
Technische Berichte Nr. 77

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Business Process
Architectures
with Multiplicities:
Transformation and
Correctness
Rami-Habib Eid-Sabbagh, Marcin Hewelt,
Mathias Weske

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 77

Rami-Habib Eid-Sabbagh | Marcin Hewelt | Mathias Weske

Business Process Architectures with Multiplicities

Transformation and Correctness

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.de/ abrufbar.

Universitätsverlag Potsdam 2013
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URL http://pub.ub.uni-potsdam.de/volltexte/2013/6678/
URN urn:nbn:de:kobv:517-opus-66780
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66780

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-257-5

mailto:verlag@uni-potsdam.de

Business Process Architectures with
Multiplicities: Transformation and Correctness

Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{rami.eidsabbagh, marcin.hewelt, mathias.weske}@hpi.uni-potsdam.de

Abstract. Business processes are instrumental to manage work in or-
ganisations. To study the interdependencies between business processes,
Business Process Architectures have been introduced. These express trig-
ger and message flow relations between business processes. When we
investigate real world Business Process Architectures, we find complex
interdependencies, involving multiple process instances. These aspects
have not been studied in detail so far, especially concerning correctness
properties. In this paper, we propose a modular transformation of BPAs
to open nets for the analysis of behavior involving multiple business
processes with multiplicities. For this purpose we introduce intermediary
nets to portray semantics of multiplicity specifications. We evaluate our
approach on a use case from the public sector.

1 Introduction

In today’s organisations, business processes play a key role to manage work.
Business Process Architectures (BPAs) have been introduced in [1] to represent the
interdependencies between related processes. While simple forms of relationships
have already been presented, real-world scenarios show that complex relationships
between business processes are rather the rule than the exception. This involves
the repeated execution of processes as well as multi-communication. By this, we
mean communication between multiple instances of several processes instead
of one-to-one correspondence between instances. For example in the public
administration, a public service often involves the interplay of multiple interacting
process instances.

Consider the scenario of applying for a construction permit, illustrated as
BPA in Fig. 1. The builder sends a construction permit application to the
building authority. This message triggers the “examine application” process.
Depending on the type of construction, the application is forwarded to between
two and five experts instantiating an appropriate number of “create expert report”
processes. On termination each instance returns a message to the “examine
application” instance, that waits for the according number of messages, then
terminates and returns the decision of the building authority to the applicant.
In this example multiple instances of the “expert report” process are triggered
and the “examine application” process sends and receives multiple messages.

2 Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

Apply for construction
permit

Examine
application

Create expert
report

|||

2...5 2...5

Fig. 1. BPA for a construction
permit application

Because the individual processes often are de-
signed independently without the larger con-
text in mind, it is desirable to analyse the
behaviour of interacting processes and to as-
sure certain correctness criteria. Additionally
the processes often are executed by different
administrative units, thus information on how
the process interplay can be improved is valu-
able for the organization.

Business process modeling approaches
that allow to express these types of multi-
plicity do not offer formal analysis. Formal
methods based on Petri nets have been suc-
cessfully applied to model and analyse work-
flows (Workflow nets [2,3]), services and their

composition (service or open nets e.g. [4]) as well as process choreographies
(public to private approach [5,6]). However, those elaborated analysis methods
do not explicitly deal with multiple instances of processes. Our aim is to model
and analyse BPAs with multiple instances and multi-communication. In this
contribution we propose a transformation from BPAs with multiplicities into
open nets. We introduce intermediary nets to represent and analyse multiple
instances and multi-communication in the open nets formalism.

The remainder of this report is structured as follows: Section 2 presents current
research on business process interaction. Section 3 introduces the foundations of
BPAs and open nets. Section 4 presents the transformation of BPAs and their
multiplicity concepts into open nets. We evaluate our approach on a real use case
from the public sector in Section 5, and conclude the paper in Section 6.

2 Related Work

Research in the field of BPM evolved from modeling of single processes to model-
ing the behavior of interacting processes and choreographies, e.g. [7,8,9,10] and
analysis of their correctness [11,12,13,14]. To facilitate the modeling of process
interaction existing languages were extended, e.g. BPMN with Choreography dia-
grams, new notations were proposed, e.g. Let’s dance [9], and transformations from
BPM notations to execution languages were introduced, e.g. BPEL4Chor [10].

However, none of those approaches provide both means to express and formally
analyse interactions between multiple processes with several process instances
and multi-message communication as they occur for example in the domain
of public administration. Most of the proposed solutions address interactions
between two processes only and do not consider multiplicities, instead assuming
messages to be sent once to only one receiver.

Going a step further, BPMN choreographies also depict the message exchange
between two or more processes but do not provide means for correctness analysis.
Let’s dance was designed for modeling of process interactions. It provides several
execution constraints and constructs to model message exchange between multiple

BPAs with Multiplicities: Transformation and Correctness 3

participants and instances [9]. For verification only a restricted part of Let’s
dance diagrams, excluding the “for each”-construct, can be transformed into
interaction Petri nets. Hence, analysis is only performed between single processes.

Decker et al. [10] introduce BPEL4Chor, an extension of BPEL, to represent
business process choreographies in BPEL. They also provide a transformation
of BPMN to BPEL4Chor to join the visual representation of BPMN with the
technical expressiveness of BPEL. Both techniques do not provide inherently an
analysis of correct business process interaction.

In [7] Proclets are presented to model multi-instance communication between
different business processes. They provide a framework to model interacting
workflows, their communication channels, as well as multicast messages via
ports and associated cardinalities. However, this approach lacks formal analysis
techniques.

In contrast to that, Petri net based techniques, e.g. open nets or interac-
tion Petri nets are used to verify correct interaction behavior, compatibility,
controllability, and local enforceability [11,12,14,13].

Common patterns of service interaction between two processes were described
and examined by [15,13]. Barros et al. [15] also propose three multi-transmission
patterns among their basic service interaction patterns. Aalst et al. [13] even
look at multi-instance correlation patterns, however only in regard to one to one
correspondences. Besides service patterns, they provide means for verification
of process interaction for deadlock freedom and controllability but mainly deal
with service refinement, replacement and integration.

Similar to their approach our solution builds on the open nets formalism to
analyse process interaction behavior. It extends the current research by combining
the capabilities of BPAs to express interactions between multiple processes with
several process instances as well as multi-communication, with an accordingly
adapted open net formalism to analyse such interactions.

3 Foundations

This section prepares the theoretical background for the analysis of BPAs with
multiplicities. To this end we expand the definition of Business Process Architec-
tures from [1] with a multiplicity equivalence specification, define BPA runs and
BPA correctness criteria. Finally, the formalism of open nets is presented.

3.1 Business Process Architectures

Business Process Architectures capture all business processes of an organisation
together with their interdependencies, expressed as message and trigger flow
relations. Naturally, the question arises whether and in what sense a given
BPA is “correct”. A preliminary answer might be, that all external requests to
the organisation must be handled in such a way that a response is produced.
However, only a subset of an organization’s processes is involved in handling a
specific external request. Such a BPA subset is responsible for a group of related

4 Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

external requests and realizes a service or creates a product of an organisation.
For example, the scenario of applying for a construction permit is handled by
the interplay of the three processes depicted in Fig. 1. In the following we focus
our inquiry on subsets of a BPA.

In contrast to other approaches, BPAs provide means to model multiplicities,
a term subsuming the sending and receiving of variably many messages to and
from multiple process instances of several processes. In the model this is expressed
by assigning to each event of the BPA a multiplicity specification, which indicates
how many messages or trigger signals the according event can send or needs to
receive. Subsection 4.1 will further elaborate on the concept of multiplicities.

Definition 1 (Business Process Architecture, expanded upon [1,16]).
A Business Process Architecture is a tuple (E, V, L, I, μ,=), in which:
– E is a set of events, partitioned into start events, ES , end events EE ,

intermediate throwing events ET and intermediate catching events EC .
– V is a partition of E representing a set of business processes.
– v ∈ V is a sequence of events, v = 〈e1, ..., en〉 such that e1 ∈ ES is a start

event, en ∈ EE an end event, and ei ∈ EC∪ET for 1 < i < n are intermediate
events.

– L ⊆ (ET ∪ EE)× EC is a flow relation.
– I ⊆ (ET ∪ EE)× ES is a trigger relation.
– μ : E → P (N0) denotes the multiplicity set of an event. It contains all

valid numbers of messages or trigger signals an event can send or receive.
μ(e) = {1} is called trivial and omitted in graphical representations.

– =⊆ (ET × EC) ∪ (EC × ET) is an equivalence relation between events of
the same process v ∈ V , demanding they send resp. receive the same number
of message.

The set •e = {e′ ∈ EE ∪ ET |(e′, e) ∈ I ∪ L}, called preset of e, contains the
events with an outgoing relation to e ∈ E. The set e• = {e′ ∈ ES ∪ EC |(e, e′) ∈
I ∪ L}, called postset of e, consists of the events with an incoming relation from
e ∈ E [1].

Business Process Architecture Run. On instance level we define the notion of a
BPA run, which describes how many instances of each process are instantiated
and in which order they interact. The BPA run also determines how many
messages or trigger signals an event sends or needs to receive by assigning to
each event one element from its multiplicity set. Hence each run consists of a
fixed number of process instances, which run in parallel or sequentially. The
assignment of multiplicity elements to events must conform to the equivalence
specification =. It is either performed at creation of the BPA run or at run time.

A BPA run is started by an initial stimulus that activates all those business
processes that are not triggered within the BPA, for instance the desire of a citizen
to build a house in Fig. 1. The start events of those processes are considered
external [1]. All other start events occur and instantiate their process when
they receive the amount of assigned trigger signals from another process in the
same BPA run. Events other than start events occur after their preceding event

BPAs with Multiplicities: Transformation and Correctness 5

occurred, whereas catching events additionally require to receive the amount of
messages assigned to them by this run. Similarly, end and throwing events emit
the number of trigger signals or messages assigned to them by that BPA run.

BPA Correctness Criteria. In [16] the authors observe that only few of the
proposed and analysed BPA patterns are sound, although they describe the inter-
action of two processes only. As BPA subsets generally describe the interaction of
many processes, the notion of soundness which was introduced for single processes
is too restrictive for them. We propose to use the following BPA correctness
criteria to decide whether a given BPA is correct.

Every BPA run initially instantiates all those processes whose start events have
no incoming triggers (•b = ∅). A BPA run is called terminating if it guarantees
for all processes, that the end event of a process will occur eventually once its
start event occurred. Hence all processes that are instantiated in a terminating
run also terminate. The weaker notion of lazy termination allows BPA runs with
pending messages or left-behind process instances, if at least one instance of
every process, which was instantiated by a run, terminates. We might adapt
the example in Fig. 1 in such a way, that three instances of the “expert report”
process are instantiated, but the decision on the permit is made already after
receiving back two results. This property is comparable to lazy soundness in
workflow nets [17].

However a BPA run might also fail to terminate, if for a process of a BPA
subset one or more occurrences of its start event are part of the run, but its end
event is not. Such a BPA run is called a deadlock. Similarly, livelocks are BPA
runs, which are infinite due to business processes triggering each other in a cyclic
fashion.

A BPA run need not instantiate all business processes of the BPA subset,
however, if it does the run is called covering. If a process is instantiated by all
terminating runs, it is called essential. A process in a BPA is called dead if no
run instantiates it.

Definition 2 (Correctness Criteria for BPA subsets). A BPA subset is
correct if it complies to the following rules:
1. The BPA subset has at least one (lazily) terminating run
2. The BPA subset is free from dead processes
3. The BPA subset contains no livelocks
A BPA is correct if all its subsets are correct.

3.2 Open Nets

The open nets formalism is an extension of classical Petri nets by interface places
and final markings. The transformation presented in [16] resulted in so-called
trigger-flow nets, which are very similar to open nets. To make our research
also applicable outside the BPA context, we decided to use open nets, a well
recognized formalism, for the transformation. The basic definitions for open nets
used here stem from [18].

6 Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

(a) Open nets P and Q (b) P and Q composed

Fig. 2. Two open nets

For a set X we denote with MS : X → N the multiset over X, where each
element of X can occur multiple times (i.e. x ∈ X occurs MS(x) times). We
write multisets as a formal sum of their elements e.g. 2 · p1 + p2 for the multiset
containing two exemplars of p1 and one p2. The empty multiset is denoted as 0.

Definition 3 (Open net). An open net is a tuple N = (P, T, F,M0, Ω), in
which:

– P is a finite set of places that is partitioned into pairwise disjoint sets of
internal places PN , incoming places P I , and outgoing places PO

– T is a finite set of transitions, disjoint with P
– F : (P × T) ∪ (T × P) → N is the flow relation assigning weights to arcs
– A marking M : P → N is a multiset over P i.e. it assigns to each place the

number of tokens on this place, M0 denotes the initial marking of the net, Ω
the set of final markings

– •t is called the preset, t• the postset of a transition t ∈ T . Both are multisets
over P and denote the amount of token consumed from resp. put on a place.

– t ∈ T is activated in a marking M , denoted by m
t−→ if ∀p ∈ P : M(p) ≥ •t(p)

i.e. if there are enough token on p for t to consume
– Firing an activated transition t leads to a follower marking M ′ defined by

M ′ = M − •t+ t•

Exemplary open nets P and Q are shown in Fig. 2(a). P has pa as output
and pr as input place, its initial marking is pe1 , and the only final marking is pe2 .
Q has an empty initial marking and as only final marking the empty multiset.
pa and pg are its input places, pr and pf its output places.

BPAs with Multiplicities: Transformation and Correctness 7

Composition of open nets. As the impetus for open nets was to allow modular net
composition, interface places were introduced. Composition of open nets works
by fusing output places of one net with the matching input places of another net
and vice versa. Fused places become internal places in the composed net.

Definition 4 (Composition of open nets). Two open nets N1 and N2 are
called composable if no input place p of one net is also input place of the other
net, as well as no output place q of one net is also output place of the other net.
If the nets are composable, composition yields open net N = N1 ⊕N2 with
– P = P1 ∪ P2 and T = T1 ∪ T2

– P I = (P I
1 ∪ P I

2) \ (PO
1 ∪ PO

2)
– PO = (PO

1 ∪ PO
2) \ (P I

1 ∪ P I
2)

– PN = PN
1 ∪ PN

2 ∪ (P I
1 ∩ PO

2) ∪ (PO
1 ∩ P I

2)
– M0 = M01 +M02

– Ω = {M1 +M2 |M1 ∈ Ω1 ∧M2 ∈ Ω2}
and F being defined as F (x, y) = F1(x, y) if (x, y) ∈ (P1 × T1) ∪ (T1 × P2) and
F2(x, y) otherwise.

Fig. 2(b) shows the result of composing open nets P and Q from Fig. 2(a).
Q’s input place pa was fused with P ’s output place pa, output place pr in Q
was fused with input place pr in P . pf and pg remain as interface places in
N := P ⊕Q. The initial marking of N is the multiset sum of the initial markings
of P and Q, resulting in pe1 because MQ

0 was empty. The set of final markings of
N results from combining ΩP with ΩQ. Here the only final marking of N is pe2 .

4 Transformation of BPA Multiplicities

This section discusses different kinds of multiplicity in BPAs and their according
transformation into open nets.

4.1 Multiplicity in BPA

Business Process Architectures exhibit two kinds of multiplicity: a) multiple
instances of a business process and b) sending and receiving multiple messages or
trigger signals to and from several other process instances. These were described
as patterns in [1] but so far not covered by the transformation proposed in [16].

Multiple Process Instances. On model level those processes, that can potentially
be instantiated multiple times, are indicated by three vertical bars inside them.
The concrete number of times a process is instantiated varies between BPA runs.
It depends on the number of trigger signals its start event receives, compared to
the multiplicity of its start event, as assigned by this particular run. For start
events with trivial multiplicity set, each received trigger signals corresponds to
one process instantiation. In Fig. 1 for example, the start event of the “expert
report” process is triggered by a throwing event of “examine application” with
multiplicity 2 . . . 5. Hence between two and five instances of “expert report” are

8 Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

R
|||

2...4

O

P

Q
|||

b2

b1
e1 e2 e3

e4

b3 b4

o q q’ r r’

p p’

0...1

2...5

2
{2,4}

Fig. 3. BPA multiplicity concepts

instantiated. However, if the multiplicity set of the start event is non-trivial, then
some runs will assign a multiplicity greater than one and thus in those runs the
start event requires several trigger signals, before it can occur and instantiate the
process. Start events can be triggered by several other events (b ∈ ES : |•b| > 1).
In such a case each trigger signal from one of the predecessors counts toward the
total number of required trigger signals.

Sending and receiving multiple messages. Throwing events can send messages
to multiple receiving processes, while catching events can receive messages from
multiple sending processes according to the multiplicity assigned to them. In the
first case the same amount of messages is delivered to each receiver, while in the
second case messages from various senders are collected before being consumed
according to the multiplicity specification.

Zero is a valid value in the multiplicity set of a throwing event, meaning that a
message (or trigger signal) is not sent at all. At the same time zero is forbidden in
the multiplicity for catching events for the following reasons. Optional start events
could instantiate an unbounded number of process instances without receiving
a trigger signal, while optional receiving events would exhibit the undesired
behavior of ignoring incoming messages. If the multiplicity set of an end event
contains a zero, this does not mean that the process might not terminate, but
rather that it terminates and optionally sends a message or trigger signal.

The BPA in Fig. 3 illustrates those concepts. The triggering of multiple
instances of several processes is depicted by the triggering relation of O with Q,
and R respectively where end event e1 has the multiplicity two. In this way two
instances of each Q and R are instantiated. The receiving of multiple messages
is illustrated by the multiplicity of q (μ(q) = {2, 4}) which means that each
instance of Q (of which there are two) waits for either two or four messages to
proceed. The concept of optional sending is represented by event r′ of process R
having the multiplicity (0 . . . 1). Either it sends the message or not. Collecting of
messages takes place in catching event p′ whose preset contains both q′ and r′.
As p′ has multiplicity 2 . . . 4 it expects between 2 and 4 messages in total from
(all instances of) Q and R.

BPAs with Multiplicities: Transformation and Correctness 9

Relating event multiplicity specifications. Often the number of messages a process
sends is closely related to the number it expects to receive, e.g. in Fig. 1, if
three expert reports are requested, also three results are expected back. This
relation between two events is captured in the =-relation, to which all BPA runs
need to conform. The =-relation reduces the amount of possible BPA runs in
the following sense. A single BPA run assigns to each event a number from its
multiplicity set, so that each combination of assignments defines a possible run.
Runs contradicting the =-relation are considered invalid and can be omitted in
the state space of a BPA subset, i.e. the set of all its runs. If the =-relation is not
used, all possible runs are valid and the complete state space has to be explored
during analysis.

4.2 Transforming Business Process Architectures

For the analysis of BPAs, we employ a transformation into open nets [18], which
have been successfully applied to study the composition of services and its
correctness. Due to the definition of open net composition we cannot directly
express the triggering resp. sending or receiving of a varying amount of instances
resp. messages with open nets. Also, the case that one event is in trigger or message
flow relation with several other events is not directly covered. To overcome these
limitations we adopt the approach of inserting intermediary nets from [16] and
extend it with net constructs for multi-communication.

The transformation is conducted in a modular fashion: Each of the BPA’s
processes is first transformed independently into an open net. In a second step
intermediary open nets are created that capture the trigger and message relations
and interconnect the process’s open nets. In the last step intermediary and
processes’ nets are composed into one place/transition-net and analysed with the
model checking tool LoLA [19].

Transforming Business Processes. We first describe the transformation of a single
BPA business process into an open net. It is important to note, that all events
are unique and only part of one partition.

Definition 5 (BPA Process Transformation). Given a BPA, let 〈e1e2 . . . en〉
be the sequence of events belonging to the business process v ∈ V then the pro-
cess’s open net is defined as Nv = (Pv, Tv, Fv,M0v , Ωv), where

– Tv = {tei |ei ∈ v}
– PN

v = {p′ei |ei ∈ v ∧ 1 ≤ i < n}
– PO

v = {pei |ei ∈ (EE ∪ ET) ∩ v} \ {pen | en• = ∅}
– P I

v = {pei |ei ∈ (ES ∪ EC) ∩ v} \ {pe1 | •e1 = ∅}
– Pv = PN

v ∪ PO
v ∪ P I

v

– F = {(tei , p′ei), (p′ei , tei+1
) | tei ∈ Tv ∧ p′ei ∈ PN

v } ∪{(tei , pei) | tei ∈ Tv ∧ pei ∈
PO
v } ∪{(pei , tei) | tei ∈ T ∧ pei ∈ P I

v }
– M0v = ∅ if there exists (t, e1) ∈ I and pe1 otherwise.
– Ωv = {} if there exists (en, t) ∈ I ∪ L and {pen} otherwise.

10 Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

Fig. 4. BPA process to open net transformation

The example in Fig. 4 clarifies this rather technical definition. Each event
e yields one transition te and, except for the end event, an inner place p′e. The
event’s transition is connected to its place, which further connects to the transition
of the next event in the sequence. Each event produces another place during
transformation, called pe connected to the events transition. The direction of
the arc depends on the event type. If it is a start or catching event (dark gray
in Fig. 4) the arc points from place to transition, if it is an end or throwing event
(light gray) it points in the opposite direction. The sets P I

v of input and PO
v of

output places depend partially on the trigger relation I. Only if a start event e1
is triggered, the place pe1 is an input place, otherwise it is an initially marked
internal place as is the case in Fig. 4. Equivalently pen is an output place only if
en has a non-empty postset, otherwise it is internal and part of the final marking.
In Fig. 4 there is an arc leaving e4 indicating a relation, hence pen is an output
place and not part of a final marking.

Representing multiple instances. There are two ways in open nets to represent the
BPA concept of multiple instances. Either each instance is represented by a copy
of the process’s open net, or each instance is represented by a token (coloured or
black) in the process’s open net.

Representing each instance by its own open net is problematic when it comes to
triggering, as it either requires the creation of nets at runtime or the management
of a pool of untriggered nets. Another challenge would be the naming of interface
places for each instance net.

Indicating the number of instances as black tokens in one open net eases the
composition. In this way the resulting net has less transitions and places than
using one net per instance. Hence we decided to use the multiple black token
representation for instances. Coloured tokens would allow to distinguish between
cases. Research on correlation aspects will be part of future work.

Multicast and multireceive net. Depending on the multiplicity of a throwing
event it emits a different number of messages or trigger signals. To capture this
in the open nets formalism, we propose to use an intermediary open net called
multicast net. It is a net schema, because each multiplicity specification entails
a different multicast net, consisting of one input place, one output place, and
one transition for each element in the multiplicity set of the event. Note, that
the same construct is used for triggering multiple instances as well as sending
multiple messages.

BPAs with Multiplicities: Transformation and Correctness 11

(a) Multicast net (b) Multireceive net

Fig. 5. Open net constructs to represent multi-triggering and multi-messaging

Definition 6 (Multicast net). Given a BPA the multicast net for a message
or trigger flow (s, r) ∈ L ∪ I is defined as Ns,r = (Ps,r, Ts,r, Fs,r, 0, {0}) where
– Ps,r = PN

s,r ∪ P I
s,r ∪ PO

s,r and P I
s,r = {ps}, PO

s,r = {pr}, PN = ∅
– Ts,r = {si | i ∈ μ(s)}
– Fs,r(ps, si) = 1, Fs,r(si, pr) = i where i ∈ μ(s).

Note that the multicast net has the empty multiset as initial and as only final
marking.

E.g., let s ∈ ET be a throwing event, r ∈ EC a catching event and (s, r) ∈ L
be connected by a message flow. Let further μ(s) = {2, 3, 4, 5} be the multiplicity
set of s and μ(r) = {1} be r’s set. Then the corresponding multicast net is
depicted in Fig. 5(a), with the input place ps, the output place pr, the four
transitions s2, s3, s4, s5 and the following arcs: ps is connected to all si with arc
weight 1 and all si are connected to pr with arc weight i where i ∈ μ(s) are the
elements of s’ multiplicity set. As a result the multicast net produces between
two and five tokens on its output place, thus representing the sending of between
two and five messages.

We introduce the multireceive net, a slightly adapted version of the multicast
net, to express that a process instance waits for a certain number of messages
before it can continue or that a process is instantiated only after receiving a
certain number of trigger signals. The only difference is that arcs from the
input place to the transitions now carry the variable weights, while the arc
weights between transitions and output place have the value 1. Formally we have
Fs,r(ps, si) = i, Fs,r(si, pr) = 1 where i ∈ μ(s) for the multireceive net, while the
rest stays the same. The resulting open net construct is depicted in Fig. 5(b).

Splitter and collector net Processes can not only trigger multiple instances of one
process, but also instances of multiple processes. The same is true for sending
and receiving messages. In Fig. 3 for example, process P sends messages to both
processes Q and R. Formally we have p• = {q, r} two events in the postset
of throwing event p. The opposite situation, one process receiving messages or
trigger signals from several other processes can also be found in Fig. 3 where
the catching event p′ has the preset {q′, r′}. Note, that it only matters that the
preset resp. postset is non-singleton and not in which relation those events are.

12 Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

(a) Splitter net for event p (b) Collector net for event p′

Fig. 6. Open net constructs for multiple receivers resp. senders

Therefore the following constructions, adapted from [16] apply to both messaging
and triggering.

While the splitter net in Fig. 6(a) takes a token from one source and produces
one token for each target, the collector net in Fig. 6(b) collects all tokens from
several sources in one place. Splitter and collector net are also net schema with
multiple incarnations. Principally, the splitter net has one input place, one
transition, and one output place for each start or catching event b ∈ ES ∪ EC

that is in trigger or message flow relation relation with a given end or throwing
event t ∈ EE ∪ ET . The collector net has one place and one transition for each
event e ∈ •e′ for a fixed event e′ ∈ ES ∪ EC . All arcs have the weight 1.

Definition 7 (Splitter and collector net). Given a BPA, a throwing or end
event e ∈ ET ∪ EE and a catching or start event e′ ∈ ES ∪ EC . Then the open
net Ne = (Pe, Te, Fe, 0, {0}) is called the splitter net for e, where

– Pe = PN
e ∪ P I

e ∪ PO
e , PN

e = ∅, P I
e = {pe}, P 0

e = {pb | b ∈ e•}
– Te = {te}
– Fe(p, te) = Fe(te, p) = 1 ∀p ∈ Pe

The initial marking is the empty multiset, which is also the only final marking.
The collector net for e′ is defined similarly except that P I

e′ = {pe | e ∈ •e′}, P 0
e′ =

{pe′} and Te′ = {te | e ∈ •e′}.

4.3 Composition and Analysis

The presented constructs enable us to represent BPAs with multiplicity as open
nets and analyse them. Before the analysis, the open nets resulting from the
transformation have to be composed according to Def. 4. This composition relies
on the names of interface places. Because each event is unique in a BPA and each
event is represented by at most one interface place, those are unique too. For
each pair of events in trigger or message flow relation at least one intermediary
net is created. Those are defined to provide the complementary interface places
and make the nets composable. If not for the intermediary nets, the composition
would yield unconnected nets leaving all places unfused.

BPAs with Multiplicities: Transformation and Correctness 13

Combinations of intermediary nets In some cases additional care has to be
taken to avoid wrong composition, e.g. for events that have both a non-trivial
multiplicity set |μ(e)| �= {1} and a non-singleton postset |e•| > 1. In such cases
multiple intermediary nets are necessary, which per default would have interface
places with identical names, thus making the nets non-composable. But since such
situations can be derived from the relations, the problem can be circumvented
by renaming those places as follows.

Definition 8 (Place renaming for intermediary nets).
a) Multicast net for (e, e′) ∈ L ∪ I

P I = {pe} PO =

⎧⎪⎨
⎪⎩
{pe′} if e• = {e′} ∧ •e′ = {e} ∧ μ(e′) = {1}
{pe,e′} if e• = {e′} ∧ •e′ = {e} ∧ μ(e′) �= {1}
{p′′e} if |e•| > 1 ∨ |•e′| > 1 for e′ ∈ |e•|

b) Multireceive net for (e, e′) ∈ L ∪ I

P I =

⎧⎪⎨
⎪⎩
{pe} if e• = {e′} ∧ •e′ = {e} ∧ μ(e) = {1}
{pe,e′} if e• = {e′} ∧ •e′ = {e} ∧ μ(e) �= {1}
{p′′e′} if |•e′| > 1 ∨ |e•| > 1 for e ∈ |•e′|

PO = {pe′}

c) Splitter net for e (Let e′ ∈ e•)
PO ={pe′ | |•e′| = 1 ∧ μ(e′) = {1}}

∪ {p′′e′ | |•e′| = 1 ∧ μ(e′) �= {1}}
∪ {p′′e,e′ | |•e′| > 1}

P I =

{
{pe} if μ(e) = {1}
{p′′e} otherwise

d) Collector net for e′ (Let e ∈ •e′)
P I ={pe | |e•| = 1 ∧ μ(e) = {1}}

∪ {p′′e | |e•| = 1 ∧ μ(e) �= {1}}
∪ {p′′e,e′ | |e•| > 1}

PO =

{
{pe′} if μ(e′) = {1}
{p′′e′} otherwise

Multicast and multireceive nets as well as splitter and collector nets are
mirror images of each other, with the roles of pre- and postset, input and output
switched. Consider the naming of multicast (multireceive) nets for (e, e′) ∈ L ∪ I.
The name of the only output (input) place depends on whether e (e′) has a
non-singleton postset (preset) and thus requires a splitter (collector) net [case a3
above] and whether e′ (e) has a trivial [case a1] or non-trivial [case a2] multiplicity
set.

Splitter (collector) nets have several output (input) places, whose names
again depend on the multiplicity of the preset (postset) of the related events.
Essentially we distinguish three cases when creating splitter (collector) nets
corresponding to the three subsets of the union in the definition of PO (P I): 1)
no multireceive (multicast) net present, 2) multireceive (multicast) exists and 3)
collector (splitter) net present. For the names of input (output) places we need
only to differentiate whether a multicast (multireceive) net is present or not. The
application of this naming algorithm is illustrated in the use case in Fig. 8.

14 Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

Algorithm 1 Transformation algorithm for intermediary nets

for all e ∈ EE ∪ ET do
if e• �= ∅ then

if μ(e) �= {1} or
(e• = {e′} and μ(e′) = {1}) then
create multicast net

end if
if |e•| > 1 then

create splitter net
end if

end if
end for
for all e′ ∈ ES ∪ EC do

if •e �= ∅ then
if μ(e) �= {1} then

create multireceive net
end if
if |•e′| > 1 then

create collector net
end if

end if
end for

The transformation algorithm The algorithm 1 summarizes the creation of
intermediary nets in the course of the transformation. First it checks all throwing
and end events that have a non-empty postset. A multicast net is created for
those events that have a non-trivial multiplicity set. For events whose postset
contains several successor events also a splitter net is created. Additionally a
multicast net is created for events with trivial multiplicity and a singleton postset,
if the only successor event has also a trivial multiplicity set and a singleton
preset. This ensures, that for each flow relation between two events at least one
intermediary net is created, in the trivial case a multicast net containing only
one transition.

In the second step all catching and start events with a non-empty preset are
examined. A multireceive net is created, if the multiplicity set of the receiving
event is non-trivial. In addition the algorithm creates a collector net for receiving
events with several predecessors in its preset. The creation of the individual
intermediary nets takes place as described in the corresponding paragraphs of
Section 4.2 and in the naming scheme in Definition 8.

Analysis with LoLA To analyse the correctness of a BPA subset LoLAs built-in
verification tasks are applied to the composed open net. For this purpose we
express the BPA correctness criteria as CTL formulae or state predicates and
use model checking to determine if they can be satisfied.

A terminating BPA run is characterized by the final place or places of the
net being marked with one or more tokens and any other place in the net being

BPAs with Multiplicities: Transformation and Correctness 15

unmarked. If such a state is reachable in the state space, the BPA subset has
a terminating run and is thus correct. Lazy termination of a BPA run can
be concluded if there is a path in the state space leading to a final marking,
such that each process terminates at least once, if it is instantiated at all. In
lazy terminating BPA runs unterminated instances and pending messages might
stay behind. If a final marking is not reachable, the BPA subset contains only
deadlocks and infinite BPA runs (livelocks). Those can automatically be detected
by LoLA. Dead processes are found by searching the state space for all those
initial places, that are always unmarked. If the transformed open net successfully
passes all the verification tasks the BPA subset is correct.

5 Evaluation

To evaluate our approach we consider the usecase of applying for a restaurant
business permit combined with a construction permit. An entrepreneur would
like to enlarge the facilities chosen for her restaurant, as well as make changes
to existing building structures. Fig. 7 shows the BPA subset consisting of seven
business processes and their interrelations. E.g. business process p1, the restaurant
business permit application, triggers three business processes p2, p3, p4; the
applications for the restaurant permit, the construction permit, as well as the
building conversion permit. It is common in the public sector that some of the
public administration processes are executed several times by different roles.
The construction permit application process p4, triggers multiple instances of
the expert’s report process, as depicted by the multiplicity of the throwing
event. Another peculiarity is the catching event of the final construction permit
evaluation process, which requires between four and six messages from process
p6, which is responsible for checking formal requirements of the expert reports.
Only then the final decision on the construction permit can be taken.

On first sight the BPA model seems correct, except for the disparity between
the numbers of created instances of process p5 and the expected messages in
process p7. In [16] the authors presented an approach to verify BPAs, however

P6 - Formal
completeness

verifcation

P1 - Restaurant business application

P4 - Construction
permit application

P5 - Expert’s report
|||

3..5

P3 - Building
conversion application P7 - Construction permit

examination

4...6

P2 – Restaurant permit
application

b1

b2

b3

b4

b5 b6

b7

e1

e2

e3

e4

e5 e6

e7

s4
r6

r7

s1 r1

Fig. 7. Business Restaurant Permission Application

16 Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

Fig. 8. Extended Open Net BPA Transformation

excluding the complexities that multiplicities create. Fig. 8 shows the trans-
formation of the BPA with multiplicities into an open net which is then used
to verify correctness. The analysis with LoLA [19] showed that the resulting
open net is structurally sound. However, the net exhibits no firing sequence that
would mark the place pe1 which corresponds to the end event of the application
process and is the desired final marking. This means that all possible BPA runs
are neither terminating nor lazy terminating. Instead the net contains several
deadlocks, markings in which no transitions are activated. All those deadlocks
have tokens on p′b7 but do not activate tr7 because no tokens are on pr6 Therefore
the catching event r6 in process p6 fires only once and is dead afterwards. As
a consequence process p7 is blocked after being initiated twice as not enough
incoming message are sent by process p6. All business processes are instantiated,
however neither process p7 nor process p1 can terminate and only one instance of
process p6 terminates. Consequently the BPA in question is not correct. Without
considering multiplicities the transformed BPA would have a lazy terminating
BPA run as all processes except from one instance of p7 could terminate. A
strong contrast to the problems found considering multiplicities. Considering
and analysing multiplicities in process interaction reveals important aspects for
ensuring correct BPAs.

6 Conclusion

Business Process Architectures provide means to model multi-communication
between multiple instances of interacting business processes. In this contribution
we extended the definition of BPAs with the concept of a BPA run and introduced

BPAs with Multiplicities: Transformation and Correctness 17

correctness criteria for BPAs. To analyse BPAs we presented an approach to
express the multiplicity-related concepts of BPAs in the formalism of open nets
for which a variety of analysis techniques exists. Our main contribution is the
introduction of intermediary nets to capture BPA multiplicities inside the frame
of open nets. Multicast, multireceive, splitter, and collector nets are composed
with the processes’ nets by place fusion to form an overall open net. The resulting
open net allows analysis with established verification tools.

We evaluated our approach for a non-trivial real world example, the restaurant
business application with construction permit. The analysis revealed problems
with the process interaction that process modeling notions depicting only single
message would have not been able to detect. Future work will focus on the
development of a BPA analysis tool to support large scale analysis.

References

1. Eid-Sabbagh, R.H., Dijkman, R.M., Weske, M.: Business Process Architecture: Use
and Correctness. In: BPM. Volume 7481 of LNCS., Springer (2012) 65–81

2. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers 08(01) (1998) 21–66

3. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing Workflow
Processes using Woflan. The Computer Journal 44(4) (2001) 246–279

4. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals Of Mathematics, Computing & Teleinformatics 1 (2005) 35–43

5. van der Aalst, W.M.P., Weske, M.: The P2P Approach to Interorganizational
Workflows. In: CAiSE. Volume 2068 of LNCS., Springer (2001) 140–156

6. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty
Contracts: Agreeing and Implementing Interorganizational Processes. The Computer
Journal 53(1) (2010) 90–106

7. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A
Framework for Lightweight Interacting Workflow Processes. International Journal
of Cooperative Information Systems 10(04) (2001) 443–481

8. Decker, G., Zaha, J., Dumas, M.: Execution Semantics for Service Choreographies.
In: Web Services and Formal Methods. Volume 4184 of LNCS. Springer (2006)
163–177

9. Zaha, J., Barros, A., Dumas, M., Hofstede, A.: Let’s Dance: A Language for Service
Behavior Modeling. In: On the Move to Meaningful Internet Systems 2006: CoopIS,
DOA, GADA, and ODBASE. Volume 4275 of LNCS. Springer (2006) 145–162

10. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling Service
Choreographies Using BPMN and BPEL4Chor. In: CAiSE. Volume 5074 of LNCS.,
Springer (2008) 79–93

11. Martens, A.: Analyzing Web Service Based Business Processes. In: FASE. Volume
3442 of LNCS., Springer (2005) 19–33

12. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: BPM.
Volume 4714 of LNCS., Springer (2007) 305–319

13. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction:
Patterns, Formalization, and Analysis. In: SFM. Volume 5569 of LNCS., Springer
(2009) 42–88

18 Rami-Habib Eid-Sabbagh, Marcin Hewelt, and Mathias Weske

14. Weinberg, D.: Efficient Controllability Analysis of Open Nets. In: Web Services
and Formal Methods. Volume 5387 of LNCS. Springer (2009) 224–239

15. Barros, A., Dumas, M., ter Hofstede, A., van der Aalst, W.M.P., Benatallah, B.,
Casati, F., Curbera, F.: Service Interaction Patterns. In: BPM. Volume 3649 of
LNCS., Springer (2005) 302–318

16. Eid-Sabbagh, R.H., Weske, M.: Analyzing Business Process Architectures. In:
CAiSE. Volume 7908 of LNCS., Springer (2013)

17. Puhlmann, F., Weske, M.: Investigations on Soundness Regarding Lazy Activities.
In: BPM. Volume 4102 of LNCS., Springer (2006) 145–160

18. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Unde-
cidability of partner existence for open nets. Information Processing Letters 108(6)
(2008) 374–378

19. Schmidt, K.: LoLA: A Low Level Analyser. In: ICATPN 2000, International
Conference on Theory and Application of Petri nets. (2000) 465–474

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band ISBN Titel Autoren / Redaktion

76 978-3-86956-

256-8
Proceedings of the 6th Ph.D. Retreat of
the HPI Research School an Service-
oriented Systems Engineering

Hrsg. von den Professoren des
HPI

75 978-3-86956-
246-9

Modeling and Verifying Dynamic Evolving
Service-Oriented Architectures

Holger Giese, Basil Becker

74 978-3-86956-
245-2

Modeling and Enacting Complex
Data Dependencies in Business
Processes

Andreas Meyer, Luise Pufahl,
Dirk Fahland, Mathias Weske

73 978-3-86956-
241-4

Enriching Raw Events to Enable Process
Intelligence

Nico Herzberg, Mathias Weske

72 978-3-86956-

232-2
Explorative Authoring of ActiveWeb
Content in a Mobile Environment

Conrad Calmez, Hubert Hesse,
Benjamin Siegmund, Sebastian
Stamm, Astrid Thomschke,
Robert Hirschfeld, Dan Ingalls,
Jens Lincke

71 978-3-86956-
231-5

Vereinfachung der Entwicklung von
Geschäftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin
Schreiber, Eric Seckler, Bastian
Steinert, Robert Hirschfeld

70 978-3-86956-
230-8

HPI Future SOC Lab - Proceedings 2011 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Doc D'Errico

69 978-3-86956-
229-2

Akzeptanz und Nutzerfreundlichkeit der
AusweisApp: Eine qualitative
Untersuchung

Susanne Asheuer, Joy
Belgassem, Wiete Eichorn, Rio
Leipold, Lucas Licht, Christoph
Meinel, Anne Schanz, Maxim
Schnjakin

68 978-3-86956-
225-4

Fünfter Deutscher IPv6 Gipfel 2012 Christoph Meinel, Harald Sack
(Hrsg.)

67 978-3-86956-
228-5

Cache Conscious Column Organization in
In-Memory Column Stores

David Schalb, Jens Krüger,
Hasso Plattner

66 978-3-86956-
227-8

Model-Driven Engineering of Adaptation
Engines for Self-Adaptive Software

Thomas Vogel, Holger Giese

65 978-3-86956-
226-1

Scalable Compatibility for Embedded
Real-Time components via Language
Progressive Timed Automata

Stefan Neumann, Holger Giese

64 978-3-86956-
217-9

Cyber-Physical Systems with Dynamic
Structure: Towards Modeling and
Verification of Inductive Invariants

Basil Becker, Holger Giese

63 978-3-86956-
204-9

Theories and Intricacies of
Information Security Problems

Anne V. D. M. Kayem,
Christoph Meinel (Eds.)

62 978-3-86956-
212-4

Covering or Complete?
Discovering Conditional Inclusion
Dependencies

Jana Bauckmann, Ziawasch
Abedjan, Ulf Leser, Heiko Müller,
Felix Naumann

ISBN 978-3-86956-257-5
ISSN 1613-5652

	Title
	Imprint

	Abstract
	1 Introduction
	2 Related Work
	3 Foundations
	3.1 Business Process Architectures
	3.2 Open Nets

	4 Transformation of BPA Multiplicities
	4.1 Multiplicity in BPA
	4.2 Transforming Business Process Architectures
	4.3 Composition and Analysis

	5 Evaluation
	6 Conclusion
	References
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

