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A Lefschetz Fixed Point Formula
for Elliptic Quasicomplexes

D. Wallenta

Abstract

In a recent paper, the Lefschetz number for endomorphisms (mod-
ulo trace class operators) of sequences of trace class curvature was in-
troduced. We show that this is a well defined, canonical extension of
the classical Lefschetz number and establish the homotopy invariance of
this number. Moreover, we apply the results to show that the Lefschetz
fixed point formula holds for geometric quasiendomorphisms of elliptic
quasicomplexes.

1 Introduction

The concept of quasicomplexes goes back at least as far as the early 1980s,
when those objects were introduced as essential complexes in [Put82]. These
are sequences of bounded linear operators on Banach spaces whose curvature
is compact. So they generalise the concept of complexes which have vanish-
ing curvature. A main result was the fact that Fredholm quasicomples of
Hilbert spaces are compact perturbations of Fredholm complexes. This was
the base for the definition of Euler chharacteristic of Fredholm quasicomplexes
in [Tar07]. In the sequel these ideas were used to introduce elliptic quasi-
complexes on compact manifolds with boundary [KTT07] and compact closed
manifolds [Wal12]. As described in [Wal12], it was an open question how the
concept of Lefschetz number can be extended to quasicomplexes. The main
idea how this problem can be solved is given in [TW12].

In the present paper we show that the main result of [TW12] can be ob-
tained with a weaker definition of Fredholm property along more classical lines.
In the second section we show that the definion of Lefschetz number is cor-
rect and prove some properties of this number. Note that these results were
proved independently in [Esh13] in the more general context of Banach spaces.
Our method based on Hilbert space techniques has the advantage of providing
explicit formulas. Finally, we prove that the Lefschetz fixed point formula is
still valid for geometric quasiendomorphisms of elliptic quasicomplexes. This
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genaralises the classical result of [AB67] for geometric endomorphisms of el-
liptic complexes.

2 I-Quasicomplexes

In this paper we consider sequences of the form

(V ·, A) : 0 → V 0 A0→ V 1 A1→ . . .
AN−1→ V N → 0

where V i are Hilbert spaces and Ai are linear bounded operators. Such a
sequence is called complex if its curvature Ai+1Ai vanishes and it is called
quasicomplex if its curvature is compact.

As is shown in [TW12], it also makes sense to consider sequences whose
curvatures belong to some operator ideal I ⊂ K, where K is the class of all
compact operators. We will write F for the class of operators of finite rank
and Sp, with p ≥ 1, for the Schatten classes. Note that F ⊂ I holds, if I �= 0
(cf. [Pie78]).

Definition 2.1. A sequence (V ·, A) of operators Ai ∈ L(V i, V i+1) is called
I-quasicomplex if Ai+1Ai ∈ I(V i, V i+2) holds for all i = 0, 1, . . . , N − 2.

A 0-quasicomplex is obviously a complex and a K-quasicomplex is just
called quasicomplex.

Definition 2.2. Let (V ·, A) be a quasicomplex. By an I-parametrix of this
quasicomplex is meant any sequence of operators P i ∈ L(V i, V i−1) which sat-
isfy

P i+1Ai + Ai−1P i = IdV i −Ri

for all i = 0, 1, . . . , N , with Ri ∈ I(V i).

With this definition, a K-parametix is a parametrix in the classical sense,
i.e. there are operators Ki ∈ K(V i), such that P i+1Ai + Ai−1P i = IdV i −Ki

for all i = 0, 1, . . . , N .
It is well known that a complex (V ·, D) of Hilbert spaces is Fredholm

(i.e. the cohomology H i(V ·, D) := kerDi/imDi−1 is finite dimensional at
each step i = 0, 1, . . . , N) if and only if it has a parametrix. For this reason a
quasicomplex is said to be Fredholm if it possesses a parametrix. An equivalent
definition of the Fredholm property can be given using the notion of Calkin
algebra.

Let (V ·, A) be an I-quasicomplex. The so-called adjoint quasicomplex is
given by

(V ·, A∗) : 0 ← V 0 A0∗← V 1 A1∗← . . .
AN−1∗← V N ← 0,
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where Ai∗ ∈ L(V i+1, V i) stands for the adjoint of Ai in the sense of Hilbert
spaces. The equality (A∗)2 ∈ K is clear from A2 ∈ K. The operators

Δi = Ai−1Ai−1∗ + Ai∗Ai

are called the Laplacians of the quasicomplex. As mentioned in [Wal12], (V ·, A)
is Fredholm if and only if all Laplacians Δi of (V ·, A) are Fredholm. In this
case, we denote by H i ∈ F(V i) the orthogonal projection of V i onto the null-
space of Δi and introduce the Green operator

Gi := (Δi �(kerΔi)⊥)
−1(IdV i −H i).

Then IdV i = H i +ΔiGi holds. It is easy to see that that the Laplacians fulfill

AiΔi −Δi+1Ai ∈ I(V i, V i+1).

Multiplying this operator by Gi+1 from the left and by Gi from the right we
obtain

AiGi −Gi+1Ai ∈ I(V i, V i+1),

since H i+1Ai = AiH i = 0, if I = 0, and H i ∈ I(V i), if I �= 0. Hence it follows
that the operators

P i := Ai−1∗Gi

yield a parametrix P for (V ·, A).
If I = 0, this is a special F -parametrix of the (quasi-)complex. If I �= 0,

then F ⊂ I implies that P is a special I-parametrix in this case.
Obviously, when perturbing the operators of a Fredholm complex by oper-

ators of I, we obtain a Fredholm I-quasicomplex. It turns out that the inverse
theorem is also true. This follows from the main theorem in [TW12] and the
fact that each Fredholm I-quasicomplex possesses an I-parametrix, provided
that I �= 0.

Theorem 2.3. Let (V ·, A) be a Fredholm I-quasicomplex. Then there exist
operators Di ∈ L(V i, V i+1), such that Di −Ai ∈ I(V i, V i+1) and Di+1Di = 0.

An I-quasiendomorphism of a quasicomplex (V ·, A) is a sequence of linear
maps Ei ∈ L(V i) which makes the diagram

0 → V 0 A0→ V 1 A1→ . . .
AN−1→ V N → 0

↓ E0 ↓ E1 ↓ EN

0 → V 0 A0→ V 1 A1→ . . .
AN−1→ V N → 0

commutative modulo operators of I, i.e. Ei+1Ai − AiEi ∈ I(V i, V i+1) for all
i = 0, 1, . . . , N − 1.

As above, K-quasiendomorphisms are called quasiendomorphisms and 0-
quasiendomorphisms are endomorphisms.

3



Theorem 2.4. Let (V ·, A) be a Fredholm I-quasicomplex, E an I-quasi-
endomorphism of this quasicomplex and (V ·, D) any complex with the property
that Di − Ai ∈ I(V i, V i+1). Then, there is an endomorphism Ẽ of (V ·, D)
satisfying Ẽi − Ei ∈ I(V i).

Proof. The case I = 0 is trivial. For I �= 0, let P be an I-parametrix of
(V ·, A), i.e. P i+1Ai + Ai−1P i = IdV i − Ri with Ri ∈ I(V i). Now it is easy to
see that

Ẽi := Di−1Ei−1P i + EiP i+1Di

is an endomorphism of (V ·, D).
Setting

T i := Ei+1Di −DiEi

= Ei+1Ai − AiEi + Ei+1(Di − Ai)− (Di − Ai)Ei

∈ I(V i, V i+1)

we obtain

Ei − Ẽi = Ei − (Di−1Ei−1P i + EiP i+1Di)

= Ei − Ei(Di−1P i + P i+1Di) + T i−1P i

= EiRi + T i−1P i

∈ I(V i),

as desired.
�

Two quasiendomorphisms E and F of (V ·, A) are said to be homotopic if
there exists a sequence of bounded linear operators hi : V i → V i−1 with the
property that

Ei − F i = Ai−1hi + hi+1Ai

for all i = 0, 1, . . . , N .

3 Lefschetz number

Suppose E = {Ei} is an endomorphism of a Fredholm complex (V ·, D). Then
the mapping

HEi : H i(V ·, D) → H i(V ·, D),

given by [v] 	→ [Eiv], is an endomorphism of the finite-dimensional space
H i(V ·, D), and so the trace trHEi is well defined, for each i. The alternating
sum

L(E,D) :=
∑
i

(−1)i trHEi
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is called the Lefschetz number of the endomorphism.
If Ei = IdV i are the identity maps, then the trace trHEi just amounts to

the dimension of H i(V ·, D) whence L(IdV · , D) = χ(V ·, D), where χ(V ·, D) is
the Euler characteristic of the complex.

If E and F are homotopic endomorphisms of a Fredholm complex (V ·, D)
then L(E,D) = L(F,D) holds, as is easy to check.

The elements of the Schatten class S1 are called trace class operators.
Such operators possess a trace, if they are selfmappings. This trace has the
following important property which is a consequence of a well-known theorem
of V. B. Lidskii.

Theorem 3.1. Let V , W be Hilbert spaces and A ∈ L(V,W ), B ∈ L(W,V )
be such that BA ∈ S1(V ) and AB ∈ S1(W ). Then tr (AB) = tr (BA) holds.

It turns out that the Lefschetz number can be extended to S1-quasiendo-
morphims of S1-quasicomplexes. To show this we need an auxiliary result
which is usually referred to as Euler’s identity, see [AB67] or Theorem 19.1.15
in [Hoe85].

Lemma 3.2. Let E be an endomorphism of a Fredholm complex (V ·, D), such
that Ei ∈ S1(V

i) for all i = 0, 1, . . . , N . Then

L(E,D) =
N∑
i=0

(−1)i trEi.

Note that Lemma 3.2 is valid not only for trace class operators Ei but also
for all operators Ei, for which the wave front calculus allows one to define the
trace by restricting the Schwartz kernel to the diagonal, see Theorem 19.4.1 of
[Hoe85].

The following definition is of crucial importance in this paper. As men-
tioned, it stems from [TW12] by direct calculation.

Definition 3.3. Let (V ·, A) be a Fredholm S1-quasicomplex and E an S1-
quasiendomorphisms of this quasicomplex. Then the Lefschetz number is de-
fined as

L(E,A) = L(Ẽ,D) +
N∑
i=0

(−1)i tr (Ei − Ẽi),

where (V ·, D) is a complex, such that Di − Ai ∈ S1(V
i, V i+1), and Ẽ is an

endomorphism of (V ·, D), such that Ẽi − Ei ∈ S1(V
i).
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Obviously, L(E,A) coincides with the classical Lefschetz number, if (V ·, A)
is a complex and E its endomophism.

We have to show that the definition is independent of the particular choice
of D and Ẽ. For this purpose we choose an arbitrary S1-parametrix P . Then
Ẽ and

Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di ∈ S1(V
i)

are homotopic endomorphisms of (V ·, D). By Lemma 3.2,

L(Ẽ,D) =
N∑
i=0

(−1)i tr (Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di)

and therefore

L(E,A) =
N∑
i=0

(−1)i tr (Ei −Di−1Ẽi−1P i − ẼiP i+1Di)

=
N∑
i=0

(−1)i tr (Ei −Di−1Ei−1P i − EiP i+1Di)

=
N∑
i=0

(−1)i tr (Ei − Ai−1Ei−1P i − EiP i+1Ai),

the second and third equalities being due to Lemma 3.1. Indeed, the differences
of the right-hand sides and the left-hand sides of these equalities just amount
to

N−1∑
i=0

(−1)i tr (Di(Ei − Ẽi)P i+1 − (Ei − Ẽi)P i+1Di),

N−1∑
i=0

(−1)i tr ((Ai −Di)EiP i+1 − EiP i+1(Ai −Di)),

respectively, where each summand vanishes by Lemma 3.1. This shows the
independence of D and Ẽ.

Definition 3.3 implies in particular that L(E,A) = L(E,D), and so we
obtain immediately

L(IdV · , A) = L(IdV · , D) = χ(V ·, D) =: χ(V ·, A),

cf. [Tar07].

Corollary 3.4. Let (V ·, A) be a Fredholm S1-quasicomplex and E an S1-
quasiendomorphism of this quasicomplex. Then

L(E,A) =
N∑
i=0

(−1)i tr (Ei − Ai−1Ei−1P i − EiP i+1Ai)
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for each S1-parametrix P of (V ·, A).

The corollary above can also be used as a definition of Lefschetz number.
This was precisely our approach in [TW12].

Choosing Ẽi := Di−1Ei−1P i + EiP i+1Di as in the proof of Theorem 2.4,
we get L(Ẽ,D) = 0, for Ẽ and 0 are homotopic endomorphisms of (V ·, D).
Hence it follows that

L(E,A) =
N∑
i=0

(−1)i tr (Ei − Ẽi)

in this special case.

Theorem 3.5. Let (V ·, A) be a Fredholm S1-quasicomplex and E, F homo-
topic S1-quasiendomorphisms of this quasicomplex. Then L(E,A) = L(F,A)
holds.

Proof. Choose a complex (V ·, D), such that T i := Ai−Di ∈ S1(V
i, V i+1).

Set

Gi := Ei − F i − T i−1hi − hi+1T i

= Di−1hi + hi+1Di.

Then G is an endomorphism of the complex (V ·, D) homotopic to 0, and we
find

L(E,A)− L(F,A) = L(E,D)− L(F,D)

=
N∑
i=0

(−1)i tr (Ei − F i −Di−1(Ei−1 − F i−1)P i − (Ei − F i)P i+1Di)

=
N∑
i=0

(−1)i tr (Gi −Di−1Gi−1P i −GiP i+1Di)

= L(G,D)

= 0,

the third equation being a consequence of Lemma 3.1.
�

Remark 3.6. The equivalence of Definition 3.3 and Corollary 3.4 was shown
recently by J. Eschmeier in [Esh13]. Moreover, he proved Theorem 2.4 in the
case of Sp-quasicomplexes in Banach spaces.
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4 Fixed point formula

Let X be a C∞ compact closed manifold of dimension n and F i smooth vector
bundles over X.

By a quasicomplex of pseudodifferential operators on X is meant any se-
quence of the form

(C∞(X,F ·), A) : 0 → C∞(X,F 0)
A0→ C∞(X,F 1)

A1→ . . .
AN−1→ C∞(X,FN) → 0

with Ai ∈ Ψmi
cl (X;F i, F i+1) satisfying Ai+1Ai ∈ Ψ−∞(X;F i, F i+2). In other

words, the curvature of C∞(X,F ·) is a smoothing operator in the operator
algebra under study. The quasicomplex is called elliptic if the complex of
principal symbols

π∗F · : 0 → π∗F 0 σm0 (A0)→ π∗F 1 σm1 (A1)→ . . .
σmN−1 (AN−1)→ π∗FN → 0

is exact away from the zero section of T ∗X.
By a parametrix of a quasicomplex C∞(X,F ·) is meant any sequence of

pseudodifferential operators P i ∈ Ψ
−mi−1

cl (X;F i, F i−1) satisfying the homo-
topy equations

Ai−1P i + P i+1Ai = IdF i − Si

with smoothing operators Si ∈ Ψ−∞(X;F i) for all i = 0, 1, . . . , N .

Theorem 4.1. For a quasicomplex (C∞(X,F ·), A) to possess a parametrix it
is necessary and sufficient that it would be elliptic.

Let s ∈ R. We may extend the quasicomplex C∞(X,F ·) to a quasicomplex
of Sobolev spaces, i.e.

(Hs·(X,F ·), A) : 0 → Hs0(X,F 0)
A0→ Hs1(X,F 1)

A1→ . . .
AN−1→ HsN (X,FN) → 0

where si are given by s0 := s and si+1 := si −mi. This is a quasicomplex in
the context of Hilbert spaces. More precisely, it is an Sp-quasicomplex for all
p ≥ 1.

Theorem 4.2. Assume that (C∞(X,F ·), A) is an elliptic quasicomplex. Then
the extended quasicomplex (Hs·(X,F ·), A) is Fredholm.

A quasiendomorphism of (C∞(X,F ·), A) is a family E = {Ei} of bounded
linear selfmaps Ei of C∞(X,F i), such that Ei+1Ai = AiEi modulo smooth-
ing operators Ψ−∞(X;F i, F i+1) for all i = 0, 1, . . . , N − 1. By Theorem 7.6
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of [Wal12] there is a perturbation D of the differential A by smoothing op-
erators, such that (C∞(X,F ·), D) is a complex. Moreover, a slight change
in the proof of Lemma 2.4 shows that there is an endomorphism Ẽ = {Ẽi}
of (C∞(X,F ·), D), such that Ẽi − Ei ∈ Ψ−∞(X;F i) for all i = 0, 1, . . . , N .
For a quasiendomorphism E of an elliptic quasicomplex (C∞(X,F ·), A) we
introduce the Lefschetz number L(E,A) by Definition 3.3, where the traces
are evaluated in Sobolev spaces. Clearly, this definition is independent of the
particular choice of s. The cohomology of the elliptic complex (Hs·(X,F ·), D)
does not depend on the particular choice of s, too, and just amounts to that
of (C∞(X,F ·), D). Hence, if every map Ei ∈ L(C∞(X,F i)) extends to a
bounded linear selfmap of Hsi(X,F i) for s large enough, then the same is true
for Ẽi and so the Lefschetz number L(Ẽ,D) can be also evaluated for the
complex (Hs·(X,F ·), D) of Hilbert spaces. However, the geometric quasiendo-
morphisms E to be considered fail to be of trace class, hence the Euler identity
of Lemma 3.2 no longer applies. Even so we can exploit Theorem 19.4.1 of
[Hoe85] and compute the Lefschetz number by the explicit formula of Corollary
3.4

L(E,A) :=
N∑
i=0

(−1)i tr (Ei − Ai−1Ei−1P i − EiP i+1Ai)

where P is a parametrix of the quasicomplex (C∞(X,F ·), A), cf. Lemma 7.2
of [ST00].

Let f be a smooth selfmap of the manifoldX and f ∗F i the induced bundles.
The maps f ∗ : C∞(X,F i) → C∞(X, f ∗F i) given by (f ∗u)(x) = u(f(x)) are
linear. Moreover, we consider smooth bundle homomorphisms hi : f ∗F i → F i.
For the induced maps hi : C∞(X, f ∗F i) → C∞(X,F i) we also write hi. Then
the compositions Ei := hi ◦ f ∗ are obviously selfmaps of C∞(X,F i). More
precisely, we define

Eiu(x) = hi(x)u(f(x))

for u ∈ C∞(X,F i).

Definition 4.3. The family E = {hi ◦ f ∗} is called geometric quasiendomor-
phism of (C∞(X,F ·), A) if AiEi = Ei+1Ai holds modulo smoothing operators
for all i = 0, 1, . . . , N − 1.

The following theorem presents a natural generalisation of the Lefschetz
fixed point formula for elliptic complexes on a compact closed manifold due to
[AB67].

Theorem 4.4. Assume E = {hi◦f ∗}i=0,1,... is a geometric quasiendomorphism
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of an elliptic quasicomplex (C∞(X,F ·), A) and f has only simple fixed points.
Then

L(E,A) =
∑

p∈Fix(f)
ν(p)

with

ν(p) =

∑
(−1)i trhi(p)

| det(1− df(p))| .

Proof. The proof follows the scheme suggested by Fedosov in [Fed91].
We pick a partition of unity (φν) on X with the property that each φν either
vanishes or is equal to 1 in a neighbourhood of any fixed point of f . Let further
ψ0 be a function of compact support on T ∗X such that ψ0(ξ) ≡ 1 near ξ = 0,
and let ψ∞ = 1 − ψ0. In local coordinates on X, we introduce operators Ψ0,ν

and Ψ∞,ν by
Ψ0,νu = F−1

ξ �→xψ0(hξ)Fx �→ξ (φνu) ,

Ψ∞,νu = F−1
ξ �→xψ∞(hξ)Fx �→ξ (φνu) ,

F being the Fourier transform and h a positive number. These operators
decompose the identity operator; moreover, the operators Ψ0,ν are smoothing
and hence of trace class on each Sobolev space. We can assert, by the Lidskii
theorem, that

trAiEiP i+1Ψ0,ν = trEiP i+1Ψ0,νA
i

whence
N∑
i=0

(−1)i tr (Ei − Ai−1Ei−1P i − EiP i+1Ai)

=
∑
ν

N∑
i=0

(−1)i trEiΨ0,ν

+
∑
ν

N∑
i=0

(−1)i tr (Ei − Ai−1Ei−1P i − EiP i+1Ai)Ψ∞,ν

−
∑
ν

N−1∑
i=0

(−1)i trEiP i+1
[
Ai,Ψ0,ν

]
, (4.1)

[Ai,Ψ0,ν ] being the commutator of Ai and Ψ0,ν .
In a local chart close to a fixed point of f , the operator EiΨ0,ν is given by

the iterated integral

EiΨ0,νu (x) =
1

(2πh)n

∫ ∫
eı(ξ/h)(fM (x)−y) hi(x)ψ0(ξ)φν(y)u(y) dydξ,

and consequently

trEiΨ0,ν =
1

(2πh)n

∫ ∫
eı(ξ/h)(fM (x)−x) trhi(x)ψ0(ξ)φν(x) dξdx.
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For h → 0, the limit of the integral on the right-hand side of this equality
can be evaluated by the method of stationary phase. Moreover, the stationary
points are just the points where ξ = 0 and f(x)− x = 0. In the principal part
independent of h the contribution of a fixed point p is equal to

trhi(p)

| det(Id − df(p))| .

On the other hand, the remaining terms on the right side of (4.1) are oscillatory
integrals whose exponent has no critical points. Indeed,

[
Ai,Ψ0,ν

]
=

[
Ai,Ψ0,ν − Id

]
= − [

Ai,Ψ∞,ν

]

close to each fixed point and the function ψ∞ vanishes in a neighbourhood
of ξ = 0. Hence it follows that the remaining summands in (4.1) are rapidly
decreasing as h → 0. Since the left-hand side of (4.1) is actually independent
of h, we arrive at the desired formula.

�
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