
HASSO-PLATTNER-INSTITUT
Fachgebiet Computergrafische Systeme

Interactive Rendering Techniques for
Focus+Context Visualization of
3D Geovirtual Environments

Dissertation
zur Erlangung des akademischen Grades

"doctor rerum naturalium"
(Dr. rer. nat.)

in der Wissenschaftsdisziplin Informatik

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

Dipl.-Inform. Matthias Trapp

Potsdam
23. Januar 2013

This work is licensed under a Creative Commons License:
Attribution – Noncommercial – NoDerivs 3.0 Germany
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2013/6682/
URN urn:nbn:de:kobv:517-opus-66824
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66824

ii

To my family.

iii

Trademarks, Patents and Copyrights
Magic Lens and See-Through Interface are trademarks of the Xerox Corporation. Copyright 1996
Xerox Corporation. All Rights Reserved. The order-independent transparency rendering system
and method is protected under the united states patent no. 6989840. Idelix Pliable Display
Technology®(PDT®) is protected by the US Patents 6,727,910; 6,768,497; 6,798,412; 6,961,071;
7,084,886; 7,088,364; 7,106,349. Google Maps copyright 2006. The city model of Berlin is provided
by the Business Location Center (BLC) Berlin. The copyright protection of other 3D models used
in this thesis will be indicated.

iv

Abstract
This thesis introduces a collection of new real-time rendering techniques and applications for
focus+context visualization of interactive 3D geovirtual environments such as virtual 3D city and
landscape models. These environments are generally characterized by a large number of objects and
are of high complexity with respect to geometry and textures. For these reasons, their interactive
3D rendering represents a major challenge. Their 3D depiction implies a number of weaknesses
such as occlusions, cluttered image contents, and partial screen-space usage.

To overcome these limitations and, thus, to facilitate the effective communication of geo-information,
principles of focus+context visualization can be used for the design of real-time 3D rendering
techniques for 3D geovirtual environments (see Figure). In general, detailed views of a 3D geovirtual
environment are combined seamlessly with abstracted views of the context within a single image.
To perform the real-time image synthesis required for interactive visualization, dedicated parallel
processors (GPUs) for rasterization of computer graphics primitives are used. For this purpose, the
design and implementation of appropriate data structures and rendering pipelines are necessary.
The contribution of this work comprises the following five real-time rendering methods:

RT-1 The rendering technique for 3D generalization lenses enables the combination of different 3D
city geometries (e.g., generalized versions of a 3D city model) in an single image in real time.
The method is based on a generalized and fragment-precise clipping approach, which uses a
compressible, raster-based data structure. It enables the combination of detailed views in the
focus area with the representation of abstracted variants in the context area.

RT-2 The rendering technique for the interactive visualization of dynamic raster data in 3D
geovirtual environments facilitates the rendering of 2D surface lenses. It enables a flexible
combination of different raster layers (e.g., aerial images or videos) using projective texturing
for decoupling image and geometry data. Thus, various overlapping and nested 2D surface
lenses of different contents can be visualized interactively.

RT-3 The interactive rendering technique for image-based deformation of 3D geovirtual environ-
ments enables the real-time image synthesis of non-planar projections, such as cylindrical and
spherical projections, as well as multi-focal 3D fisheye-lenses and the combination of planar
and non-planar projections.

RT-4 The rendering technique for view-dependent multi-perspective views of 3D geovirtual environ-
ments, based on the application of global deformations to the 3D scene geometry, can be used
for synthesizing interactive panorama maps to combine detailed views close to the camera
(focus) with abstract views in the background (context). This approach reduces occlusions,
increase the usage the available screen space, and reduces the overload of image contents.

v

RT-5 The object-based and image-based rendering techniques for highlighting objects and focus
areas inside and outside the view frustum facilitate preattentive perception.

The concepts and implementations of interactive image synthesis for focus+context visualization
and their selected applications enable a more effective communication of spatial information, and
provide building blocks for design and development of new applications and systems in the field of
3D geovirtual environments.

vi

Zusammenfassung
Die Darstellung immer komplexerer raumbezogener Information durch Geovisualisierung stellt die
existierenden Technologien und den Menschen ständig vor neue Herausforderungen. In dieser Arbeit
werden fünf neue, echtzeitfähige Renderingverfahren und darauf basierende Anwendungen für die
Fokus-&-Kontext-Visualisierung von interaktiven geovirtuellen 3D-Umgebungen – wie virtuelle
3D-Stadt- und Landschaftsmodelle – vorgestellt. Die große Menge verschiedener darzustellender
raumbezogener Information in 3D-Umgebungen führt oft zu einer hohen Anzahl unterschiedlicher
Objekte und somit zu einer hohen Geometrie- und Texturkomplexität. In der Folge verlieren
3D-Darstellungen durch Verdeckungen, überladene Bildinhalte und eine geringe Ausnutzung des
zur Verfügung stehenden Bildraumes an Informationswert.

Um diese Beschränkungen zu kompensieren und somit die Kommunikation raumbezogener Informa-
tion zu verbessern, kann das Prinzip der Fokus-&-Kontext-Visualisierung angewendet werden (siehe
Abbildung). Hierbei wird die für den Nutzer wesentliche Information als detaillierte Ansicht im Fokus
mit abstrahierter Kontextinformation nahtlos miteinander kombiniert. Um das für die interaktive
Visualisierung notwendige Echtzeit-Rendering durchzuführen, können spezialisierte Parallelprozes-
soren für die Rasterisierung von computergraphischen Primitiven (GPUs) verwendet werden. Dazu
ist die Konzeption und Implementierung von geeigneten Datenstrukturen und Rendering-Pipelines
notwendig. Der Beitrag dieser Arbeit umfasst die folgenden fünf Renderingverfahren.

RT-1 Das Renderingverfahren für interaktive 3D-Generalisierungslinsen: Hierbei wird die Kom-
bination unterschiedlicher 3D-Szenengeometrien, z. B. generalisierte Varianten eines 3D-
Stadtmodells, in einem Bild ermöglicht. Das Verfahren basiert auf einem generalisierten
Clipping-Ansatz, der es erlaubt, unter Verwendung einer komprimierbaren, rasterbasierten
Datenstruktur beliebige Bereiche einer 3D-Szene freizustellen bzw. zu kappen. Somit lässt
sich eine Kombination von detaillierten Ansichten im Fokusbereich mit der Darstellung einer
abstrahierten Variante im Kontextbereich implementieren.

RT-2 Das Renderingverfahren zur Visualisierung von dynamischen Raster-Daten in geovirtuellen
3D-Umgebungen zur Darstellung von 2D-Oberflächenlinsen: Die Verwendung von projektiven
Texturen zur Entkoppelung von Bild- und Geometriedaten ermöglicht eine flexible Kombina-
tion verschiedener Rasterebenen (z.B. Luftbilder oder Videos). Somit können verschiedene
überlappende sowie verschachtelte 2D-Oberflächenlinsen mit unterschiedlichen Dateninhalten
interaktiv visualisiert werden.

RT-3 Das Renderingverfahren zur bildbasierten Deformation von geovirtuellen 3D-Umgebungen:
Neben der interaktiven Bildsynthese von nicht-planaren Projektionen, wie beispielsweise
zylindrischen oder sphärischen Panoramen, lassen sich mit diesem Verfahren multifokale

vii

3D-Fischaugen-Linsen erzeugen sowie planare und nicht-planare Projektionen miteinander
kombinieren.

RT-4 Das Renderingverfahren für die Generierung von sichtabhängigen multiperspektivischen
Ansichten von geovirtuellen 3D-Umgebungen: Das Verfahren basiert auf globalen Deformatio-
nen der 3D-Szenengeometrie und kann zur Erstellung von interaktiven 3D-Panoramakarten
verwendet werden, welche beispielsweise detaillierte Absichten nahe der virtuellen Kamera
(Fokus) mit abstrakten Ansichten im Hintergrund (Kontext) kombinieren. Dieser Ansatz
reduziert Verdeckungen, nutzt den zur Verfügung stehenden Bildraum in verbesserter Weise
aus und reduziert das Überladen von Bildinhalten.

RT-5 Objekt-und bildbasierte Renderingverfahren für die Hervorhebung von Fokus-Objekten und
Fokus-Bereichen innerhalb und außerhalb des sichtbaren Bildausschnitts, um die präattentive
Wahrnehmung eines Benutzers besser zu unterstützen.

Die in dieser Arbeit vorgestellten Konzepte, Entwürfe und Implementierungen von interaktiven
Renderingverfahren zur Fokus-&-Kontext-Visualisierung sowie deren ausgewählte Anwendungen
ermöglichen eine effektivere Kommunikation raumbezogener Information und repräsentieren soft-
waretechnische Bausteine für die Entwicklung neuer Anwendungen und Systeme im Bereich der
geovirtuellen 3D-Umgebungen.

viii

Acknowledgments
This dissertation is the result of my research work at the Department of Computer Graphics
Systems at the Hasso-Plattner-Institut (University of Potsdam). I am very grateful to my adviser
Prof. Dr. Jürgen Döllner for granting me this opportunity. I would also like to thank Prof. Dr.
Georg Gartner from the University of Vienna, Prof. Dr. Heidrun Schumann from the University of
Rostock, and Prof. Dr. Holger Theisel from the University of Magdeburg for for agreeing to review
this thesis.

I thank my colleagues Haik Lorenz, Markus Jobst, and Sebastian Pasewaldt for the research
collaboration on multi-perspective views and non-planar projections. Special thanks to Tassilo
Glander for the longstanding collaboration on landmark scaling, 3D generalization lenses, and 3D
iso-contours. I thank Amir Semmo for his outstanding support during various projects. Further, I
thank Christine Lehmann, Lars Schneider, Norman Holz, and Christian Beesk for the collaborative
research on object highlighting for 3D geovirtual environments. I’m thankful to Rafael Pokorski,
Claus Daniel Herrmann, Michael Eichhorn, and the all the others of the Colonia3D team who
dedicate their time and spirit to this project and made it such a big success. Further, I am obliged
to many of my colleagues at CGS: Jan-Eric Kyprianidis, Stefan Maass, Marc Nienhaus, Henrik
Buchholz for fruitful discussions and guidance throughout the years.

I owe sincere and earnest thankfulness to all the anonymous reviewers for their suggestions to improve
my work. Special thanks goes to Sabine Biewendt for their organizational and administration
support over all the years. It is a great pleasure to thank everyone who supported me during
writing this dissertation, who proofreaded my thesis and gave comments and ideas for improvement.
This work has been partially funded by the German Federal Ministry of Education and Research
(BMBF) as part of the InnoProfile research group "3D Geoinformation" (www.3dgi.de) and "4D-nD
GeoVis" (www.4dndvis.de).

I finally like to express my deepest gratitude and love to the most important people in my life: my
family and friends; especially to Sabine Pommerening for her long-standing support.

Potsdam, Germany, January 23, 2013 Matthias Trapp

http://www.clausdanielherrmann.de
http://www.colonia3d.de/
http://www.3dgi.de
http://www.4dndvis.de

Contents

Frontpage i

Dedication ii

Copyright iii

Abstract iv

Zusammenfassung vi

Acknowledgments viii

Contents x

1 Introduction 1
1.1 Geovisualization and 3D Geovirtual Environments 1
1.2 Focus+Context Visualization of 3D Geovirtual Environments 4
1.3 Advances in Hardware-Accelerated Real-time Rendering 5
1.4 Problem Statement and Contributions . 8

2 Overview of Focus+Context Visualization 13
2.1 Lens-based Focus+Context Visualization . 13
2.2 Distortion-based Focus+Context Visualization . 16
2.3 Highlighting Techniques for Points-of-Interests . 20

3 Focus+Context Visualization of 3D Geovirtual Environments 25
3.1 Categorization of Rendering Techniques . 25
3.2 Preliminaries and Classification Criteria . 27
3.3 Focus Types for 3D Geovirtual Environments . 28
3.4 Representation of Focus Types . 29
3.5 Visual Variants for Focus and Context . 32
3.6 Separating Focus from Context . 33
3.7 Summary . 37

4 3D Generalization Lenses 39
4.1 3D Lenses and Level-of-Abstraction . 39
4.2 Generalization of Virtual 3D Landscape and City Models 40
4.3 Generalized Clipping . 42
4.4 Concept of 3D Generalization Lenses . 50
4.5 Multi-pass Rendering . 51
4.6 Usage Scenarios and Discussion . 53

5 Dynamic Mapping of Raster Data 55
5.1 Decoupling Geometry and Texture Data . 55
5.2 A General Concept for Projective Mappings . 57

ix

x Contents

5.3 Real-time Rendering of Projective Mappings . 58
5.4 Application Examples . 61
5.5 Conclusions and Future Work . 63

6 Rendering Technique for Image-space Deformations 65
6.1 Non-planar Single-center Projections . 65
6.2 Real-time Rendering of Non-planar Projections . 66
6.3 Generalization of Single-center Projections . 68
6.4 Interactive Rendering Process . 71
6.5 Stereoscopic Rendering Non-planar Projections . 72
6.6 Extensions for Stereoscopic Rendering . 74
6.7 Comparison of Image-based and Geometry-based Approaches 76
6.8 Results and Discussion . 78

7 Multi-perspective Views for 3D Geovirtual Environments 79
7.1 Multi-perspective Views . 79
7.2 Effective Presentation of 3D Geovirtual Environments 81
7.3 View-dependent Multi-perspective Views . 83
7.4 Multi-scale Rendering . 86
7.5 Summary and Discussion . 89

8 Highlighting Techniques for 3D Geovirtual Environments 91
8.1 Applications and Challenges of Object Highlighting 91
8.2 On-screen Highlighting Techniques . 92
8.3 Off-screen Highlighting Techniques . 105
8.4 Summary and Future Work . 110

9 Case Studies and Applications 111
9.1 Communication of Digital Cultural Heritage in Public Spaces 112
9.2 Non-planar Projection Surfaces . 118
9.3 Multi-perspective Views for Navigation Systems . 119

10 Conclusions and Future Research 123

References 127

Publication Overview 147

Eidesstattliche Erklärung 151

Chapter 1

Introduction

The expression "focus+context" describes the concept of visually discriminating interesting objects
– the focus – from nearby related objects – the context. This chapter introduces the basics of
3D geovisualization using 3D geovirtual environments, such as virtual 3D city and landscape
models. Next, it discusses potentials of rendering techniques for focus+context visualization of
3D geovirtual environments – the core topic of this thesis – and how these techniques facilitate
design and construction of effective user interfaces for these environments. A brief overview of the
state-of-the-art hardware-accelerated rendering pipeline is presented, on which the implementation
of the rendering techniques rely on. The chapter closes with a problem statement and a list of
contributions. This thesis is partially based on the author’s scientific publications, which are listed
in the publication overview.

1.1 Geovisualization and 3D Geovirtual Environments
The aim of visualization is to gain insights and understanding to data, which is invisible or of
abstract nature, by a forming a mental vision or picture, and thus make it visible to the mind or
imagination [267]. It "attempts to display structural relationships and context that would difficult
to detect by individual retrieval requests" [209]. This process can use computer generated images
or collections of images, possibly ordered, using a computer representation of data as its primary
source and a human as its primary target. It requires a suitable mapping from these computer
representations to perceptual representations by choosing encoding techniques to maximize human
understanding and communication.

Geodata Geodata (also spatial or geographic data) refers to and occupies geographic space, has an
explicit spatial location according to a geo-referencing system, and consist of spatial and non-spatial
elements. Spatial elements describe geometry (e.g., line, point, polygons) as well as topology, while
non-spatial elements include descriptive data. Today, it is assumed that more than 80% of the data
available can be interpreted as geodata.

Due to the fact that geographic space is continuous and infinite with respect to resolution,
geodata is in its nature eminently fuzzy [226]. The need to define crisp boundaries for digital
representations between spatial objects complicate rigorous and adequate representations of reality.
Spatial data is also fuzzy in terms of interactions between spatial objects in the way these interactions
subsist in time. Further, many sources of spatial data are managed and defined by legal regulations
and laws (e.g., cadastral databases, borders, postal codes), i.e., their definitions are mandatory and
cannot be easily changed according to the demands or capabilities of IT systems and technology.
Geodata represents geographic features, objects, and phenomena: their state, geometry, and
properties need to be reflected as they are, i.e., the way they modeled is set and defined by
themselves. A feature represents the central modeling construct for geodata and denotes an
abstraction from a real-world phenomena. It is described by geo-referenced geometry and additional
feature attributes. Hereby, a feature type (e.g., polygon) is distinguished from a feature instance
(e.g., polygon #23). A feature attribute has a name, data type, and value domain associated to it.

2 Chapter 1. Introduction

Geodata has the following spatial correlation that is important to visualization: "everything is
related to everything else, but near things are more related than distant things" ("the 1st law of
geography" [252]). This proximity relationship refers to closeness: objects or features that may
have association because they are spatially near each other. There are three common proximity
characteristics: (1) connectivity denotes features that connect, or at least touch; (2) contiguity
denotes the degree of connectivity and (3) adjacency describes nearness, or the features that are
close to each other. In general, most spatial processes are non-stationary and anisotropic. Geodata
is spatially heterogeneous because of the unique nature of each geographic space. This and the
lack of stability on the behavior of spatial relationships, i.e., how features relate to each other in
space and over time (e.g., distance, distribution, density, and pattern), indicate that spatial data is
non-stationarity.

Geovisualization Geovisualization, short for geographic visualization, represents a category of
visualization and basically deals with understanding our geography [152] by visualizing spatial
objects, relationships, processes, and phenomena that reflect the specific nature of spatial data.
Among others, this involve topics about the human perception and interpretation process concerning
geospatial data. It is based on the specific ways humans can perceive, cognitively process, and
think about spatial information [173]. This includes culture and evolution of spatial information
communication media throughout the past. To communicates geospatial information and to enable
data exploration and decision-making processes, tools and techniques are required that support
geospatial data analysis through the use of interactive visualization. Dykes et al. characterize
geovisualization as "an emerging domain that draws upon disciplines such as computer science,
human-computer interaction design, cognitive sciences, graphical statistics, data visualization,
information visualization, geographic information science and cartography to discuss, develop and
evaluate interactive cartography" [71].

Key issues in geovisualization are: (1) multivariate, space-time, and multi-scale geographic
representation of spatial and spatio-temporal data. This includes data structures, level-of-detail
concepts, and data management; (2) design, implementation, and integration of visual, statistical,
and computational methods for the representation, analysis, knowledge construction, as well as sense
making using both multivariate and heterogeneous geospatial information (geovisual analytics); (3)
knowledge management and geo-collaboration to integrate, manage, and access data and knowledge
generated by multiple organizations. This concerns computational and human issues that underling
technologies have to address, e.g., the facilitation of group work and the development of semantic
frameworks; (4) understanding of spatial cognition and human factors to develop methods and
tools for interacting with geospatial information as well as (5) the development of methods and
tools to integrate and use geospatial information for risk assessment and decision support.

With respect to 3D rendering systems, 3D geovisualization is closely related to virtual reality
(VR), where especially virtual environments (VE) deal with virtual representations of the real,
physical world. Virtual reality is the range of techniques creating three-dimensional visualization
[118] and providing three user characteristics: interactivity, spatial dimension, and real-time activity
(action feedback is given without noticeable pause) [138]. All in all, 3D geovisualization is a highly
multidisciplinary science, using methods and techniques from geographic information visualization,
virtual reality, and human-computer interaction. In contrast to 2D geovisualization, the additional
third dimension enables better transformations between model, data and reality. With respect to
presentation, 3D models are natural and cognitively easier to interpret and are thereby suitable to
communicate ideas and visions.

To summarize, 3D geovisualization offers a number of advantages: (1) the human vision is
able to quickly explore and interpret a large amount of data that is geometrical represented in a
3D scene; (2) a user can be manipulated through hardware interfaces to induce the impression of
immersion into a 3D scene, and thereby having a stronger sense of being in a physical world; (3)
using 3D, a direct representation of height information can be used [72]; (4) temporal simulations
of dynamics using 3D data can deliver more realistic and more exact results than in 2D.

1.1. Geovisualization and 3D Geovirtual Environments 3

(a) A virtual 3D city model of Berlin. (b) A virtual 3D city model of Munich.

Figure 1.2: Examples of complex virtual 3D city models as instances of 3D geovirtual environments.

3D Virtual Environment

3D Geovirtual Environment

Spatial Data

Georeferenced Data

Virtual 3D City ModelVirtual 3D Landscape Model

3D Scene

3D Model

3D Object

Figure 1.1: Overview of terms with respect to
virtual environments and their representation.

3D Geovirtual Environments In general, virtual
environments can be defined as "interactive, virtual
image displays enhanced by special processing and
by nonvisual display modalities, such auditory and
haptic, to convince users that they are immersed
in a synthetic space" [77]. Based on 2D and 3D
geodata as primary components and contents, a 3D
GeoVE or Geographic Virtual Environment provides
a uniform, seamless conceptual and technical framework to represent and visualize geodata by
means of interactive, three-dimensional graphics, based on the virtual-world metaphor (Fig. 1.1).
3D GeoVEs accomplish the integration of geo-referenced thematic information by mapping it to
corresponding objects or graphical variables [14] as primary components for their visualization.
The main functionality comprises the visualization, presentation, exploration, analysis, use, and
management of spatial objects and processes. Thus, a 3D GeoVE serves as effective user interface
to static and dynamic spatial information and enables the construction and application of complex
geoinformation spaces within a compact, well-defined framework. Using virtual environments
as a medium for geovisualization provides more dynamic, more interactive, and more expressive
geovisualization by taking advantage of – and focusing – on human sensory and cognitive capabilities.
They apply state-of-the-art digital media and information systems technology as well as extend and
specialize existing technology to reflect on specifics of geographic visualization and geographic data
[172]. Thereby, they integrate findings from related fields, such as computer graphics, image vision,
VR, augmented reality (AR), as well as information visualization, cartography, and data mining.
One can distinguish between different types of GeoVE: (1) non-immersive 2D, 2.5D, 3D Desktop
GeoVE and (2) immersive, 3D CAVE, Workbench/PowerWall GeoVE [171].

3D geovirtual environments (Fig. 1.2), as category of 3D virtual environments, represent
essential Geovisualization tools and a general-purpose media to integrate, manage, visualize, and
communicate complex geospatial information. They represent efficient tools in the field of geography
or cartography, in particular if their visualization and knowledge can be transferred to the 3D
visualization domain [136]. MacEachren et al. proposed fundamental characteristics of virtual
environments that separate them from traditional, static representations and contribute to the
sustainment of virtuality [172]. These are: (1) immersion, the sensation of "being in" the environment
by involving more human senses; (2) interactivity expressed by the ability of a user to choose
arbitrary viewpoints, interact with objects and manipulate the environment directly; (3) information
intensity by adjusting information detail (e.g., by using level-of-detail representations) adaptively
and by configuring of the degree of information intensity and themes; and (4) intelligence comprising
the context sensitive behaviors of objects and their active assistance for navigation and interaction.
This thesis focus on two specific variants of 3D geovirtual environments: virtual 3D city models
and landscape models.

4 Chapter 1. Introduction

Virtual 3D landscape models serve as frameworks for representing geographic and thematic aspects
of landscapes. They are based on 3D geodata including high precision terrain and surface models
(DTM, DSM), 3D building, site, and city models, 3D vegetation and water models, as well as
photographic textures to model the appearance of these components. This way, virtual 3D landscape
models achieve a high degree of realism as required by a number of applications in virtual reality,
design, and architecture [GTD11]. Virtual 3D city models and systems are characterized by an
underlying 3D terrain model, embedded 3D buildings models, 3D vegetation models, as well as
complementary street and green space areas. Virtual 3D city models can be represented using the
CityGML format [103], standardized by the Open Geospatial Consortium (OGC). CityGML is
a common information model for the representation of 3D urban objects. It defines classes and
relations for the most relevant topographic objects in cities and regional models with respect to their
geometrical, topological, semantical, and visual properties. Included are generalization hierarchies
of thematic classes, aggregations, relations between objects, and spatial properties. This persistence
of thematic information goes beyond the capabilities of standard graphic exchange formats and
enables the application of virtual 3D city models in manifold domains.

For example, they are used in architecture [59, 60], urban or landscape planning and development
[221], to visualize prospect changes or modifications. They serve as decision support and controlling
systems for disaster management [65], urban security [270] and as integration platform for traffic
simulation systems [279]. Further, these systems are applied in infrastructure management and
planning, digital cultural heritage [TSP+10], as well as environmental monitoring and controlling
[127]. Furthermore, they are used in city and tourism information systems [225, 100].

1.2 Focus+Context Visualization of 3D Geovirtual Environments
Due to perspective transformations of the input geometry and the limitations of current display
devices, 3D GeoVEs exhibit a number of drawbacks: occlusion (especially in low or near ground
perspectives) hinders the user to perceive potentially important information. Further, the low
resolutions of computer screens in contrast to print media limits the amount of information
displayable [136]; this is problem is reinforced due to perspective transformation, which decreases
object sizes with increasing distance to the center-of-projection (COP) [85]. Furthermore, the
complexity of orientation and navigation tasks in 3D often leads to "getting lost situations" [37].

In addition to that, one of the fundamental problem in visualization is scale, i.e., too many
data sets are too large to visualize on a single or even a number of display screens. In general, this
can be interpreted as a problem of space and order encoding. Space and order encoding transforms
data from an information space to spatial representations (size and order) in a display space that
preserves the informational characteristics of the dataset and facilitates human’s visual perception
and understanding of the data [267]. There are two challenges for efficient spatial encoding: (1)
visualizing large information space (large maps, tables, documents, etc.) using a relatively small
display screen (also called screen-real-estate problem) and (2) visualizing multi-dimensional data
(n > 3) in 2D or 3D space. Dürsteler describes that "the main problem of information visualization
is the insufficient space, which restricts the user in showing detail and context contemporaneously,
is called ’presentation problem’" [70]. The important problem of finding an effective and efficient
spatial representation of the information is difficult and can be considered as the most important
tasks in information visualization.

Despite the approaches of non-projective mappings between nD and 2D or 3D (e.g., parallel
coordinates plots [137]), Overview+Detail Visualization is one approach to the challenges and
drawbacks stated above. The basic idea is to show selected regions-of-interest (ROI) at high detail
and preserve a global overview at reduced detail. This principle basically uses different views,
windows, or viewports to display both, details and overview. The overview can be an inset panel, a
panel beside the detail view, or another window in the case of a multi-window application. Tufte
uses the terms "micro and macro readings" [255] to describe a similar concept for printed maps,
diagrams, and other static information graphics. The user has the large structure in front of them
at all times, while being able to peer into small details at will.

1.3. Advances in Hardware-Accelerated Real-time Rendering 5

Similar to overview+detail visualization, Focus+Context Visualization (also synonym for Detail-in-
Context) offers approaches for the first challenge by using spatial distortions, lenses, or overlays
to efficiently use the available screen space. Focus+context systems enable a user to perceive
detailed information linked to and embedded within a context. Focus+context visualization share
the same basic idea as overview+detail, but with one key difference: overview and detail views
are combined into a single image on a single viewport. Card et al. describe three premises of
focus+context visualization: "First, the user needs both overview (context) and detail information
(focus) simultaneously. Second, information needed in the overview may be different from that
needed in detail. Third, these two types of information can be combined within a single (dynamic)
display, much as in human vision" [41]. Hauser summarized the principle by having a "combination
of both a general overview as well as a detailed depiction within one view of the data at the same
point in time" [115]. Since this approach depicts how important information relates to the entire
data structure, it potentially supports the human’s natural vision system and reduces the cognitive
load often induced by switching between multiple views [8].

Based on the definitions above, the following terminology for focus+context visualization is
used throughout this document: Focus, plural foci or multi-focal, describes the referenced spaces,
i.e., regions-of-interest or volumes-of-interests as well as features that are of particular interest to
the user in a certain usage scenario. Section 3.3 describes different focus types, their representation
and transformations for rendering techniques described in this thesis. Context, only singular,
denotes the space and containing features in which the focus or foci is/are embedded in. Often
the visual representation of the context varies from the one of the foci. Section 3.5 describes
these representation variances in more detail. Finally, Focus+Context describes the category of
visualization concepts that embeds foci and context within single images or views.

The seamless and smooth embedding of focus representations into a context requires specialized
rendering techniques. Especially for 3D GeoVE, the handling of complex geodata, the integration
of visualization concepts into the visualization pipeline (Chapter 3), the support and leverage of
the hardware-accelerated rendering pipeline, and the integration into existing frameworks represent
major challenges in designing and constructing systems and applications.

1.3 Advances in Hardware-Accelerated Real-time Rendering
Computer graphics is concerned with the visual representation of and interaction with real or
virtual worlds. Its purpose is to render a computer generated image that is often called a frame. A
sophisticated overview of the foundations of computer graphics can be found in [85]. In general,
one can distinguish between two major rendering approaches: ray-tracing and rasterization. Real-
time computer graphics or on-line rendering systems differs fundamental from traditional off-line
rendering systems (usually non-real-time graphics systems). The latter typically rely on ray-tracing
that is often a computational expensive operation, which can require minutes or hours for a single
frame. Rasterization (or rasterisation) denotes the process of converting a scene described by
polygonal shapes into a raster image (pixels or dots). This thesis focuses on real-time rendering
techniques using rasterization-based graphics hardware (GPUs) [3].

Real-Time Rendering and Interactive Graphics
If an event or function is processed instantaneously, it is denoted to occur in real-time. Real-time
computer graphics is a discipline of computer graphics that focus on producing and analyzing
images in "real-time": this means the images or frames are rendered "fast enough" that there is no
noticeable delay experienced by the user. Frame-rate metrics for a real-time graphics system can be
milliseconds (ms) or frames-per-second (FPS). In the context of IT systems, the term real-time is
used by different references. This thesis considers a rendering technique as real-time if the rendering
process is performed with at least 12 FPS, i.e., the time for displaying two consecutive frames does
not exceed 100ms.

Another difference between real-time and non-real-time graphics is the interactivity enabled
using real-time graphics. In Computer Science the term interactive relates to a program or software
system that responds to user activity. In the case of interactive real-time computer graphics, usually

6 Chapter 1. Introduction

Figure 1.3: Simplified flow chart of a programmable rasterization-based rendering pipeline.

a user is in control of what is about to be drawn on the display screen, i.e., the user typically uses
an input device to provide input and feedback to the system. In contrast to static media and static
representations, 3D GeoVEs enable users to navigate by manipulating a virtual camera.

Programmable Graphics Pipeline
Figure 1.3 shows a simplified version of a rasterization-based rendering pipeline with programmable
units. It reflects a common subset of functionality that can be accessed by low-level application
programming interfaces (API) such as OpenGL [230] or Direct3D [20]. It represents the foundations
for the rendering techniques and algorithms presented in this thesis.

Figure 1.4: Exemplary G-Buffer configuration com-
prising multiple layered rendering targets of a cube-
map texture.

Hardware-Accelerated Rasterization Raster-
ization requires a virtual scene to be decom-
posed in a number of rendering primitives (e.g.,
triangles or quads). These primitives are trans-
formed and projected from object-space coor-
dinates into screen-space coordinates. A hard-
ware rasterizer generates fragments, i.e., pixel
values with additional attributes such as depth,
normal, etc. that can be displayed on a screen.
Prior to display, per-fragment operations such
as depth, or stencil tests are performed on the
fragment. Current hardware comprises multi-
ple, programmable, single-instruction multiple
data (SIMD) processing units (processor, shader
or shader programs) executed in parallel [144].
Vertex shader represent the first programmable
pipeline stage, which can be used to modify per-
vertex attributes such as position, texture coordinates, or normal vectors. It computes object-space
to camera-space as well as the projection transformation. For example, it can be used to perform
uniform and non-uniform global deformations [7]. After primitive setup and assembly, a geometry
shader can be used to amplify geometric primitives [167], perform layered rendering, as well as
primitive conversion operations. Finally, a fragment shader performs operations on per-fragment
basis, e.g., lighting and shading, clipping, or alpha-tests. It can assign output information to different
texture layers also known as G-Buffers [222]. This operation is denoted as render-to-texture (RTT)
or off-screen rendering [273], a technique often used throughout this thesis. Figure 1.4 shows an
example for an image-based data structure and denotes terms used for a G-Buffer comprising color,
depth, object identifier, as well as normal vectors.

1.3. Advances in Hardware-Accelerated Real-time Rendering 7

Rendering Techniques Given a graphics API, a rendering technique comprises strategies, algo-
rithms, and data structures, for the interpretation and evaluation of rendering components [64]
with the purpose of synthesizing an image. Rendering techniques are based on the following major
rendering components:

Shader Programs The configuration of the programmable units of the rendering pipeline (shader
source or operation code) as well as the definition of the data that is exchanged between
these units are denoted as shader program. They can be compiled and linked at runtime. A
rendering techniques can comprise multiple shader programs.

Geometry and Raster Buffers One can distinguish between two types of buffers: raster buffers
and geometry buffers. Raster buffers contain raster data (e.g., aerial images, facade textures)
and can additionally be used to encode global information of a 3D scene for the programmable
units. The maximum resolution and numerical precision is limited and often depends on the
hardware generation. Geometry buffers contain geometric primitives (e.g., points, lines, or
triangles) and are used as input for the rasterization. Render-to-texture can be applied to
generate image-based representation of 3D geometry [222, 74].

Algorithms and Control Flow The control flow or application logic of a rendering technique defines
the order of operations and the respective state of the programmable and fixed functions
stages of the rendering pipeline. The change of a configuration is referred to as state change.
A major aim for designing a rendering technique is to minimize to number of state changes
required. Therefore, batching [269] can be applied to reduce state changes per rendering pass.

A rendering technique can require multiple passes to render a final image. The number of required
rendering passes characterizes the efficiency of a rendering technique and classifies them into single-
pass or multi-pass rendering techniques [56]. Basically, one can distinguish between three types of
passes, which usually differs w.r.t. the data types processed and the computational complexity of
the operations performed:

Scene-Rendering Pass The main function of this type is the rasterization of the complete 3D
polygonal scene to the frame buffer or to number of raster buffers. The performance of such
pass mainly depends on the geometric complexity of the scene (e.g., the number of geometric
primitives or state changes). The results of this pass can be stored in multiple render targets
consisting of multiple render layers [159] (cf. Fig. 1.4).

Post-Processing Pass A post-processing pass describes an imaging operation using raster-buffers
as input and output. Application examples for post-processing passes are compositing,
deferred shading and lighting [145], or screen-space ambient occlusion [123]. Such operations
can be performed by rendering a screen-aligned quad textured by a raster buffer [222].
There is a tendency towards image-based algorithms because computations are performed
on visible fragments only. This lowers the computational efforts but usually exhibits high
memory consumptions. A concept that is often used to reduce memory consumptions are
ping-pong-buffers [66].

Geometry Pass A geometry pass includes all pipeline processing stages prior to rasterization.
The results of these stage operations are written back to geometry buffers using transform
feedback [230]. This type of pass enables advanced, hardware-accelerated geometry processing
operations, such as primitive tessellation and subdivision to ensure sufficient vertex density.

Forward and Deferred Rendering Pipelines With respect to the implementation of a rendering
technique, one can distinguish between using a forward rendering pipeline (FRP) or a deferred
rendering pipeline (DRP). Both concepts have advantages as well as disadvantages with respect to
performance, flexibility, and implementation complexity. This thesis makes use of both concepts (cf.
Chapter 3).

8 Chapter 1. Introduction

The forward rendering pipeline applied in a scene-rendering pass refers to the classic approach using
rasterization. One of its problems is less-than-optimal performance for fill-limited 3D scenes, i.e.,
scenes having a high overdraw ratio (many polygons overlap each another in the projection [223])
and high per-fragment processing costs. A further problem represents the code complexity of the
shader programs used. With forward rendering, the transformation of a vertex and the performed
lighting computations are bound. This requires all shader programs for a 3D scene to incorporate a
high amount of lighting code, which result in shader code that is both complex and hard to manage.
Thus, this approach is suitable for low complexity computation at the shader stages.

The deferred rendering pipeline, used to implement deferred shading and lighting, attempts to
reduce some of the disadvantages of forward rendering by decoupling the transformation and the
lighting of a vertex into two separate phases, i.e., it defers the lighting phase to a post-processing
pass. Instead of rendering the 3D scene (including complex lighting operations), information about
the 3D scene is gathered using G-Buffers. Deferred rendering has a number of advantages. In
general, it is easy to implement and independent of the geometric complexity 3D scene, because only
a single scene-rendering pass is required. This introduces only small amounts of shader runtime cost
and state changes but requires large amounts of per-fragment data to represent in video memory
(e.g., normals for lighting, Fresnel specular coefficients, anisotropic filtering). It can be fill-rate and
memory-bandwidth intensive, due to the possible number of post-processing passes introduced.

In this thesis, a mixture of FRP and DRP is applied for the implementation of the rendering
techniques. The application of FRP is suitable because most of the geodata visualized does not
require complex shading and lighting since the facade textures and aerial images often contain
shadows and lighting artifacts. Since the rendering of 3D GeoVE in low perspectives, such as
pedestrian views or similar, introduce a high amount of overdraw, DRP capabilities are also
employed. The post-processing effects used (e.g., unsharp-masking the depth buffer [170], or
image-based edge-enhancement [186]) contribute to provide visual clearance or are required by the
respective visualization techniques.

To summarize, interactive visualization systems require real-time rendering techniques that
can be efficiently implemented using hardware graphic-accelerators. These techniques are based on
data structures and algorithms that take advantage of the massive parallelism of graphics hardware.
With respect to this, the goal for an interactive rendering systems are the design of rendering
techniques that use a minimal number of rendering passes, feature small memory footprints, and
which are capable of being integrated into existing rendering pipelines.

1.4 Problem Statement and Contributions
Fuchs et al. argue for the combination of 2D maps and focus+context visualization metaphor [87].
Since data includes both geographic and abstract information at the same time, effective visualization
of this data benefits from combining combination of maps with focus+context techniques. The
application of focus+context visualization is faced by a number of challenges and problems of 3D
GeoVEs. First, the principles can be used to direct the viewer’s focus of attention by facilitating the
preattentive cognition [49]. Second, it simplifies the exploration and analysis of structures with a
large spatial extend. Third, the information visible in a single view can define the size of a problem
to visualize. Thus, efficient use of screen space can increase the amount of information visible
and thus increase size of the problem to visualize. The focus of this thesis is to develop efficient
rendering techniques for focus+context visualization of 3D GeoVE. This section summarizes the
conceptual and technical challenges as well as the contributions presented.

Conceptual and Technical Challenges
The major challenge concerns how principles of existing 2D focus+context visualization techniques
can be transferred to 3D GeoVEs, especially to 3D virtual city and landscape models. In contrast to
2D graphics, 3D graphics inherently define scale and ordering of the visualized data by a projection
transformation. To perceive 3D space, a number of monocular and binocular depth cues are required
(e.g., texture gradient, size gradient, occlusion) [255]. Altering scale and ordering (e.g., by changing
object ordering or 3D projection) can cause confusion in the human’s natural understanding of this

1.4. Problem Statement and Contributions 9

space. The goal is to maintain this understanding of 3D space and improve the communication of
complex spatial information simultaneously [6]. A further challenge represents the integration of
3D focus+context visualization techniques into the visualization pipeline [267]. In particular this
includes the support for multiple overlapping or nested foci as well as transitions between focus and
context regions that are independent of discrete geodata features. Furthermore, the visualization
techniques should maintain aspects of immersion, information intensity, intelligence of objects, and
interactivity, which are fundamental characteristics of virtual environments [172].

Martin et al. describes the following requirements for a focus+context visualization framework
[179]: (1) is should provide visualization at interactive frame rates, (2) has an open architecture
for addition of new visualization methods, and (3) has the best possible exploitation of hardware
resources. Despite the conceptual challenges of focus+context visualization techniques, the technical
challenges for real-time enabled implementations are to maintain these properties. For the real-time
image synthesis in particular, this concerns concepts and techniques that integrate not only into
the visualization pipeline [267] but also into the real-time rendering pipeline [3]. Due to the
high geometric and texture complexity, the rendering of 3D geovirtual environment is often a
costly operation [36]. Therefore, the rendering techniques should be capable of processing these in
real-time by trying to minimize the number of scene, geometry, and post-processing passes. Further,
rendering performance depends on the data structures and their suitable representation for the
programmable graphics pipeline: real-time rendering techniques often rely on pre-processed data.
To access this pre-processed data at rendering time, suitable data structures are required to store
this data efficiently. Therefore, efficient algorithms are required to traverse and use these data
structures within a programmable graphics pipeline. In other words, these algorithms are required
to work on SIMD architectures and should be applicable to different stages in the rendering pipeline.

Contributions
The following paragraphs describe what kind of focus+context visualization techniques can be
applied to 3D GeoVE. In general, this comprises the combination of real-time photo-realistic
rendering techniques, non-photorealistic rendering techniques [38], as well as generalized variants of
3D geovirtual environments to enable saliency-based visualization [STKD12] and to facilitate the
interactive exploration of complex information spaces [131]. Also, these techniques handle artifacts
introduced by perspective projections, (e.g., dead pixel values) and deal with limited screen space
and resolutions [136].

Figure 1.5: Example for 3D generalization
lenses applied to a virtual 3D city model of
Berlin.

3D Generalization Lenses This type of lens-based
focus+context visualization enables the combination
of different geometric representations of a 3D GeoVE
(e.g., different level-of-abstraction) within a single
image. Its main purpose is to lower mental efforts
of image understanding by reducing visual complex-
ity in the context region while maintaining detailed
information in the focus region (Fig. 1.5). A 3D
or volumetric lens can be assigned to define a valid
area of such a geometric representation within the
3D geovirtual environment. Technically, this real-
time rendering technique enables the application of
multiple, overlapping or nested 3D lenses using a
hierarchical mapping. It further supports arbitrary
lens shapes (i.e., convex and non-convex), which are
required for lenses along routes. The implementation is based on multiple rendering passes and a
volumetric parity test, to perform pixel-precise clipping of an input geometry.

10 Chapter 1. Introduction

Figure 1.6: Two 2D surface lenses that combine
different raster layers along a route.

Surface Lenses Similar to 3D generalization lenses,
2D surface lenses can be used to facilitate perception
to guide the user’s attention to highlight selected
contents of 3D GeoVE. In contrast to the 3D general-
ization lenses, focus+context visualization using 2D
surface lenses support to flexibly combine raster layer
contents. It also facilitates smooth transitions be-
tween focus and context areas (Fig. 1.6). Technically,
the concept is based on a rendering technique for
the dynamic mapping of raster layers using fragment
shader programs. This rendering technique enables
hierarchical mapping and compositing of multiple
raster layer (e.g., maps of different scale or aerial
images). In contrast to generalization lenses, the
rendering techniques requires only a single rendering
pass. Besides focus+context visualization it is applicable to other visualization techniques, such as
highlighting purposes or the mapping of dynamic data, which is a requirement for spatio-temporal
visualization techniques.

Figure 1.7: A single focus fish-eye lens visual-
ization of a virtual 3D city model of Berlin.

Screen-space Deformations A classical image-
based fish-eye view distorts a single image generated
from a 3D scene [275]. To enable multi-focal fish-eye
lenses for 3D geovirtual environments, it is required
to capture and modify a representation of the com-
plete 3D scene. With respect to focus+context visu-
alization, this contribution presents an image-based
approach to efficiently generate multiple 2D viewport
lenses and non-planar projections of arbitrary 3D
scenes in real-time. Technically, the rendering tech-
nique is based on dynamically created raster buffers
in combination with shader programs required to
compute the specific projections (Fig. 1.7). The
rendering technique can be applied within a single
rendering pass, is easy to implement, and exploits
the capability of modern programmable graphics hardware completely. Further, the presented
approach enables the customization and combination of different planar as well as non-planar
projections.

Figure 1.8: Multi-perspective view using differ-
ent visual representations.

Object-space Deformations Multi-perspective pro-
jections or views enable visualizations similar to
panorama maps, which increase overview and in-
formation density in 3D depictions of complex 3D
geovirtual environments. Panorama maps seamlessly
combine easily readable maps in the foreground with
3D views in the background, both within a single
image. Such nonlinear, non-standard 3D projections
enable focus+context visualization and new types
of cartographic projections that optimize the use
of available image space and facilitate information
transfer (Fig. 1.8). Technically, the presented tech-
nique relies on global object-space deformations [7]
to model multi-perspective views while using a stan-
dard linear projection for rendering, which enables
single-pass processing by graphics hardware. The technique supports different distortion schemata

1.4. Problem Statement and Contributions 11

beyond classical panorama maps and can seamlessly combine different visualization styles of focus
and context regions. Further, this contribution comprises an approach for the automatic and
view-dependent interpolation of different configurations of multi-perspective views to enable users
to smoothly and steadily interact with, and navigate through multi-perspective 3D GeoVEs

Figure 1.9: Object highlighting for archaeologi-
cal findings in the project Colonia3D.

Highlighting Highlighting functionality is essential
for user interaction and represents an important com-
ponent of a visualization framework. With respect
to focus+context visualization, highlighting enables
a user to easily perceive active or selected objects
(Fig. 1.9). With respect to 3D GeoVE, highlighting
has additional applications: it can be used to visu-
alize data-base queries and to implement navigation
aids by highlighting way points or routes. Further,
applications of virtual 3D city models (e.g., in car
navigation systems, city marketing, tourism, and
gaming) rely on effective points-of-interests (POI)
visualization. POIs typically represent features rel-
evant for specific user tasks and facilitate effective
user orientation and navigation through a 3D geovir-
tual environment. Therefore, a rendering framework is presented to highlight points-of-interest
effectively.

Remainder
The remainder of this thesis is structured as follows. Chapter 2 gives an overview of previous and
related work in the field of focus+context visualization, rendering techniques, and systems that
represent the foundations of visualization techniques described above. Chapter 3 present concepts
and principles required for the interactive focus+context visualization of 3D GeoVE. Chapter 4
introduces a rendering technique for 3D generalization lenses based on generalized clipping approach.
Chapter 5 describes a rendering technique for for implementing 2D surface lenses based on dynamic
mapping of raster data to 3D geovirtual environments. Chapter 6 a describes an image-based
rendering technique for viewport deformations. Chapter 7 introduces a novel rendering technique
for multi-perspective views. Chapter 8 describes rendering techniques for on-screen and off-screen
highlighting. At the end of the thesis, Chapter 9 presents application examples and projects that
utilize the visualization techniques and underline their relevance for modern 3D geovisualization.
Finally, Chapter 10 concludes the thesis and describes future research directions.

Chapter 2

Overview of
Focus+Context Visualization
for Interactive Virtual Environments

This chapter gives an overview to the state-of-the-art of focus+context visualization for 2D and
3D geovirtual environments. The remaining sections presents previous and related work in these
categories by briefly introducing the respective concept as well as the implementation and discuss
differences and common aspects with respect to the rendering techniques presented in this thesis.
In particular, Section 2.1 reviews related work of lens-based focus+context visualization techniques.
Section 2.2 presents an overview for distortion-based techniques. Finally, Section 2.3 discusses
previous work with respect to object highlighting. The related work concerning the specific rendering
techniques are discussed in the respective chapters of this thesis.

The metaphors of focus+context visualization are of broad use in different application domains.
Despite geovirtual environments, their are often used to facilitate the navigation in and visualization
of documents [210, 121], in (medical) volume rendering [48, 33, 263, 220], as well as for the
visualization of large graphs [128] or hierarchies [154]. Leung and Apperley [160] as well as Cockburn
et al. [46] present an throughly overview and taxonomy of focus+context metaphors not limited by
the application domain. With respect to these taxonomies, there are basically three categories of
focus+context visualization techniques relevant to the scope of this thesis: (1) distortion-based
visualization techniques, (2) lens-based visualization techniques, and (3) highlighting techniques.

2.1 Lens-based Focus+Context Visualization
Focus+context interaction techniques based on the lens metaphor are used to navigate and interact
with objects in large information spaces. They provide in-place magnification of a region of the
display without requiring users to zoom into the representation and consequently lose context
[196]. Lens-based visualization providing capabilities for in-place presentation of details in a
global context. Interactive lens-based visualization can be applied to explore continuous geospatial
representations, as well as non-geospatial visualizations such as network diagrams [5]. Carpendale
argue for distinction between discrete and continuous lenses and provides a taxonomy for the first
case [185]. In the latter case, the magnified region is often integrated in the context using smooth
transitions based on spatial distortion in order to avoid occlusion of its immediate surroundings.

The magic lens metaphor and Toolglasses have been introduced by Bier et al. [15]. They
describe widgets as interface tools that can appear between an application and a traditional cursor.
These visual filters can "modify the presentation of application objects to reveal hidden information,
to enhance data of interest, or to suppress distracting information" [16] in the region of interest,
which is determined by the shape of the lens. The through-the-lens metaphor [240] presents a set
of tools that enable simultaneous exploration of a virtual world from two different viewpoints. One
is used to display the surrounding environment and represents the user, the other is interactively
adjusted to a point-of-interest. The resulting image is displayed in a dedicated window or viewport,
similar to overview+detail visualization.

14 Chapter 2. Overview of Focus+Context Visualization

Related work for rendering techniques of lenses can be categorized by the following aspects: the
lens type (e.g., volumetric vs. flat or surface lenses), the support of multiple, intersected or nested
lenses, as well as lenses of arbitrary shape. For the application in geovirtual environment, the class
of lens-based visualization techniques can be differentiate into lens-based visualization techniques
for 2D and 3D interfaces.

Figure 2.1: Example of a content-aware
adaptive lens ([197]).

Lenses for 2D Interfaces The need to examine and ma-
nipulate large surface models is commonly found in many
science, engineering, and medical applications. However,
on a desktop monitor, depicting the complete model in
detail is not always possible. Using a magnifying lens to
locally enlarge the focal region of an detailed object is
usually helpful and perhaps even necessary. Such local
magnification and distortion approaches are also useful
for the visualization of a high-resolution model on a low
resolution display device. These methods expand the re-
gion of interest through the theory of optical lens or other
distortion methods to convey a complete visual message
to the user and reminds the user of the overall perception
of the model at all time, while the user’s attention is
focused on a local region [266]. Thus, focus+context lens-based techniques smoothly integrate two
levels-of-detail using spatial distortion to connect the magnified region and the context [197].

Pietriga et al. present a framework for viewport lenses that can be easily integrated into
existing frameworks [196]. It based on the displacement and compositing of pixels from two
renderings at different scales uses transparency and image blending to overcome tight coupling
between lens techniques and the underlying graphics framework. Spindler et al. presents camera
textures, a real-time rendering technique for camera deformations that can be applied to lens
distortions and non-realistic projections [237]. The technique is based on vertex shader textures
and presents a hybrid approach working in image and object space. As the primal deformation
is achieved by vertex deformation in object space, the approach does not exhibit artefacts known
from pixel-based magnification techniques [275]. However, it requires well tessellated 3D models to
produce distortions of high quality. This limitation is caused by the "straight-line segment" problem,
which can be partially solved using adaptive tessellations executed on the graphics hardware.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 2

Because of the computational difficulty of optimal label place-

ment in the general case, most approaches use heuristics such

as simulated annealing and gradient descent [14], [15].

Although the output of our method is a static route map, our

work is related to a number of interactive labeling algorithms.

Daiches and Yap [8] address the problem of placing labels on

a pannable and zoomable map. The method works by creating

static label placements and assigning priorities to each of the

labels. During interaction, the labels are displayed in order

according to priority, omitting labels that overlap with labels

of higher priority.

Other interactive labeling systems attempt to handle more

complicated changes than panning and zooming. Götzelmann,

Hartmann, and Strothotte [25] present a real-time algorithm to

place both internal and external labels on 3D visualizations.

Their system uses several heuristics with adjustable weights

to control the layout, employing special “layout agents” to

optimize the layout and maintain coherence between frames.

Fekete and Pliasant [16] generate dynamic “excentric la-

bels” for objects within a user-specified neighborhood. The

dynamic labels allow the user to inspect the contents of a small

neighborhood without zooming in to it, making interaction

more efficient.

Bekos and Kaufmann [9] explore the concept of boundary

labels, in which labels are placed around a rectangle con-

taining points of interest, and the POIs are associated with

their respective labels via connecting lines called leaders. This

is similar in many ways to our approach, but we consider

metrics specific to route map visualization when computing

lens layouts.

Also of interest in the context of route visualization is the

use of mobile devices such as PDAs and cell phones to display

location-specific information [12], [23] and study navigation

patterns [13]. These methods serve as a good starting point

for our application. Our implementation is web-based, and

hence could be ported to handheld devices that support web

browsers by incorporating interaction behaviors as suggested

in the above papers.

Our proposed approach of providing detail lenses over an

overview map is most closely related to the problems of inset

placement on maps [11], [22], [7]. While the high-level goal

of our proposed approach and the above methods is similar -

displaying overview and detail data over a geospatial domain

- there are significant differences in the type of data that

we propose to work on. The existing approaches are geared

towards determining what portions of the map can be better

described with a detail view. There may be one or more

detailed insets on a single map; however, the individual inset

regions may not have an explicit relationship with one another.

The placement of these insets is defined by the boundaries of

the Regions-of-interest (ROIs) that they are enclosed in. In

our case, the entire route is the ROI, marked with specially

designated points (POIs) along the route. Detail lenses have

to be created for every POI without respect to the POI

density in their vicinity. The detail lenses cannot be placed

in an arbitrary manner since the POIs have a strict temporal

ordering. Thus, detail lenses of nearby POIs should also have

the corresponding proximity to one another.

Fig. 1: A route map with detail lenses created using our system.

There is a wealth of previous work for the evaluation

of verbal directions and non-verbal symbols in the case of

navigation or route maps. The seminal work by Allen [6]

defines in detail the subprocesses involved in transfer of

route directions between individuals, and their constituent

elements (landmarks, segments/pathways, choice points/turns).

Lovelace et al. [21] perform a qualitative assessment of route

directions using the standard elements mentioned above. Tver-

sky and Lee [26] compare descriptions and compact depictions

of route directions with the help of a standardized ‘toolkit’ of

common phrases and their corresponding pictorial representa-

tions. Their study finds semantic commonalities between route

directions that describe a particular route, and corresponding

route maps, which show an imprecise sketch of the same route

pictorially. Recently, Klippel and Montello [20] explored the

conceptualization of route directions employing linguistic as

well as non-linguistic categorization.

Agarwala [3], [2] creates route maps that are similar to those

that might be drawn by a human. The route is distorted and

simplified to highlight important features and make the route

map more readable. Our work shares many of the same goals,

but we avoid distortion and attempt to provide more near-route

context.

Recently, Google Maps (maps.google.com) has also started

including detail lens views for the printable version of their

maps. However, these views are placed next to the textual

direction list, and further increase the number of pages to be

printed. Also, in some cases (for example, a map from Boston,

MA to Philadelphia, PA) the source and destination are not

visible in the overview at all. Our method addresses both issues

by rescaling the map such that it is always visible, and placing

the lenses on the same page(s) as the route overview.

3 SYSTEM OVERVIEW

Our route visualization system provides route navigation de-

tails in the form of a route map augmented with detail lenses

for points of interest along the route path. Inputs to the system

include a base map at multiple geospatial scales, a polyline

Figure 2.2: Example for a route map with
detail lenses taken from [141].

Lam et al. study the effects of 2D geometric trans-
formations on visual memory to provide guidelines for
interface design. They report that polar fish-eye transfor-
mations had less effect on accuracy than their rectangular
counterparts [153]. Further, Appert et al. report on the
limited magnification range of focus+context techniques
[4]. They enhance interaction techniques by switching be-
tween discrete precision levels, decoupling cursor and lens
center, and integrating speed-dependent visual behaviors.
While distortion guarantees visual continuity, it causes
problems of interpretation and focus targeting, partly due
to statically-defined, regular lens shapes. Pindat et al.
counterbalance this by dynamically adapt the lens shape
to the shape of the objects-of-interest [197] (Fig. 2.1).

Brosz et al. introduces the undistort lens [31] to complement existing distortion-based tech-
niques to provides a local and separate presentation of the original geometry without affecting any
distortion-based lenses used for an detail-in-context visualization. It enables interactive access to
the underlying undistorted data within the context of the distorted space, and facilitates a better
understanding of the distortions. The work describes the implementation of a generic back-mapping
mechanism that enables the implementation of undistort lenses for arbitrary distortion based

2.1. Lens-based Focus+Context Visualization 15

techniques, including those presented in the lens literature. More related to overview+detail
visualization and map labeling, Karnik et al. present a method and system to generate printable
versions of a route map (Fig. 2.2) that shows the overview and detail views of the route within a
single, consistent visual frame [141]. The proposed multi-focus visualization technique layout detail
lenses, which encapsulate points-of-interest at a finer geospatial scale, to avoid occlusion with the
route and each other, and to optimally utilize the free space around the route rendering (overview).
A set of layout metrics are defined to evaluate the quality of a lens layout for a given route map
visualization and standard lens layout methods are compared.

Figure 2.3: A volumetric lens cuts into
a model of the Earth to reveal the inner
structure ([261]).

Lenses for 3D Interfaces Cignoni et al. [45] first pub-
lished MagicSphere metaphor that translates the 2D con-
cept described by Bier et al. [16, 15] to interactive 3D
environments. It represent an insight tool for 3D data
visualization which is restricted to a spherical shape. The
analytical approach classifies the geometry upon its re-
lation to the lens shape (inside, outside, on the border).
The rendering is done within two passes, each for every
classification. In each pass different visual appearances
can be applied. The border geometry is rendered in both
of them. The MagicSphere metaphor generates visual
artifacts at the lens border. Later on, Viega et al. [261]
identify two basic categories: flat lenses and volumetric
(3D) lenses (Fig. 2.3). The term volumetric is used to
describe a 3D lens’s volume, and not the nature of the
contained data set (here: volume data vs. polygonal data). In contrast to flat lenses, 3D lenses offer
a true three-dimensional focus region that is independent of a user’s point of view and may therefore
be used with head-tracked views and in collaborative VR systems [24]. The implementation is
based infinite clipping planes for the volume faces. This approach is computationally expensive for
complex lens shapes. Ropinski and Hinrichs [218] present an algorithm for real-time rendering of
volumetric magic lenses that have an arbitrary convex shape, which is fully hardware-accelerated.
It supports the combination of different visualization appearances in one scene. The approach uses
multi-pass rendering and shadow-mapping to separate focus from context data. A sophisticating
overview of 3D magic lenses and magic lights is given in [233]. This work applies this metaphor to
immersive building services.

Figure 2.4: Example of a flexible and tan-
gible magic for augmented reality [217].

3D Lenses for Geovisualization In [219], a brief
overview of focus+context visualization using 3D lenses
for geovisualization (Fig. 2.4) is presented. Based on
[218], an image-based multi-pass algorithm to separate
focus from context regions is presented [216]. The algo-
rithm supports arbitrarily shaped lenses in real-time, but
does not handle overlapping or nested 3D lenses. The
implementation is based on a two-sided depth test that
requires multiple rendering passes [104]. The runtime
performance for rendering a single 3D lens depends on
the depth complexity of the 3D lens shape, which can
vary with respect to the virtual camera [217]. This would
result in a loss of interactivity if multiple lenses would
be rendered. In [TD08c], a volumetric test is presented that can be used for focus and context
separation. Using depth peeling [80], the approach transforms arbitrarily shaped solids (convex
and non-convex) into layered depth images [235] and performs ray-casting in 3D texture space
to determine the parity of a 3D point to test. This test can be applied at various levels (vertex,
primitive, fragment) within the rendering pipeline.

16 Chapter 2. Overview of Focus+Context Visualization

Figure 2.5: Example rendering showing
three cubic color map lenses [24].

In 2009, Tiesel et al. describe composable volumetric
lenses for surface exploration [251] as an interpretational
tools for geological visualization such as high-resolution
elevation datasets (e.g., LTDAR and SRTM). The lens
represents a constrained focus region that provides alter-
native views of datasets to the user while maintaining
the context of surrounding features (Fig. 2.5). The im-
plementation is based on run-time composition of GPU
shader programs [] that implement per-fragment clipping
to lens boundaries and surface shader evaluation. The
approach supports the composition of lenses based on a
user-influenced hierarchical mapping. The technique is
extended by [250, 24] to achieve rendering within a single
pass. However, the approach was not applied to virtual 3D city and landscape models and omit the
usage of different geometries (e.g., level-of-abstraction [93]) for the lens content.

3D Lenses for Augmented Reality with Applications to Geovirtual Environments Looser et al.
[165] present an approach for 3D flexible and tangible 3D magic lenses in augmented reality in
the form of a flexible sheet. It is suitable for focus+context visualization of virtual globes and
3D digital terrain models (Fig. 2.6). The implementation support multiple, non-overlapping lens
surfaces that can be directly manipulated using associated interaction techniques.

Figure 2.6: Example of a flexible and tangible
magic for augmented reality [165].

Similar to this, Kalkofen et al. present an
interactive focus+context visualizations for aug-
mented reality, which implementation is based on
G-Buffer compositing [140]. They demonstrate how
focus+context visualizations are used to affect the
user’s perception of hidden objects by presenting
contextual information in the area of augmentation.
The synthetic data is overlayed on top of the real
world imagery by taking into account the informa-
tion that is about to be occluded. Based on the
Magic Lens metaphor interactive separation of focus from context is supported.

2.2 Distortion-based Focus+Context Visualization
Distortion is an method often used for focus+context visualization. Distortion-based visualization
techniques aim to solve problems of presenting large amounts of data in a confined space. The
data which is not associated with a focus is suppressed and distorted, while the data of interest is
depicted larger and clearer, but may still be distorted, e.g., in poly-focal views.

Object-space Distortion for 2D Maps
Manuscript submitted to IEEE Transactions on Visualization and Computer Graphics

Drawing Road Networks with Focus Regions

Jan-Henrik Haunert and Leon Sering

250 m

Fig. 1. A road map of Boston (left). A user selects a focus region (black circle) and sets a zoom factor Z, here Z = 3. Then, an output
map (right) is generated. The focus region is scaled up by Z while the map still fits into its original frame. This is achieved by scaling
some parts of the road network down that are not in the focus region. Distortions at road segments of the network are minimized.

Abstract—Mobile users of maps typically need detailed information about their surroundings plus some context information about
remote places. In order to avoid that the map partly gets too dense, cartographers have designed mapping functions that enlarge a
user-defined focus region – such functions are sometimes called fish-eye projections. The extra map space occupied by the enlarged
focus region is compensated by distorting other parts of the map. We argue that, in a map showing a network of roads relevant to
the user, distortion should preferably take place in those areas where the network is sparse. Therefore, we do not apply a predefined
mapping function. Instead, we consider the road network as a graph whose edges are the road segments. We compute a new spatial
mapping with a graph-based optimization approach, minimizing the square sum of distortions at edges. Our optimization method is
based on a convex quadratic program (CQP); CQPs can be solved in polynomial time. Important requirements on the output map
are expressed as linear inequalities. In particular, we show how to forbid edge crossings. We have implemented our method in a
prototype tool. For instances of different sizes, our method generated output maps that were far less distorted than those generated
with a predefined fish-eye projection. Future work is needed to automate the selection of roads relevant to the user. Furthermore, we
aim at fast heuristics for application in real-time systems.

Index Terms—cartography, schematic maps, fish-eye view, graph drawing, optimization, quadratic programming.

1 INTRODUCTION

Variable-scale map projections have been frequently proposed for In-
ternet cartography and mobile cartography. They yield a large-scale
representation of a focus region (often the user’s surrounding) and,
thereby, allow many relevant details to be displayed. To avoid that
the user looses context, also more remote regions are displayed on
the same map. For two reasons, however, such regions are shown at
small scale. First, by scaling remote regions down they become de-
emphasized. Second, as map space is limited, not all information can
be shown at large scale.

Using different scales on the same map implies distortions – if a
user wants to measure distances, such a distorted map is useless. Many

• The authors are with the Chair for Computer Science I, University of
Würzburg, Am Hubland, D-97074 Würzburg, Germany.
E-mail: jan.haunert@uni-wuerzburg.de, leon.sering@gmail.com.

tasks, however, do not require the exact knowledge of distances. For
example, in order to visualize driving instructions to a user, sketch-
like maps with highly distorted distances, so-called route maps, are
useful [1]. Other examples for maps with highly distorted distances
aremetro maps [24] and destination maps [17], which visualize how to
reach a certain destination. More generally, we use the term schematic
map for any map whose distortions result from some design principle
applied and exceed those distortions commonly found in geographic
maps – here distortions are mainly due to the projection of a sphere
(the globe) onto the map plane and due to cartographic displacement.

Variable-scale maps are often designed with a function that maps
each point of the plane (an object’s position in a geographic map) to a
second point (the object’s position in the variable-scale map). Usually,
some type of fish-eye view is chosen. It is difficult to decide, however,
whether a predefined mapping function is appropriate for a particular
task and input. The existing functions ensure some basic properties
of the output map, for example, they keep the focus region undis-
torted. They do not, however, optimize a well-defined function that

1

Figure 2.7: Scaled focus region (left) of the
original map (right) with minimized distortions
[114].

Haunert and Sering present an approach for drawing
2D road networks with focus regions [114]. To avoid
that the map gets cluttered, it applies distortion in
areas where the road network is sparse (Fig. 2.7).
The road network is represented as a graph whose
edges are the road segments. A spatial mapping
is computed using a graph-based optimization ap-
proach that minimizes the square sum of distortions
at edges. The optimization method is based on a
convex quadratic program, which can be solved in
polynomial time. Important requirements on the
output map (e.g., no edge crossings) are expressed
as linear inequalities. The approach is not real-time capable and the selection of distorted road is

2.2. Distortion-based Focus+Context Visualization 17

not adaptive to the users context. Further, Wang and Ming-Te present an real-time distortion-based
approach for the visualization of complex 2D metro maps on small displaying areas as provided
by mobile devices [265]. The important stations along a given travel route are enlarged while
other stations are rendered smaller and closer to fit the complete map into a screen. Various map
characteristics such as octilinear transportation lines and regular station distances are formulated
as energy terms. Least squares solving [175] is used to compute the optimal layout. In addition,
stations are labeled according to human preferences, while occlusions, and consistencies of label
positions are computed using the graph cuts method [30].

Figure 2.8: Complex
logarithmic view of
the Metropolitan Mu-
seum in New York, in
context of Earth [35].

In 2008, Böttger et al. augment schematic maps of transportation systems
by superimposing them on street-level maps that are fitted using image-
warping techniques [26] to obtain an easily readable transportation network
map, which includes all typical city map features such as rivers, streets,
and parks without compromising on the schematization. The technique for
fitting a street map to a schematic map is based on moving least squares
[224] in combination with an overlap control technique. For the interactive
exploration, zooming is coupled with warping and control over the level-of-
detail. In the same year, Böttger et al. applied nonlinear magnification
techniques for the detail-in-context visualization of highly complex satellite
and aerial imagery [35] based on the complex logarithm as a transformation
for the visualization and navigation [25]. The resulting depictions show
details and context with different scales in one seamless image while avoiding
local distortions and combine perspective views and classical map projections
(Fig. 2.8). The real-time implementation is based graphics hardware and an
extended clipmapping technique [245]. However, the proposed technique is
not applied to 3D geometry and leverage its full potential only vertical views
of a 2D geovirtual environment.

To facilitate the perception of 3D models, which are distorted or deformed
using viewport lenses, Wang et al. presents an approach that enables a user
to magnify an area-of-interest while deforming the rest of the scene without
perceivable distortion [266]. The method is based on an energy optimization
model that shrunk the context area in order to use as little of the screen space
as possible to keep the entire model displayed on screen. It rescales different regions of polyhedral
model non-homogeneously, which prevents the global bounding space from being expanded. For a
given 3D model, a uniform grid space is constructed in a way that the model vertices are embedded
in the respective grid cubes. While enlarging the cubes covering the user-specified focal region, the
system automatically reduces the other cubes to keep the entire model within the global bounding
space. To minimize resulting distortions, a set of energy terms is used to form an optimization
system and solve for the grid vertex positions of the deformed space in a least-squares sense. The
deformed model is reconstructed by computing each model vertex as a linear combination of its
respective set of cube vertices in the deformed grid space.

Figure 2.9: Example of focus+context
route zooming (from [202]).

Similar to this approach, Zhao et al. prenset a confor-
mal magnifier, an interactive focus+context visualization
technique that magnifies a region- of-interest using con-
formal mapping [283]. The work supports magnifiers of
arbitrary shape to magnified the ROI local shape preserva-
tion (angle distortion minimization) while globally deform-
ing the context region without cropping and deforming
the transition area between the focus and context regions
smooth and continuously. For virtual 3D city models,
Huamin et al. present a focus+context zooming technique
that enables users to zoom into a route and its associated
landmarks in a 3D urban environment (Fig. 2.9), which
is depicted from a static 45-degree bird’s-eye view [202]. A

18 Chapter 2. Overview of Focus+Context Visualization

grid-based zooming technique is then used to enlarge the landmarks and to minimize distortions to
the context buildings. Further, an occlusion-free route visualization scheme adaptively scales the
buildings occluding the route to make the route always visible to users.

Non-Linear Image-based Deformations and Multi-perspective Views
Computer graphics knows three approaches to achieve a panorama effect: multi-perspective images,
deformations, and reflections on non-planar surfaces [258]. Multi-perspective images either use
non-linear, non-uniform projections or combine multiple images from different viewpoints to create
the final rendering. Compared to standard camera models, "multi-perspective camera models are
defined less precisely. In practice [... they] are described by constructions" [278]. Deformations
distort the landscape before rendering the final image using a standard projection, which implies
recomputation of all geometric data for every image. Finally, reflections on non-planar surfaces use
standard projections showing an intermediate object that in turn reflects the landscape.

This section gives an overview of research in the fields of single center-of-projection projections
and distortions. There is a vast amount of literature covering foundations and applications of
non-planar as well as non-linear projections; in [32] a sophisticated overview is presented. To achieve
distortions or special projections of the 3D scene, the pinhole camera is extended in several ways.
In [11] a procedure is proposed that is based on the computation of new absolute coordinates to be
transformed through an adaptive projection matrix. A flexible adaptive projection framework is
described by Brosz et al. [32] that enables the modeling of linear, non-linear, and hand-tailored
artistic projections. It uses ray-casting and scan line rendering algorithm, whereby polygonal
coordinates are changed by a vertex shader. The generality of that framework makes efficient
projection difficulty, especially for large scale scenes.

Distortions as sub-category image warping are discussed in [107] and [97]. A warping function
is applied to each pixel to determine its new color value. An image stitching approach for panorama
image generation can be found in [243]. In [256] a method is demonstrated to generate environment
maps from fisheye photographs. Besides the issues of nonlinear perspective deformation described
in [275, 109, 276, 242]. These approaches use a regular mesh textured with a 2D texture that
contains the rendered scene or an image. The displacement of the mesh vertices together with the
texture mapping process generates the particular distortion effect. These approaches are limited
regarding the FOV which can be achieved. Carpendale researched the usage of image deformation
in the context of information visualization [42]. The application of fisheye views in information
visualization is discussed in [204]. Applications for view distortions in ray-tracing software are
described in [1, 50].

Panoramic Imaging and Non-linear Perspectives Panoramic maps were introduced by H.C.
Berann [12]. He combined handcrafted geographic with terrestrial depictions and different projection
techniques to generate a new kind of map, which assists the user in his orientation task. This
work was time-consuming and tedious. Premoze introduced a framework for the computer aided
generation of panoramic maps [201]. It offers tools to assist the map-maker in the work flow of
the hand-tailored maps. A semi-automatic approach to generate panoramic maps, which relies on
global deformations, is presented in [244]. Falk et al. introduced a semi-automatic technique based
on a force field that is extracted from the terrain surface [82]. Degener and Klein concentrate on
parameters like occlusion and feature visibility in their automatic generation of panoramic maps [54].
All approaches combine non-linear perspectives in one final image, but rely on different techniques.
Non-linear perspectives can be achieved with different techniques: (1) using non-standard, non-
linear projection to produce a non-linear perspective image, or combine several images taken from
different perspectives ([2, 236]); (2) reflection on non planar surfaces and (3) local or global space
deformation [258]. The combination of different images to one final image as used in [2] and [236]
can also be expressed by a space-deformation as introduced in [7].

The Single Camera Flexible Projection Framework of [32] is capable of combining linear,
non-linear and handmade projections in real-time. The projections are described by a deformed
viewing volume. Similar to free-form deformation (FFD [229]), the view frustum serves as lattice.

2.2. Distortion-based Focus+Context Visualization 19

Objects or viewing rays are deformed according to the deformation of the lattice. For the occlusion
free visualization of driving routes Takahashi et al. rely on global space deformation [244].

On the one hand the mentioned techniques offer a broad and flexible definition of the projections,
which enables the user to control nearly every facet of the final perspective. On the other hand a
large number of non-intuitive parameters have to be controlled. Brosz et al. abstracts from these
parameter by using a lattice [32].

Figure 2.10: Example of a multi-
perspective visualization taken from [182].

Global Deformations Previous work has shown that
global deformation applied to such environments can be
used to assist way finding and navigation by making ef-
fective use of the available image space [182, 169] and by
reducing occlusions [202, 55]. Grabler et al. [100] demon-
strate that the usage of multi-perspective views in combi-
nation with cartographic generalization techniques such
as simplification and deformation is suitable to convey im-
portant information with in 3D tourist maps. Techniques
implementing multi-perspective views can be classified as
multi-pass or single-pass. Multi-pass techniques create
several intermediate images that are blended in a final
compositing step. Each intermediate image requires sepa-
rate data processing, which is rather expensive when it comes to complex 3D geovirtual environments.
Specifically, out-of-core algorithms can incur additional penalties because rendering of intermediate
images often significantly reduces caching efficiency. Additionally, image quality suffers due to
resampling in the compositing step. Single-pass techniques do not exhibit these disadvantages,
yet they require customization of the rendering process available only in software rendering (e.g.,
ray tracing) until recently. With the advent of a programmable rendering pipeline on GPUs the
implementation of interactive single-pass multi-perspective view techniques becomes feasible.

The work of Lorenz et al. [169] uses global deformation to generate non-linear perspectives. The
geometry is mapped on two different planes, which are connected by a Bézier surface. The planes
may vary in tilt, allowing for a combination of two different perspectives. Similar to panorama maps,
a mixture of cartographic maps and aerial images is used. The different stylization are seamlessly
blended in the transition between the planes. Möser et al. [182] extend this idea by using a more
flexible Hermite curve to control the deformation (Fig. 2.10). They rely on a combination of aerial
images and topological maps to apply a kind of generalization in the more distant parts of the
scene.

Figure 2.11: Example of a Progressive per-
spective with curved horizon (from [130]).

In the area of cartography, Jenny and Patterson in-
troducing the plan oblique relief [13, 129]. This digital
technique renders 3D terrain on otherwise planimetric
(conventional flat) maps. Plan oblique relief presents to-
pography on small and medium scale maps. Here, moun-
tains are shown in a side-view, in partial profile. It uses a
conventional orthometric ground plane, that presents the
mapped area without distortion. This results in major
map features, such as country borders or river networks,
to appear as in conventional 2D maps âĂŤ while eleva-
tions are seen laterally in 3D. This work was extended
further by Jenny et al. By enabling the interactive design
of 3D maps with progressive projections [130], that are
traditionally used by panoramic landscape painters. They describe advantages of this specific
projection and review implementation approaches. The interactive bending of a terrain model into
a progressive view, by using global deformations with options to add a curved horizon (Fig. 2.11),
to vertically exaggerate the terrain, and to create a 360◦ strip panorama.

20 Chapter 2. Overview of Focus+Context Visualization

Rademacher introduce a view-dependent variations of multi-perspective views [203]. He defines
key-deformation with associated key viewing points. Depending on the current viewpoint the
key-deformations are interpolated. A similar approach is used by [40] an for interactive stylized
camera control. Another view-dependent variation of deformations is discussed in [178]. Here, the
global deformation is modified by a view or distant-dependent control function that can depend on
a virtual camera. Veas et al. use multi-perspective views to improve site understanding for outdoor
augmented reality applications by extending overview, particularly over large areas [260]. Further,
Schwarz et al. apply this principle to vertically curved displays [227]. A visualization concept called
perspective+detail extends the conventional overview+detail pattern by combining perspective
viewing with a text-based area containing partial details. They reveal that using a vertically curved
display mitigates known problems and assists users by supporting the user’s orientation within the
information space.

2.3 Highlighting Techniques for Points-of-Interests
With the increasing amounts of geographic data visualized on a wide range of display sizes for
variable applications demands the avoidance of too complex, too detailed and too dense visualizations
[206]. Here, effective and efficient highlighting can enable users to quickly locate and easily decode
relevant geographic information. In [190] the highlighting of scene elements, such as local and global
landmarks, is considered as navigation aid that "clearly helps improve orientation in the virtual
model of a real city". In [136] it is argued that, despite building aggregation and simplification,
appropriate highlighting can compensate the dead value areas in virtual 3D city models. Further,
Bogdahn and Coors state that "highlighting of complete buildings using false colors might be a first
step. However, in a dense urban environment and for pedestrians it could be necessary to provide
more sophisticated visual hints, like highlighting the correct entrance to a big building or a building
complex" [23]. Robinson documented the application of highlighting techniques for information
visualization in 2D GeoVE [211].

Applications to Landmark Visualization The management of landmark objects in maps and map-
like visualizations is an ongoing major challenge for effectively providing location-based services
[44, 238]. Generally, many accentuation techniques have been developed like symbols, annotations,
and hybrid perspectives [156], which are difficult to transfer to 3D geovirtual environments. Vinson
presented design guidelines for design and placement of landmarks in virtual environments to ease
navigation [262]. They comprise among others that (1) landmarks should be visible at all times,
especially at all navigable scales; (2) they should be distinguishable from their environment, e.g.,
other buildings; and (3) a concrete depiction of objects should be preferred over abstract ones for
landmarks. Elias et al. analyzed different graphical representations of landmark buildings ranging
from photo-realistic to more abstract icons to plain text [75]. They introduced a design matrix to
help choosing the appropriate representation for different categories of buildings (e.g., commercial
buildings, visually outstanding buildings). Lee et al. suggested depicting landmark buildings by
placing photographs in the scene, which have been took from a similar perspective [156]. Textual
and 2D image landmark representations lack the depth and context needed for humans to reliably
recognize 3D landmarks. Worldlets [79] describe a 3D thumbnail landmark affordance. It represents
3D fragment of a virtual world and enables first-person, multi-viewpoint representations of potential
destinations.

On-Screen Highlighting Techniques
This section focuses on highlighting of objects that are located on screen. In contrast to approaches
for off-screen location visualization, on-screen highlighting techniques should enable the estimation
of the 3D position, as well as the dimensions of an object. There are a number of different approaches
for 3D object highlighting and selection preview, which are mostly inferred from 2D visualization. In
early stages of 2D computer graphics, different visual representations of objects are used, i.e., sprites
or billboards [3] with different hues. Such an approach is not appropriate for current large-scale
data set common in GeoVE.

2.3. Highlighting Techniques for Points-of-Interests 21

Existing on-screen highlighting approaches that be mainly distinguishes between three types: style-
variance, outlining, and glyph-based techniques. Style-variance techniques are based on modifying
the appearance of an object that results in an obvious distinction from the rest of the scene. The
highlighting hint depends directly on the object and is therefore referred to as direct hint. Outlining
techniques achieve this effect by enhancing the outline or silhouette of an object. This setting is
denoted as attached hint. Finally, glyph-based techniques rely on icons or glyphs that are attached
to the object to be highlighted. These kind of techniques deliver an indirect hint to the user.

Probably the most widespread highlighting techniques are instances of style variance techniques.
The highlighting effect is achieved by modifying the appearance in which an object or scene is usually
depicted. Such appearance modification can be arbitrarily complex, or as simple as overdrawing the
same object geometry with a dominant color that can easily be distinguished from all other colors
in the depicted scene. Modifications can be applied to an object or area that should be highlighted
(focus-based) or to the remaining scene (context-based).

Focus-based Style Variance In 3D virtual environments, focus-based style variance techniques are
suitable to be applied to objects that are not occluded. Besides color overlays, the appearance can
be modified by using different rendering styles, such as wire frame rendering known from standard
3D modeling tools. Another classic rendering approach, which was often used in 2D sprite-based
games, enfolds different representations of the same sprite/billboard [3]. Due to the potentially
massive amount of additional data, the usage of different geometric or image-based representations
of each single object is hardly manageable in large-scale 3D GeoVE. Therefore, the style variance is
created dynamically, e.g., by blending the standard appearance with a highlighting color. More
advanced rendering techniques can be used, such as real-time non-photorealistic rendering (NPR)
effects [49] that can be controlled manually by an artist or automatically via style transfer-functions
[34].

Figure 2.12: Example of a 2.5D focus+context map
visualization taken from [265].

Context-based Style Variance Techniques of
this category convey the appearance of the ob-
jects to highlight, while modifying the surround-
ing scene context in a way that the objects-of-
interests are emphasized, e.g., using vignetting
or semantic depth-of-field (SDOF) [149, 151].

Many applications of geovirtual environ-
ments involve map visualization but almost all
of them display the map in the same style, which
often cause information overloading [STKD12].
For 2.5D geovirtual environments, Wang et al.
present a user-centered 2.5D focus+context map
visualization technique (Fig. 2.12) that enable
the customization of a map according to user
requirements [265]. The system automatically
constructs a hierarchical representation of a virtual city model according to the user’s focus point
by using a R-trees data structure [108]. The map is presented in multiple rendering styles: focus
information is highlighted and less important information is deemphasized. They approach also
uses an additional "landmark margin" containing thumbnails of photographs for nearby points-of-
interests, which illustrates the context information and enables users to maintain a macro view of
the city. With respect to 2D and 3D maps based on geovirtual environments, Zipf et al. present the
concept of focus maps [285, 111]. Focus Maps support the user in reading a map by emphasizing
regions that are relevant to the user, whereas regions, which are not relevant, are de-emphasized
to avoid distraction of the user’s attention. Emphasis or highlighting can be achieved by different
cartographic scopes of design, e.g. different coloring or different detail in representation of important
regions. Cole et al. generalized this idea and take virtual 3D city models into account [49]. They
present an advanced rendering technique that modifies the quality and intensity of edges, color
saturation, and contrast.

22 Chapter 2. Overview of Focus+Context Visualization

Finally, semantic depth-of-field (SDOF) rendering utilizes a well-known method from photography
and cinematography (depth-of-field effect) for information visualization, which is to blur different
parts of the depicted scene in dependence of their relevance. Independent of their spatial locations,
objects of interest are depicted sharply in SDOF, whereas the context of the visualization is blurred
[149, 150]. Evaluations of this technique prove that the SDOF concept is pre-attentive and that
it supports directly the perception of sharp target items when the context is blurred. SDOF can
significantly support users in focusing on relevant data and guide their attention [89].

Outline-based and Glyph-based Highlighting Techniques Depending on the application, the
change of style is not always appropriate or possible. Especially in 3D GeoVE, it can be desirable to
convey the appearance of the object and the surrounding scene, such as its facade information which
could be essential for orientation and navigation. In such use-cases, outlining techniques can be
applied that enhance or modify the contours or silhouettes of an object only. Such enhanced contour
can possess different line styles and sizes. For real-time rendering purposes, these silhouettes can
be rendered using image-based [186] or the more recent geometry-based [117] approaches. Further,
rendering techniques for image-based glow [191] are often applied for outlining objects. The attached
hint is one of the major advantage of outline techniques: an increased visibility can be gained
by increasing the thicknesses of the outline. But increased thickness of the hint also introduces
occlusion of the surrounding object area. This can be balanced partially by using a drop-off function,
which results in smaller occlusion than occurred for the alternative glyph-based techniques. The
application of glow can be considered as a generalized variant of the outlining technique.

Another technique performs highlighting by using additional glyphs or icons, which are placed
on top or aside an object, depending on the perspective. The highlighting effect is achieved by the
difference between presence or absence of a glyph. This technique is frequently used in strategic
games or games employing a third person perspective. Here, usually the orientation of the virtual
camera is fixed or limited. One can distinguish between static and dynamic glyphs, e.g., visugrams
introduced in [87]. The latter one includes additional information about the status of an object.

Off-Screen Highlighting Techniques
Off-Screen highlighting techniques are approaches to emaphasize objects located outside the viewport,
and hence not visible to the user. Gustafson et al. [105] as well as Burigat et al. [39] classify
off-screen awareness approaches into Overview+Detail and Focus+Context visualization techniques.
One can distinguish between three classes of off-screen highlighting techniques: (1) distortion-based
techniques [134], (2) partially-out-of-frame techniques [9], and (3) glyph-based techniques.

The concept of partially-out-of-the-frame visualization exploits the human visual system for
proxy recognition and interpretation. All approaches described above, rely on an explanation or
legend for the user to interpret the abstract shape. These explanations require either screen space
or have to be memorized by the user. To overcome these problems, Baudisch and Rosenholtz
introduced the 2D Halo visualization [9]. Distance and direction are implicitly conveyed by circles
around POIs, that reach into the viewport. These partly visible circles are automatically completed
through amodal completion conducted by the human visual system. The user gets an intuitive
imagination of the POI’s distance and direction. This partially-out-of-the-frame approach is
borrowed from cinematography [177]. The benefit is an intuitive and efficient visualization of
distance and direction.

Nevertheless, for a high number of POIs, the Halo visualization suffers from cluttering induced
due to overlapping arcs. To reduce cluttering Gustafson et al. introduced Wedge visualization [105].
A Wedge is an acute isosceles triangle in which the tip coincides with the off-screen POI and the
two other corners are on-screen. Consequently, the triangle legs are partly visible and the user
is able to determine distance and direction of the associated POI. The overlapping is reduced by
the distance-independent and direction-independent adjustment of the Wedge’s opening angle and
its rotation around the POI. However, Wedges suffer from overlapping and cluttering, too, if the
number of POIs is further increased. Besides the off-screen awareness, visualization of POIs has
to deal with the problem of occluded on-screen POIs. Elmqvist et al. identify several occlusion

2.3. Highlighting Techniques for Points-of-Interests 23

management patterns for reoccurring occlusion problems based on their taxonomy of occlusion
management techniques [78]. Glyph-based techniques use abstract shapes that acts as proxy to
visualize off-screen points-of-interest. In virtual environments these proxies indicate traditionally
direction and distance of the associated POI. For example, popular visualization techniques are
Arrows [39], City Light [281], and EdgeRadar [106].

Chapter 3

Focus+Context Visualization
of 3D Geovirtual Environments

This chapter introduces the foundations of the interactive rendering techniques for focus+context
visualization of 3D geovirtual environments. Section 3.1 presents an overview and classification
of these techniques. Section 3.2 states preliminaries and assumptions made for the design of the
rendering techniques. Section 3.3 presents an overview and comparison of the applied focus types
while Section 3.4 describes their computer graphical representations. Section 3.5 describes the
usage of different visual representations that are used to implement focus+context visualization
of virtual 3D city and landscape models. Section 3.6 explains methods for separating focus from
context. Section 3.7 closes the chapter by presenting a comparison of the rendering techniques
based on the presented classifications.

3.1 Categorization of Rendering Techniques
Figure 3.1 shows an overview of the rendering techniques for focus+context visualization of 3D
geovirtual environments presented in this thesis. It provides a classification into the categories of
focus+context visualization as described by [46] and [160]:

Distortion-based Techniques With respect to the image synthesis, techniques for distortion-based
or distortion-oriented focus+context visualization [160] can be classified into object-space
and screen-space approaches according to respective reference coordinate system (Section
3.3). The object-space approach distorts geometry prior to rasterization, e.g., by using global
deformations [7] applied for the implementation of multi-perspective views in Chapter 7. The
screen-space approach uses image-warping techniques [42, 275] that are generalized using
projections tiles presented in Chapter 6.

Figure 3.1: Overview of interactive focus+context visualization techniques presented in this thesis.

26 Chapter 3. Focus+Context Visualization of 3D Geovirtual Environments

Figure 3.2: Overview of the visualization pipeline after [267]. It describes the step-wise process of creating
visual representations of input data. The items marked in yellow are affected by the rendering techniques
for focus+context visualization in 3D geovirtual environments.

Lens-based Techniques Techniques that use a lens metaphor can be distinguished with respect to
the dimensionality of lens contents. For example, 2D surfaces lenses are suitable for applying
the lens metaphor to surface related data, such as aerial images or topographic maps applied
to a digital surface or terrain model. They can be implemented using the rendering technique
described in Chapter 5. A more general approach for applying the lens-based metaphor in 3D
GeoVEs are 3D generalization lenses introduced in Chapter 4. They enable the combination
of different geometric representations of a virtual 3D city model.

Highlighting Techniques Not included the review of focus+context visualization techniques [46,
160] are highlighting techniques. However, Kosara et al. [149] argue for using highlighting
techniques to guide a user’s attention to important objects by modifying their context or
focus areas respectively. With respect to this, one can distinguish between on-screen and
off-screen highlighting techniques to support both, the highlighting of important object that
are inside (Section 8.2) and outside the view frustum (Section 8.3).

Each of the presented rendering techniques comprises a specific rendering pipeline which is embedded
in the general visualization pipeline that is described below.

Visualization Pipeline Figure 3.2 shows an overview of the visualization pipeline [267]. It comprises
a series of chained data transformations and mappings that can be controlled by the user. The
pipeline converts raw data to suitable visual representations for human perception.

In the data acquisition stage, the data is analyzed, filtered, and transformed into relational
descriptions and representations (including meta data). In the data analysis stage, raw input data
is prepared for visualization (e.g., by applying smoothing filter, interpolating missing values, or
correcting erroneous measurements). This stage is usually computer-centered with little or no
user interaction. Subsequently, the prepared data is filtered in a usually user-centered filtering
stage, by selecting data portions to be visualized. After this, the filtered data is mapped to
geometric primitives (e.g., points, lines, polygons) and their attributes (e.g., color, position, size).
This mapping stage represents a critical step for achieving expressiveness and effectiveness of
visualization and is a starting point for visualization design [174]. Finally in the rendering stage,
geometric data is transformed to image data. The rendering techniques presented in thesis mostly
affect the filtering, mapping and rendering stage:

Filtering Stage In this stage, the prepared geodata is filtered with respect to important (focus)
objects or georeferenced regions-of-interest or volumes-of-interest. This includes the selection
and identification of focus data, i.e., the portions of the data that should appear at high detail
to convey its high information density. It includes the identification of landmarks (Chapter
8) and the gathering of information required for the computation of cell-based generalized
variants of virtual 3D city and landscape models used in Chapter 4 and 7.

Mapping Stage In this stage, data required for generating visual variants (Section 3.5) for focus
and context regions are computed. This comprises cell-based generation of virtual 3D city
and landscape models [GTD12], as well as abstracted facade textures [STKD12] or geometry
required for edge-enhancement [SHTD12]. Also the preprocessing of focus representations

3.2. Preliminaries and Classification Criteria 27

Figure 3.3: Classification criteria of the rendering techniques for focus+context visualization of 3D
geovirtual environments.

(Section 3.4) for the respective focus types (Section 3.3) is partially performed in at this stage
(e.g., for 3D generalization lenses).

Rendering Stage During runtime, the separation methods (Section 3.6) for the respective focus
representations (Section 3.4) are applied. The rendering stage also performs transformations
of focus representations according to user feedback (Section 8.2).

3.2 Preliminaries and Classification Criteria
The rendering techniques presented in this thesis are based on an number of assumptions w.r.t. the
geometric input data and the real-time rendering using GPUs.

Preliminaries The implementations of presented techniques assume a 3D scene represented by
polygonal geometry. More specific, the main rendering primitives are triangles, or related polyg-
onal representations such as triangle strips, or indexed variants. The presented techniques work
independent of using in-core (i.e., the complete 3D representation fits into main and video memory)
or out-of-core rendering techniques (i.e., the 3D representation does not fit into main and video
memory and strategies for dynamic load of geometry are required [125]). Further, the programmable
graphics hardware used for real-time rendering is based on the unified shader model. It uses a
consistent instruction set across all shader types. Thus, all shader types have (almost) the same
capabilities and a common subset of instructions, i.e., they can read from buffers and can perform
the same set of arithmetic instructions.

Furthermore, it is assumed that every geometric object can be locally approximated by a plane,
denoted as reference plane. Every object or feature of a 3D GeoVE is a discrete phenomenon
represented by one or more geometric objects that can be identified at runtime using unique
identifier. If such instance information is missing for geometry or features, they will be assigned
during preprocessing in the mapping stage of the visualization pipeline. Furthermore, the techniques
do not use optimizations that would limit or restrict the user during navigation within the 3D
geovirtual environment: this includes frequent changes to the orientation of a virtual camera and
the application of different projections.

Classification of Rendering Techniques The interactive rendering techniques for focus+context
visualization can be classified using a number of different criteria shown in Fig. 3.3. On a conceptual
level, the techniques support different focus types and visual variants how focus and context can be
visually discriminated or how the data of a focus or context region is presented:

Focus Types described in Section 3.3 define the dimensionality and thus the extend of focus
regions. In this thesis, focus types are distinguished between point-of-interests (POI) and
object-of-interest (OOI) which refer to feature instances of the 3D GeoVE. Further, 2D
regions-of-interest (ROI) and 3D volume-of-interests (VOI) are distinguished. The focus type

28 Chapter 3. Focus+Context Visualization of 3D Geovirtual Environments

effects technical criteria such separation methods, focus presentation, as well as the rendering
paradigm and rendering passes required.

Visual Variants described in Section 3.5 can be categorized into style variances and geometry
variances of the 3D input data. The type of visual variant also determines the separation
methods, as well as the rendering paradigm and the required rendering passes.

In addition to the conceptual criteria described above, the implementations of the presented
rendering techniques can be categorized with respect to the following technical criteria:

Focus Representations introduced in Section 3.4 describe how the respective focus types are
represented on GPUs using data structures. They are categorized into functional, geometric,
and image-based representations.

Separation Methods described in Section 3.6 can be classified into discrete and continuous methods.
Continuous methods enable smooth transitions between focus and context, w.r.t. style and
geometric scale by preserving the structural coherence of a 3D scene. Discrete methods
introduce hard transitions and do not necessarily preserve structural coherence.

Separation Level also explained in Section 3.6 describes at which programmable stage of the
graphics pipe a separation method is applied in order to discriminate between focus and
context. The separation level can be either per-object on client-side (CPU) or per-vertex,
per-primitive, and per-fragment on server-side (GPU).

Rendering Paradigm describes how a separation method is applied and how the resulting visual
artifacts are combined into a final image. This thesis distinguishes between using a forward
rendering pipeline and deferred rendering pipeline (compare to Section 1.3).

Rendering Passes depend on the visual variant, the separation level, and the rendering paradigm
used. Basically, rendering techniques can be categorized into single-pass or multi-pass
rendering techniques. Here, a rendering pass denotes the number of scene rendering pass
(compare to Section 1.3).

The remainder of this chapter describes the specification of the major categories and finally present
a comparison of the presented rendering techniques in Section 3.7.

3.3 Focus Types for 3D Geovirtual Environments
For 3D focus+context visualization it is important to model and represent the area or regions that
define the extend of a focus or the context. This section presents different focus types required for the
focus+context visualization of 3D GeoVE. A focus type can possess different focus representations,
which in turn determines the separation method and level. Focus types condition the algorithms
that use these representations to enable the separation between focus and context regions during
real-time rendering (Section 3.6).

Points-of-Interest and Object-of-Interest Point-of-interest (POI) is a term, typically used to
refer to an interesting point on a map – for example city centers or petrol stations. For 3D GeoVE,
a POI can be located anywhere in a 3D scene but often near the surface (on digital terrain model or
reference plane). Given a 3D view frustum [85], a POI can be visible inside the frustum or occluded.
Further, it can be outside the view-frustum or both (partially-out-of-frame) [9]. Chapter 8 presents
strategies and rendering techniques to highlight POI inside the frustum (Section 8.2) as well as
outside (Section 8.3), which are especially for 3D GeoVE.

In general, POIs have no geometric extend and are represented by a point in 3D. Therefore,
proxy geometry is used for their visualization. Further, a point-of-interest can be a specific object
or feature within a 3D GeoVE. In this case a point-of-interest is denoted as object-of-interest (OOI).
The geometric extend of an OOI can be considered as the region-of-interest for this object. This
assumption is necessary to apply appearance-based highlighting techniques presented in Section 8.2.

3.4. Representation of Focus Types 29

(a) World-space reference system (b) Camera-space reference system (c) Screen-space reference system

Figure 3.4: Comparison of reference coordinate systems for focus types by the example of a region-of-interest.
The depictions shows the center of projection and the view frustum (gray) of a virtual camera.

Region-of-Interest In general, a region-of-interest (ROI), can be denoted as a selected subset of
samples within a dataset identified for a particular purpose. In this thesis, a ROI describes a 2D
area of convex or non-convex shape that can encode the degree-of-interest for every point located
in that area. 2D region-of-interests require a reference plane described in a reference coordinate
system. Usually, these are screen-space coordinate systems for screen-aligned lenses or world-space
coordinate systems when using a reference plane to approximate a 3D geovirtual environment.

Regions-of-interest are used for the rendering of 2D surface lenses and the parametrization
of 3D iso-contours (Section 5.4), as well 2D viewport lenses (Section 6.8), or for image-based
highlighting (Section 8.2). Region-of-interest are often used for focus+context visualization of
3D GeoVE, because a number of techniques do not really require a 3D representation of a focus.
However, there are use-cases that require an additional dimension to define volumetric areas of
interest [216].

Volume-of-Interest Volumes-of-Interest (VOI) are a complex focus type to represent and to
handle but enables general applications for 3D geovirtual environments. All point enclosed by a
volume are considered as points within the focus. The shape complexity of VOIs vary from simple,
convex shapes (e.g., spheres or boxes) to non-convex one, which are able to describe complex
structures such as regions around roads [TGBD08].

Reference Coordinate Systems In contrast to 2D GeoVE, the focus types describe above are
applied within a 3D GeoVE with respect to a particular reference coordinate system [3] that
determines the position and orientation of a focus type with respect to the virtual 3D environment,
the orietation of the virtual camera, and the 2D canvas or projections plane. The rendering
techniques in this thesis uses three different reference systems (Fig. 3.4).

The world-space reference system (WSRS) shown in Figure 3.4(a) is used to anchor a focus
type with a fixed position and orientation in the 3D virtual environment that does not change
with respect to the moving virtual camera. Further, the camera-space reference system (CSRS)
shown in Figure 3.4(b) defines the position and orientation of the focus representation with respect
to the configuration of the virtual camera. This means, the position, size, and orientation of a
focus representation are adapted and transformed into the camera coordinate system prior to the
application of a separation method. Furthermore, the screen-space reference system (SSRS) is an
often used reference system: the position of the focus is relative to the screen (Fig. 3.4(c)).

3.4 Representation of Focus Types
After introducing different focus types for focus+context visualization of 3D GeoVE, this section
describes different data types and data structures for their computer graphical representation
on graphics hardware. These are categorized into function-based, geometry-based, and image-
based representations. In general, there are two possibilities for the creation of the focus type
representations:

Manual Definition The user explicitly models or define the shape of the focus. This can be done
using tools, such as 3D modeling or 2D imaging software, or using interaction techniques
integrated in the visualization framework. For example, a user draws the shape of the focus

30 Chapter 3. Focus+Context Visualization of 3D Geovirtual Environments

Figure 3.5: Overview and classification of geometry-based representations of ROI and VOI focus types
suitable for discrete separation methods only.

on 2D viewport, 3D terrain model, or by selecting objects-of-interest directly. Examples of
explicitly created focus representations can be found in Chapter 5, 6 and 7.

Automatic Definition Focus representations can be automatically derived using importance-driven
algorithms [263] based on the configuration of the virtual camera, the spatial or user context,
as well as feature geometry of a 3D geovirtual environment. Examples for this representations
can be found in Chapter 4 and 8.

The remainder of this section briefly describes the three variants for focus representations w.r.t.
the criteria above.

Function-based Focus Representations This category of focus representation describes POI, OOI,
ROI, and VOI using a function that can be evaluated at the vertex, primitive, or fragment level of
the programmable graphics pipeline by using shader programs. Function-based focus representations
feature a low space complexity and a high numerical precision, since modern GPU offer 32bit IEEE
floating point hardware. For the evaluation during the execution of a respective shader program,
the required parameters are stored using constant buffers. Function-based focus representations
can be distinguished into degree-of-interest and implicit functions, which are briefly described in
the following.

Degree-of-interest (DOI) functions are used to discriminate data in focus from context infor-
mation [88] by assigning a 1D DOI-value out of the unit interval to each of the data items (e.g., 1
represents in-focus and 0 is used for context information). Furnas presents a decomposition of a
DOI function for fish-eye views: doi(X|Y) = API(X)−D(X,Y), where the user’s degree-of-interest
in a point, feature, or object X is the distance D(x, y) between X and the current focus point
Y . Here, API(X) is the global a priori importance of X. The distance may correspond to the
Euclidean distance or to a semantic distance [212]. With respect to 3D geovirtual environments
the focus Y can represent a feature (e.g., a building and point-of-interest) while X represents the
virtual 3D camera. The on-screen highlighting approach of adaptive landmark scaling (Section 8.2)
and the off-screen highlighting approaches (Section 8.3) use function-based focus representations.

Implicit functions [228] are another alternative to describe or encode focus types. An implicit
function f(P) = 0 for a point P ∈ Rn as a form of functional representation is computational
effective to evaluate, but hard to specify and control by a user. In computer graphics, metaballs
are a classic concept to describe algebraic surfaces in a general approach [18] for n = 2, 3. They
can efficiently represented on GPU using arrays of point and radii to describe regions-of-interest or
volumes-of-interests.

Geometry-based Focus Representations In contrast for function-based or image-based represen-
tations, geometry-based focus representations rely on geometric primitives to specify boundaries
(closed, non-self-intersecting lines, and surfaces) between focus or context. Figure 3.5 shows an
overview of possible representation for ROI and VOI. For example, closed 2D poly-line loops, 2D
curves, and tessellated variants such as 2D polygons can be used to describe a regions-of-interest.

3.4. Representation of Focus Types 31

Figure 3.6: Overview and classification of image-based representations of ROI and VOI focus types for
discrete and continuous separation methods.

For volumes-of-interest, one can distinguish between representing open or closed boundaries. Closed
boundaries are represented using solid (also knows as "water-tight") 3D meshes. Open boundaries
are described by 3D half-spaces that can be be represented using 3D surfaces such as triangulated
irregular networks (TINs) or parametric NURBS surfaces. The implementation of relief-clipping
planes (Section 9.1) uses both, open as well as closed volumetric representations for rendering.

However, geometry-based focus representations are hard to evaluate in the respective stages
of the programmable graphics pipeline. In the scope of this thesis they are mostly used to
represent proxy objects (e.g., for image-based object highlighting in Section 8.2) or as intermediate
representations, (e.g., 3D generalization lenses in Chapter 4), which are converted during runtime
into image-based focus representation.

Image-based Focus Representations Image-based representations encode the boundaries for
regions-of-interest and volumes-of-interest, or the respective degree-of-interest using raster images.
Figure 3.6 shows an overview, a classification, and examples for image-based focus representations
used in this thesis. They can be classified into four categories depending on its content and the
reference space used by their associated separation methods. In general, one can distinguish between
image-based representations that support discrete and continuous separation methods (Section
3.6).

Bitmap and grey-scale images encode the degree-of-interest values directly as texel value that
can be access during rendering using texture sampling. Further, depth-images and layered depth
images encode the distance of a fragment to the virtual camera. Further, layers of unique depth
complexity [187] are often used in combination with a camera-space or screen-space reference system.
The main principle is to separate a 3D space into two half spaces: front or back, w.r.t. a depth image,
or inside or out-side w.r.t. a layered depth image. A major drawback for such focus representations
is a possible lack of visual quality due to sampling artifacts. Image-based representations of regions-
of-interest are used by techniques described in Chapter 5 and 6. Furthermore and in contrast to
texture masks, the degree-of-interest can be computed from sampled distances encoded in 2D and
3D distance fields [101]. Using bi-linear sampling and interpolation of sampled distances, distance
fields exhibit less sampling artifacts compared to 2D texture masks. Further, distance fields can be
efficiently created during runtime using jump flooding algorithms [214]. and used for image-based
object highlighting approaches presented in Section 8.2.

These image-based representations can be derived automatically from 2D or 3D implicit
functions or geometric representations, using a preprocessing step in the mapping stage of the
visualization pipeline. Further, image-based representations that encode the degree-of-interest
directly can be easily created by a user using DCC tools (e.g., Photoshop and GIMP) and thus can
be easily integrated into existing content creation pipelines.

In addition to their straight-forward creation, management, and usage, image-based representa-
tion are characterized by the following two advantages: (1) they are able to encode various degrees-of
interests, or distances; (2) they require only a sampling operation for RoI representations and, in

32 Chapter 3. Focus+Context Visualization of 3D Geovirtual Environments

case of layered depth-images, linear search (ray-marching) [TD08c] (Section 4.3) for evaluation.
Despite their advantages, image-based representations exhibit a number of drawbacks. The visual
quality depends on the resolution of the texture image and the precision of the data types used for
internal storage. Thus, to obtain a high visual quality, a high resolution is required which yield high
space-complexity. This complexity can be reduced using lossless compression algorithms [TD08b].

3.5 Visual Variants for Focus and Context
In addition to focus type and representation, a focus+context visualization technique can be
classified w.r.t. the content that ia presented in the respective context and focus region. Per
definition, focus regions contain contents of high detail or high information density, while the
contents of the context has a lower information density or is depicted in an abstracted way [188].
Generally, this can be achieved by creating visual differences or visual variances. These differences
support a user to visually discriminate between focus and the context. This can be achieved by
leveraging the humans pre-attentive image cognition using differences in appearance to guide to
users focus [49] or by reducing the information density of the data set [76]. By shifting the cognitive
load from the user to the application, abstract structures facilitates the assimilation and retrieval of
information. With respect to the rendering process, there are basically two approaches for creating
visual variants for focus and context: using geometric variances and style variances.

Figure 3.7: Example for geometry vari-
ances. Different level-of-abstract are com-
bined using 3D generalization lenses.

Geometry Variances Variants of the depicted input ge-
ometry can be achieved by varying the scale or the density
of objects or features within a virtual 3D city or landscape
model. With respect to 3D GeoVE, variations in scale can
be distinguished into variations of geometric scale or carto-
graphic scale. Variations in geometric scale can be created
using uniform or non-uniform scaling [202] to facilitate the
visibility of objects, e.g., by maintaining their screen size
constant and thus reduce their occlusion at the same time.
One example is the adaptive landmark scaling approach
described in Section 8.2. For the variation of cartographic
scale, a combination of different geometric representations
for the same geolocation can be used. Such representations
can be the results from level-of-details (LoD) as defined in CityGML [103] or level-of-abstraction
(LoA) as the results from the generalization of buildings [139], building complexes [93], or street
networks [133]. Figure 3.7 shows an example for combining different LoA using the concept of
3D generalization lenses presented in Chapter 4 Further, the data density can be modified by (1)
adding data to the scene (e.g., labels) or (2) remove data to prevent visual clutter. Such changes
in the data density requires altering the geometry representation of a 3D scene that is usually
performed during mapping.

Figure 3.8: Application example for
style variances. Facade texture are
blended with a color-coded.

Style Variances Style variances alter the material or style
in which a geometric presentation is rendered. This enables
a user to visually discriminate between focus and context
regions by maintaining structural features of a 3D scene
simultaneously [49]. Figure 3.8 shows an example of a
focus+context visualization using distinct visual styles for
focus and context regions without modifying the scene
geometry. These approaches do not modify or alter the
geometric representation and are applied in the rendering
stage of the visualization pipeline. Thus, style variances can
be used if no LoAs of the virtual 3D city or landscape models
are available or not required. The transitions between the
rendering styles can be discrete or continuous. The latter

3.6. Separating Focus from Context 33

(a) Object-level separation (b) Vertex-level separation (c) Fragment-level separation

Figure 3.9: Comparison of object-level, vertex-level, and fragment-level separation that are used in combi-
nation with a discrete separation method.

can be achieved by mixing the color that represents the appearance of the focus with the color of
the context. The difference in appearance can concern object material such as color (gray scale,
opacity), texture (e.g., solid, stipples), lighting models (e.g., Phong [3], , Gooch [99], or global
illumination models [61]), as well as shading (e.g., flat shading, Gouraud shading). In general,
variances of photo-realistic and various non-photorealistic rendering styles can be used [STD11].
Variations of material and texture can be computed in the rendering stage of the visualization
pipeline (e.g., using post-processing approaches) or in the mapping stage by preprocessing of texture
data [232].

3.6 Separating Focus from Context
For focus+context visualization it is necessary to decide what data is part of the focus or part of
the context. In this thesis, the term data can refer to one of the following three representations: (1)
an object of a 3D scene, i.e., an instance of a geometric representation of a discrete geo-feature (e.g.,
using triangulated meshed that can be encoded by a number of vertex buffers in the video memory);
(2) a geometry primitive consisting of verticies representing parts of the geometric representation of
an object; and (3) a fragment as result of the rasterization process of the primitives.

Separation Level and Rendering Pipeline
Based on the focus types and their representations, a particular method or algorithm is required
to separate focus from context regions. Techniques for discriminating focus from context can be
considered as key components for focus+context visualization. Therefore, it is necessary to decide
if a point of a 3D scene belongs to a focus or the context, in order to apply visual variants and/or
context.

In general, one can distinguish between two types of separation methods: discrete separation
methods and continuous separation methods. Discrete separation methods are limited to hard
transitions between focus and context. Continuous separation methods enable smooth transitions
between focus and context regions. These methods can be performed per-object in the mapping
stage of the visualization pipeline, or during the rendering process using shader programs within
the programmable rendering pipeline.

In addition to the classification of separation methods with respect to the visual appearance
of the transition between focus and context, they can be further distinguished between the imple-
mentation level in the interactive rendering pipeline (Section 1.3). Figure 3.9 shows a comparison
between the following four separation methods:

Object-Level Separation (OLS) is applied per object or feature (Fig. 3.9(a)). It assumes geometric
separation and uniqueness of feature instances within their computer graphical representation.
If the feature geometry is optimized for rendering (e.g., using batching [269]) the separation
has to be performed on the respective bounding volumes [3], thus the precision of the test
depends on bounding volume representation. The landmark scaling technique in Section 8.2
is an example of this separation type.

Vertex-Level Separation (VLS) using vertex shader programs operates on single verticies (Fig.
3.9(b)). This method is fast but its precision depends on the vertex density of the scene

34 Chapter 3. Focus+Context Visualization of 3D Geovirtual Environments

geometry. Since vertex shader cannot destroy geometry, vertex level separation methods are
usually applied for culling purposes.

Primitive-Level Separation (PLS) using geometry shader programs operates on geometric primi-
tives (also Fig. 3.9(b)). One advantage is that a geometry shader can omit the rasterization
of primitives.

Fragment-Level Separation (FLS) using fragment shader programs represent a fast and precise
method. Fragment shader are capable of discarding fragments as well as manipulating the
transparency of a fragments. This enables discrete as well as continuous focus and context
separation methods.

This work does not consider separation methods in the sub-sample domain as well as the pro-
grammable tessellation units. To summarize, OLS is only suitable for discrete separation methods
(next section) and can be performed on the rendering client (CPU) or on the rendering server
(GPU). Further, due to the lack of visual quality (Fig. 3.9(b)), VLS and PLS should only be used
as optimization approach prior to FLS to reduce unnecessary separation computations at fragment
level. To conclude, FLS should be preferred because of visual high quality for discrete as well as
continuous separation methods.

The rendering of geometric variants depends on the focus type and its representation. For
discrete focus types (e.g., for 3D generalization lenses), forward rendering and clipping is applied.
For continuous types, (e.g., for multi-perspective views), color blending is applied [3]. The blending
operation can be performed using the color buffer for forward rendering or in a post-processing pass
for deferred rendering. These approaches require multi-pass rendering if the abstract geometric
variants cannot be derived during rendering, i.e., they must be computed explicitly such as cell-based
generalizations of virtual 3D city models. Using layered rendering, image-based representation for
the different abstract representation for foci or context can be derived in a single rendering pass.
An example for combining different geometric representations within a single rendering pass are 3D
iso-contours (Section 5.4).

Discrete Separation Methods
Discrete separation methods implement hard transitions between focus and context. Computer
graphic algorithms for discrete separation using forward rendering are based on (1) multi-pass
rendering and (2) the ability to omit the display of primitives or fragments during a rendering
pass. A general approach for the multi-pass rendering for focus+context visualization using discrete
separation methods is described in Section 4.5. For completeness, this section discusses discrete
separation methods that are suitable for both, the fixed-function and the programmable rendering
pipeline.
Methods Using Fixed-Function Rendering Pipeline
Discrete separation methods for the fixed-function rendering pipeline use a combination of state sets
[3] to omit the display of fragments associated either to focus or context. Despite approaches that
use constructive solid geometry (CSG) [147], the approaches can be classified into (1) combinations
of texture mapping and per-fragment operations, such as alpha, stencil, or depth tests [230] or (2)
user-defined clipping planes.

Alpha, Stencil and Depth Tests Using a fixed function rendering pipeline, fragment discard can
be implemented using alpha-testing [3] and texturing mechanisms. Here, texturing assigns
an alpha value to each fragment. Geometric clipping using boolean textures [166] or bitmap
images are examples for this strategy. To avoid the computation of the texture coordinate
mapping in the mapping stage of the visualization pipeline and to enable movable filter, its is
possible to apply projective texture mapping [81]. To fight alpha-testing artifacts, distance
fields [101] can be used instead of Boolean textures. The same can be achieve using multi-pass
rendering in combination with stencil and depth tests: (1) the geometric focus representation
is rendered with activated writing to depth or stencil buffer respectively; (2) adjust depth or

3.6. Separating Focus from Context 35

Figure 3.10: Application example for a discrete separation method: A volumetric depth sprite (A) is used
to represent a volume-of-interest for a 3D lens. Generalized clipping and multiple rendering passes are used
to create a generalization lens visualization (B). This method introduces visual artifacts at the boundaries
(D) between focus and context shown in the close-up (C).

stencil test to discard fragments that belong to the focus or context, e.g., that are closer to
the camera or lie within a stencil region for rendering context geometry.

Clipping Planes This approach uses hardware-supported, user-defined clipping planes [3]. Here,
a focus volume can be described using up to six clipping planes. This limits the shape of a
VOI to cuboids, often rectangular cubiods, and enables only convex-shaped VOI. The user
defines six planes in model space. During rasterization, fragments are discarded if they lay
outside the volume that is described by the particular half spaces defined by the planes. This
approach works for older hardware generation and is described in [261]. Thus, focus and
context separation can be performed using two-pass rendering approach: the first rendering
pass renders the focus geometry with enabled clipping planes and the second pass renders the
context geometry using inverted parametrization of the clipping planes.

Since the increasing deprecation of fixed-function pipeline features, the rendering techniques in this
thesis fully rely on concepts of the programmable graphics pipeline.
Fragment Discard using Programmable Graphics Pipeline
Fragment discard, or tex kill is a basic functionality provided by programmable graphics pipeline. In
contrast to fixed-function approaches, fragments are discarded prior to the per-fragment operations.
This offers less complex implementations and reduces the number of state changes required for
image synthesis. This section briefly describes applications for function-based, and image-based
focus representations that are based on the functionality of fragment discard.

For function-based focus representations, 2D and 3D implicit functions are evaluated using
the position of the fragment: based on the computational result, the fragment is discarded or not.
For geometry-based focus representations such as 2D polyline loops, a "left-of-test" can be used
to determine if a fragment is inside or outside the loop. This test can be efficiently implemented
in real-time with a runtime complexity of O(n). For image-based focus representations, such
as bitmap or gray-scale images, the raster representation is sampled using texture coordinates.
This texture coordinates can be given explicitly or can be computed procedurally at runtime by
transforming the respective fragment coordinate into a given reference coordinate system (Section
3.3). After obtaining the sampled value, it is thresholded to decide if the fragment is discarded or
not. Rendering techniques using this approach are described in Chapter 5 and Section 8.2. For
image-based focus representations, such as depth-images and layered depth-images, the approach is
similar to the one described above with the exceptions of the texture sampling and the procedural
texture coordinate generation. The decision if a fragment is discarded or not is based on a Boolean
parity computed for each fragment. This parity value is determined using a volumetric parity test

36 Chapter 3. Focus+Context Visualization of 3D Geovirtual Environments

Figure 3.11: Compositing to implement continuous separation methods for 3D multi-perspective views.
The renderings of focus and context regions are combined using a focus mask represented by a grey-scale
image that encodes where focus (white) or context (black) is visible.

(VPT) described in Section 4.3. Application examples of this approaches are generalization lenses
(Chapter 4 and relief clipping planes (Section 9.1).

Continuous Separation Methods
The discrete separation methods described previously are suitable for implementing geometry
variances but introduces hard transitions between focus and context (Fig. 3.10). This can result in
a lack of structural coherence between the content of the focus and the context and yield difficulties
in the spatial perception or cause problems in orientation and navigation [136]. Further, discrete
separation between focus and context regions are not sufficient due to the following reasons: (1) it
does not allow the visualization and communication of fuzzy or uncertain boundaries between focus
and context; (2) dealing with image aesthetics it can be necessary to support smooth transitions
between focus and context style variants, and (3) a method to reduce and disguise visual artifacts
for high-quality visualization can be required.

There are basically two concepts to enable rendering techniques for supporting continuous
focus and context separation: (1) image-based composting [199] using single or multiple rendering
passes and (2) geometric morphing (also geomorphing), which can be implemented in a single
rendering pass.

Image-based Compositing For using image-based compositing, the degree-of-interest represented
by a focus representation is mapped to a scalar value (e.g., alpha, opacity, or transparency), that
controls how the images, which represent the respective visual variances for focus and context,
are blended by color interpolated [249]. With respect to the type of visual variance used, there
are basically two approaches for image-based composting: single-pass compositing applicable for
implementing style variances and multi-pass compositing required for implementing geometry
variances:

Single-pass Compositing This type of composting is performed on a per-fragment basis during a
scene-rendering pass and does not require a post-processing pass. Thus, it is only suitable for
style variances implemented by color transformations such as vignetting or de-saturation. It
is applied for the interpolation of different terrain textures only (Section 7.2) and for texture
variants derived at shader runtime (Chapter 5 and Section 8.2).

Multi-pass Compositing Figure 3.11 shows an overview of image-based compositing using multiple
scene-rendering passes that are required because of the different geometric representations for
focus and context. The compositing is performed using the frame-buffer or an additional post-
processing pass by combing focus and context renderings using a focus mask. An application
example for this type of compositing can be found in Section 7.4 and 8.2.

3D Geometric Morphing Morphing, or metamorphosis, aims to generate a smooth shape sequence
which transforms a source shape into a target shape [274]. In computer graphics, geomorphing is the
process of smoothly interpolating between 3D geometric models of different level-of-details or level-
of-abstraction to lessen the effect known as "popping". With respect to 3D geovirtual environments,

3.7. Summary 37

Glander et al. introduce concepts for geometric morphing between different level-of-abstractions
of generalized 3D city models [92]. Problems arising for the morphing of multiple buildings to
building cells hinders the application of this technique. However, continuous separation methods
can be applied to generalized 3D landscape models [GTD11] based on the idea of 3D iso-contours
[GTD10]. Section 5.4 presents an application example that generates smooth transitions of stepped
terrain using 2D distance fields for the image-based focus representation.

Despite the pleasing visual effect and the avoidance of popping artifacts, smooth transitions for
geometry or style variances introduce also a drawback for such visualization: the resulting images
meaningful information such as dead-value pixels [136] within the transition zone. This can lead to
a lack of visual clarity. Thus, the size of the transition zone is a trade-off between the quality of
visual appearance and the loss of information [PTD11].

3.7 Summary
This chapter introduces the underlying concepts and classifications for the focus+context rendering
techniques described in this thesis. An overview of different focus types is given and their possible
representations for GPU are discussed. Based on these representations, respective separation
methods to discriminate between focus and context regions are presented and briefly compared.
Table 3.1 classifies and compare the rendering techniques of Chapter 4 to 8 according to the
presented categories.

To summarize, most of the rendering techniques rely on image-based focus representation (IFR)
for volume-of-interest (VOI) and regions-of-interest (ROI) focus types. This originates from its
simple handling and the possibility for implementing fast separation methods. For points-of-interest
(POI) or objects-of-interest, the function-based representation (FFR) is used. Geometry-based
focus representations (GFR) are only used as intermediate representation. Despite the exceptions
of image-space distortion and highlighting, the rendering techniques are implemented using the
forward rendering (FRP) and deferred rendering pipeline (DRP) in equal parts.

Due to the functionality of multiple rendering targets, most techniques can be implemented
using a single scene rendering pass (SP), with the limitation that only style variants (SV) are
supported. This makes them especially suitable for 3D geovirtual environments of high geometric
complexity. However, if geometry variances (GV) are required to implement a focus+context
visualization, multi-pass rendering (MPR) is required to combine different level-of-detail or level-of-
abstraction. Thus, the number of rendering passes and consequently the rendering performance
depends on the choice of visual variants for focus+context visualization.

38 Chapter 3. Focus+Context Visualization of 3D Geovirtual Environments

T
able

3.1: C
lassification

ofthe
rendering

techniques
for

focus+
contextvisualization

of3D
geovirtualenvironm

ents
with

respectto
the

following
criteria:

the
focus

type
(PO

I
–
P
oint-of-Interest,R

O
I
–
R
egion-of-Interest,V

O
I
–
Volum

e-of-Interest),the
com

puter
graphic

representation
offocus

types
(FFR

–
function-based

focus
representation,

IFR
–
im

age-based
focus

representation,G
FR

–
geom

etry-based
focus

representation),the
reference

system
s
for

the
focus

representation
(W

SR
S
–
world-space

reference
system

,C
SR

S
–
cam

era-space
reference

system
,SSR

S
–
screen-space

reference
system

),the
separation

m
ethods

used
(D

M
–
discrete

separation
m
ethod,C

M
–
continuous

separation
m
ethod),the

visualvariants
(G

V
–
geom

etry
variance,SV

–
style

variance),the
respective

separation
level(O

LS
–
object

levelseparation,PLS
–
prim

itive
level

separation,FLS
–
fragm

ent
levelseparation),the

used
rendering

paradigm
(FR

P
–
forward

rendering
pipeline,D

R
P

–
deferred

rendering
pipeline),and

finally
the

num
ber

ofrendering
passes

(SP
R

–
single-pass

rendering,M
P
R

–
m
ulti-pass

rendering)
)

Chapter or Section

V
isualization

T
echnique

Focus Type

Focus Representation

Reference System

Separation Method

Visual Variant

Separation Level

Rendering Paradigm

Rendering Passes

4
3D

G
eneralization

Lenses
V
O
I

IFR
W

SR
S
&

C
SR

S
D
M

G
V

FLS
FR

P
M
PP

5
D
ynam

ic
M
apping

ofR
aster

D
ata

R
O
I

IFR
W

SR
S
&

C
SR

S
D
M

&
C
M

SV
FLS

FR
P

SPP
6

Im
age-space

D
istortions

RO
I

IFR
SSR

S
D
M

&
C
M

SV
FLS

D
R
P

SPR
7

M
ulti-perspective

V
iew

s
RO

I
FFR

C
SR

S
C
M

SV
&

G
V

FLS
&

PLS
FR

P
&

D
R
P

SPR
&

M
PR

8.2
A
daptive

Landm
ark

Scaling
PO

I&
O
O
I

FFR
W

SR
S

D
M

G
V

O
LS

FR
P

SPR
8.2

Im
age-based

H
ighlighting

RO
I&

O
O
I

IFR
SSR

S
C
M

SV
FLS

D
R
P

SPR
8.3

O
ff-screen

H
ighlighting

PO
I&

O
O
I

FFR
W

SR
S
&

SSR
S

D
M

SV
O
LS

FR
P

SPR

Chapter 4

3D Generalization Lenses

This chapter presents 3D generalization lenses, a visualization technique that combines different
levels of structural abstraction of a virtual 3D city model. In an automatic preprocessing step,
a generalized representation of a given city model is derived. At runtime, this representation is
combined with a full-detail representation within a single view, based on one or more 3D lenses of
arbitrary shape. Focus regions within lens volumes are shown in full detail while excluding less
important details of the context area. The technique supports simultaneous use of multiple lenses
associated with different abstraction levels, handle overlapping and nested lenses, and provides
interactive lens modifications.

The remainder of this chapter is structured as follows. Section 4.2 introduces the fundamentals
for generalizing virtual 3D landscape and city models. It briefly reviews the automatic generation
of abstraction levels based on [93]. Section 4.3 present a concept and rendering techniques that
enables the pixel precise clipping against arbitrary shaped and solid 3D meshes, which are required
for the combination of different abstraction levels within a single output image. It is based on an
image-based data structure that can be efficiently represented on GPUs and an algorithm capable
of deciding whether a 3D point is inside or outside a 3D mesh. Based on that, Section 4.4 present
the concept of 3D generalization lenses. Further, Section 4.5 briefly describes its implementation.
Finally, Section 4.6 present usage scenarios and a discussion.

4.1 3D Lenses and Level-of-Abstraction

Figure 4.1: Application example for a single, arbi-
trarily shaped 3D lens. The focus preserves important
details along a specified route. The context region is
generalized.

For a 3D geovirtual environment, 3D lenses
can be used as a metaphor to control the fo-
cus+context visualization [261]. They direct
the viewer’s attention to a focus region, i.e., the
model inside the lens, and simultaneously pre-
serve the context information, i.e., the model
outside of the lens. Focus+context visualiza-
tion enables the user to access both, high-level
context information and low-level details. Fig-
ure 4.1 shows a 3D lens containing a detailed
version of a virtual 3D city model integrated
into a generalized context. The presented ren-
dering technique is a 3D instance of the Magic
Lens™[16, 261] metaphor. This metaphor is
applied to focus+context visualization on struc-
tural scale [267] of a virtual 3D city model.

To use 3D lenses effectively, their interac-
tive manipulation is required, enabling a user to position, rotate, and scale the lens dynamically.
When dealing with complex models, the demand for interactivity leads to a number of challenges:
First, to achieve a wide scope of possible lens configurations, the visualization should not be
restricted to a single lens. Therefore, the visualization concept and technique have to deal with
multiple, intersecting, overlapping and nested 3D lenses, which can be combined and moved in-

40 Chapter 4. 3D Generalization Lenses

dependently. The behavior in these cases should be configurable and consistent; Second, in a
given visualization scenario, the core parts to be highlighted cannot be assumed to form only a
simple shape. Therefore, a system should enable arbitrary lens shapes and users users should be
able to customize the shape of the lenses to fit the actual core parts appropriately; Third, The
underlying rendering technique must perform fast enough to cope with large amounts of geometric
primitives and texture data and to support rendering as well as lens manipulation in real-time. As
a matter of principle, existing techniques that rely on image-based multi-pass rendering usually
have performance problems when applied to complex 3D GeoVE with multiple 3D lenses. The
presented interactive visualization technique supports multiple, dynamic, and arbitrarily shaped
volumes-of-interest.

Today’s large-scale virtual 3D city models are characterized by a large number of 3D objects
of different types, manifold structures and hierarchies among them, and a high degree of visual
detail [61]. Thus, they represent a high amount of information, e.g., encoded in facade textures,
aerial photographs, building models, infrastructure models, and city furniture. This frequently
leads to perceptional and cognitive problems for the user due to visual noise and information
overload and, therefore, impairs tasks and usability, e.g., with respect to orientation and navigation
in 3D geovirtual environments [94]. To facilitate comprehension, interaction, and exploration of
a city model, the cartographic principle of generalization can be applied to create an abstract
representation of the city model [94, 181]. Thus, the overall amount of information is reduced while
the most important structures are preserved and highlighted. For large-scale city models, generalized
representations at different levels of structural abstraction are required to achieve appropriate
representations at different scales. The abstraction merges objects that are closely related into
higher-level visualization units and preserves selected landmark objects. The generalization, however,
does not provide means for local modifications of the abstraction level, e.g., to integrate more
details along a specific route or within a specified area.

4.2 Generalization of Virtual 3D Landscape and City Models
In cartography, the term generalization means to abstract meaningful. It describes the process of
reducing details of the depicted spatial information to a degree that is appropriate to scale, task
and viewer [112]. A level-of-abstraction (LOA) [95] refers to the spatial and thematic granularity
at which model contents is represented. It can be dependent on the current 3D camera settings,
the current task or process, the user profile, or any other criteria from the underlying application
domain. The model contents should be adapted to a given LOA on demand. Since generalization is
a typically costly process that can hardly be performed in real-time, a number of LOA variants of
a 3D GeoVE can be processed and stored. For the implementation of generalization techniques,
level-of-detail (LOD) techniques from computer graphics [47] can be used, but LOD is fundamentally
different to LOA since LOD focuses on an optimized computer graphics representation for real-time
rendering purposes.

Generalization of 3D Landscape Models Virtual 3D landscape models serve as frameworks for
representing geographic and thematic aspects of landscapes. They are based on 3D geodata including
high-precision terrain and surface models (DTM, DSM), 3D building, site, and city models, 3D
vegetation and water models, as well as aerial images to model the appearance of these components.
This way, virtual 3D landscape models achieve a high degree of realism as required by a number of
applications in virtual reality, design, and architecture.

A high level of geometric detail and photo-realistic appearance, however, is not an ultimate
quality of a landscape model: There are numerous applications and systems requiring virtual 3D
landscape models that simplify, aggregate, categorize, and abstract their contents to a specific
coherent level-of-abstraction. These generalized virtual 3D landscape models facilitate, for example,
understanding landscape form, conceptual design of landscapes, collaborative development of
landscape models, and comparison of model variants. Generalization of 3D landscape models
also enables their use and reuse for simulation and analysis processes and as computational tools,
which commonly require a homogeneous spatial, thematic, and semantic resolution of the model

4.2. Generalization of Virtual 3D Landscape and City Models 41

(a) Original virtual 3D landscape model. (b) Generalized virtual 3D landscape model

Figure 4.2: Example for a generalized variant of a virtual 3D landscape model of the Grand Canyon.

components and information density. Consequently, landscape generalization is a technique to
cope with compactness, complexity, heterogeneity, and diversity of geodata that constitute today’s
digital landscape models.

Landscape generalization denotes a fundamental operation that transforms and presents land-
scape models at a given level-of-abstraction (LOA). The transformation and presentation techniques
are based on a combined use of generalization operators including combination, reclassification,
class selection, simplification, collapse, amalgamation, elimination, enhancement, displacement,
enlargement, and typification [84]. Generalization operators can be applied (1) to the original
geodata of a virtual 3D landscape model, i.e., it can be performed in the filtering stage of the
visualization pipeline (Fig. 3.2), leading to a generalized primary landscape model. It can also
be applied (2) to the mapped data, i.e., during the mapping stage of the visualization pipeline,
leading to a generalized cartographic landscape model. Furthermore, it can be applied (3) during
the rendering stage of visualization pipeline, leading to a generalized graphics representation.
In practice, specific generalization techniques use a combination of these generalized models, in
particular, if they have to provide adaptive, dynamic generalized models for interactive 3D systems,
generalization operators for all three stages are required.

Glander et al. [GTD10] present a generalization technique that generates 3D stepped terrain
models, which can be used in schematic terrain visualization to communicate relief structures of
mountain landscapes through isocontours (Fig. 4.2). A set of typically equally spaced isovalues
define height intervals that are highlighted by isocontours on the terrain model. The real-time
generalization technique creates schematic visualizations from standard triangle-based terrain
models exploiting graphics hardware. During rendering, the schematic visualization is obtained
on-the fly through (1) translating terrain vertices and (2) creating new step geometry. Hereby, all
vertices of the input terrain are translated to their nearest isolevel by setting their height accordingly.
This step results in planar triangles except at thresholds between two isovalues. Then, each input
triangle crossing one or more thresholds is replaced by step geometry derived from the triangle’s
individual configuration. The step geometry is created by computing the intersection points per
threshold and creating appropriate triangles. The new geometry adapts to the course of the isoline
and thus reproduces it smoothly.

Further, an additional interpolation schema for single vertices facilitates smooth transitions be-
tween classical 3D terrain rendering and its stepped variant. A straightforward solution is to linearly
blend between the vertices’ original heights and their quantized height, using a control parameter.
The parameter can be defined globally (constant), locally (additional layer) or view dependent.
Thus, the technique allows flexible application of the effect including general activation/deactivation,
highlighting regions-of-interest and distance-based styling.

Generalization of 3D City Models For the 2D case of a virtual city model, generalization
approaches have been developed, e.g., based on agents [69] or based on least squares adjustment
[234]. For 3D building generalization, existing approaches focus on the simplification of single

42 Chapter 4. 3D Generalization Lenses

(a) Original virtual 3D city model. (b) Generalized virtual 3D city model

Figure 4.3: Example for a generalized variant of a virtual 3D city model.

buildings. For this, they remodel a building with a set of characteristic planes [139], or split it along
characteristic planes into a Constructive- Solid-Geometry tree representation [248]. Morphological
operations have also been applied to building generalization [86]. In [205], the generalization
depends on line simplification performed on the projected walls. The approaches described above
are limited to single objects and disregard aggregation of multiple objects. In previous work, a 3D
generalization technique is introduced that performs aggregation of multiple objects [93, 94]. In
this work, this technique is applied as a preprocessing step.

This generalization technique [95] generalizes a given virtual 3D landscape model according
to a given hierarchical infrastructure network (e.g., hierarchical street network). That network
defines the spatial clustering of geographic space by geographic cells (e.g., city blocks or districts).
If a high hierarchy level is used as LOA, the resulting cells will be coarser. At the lowest level,
the original model is unchanged. The technique takes as input the original (detailed) 3D model,
and generates model variants for each hierarchy level. Thereby, it automatically aggregates single
buildings into building blocks formed by the cells, i.e., the partitions of a given infrastructure
network, handling separately green space and water areas. Local landmark buildings are detected,
e.g., by their geometric properties, and preserved in their appearance (Fig. 4.3(b)).

4.3 Generalized Clipping

Figure 4.4: An example for using volumetric tests to
perform pixel-precise clipping against a complex and
non-convex 3D shape within a single rendering pass.

This section presents an approach for perform-
ing efficiently 3D point-in-volume tests for solid
and arbitrary complex shapes. It classifies a 3D
point as inside or outside of a solid specified by
3D polygonal geometry. This technique imple-
ments a basic functionality that offers a wide
range of applications such as clipping, collision
detection, interactive rendering of multiple 3D
lenses as well as rendering using multiple styles
(Fig. 4.4). For example, for rendering 3D vol-
umetric lenses [261] it is necessary to decide
which fragment, primitive, or vertex is inside
the lens volume. The approach is based on an
extension of layered depth images (LDI) [235]
in combination with shader programs. An LDI
contains layers of unique depth complexity and
is represented by a 3D texture. The test algo-
rithm transforms a 3D point into an LDI texture space and performs ray marching through the
depth layers to determine its classification. Despite clipping and collision detection, the concept of

4.3. Generalized Clipping 43

Figure 4.5: Application examples for Volumetric Depth Sprites (VDS) in combination with a Volumetric
Parity Test (VPT). Figure A shows pixel-precise clipping against three different VDS. The same approach
can be used to extract cut-edges (Fig. B). Figure C shows rendering with hybrid styles. All images are
rendered within a single pass.

VDS and the associated VPT has a number of applications. For example, it enables rendering with
hybrid styles [132] per pixel and facilitates the generic usage of volumetric 3D lenses [261] without
limitations concerning the volumes shape or the intersection of lenses.

Current rendering techniques [218] enable such functionality using expensive image-based multi-
pass rendering algorithms executed per rendering frame. Further, despite image-based Constructive
Solid Geometry (CSG) [147], there is currently no approach that performs fast pixel-precise clipping
against multiple arbitrary shaped meshes.

To enable such general functionality within a single rendering pass, a volumetric test algorithm
is presented that targets real-time rendering applications in particular. This test is easy to implement
and can be used in all programmable pipeline stages. For this purpose, an adequate data structure
for the volumetric representation of static, solid meshes with arbitrary shapes is introduced that
facilitates an efficient volumetric test. Since this representation can be created in preprocessing, no
additional rendering passes at runtime are necessary. To perform the proposed test in real-time,
the approach consists of two components: a data structure that is fully accelerated by graphics
hardware and an algorithm that operates on instances of these. The algorithm is implemented
in a shader program. The components are used in the following manner: first, an image-based
representation of the solid shape are created that stores only its depth values along a viewing ray,
which is aligned towards the negative z-axis. This representation is denoted as Volumetric Depth
Sprite (VDS). This step is performed during preprocessing and its result is stored by using high
precision textures. Second, at shader runtime, a Volumetric Parity Test (VPT) is performed for
each point. Therefore, a point is transformed into the specific VDS coordinate system and, then, is
tested against all depth values stored in the particular VDS.

This approach requires solid shapes and, since this step is performed in preprocessing. Further,
the shape’s representation is assumed to be a static, non-animated polygonal mesh. Due to the
recently established Unified Shader Model, which uses a consistent instruction set across all shader
types, it became possible to apply the VPT in all programmable pipeline stages.

Volumetric Depth Sprites
A Volumetric Depth Sprite (VDS) is an image-based representation of the shapes volume that stores
its depth values along a viewing ray that is aligned towards the negative z-axis. A VDS extends the
concept of LDIs [235] that contain layers of unique depth complexity. The idea of LDIs is presented
in [235]. An LDI is a view of the scene from a single input camera view but with multiple pixels
along each line of sight. The size of the representation grows only linearly with the observed depth
complexity in the scene. Figure 4.6 shows an example of a VDS derived from a complex 3D shape. A
VDS representation consists of the following components V DS = (P,LDI, d, wi, hi). Where P ∈ R3

denotes the position of the VDS in world space coordinates. The depth complexity of S is denoted
as d ∈ N/{0,1}. The layered depth image consist of d depth maps LDI = (LDI0, . . . , LDId−1).

44 Chapter 4. 3D Generalization Lenses

Figure 4.6: Example of an layered depth image representation of a non-convex polygonal mesh. S is
depth-peeled into a number of slices, each containing depth maps of unique depth complexity.

The initial texture resolution of width and height is given by wi, hi ∈ N. To obtain a depth value
di ∈ [0, 1] ⊂ R, 0 ≤ i ≤ d− 1 in the ith-depth layer for a 2D point (s, t) ∈ [0, wi]× [0, hi], the 3D
texture is sampled in LDI texture space using the coordinates LDIi(s,t) = (s, t, i).

There are various methods to create image-based representation from 3D geometry. Depth
peeling can be used for order-independent transparency rendering, creating layered depth images, or
layered distance maps. In [80] depth-peeling is performed using a second depth test implemented as
shader program in combination with multi-pass rendering. This front-to-back method compares each
fragment against the previous rendered layers of unique depth complexity. The runtime complexity
to peel a shape of depth complexity n is O(n). It is possible to re-use this layers by performing a
render-to-volume technique [67]. To reduce the necessary rendering passes, multi-fragment depth
peeling was introduced by [162]. It uses the functionality of multiple render targets in combination
with fragment sort. The number of passes can be reduced to O(n = m), where m is the number
of available MRTs. The approach of dual depth peeling [10] reduces the runtime complexity to
O(n/2) + 1 by using a min-max depth buffer which peels two layers at a time, one layer from the
front and one from the back. An extension of this method via bucket sort [163] uses MRTs. In [158]
various memory layout options and optimizations are discussed. In this context, ray marching is a
well known algorithm for interactive volume rendering [284]. A dynamic approach for slice-based
object voxelization is presented in [73]. It can be applied in a single rendering pass but lacks
accuracy.

The creation of a VDS is performed within a preprocessing step using multi-pass render-to-
texture (RTT) . Given a solid polygonal mesh S, the associated LDI is generated by performing
the following steps: (1) Uniformly scale the shape to fit into the unit volume [0, 1]3. A camera
orientation ODP and on orthogonal projection is set that covers this unit volume. The near and far
clipping planes are adjusted accordingly. (2) Determine depth complexity d and create a 3D texture
or 2D texture array with an initial resolution of wi, height hi, and depth d. The implementation
uses a luminance texture format with a single 32Bit floating point channel. The texture is initialized
with a depth of 1, which is further refered to as invalid depth value. (3) Perform depth-peeling [80]
in combination with RTT. The solid S is peeled using linearized depth values using a W -buffer
[155]. Listing 4.1 shows an OpenGL shading language (GLSL) implementation of the second depth
test necessary for depth peeling.

4.3. Generalized Clipping 45

1 uniform sampler3D LDI; // layered depth image
2 uniform int pass; // number of current pass
3 varying float linearDepth; // linear depth interpolant
4
5 void main(void)
6 { // ignore first pass and fetch previous depth value at current pixel location
7 if((pass > 0) && (linearDepth <= texelFetch3D(LDI , ivec3(gl_FragCoord.xy, pass -1) ,0).x)){
8 discard; // depth value already peeled
9 }

10 gl_FragDepth = linearDepth; // write depth only
11 }

Listing 4.1: GLSL fragment shader implementation for depth peeling.

Volumetric Parity Test

Figure 4.7: Ray marching through an LDI represen-
tation of the complex shape shown in Figure 4.6. A
ray R intersects the depth layers LDIi at four points
and adjusts the rays parity pT accordingly.

Real-time volumetric tests enable a multiple
binary partition of a given arbitrary scene on
vertex, primitive, and fragment level. They
have a number of applications in real-time ren-
dering and interactive visualization, such as
pixel-precise clipping, collision detection, and
rendering with hybrid styles [132]. This volu-
metric parity test (VPT) relies on an image-
based representation of solid, arbitrarily shaped
polygonal meshes (volumes). This representa-
tion is an extension of the concept of Layered
Depth Images (LDI) [235]. Given a VDS, the
Volumetric Parity Test (VPT) classifies a point
V ∈ R3 with respect to its position in relation
to the shape’s volume. It can either be inside
or outside the volume. To model such test, a
Boolean coordinate parity pT ∈ {0, 1} is used.
Before testing V , it must be transformed into
the specific 3D LDI texture. For example, if V is a point in world space coordinates, the transformed
coordinate T can be obtained by T = (Ts, Tt, Tr) = M · V

The matrix M represents the mapping of world space coordinates into LDI texture coordinates.
It is defined by M := T(C) · S ·B ·T(−P). Where B is a rotated orthonormal base of the VDS.
V is transformed into the LDI texture coordinate space (B ·T(−P)), scaled by S, and translated
(T(C)) into the LDI origin C = (0.5, 0.5, 0.5) subsequently. A ray R = [(Ts, Tt, 0)(Ts, Tt, 1)] is
constructed that marches through the depth layers LDI i and compares Tr with the stored depth
values di. Starting with an initial parity, pT is swapped every time R crosses a layer of unique
depth complexity (see Figure 4.7). This test can be formulated as pT = VPT (T,LDI) so that:

VPT (T,LDI) =
{

1, ∃di ∧ ∃di+1 : di ≤ Tr ≤ di+1
0, otherwise

(4.1)

di ∈ LDI i(Ts,Tt) di+1 ∈ LDI i+1
(Ts,Tt)

The implementation of the ray-marching algorithm needs to iterate over the number of texture slices
in the 3D texture. Therefore, it demands a shader model 3.0 compliant graphics hardware. Listing
4.2 shows the GLSL source code that implements the VPT. The performance of this algorithm
depends on the number of VDS used, thus the number of samples the VPT has to perform. The
presented volume test consists of less than 20 assembler instructions per executed loop. The time
consumption for preprocessing a shape depends on its depth complexity and the desired texture
dimension.

46 Chapter 4. 3D Generalization Lenses

1 bool volumetricParityTest(in vec4 T, // coordinate in LDI -space
2 in sampler3D LDI , // layered depth image LDIs
3 in int depth , // depth complexity ds
4 in bool initParity){ // initial parity p
5 bool parity = initParity; // initial parity; true = outside
6 float offset = 1.0 / float(depth); // compute offset to address texture slices
7 for(float i = 0.0; i < float(depth); i++){ // for each texture layer do
8 if(T.r < texture3D(LDI , vec3(T.st, offset * i)).x) { // perform depth test
9 parity = !parity; // swap parity

10 }
11 }
12 return parity;
13 }

Listing 4.2: GLSL Implementation of the volumetric parity test.

Efficient Representation of Volumetric Depth Sprites
One main drawback is the high memory consumption of M = w · h · d when representing an LDI
as 3D texture. This is especially true for shapes with a high depth complexity d. Consequently,
lowering the texture resolution w or h can result in a lack of precision when performing volumetric
tests. Our goal is to determine optimal width wi, height wi and depth d to providing a high
texture resolution simultaneously. A reduction of d implies a reduced number of depth-peeling
passes which would speed up the dynamic creation of an LDI. To achieve this, three algorithms
are proposed. The flowchart in Figure 4.8 describes the complete preprocessing including the
following optimization algorithms. This section presents an efficient GPU representation in terms
of minimizing the texture size and the necessary texture fetches. It presents three algorithms that
facilitate the efficient creation and storage of an LDI. First, a method to determine an optimal
viewpoint for the creation of an LDI for which the depth complexity is minimal. Further, A fast
algorithm to determine the axis-aligned bounding box (AABB) of an LDI. It is used to crop unused
coherent texture areas. Finally, a lossless compression algorithm that encodes the depth values of a
3D texture into a 2D texture and thereby achieves maximal texture utilization. The decompression
can be performed using programmable hardware.

Viewpoint Selection for LDI Creation This step determines a camera orientation ODP with a
minimal depth complexity dmin ≤ dmax. The approach is only effective for non-convex shapes with
dmax > 2. A simple setup for viewpoint selection is used. The camera is placed onto a unit sphere
that is constructed around the center of the shape S. The camera position is modified with respect
to its horizontal and vertical position on the sphere. The pseudo code to determine the camera
orientation ODP for a shape S, an initial viewpoint OC , and the number of horizontal sH and
vertical segments sV is presented in Algorithm 1. For each segment on the sphere, the orientation

Figure 4.8: Conceptual overview and data flow between algorithms participated in the preprocessing of an
input shape S into its compressed LDI representation. After proper viewpoint selection, S is depth-peeled,
cropped, and compressed.

4.3. Generalized Clipping 47

OC is computed by rotating the camera position around the x and y-axis with θ = 360/sH and
φ = 360/sV . Subsequently, the depth complexity d and the coverage ratio c of the occupied and
invalid texels are determined. The results of all segments are stored in a list that is sorted ascending
by depth complexity afterwards. Under the preservation of this order, the coverage values c are
sorted in a descending order to obtain the orientation with the minimal depth complexity d and
the maximal coverage c. After ODP is retrieved the VDS is created as described above.

Algorithm 1 View-point Selection Algorithm
procedure orientation(S,OC , sH , sV)

1: [foreach segment on sphere]
2: for (h = 0→ sH) do
3: for (v = 0→ vH) do
4: OC ← adjustOrientation(OC , sH , sV) [place virtual camera]
5: [compute metrics]
6: d← depthComplexity(S,OC)
7: o← coverage(S,OC)
8: append(list, (OC , d, o)) [store result in list]
9: end for

10: end for
11: [sort results]
12: sortDepthComplexityAscending(list)
13: sortCoverageDecending(list)
14: ODP ← getOrientation(list, 0) [fetch first list item]
15: return ODP

Bounding Box Computation and Cropping Since hardware is not bounded to power-of-two
texture dimensions [230], it is possible to optimize the texture storage on video memory by cropping
the 3D texture to its 2D axis-aligned bounding box AABBLDI = (x, y, wb, hb), which includes all
occupied (valid) texel in the LDI. This is particularly efficient if the shape has a main spatial extend
along one of the two axis s or t, e.g., a torus. The AABB computation is performed on CPU using
a scan-line algorithm [TD08b]. Prior to that, the LDI texture is fetched back into main memory.
The algorithm needs to test every texel only once. After the AABBLDI is computed, the 3D texture
is cropped accordingly (LDICrop).

Lossless Compression of Volumetric Depth Sprites Compressing the 3D texture representation
of an LDI can decrease the amount of memory that sparsely occupied depth layers require on
hardware. Compression can also increase the application performance by reducing the texture
upload time and the number of texture samples: Due to the design of the VPT, the ray-marching
algorithm (Fig. 4.7) has to take all depth layers into account to decide if a 3D point lies inside

2D Texture (LDIComp)3D Texture (LDICrop)

S0 E0 S1 E1 S2 E2

S5 E5 S6 E6

S3 E3 S4 E4

NIL NIL

NIL NIL

NIL NIL NIL NIL NIL NIL

NIL NIL NIL NIL NIL NIL

r

LDI0 LDI1 LDI2 LDI3 LDI4 LDI5

t Unused texelDepth value

RSend

ISranges

wC

O0 S0 S1 S2 S3 S4 S5 S6NIL O1 O2 NIL ISoffset RSstart

R0 E0 E1 E2 E3 E4 E5 E6NIL R1 R2 NIL ISranges

R0 = 3 R1 = 2 R2 = 2

RSend

Index Segment IS Range Segment RS

Offset = wb · hb

32bit

Intermediate Representation

Extract
Pack
Alpha RSstart

ISoffset

Pack
Luminance

Figure 4.9: Concept of compressing the 3D texture LDIcrop into a 2D texture LDIcomp. All depth values
are extracted from the depth maps LDIi and stored successively into a range segment RS. During this
process an index segment IS is constructed. It stores an offset (OV) for a particular 2D coordinate (s, t)
that points to the start of the respective depth ranges within RS as well as the number RV) of successive
depth ranges DRj. This intermediate representation is packed into a 2D texture LDIcomp.

48 Chapter 4. 3D Generalization Lenses

the volume or not. So, texture samples are retrieved for layers that may not contain any depth
information. For sparse 3D textures, perfect spatial hashing [157] can be applied to loss less pack
sparse data into a dense table. Since LDIs contain only depth values that describe a solid volume,
a simpler alternative can be used for compression. Unlike existing compression algorithms for LDIs
[68] our approach has not to deal with color information and exploits this specific property by
storing only the structure of the LDI into a 2D texture. Consider a ray R as depicted in Figure
4.7. The depth values di, i = 0, . . . , d− 1 at the intersection points of R and the LDI i depth maps
can be grouped into a number of depth ranges DRj = (Sj , Ej), with j = 0, . . . , d/2. The interval
[Sj , Ej], with Sj = dj·2 and Ej = dj·2+1 specifies the inside of the volume along R. The proposed
compression algorithm consists of two phases: extract and pack. Figure 4.9 illustrates the process
and involved entities.

The first phase extracts all available depth ranges and stores the values of the even depth
layer into RSstart = (S0, . . . , Sm) and the values of the odd layer into RSend = (E0, . . . , Em)
respectively. Simultaneously, an index segment IS, consisting of the vector ISoffset = (O0, . . . , On)
and ISranges = (R0, . . . , Rn), with n = wb · hb is constructed. ISoffset , initialized with a zero offset,
stores an offset into the RS for every 2D texel (s, t) in the first depth layer LDI0. ISranges stores
the number of depth ranges for the coordinate (s, t). Therefore, a tuple I = (OV , RV) is denoted
as an index, where RV represents the number of depth ranges DRi, i = 0, . . . , RV for the ray
coordinates (Rs, Rt). The pseudo code displayed in Algorithm 2 provides details of the first phase
of the compression algorithm, which computes the contents of the specific segments.

Algorithm 2 Depth-Range Extraction Algorithm
procedure extractV DS(V DS)

1: list ISoffset , ISranges,RSstart ,RSend
2: for s = 0→ w do
3: for t = 0→ h do
4: if LDI[s, t, 0] 6= NIL then [check if texel is set]
5: layers← 0 [iterate over depth]
6: for r = 0→ d do
7: depthV alue← LDI[s, t, r] [fetch depth value]
8: if depthV alue 6= NIL then
9: layers← layers+ 1 [depth is valid]

10: if r % 2 = 1 then
11: append(RSstart, depthV alue) [set as start of range segment]
12: else
13: append(RSend, depthV alue) [set as end of range segment]
14: end if
15: else
16: break; [no more valid depth values]
17: end if
18: end for
19: ISoffset [t · w + s]← ‖RSstart‖ [add start of range segment]
20: ISranges[t · w + s]← layers/2 [add number of range segments]
21: end if
22: end for
23: end for

The second phase packs the IS and RS into a 2D luminance-alpha texture which is denoted
as LDIComp. Therefore, ISoffset and RSstart are stored successively in the luminance channel
and ISranges and RSend in the alpha channel respectively. The texture resolution is given by
wc = hc =

⌈√
|IS |+ |RS |

⌉
. Due to the constraints of texture resolution, it is not possible to use

1D textures or texture arrays for our data structure. Often, the maximal texture size is limited

4.3. Generalized Clipping 49

1 bool volumetricParityTestCompressed(in vec4 T, // point in LDI texture space
2 in sampler2D compLDI , // compressed LDI
3 in vec4 bounds , // crop bounds
4 in uvec2 size , // resolution of uncompressed LDI
5 in bool initParity){ // initial parity
6 bool parity = initParity; // initial parity; true = outside
7 if(testAABB2D(T.xy, bounds.xy, bounds.xy + bounds.zw)) // compensate cropping
8 {
9 T.xy = (T.xy - bounds.xy) / bounds.zw; // map cropped coordinates to [0,1]

10 uvec2 CTS = uvec2(textureSize2D(compLDI , 0)); // retrieve compressed texture size (CTS)
11 uvec2 UVC = uvec2(T.st * vec2(size)); // uncompressed vds coordinates (UVC)
12 unsigned int LUVC = UVC.y * size.x + UVC.x; // convert to linearized UVC (LUVC)
13 ivec2 ISC = ivec2(LUVC % CTS.x, LUVC / CTS.x); // coordinate of the index segment (ISC)
14 uvec2 IS = uvec2(texelFetch2D(compLDI , ISC , 0).ra); // sample from index segment IS
15 if(IS.x != 0u) { // depth ranges available ?
16 for(unsigned int i = 0u; i < IS.y; i++) {
17 // compute range sample coordinate (RSC)
18 ivec2 RSC = ivec2((IS.x + i) % CTS.x, (IS.x + i) / CTS.x);
19 vec2 DR = texelFetch2D(compLDI , RSC , 0).ra; // sample range depth range DR
20 if(T.z <= DR.x && T.z >= DR.y) { {
21 parity = !parity; // perform parity test
22 break;
23 } } } }
24 return parity;
25 }

Listing 4.3: GLSL Implementation of the volumetric parity test using compressed LDI.

by the rendering hardware used. The limit for 1D textures for example (8192 pixel [230]) easily
be exceeded. Therefore, the packaging uses 2D textures and need to introduce an additional
un-mapping step for decompression.

Decompression on GPU The decompression of an LDIComp can be performed in all programmable
hardware stages. Listing 4.3 shows a GLSL implementation of the VPT for compressed and cropped
LDI. Figure 4.10 illustrates the process of fetching texels from a compressed LDI by unmapping
texture coordinates. To obtain the coordinates ISC into the IS , a given point V is transformed
using Equation 4.3. After scaling to counterbalance cropping, (Ts, Tt) is linearized with respect
to the texture resolution of the original (wi, hi) and cropped LDI (wb, hb). Then the linearized
coordinate is re-interpreted with respect to wc. After ISC is computed, the range segment offset
OV and the number of depth ranges RV are retrieved. Now, the coordinate RSC into the range
segment RS is determined and the depth ranges DRj are successively sampled. The VPT of
Equation 4.1 is implemented by swapping the input parity pT if Sj < Rz < Ej .

Figure 4.10: Coordinate transformation to access the
depth ranges of a 3D point V .

Discussion of the Compression Algorithm
The test platform is a NVIDIA GeForce
8800 GTS with 640 MB video memory and
Athlon™64 X2 Dual Core 4200+ with 2.21 GHz
and 2 GB of main memory at a viewport res-
olution of 1600 × 1200 pixels. The test appli-
cation does not utilize the second CPU core.
The algorithms are tested with simple or com-
plex, convex and non-convex input shapes of
different geometric and depth complexity. Ta-
ble 4.1 shows preprocessing results for different
input shapes. The compression ratio is given
by Cratio = Mcomp/Mcrop. The proposed com-
pression algorithm performs effectively for non-convex meshes with a high depth complexity. The
presented approach is able to achieve compression ratios of 1:2-3, which is usual for lossless compres-
sion [68]. Compression should be avoided for symmetric convex meshes or meshes with dmin = 2
since the compressed texture size Mcomp is always larger than the cropped size Mcrop. The runtime
performance tview, tpeel , tcrop and tcomp depends on the geometrical complexity of the input mesh

50 Chapter 4. 3D Generalization Lenses

Table 4.1: Performance results of our algorithms for input meshes of different depth complexity. The tests
are performed with an initial texture resolution of wi = hi = 1024 and sH = sV = 8 segments for viewpoint
selection. The time metric is seconds, the texture sizes are displayed in texel.

Shape #Vertex dmin dmax tcrop tcomp tpeel tview Mcrop Mcomp Cratio

994 2 2 0.077 0.437 0.187 2.532 2,097,152 3,742,848 1.78

768 2 6 0.078 0.297 0.187 3.085 2,097,152 3,011,058 1.44

2,903 8 14 0.234 0.109 2.156 7.531 3,026,688 1,204,352 0.39

6,146 6 12 0.203 0.219 25.766 7.172 5,683,200 3,317,888 0.58

23,232 6 12 0.2 0.125 25.875 9.265 3,143,880 1,835,528 0.58

34,344 10 18 0.313 0.078 37.078 12.187 3,358,720 1,089,288 0.32

(#Vertex) and the initial resolution wi, hi of the LDI. The readback of the 3D texture from video
memory to perform cropping and compression can become costly for large resolutions. To speed up
the viewpoint selection, it can be performed with a lower resolution than the resolution required
for the actual bounding representation.

The introduced depth range compression algorithm works only for LDIs that contain depth
maps. If the user wants to incorporate additional per-text data, such as normal or color, perfect
spatial hashing [157] can be used. Due to the regular step size for the alteration of the camera
parameter, it cannot be guaranteed that an orientation with a minimal depth complexity can be
found for every shape. The rendering performance depends on the number and depth complexity of
the used LDIs, thus the number of samples the VPT has to perform, and the geometrical complexity
of the rendered scene. Performance tests point out that using compressed VDS is slower than using
uncompressed ones. This can be explained by the computation costs for the sampling coordinates
of the depth ranges. Although, the computational complexity for the VPT reduces from O(d) to
O(d/2) for compressed LDIs.

4.4 Concept of 3D Generalization Lenses
This generalization technique enables the seamless combination of different virtual 3D model
variants of the same geographic area (e.g., LOA variants) within a single image using multiple
rendering passes. It is based on a the general volumetric clipping technology introduced in the
previous section, which enables pixel-precise clipping of an arbitrary polygonal scene representation
against arbitrary 3D solid clip geometry. This polygonal clip geometry is converted into a layered
depth image (LDI) during a preprocessing step. At runtime, the LDI combined with a volumetric
depth test is used to determine if a fragment of the rasterized scene geometry is inside or outside
the clip geometry represented by the LDI. This test can be implemented efficiently on modern
consumer graphics hardware using shader technology. The data processing steps in required by the
concept of 3D generalization lenses are be divided into a preprocessing, mapping, and rendering
phase. It can be integrated into the visualization pipeline [267]. The flowchart in Figure 4.11 (next
page) shows the respective pipeline stages, performed operations and participated data:

Preprocessing Stage This step prepares all necessary geometry for the rendering phase. This
includes a generalization operation generalization(CM) of a give virtual 3D city model CM
into a sequence of different levels of abstraction (LOA) using a cell-based generalization
technique (Section 4.1). Further, the volumetric depth sprites VDS for each lens volume S is
derived using the algorithm described in Section (Section 4.3).

4.5. Multi-pass Rendering 51

Figure 4.11: Visualization pipeline for the concept of 3D generalization lenses. A preprocessing stage
prepares 3D generalization geometry and the 3D lens volumes for the rendering stage.

Mapping Stage Subsequently to preprocessing, the lens volumes and level-of-abstraction are
associated map(VDS,LOA) to create an initial mappingM between both. The final mapping
(FNC) contains also an distinguished context representation C, which is usually the most
highest generalization level.

Rendering Stage During runtime, the mappingM between levels of generalized geometry LOA
and 3D volumes (VDS) of the lenses can be specified and modified by the user. The
focus+context mapping is rendered render(FNC) in subsequent passes by apply clipping
against the respective lens volume. (Section 4.3). Every LOA geometry is rendered only once
per frame.

The generalization technique creates a sequence of city model representations with increasing
levels-of-abstraction. The generalization representation LOAi of level i generalizes LOAi−1. More
specifically, one component from LOAi aggregates a number of components from LOAi−1. The
technique focuses on aggregation, as it implicates the strongest abstraction compared to other
generalization operators, e.g, simplification. The number of single objects is significantly decreased
when turning to the next level-of-abstraction. For example, the city model used in this section
contains 10, 386 objects in LOA0. It is reduced to 468 objects in LOA1 and to 66 objects in
LOA7. To obtain a homogeneous visualization, no facade textures are kept in the generalized
representations. Textures are only used to provide depth cues using a lighting texture [61].

At runtime, the volumetric lens shapes are stored using respective VDS representations, and
therefore, can be scaled, rotated and translated within the scene interactively. The system supports
the generation of lens shapes from buffered 2D polygonal shapes and polylines. This enables the
derivation of complex lens shapes directly from geo-referenced data. Further, lens shapes can also
be modeled explicitly using 3D modeling software and imported via common interchange formats.
The mappingM = {Mi|i = 0 . . . n} between lens shapes VDS i ∈ VDS and generalization levels
LOAi ∈ LOA can be described as a tuple Mi := (VDS i,LOAi). Here, i denotes the priority of
the mapping. This explicit order over the generalization levels is necessary to handle overlapping
volumes correctly. VDS i represents the focus volume whose contents is defined by the generalization
level LOAi. A particular generalization level represents the context C. The complete mapping is
defined as FNC := (M, C).

4.5 Multi-pass Rendering
To render the mapping FNC , the technique performs multi-pass rendering with one pass per
level-of-abstraction. Algorithm 3 shows the pseudo code for rendering the mapping described in
the previous section. Starting with rendering the context geometry C, the algorithm performs
pixel-precise clipping against all VDS i within a single rendering pass. After that, the geometry of
the generalization levels is rendered successively.
Starting with the highest generalization level n, the parity of the associated VDS is swapped
(setParity), its associated geometry LOA is rastererized (renderGeometry), and finally the current

52 Chapter 4. 3D Generalization Lenses

Algorithm 3 Rendering Algorithm for 3D Generalization Lenses
procedure render(FNC)

1: for all Mi ∈M do
2: VDS ← VDS i ∈Mi [fetch mapping]
3: setActive(VDS , true) [enable clipping]
4: setParity(VDS , false) [clip inside of volume]
5: end for
6: renderGeometry(C) [render context geometry]
7: for i = n→ 0 do
8: VDS ← VDS i ∈Mi [fetch VDS]
9: LOA← LOAi ∈Mi [fetch geometry]

10: if !culling(VDS) then
11: setParity(VDS , true) [clip outside the volume]
12: renderGeometry(LOA) [render geometry]
13: setActive(VDS , false) [disable volume]
14: end if
15: end for

VDS is turned off (setActive). This ensures that the geometry of higher abstraction levels does
not interfere with the geometry of the lower ones. This algorithm is easy to implement and exploits
the design of the VPT. To increase runtime performance, view-frustum culling (culling) is applied
to the AABB of each 3D lens. If no corner vertex of the transformed bounding box of a VDS
is inside the current view frustum, the active status of the respective VDS is set to false. The
function renderGeometry uses the fragment shader shown in Listing 4.4. Basically, it fetches the
GPU representation of the parametrization of FNC and performs a VPT on compressed LDI
(volumetricParityTestCompressed) as described in Listing 4.3.

1 uniform mat4 vdsModelMatrix[MAX_VDS]; // VDS model matrix
2 uniform mat4 vdsConfigMatrix[MAX_VDS]; // VDS configuration
3 uniform sampler2D vdsSampler[MAX_VDS]; // compressed VDS Sampler
4 varying vec4 vertex; // vertex coordinates to test
5
6 void main(void)
7 {
8 gl_FragColor = color;
9 for(int i = 0; i < MAX_VDS; i++) {

10 bool isOn = vdsConfigMatrix[i][0].x == 1.0; // check if VDS is active
11 vec4 T = vdsModelMatrix[i] * vertex; // transform into texture space
12 uvec2 size = textureSize(vdsSampler[i], 0); // retrieve LDI dimensions
13 bool parity = vdsConfigMatrix[i][0].y == 1; // set initial parity
14 if(isOn && volumetricParityTestCompressed(// perform volumetric test
15 T.xyz , vdsSampler[i], vdsConfigMatrix[i][1], size , parity)) {
16 discard; // discard fragment
17 }// endif
18 }// endfor
19 return;
20 }

Listing 4.4: GLSL Implementation for rendering 3D generalization lenses.

Figure 4.12 (next page) illustrates the above algorithm by showing the intermediate rendering
results for an exemplary mapping FNC := ({(VDS0,LOA0), (VDS1,LOA1)}, C). Figure 4.12(a)
shows the results of rendering only the context geometry C (white) with activated generalized
clipping against all lens volumes VDS ∈ VDS. The intermediate result of the second rendering pass
(Fig. 4.12(b)) adds the geometry LOA1 (blue) that is clipped against VDS0. Figure 4.12(c) shows
the final visualization achieved by rendering the geometry of LOA0 (red) clipped against VDS1.

4.6. Usage Scenarios and Discussion 53

(a) Context geometry only. (b) Context and LoA 1 rendering. (c) Final visualization.

Figure 4.12: Intermediate rendering results of the 3D generalization lenses rendering technique.

4.6 Usage Scenarios and Discussion
The presented technique supports the simultaneous use of multiple clipping volumes associated
to different abstraction levels. It can handle overlapping and nested lenses, and provides their
interactive modification: at runtime, the lens shapes can be scaled, rotated, and translated within
the 3D scene. The system supports different methods for the lens shape creation. It enables the
creation of complex lens shapes from geo-referenced data, such as buffered 2D polygonal shapes
and polylines. Further, the lens shapes can also be modeled explicitly using 3D modeling software
and imported using common interchange formats.

Figure 4.13 (next page) shows application examples for the interactive visualization of large
scale virtual 3D city models. The input dataset comprises the inner city of Berlin with about
10, 386 generically textured buildings on top of a digital terrain model. The approach was tested
in different usage scenarios. Using only a single focus can be considered as the standard use
case for the lens visualization technique. In this case the mapping is usually defined as: FNC =
({(VDS0,LOAi)},LOAj), with j > i. Figure 4.1 shows an application example that emphasizes a
single volume-of-interest. Using multiple foci implicate the handling of disjunctive, overlapping,
and nested volumes-of-interest. Figure 4.13 shows examples of two overlapping regions-of-interest.

With respect to the lens interaction, the visualization technique supports two types of lenses.
As described in [219] they can distinguished by the modification of the lens position during rendering
with respect to the camera. The visualization technique supports both lens types simultaneously:
(1) the position of a scene lens is independent from the user’s orientation. The lens position can be
fixed with respect to the 3D geovirtual environment or attached to a moving object in the scene
(Fig. 4.13(a) and 4.13(b)); (2) a camera lens adapt its position with respect to the current user
orientation. It can be used to assure that potential foci are always visible (Fig. 4.13(c) and 4.13(d)).
This minimizes the effort for the user to interactively control the lenses.

To summarize, this chapter presents an interactive focus+context visualization technique
that combines different levels-of-abstraction of a virtual 3D city model within a single image.
The approach is based on an automated generalization algorithm for virtual 3D city models and
pixel-precise clipping against multiple, arbitrarily shaped, polygonal meshes, which act as 3D lenses.

The main conceptual limitation refers to the one-to-one mapping between generalizations levels
and lens volumes. Therefore, it is currently not possible to assign multiple volumes to a single
generalization level. Further, the approach is limited by the memory consumptions of the LOA and
VDS. The storage of high quality generalization levels, e.g., with precomputed lighting textures,
exceeds easily the main memory size. Also, the 3D texture representation of the VDS can induce
high GPU memory requirements. The main drawback concerns the rendering performance that
depends on the number and depth complexity of the VDS. To reduce visual artifacts during clipping
the visible backfaces are colorized. Therefore it is not possible to apply back-face culling without
causing visual artifacts.

54 Chapter 4. 3D Generalization Lenses

(a) Multiple overlapping scene lenses from a near ground
perspective.

(b) Two overlapping scene lenses from a bird’s-eye per-
spective.

(c) Two nested camera lenses from a near ground per-
spective.

(d) Two nested camera lenses from a bird’s-eye perspec-
tive.

Figure 4.13: Examples for 3D generalization lenses in different usage scenarios.

Chapter 5

Dynamic Mapping of Raster Data

Interactive 3D geovirtual environments (GeoVE), such as 3D virtual city and landscape models,
are important tools to communicate geo-spatial information. Usually, this includes static polygonal
data (e.g., digital terrain model) and raster data (e.g., aerial images), which are composed from
multiple data sources during a complex, only partial automatic pre-processing step. When dealing
with highly dynamic geo-referenced raster data this preprocessing step becomes a limiting factor.
To counter this limitation, this chapter presents a concept for dynamically mapping multiple
layers of raster data for interactive GeoVE. It represents a method of geographically oriented
and earth surface related data processing for 2.5D representations. The implementation of the
rendering technique is based on the concept of projective texture mapping and can be implemented
efficiently using consumer graphics hardware. Further, this chapter demonstrates the flexibility of
the presented technique using a number of typical application examples.

5.1 Decoupling Geometry and Texture Data

Figure 5.1: Examples of a 2D surface lenses combin-
ing two different layers containing temporal contents.

Today, the availability and acceptance of inter-
active 3D geovirtual environments as a tool for
information visualization have increased. The
possible (semi)automatic derivation of virtual
representations of the real world with a cer-
tain degree of up-to-dateness, at a sufficient
quality and at reasonable costs, provides the
basis of applications beyond marketing pur-
poses: as tools for scientific visualization of
geo-referenced information. This includes 3D
GeoVE as scenery for visualizing geo-referenced
thematic data. High-order visualizations [17],
e.g., coloring according to specific statistical
data or focus+context visualization [46], typi-
cally rely on assigning information encoded in raster data [272] to the geometry of a 3D GeoVE.
This assignment can be implemented using the concept of texturing [3], which requires a texture
coordinate mapping to associate geometry and texture data. This data is acquired from different
data sources, e.g., computer aided design (CAD), geoinformation systems (GIS), and building
information models (BIM). For these models, the texture mapping is static, i.e., the necessary
texture coordinates are computed or manually assigned in a preprocessing step. Consequently,
design and appearance are inherent properties of these models and difficult to change and edit at
runtime. Thus, static mapping is only suitable for the visualization of non-dynamic data, such as
land-use or long-term statistical information.

To enable the application of 3D GeoVE for decision support systems, e.g., to facilitate the
fighting of floods or forest fires, or for the visualization of dynamic simulation results, a dynamic
texture mapping process is required. For example, modern approaches [164] use the concept of
general-purpose computation on graphic processing units (GPGPU) to compute physical simulations
of gases or fluids in real-time. These techniques use textures as main data type.

56 Chapter 5. Dynamic Mapping of Raster Data

Final Visualization Building Catagory Data

Traffic Frequency Data

Figure 5.2: Application example for dynamically mapping of thematic raster data layer to 3D geovirtual
environments. Building category data overlaps traffic frequency data.

The concept of projective texture mapping (PTM) [231] is fundamental for a number of
advanced rendering techniques, such as per-pixel spotlight rendering or shadow mapping. It
is supported by a wide range of rendering APIs and hardware. The required dynamic texture
coordinate generation (DTCG) is performed by applying a projection matrix to each vertex or
fragment of a 3D scene. Debevec et al. use it for view-dependent texture mapping (VDTM)
of oblique aerial images onto 3D geometry [52]. Due to the design of hardware APIs, existing
implementations of PTM [81] are limited with respect to the number of projective textures, i.e.,
the number of simultaneously available texture units (varying between 8 and 32 on modern graphic
cards). Further, PTM suffers from back-projections and artifacts caused by mismatches in sampling
frequencies when perspective projection matrices are used. In existing geovisualization frameworks
[143], PTM is used to apply rasterized polygonal data, e.g., street networks or land-coverage
information onto digital terrain models. This approach avoids z-fighting artifacts between the
digital terrain model and the polygonal data that are caused by the different tessellation levels of
the respective geometry.

Texture bombing [96] is another approach for combining textures at a random basis. This
rendering technique places small images at irregular intervals on larger images and is applied within
a single rendering pass. During the texture mapping process, the texture-coordinate space of an
input primitive is divided into cells. Subsequently, detail images are randomly placed within the
selected cells which results in a collage-like output texture. The process of cell-determination is
costly, since it requires a high number of texture sampling operations to apply detail images across
cell borders without artifacts. Textures are able to store data that represent different information.
During the process of information visualization, color or style transfer functions (STF) are often
used to map such data to specific color spaces [253] or to highlight salient features of a virtual scene.
Bruckner & Gröller introduce style transfer functions for volume rendering [34]. The approach
uses texture data for representing transfer functions and shader programs for their evaluation at
runtime.

PTM [231] can perform DTCG, but existing implementations [81] are limited with respect to
the number of mappings that can be applied in a single rendering pass. This limitation can be
counterbalanced by using multiple rendering passes, but this decreases the performance especially
for virtual 3D models of high geometrical complexity. Furthermore, the available concepts of texture
mapping do not meet the requirements in terms of flexibility and scalability that are necessary for
modern information visualization.

Based on the assumption that the 3D geometry of a virtual city or landscape model can be
partially approximated by a 3D reference plane, the presented approach performs the dynamic
mapping process by projecting the raster-data into the virtual scene. In combination with a

5.2. A General Concept for Projective Mappings 57

Figure 5.3: Illustration of the color mapping process for projective mappings. The data layer is mapped to
the geovirtual 3D environment using projective texture mapping. The respective per-fragment data value is
mapped to a specific color value and blended with the original fragment color.

framework for color transfer functions, the presented approach can be used to render most surface-
related phenomena. The implementation provides a number of advantages: (1) the number of
textures used are not limited by texture units provided by the rendering hardware (usually 16-32)
but by the maximum number of 2D texture layers within a 3D texture or 2D texture array (usually
128 or more) and (2), it does not require multi-pass rendering for the image synthesis.

5.2 A General Concept for Projective Mappings
Together with a concept of color transfer functions that are specific to 3D GeoVE, this chapter
presents a combination of projective texture mapping and texture bombing to overcome the
limitations of the respective approaches. It is is based on the assumption that the geometry of
a geovirtual model can be approximated by a reference plane R = (OR, NR), represented by the
origin OR ∈ W = R4 in world-coordinates and the plane normal vector NR ∈ D = [0, 1]4 ⊂ R4.
Given this, the concept comprises three main components:

Data and Color Layers: The data layers represent the raster-data that is mapped onto the geometry
of a 3D GeoVE. The set of all available 2D raster-data layers Li is denoted as L = (L0, . . . , Lm).
The contents of these layers can further be mapped to final colors using 1D color look-up
tables C = (C0, . . . , Ck).

Texture Coordinate Generation: This component computes the texture coordinates for each scene
point using projection matrices that are derived from a parametrization described below. The
step assumes that an application already performed the geo-referencing for each parametriza-
tion, and thus, provides world-space coordinates for rendering.

Color Transfer Functions: Given the texture coordinates and the sampled layer values, this com-
ponent enables coloring, masking, blending, and the composition into an output value for
each mapping using instances of a color transfer function.

Figure 5.3 shows an overview how these components interact during the real-time image synthesis.
A data layer is mapped to the virtual 3D environment using projective texture mapping. The
respective per-fragment data value is subsequently mapped to a specific color value and blended
with the original fragment color to obtain the final color.

Projective Texture Mapping The sampling coordinates S ∈ D for fetching the layer data for an
input point P ∈W are computed by S = T · P . The homogeneous projection matrix T is defined
as follows:

T =


1
2 0 0 − 1

2
0 1

2 0 − 1
2

0 0 1
2 − 1

2
0 0 0 1

 ·MT ·MP ·MO ·M−1
V

58 Chapter 5. Dynamic Mapping of Raster Data

M−1
V represents the inverse viewing transformation that maps a point from eye-space into world

space coordinates. The projection mapping is computed using the projector orientation matrix MO

and the orthographic projector matrix MP , which direction-of-projection (DOP) is usually NR.
MT represents possible scaling, rotation, and translation operations applied before the coordinates
are mapped into the texture space D.

Mapping Parametrization To enable a compact parametrization of PTM, the structure of a pro-
jective mapping (PM) is represented as follows: PM = (O,U, V,MT , Li, Cj ,CM). The parameter
O ∈W denotes the center of the rectangular mapping. To support an anisotropic orientation, the
vectors U, V ∈W define the bounds on the reference plane and form an orthonormal base used for
the projector orientation MO. Associated with each mapping is a data layer Li ∈ L, a color look-up
table Cj ∈ C, and an additional transformation matrix MT . Here, CM represents the parameter
set for the color transfer function described in the next section.

A set of n projective mappings is denoted as PM = {PM i|i = 0, . . . , n − 1}. The explicit
order is necessary for the correct compositing of the transfer function results during the evaluation
process of each PM (Section 5.3). Given the above parametrization, instances of MO and MP are
derived as follows:

MO =


Jx Jy Jz −Ox
Kx Ky Kz −Oy
Lx Ly Lz −Oz
0 0 0 1

 J = |U |
K = |V |
L = J ×K

MP =


h 0 0 0
0 v 0 0
0 0 2 −1
0 0 0 1

 h = ‖U‖
2

v = ‖V ‖
2

Color Transfer Functions This section focuses on mapping the scalars sampled from Li into an
output color value. To enable a general approach, the user needs to define the following functions for
a color mapping CM = (fBS

, fBD
, fCS

, fCD
,MC , fα). For a projective mapping PM , the source

color CS = fCS
(S) can be fetched from standard static texture channels (diffuse color, light maps,

etc.), from the associated data layer Li, or derived from the Cj using the sampled value of Li.
The results can be adjusted using a color matrix MC , which does not affect the alpha channel.
Thus, fα(S) is used to adapt the respective alpha channel. The opacity scalar values can be
fetched from a mask layer, derived from a gray-scale color ramp, or simply be uniform. The output
color CO for a PM is computed via: CO = fB (CBS

, CS , CBD
, CD). Here, fB is the standard

color blending operation [3], based on the blend functions for source color CBS
= fBS

(CS , CD)
and destination color CBD

= fBD
(CS , CD). Thus, standard combination modes, such as color

replacement, multiplication, or blending, are supported.

5.3 Real-time Rendering of Projective Mappings
The prototypical implementation uses OpenGL [230] with the support of shader programs [144]. It
is capable of rendering a high number of projective mappings within a single rendering pass. This is
useful to achieve a high rendering performance for large-scale 3D GeoVE. Therefore, it is necessary
to encode the data layers L, color look-up tables C, and the parametrization of PM into suitable
GPU data structures.

GPU Data-Structures To enable an efficient and scalable implementation, 2D texture arrays
are used to represent L and C. This enables the usage of more textures than the number of
simultaneously accessible texture units and texture coordinates slots. A 2D texture array is similar
to a 3D texture without a bi-linear interpolation between and with direct access to the z-slices. It
further facilitates sharing of the layer data between different projective mappings.

5.3. Real-time Rendering of Projective Mappings 59

To enable scalability of the implementation with respect to the number of simultaneously active
PMs, texture buffers are used to store the settings of PM. Our implementation transfers the scalar
and vector parameters of each active PM (Section 5.3) into a matrix form. The projection matrices
Ti are constant for each rendering frame and, therefore, are pre-computed on the central processing
unit (CPU). Together with the color matrices MCi , they are stored successively within a single
texture buffer that is accessed via indexing during shader execution. The transfer step is only
performed if the configuration is changed at runtime.

Per-Fragment Mapping Evaluation The evaluation of the projective mappings is performed in
a fragment shader program that is activated and configured before rendering the complete scene
geometry. The pseudo-code in Algorithm 4 shows the evaluation process for all active PM i ∈ PM.
For each PM , the parameters are fetched from the texture buffer (Line 5-6, 9-11), the texture
coordinates for the data layer are computed (Line 7), the color mapping and blending-mode functions
are applied (Line 12-15), and finally the color blending is performed (Line 16). Given the explicit
order over PM, the evaluation iterates over all mapping starting with the last (Line 3-17). At the
end of the evaluation, the fragment output color is set accordingly (Line 18).

Algorithm 4 Per-Fragment Mapping Evaluation
procedure evaluate(P , PM, L, C)

1: CO ← sceneColor() [fetch color resulting from texturing and shading]
2: for all PMi ∈ PM do
3: PM ← PMi ∈ PM [fetch projective mapping]
4: T ← Ti ∈ PM [fetch projection matrix]
5: S = T · P [compute texture coordinates]
6: if testAABB2D(S) then
7: L← Li ∈ L [fetch data layer]
8: C ← Ci ∈ C [fetch color look-up table]
9: MC ←MCi ∈ CMi [fetch color mapping]

10: [compute blending]
11: CS = fαi(S, fCS

(S,L,C))
12: CD ← fCS

(CO,L, C)
13: CBC

= fBS
(CS , CD)

14: CBD
= fBD

(CS , CD)
15: CO = fB(CBS

, CS , CBD
, CD)

16: end if
17: end for
18: setFragmentColor(CO) [set output color]

Rendering Optimizations Iteration and sampling are costly per-fragment operations, especially
if performed for a high number of projective mappings. To increase the rendering performance,
two CPU-based culling techniques are applied to each mapping PM , before it is encoded into the
GPU data structure. At first, view-frustum culling is used to disable the mapping, if its respective
bounding area does not intersect the view frustum of the virtual camera. Subsequently to this test,
a screen-space error metric is applied. The object-space area of a PM is mapped to a screen-space
error as follows:

ρ = w

φ
· ‖U‖ · ‖V ‖
‖O − COP‖

The vector COP represents the virtual cameras center-of-projection. The variable w ∈ N+ denotes
the horizontal screen resolution, while φ ∈ [0; 360[⊂ R is the current horizontal field-of-view.
If the resulting value ρi ∈ R is smaller than a user defined threshold t ∈ R, the PM will be
disabled. For a scene within a normalized volume ([−1,+1]3), t ≈ 0.02 is appropriate to balance
the trade-off between rendering performance and possible popping artifacts. During the evaluation

60 Chapter 5. Dynamic Mapping of Raster Data

1 uniform mat4 configurations[MAX_MAPPINGS]; // projection configuration
2 uniform mat4 projector[MAX_MAPPINGS]; // projection matrices
3 uniform mat4 viewInverse; // view -inverse matrix
4 uniform sampler2DArray dTArray; // data texture array
5 uniform sampler1DArray cmTArray; // colormap texure array
6 uniform int mappings; // number of projective mappings
7 varying vec4 eyeSpacePosition; // position of fragment in eyespace
8
9 // implementations of blend equations

10 vec4 blendFunction(in int modeSRC , in int modeDST , in vec4 SRC , in vec4 DST);
11 // axis -aligned bounding -box test
12 bool testAABB2D(in vec2 v, in vec2 b1, in vec2 b2);
13 // computation of color appearance
14 vec4 layerAppearance(in vec4 sceneColor , in mat4 config , in vec2 coords ,
15 in sampler2DArray data , in sampler1DArray colorMap);
16 // computation of mask appearance
17 vec4 layerAlphaAppearance(in vec4 color , in mat4 config , in vec2 coords ,
18 in sampler2DArray data , in sampler1DArray colorMap);
19
20 void main(void) {
21 vec4 result = gl_Color;
22 vec4 sceneColor = result;
23 for(int i = mappings -1; i >= 0; i--){ // evaluate projective mappings
24 mat4 config = configurations[i]; // fetch current config matrix
25 // compute sampling coordinate
26 vec2 coords = (projector[i] * (viewInverse * eyeSpacePosition)).xy;
27 // test for 2D bounds ... fetch only valid tex coords
28 bool bbTest = bool(configuration [0][0]);
29 if(! bbTest || testAABB2D(coords , vec2 (0.0), vec2 (1.0))){
30 // compute layer color
31 vec4 appearance = layerAppearance(sceneColor ,config ,coords ,dTArray ,cmTArray);
32 // compute layer alpha value
33 appearance = layerAlphaAppearance(appearance ,config ,coords ,dTArray ,cmTArray);
34 // fetch blend functions and perform blending
35 result = blendFunction(int(config [3][1]) , int(config [3][2]) , appearance ,result);
36 }// endif
37 }// endfor
38 gl_FragColor = result;
39 }

Listing 5.1: GLSL fragment shader implementation for the dynamic mapping process.

of the mapping, a test function (testAABB2D in Alg. 4, Line 8) verifies, if the computed sampling
coordinates S are within the valid range D. If this test fails, the sampling of the data layer Li is
avoided.

Table 5.1: Performance evaluation for various projective mappings
(in frames-per-second).

Fig. #Vertex #PM PMoff PMon ∆(%)

1 1,040,503 3 10.41 9.87 5.19
3.A 41,032 4 52.88 51.20 3.18
3.B 61,756 27 156.10 27.94 82.10
3.C 6 4 1063.83 236.97 77.72
3.E 37,404 16 206.21 45.70 77.84
3.F 6 6 1075.27 110.54 89.72

Performance Evaluation The test
platform is an NVIDIA GeForce
8800 GTS with 640 MB video mem-
ory and Athlon 64 X2 Dual Core
4200+ with 2.21 GHz and 2 GB of
main memory at a viewport resolu-
tion of 1600 × 1200 pixels. The test
application does not utilize the sec-
ond CPU core. Table 5.1 provides
the performance measurements of
the examples in Section 5.4 that can
be rendered within a single rendering pass. The performance evaluation showed that the implemen-
tation is fill-limited and depends mainly on the geometrical complexity of the model and the number
of PM used. This means, the performance decreases, while the number of fragments affected by a
projective mapping increases. This is usually the case if the user is near the reference plane or a
high number of projective mappings inside the current view frustum have to be evaluated. Here,
the implementation of the color transfer functions is the main computational bottleneck.

5.4. Application Examples 61

(a) Propagation data projected onto a virtual 3D city
model

(b) Rendering of multiple, overlapping, non-uniform
transmitter ranges.

Figure 5.4: Application examples for the projective mapping of spatial-temporal raster data.

5.4 Application Examples
The concept of dynamic mapping of raster data enables a hierarchy-based combination of different
mappings and can be applied to render different standard visualizations. An area of application
is the mapping of dynamic spatial-temporal data, e.g., crime data, noise data and environmental
pollution data (Fig. 5.4(a)), transmitter coverage, or fire-, explosion-, and flood zones. It can further
be used to visualize building heights, isolines, and the positions of moving objects. By changing
the color transfer functions of CM accordingly, it is possible to communicate the overlapping of
scalar values (Fig. 5.4(b)). This section discusses three applications examples for focus+context
visualization of 3D GeoVE and their respective parametrization. The presented approaches can
be used to implement lens-based focus+context visualization techniques such as 2D surface lenses
as well as highlighting. Interactive movable filters [241] are supported by adjusting the projector
matrix accordingly, i.e., by using direct manipulation techniques.

Glyphs and Object Highlighting Since the approach enables the rendering of a high number of
projective mappings, it can be used to annotate 3D GeoVE with cartographic symbols (Fig. 5.5(a))
to facilitate the creation of 3D digital maps. The advantages of projecting symbols onto the city
model geometry are the emphasis of the symbol-object relationship, the reduction of interpretation
ambiguities, and the removal of label-scene occlusions. This delivers acceptable visual results for
generalized versions of virtual 3D city models [95], viewed from a bird’s-eye or a plan perspective.

(a) Exemplary set of symbols projected onto the surfaces
of a generalized virtual 3D city model.

(b) Object-highlighting using various mask representing
paths and landmarks.

Figure 5.5: Application examples for annotations (A) and object highlighting (B) of 3D geovirtual envi-
ronments using the projective raster mapping technique.

62 Chapter 5. Dynamic Mapping of Raster Data

Exemplary compositing variants after style transferData layer

Figure 5.6: Examples of 2D surface lenses implemented using the concept of projection raster mapping.

The icons can be exchanged, scaled, rotated, or faded view-dependently to ensure an optimal
readability. It further enables view-dependent switching between different levels-of-abstraction
(LOA) without adapting the projective mappings. A variant of the value mapping is used to
highlight specific features or landmarks of a virtual city or landscape model. This can be performed
for a number of points-of-interests or for routes to facilitate navigation and orientation within 3D
GeoVE. Figure 5.5(b) shows a visualization that applies different PMs to highlight a route and its
immediate surrounding by reducing brightness and saturation of the contextual scene using the
color matrix MC .

Given a route described by a number of way points W = {W0, . . . ,Wn}, a point radius r ∈ R+,
and an edge height h ∈ R+, n projective mappings PMi, i = 1, . . . , n for the way points are computed
with the following setting: Oi = Wi, Ui = A · s, and Vi = B · s. Here, A,B ∈ D are orthogonal
normal vectors in the reference plane R. Further, n− 1 mappings PMj , j = n, . . . , 2n− 1 for each
edge between the way points WS = Wj−n and WE = Wj−1−n are computed. The respective setting
is computed as follows: Oj = (WS +WE)/2, Aj = ‖WE −WS‖ · h, and Bj = NP ×Aj · |WE −WS |.
The respective PMs uses a circular mask for each way point and a rectangular mask for each edge.
This enables only the visualization of straight routes. This limitation can be compensated by
deriving appropriated mask layers using a given street network.

2D Surface Lenses Projective mappings can be used for masking and blending different texture
layers (Fig. 5.6). They can be used to implement 2D surface lenses [58]: multiple 2D textures
represent independent layers of information, e.g., shading, land use information, and street networks
while artificial textures represent masks and blending filters. To enable the rendering of 2D surface
lenses without the use of multi-texturing, data layers L can represent content data layer, such as
street and land-use information represented as independent thematic information layers, and mask
layer presenting the regions-of-interest for which the content data layer is valid for. The particular
data layer masks can be derived from feature data or drawn directly by the user onto the digital
terrain model. In such use-cases, our approach has a number of advantages. It enables a continuous
smooth transitions between data layers defined by 2D masks, which can have arbitrary shapes. The
DTCG enables the interactive movement of a lens, while the implicit hierarchy supports the usage
of overlapping and nested lenses.

5.5. Conclusions and Future Work 63

Parametrization of 3D Iso-contours Isocontours (also isopleths, isolines, level sets) are commonly
used to visualize real-valued data defined over a 2D plane according to a set of given isovalues.
To support the 3D landscape metaphor for information visualization, a 3D stepped terrain can
be derived by lifting and extruding isolines to their particular isovalue, but typically requires
triangulation of the resulting surface representation in a preprocessing step.

A

B

Figure 5.7: Exemplary visualization (A) for
parametrization of 3D iso-contours using a 2D surface
lenses (B).

In [GTD10], a concept and rendering tech-
nique for triangle-based terrain models is pre-
sented that provides interactive, adaptive gener-
ation and visualization of such stepped terrains
without preprocessing. The fully hardware-
accelerated rendering technique creates addi-
tional step geometry for each triangle intersect-
ing an iso-plane on-the-fly. Further, an addi-
tional interpolation schema facilitates smooth
transition between established 3D terrain visual-
ization and its stepped variant. Lenses are used
to show different data representations in the
same geographic space using a lens metaphor.
The presented interpolation schema enables the
application of a smooth lens to the visualiza-
tion, which shows the original continuous ter-
rain model inside the lens, and the abstracted,
quantized model outside (Fig. 5.7). The imple-
mentation is based on an additional grayscale texture to represent the lens by values in the interval
[0, 1]. By transforming the texture matrix or interactively drawing into the lens texture, the lens
can also be dynamically adapted.

5.5 Conclusions and Future Work
This chapter presents a general concept for dynamically mapping 2D raster-data to 2.5D and 3D
geovirtual environments. It is based on projective texture mapping for dynamic texture coordinate
generation and provides a fully hardware accelerated implementation that enables the interactive
rendering even for a high number of projective mappings. This approach enables the implementation
of dynamic visualization of arbitrary thematic data using 3D geovirtual environments as scenery
for an effective information communication. Previous approaches for are limited by the number of
texture units available or required multi-pass rendering for the image synthesis process.

In principle, the presented concept suffers from the same problems and limitations of texture
mapping itself. The quality of the rendering output depends on the texture resolution of the data
layer, the sampling strategies, and the numerical precision of projective texture mapping. Since
orthographic projector matrices with a DOP along NR are used, the implementation does not suffer
from artifacts caused by a mismatch in sampling frequencies. Further, the current implementation
requires a uniform texture resolution and color channel configuration and does not support the
usage of texture atlases. However, the main limitation represents the restriction to 3D GeoVE that
can be approximated by a planar surface.

For future work, the implementation can be extended to support out-of-core rendering for
the texture atlases and 3D textures representing data as well as color layers. Further, the concept
and implementation can be extended to provide a level-of-detail mechanism for the data layers.
Furthermore, the usage of adaptive, view-dependent projector matrices and the integration of
procedural textures indicate promising features. Finally, the implementation can be optimized by
performing the texturing in a deferred approach by using G-Buffers [222]. Thus, the computations
are performed on visible fragments only, which decrease the runtime complexity for scene with high
overdraw.

Chapter 6

Rendering Technique for
Image-space Deformations

This chapter presents an image-based approach to efficiently generate multiple non-planar projections
of arbitrary 3D scenes in real-time. The creation of projections such as panorama images or fisheye
views has manifold applications in 3D geovirtual environments. The proposed rendering technique is
based on dynamically created image-based representations of the geovirtual environment surrounding
the virtual camera (cube map textures) in combination with shader programs that compute the
specific projections. Based on this principle, an approach to customize and combine different
planar as well as non-planar projections is presented. The technique can be applied within a
single rendering pass, is easy to implement, and completely exploits the capability of modern
programmable graphics hardware.

6.1 Non-planar Single-center Projections

Figure 6.1: Interactive artistic rendering of a com-
pound eye that is rendered using the concept of pro-
jection tiles (shown as green lines).

This chapter presents an image-based render-
ing technique that overcome the field-of-view
(FOV) limitations of the classical pinhole cam-
era rendering pipeline and enables the application
of non-planar projection on standard consumer
graphics hardware in real-time. Examples are
omni-directional panorama for non-planar screens,
spherical dome projections, or more complex pro-
jections (Fig. 6.1). It further can be used to easily
implement 2D focus+context lens techniques such
as multi-focal fish-eye views. In particular, the
rendering technique focuses on real-time modifi-
cations of perspective views that become possible
due to recent hardware developments [20]. The
presented approach is limited to single-center pro-
jections (SCOP). In spite of non-planar projection
screens [184], this technique can also be used for rendering effects in games as well as to improve
visibility in virtual landscapes [204] or virtual city environments. Thus, applications can apply
extreme perspectives [90] and high FOV angles by having a reasonable survey of the scene [91] as well
as a better size and depth perception [198]. The approach exploits dynamic environment mapping in
combination with the programmable GPU. The separation of projection computation and cube map
texture creation enables a broad range of optimization techniques. Existing image-based approaches
for non-planar projections suffer mainly from the lack of interactive capabilities when used with
complex geometric scenes or large viewports common for 3D GeoVE. This can be explained by the
trade-off between the generality of the proposed frameworks and the efficiency of the rendering
techniques. Furthermore, the parametrization are complex and cannot be intuitively controlled by
the user [32].

66 Chapter 6. Rendering Technique for Image-space Deformations

(a) Standard perspective projection
with a FOV of 45◦.

(b) Non-planar spherical projection
with a FOV of 260◦.

(c) Same projection with an off-axis
vector O = (0.8, 0, 0).

Figure 6.2: Comparison between perspective and spherical projections.

6.2 Real-time Rendering of Non-planar Projections
Before discussing projection tiles, this section describes a basic approach to generate multiple
non-planar projections in real-time (Fig. 6.2), inspired by the idea described in [259]. This CPU-
based technique renders six views with 90◦ FOV in each direction. Afterward, a mapping table is
used to transform these pixels into a single view according to spherical or cylindrical projections.
This approach can be transferred to a completely GPU accelerated implementation using cube
map textures [189] and fragment shader functionality [207] that comprises of the following three
components:

Dynamic Environment Map: Dynamic environment mapping [116] enables the image-based repre-
sentation of the complete 3D GeoVE around the virtual camera. Figure 6.3 shows different
types of environment maps. For this approach, a cube map texture representation is choosen
because it is free of distortions, provides an optimal texture utilization, and is a fully hardware-
accelerated feature. A dynamic cube map texture can be created by using single or multi-pass
rendering (see Section 6.4).

Projection Canvas: A projection canvas (PC) is a parametrized geometry that represents the
planar area on which a particular projection is rendered to. This can be a screen-aligned quad
that covers the complete viewport or a quad that is placed within the 3D scene. Exemplary
parametrizations of the projection canvas are shown in Figure 6.4.B and 6.4.C.

Shader Functionality: The presented rendering technique relies on fragment shader functionality
to encapsulate the projection math by implementing a so-called projection function that is
evaluated for each point on the projection canvas. A projection function is a mapping of a
2D point on the parametrized PC to a 3D cube map sampling vector. During rendering, the
hardware rasterizer interpolates the parameters of the PC, which are subsequently evaluated
by the shader program that implements a specific projection function.

Left

TopFrontBottom

Right

Back

B

Left Back

Top

Right

Bottom

Front

C D

Left

Top

Right

Bottom

Back

A

Back Right

Top

Bottom

Left

Figure 6.3: Comparison between different types of environment maps. A: Cube map texture that consists
of six equal-sized 2D textures. B: A sphere map that utilizes only 78% of the available texture space and
contains distorted areas (front). C: Back-paraboloid environment map. D: Pyramidal environment map as a
seldomly used type that fully utilizes the available 2D texture space.

6.2. Real-time Rendering of Non-planar Projections 67

Figure 6.4: Overview of the utilized coordinate systems for creating non-planar projections. A: Coordinate
system and orientation of a cube map texture. B: Polar coordinates for computing spherical projections. C:
Parametrization of the projection canvas that is suitable for cylindrical projections.

Projection Functions To compute a non-planar projection of the geovirtual environment repre-
sented by the cube map, a sampling vector S = (x, y, z) ∈ D3 for each fragment Fst = (s, t) ∈ D2 on
the rasterized projection canvas is determined. Where D = [−1, 1] ⊂ R is the normalized coordinate
space for the canvas. Figure 6.4 shows the parametrization of the cube map (A) and the projection
canvas (B and C). A projection function δP(Fst) = S for a projection P can be defined as:

δP : D2 −→ D3 (s, t) 7−→ (x, y, z)

Figure 6.5.A shows a horizontal cylindrical projection C that can be formulated as instance
δC(Fst, α, β) = S with an horizontal FOV of 2 · α and a vertical FOV of 2 · β:

x = cos(s · α) y = t · tan(β) z = sin(s · α)

Figure 6.4.C shows a possible parametrization of the projection canvas. Further, a spherical
projection S with an FOV of γ can be expressed as δS(Fst, γ) = S with:

x = sin(θ) · cos(φ),
y = sin(θ) · sin(φ),
z = cos(θ),

φ = arctan(t, s)
θ = r · γ/2
r =

√
s2 + t2

Figure 6.5.B shows an resulting example of this projection while Figure 6.4.B displays the mapping
between a point on the projection canvas (Fst) and cube map sampling vector S. The ideal
hemisphere differs from an approximation for fisheye lenses [184] with θ = 1.411269r− 0.094389r3 +
0.25674r5.

Adjusting the Orientation of the Projection Camera The above procedure assumes a cube-map
camera orientation toward the negative z-axis. To decouple the orientation of the cube map and
the projection, the sampling normal S has to be adjusted before sampling the cube map. If the
cube map texture is created in the standard orientation (Fig. 6.4.A), S have to be corrected by
transforming it with respect to the current parameters of the projection camera orientation. Let
C be an orthonormal base constructed from the current look-to vector LT = (xT , yT , zT) ∈ D3,
look-up vector LU = (xU , yU , zU) ∈ D3 and the cross product LC = (xC , yC , zC) = LT × LU .

A B

Figure 6.5: Exemplary applications of the presented rendering technique. A: Panoramic (cylindrical)
projection with 360◦ horizontal FOV. B: Spherical projection with a FOV of 180◦ and applied motion blur.

68 Chapter 6. Rendering Technique for Image-space Deformations

1.B1.A 2.A

2.B

Figure 6.6: Examples of the normal-map optimization technique. Figure 1.B and 2.B show the normal
map for the respective projection 2.A and 2.A. Sub-figure 2 demonstrates the result of blending two normal
maps (cylindrical and spherical) to obtain a mixed projection.

Subsequently, for a projection P, a fragment Fst, and orientation of a projection camera C, the
final sampling vector V is computed by:

V =
(
C · δP(Fst · s)

)
−O C =

xT yT zT
xU yU zU
xC yC zC


The vector O ∈ D3 is denoted as off-axis vector. Figure 6.2.C demonstrates an example for an
off-axis projection. The scalar term s ∈ D can be interpreted as a zooming parameter.

Normal-map Optimization If the parameters of a projection are constant, a simple optimization
method can be applied. To avoid redundant shader computations at runtime, the sampling vector
S can be stored into a high-precision 32Bit IEEE conformal floating-point texture map [176]. This
reduces the shader execution costs for computing a projection function to two texture look-up
operations. For full screen projections, the resolution of the texture map should match the viewport
resolution. Figure 6.6 shows examples of projections (A) and their associated normal maps (B).
The different value domains of normals and color are compensated for viewing. In contrast to
tangent-space normal-maps, which store a normal regardless of its relative position in the tangent
texture-space, the proposed technique uses unit-space normal maps. This is necessary for the
correct sampling of the cube map texture later. The cube map sampling vector in unit-space NU

st

can be derived from a tangent-space normal NT
st for each fragment Fst by:

S = δN (Fst) = NU
st = ‖NT

st + (s, t, 0)‖

This optimization technique adds an additional parametrization to the approach: normal-maps
can be stored using floating-point images formats, and blended to combine different normal maps
to achieve mixed projections (Fig. 6.6.B). This approach enables the creation and combination of
more complex projections using projection tiles.

6.3 Generalization of Single-center Projections
The projection tile method combines planar projections as well as different non-planar derivatives,
and it facilitates the creation of custom projections, which would be hard to specify analytically.
Projection tiles are a generalization of the approach described in Section 6.2. Since non-planar
projections can be represented as normal maps, the question arises how these textures can be
created and manipulated in an efficient way. For this purpose, projection tiles provide an additional
parametrization of the projection canvas. The generalization is implemented by assigning a specific
view direction to each fragment of the projection canvas. This approach is based on three components
that match the programming model of current polygonal hardware rasterizers:

Tile Feature: In general, a tile feature (TF) describes a viewing direction for a specific point on
the projection canvas. Additionally, a tile feature can be attributed with custom, user-defined
attributes such as scaling and blending factors.

6.3. Generalization of Single-center Projections 69

(a) Composition of a planar projection in the center and
cylindrical projections left and right.

(b) The same scene with two planar projections for each
cathedral.

Figure 6.7: Examples for combining planar and non-planar projections using projection tile screens by the
example of the virtual 3D cit model of Berlin. The images show the virtual 3D model of the Gendarmenmarkt
with the German Church and the French Cathedral. The saturation fall-off is controlled by the respective
tile features.

Projection Tile: A projection tile (PT) is a container that consists of a finite number of tile features.
A projection tile controls the interpolation of the viewing directions and the custom attributes
of a tile feature.

Projection Tile Screen: A projection tile screen (PTS) is a container for projection tiles. Together
with projection tiles and tile features, it represents a parametrization of the projection
canvas. At runtime, PTSs can be changed and updated. During rending, tile screens will be
transformed into normal maps in order to integrate in the existing framework.

This principle is analog to polygonal data representations: here, a tile feature could be interpreted
as an attributed vertex, a projection tile as a primitive, and a projection tile screen as a polygonal
mesh. This design matches polygonal rendering hardware and thus, is easy to implement. It further
facilitates the integration into existing digital content creation (DCC) pipelines by reading and
writing 3D meshes. Thereby, custom feature attributes can be encoded as texture coordinate values.

Tile Features To enable an intuitive way to describe a TF, polar coordinates φ and θ are choosen
to express the view direction instead of using a normalized direction vector. A tile feature E is
defined as a 6-tupel:

E = (x, y, φ, θ, s, f) x, y, s, f ∈ [0, 1] ⊂ R φ, θ ∈ [−360, 360] ⊂ R

that contains mainly the 2D feature position (x, y) and the particular horizontal and vertical view
angles (φ, θ). The parameter s is a scaling factor while the variable f can be used to bind custom
parameters to each feature. For example, Figure 6.7 demonstrates this by adjusting the image
saturation according to the value of f . The universe of all tile features is denoted as E .

Projection Tiles and Projection Tile Screens A projection tile defines the area of a specific
projection in relation to the projection canvas and consists of a number of tile features E. Projection
tiles are organized in a projection tile screen (PTS), which is represented by a specific tile set T .
Two different approaches of grouping tile features with different properties and beneficial features
are proposed: rectangular and triangular-shaped projection tiles.

A rectangular projection tile (RPT) consists of four tile features that are organized in a
regularly structured rectangular projection tile screen (RPTS) T RPTmn with a resolution of n rows
and m columns:

70 Chapter 6. Rendering Technique for Image-space Deformations

Figure 6.8: Elaborated conceptual pipeline to render combinations of planar and non-planar projections
defined by rectangular projection tiles. A projection tile screen is transformed into a normal map that
contains the cube map sampling vectors to create the final rendering.

RPTkl = (E(k,l), E(k+1,l), E(k+1,l+1), E(k,l+1)) T RPT
mn =

E0n · · · Emn
...

E00 · · · Em0


Using rectangular tiles introduces a number of disadvantages. First of all, not every tile shape can
be represented with four tile features. The structure of the rectangular projection tile screen T RPTmn

does not enable non-continuous transitions between projection tiles. The regular structure of RPTS
and its associated RPT enable an easy direct manipulation. The concept of triangular projection
tiles (TPT) can be used to overcome these drawbacks of the RPTs:

TPT i = (E0, E1, E2), Ei ∈ E , T TPT
n = TPT 0, . . . ,TPTn

With TPTs, a user is able to control the triangulation of the projection canvas directly. This degree
of freedom enables the usage of 2D lenses as shown on Figure 6.17.B in Section 6.8. TPTs also
introduce non-continuous transitions between the tiles but are difficult to manipulate directly by
the user.

Mapping Projection Tile Screens to Normal-maps The concept of projection tiles can be inte-
grated in the existing framework by using the normal-map optimization method by mapping a PTS
to a normal map. Figure 6.8 gives an overview of the complete process. A PTS (RPTS or TPTS) is
transformed into a normal map by rendering all of its respective projection tiles (RPT or TPT) into
an off-screen 2D texture-target using render-to-texture [273]. Thereby, the feature components x
and y are interpreted as the 2D vertices of a quad or triangle in a standard orthographic projection
[271].

The angles and user defined attributes are encoded into per-vertex texture coordinates. This
avoids any domain-specific encoding of these values. The hyperbolic interpolation [19] between
these values is performed by the graphics hardware. A fragment shader converts the horizontal and
vertical angles Ast = (φst, θst), obtained for each fragment Fst, into a respective normal Nst and
outputs it into the texture target. The normal vector can be computed by:

Nst = δPT S(Fst) =

∥∥∥∥∥∥Rx

(
θst
)
·

Ry

(
φst
)
·

0
0
1

+

st
0

∥∥∥∥∥∥
Where Rx and Ry denote the 3D rotation matrices which transform the base normal (0, 0, 1) around
the respective x and y axis. For each Nst in the resulting normal map a sampling vector S can be
computed by setting δPT S(Fst · sst) = Nst.

6.4. Interactive Rendering Process 71

6.4 Interactive Rendering Process
The implementation of the rendering process is designed to meet the requirements for real-time
visualization of geometrical complex scenes. An prototypical implementation was done by using
OpenGL [230] in combination with the OpenGL shading language (GLSL) [144]. It uses framebuffer
objects, floating point textures, and mip-mapped cube maps for dynamic texturing [113]. For
interactive rendering, a two-phase process is applied: (1) create or update the dynamic cube map
and (2) rendering of the projection canvas using the respective projection.

0

10

20

30

40

50

60

64 128 256 512 1024 2048

Cube map texture size (pixel)

Fr
am

es
-P

er
-S

ec
on

d
(F

PS
)

8800 GTX MP (Model 1)
8800 GTX SP (Model 1)
8800 GTX MP (Model 2)
8800 GTX SP (Model 2)
8800 GTS MP (Model 1)
8800 GTS SP (Model 1)
8800 GTS MP (Model 2)
8800 GTS SP (Model 2)

Figure 6.9: Run-time performance for multi-pass
(MP) and single-pass (SP) cube map creation tech-
niques.

Hardware-accelerated Cube Map Creation
The synthesis and update of dynamic cube map
textures [102] is an essential process that can
be implemented using single-pass or multi-pass
rendering techniques. On modern graphics hard-
ware [230], it is possible to create cube map tex-
tures within a single-pass rendering by utilizing
geometry shaders and layered-rendering [264].
This so called render-to-cube-map technique
duplicates each input triangle six times and ap-
plies a separate model-view transformation for
each face of the cube map texture. Each of the
duplicated triangle is directed to the respective
layer of a layered render target [20]. On the
other hand, a cube map texture can be created
using multi-pass rendering in combination with
render-to-texture. Given a reference camera
position, the six local virtual cameras with a
FOV of 90◦, and an aspect ratio of 1 can be
derived, which are used to render the 3D scene into the respective cube map texture targets. Both
approaches differs with respect to runtime performance and integration costs. Figure 6.9 shows a
runtime comparison of both approaches for two models of different geometric complexity (Model 1:
41,032, Model 2: 46,060 vertices).

The test application does not utilize the second CPU core. The comparison shows the advantage
of the single-pass cube map creation compared to the multi-pass approach. Rendering within a
single pass has a main advantage: The scene has be traversed only once. This results in fewer state
changes per frame. So, fast cube map creation enables the utilization of more than one dynamically
created cube map.

Optimization Techniques Depending on the scene complexity, the multi-pass creation of a cube
map texture can become costly. Usually, the creation is fill-limited due to the increased rasterization
effort as well as bandwidth-limited due to the number of rendering passes. For general 3D scenes,
it is often not possible to use proxy geometry to speed up the synthesis process or to distribute the
rendering of each cube map face to different frames. There are two main optimization techniques
that are able to counterbalance the performance problem:

A Cube-Map Face Optimization (CMF Optimization) omits the update of cube map faces
(CMF) that are not visible in the generated projection. To determine which cube map faces have
to be updated, the spherical coordinates for each corner vertex of the unit cube and the current
look-to vector LT are computed. Then, a non-planar view frustum (NVF) is defined by offsetting
the spherical coordinates of LT with the horizontal and vertical angles of the current projection. If
one of the face vertices is inside the projection region,the associated face will be updated. Figure
6.10 demonstrates this by considering the lower vertices of the unit cube only. For the current
look-to vector LT the update of CMFback is omitted. Further, a Look-To Optimization can be used
to omit updates of the cube map texture if the camera position has not changed.

72 Chapter 6. Rendering Technique for Image-space Deformations

Figure 6.10: Parameter space for the cube-map face optimization (CMF Optimization). The cube map
is displayed from the positive y-axis. The gray area represents the non-planar view frustum (NVF) of a
non-planar projection.

Rendering Projection Functions Given a generated cube map, a particular projection is applied in
a post-processing pass subsequent to the cube map creation pass(es). For rendering a full-screen non-
planar projection the following three steps are performed: (1) a standard 2D orthographic projection
is setup. The camera is set to the standard orientation with a look-to vector LT = (0, 0,−1). (2) a
specific fragment program that implements the mathematical concepts as described in Sections
6.2 and 6.3 is activated. The shader program performs cube map texture look-ups or outputs the
computed normal vectors for later re-use. Finally, (3) a screen-aligned quad (projection canvas)
with standard texture coordinates is rendered that covers the entire viewport.

6.5 Stereoscopic Rendering Non-planar Projections
Stereoscopy is the phenomenon of simultaneous vision with two eyes, producing a perception of the
relative distances between objects in space, is an emerging field in cinematography and gaming.
Today, this feature is a requirement in 3D immersive digital environments. Stereo vision, as an
additional visual cue for humans, is an important method to increase the immersion into 3D virtual
environments. Stereoscopic effects can be created by using a stereo image pair displayed with active
or passive stereo viewing concepts, which enable the experience of the stereo sensation. Creating
stereo image pairs is straightforward for standard planar projections that can be accelerated by
graphics hardware. The renderer only needs to create an image pair, one image for the left eye and
one for the right eye.

Most of todays computer games and visualization frameworks offer a 3D stereo mode for
standard planar projections. Enabling interactive stereo rendering for non-planar projections
is not a trivial problem. This is especially true for rendering on polygonal consumer graphics
hardware without the support of parallel or distributed systems. The optimal solution for this
problem enfolds the following attributes: It should enable rendering at interactive frame rates for
large-scale 3D models, such as virtual 3D city models or landscapes on current consumer hardware.
Further, the approach should be applicable to multiple variants of single-center projections, support
omni-directional stereo, deliver high-quality images, and should be easy to implement and integrate
into existing rendering frameworks.

While generating stereo images is well known for standard projections, the implementation of
stereoscopic viewing for interactive non-planar single-center projections, such as cylindrical and
spherical projections, is a challenge. This section presents the results of adapting an existing
image-based approach for generating interactive stereoscopic non-planar projections for polygonal
scenes on consumer graphics hardware [TLD09]. The extended rendering technique creates stereo
images within a single scene rendering pass.

6.5. Stereoscopic Rendering Non-planar Projections 73

Figure 6.11: Comparison of the parametrization for the parallel, off-axis, and toe-in camera orientation
modes for generating stereo pairs.

Stereoscopic Viewing To achieve angle and depth disparity which create the stereo effect when
viewing, the scene has to be rendered from two virtual eye positions. The eye separation is a distance
d ∈ R+ in world space. The average distance between the two eyes is 2 · d = 6.5cm. Given a virtual
reference camera orientation C = (P, T, U), the camera settings for the left CL = (PL, TL, UL) and
right eye CR = (PR, TR, UR) are computed. Current applications use three different methods [29]
to obtain these orientations (Fig. 6.11) by maintaining the up-vector U = UR = UL: In Parallel
Camera Mode, the camera position is shifted along the baseline by maintaining the look-to direction,
thus T = TL = TR. The direction of the baseline corresponds to the right vector R = U × L. This
results in the camera orientations: CL = (P − d · R, TR, UR) and CR = (P + d · R, TL, UL). In
addition to the shift of the camera position, the Toe-In Camera Mode adjusts the look-to vectors
with respect to a focal distance df ∈ R+. The respective look-to vectors are defined as follows:
TL = ‖(P + T · df)− PL‖ and TR = ‖(P + T · df)− PR‖. The Off-Axis Camera Mode is similar
to the parallel camera mode but uses a non-symmetric camera frustum as described in [29] (Fig.
6.11.B).

Creating Raster Representations for Stereoscopic Rendering Regardless of the rendering tech-
niques used for creating non-planar projections, the creation of stereoscopic views comprises the
following two basic steps (Fig. 6.12): First, the NPP for the left and right images are rendered
by using image-based rendering techniques. Both require at least a single scene rendering pass.
Second, the resulting stereo pairs are combined into a single framebuffer (passive stereo) or rendered
into two framebuffers (active stereo) by using post-processing compositing passes. The extension
requires a single scene rendering pass and two additional full-screen post-processing passes for each
projection.

Figure 6.12: Overview of the implementation concept for image-based stereo rendering for non-planar
projections. Layered rendering is used to create image representations of the input geometry. These images
are combined into stereo pairs of non-planar projections, which are displays subsequently.

74 Chapter 6. Rendering Technique for Image-space Deformations

1 uniform mat4 VPM [12];//View projection matrices
2
3 bool cullViewFrustum(in vec4 P[3]) { // view -frustum culling
4 const vec4 plane = vec4(-1.0, -1.0, 1.0, 1.0); vec4 T[3];
5 T[0] = clamp(P[0]. xyxy * plane - P[0].w,0.0 ,1.0);
6 T[1] = clamp(P[1]. xyxy * plane - P[1].w,0.0 ,1.0);
7 T[2] = clamp(P[2]. xyxy * plane - P[2].w,0.0 ,1.0);
8 return !any(notEqual(T[0]*T[1]*T[2], vec4 (0.0)));
9 }

10 bool cullBackFace(in vec4 P[3]) { // back -face culling
11 vec2 d0 = P[1].xy * P[0].w - P[0].xy * P[1].w;
12 vec2 d1 = P[2].xy * P[0].w - P[0].xy * P[2].w;
13 float w = min(min(P[0].w, P[1].w), P[2].w);
14 return d1.x * d0.y < d0.x * d1.y || w <= 0.0;
15 }
16 void main(void) {
17 for(int face = 0; face < 12; ++face) {
18 gl_Layer = face; // assign layer ID
19 vec4 P[3]; // compute screen coordinates
20 P[0] = VPM[face] * gl_PositionIn [0];
21 P[1] = VPM[face] * gl_PositionIn [1];
22 P[2] = VPM[face] * gl_PositionIn [2];
23 // perfrom culling algorithms
24 if(cullViewFrustum(P) && cullBackFace(P)) {
25 for (int i = 0; i < 3; i++) {
26 gl_Position = P[i]; //Fill further interpolants
27 EmitVertex ();
28 }// endfor
29 EndPrimitive ();
30 }// endif
31 }// endfor
32 }

Listing 6.1: Implementation of single-pass render-to-cubemap using a geometry shader.

The present generation of raster-based polygonal rendering hardware [20] enables the application of
layered rendering. Using the support of geometry amplification, the raster representation of the
geovirtual environment is created in a single rendering pass. To implement a layered-rendering
technique, geometry shader functionality is required. A geometry shader duplicates and emits
triangles that are transformed into the camera-coordinate system of the respective cube map face
and then projected. The view-projection transformation matrices are computed and bound as
shader constants. A layer ID (0-11) is assigned to every emitted triangle. It defines the target layer
of the framebuffer object. The geometry shader shown in Listing 6.1 implements the main logic of
the concept. It uses a conservative view-frustum culling (cullViewFrustum) and back-face culling
(cullBackFace) [194].

6.6 Extensions for Stereoscopic Rendering
After the NPPs for the left and right eye are created, the rendering technique has to perform the
image synthesis for stereo viewing. Basically, there are three different rendering modes: (1) rendering
for passive stereo (e.g., alaglyph and chroma-depth), (2) rendering for active stereo displays or
glasses, and (3) rendering for auto-stereoscopic displays. This section describes the implementation
of passive and active stereo rendering and do not discuss the support of auto-stereoscopic displays.

Rendering for Passive and Active Stereo Passive stereo viewing is independent of the refresh
rates of the output device and can be achieved by using mainly two methods: anaglyph or polarized
rendering. Anaglyph images (Fig. 6.13, next page) provide a stereoscopic 3D effect when viewed
with two colored glasses, each with a chromatically opposite color (usually red and cyan). The
picture contains two differently filtered color images, one for each eye. This can be implemented
by computing two projections and performing a full-screen compositing pass. The image-based
approach can be optimized by computing only a single projection function and perform texture
sampling from the left and right raster representations. Anaglyph glasses may introduce problems
with reproducing correct colors. This can be implemented by converting the color images to gray
scale stereo pairs before compositing and the application of a color optimization scheme as described

6.6. Extensions for Stereoscopic Rendering 75

Figure 6.13: Examples of passive anaglyph stereo rendering. A: a spherical projection; B: a cylindrical
projection.

in [282]. Another possibility is the use of polarized screens (3D monitor) or projector filters in
combination with polarized glasses. The image-based approach, this requires the generation of two
projections for the respective buffers.

Frame-sequential, active stereo can be achieved by using shutter glasses that are synchronized
with the graphics hardware. Here, alternate left and right images are displayed on the screen,
multiplexed in time. The user wears LCD shutter glasses which alternately show and hide the left
right views. Active stereo can be implemented using OpenGL and a quad buffer [3]. This feature
requires a professional graphics card with hardware stereo support. Similar to polarized rendering,
it requires the evaluation of the projection function twice.

near

v
rm

=
 ƒ

rm (v
clam

p)

T

vdt = ƒdt(V)

vclamp = ƒclamp(vdt) far

R
G

B

C
M

Y

R
W

B

C
out =

 ƒ
sam

ple (v
rm)

cs ce

Figure 6.15: Components and functions for the
chroma-depth color mapping.

Rendering for Chroma-depth Stereo Chroma
stereoscopy [239], or color stereoscopy, is a three-
dimensional viewing approach that does not rely
on binocular parallax and convergence. This
chroma-depth technology is an inexpensive way
to achieve a 3D impression of images that is com-
patible across different media such as paper or
monitor displays [TLJD12]. The user needs to
wear a chroma-depth glass that performs a color
shift for one-eye. Unlike anaglyph or polarized
stereo viewing approaches, the depth percep-
tion using chroma-depth glasses relies on color
coding the scene with respect to the current
camera settings (Fig. 6.14). A mapping from
the coordinates of a scene point V = (x, y, z) to
a normalized color value Cout of the respective chroma palette has to be computed. Figure 6.15
shows an overview of the components and participating functions for such color mapping. The
structure of such a function depends on the representation of the color palette and the mapping
of the point coordinates into a palette index. Similar to [11], color tables are represented as

A B

Figure 6.14: Examples of chroma-depth stereoscopy rendering. A: A CMY chroma-depth rendering of a
horizontal cylinder projection with 360◦ horizontal and 90◦ vertical field of view. B: A RGB chroma-depth
rendering of standard planar projection with 60◦ field-of-view.

76 Chapter 6. Rendering Technique for Image-space Deformations

Table 6.1: Performance comparison of image-based rendering for creating anaglyph stereoscopic views.
The measurements (FPS) are taken for a 360◦ cylindrical projection with anaglyph passive stereo and a
viewport resolution of 2048 × 768 pixels.

Triangles Passes 8800 GTS GTX 280

34,596 2 6.01 20.93
1 6.37 29.23

236,276 2 0.80 7.82
1 0.84 8.95

540,655 2 0.57 3.57
1 0.39 4.13

3,210,162 2 0.11 0.45
1 0.09 0.60

1D texture maps. This enables the flexibility to change the color models, e.g., red-green-blue
(RGB), red-white-blue (RWB), or cyan-magenta-yellow (CMY), during runtime. Standardized
color tables can be obtained from the respective vendors of the chroma-glasses. Given a color
Cin obtained by shading and texturing the input scene, the color palette P represented as 1D
texture, a mixing scalar m, and the eye-space coordinates of a point V , the output color is obtained
by Cout = flerp(Cin, fadjust(fsample(P, T),m)). The sampling function fsample performs a texture
look-up in P using the generated texture coordinates T . The flerp function performs a linear
interpolation between Cin and CC with respect to m. The texture coordinates are obtained by
the concatenation of the following 1D functions: T = frm(fclamp, fdt(V)). The distance-transform
function fdt returns a linear scalar that is clamped and re-normalized using fclamp, and finally
re-mapped by frm. The distance-transfer function is parameterized with respect to the projection
that is used. For a standard planar projection, the output equals the value of the z coordinate of V
in eye space. For image-based non-planar projections z = |V0 − V |, i.e., the distance of V to the
camera position V0.

Performance Evaluation for Stereoscopic Non-Planar Projections The performance evaluation
is conducted on two different platforms: NVIDIA GeForce 8800 GTS GPU with 640MB video
RAM on an AthlonTM64 X2 Dual Core 4200+ with 2.21 GHz, 2 GB of main memory, as well as
NVIDIA GeForce GTX 280 with 1024 MB video RAM on a Intel Core2 Duo, 3 GHz 3,25 GB of
main memory. Table 6.2 shows a comparison of the two different cube map creation alternatives
described in Section 6.5 with respect to the number of input triangles. Each test comprises the
creation of two cube maps or one texture array with 10242 texture resolution and the rendering of
a horizontal 360◦ cylindrical projection with a viewport size of 2048× 768 pixels using anaglyph
stereo viewing. No cube map face culling techniques were used.

6.7 Comparison of Image-based and Geometry-based
Approaches

This section compares the presented image-based approach (IBA) with a geometry-based approach
(GBA) described in [168]. This GBA implementation projects all mesh vertices non-planarly and
rasterizes the primitives immediately [237]. The inadequate linear interpolation during rasterization
requires highly tessellated meshes for artifact-free renderings. Dynamic mesh tessellation based on
instancing [28, 247], geometry shaders [167], or hardware tessellation units [246] can ensure this
property for arbitrary meshes. An alternative approach is tessellating the non-planar projection
into smaller and simpler projections. Both approaches are compared w.r.t. the following criteria:

Stereo Functionality The image-based approach is limited to generating directional cylindrical
projections because the raster representations are created with a fixed base line for each camera

6.7. Comparison of Image-based and Geometry-based Approaches 77

Table 6.2: Performance comparison between the image-based and geometry-based approach for generating
stereo images pairs. The measurements (FPS) are taken for a 180◦ cylindrical projection with anaglyph
passive stereo and a viewport resolution of 1280 × 1024 pixels.

IBA GBA

Triangles 8800 GTS GTX 280 8800 GTS GTX 280
34,596 20.66 42.55 31.32 52.15
236,276 6.04 24.51 12.42 35.77
540,655 2.58 9.40 3.49 9.11
3,210,162 0.41 2.83 0.93 4.14

orientation. consequently, the angle disparity is zero for views along the base-line and the user
observes only depth disparity. In contrast thereto, the geometry-based approach is able to create
full 360◦ omni-directional stereo cylindrical projections. Further, the GBA is capable of supporting
all three camera modes described in Section 6.5 without artifacts. The IBA is limited to the parallel
camera mode to avoid artifacts in the stereo pairs. Thus, the GBA has a clear advantage over the
IBA.

Rendering Performance Table 6.2 shows a comparison between IBA and GBA with respect to the
number of input primitives. Both rendering techniques require only a single scene rendering pass for
passive stereo viewing of a single cylindrical projection with a horizontal FOV of 180◦ and a vertical
FOV of 90◦. The IBA uses cube map face culling to render only required faces. The measurement
shows that the GBA performs better than the IBA for low to medium model complexity. For
a higher model complexity, both approaches obtain similar non-real-time performance but GBA
performs better.

Figure 6.16: Comparison of the image quality be-
tween the geometry-based (left) and image-based ap-
proach (right).

Image Quality The main drawback of the IBA
is image-quality. In contrast to GBA, sam-
pling artifacts are introduced while creating
the projections. This is especially problematic
for wire-frame renderings or NPR techniques
such as hatching [200] or similar ones. Figure
6.16 shows the different image quality of both
approaches. The images are taken from screen
shots that are created using a cube map texture
of 20482 texel on a target resolution of 1600× 1200 pixels. The quality of the displayed image also
depends on the projector systems. However, the GBA is superior over IBA.

Memory Footprint A further criteria considers the memory footprint for data related to the
rendering technique, e.g., texture size and geometry. The footprint of the IBA can be considered
constant. It depends on the texture resolution s, the precision per color channel b, the number
of color channels c, and the number of raster layers l. The footprint can be approximated by:
OIBA(l, s, b, c) = 2 · l · c · b · s2 byte without mip-maps. This parametrization enables the user
to balance the trade-off between image quality and space as well as runtime complexity. The
memory footprint of the GBA is view-depended and scales linearly with the number of input
triangles t. Further, memory footprint depends on the average rate of primitive amplification r
(for a 180◦ cylindrical projection r = 1.5− 2), and the size of each triangle in an intermediate data
structure i = 16. The amount of additional memory can be approximated by: OGBA(t, r, i) = t · r · i.
Subsequently, the space complexity of the GBA is independent of rendering a single NPP or a
stereo pair of NPPs. For a geometrical complex model (3,210,162 triangles) the additional memory
requirement for a 180◦ cylindrical projection is OGBA =∼ 69 MB. This corresponds to four RGBA
raster layers with 10242 texels resolution. Thus, for a higher FOV: OGBA < OIBA is valid in any
case.

78 Chapter 6. Rendering Technique for Image-space Deformations

B CA

Figure 6.17: Application examples of image-based deformations. A: Shows a compound-eye projection tiles
screen with approximately 30,000 triangular projection tiles. B: A screen-aligned 2D magnification lens
which is embedded within a fisheye projection with 180◦ FOV. C: Image-distortion based on a normal map.

Implementation Complexity Both approaches rely on programmable GPU (geometry shader
functionality). The GBA uses transform feedback that is available on current graphics hardware
[20]. IBA can be considered as easy to implement and integrate into existing rendering frameworks
but needs to apply custom cube-map sampling. Since the IBA is independent of the scene geometry,
the application of LOD approaches is unproblematic. Further, the application of more complex
projections is easy to integrate. Furthermore, the multi-pass cube map texture creation of the
image-based approach provides an implicit fall-back solution for older hardware.

6.8 Results and Discussion
The presented rendering technique enables a broad range of applications for the interactive visualiza-
tion of large scale datasets, such as 3D virtual city and landscape models. It can be used to create
standard non-planar projections (Fig. 6.5, Section 6.2) and its variations. Further, projection tiles
facilitate different combinations of planar and non-planar projections (Fig. 6.7, Section 6.3) and
thus, enable distortion-based focus+context visualization techniques for geovirtual environments.
Triangulated projection tiles support the embedding of 2D screen aligned lenses into non-planar
projections. Figure 6.17.B shows an example of a zooming lens. The lens position can be changed at
runtime while the PTS is adapted per frame. To avoid possible under-sampling artifacts, a sufficient
resolution of the cube map must be available. Figure 6.1 (Section 6.1) and Figure 6.17.A shows
an application that utilize projection tiles to create a complex visualization that approximates a
compound-eye like view on a 3D geovirtual environment. The concept also supports image-warping
for planar and non-planar projections based on user defined normal maps. It enables post processing
effects water on lenses or the simulation of shower door effects (Fig. 6.17.C).

To summarize, this chapter presents the concept of projection tile screens, a generalization of
single-center projections and image distortions that is applicable in real-time, especially for complex
geometric scenes. It enables the efficient creation and combination of planar as well as non-planar
single center projections, 2D screen-aligned lenses with arbitrary shapes [237, 42, 15], image warping
and image distortions. The concept is based on dynamic cube maps and programmable hardware
features. It further presents a comparative performance evaluation for creating dynamic cube maps
using single-pass and multi-pass approaches as well as a comparison between the image-based
and geometry-based rendering technique. One drawback of the presented concept is a possible
lack of image quality compared to geometry-based approaches. This is mainly caused by texture
undersampling and oversampling artifacts that can results in blurred output images. To avoid such
artifacts, the optimal resolution of the cube map texture must be adapted to the resolution of
the viewport and the used projection or projection tile screen. For large horizontal and vertical
FOV, a cube map resolution of 10242 pixels is sufficient within a viewport size (1600 × 1200).
Further, the quality of the output images for projection tiles screen depend on the resolution of the
PTS. If the resolution is too low, the feature interpolation can cause artifacts for tiles with acute
angles. Possible future work can focus on possible applications of projection tiles screens, especially
the interactive modification of projection tile screens using in-space authoring tools. Particularly
interesting is the reproduction of other SCOP projections described in [83].

Chapter 7

Multi-perspective Views
for 3D Geovirtual Environments

This chapter discusses how 3D geovirtual environments can be visualized using multi-perspective
views [169, 182], based on view-dependent global deformations. Multi-perspective views or projec-
tions enable 3D visualization similar to panoramic maps by increasing overview and information
density in the depictions of 3D GeoVEs. To make multi-perspective views an effective medium,
they must adjust to the orientation of the virtual camera and constrained by the geovirtual en-
vironment. However, changing multi-perspective camera configurations during interaction tasks
typically require the user to manually adapt the global deformation — an error prone, non-intuitive,
and often time-consuming task [37]. The main contribution of this chapter comprises a concept
for the automatic and view-dependent interpolation of multi-perspective viewing configurations.
Concerning this, the approach includes the application of global deformations [7], based on 2D
parametrized curves, as well as the option of assigning different geometric representations to sections
of these curves. This enables the embedding of focus+context paradigms via the application of
geometric variances. Further, a hardware-accelerated, multi-pass rendering technique is presented
that enables real-time rendering of multi-perspective views.

7.1 Multi-perspective Views
Virtual spatial environments based on 3D landscape and city models are common tools for an
increasing number of commercial and scientific applications for planning, simulation, and visualiza-
tion tasks. Whereas the efficient rendering based on level-of-detail techniques and multi-resolution
models represent a key requirement, the effective presentation of the environment and its contents
(e.g., by providing detailed views for important areas while giving a coarse overview of their spatial
context) is essential as well. While a single-perspective view depicts a scene from a single view-point,
"a multi-perspective rendering combines what is seen from several viewpoints into a single image."
[277]. In this way occlusions become resolvable, scales at which objects are depicted are adjustable,
and spatial context information can be included in a single image.

With these techniques, multi-perspective views can visually emphasize or clarify an area-of-
interest while maintaining or extending the depiction of its surrounding area, achieving an effective
information transfer [142]. Furthermore, they utilize the available screen real estate (the amount of
space available on a display for an application to provide output) to a higher degree than standard
3D perspectives [136]. Their characteristics make multi-perspective views a tool for focus+context
visualization.

Multi-Perspective Views for Maps Multi-perspective views have been developed particularly in
landscape depiction and Cartography. Chinese landscape painters used multi-perspective views
in the 11th century already [258]. Another example, a 360◦ panorama view of the London skyline
consisting of six separate paintings, was created in the late 18th century. The incorporation of
cartographic information yields panorama maps. Figure 7.1(a) shows an early example of Venedig,
Italy (about 1550). H.C. Berann, an Austrian artist and panorama maker, pioneered one particular
kind of panorama map. Beginning in the early 1930’s he created a deformation and painting style,

80 Chapter 7. Multi-perspective Views for 3D Geovirtual Environments

(a) Venedig, Italy (about 1550). (b) Berann panorama (early 1930’s).

Figure 7.1: Historic examples of hand-crafted multi-perspective views.

known as "Berann panorama" (Fig. 7.1(b)), which became the de-facto standard for tourist maps
in recreational areas. This style seamlessly combines a highly detailed image of the area-of-interest
with a depiction of the horizon including major landmarks. The area-of-interest is shown in the
foreground from a high viewpoint, whereas the horizon is shown in the background from a low
perspective. The environment is depicted with "natural realism" [192] and key information (e.g.,
trails or slopes) is superimposed in an abstracted, illustrated fashion. As a result of the high
viewpoint the foreground shows key information top-down, i.e., free from obstructions and clearly
visible. At the same time, the map user can easily orient the map using the horizon, which is visible
due to the changed perspective, as reference without the need for a compass. For these reasons,
panorama maps are useful specifically to unskilled map readers.

In general, the creation of panorama maps is time consuming and requires a skilled artist. It
includes proper viewpoint selection, partial landscape generalization, identification of landmarks,
their integration into the map with recognizable shapes, and a smooth transition between the
foreground and background perspective [192]. Even with the support of digital tools and digital 3D
geodata, panorama creation still remains a tedious manual process [201]. Despite their effectiveness,
panorama maps are rarely created, and the creation techniques can hardly be transferred to
interactive systems where the user manipulates the viewpoint.

Multi-Perspective Views for Spatial 3D Environments Multi-perspective views can be used to
visualize 3D landscape models, e.g., mountainous regions with the mountain peaks providing a
distinctly recognizable background for orientation purposes. Similarly, they can visualize 3D city
models, using the skyline of the city as background. In today’s applications, interactive visualization
is required to support the user in exploring and analyzing the geovirtual 3D environment. With
respect to the usability of such applications, the navigation and orientation aids represent key issues
because users frequently "get lost in space" without guidance [37]. Here, the inclusion of a fixed
horizon or skyline similar to a Berann panorama offers an additional orientation cue in the sense of
a focus+context visualization. This chapter focuses on the projection as major tool for orientation
and neglect artistic aspects such as landmark depiction and selective generalization.

Computer graphics knows three approaches to achieve a panorama effect: multi-perspective
images, deformations, and reflections on non-planar surfaces [258]. Multi-perspective images either
use non-linear, non-uniform projections or combine multiple images from different viewpoints to
create the final rendering. Deformations distort the landscape before rendering the final image
using a standard projection, which implies recomputation of all geometric data for every image.
Finally, reflections on non-planar surfaces use standard projections showing an intermediate object
that in turn reflects the landscape.

Interactive Multi-Perspective Views Techniques implementing multi-perspective views can be
classified as multi-pass or single-pass. Multi-pass techniques create several intermediate images that

7.2. Effective Presentation of 3D Geovirtual Environments 81

(a) Progressive perspective with homogeneous styling. (b) Progressive perspective combining aerial and topolog-
ical map data.

Figure 7.2: Examples of viewing deformation that implement progressive perspectives.

are blended in a final compositing step. Each intermediate image requires separate data processing,
which is rather expensive when it comes to complex spatial 3D environments. Specifically, out-
of-core algorithms can incur additional penalties because rendering of intermediate images often
significantly reduces caching efficiency. Additionally, image quality suffers due to resampling in
the compositing step. Single-pass techniques do not exhibit these disadvantages, yet they require
customization of the rendering process. This chapter demonstrates a technique that implements a
dynamic global deformation [7] and shifts this task to the GPU. This approach exploits best the
optimization of current graphics hardware for standard projections both in terms of image quality
and speed.

7.2 Effective Presentation of 3D Geovirtual Environments
Multi-perspective views facilitate the implementation of effective presentation of spatial 3D en-
vironments. They can add valuable cues by seamlessly integrating multiple perspectives in the
resulting images and, therefore, make efficient use of the image space. In the following, two main
deformations are presented that partially implement multi-perspective views [136]. In general, these
deformations need to ensure the user’s location awareness during navigation and interaction. Even
experienced users get disoriented if the current perspective does not contain sufficient points of
reference or if the image sequence does not provide spatio-temporal coherence. For these reasons,
all presented deformations provide a seamless combination of different views in a single image and
achieve interactive frame rates.

Progressive Perspective Similar to Berann’s panorama maps, this deformation is based on a
depiction of the area-of-interest using a bird’s eye view, which would not permit a visible
sky, a view of the horizon and sky, and a smooth transition between both perspectives. As a
result, the landscape appears to be separated into two planar sections connected by a curved
transition zone with the focus lying on the bird’s eye view part in the foreground (the lower
image part, Fig. 7.2). Nevertheless, the area-of-interest is not strictly separated from the
transition zone but often reaches into the curved section. For a painted panorama map, the
map designer decides on relevant parameters such as the view points and the transition in
between. In an interactive application the user can move the virtual camera. The fixed
horizon provides strong temporal coherence and eases orientation tracking during navigation,
whereas the ever-changing shape of the landscape does not lead to distraction. In general,
painted panoramas exhibit a horizontal horizon. In contrast, an interactive application can
permit rolling of the camera. In this case, the horizon should provide feedback about the roll
angle. In the following descriptions, no camera rolling is assumed.

82 Chapter 7. Multi-perspective Views for 3D Geovirtual Environments

(a) Degressive perspective with homogeneous styling. (b) Degressive perspective combining aerial and topolog-
ical map data.

Figure 7.3: Examples of viewing deformations that implement degressive perspectives.

Degressive Perspective The bird’s eye view deformation supports answering questions such as
"Which direction am I looking to?" without the need for a virtual compass. For pedestrian’s
views, which occur in walk-through scenarios, the question changes to "Where am I going to?",
e.g., if users want to look ahead the path along they are currently walking. Due to the low
viewing angle, however, users can generally not obtain an effective overview without changing
the perspective or navigation mode because large parts of the 3D geovirtual environment are
occluded. To counter this effect, the viewing deformation bends upwards distant parts of
the virtual 3D city model (Fig. 7.3). Compared to the technique proposed in [258], which
deforms a reference plane to fit the inside of a cylinder, the presented deformation has the
advantage of using a planar and, hence, clear and undistorted view of distant regions in the
background. In terms of focus+context, the prominent sky in a degressive perspective, which
provides only little information, is replaced by a top view of the region ahead, resulting in a
more efficient use of screen space.

In addition, hybrid variants [182] combine three aspect of progressive and degressive perspectives:
detailed views in the foreground, a bird’s eye overview of the distant parts, and the view of the
horizon and sky (Fig. 7.4(c) and 7.4(f)).

Graphical Representation of Focus and Context The deformations smoothly and seamlessly
combine focus and context areas. However, the user might loose distinction between geometrically
correct information in the focus area and deformed information in the context during navigation.
This might lead to misinterpretations, lost of orientation, or erroneous navigation [280]. Specifically,
the degressive perspective, permitting views without visible focus area and, hence, without navigation
reference, is prone to such effects. Solutions require visual cues (e.g., iconic navigation aids), distinct
rendering styles (style variances) for focus and context [135], as well as combinations of different
levels-of-abstraction [93] (geometry variances).

Besides the more effective use of screen space, in focus+context visualization the two con-
stituents can serve different purposes and thus are to display different information dimensions
beyond change of rendering style [142, 241]. Whereas the focus gives core information, the context
shows supporting information. Panorama maps use this principle by adding thematic information
such as trails to the focus area while the landscape depiction style is constant for the whole image.
The presented approaches showing a map with 3D landmarks in the focus area, while the context
area remains a complete and photo-realistic depiction since the skyline is required to be recognizable.
The degressive perspective permits displaying more important information in the context. In fact,
the focus area is limited to serve as navigation reference and location marker within the spatial
3D environment whereas the context generally receives the larger screen space and exhibits less
occlusion. According to this observation, the sample visualization (compare Fig. 7.3(b)) shows

7.3. View-dependent Multi-perspective Views 83

(d) Progressive perspective. (e) Degressive perspective. (f) Hybrid perspective.

Figure 7.4: Exemplary results of a visualization system that enables the view-dependent interpolation
between different multi-perspective views combining different generalization levels of a virtual 3D city model
of Berlin. The top row show smooth perspective transitions with wide transition zones, while the bottom row
shows hard transition with relatively small transition zones. The latter uses B-Spline curves with six control
points to enable hard transitions between three planar regions.

a photo-realistic style in the focus area and a topographic map in the context area for visual
distinction.

However, a major drawback of 3D GeoVEs are multiple geometric scales [136] that are caused
by the perspective projection. Consequently, the depiction of most objects occupy only a small
image space (e.g., only one pixel) and cannot be distinguished by a viewer anymore (pixel noise). To
overcome this problem in the domain of paper maps, cartographers apply generalization techniques
to minimize visual complexity and to improve comprehension [110]. A similar concept is used for
the presented multi-perspective visualizations. In addition to a photo-realistic style, a map-based
style is applied to regions of small scales. The user can define multiple geometric representations
(e.g., obtained from cell-based generalization [95]), to sections of the deformation (Fig. 7.4). These
explicit geometric representations enable more design freedom than automatically derived style
variations such as in [169]. Jobst and Döllner [136] suggest to subdivide the visualization into
distinct zones where a constant scaling and thus a constant generalization is applied on a per-zone
basis (Fig. 7.4, bottom row).

7.3 View-dependent Multi-perspective Views
In the context of interactive global deformations and multi-perspective views, the presented
perspectives most effective for specific settings of a virtual camera, i.e., the virtual camera must be
near ground (pedestrian view) or at a certain height (birds-eye view), in order to exploit their full
potential. In a 3D GeoVE, the user usually wants to interact and navigate freely. This would require
the manual adaptation of the visualization parameters during interaction and navigation. In general,
this task is complex, error-prone, and time-consuming. This section provides a concept that renders
suitable multi-perspective images for a virtual camera setting using automatic view-dependent
interpolation of global deformations (Fig. 7.4). The presented approach comprises two main steps:
First, during rigging of visualization presets, the user prepares discrete visualization presets. A
preset includes a deformation curve, the assignment of geometric representations to curve sections
(tagging), and the definition of a viewing angle interval, in which the preset is valid. Second, during
real-time rendering, these presets are interpolated based on the parameters of the virtual camera.

84 Chapter 7. Multi-perspective Views for 3D Geovirtual Environments

Figure 7.5: Conceptional sketch for the view-
depended interpolation of global deformations with dif-
ferent geometric representations based on the viewing
angle of the virtual camera.

Preliminaries and Deformation Curves For
the multi-perspective visualization, the geomet-
ric representation of a 3D GeoVE is assumed
to be approximated by a 3D reference plane
R = (N,O) ∈ R3 × R3 defined by a normal
vector N and a position vector O. Thus, and
because of the isotropy of the global deforma-
tion variants described in this section, a view
setting for a virtual camera can be described by
an viewing angle ϕ = cos(90−CD ·N) (Fig. 7.6).
Möser et al. [182] generalize the concept intro-
duced in [169] by using Hermite curves for the
parametrization of global deformations. These
can be easily manipulated by the user. How-
ever, the application of standard parametrized
curves additional geometric distortions that can be compensated these by using an arc-length
parametrization [193]. In [136] it is argued that a smaller transition zone and linear segments would
benefit the comprehension of such a visualization. This specific configuration is hard to implement
using a single Hermite curve, but can be easily achieved using B-Splines curves with six control
points, by setting two consecutive control points to the same position. The presented approach uses
cubic B-Splines curves[208] with four or six control points, to implement progressive, degressive, or
hybrid perspectives.

Figure 7.6: Exemplary parametrization of a defor-
mation curve preset using four tag points (ui).

To implement deformations of a 3D scene, a
global space deformation [7] based on B-Spline
curves C(t) =

∑n+1
i=1 Bi · Ni,k(t) is applied is

applied on a per-vertex basis. The parameteri-
zation comprises control vectors Bi of the n− 1
control points and the normalized B-Spline ba-
sis functions Ni,k(t). Assuming that Bi and
Ni,k(t) are fixed for a specific B-Spline, the re-
sulting position vector C(t) only depends on the
parameter t. For the deformation, a mapping
of an input vertex V = (x, y, z, w) ∈ R4 to t is
required. Given this, V is first aligned along
the viewing direction CD of the virtual camera
by computing V ′ = V ·RA, whereas RA rotates V with ϕ degrees around the axis defined by O
and N . This is necessary, because the mapping of the vertex’s depth to t must be independent of
the camera orientation. To compute t, the depth of V ′ is linearized w.r.t. user defined scalars for
the start s and end e of the curve in camera space. Finally, the deformed vertex V ′′ is computed as
follows:

V ′′ =


V ′ ·MS t < 0
V ′ ·ME t > L

V ′ ·MC(t) otherwise

t = z′V − s
e− s

· 1
L

The the curve evaluation, the parameter t must be in a well defined interval (e.g., [0, 1]). Therefore,
it is normalized according to the curve length L. The deformation matrix MC(t) consists of two
transformation: TC(t) translates the vertex according to its position on the curve and DC(t);
translates the vertex along the normal of the curve. According to t, the position vector C(t) as well
as the corresponding tangent C ′(t) are computed. Since the input vertex must be translated along
the tangent orthogonal to the bi-normal Bx and tangent C ′(t), the normal vectorN(t) = C ′(t)×Bx
is computed. Both vectors are used to setup the translations TC(t) and DC(t) to define MC(t) as
follows:

7.3. View-dependent Multi-perspective Views 85

MC(t) = DC(t) ·TC(t) =


1 0 0 0
0 1 0 C(t)y + d ·N(t)y
0 0 1 C(t)x + d ·N(t)z
0 0 0 1


Here, d denotes the distance of V ′ to its projection onto R. To handle the cases of t /∈ [0, 1], the
deformation matrices MS and ME are applied accordingly to transform V ′ on an extension plane
at the beginning or the end of the curve-based deformation.

Arc-Length Parametrization of B-Spline Curves Depending on the distribution of the control
vertices and the knot vector of a B-Spline curve, a sampling with equidistant values (t1, t2, and t3)
may not yield to an equidistant distribution of points (P (t1), P (t2), and P (t3)), because a B-Spline
curve is not arc-length preserving. This will lead to scaling errors introduced by an straining or
stretching of the geometric representation.

To achieve a deformation behavior with minimal scaling artifacts, the curves must be re-
parametrized. The approaches presented in [213] and [195] are not suited for a real-time rendering
techniques, because they either globally distribute the scaling error or are computational expensive.
Rogers approach [213] suggest a modification of the knot vector, to span equidistant ranges and as
a result the scaling error would be uniformly distributed. Peterson [195] presents a technique that
approximates a given B-Spline curve C(t) using a second arc-length-based B-Spline curve P (t). it
is not suited for real-time rendering, because the approximation must be recomputed every time
the control points changing. Further, an computational overhead is introduced, because two curves
or a curve of higher degree must be evaluated.

Instead, the parameter t is re-parametrize similar to the method described in [193]. The B-
Spline curve is sampled in equidistant intervals and the arc-length of these segments are computed.
Based on the sampled length L and the according parameter t, the arc-length preserving parameter
t′ is computed by linear interpolation and stored in a look-up table. First, a look-up table between
t and the arc-length L is created by subdividing the B-Spline curve in p line segments. This is done
by sampling C(t) in equidistant intervals ti − ti−1 = 1/p. The arc length of the curve for a given
tj is computed by summing up the length of the lines approximating the curve segment defined
by the interval [t0, tj]. Then, L is sampled in equidistant intervals L/p, and the prior established
table is searched to find the interval [ti, ti+1], such that Lti ≤ L < Lti+1 . The curve parameter t′
corresponding to L is computed by linear interpolation between ti and ti+1:

t′ = ti + L− Lti
Lti+1 − Lti

· (ti+1 − ti)

Visualization Presets and Tagging of Deformation Curves A visualization preset denotes a
single configuration of a multi-perspective view (e.g., degressive or progressive). A preset P consists
of the following components: P = (C(t), T ,G, ϕ, τ, s, e, a, b). The set of all presets is denoted as P,
with |P| = m. In addition to the B-Spline deformation curve C(t), a preset contains an ordered
list of tag points T , a list of geometric representations G, and the following scalar parameters (Fig.
7.6): a camera angle (ϕ), an angle interval (τ), the start (s) and end (e) of the deformation in
eye-space, and finally a, b ∈ [0, 1] defining the start and end of the geometry interpolation.

The approach enables the association of different geometric representations to curve sections
to implement geometry variances for focus and context areas. This is useful to increase or decrease
the visual complexity of part of the virtual 3D model. In [169], this was implied by blending
between different type of textures within the transition zone and by omitting unimportant buildings.
This idea can be extended by blending between 3D geometry assigned to consecutive sections of a
deformation curve. In the presented examples (Fig. 7.4) different levels-of-abstraction (LoA) are
used, which are automatically derived from the virtual 3D city model of Berlin [95].

Therefore, a deformation curve C(t) can be partitioned into a number l ≥ 2 of consecutive styling
sections Si = (Ti, Ti+1, G) as elements of a global set of styling sections S. Here, i = 0, . . . , l − 1
represents an index into the list of tag-points T = T0, . . . , Tl assigned to every preset P . The

86 Chapter 7. Multi-perspective Views for 3D Geovirtual Environments

(a) Example of a tagged progressive visualization. The
focus area shows a topological map embedded in an aerial
image.

(b) Example of a tagged degressive visualization. The
focus area shows the a aerial image while the context
area shows a topological map.

Figure 7.7: Styling section of a deformation curve with different geometric representations of the Grand
Canyon. The inset shows the associated tag point and sections of the curve: The control points are depicted
in red and the tag points are depicted green.

geometric representation for a styling section is denoted as G. A single tag point is defined by
Ti = (u, δ) ∈ T , whereas i = 0, . . . , l and u, δ ∈ [0, 1]. The parameter u controls the position of the
tag point on the curve. The parameter δ describes the length of the transition zone between two
consecutive sections and is used for blending between consecutive sections. Further, fixed start
and end tag points are assumed at the curve start (T0 = (0, 0)) and at the curve end (Tl = (1, 0)).
Figure 7.7 shows different variants of a virtual 3D landscape model of the Grand Canyon and the
associated curve preset (inset).

View-Dependent Curve Interpolation The view-dependent curve interpolation based on the
camera angle ϕ comprises of two steps: (1) the preset selection and (2) the preset interpolation.
Given the viewing angle ϕa and the set of all presets P, a selection function s(P, ϕa) = (PS , PT)
delivers two presets as follows:

s(P, ϕa) = (PS , PT) =


(Pi, Pi+1) ϕa ≥ ϕi ∧ ϕa < ϕi+1
(P1, P2) ϕa ≤ ϕ1

(Pm−1, Pm) ϕa > ϕm

This requires an ascending ordering of P by ϕ performed at the end of the rigging process. Given
the viewing angle ϕa and the resulting two presets PS and PT , a weighting factor σ ∈ [0, 1] is
computed as follows: σ = clamp ((ϕa − ϕS)/(ϕT − ϕS), 0, 1). Given this factor, the interpolation
PI = p(PS , PT , σ) between the source preset PS and target preset PT , is performed by a linear
interpolation of all control points: Bi,I = Bi,PS

+ σ · (Bi,PT
−Bi,PS

) and the respective tag points:
Ti,I = Ti,PS

+ σ · (Ti,PT
− Ti,PS

). In addition thereto, the geometric representations must also be
interpolated. First, the geometric representations of PS and PT are rendered into two texture-arrays
that are blended according a factor β ∈ [0, 1] = clamp ((σ − aPS

)/(bPS
− aPS

), 0, 1). The interval
[aPS

, bPS
] defines in which section of the curve the specific geometric representations is visible.

7.4 Multi-scale Rendering
To enable focus+context visualization with geometric variances for focus and context areas, multi-
scale rendering applied [122] that uses different geometric representations of a 3DGeoVE. For
example, the rendering of Figure 7.7 uses two virtual 3D landscape models of the Grand Canyon,
and Figure 7.4 is composed of three levels-of-abstraction of the virtual 3D city model of Berlin, which
are generated using an cell-based approach [93]. Multi-scale rendering requires the visualization
prototype to be implemented using multi-pass rendering in combination with render-to-texture.
During multi-pass rendering, for each styling section the global space deformation is applied using

7.4. Multi-scale Rendering 87

vertex shader. Each deformed geometric representation is written to an off-screen buffer, using
RTT. Finally the textures are composed. An overview of the process is depicted in Figure 7.8,
details are given in Algorithm 5.

Algorithm 5 Scene Rendering
1: ϕ = computeAngle(R, C) [Determine angle]
2: (PS , PT) = s(P, ϕ) [Select start and target preset]
3: PI = p(PS , PT , ϕ) [Compute interpolated preset]
4: for all Ti ∈ T ∈ PI do
5: setup(PI , Ti) [Setup rendering for tag point]
6: Texturei ← renderToTexture(SSi

, PS) [Render styling section of source preset]
7: Textures ∪ Texturei [Add source preset rendering results]
8: end for
9: l = |Textures| [Number of rendered tag points]

10: for all Ti ∈ T ∈ PI do
11: setup(PI , Ti) [Setup rendering for tag point]
12: Texturei+(l−1) ← renderToTexture(STi , PT) [Render styling section of target preset]
13: Textures ∪ Texturei+(l−i) [Add target preset rendering results]
14: end for
15: for Texturei ∈ Textures, i = 0, . . . , l − 1 do
16: applyStylization(Texturei) [Apply stylization to source preset render results]
17: applyStylization(Texturei+(l−1)) [Apply stylization to target preset render results]
18: blend(Texturei ,Texturei+(l−1)) [Blend target into source texture]
19: blendToFrameBuffer(Texturei) [Compositing of source textures into frame buffer]
20: end for

Computing Global Deformations using Vertex Shader As described in the previous section, the
deformation is applied in a two step process. First, an incoming vertex V is aligned parallel to the
camera viewing angle ϕa. To achieve this, the viewing angle is recomputed on a per frame basis
and the resulting rotation matrix RA is passed to the vertex shader. Multiplying V with RA yields
V ′, which is afterwards projected onto the reference plane R. Its initial distance d to the reference
plane is stored. Second, the control point and tangent vector of the B-Spline curve is evaluated
on a per-vertex basis, to setup MC(t). One possibility is to evaluate the B-Spline in the vertex
shader on a per-vertex basis. This implies, that the specific formulas to evaluate the parametric
curves are known at shader compilation time and are fixed in the vertex shader source code. A
change of the parametric curve would lead to a change of the shader code. Instead, the position
and tangent vectors of the B-Spline curve are computed off-line on the CPU, prior to rendering.
Thus, the B-Spline curve must only be evaluated on a per-frame instead of per-vertex basis.

The look-up table for the arc-length parametrized B-Spline is encoded using a 32 bit luminance
texture and passed to a vertex shader implementing the deformation. The texture look-up is
performed using the parameter t, yielding the arc-length corrected values. The quality of the arc-
length approximation depends on the number of precomputed samples. The bi-linear interpolation
during texture sampling and filtering provides a second parameter interpolation. Experiments have
shown that 2000 samples are sufficient for an arc-length preserving parametrization.

During the arc-length parametrization, the corrected position and tangent vectors of the
B-Spline curve are pre-computed on the CPU. These values are stored in a 1D texture, which
represents the look-up table accessed in the vertex shader. The 2D vectors C(t) and C ′(t) are
encoded in a 32Bit RGBA texture. The look-up table must be recomputed every time the setup of
the parametric curve (e.g., the number or the position of the control points) changes. Thus, for
a static curve setup (e.g., the user does not change the viewing angle of the virtual camera) no
overhead is introduced. During view-dependent preset interpolation, the look-up table is updated
once per frame.

88 Chapter 7. Multi-perspective Views for 3D Geovirtual Environments

Figure 7.8: Exemplary compositing of different styling sections into a final rendering. The middle section
shows the output textures of the presets PS and PT , which are each blended into two intermediate results
(right side). Finally, the blending of the intermediate results produces the final image.

Compositing of Styling Sections As shown in Figure 7.8 the composition consists of two steps:
(1) Multipass RTT and (2) image-based composition in the fragment shader. To compose the
potentially different geometric representations of PS and PT , an image-based compositing method is
applied. Therefore, every styling section of the presets is rendered into separate textures using RTT.
Each texture contains RGBA information at viewport resolution. During rendering, a fragment
shader adjust the α-value of a fragment according to the styling section boundaries defined by Ti
and Ti+1, so that:

α =


1 uTi + δTi ≤ t ≤ uTi+1 − δTi+1

(uTi+1 +δTi+1)−t
2·δTi+1

uTi+1 − δTi+1 < t ≤ uTi+1 + δTi+1

0 otherwise

After RTT is performed, the 2 · (l − 1) textures (i.e., l − 1 textures per preset) are alpha-blended
[3] into the frame buffer. The blending is performed as follows: The first l − 1 textures en-
coding PS , are blended based on α, starting with the most distant styling section (back to
front compositing). The resulting fragment color is temporally stored. This procedure is re-
peated for the styling sections of PE . Finally, the two color values are blended based on β.

Table 7.1: Comparative performance evaluation for
different test scenes (in frames-per-second). The ab-
breviation LoA i names the configuration of a preset
using different geometric representation Gi (see Fig.
7.8).

Preset #Vertex #Face FPS

LoA 0/1 1,219,884 477,437 21
LoA 1/2 380,689 364,500 39
LoA 0/1/2 1,443,895 720,587 17

In addition thereto, stylization algorithms are
applied. In a preprocessing step, light maps
(ambient occlusion term only [61]) are computed
for the complete model. At runtime during the
compositing step, edge-detection based on the
normal and depth information of a fragment
[186] are computed. Further, unsharp-masking
the depth buffer [170] is computed to improve
the perception of complex scenes by introducing
additional depth cues.

Performance Evaluation The performance
tests are conducted using a NVIDIA GeForce
GTX 285 GPU with 2048 MB video RAM on a Intel Xeon CPU with 2.33 GHz and 3 GB of
main memory. The tests are performed at a viewport resolution of 1600× 1200 pixels. Table 7.1
shows the results of the performance evaluation. All models are rendered using in-core rendering
techniques with 8× anti-aliasing.

7.5. Summary and Discussion 89

The performance mainly depends on the number of tag sections, hence the number of required
rendering passes, and the geometrical complexity of the scenes attached to them. Due to the heavy
usage of render-to-texture in the compositing steps, the performance also depends on the size of
viewport. Here, the additional amount of graphics memory O(l) required for a number of global
styling section l can be estimated by: O(l) = 2 · l ·w ·h ·4 ·p Bytes. The prototypical implementation
uses a precision p = 2 Byte per channel, which is sufficient for post-processing stylization.

7.5 Summary and Discussion
This chapter presents a concept and interactive rendering technique for view-dependent global
deformations of spatial 3D environments. It is inspired by the well-known panorama maps and aim
to increase the effectiveness of interactive applications by using the principle of focus+context visu-
alization. It presents an approach for a view-dependent parametrization and real-time interpolation
of global deformations based on B-Spline curves. The application of parametrized curves offers the
possibility to customize or extend traditional perspectives to cartography-oriented visualization
(e.g., by using degressive or progressive perspectives), in an intuitive and flexible way. Further, the
definition of camera-dependent presets and their automatic interpolation overcomes the restriction
of existing multi-perspective visualization. In addition thereto, a concept for assigning different
geometric representations to specific sections of a B-Spline curve is provided, which offers a high
degree of design flexibility. This features enables the application of focus+context visualization
principles to multi-perspective views by supporting the usage of style and geometry variances.
It permits the seamless combination of different graphical representations for focus and context
areas. Furthermore, a prototypical implementation is presented that enables hardware-accelerated,
real-time image synthesis as discussed in the performance evaluation.

However, the presented approach implies some conceptual limitations. First, the number of
control and tag points must be the same for each preset in a visualization. Second, the visual
quality of the approach relies on a sufficient vertex density of the geometric representations. To
counter this, the functionality of the tessellation shader unit can be applied to ensure this property
for general scene geometry. This would also improve the visual quality in the transition zone.
Furthermore, the rendering concept can be optimized w.r.t. the required off-screen rendering passes.
The current implementation requires an off-screen rendering pass for each styling sections. If two or
more styling sections contain the same geometric representation they can be treated as one single
styling section. This reduces the number of rendering passes. The same applies for the geometry
interpolation. The number of vertices can be further reduced by a culling algorithm based on the
boundaries of the styling sections.

Since the arc-length parametrization and shader setup does only depend on parametric curves,
other curve types than B-Splines could be evaluated. The described concept here is not limited
to view-dependent interpolation. One can think of the automatic derivation of presents based on
semantical or thematic properties of a 3D geovirtual environment, e.g., to ensure the visibility
of certain landmarks or features. While this contribution describes the underlying technology,
user studies about the effectiveness and/or expressiveness of the visualization approach, different
rendering style combinations, and navigation in a deformed 3D landscape model remain future
work. Parts of the implementation an concept are transferred to mobile devices and evaluated w.r.t.
to the perception of navigation routes (Section 9.3).

Chapter 8

Highlighting Techniques for
3D Geovirtual Environments

Highlighting is a fundamental visualization principle and can be considered as the most naive variant
of a focus+context technique. It describes the method of applying visual effects to objects-of-interest
in order to make them more visible or prominent to a user or that they can be considered separately
from the whole to direct attention. Based on object-level separation methods, this section presents
object-based and image-based rendering techniques for the highlighting of multiple scene objects
that are located on or off-screen. The remainder of this chapter is structured as follows: Section
8.1 introduces challenges and applications examples for interactive highlighting techniques in 3D
geovirtual environments. Section 8.2 presents highlighting techniques, such as an object-based
approach for adaptive landmark scaling and an image-based highlighting framework. Section 8.3
describes how 3D location that are outside the view frustum can be visualized using proxy objects.
Finally, Section 8.4 summarize this chapter and present ideas for future work.

8.1 Applications and Challenges of Object Highlighting
Highlighting of objects as a form of visual feedback can be considered as an instance of higher-order
visualization [17], similar to the principle of focus+context [46]. Usually, different object states
are communicated by using different visual styles or appearances for rendering. These visual
distinguishable styles, such as color overlay or using outlines, supports pre-attentive cognition.
Despite changes of color or texture, also changes of geometrical properties such as geometric and
cartographic scales can be used to highlight important objects [95].

Object highlighting has a number of applications not limited to 3D geovirtual environments.
The preview of a user’s selection can be considered as the classical use case for object highlighting.
Further, in the field of visual analysis, objects to highlight can be the result of a computations.
Instead of showing the results in a list, the visualization of computational results the application
of object-highlighting has the advantage that a human can spatially cluster the highlighted result
immediately. Furthermore, highlighting techniques can also be applied as navigation aid to
landmarks, points-of-interest (POI), routes, as well as to navigation way points to guide the users
attention.

Besides the high geometrical complexity of 3D GeoVE, an interactive highlighting technique
has to deal with the following characteristics of a 3D virtual geoenvironment: First, object sizes
and shapes can differ enormously. The size of an object can vary from large structures (e.g., places
or buildings) to very small items (e.g., city furniture). Some of the shapes can have extreme spatial
extent along a major axis and maybe not completely visible on the viewport. Second, depending on
the application, a highlighting technique must be able to highlight a number of different objects
simultaneously and maintain interactive frame rates. For instance, this case often occurs when
editing virtual 3D city models. Finally, if unconstrained navigation and interaction metaphors are
used, a highlighting technique has to handle different perspectives and orientations of the virtual
camera, which have an influence on object occlusion and the objects size on the viewport.

92 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

An important aspect of highlighting is the appropriated visualization of landmarks or point-of-
interest- These elements of geovirtual 3D environments are of outstanding importance for user
orientation and navigation. Traveling in the real world depends on salient structures and objects,
e.g., regarding their height, color, structure, or usage. These objects or structures are considered as
landmarks, used by the human brain to create a mental map and remember the right way [267].
Especially, they are able to facilitate navigation and exploration within virtual 3D city models.

Highlighting of such objects concerns basically two major cases: (1) an object is visible within
the current viewport (on-screen) or (2) it is not visible, because it is located outside the current
view-frustum (off-screen). In case of 2D visualization on-screen points-of-interest are often displayed
as small icons overlaying a map. The problem of visualizing 2D off-screen points-of-interest can be
handled using partially-out-of-the frame approaches [9, 105].

8.2 On-screen Highlighting Techniques
The interactive rendering techniques for on-screen object-highlighting presented in this section can be
classified into object-based and image-based approaches. Object-based approaches highlight objects
by modifying their properties, such as the geometrical scale, prior to rasterization. Image-based
approaches perform highlighting by modifying the image-based representations (G-Buffer [222, 74])
of respective focus objects or the context. This section introduces the basics of a highlighting
framework for 3D GeoVE as well as hardware accelerated implementations for raster-based graphics.
Applications and case studies of these techniques are presented in Section 9.1 and 9.3.

Object-based Approach for Adaptive Landmark Scaling

Figure 8.1: Enhancement of multiple landmarks in
a virtual 3D city model.

This section presents a concept for the real-time
depiction of landmarks that effectively empha-
sizes 3D landmark objects by improving their
visibility with respect to their surrounding areas
and the current 3D viewing settings [GTD07].
It is based on scaling landmark geometry accord-
ing to an importance function while simultane-
ously adjusting the corresponding surrounding
region. In order to be adaptive, the amplifica-
tion of landmarks takes the parameters of the
virtual camera into account. To reduce visual ar-
tifacts caused by such a multi-scale presentation
(e.g., geometry intersections), the surrounding
of each landmark is adapted according to a de-
formation field, which encodes displacement and scaling transformations. An individual weight
coefficient can be defined that denotes the landmark’s importance. To render a collection of weighted
landmarks within a virtual 3D city model, the technique accumulates their associated, weighted
deformation fields in a view-dependent way. The concept provides a flexible approach for the
importance-driven enhancement of objects within interactive 3D GeoVE and aims at improving the
perceptual and cognitive quality of their depiction.

Interactive 3D geovirtual environments can be used to provide more than just a photo-realistic
rendering of reality: they give users a high degree of freedom for exploring complex geospatial
and georeferenced information. In contrast to 2D maps or top-down views, 3D GeoVE exhibit the
problem of occluding distant objects by objects close to the virtual camera. Thus, to facilitate
effective navigation with 3D GeoVE, a user must be able to be aware of important landmark objects,
even if they are occluded or the screen size of a projected object is too small [202]. In 2D maps,
this problem is partially solved by displaying landmarks using different visual styles to reflect their
importance. Depending on the geometric and cartographic scale, they (1) can be depicted in a
larger size than their neighborhood [112, 126], (2) can be highlighted by different colors or drawing
styles, and (2) exposed by clearing their immediate surrounding.
The concept presented in this section resolves the visibility problem by scaling landmarks to a

8.2. On-screen Highlighting Techniques 93

Figure 8.2: Components and processing stages of the adaptive landmark visualization concept.

sufficient size, i.e., a size that enables a user to identify them properly on the screen (Fig. 8.1).
The weighted uniform scaling depends on the distance of the object to the virtual camera and
therefore is dynamically adapted when the user explores the 3D GeoVE. The scaling transformation
is performed dynamically in real-time and considers landmark objects that displace both, each
other and their surrounding buildings.

Figure 8.2 shows the processing pipeline for the adaptive landmark scaling approach. The
input data is a virtual 3D city model that is manually augmented with landmark weights during
the data gathering stage (tagging). The tagged city model serves as input for the preprocessing
stage: an automatic process that derives both city model geometry and deformation data required
for the real-time deformation. At runtime, during rendering, the deformation data is evaluated
and the objects of the city model are deformed at interactive frame rates. The user can explore
and navigate the city model, leading to permanent updates of the deformation model and, hence,
the scaling of the landmark objects.

Tagging and Preprocessing During the tagging and preprocessing stage, the city model data
is augmented and transformed prior to rendering. In the tagging stages, weights are associated
to a set of city model objects C = {c1, . . . , cn}, by defining an importance function w : C → R+.
Thus, the importance function defines a partition into two sets of city objects: landmark objects
and non-landmark objects. The results of the tagging can be expressed as a mapping tag(C) =
Cw = {(c1, w(c1)), . . . , (c,w(cn))}. During the preprocessing stage, the city objects are analyzed
automatically and a number of vertex attributes (a unique object identifier id and axis-aligned
bounding box bb) are computed and stored (Alg. 6).

Algorithm 6 Pseudo-code for the geometric processing of a city model.
procedure process (Cw)

1: for all (ci, w(ci)) ∈ Cw do
2: id← id(ci) [assign unique identifier]
3: bb← boundingBox(ci) [compute axis-aligned bounding box]
4: if w(ci) > 1 then
5: isLandmark(ci)← true [classify as landmark]
6: sci

← scalingFunction(ci) [compute scaling function]
7: LM ← LM ∪ {(id, sci)} [store results]
8: else
9: isLandmark(ci)← false [classifiy as non-landmark object]

10: end if
11: AOG← AOG ∪ {(generateGeometry(ci), id, bb, isLandmark(ci))} [store results]
12: end for
13: return AOG

14: return LM

If the city object is a landmark object, a scaling function s is derived from the respective weighting

94 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

factor ci. The scaling function could be for example a linear or quadratic function of the distance
of which the coefficients are stored.

The next paragraphs describe how city model objects are scaled and displaced to achieve
the desired landmark visualization. During the rendering of each frame the landmark objects are
evaluated according to the deformation model, their bounding box, current position, and weight.
Landmark objects are rated more important than non-landmark objects, hence non-landmark
objects are scaled down or even omitted at all to achieve visibility of landmark objects. Sacrificing
completeness and accuracy of the depiction can be reasoned with the superior significance of
landmarks for navigation and is done similarly during cartographic generalization processes [112].

0

s(d)

1

0 d

dstart

dend

1

s1(d)

s2(d)

s3(d)

0
0 d

p(d)

dstart

dend

1

1

p1(d)

p2(d)

p3(d)

A

B

Figure 8.3: Projected size of a landmark object (A)
and the scale factor (B).

Landmark Scaling The motivation of the pre-
sented landmark visualization is to achieve vis-
ibility of certain important objects in a 3D en-
vironment. To accomplish this, the technique
scales these objects if their appearance would
be too small in the projected image. The scal-
ing effect occurs only within a distance interval
derived from the weight, defining a starting and
ending distance I = [dstart , dend].

For clarification, two cases are described:
using the standard perspective projection [3],
an object with extent x = 1 is projected on the
viewing plane to an extent x′. The projected
size p1(d) of an object on the projection plane is
inverse proportional to the distance d between
the object and the virtual camera: p1(d) = 1/d.
Figure 8.3 shows the behavior p1(d) (Fig. 8.3.A)
if the scaling is constant s1(d) = 1 (Fig. 8.3.B).
If an object should keep a constant projected
size (stippled line), its size (in the 3D scene) have to be scaled by the current distance prior to
projection p2(d) = 1 · d/d = 1. However, the effect shall be locally limited depending on the
landmarks weight, e.g., a small church is only an important landmark in its neighborhood but
not relative to the entire city. Therefore, when zooming out from a landmark object that has its
projected size kept constant, eventually it has to loose this property and return to its usual shape
to avoid "crowding" the scene.

For these two cases, the objects are scaled before the projection by a scaling function as depicted
in Figure 8.3.B: s1(d) = 1 and s2(d) = d. To accomplish a smooth return to the original shape (i.e.,
scale = 1), a quadratic function s′3(d) is used that has a slope of 1 at a certain starting distance dstart
for the exaggeration of the landmark object. The exaggeration effect is limited to ending distance
dend, where s3(d) falls below 1. Figure 8.3 shows an example of s3(d) for dstart = 1, dend = 4.
Further, dstart and dend are derived from the single weight parameter w(ci). As they only depend
on the previously defined weight of the landmark, the function s3(d) = ad2 + bd+ c is precomputed
using the distance interval and its coefficients a, b, c are stored for each landmark object.

Displacement of Landmark and Non-Landmark Buildings Scaling landmark objects implies that
surrounding objects (e.g., other landmark objects) have to be displaced to avoid self-intersection
artifacts. Approaches for this problem have been researched in simulated annealing [146, 268], least
squares adjustment [234], and spring mass models [22]. Similar to the latter one, the problem
is approached using a naive spring model without mass: overlapping objects create a repelling
force that shifts the objects apart. This model is applied iteratively until no shifting occurs or a
maximum of iterations is reached. In spite of its simplicity, the model yields acceptable results and
sufficient performance, which is a requirement since this operation is performed on a per-frame
basis. While this spring model can be computed sufficiently fast for a small number of objects, it is
hardly applicable for the entirety of city objects. However, this is not necessary since common city

8.2. On-screen Highlighting Techniques 95

objects usually will be too small to reason a high computational effort for their correct individual
positioning. Instead, a radial distortion is applied to all non-landmark objects in the environment of
a landmark object as an application of distortion lenses presented by Carpendale et al. [43]. These
lenses using a drop-off function that define how features in the vicinity of the lens are displaced
and scaled.

To limit the distortion effect locally, a distortion zone is defined twice the size of the scaled
landmark’s extent. This zone compresses and offsets the environment of the landmark to fit it into
the distortion zone. The translation function shifting elements at distance x from the landmark
center within the distortion zone is defined:

tnonLM (x) = s · e+ (x− e) · s

2s− 1
with s being the landmark’s scaling and e its half extent. Just offsetting the neighboring buildings
would yield self-intersections; therefore an additional scaling function is defined that shrinks
buildings within the distortion zone:

snonLM (x) = x

2s · e with 0 ≤ x ≤ 2s · e

Objects near the landmark are smaller in size and become linearly larger until they reach their
original size. Thus, the lens effect integrates smoothly in the city model while it exposes the
landmark object.

Interactive Rendering Technique The rendering process comprises two passes performed on a
per-frame basis: a pre-traversal pass and a rendering pass. The pre-traversal pass traverses a scene
graph that represents the virtual 3D city model and collects all attribute nodes that represent
landmarks. The resulting set can be optional culled against the current view-frustum [3] to
reduce computation complexity. Subsequently, the deformation model determines the deformation
parameters that are encoded for the subsequent rendering pass by using global shader constants
[144]. During the rendering pass, a vertex shader program is activated that deforms every vertex
of the building geometry according to the these constants. Additional vertex attributes, such as
object identity (id) and the buildings bounding box (bb), which are computed or set during the
preprocessing of the scene-geometry, enable the distinction between landmark and non-landmark
geometry. The shader program uniformly scales and displaces the landmark geometry or applies
the deformation parameters to clear space for the landmarks.

This approach is efficient in terms of rendering complexity because the complete scene geometry
is rendered only once per frame. Thus, the rendering performance is limited only by the number of
landmarks and the geometric complexity of the virtual 3D city model. Despite the limited physical
resources such as main and graphics memory this concept is mainly limited by hardware related
issues: With an increasing number of visible landmarks, the computation cost of the deformation
parameters on CPU side can stall the GPU. Further, the encoding of the deformation parameters
into an adequate assignment of constant registers can exceed the limitations of shader programs.

Summary and Discussion This section presents a concept and rendering technique for the real-
time depiction and highlighting of 3D landmarks. These 3D objects are emphasized by improving
their visibility with respect to their surrounding areas and the current 3D viewing settings. Figure
8.4 compares the scaling approach with a standard renderings from the same viewpoint. The
enhancement by scaling improves the perceptual and cognitive quality of the landmark display.
Consequently, it facilitates the task of identifying landmarks that can have an impact on navigation
and exploration of virtual 3D city models. Further, this visualization technique facilitates an
overview of the main landmarks. The choice of an adequate scaling function is important for the
interactive application of this concept. The recurrence of a landmark to its original size on close and
far distances is necessary to enable a smooth integration into standard 3D navigation techniques as
describes in [37].
The presented concept has limitations and drawbacks. The spring model applied to control the
mutual landmarks displacement cannot guarantee a stable frame-to-frame coherence, i.e., jumps or

96 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

(a) Low perspective without landmark scaling. (b) Low perspective with landmark scaling.

(c) Oblique perspective without landmark scaling. (d) Oblique perspective with landmark scaling.

Figure 8.4: Comparison between standard (left column) and enhanced landmark rendering (right column)
using different perspectives.

popping artifacts can occur. Further, this model is not able to properly visualize a high number of
landmarks having equal or similar weights. In addition, the current deformation model cannot fully
avoid self-intersections for non-landmark buildings. Furthermore, it seems to be useful to research
the impact of shape-preserving (uniform) deformation vs. per-vertex (non-uniform) deformation to
the viewer’s perception.

However, the concept delivers an adequate approach for the landmark enhancement problem.
Nevertheless, several features should be improved and further investigated. Despite handling only
points-of-interests, the approach can be generalized for the application to regions of interest [202].
In addition, the research of other displacement models or alternative scaling function can be of
interest. The usage of object-oriented bounding boxes as well as the consideration of the buildings
perimeter could achieve a more precise displacement of the surrounding area. This approach can
also be extended for the non-uniform displacement and scaling of terrain and line data such as
streets or railway lines, as well as other surface objects such as geometric representations of land
use data. Further, a landmark could be enhanced by rotating it towards to camera, which enables
a priority-based view on the landmark. The necessary information for this enhancement could also
be processed during the tagging step.

Image-based On-Screen Highlighting
The previous section presents an object-space approach that creates geometric scale variances for
the point-of-interest and object-of-interest focus types. This section presents a real-time rendering
technique that performs highlighting for region-of-interest focus types using style variances. Fig.
8.5 shows an overview of the rendering pipeline used for the interactive image synthesis. Basically,
it comprises of the following three stages: (1) an image generation step forms the basis for the
continuous fragment-level separation between object- or regions-of-interest to highlight and the

8.2. On-screen Highlighting Techniques 97

Figure 8.5: Overview of the rendering pipeline for applying on-screen highlighting techniques to 3D GeoVE
in real-time. The data flow is depicted using stippled blue and the control flow uses solid red lines.

remaining 3D scene. Here, Figure 8.6 shows the resulting data (scene textures) that is required for
the remaining two subsequent steps: (2) to enable smooth transitions between focus and context
regions, a mask processing step applies image-based post-processing methods (e.g., jump-flooding
[214] or convolution filtering required for glow effects [191]) to the mask texture; and (3) in a final
step, style variance, outline, or glyph-based highlighting techniques are applied to the scene texture.
For the final visualization, the result of this step is written into the frame buffer. The pipeline
takes textured polygonal geometry as input. It requires an unique identifier per scene object. To
increase the rendering performance, each numerical object ID is encode as a per-vertex attribute of
the specific input mesh in a preprocessing step. This procedure enables geometry batching [3] or
geometric streaming without modifying the proposed rendering pipeline. Therefore, the presented
approach is suitable especially for real-time rendering of geometrical complex 3D scenes, since the
geometry is rasterized only once.

Synthesis of Image-based Object Representations Image generation represents the first stage
in the highlighting pipeline and enables the separation of focus and context regions. During a
single rendering pass, image-based representations (scene textures) of the 3D geometry and a mask
texture are created at viewport resolution (Fig. 8.6). Therefore, off-screen rendering in combination
with fragment shaders and multiple rendering targets are used, which enables writing into multiple
raster buffers simultaneously. At first, the generated mask texture (Fig. 8.6.D) contains a discrete
image-based focus representation. Two methods for representing the input for the mask generation
step are distinguished: scene objects and proxy objects. If complete scene objects are selected for
highlighting, their fragments are taken as input for generating the mask texture (Fig. 8.6.D). Their
respective object identifier are encoded using an ID texture (Fig. 8.6.C). This approach works only
for highlighting complete objects.

A B C D

Figure 8.6: Image-based representations (scene textures of Fig. 8.5) of a 3D scene that are required by
the highlighting pipeline: color (A), depth (B), false colored object identifiers (C) and mask (D) values are
derived within a single rendering pass.

98 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

(a) Exemplary cylindrical-shaped 3D
proxy object.

(b) Exemplary free-form 3D proxy
object.

(c) Multiple 3D proxies objects.

(d) Application example of semantic
depth-of-field using cubic 3D lens.

(e) Application example of semantic
depth-of-field using a spherical 3D
lens.

(f) Application example of semantic
depth-of-field using a 2D viewport
lens displayed using a white frame.

Figure 8.7: Application of proxy-geometry for representing discrete 2D and 3D focus types.

If it is required to highlight only parts of a single or multiple objects, as well as highlighting focus
regions of a 3D scene that have no geometrical representation, so called proxy objects can be used.
These are presented using additional polygonal geometry that is located in the 3D scene or on the
viewport. Another important use case for proxy objects is the partially highlighting of objects or the
highlighting of regions affecting multiple objects (e.g., in the vicinity of a route). Here, the proxy
geometry is usually created manually by the user (Fig. 8.7.A-C), e.g., by directly painting the proxy
shapes on the viewport. The resulting line segments are converted to a polygonal representation
using buffering and extruding operations and used as input for the mask generation step. Later,
the user can modify the position, scale, rotation of a proxy interactively. Note that the color and
depth values of proxy objects are not written into the color and respective depth texture. Despite
approximations of small objects, proxy shapes can be used for implementing Magic Lenses [15].
The concept distinguishes between 2D and 3D lenses. 2D lenses are located in screen space and
move with the virtual camera. They can be used to implement auto-focus features as described in
[119, 120] (Fig. 8.7.F). The proxy geometry of 3D lenses is placed in the 3D scene and does not
align with the virtual camera (Fig. 8.7.D and E).

Mask Processing and Highlighting Operations After the mask texture is rendered, a mask
processing step is performed. It enables the creation of smooth transition between the focus and
context regions within the mask texture. The mask processing is implemented using RTT in
combination with multi-pass rendering. Basically, two different processing algorithms are applied:
jump-flooding and convolution filtering. A jump-flooding algorithm [215] is used to perform distance
transforms between focus and context regions. If only a small dilation of the input mask is required,
e.g., for creating the glow outline, convolution filtering can be applied. The final value of the mask
can be controlled by a global drop-off function. It weakens or exaggerates the previous results from
jump flooding or convolution filtering.

After processing the mask texture, the final pipeline phase applies style variance or outline
highlighting techniques at a per-fragment level, using fragment shader. Therefore, the color values
in the scene texture (Fig. 8.6.A) are used to apply color overlay or vignetting based on the values
of the mask texture. Given the object identifier (Fig. 8.6.C), each object can be highlighted using a
different technique. In general, the intensity of an effect, (e.g., blur or opaqueness of a highlighting
color) is controlled by the values of the mask texture. For example, Figure 8.7 (bottom row) shows

8.2. On-screen Highlighting Techniques 99

(a) Highlighting as navigation aid for
routing purposes within a general-
ized virtual 3D city model of Berlin.

(b) Using coloring for building cate-
gorization in an artificial virtual 3D
city model.

(c) Highlighting of finding groups
within an interactive digital cultural-
heritage application.

(d) The concept of semantic depth-
of-field applied to the context regions
to highlight a path.

(e) Desaturation of the context re-
gion to facilitate pre-attentive per-
ception of a single focus regions.

(f) Alternative variant that uses in-
creased contrast and darkening of
the context region.

Figure 8.8: Application examples of different highlighting techniques applied to virtual 3D city models (top
row) and a virtual 3D landscape model of the Grand Canyon (bottom row).

an implementation of semantic depth-of-field (SDOF) [149]. It applies convolution filtering with
different kernels in combination with multi-pass rendering. The trade-off between rendering speed
and output quality can be controlled by the choice of the filter kernel. Gaussian blur requires
additional rendering passes than a box filter, but delivers a better blur quality.

Subsequently, the results of the previous step is applied to a screen-aligned quad that is
rendered into the frame buffer. The stored depth values (Fig. 8.6.B) are also written into the frame
buffer. Finally, glyph-based highlighting techniques (e.g., bounding boxes or arrows) are applied to
the frame buffer using forward rendering.

Application Examples for Image-based Highlighting Techniques Figure 8.8 shows application
examples for the presented concept. Besides the highlighting of single objects, the approach enables
route highlighting and the visualization of multiple objects. Figure 8.8(a) shows an example for
route and landmark highlighting using style variances applied to focus and context regions embedded
in a generalized version of a virtual 3D city model of Berlin [95]. A vignetting technique is used
to highlight a street and color-highlighting is applied to the start and end position of a route. In
addition, nearby landmarks are highlighted.

Figure 8.8(b) shows the application of color overlays to categorize a number of buildings. The
colors, which are blended with the facade textures, can be used to encode specific data values. Figure
8.8(c) shows the application of object highlighting in the domain of digital cultural heritage. The
findings of a basement are highlighted in yellow to delimit them from the remaining artifacts, which
base color is orange (cf. Section 9.1). The bottom row of Figure 8.8 shows different post-processing
approaches applied to the context instead of the focus regions.

Rendering Performance The performance evaluation of the rendering technique uses data sets of
different geometrical complexity: the generalized model of Berlin comprised 1,036,322 rendering
primitives, the model of the Grand Canyon 1,048,560 primitives, and the artificial 3D city model
comprises 34,596 primitives. The performance tests are conducted using a NVIDIA GeForce GTX
285 GPU with 2048 MB video RAM on a Intel Xeon CPU with 2.33 GHz and 3 GB of main
memory. The 3D scene geometry was not batched and no view frustum or occlusion culling is
applied. All depicted scenes in real-time are rendered within the range of 12-32 frames-per-second.

100 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

Figure 8.9: Example of a perspective texture atlas for a virtual 3D city model. The left image shows the
transformed bounding boxes of each visible scene object and the left image shows the resulting perspective
texture atlas.

The performance of the presented image-based approach is geometry-bounds by the geometrical
complexity of the 3D scene and fill-limited by the number of mask-processing passes, which have to
be performed at the viewport resolution.

Interactive View-dependent Texture Atlases

Figure 8.10: Example for multi-layered object-
highlighting using view-dependent texture atlases.

View-dependent texture atlases (Fig. 8.9) are
an extension of the mask generation step in
the highlighting pipeline. They are especially
suitable for highlighting a high number possi-
bly overlapped or occluded objects (Fig. 8.10).
The image-based representation of geometry
is a well known concept in computer graphics
[222]. Due to z-buffering, the derivation of such
representations using RTT delivers only infor-
mation of the closest fragments with respect to
the virtual camera. Often, transparency-based
visualization techniques (e.g., ghosted views)
also require information of occluded fragments.
These can be captured using multi-pass ren-
dering techniques such as depth-peeling [10] or
stencil-routed A-buffers [183] on a per-fragment
basis. This section presents an additional rendering technique that enables the derivation of image-
based representations on a per-object level within a single rendering pass [TD10]. The approach
uses a dynamic 3D texture atlas that is parametrized on a per-frame basis. Prior to rasterization,
rendering primitives are transformed to their respective positions within the texture atlas using
vertex-displacement in screen space [237].

G-Buffer Synthesis for Overlapping and Occluded Objects The concept of image-based rep-
resentation of 3D shapes [222] has numerous applications in computer graphics. Despite static
and dynamic impostors [53], they represent the basis for advanced rendering effects performed in
post-processing (e.g., edge detection, screen-space ambient occlusion, deferred shading). For the
purpose of image-based occlusion management [78] (ghosted views), object highlighting, or the
enhancement of depth perception (halos), it is necessary to efficiently generate such representations
for all, or a subset of scene objects within a 3D geovirtual environment.

8.2. On-screen Highlighting Techniques 101

Figure 8.11: Components, control and data flow for the generation and rendering of view-dependent
textures-atlases applied to a technical 3D model of the automotive domain.

An application that uses RTT capabilities of current rendering hardware to derive these representa-
tions on a per-object basis encounters two major challenges: (1) only fragments with the minimal
depth value (with respect to the virtual camera) are captured; and (2) either the complete 3D scene
or a single scene object can be captured occlusion-free during a single off-screen rendering pass. The
first challenge is coped efficiently using existing rendering techniques such as depth-peeling [163]
or stencil-routed A-buffer [183]. These techniques operate at fragment level and usually require
multiple rendering passes. The second challenge can be handled using multiple rendering passes in
combination with multiple render-targets (textures). However, such an approach results in multiple,
sparse texture layers, which require additional management and, if at high viewport resolution,
yielding to high GPU memory consumptions.

For applications that require only a single texture layer representation of an object, this
section presents render-to-texture atlas (RTTA): an interactive and scalable rendering technique
that enables dynamic generation of occlusion-free, image-based representations for multiple scene
objects using graphics hardware (Fig. 8.9). It extends RTT by using a single 3D texture-atlas as
render target for all scenes objects. In contrast to the original concept of texture-atlases [269], it
computes the texture-atlas parametrization and packaging per rendering frame with respect to
the projected boundary approximation (e.g., axis-aligned bounding box) of each object. During
off-screen rendering, it uses screen-space vertex displacement to transform each object into its
respective texture-atlas region. This is achieved using an additional 2D transformation that is
applied to each object prior to rasterization. The approach enables the usage of optimized (batched)
scene geometry, which reduces state changes during rendering. Further, it can be easily integrated
into existing rendering frameworks and systems. To summarize, this section present a concept for
view-dependent parametrization and generation of a single texture atlas containing all image-base
representations of projected scene objects. Further, it describes the concept of screen-space vertex
displacement and its application for generating view-dependent texture-atlases within a single
rendering pass. Furthermore, it briefly describes a hardware-accelerated rendering technique that
implements this concept and discuss its performance and limitations.

Concept of Render-To-Texture-Atlas The concept mainly consists of two phases that are per-
formed per frame (Fig. 8.11): (1) the view-depended computation of the texture-atlas parametriza-
tion and subsequently (2) the rendering of the scene geometry into a texture atlas. A texture atlas
TA = (tw, th, td) ∈ N3, denotes a number of td layers of 2D textures, each with a fixed width tw
and height th. This data structure can be effectively represented on graphics hardware using 3D
textures or 2D texture arrays. It is assumed that the orientation and projection transformation of
the virtual camera can be described by a matrix VPM, and that the scene is rendered to a viewport
given by VP = (x, y, w, h) ∈ N4. At runtime, the concept requires global information about the
objects of a 3D scene. Such record can be computed off-line for static meshes or dynamically for
animated scenes. For each object, a record RID of the following structure is stored in a global
record set R ∈ R with: RID = (Bworld , Bviewport , Batlas, l,T).

To identify an object at runtime, an unique object identifier ID ∈ N is required. This identifier
must be encoded as a per-vertex attribute to enable geometry batching and arbitrary scene partitions
for rendering. To approximate the area a 3D object occupies in a 2D texture atlas, its 3D boundary
representation Bworld is computed in world-space coordinates. The presented approach uses 3D

102 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

Algorithm 7 Texture-Atlas Parametrization and Packaging Algorithm
1: for all RID ∈ R do
2: if viewFrustumCulling(Bworld ,VPM) then
3: Bprojected = project(Bworld ,VPM) [Compute projected bounding box]
4: Bclipped = clip(Bprojected) [Clip bounding box against viewport]
5: Bviewport = scale(Bclipped ,VP) [Scale to viewport]
6: Bviewport = addBorder(Bviewport , b) [Dilate scale bounding box]
7: RID ← Bviewport [Store 2D bounding approximation]
8: end if
9: end for

10: (TA, Td)← atlasPackaging(R, Twmax , Thmax) [Perform atlas packing]
11: for all RID ∈ R do
12: T = computeTransform(Bviewport , Batlas,TA,VP) [Compute displacement transformation]
13: RID ← T [Store transformation]
14: end for

axis-aligned bounding boxes (AABB) as boundary representation. The 2D rectangular boundary
Bviewport ∈ VP denotes the clipped on-screen area of Bworld and Batlas ∈ TA the occupied area
within the texture atlas. An affine 2D transformation matrix T describes the transformation of
Bviewport to Batlas in normalized device coordinates (NDC). Further, l = 0, . . . , td denotes the
texture layer each object is rasterized to.

Prior to RTTA, the texture-atlas parameterization needs to be determined, i.e., the mapping
of a 3D boundary representation (Bworld) into a 2D texture domain (Batlas) for all records RID.
Algorithm 7 shows the pseudo code for computing this mapping. In the first step, the boundary
representation Bworld is conservatively culled against the view frustum defined by VPM. On
success, it is projected into normalized device coordinates (Bprojected) and clipped against the area
[−1,−1] × [1, 1]. The resulting 2D boundary (Bclipped) is scaled (Bviewport) with respect to the
viewport VP. To enable artifact-free convolution filtering during texture-atlas post-processing and
compositing (Fig. 8.11), a border of b ∈ N pixels can be added. Next, texture-atlas packaging
computes Batlas for each Bviewport, starting a maximal texture-atlas resolution of Twmax

width
and Thmax

height. After completion, it also delivers the resolution and the required number of
texture layers Td . For example, an implementation can use a rectangular atlas packaging approach
[124], which has a runtime complexity of O(n) = n logn. Finally, based on the packing results, a
displacement transformation T is computed that basically consists of a translation and a scaling
transformation.

This displacement transformation is further denoted as screen-space vertex displacement
(SSVD). An early type was introduced for rendering camera textures [237]. It can be applied in
image- or object-space by transforming vertices using a translation vector stored in a 2D texture.
For the purpose of RTTA, this concept is extended to arbitrary affine 2D transformations to
transform a rendered primitive into its respective atlas region prior to rasterization. Every vertex
V = (x, y, z, w) is transformed into its designated texture-atlas area Batlas by displacing it parallel
to view plane using T. The new vertex position can be obtained by: V ′ = T · V .

Real-time Implementation using Geometry Shaders The prototypical implementation is based
on OpenGL [230] in combination with GLSL [144]. To perform SSVD using the geometry shader
stage the global data record R is encoded into a suitable GPU data structure. Therefore, the
transformation matrix T, the target layer l, and the atlas region Batlas of each record RID are
stored linearly in a single texture-buffer object, denoted as record buffer. At runtime, the respective
object ID is used to index this buffer. The buffer is encoded per-frame and shared between RTTA,
successive texture atlas post-processing, and compositing steps.

The rendering setup for RTTA is similar to standard RTT applications. First, the framebuffer
objects and render textures are set up according to TA, and second the viewing and projection

8.2. On-screen Highlighting Techniques 103

1 uniform samplerBuffer recordBuffer; // global data
2 in int ID[3]; // per -vertex attribute: object ID
3 // fetch transformation and layer for object ID
4 void fetchRecord(in ID, inout mat4 T, inout int layer);
5 ...
6 void main(void) {
7 mat4 T; int layer; fetchRecord(ID[0], T, layer);
8 gl_Layer = layer; // set texture -target layer
9 for(int i = 0; i < 3; i++) // set every vertex

10 {
11 vec4 v = gl_ProjectionMatrix * gl_PositionIn[i];
12 gl_Position = (T * (v / v.w)) * v.w; // screen -space vertex displacement
13 gl_ClipVertex = gl_PositionIn[i]; // set clip vertex to original position
14 // set additional attributes ...
15 EmitVertex ();
16 }// endfor
17 EndPrimitive (); // close and emit primitive
18 return;
19 }

Listing 8.1: Geometry shader implementation of RTTA.

transformation VPM is applied and viewport dimensions are set to Tw and Th. After binding
the record buffer (recordBuffer) a shader program (Listing 8.1) is enabled before rendering the
scene geometry. The shader performs SSVD for each vertex and assigns the respective layer of the
texture atlas to each output primitive.

After RTTA is performed, an application-specific processing of the texture-atlas contents (e.g.,
edge-detection, color quantization, glow) can be applied. The final compositing is performed on
per-object level. Figure 8.12 shows exemplary results for per-object compositing using frame-buffer
blending. This is performed by generating and rendering 2D sprites [3] for each object using the
point-sprite expansion functionality of the geometry shader. Therefore, n = |R| point primitives
with their respective object ID are rendered and converted into screen-aligned quads. Given the
viewport setting VP, the four corner points are set according to Batlas and transformed to Bviewport
using the inverse transformation matrix T−1.

Performance Evaluation and Discussion The performance tests are conducted using a NVIDIA
GeForce GTX 285 GPU with 2048 MB video RAM on a Intel Xeon CPU with 2.33 GHz and 3 GB
of main memory. Table 8.1 shows the results of a comparative evaluation. The tests are performed
at a viewport and texture atlas resolution of 10242 pixels without view-frustum culling enabled. The
performance mainly depends on the number of scene objects and is bound by the performance of the
geometry-shader stage. To summarize, this section presents the concept of view-dependent textures-
atlases. It enables the generation and management of occlusion-free, image-based representations
for multiple overlapping objects in complex 3D scenes. It further describes a real-time, hardware
accelerated implementation that generates these textures-atlases within a single rendering pass

Figure 8.12: Compositing variants derived from a view-dependent texture-atlas containing color and
depth values per pixel. A: reconstruction of the scene by rendering depth-sprites; B: transparent rendering
by ignoring the fragments depth (requires depth sorting); C: ghosted-view visualization showing a brake
pad and screws highlighted; D: ghosted-view visualization that uses screen-space ambient occlusion and
edge-enhancement during compositing for important scene objects.

104 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

Table 8.1: Comparative performance evaluation for different test scenes between plain rendering (STD),
standard render-to-texture (RTT), and render-to-texture atlas (RTTA) (in frames-per-second).

#Vertex #Primitives #Objects STD RTT RTTA

2,191 4,236 5 2066 1015 940
32,081 21,246 21 1066 328 239
56,654 34,596 580 65 14 19

1,040,503 346,835 269 39 21 35

and demonstrate its applications for interactive ghosted views. One conceptual problem of the
implementation concerns the usage of 2D rectangular boundary approximations for representing
Bviewport and Batlas. This can lead to under-utilization of the texture atlas, especially for objects
with non-convex shapes. For representing objects that cover the entire screen, the utilization can be
improved by choosing Tw and Th as multiples of the viewport size. A further problem represents the
dynamic allocation of texture memory if adapting the texture-atlas size on a per-frame basis: driver
stalls during the removal of layers from the texture array can be observed. This is counterbalanced
by performing lazy-updates of the texture array at (1) rendering idle time or (2) if the number
of layers have not changed during a number of passes. Another hardware limitation represents
the maximal number of texture layers Td, as well as its resolution Tw and Th. Thus, the maximal
number of objects that can be captured within a single pass depends on this resolution and the
texture atlas utilization. For future work, one can research the application of more complex types
of boundary representations, such as (hierarchical) object-oriented bounding volumes, to achieve a
better texture-atlas utilization.

Comparison of On-screen Highlighting Techniques
Fig. 8.13 shows a comparison of style-variance, outline, and glyph-based highlighting techniques
with respect to object occlusion and depth-cues. Although color-based and glyph-based highlighting
techniques are well established techniques for directing the focus-of-attention to an object, they
suffer from disadvantages: in the case of color highlighting, the appearance of the building is altered
because the facade is dyed. As a result, important information, such as building color or texture
details, become hardly recognizable. Further, in the area of visual analytics, the color attribute is
often used for thematic mappings. Hence, color highlighting can lead to unfeasible interpretations.
Another problem in virtual 3D geoenvironments is occlusion. If the object-of-interest is covered by
other objects, the viewer may hardly perceive any visual hints to guide his or her attention (Fig.
8.13.A).

In contrast to that, glyphs neither change texture information nor the buildings appearance.
Instead, an additional geometric feature (glyph) can be attached to an object. The size and the
position of a glyph can be adapted dynamically to avoid occlusion and ensure its visibility (Fig.
8.13.C). One disadvantage of this method is a lack of depth cues due to missing scale hints. If the
object is occluded by additional geometry and the scene is displayed in a near ground perspective,
the user may hardly distinguish to which object the glyph is attached to (Fig. 8.13.E).

A B C D E

Figure 8.13: Comparison of style-variance, outline, and glyph-based highlighting techniques with respect to
occlusion (A-C) and the objects depth cue (D and E).

8.3. Off-screen Highlighting Techniques 105

(a) Proxy objects are represented using spheres. (b) Proxy objects are represented using billboards.

Figure 8.14: Mock-ups to clarify the terms off-screen and partially-out-of-the frame: Proxy-objects (red)
are displayed partially-out-of-frame to enable a user to approximate point-of-interest positions that are
located off-screen. The saturated areas show the viewport visible to the user and the desaturated areas show
the surrounding scene including the positions.

Using an context-based or outline highlighting technique as a method of object emphasis seems
to be a promising approach. First, no relevant appearance parameters of the objects are altered.
Second, even if objects are partly or completely occluded, an outline or glow can still be recognized
to a certain degree (Fig. 8.13.B). Problems of thematics mappings are reduced because the outline
can be seen as a propagated building silhouette and is, therefore, view invariant and supports an
acceptable depth cue. (Fig. 8.13.D). The application of SDOF (Fig. 8.7 (bottom row) and Fig.
8.8(f)) to 3D GeoVE exhibits a number of problems. If applied to virtual 3D city models, the user is
often distracted while trying to focus the blurred areas. In the case of 3D landscape models, viewed
from a birds-eye perspective, this effect appears less stronger. However, semantic depth-of-field
fails if the screen size of a highlighted object is to small.

8.3 Off-screen Highlighting Techniques
3D geovirtual environments are increasingly used as general-purpose medium for communicating
spatial information. In particular, virtual 3D city models have numerous applications such as
car navigation, city marketing, tourism, and gaming. In these applications, points-of-interest
(POI) play a major role since they typically represent features relevant for specific user tasks and
facilitate effective user orientation and navigation through the 3D 3D GeoVE. This section presents
strategies and approaches that aim for the effective visualization of points-of-interest in a 3D
geovirtual environment. A major problem of 3D GeoVE is the so-called "keyhole" situation, i.e.,
users can perceive only a small part of the geovirtual environment due to the limited field-of-view
and image resolution. Thus, it is probable that a number of point-of-interest are located ouside the
view-frustum. This section presents approaches for the effective visualization of points-of-interest
that are located out-of-frame or off-screen (Fig. 8.14) by introducing additional visual cues.

Within a 2D GeoVE, a user can efficiently compare distances to multiple locations, such as
the distances to multiple restaurants, to estimate which of these is the nearest. For a complete
estimation, all relevant objects have to be within the viewport. Due to zooming or panning, some
of these objects may disappear into off-screen space. Especially for small-screen devices, the user is
forced to frequently zoom in and out, and pan to see the off-screen objects. Consequently, within
a certain zoom level, it is hardly possible to see all relevant objects, but only a subset of them,
which makes spatial routing tasks more complicated and time-consuming. Semantics of 3D virtual
representations can be derived from real world objects by comparing them by means of reference
points. These reference points reflect the main characteristics of the depicted objects and are needed
to construct a relation between virtual object and real world object, according to the bilateral term
of characters in the theory of semiotics [51]. If there are enough reference points, as usual for 3D
representations, the interpretation can be handled in an efficient and effective way. Considering
this as a crucial advantage of 3D space, the 2D Halo visualization technique [9] is supposed to be
adapted within a 3D GeoVE.

106 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

(a) An object-space 3D Halo Circle visualization com-
bined with occlusion management showing three land-
marks. One landmark is on the left front side out-of-
view. One landmark is farther away on the left side
out-of-view and slightly behind the camera. One land-
mark is right in front but occluded by another building
(which is therefore rendered as wire-frame).

(b) An screen-space 3D Halo rojection visualization.
The landmark is on the left side out-of-view (arc). One
landmark is marginally within the view (circle) but oc-
cluded by another building. One landmark is in the right
half-space behind the camera (straight line).

Figure 8.15: Examples of visualizing point-of-interests on a mobile device.

For purposes of routing decisions and navigational tasks, this section introduces user awareness
strategies (Fig. 8.15 and 8.14), to emphasize 3D objects in virtual 3D city models that are located
off-screen and on-screen. These techniques based on 3D adaptations of the 2D halo visualization
introduced by Baudisch and Rosenholtz [9]. The present work aims mainly at, but is not limited to,
mobile devices as implementation platform. The introduced visualization concepts for navigation
and exploration of 3D GeoVE can be applied in real-time. Further, simple occlusion management is
applied to maintain the POI’s visibility in 3D. The applications of such visualization are extensive.
As GPS-enabled devices as well as software applications that use digital maps become more available,
so too the applications for POI are also expanding.

Approaches for the Visualization of 3D Halos
This section presents four different approaches to transfer the idea of 2D Halos [9] to 3D geovirtual
environments in order to indicate the position or direction as well as the distances of point-of-interest,
which is located outside the view-frustum, to the virtual camera. The basic idea compromises the
placement of proxy shapes, which are partially of-out-frame [9, 105]. For 2D maps, the curvature
of the visible part of a circular ring that surrounds an off-screen location contains all the information
required for locating the ring center [9]. Gustafson et al. uses wedges instead of circles to address
the problem of clutter that limits the effectiveness of the Halo approach when used with multiple
instances [105].

The presented 3D approaches are can be classified into screen-space and object-space approaches
(Fig. 8.15). Screen-space approaches depict 2D proxy object on the view plane, while object-space
approaches integrate these objects within the respective 3D scene. This remainder of this section
describes three object-space approaches: 3D Halo Sphere, 3D Halo Circle, and 3D Halo Billboard,
as well as a single screen-space approach: 3D Halo Projection. The first approach extends a circular
2D Halo to the third dimension by using a sphere. The circle approach simplifies a 3D sphere using
only a 2D circle rendered in 3D object-space parallel a reference plane that approximates the digital
terrain model locally. This decreases occlusions and the geometric complexity of the proxy objects.
To add additional cues, this concept is extended by the billboard approach that adds an additional
approximation of a sphere in the vertical plane. Finally, the 3D projective approach display a circle
proxy on the view plane.

The following paragraphs discusses the visualization techniques with respect to the "Halo’s
usefulness in tasks involving spatial reasoning" [9]. The primary question is whether the efficiency
for the 2D geovirtual environment is weakened due to adaptation for 3D GeoVEs.

3D Halo Sphere Approach This approach visualizes off-screen locations using sphere as proxy
object (Fig. 8.16). It enables a user to estimate the direction and distance to an off-screen location
by estimating the center of the sphere based on the partially visible sphere.

8.3. Off-screen Highlighting Techniques 107

Figure 8.16: Example of the 3D Halo Sphere ap-
proach that approximates an off-screen location using
sphere around the respective center point.

To place a sphere within a virtual 3D scene two
parameters: the center and the radius are re-
quired. The center is determined by projecting
the midpoint of the object’s axis-aligned bound-
ing box onto the reference plane that approxi-
mates the digital terrain model of the virtual 3D
city model. Similar to the 2D Halo visualization
technique [9], an intrusion border is defined to
limit the screen-space occupied by a halo. For
three dimensions, an intrusion frustum within
the view-frustum is introduced. The radius is
computed by the Euclidean distance the sphere
center and the closest plane of the intrusion
frustum. Using Halo Spheres, the problem of
occlusion is expanded from intersecting lines [9]
to areas. To reduce possible self-occlusions, a sphere is textured using an alpha-gradient image that
is opaque having for the sphere portion near the ground and transparent for the upper portions.
Hence, the outline of the Halo is visible, while background objects stay perceptible. 3D Halo Spheres
have the advantage to provide intuitive depth cues since a 3D terrain intersection curve is provided.
However, in most cases users do not interpret the spheres as proxies for off-screen objects, but try
to be integrate them as scene objects. This results in disorientation of the user.

Figure 8.17: Example of the 3D Circle approach that
approximates an off-screen location using a horizontal
circle around its vertical center axis.

3D Halo Circle Approach The 3D Halo Cir-
cle approach enables the user to determine the
distance and direction of an off-screen location
by extrapolation of a complete circle out of a
partly visible circle that is rendered parallel to a
reference plane, which approximates the virtual
3D city or landscape model (Fig. 8.17). The
circle is rendered around the location’s center
point. The radius computation for the circle is
similar to the 3D Halo Sphere approach.

An asset of 3D Halo Circle is the visual-
ization of locations behind the virtual camera.
In such case, the user has the impression of
being within the circle, which is consistent with
the visualization a user would naturally expect.
Due to an increasing number of lines, the visualization of more than one off-screen location leads to
visual clutter. The different circles will cause a certain level of distraction. Moreover, as the circle
radius increases (i.e., the location is farther away), it becomes harder for a user to estimate the
complete circle. Further, the circles can occlude the scene objects, which is necessary to support
the user’s mental distance estimation within a distorted view frustum. Subsequently, a user will
probably not be able to mentally complete the radius in all cases, especially if too much of the
circles area is occluded.

3D Halo Billboard Approach 3D Halo Billboards enables the user to determine the off-screen
POI distance and direction by estimating of a complete sphere out of two partially visible circle
fragment. The Halo Billboard combines a continuous, opaque circle for non-occluded regions with
the dotted-lined, transparent circle in case of occluded regions. This approach extends the previous
introduced 3D Circle Halo approach by using crossed billboards (Fig. 8.18) to improve visibility,
reduce the lack of depth perception, and to communicate occluded parts more effectively. The
approximation of a sphere using crossed billboards further reduces the visual cluttering of 3D
Sphere Halo approach.

108 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

Figure 8.18: Example of the 3D Halo Billboard ap-
proach that approximates an off-screen location using
two orthogonal circles.

Billboards are used in various applications to
depict complex geometry in real-time systems
[3]. Using bill-boarding, a geometrical complex
3D object is approximated by an impostor tex-
ture. A classic example is the visualization of
vegetation objects in 3D landscape models. The
orientation of a billboard is adjusted in the way
that it usually faces the camera position. To
depict a Halo as a textured billboard, three
parameters are required: center, radius and
camera position. Center and radius are com-
puted analogue to the 3D Halo Sphere approach.
The camera position is necessary to align the
billboard according to the user’s position. To
minimize occlusions between Halo Billboards,
two different line styles are applied to the billboard. Regarding the portion of a Halo that is not
occluded by other objects, the outline of the circle is continuously depicted. In case of occluded
portions of the Halo, the circle’s outline is depicted with a dotted, partly transparent line style.

Halo Billboards provide a sufficient perceptibility since they are interpreted as separate meta-
objects to the scene. As the Halo Billboard only shows the outline of circle, it minimizes the
occlusion problem. Due to intersections between lines, Halo Billboards are less complex and do
not exhibit self-occlusions. The disadvantage of Halo Billboards is the imprecise depth cue, as the
intersection of the circle’s outline with the ground is only an intersection point. Together with the
second intersection point of the circle that is constructed cognitively, there are only two points that
are supposed to complete the terrain intersection area mentally. The impreciseness results from the
loss of information as only an approximated line can be constructed from one given intersection
point and one cognitively constructed point. In case a foreground object occludes the intersection
point, this depth cue is also lost. Regarding Halo Billboards with footprint, the depth cue can
maintained, as the footprint is at least shown as a dotted circular outline in case of occlusions.

Figure 8.19: Example of the 3D Halo Projection ap-
proach that approximates an off-screen location using
a circle on the view plane.

3D Halo Projection Approach The 3D Halo
Projection approach visualizes off-screen loca-
tions with a circle around the projection of an
off-screen location on the view plane (Fig. 8.19.
Based on the partially visible arc, a user is able
to estimate, out-of-view distance and direction
(Fig. 8.19). The position of the off-screen loca-
tion and is projected onto the view plane. In
case the projected point is outside of a defined
intrusion border, a circle is drawn with a radius
large enough to tangent to this border.

Since the direction is not altered due to
the projection, the user is directly aware of the
location direction. However, it is not possible
to map the circle radius to the actual off-screen
distance. Instead, the radius communicates only how relatively far is the location out-of-view. In
case a POI enters the viewport, a small circle is drawn to indicate the relation between POI and
circle. Off-screen locations behind the virtual camera are visualized using a straight line on the
viewport side of the respective half-space.

A drawback of this approach is the possible distraction of the user induced through the flipping
of that line, caused by POI changing the half-spaces. The possible overlapping of lines, due to a
high number of POI represents a further drawback of this approach. However, a major advantage
of 3D Halo Projection is the limited viewport distraction, ensured by an intrusion area.

8.3. Off-screen Highlighting Techniques 109

Interactive Rendering and Occlusion Handling
The interactive implementation of the proposed visualization and occlusion management approaches
is based on a scene-graph system. Scene-graph traversal techniques process the scene objects
accordingly. The computation and rendering of Halos is performed on a per-frame basis using the
respective camera settings. The rendering requires two rendering passes. In addition to render
the complete scene, the first pass is also used to compute the center and radius for each halo.
Based on the computed parameters the proxy objects are added to the scene graph and rendered
subsequently. The technique pre-traverses the scene graph and sets the corresponding flags for
the removal or wire-frame rendering of an object according to a visibility test. These flags are
considered in the subsequent rendering traversal and the scene objects are rasterized accordingly.
The visibility test determines whether a scene object occludes a point-of-interest or not. It is based
on a ray-intersection test [98] between the AABB, which is computed based on the input geometry,
and the rays constructed from the center-of-projection to all visible point-of-interests.

Occlusion is a major problem when adapting the Halo concept to 3D-space, especially if a 3D
scene is depicted from a low or pedestrian perspective. This section does not focus on object-object
occlusions, which can compensated using the Virtual X-Ray Pattern [257]. In the context of this
work, there are basically two types of occlusions that are relevant for the presented object-space
approaches: Halo-Object and Halo-Halo occlusions.

Halo-Object Occlusion addresses the following two cases: (1) A halo occludes other scene
objects and (2) a halo is occluded by scene objects in front. The first case can be partially resolved
using transparency. Thereby, the Halo is rendered with a transparency gradient varying between
opaque for Halo outlines and transparent for the inside area. In case of a Halo Sphere, a semi-
transparent appearance is chosen to reduce occlusions regarding objects behind the Halo. To obtain
this transparency effect, the sphere is textured using a color texture with an additional transparency
channel. For the latter case represents a limitation of the object-based approaches. Drawing the
proxy object over the occluder would yield a loss of depth cues. However, the case where of proxy
object is completely occluded by object is often the case for pedestrian perspectives and seldom for
birds-eye views.

Figure 8.20: Comparison of 3D Halo variants:
Spherical Halos with normal depth mode (A), fore-
ground depth mode (B), and mixed depth mode (C).
Billboard Halos without footprint (D) and with foot-
print (E).

Halo-Halo Occlusions often occurs if a user
takes a larger set of relevant POIs into account.
As a result, intersections and overlaps of Halos
increase. This can lead to visual clutter that
makes the perception and interpretation of the
Halos cues more difficult. Intersections between
Halo Spheres occur between lateral areas of the
sphere. In conclusion, they lead to occlusions of
three dimensional complexity. To handle these
occlusions, the Halo Spheres variant implements
three different depth modes (Fig. 8.20, A-C).
Using standard depth-testing, the halo’s sphere
is rendered whereas fragments having a depth
smaller than the depth buffer’s value are kept.
Hence, the for this normal depth mode, the
sphere appears partially visible since the lower
half of the sphere is under the referencing plane.
The upper half can be additionally occluded by objects in the foreground, e.g., buildings in a city
model (Fig. 8.20.A). Using the foreground depth mode, the sphere is rendered with writing to depth
buffer enabled, but with depth-testing turned off. As a result, the sphere appears in foreground
and looses depth cues (Fig. 8.20.B). The mixed depth mode, implements a combination of the
previous both. It depicts the spheres that are rendered with normal depth mode as well as the
spheres in foreground. Hence, the spheres in the foreground overlay the rendered sphere and a
terrain intersection area becomes visible to give depth cues (Fig. 8.20.C).

110 Chapter 8. Highlighting Techniques for 3D Geovirtual Environments

8.4 Summary and Future Work
This chapter presents concepts and interactive rendering techniques for the object highlighting
in 3D geovirtual environments. All techniques aim at facilitating the pre-attentive cognition of
important scene object within virtual 3D city or landscape models.

The object-based approach for scaling landmark object with respect to the position and distance
of the virtual camera. It provides a flexible approach for the importance-driven enhancement
of landmarks and aims at improving the perceptual and cognitive quality of their display. In
particular, the concept can be applied to systems and applications as in the fields of car and
pedestrian navigation, disaster management, and spatial data mining. However, this form of
landmark highlighting distorts distances between landmarks and cannot guarantee the preservation
of topology for multiple landmarks of high scaling factors.

The presented image-based framework enables the highlighting of objects by modifying the
appearance of the focus objects or the context respectively by using well know post-processing
effects. A GPU based implementation has been presented that enables the image synthesis for
various highlighting techniques at interactive frame rates. It supports the integration of various
coloring and outline effects for focus objects or regions as well as vignetting and semantic-depth-
of-field effects for the context region. This approach is especially suitable 3D GeoVE of high
geometrical complexity. Using view-depended texture atlases, this concept can be extended to
multiple overlapping or occluded focus objects and facilitates their individual stylization. Further,
different highlighting-techniques have been compared with respect to 3D GeoVE. It has been
shown that the capabilities of outline-based and context-based style variant techniques support the
preemptive perception, while dealing with disadvantages of glyph-based 3D highlighting techniques.
The presented framework can easily be integrated into existing software products, so it could be a
promising addition to existing focus+context visualization.

For future work, the presented concepts can be extended by using NPR techniques for the
stylization of 3D GeoVE [62]. Of particular interest is the question, if the visual differences between
photo-realistic and non-photorealistic depictions are sufficient for the application as highlighting
technique. Further, one can investigate the computation of specific highlighting color sets, i.e.,
given the image-based representation of a virtual 3D scene, what set of colors have the maximal
visual differences, and how can they be computed automatically?

However, a user study is required to determine the effectiveness of the presented techniques with
respect to certain user and visualization tasks. Based on this study, the proposed framework cab
be extended by an automatic approach for the view-dependent selection of highlighting techniques,
e.g., based on the distance between object and the virtual camera, or based on the angle with
respect to the virtual terrain model.

Finally, the four approaches for the visualization of POIs that are located outside the view
frustum are presented. The concept is based on extending existing partially out-of frame techniques
to the 3 rd dimension. A major task for future work is to compensate visual clutter introduced by
the on-screen proxy objects. The 3D Circle Halo approach can be improved by using stacks of circles
to enable a visual separation for multiple POIs. In such case, different stacking schemes, which
define what circle is above the other, as well as priority-based or distance-based schemes are possible.
Further, possible cluttering of the projection-based approach could be counterbalanced by a 3D
adaptation of the Wedge technique [105]. Nevertheless, to validate the presented approaches, a user
evaluation is required that includes a comparison to alternative 2D off-screen location visualization
techniques or overview+detail techniques.

Chapter 9

Case Studies and Applications

This chapter presents projects, applications, and case studies of the rendering techniques as well as
concepts introduced in the previous chapters. It comprises questions of software integration and
the technology transfer of these rendering techniques into other domains or rendering systems. The
applications emphasize the need of the presented technologies in various application contexts.

Figure 9.1: Software map of the framework for the
rendering techniques for focus+context visualization
of 3D geovirtual environments.

The implementations of the rendering tech-
niques are integrated in a software framework
based on a scene-graph based rendering mid-
dleware described in [63]. The C++ software
library comprises approximately 115,000 lines
of code organized in 958 files and 378 classes.
Figure 9.1 shows a software map of the system.

The rendering techniques presented in this
dissertation can be used in various application
contexts. Table 9.1 summarizes applications
beyond focus+context visualization. Besides
3D generalization lenses presented in Chapter 4,
the concept of volumetric depth sprites applied
in combination with with the volumetric par-
ity test can be used to implement generalized
clipping for cut-away views and relief clipping planes used in the Colonia3D project (Section 9.1).
This project also applies the image-based on-screen highlighting approach described in Section
8.2. Further, it uses the image-based deformation approach described in Chapter 6 to generate
cylindrical projections. Image-based deformation can also be used to drive multi-projector system
for non-planar projection surfaces as described in Section 9.2. Finally, this chapter presents the
integration of multi-perspective views for mobile devices based on the Nokia rendering middle ware
(Section 9.3). The multi-perspective views are combined with the adaptive landmark scaling de-
scribed in Section 8.2. Based on this integration, a user evaluation and comparison with established
2D and 3D geovirtual environments are performed.

Table 9.1: Applications of the presented rendering techniques beyond focus+context visualization.
Visualization Technique Focus+Context Applications Other Applications

3D Generalization Lenses 3D Lenses Generalized Clipping
Interactive Cut-Away Views
Relief Clipping Planes

Dynamic Mapping of Raster Data 2D Surface Lenses Dynamic Spatio-Temporal Data
Region-of-Interest Highlighting Glyph-based Annotations

Image-based Deformation Multi-focal Fish-eye Lenses Panoramic Image Generation
Non-Planar Projection Surfaces

Image-based Highlighting Object Highlighting Ghosted Views

112 Chapter 9. Case Studies and Applications

9.1 Communication of Digital Cultural Heritage in Public Spaces

Figure 9.2: Permanent exhibition of Roman Cologne
at the Roman-Germanic Museum in Cologne.

The communication of cultural heritage in pub-
lic spaces such as museums or exhibitions, gain
more and more importance during the last years.
The possibilities of interactive 3D applications
open a new degree of freedom beyond the mere
presentation of static visualizations, such as pre-
produced video or image data. A user is able
to directly interact with 3D geovirtual environ-
ments that enable the depiction and exploration
of digital cultural heritage artifacts in real-time.
However, such technology requires concepts and
strategies for guiding a user throughout these
scenarios, since varying levels of experiences
within interactive media can be assumed. This
section presents the application of a subset of
the presented rendering techniques integrated
in a visualization framework for the communication of digital cultural heritage in public spaces
by example of the project Roman Cologne (www.colonia3d.de). It partially describes the results
achieved by an interdisciplinary team of archaeologists, designers, and computer graphics engineers
with the aim to virtually reconstruct an interactive high-detail virtual 3D city model of the ancient
Roman Cologne (Fig. 9.2). The visualization framework offers different presentation modes for the
effective communication of 3D digital cultural heritage in interactive 3D geovirtual environments
[MTK+08, TSP+10, TSD11, TSP+12]. The following three presentation modes of Colonia3D uses
four of the rendering techniques presented in this thesis:

Reconstruction Mode The visualization of virtual 3D reconstructions can be considered as main
purpose for a system that communicates digital cultural heritage. It forms the basis for the
remaining two presentation modes. Basically, there are two possibilities for the rendering of
this visualization mode: photo-realism vs. abstract visualization. For example, in the case
of Roman Cologne people often wish to have more realism in texturing and lighting, but
archaeologist concerns that this would imply a "finished" reconstruction to the user. Therefore,
an abstract, non-photorealistic, and simple coloring schema is used to communicate that the
visualized reconstruction is only one out of many realities.

Comparison Mode Based on the reconstruction mode, the comparison mode enables the comparison
and dissemination of structural changes over time, i.e., between the reconstruction and
today’s state. There are several computer graphical approaches and techniques of different
implementation complexity to enable the rendering for such a mode, e.g., 3D magic lenses
[15] can be used to combine different geometries within a single view. For the visualization
framework of Roman Cologne, an image-based approach is applied that enables a side-by-side
comparison of locations between the modern Cologne and the ancient version represented by
the virtual 3D reconstruction using cylindrical projections. This feature uses image-space
deformations described in Chapter 6 to create such cylindrical projections of the virtual 3D
reconstruction.

Findings Mode The purpose of this mode is the communication of the findings at their respective
geolocations, which represent the foundations for the actual reconstructions. The purpose
is to enable a user to understand the relation between artifacts and a proposed virtual
3D reconstruction, which was developed by archaeologists and designers. In this scenario,
object-highlighting introduced in Section 8.2 was applied for the visualization of the virtual
3D finding objects.

Further the project Colonia3D served as test platform for advanced rendering techniques: relief
clipping planes combine the concept for the dynamic mapping of raster data (Chapter 5) which

www.colonia3d.de

9.1. Communication of Digital Cultural Heritage in Public Spaces 113

(a) Visualization of the comparison mode. (b) Concept of the cylindrical camera.

Figure 9.3: Visualization concept and components for the comparison mode of Colonia3D. Panoramic
images are texture mapped onto a cylinder with a virtual camera placed at the center point.

volumetric depth sprites and the volumetric parity test (Section 4.3 and 4.3). Further, multiple
cut-away views apply these techniques based on generalized clipping described in Section 4.3 to the
data sets of Colonia3D. They can be used for the interactive inspection for expert users.

Panoramic Image Generation and Rendering
This section describes the application of the image-based rendering technique described in Chapter
6 to the rendering framework of Colonia3D (Fig. 9.3(a)). Its integration ensures the functionality
of the comparison mode by enabling designers to easily create and modify cylindrical projections
on demand. It supports the same stylization of the reconstruction mode for the comparison images.

Instead of using planar images, 360◦onmi-directional cylindrical projections are rendered that
are mapped onto two cylinders, each rendered using a virtual camera (Fig. 9.3(b)). To navigate
within this setup, the user can rotate both cylindrical cameras simultaneously. The application of
the rendering technique for image-based deformations has two main reasons: (1) existing DDC tools
(e.g., Autodesk 3dsMAX) are not able to render the cylindrical projections because the application
cannot handle the geometric complexity of the virtual 3D reconstruction; and (2) to obtain the
same visual quality for the comparison mode and the reconstruction mode. During runtime, a user
can choose the file name, the resolution of the resulting cylindrical projection, the resolution of the
cubemap, as well as the horizontal and vertical field-of-view (fixed to 360◦ and 90◦). Subsequently,
the application performs the rendering. Finally, the parameters (e.g., position and orientation) of
the virtual camera are dumped to a file, ready to use within the framework.

A straight forward approach for rendering 360◦cylindrical projections is to map their corre-
sponding textures onto the surface of a cylinder, with the camera positioned in the middle and
directed towards the vertical center of the projection plane. To render the cylindrical projections
undistorted, the horizontal and vertical field-of-view (FOV) are adapted respectively. The vertical
FOV is adapted to the proportions of the cylinder geometry, while the horizontal FOV is adapted
to the aspect ratio of the canvas (screen) and the texture.

As the camera is positioned and directed towards the vertical center of the cylinder, it is
expected that the imaginary horizon of the cylindrical projection lies on the same level. A problem
occurs if the horizon of the cylindrical projection lies above or below the camera’s center point.
In this case, visually important lines that are parallel to the viewer’s line of sight, e.g., roofs of
buildings, become distorted. Physical cameras are able to resolve this issue by using shifted lenses
to perspectively correct captured images with a displaced horizon. To simulate a vertical shift when
rendering the textures, two approaches are possible. The first approach translates the camera to
the horizon level and applies an enlarged vertical field-of-view that tangents the top or bottom edge
of the cylinder. Subsequently, the viewport is clipped and stretched to fill the canvas. Alternatively,
a second approach can be applied that renders the texture by using an asymmetric projection.
Here, the camera is translated to the horizon level, and the projection transformation is adapted by
shortening and stretching the top and bottom horizontal clipping planes respectively.

114 Chapter 9. Case Studies and Applications

(a) Server-side visualization of the finding mode. (b) Client-side visualization of the finding mode.

Figure 9.4: Server- and client-side visualization of the finding mode. A finding part (red) of a column is
highlighted while other findings are displayed in its standard coloring. The context is rendered desaturated.

Object Highlighting
This section describes the application of object highlighting for the findings mode of Colonia3D.
The purpose of this mode is the communication of the findings at their respective geolocations to
enable a user to understand the relation between artifact and proposed virtual 3D reconstructions.
The applied highlighting facilitates preattentive cognition of artifacts in focus, especially if a viewer
faces multiple objects.

Figure 9.5: Object-highlighting in combination with
a reference grid in Colonia3D.

Due to the data acquisition and in contrast
to the geometric models of the virtual recon-
structions, the finding geometry has no textures
assigned. Instead, non-photorealistic lighting
[99] in combination with unsharp-masking the
depth buffer [170] are used to support shape and
depth perception. Object highlighting is used
to distinguish between selected and unselected
objects (Fig. 9.4). In addition thereto, a grid
is displayed that approximates the underlying
terrain (Fig. 9.5). It facilitates the perception
which of the finding objects were originally lo-
cated above or below the ancient terrain. If switching to the findings mode, the user faces a
flow-menu from which he/her can select an active finding (Fig. 9.4(b)). Successively, the application
moves the camera closer the findings and highlights it. A slider can be used to blend-in the available
reconstructions for the respective location. The coloring can be adjusted by designers. Especially
in this application, object highlighting is important, since differences between the 3D projection
and the 2D architectural drawing depicted on the touch table usually complicates recognition of
the artifacts.

The rendering framework of Colonia3D is a scene-graph based system. The rendering pipeline
for on-screen object highlighting (Section 8.2) was adapted and integrated in the following way:
the root node of the sub-scenegraph representing the findings mode contains a shader program
that performs highlighting based on the activity state of a scene object. Listing 9.1 shows the
respective fragment shader program that performs Gooch Shading [99] used for highlighting. A
uniform shader variable (findingState) prior to each object in the scene graph indicates if the
object should be highlighted during rendering

An object, represented as 3D polygonal mesh, can be in one of three modes: normal, highlighted,
and inactive (Fig. 9.4(a)). Inactive objects are shown in gray and represent the context of the
current location, i.e., all objects that belong to other locations. Objects in normal mode comprises
all accessible objects of the current location. During runtime, the rendering framework dynamically
changes the configuration of the respective shader variables. This is effective, since the number of
finding objects in a specific location is usually small. An alternative integration approach would be

9.1. Communication of Digital Cultural Heritage in Public Spaces 115

1 #version 130
2 uniform int findingState; // encode object state
3 uniform vec4 warmInactive; uniform vec4 warmNormal; uniform vec4 warmHighlighted;
4 uniform vec4 coolInactive; uniform vec4 coolNormal; uniform vec4 coolHighlighted;
5 uniform float diffuseCool; uniform float diffuseWarm; uniform vec4 surfaceColor;
6
7 varying float NdotL; // dot product of normal in eye -space and the light vector
8
9 void main(void) {

10 vec4 warmColor = vec4 (0.0); vec4 coolColor = vec4 (0.0);
11 // select display color
12 switch(findingState) {
13 case 0: { // object is in normal state
14 warmColor = warmNormal; coolColor = coolNormal; }
15 case 1: { // object is highlighted
16 warmColor = warmHighlighted; coolColor = coolHighlighted; }
17 case 2: { // object is displayed inactive
18 warmColor = warmInactive; coolColor = coolInactive; }
19 }// endswitch
20 // compute GOOCH
21 vec3 kCool = min(coolColor.rgb + diffuseCool * surfaceColor.rgb , 1.0);
22 vec3 kWarm = min(warmColor.rgb + diffuseWarm * surfaceColor.rgb , 1.0);
23 // write output
24 gl_FragData [0] = mix(vec4(kCool , coolColor.a), vec4(kWarm , warmColor.a), NdotL);
25 return;
26 }

Listing 9.1: Gooch shader for appearance-based object highlighting in Colonia3D.

the application of per-vertex attributes that store an unique object identifier. This approach would
increase the overall amount of redundant data to store. In addition to highlighting, the system
also automatically creates a camera path to ensure that the highlighted object is always visible to
the user. The presented integration approach is easy to implement and scalable over multiple 3D
objects in a geovirtual environment. It offers flexible configurations for designers, i.e., to change
and adjust the appearance colors of the objects. Combined with automatic camera path planning,
the highlighting contributes directly to the success of the findings presentation mode in Colonia3D.

Interactive Relief Clipping Planes and Multiple Cut-Away Views

Figure 9.6: Application of relief clipping planes and
capping to a column dataset of Colonia3D.

The concept of clipping planes is well known in
computer graphics and can be used to create
cut-away views. But clipping against just ana-
lytical defined planes is not always suitable for
communicating every aspect of such a visual-
ization. For example, in hand-drawn technical
illustrations, artists tend to communicate the
difference between a cut and a model feature
by using non-regular, sketchy cut lines instead
of straight ones. To enable this functionality in
interactive computer graphics, a technique for
rendering relief clip planes (RCP) in real-time is
presented [TD08d]. Figure 9.6 shows a close-up
on a clipped column with applied capping to
convey an impression of solid material on the
clip surface. Therefore, the clip plane equation
is extended with an additional offset map (OM),
that is represented by a texture map that en-
codes height values. Subsequently, clipping is performed by varying the clip plane equation with
respect to the offset map. Further, a capping technique is used that enables the rendering of caps
onto the clipped area to convey the impression of solid material. It avoids a re-meshing of a solid
polygonal mesh after clipping is performed. This approach is pixel-precise, applicable in real-time,
and takes fully advantage of graphics accelerators.

116 Chapter 9. Case Studies and Applications

1 bool clipReliefPlane(in mat4 config , // configuration matrix
2 in vec4 point , // position in eye -space
3 in sampler2D reliefSampler){ // 2D relief texture
4 // compute plane parametrization in eye space ...
5 vec3 O = (gl_ModelViewMatrix * vec4(config [0].xyz , 1.0)). xyz;
6 vec3 A = normalize(gl_NormalMatrix * normalize(config [1]. xyz));
7 vec3 B = normalize(gl_NormalMatrix * normalize(config [2]. xyz));
8 vec3 N = cross(A, B);
9 // project current fragment coordinates on plane

10 vec3 pV = point.xyz - dot(point.xyz - O, N) * N;
11 // compute clip texture coordinates
12 float s = dot(pV - O, A) / length(config [1]. xyz);
13 float t = dot(pV - O, B) / length(config [2]. xyz);
14 // fetch height ... maybe zero
15 float height = texture2D(reliefSampler , vec2(s,t) * config [3].st).x;
16 // compute reference plane
17 float plane = dot(point.xyz , N) - dot(N, O) + (height * config [3].z);
18 return (plane < 0.0 && bool(config [3].w)); // perform clipping
19 }

Listing 9.2: GLSL implementation to evaluate a relief clipping plane.

Relief Clipping Planes Briefly, a RCP = (N,P,OM , S) is defined by a normal vector N , an origin
P , the offset map OM , and a scaling vector S = (sx, sy, sz). Given an arbitrary shaped solid mesh
and a RCP, clipping is performed on fragment level. For each fragment with a clip space coordinate
P = (x, y, z) the function:

clip(RCP,P) =
{

true P •N −N •O + f(OM , T) · sz < 0
false otherwise (9.1)

T =
(

(PN −O) • ‖U‖
|U |

· sx,
PN −O • ‖V ‖

|V |
· sy
)

(9.2)

PN = P − ((P −O) •N) ·N

is evaluated using a fragment shader program (Listing 9.2). Therefore, f delivers a scalar D ∈ R by
(1) generating texture coordinates into the offset map (Eq. 9.2), (2) sampling the OM , and (3)
scaling the resulting height sample by s. If Equation 9.1 is satisfied, the fragment shader program
discards the tested fragment. This step can be performed for a number of clipping planes within a
single rendering pass.

Capping of Solid Meshes To convey the impression of solid material to visualize the inner
structure of an input mesh, it is required to close the cut with a cap surface. Due to the possibly
non-regularity of the clip surface, capping techniques based on stencil buffer capabilities [21] cannot
be applied. For non-convex shapes, the association of a cap surface to a clipped area cannot be
decided in image-space using stencil masks. The proposed image-based approach works for an
arbitrary solid. Figure 9.7 (next page) shows the exemplary rendering pipeline for relief clipping
planes and capping applied to the domain of technical visualization. Besides the creation of a
volumetric depth sprite from the polygonal input mesh in a preprocessing step (Section 4.3), the
complete rendering process comprises the following three steps that are performed per frame:

1. Application of relief clipping planes by rendering the solid mesh into the frame buffer with
applied relief clipping (Equation 9.1).

2. Creation of a cap mesh from the relief clipping plane. This is implemented using a polygonal
cap surface that is derived from the relief clipping plane parametrization. GPU based-mesh
refinement [27, 28] is applied to fit the subdivision of the cap mesh to the resolution of the
offset map.

3. Clipping of the cap mesh by performing a volumetric depth test on a per-fragment basis. It
determines if a fragment lies inside the volume and thus is associated with a gap, or if it is

9.1. Communication of Digital Cultural Heritage in Public Spaces 117

Figure 9.7: Conceptual rendering pipeline for relief clipping planes applied to a technical dataset.

located outside the volume and therefore is discarded. In this step per-vertex displacement
mapping, and per-fragment shading, and texturing is also performed.

To summarize, this advanced clipping approach is applicable for real-time rendering systems. The
hardware-accelerated rendering techniques forms the basis for multiple cut-away views of 3D GeoVE
as described next. The technique is limited by two drawbacks: first, it requires an additional data
structure (VDS), which is be created during a preprocessing step; and second, to obtain a high
visual quality, a sufficient vertex density the cap-surface is required.

Figure 9.8: Cut-away view of the Praeto-
rium data set using two clipping volumes.

Multiple Cut-away Views Interactive cut-away views
are an important visualization technique that reveals the
interior of complex models by clipping either occluding
parts or outer layers [161]. Usually, these depictions are
static and often created by hand, thus the view point and
the displayed cuts are fixed. Interactive cut-away views
overcome these drawbacks by enabling the user to choose
desired cut planes and cut volumes, while navigating in
the 3D geovirtual environment simultaneously.

To enable this functionality in the Colonia3D project,
generalized clipping as described in Section 4.3 is applied.
It supports clipping against a number of arbitrary solid
volumes within a single rendering pass. The polygonal
meshes that represent the volumes are designed using
standard modeling tools and are positioned into the scene. At runtime, volumetric depth sprites
of these volumes are created in a preprocessing step. During rendering, every fragment is tested
using the volumetric parity test. The fragment is discarded if its associated position lies inside a
specific volume. Figure 9.8 shows an example for applying two different volume cuts to a building

118 Chapter 9. Case Studies and Applications

(a) System setup for a dual-projector system with a cylin-
drical projection surface.

(b) Passive stereoscopic (anaglyph) rendering using a
non-planar projection system.

Figure 9.9: Visualization of 3D geovirtual environments using a multi-projector system and a non-planar
projection surface.

model in real-time. It reveals parts of the building footprint and internal structures, such as walls
and doorways, which otherwise would be hidden to the viewer. The quality of the 3D models (in
terms of modeled interior, solid walls, and consistency of polygon orientation), is important for the
resulting visual impression. Besides additional configuration issues, the usage of cut-away views
introduce a number of challenges and technical implications to the visualization framework: for
example, Figure 9.8 shows shading and shadow discontinuities for areas inside and outside the
building. These are caused by using a pre-computed lighting approach, which is only valid for views
from outside the building. This effect can be compensated partially by using image-based global
lighting approaches that approximate ambient occlusion [170].

The applied clipping technique is fill-limited, i.e., the runtime performance depends on the
number of fragments tested against the volumetric depth sprite. To avoid a significant performance
decrease, this technique should be applied only to parts of the 3D scene. To deal with the rendering
of hidden but potential visible geometry, a rendering framework has to apply more advanced
occlusion culling mechanisms [180].

9.2 Non-planar Projection Surfaces
Modern geo-media technology, such as cylindrical projection walls or multi-projector non-planar
displays (Fig. 9.9), provide immersive views, enables a more intuitive access of geoinformation to
broader audiences and new fields of applications. In contrast to standard 3D perspective views,
their implementation is based on non-planar projections. As a characteristic feature, geomedia
technology, provides interactivity, a high field-of-view, and high image resolution, which facilitates
the immersion of the user [EPTD12]. Further, stereoscopic imaging can improve this immersion
effect [TLJD12].

From a cartographic point of view, immersive environments are well-suited as a tool for the
effective transmission of complex geoinformation embedded in virtual spaces. Especially psycho-
logical depth cues support the intuitive understanding of geoinformation. One main psychological
parameter describes the retinal image size. Any restriction of the image size on the retina makes the
information transmission less immersive, because any surrounding around the presentation area has
an impact on the user’s perception. Large projection walls and multi-projector presentation areas
enhance retinal image size and therefore support psychological depth cues. Non-planar projections
together with stereoscopic imaging further improve the degree of immersion.

In contrast to flat display panels, projector have at least three major advantages: the projector
device and the display surface are decoupled, i.e., the depicted image can be larger than the
projector device itself. This can be used for the communication of geoinformation to a broader
audience. Further, the projected images can be combined, i.e., image of different projectors can
be superimposed. Furthermore, the shape of display surface and the displayed images can be

9.3. Multi-perspective Views for Navigation Systems 119

(a) Without adaptive scaling. (b) With adaptive scaling.

Figure 9.10: Comparative visualization of multi-perspective views combined with adaptive landmark scaling
integrated into a navigation system.

non-planar. The main markets and application of such multi-projector system are control rooms,
advertising, visualization, and public information system (e.g., in museums).

In contrast to flat or planar projection surfaces the usage of non-planar projection surfaces,
such as cylindrical or spherical surfaces, enable the application of larger FOV. Thus, a viewer is
able the perceive more of the depicted contents of the 3D geovirtual environment. For example,
Figure 9.9 shows of a non-planar projection system: a cylindrical wall with a diameter of about
four meters that is driven by two projectors. Using a horizontal FOV of 180◦, a user inside such
projection setup can see was is actually left and right of her/him. In contrast to cave-settings, a
continuous non-planar projection surfaces require a specific rendering processes.

The rendering technique for image-based deformations described in Chapter 6 is capable for
producing images for such non-planar projection surfaces in real-time. The rendering technique
was applied without modifications. The projection is driven by a single graphics accelerator with
wide framebuffer of 2048× 768 pixels resolution. It is split to supply two projectors with a native
resolution of 1024× 768 pixels each. The projectors counterbalance the the pincushion distortion
automatically. A single cylindrical projection with a horizontal FOV of 180◦ and a vertical FOV of
90◦ (see Section 6.2) is used. Further, the setup was also tested using non-planar stereo projections
as described in Section 6.5 (Fig. 9.9(b)). This includes the rendering of passive anaglyph stereo,
active stereo, and chroma-depth stereo as well.

9.3 Multi-perspective Views for Navigation Systems
3D navigation systems and mobile maps are a promising field of application for 3D multi-perspective
views. They enable interactive and focus+context visualization by seamlessly combining different
visual representations, and are easy to implement. The results presented in this chapter are based on
a cooperation with Nokia Gate5 GmbH in Berlin. The specific aim of this project was a prototypical
technology transfer and the combination of multi-perspective views (Chapter 7) views with the
adaptive landmark scaling (Section 8.2) to mobile devices (Fig. 9.10). Based on the technology
transfer, a quantitative and qualitative user study was part of the project. The technology of
multi-perspective views is suitable for mobile device due to the following reasons: first, it enables
the efficient use of available screen space which is especially important for small displays and small
display resolutions; and second, both techniques are easy to implement on GPU and CPU and do
not require extensive processing power.

The software architecture of the integration platform was designed to support a wide range of
mobile devices, including these which are not capable of performing hardware-accelerated rendering.
However, it is possible to transfer the concepts to a CPU-based renderer. The shader-based
implementation for multi-perspective views and landmark scaling were converted to per-vertex
transformations. Despite minor culling issues, the technology transfer exhibit some limitations: (1)
due to missing meta data, all objects marked as landmarks are scaled uniformly. This can lead to

120 Chapter 9. Case Studies and Applications

(a) Example of a 2D perspective (2D). (b) Example of a 3D perspective (3D).

(c) Example of a degressive perspective (PE). (d) Example of a progressive perspective (BE).

Figure 9.11: Exemplary test case for the user evaluation of multi-perspective views.

collisions and visual clutter; and (2), due to missing tessellation features of the integration platform,
the vertex density of the scene can be below the required amount. This can be counterbalanced by
introducing additional vertices during rendering on client side.

Test Setup of the User Evaluation The aim of the user test is to evaluate the acceptance, general
preference, and comprehension of multi-perspective views in a navigation scenario. The proposed
method is to show side-by-side images using four different perspectives accompanied with the
question: "What type of visualization does the user favor to navigate along a route?". Figure
9.11 shows the respective perspectives: an orthographic top-down view (2D) known from common
navigation systems, a 3D view using an oblique perspective (3D), a degressive perspective (PE)
that shows the top-down view in the lower part of screen, while the upper part shows silhouette of
a virtual 3D city model, as well as, a progressive view (BE), that shows the 3D oblique view in the
lower part of screen, while the upper part shows top-down view.

Three different route categories of varying complexity are used for the test cases: simple routes
have a short length and mostly consist of one straight segment (Fig. 9.12(a)). The course of the
route is supposed to be easily predicted, even if segments are occluded. Moderate routes have an
increased length and more turns compared to simple routes (Fig. 9.12(b)). Finally, complex routes
include a high number of turns and self intersections of the route, e.g., at a motorway junction (Fig.
9.12(c)). The different route categories should reduce the probability for a user to guess the course
of the highlighted routes.

During the evaluation, the participants are asked to choose the preferred visualization. The
hypothesis that participants would prefer multi-perspective views over classical 2D or 3D views is
based on the following rationale: compared to visualization of 3D geovirtual environments using a

9.3. Multi-perspective Views for Navigation Systems 121

(a) Simple route. (b) Moderate route. (c) Complex route.

Figure 9.12: Exemplary route types of different complexity used for the user test.

central perspective, multi-perspective views (e.g., a progressive or degressive perspective), make
more efficient use of available screen space, reduce the number of different scales and display more
elements of the 3D geovirtual environment. Thus, they probably support the user in navigation
and orientation tasks more effectively. The test setup was organized as follows: in a sequence of
questions, the participant has to choose between two different pictures showing the same route, but
with different visualization techniques (e.g., 2D, 3D, progressive, or degressive perspective).

The task is to navigate along a route with the help of a static image from a mobile navigation
device. The participant is asked to imagine a navigation task where the highlighted route should
be followed. The user study is conducted anonymously and web-based, with 44 participants from
18-55 years with mixed background knowledge about and experience with navigation systems and
3D geovirtual environments.

Results Ten routes with a different complexity were prepared that partially contained landmarks.
For each route the four visualization configurations are generated. During the user evaluation,
26 image pairs are presented to the user. Each pair depicted the same route using two different
perspectives. The user were asked whether they favor one visualization, or they cannot decide
for a visualization to favor. The results in Table 9.2 show that 80,7% of the participants favor
the orthographic perspective instead of a central perspective. This is reasonable since a 2D map
is an established mean for navigation. Furthermore, it can be observed that 76,1% prefer the
degressive perspective instead of a central perspective. This indicates a form of acceptance for
multi-perspective views for navigation. With the presented technique, it becomes possible to
combine the progressive perspective for a low viewing angle with the orthographic perspective for
large viewing angles and thus provide the benefits of both visualization in one navigation tool.

Table 9.2: Results for the user evaluation.

Setup 1st Choice 2nd Choice No Choice

3D vs. 2D 19% 80% 1%
PE vs. 3D 76% 20% 4%
PE vs. 2D 31% 57% 12%
BE vs. 3D 31% 59% 10%
BE vs. 2D 8% 88% 4%

Chapter 10

Conclusions and Future Research

This chapter briefly summarizes and reviews the presented interactive rendering techniques for
focus+context visualization of 3D geovirtual environments. It also outlines possible future research
directions related to them.

Conclusions
In general, the presented concepts and rendering techniques allow applications and systems a
more effective communication of geoinformation as well as improved ways for orientation and
navigation in interactive geovirtual environments by counterbalancing a number of limitations
and drawbacks originating from using 3D perspective views for visualization. In particular, the
techniques resolve occlusions in near-ground perspectives by using multi-perspective, cut-away,
and ghosted views. Further, they are able to reduce multiple cartographic and geometrical scales
by combining abstracted and detailed views of virtual 3D city and landscape models within a
single image; generalized or abstracted versions of the context region are combined with high-
detail geometry of multiple focus regions using 2D and 3D lens-based visualization metaphors.
Furthermore, image-based distortions and multi-perspective views facilitate the effective use of
available screen space. Finally, the visualization techniques support saliency-guided visualization of
landmarks, as well as points, regions, and volumes-of-interest.

The presented rendering techniques, algorithms, and data structures are especially designed for
raster-based graphic accelerators and GPU implementations. The flexibility of the programmable
graphics pipeline enables the efficient implementation of the visualization techniques suitable that
are especially for geometric complex 3D geovirtual environments. Here, the major challenges
comprised real-time capabilities of the rendering techniques by exploiting GPU features as well as
the integration into existing visualization and rendering pipelines. The application of preprocessing
for complex input data, image-based data structures, and the efficient encoding of global scene
information into buffer objects allows for performing the rendering in real-time.

The concepts and techniques are capable of using multiple foci, i.e., nesting or overlapping
focus regions or volumes. Based on the analysis of existing related and previous work in the area of
real-time rendering, digital cartography, and human-computer interaction, this thesis has presented
five rendering technologies; these contributions generally include rendering techniques and concepts
with applications for but not limited to focus+context visualization.

3D Generalization Lenses enable real-time rendering of multiple, overlapping, and nested 3D lenses
of arbitrary shapes and contents. The concept is based on a generalized clipping technique
that uses a compact image-based data structure (volumetric depth sprite) in combination with
a volumetric test, which can be efficiently performed at each programmable pipeline stage.
The rendering technique enables the combination of different geometrical representations
and variants of 3D GeoVEs (e.g., level-of-abstraction [94]) within a single image. A priority
based mapping between lens volumes and geometric contents is used to handle intersected
and nested lenses correctly. Further, the image-based data structure offers a wide range
of application beyond focus+context visualization such as relief clipping planes or multiple
cut-away views. It was applied to data sets of the project Colonia 3D (Section 9.1).

124 Chapter 10. Conclusions and Future Research

Dynamic Mapping of Raster Data overcomes the limitations of graphics hardware with respect
to the texturing mechanisms. It presents an extendable concept for mapping dynamic raster-
based input data, such as aerial images or image-based simulations results, onto a 3D GeoVE.
The implementation is based on projective texture mapping and user-specified color and mask
transfer-functions. It provides a fully hardware accelerated rendering technique that enables
the display of a high number of projective mappings within a single rendering pass for efficient
real-time image synthesis. The capabilities of this flexible technique are used to configure and
render multiple overlapping 2D surface lenses, enable style-transfer functions for thematic
data, and offers various other applications for 2D, 2.5D, and 3D GeoVE.

Image-Based Deformations comprise a parameterizable rendering technique to combine planar and
non-planar projections seamlessly. It unifies exiting rendering techniques for the interactive
image synthesis of non-planar projections and other artistic projections or 2D image-based
distortion effects. Most of all, this technique enables focus+context visualization, such as
multi-focal fish-eye views and multiple 2D viewport lenses for 3D GeoVE. Therefore, an
efficient image-based rendering technique is introduced that fully exploits graphics hardware
and can be applied within a single rendering pass. Despite a lower image-quality compared
to geometry-based approaches, the presented techniques is easy to implement and integrate
into existing rendering real-time frameworks. It was successfully applied and tested in the
project Colonia 3D (Section 9.1). Further, an extension for rendering stereoscopic effects for
non-planar projections is introduced to increase immersion for the visualization of 3D GeoVE
to broader audiences (Section 9.2).

Multi-Perspective Views for Spatial 3D Environments describe a concept and interactive ren-
dering technique of a multi-scale focus+context visualization for 3D GeoVEs similar to
Panoramic maps: it enables the seamless combination of different perspectives for simul-
taneously presenting overview (context) and detailed regions (foci) of virtual 3D city and
landscape models. The hardware-accelerated rendering technique can be applied using single
or multiple rendering passes based on view-dependent global deformations, which are com-
puted automatically prior to applying a standard projection transformations. It can be easily
integrated into existing real-time rendering pipelines and visualization frameworks, and is
suitable for the communication of geo-information to a broad audience using cave settings and
multi-projector system [EPTD12]. Further, it can represent a fundamental component for
future cartography-oriented visualizations [SHTD12, STD11] and comprehensible 3D maps
[PSTD12, STKD12]. Furthermore, the concept and rendering technique was ported to the
Nokia MOS mobile rendering platform and a user test was conducted that shows the benefits
of 3D multi-perspective view over standard 3D perspectives in navigation systems (Section
9.3).

Highlighting Techniques for 3D Geovirtual Environments enable interactive saliency-guided fo-
cus+context visualization for objects and features located inside or outside the view frustum.
Highlighting capability is a fundamental feature of interactive systems. The object-based and
image-based rendering techniques use geometric scaling, proxy-objects, and post-processing
effects to facilitate pre-attentive cognition of multiple objects- or regions-of-interest. The
presented rendering techniques can be easily integrated into existing rendering systems.

125

Future Research Directions
The presented techniques form a basis for development of more advanced visualization concepts for
3D GeoVEs. There are numerous aspects for improvement and future work:

Algorithmic Optimization and Feature Enhancement The adaptation of the existing implemen-
tations to the ongoing development of graphics accelerators is promising to overcome the
required preprocessing steps and enable the processing of highly dynamic contents. For
example, atomic operations on GPU enable the creation and usage of more efficient data
structures. Beside focusing on other rendering primitives such as point clouds, new interaction
techniques based on direct input or multi-touch technologies can be researched.

View-Dependent Parameterization Especially in 3D geovirtual environments, the view-dependent
parametrization and configuration of the visualization techniques comprises a number of
potentials for future research [STKD12]. In particular, this includes research on how the
parameterization of the respective rendering techniques can be adapted to the virtual camera
to ensure optimal results for different viewing settings.

Transfer to other Visualization Domains The existing techniques and concepts can be transferred
and adapted to new application domains in which the landscape metaphor plays an important
role. Besides spatio-temporal geovisualization [BTD12], they can be applied to the software
visualization domain to facilitate the readability of software maps [254].

User Evaluation and Studies Although some of the presented techniques were included in software
system used by non-expert users, an important aspect to focus in future work represents the
conduction of qualitative and quantitative user studies to further improve the visualizations
techniques once specific applications and systems start to use the presented focus+context
techniques.

Transfer to Indoor-Models The techniques in this thesis are designed to handle out-door visual-
ization scenarios for 3D GeoVE. With respect to this, research can be conducted for indoor
visualization of LOD-4 models. This can include combinations of ghosting, cut-away, and
explosion views to support computer generated camera paths, to guarantee that a user is able
to preserve the spatial context during the navigation.

Transfer to Service-oriented Architectures A major research direction represents the transfer and
integration of the visualization techniques into service-oriented architectures to facilitate their
application for cloud-computing and mobile devices. This would enable a broad and scalable
access using specialized new developed services or combination of existing ones. It would
require, for example, a standardization of a general camera model and existing focus+context
concepts.

References

[1] Pietro Acquisto and Meister Eduard Gröller. A Distortion Camera for Ray Tracing. Technical
Report TR-186-2-95-05, Institute of Computer Graphics and Algorithms, Vienna University
of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, March 1995.

[2] Maneesh Agrawala, Denis Zorin, and Tamara Munzner. Artistic Multiprojection Rendering.
In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, pages 125–136,
London, UK, 2000. Springer-Verlag Berlin Heidelberg.

[3] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering 3rd Edition.
A. K. Peters, Ltd., Natick, MA, USA, 2008.

[4] Caroline Appert, Olivier Chapuis, and Emmanuel Pietriga. High-Precision Magnification
Lenses. In SIGCHI conference on Human Factors in computing systems, pages 273–282,
Atlanta, États-Unis, April 2010. SIGCHI.

[5] David Baar. Questions of Focus: Advances in Lens-based Visualizations for Intelligence
Analysis. Technical report, IDELIX Software Inc., April 2005.

[6] William H. Bardel. Depth Cues For Information Design. Master’s thesis, The School of
Design, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, May 2001.

[7] Alan H. Barr. Global and Local Deformations of Solid Primitives. In SIGGRAPH ’84:
Proceedings of the 11th annual conference on Computer graphics and interactive techniques,
pages 21–30, New York, NY, USA, 1984. ACM Press.

[8] Patrick Baudisch, Nathaniel Good, and Paul Stewart. Focus plus Context Screens: Combining
Display Technology with Visualization Techniques. In Proceedings of the 14th annual ACM
symposium on User interface software and technology, UIST ’01, pages 31–40, New York, NY,
USA, 2001. ACM P.

[9] Patrick Baudisch and Ruth Rosenholtz. Halo: A technique for visualizing off-screen objects.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’03,
pages 481–488, New York, NY, USA, 2003. ACM.

[10] Louis Bavoil and Kevin Myers. Order Independent Transparency with Dual Depth Peeling.
Technical Report February, Nvidia Corporation, 2008.

[11] Salvador Bayarri. Computing Non-Planar Perspectives in Real Time. Computers & Graphics,
19(3):431–440, 1995.

[12] Heinrich Caesar Berann. The World of H.C. Berann. web site, January 2013.
http://www.berann.com/.

[13] Bernhard Jenny. Design of a Panorama Map with Plan Oblique and Spherical Projection. In
5th ICA Mountain Cartography Workshop, Bohinj, Slovenia, pages 121–128, April 2006.

[14] Jacques Bertin. Semiology of Graphics. University of Wisconsin Press, 1983.

127

128 References

[15] Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton, and Tony D. DeRose. Toolglass
and Magic Lenses: The See-Through Interface. In SIGGRAPH ’93: Proceedings of the 20th
annual conference on Computer graphics and interactive techniques, pages 73–80, New York,
USA, 1993. ACM Press.

[16] Eric A. Bier, Maureen C. Stone, Ken Pier, Ken Fishkin, Thomas Baudel, Matt Conway,
William Buxton, and Tony DeRose. Toolglass and Magic Lenses: The see-Through Interface.
In CHI ’94, pages 445–446, New York, NY, USA, 1994. ACM Press.

[17] Staffan Björk, Lars Erik Holmquist, and Johan Redström. A Framework for Focus+Context
Visualization. In Proceedings of the 1999 IEEE Symposium on Information Visualization,
INFOVIS ’99, pages 53–61, Washington, DC, USA, 1999. IEEE Computer Society Press.

[18] James F. Blinn. A Generalization of Algebraic Surface Drawing. ACM Transaction Graphics,
1:235–256, July 1982.

[19] James F. Blinn. Hyperbolic Interpolation. IEEE Computer Graphics and Applications,
12(4):89–94, July 1992.

[20] David Blythe. The Direct3D 10 System. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
pages 724–734, New York, NY, USA, 2006. ACM Press.

[21] David Blythe, Tom McReynold, Brad Grantham, Mark J. Kilgard, and Scott R. Nelson.
Programming with OpenGL: Advanced Rendering. In A. Rockwood, editor, SIGGRAPH
Course, New York, NY, USA, 1999. ACM Press.

[22] Joachim Bobrich. Ein neuer Ansatz zur kartographischen Verdrängung auf der Grundlage
eines mechanischen Federmodells. Vol. c 455, Deutsche Geodätische Kommission, Müchen,
1996.

[23] Jürgen Bogdahn and Volker Coors. Using 3D Urban Models for Pedestrian Navigation Support.
In Proceedings of ISPRS Joint Workshop Cityscapes at GeoWeb 2009, Vancouver,Canada,
July 2009.

[24] Christoph W. Borst, Jan-Phillip Tiesel, Emad Habib, and Kaushik Das. Single-Pass Compos-
able 3D Lens Rendering and Spatiotemporal 3D Lenses. IEEE Transactions on Visualization
and Computer Graphics, 17(9):1259–1272, 2011.

[25] Joachim Bottger, Michael Balzer, and Oliver Deussen. Complex Logarithmic Views for Small
Details in Large Contexts. IEEE Transactions on Visualization and Computer Graphics,
12(5):845–852, September 2006.

[26] Joachim Böttger, Ulrik Brandes, Oliver Deussen, and Hendrik Ziezold. Map Warping for
the Annotation of Metro Maps. IEEE Computer Graphics and Applications, 28(5):56–65,
September 2008.

[27] Tamy Boubekeur and Christophe Schlick. Generic Mesh Refinement on GPU. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware, HWWS ’05,
pages 99–104, New York, NY, USA, 2005. ACM Press.

[28] Tamy Boubekeur and Christophe Schlick. A Flexible Kernel for Adaptive Mesh Refinement
on GPU. Computer Graphics Forum, 27(1):102–114, 2008.

[29] Paul Bourke and Peter Morse. Stereoscopy, Theory and Practice. In In Workshop Proceedings
of VSMM 2007: Exchange and Experience in Space and Place., Queensland University of
Technology, Brisbane, September 2007.

References 129

[30] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approximate Energy Minimization via
Graph Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–
1239, November 2001.

[31] John Brosz, Sheelagh Carpendale, and Miguel Nacenta. The Undistort Lens. Computer
Graphics Forum, 30(3):881–890, June 2011.

[32] John Brosz, Faramarz F. Samavati, M. Sheelagh, T. Carpendale, and Mario Costa Sousa.
Single Camera Flexible Projection. In NPAR ’07: Proceedings of the 5th international
symposium on Non-photorealistic animation and rendering, pages 33–42, New York, NY, USA,
2007. ACM Press.

[33] Stefan Bruckner, M. Eduard Gröller, Klaus Mueller, Bernhard Preim, and Deborah Silver.
Illustrative Focus+Context Approaches in Interactive Volume Visualization. In Hans Hagen,
editor, Scientific Visualization: Advanced Concepts, volume 1 of Dagstuhl Follow-Ups, pages
136–162. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2010.

[34] Stefan Bruckner and Meister Eduard Gröller. Style Transfer Functions for Illustrative Volume
Rendering. Computer Graphics Forum, 26(3):715–724, September 2007.

[35] Joachim Böttger, Martin Preiser, Michael Balzer, and Oliver Deussen. Detail-In-Context
Visualization for Satellite Imagery. Computer Graphics Forum, 27(2):587–596, April 2008.

[36] Henrik Buchholz. Real-Time Visualization of 3D City Models. PhD thesis, Hasso-Plattner-
Institut, University of Potsdam, 2006.

[37] Henrik Buchholz, Johannes Bohnet, and Jürgen Döllner. Smart and Physically-Based Navi-
gation in 3D Geovirtual Environments. In IV ’05: Proceedings of the Ninth International
Conference on Information Visualisation, pages 629–635, Washington, DC, USA, 2005. IEEE
Computer Society Press.

[38] Henrik Buchholz, Jürgen Döllner, Marc Nienhaus, and Florian Kirsch. Real-Time Non-
Photorealistic Rendering of 3D City Models. In Proceedings of the 1st International Workshop
on Next Generation 3D City Models, June 2005.

[39] Stefano Burigat, Luca Chittaro, and Silvia Gabrielli. Visualizing Locations of Off-Screen
Objects on Mobile Devices: A Comparative Evaluation of Three Approaches. In Proceedings
of the 8th conference on Human-computer interaction with mobile devices and services,
MobileHCI ’06, pages 239–246, New York, NY, USA, September 2006. ACM Press.

[40] Nicholas Burtnyk, Azam Khan, George Fitzmaurice, Ravin Balakrishnan, and Gordon
Kurtenbach. StyleCam: Interactive Stylized 3D Navigation using Integrated Spatial &
Temporal Controls. In Proceedings of the 15th annual ACM symposium on User interface
software and technology, UIST ’02, pages 101–110, New York, NY, USA, 2002. ACM Press.

[41] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in Information Visual-
ization. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[42] M.S.T. Carpendale and Catherine Montagnese. A Framework for Unifying Presentation Space.
In UIST ’01: Proceedings of the 14th annual ACM symposium on User interfacesoftware and
technology, pages 61–70, New York, NY, USA, 2001. ACM Press.

[43] Sheelagh Carpendale, John Ligh, and Eric Pattison. Achieving Higher Magnification in
Context. In Proceedings of the 17th annual ACM symposium on User interface software and
technology, UIST ’04, pages 71–80, New York, NY, USA, 2004. ACM Press.

130 References

[44] William E. Cartwright. Landmarks and the perception of a space in web-delivered 3d-worlds.
In Georg Gartner, William E. Cartwright, and Michael P. Peterson, editors, Location Based
Services and TeleCartography, Lecture Notes in Geoinformation and Cartography, pages
329–344. Springer, 2007.

[45] Paolo Cignoni, Claudio Montani, and Roberto Scopigno. MagicSphere: An Insight Tool for
3D Data Visualization. Computer Graphics Forum, 13(3):317–328, August 1994.

[46] Andy Cockburn, Amy Karlson, and Benjamin B. Bederson. A Review of Overview+Detail,
Zooming, and Focus+Context Interfaces. ACM Computing Surveys, Vol. 41(1):1–31, 2008.

[47] Jonathan D. Cohen and Dinesh Manocha. Visualization Handbook, chapter Model Simplifica-
tion, pages 393–411. Elsevier, 2005.

[48] Marcelo Cohen and Ken Brodlie. Focus and Context for Volume Visualization. Theory and
Practice of Computer Graphics, pages 32–39, 2004.

[49] Forrester Cole, Doug DeCarlo, Adam Finkelstein, Kenrick Kin, Keith Morley, and Anthony
Santella. Directing Gaze in 3D Models with Stylized Focus. In Proceedings of the 17th
Eurographics conference on Rendering Techniques, EGSR’06, pages 377–387, Aire-la-Ville,
Switzerland, Switzerland, 2006. The Eurographics Association.

[50] Patrick Coleman and Karan Singh. RYAN: Rendering Your Animation Nonlinearly Projected.
In Proceedings of the 3rd international symposium on Non-photorealistic animation and
rendering, NPAR ’04, pages 129–156, New York, NY, USA, 2004. ACM Press.

[51] Ferdinand de Saussure. Grundfragen der allgemeinen Sprachwissenschaft. Walter de Gruyter,
2001. Fr. original published 1916.

[52] Paul Debevec, Yizhou Yu, and George Boshokov. Efficient View-Dependent Image-Based
Rendering with Projective Texture-Mapping. Technical report, Berkeley, CA, USA, 1998.

[53] Xavier Décoret, Gernot Schaufler, François Sillion, and Julie Dorsey. Multi-layered Impostors
for Accelerated Rendering. In P. Brunet and R. Scopigno, editors, Computer Graphics Forum
(Proceedings of Eurographics ’99), volume 18, pages 61–73. The Eurographics Association,
September 1999.

[54] Patrick Degener and Reinhard Klein. A Variational Approach for Automatic Generation of
Panoramic Maps. ACM Transactions on Graphics, 28(1):1–14, 2009.

[55] Hao Deng, Liqiang Zhang, Jingtao Ma, and Zhizhong Kang. Interactive Panoramic Map-like
Views for 3D Mountain Navigation. Computers & Geosciences, 37(11):1816–1824, November
2011.

[56] Paul Joseph Diefenbach. Pipeline Rendering: Interaction and Realism Through Hardware-based
Multi-pass Rendering. PhD thesis, University of Pennsylvania, 1996.

[57] Jürgen Döllner and Konstantin Baumann. Geländetexturen als Mittel für die Präsentation,
Exploration und Analyse komplexer räumlicher Informationen in 3D-GIS. In V. Coors A. Zipf,
editor, 3D-Geoinformationssysteme, pages 217–230. Wichmann Verlag, 2005.

[58] Jürgen Döllner, Konstantin Baumann, and Klaus Hinrichs. Texturing Techniques for Terrain
Visualization. In Proceedings of the 11th IEEE Visualization 2000 Conference (VIS 2000),
VISUALIZATION ’00, pages 227–234, Los Alamitos, CA, USA, 2000. IEEE Computer Society
Press.

[59] Jürgen Döllner and Henrik Buchholz. Continuous Level-of-Detail Modeling of Buildings in
Virtual 3D City Models. In 13th ACM International Symposium of Geographical Information
Systems (ACM GIS), pages 173–181. ACM Press, 2005.

References 131

[60] Jürgen Döllner, Henrik Buchholz, Florian Brodersen, Tassilo Glander, Sascha Jütterschenke,
and Alexander Klimetschek. SmartBuildings - A Concept for Ad-Hoc Creation and Refinement
of 3D Building Models. In G. Gröger and T. H. Kolbe, editors, 1st International Workshop of
3D City Models. EuroSDR, June 2005. Online proceedings.

[61] Jürgen Döllner, Henrik Buchholz, and Haik Lorenz. Ambient Occlusion - ein Schritt zur
realistischen Beleuchtung von 3D-Stadtmodellen. GIS - Zeitschrift für Geoinformatik, pages
7–13, November 2006.

[62] Jürgen Döllner, Henrik Buchholz, Marc Nienhaus, and Florian Kirsch. Illustrative Visualiza-
tion of 3D City Models. In Robert F. Erbacher, Matti T. Roberts, Jonathan C.and Gröhn,
and Katy Börner, editors, Visualization and Data Analysis, volume 5669 of Proceedings of the
SPIE, pages 42–51. International Society for Optical Engine (SPIE), 2005.

[63] Jürgen Döllner and Klaus Hinrichs. The Virtual Rendering System - A Toolkit for Object-
Oriented 3D Rendering. In EduGraphics - CompuGraphics Combined Proceedings, pages
309–318, 1995.

[64] Jürgen Döllner and Klaus Hinrichs. A Generic Rendering System. IEEE Transactions on
Visualization and Computer Graphics, 8(2):99–118, April 2002.

[65] Jürgen Döllner, Thomas H. Kolbe, Falko Liecke, Takis Sgouros, and Karin Teichmann. The
Virtual 3D City Model of Berlin - Managing, Integrating, and Communicating Complex
Urban Information. In 25th Urban Data Management Symposium (UDMS), 2006. Online
proceedings.

[66] Dominik Göddeke. Playing Ping Pong with Render-To-Texture. Technical report, University
of Dortmund, Germany, 2005.

[67] Shannon Drone. Real-Time Particle Systems On the GPU in Dynamic Environments. In
SIGGRAPH ’07, pages 80–96, New York, NY, USA, 2007. ACM Press.

[68] Jiangang Duan and Jin Li. Compression of the Layered Depth Image. In DCC ’01, page 331,
Washington, DC, USA, 2001. IEEE Computer Society Press.

[69] C. Duchêne. Coordinative Agents for Automated Generalisation of Rural Areas. In Proceedings
5th Workshop on Progress in Automated Map Generalization, April 2003.

[70] Juan C. Dürsteler. Focus+context. Inf@Vis!, April 2002.
http://www.infovis.net/printMag.php?lang=2&num=85.

[71] Jason Dykes, Alan M. MacEachren, and Menno-Jan Kraak. Exploring Geovisualization.
Elsevier, 2005.

[72] Max J. Egenhofer and David M. Mark. Naive Geography. In A. U. Frank and W. Kuhn,
editors, COSIT’95: Conference on Spatial Information Theory: A Theoretical Basis for GIS,
number 988 in Lecture Notes in Computer Sciences (LNCS), pages 1–15, Semmering, Austria,
1995. Springer-Verlag Berlin Heidelberg.

[73] Elmar Eisemann and Xavier Décoret. Fast scene voxelization and applications. In Proceedings
of the 2006 symposium on Interactive 3D graphics and games, I3D ’06, pages 71–78, New
York, NY, USA, 2006. ACM Press.

[74] Mike Eissele, Daniel Weiskopf, and Thomas Ertl. The G2-Buffer Framework. In Thomas
Schulze, Stefan Schlechtweg, and Volkmar Hinz, editors, Tagungsband SimVis ’04, Magdeburg,
pages 287–298. SCS Publishing House e.V., 2004.

132 References

[75] Birgit Elias. Determination of Landmarks and Reliability Criteria for Landmarks. In Working
Paper of the ICA Workshop on Generalisation and Multiple Representation, Paris, France,
April 2003.

[76] Geoffrey Ellis, Enrico Bertini, and Alan Dix. The Sampling Lens: Making Sense of Saturated
Visualisations. In CHI ’05 Extended Abstracts on Human Factors in Computing Systems,
CHI EA ’05, pages 1351–1354, New York, NY, USA, 2005. ACM Press.

[77] Stephen R. Ellis. What are Virtual Environments? IEEE Computer Graphics and Applications,
14(1):17–22, January 1994.

[78] Niklas Elmqvist and Philippas Tsigas. A Taxonomy of 3D Occlusion Management for
Visualization. IEEE Transactions on Visualization and Computer Graphics, 14(5):1095–1109,
January 2008.

[79] T. Todd Elvins, David R. Nadeau, Rina Schul, and David Kirsh. Worldlets: 3-D Thumbnails
for Wayfinding in Large Virtual Worlds. Presence: Teleoper. Virtual Environ., 10(6):565–582,
December 2001.

[80] Cass Everitt. Interactive Order-Independent Transparency. Technical report, NVIDIA
Corporation, June 2001.

[81] Cass Everitt. Projective Texture Mapping. Technical report, NVIDIA Corporation, April
2001.

[82] Martin Falk, Tobias Schafhitzel, Daniel Weiskopf, and Thomas Ertl. Panorama Maps with
Non-linear Ray Tracing. In GRAPHITE ’07: Proceedings of the 5th international conference
on Computer graphics and interactive techniques in Australia and Southeast Asia, pages 9–16,
New York, NY, USA, 2007. ACM Press.

[83] Margaret M. Fleck. Perspective Projection: the Wrong Imaging Model. Technical Report
95.01, Department of Computer Science, University of Iowa, 1995.

[84] Theodor Foerster, Lassi Lehto, Tapani Sarjakoski, L. Tiina Sarjakoski, and Jantien E. Stoter.
Map Generalization and Schema Transformation of Geospatial Data Combined in a Web
Service Context. Computers, Environment and Urban Systems, 34(1):79–88, 2010.

[85] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics:
Principles and Practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2nd edition, 1990.

[86] Andrea Forberg. Generalization of 3D Building Data based on a Scale Space Approach.
ISPRS Journal of Photogrammetry and Remote Sensing, 62(2):104–111, June 2007.

[87] Georg Fuchs, Matthias Kreuseler, and Heidrun Schumann. Extended Focus & Context for
Visualizing Abstract Data on Maps. In CODATA Prague Workshop Information Visualization,
Presentation, and Design, March 2004. Online Proceedings.

[88] George W. Furnas. Generalized Fisheye Views. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’86, pages 16–23, New York, NY, USA, 1986.
ACM Press.

[89] Verena Giller, Manfred Tscheligi, Johann Schrammel, Peter Fröhlich, Birgit Rabl, Robert
Kosara, Silvia Miksch, and Helwig Hauser. Experimental Evaluation of Semantic Depth of
Field, a Preattentive Method for Focus+Context Visualization. In M. Rauterberg et al.,
editor, Human-Computer Interaction – INTERACT’03, pages 888–891. IOS Press, 2003.

[90] Georg Glaeser. Extreme and Subjective Perspectives. In Topics in Algebra, Analysis and
Geometry, pages 39–51, BPR Médiatanácsadó BT/Budapest, 1999.

References 133

[91] Georg Glaeser and Eduard Gröller. Fast Generation of Curved Perspectives for Ultra-Wide-
Angle Lenses in VR Applications. The Visual Computer, 15(7/8):365–376, 1999.

[92] Tassilo Glander, Janett Baresel, and Jürgen Döllner. Überlegungen zum stufenlosen Übergang
zwischen verschieden generalisierten 3d-stadtmodellrepräsentationen. In Tagungsband der
3-Ländertagung DGPF, 2010.

[93] Tassilo Glander and Jürgen Döllner. Cell-based Generalization of 3D Building Groups with
Outlier Management. In GIS ’07: Proceedings of the 15th annual ACMGIS, pages 1–4, New
York, NY, USA, 2007. ACM Press.

[94] Tassilo Glander and Jürgen Döllner. Techniques for Generalizing Building Geometry of
Complex Virtual 3D City Models. In Peter Oosterom, Sisi Zlatanova, Friso Penninga,
and Elfriede M. Fendel, editors, Advances in 3D Geoinformation Systems, Lecture Notes in
Geoinformation and Cartography, pages 381–400. Springer-Verlag Berlin Heidelberg, December
2008.

[95] Tassilo Glander and Jürgen Döllner. Abstract Representations for Interactive Visualization of
virtual 3D City Models. Computers, Environment and Urban Systems, 33(5):375–387, 2009.

[96] R. Steven Glanville. GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time
Graphics, chapter Texture Bombing, pages 323–338. Addison-Wesley, 2004.

[97] Chirs A. Glasbey and Kantilal Vardichand Mardia. A Review of Image Warping Methods.
Journal of Applied Statistics, 25(2):155–171, 1989.

[98] Andrew S. Glassner. Graphics Gems. Morgan Kaufmann, 1990.

[99] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A Non-photorealistic Lighting
Model for Automatic Technical Illustration. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’98, pages 447–452, New York,
NY, USA, 1998. ACM Press.

[100] Floraine Grabler, Maneesh Agrawala, Robert W. Sumner, and Mark Pauly. Automatic
Generation of Tourist Maps. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pages 1–11,
New York, NY, USA, 2008. ACM Press.

[101] Chris Green. Improved Alpha-tested Magnification for Vector Textures and Special Effects.
In ACM SIGGRAPH 2007 courses, SIGGRAPH ’07, pages 9–18, New York, NY, USA, 2007.
ACM Press.

[102] Ned Greene. Environment Mapping and other Applications of World Pojections. IEEE
Computer Graphics and Applications, 6(11):21–29, November 1986.

[103] Gerhard Gröger, Thomas H. Kolbe, Angela Czerwinski, and Claus Nagel. OpenGIS City
Geography Markup Language (CityGML) Encoding Standard. Open Geospatial Consortium
Inc., August 2008.

[104] Sudipto Guha, Shankar Krishnan, Kamesh Munagala, and Suresh Venkatasubramanian.
Application of the Two-sided Depth Test to CSG Rendering. In Proceedings of the 2003
symposium on Interactive 3D graphics, I3D ’03, pages 177–180, New York, NY, USA, 2003.
ACM Press.

[105] Sean Gustafson, Patrick Baudisch, Carl Gutwin, and Pourang Irani. Wedge: Clutter-free
Visualization of Off-screen Locations. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, pages 787–796, New York, NY, USA, April 2008.
ACM Press.

134 References

[106] Sean G. Gustafson and Pourang P. Irani. Comparing Visualizations for Tracking Off-screen
Moving Targets. In CHI ’07 Extended Abstracts on Human Factors in Computing Systems,
CHI EA ’07, pages 2399–2404, New York, NY, USA, April 2007. ACM Press.

[107] Andreas Gustafsson. Interactive Image Warping. Master’s thesis, Faculty of Information
Technology, 1993.

[108] Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. ACM SIGMOD
Record, 14(2):47–57, June 1984.

[109] Bao H., Ying J., and Peng Q. Non-Linear View Interpolation. In The Journal of Visual-
ization and Computer Animation, volume 10, pages 233–241(9). John Wiley & Sons, Ltd.,
October/December 1999.

[110] Christian Häberling, Hansruedi Bär, and Lorenz Hurni. Proposed Cartographic Design
Principles for 3D Maps: A Contribution to an Extended Cartographic Theory. Cartographica:
The International Journal for Geographic Information and Geovisualization, 43(3):175–188,
2008.

[111] Julian Hagenauer and Alexander Zipf. Generating Focus Maps Using Open Standards. In
Extended Abstracts of GIScience, 2010.

[112] Güther Hake, Dietmar Grünreich, and Liqiu Meng. Kartographie. Walter de Gruyter, Berlin,
New York, 8 edition, 2002.

[113] Mark Harris. Dynamic Texturing. NVIDIA Corporation, May 2004.

[114] Jan-Henrik Haunert and Leon Sering. Drawing Road Networks with Focus Regions. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2555–2562, December 2011.

[115] Helwig Hauser. Generalizing Focus+Context Visualization. In Georges-Pierre Bonneau,
Thomas Ertl, and Gregory M. Nielson, editors, Scientific Visualization: The Visual Extraction
of Knowledge from Data, Mathematics and Visualization, pages 305–327. Springer-Verlag
Berlin Heidelberg, 2006.

[116] Wolfgang Heidrich and Hans-Peter Seidel. View-independent Environment Maps. In HWWS
’98: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,
pages 39–46, New York, NY, USA, 1998. ACM Press.

[117] Pedro Hermosilla and Pere-Pau Vázquez. Single Pass GPU Stylized Edges. In F. Serón,
O. Rodríguez, J. Rodríguez, and E. Coto, editors, IV Iberoamerican Symposium in Computer
Graphics (SIACG), pages 1–8, 2009.

[118] Jean-Claude Heudin. Virtual Worlds: Synthetic Universes, Digital Life, and Complexity (New
England Complex Systems Institute Series on Complexity). Perseus Books Group, January
1999.

[119] Sébastien Hillaire, Anatole Lécuyer, Rémi Cozot, and Géry Casiez. Depth-of-Field Blur
Effects for First-Person Navigation in Virtual Environments. IEEE Computer Graphics and
Applications, 28(6):47–55, November 2008.

[120] Sébastien Hillaire, Anatole Lécuyer, Rémi Cozot, and Géry Casiez. Using an Eye-Tracking
System to Improve Camera Motions and Depth-of-Field Blur Effects in Virtual Environments.
In Proceedings of IEEE Virtual Reality Conference 2008 (VR 2008), pages 47–50, Reno,
Nevada, USA, March 2008. IEEE Computer Society Press.

[121] Kasper Hornbæk and Erik Frø kjær. Reading of Electronic Documents: The Usability of
Linear, Fisheye, and Overview+Detail Interfaces. In CHI ’01: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 293–300, New York, NY, USA,
2001. ACM Press.

References 135

[122] Wei-Hsien Hsu, Kwan-Liu Ma, and Carlos Correa. A Rendering Framework for Multi-scale
Views of 3D Models. ACM Transactions on Graphics, 30(6):131:1–131:10, December 2011.

[123] Jing Huang, Tamy Boubekeur, Tobias Ritschel, Matthias Holländer, and Elmar Eisemann. Sep-
arable Approximation of Ambient Occlusion. In N. Avis and S. Lefebvre, editors, Eurographics
2011 - Short papers, pages 29–32, Llandudno, UK, 2011. The Eurographics Association.

[124] Takeo Igarashi and Dennis Cosgrove. Adaptive Unwrapping for Interactive Texture Painting.
In I3D ’01: Proceedings of the 2001 symposium on Interactive 3D graphics, pages 209–216,
New York, NY, USA, 2001. ACM Press.

[125] William E. Brandstetter III, Joseph D. Mahsman, Cody J. White, Sergiu M. Dascalu, and
Frederick C. Harris Jr. Multi-Resolution Deformation in Out-of-Core Terrain Rendering. I. J.
Comput. Appl., 18(4):262–272, 2011.

[126] Eduard Imhof. Thematische Kartographie. Walter de Gruyter, January 1972.

[127] John P. Isaacs, Daniel J. Gilmour, David J. Blackwood, and Ruth E. Falconer. Immersive and
Non-immersive 3D Virtual City: Decision Support Tool for Urban Sustainability. Journal of
Information Technology in Construction, 16:151–161, January 2011.

[128] T. J. Jankun-Kelly and Kwan-Liu Ma. MoireGraphs: Radial Focus+Context Visualization
and Interaction for Graphs with Visual Nodes. In Proceedings of the Ninth annual IEEE
conference on Information visualization, INFOVIS’03, pages 59–66, Washington, DC, USA,
2003. IEEE Computer Society.

[129] Bernhard Jenny and Tom Patterson. Introducing Plan Oblique Relief. Cartographic Perspec-
tives, 57(21):21–40, March 2007.

[130] Helen Jenny, Bernhard Jenny, and Lorenz Hurni. Interactive Design of 3D Maps with
Progressive Projection. The Cartographic Journal, 47(3):211–221, August 2010.

[131] Roland Jesse and Tobias Isenberg. Use of Hybrid Rendering Styles for Presentation. In In
Poster Proceedings of WSCG 2003, 2003.

[132] Roland Jesse and Tobias Isenberg. Use of Hybrid Rendering Styles for Presentation. In Poster
Proceedings of WSCG 2003, pages 57–60, 2003. Short Paper.

[133] Bin Jiang and Christophe Claramunt. A Structural Approach to the Model Generalization of
an Urban Street Network. Geoinformatica, 8(2):157–171, June 2004.

[134] Hyungeun Jo, Sungjae Hwang, Hyunwoo Park, and Jung hee Ryu. Mobile Augmented Reality:
Aroundplot: Focus+Context Interface for Off-screen Objects in 3D Environments. Computers
& Graphics, 35(4):841–853, August 2011.

[135] Markus Jobst and Jürgen Döllner. 3D City Model Visualization with Cartography-Oriented
Design. In Manfred Schrenk, Vasily V. Popovich, Dirk Engelke, and Pietro Elisei, editors,
13th International Conference on Urban Planning, Regional Development and Information
Society (REAL CORP), pages 507–516. CORP - Competence Center of Urban and Regional
Planning, 2008.

[136] Markus Jobst and Jürgen Döllner. Better Perception of 3D-Spatial Relations by Viewport
Variations. In VISUAL ’08: Proceedings of the 10th international conference on Visual
Information Systems, pages 7–18, Berlin, Heidelberg, 2008. Springer-Verlag Berlin Heidelberg.

[137] Sara Johansson and Mikael Jern. GeoAnalytics: Visual Inquiry and Filtering Tools in Parallel
Coordinates Plots. In Proceedings of the 15th annual ACM international symposium on
Advances in geographic information systems, GIS ’07, pages 33:1–33:8, New York, NY, USA,
2007. ACM Press.

136 References

[138] Angie Johnson, Emine M. Thompson, and Kenny R. Coventry. Human Perception, Virtual
Reality and the Built Environment. In Ebad Banissi, Stefan Bertschi, Remo Aslak Burkhard,
John Counsell, Mohammad Dastbaz, Martin J. Eppler, Camilla Forsell, Georges G. Grinstein,
Jimmy Johansson, Mikael Jern, Farzad Khosrowshahi, Francis T. Marchese, Carsten Maple,
Richard Laing, Urska Cvek, Marjan Trutschl, Muhammad Sarfraz, Liz J. Stuart, Anna Ursyn,
and Theodor G. Wyeld, editors, Information Visualisation (IV), 2010 14th International
Conference, pages 604–609. IEEE Computer Society, 2010.

[139] Martin Kada. 3D Building Generalisation. In Proceedings of 22nd International Cartographic
Conference, La Coruña, Spain, July 2005. CD Proceedings.

[140] Denis Kalkofen, Erick Mendez, and Dieter Schmalstieg. Interactive focus and context visual-
ization for augmented reality. In Proceedings of the 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, ISMAR ’07, pages 1–10, Washington, DC, USA,
2007. IEEE Computer Society Press.

[141] Pushpak Karnik, David Cline, Stefan Jeschke, Anshuman Razdan, and Peter Wonka. Route
Visualization using Detail Lenses. IEEE Transactions on Visualization and Computer Graphics,
16(2):235–247, 2009.

[142] Alan Keahey. The Generalized Detail-In-Context Problem. In INFOVIS ’98: Proceedings
of the 1998 IEEE Symposium on Information Visualization, pages 44–51, Washington, DC,
USA, 1998. IEEE Computer Society Press.

[143] Oliver Kersting and Jürgen Döllner. Interactive Visualization of 3D Vector Data in GIS. In
Proceedings of the 10th ACM international symposium on Advances in geographic information
systems, GIS ’02, pages 107–112, New York, NY, USA, 2002. ACM Press.

[144] John Kessenich. The OpenGL Shading Language Language Version: 1.50 Document Revision:
9. The Khronos Group Inc., July 2009.

[145] Scott Kircher and Alan Lawrance. Inferred Lighting: Fast Dynamic Lighting and Shadows for
Opaque and Translucent Objects. In Proceedings of the 2009 ACM SIGGRAPH Symposium
on Video Games, Sandbox ’09, pages 39–45, New York, NY, USA, 2009. ACM Press.

[146] Scott Kirkpatrick, Charles Daniel Gelatt Jr., and Mario P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, May 1983.

[147] Florian Kirsch and Jürgen Döllner. OpenCSG: A Library for Image-Based CSG Rendering.
In Proceedings of USENIX 2005, pages 129–140, 2005.

[148] Alexander Klippel and Kai-Florian Richter. Chorematic Focus Maps. In Georg Gartner,
editor, Location Based Services & Telecartography, pages 39–44, Technische Universität Wien,
Wien, 2004. Geowissenschaftliche Mitteilungen.

[149] Robert Kosara, Silvia Miksch, and Helwig Hauser. Semantic Depth of Field. In INFOVIS
’01: Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS’01),
pages 97–105, Washington, DC, USA, 2001. IEEE Computer Society Press.

[150] Robert Kosara, Silvia Miksch, and Helwig Hauser. Focus+Context Taken Literally. IEEE
Computer Graphics and Applications, Vol. 22(1):22–29, 2002.

[151] Robert Kosara, Silvia Miksch, Helwig Hauser, Johann Schrammel, Verena Giller, and Manfred
Tscheligi. Useful Properties of Semantic Depth of Field for Better F+C visualization. In
VISSYM ’02: Proceedings of the symposium on Data Visualisation 2002, pages 205–210,
Aire-la-Ville, Switzerland, 2002. The Eurographics Association.

[152] Menno-Jan Kraak. Some Aspects of Geovisualization. GeoInformatics, pages 26–37, 2002.

References 137

[153] Heidi Lam, Ronald A. Rensink, and Tamara Munzner. Effects of 2D Geometric Transfor-
mations on Visual Memory. In Proceedings of the 3rd Symposium on Applied Perception in
Graphics and Visualization (APGV), APGV ’06, pages 119–126, New York, NY, USA, 2006.
ACM Press.

[154] John Lamping, Ramana Rao, and Peter Pirolli. A Focus+Context Technique based on
Hyperbolic Geometry for Visualizing Large Hierarchies. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’95, pages 401–408, New York,
NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[155] Eugene Lapidous and Guofang Jiao. Optimal Depth Buffer for Low-Cost Graphics Hardware.
In HWWS ’99, pages 67–73, New York, NY, USA, 1999. ACM Press.

[156] Y. C. Lee, Angela Kwong, Lilian Pun, and Andy Mack. Multi-Media Map for Visual
Navigation. Journal of Geospatial Engineering, 3(2):87–96, dec 2001.

[157] Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. In ACM SIGGRAPH 2006
Papers, SIGGRAPH ’06, pages 579–588, New York, NY, USA, 2006. ACM Press.

[158] Aaron Lefohn. Interactive Visualization of Volumetric Data on Consumer PC Hardware. In
Tutorial in 2003 IEEE Conference of Visualization, 2003.

[159] Jed Lengyel and John Snyder. Rendering with Coherent Layers. In Proceedings of the 24th
annual conference on Computer graphics and interactive techniques, SIGGRAPH ’97, pages
233–242, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[160] Ying K. Leung and Mark D. Apperley. A Review and Taxonomy of Distortion-Oriented
Presentation Techniques. ACM Transactions on Computer-Human Interaction, 1(2):126–160,
June 1994.

[161] Wilmot Li, Lincoln Ritter, Maneesh Agrawala, Brian Curless, and David Salesin. Interactive
Cutaway Illustrations of Complex 3D Models. In ACM SIGGRAPH 2007 papers, SIGGRAPH
’07, New York, NY, USA, 2007. ACM Press.

[162] Baoquan Liu, Li-yi Wei, and Ying-Qing Xu. Multi-Layer Depth Peeling via Fragment Sort.
Technical Report MSR-TR-2006-81, Microsoft Research Asia, June 2006.

[163] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. Efficient Depth Peeling via
Bucket Sort. In HPG ’09: Proceedings of the Conference on High Performance Graphics 2009,
pages 51–57, New York, NY, USA, 2009. ACM Press.

[164] Youquan Liu, Xuehui Liu, and Enhua Wu. Real-Time 3D Fluid Simulation on GPU with
Complex Obstacles. In PG ’04: Proceedings of the Computer Graphics and Applications, 12th
Pacific Conference, pages 247–256, Washington, DC, USA, 2004. IEEE Computer Society
Press.

[165] Julian Looser, Raphael Grasset, and Mark Billinghurst. A 3D Flexible and Tangible Magic
Lens in Augmented Reality. In Proceedings of the 2007 6th IEEE and ACM International
Symposium on Mixed and Augmented Reality, ISMAR ’07, pages 1–4, Washington, DC, USA,
2007. IEEE Computer Society Press.

[166] William E. Lorensen. Geometric Clipping Using Boolean Textures. In Proceedings of the 4th
conference on Visualization ’93, VIS ’93, pages 268–274, Washington, DC, USA, 1993. IEEE
Computer Society Press.

[167] Haik Lorenz and Jürgen Döllner. Dynamic Mesh Refinement on GPU using Geometry Shaders.
In Proceedings of the 16th International Conference on Computer Graphics, Visualization
and Computer Vision (WSCG2008), Plzen, Czech Republic, February 2008. UNION Agency -
Science Press. Online Proceedings.

138 References

[168] Haik Lorenz and Jürgen Döllner. High-quality non-planar projections using real-time piecewise
perspective projections. In Alpesh Kumar Ranchordas, João Madeiras Pereira, Hélder J.
Araújo, and João Manuel R. S. Tavares, editors, Computer Vision, Imaging and Computer
Graphics. Theory and Applications. International Joint Conference, VISIGRAPP 2009, Lisboa,
Portugal, February 5-8, 2009. Revised Selected Papers, volume 68 of Communications in
Computer and Information Science, pages 45–58. Springer-Verlag Berlin Heidelberg, 2010.

[169] Haik Lorenz, Matthias Trapp, Markus Jobst, and Jürgen Döllner. Interactive Multi-Perspective
Views of Virtual 3D Landscape and City Models. In Lars Bernard, Anders Friis-Christensen,
and Hardy Pundt, editors, 11th AGILE International Conference on GI Science, Lecture
Notes in Geoinformation and Cartography, pages 301–321. Springer-Verlag Berlin Heidelberg,
2008. Best Paper Award.

[170] Thomas Luft, Carsten Colditz, and Oliver Deussen. Image Enhancement by Unsharp Masking
the Depth Buffer. In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages 1206–1213, New
York, NY, USA, 2006. ACM Press.

[171] Bernd Lutz. Konzepte für den Einsatz von Virtueller und Erweiterter Realität zur interaktiven
Wissensvermittlung. PhD thesis, Technische Universität Darmstadt, 2004.

[172] Alan M. Maceachren, Robert Edsall, Daniel Haug, Ryan Baxter, George Otto, Raymon
Masters, Sven Fuhrmann, and Liujian Qian. Virtual Environments for Geographic Visualiza-
tion: Potential and Challenges. In Proceedings of the ACM Workshop on New Paradigms in
Information Visualization and Manipulation, pages 35–40, New York, NY, USA, 1999. ACM
Press.

[173] Alan M. MacEachren, Mark Gahegan, William Pike, Isaac Brewer, Guoray Cai, Eugene
Lengerich, and Frank Hardisty. Geovisualization for Knowledge Construction and Decision
Support. IEEE Computer Graphics and Applications, 24(1):13–17, January 2004.

[174] Jock Mackinlay. Automating the Design of Graphical Presentations of Relational Information.
ACM Transactions on Graphics, 5(2):110–141, April 1986.

[175] Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. Methods for Non-Linear Least Squares
Problems. Informatics and Mathematical Modelling. Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800
Kgs. Lyngby, 2nd edition, 2004.

[176] Mark J. Kilgard,. NVIDIA OpenGL Extension Specifications. Technical report, NVIDIA
Corporation, May 2004.

[177] Tim Marsh and Peter C. Wright. Using Cinematography Conventions to Inform Guidelines
for the Design and Evaluation of Virtual Off-Screen Space. In Proceedings of AAAI 2000
Spring Symposium Series on Smart Graphics, pages 123–127. AAAI Press, January 2000.

[178] Domingo Martín, Salvador Gonzalez García, and Juan Carlos Torres. Observer Dependent
Deformations in Illustration. In NPAR ’00: Proceedings of the 1st international symposium
on Non-photorealistic animation and rendering, pages 75–82, New York, NY, USA, 2000.
ACM Pres.

[179] Ioana M. Martin. Hybrid Transcoding for Adaptive Transmission of 3D Content. In IEEE
International Conference Multimedia and Expo (ICME), volume 1, pages 373–376, Thomas
J. Watson Res. Center, Hawthorne, NY, USA, August 2002. IBM, IEEE Computer Society
Press.

[180] Oliver Mattausch, Jiří Bittner, and Michael Wimmer. Chc++: Coherent hierarchical culling
revisited. Computer Graphics Forum (Proceedings Eurographics 2008), 27(2):221–230, April
2008.

References 139

[181] Liqiu Meng and Andrea Forberg. 3D Building Generalization. In W. Mackaness, A. Ruas,
and T. Sarjakoski, editors, Challenges in the Portrayal of Geographic Information: Issues of
Generalisation and Multi Scale Representation, chapter 11, pages 211–232. Elsevier Science
Ltd., Asterdam, 2006.

[182] Sebastian Möser, Patrick Degener, Roland Wahl, and Reinhard Klein. Context Aware Terrain
Visualization for Wayfinding and Navigation. Computer Graphics Forum, 27(7):1853–1860,
October 2008.

[183] Kevin Myers and Louis Bavoil. Stencil Routed A-Buffer. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 sketches, page 21, New York, NY, USA, 2007. ACM Press.

[184] Max L. Nelson. Computer Graphics Distortion for IMAX and OMNIMAX Projection. In
Proceedings of Nicograph ’83, pages 137–159, December 1983.

[185] Petra Neumann and Sheelagh Carpendale. Taxonomy for Discrete Lenses. Technical Report
2003-734-37, Department of Computer Science, University of Calgary, December 2003.

[186] Marc Nienhaus and Jürgen Döllner. Edge-Enhancement - An Algorithm for Real-Time
Non-Photorealistic Rendering. International Winter School of Computer Graphics, Journal
of WSCG, 11(2):346–353, 2003.

[187] Marc Nienhaus, Florian Kirsch, and Jürgen Döllner. Sketchy Illustrations for Presenting the
Design of Interactive CSG. In Proceedings of the 14th International Conference Information
Visualisation, volume 0, pages 772–777, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

[188] Matej Novotny. Visually Effective Information Visualization of Large Data. In In 8th Central
European Seminar on Computer Graphics (CESCG 2004), pages 41–48. CRC Press, 2004.

[189] NVIDIA Corporation. OpenGL Cube Map Texturing, May 1999.

[190] Itzhak Omer, Ran Goldblatt, Karin Talmor, and Asaf Roz. Complex Artificial Environments
- Simulation, Cognition and VR in the Study and Planning of Cities, chapter Enhancing
the Legibility of Virtual Cities by Means of Residents’ Urban Image: a Wayfinding Support
System, pages 245–258. Springer-Verlag Berlin Heidelberg, 2006.

[191] John O’Rorke and Greg James. GPU Gems: Programming Techniques, Tips, and Tricks for
Real-Time Graphics, chapter Real-Time Glow, pages 343–362. Addison-Wesley, May 2004.

[192] Tom Patterson. A View From on High: Heinrich Berann’s Panoramas and Landscape
Visualization Techniques For the US National Park Service. In Cartographic Perspectives,
number 36, pages 38–65. NACIS, 2000.

[193] Qunsheng Peng, Xiaogang Jin, and Jieqing Feng. Arc-Length-Based Axial Deformation and
Length Preserved Animation. In CA ’97: Proceedings of the Computer Animation, pages
86–94, Washington, DC, USA, 1997. IEEE Computer Society Press.

[194] Emil Persson. ATI Radeon HD 2000 Programming Guide. AMD Graphics Products Group,
June 2007.

[195] John W. Peterson. Arc Length Parameterization of Spline Curves. Technical report, Taligent,
Inc., 1998.

[196] Emmanuel Pietriga, Olivier Bau, and Caroline Appert. Representation-independent in-place
magnification with sigma lenses. IEEE Transactions on Visualization and Computer Graphics,
16(3):455–467, May 2010.

140 References

[197] Cyprien Pindat, Emmanuel Pietriga, Olivier Chapuis, and Claude Puech. JellyLens: Content-
aware Adaptive Lenses. In Proceedings of the 25th annual ACM symposium on User interface
software and technology, UIST ’12, pages 261–270, New York, NY, USA, 2012. ACM Press.

[198] Jennifer A. Polack-Wahl, Les A. Piegl, and Marc L. Carter. Perception of Images Using
Cylindrical Mapping. The Visual Computer, 13(4):155–167, 1997.

[199] Thomas Porter and Tom Duff. Compositing Digital Images. Proceedings of ACM SIGGRAPH
1984, 18(3):253–259, January 1984.

[200] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. Real-time Hatching.
In Proceedings of ACM SIGGRAPH 2001, SIGGRAPH ’01, pages 579–584, New York, NY,
USA, August 2001. ACM Press.

[201] Simon Premože. Computer Generation of Panorama Maps. In Proceddings of the 3rd ICA
Mountain Cartography Workshop, Mt. Hood, Oregon, May 2002.

[202] Huamin Qu, Haomian Wang, Weiwei Cui, Yingcai Wu, and Ming-Yuen Chan. Focus+Context
Route Zooming and Information Overlay in 3D Urban Environments. IEEE Transactions on
Visualization and Computer Graphics, 15(6):1547–1554, 2009.

[203] Paul Rademacher. View-dependent Geometry. In SIGGRAPH ’99: Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, pages 439–446, New
York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[204] Wolf-Dieter Rase. Fischauge-Projektionen als kartographische Lupen. In F. Dollinger
and J.Strobl, editors, Angewandte Geographische Informationsverarbeitung, volume 26 of
Salzburger Geographische Materialien, pages 115–122. Selbstverlag des Instituts für Geographie
der Universität Salzburg, 1997.

[205] Jiann-Yeou Rau, Liang-Chien Chen, Fuan Tsai, Kuo-Hsin Hsiao, and Wei-Chen Hsu. LOD
Generation for 3D Polyhedral Building Model. In Advances in Image and Video Technology,
pages 44–53, Berlin Heidelberg New York, 2006. Springer-Verlag Berlin Heidelberg.

[206] Tumasch Reichenbacher and Olivier Swienty. Attention-Guiding Geovisualisation. In Pro-
ceedings of the 10th AGILE International Conference on Geographic Information Science,
Aalborg, Danemark, May 2007. CD Proceedings.

[207] NVIDIA Developer Relations. NVIDIA GPU Programming Guide. NVIDIA Corporation,
August 2005. Version 2.4.0.

[208] Richard Franklin Riesenfeld. Applications of B-Spline Approximation to Geometric Problems
of Computer-aided Design. PhD thesis, Syracuse University, Syracuse, NY, USA, 1973.

[209] George G. Robertson, Stuart K. Card, and Jack D. Mackinlay. Information Visualization
Using 3D Interactive Animation. Communications of the ACM, 36(4):57–71, April 1993.

[210] George G. Robertson and Jock D. Mackinlay. The Document Lens. In Proceedings of the 6th
annual ACM symposium on User interface software and technology, UIST ’93, pages 101–108,
New York, NY, USA, 1993. ACM.

[211] Anthony C. Robinson. Highlighting Techniques to Support Geovisualization. Technical report,
GeoVISTA Center, Department of Geography, The Pennsylvania State University, 2006.

[212] John F. Roddick, Kathleen Hornsby, and Denise de Vries. A Unifying Semantic Distance Model
for Determining the Similarity of Attribute Values. In Proceedings of the 26th Australasian
computer science conference - Volume 16, ACSC ’03, pages 111–118, Darlinghurst, Australia,
Australia, 2003. Australian Computer Society, Inc.

References 141

[213] David F. Rogers. An Introduction to NURBS: With Historical Perspective (The Morgan
Kaufmann Series in Computer Graphics). Morgan Kaufmann, 2000.

[214] Guodong Rong. Jump Flooding Algorithm on Graphics Hardware and its Applications. PhD
thesis, National University of Singapore, 2007.

[215] Guodong Rong and Tiow-Seng Tan. Jump Flooding in GPU with Applications to Voronoi
Diagram and Distance Transform. In I3D ’06: Proceedings of the 2006 symposium on
Interactive 3D graphics and games, pages 109–116, New York, USA, 2006. ACM Press.

[216] Timo Ropinski. Exploration of Geo-Virtual Environments using 3D Magic Lenses. In
EURESCO-ESF Conference on Geovisualization, 2004.

[217] Timo Ropinski and Klaus Hinrichs. An Image-Based Algorithm for Interactive Rendering of
3D Magic Lenses. Technical Report 03/04 - I, FB 10, Institut für Informatik, Westfälische
Wilhelms-Universität Münster, 2004.

[218] Timo Ropinski and Klaus Hinrichs. Real-Time Rendering of 3D Magic Lenses having Arbitrary
Convex Shapes. WSCG, 12(1-3):379–386, February 2004.

[219] Timo Ropinski, Klaus Hinrichs, and Frank Steinicke. A Solution for the Focus and Context
Problem in Geo-Virtual Environments. In Proceedings of the 4th ISPRS Workshop on Dynamic
and Multi-dimensional GIS (DMGIS05), pages 144–149, 2005.

[220] Timo Ropinski, Frank Steinicke, and Klaus Hinrichs. An Efficient Approach for Emphasizing
Regions of Interest in Ray-Casting based Volume Rendering. September 2005.

[221] Lutz Ross, Birgit Kleinschmit, Jürgen Döllner, and Anselm Kegel. Geovirtual Urban En-
vironments as Media for the Communication of Information related to Managing Urban
Land. In 2nd International Conference on Managing Urban Land - Towards More Effective
And Sustainable Brownfield Revitalisation Policies., pages 577–582. Bundesministerium für
Bildung und Forschung, 2007.

[222] Takafumi Saito and Tokiichiro Takahashi. Comprehensible Rendering of 3-D Shapes. In
Proceedings of the 17th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’90, pages 197–206, New York, NY, USA, 1990. ACM Press.

[223] Pedro V. Sander, Diego Nehab, and Joshua Barczak. Fast Triangle Reordering for Vertex
Locality and Reduced Overdraw. ACM Transactions on Graphics, 26(3):89:1–89:9, July 2007.

[224] Scott Schaefer, Travis McPhail, and Joe Warren. Image Deformation using Moving Least
Squares. ACM Transactions on Graphics, 25(3):533–540, July 2006.

[225] Arne Schilling and Alexander Zipf. Generation of VRML City Models for Focus based Tour
Animations: Integration, Modeling and Presentation of Heterogeneous Geo-data Sources. In
Proceedings of the eighth international conference on 3D Web technology, Web3D ’03, pages
39–ff, New York, NY, USA, 2003. ACM Press.

[226] Markus Schneider. Uncertainty Management for Spatial Data in Databases: Fuzzy Spatial
Data Types. In Proceedings of the 6th International Symposium on Advances in Spatial
Databases, SSD ’99, pages 330–351, London, UK, UK, 1999. Springer-Verlag Berlin Heidelberg.

[227] Tobias Schwarz, Fabian Hennecke, Felix Lauber, and Harald Reiterer. Perspective+Detail: A
Visualization Technique for Vertically Curved Displays. In Proceedings of the International
Working Conference on Advanced Visual Interfaces, AVI ’12, pages 485–488, New York, NY,
USA, 2012. ACM Press.

142 References

[228] Stan Sclaroff and Alex Pentland. Generalized Implicit Functions for Computer Graphics. In
Proceedings of the 18th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’91, pages 247–250, New York, NY, USA, 1991. ACM Press.

[229] Thomas W. Sederberg and Scott R. Parry. Free-form Deformation of Solid Geometric Models.
SIGGRAPH ’86, 20(4):151–160, 1986.

[230] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification (Version 3.2
(Core Profile)). The Khronos Group Inc., July 2009.

[231] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Haeberli. Fast Shadows
and Lighting Effects Using Texture Mapping. SIGGRAPH ’92, 26(2):249–252, 1992.

[232] Amir Semmo, Jan Eric Kyprianidis, and Jürgen Döllner. Automated Image-Based Abstraction
of Aerial Images. In Marco Painho, Maribel Yasmina Santos, and Hardy Pundt, editors,
Geospatial Thinking, Lecture Notes in Geoinformation and Cartography, pages 359–378.
Springer-Verlag Berlin Heidelberg, 2010.

[233] Seppo Äyräväinen. 3D Magic Lenses, Magic Lights, and their Application for Immersive Build-
ing Services Information Visualization. Technical report, Helsinki University of Technology,
Telecommunications Software and Multimedia Labratory, 2003.

[234] Monika Sester. Generalization Based on Least Squares Adjustment. International Archives
of Photogrammetry and Remote Sensing, 33:931–938, 2000.

[235] Jonathan Shade, Steven Gortler, Li wei He, and Richard Szeliski. Layered Depth Images. In
SIGGRAPH ’98, pages 231–242, New York, NY, USA, 1998. ACM Press.

[236] Karan Singh. A Fresh Perspective. In Graphics Interface, pages 17–24, 2002.

[237] Martin Spindler, Marco Bubke, Tobias Germer, and Thomas Strothotte. Camera Textures.
In GRAPHITE ’06: Proceedings of the 4th international conference on Computer graphics
and interactive techniques in Australasia and Southeast Asia, pages 295–302, New York, NY,
USA, 2006. ACM Press.

[238] Sibylle D. Steck and Hanspeter A. Mallot. The Role of Global and Local Landmarks in
Virtual Environment Navigation. Presence: Teleoper. Virtual Environ., 9(1):69–83, February
2000.

[239] Richard A. Steenblik. The Chromostereoscopic Process: A Novel Single Image Stereoscopic
Process. Proceedings of SPIE: True Three-Dimensional Imaging Techniques & Display
Technologies, 0761:27–34, June 1987.

[240] Stanislav L. Stoev, Dieter Schmalstieg, and Wolfgang Strasser. The Through-the-Lens
Metaphor: Taxonomy and Application. In Proceedings of the IEEE Conference on Virtual
Reality (VR), pages 285–286. IEEE Computer Society Press, 2002.

[241] Maureen C. Stone, Ken Fishkin, and Eric A. Bier. The Movable Filter as a User Interface
Tool. In Proceedings of the SIGCHI conference on Human factors in computing systems:
celebrating interdependence, CHI ’94, pages 306–312, New York, NY, USA, 1994. ACM Press.

[242] Rahul Swaminathan, Michael D. Grossberg, and Shree K. Nayar. A Perspective on Distortions.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume II, pages
594–601. IEEE Computer Society Press, June 2003.

[243] Richard Szeliski and Heung-Yeung Shum. Creating Full View Panoramic Image Mosaics
and Environment Maps. In SIGGRAPH ’97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 251–258, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

References 143

[244] Shigeo Takahashi, Kenichi Yoshida, Kenji Shimada, and Tomoyuki Nishita. Occlusion-Free
Animation of Driving Routes for Car Navigation Systems. IEEE Transactions on Visualization
and Computer Graphics, 12:1141–1148, 2006.

[245] Christopher C. Tanner, Christopher J. Migdal, and Michael T. Jones. The Clipmap: A
Virtual Mipmap. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’98, pages 151–158, New York, NY, USA, 1998. ACM
Press.

[246] Natalya Tatarchuk. Real-Time Tessellation on GPU. In Course 28: Advanced Real-Time
Rendering in 3D Graphics and Games. ACM SIGGRAPH, New York, NY, USA, 2007. ACM
Press.

[247] Andrei Tatarinov. Instanced Tessellation in DirectX10. In GDC Games Developer Conference.
NVIDIA Corporation, 2008.

[248] Frank Thiemann and Monika Sester. Segmentation of Buildings for 3D-Generalisation. In
Working Paper of the ICA Workshop on Generalisation and Multiple Representation, Leicester,
UK, 2004.

[249] Kelvin Thompson. Graphics gems. chapter Alpha blending, pages 210–211. Academic Press
Professional, Inc., San Diego, CA, USA, 1990.

[250] Jan-Phillip Tiesel and Christoph W. Borst. Single-pass Rendering of Composable Volumetric
Lens Effects. In SIGGRAPH ’09: Posters, SIGGRAPH ’09, pages 91:1–91:1, New York, NY,
USA, 2009. ACM Press.

[251] Jan-Phillip Tiesel, Kaushik Das, Gary L. Kinsland, Christopher M. Best, Vijay B. Baiyya, and
Christoph W. Borst. Composable Volumetric Lenses for Surface Exploration. In Proceedings
of the 2009 IEEE Virtual Reality Conference, VR ’09, pages 291–292, Washington, DC, USA,
2009. IEEE Computer Society.

[252] W. R. Tobler. A Computer Movie Simulating Urban Growth in the Detroit Region. Economic
Geography, 46(2):234–240, 1970.

[253] Christian Tominski, Georg Fuchs, and Heidrun Schumann. Task-Driven Color Coding. In
12th International Conference on IEEE Information Visualization, pages 373–380. IEEE
Computer Society Press, 2008.

[254] Jonas Trümper and Jürgen Döllner. Extending Recommendation Systems with Software
Maps. In Proceedings of the 3rd International ICSE Workshop on Recommendation Systems
for Software (RSSE), pages 92–96. IEEE Computer Society, 2012.

[255] Edward R. Tufte. Envisioning Information. Graphic Press, Cheshire, Connecticut, 1990.

[256] Ken Turkowski. Making Environment Maps from Fisheye Photographs. July 1999.

[257] Philippas Tsigas Ulf Assarsson, Niklas Elmqvist. Image-Space Dynamic Transparency for
Improved Object Discovery in 3D Environments. Technical Report 2006-10, Department
of Computer Science & Engineering, Chalmers University of Technology and Goeteborg
University, Sweden, 2006.

[258] Scott Vallance and Paul Calder. Multi-perspective Images for Visualisation. In VIP ’01:
Proceedings of the Pan-Sydney area workshop on Visual information processing, pages 69–76,
Darlinghurst, Australia, Australia, 2001. Australian Computer Society, Inc.

[259] Wouter van Oortmerssen. FisheyeQuake/PanQuake, January 2002.

144 References

[260] Eduardo Veas, Raphael Grasset, Ernst Kruijff, and Dieter Schmalstieg. Extended Overview
Techniques for Outdoor Augmented Reality. IEEE Transactions on Visualization and Com-
puter Graphics, 18(4):565–572, April 2012.

[261] John Viega, Matthew J. Conway, George Williams, and Randy Pausch. 3D Magic Lenses. In
UIST ’96, pages 51–58, New York, NY, USA, 1996. ACM Press.

[262] Norman G. Vinson. Design Guidelines for Landmarks to Support Navigation in Virtual
Environments. In Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, CHI ’99, pages 278–285, New York, NY, USA, 1999. ACM.

[263] Ivan Viola, Armin Kanitsar, and Meister Eduard Groller. Importance-Driven Volume Render-
ing. In Proceedings of the conference on Visualization ’04, VIS ’04, pages 139–146, Washington,
DC, USA, 2004. IEEE Computer Society Press.

[264] Chuck Walbourn. Direct3D 10 Programming Guide Excerpts. In SIGGRAPH ’07: ACM
SIGGRAPH 2007 courses, pages 369–446, New York, NY, USA, 2007. ACM Press.

[265] Yu-Shuen Wang and Ming-Te Chi. Focus+Context Metro Maps. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2528–2535, December 2011.

[266] Yu-Shuen Wang, Tong-Yee Lee, and Chiew-Lan Tai. Focus+Context Visualization with
Distortion Minimization. IEEE Transactions on Visualization and Computer Graphics,
14:1731–1738, November 2008.

[267] Colin Ware. Information Visualization - Perception for Design. Morgan Kaufmann Series.
Morgan Kaufmann Publishers, 2nd edition, 2004.

[268] Mark J. Ware, Christopher B. Jones, and Nathan Thomas. Automated Map Generaliza-
tion with Multiple Pperators: A Simulated Annealing Approach. International Journal of
Geographical Information Science, 17(8):743–769, 2003.

[269] Matthias Wloka. ShaderX3, chapter Improved Batching via Texture Atlases, pages 155–167.
Charles River Media, 2005.

[270] Markus Wolff and Hartmut Asche. Geospatial Modelling of Urban Security: A Novel Approach
with Virtual 3D City Models. In Proceeding sof the international conference on Computational
Science and Its Applications, Part I, ICCSA ’08, pages 42–51, Berlin, Heidelberg, 2008.
Springer-Verlag Berlin Heidelberg.

[271] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner. OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 1.2. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[272] Jo Wood, Sabine Kirschenbauer, Jürgen Döllner, A. Lopes, and Lars Bodum. Exploring
Geovisualization, chapter Using 3D in Geovisualization, pages 295–312. Elsevier, 2005. ISBN
0-08-044531-4.

[273] Chris Wynn. OpenGL Render-to-Texture. In GDC Games Developer Conference. NVIDIA
Corporation, October 2002.

[274] Han-Bing Yan, Shi-Min Hu, and Ralph R. Martin. 3D Morphing using Strain Field Interpola-
tion. Journal of Computer Science and Technology, 22(1):147–155, January 2007.

[275] Yonggao Yang, Jim X. Chen, and Mohsen Beheshti. Nonlinear Perspective Projections and
Magic Lenses: 3D View Deformation. IEEE Computer Graphics and Applications, pages
76–84, 2005.

References 145

[276] Yonggao Yang, Jim X. Chen, Woosung Kim, and Changjin Kee. Nonlinear Projection: Using
Deformations in 3D Viewing. In Jim X. Chen, editor, Visualization Corner, pages 54–59.
IEEE, March/April 2003.

[277] Jingyi Yu and Leonard McMillan. A Framework for Multiperspective Rendering. In Rendering
Techniques, pages 61–68, 2004.

[278] Jingyi Yu, Leonard McMillan, and Peter Sturm. Multiperspective Modeling, Rendering, and
Imaging. In ACM SIGGRAPH ASIA 2008 courses, SIGGRAPH Asia ’08, pages 14:1–14:36,
New York, NY, USA, 2008. ACM Press.

[279] El-Said M. Zahran, Lloyd D. Bennett, and Martin J. Smith. An Approach to Represent Air
Quality in 3D Digital City Models for Air Quality-related Transport Planning in Urban Areas.
In W. Tizani, editor, Proceedings of the International Conference on Computing in Civil and
Building Engineering (ICCCBE), 2010.

[280] A. Zanella, M. S. T. Carpendale, and M. Rounding. On the Effects of Viewing Cues in
Comprehending Distortions. In Proceedings of the second Nordic conference on Human-
computer interaction, NordiCHI ’02, pages 119–128, New York, NY, USA, 2002. ACM Press.

[281] Polle T. Zellweger, Jock D. Mackinlay, Lance Good, Mark Stefik, and Patrick Baudisch. City
Lights: Contextual Views in Minimal Space. In CHI ’03 Extended Abstracts on Human
Factors in Computing Systems, CHI EA ’03, pages 838–839, New York, NY, USA, 2003. ACM
Press.

[282] Zhe Zhang and David F. McAllister. A Uniform Metric for Anaglyph Calculation. In Andrew J.
Woods, Neil A. Dodgson, John O. Merritt, Mark T. Bolas, and Ian E. McDowall, editors,
Proceedings of the SPIE, volume 6055 of Stereoscopic Displays and Virtual Reality Systems
XIII, pages 366–377, San Jose, CA, February 2006.

[283] Xin Zhao, Wei Zeng, Xianfeng David Gu, Arie E. Kaufman, Wei Xu, and Klaus Mueller.
Conformal Magnifier: A Focus+Context Technique with Local Shape Preservation. IEEE
Transactions on Visualization and Computer Graphics, 18(11):1928–1941, 2012.

[284] Kun Zhou, Zhong Ren, Stephen Lin, Hujun Bao, Baining Guo, and Heung-Yeung Shum.
Real-Time Smoke Rendering Using Compensated Ray Marching. Technical Report MSR-TR-
2007-142, Microsoft Research, September 2007.

[285] Alexander Zipf and Kai-Florian Richter. Using Focus Maps to Ease Map Reading. Künstliche
Intelligenz, 4:35–37, 2002.

Publication Overview

[BTD12] Stefan Buschmann, Matthias Trapp, and Jürgen Döllner. Challenges and Approaches
for the Visualization of Movement Trajectories in 3D Geovirtual Environments. In
Proceedings of GIScience workshop on GeoVisual Analytics, Time to Focus on Time,
September 2012. CD Proceedings.

[EPTD12] Juri Engel, Sebastian Pasewaldt, Matthias Trapp, and Jürgen Döllner. An Immersive
Visualization System for Virtual 3D City Models. In 20th International Conference on
Geoinformatics (GEOINFORMATICS 2012), pages 1 –7, June 2012.

[GPTD09] Tassilo Glander, Denise Peters, Matthias Trapp, and Jürgen Döllner. 3D Wayfinding
Choremes: A Cognitively Motivated Representation of Route Junctions in Virtual
Environments. In 12th AGILE International Conference on GI Science, Lecture Notes
in Geoinformation and Cartography, pages 407–427. Springer Berlin Heidelberg, June
2009.

[GTD07] Tassilo Glander, Matthias Trapp, and Jürgen Döllner. A Concept of Effective
Landmark Depiction in Geovirtual 3D Environments by View-Dependent Deformation.
In 4th International Symposium on LBS and Telecartography, November 2007. CD
Proceedings.

[GTD08] Tassilo Glander, Matthias Trapp, and Jürgen Döllner. Konzepte für die General-
isierung von 3D-Gebäudemodellen. In Mitteilungen des Bundesamtes für Kartographie
und Geodäsie, volume 41 of Mitteilungen des BKG, pages 33–45. Bundesamt für Kar-
tographie und Geodäsie, February 2008. Arbeitsgruppe Automation in Kartographie,
Photogrammetrie und GIS.

[GTD10] Tassilo Glander, Matthias Trapp, and Jürgen Döllner. 3D Isocontours – Real-time
Generation and Visualization of 3D Stepped Terrain Models. In Stefan Seipel and
Hendrik Lensch, editors, Eurographics 2010 Shortpaper, pages 17–20, Norrköping,
Sweden, May 2010. The Eurographics Association.

[GTD11] Tassilo Glander, Matthias Trapp, and Jürgen Döllner. Concepts for Automatic
Generalization of Virtual 3D Landscape Models. In Proceedings of the annual conference
of Digital Landscape Architecture (DLA), pages 127–135, May 2011.

[GTD12] Tassilo Glander, Matthias Trapp, and Jürgen Döllner. Concepts for Automatic
Generalization of Virtual 3D Landscape Models. gis.SCIENCE, 25(1):18–23, 2012.

[HTGD09] Benjamin Hagedorn, Matthias Trapp, Tassilo Glander, and Jürgen Döllner. To-
wards an Indoor Level-of-Detail Model for Route Visualization. In Proceedings of the
2009 Tenth International Conference on Mobile Data Management: Systems, Services
and Middleware, MDM ’09, pages 692–697, Washington, DC, USA, May 2009. IEEE
Computer Society.

[LTD09] Haik Lorenz, Matthias Trapp, and Jürgen Döllner. Interaktive, multiperspektivische
Ansichten für geovirtuelle 3D-Umgebungen. Kartographische Nachrichten, 4:175–181,
September 2009.

147

148 Publication Overview

[LTJD08] Haik Lorenz, Matthias Trapp, Markus Jobst, and Jürgen Döllner. Interactive Multi-
perspective Views of Virtual 3D Landscape and City Models. In Lars Bernard, Anders
Friis-Christensen, and Hardy Pundt, editors, 11th AGILE International Conference on
GI Science, Lecture Notes in Geoinformation and Cartography, pages 301–321. Springer
Berlin Heidelberg, May 2008. Best Paper Award.

[MTK+08] Stefan Maass, Matthias Trapp, Jan Eric Kyprianidis, Jürgen Döllner, Michael Eich-
horn, Rafael Pokorski, Johannes Bäuerlein, and Henner v. Hesberg. Techniques For The
Interactive Exploration Of High-Detail 3D Building Reconstruction Using The Example
Of Roman Cologne. In M. Loannides, A. Addison, A. Georgopoulos, and L. Kalisperis,
editors, 14th International Conference on Virtual Systems and Multimedia (VSMM
2008), pages 223–229. Archaeolingua, October 2008.

[PSTD12] Sebastian Pasewaldt, Amir Semmo, Matthias Trapp, and Jürgen Döllner. Towards
Comprehensible Digital 3D Maps. In Markus Jobst, editor, Service-Oriented Mapping
2012 (SOMAP 2012), pages 261–276. Jobstmedia Management Verlag, Wien, 2012.

[PTD11] Sebastian Pasewaldt, Matthias Trapp, and Jürgen Döllner. Multiscale Visualization of
3D Geovirtual Environments Using View-Dependent Multi-Perspective Views. Journal
of WSCG, 19(3):111–118, February 2011.

[SHTD12] Amir Semmo, Dieter Hildebrandt, Matthias Trapp, and Jürgen Döllner. Concepts for
Cartography-Oriented Visualization of Virtual 3D City Models. PFG Photogrammetrie,
Fernerkundung, Geoinformation, 2012(4):455–465, August 2012.

[STD11] Amir Semmo, Matthias Trapp, and Jürgen Döllner. Ansätze zur kartographischen
Gestaltung von 3D-Stadtmodellen. In 31. Wissenschaftlich-Technische Jahrestagung
der DGPF, volume 20 of Publikationen der Deutschen Gesellschaft für Photogramme-
trie, Fernerkundung und Geoinformation e.V., pages 473–482. Landesvermessung und
Geobasisinformation Brandenburg, April 2011.

[STKD12] Amir Semmo, Matthias Trapp, Jan Eric Kyprianidis, and Jürgen Döllner. Interactive
Visualization of Generalized Virtual 3D City Models using Level-of-Abstraction Tran-
sitions. Computer Graphics Forum, 31(3):885–894, June 2012. Proceedings EuroVis
2012.

[TBPD11] Matthias Trapp, Christian Beesk, Sebastian Pasewaldt, and Jürgen Döllner. Interac-
tive Rendering Techniques for Highlighting in 3D Geovirtual Environments. In Thomas
Kolbe, Gehard König, and Claus Nagel, editors, Advances in 3D Geo-Information
Sciences, volume 9 of Lecture Notes in Geoinformation and Cartography, pages 197–210.
Springer Berlin Heidelberg, January 2011.

[TD07] Matthias Trapp and Jürgen Döllner. Automated Combination of Real-Time Shader
Programs. In Paolo Cignoni and Jiri Sochor, editors, Eurographics 2007 Shortpaper,
pages 53–56. Eurographics, The Eurographics Association, September 2007.

[TD08a] Matthias Trapp and Jürgen Döllner. A Generalization Approach for 3D Viewing
Deformations of Single-Center Projections. In José Braz, Nuno Jardim Nunes, and
Joao Madeiras Pereira, editors, International Conference on Computer Graphics Theory
and Applications (GRAPP), pages 163–170. INSTICC Press, February 2008. Best
Paper Selection.

[TD08b] Matthias Trapp and Jürgen Döllner. Efficient Representation of Layered Depth
Images for Real-time Volumetric Tests. In Ik Soo Lim and Wen Tang, editors, EG UK
Theory and Practice of Computer Graphics (2008) Conference, pages 9–16. UK Chapter
of the Eurographics Association, The Eurographics Association, August 2008.

Publication Overview 149

[TD08c] Matthias Trapp and Jürgen Döllner. Real-Time Volumetric Tests Using Layered
Depth Images. In Katerina Mania and Erik Reinhard, editors, Eurographics 2008
Shortpaper, pages 235–238. Eurographics, The Eurographics Association, April 2008.

[TD08d] Matthias Trapp and Jürgen Döllner. Relief Clipping Planes for Real-Time Rendering.
In ACM SIGGRAPH Asia 2008 - Sketch Program, Singapore, December 2008.

[TD09a] Matthias Trapp and Jürgen Döllner. Dynamic Mapping of Raster-Data for 3D
Geovirtual Environments. In Proceedings of the 2009 13th International Conference
Information Visualisation, pages 387–392, Washington, DC, USA, July 2009. IEEE
Computer Society Press.

[TD09b] Matthias Trapp and Jürgen Döllner. Generalization of Single-Center Projections
Using Projection Tile Screens. In José Braz, Alpesh Kumar Ranchordas, Jo ao
Madeiras Pereira, and Hélder J. Araújo, editors, Computer Vision and Computer
Graphics. Theory and Applications, volume 24 of Communications in Computer and
Information Science (CCIS), pages 55–69. Springer Berlin Heidelberg, January 2009.

[TD10] Matthias Trapp and Jürgen Döllner. Interactive Rendering to Perspective Texture-
Atlases. In Stefan Seipel and Hendrik Lensch, editors, Eurographics 2010 Shortpaper,
pages 81–84, Norrköping, Sweden, May 2010. The Eurographics Association.

[TGBD08] Matthias Trapp, Tassilo Glander, Henrik Buchholz, and Jürgen Döllner. 3D General-
ization Lenses for Interactive Focus + Context Visualization of Virtual City Models. In
Proceedings of the 2008 12th International Conference Information Visualisation, pages
356–361, Washington, DC, USA, July 2008. IEEE Computer Society.

[TLD09] Matthias Trapp, Haik Lorenz, and Jürgen Döllner. Interactive Stereo Rendering
For Non-Planar Projections of 3D Virtual Environments. In Alpesh Ranchordas, João
Pereira, and Paul Richard, editors, GRAPP 2009 - 4th International Conference on
Computer Graphics Theory and Applications, pages 199–204. INSTICC Press, February
2009.

[TLJD12] Matthias Trapp, Haik Lorenz, Markus Jobst, and Jürgen Döllner. Enhancing In-
teractive Non-Planar Projections of 3D Geovirtual Environments with Stereoscopic
Imaging. In Manfred Buchroithner, editor, True-3D In Cartography - 1st International
Conference on 3D Maps, Lecture Notes in Geoinformation and Cartography, pages
297–312. Springer Berlin Heidelberg, 2012.

[Tra07] Matthias Trapp. Analysis and Exploration of Virtual 3D-Citymodels using 3D
Information Lenses. Diplomarbeit, Hasso Plattner Institut, University Potsdam, Hasso-
Plattner-Institut für Softwaresystemtechnik GmbH, Prof.-Dr.-Helmert-Str. 2-3, D-14482
Potsdam, January 2007.

[Tra09] Matthias Trapp. Interaktive Visualisierung des Römischen Kölns. HPI Magazine,
6:4–5, 2009. German.

[TSD11] Matthias Trapp, Amir Semmo, and Jürgen Döllner. Colonia3D. In Tagungsband der
9. Konferenz Kultur und Informatik - Multimediale Systeme, pages 201–212. Werner
Hülsbusch Verlag, May 2011.

[TSD13] Matthias Trapp, Sebastian Schmechel, and Jürgen Döllner. Interactive Rendering
of Complex 3D-Treemaps. In International Conference on Computer Graphics Theory
and Applications (GRAPP). INSTICC Press, February 2013. to be published.

[TSHD09] Matthias Trapp, Lars Schneider, Norman Holz, and Jürgen Döllner. Strategies for
Visualizing Points-of-Interest of 3D Virtual Environments on Mobile Devices. In 6th
International Symposium on LBS & TeleCartography. CD Proceedings, September 2009.
Selected for Journal Publication.

150 Publication Overview

[TSL+11] Matthias Trapp, Lars Schneider, Christine Lehmann, Norman Holz, and Jürgen
Döllner. Strategies for Visualizing 3D Points-of-Interest on Mobile Devices. Journal of
Location Based Services (JLBS), 5(2):79–99, June 2011.

[TSP+10] Matthias Trapp, Amir Semmo, Rafael Pokorski, Claus-Daniel Herrmann, Jürgen
Döllner, Michael Eichhorn, and Michael Heinzelmann. Communication of Digital
Cultural Heritage in Public Spaces by the Example of Roman Cologne. In M. Ioannides,
editor, Digital Heritage, Proceedings of 3rd EuroMed Conference, Lecture Notes in
Computer Science (LNCS), pages 262–276. Springer Berlin Heidelberg, November 2010.
Best Paper Award.

[TSP+12] Matthias Trapp, Amir Semmo, Rafael Pokorski, Claus-Daniel Herrmann, Jürgen
Döllner, Michael Eichhorn, and Michael Heinzelmann. Colonia 3D - Communication of
Virtual 3D Reconstructions in Public Spaces. International Journal of Heritage in the
Digital Era (IJHDE), 1(1):45–74, January 2012. Selected for Cover Image.

Eidesstattliche Erklärung
Declaration of Academic Honesty

Hiermit versichere ich, dass ich die vorliegende Dissertation ohne Hilfe Dritter und ohne Zuhilfe-
nahme anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe. Die den benutzten
Quellen wörtlich oder inhaltlich entnommenen Stellen sind als solche kenntlich gemacht. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

I hereby declare in lieu of an oath that this thesis has been written by myself without any external
unauthorized help, that it has been neither presented to any institution for evaluation nor previously
published in its entirety or in parts.

Potsdam, den 23. Januar 2013

Potsdam, January 23, 2013

Matthias Trapp

	Frontpage
	Imprint

	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	1.1 Geovisualization and 3D Geovirtual Environments
	1.2 Focus+Context Visualization of 3D Geovirtual Environments
	1.3 Advances in Hardware-Accelerated Real-time Rendering
	1.4 Problem Statement and Contributions

	2 Overview of Focus+Context Visualization
	2.1 Lens-based Focus+Context Visualization
	2.2 Distortion-based Focus+Context Visualization
	2.3 Highlighting Techniques for Points-of-Interests

	3 Focus+Context Visualization of 3D Geovirtual Environments
	3.1 Categorization of Rendering Techniques
	3.2 Preliminaries and Classification Criteria
	3.3 Focus Types for 3D Geovirtual Environments
	3.4 Representation of Focus Types
	3.5 Visual Variants for Focus and Context
	3.6 Separating Focus from Context
	3.7 Summary

	4 3D Generalization Lenses
	4.1 3D Lenses and Level-of-Abstraction
	4.2 Generalization of Virtual 3D Landscape and City Models
	4.3 Generalized Clipping
	4.4 Concept of 3D Generalization Lenses
	4.5 Multi-pass Rendering
	4.6 Usage Scenarios and Discussion

	5 Dynamic Mapping of Raster Data
	5.1 Decoupling Geometry and Texture Data
	5.2 A General Concept for Projective Mappings
	5.3 Real-time Rendering of Projective Mappings
	5.4 Application Examples
	5.5 Conclusions and Future Work

	6 Rendering Technique for Image-space Deformations
	6.1 Non-planar Single-center Projections
	6.2 Real-time Rendering of Non-planar Projections
	6.3 Generalization of Single-center Projections
	6.4 Interactive Rendering Process
	6.5 Stereoscopic Rendering Non-planar Projections
	6.6 Extensions for Stereoscopic Rendering
	6.7 Comparison of Image-based and Geometry-based Approaches
	6.8 Results and Discussion

	7 Multi-perspective Views for 3D Geovirtual Environments
	7.1 Multi-perspective Views
	7.2 Effective Presentation of 3D Geovirtual Environments
	7.3 View-dependent Multi-perspective Views
	7.4 Multi-scale Rendering
	7.5 Summary and Discussion

	8 Highlighting Techniques for 3D Geovirtual Environments
	8.1 Applications and Challenges of Object Highlighting
	8.2 On-screen Highlighting Techniques
	8.3 Off-screen Highlighting Techniques
	8.4 Summary and Future Work

	9 Case Studies and Applications
	9.1 Communication of Digital Cultural Heritage in Public Spaces
	9.2 Non-planar Projection Surfaces
	9.3 Multi-perspective Views for Navigation Systems

	10 Conclusions and Future Research
	References
	Publication Overview

