrestarted Bayesian on-
line change point detection (CR-BOCPD) procedure described via the un-normalized
weights

κr,k,n =
βr,k,n
βr,k,n−1

exp(−lk,n)κr,k,n−1, ∀k < n

κr,k,n = βr,k,n exp(−lk,k)κ̄r,n−1, k = n,

(3.25)

detection procedure via the stopping time (3.24), the initial conditions r = 0, κr,r,0 =
1 and βr,r,0=1 and the restart time r replaced whenever the stopping time activates.
What is not yet specified, is the exact choice of βr,k,n for k ∈ {r + 1, r + 2, . . . , n}
which is closely tied to the statistical guarantees via notions of false alarm rate and
detection delay. In the case of a Bernoulli process generating the data, the authors
proved for their R-BOCPD procedure and a choice of βr,k,n = 1

(n−k+1)
and a fixed

PFA to attain their specified asymptotic minimax lower bound in detection delay as
previously mentioned. However, they point out, that their approach makes use of
very specific properties of Bernoulli distributions via concentration inequalities for
controlling the cumulative loss.
Picking up on the idea of the one step ahead forecast, we can adapt the BOCPD
formulation for this setting in

κfr,k,n =
βr,k,n
βr,k,n−1

κr,k,n−1, ∀k < n

κfr,k,n = βr,k,nκ̄r,n−1, k = n.

(3.26)

However, these forecasts do not serve as a detection rule or run-length forecast as
with BOCPD. Ideally, they provide a way to incorporate a newly initialized scenario
at k = n into an aggregated forecast, but for the moment they need to be handled
with great care needing much more further investigation.

3.3.1. Constructing the Link

As said, we want to denote our derived approach CUSUM restarted Bayesian online
change point detection (CR-BOCPD). We take the Bayesian model for the density
functions with an implicit conjugacy andmarginalization from BOCPD, we take the
idea of simplification of the initial weight, the restart rule and the tuning parameter
for dropping the change point prior from R-BOCPD, and we construct each compo-
nent in a way to resemble a non-iid CUSUM procedure with conditional density
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functions. Accordingly, the basic idea of the CR-BOCPD is in achieving equivalence
of (3.24) to the detection rule of the CUSUM procedure in (3.2) with the decision
threshold incorporated in the tuning parameter βr,k,n.
Set βr,r,n = 1 for n ≥ 1. Looking at the decision rule in (3.24) given by κr,k,n > κr,r,n,
we observe for k ∈ {r + 1, r + 2, . . . , n} that

κr,k,n > κr,r,n

⇐⇒ βr,k,n
βr,k,n−1

exp(−lk,n)κr,k,n−1 >
βr,r,n
βr,r,n−1

exp(−lr,n)κr,r,n−1

⇐⇒ βr,k,n exp(−Lk,n) · κ̄r,k−1 > κ̄r,n

⇐⇒ βr,k,n exp(−Lk,n) · exp(−Lr,k−1) > exp(−Lr,n)

⇐⇒ log(βr,k,n)− Lk,n − Lr,k−1 > −Lr,n

⇐⇒ log(βr,k,n) + log(
n∏
s=k

p(ys|y1:(s−1), k)) + log(
k−1∏
s=r

p(ys|y1:(s−1), r)) > log(
n∏
s=r

p(ys|y1:(s−1), r))

⇐⇒ log(
n∏
s=k

p(ys|y1:(s−1), k)) + log(
k−1∏
s=r

p(ys|y1:(s−1), r))− log(
n∏
s=r

p(ys|y1:(s−1), r)) > − log(βr,k,n)

⇐⇒ log[

∏n
s=k p(ys|y1:(s−1), k) ·

∏k−1
s=r p(ys|y1:(s−1), r)∏n

s=r p(ys|y1:(s−1), r)
] = log[

∏n
s=k p(ys|y1:(s−1), k)∏n
s=k p(ys|y1:(s−1), r)

] > − log(βr,k,n)

⇐⇒
n∑
s=k

log[
p(ys|y1:(s−1), k)

p(ys|y1:(s−1), r)
] > − log(βr,k,n).

(3.27)

Setting Sr,k,n = log(
∏n
s=k p(ys|y1:(s−1),k)∏n
s=k p(ys|y1:(s−1),r)

) and plugging this formulation back in the stop-
ping time (3.24), we obtain

Nκ = inf{n ≥ 1 : max
r<k≤n

Sr,k,n > − log(βr,k,n)} (3.28)

resembling the CUSUM procedure with pre-change density function p(·|y1:(n−1), r)
and post-change density function p(·|y1:(n−1), k) at time n and decision threshold
− log(βr,k,n). This decision threshold can then be chosen in a curved manner, as in
(Alami et al., 2020) so depending on r, k and n, but also constant, either way satisfy
βr,k,n
βr,k,n−1

→ 1 as n → ∞, i.e let − log(βr,k,n) = c ∼ − log(α0) ⇐⇒ βr,k,n = exp(−c) ∼ α0

for α0 ∈ (0, 1] the constrained in fixed FAR from the previous section.
In practice, this translates to the idea of initializing a new scenario k and weight it
down by βr,k,n ∼ α0 . We therefore decide against our current baseline scenario and
for a scenario initialized at k when

κr,k,n > κr,r,n

⇐⇒ log[βr,k,n

n∏
s=k

p(ys|y1:(s−1), k)] > log[
n∏
s=k

p(ys|y1:(s−1), r)]

⇐⇒ α0

n∏
s=k

p(ys|y1:(s−1), k) >
n∏
s=k

p(ys|y1:(s−1), r),

(3.29)
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so the later scenario of supposed change at time k ∈ {r + 1, r + 2, . . . , n} overtaking
the baseline scenario for last detected change at r ∈ N0 although weighted down by
the FAR in α0 ∈ (0, 1] for evidence accumulated over the observations since k, so of
the supposed post-change regime.
The intuition is still the same as with BOCPD: Can the the latent conjugated model
learning only on observations from a supposed post-change regime describe these
observations substantially better than the latent conjugated model learning on all
observations
Another insight is that this relation between the CUSUM procedure and the CR-
BOCPD procedure goes both ways. For appropriate choices of pre- and post-change
densities in the CR-BOCPD procedure the theoretical results in (Lai, 1998) as well
as the results onwindow-limited detection hold, and vice versawemaywrite CUSUM
procedures as scenarios weights if we can split the log-likelihood ratio statistics ad-
equately.

Investigating Scenario Initialization

Taking a concrete look at themore general pre- and post-change densities in (Adams
and MacKay, 2007) and (Altamirano et al., 2023b) compared to the specific choice
of Bernoulli processes in (Alami et al., 2020), we observe that the conditional den-
sity functions p(yn|y1:(n−1), s) obtained via conjugacy and marginalization of an un-
known parameter represent a special case of weighted likelihoods as in (3.8). To
be precise, let θ ∈ Θ be that unknown parameter regarding the density function
p(·|θ). Further, we assume the prior distribution g(θ) on the parameter to obtain
the respective posterior distribution p(θ|ys:(n−1)) ∝

∏n−1
i=s p(yi|θ)g(θ). The pre- and

post-change density functions are the posterior-predictive densities obtained via
p(yn|y1:(n−1), s) =

∫
Θ
p(yn|θ)p(θ|ys:(n−1))dθ for different choices of s, i.e. s = r for

the baseline scenario and s = k for later scenarios of assumed change at k > r
. The posterior predictive implicitly contains the induced uncertainty in the pre-
and post-change parameters as well as reduction on the uncertainty via available
observations. In practice, we want to choose g(θ) such that it reflects a balance of
our knowledge about the pre- and post-change parameters. In the assumed pre-
change regime r ≤ n < k, the posterior distribution of the latent parameter θ is
taken to adapt to the true pre-change parameter. Specifically, at time point k of
assumed change, we compare Bayesian learning on the priors of the latent param-
eter in (a) p(θ|yr:(k−1)) considering observations yr:(k−1), so no change, opposed to (b)
g(θ) for no observations, so change. Therefore, comparing the pre-change density
p(·|y1:(n−1), r) and post-change density p(·|y1:(n−1), k) comes down to comparing two
weighted likelihoods and, furthermore, two conditional densities of the respective
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posterior predictive after marginalizing the unknown parameter θ ∈ Θ:

p(yn|y1:(n−1), r) =

∫
Θ

p(yn|θ)p(θ|yr:(n−1))dθ

∝
∫

Θ

n∏
s=k

p(ys|θ)p(θ|yr:(k−1))dθ

p(yn|y1:(n−1), k) =

∫
Θ

p(yn|θ)p(θ|yk:(n−1))dθ

∝
∫

Θ

n∏
s=k

p(ys|θ)g(θ)dθ.

(3.30)

The same result can be generalized to p(θ|y1:(n−1), k) with scenario initialization
p(θ|y1:(k−1), k) replacing the general prior in g(θ) at time step k. In other words,
a change of prior for the respective sub-sequences.

The CR-BOCPD procedure adapts an iid weighted CUSUM procedure with un-
known pre- and post-change parameters, independent observations and known prior
distributions corresponding to change at certain points in time to a non-iid CUSUM
procedure with known conditional pre- and post-change density functions via ex-
ploiting closed form solutions of conjugated likelihood-prior pairs and marginaliza-
tion - as available for linear Gaussian state space models via Kalman filters with
adapted initial conditions for scenario initialization at k. In simple terms, the prior
and the Bayesian learning is included in the respective known conditional density
functions with prior and learning being changed at scenario initialization for as-
sumed instances of change.
To conclude, the results in (Lai, 1998) for non-iid CUSUM procedures with condi-
tional density functions can therefore be transferred to the CR-BOCPD procedure
to obtain first-order asymptotic optimality regarding the introduced notions as well
as a window-limited adaptation.

Proposition 3 First-Order Asymptotic Optimality of CR-BOCPD
For a given rate of false alarm FAR(Nκ) = α0 and appropriate tuning parameter
βr,k,n = exp(−c) such that c ∼ | log(α0)|, then it holds for the stopping time Nκ in
(3.24) with (3.25), that

WADD(Nκ) ∼ CADD(Nκ) ∼
| log(α0)|

I
(3.31)

as α0 → 0 for a positive constant I as initially introduced. Therefore, the stopping
time Nκ is first-order asymptotic optimal regarding the introduced notions of mini-
max optimality.

The proof is in the derivation of the proposition via the previous sections of this
chapter via expressing the CR-BOCPD detection rule as a specific case of the non-
iid CUSUM rule in (3.2).
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3.4. Detecting Additive Change in Gaussian Models:

State-of-the Art

As initially motivated, in the scope of this chapter of addressing signal noise mis-
specification, we are mainly interested in detecting and accounting for abrupt addi-
tive terms to the signal process not covered by the model, i.e. outliers or realization
of heavy-tailedness of the true signal noise. Taking a linear Gaussian state space
model and picking up the initial understanding of an instance of change via a sud-
den change in the parameters of the data generating process, an additive term on
the signal process translates to such an abrupt change in mean of the data gener-
ating process not accounted for by the model.
The data generating process is hereby the observation model Yn = HnXn + ΓnVn
with p(yn|xn) ∼ n(yn;Hnxn, Rn) and support Y = Rp in the Kalman setting ( see
(2.1) in the previous chapter for details). Accordingly, the resulting challenge is in
sequential change point detection of change in mean in the observation sequence
Y1:n. Framing this approach in detecting instances of mis-specification has not been
done before. However, the general problem statement of detecting additive change
in the signal process has been around since pioneering work in (A. S. Willsky and
Jones, 1974). A strong line of work on the problemwith milestones in (A. S. Willsky,
1976), (Basseville and Benveniste, 1983), (Basseville, Nikiforov, et al., 1993), (Lai
and Shan, 1999), (I. V. Nikiforov, 2001), (A. Tartakovsky et al., 2014) and (Brodsky,
2016). Specific terminology in application hereby involves fault detection, failure
detection and system integrity monitoring.

In essence, an instance or realization of signal noise mis-specification in heavy
tailedness, may lead to a very different signal trajectory then anticipated by the
signal model, and thus to a change in the mean as generative parameter of the ob-
servations post-change. Accordingly, we are interested in detecting change in mean
of the observation sequence Y1:n, however, as argued in (A. S. Willsky and Jones,
1974) and supported in the majority of the body of work that followed, we want
to simplify the problem to detecting change in mean of the innovation sequence
γn = yn −Hnm

f
n with p(γn|y1:(n−1)) = n(γn; 0,Σn) and Σn = HnP

f
nH

T
n +Rn. In the pre-

change regime, the innovation is a 0 mean random vector with known covariance
matrix Σn. The enabling property hereby is in that the forecast mean mapped to
observation space in the Kalman setting functions as a BLUE estimator (see (Reich
and Cotter, 2015) for additional details) for the well-specified model. Accordingly,
the problem at hand transfers nicely to the above described setting of known pre-
change and unknown post-change density function with the challenge in detecting
instances of change to non-zero mean. While the task at hand gets noticeably more
difficult with the Kalman filter adapting to the additive change over time, we first
want to briefly recall current popular approaches available for testing differences
in the mean of Gaussian sequences as well as the SPRTs and the corresponding
CUSUMprocedures. The central tool hereby is again theMahalanobis distance and
its property to result in χ2-distributions for Gaussian random vectors. We hereby
mainly follow (Basseville, Nikiforov, et al., 1993) and (A. Tartakovsky et al., 2014)
in their construction up to the χ2-CUSUM procedure.
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The central idea of this section is in retracing the steps that leads to the current
state-of-the-art practice as a second line of work next to the BOCPD strain devel-
oped here. This way we want to point out difference in assumptions and shared
ideas to emphasize when the novel approach constructed in the first half of the
chapter via conditional SPRTs is competitive.

3.4.1. Testing in Mean of Gaussian Sequences

Proficiency in Fixed Sample Size Tests

As motivated, we are interested in reliably detecting relevant deviations from 0
mean for Gaussian sequences, ideally under appropriate notions of optimality. Dif-
ferent challenges emerge with the wording of the task. We want to start with a
Gaussian data RV Z ∼ N (µ,Σ) with support in Z = Rp. The according challenge
is therefore in testing between H0 : µ = 0 vs H1 : µ 6= 0. In order to address re-
liability and optimiality, we need to go beyond the idea of the usual notion of the
uniformly most powerful test. As argued in the original work by Wald (see (Wald,
1943)), the alternative hypothesis is "too rich" in its general statement and addi-
tional constraints are required resulting in Wald’s idea of the uniformly best con-
stant power test (UBCP). Following (A. Tartakovsky et al., 2014) for the case at
hand, Wald proposed to impose a constant power function on a family of surfaces
S = {Sd : ||µ||22 = d2, c > 0} on the high-dimensional space of M = {µ ∈ Rp}. For a
statistical test Λ, let Λ∗ ∈ C(α∗0) = {Λ : P0(Λ 6= 0) ≤ α∗0} the set of test satisfy the
prescribed type-I error α∗0 ∈ (0, 1). We then say for Λ∗ to be UBCP on S, if (Wald,
1943)
• for any two µ1, µ2 on the same surface Sd ∈ S, the power function give by
α∗1(Λ, µ) = Pµ(Λ = 1) has α∗1(Λ∗, µ1) = α∗1(Λ∗, µ2) and
• for any other test Λ ∈ C(α∗0) which satisfies the previous condition, it holds
that α∗1(Λ∗, µ) ≥ α∗1(Λ, µ).

Next to the spheres, an intuitive choice of surfaces lies in the ellipsoids Sb = {µ :
||µ||2Σ−1 = b2} centered around µ0 = 0. Recall, ||µ||2Σ−1 = µTΣ−1µ was introduced in
the previous chapter as Mahalanobis distance, however, is also frequently referred
to as signal-to-noise ratio.
The central enabling result is the theorem by Wald in (Wald, 1943) which proofs for
the case of unit covariance with spherical surfaces Sd and d > 0, that the test

Λ∗(Z̃) =

{
1, if ||Z̃||2 ≥ h(α∗0)

0, if ||Z̃||2 < h(α∗0)
(3.32)

is UBCP for Z̃ ∼ N (0,1p×p) and Λ∗(Z̃) ∈ C(α∗0) and the above set of hypothesis. The
proof can then be generalised to arbitrary positive definite covariance matrices via
substituting µ̃ = Σ−

1
2µ and invariance properties of Gaussian distributions such

that the hypothesis pair remains invariant for resulting ellipsoid surfaces (see (A.
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Tartakovsky et al., 2014) for additional details and an adapted theorem). Moreover,
the theorem generally also holds for Gaussian linear models such as Z = Hµ + W
with noise W ∼ N (0,Σ) in that we are then interested in the quantity ||Hµ||2Σ−1 for
our UBCP test, thus arguing for the Mahalonbis distance to be our tool of interest
here. Note hereby the direct applicability to our context of interest up to time vary-
ing covariance and the required invariant transformation. As a remark, we then no
longer test about µ but instead are interested in testing the mapped parameterHµ.
Following additional arguments in (A. Tartakovsky et al., 2014) via least favorable
distributions invariant under transformation, arguments can be expanded for the
introduced test to be minimax. An important enabling feature lies hereby in that
the statistic ||Z||2Σ−1 is distributed according to a χ2(p, a2) (non-central chi-square)
distribution with p degrees of freedom, given via the dimension of the RV, and non-
centrality parameter a2 = ||Z||2Σ−1, thus providing good evaluation of the power func-
tion.
To conclude, utilizing the Mahalonbis distance for testing deviation from 0 mean
generally satisfies the UBCP constraints as well as providing a minimax approach
under additional considerations such as a given minimal deviation ||µ||2Σ−1 > b2 for
b > 0 under the alternative hypothesis. The χ2 distribution of the Mahalnobis dis-
tance for Gaussian RVs establishes it as a central tool in controlling uncertainties
for the task at hand.

Towards Proficiency in χ2-SPRTs

Taking the step fromfixed sample size tests, wewant to transfer the ideas to the con-
cept of the sequential probability ratio test to obtain the popular adapted CUSUM
procedure. The χ2-SPRT as taken from (A. Tartakovsky et al., 2014), expands on the
previous results. Let Y1:n ∼iid N (µ,Σ) and parameter space M = {µ ∈ Rp}. Picking
up on the previously derived UBCP test, we are interested in sequentially testing
the hypothesis pair H0 : µ = 0 vs H1 : ||µ||2Σ−1 = b2 for some minimal deviation b > 0.
Let Ȳn = 1

n

∑n
i=1 Yi be the empirical mean and the sufficient statistic for testing be-

tween H0 and H1. For √nȲn ∼ N (
√
nµ,Σ), we observe n||Ȳn||2Σ−1 ∼ χ2(p, n||µ||2Σ−1).

Therefore, the sufficient statistics now takes the place of the Gaussian RV Z from
the previous paragraph.
After transformation the initial problemmay be reduced to testing the non-centrality
parameter a2 of a non-central χ2-distribution in H0 : a2 = 0 vs H1 : a2 = b2 with min-
imal deviation b > 0. As given in (A. Tartakovsky et al., 2014), this transformation
can hereby be expressed in accumulating the observation sequence Y1:n into the
sequence of scaled empirical means {i||Ȳi||2Σ−1}1≤i≤n. As in the first section of this
chapter, we are interested in evaluating the log-likelihood ratio statistics

Sn = log(
fb2(||Ȳ1||2Σ−1 , 2||Ȳ2||2Σ−1 , . . . , n||Ȳn||2Σ−1)

f0(||Ȳ1||2Σ−1 , 2||Ȳ2||2Σ−1 , . . . , n||Ȳn||2Σ−1)
(3.33)

with fa2 the joined density function of the sufficient statistics for non-centrality
parameter a2 ≥ 0. Direct computation of this ratio is challenging with several ob-
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stacles. Yet, key investigations in (Jackson and Bradley, 1961) on the sequential
χ2-test utilized Cox’s theorem for the factorization

fa2(||Ȳ1||2Σ−1 , 2||Ȳ2||2Σ−1 , . . . , n||Ȳn||2Σ−1) = f0(n2||Ȳn||2Σ−1)︸ ︷︷ ︸
df

exp(−na
2

2
)G(

p

2
,
a2n2||Ȳn||2Σ−1

4
)

(3.34)

with G the generalized hyper-geometric function G(r, s) =
∑∞

i=0
Γ(r)si

Γ(r+i)i!
and Γ(r) the

usual gamma function. This the leads to the adaptation of the LLR in (3.33) to

Sn = −nb
2

2
+ log[G(

p

2
,
b2n2||Ȳn||2Σ−1

4
)] (3.35)

via reducing the denominator of the LLR for a2 = 0 asG(r, 0) = 1 ⇐⇒ log(G(r, 0)) =
0 and the density functions f0 cancelling out. The resulting closed SPRT is then the
stopping time

T̃ = inf{n ≥ 0 : Sn /∈ (−c0, c1)} (3.36)
with decision rule

Λ̃(Y ) =

{
1, if ST̃≥c1
0, if ST̃≤−c0

, (3.37)

the sequential χ2-test or χ2-SPRT. Further following results in (A. Tartakovsky et
al., 2014), the derived invariant sequential χ2-test is asymptotically optimal in that
it minimizes all positive moments of the stopping time T̃ with Λ̃ satisfying α∗0 and
α∗1 the respective fixed type-I and type-II error. So, as max{α∗0, α∗1} → 0,

inf
Λ(α∗0,α

∗
1)
E1[T ] ∼ E1[T̃ ] ∼ 2| log(α∗0)|

b2
,

inf
Λ(α∗0,α

∗
1)
E0[T ] ∼ E0[T̃ ] ∼ 2| log(α∗1)|

b2

(3.38)

for Λ(α∗0, α
∗
1) tests with the respective errors, and thresholds chosen appropriately.

Notice hereby the close similarity of the asymptotic optimal lower bound on stop-
ping time of the SPRT in comparison to Lai’s asymptotic lower bound for detec-
tion delay, also stopping time, of change point detection procedures (Lai, 1998).
The KL-divergence of the null and alternative hypothesis hereby reduces to 1

2
(µ0 −

µ1)TΣ−1(µ0 − µ1) = 1
2
||µ1||2Σ−1 = b2

2
up to an additional constant and takes the role of

the positive constant I in (3.5) as we assume the iid case (see (Duchi, 2007) or the
previous chapter for details on the KL-divergence of two Gaussian random vari-
ables). As the corresponding CUSUM procedure is constructed via the open-end
SPRT, this relation makes intuitive sense.

In a brief simulation study via the relative efficiency comparing expected sample
size of the χ2-SPRT to the fixed sample size UBCP χ2-test, the authors in (A. Tar-
takovsky et al., 2014) found for the SPRT to generally perform better with almost
twice as good efficiency for fixed small error probabilities compared to the UBCP.
Twice as good efficiency hereby refers to the SPRT requiring about half the samples
of the FSS test to achieve the same fixed errors.
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3.4.2. Detecting Deviation From 0 Mean Gaussian Sequences

Combining the obtained insights on the SPRT for the mean of a Gaussian sequence
via empirical means with the previous considerations of the CUSUM procedure as
open-end SPRT with type-II error α∗1 = 1, then taking the step from the χ2-SPRT to
the χ2-CUSUM procedure is imminent.
Given the independent sequence {Yn}n≥1 of Gaussian random vectors with change
in mean at η ≥ 1, so

Yn ∼

{
N (0,Σ), if n < η

N (µ,Σ), if n ≥ η.
(3.39)

We hereby assume pre-change mean 0 and the covariance matrix Σ to be known.
For the post change mean we assume known Mahalanobis distance ||µ||2Σ−1 = b2,
thus known KL-information DKL(f0||f1) = b2

2
and recall the asymptotic lower bound

on Pollak’s CADD and Lorden’s WADD for given FAR via α0 → 0 as in (3.5) via

WADD(T ) ∼ CADD(T ) ∼ 2| log(α0)|
b2

. (3.40)

Obtaining the χ2-CUSUM Procedure

Following (A. Tartakovsky et al., 2014), we are interested in adapting the CUSUM
procedure (3.2) via retracing the steps of transforming the problem from detecting
change in Gaussian mean to change of the non-centrality of the corresponding χ2

sequence of empirical means under invariant transformation where required. The
LLR in the regular CUSUM procedure is replaced with the derived χ2-LLR in (3.35)
resulting in

Ȳk:n =
1

n− k + 1

n∑
i=k

Yi

Sχk:n = −(n− k + 1)
b2

2
+ log[G(

p

2
,
b2(n− k + 1)2||Ȳk:n||2Σ−1

4
)]

Nχ = inf{n ≥ 1 : max
1≤k≤n

Sχk:n > c}

(3.41)

and the corresponding window-limited adaptation

Nχ
m(α0) = inf{n ≥ 1 : max

(n−m(α0))≤k≤n
Sχk:n > c}. (3.42)

Note hereby the pre-change density function vanishing via − log(1) = 0 after fac-
torization based on Cox’s theorem. However, this still allows for a naive split of
pre- and post-change density functions as derived previously for the CR-BOCPD
procedure leading to the reformulation

Nχ = inf{n ≥ 1 : max
r<k≤n

[exp(−c) exp(−(n− k+ 1)
b2

2
)G(

p

2
,
b2(n− k + 1)2||Ȳk:n||2Σ−1

4
)] > 1}
(3.43)
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with κr,k,n on the left hand side of the inequality and κr,r,n on the right hand side.

While this popular χ2-CUSUM procedure is the direct derivation via the open-end
χ2-SPRT, it is non-recursive in needing computing the sufficient statistics for each
scenario within a window. Recursive modifications utilizing repeated closed χ2-
SPRTs have been developed in (I. V. Nikiforov, 2001) and previous works. Consid-
ering the goal of obtaining scenario weights for inference for considering change
arising via signal noise mis-specification, we want to remain with the derived open-
end procedure.

Expanding to χ2-GLR CUSUM Procedures

Next to the regular CUSUM procedure with the adapted LLR, the GLR CUSUM
scheme has been studied with initial work in (A. Willsky and Jones, 1976) and
rigorous results in (Lai, 1998) and (Lai and Shan, 1999). The enabling feature of the
approach is in exploiting the sequence of sufficient statistics also utilized in the χ2-
SPRT for easy estimation of the MLE of the parameter of the supposed post-change
regime. A crucial upside hereby lies in that there is no need for assumption of the
KL-information or Mahalanobis distance of the post-change mean. As shown in
(A. Tartakovsky et al., 2014), the LLR with the MLE as the post change parameter
simply reduces to plugging in the empirical mean for the post change parameter.
Picking up at (3.10) and modifying for the χ2-GLR CUSUM scheme, we obtain

max
µ
Sk:n(µ) =

n− k + 1

2
||Ȳk:n||2Σ−1

N Ȳ = inf{n ≥ 1 : max
1≤k≤n

n− k + 1

2
||Ȳk:n||2Σ−1 > c}

(3.44)

with Sk:n(µ) the parameter dependent LLR taking observation from time k to n akin
to (3.9). Further, we obtain the corresponding window-limited adaptation

N Ȳ
m(α0) = inf{n ≥ 1 : max

(n−m(α0))≤k≤n

n− k + 1

2
||Ȳk:n||2Σ−1 > c}. (3.45)

The 0 mean pre-change density function again vanishes with the above reformula-
tion available in

N Ȳ = inf{n ≥ 1 : max
r<k≤n

exp(−c) exp(
n− k + 1

2
||Ȳk:n||2Σ−1) > 1}. (3.46)

Proficiency of the Derived χ2-Detection Strategies

The first-order asymptotic optimality regarding the introduced notions of minimax
optimality in detection delay of either approach can be derived via Lai’s arguments
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in (Lai, 1998). However, it was also derived in (I. Nikiforov, 1994) and (I. V. Niki-
forov, 1999) with proposing either strategies. Approaching the χ2-CUSUM proce-
dure with Lai’s arguments, the assumption on knowledge about the post-change
density function translates to knowledge of the KL-information, magnitude or min-
imal deviation, so the parameter b2. Nikiforov’s arguments are directly derived from
the sequential test of non-centrality and its properties.

A highly interesting case for our purpose is given when there is no such parameter
of minimal deviation or KL-divergence of pre- and post-chnage density function is
available. We then want to insetad assume a minimal deviation b2 > 0, or equiva-
lently KL-information b2

2
, and perform the χ2-CUSUM procedure given that choice.

Let the true post-change mean be such that ||µ||2Σ−1 = a2 > b2

4
. In (A. Tartakovsky

et al., 2014) it is then shown that the asymptotic relation of the threshold c in a mod-
ified χ2-CUSUM procedure with repeated closed χ2-SPRTs and Lorden’s WADD is
given by

WADD(N) ∼ 2c

a2 − (a− b)2
(3.47)

as c→∞ or, similarly, for a given rate of false alarm FAR(N) = α0 with c ∼ | log(α0)|

WADD(N) ≤ min{ 2| log(α0)|
a2 − (a− b)2

,
1

α0

}(1 + o(1)) (3.48)

as α0 → 0. The condition a2 > b2

4
is hereby required to ensures a positive denomina-

tor.
The key takeaway is then, that for a well chosen assumption on the minimal de-
viation, so b2 ≈ a2, it will recover close to first-order asymptotic optimal results
regarding worst average detection delay, however, for larger deviations between as-
sumed and true value the asymptotic relation of detection delay and threshold or
FAR is prone to blow up. It makes sense that a similar intuition will hold up for the
regular open-end SPRT based χ2-CUSUM procedure and assumed minimal devia-
tion b2 > 0.
This case of unknown KL-information or minimal deviation in (A. Tartakovsky et
al., 2014) is treated similar to the case of unknownmean µ in (Basseville, Nikiforov,
et al., 1993). Akin to assuming a value for the procedure and running with it, the
older work suggests to use the limiting case a2 → 0 resulting in the approach in
(3.44).

Providing an Additional Perspective

For another suitable expression of the problem especially valuable for the linear
Gaussian setting at hand, we can also exploit the weighted CUSUM procedure in
(3.8) for detecting change in mean of the Gaussian sequence. The idea is hereby in
a Gaussian assumption on the additive change u ∼ N (ū, U). Again, take the same
independent sequence {Yn}n≥1 of Gaussian random vectors with additive change in
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mean at η ≥ 1 with known Gaussian profile of change u, so

Yn = Wn + 1{n ≥ η}u =

{
0 +Wn, if n < η

u+Wn, if n ≥ η
(3.49)

for Wn ∼ N (0,Σ). This then resembles a weighted CUSUM procedure with a
prior on the unknown post-change parameter. In practice, we can simply aggre-
gate the parameter uncertainty into a known post-change density function pu(yn) =
n(yn; ū,Σ + U) for n ≥ η. Moreover, with the results in (Lai, 1998) we can then
again conclude first-order asymptotic optimality for the resulting CUSUM proce-
dure and its window-limited adaptation for appropriate constraints on the FAR and
window-size. The arguments hereby are very similar to the CR-BOCPD procedure.
In BOCPD and CR-BOCPD each new scenario resets to a specific prior usually lead-
ing to a much larger covariance allowing to adapt to the post-change regime. Choos-
ing a probabilistic profile u of the post-change mean in a similar way that it roughly
represents the initial prior distribution up to a large covariance matrix U will there-
fore provide a similar effect to resetting for a sub-sequence of observations. While
this intuition is somewhat overly ambitious in the regular Gaussian sequence, it
will be more intuitive for detecting change under Bayesian learning as with the
Kalman filter.
Note hereby that the model is the same as before, however the change in perspective
might suit readers from a more dynamical systems driven background.

3.5. Deriving Adaptive Kalman Filtering Strategies

So far we have spent plenty of work in this chapter on deriving strategies for de-
tecting change (a) via conditional density functions of the observations with a la-
tent conjugated likelihood-prior Bayesian model under considerations of scenario
priors and (b) detecting deviation from 0 mean in centered Gaussian sequence. A
main takeaway lies in that each provides different approaches and may be applica-
ble given different assumptions. Detecting abrupt jumps or more general additive
change in the signal process given the Kalman setting, e.g. resulting from mis-
specification in heavy-tailedness of the signal noise, under ongoing estimation of
the signal via the Kalman filter causes additional challenges to emerge. Recall, a
central focus for the work at hand is in inference on the latent signal under threat
of change.

Briefly Recollecting the Problem History

The main problem statement and pioneering work was done in (A. S. Willsky and
Jones, 1974) and (A. Willsky and Jones, 1976). The foundation of their approach
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was in deriving equations for determining the dynamic profile of additive terms in
the signal process with the Kalman filter adapting to them. The central, enabling
feature hereby is in the linear structure of the signal and observation equations.
Given knowledge of the dynamical profile, they then implemented a GLR scheme
to estimate location and magnitude of the most likely instance of change to test
against the null hypothesis of no change. As the initial approach needed tracking a
new dynamic profile for each new observation, they suggested the aforementioned
window-limited approach for computational feasibility. The more general work in
(Lai, 1998) was followed by specifications in (Lai and Shan, 1999) expanding on
these previous by Willsky and Jones with results via thorough statistical analy-
sis of the introduced notions of asymptotic optimality regarding choice of decision
threshold and window size. Expansive analysis in the monograph (Basseville, Niki-
forov, et al., 1993) collected previous work from a more dynamical systems theoretic
driven perspective with thorough work on properties of the dynamical profile. For
our work, we want to lean more towards results in (Lai and Shan, 1999).

To formalise, recall the Kalman setting in the previous chapter via (2.1). As ini-
tially motivated, the main objects of interest are the independent innovations γn
given via p(yn − Hnm

f
n) = p(γn) = n(γn; 0,Σn) with Σn = HnP

f
nH

T
n + Rn. At an un-

known yet non-random time η , an additive term un emerges in the signal equation,
so

Xn = AnXn−1 + CnWn + 1{n ≥ η}un. (3.50)
The innovations are still independent, however, they have mean E[γn] = 1{n ≥
η}µn ∈ Rp after the abrupt jump of the signal process with µn 6= 0 for all n ≥ η.
Further, the mean sequence 1{n ≥ η}µn is a linear transformations of 1{n ≥ η}un.
Taking the case of a constant additive term un = u ∈ Rd for all n which is frequently
associated with actuator failure in engineering, we can describe the dynamic profile
of the change in mean of the innovation sequence via µn = ρ(n, η)u for n ≥ η with
recursive evaluation of ρ(n, η). Let n ≥ k, then

ρ(k, k) = 0, S(k, k) = 0, F (k, k) = 0

S(n+ 1, k) = AnS(n, k) + 1d×d

F (n, k) = An−1F (n− 1, k) +Knρ(n, k)

ρ(n, k) = Hn[S(n, k)− An−1F (n− 1, k)]

(3.51)

as given in (Lai and Shan, 1999). The equations are adapted from the original set of
equations in (A. S. Willsky and Jones, 1974) which were based on the more specific
choice

Xn = AnXn−1 + CnWn + 1{n = η}un, (3.52)
thus not needing the identity matrix in the second equation of (3.51).
Again, the idea is in splitting the effect of the additive change from the modelled
signal process assuming no change via exploiting linearity. The sequence S(n, k)
hereby carries the forward propagation and accumulation of the additive term un
in the signal process. F (n, k) describes the Kalman filter adapting to the additional
additive term over time via the Kalman gain and is closely related to the notion
of the relative gap in (Alami et al., 2020) for their R-BOCPD procedure. Lastly,
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ρ(n, k) captures the difference between the propagated, accumulated additive term
and what the Kalman filter has accounted for thus far mapped to the observation
space to grasp its current influence on an observation. It then makes intuitive
sense to employ a GLR-CUSUM procedure combining estimation and testing via
the stopping time

Nρ = inf{n ≥ 1 : max
1≤k≤n

max
u∈Rd

n∑
i=k

log(
exp(−1

2
||γi − ρ(i, k)θ||2

Σ−1
i

exp(−1
2
||γi||2Σ−1

i

) > c}. (3.53)

A key insight we want to take along hereby is that for large temporal distances
n − k + 1, the procedure can be approximated via replacing ρ(i, k) with its steady
state version ρ∞ derived in (Lai and Shan, 1999) under usual assumptions for steady
state convergence of the system components and asymptotic stability of the Kalman
filter. Thus under usual assumption we can also take the post-change innovation
mean to be steady up to the dynamic profile.

3.5.1. Constructing Inference Schemes for Filtering Under Change

While the derived set of equations offer a versatile tool and are interesting for a
large variety of other approaches, we do not want to rely on them. With a keen eye
on robustness to observation noise mis-specification via the derived diffusion score
matching approach in the previous chapter, the choice of the IMQ-kernel, but also
any other non-linear kernel, makes a split such as in (3.51) highly difficult if not
impossible to evaluate. This shows explicitly in the divergence term of the mean
update in (2.58). Additionally, we aim for strategies that employ change point de-
tection while allowing for adjusted inference on the latent signal accounting for
additional uncertainty induced by potential change mis-specification of the signal
noise, i.e. additive change.

Looking at the long list of examples from application in the literature, e.g. in (Bas-
seville, Nikiforov, et al., 1993) and more recent in (A. Tartakovsky et al., 2014),
the most frequent approach for all the relevant reasons derived in the previous sec-
tions is the χ2-GLR CUSUM procedure in (3.44) simply monitoring the innovation
sequence for non-zero mean. In short, under very little assumptions and with the
sole aim to detect abrupt jumps in the signal process, so substantial deviations
from zero mean of the innovations, monitoring the empirical innovation mean after
invariant transformations γ̃i = Σ

− 1
2

i γi accounting for the individual time-varying
covariance matrices provides most desired properties in reliability and feasibility:

N γ̄
m(α0) = inf{n ≥ 1 : max

(n−m(α))≤k≤n

n− k + 1

2
||γ̄k:n||22 > c}

= inf{n ≥ 1 : max
(n−m(α))≤k≤n

exp(−c) exp(
1

2(n− k + 1)2
||

n∑
i=k

Σ
− 1

2
i γi||22) > 1}

(3.54)
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with γ̄k:n = 1
n−k+1

∑n
i=k Σ

− 1
2

i γi and appropriately chosen c ∼ | log(α0)|, i.e. via Monte
Carlo simulation of the pre-change regime, and m(α0) such that (3.11) holds. The
second line again enables transfer to the CR-BOCPD intuition.

Accounting for Change During Filtering

Similar to the pioneering work in (A. S. Willsky and Jones, 1974), our aim reaches
beyond solely detecting change but aiming for an adaption to the filtering routine.
The overarching goal is in accounting for mis-specification of heavy tailedness in
signal noise alongside Kalman filtering. Willsky and Jones based their approach
on a direct estimate or covariance incrementation. Exploiting the workflow of the
GLR procedure in (3.53) based around estimating change location and jump magni-
tude to determine a post-change density, the obtained parameter θ̂η̂ is then utilized
to restart the filtering procedure at time η̂ with explicitly including the additive
term θ̂ in the signal equation at time η̂. Their approach in covariance incremen-
tation from a more practical side is in artificially increasing the signal covariance
matrix at η̂ for the restart, thus allowing the Kalman filter to better adapt to the
detected jump on its own. Two major problems arise for either approach given large
detection delay. Restarting the filter too far back may be computationally expen-
sive and is especially in real-time applications likely not feasible. More important
however, until we can make the decision that a signal jump occurred, we act under
complete ignorance of potential jumps for estimation and forecasting of the signal
with their approach.

We propose utilizing scenario weighted sums such as in (Adams andMacKay, 2007)
with the CR-BOCPD approach inspired by (Alami et al., 2020) to incorporate sig-
nal estimation and forecasting under uncertainty about abrupt jumps alongside
decision making. The key is in developing the equation in (3.15) with the notion
of the scenario weights in (3.21) and (3.22) for exact Bayesian computation or the
simplified scenario weights in (3.25) and (3.26) to exploit powerful properties of
CUSUM strategies. The central equations for the context of Gaussian mixture
model Kalman filtering are then given by

pκ(xn|y1:(n−1)) =
n∑
s=0

κ̃fs,np(xn|y1:(n−1), s)

pκ(xn|y1:n) =
n∑
s=0

κ̃s,np(xn|y1:n, s)

(3.55)
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with κ̃k,n =
κk,n∑n
s=r κs,n

the normalized scenario weights for probabilistic change points
given knowledge of the change point prior and

pκ(xn|y1:(n−1)) =
n∑
s=r

κ̃fr,s,np(xn|y1:(n−1), s)

pκ(xn|y1:n) =
n∑
s=r

κ̃r,s,np(xn|y1:n, s)

(3.56)

with κ̃r,k,n =
κk,n∑n

s=r κr,s,n
the normalized scenario weight for deterministic yet unknown

change points or probabilistic change points and no access to a change point prior.
Recall, κ̃fk,n and κ̃

f
r,k,n are hereby the respective scenario forecast weights. While κ̃fk,n

is exact given the assumptions, needs to be treated with sufficient care κ̃fr,k,n. Note,
the idea of Gaussian mixture model filters is not new (see (Anderson and Moore,
2012) and (Reich and Cotter, 2015) for details), however, deriving their weights
terms via change point detection is.
The idea is in obtaining a Gaussian mixture model of individual Kalman filters
for each currently considered scenario weighted via a notion of scenario plausibil-
ity. Other then in the regular model predictive approach of BOCPD, our interest
lies explicitly in estimating and forecasting the latent model, the signal process,
and not in uncertainty quantification of the next observation. As the concept of
Gaussian mixture model is well established, we can then make use of their known
properties such as moments and confidence regions.

Specifying Scenario Initialization and Scenario Weight Computation

It is a difficult task and much beyond the scope of this work to define a novel no-
tion of optimality combining estimation and forecasting as well as detection delay
for shared inference, however, for now we want to argue for proficiency of the pro-
posed approaches via optimality in their respective aspects filtering and detection.
The proposed scenario weighted Kalman filter needs specifying two central aspects.
On the one hand, scenario initialization needs defining, so how a new scenario
p(xk|y1:k−1, k) is constructed. On the other hand, the computation of the scenario
weights needs deciding given assumptions. For probabilistic change points with ac-
cess to the change point prior we can employ the Bayesian computation of scenario
forecasts and posteriors. For deterministic change points or no access to a reliable
change point prior we need to consider additional assumptions for deciding between
the conditional CR-BOCPD procedure or adaptation of χ2-based procedures to the
CR-BOCPD framework.
To formalise, we want to pick up on the usual signal process adaptation similar to
the original problem statement in (A. S. Willsky and Jones, 1974). Let

Xn = AnXn−1 + ΓnWn + δη,nun (3.57)

be the signal process with unknown additive term un 6= 0. For probabilistic change
points, we want to assume δη,n = πn with πn non-negative discrete random variable
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as previously introduced. As before, we want to assume a geometrical distribu-
tion on the relative frequency of change points from prior knowledge if not specified
otherwise. Deterministic change points in abrupt jumps of the signal process are
obtained via setting δη,k = 1{n = η} with η unknown. Either may be adapted appro-
priately for multiple instances of change.
Starting with the question on scenario initialization, we want to propose three
courses of action. The first is based on the idea in (Adams and MacKay, 2007) and
forgetting about past, supposedly pre-change observations to allow for adaptation
only to supposed post-change observations. Looking at p(xk|y1:k−1, k), we can reduce
it to p(xk|k) and simply propagate our initial prior p(x0) via the signal process to
point in time k > 0. Depending on the system specifications however, this may lead
to the covariance term blowing up way beyond what is desired. Instead, we want
to suggest that only the reduction in covariance from past observations is targeted
and it either replaced or inflated. The idea hereby lies in that the mean estimate is
reliable up to the change point and only then additional uncertainty is induced. We
can therefore maintain part of the information before a change up to an introduc-
tion of additional uncertainty. For replacing, the initial covariance matrix P0 and
its forecast may be suitable candidates. The idea of inflating covariance resembles
that of covariance incrementation in (A. S. Willsky and Jones, 1974) and was also
picked up in (Lai and Shan, 1999) via employing a scalar factor ξ > 1 to obtain
p(xk|y1:k−1, k) = n(xk;m

f
k , ξ

2P f
k ). A major difficulty regarding this second approach

lies in tuning of either the choice of replacement or scaling factor and is somewhat
arbitrary. Regardless, given the theoretical results, either will result in first-order
asymptotically optimal detection delay with the CR-BOCPD procedure. The third
approach is arguably the most useful yet also the most restrictive in assumption.
Picking up on the idea in (3.49), we may assume a specific Gaussian distribution of
the additive term in un ∼ N (ūn, Un), n ≥ 1. The new scenario can then be expressed
via p(xk|y1:k−1, k) = n(xk;m

f
k + ūk, P

f
k +Un). Whenever we have sufficient information

about the nature of the additive term via large mean ūn and comparatively small
covariance matrix Un, e.g. via previous experiments or application context, this last
case is most useful. Otherwise, so for small mean and relatively large covariance,
it recovers the previous case of inflating the covariance matrix.
Considering the nature of the Kalman filter and, moreover, Bayesian learning, we
mainly exploit its properties in balancing uncertainties. We may therefore reduce
the sketched cases to the simple question whether we have specific knowledge about
the nature of the change we can employ for scenario initialization, i.e. in approach
three, or just increasing uncertainty to artificially allow for better adaptation to a
potential post-change regime, so similar to (A. S. Willsky and Jones, 1974) but in
an online fashion.
With the idea of parallel implementation of several Kalman filter algorithms for
the respective scenarios, we need adapting notation. Let hereby p(xn|y1:(n−1), k) =

n(xn;mf
k,n, P

f
k,n) be the forecast distribution of the Kalman filter at time n initialized

at k and p(xn|y1:n, k) = n(xn;ma
k,n, P

a
k,n) the respective analysis distribution. Accord-

ingly, the respective scenario Kalman filters are therefore started via p(xk|y1:k−1, k) =
n(xk;m

f
k,k, P

f
k,k). For the first course of action, set mf

k,k =
∏k

i=1Aim0 and P f
k,k =

ψk(ψk−1(· · ·ψ1(P0))) with ψi(P ) = AiPA
T
i + Qi and m0, P0 parameters of the initial

prior p(x0|0) = n(x0;m0, P0). The second approach changes P f
k,k either by replace-
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ment or scaling while maintaining mf
k,k = mf

0,k. The third action initializes via
parameters mf

k,k = mf
0,k + ūk and P f

k,k = P f
0,k + Un. The parameters mf

0,k and P
f
0,k are

hereby the parameters of the forecast with the initial prior distribution at time k
and represent the parameters of the no-change scenario, so p(xk|y1:(k−1)). For the
restart procedure, we want to replace mf

0,k and P
f
0,k with the parameters of the cur-

rent baseline scenario, so mf
r,k and P

f
r,k with initial r = 0.

Looking at computation of the scenario weights, we can be a lot more specific on as-
sumptions. Starting with assuming reliable knowledge about a change point prior
as introduced in (Adams and MacKay, 2007), the equations in (3.21) and (3.22)
provide required scenario weight posteriors and forecasts. We do neither have a
decision rule nor investigations on usual measures of reliability available, however,
given the exact Bayesian computation the approach is easily argued to be proficient
up to error in the priors and variability in an appropriate model predictive. This
is further supported by strong experimental results such as in (Van den Burg and
Williams, 2020).

Whenever we cannot assume such a change point prior, we want to utilize com-
putation of the scenario weights via the conditional CR-BOCPD procedure in (3.25)
and (3.26) for scenario posteriors and forecasts. For a given false alarm rate α0,
we obtain first-order asymptotic optimality for both probabilistic and deterministic
change points via results in (Lai, 1998), also for window-limited adaptations with
widow-size m(α0) chosen such that (3.11) holds. Recall, the key constraint hereby
lies in that we need to provide conditional pre- and post-change density functions,
i.e. via marginalization of the unknown parameter subject to change, the signal, to
obtain p(yn|y1:(n−1), k).

Next to the conditional CR-BOCPD, we may choose to use the χ2-CUSUM or GLR
procedure for detection given unreliable pre- and post-change density functions al-
though this approach needs plenty more work. Hereby we utilize the transfer in
(3.27) in the opposite direction via splitting the LLR. Exploiting the factorization in
Cox’s theorem (3.34) and retracing the steps in (3.27), we can assign κr,r,n = 1 and
κr,k,n = βr,k,n exp( (n−k+1)b2

2
)G(p

2
,

(n−k+1)2b2||γ̄k,n||22
4

) with G(r, s) the generalized hyper-
geometric function as introduced previously, p dimension of the observation space,
b2 aminimal squared euclidean distance of the post-change mean from 0 pre-change
mean of the innovations and γ̄k,n = 1

n−k+1

∑n
s=k Σ

− 1
2

s γs, the mean over standardized
innovation terms from k to n.
Similarly, when we do not want assuming such a minimal distance b2, we may ex-
ploit the χ2-GLR procedure instead via changing κr,k,n = βr,k,n exp( (n−k+1)

2
||γ̄k,n||22)

and maintaining κr,r,n = 1. Recall the derivation in (3.43), (3.46) and (3.54). These
two approaches need plentymorework, yetmay offer interesting perspectives driven
a lot more form statistical theory. As they do not need knowledge of a model pre-
dictive and instead focus on detecting departure from 0 mean of the innovation se-
quence, they offer a reliable and highly proficient way to compute scenario weights
resilient to tuning choices of scenario initialization. In the scope of this work, we
will only briefly investigate them in experiments for providing effective weights for
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Gaussian mixture model filters for non-linear approximation.

Merging Insights into Results

Given choice of scenario initialization and computation of scenario weights from as-
sumptions, implementation via the regular Kalman scheme of forecast and analysis
then only needs aggregation at the respective time steps to obtain the correspond-
ing Gaussian mixture for forecast and analysis via (3.55) for probabilistic change
points and available change point prior and (3.56) otherwise. A general algorithm
for the Change Scenario GMM- Kalman filter is given by (2) without specifications.
Twomore concrete algorithms, the BOCPDGMM-Kalman filter (3) for probabilistic
change points and the CR-BOCPD GMM-Kalman filter (4) for deterministic change
points, are provided in the appendix.

At this point, we want to circle back to the initial motivation of this chapter and the
broader scope of the work at hand. Regarding change point detection in dynamical
systems, the introduced χ2-based procedures provide a state-of-the-art with the χ2-
CUSUM procedure providing desirable detection properties for a known minimal
deviation of the post-change innovation mean sequence. Furthermore, the χ2-GLR
procedure as given in (3.54) works without specifying such a minimal deviation for
detecting departure from 0 mean of the innovation sequence while maintaining de-
sired properties. Both have their main challenge in efficient online implementation
resulting from need for computing the sufficient statistics, even for window-limited
adaptations. The recursive detection procedures based on the closed χ2-SPRT intro-
duced in (I. V. Nikiforov, 1999) and (I. V. Nikiforov, 2001) overcome this issue to some
extent. Yet, the central aspect of this work is in inference under presence of change
in additive terms of the signal process and the induced uncertainty as well as doing
so under robustness to observation noise mis-specification. The mean of standard-
ized innovations as sufficient statistic employed in the χ2-schemes is highly sus-
ceptible to outliers and realizations of mis-specification in heavy-tailedness. While
adaptation for more robust sufficient statistics in Huber’s M -estimators (see (Hu-
ber, 2004) for details) may provide an interesting route for future research, it is not
the direction we are interested in.

The BOCPD approach as introduced in (Adams and MacKay, 2007) as well as the
robust adaptation central to this work in (Altamirano et al., 2023b) provided new
and promising insights. Given their assumptions, the Kalman filter equations with
their inherent conjugacy provide somewhat of a special case of the model predictive
with an additional dynamical system of the latent parameter. The type of change
in BOCPD shares a desirable resemblance to the concept of Huber contamination
as utilized to resemble observation noise mis-specification in heavy-tailedness in
the previous chapter. In ideal circumstances, we assume knowledge of the change
point prior as well as a Gaussian profile of the additive terms. We can then very
accurately specify computation of scenario weights and scenario initialization to ob-
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3.5. Deriving Adaptive Kalman Filtering Strategies

Algorithm 2 The Scenario Kalman Filter
Input:

• Kalman filter requirements (initial condition p(x0|k = 0) ∼ n(x0;m0, P0), signal
model, observation model)

• scenario initial condition p(yk|y1:(k−1), k)

• scenario weight computation and detection criteria

Output:

• scenario/run-length posterior or last detected change point r

• aggregated signal forecast pκ(xn|y1:(n−1)) at time n and

• aggregated signal state pκ(xn|y1:n) at time n

for n=1,2,. . . do
initialize new scenario forecast for k := n and forecast step for all previous sce-

narios
initialize new scenario weight forecast for k := n, forecast scenario all previous

scenario weights via (3.22) or (3.26) and normalize
aggregate signal forecast via (3.55) or (3.56)
receive observation: yn
initialize new scenario weight for k := n, update all previous scenario weights via

(3.21) or (3.25) and normalize
if given, check restart/detection rule
analysis step for all scenarios
aggregate signal state estimate via (3.55) or (3.56)

end for
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tain reliable estimation and forecasts via scenario aggregation. Under much less
ideal circumstances and likely muc more common in practice, change points may ei-
ther be non-random or random but we can not assume a sufficiently reliable change
point prior. Further, we have little to no knowledge about structure or profile of the
additive terms. The developed conditional CR-BOCPD procedure with restart rule
equivalent to the detection rule in CUSUM strategies provides desirable properties
in reliability, also for the window-limited modification. We can aggregate scenario
forecasts and estimations andmake use of the robust inference in the previous chap-
ter merging several desired properties.

The two sketched situations are highly interesting as they describe two ends of the
spectrum on knowledge relevant for the challenge at hand. We can account for prob-
abilistic or deterministic change as well as very specific Gaussian additive terms up
to general additive terms with little to no knowledge available.

3.6. Experiments: Latent Change and Non-Linear
Simulations

We want to stay with the set-up from the previous chapter, however, reduced to only
the target tracking and Lorenz-63 examples. For the CR-BOCPD GMM-Kalman
filter we choose a constant threshold via Wald’s approximation for open-end SPRTs.
Following (Wald, 1992), we choose

c ≈ − log(α0), (3.58)

wit tightness of the approximation is hereby governed by overshoot which can gen-
erally be assumed to be reasonable small and providing the desired scaling for
asymptotic properties. Again, more precise results may be achieved via tuning with
Monte Carlo Simulations of the ARL under the null hypothesis. Additionally, we
want to employ a window-size m(α) = log(α0)2 which satisfies the requirements in
(3.11). Choosing a rate of false alarm of α0 = 0.05 then results in tuning parameter
βr,k,n = exp[log(α0)] ≈ 0.05 andwindow sizem ≈ 9, so k ∈ {n−m,n−m+1, . . . , n}, with
the baseline as additional scenario at r. Similarly, we want to prune the BOCPD
GMM-Kalman filter to only consider the 10 scenarios/run-lengths with the highest
posterior probability plus the newly initialized scenario.

The experiments are only evaluated superficially regarding inference of the underly-
ing dynamical system. There is no thorough empirical analysis regarding frequent
measures of accuracy and error of change point detection via F1-score or a Haus-
dorff metric in relation to signal-to-noise ratio. Again, the central reason hereby
lies in that we aim for reliable inference in filtering, i.e. signal estimation in the
analysis step, although change points as realizations of heavy-tailedness of the sig-
nal noise may be present.
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3.6. Experiments: Latent Change and Non-Linear Simulations

All simulations were done in R version 4.2.2.

3.6.1. Experiment A: Target Tracking Latent Gaussian Change

The general setup is the same as in the target tracking example of the previous
chapter apart from the contamination of the observations. We choose the popu-
lar target tracking task with signal space X = R4 containing x-position, x-velocity,
y-position as well as y-velocity, and observation space Y = R2 containing the mea-
sured x-position and y-position. We design the signal model discrete and focus for
this experiment on probabilistic change via additional signal noise terms with large
covariance at random times in the unobserved velocity dimensions. Given the usual
Kalman setting with random additive terms, we have

Xn+1 = AnXn +Q
1
2
nWn + πnun

Yn = HnXn +R
1
2
nVn

(3.59)

with Wn and Vn standard Gaussian noise in the respective dimensions, πn ∼iid
Ber(ϕ = 0.05) and un ∼iid N (0, U) with U = 100

(
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

)
. As usual for these kind

of models, yet much more simplified, we choose An =

(
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
, Hn = ( 1 0 0 0

0 0 1 0 )

and signal noise covariance Qn = 0.1 ·
(

1 0.5 0.5 0
0.5 1 0 0
0.5 0 1 0.1
0 0 0.1 1

)
. The initial signal is cho-

sen as X0 = (0, 1, 0, 0)T . The observations are generated via additional standard
Gaussian observation noise Vn andRn = ( 0.1 0.01

0.01 0.1 ). We simulate Xn for n in [0, 2]
with step-size dn = 0.01 resulting in 200 positions with nout = 1, so 200 observa-
tions. Next to the regular Kalman filter, we implement a BOCPD GMM-Kalman
filter and a CR-BOCPD GMM-Kalman filter with the corresponding scenario ini-
tialization assuming knowledge of the term un and geometric change point prior
matching πn or threshold as previously stated. Our main interest lies in the anal-
ysis mean of all three methods for the unobserved velocity dimensions. As can be
seen in figure (3.1), both proposed methods reliable detect and adapt to instances of
change with the regular Kalman filter lacking behind for prolonged time periods.
While the BOCPD based scheme hereby tends to be a little faster in adaptation
to a new post-change regime, it is also much more uncertain and frequently needs
time to stabilize after a jump. The novel CR-BOCPD scheme tends to be a little
slower, however the difference in delay is almost negligible. Yet, after detection
of an instances of change, the restart mechanism throwing away past scenarios
helps stabilizing with an additional correction after detection showing in a second
smaller jump. For the given trajectory in figure (3.1), changes happen at time points
η = (6, 20, 46, 64, 87, 91, 102, 129, 139, 149, 155, 188). The restart of the CR-BOCPD pro-
cedures happen at η̂ = (0, 7, 8, 21, 22, 47, 48, 65, . . . , 150, 151, 156, 157, 189, 190). It is
hereby common practice in change point literature to combine change points in
close proximity into a single change point, however, for our sake it is a very inter-
esting observation that the CR-BOCPD scheme shows this behavior of adjusting the
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Figure 3.1.: True trajectory in x and y-velocity (true), analysis mean velocities for
the regular KF (kal), the BOCPD GMM-KF (gmm_b) and CR-BOCPD
GMM-KF (gmm_cr). Dotted lines indicate instances of change.

analysis estimates in two steps. For the BOCPD scheme, we can hereby observe a
switching back-and-forth behavior of the MAP estimator on the scenario posterior,
i.e. the MAP-sequence (6, 7, 8, 7) while adjusting to the change point at η = 6.
Taking the results on the analysis mean of the latent velocities, we can observe cor-
responding impact on estimating the position. Figure (3.2) clearly shows the impact
of the slow adjustment of the regular Kalman filter to the true position in line with
the slow adjustment in the latent velocities. The reason hereby is likely straight for-
ward in overconfidence of estimates via small analysis covariance. This is neither
surprising nor shocking as the regular Kalman filter is not designed to account for
the type of behavior produced by the jumps. The BOCPD and CR-BOCPD schemes
on the other hand specifically account for this behavior via their covariance incre-
ments, however, they nicely showcase the price in large analysis covariance and the
resulting increased reliance on observations with almost over-fitting like behavior
for short time periods after detected instances of change.
The experiments support the theory in construction and derived properties of the
schemes providing good estimates of both observed and latent signal variables.
While the time-averaged MSE of the mean of BOCPD scheme tends to be slightly
lower than the CR-BOCPD mean, both are a power of 10 smaller than the regular
Kalman filter mean. While there is only a single trajectory presented here, all in-
sights also applied for repeated experiments.

Additional graphs of the combined and individual signal dimensions as well as dif-
ferences from the true trajectory are provided via figure ( A.21) to (A.30) in the
appendix.
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Figure 3.2.: Difference of analysis means and true x and y-position for the obser-
vations (obs), the regular KF (kal), the BOCPD GMM-KF (gmm_b)
and CR-BOCPD GMM-KF (gmm_cr). Dotted lines indicate instances
of change.

3.6.2. Experiment B: The Lorenz-63 Test

While not explicitly discussed thus far, the idea of re-adjusting signal estimation to
jumps via covariance increments provides an inherent potential to account for non-
linearity and chaotic behavior. We can hereby substitute separate Kalman filters for
each scenario with ensemble Kalman filters with perturbed observations. For the
CR-BOCPD scheme, new scenarios are then initialized by drawing a new ensem-
ble from the current baseline with appropriate covariance adjustment. In practice
this leads to a GMM-EnKF or simply an EnKF with multiple sub-ensemble with
their corresponding scenario weights. For the window-limited version, the oldest
ensemble apart from the baseline is replaced with a new ensemble before the fore-
cast step.
As in the previous chapter, the Lorenz-63 model provides a very suitable candi-
date for investigation in non-linear and chaotic properties. With the diffusion score
matchingKalman filter showing highly interesting behavior regarding non-linearity
via the adaptive, observation dependent Kalman gain, we want to include it for com-
parison to the CR-BOCPD GMM-ENKF schemes.

Again, we take the simulation mainly from (Reich and Cotter, 2015). Recall, let
z be the signal variable, we then have the vector field f given by

f(z) :=

 σ(z2 − z1)
z1(ρ− z3)− z2

z1z2 − βz3

 (3.60)

Reimann 93



3. Addressing Signal Noise Mis-Specification:
Change Point Inference and Inference Under Change
with parameters σ = 10, ρ = 28 and β = 8

3
. We chose a step-size of δt = 0.001

and the initial value z0 = (−0.587,−0563, 16.870)T . To implement a forward Euler
scheme as numerical approximation, we include a non-autonomous forcing term gn
that essentially comes down to a tent map iteration. We set a = (δt)−

1
2 and the

initial forcing term as g0 = (a(2−
1
2 − 1

2
), a(3−

1
2 − 1

2
), a(5−

1
2 − 1

2
) with the entry-wise

recursive definition

gn+1,i =

{
1.99999gn,i + a

2
if gn,i < 0

−1.99999gn,i + a
2

otherwise.
(3.61)

The signal is the propagated via

zn+1 = zn + δt(f(zn) + gn) (3.62)

over a window [0, 10] for investigating performance without mis-specification. For
the Dw-EnKF we use the default choice of tuning parameter in β = 1. Observations
were generated at tout = 100 via

Yn = Hnzn +
√

2Vn (3.63)

with Vn standard Gaussian noise and a stricter observation map Hn = ( 1 0 0 ) only
allowing noisy observation of the first component. We chose an ensemble size of
M = 5 to mimic application for expansive forward models.

We implement two CR-BOCPD schemes with the first as in the previous experi-
ment based on the CUSUM procedure for conditional probabilities and the second
based on the χ2-GLR procedure. Both threshold and window-size are as previously
described via Wald’s approximation and the poly-logarithm. At initialization of a
new scenario at time k > r, the empirical covariance P̂r,k of the current baseline
scenario inflated by a factor λ = 5 and the empirical mean m̂r,k and are taken to
draw a new ensemble {xa,(l)k,k }l∈{1,2,...,M}, so X l

k,k ∼iid N (mk,k, Pk,k) with mk,k = m̂r,k

and Pk,k = λP̂r,k. This new ensemble is then propagated for the next forecast, but
not considered for the previous analysis aggregation.
As can be seen in figure (3.3), all proposed schemes provide valuable information
about the true trajectory from noisy observations of the first component. Again, the
good performance of the EnKF with diffusion score matching analysis step some-
what stands out especially in competing with the CR-BOCPD GMM-EnKFs with
larger ensemble size via the multiple scenarios. Both of the GMM-EnKFs show the
expected behavior in re-adjusting via the covariance increments and accounting to
non-linerity this way. The vertical dotted lines figure (3.3) show precisely at which
time points the CR-BOCPD GMM-EnKF based on the conditional evidence has its
restart rule activated, so its previous baseline model overtaken by a new one with
incremented signal covariance. Accordingly, it is these points where the regular
EnKF is potentially thrown of from the true signal via interaction of non-linearity
and observation error.

Implementing abrupt jumps in the Lorenz-63 system is difficult as simply adding
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Figure 3.3.: Side-by-side graph comparison of the simulated signal (Refrence), gen-
erated observations (Observation), the analysis mean of the regu-
lar EnKF (EnKF), the default Dw-EnKF (Dw-EnKF), the CR-BOCPD
GMM-EnKF with conditional probabilities (cond-GMM) and the CR-
BOCPD GMM-EnKF with χ2-GLR criterion (chi-GMM). Dotted lines
indicate restarts of the conditional CR-BOCPD GMM-EnKF.

large random perturbations to it might degenerate the system and make it insignif-
icant in some way. Instead we want to use deterministic resets of the system at
random times to still include jumps of the systems without loosing the desired non-
linear behaviour.
We start by simulating a reference trajectory as previously described for the time
interval [0, 40]. Next we draw five time points over the whole number of steps of the
simulation with a binomial distribution with probability p = 0.15. We combine the
resulting sub-sequences of the reference trajectory up to the sampled time points
back-to-back to obtain a new trajectory that resets after these random time points
to the initial conditions. Again, we only observe the first component and add noise
to obtain the observations as described.
We observe the expected result in figure (3.4) in that the regular EnKF is thrown
off shortly after the first jump back to the initial conditions. Moreover, the same
applies to the Dw-EnKF, however, while the regular the EnKF stays out of balance
for major parts of the trajectories, the EnKF with diffusion score matching analy-
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Figure 3.4.: Side-by-side graph comparison of the simulated signal with jumps (Re-
frence), generated observations (Observations), the analysis mean of
the regular EnKF (EnKF), the default Dw-EnKF (Dw-EnKF), the CR-
BOCPD GMM-EnKF with conditional probabilities (cond-GMM) and
the CR-BOCPD GMM-EnKF with χ2-GLR criterion (chi-GMM). Dotted
lines indicate instances of change via a reset of the system.

sis step manages to always catch on again to the true trajectories after short time
periods. Both CR-BOCPD GMM-EnKF show the desire performance in reliably
tracking the true trajectories also for the latent variables.

Again, the results presented are only examples with the described behavior ob-
served for a variety of different set-ups. The time averaged MSE of the Dw-EnKF
is generally less than half the MSE of the regular EnKF with the proposed CR-
BOCPD GMM-EnKFs again improving by an order of 10 lower. Still, conclusions
should be drawn with great care. The presented trajectory emphasize the ability of
theDw-EnKF with perturbed observations to recover contrary to the regular EnKF.
The two ensemble filters designed in the scope of this chapter perform according to
their design, however, given the additional cost in the multiple ensemble for each
scenario, the result needs to be expected.
Additional graphs for the individual dimensions are provided in figure (A.31) to
(A.36) in the appendix
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3.7. Discussion and Conclusion

The presented results are most of all proof-of-concept with main contribution in
connecting the intuitions in Bayesian online change point detection via conditional
model predictives obtained from cheap conjugacy and marginals, or evidence, to
Lai’s results on reliability of CUSUMstrategies for conditional pre- and post-change
density functions and exploiting the resulting synergy in the context of Bayesian
filtering. We hereby want to explicitly point out again, that the conditional model
predictive or evidence p(yn|y1:(n−1)) is generally taken to be the best indicator of per-
formance of a filtering system in practice with no knowledge of a ground truth avail-
able. It is therefore very intuitive for the proposed CR-BOCPD schemes to utilize
this quantity.

Regarding the central aim of adjusting estimation for signal noise mis-specification
in heavy tailedness, the proposed approaches provided good performance with de-
sired improvement. However, other than with the previous chapter this needs much
more careful evaluating in the context of additional cost, i.e. the additional filters
for respective scenario. While this cost can be controlled to some extent with the
via window-size without loss in reliability, it is still essentially solving the initial
problem via a more complex model - there is no free lunch. As mentioned, employ-
ing Gaussian mixture models in filtering is not a novel approach. In (Anderson
and Moore, 2012) GMMs are discussed in their property to approximate any given
distribution given sufficient components and the resulting possibilities regarding
non-linear filtering. There, they aggregate a number of extended Kalman filters
with weights adjusted via posterior residuals of the observation. The pioneering
line of work in that regard can be traced back to (Sorenson and Alspach, 1971),
(Alspach and Sorenson, 1972) and (Tam and Moore, 1977). An extension to parti-
cle filters was done in (Kotecha and Djuric, 2003) with an introduction of Gaussian
mixture transform particle filters in (Reich and Cotter, 2015). Accordingly, the con-
tribution of the work at hand is by no means in proposing aggregating a system of
filters via Gaussian mixture models to better account for non-linearity. However,
the idea in utilizing open-end sequential probability ratio tests of the model predic-
tive, the conditional observation evidence, seems to not having been done thus far.
The closest relative to the proposed CR-BOCPD GMM-KFs is likely the switching
Kalman filter in (Murphy, 1998), however, it is also fairly more restrictive in ex-
plicitly assuming knowledge of a discrete hidden Markov model and its switching
probabilities. The presented idea in combining testing goodness-of-fit and variance
increment is much more general and aims to appeal to common data assimilation
practice.

A major challenge of the presented approach is in tuning the covariance increment
factor denoted λ in the experiment on the Lorenz-63 system and ξ referring to (Lai
and Shan, 1999). Whenever we have little to no knowledge about the nature of
change un and we do not want to propagate the system from the initial conditions,
this becomes a necessary yet challenging task. Similar to tuning the generalised
Bayesian learning rate in the previous chapter we may want to utilize access to an
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assumed model. Via simulating from that model we can then choose the scaling
factor λ such that the resulting BOCPD GMM-KF performs satisfactory in some
evaluation metric in a Monte Carlo fashion.

From here onwards, the presented results open pathways to several directions for
additional investigation. In the context of sequential learning, and more specifi-
cally aggregating expert knowledge, the scenario weights offer plenty of room of
improvement. Next to considering results in (Saad and Blanchard, 2021) for faster
learning rates for expert advice, the current constraint on rate of false alarms via
a constant threshold needs addressing. Switching to a curvilinear threshold while
aiming to maintain some notion of optimality opens up the possibility to instead
focus on a given probability of false alarm, so P0[T < ∞] < 1. The topic has first,
insightful results in (Borovkov, 1999), proving first-order asymptotic optimality of
detection delay for a double logarithmic threshold and very large change point lo-
cation η � 0. Borovkov states that it appears to be a difficult problem, however,
suggests logarithmic or even linear boundaries for change point locations η not too
large.
The work in (Alami et al., 2020) provides such a curvilinear threshold achieving
first-order asymptotic optimality in their specified sense for a given fixed PFA with
their choice of tuning parameter inβr,k,n = 1

n−k+1
. As argued in the work at hand, the

tuning parameter in the CR-BOCPD procedure and the threshold in the CUSUM
procedure share the relation− log(βr,k,n) = c(r, k, n)with curvilinear threshold c(r, k, n).
Their choice of βr,k,n = 1

n−k+1
therefore then recovers a logarithmic threshold in

c(r, k, n) = log(n − k + 1) similar to what is suggested in (Borovkov, 1999). In-
tuitively it makes sense to relate the curvilinear threshold to controlling the tail
behavior of the LLR sequence. For the Gaussian case as we are interested in, some
more work is required. The current intermediate results following similar argu-
ments as in (Alami et al., 2020) suggest a similar logarithmic curvilinear thresh-
old. The main task hereby is in controlling the tail behavior of post-change product
density functions

∏n
s=k p(ys|y1:(s−1), k) via sub-exponential bounds for (non-central)

χ2-distributions as in (M. Ghosh, 2021). Controlling the probability of false alarm
then takes a union bound argument over n−k+1 events, hence arguing for a curvi-
linear threshold of logarithmic order from the tail bounds. These first, superficial
considerations encourage empirical investigation of a choice of βr,k,n = 1

n−k+1
in the

context at hand with algorithm (4).

On a broader scope, connecting the field of sequential hypothesis testing and parti-
cle or ensemble filters opens several interesting new perspectives. To propose one
such, employing the idea or the recursive χ2-GLR algorithm based on closed SPRTs
in (I. V. Nikiforov, 2001) and (A. Tartakovsky et al., 2014), we may aim for more
adaptive replacement routines of single particles or ensemble members by evaluat-
ing their individual trajectory innovations in departure from mean 0 and only then
replacing them with an offspring of a well-performing sibling. See algorithm (5) in
the appendix for an outline of the approach.

Asmentionedwith the experiment on the Lorenz-63model, the proposed approaches
were not designed with non-linear, chaotic systems as main object of interest, how-
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ever, the intuition transfer easily with the discussed change points in abrupt jumps
easily transferring to concepts of phase-transition, regime switching, Levy-processes
or simply low stability of chaotic systems. The main components regarding non-
linear filtering discussed here in ensemble Kalman filters and Gaussian mixture
models are already popular in that context. Adding ideas from sequential learning
via SPRTs detecting model mis-fit is a promising addition and may be understood
as a statisticians way to address challenges in non-linearity.
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Change

4.1. Understanding the Challenge

While each of the previous two chapters respectively provided valuable insights
based on theoretical foundation, the shared problem of inference under abrupt change
via sudden jumps of the signal process as well as observation outliers, each poten-
tially arising from mis-specification of heavy tailedness of the true noise distribu-
tions, is intuitively more difficult.
Recalling the original linear Gaussian setting of the celebrated Kalman filter in
(2.1), we want to add the investigated modifications of the previous chapters to ob-
tain the combined challenge of robust inference of the signal process under additive
change and contaminated observations:

Xn = AnXn−1 + CnWn + δη,nun

Yn = HnXn + ΓnV
ε
n .

(4.1)

As discussed in chapter (3), the additive term δη,nun hereby expresses condition and
magnitude of respective additive changes and V ε

n refers to contaminated observa-
tion noise as introduced in chapter (2).

Focusing on the proposed approaches for quantifying and targeting eachmis-specification
individually, there seems to be no immediate conflict between the two of them. The
diffusion score matching Kalamn filter via robust Bayesian inverse inference in the
analysis step can easily be combined with covariance increments in the forecast step
and the Gaussian mixture model meta-structure based on the individual scenario
evidences. Further, a superficial look at the developed theory seems to support the
idea of intertwining both approaches as their individual assumptions do not inter-
fere. The diffusion score matching analysis step still produces conditional Gaussian
posteriors as required for the results on reliability of the change point detection
schemes and the scenario initialization of the change point detection scheme pro-
duce Gaussian priors required for Gaussian diffusion score matching posterior.
Problems arise in the conflicting heuristics of each approach via re-scaling signal
covariance.
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4.1.1. Balancing a Trade-Off in Noise Covariance Scaling

A central motivation for the work at hand were the results on robust change point
detection in (Altamirano et al., 2023b). The approach seems to support easy adap-
tation to the sequential Gaussian linear setting, however, this is somewhatmislead-
ing. The latent model they assume has no inherent stochastic sequential structure,
but assumes a constant pre- and post-change regime of the latent component. The
introduction of the signal process transforms the problem into a much more chal-
lenging one. More precise, it is the increase of uncertainty in the forecast step
via the stochastic signal process that requires the popular dynamical balancing of
signal state uncertainty and observation uncertainty via the Kalman gain that is
resulting in problematic and difficult interactions for robust change point inference
in linear Gaussian systems with the proposed methods.
Assuming that we do not have access to strong knowledge about the nature of an ad-
ditive change inmagnitude and direction under small uncertainty as will be usually
the case, we need relying on the idea of covariance increments at scenario initial-
ization to create forecasts that allow for better adaptation to a post-change regime
then a current best model and compare observation evidence - the core idea of CR-
BOCPD. Hereby, we explicitly utilize the property of the Kalman filter to balance
uncertainties and by inflating uncertainty in the signal state of a forecast, we ex-
plicitly put emphasis and allow for more trust in the observations. The robust anal-
ysis step via the diffusion score matching posterior works similar, yet the other way
around - it evaluates a notion of plausibility based on the forecast, the Mahalanobis
distance in the IMQ-kernel, to counteract over-fitting. If the forecast is artificially
inflated at scenario initialization, this notion of plausibility of an observation to
determine outliers can not work effectively. While the proposed methods do not
interfere with each other in theory, they somewhat work against each other in prac-
tice. All approaches employing covariance increments for scenario initializationwill
necessarily run into this issue.

This problem becomes much more severe, when telling apart outliers and change
points is especially challenging due to very similar signatures on observations. In
that case both instances of mis-specification in heavy tailedness cover and disguise
each other and produce a problem highly prone to over-fitting on supposed change.
An outlier that appears to be a plausible observation under a newly initialized sce-
nario will not be corrected in the analysis step of this specific scenario filter. If it
then happens to produce sufficient evidence, one may falsely account for a jump.
Additionally, after a recent decision for change, uncertainty in the signal state is
especially high with the filter needing to stabilize. This again somewhat weakens
the workings of the robust posterior for a certain time period in that outliers may
then be considered plausible given the high signal uncertainty in the early post-
change regime.
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Relying on Uncertainties for Intractable Epsiodes

So we understand why and in which constellation the problem is likely to be inher-
ently difficult given the proposed methods regarding signal state estimation. Yet,
there is a strong argument that although given the challenges, the approach com-
bining the conditional CR-BOCPD GMM-Kalman filter with robust diffusion score
matching posteriors will likely perform reasonable in appropriate evaluation as one
of its strong points lies in producing well quantified uncertainties due to consider-
ing both types of mis-specification contrary to each previous method individually
or the regular Kalman filter. This point needs additional emphasizing. The intro-
duced setting of the double noise mis-specification makes exact estimation of the
signal state close to impossible at times with change and outliers in quick succes-
sion and proximity, however, good uncertainty quantification, so indicating when-
ever we have a good idea about the signal state or when we do not, is then even
more crucial. Accordingly, the experiments will slightly shift in focus and include
an increased focus on evaluation metrics considering estimation confidence.

4.2. Experiments: Latent Estimation and Non-Linear
Simulations

For this last set of experiments we again want to employ the target tracking exam-
ple and the Lorenz-63 test with features to resemble double noise mis-specification
in heavy tailedness. Tuning is hereby generally done as introduced in the respec-
tive sections of the previous chapters.
New to this chapter’s experiments will be the mentioned more explicit focus on eval-
uation of uncertainty in signal estimates via median negative log-likelihood of the
respective posterior distributions. At each time step we compute − log[p(xtn|y1:n)]
for each investigated method with xtn the true latent signal at time n. In practice,
this can be seen as a form of information criterion also accounting for uncertainty
about the signal state. Some methods, such as the regular Kalman filter, occasion-
ally produce p(xtn|y1:n) ≈ 0 in numerical evaluation due to completely out of tune
uncertainties. Therefore, we do not want to simply take the sum over the negative
log-likelihoods, but instead resort to themedian for a notion of average performance
of a method. Accordingly our main tool of evaluation for experiments in this section
will lie in IC(p) = m̂edN({− log[p(xtn|y1:n)]}1≤n≤N).

All simulations were done in R version 4.2.2.

4.2.1. Experiment A: Target Tracking Under Double
Mis-Specification

The general setup is the combination of the target tracking examples of the previous
two chapters including contamination of the observations and probabilistic additive
jumps of the signal. We choose the popular target tracking task with signal space
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X = R4 containing x-position, x-velocity, y-position as well as y-velocity, and ob-
servation space Y = R2 containing the measured x-position, as well as y-position.
We design the signal model discrete. Given the usual Kalman setting but with the
additional terms, we have

Xn+1 = AnXn +Q
1
2
nWn + πnun

Yn = HnXn + V ε
n

(4.2)

with Wn standard Gaussian noise and V ε
n contaminated noise in the respective di-

mensions, πn ∼iid Ber(ϕ) and un ∼iid N (0, U) withU = ũ

(
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

)
. The contaminated

observations are generated via V ε
n ∼ N (0, Rn) + εN (0, c̃Rn) with Rn = ( 0.1 0.01

0.01 0.1 ) and
ε ∈ [0, 1].
We are interested in investigating performance for different choices of probabilities
ε and ϕ as well as magnitudes c̃ and ũ.

As usual for these kind ofmodels, yetmuchmore simplified, we chooseAn =

(
1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
,

Hn = ( 1 0 0 0
0 0 1 0 ) and signal noise covarianceQn = 0.1 ·

(
1 0.5 0.5 0

0.5 1 0 0
0.5 0 1 0.1
0 0 0.1 1

)
. The initial signal

is chosen as X0 = (0, 1, 0, 0)T .
We simulateXn for n in [0, 2] with step-size dn = 0.01 resulting in 200 positions with
nout = 1, so 200 observations. Next to the regular Kalman filter, we implement the
Dw-Kalman filter with default learning rate β = 1 and a CR-BOCPDGMM-Kalman
filter with the corresponding scenario initialization, threshold andwindow size as in
the previous section. Additionally we implement a combination of both, the robust
CR-BOCPDGMM-Kalman filter, implementing diffusion score matching posteriors
in the CR-BOCPD scheme.

Starting with a more qualitative investigation, on the central methods of the previ-
ous chapters, we set ϕ = 0.05, ε = 0.15 and ũ = c̃ = 100.
We observe the expected results in figure (4.1). The CR-BOCPD GMM-KF sus-
pects change for a large number of outliers and is generally very unstable. The
Dw-Kalman filter is generally stable, however, very slow in adapting to instances
of change instead suspecting outliers. The regular Kalman filter performs sur-
prisingly well in that it also lacks behind instances of change, however, this way
somewhat balancing out outliers. This is especially interesting when considering
Kalman’s interpretation of theKalman filter as aminimum squared error estimator
under severely relaxed assumptions. Figure (4.2) showing the difference in mean
from the true position further supports these results.
As expected, the combined scheme performs noticeably better. As can be seen in
figure (4.3) and figure (4.4), it still occasionally over-fits to outliers, however, in
much less severe scale and frequency compared to the regular CR-BOCPD GMM-
KF counterpart. Similarly, it also quickly corrects itself afterwards. Looking at
the information score, the combined method can be assumed to provide reasonably
tuned quantification of its uncertainties, especially considering the general diffi-
culty of the problem as discussed. For repeated experiments, similar insights with
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Figure 4.1.: True trajectory in x and y-velocity (true) and analysis mean veloci-
ties for the regular KF (kal), Dw-KF (rob) and CR-BOCPD GMM-KF
(gmm_cr). Dotted lines indicate instances of change.

similar scales of the information score could be observed.

Evaluation KF Dw-KF GMM-KF Dw-GMM-KF
MSE 0.57 5.79 1.09 0.27
IC 17.07 13.17 3.47 -1.57

Table 4.1.: Mean squared error and information criterion score of each method for
the trajectories of the provided graphs in figure (4.1), (4.2), (4.3) and (4.4).

Table (4.1) provides a very curious insight in that the regular Kalman filter pro-
vides a surprisingly low MSE with a large score in information criterion somewhat
aligning with its second interpretation. Otherwise, results are as expected with
the combined scheme showing strong performance both in MSE and in informa-
tion criterion score. However, considering the additional resources it requires this
result needs putting into perspective. One might consider employing other evalua-
tionmeasures such as the Akaike information criterion or the Bayesian information
criterion to better account for the additional parameters in the more complicated
schemes. However, both these measures will necessarily run into the numerical
issue described that requires use of the median of negative log-likelihoods in the
first place. In other words, due to the strongly misjudged uncertainties, i.e. of the
Kalman filter, evaluating the AIC or BIC for these methods will blow up to an ex-
tend that no number of parameters in the more sophisticated schemes can catch
up.
Additional graphs of full side-by side comparisons as well as the individual dimen-
sions and differences from the true signal are provided via figure (A.37) to (A.56) in
the appendix.
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Figure 4.2.: Difference of analysis means and true x and y-positions for the observa-
tion (obs), the regular KF (kal), Dw-KF (rob) and CR-BOCPD GMM-KF
(gmm_cr). Dotted lines indicate instances of change.

A main interest of this section lies in investigating performance of the proposed
method related to severeness of the individual mis-specifications. Fixing the covari-
ance factor of the respective events mimicking mis-specification in heavy tailedness
at ũ = 100 and c̃ = 100, we want to scale the individual magnitudes ϕ and ε and in-
vestigate the impact in the information score for both the regular Kalman filter and
the combined method. We hereby scale each from 0 to 0.5 in steps of 0.05 and take
the median over the information criterion scores of 100 Monte Carlo Simulations for
each pairing on the resulting grit.
The results in figure (4.5) are not necessarily surprising, however, they indicate at
discussed aspects. Further, the scales of the information criterion scores for the in-
dividual methods support arguments that the scale of evaluation metrics of single
experiments, e.g. as provided in the tables, generally translate for repeated simu-
lations.
To go more into detail, for the two specific methods in the Dw-Kalman filter and
the CR-BOCPD GMM-Kalman Filter, we can clearly see the color gradient in the
expected direction. The Dw-KF performs seemingly independent of the contamina-
tion probability ε in that the color gradient scales directly with the change point
probability ϕ and the other way around for the CR-BOCPD GMM-KF. For the regu-
lar Kalman filter and the combined scheme, the color gradient runs more diagonal
from low probabilities to high probabilities. Interestingly, both seem to scale better
with ϕ than with ε, however, this may likely also result from the choice of the cor-
responding covariance terms relative to model dynamics, so the covariance factor
impacting observed position values compared to the covariance factor for change
distorting the latent velocity values.
Similar color gradients can be observed also in MSE and for scaling covariance with
fixed probabilities. The corresponding plots are provided in the appendix via figures
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Figure 4.3.: True trajectory in x and y-velocity (true), analysis mean velocities for
the regular KF (kal) and the combined robust CR-BOCPD GMM-KF
(rob gmm_cr). Dotted lines indicate instances of change.

(A.57), (A.59) and (A.58).

4.2.2. Experiment B: The Lorenz-63 Test

For the last experiment, we want to investigate transfer to non-linear dynamical
systems. Hereby the problem again is much more challenging as even small differ-
ences in estimation may lead to severe error due to the chaotic nature, as previously
discussed. Again, we switch to ensemble based implementations.
As before, we take the simulation mainly from (Reich and Cotter, 2015). Recall, let
z be the signal variable, we then have the vector field f given by

f(z) :=

 σ(z2 − z1)
z1(ρ− z3)− z2

z1z2 − βz3

 (4.3)

with parameters σ = 10, ρ = 28 and β = 8
3
. We chose a step-size of δt = 0.001

and the initial value z0 = (−0.587,−0563, 16.870)T . To implement a forward Euler
scheme as numerical approximation, we include a non-autonomous forcing term gn
that essentially comes down to a tent map iteration. We set a = (δt)−

1
2 and the

initial forcing term as g0 = (a(2−
1
2 − 1

2
), a(3−

1
2 − 1

2
), a(5−

1
2 − 1

2
)) with the entry-wise

recursive definition

gn+1,i =

{
1.99999gn,i + a

2
if gn,i < 0

−1.99999gn,i + a
2

otherwise.
(4.4)
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Figure 4.4.: Difference of analysis means and true x and y-positions (top and mid-
dle) for the observations (obs), the regular KF (kal) and the combined
robust CR-BOCPDGMM-KF (rob gmm_cr). Information criterion score
over time (bottom) for the regular KF (ic kal) and robust CR-BOCPD
GMM-KF (ic rob-gmm_cr). Dotted lines indicate instances of change
Missing sections of the graph result from values outside the range of
the graph.

The signal is the propagated via

zn+1 = zn + δt(f(zn) + gn) (4.5)

over a window [0, 10] for investigating performance without mis-specifications. Ob-
servations were generated at tout = 100 via

Yn = Hnzn +
√

2Vn (4.6)

with a strict observationmapHn = ( 1 0 0 ) only allowing noisy observation of the first
component via Vn standard Gaussian noise. We chose an ensemble size ofM = 5 to
mimic application for expansive forward models.
We implement four schemes in total with the first three taken from previous ex-
periment in the regular perturbed EnKF, the Dw-EnKF and the CR-BOCPD GMM-
EnKF based on the CUSUM rule for conditional density functions. The Dw-EnKF
uses the default choice of tuning parameter in β = 1. Threshold and window-size in
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Figure 4.5.: Tile plot with interpolation of change point probability ϕ and contami-
nation probability ε regarding median information criterion score over
repeated Monte Carlo simulations for fixed covaraince factors ũ and
c̃ and each individual method: The regular KF (top-left), the Dw-KF
(top-right), the CR-BOCPD GMM-KF (bottom-left) and the robust CR-
BOCPD GMM-KF (bottom-right).

CR-BOCPD scheme are chosen as previously described via Wald’s approximation
and the poly-logarithm. At initialization of a new scenario at time k > r, the em-
pirical covariance P̂r,k of the current baseline scenario inflated by a factor λ = 6.66

and the empirical mean m̂r,k are taken to draw a new ensemble {xa,(l)k,k }l∈{1,2,...,M},
so X l

k,k ∼iid N (mk,k, Pk,k) with mk,k = m̂r,k and Pk,k = λP̂r,k. This new ensemble is
then propagated for the next forecast, but not considered for the previous analysis
aggregation.

Evaluation EnKF Dw-EnKF GMM-EnKF Dw-GMM-EnKF
MSE 103.9 10.7 2.5 11.8
IC - 41.7 6.7 7.9

Table 4.2.: Mean squared error and information criterion score of each method for
the trajectories of the provided graphs in figure (4.6).

Both the graphs in figure (4.6) and the corresponding numerical evaluation crite-
ria in table (4.2) indicate, that for the Lorenz-63 model with no mis-specifications
the CR-BOCPD GMM-EnKF provides both the best mean estimate as well as un-
certainty quantification. While the regular EnKF with perturbed observations is
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Figure 4.6.: Side-by-side graph comparison of the simulated signal (Reference),
generated observations (Observation), the analysis mean of the regu-
lar EnKF (EnKF), the default Dw-EnKF (Dw-EnKF), the CR-BOCPD
GMM-EnKF (cond-GMM) and the robust CR-BOCPD GMM-EnKF
(Dw-GMM). Dotted lines indicate restarts of the robust CR-BOCPD
GMM-EnKF.

thrown off and blew up even in median of the negative log-likelihoods, theDw-EnKF
and the combined scheme provided reasonable performance. Both are off at times,
however, manage to recover again. The combined scheme hereby seems to be some-
what "over-engineered" for the well-specified non-linear case.

We implement abrupt jumps in the Lorenz-63 system as before via deterministic
resets of the system at random times keeping the desired non-linear behaviour.
We start by simulating a reference trajectory as previously described for the inter-
val [0, 40]. Next we draw five time points over the whole number of steps of the
simulation with a binomial distribution with probability p = 0.2. We combine sub-
sequences of the reference trajectory up to the sampled time points back-to-back to
obtain a new trajectory that resets after these random time points to the initial con-
ditions Different from the previous experiment, we add contaminated noise to the
observation of the first component via replacing Vn with V ε

n ∼ N (0, 1) + εN (0, 100)
with ε = 0.2.
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Figure 4.7.: Side-by-side graph comparison of the simulated signal with jumps (Ref-
erence) and contaminated observations (Observations) as well as the
analysis mean of the robust CR-BOCPD GMM-EnKF (Dw-GMM). Dot-
ted lines indicate instances of change via a restart of the system.

The results in figure (4.7) and table (4.3) align with results in the previous experi-
ment up to considerations of non-linearity. The frequent outliers throw of the mean
estimate of the CR-BOCPD GMM-EnKF yet with still reasonable uncertainties in-
dicated by the IC score. The Dw-EnKF performs has a reasonable performance as
could be expected given its previous performances. The change in the occasional
reset is a lot less severe compared to the target tracking experiment and thus does
not play into its main weakness as much. The combined scheme can be considered
to perform best with reasonable mean estimates and the best IC score. Accordingly,
only its trajectory is shown with the graphs otherwise overly cluttered.

While comparison regarding number of model parameters was already considered
with the previous experiment and the take-away still holds, we face another, much
more significant discussion here in the number of ensemble members. The GMM-
EnKF schemes employ a much larger ensembles by a factor of the CR-BOCPD
window-size in practice. For the concrete experiment this means that while EnKF
and the Dw-EnKF work on the given ensemble size of M = 5, the GMM-EnKF
schemes use up to m(α) ·M = 55 ensemble members with non-uniform weights.
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Evaluation EnKF Dw-EnKF GMM-EnKF Dw-GMM-EnKF
MSE 109.5 53.3 490.4 71.8
IC - 137.8 57.0 10.1

Table 4.3.: Mean squared error and information criterion score of each method for
the trajectories of the provided graphs in figure (4.7).

This point has been discussed in the previous section, however, the results of this
experiments emphasize the proficiency of the Dw-EnKF compared to the GMM-
EnKFs given contamination. Accordingly we want to repeat the experiment with
an adapted number of 55 ensemble members for the EnKF and the Dw-EnKF. The
experimental set up is hereby the exact same otherwise.

Evaluation EnKF Dw-EnKF GMM-EnKF Dw-GMM-EnKF
MSE 39.7 1.6 3.6 9.1
IC 178.5 2.4 8.5 6.1

Table 4.4.: Mean squared error and information criterion score of each method for
the trajectories of the provided graphs in figure (4.8).

For the experiment with no mis-specification as presented in figure (4.8) and table
(4.4), we observe are rapid increase in performance of the regular perturbed EnKF
and theDw-EnKF. Moreover, theDw-EnKF provides a very strong performance both
in MSE and IC score overtaking both GMM-EnKFs.

Evaluation EnKF Dw-EnKF GMM-EnKF Dw-GMM-EnKF
MSE 122.3 17.6 261.7 83.4
IC - 3.6 67.5 12.6

Table 4.5.: Mean squared error and information criterion score of each method for
the trajectories of the provided graphs in figure (4.9).

The results with contaminated observations and restarts of the system presented
in figure (4.9) and table (4.5) further support these insights. While the adapted
number of ensemble members are not sufficient for the perturbed EnKF to over-
come the mis-specifications, it strongly improves the performance of the Dw-EnKF
to a degree that it noticeably stands out even from the combined method. Moreover,
the results further emphasize a strong proficiency and scaling of the Dw-EnKF re-
garding non-linear models. We hereby have to keep in mind that its weak point in
slow adaptation to strong change as was observed in the target tracking experiment
does no come into play as much here with the small number of resets.
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Figure 4.8.: Side-by-side graph comparison of the simulated signal (Reference), gen-
erated observations (Observation), the analysis mean with equalized
number of ensemble members of the regular EnKF (EnKF), the default
Dw-EnKF (Dw-EnKF), the CR-BOCPD GMM-EnKF (cond-GMM) and
the robust CR-BOCPD GMM-EnKF (Dw-GMM). Dotted lines indicate
restarts of the robust CR-BOCPD GMM-EnKF.

For the applications inmind, every ensemblemember is costly, yet the GMM-EnKFs
necessarily need a fairly large number of them to sufficiently approximate each sce-
nario. The results of this experiment indicate that for non-linear dynamical systems
with strong contamination and comparably weak or low magnitude of change, the
diffusion score matching ensemble Kalman filter with perturbed observations pro-
vides a very strong approximation outperforming the GMM-EnKF given you can
afford the number of ensemble members. If you can not afford the number of en-
semble members required for the GMM-EnKF variants, theDw-EnKF still provides
reasonable performance.

Again it has to be said that the results have not be drawn over a large number
of Monte Carlo simulations, however, the results repeated for different runs and
can be taken to apply in similar scale. Additional graphs including the individual
dimensions are provided via figure (A.60) to (A.71) in the appendix.
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Figure 4.9.: Side-by-side graph comparison of the simulated signal with jumps (Ref-
erence) and contaminated observations (Observation) as well as the
analysis mean with equalized number of ensemble members of the Dw-
EnKF (Dw-Kal) and robust CR-BOCPD GMM-EnKF (Dw-GMM). Dot-
ted lines indicate instances of change via a restart of the system.

4.3. Discussion and Conclusion

This chapter provided the combination of several individual results and in a way
represents the peak of considerations on mis-specification in Bayesian filtering. Yet
it does not include any new theory instead analysing interaction of the previously
derived methods.
As discussed, the problem at hand of double mis-specification of the noise terms
in heavy-tailedness is highly difficult. For the linear Gaussian case the presented
approach of the CR-BOCPDGMM-KF with diffusion score matching posteriors pro-
vided the best results in good uncertainty quantification - as is intended by design.
Considering the theoretical and computational machinery in play for this scheme,
this result is highly desirable. An interesting observation hereby was mainly with
the good performance of the mean estimate of the regular Kalman filter in mean
squared error.
Broadening the horizon via considering non-linear, chaotic dynamical systems, the
robust CR-BOCPDGMM-EnKF seems somewhat over-engineered requiring a large
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number of ensemble members for the individual scenarios. Scaling theDw-EnKF to
a comparable number of ensemble members, it provides a very strong performance
in proficiency both of mean estimate for the signal state and uncertainty quantifi-
cation measured via an adapted information criterion.

The key take away of the work at hand lies in these two insights. For the linear
Gaussian setting with double noisemis-specification the designed combined scheme
provides a reasonable solution. Thus far nothing comparable is present in the liter-
ature and neither in related topics such as robust change point detection in linear
Gaussian systems. The result is a starting point for the debate on mis-specification,
not an exhaustive conclusion. In the severely more complicated non-linear case, ap-
proximation with reasonable uncertainty quantification is all onemay hope for. The
Dw-EnKF provides a highly promising result in that case.

The presented results are ground for further investigation into a large variety of
directions. Each chapter has its own, individual details, pits and stepping stones
providing both novel insights and questions for adjacent fields.
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[One] relies on assumptions
about the distribution of
errors.[...] This is inherently
difficult,
because it requires statements
[...] about things we truly do not
know.

Morzfeld and Reich

The obtained results of the work at hand have already been discussed for appro-
priate context at the end of each individual chapter 2, 3 and 4. The main outputs
are three propositions, two algorithms and eight simulation experiments. Hereby,
we want to consider the propositions and corresponding algorithm on the diffusion
score matching Kalman filter in conjugacy and robustness of the posterior most
rigorous while other results can be taken to be preliminary needing additional in-
vestigation in future work with addressing details. Especially the result in chapter
?? require considering adapted notions of optimality regarding fixed probability of
false alarm and more in-depth development of arguments.

Regardless, next to theoretical results the work at hand has value and contribu-
tion in opening a discourse for perspectives from limitations and challenges in the
practice of statistical modelling. Circling back to the initial context Bayesian fore-
casting and data assimilation, opening the discussion on model mis-specification
in the noise terms is crucial. It needs developing novel methods such as done here
to address these necessary hurdles. The proposed strategies in this work try to
balance feasibility in practice via numerical complexity and required assumptions
with theoretical foundation. Considering the format of the work at hand it then
puts what was achived into perspective.

Leaving the context of mis-specification for the much broader context of data as-
similation under reduced assumptions explicitly including non-linear systems, we
want to highlight the two contributions we deemmost relevant for future directions.
The very strong performance of the diffusion score matching ensemble Kalman fil-
ter with perturbed observations was somewhat surprising, however, different intu-
itions of its inner workings are arising. Likely themain contributor to its proficiency
is the combination of the adapted Kalman gain and the novel divergence term on
the level of the individual ensemble member via a push-and-pull type interaction
similar to a repulsion counteracting over-fitting and spacing out available particles.
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It implicitly incorporates the current practice of artificially incrementing covariance
in high-dimensional and costly EnKF applications into its mechanics.
We want to place the second spotlight on the novel idea of exploiting established
frequentist practices in sequential hypothesis testing for model fit in the Bayesian
dominated field of stochastic filtering. The proposed schemes in the scope of detect-
ing additive changes are just one such exploration of synergies, yet likely (too) costly
for some filtering applications. An other example, the proposed intertwining of en-
semble or particle methods and sequential testing as briefly discussed at the end of
chapter 3 and sketched in algorithm (5) in the appendix makes intuitive sense. It
provides a new perspective to the idea of resampling via enabling evaluation of sin-
gle particle evolutions and their trajectories also when importance weightsmight be
unreliable, e.g. under mis-specification. As said, it can be taken to be a frequentist
statisticians way of approaching challenges arising with non-linearity via accepting
or rejecting a current model.

Where the work at hand lacks detail, it is rich in diversity of the combined meth-
ods actively intersecting different fields. It is a departure towards new perspectives
instead of a pushing of current practice with in its known limitations. Plenty of re-
search has to follow, yet different research communities have access to contribute.
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Indian Journal of Statistics, Series A (2008-), 80, S1–S7.

Maillard, O.-A. (2019). Sequential change-point detection: Laplace concentration
of scan statistics and non-asymptotic delay bounds, In Algorithmic learning
theory. PMLR.

Reimann 119



Bibliography

Matsubara, T., Knoblauch, J., Briol, F.-X., & Oates, C. J. (2022). Robust generalised
bayesian inference for intractable likelihoods. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 84(3), 997–1022.

Matsubara, T., Knoblauch, J., Briol, F.-X., &Oates, C. J. (2023). Generalized bayesian
inference for discrete intractable likelihood. Journal of the American Statis-
tical Association, 1–11.

Morzfeld, M., & Reich, S. (2018). Data assimilation: Mathematics for merging mod-
els and data.

Murphy, K. P. (1998). Switching kalman filters.
Namoano, B., Starr, A., Emmanouilidis, C., & Cristobal, R. C. (2019). Online change

detection techniques in time series: An overview, In 2019 ieee international
conference on prognostics and health management (icphm). IEEE.

Nikiforov, I. V. (1999). Quadratic tests for detection of abrupt changes in multivari-
ate signals. IEEE transactions on signal processing, 47(9), 2534–2538.

Nikiforov, I. V. (2001). A simple change detection scheme. Signal Processing, 81(1),
149–172.

Nikiforov, I. (1994). On the first order optimality of the discord detection algorithm
in the vector case., (1), 87–105.

Niu, Y. S., Hao, N., & Zhang, H. (2016). Multiple change-point detection: A selective
overview. Statistical Science, 611–623.

Pacchiardi, L. (2021). Generalizing bayesian inference. http://www.lorenzopacchiardi.
me/blog/2021/generalizedBayes/

Pacchiardi, L., & Dutta, R. (2021). Generalized bayesian likelihood-free inference
using scoring rules estimators. arXiv preprint arXiv:2104.03889.

Page, E. (1955). A test for a change in a parameter occurring at an unknown point.
Biometrika, 42(3/4), 523–527.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115.
Pollak, M. (1985). Optimal detection of a change in distribution. The Annals of

Statistics, 206–227.
Reich, S., & Cotter, C. (2015). Probabilistic forecasting and bayesian data assimila-

tion. Cambridge University Press.
Ritchie, S. (2020). Science fictions: Exposing fraud, bias, negligence and hype in sci-

ence. Random House.
Saad, E. M., & Blanchard, G. (2021). Fast rates for prediction with limited ex-

pert advice. Advances in Neural Information Processing Systems, 34, 23582–
23591.

Słupiński, M. (2023). Exponential families, conjugate priors and kalman filters.
Computational Intelligence Research Group, Institute of Computer Science,
University of Wroclaw. https://ii.uni.wroc.pl/~lipinski/ADM2023/MSl/ADM_
__lecture_3.pdf

Solo, V. (1996). Stability of the kalman filter with stochastic time-varying parame-
ters, In Proceedings of 35th ieee conference on decision and control. IEEE.

Sorenson, H.W., & Alspach, D. L. (1971). Recursive bayesian estimation using gaus-
sian sums. Automatica, 7(4), 465–479.

Stannat,W. (2023). Lecture notes in stochastic filtering. Technical University Berlin.
Tam, P., & Moore, J. (1977). A gaussian sum approach to phase and frequency esti-

mation. IEEE Transactions on Communications, 25(9), 935–942.

120 Reimann

http://www.lorenzopacchiardi.me/blog/2021/generalizedBayes/
http://www.lorenzopacchiardi.me/blog/2021/generalizedBayes/
https://ii.uni.wroc.pl/~lipinski/ADM2023/MSl/ADM___lecture_3.pdf
https://ii.uni.wroc.pl/~lipinski/ADM2023/MSl/ADM___lecture_3.pdf


Bibliography

Tang, H., Han, H., Zhang, S., & Feng, W. (2024). A generalized t-distribution-based
kernel adaptive filtering algorithm. IEEE Transactions on Circuits and Sys-
tems II: Express Briefs.

Tartakovsky, A. G. (2009). Asymptotic optimality in bayesian changepoint detection
problems under global false alarm probability constraint. Theory of Proba-
bility & Its Applications, 53(3), 443–466.

Tartakovsky, A., Nikiforov, I., & Basseville, M. (2014). Sequential analysis: Hypoth-
esis testing and changepoint detection. CRC press.

Umarov, S., Tsallis, C., & Steinberg, S. (2008). On aq-central limit theorem consis-
tent with nonextensive statistical mechanics. Milan journal of mathematics,
76(1), 307–328.

Van den Burg, G. J., & Williams, C. K. (2020). An evaluation of change point detec-
tion algorithms. arXiv preprint arXiv:2003.06222.

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when
the number of observations is large.Transactions of the AmericanMathemat-
ical society, 54(3), 426–482.

Wald, A. (1947). Foundations of a general theory of sequential decision functions.
Econometrica, Journal of the Econometric Society, 279–313.

Wald, A. (1992). Sequential tests of statistical hypotheses, In Breakthroughs in
statistics: Foundations and basic theory. Springer.

Wang, H., Li, H., Fang, J., & Wang, H. (2018). Robust gaussian kalman filter with
outlier detection. IEEE Signal Processing Letters, 25(8), 1236–1240.

Willsky, A. S. (1976). A survey of design methods for failure detection in dynamic
systems. Automatica, 12(6), 601–611.

Willsky, A. S., & Jones, H. L. (1974). A generalized likelihood ratio approach to
state estimation in linear systems subjects to abrupt changes, In 1974 ieee
conference on decision and control including the 13th symposium on adaptive
processes. IEEE.

Willsky, A., & Jones, H. (1976). A generalized likelihood ratio approach to the de-
tection and estimation of jumps in linear systems. IEEE Transactions on
Automatic control, 21(1), 108–112.

Wu, P.-S., & Martin, R. (2023). A comparison of learning rate selection methods in
generalized bayesian inference. Bayesian Analysis, 18(1), 105–132.

Xie, L., Zou, S., Xie, Y., & Veeravalli, V. V. (2021). Sequential (quickest) change
detection: Classical results and new directions. IEEE Journal on Selected
Areas in Information Theory, 2(2), 494–514.

Zellner, A. (1988). Optimal information processing and bayes’s theorem. The Amer-
ican Statistician, 42(4), 278–280.

Zhang, M., Key, O., Hayes, P., Barber, D., Paige, B., & Briol, F.-X. (2022). Towards
healing the blindness of score matching. arXiv preprint arXiv:2209.07396.

Zhen-Wei, Z., & Hai-Tao, F. (2013). L2-stability of discrete-time kalman filter with
random coefficients under incorrect covariance.Acta Automatica Sinica, 39(1),
43–52.

Zhu, X., Soh, Y. C., & Xie, L. (2002). Design and analysis of discrete-time robust
kalman filters. Automatica, 38(6), 1069–1077.

Reimann 121





Appendix

A. Additional Material

A.1. Chapter 2

A.1.1. Experiment A: Additional Graphs

The model, simulation and parameter choices as well as notation are described in
the respective section.

Figure A.1.: Graph of the simulated signal and contaminated observations as well
as the analysis/posterior mean estimates of the Kalman filter and the
Dw-Kalman filter for β = 1 and tuned β∗. Dotted lines signal instances
of observation contamination.
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A. Additional Material

Figure A.2.: Graph of the simulated signal, contaminated observations and the
tuned Dw-Kalman filter with 95%-CI. Dotted lines signal instances of
observation contamination.

Figure A.3.: Graph of the squared error for each mean estimate with the MSE over
all time steps. Dotted lines signal instances of observation contamina-
tion.
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A.1. Chapter 2

Figure A.4.: Separate graphs of the squared error for each mean estimate respec-
tively. Note the difference in scale. Dotted lines signal instances of
observation contamination.

A.1.2. Experiment B: Additional Graphs

The model, simulation and parameter choices as well as notation are described in
the respective section.

Figure A.5.: Simulated object trajectory, contaminated observed trajectory, analy-
sis and forecast mean of the regular Kalman filter.
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A. Additional Material

Figure A.6.: Side-by-side graph comparison of the simulated signal, contaminated
observations, analysis and forecast mean of the regular Kalman filter
for each dimension.

A.1.3. Experiment C: Additional Graphs

The model, simulation and parameter choices as well as notation are described in
the respective section.
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A.1. Chapter 2

Figure A.7.: Side-by-side graph comparison of the simulated signal, generated ob-
servations, the KF analysis/posterior mean estimates and the tuned
Dw-KF analysis/posterior for uncontaminated observations.

Figure A.8.: First dimension of the simulated signal, generated observations, the
KF analysis/posterior mean estimates and the tuned Dw-KF analy-
sis/posterior for uncontaminated observations.
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A. Additional Material

Figure A.9.: Second dimension of the simulated signal, the KF analysis/posterior
mean estimates and the tunedDw-KF analysis/posterior for uncontam-
inated observations. This dimension was not observed directly.

Figure A.10.: Third dimension of the simulated signal, generated observations, the
KF analysis/posterior mean estimates and the tuned Dw-KF analy-
sis/posterior for uncontaminated observations.

Figure A.11.: First dimension of the simulated signal, generated observations, the
KF analysis/posterior mean estimates and the tuned Dw-KF analy-
sis/posterior for contaminated observations.
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A.1. Chapter 2

Figure A.12.: Second dimension of the simulated signal, the KF analysis/posterior
mean estimates and the tuned Dw-KF analysis/posterior for contami-
nated observations. This dimension was not observed directly.

Figure A.13.: Third dimension of the simulated signal, generated observations, the
KF analysis/posterior mean estimates and the tuned Dw-KF analy-
sis/posterior for contaminated observations.

A.1.4. Experiment D: Additional Graphs

Themodel, simulation and parameter choices are described in the respective section

Reimann 129



A. Additional Material

Figure A.14.: Side-by-side graph comparison of the simulated signal, generated ob-
servations, the KF analysis/posterior mean estimates and the tuned
Dw-KF analysis/posterior for uncontaminated observations.

Figure A.15.: First dimension of the simulated signal, generated observations, the
KF analysis/posterior mean estimates and the tuned Dw-KF analy-
sis/posterior for uncontaminated observations.
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Figure A.16.: Second dimension of the simulated signal, the KF analysis/posterior
mean estimates and the tuned Dw-KF analysis/posterior for uncon-
taminated observations. This dimension was not observed directly.

Figure A.17.: Third dimension of the simulated signal, generated observations, the
KF analysis/posterior mean estimates and the tuned Dw-KF analy-
sis/posterior for uncontaminated observations.

Figure A.18.: First dimension of the simulated signal, generated observations, the
KF analysis/posterior mean estimates and the tuned Dw-KF analy-
sis/posterior for contaminated observations.
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Figure A.19.: Second dimension of the simulated signal, the KF analysis/posterior
mean estimates and the tuned Dw-KF analysis/posterior for contami-
nated observations. This dimension was not observed directly.

Figure A.20.: Third dimension of the simulated signal, generated observations, the
KF analysis/posterior mean estimates and the tuned Dw-KF analy-
sis/posterior for contaminated observations.

A.2. Chapter 3

A.2.1. Algorithms

A.2.2. Experiment A: Additional Graphs

The model, simulation and parameter choices as well as notation are described in
the respective section.
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A.2. Chapter 3

Algorithm 3 The BOCPD GMM-Kalman Filter
Input:

• change point prior ϕn ∈ (0, 1) (for a geometric hazard function)

• scenario initial condition p(yk|y1:(k−1), k)

• Kalman filter requirements (initial condition p(x0|k = 0) ∼ n(x0;m0, P0), signal model, observation model)

• initial weight κ0,0 = 1

Output:

• scenario posteriors κ̃k,n

• aggregated signal forecast pκ(xn|y1:(n−1)) at time n and

• aggregated signal state pκ(xn|y1:n) at time n

for n=1,2,. . . do

initialize new scenario forecast: p(xk|y1:k−1, k) for k := n

initialize new scenario weight forecast: κf
k,n

= ϕn
∑n−1
s=1 κs,n−1 for k := n

for k=0,1,2,. . . ,n-1 do

forecast step for all previous scenarios: p(xn|y1:n−1, k)

end for

for k=0,1,. . . ,n-1 do

forecast scenario weights: κf
k,n

= (1− ϕn)κk,n−1

end for

for k=0,1,. . . ,n do

normalize forecast weights: κ̃f
k,n

=
κ
f
k,n∑n

s=0 κ
f
s,n

end for

aggregate signal forecast: pκ(xn|y1:(n−1)) =
∑n
s=0 κ̃

f
s,np(xn|y1:(n−1), s)

receive observation: yn

initialize new scenario weight: κk,n = ϕn
∑n−1
s=0 p(yn|y1:(n−1), s)κs,n−1

for k=0,1,. . . ,n-1 do

update scenario weights: κk,n = (1− ϕn)p(yn|y1:(n−1), k)κk,n−1

end for

for k=0,1,. . . ,n do

normalize weights: κ̃k,n =
κk,n∑n
s=1 κs,n

end for

for k=1,2,. . . ,n do

analysis step for all scenarios: p(xn|y1:n, k)

end for

aggregate signal state estimate: pκ(xn|y1:n) =
∑n
s=0 κ̃s,np(xn|y1:n, s)

end for
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Algorithm 4 The CR-BOCPD GMM-Kalman Filter
Input:

• scenario initial condition p(yk|y1(k−1), k)

• Kalman filter requirements (initial condition p(x0|k = 0) ∼ n(x0;m0, P0), signal model, observation model)

• initial restart r = 0

• initial tuning parameter βr,0,0 := 1

• tuning parameter computation βr,k,n := exp(−c) ∼ α0 for c ∼ | log(α0)|(for false alarm rate α0)

• initial weight κr,0,0 = 1

Output:

• scenario posterior κ̃r,k,n

• last detected instance of change r

• aggregated signal forecast pκ(xn|y1:(n−1)) at time n and

• aggregated signal state pκ(xn|y1:n) at time n

for n=1,2,. . . do

initialize new scenario forecast: p(xk|y1:k−1, k) for k := n

initialize new scenario weight forecast: κf
r,k,n

= βr,k,n
∏n−1
s=r p(ys|y1:(s−1), r) for k := n

for k=r,r+1,. . . ,n-1 do

forecast step for all previous scenarios: p(xn|y1:n−1, k)

end for

for k=r,r+1,. . . ,n-1 do

forecast scenario weights: κf
r,k,n

=
βr,k,n
βr,k,n−1

κr,k,n−1

end for

for k=r,r+1,. . . ,n do

normalize forecast weights: κ̃f
r,k,n

=
κ
f
r,k,n∑n

s=0 κ
f
r,s,n

end for

aggregate signal forecast: pκ(xn|y1:(n−1)) =
∑n
s=0 κ̃

f
r,s,np(xn|y1:(n−1), s)

receive observation: yn

initialize new scenario weight: κr,k,n = βr,k,np(yk|y1:(k−1), k)
∏n−1
s=r p(ys|y1:(s−1), r) for k := n

for k=r,r+1,. . . ,n-1 do

update scenario weights: κr,k,n =
βr,k,n
βr,k,n

p(yn|y1:(n−1), k)κr,k,n−1

end for

check restart rule r = max{k ≥ r : κr,k,n ≥ κr,r,n}

for k=r,r+1,. . . ,n do

normalize weights: κ̃r,k,n =
κr,k,n∑n
s=r κr,s,n

end for

for k=r,r+1,. . . ,n do

analysis step for all scenarios: p(xn|y1:n, k)

end for

aggregate signal state estimate: pκ(xn|y1:n) =
∑n
s=r κ̃r,s,np(xn|y1:n, s)

end for
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Algorithm 5 A Recursive χ2-Ensemble Filter
Input:

• Kalman filter requirements (initial condition p(x0|k = 0) ∼ n(x0;m0, P0), signal
model, observation model)

• ensemble sizeM > 0

• minimal deviation of interest b2 > 0 and threshold c > 0

Output:

• Gaussian approx. of signal forecast p̂(xn|y1:(n−1)) at time n and

• Gaussian approx. signal state p̂(xn|y1:n) at time n

Start:

• draw starting ensemble {xa,(l)0 }1≤l≤M ,

• initialize test statistics {Ŝ(l)
0 }1≤l≤M ,

• innovation residual {Γ̂(l)
0 }1≤l≤M ,

• counter {ñ(l)
0 }1≤l≤M and set to 0

for n=1,2,. . . do
forecast propagation of all ensemble members: {x(n− 1)a,(l)}1≤l≤M → {x

f,(l)
n }1≤l≤M

estimate empirical forecast mean m̂f
n and covariance P̂ fn for p̂(xn|y1:(n−1)) = n(xn; m̂f

n, P̂
f
n )

receive observation: yn
for l=0,1,. . . ,M do

recursive update of counter, innovation residual and test statistics via

ñ(l)
n = 1{Ŝ(l)

n−1}ñ
(l)
n−1 + 1

Γ̂(l)
n = 1{Ŝ(l)

n−1}Γ̂
(l)
n−1 + Σ

− 1
2

n (Hnx
f,(l)
n − yn)

Ŝ(l)
n = −ñ(l)

n

d2

n
+ d(Γ̂(l)

n )T Γ̂(l)
n

(A.1)

end for
eliminate all ensemble members with Ŝ(l)

n > c

resample from remaining ensemble and duplicate the corresponding test statistics
analysis step for all ensemble members: {xf,(l)n }1≤l≤M → {x

a,(l)
n }1≤l≤M

estimate empirical analysis mean m̂a
n and covariance P̂ an for p̂(xn|y1:n) = n(xn; m̂a

n, P̂
a
n )

end for
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Figure A.21.: Side-by-side of analysis means and true trajectory for the regular KF,
the BOCPD GMM-KF and CR-BOCPD GMM-KF. Dotted lines indi-
cate instances of change.

Figure A.22.: Analysis means and x-position for the regular KF, the BOCPD GMM-
KF and CR-BOCPD GMM-KF. Dotted lines indicate instances of
change.
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Figure A.23.: Analysis means and x-velocity for the regular KF, the BOCPD GMM-
KF and CR-BOCPD GMM-KF. Dotted lines indicate instances of
change.

Figure A.24.: Analysis means and y-position for the regular KF, the BOCPD GMM-
KF and CR-BOCPD GMM-KF. Dotted lines indicate instances of
change.

Figure A.25.: Analysis means and y-velocity for the regular KF, the BOCPD GMM-
KF and CR-BOCPD GMM-KF. Dotted lines indicate instances of
change.
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Figure A.26.: Side-by-side difference of analysis means and true trajectory for the
regular KF, the BOCPD GMM-KF and CR-BOCPD GMM-KF. Dotted
lines indicate instances of change.

Figure A.27.: Difference of analysis means and x-position for the regular KF, the
BOCPD GMM-KF and CR-BOCPD GMM-KF. Dotted lines indicate
instances of change.
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Figure A.28.: Difference of analysis means and x-velocity for the regular KF, the
BOCPD GMM-KF and CR-BOCPD GMM-KF. Dotted lines indicate
instances of change.

Figure A.29.: Difference of analysis means and y-position for the regular KF, the
BOCPD GMM-KF and CR-BOCPD GMM-KF. Dotted lines indicate
instances of change.

Figure A.30.: Difference of analysis means and y-velocity for the regular KF, the
BOCPD GMM-KF and CR-BOCPD GMM-KF. Dotted lines indicate
instances of change.

A.2.3. Experiment B: Additional Graphs

The model, simulation and parameter choices as well as notation are described in
the respective section.
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Figure A.31.: First variable of the simulated signal, generated observations, the
analysis mean of the regular EnKF, the default Dw-EnKF, the CR-
BOCPD GMM-EnKF with conditional probabilities and the CR-
BOCPD GMM-EnKF with χ2-GLR criterion. Dotted lines indicate
restarts of the conditional CR-BOCPD GMM-EnKF.

Figure A.32.: Second variable of the simulated signal, generated observations,
the analysis mean of the regular EnKF, the default Dw-EnKF, the
CR-BOCPD GMM-EnKF with conditional probabilities and the CR-
BOCPD GMM-EnKF with χ2-GLR criterion. Dotted lines indicate
restarts of the conditional CR-BOCPD GMM-EnKF.

Figure A.33.: Third variable of the simulated signal, generated observations, the
analysis mean of the regular EnKF, the default Dw-EnKF, the CR-
BOCPD GMM-EnKF with conditional probabilities and the CR-
BOCPD GMM-EnKF with χ2-GLR criterion. Dotted lines indicate
restarts of the conditional CR-BOCPD GMM-EnKF.
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Figure A.34.: First variable of the simulated signal with jumps, generated observa-
tions, the analysis mean of the regular EnKF, the default Dw-EnKF,
the CR-BOCPD GMM-EnKF with conditional probabilities and the
CR-BOCPD GMM-EnKF with χ2-GLR criterion. Dotted lines indi-
cate restarts of the conditional CR-BOCPD GMM-EnKF.

Figure A.35.: Second variable of the simulated signal with jumps, generated obser-
vations, the analysis mean of the regular EnKF, the defaultDw-EnKF,
the CR-BOCPD GMM-EnKF with conditional probabilities and the
CR-BOCPD GMM-EnKF with χ2-GLR criterion. Dotted lines indi-
cate restarts of the conditional CR-BOCPD GMM-EnKF.

Figure A.36.: Third variable of the simulated signal with jumps, generated observa-
tions, the analysis mean of the regular EnKF, the default Dw-EnKF,
the CR-BOCPD GMM-EnKF with conditional probabilities and the
CR-BOCPD GMM-EnKF with χ2-GLR criterion. Dotted lines indi-
cate restarts of the conditional CR-BOCPD GMM-EnKF.
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A.3. Chapter 4

A.3.1. Experiment A: Additional Graphs

The model, simulation and parameter choices as well as notation are described in
the respective section.

Figure A.37.: Side-by-side of analysis means and true trajectory for the regular KF,
Dw-KF and CR-BOCPD GMM-KF. Dotted lines indicate instances of
change.

Figure A.38.: Analysis means and x-position for the regular regular KF, Dw-KF and
CR-BOCPD GMM-KF. Dotted lines indicate instances of change.
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Figure A.39.: Analysis means and x-velocity for the regular KF, Dw-KF and CR-
BOCPD GMM-KF. Dotted lines indicate instances of change.

Figure A.40.: Analysis means and y-position for the regular KF, Dw-KF and CR-
BOCPD GMM-KF. Dotted lines indicate instances of change.

Figure A.41.: Analysis means and y-velocity for the regular KF, Dw-KF and CR-
BOCPD GMM-KF. Dotted lines indicate instances of change.
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Figure A.42.: Side-by-side difference of analysis means and true trajectory for
theregular KF, Dw-KF and CR-BOCPD GMM-KF. Dotted lines indi-
cate instances of change.

Figure A.43.: Difference of analysis means and x-position for the regular KF,Dw-KF
and CR-BOCPD GMM-KF. Dotted lines indicate instances of change.
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Figure A.44.: Difference of analysis means and x-velocity for the regular KF,Dw-KF
and CR-BOCPD GMM-KF. Dotted lines indicate instances of change.

Figure A.45.: Difference of analysis means and y-position for the regular KF,Dw-KF
and CR-BOCPD GMM-KF. Dotted lines indicate instances of change.

Figure A.46.: Difference of analysis means and y-velocity for the regular KF,Dw-KF
and CR-BOCPD GMM-KF. Dotted lines indicate instances of change.
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Figure A.47.: Side-by-side of analysis means and true trajectory for the regular KF
and the combined robust CR-BOCPD GMM-KF. Dotted lines indicate
instances of change.

Figure A.48.: Analysis means and x-position for the regular KF and the com-
bined robust CR-BOCPD GMM-KF. Dotted lines indicate instances
of change.
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Figure A.49.: Analysismeans and x-velocity for the regularKF and the combined ro-
bust CR-BOCPDGMM-KF. Dotted lines indicate instances of change.

Figure A.50.: Analysis means and y-position for the regular KF and the com-
bined robust CR-BOCPD GMM-KF. Dotted lines indicate instances
of change.

Figure A.51.: Analysismeans and y-velocity for the regular KF and the combined ro-
bust CR-BOCPD GMM-KF. Dotted lines indicate instances of change.
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Figure A.52.: Side-by-side difference of analysis means and true trajectory for the
regular KF and the combined robust CR-BOCPD GMM-KF. Dotted
lines indicate instances of change.

Figure A.53.: Difference of analysis means and x-position for the regular KF and
the combined robust CR-BOCPD GMM-KF. Dotted lines indicate in-
stances of change.
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Figure A.54.: Difference of analysis means and x-velocity for the regular KF and
the combined robust CR-BOCPD GMM-KF. Dotted lines indicate in-
stances of change.

Figure A.55.: Difference of analysis means and y-position for the regular KF and
the combined robust CR-BOCPD GMM-KF. Dotted lines indicate in-
stances of change.

Figure A.56.: Difference of analysis means and y-velocity for the regular KF and
the combined robust CR-BOCPD GMM-KF. Dotted lines indicate in-
stances of change.
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Figure A.57.: Tile plot with interpolation of change point probability ϕ and contam-
ination probability ε regarding mean MSE over repeated Monte Carlo
simulations for fixed covaraince factors ũ and c̃ and each individual
method: the regular KF (top-left), the Dw-KF (top-right), the CR-
BOCPD GMM-KF (bottom-left) and the robust CR-BOCPD GMM-KF
(bottom-right).

For the second set of scaling experiments, the respective probabilities are fixed at
ϕ = ε = 0.15 with the respective covariance factors scaling from 5 to 200 in steps of
15.

150 Reimann



A.3. Chapter 4

Figure A.58.: Tile plot with interpolation of change point covariance factor ũ and
contamination covariance factor c̃ regarding median information cri-
terion score over repeated Monte Carlo simulations for fixed probabil-
ities ϕ and ε and each individual method: the regular KF (top-left),
theDw-KF (top-right), the CR-BOCPDGMM-KF (bottom-left) and the
robust CR-BOCPD GMM-KF (bottom-right).

Figure A.59.: Tile plot with interpolation of change point covariance factor ũ and
contamination covariance factor c̃ regardingmeanMSE over repeated
Monte Carlo simulations for fixed probabilities ϕ and ε and each in-
dividual method: the regular KF (top-left), the Dw-KF (top-right), the
CR-BOCPDGMM-KF (bottom-left) and the robust CR-BOCPDGMM-
KF (bottom-right)
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A.3.2. Experiment B: Additional Graphs

The model, simulation and parameter choices as well as notation are described in
the respective section.

Figure A.60.: First variable of the simulated signal, generated observations, the
analysis mean of the regular EnKF, the default Dw-EnKF, the CR-
BOCPDGMM-EnKF and the robust CR-BOCPDGMM-EnKF. Dotted
lines indicate restarts of the robust CR-BOCPD GMM-EnKF.

Figure A.61.: Second variable of the simulated signal, generated observations, the
analysis mean of the regular EnKF, the default Dw-EnKF, the CR-
BOCPDGMM-EnKF and the robust CR-BOCPDGMM-EnKF. Dotted
lines indicate restarts of the robust CR-BOCPD GMM-EnKF.
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Figure A.62.: Third variable of the simulated signal, generated observations, the
analysis mean of the regular EnKF, the default Dw-EnKF, the CR-
BOCPDGMM-EnKF and the robust CR-BOCPDGMM-EnKF. Dotted
lines indicate restarts of the robust CR-BOCPD GMM-EnKF.

Figure A.63.: First variable of the simulated signal with jumps and contaminated
observations as well as the analysis mean of the robust CR-BOCPD
GMM-EnKF. Dotted lines indicate instances of change via a restart
of the system.

Figure A.64.: Second variable of the simulated signal with jumps and contaminated
observations as well as the analysis mean of the robust CR-BOCPD
GMM-EnKF. Dotted lines indicate instances of change via a restart
of the system.
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Figure A.65.: Third variable of the simulated signal with jumps and contaminated
observations as well as the analysis mean of the robust CR-BOCPD
GMM-EnKF. Dotted lines indicate instances of change via a restart
of the system.

Figure A.66.: First variable of the simulated signal, generated observations, the
analysis mean with equalized number of ensemble members of
the regular EnKF, the default Dw-EnKF, the CR-BOCPD GMM-
EnKF and the robust CR-BOCPD GMM-EnKF. Dotted lines indicate
restarts of the robust CR-BOCPD GMM-EnKF.

Figure A.67.: Second variable of the simulated signal, generated observations,
the analysis mean with equalized number of ensemble members
of the regular EnKF, the default Dw-EnKF, the CR-BOCPD GMM-
EnKF and the robust CR-BOCPD GMM-EnKF. Dotted lines indicate
restarts of the robust CR-BOCPD GMM-EnKF.
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Figure A.68.: Third variable of the simulated signal, generated observations, the
analysis mean with equalized number of ensemble members of
the regular EnKF, the default Dw-EnKF, the CR-BOCPD GMM-
EnKF and the robust CR-BOCPD GMM-EnKF. Dotted lines indicate
restarts of the robust CR-BOCPD GMM-EnKF.

Figure A.69.: First variable of the simulated signal with jumps and contaminated
observations as well as the analysis mean with equalized number of
ensemble members of the Dw-EnKF and robust CR-BOCPD GMM-
EnKF. Dotted lines indicate instances of change via a restart of the
system.

Figure A.70.: Second variable of the simulated signal with jumps and contaminated
observations as well as the analysis mean with equalized number of
ensemble members of the Dw-EnKF and robust CR-BOCPD GMM-
EnKF. Dotted lines indicate instances of change via a restart of the
system.

Reimann 155



A. Additional Material

Figure A.71.: Third variable of the simulated signal with jumps and contaminated
observations as well as the analysis mean with equalized number of
ensemble members of the Dw-EnKF and robust CR-BOCPD GMM-
EnKF. Dotted lines indicate instances of change via a restart of the
system.

Examples of numerical implementation of the derived algorithms also used for the
simulation experiments can be provided. Please do not hesitate to get in touch via
hans.reimann.97@gmail.com for any questions.
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