
Hasso-Plattner-Institut

University of Potsdam

Information Systems Group

Dependency Discovery

for Data Integration

A thesis submitted for the degree of

�Doctor Rerum Naturalium�

(Dr. rer. nat.)

in Computer Sciences

Faculty of Mathematics and Natural Sciences

University of Potsdam

By: Dipl.-Inf. Jana Bauckmann

submitted on Potsdam, 2013/02/28

1st reviewer: Prof. Dr. Felix Naumann

2nd reviewer: Prof. Dr. Ulf Leser

3rd reviewer: Dr. Laure Berti-Équille (Ph.D, H.D.R)

defended on 2013/06/14

This work is licensed under a Creative Commons License:
Attribution - Noncommercial - Share Alike 3.0 Germany
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2013/6664/
URN urn:nbn:de:kobv:517-opus-66645
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66645

Abstract

Data integration aims to combine data of di�erent sources and to provide users

with a uni�ed view on these data. This task is as challenging as valuable. In

this thesis we propose algorithms for dependency discovery to provide necessary

information for data integration. We focus on inclusion dependencies (Inds) in

general and a special form named conditional inclusion dependencies (Cinds): (i)

Inds enable the discovery of structure in a given schema. (ii) Inds and Cinds

support the discovery of cross-references or links between schemas.

An Ind A ⊆ B simply states that all values of attribute A are included in the

set of values of attribute B. We propose an algorithm that discovers all inclusion

dependencies in a relational data source. The challenge of this task is the complexity

of testing all attribute pairs and further of comparing all of each attribute pair's

values. The complexity of existing approaches depends on the number of attribute

pairs, while ours depends only on the number of attributes. Thus, our algorithm

enables to pro�le entirely unknown data sources with large schemas by discovering

all Inds. Further, we provide an approach to extract foreign keys from the identi�ed

Inds.

We extend our Ind discovery algorithm to also �nd three special types of Inds:

(i) Composite Inds, such as AB ⊆ CD, (ii) approximate Inds that allow a certain

amount of values of A to be not included in B, and (iii) pre�x and su�x Inds that

represent special cross-references between schemas.

Conditional inclusion dependencies are inclusion dependencies with a limited

scope de�ned by conditions over several attributes. Only the matching part of

the instance must adhere the dependency. We generalize the de�nition of Cinds

distinguishing covering and completeness conditions and de�ne quality measures for

conditions. We propose e�cient algorithms that identify covering and completeness

conditions conforming to given quality thresholds. The challenge for this task is

twofold: (i) Which (and how many) attributes should be used for the conditions?

(ii) Which attribute values should be chosen for the conditions? Previous approaches

rely on pre-selected condition attributes or can only discover conditions applying to

quality thresholds of 100%.

Our approaches were motivated by two application domains: data integration in

the life sciences and link discovery for linked open data. We show the e�ciency and

the bene�ts of our approaches for use cases in these domains.

Zusammenfassung

Datenintegration hat das Ziel, Daten aus unterschiedlichen Quellen zu kombinie-

ren und Nutzern eine einheitliche Sicht auf diese Daten zur Verfügung zu stellen.

Diese Aufgabe ist gleichermaÿen anspruchsvoll wie wertvoll. In dieser Dissertation

werden Algorithmen zum Erkennen von Datenabhängigkeiten vorgestellt, die not-

wendige Informationen zur Datenintegration liefern. Der Schwerpunkt dieser Arbeit

liegt auf Inklusionsabhängigkeiten (inclusion dependency, Ind) im Allgemeinen und

auf der speziellen Form der Bedingten Inklusionsabhängigkeiten (conditional Ind,

Cind): (i) Inds ermöglichen das Finden von Strukturen in einem gegebenen Schema.

(ii) Inds und Cinds unterstützen das Finden von Referenzen zwischen Datenquellen.

Eine Ind A ⊆ B besagt, dass alle Werte des Attributs A in der Menge der Werte

des Attributs B enthalten sind. Diese Arbeit liefert einen Algorithmus, der alle

Inds in einer relationalen Datenquelle erkennt. Die Herausforderung dieser Aufgabe

liegt in der Komplexität alle Attributpaare zu testen und dabei alle Werte dieser

Attributpaare zu vergleichen. Die Komplexität bestehender Ansätze ist abhängig

von der Anzahl der Attributpaare während der hier vorgestellte Ansatz lediglich von

der Anzahl der Attribute abhängt. Damit ermöglicht der vorgestellte Algorithmus

unbekannte Datenquellen mit groÿen Schemata zu untersuchen. Darüber hinaus wird

der Algorithmus erweitert, um drei spezielle Formen von Inds zu �nden, und ein

Ansatz vorgestellt, der Fremdschlüssel aus den erkannten Inds �ltert.

Bedingte Inklusionsabhängigkeiten (Cinds) sind Inklusionsabhängigkeiten deren

Geltungsbereich durch Bedingungen über bestimmten Attributen beschränkt ist.

Nur der zutre�ende Teil der Instanz muss der Inklusionsabhängigkeit genügen. Die

De�nition für Cinds wird in der vorliegenden Arbeit generalisiert durch die Unter-

scheidung von überdeckenden und vollständigen Bedingungen. Ferner werden Qua-

litätsmaÿe für Bedingungen de�niert. Es werden e�ziente Algorithmen vorgestellt,

die überdeckende und vollständige Bedingungen mit gegebenen Qualitätsmaÿen auf-

�nden. Dabei erfolgt die Auswahl der verwendeten Attribute und Attributkombina-

tionen sowie der Attributwerte automatisch. Bestehende Ansätze beruhen auf einer

Vorauswahl von Attributen für die Bedingungen oder erkennen nur Bedingungen

mit Schwellwerten von 100% für die Qualitätsmaÿe.

Die Ansätze der vorliegenden Arbeit wurden durch zwei Anwendungsbereiche

motiviert: Datenintegration in den Life Sciences und das Erkennen von Links in

Linked Open Data. Die E�zienz und der Nutzen der vorgestellten Ansätze werden

anhand von Anwendungsfällen in diesen Bereichen aufgezeigt.

Acknowledgements

I thank my advisors Prof. Felix Naumann and Prof. Ulf Leser for their constant sup-

port and a great research environment. In our weekly meetings Prof. Felix Naumann

always advanced my work with fruitful discussions, which provided new ideas and

new insights. Prof. Ulf Leser always o�ered new perspectives on my work and food

for thought on various problems.

I thank Ziawasch Abedjan and Heiko Müller for our inspiring research cooperation

in the Cind discovery project.

I further thank all students that participated in di�erent degrees in this research.

In particular, I thank Jan Hegewald for our lively discussions and his work on

LinkFinder, Tobias Flach for implementing the Aladin tool, and Benjamin Emde

for his ideas on Cind discovery using Sql.

I also thank my colleages, especially Melanie Herschel, Silke Trissl, Jens Blei-

holder, Christoph Böhm, and Alexander Albrecht, who always provided support,

suggestions, and fun in many lunch and co�ee talks and discussions.

Finally, I thank my husband Hagen for being there, many talks, and lots of

patience that backed me all along.

iii

Contents

1 Dependencies for Data Integration 1

1.1 Data Integration in the Life Sciences 4

1.2 Link Discovery for Linked Open Data 6

1.3 Contributions and Outline . 7

2 Identifying Database Structure 11

2.1 Related Topics for Schema Discovery 11

2.2 Terms and De�nitions . 12

2.3 Test Data Sources . 16

3 Discovering Unary Inclusion Dependencies 19

3.1 SQL approaches . 20

3.2 Single Pass Inclusion DEpendency Recognition (SPIDER) 24

3.2.1 Basic test for single IND candidates 24

3.2.2 Parallel test for all IND candidates with SPIDER 25

3.2.3 The SPIDER algorithm . 28

3.3 Pruning IND candidates . 31

3.3.1 Simple strategies . 31

3.3.2 Bloom �lter . 32

3.3.3 Filtering and Performance . 35

3.4 Related Work . 36

4 Evaluating and Leveraging Unary Inclusion Dependency Discovery 39

4.1 E�ciency of Unary IND Discovery 39

4.1.1 Evaluating the SQL approaches 40

4.1.2 Evaluating SPIDER . 42

4.1.3 Evaluating the E�ects of Pruning 45

v

4.2 Leveraging Intra-Schema INDs . 48

4.2.1 E�ectiveness for Real World Data 48

4.2.2 Deriving Foreign Keys . 50

4.2.3 Deriving Primary Relations 57

4.3 Leveraging Inter-Schema INDs . 59

5 Extending Inclusion Dependency Discovery 61

5.1 Composite SPIDER: Discovering Composite INDs 61

5.1.1 Extending SPIDER . 62

5.1.2 Evaluating Composite SPIDER 63

5.1.3 Related Work . 64

5.2 Approximate SPIDER: Discovering Approximate INDs on Dirty Data 65

5.2.1 Extending SPIDER . 65

5.2.2 Evaluating Approximate SPIDER 67

5.2.3 Related Work . 68

5.3 LINKFINDER: Discovering Pre�x and Su�x INDs 68

5.3.1 Similarities and Di�erences to IND Discovery 69

5.3.2 LinkFinder By Example . 72

5.3.3 The LINKFINDER Algorithm 79

5.3.4 Extending LINKFINDER . 82

5.3.5 Evaluating LINKFINDER . 83

5.3.6 Related Work . 86

6 Discovering Conditional Inclusion Dependencies 89

6.1 Requirements of CIND discovery . 90

6.1.1 Features of Conditions . 92

6.1.2 Quality of Conditions . 93

6.1.3 Challenges of Condition Discovery 93

6.2 Classifying CINDs . 94

6.2.1 De�ning Condition Features 94

6.2.2 Measuring Condition Features 95

6.3 Discovering Restricted Conditions with SQL 96

6.4 Discovering General CINDs With CINDERELLA 99

6.4.1 The Cinderella Algorithm 101

6.4.2 Discovering Completeness Conditions with Cinderella . . . 103

vi

6.5 Discovering General CINDs with PLI 104

6.5.1 Position Lists and Intersections 104

6.5.2 The PLI Algorithm . 105

6.5.3 Discovering Completeness Conditions with PLI 109

6.6 Complexity of Cinderella and PLI 109

6.7 Related Work . 110

7 Evaluating and Leveraging Conditional Inclusion Dependencies 113

7.1 E�ciency of Cind Discovery . 113

7.1.1 Varying the Number of Conditions 114

7.1.2 Varying the Size of Data Set 115

7.1.3 Varying the Number Of Attributes 118

7.1.4 Varying Distribution of Condition Attributes 120

7.2 E�ectiveness of Cind Discovery . 122

7.2.1 Evaluating the DBpedia Persons Use Case 122

7.2.2 Evaluating a Wikipedia Use Case 124

7.2.3 Evaluating a Life Sciences Application: UniProt 126

8 Conclusions 129

vii

Chapter 1

Dependencies for Data Integration

Data integration aims to combine information of several data sources and thus pro-

vides the ability to gain new insights. Classical approaches de�ne one global and

several local schemas with mappings between them � distinguishing local-as-view,

global-as-view, and global-local-as-view [46].

In the last years dataspaces were introduced to integrate several data sources

in a �pay-as-you-go� fashion [29]. Dataspaces postpone integrating the data until

integrated access is necessary and aim to provide this integration without the need

of an complete and correct semantic mapping between data sources [36]. Another

example for loosely coupled data sources are linked open data: Relationships be-

tween data sources are represented by links whose type and information degree can

di�er [37].

Despite the di�erences of all these approaches they share one basic property:

Data dependencies o�er the chance to gain necessary information to relate unknown

sources and thus help to query these sources. In this thesis we focus on inclusion

dependencies (Inds) as data dependencies that support data integration. An Ind

A ⊆ B ensures that all values of the dependent attribute A are included in the set

of values of the referenced attribute B. Thus, Inds provide information on data

overlap, which makes them a good base for data integration. In the relational data

model Inds between relations of one schema can be used to �nd foreign keys, while

Inds between di�erent schemas can be used to �nd inter-schema links.

Recently, a weaker form of dependencies, so called conditional dependencies, have

gained attention, mostly due to their power in analyzing and improving data qual-

ity [26]. A conditional dependency is a dependency with a limited scope, where the

1

Chapter 1. Dependencies for Data Integration

scope typically is de�ned by conditions over several attributes. Only those tuples

for which these conditions evaluate to true must adhere the dependency. Naturally,

in this thesis we focus on discovering conditional inclusion dependencies (Cinds).

Cinds provide the ability to �nd links between data sources that are restricted to a

subset of the data. The identi�ed conditions help to understand the characteristics

of this subset and therefore help to better integrate both data sources.

Discovering Inclusion Dependencies. To test a single attribute pair A,B as

Ind A ⊆ B we need to compare both attribute's values: Are all values of A included

in the set of values of B? We could perform this check using Sql, e. g., using a join

over A and B. A ⊆ B holds, if the number of distinct values in A equals the number

of distinct values of A in the join result. The challenge of identifying Inds in a given

data source arises when we aim to identify all Inds: We have to test all attribute

pairs and for each attribute pair we have to compare all of their values, which means

a quadratic complexity in the number of attributes multiplied by the quadratic com-

plexity in the number of values. We present our algorithm Spider, which e�ciently

identi�es all Inds in a relational database. It leverages the sorting facilities of Dbms

but performs the actual comparisons outside the database to save computation: All

attribute pairs are tested as Inds in parallel using a special data structure, which

reduces the number of necessary comparisons and I/O. This approach reduces the

quadratic complexity in the number of attributes to a linearithmic time complex-

ity (i. e., n log n) and even a linear space complexity. Spider analyzes very large

databases up to an order of magnitude faster than previous approaches. Thus, our

algorithm enables to pro�le entirely unknown data sources with large schemas by

looking for all Inds.

One of our test data sources is the well-known Protein Data Bank (PDB), a

publicly available database containing essentially all known protein 3D-structures.

PDB is distributed as a structured �at-�le and can be imported into a relational

schema using the OpenMMS software1. The OpenMMS schema consists of 176

tables with 2, 713 attributes but does not specify a single foreign key constraint. This

under-speci�cation hinders the integration of this database with other life sciences

data sources considerably [63]. Testing all attribute pairs with unique referenced

attributes using one Sql statement per attribute pair did not �nish within seven

1openmms.sdsc.edu

2

openmms.sdsc.edu

days. Spider �nds all Inds in about six hours.

To use identi�ed Inds as source of information on intra-schema structures, such

as foreign keys, we want to distinguish spurious Inds from semantically meaningful

Inds. Thus, we propose an approach to set spurious Inds apart from real foreign

keys. We reach an overall F-measure of 93% on our test databases.

We extend Spider in several ways to support several cases in data integration:

First, we support the discovery of composite Inds, which are de�ned over compos-

ite attributes (such as AB ⊆ CD). Our algorithm Composite Spider leverages

Spider's linearithmic complexity. Therefore, it is able to discover composite Inds

e�ciently up to level three in our test data sources, i. e., all Inds of type A ⊆ B (level

one), AB ⊆ CD (level two), and ABC ⊆ DEF (level three). It was intractable

in discovering composite Inds of higher levels, because of the exponential growing

search space. Existing algorithms for composite Inds are designed for discovery of

Inds with very high levels (up to size 41 [44, 45, 54]). They are based on Inds of level

one and two, but they lack e�cient discovery of such Inds. Combining Composite

Spider and these algorithms improves discovery of composite Inds altogether.

Our second extension of Spider discovers approximate Inds, which allow a cer-

tain amount of values in the dependent attribute to be not included in the set of

values of the referenced attribute. Approximate Inds occur in dirty data, or they

can indicate links between overlapping data sources. Again, Approximate Spider

leverages Spider's linearithmic complexity.

Discovering a special type of inter-schema links is our third extension of Spider:

LinkFinder discovers Inds with pre�xes or su�xes concatenated to the values

of the dependent attribute. For instance, the protein classi�cation data source

CATH [57] links entries in the PDB using the actually linked protein's identi�er

concatenated with two characters � representing the applied protein domain. The

challenge is to distinguish pre�xes (or su�xes) from referencing values while allowing

for each Ind (i) di�ering lengths of referencing values and (ii) di�ering pre�xes (or

su�xes) with di�ering lengths. LinkFinder reuses the idea of testing all attribute

pairs in parallel to identify pre�xed or su�xed Inds e�ciently. It thus enables

discovery of inter-schema links.

Discovering Conditional Inclusion Dependencies. Cinds are approximate

Inds, enriched by conditions distinguishing the referenced attribute's included values

3

Chapter 1. Dependencies for Data Integration

from non-included values. Discovering these conditions faces two challenges: The

�rst challenge is to decide (and to describe) which conditions should be discovered,

i. e., which conditions are good conditions? We characterize conditions as valid,

complete, or covering and de�ne quality measures over these properties. The new

notion of covering conditions enables use cases in linked open data or in relational

schemas over joined or denormalized relations.

The second challenge is to identify the desired conditions: How many and which

attributes should be used for a condition? And which attribute values should be

used for a condition? Our algorithms Cinderella and Pli discover such conditions

e�ciently. Their advantage is the ability to choose condition attributes and values �

instead of only choosing condition values for pre-selected attributes as related work

does.

Already in a relation with only 12 potential condition attributes there are 212 =

4096 possible attribute combinations. In our use case with these 12 potential

condition attributes and about 280, 000 tuples in the referencing relation we need

5.9 seconds to test one attribute combination for valid and covering conditions using

Sql� summing up to about 6.5 hours to discover all valid and covering conditions

with a given quality. Cinderella and Pli discover these conditions in about

8 seconds.

In the following we describe two use cases that show the relevance of our work.

We use them in the entire thesis to show the e�ectiveness and e�ciency of our

approaches.

1.1 Data Integration in the Life Sciences

The �Nuclear Acids Research online Molecular Biology Database Collection� [30]

currently lists 1, 380 data sources. These sources provide heavily overlapping data

with cross-references between data sources using so-called accession numbers [39] �

which makes them an excellent resource for data integration applications. Unfor-

tunately, usage of information spread over several sources is dominated by manual

interaction: Searching one data source, �nding a key-word or a cross-reference to

another data-source, and �nally searching the other data source with this informa-

tion.

4

1.1. Data Integration in the Life Sciences

Obviously, it is hard to know for 1, 380 data sources which data source cross-

references which other sources in which way. Furthermore, each research community

in the life sciences tends to set up its own data source instead of cooperating with

other researchers in the same �eld. This leads to a steeply increasing number of

heavily overlapping life science data sources [31].

There are data integration projects in the life sciences that combine known data

sources with known structures � such as Columba, an integrated database of pro-

teins, structures, and annotations [63], or the Gene Expression Data Warehouse

(GEDAW) related to liver data [14, 34]. On the other hand there are frameworks

that provide the ability to access and interlink known data sources and thus pro-

vide an integrated access to these data sources, such as TAMBIS [5], yOWL [64], or

bio2RDF [12]. Note that information about how to interconnect these data sources

always must be provided.

Opposed to these approaches our algorithms gather information to interconnect

unknown data sources. We follow the idea of the Aladin approach [47] aiming to

discover intra-schema and inter-schema relationships automatically. This idea seems

con�rmed by current life science research, which intertwines data integration and

data analysis. The approach enables researchers to know exactly which data from

which source is used � a main requirement in life science research [17].

Schemas of life science data sources are modeled most often insu�ciently: Even

large and successful systems, such as PDB [13] or Ensembl [40], both with hundreds

of tables, are delivered without foreign key de�nitions. We apply our algorithm

Spider and our approach to distinguish meaningful from spurious Inds to discover

foreign keys.

Discovering cross-references between data sources supports the goal of data in-

tegration. We want to detect these references to de�ne links at schema level and

at object level. There are several methods used to link objects, i. e., to store and

represent the referenced data source and the accession number. In our research we

identi�ed the following types:

A data source references only one data source using a single attribute, e. g., the

protein classi�cation data source SCOP [50] only references the Protein Data Bank

PDB [13] using the attribute classi�cation.pdb_id. In this case, the referenced data

source is given in the attribute name. We identify this reference by discovering the

Ind using Spider or Approximate Spider.

5

Chapter 1. Dependencies for Data Integration

Another type of cross-references to one other data source is the concatenation

of an accession number and additional information. For instance, CATH [57] � a

protein classi�cation data source � uses a single attribute to reference PDB concate-

nating the accession number and two characters representing the protein domain.

We apply LinkFinder to discover cross-references of this type.

Many data sources reference not only one data source, but reference several data

sources. The usual way is to use a combination of a �referenced database code�

and an accession number. This combination could be represented in two attributes

or concatenated in one attribute. For instance, the BioSQL schema2 � a shared

database schema for storing sequence data � uses the attributes dbxref.dbname and

dbxref.accessionnr to reference other life science data sources. We parsed the pro-

tein data source UniProt [4] into this schema. UniProt references 67 data sources.

One of these referenced data sources is PDB. We discover and characterize this

cross-reference in two steps: First, we apply approximate Spider to discover the

approximate Ind to PDB with dbxref.accessionnr as dependent attribute. Second,

we apply Cinderella or Pli to �nd conditions that characterize the linking val-

ues. This way, we were able to identify attribute dbxref.dbname with value PDB

as condition. But joining relations in BioSQL (discovered using Spider) provided

even better insights: About 50% of all proteins in UniProt that reference PDB are

described as proteins of human or Escherichia coli. This condition gives a semantic

explanation why these proteins reference PDB, which then identi�es proteins that

probably should cross-reference PDB. Therefore, we are not only able to identify the

cross-reference between both data sources, but are also able to propose data quality

improvements.

1.2 Link Discovery for Linked Open Data

Linked open data are publicly available, open licensed RDF data, which provide

links between each other. Only these links enable the use of several data sources to

gain new information. But discovering and maintaining such links is a hard task.

Our motivation for studying Cinds comes from the problem of describing links

between objects on the web. Consider, as a concrete example, the problem of inter-

2http://biosql.org

6

http://biosql.org

1.3. Contributions and Outline

linking representations of persons in the English and German version of DBpedia3.

Clearly, many persons have both an English and a German description in DBpedia.

Relationships between entries in DBpedia are either represented by using the same

URI or by �sameAs�-links; we refer to these relationships as links. The relationship

between corresponding entries for the same person, however, is not made explicit in

all cases. Having a German (English) description of a person without a link to an

English (German) description of a person, two situations are possible: (1) This En-

glish (German) description does not exist; then the lack of the link truly re�ects the

database. (2) The English (German) description does exist; then the missing link is

a data quality problem. Such problems are very common in scenarios where hetero-

geneous data sets have overlapping domains but no central authority takes care of

properly and bi-directionally linking objects in this overlap. Many examples of such

cases can be found in the world of Linked Open Data [37] and in dataspaces [29].

The key idea to identify candidates for missing links is to look for characteristics of

those persons in the German DBpedia that are also included in the English DBpedia

and vice versa. Most probably, a certain set of persons in the German DBpedia is

interesting to US or English readers (and vice versa), but the question is how this

set can be characterized. A quite reasonable guess is, for instance, that �German�

persons with a birthplace or place of death in the United States are much more

likely to also be represented in the English DBpedia. We propose a method to �nd

such hypotheses automatically by computing covering conditions � a generalization

of Cinds � between the sets of interlinked objects. Objects that also have the same

characteristics but are not yet linked are then good candidates for missing links.

1.3 Contributions and Outline

The contributions of this thesis are as follows:

• We propose our algorithm Spider, which discovers all Inds of a given schema

e�ciently. Spider is for small schemas at least twice as fast as previous

approaches and for large schemas up to a magnitude of order faster than pre-

vious approaches. Thus, Spider enables pro�ling of large schemas � without

demanding necessary information in advance [8, 9].

• To show Spider's e�ciency we provide a complexity estimation and exper-

3http://wiki.dbpedia.org/Downloads

7

http://wiki.dbpedia.org/Downloads

Chapter 1. Dependencies for Data Integration

iments on real world and generated data of several domains � including life

sciences data sources. Further, we compare Spider to related work revealing

Spider's superiority [8, 9].

• We evaluate the usage of identi�ed Inds as foreign keys, propose an approach

to distinguish spurious Inds from foreign keys, and provide an approach to

discover the �primary relation� � a structural characteristic of life sciences

data sources. The contribution on distinguishing spurious Inds from foreign

keys is based on the term paper [3], which was supervised by the thesis' author,

and was extended in joint work with Rostin et al. [60].

• We extend Spider to discover approximate and composite Inds. Both algo-

rithms leverage the linearithmic complexity of Spider, which is con�rmed by

our experimental results [8].

• We extend Spider to discover pre�x or su�x Inds, which represent a special

type of cross-references between data sources. We evaluate e�ciency and ef-

fectiveness to discover cross-references among life sciences data sources. This

contribution is based on the masters thesis [38], which was supervised by the

thesis' author.

• We describe a novel use case for Cind discovery that is motivated by the

increasing amount of linked data that is published on the Web. We de�ne a

generalization of Cinds to distinguish covering and complete conditions, which

enables this use case and further enables discovering Cinds over denormalized

relations [6, 7].

• We de�ne quality measures for identi�ed conditions inspired by precision and

recall that are used to restrict the discovered set of conditions to those that are

most likely to represent characteristic descriptions for existing links between

databases [6, 7].

• We present two algorithms � Cinderella and Pli� that e�ciently iden-

tify valid and covering (or valid and complete) conditions, while choosing the

condition attributes and their values automatically. We provide a thorough

evaluation of the e�ectiveness and e�ciency both of algorithms using two real-

world data sets. This contribution is joint work with Ziawasch Abedjan and

others [6, 7].

The remainder of this thesis is structured as follows: Chapter 2 provides terms and

de�nitions and covers related topics for schema detection. In Chapter 3 we describe

8

1.3. Contributions and Outline

approaches to discover unary Inds, i. e., Sql based approaches and Spider, and

propose pruning strategies for Cind discovery. An evaluation of these approaches

regarding e�ectiveness and e�ciency is presented in Chapter 4. We extend Spider

to discover approximate, composite, and pre�x or su�x Inds and evaluate these

algorithms in Chapter 5.

Chapter 6 covers the discovery of Cinds: from providing the ability to describe

desired condition, over an Sql approach to two e�cient algorithms, namely Cin-

derella and Pli. We evaluate and leverage Cinds in Chapter 7 and conclude the

thesis in Chapter 8.

9

Chapter 1. Dependencies for Data Integration

10

Chapter 2

Identifying Database Structure

In this chapter we consider two topics that could help in schema discovery for data

integration at �rst sight. We show the commonalities with our application and the

di�erences, which impede their usage in this thesis. Afterwards we provide terms

and de�nitions and introduce our test data sources.

2.1 Related Topics for Schema Discovery

There are several approaches in the literature that cover schema discovery. We dis-

cuss two topics that are related to our application of discovering database structure:

Schema matching and discovering functional dependencies. Both topics share the

aim to discover dependencies between attributes with our work.

Schema matching identi�es mappings between elements of two schemas. These

mappings indicate semantically corresponding elements [59]. Schema matching pre-

sumes that the data sources provide the same information, i. e., store data on the

same topic in syntactically and structurally di�erent representations. Semantically

equivalent parts are mapped to each other using the data source's structures or in-

stances. Thus, schema matching looks for overlapping parts of both data sources.

We look in our application at di�erent, yet related data sources that interlink each

other. Consider for example the protein classi�cation data source SCOP, which

references the protein 3D-structure data source PDB: Both data sources provide

information on proteins, but their type of information on proteins di�ers. Thus,

we �nd cross-references between them, but cannot �nd (larger) overlapping parts

between both data sources. The prerequisites to apply schema matching are more

11

Chapter 2. Identifying Database Structure

demanding than the requirements for Ind discovery. Further, schema matching is

based on similarities, while Ind discovery provides the chance to discover exact de-

pendencies (in few overlapping attributes). Because of these fundamental di�erences

regarding the prerequisites and the intended purpose between schema matching and

Ind discovery we do not further consider schema matching in this thesis.

Functional dependencies are a class of data dependencies, as are inclusion depen-

dencies. A functional dependency X → Y demands for two tuples with equal values

in attributes X to also share equal values in attributes Y . Functional dependencies

and inclusion dependencies are covered together in many works, which suggests to

also share their approaches in discovering both dependencies. In detail, functional

dependencies are equality generating dependencies and inclusion dependencies are

tuple generating dependencies. Both are covered together when looking at axiom-

atization, decision problems, and implication [19, 21]. But both problems are com-

pletely di�erent in the aim to discover these dependencies: Functional dependencies

consider tuples in one relation with same values in the antecedent and consequent

attributes. Thus, discovering functional dependencies needs to �nd horizontal par-

titions of several attributes sharing equal values in one relation [41]. Opposed to

that, discovering inclusion dependencies needs to �nd pairs of attributes in several

relations whose value sets are included in each other. Thus, we cannot use ideas of

discovering functional dependencies for link discovery in data integration.

Instead of these topics, we focus in this thesis on discovery and usage of inclusion

dependencies � in several modi�cations � to support data integration.

2.2 Terms and De�nitions

Let R1, R2 be relations over a �xed set of attributes A1, A2, . . . , Ak. Each attribute

A has an associated domain dom(A). We denote arbitrary instances of R1 and R2 by

I1 and I2, respectively. Each instance I is a set of tuples t such that t[A] ∈ dom(A)

for each attribute A ∈ R. We use t[X] and I[X] to denote the projection of t and I

onto attributes X, respectively.

Def. 1: Unary Inclusion Dependency Given relations R1, R2 and their arbi-

trary instances I1, I2: A unary inclusion dependency (Ind)

R1[A] ⊆ R2[B], or for short A ⊆ B, is built of the dependent attribute A ∈ R1 and

12

2.2. Terms and De�nitions

the referenced attribute B ∈ R2. R1[A] ⊆ R2[B] means that all values of A are

included in the set of values of B, i. e., ∀t1 ∈ I1∃t2 ∈ I2 : t1[A] = t2[B].

Obviously, the Ind relationship is not symmetric. We call any pair of attributes

A and B an Ind candidate, which we denote by A ⊆?B. An Ind is satis�ed if the

Ind requirements are met and unsatis�ed otherwise. We denote satis�ed Inds as

A ⊆ B and unsatis�ed Inds as A * B. A value v ∈ I1[A] violates an Ind A ⊆ B if

v /∈ I2[B]. An attribute C is covered by an IND (candidate) if it is part of that Ind

(candidate) as dependent or as referenced attribute: C ∈ {A,B}.
Strictly speaking, Inds cannot be discovered: One can merely verify whether they

are satis�ed for two given instances of two relations. For sake of clarity we ignore

this �ne distinction throughout the thesis.

We now extend the de�nition of unary Inds to composite Inds. Therefore, we

�rst de�ne the term composite attribute.

Def. 2: Composite Attribute A composite attribute is a list of attributes. The

composite attribute's values are built by concatenating for each tuple the single

attribute's values. We denote a composite attribute by listing its single attributes.

The number of single attributes is called the size of a composite attribute. For

example, the composite attribute AB concatenates the values of attributes A and

B; the size of AB is 2.

Def. 3: Composite Inclusion Dependency A composite Ind R1[A1, . . . , An] ⊆
R2[B1, . . . , Bn], or for short A1 . . . An ⊆ B1 . . . Bn, is an Ind that is de�ned over

composite attributes. The dependent and referenced composite attributes must

have the same size.

The level of a composite Ind is the size of the dependent (and referenced) compos-

ite attributes. For example, the composite Ind AB ⊆ CD is built of the dependent

composite attribute AB and the referenced composite attribute CD; the level of

AB ⊆ CD is 2. Analogously to Inds, a pair of composite attributes of the same

size is a composite Ind candidate A1 . . . An ⊆?B1 . . . Bn.

13

Chapter 2. Identifying Database Structure

One purpose of discovering Inds in this thesis is discovering foreign keys:

Def. 4: Foreign Key A Foreign Key (Fk) is a semantically meaningful, justi�ed

Ind. For Ind A1 . . . An ⊆ B1 . . . Bn we call A1 . . . An the foreign key, which references

key B1 . . . Bn.

Foreign keys are de�ned in a schema by a human expert, i. e., a database admin-

istrator.

We weaken the strict de�nition of Inds to allow further dependency discovery

between data sources and in dirty data:

Def. 5: Approximate Inclusion Dependency An approximate Ind R1[A] v
R2[B], or for short A v B, is an Ind that allows a certain amount of violating

values in the dependent attribute A. We call this amount error rate. It can be de-

�ned as an absolute number of values or as percentage of distinct dependent values.

We introduce a further type of Ind to support discovery of cross-references be-

tween data sources that concatenate the linked value by pre�xes or su�xes.

Def. 6: Pre�x Inclusion Dependency A Pre�x Ind R1[A] ⊆p R2[B], or for

short A ⊆p B, is an Ind between the dependent attribute A and the referenced

attribute B after removing a (�xed or variable) pre�x from each value in A.

Def. 7: Su�x Inclusion Dependency A Su�x Ind R1[A] ⊆s R2[B], or for short

A ⊆s B, is an Ind between the dependent attribute A and the referenced attribute

B after removing a (�xed or variable) su�x from each value in A.

In Chapter 1 we introduced the example of CATH referencing PDB: Attribute

domain_name in relation domain_list of CATH references attribute entry_id of re-

lation struct in PDB by using values of entry_id concatenated with a su�x repre-

senting the domain of this protein (assigned by CATH). We denote this su�x Ind

as domain_list[domain_name] ⊆s struct[entry_id].

Any pair of attributes A and B is called a pre�x Ind candidate A ⊆?
pB, and a

su�x Ind candidate A ⊆?
s B. The referencing part of values in A, i. e., the value

after removing the pre�x or su�x, is called the key. Each pre�x (or su�x) Ind has

a varying or �xed key length and a varying or �xed pre�x (or su�x) length. We

14

2.2. Terms and De�nitions

denote a pre�x Ind between attributes A and B with key length k and pre�x length

l as A ⊆k,l
p B, a su�x Ind analogously as A ⊆k,l

s B. Varying key and pre�x (or

su�x) lengths are denoted by a dot, i. e., a su�x Ind with �xed key length k and

varying su�x length is denoted as A ⊆k,.
s B.

Analogously to Inds, we de�ne approximate pre�x and approximate su�x Inds:

Def. 8: Approximate Pre�x Inclusion Dependency An approximate pre�x

Ind R1[A] vp R2[B], or for short A vp B, is a pre�x Ind that allows a certain

amount of violating values in the dependent attribute A. We call this amount error

rate. It can be de�ned as an absolute number of values or as percentage of distinct

dependent values.

Def. 9: Approximate Su�x Inclusion Dependency An approximate su�x

Ind R1[A] vs R2[B], or for short A vs B, is a su�x Ind that allows a certain

amount of violating values in the dependent attribute A. We call this amount error

rate. It can be de�ned as an absolute number of values or as percentage of distinct

dependent values.

Of course we could also de�ne approximate composite Inds, composite pre�x

Inds, or composite su�x Inds, but these types of Inds are out of scope of this

thesis.

Lastly, we de�ne conditional inclusion dependencies (Cinds), which restrict the

scope of an Ind by conditions: Formally, a Cind is de�ned by an embedded ap-

proximate Ind and a pattern tableau representing the conditions. The following

de�nitions are based on [19] and [26], but we chose a di�erent, yet in our mind more

intuitive formulation.

Def. 10: Pattern tableau A pattern tableau TP restricts tuples of R1 over at-

tributes XP and tuples of R2 over attributes YP . For each attribute A in XP or YP

and each pattern tp ∈ TP , tp[A] is either a constant `a' in dom(A) or a special value

`−'.

Each pattern tuple tp ∈ TP de�nes a condition. A constant value for tp[A] restricts

a matching tuple's attribute value to this constant, a dash represents an arbitrary

attribute value. A tuple t1 ∈ I1 matches tp ∈ TP (t1 � tp) if ∀A ∈ XP : tp[A] = (`−'

15

Chapter 2. Identifying Database Structure

∨t1[A]). The de�nition for a tuple t2 ∈ I2 matching tp ∈ TP follows analogously over

attributes YP . The pattern tableau is divided into a left-hand side (with attributes

XP) and a right-hand side (with attributes YP). Both sides of the tableau can be

empty, i. e., XP or YP can be empty sets; an empty side speci�es no restriction on

any attribute of the respective relation. We call attributes XP and YP condition

attributes.

Def. 11: Conditional inclusion dependency A conditional inclusion dependency

(CIND)

ϕ: (R1[X;XP] ⊆ R2[Y ;YP], TP)

consists of the embedded approximate Ind R1[X] v R2[Y] and the pattern tableau

TP over attributes XP and YP de�ning the restrictions. Sets X and XP are disjoint,

and sets Y and YP are disjoint.

In the context of Cinds, we call attributes X and Y inclusion attributes. In

Chapter 1 we described the example of UniProt in the BioSQL schema referencing

PDB: The approximate Ind dbxref[accessionnr] v struct[entry_id] is restricted by

condition dbxref[dbname] = PDB. We denote this Cind as follows:

ϕ: (dbxref[accessionnr; dbname] ⊆ struct[entry_id;], TP)

TP :
dbname

PDB

A Cind ϕ holds for a pair of instances I1 and I2 if

1. selecting condition on I1: Let t1 ∈ I1 match any tuple tp ∈ TP . Then t1 must

satisfy the embedded IND.

2. demanding condition on I2: Let t1 ∈ I1 match tuple tp ∈ TP . Further, let t1
satisfy the embedded Ind with referenced tuple t2 ∈ I2, i. e., t1[X] = t2[Y].

Then t2 also must match tp.

2.3 Test Data Sources

In this section we introduce our test data sources, which are several life sciences

data sources, one generated data source, one extremely large SAP/R3 data source,

and DBpedia person data.

16

2.3. Test Data Sources

UniProt1 is a database of annotated protein sequences available in several for-

mats [4]. We chose the BioSQL2 schema and parser, creating a database of 16 tables

with 85 attributes and 21 de�ned foreign keys. The total size of the database is

900MB, with the largest attribute having approximately 1 million di�erent values.

SCOP3 is a database of protein classi�cations available as a set of �les [56]. We

wrote our own parser, populating 4 tables with 22 attributes. The total size of the

database is 17MB, with the largest attribute having about 90, 000 di�erent values.

CATH is another database of protein classi�cations, which is available as set of

�les. We populated 4 tables with 25 attributes. The total size of the database is

20MB, with the largest attribute having about 65, 000 di�erent values.

PDB is a large database of protein structures [13]. We used the OpenMMS

software4 for parsing PDB �les into a relational database. PDB populates 116

tables with 1, 297 non-empty attributes in the OpenMMS schema. No foreign keys

are speci�ed. The total database size is 32GB, with the largest attribute having

approximately 218 million di�erent values. To achieve a better idea of the scalability

of our approaches, we also used a 2.8GB fraction of the PDB, obtained by removing

9 extremely large tables on atom coordinates for each atom in each protein.

Additionally, we used a generated instance of the TPC-H benchmark using scale

factor one. The TPC-H schema consists of 8 tables with 61 attributes. It de�nes 7

unary foreign keys and 1 foreign key over composite attributes of size 2. Further,

we used a SAP/R3 database instance5 as a very large database with an enormous

schema. It populates 25, 002 non-empty tables with 237, 836 attributes. The total

size is 145GB.

For testing our Cind discovery approaches we use person data in the German

and English DBpedia [15]. In DBpedia, individual persons are represented by the

same URI in both data sets. There are 296, 454 persons in the English DBpedia 3.6

and 175, 457 persons in the German DBpedia 3.66; 74, 496 persons are included

in both data sets. We mapped the data sets into relations to enable detection

of covering and complete conditions. We use one attribute per predicate, namely

1www.pir.uniprot.org
2obda.open-bio.org
3http://scop.mrc-lmb.cam.ac.uk/scop
4openmms.sdsc.edu
5We thank the SAP HCC at Otto-von-Guericke-Universität Magdeburg for providing this

database instance.
6http://wiki.dbpedia.org/Downloads

17

www.pir.uniprot.org
obda.open-bio.org
http://scop.mrc-lmb.cam.ac.uk/scop
openmms.sdsc.edu
http://wiki.dbpedia.org/Downloads

Chapter 2. Identifying Database Structure

personID, name, givenname, surname, birthdate, birthplace, deathdate, deathplace,

and description. Further, we extracted the century and the year of birth and death

into additional attributes from attributes birthdate and deathdate, respectively.

The resulting relations contain 474, 630 tuples for the English DBpedia and 280, 913

tuples for the German DBpedia with an intersection of 133, 208 tuples.

18

Chapter 3

Discovering

Unary Inclusion Dependencies

In this chapter, we provide algorithms to discover unary Inds. The main challenge is

regarding all attribute pairs as IND candidates, instead of pruning candidates, e. g.,

by data type or restricting to a subset of relations or attributes. This generality

enables to pro�le entirely unknown data sources, even with weak schema de�nitions

as in our life sciences use case. But this generality demands to cope with large

numbers of Ind candidates, and thus demands to perform the tests of Ind candi-

dates as e�ciently as possible. We show that previous approaches do not scale up

accordingly.

We de�ne the problem of unary Ind discovery as follows:

Problem Statement 1: Discovering unary Inds Given a schema with an ar-

bitrary number of relations and n attributes: Discover all satis�ed unary Inds be-

tween attributes of these relations, i. e., consider all n(n− 1) attribute pairs as Ind

candidates.

Note that our problem statement does not demand di�erent relations for the

attributes in an Ind candidate. We could restrict the problem de�nition in this

point: Let be given k relations with m attributes in each relation. The number of

Ind candidates for the attributes of one relation R is then m · (k − 1)m, i. e., all

attributes of R compared to all other (k− 1) relation's attributes. Thus the overall

number of Ind candidates is k ·m · (k− 1)m. As this problem de�nition also results

in a quadratic number of Ind candidates depending on the number of attributes

(and relations), we decided to use the unrestricted, more general problem de�nition.

19

Chapter 3. Discovering Unary Inclusion Dependencies

Section 3.1 presents ideas on testing Ind candidates inside the DBMS using Sql.

Section 3.2 introduces our algorithm Spider, which tests Ind candidates outside

the DBMS to allow parallel tests while saving I/O and comparisons. We give a

complexity analysis for both approaches showing (i) the major disadvantage of the

Sql approach � the dependency on the number of Ind candidates, i. e., the quadratic

dependency on the number of attributes � and (ii) the major advantage of Spider

� its only linearithmic dependency on the number of attributes.

Further, we show in Section 3.3 pruning strategies based on the data values,

aiming to reduce the number of Ind candidates to test without losing any Ind, i. e.,

we only prune non-satis�ed Inds.

3.1 Sql approaches

Our �rst approaches use Sql for performing set inclusion tests. We propose four

alternative statements using join, except, not in, and not exists to evaluate the ability

of Sql to test all Ind candidates of a given schema. In each case, only one query is

necessary to perform the actual test for an Ind candidate. We show the statements

in the following paragraphs assuming an Ind candidate A ⊆? B between attribute

A in relation R and attribute B in relation S.

Utilizing Join The �rst statement utilizes a join as proposed by [11]. We perform

a join on the inclusion dependency candidate and compare the number of returned

tuples with distinct dependent values against the number of distinct non-null values

in the dependent attribute. The Ind is satis�ed if both values are equal. The join

statement can be seen in Figure 3.1a. Note that this statement can be simpli�ed

for Ind candidates with a unique referenced attribute (see Fig. 3.1b): It su�ces to

compare the number of all returned tuples with the number of all non-null values

in the dependent attribute. This step replaces the costly counting of distinct values

after projecting on the dependent attribute by a simple count of all returned tuples.

Note that the number of (distinct) non-null values of each attribute can be queried

once for each attribute.

These statements simply compute a join over two sets, which is a di�erent problem

than the Ind test. We can use a join to verify Inds, but we cannot tell the RDBMS

engine that the procedure can be stopped as soon as any tuple is detected for which

20

3.1. SQL approaches

select count(distinct A)

as matchedDependents

from R JOIN S on R.A = S.B

(a) general

select count(∗)
as matchedDependents

from R JOIN S on R.A = S.B

(b) for unique referenced attributes

Figure 3.1: Join statements to test Ind candidate R.A ⊆?S.B utilizing join.

no join partner exists. Therefore, we formulate three other statements that aim to

assist the DBMS to recognize this point. The idea is to �nd a statement that returns

no tuples if the Ind candidate is satis�ed and one or more tuples otherwise. This

way, we can stop the computation after the �rst tuple in the result set, hoping that

�rst tuples can be produced without computing the entire result.

Utilizing Except The idea of utilizing except is to subtract values of the referenced

attribute from values of the dependent attribute; if there are tuples in the result set

then the Ind candidate is not satis�ed. The statement can be seen in Figure 3.2.

Note that the fetch �rst n rows only clause is used to enable the query engine to stop

execution early.

select ∗
from ((select A from R where A is not null)

EXCEPT (select B from S))

fetch �rst 1 rows only

Figure 3.2: Statement to test Ind candidate R.A ⊆?S.B utilizing except.

Utilizing an Anti-Join: Not In and Not Exists Another possibility to obtain

an empty result set if the tested Ind candidate is satis�ed is to utilize an anti-join.

An anti-join returns all tuples that are not included in a semi-join result. There are

two possibilities to formulate this anti-join: Using Not In and Not Exists. The idea is

to ask for values in the dependent attribute that are not included in the referenced

attribute. Again, we can restrict the result set to a single tuple as can be seen in

Figure 3.3.

Note that there may be further possible statements to test each Ind candidate

or vendor-speci�c tricks and tweaks to speed up the execution. But we aim to

21

Chapter 3. Discovering Unary Inclusion Dependencies

select ∗
from R

where A is not null

and A NOT IN

(select B from S)

fetch �rst 1 rows only

(a) Using not in

select ∗
from R

where A is not null

and NOT EXISTS

(select ∗ from S where R.A = S.B)

fetch �rst 1 rows only

(b) Using not exists

Figure 3.3: Statements to test Ind candidate R.A ⊆?S.B utilizing an anti-join.

pro�le unknown data sources without any requirements to the database system or

the database structure. We tested the above statements with indexes as they were

provided by the original schemas and additionally with sorted indexes on every

single attribute. All Sql approaches were much slower than the class of algorithms

presented in the next section. Even worse, for large databases all Sql approaches

were infeasible, because of their immense runtime. The fastest approach was using

not exists statements. See Chapter 4.1.1 for our experimental results.

Complexity Analysis We repeat the complexity analysis in terms of comparisons

of [42] and provide a proof assuming a sort merge join on both attributes with n

attributes and maximally t values in each attribute. We do not assume any given

sortation on the attribute's values. Note that an anti-join can be computed as a

join that just outputs the non-joining tuples. Thus, our complexity analysis covers

the join and anti-join approaches.

Theorem 1. The time complexity to identify all unary Inds using one (anti-)join

query per Ind candidate in a database, i. e., the necessary number of comparisons,

is O(n2t log t) assuming a sort merge join on both attributes.

Proof. We need t log t comparisons to sort an attribute's values and O(t) compar-

isons to merge two attributes. Thus, for the n(n − 1) Ind candidates we need

O(n2t log t+ n2t) = O(n2t log t) comparisons for the (anti-)join queries.

For the test utilizing a join query, we need additionally the numbers of (distinct)

non-null values. These numbers can be queried once for each attribute, e. g., using

a sort. Thus, we need O(n · t log t) comparisons to query the numbers of (distinct)

non-null values of all attributes.

22

3.1. SQL approaches

Altogether, we need O(n2t log t) comparisons to test all Ind candidates utilizing

one (anti-)join query per Ind candidate.

Assuming an sorted index on each attribute reduces the complexity for sorting

to a single sort per attribute, thus the time complexity reduces to O(nt log t+ n2t).

The complexity in terms of I/O is additionally dependent on the internal memory

sizeM given as number of items (attribute values in our case) and the block transfer

size B, i. e., the number of items in one I/O block.

Theorem 2. The number of I/O required to identify all unary Inds using one

(anti-)join query per Ind candidate in a database is O(n2 t
B
logM

B

t
B
) assuming a

sort merge join on both attributes.

Proof. We need t
B
logM

B

t
B
I/O to sort an attribute's values and O(t

B
) I/O to merge

two attributes [65]. Thus, for the n(n− 1) Ind candidates we need O(n2 t
B
logM

B

t
B
)

I/O operations for the (anti-)join queries.

For the test utilizing a join query, we need additionally the numbers of (distinct)

non-null values. These numbers can be queried once for each attribute, e. g., using

a sort. Thus, we need O(n · t
B
logM

B

t
B
) I/O operations to query all attributes.

Altogether, we need O(n2 t
B
logM

B

t
B
) I/O operations to test all Ind candidates

utilizing one (anti-)join query per Ind candidate.

With sorted indexes on each attribute the I/O complexity reduces toO(n t
B
logM

B

t
B

+n2t
B
), because each attribute must be sorted just once.

In case of an unsatis�ed Ind, the test of the Ind candidate using an anti-join

stops earlier and needs less I/O than the test using join, because of the fetch �rst

n rows only clause: The number of necessary comparisons and I/O to merge both

attributes reduces (to 1 in best case). Only for satis�ed Inds O(t) comparisons and

O(t
B
) I/O are necessary to merge both attributes. But in any case, this merge must

be performed for the O(n2) Ind candidates, i. e., the quadratic complexity in the

number of attributes remains.

Note that all possible Sql approaches have one major disadvantage in common:

Each single Ind candidate is tested separately, which causes a quadratic time and

I/O complexity in the number of attributes. That is why we introduce Spider

in the next section. Spider's complexity does not depend on the number of Ind

candidates, but only depends on the number of attributes.

23

Chapter 3. Discovering Unary Inclusion Dependencies

3.2 Single Pass Inclusion DEpendency Recognition

(Spider)

There are two major ideas explaining the speed of Spider: (i) We abort the test of

single Ind candidates as soon as we �nd the �rst value violating the Ind. This idea

is described in Section 3.2.1. (ii) We test all Ind candidates in parallel � reducing

the complexity in I/O and in the number of comparisons. We describe the idea in

Section 3.2.2 and the overall algorithm and its complexity in Section 3.2.3.

3.2.1 Basic test for single Ind candidates

The basic test can be performed using the following procedure, which is a variation

of a sort merge join: First, sort the value sets of all attributes using any common

sort order. From this point on we have the choice to regard only distinct values.

Second, iterate over the sorted value sets of each Ind candidate A ⊆? B, starting

from the smallest items using cursors. Let dep ∈ A be the current dependent value

and refs ∈ B be the current referenced value of an Ind candidate. There are three

possible cases: (i) If dep = refs move both cursors one position further, because

the dependent value was found in the set of referenced values. (ii) If dep > refs

move only the referenced cursor, i. e., look for the current dependent value in the

remaining referenced values. (iii) Otherwise, if dep < refs, dep is not included in

the referenced value set and we can immediately stop the test for this candidate. A

candidate satis�es an Ind if all dependent values were found in the referenced value

set.

The brute force algorithm directly implements this procedure and creates and

tests all Ind candidates sequentially, i. e., one by one. The sorted attribute value

lists are stored as �les on disk. Compared to a Sql join, the main advantages are

(i) the early stop for unsatis�ed Inds, as usually most Ind candidates are unsatis�ed

and (ii) the single sort of all attribute's values (instead of once per Ind if there are no

sorted indexes on all single attributes). Accordingly, most tests stop after comparing

only a few or even only a single value pair, while a Sql join always computes all

unmatched values (or all matching values).

Theorem 3. The time complexity to identify all unary Inds using the brute force

algorithm, i.e., the necessary number of comparisons, is O(nt log t+ n2t).

24

3.2. Single Pass Inclusion DEpendency Recognition (SPIDER)

Proof. We need O(nt log t) comparisons to sort all n attributes inside the database.

Furthermore, we need O(n2t) comparisons to test all n(n− 1) Ind candidates.

This complexity equals the complexity of the Sql approach with sorted indexes

on all single attributes. But in contrast to the Sql approach, this worst case of

t comparisons per Ind candidate is rarely necessary on average, assuming that for

most Ind candidates only very few values must be compared before a violating value

is found. But there are yet two disadvantages: First, each attribute's values are read

as often as the attribute is part of an Ind candidate, i. e., 2(n− 1) times.

Theorem 4. The number of I/Os required to identify all unary Inds using the brute

force algorithm is O(n · t
B
logM

B

t
B
+ n2 · t

B
).

Proof. We need n · t
B
logM

B

t
B
I/O to sort the attribute's values [65], because each

attribute is sorted just once. To test each of the n(n− 1) candidates we must read

at most once all of the two attribute's values, i. e., n2 · 2t
B
I/O.

Second, the values of all attributes are compared pairwise for the Ind tests.

Note that the brute force approach is a lower bound for the performance of the

Sql approach: Both approaches share the I/O cost of checking each Ind candidate

separately. Further, any Sql approach needs at least as many comparisons as brute

force does to check a single Ind candidate.

When testing all Ind candidates in parallel we are able to combine all these tests.

Thus, we reduce the quadratic complexity of I/Os and comparisons to linearithmic

complexity, as we show next.

3.2.2 Parallel test for all Ind candidates with Spider

We now show how the simple brute force approach can be improved considerably.

We retain the idea of using sorted data sets allowing an early stop of execution.

However, the new algorithm, Spider, eliminates the need to read data multiple

times from disk. Instead, it creates and tests all Ind candidates in parallel with a

single read over the data. Further, it eliminates the need to compare attribute values

pairwise by sorting all attribute's values as needed using a special data structure.

This procedure greatly reduces the complexity in terms of I/O and of comparisons

and thus the run time (by a factor of up to 10 for the tested data sets).

25

Chapter 3. Discovering Unary Inclusion Dependencies

Spider �rst opens all sorted attribute's lists (stored as �les on disk) and starts

reading values using one cursor per attribute. The challenge is to decide when the

cursor for each attribute can be moved: All potentially dependent attributes a�ect

the point in time when the cursor of a referenced attribute can be moved. But also

all referenced attributes control when the cursor of a dependent attribute can be

moved. Finally, any particular attribute can be a referenced and dependent attribute

simultaneously.

Consider the following attributes and their values: A = {1, 2, 3, 4}, B = {2, 4},
C = {1, 2, 4, 5} (see Figure 3.4). In all, n(n − 1) = 6 Ind candidates have to be

tested: A ⊆? B,A ⊆? C,B ⊆? A,B ⊆? C,C ⊆? A, and C ⊆? B. Only two out of

these six Ind candidates are in fact satis�ed: B ⊆?A and B ⊆?C. Let all cursors

initially point to the �rst value of each attribute.

1

2

4

5

C

1

 A

2

4
3

2
4

 B

Figure 3.4: Three attributes with sorted data sets.

For example, to test B ⊆? C the cursor in C has to be moved, because 2 > 1.

But before this movement the current value of C is needed to test A ⊆?C. Further,

the current value in C is needed to test C ⊆? A and C ⊆? B. Despite this mutual

dependency, it is possible to synchronize the cursor movements without running into

deadlocks or missing Ind candidate tests, because we use sorted data sets. The main

idea is to process attributes blockwise sorted by their values while maintaining all

Ind candidates covered by these attributes. E. g., in our example we �rst process all

attributes (and their Ind candidates) that include the value 1, then all attributes

that include the value 2, and so on. Before formally describing the algorithm we

give an intuitive idea of Spider using the example above.

Spider is based on a data structure that sorts all attribute's values and represents

equal values grouped together. In Figure 3.5 the attributes are given as columns

and same values are grouped in rows.

To represent the Ind candidates we use the following observation: Ind candi-

dates can be grouped into disjoint sets by their dependent attribute, i. e., all Ind

candidates covering a given dependent attribute de�ne a set. Thus, each attribute

26

3.2. Single Pass Inclusion DEpendency Recognition (SPIDER)

A,C

A,C

A,C

A,C

A,C

A,C

A,C

A,B,C

A

A,B,C

C

att

C

1

2

4

5

B

2

4

A

1

2

3

4

A

A

A

A

B.refs

C

C

A.refs C.refs

B,C A,B

attributes A,B,C

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

att and refs in SPIDER iteration steps

Initialization:

Figure 3.5: Attributes of Figure 3.4 represented in Spider's data structure: At-

tribute values are shown as columns; equal values are grouped in rows. Ind candi-

dates are given as lists `refs' for each attribute.

A maintains in Spider's data structure a list A.refs of attributes that build a (still

satis�ed) Ind candidate A ⊆?B,B ∈ A.refs. In our running example these lists are

initially set to A.refs = {B,C}, B.refs = {A,C}, and C.refs = {A,B}.
Spider iterates row by row over the data structure shown in Figure 3.5 perform-

ing the following procedure:

1. Get the set att of all attributes that contain this row's value.

2. For all attributes in list att: Update their lists refs by intersecting refs and att.

In our running example this procedure yields the following results as visualized

in Figure 3.5:

1. In the �rst iteration step for the data value `1' we have att = {A,C}. Thus,
the lists refs of A and C are updated as follows:

A.refs := A.refs ∩ att = {B,C} ∩ {A,C} = {C}

C.refs := C.refs ∩ att = {A,B} ∩ {A,C} = {A}

Thus we now know the Ind candidates A ⊆? B and C ⊆? B are unsatis�ed,

which is correct, because the value 1 of A and C is not contained in B.

2. In the second iteration step att = {A,B,C}. This means the intersections

with their lists refs do not change these lists, which is correct, because value 2

is contained in all attributes.

3. The next iteration step de�nes att = {A}, because the value `3' appears only in
A. Thus, we update A.refs := A.refs∩ {A} = ∅. This � correctly � means A is

27

Chapter 3. Discovering Unary Inclusion Dependencies

not contained in any other attribute. Note that the values of A are still needed

in the data structure, because A is still a potentially referenced attribute of

attributes B and C.

4. The fourth step is analogous to step two, because all attributes are contained

in att.

5. The last iteration step sets C.refs := C.refs ∩ {C} = ∅, because att = {C}.

After processing all values the data structure provides only the satis�ed Inds

given by all attribute's lists refs. In our running example B ⊆ A and B ⊆ C are

satis�ed Inds. There are no Inds with A or C as referenced attribute, because their

lists refs are empty.

3.2.3 The Spider algorithm

The data structure of Spider represents all attributes and their values as well as

the Ind candidates. Further, the attributes are sorted by all values in all attributes.

This structure can be achieved by the following two representations:

Each attribute is represented as an attribute object providing the attribute's sorted

values and a cursor to the current value. As Ind candidates can be divided into

distinct sets by their dependent attribute, the Ind candidates are represented as the

list A.refs in each attribute object A, i. e., if A ⊆?B then B ∈ A.refs. Initially these

sets are �lled with all Ind candidates that are to be tested. During a Spider run

the attributes in A.refs are known to contain all previously viewed values of A and

the currently viewed value of A, i.e., the Ind yet holds.

Note that an attribute can be covered in multiple Ind candidates as referenced

attribute and / or as dependent attribute. The dependent role is represented as

attribute object, the referenced role is represented in another attribute object's list

refs.

The main idea of Spider is to process all attributes with equal values as a block.

Thus, the data structure provides all attributes sorted by all values in all attributes.

This sorting can be e�ciently achieved, because the values in each individual at-

tribute are already sorted. We hold all attribute objects in a min-heap sorted by

their current values.

The Spider algorithm is given in Algorithm 1. Spider iterates blockwise over the

heap data structure by (1) receiving the set att of attribute objects with the currently

28

3.2. Single Pass Inclusion DEpendency Recognition (SPIDER)

minimal but equal value, and (2) updating the lists refs of attribute objects in att

by intersecting refs and att. This way, all attributes B not containing the current

value, i. e., B /∈ att, are discarded from the set of referenced attributes for attributes

A ∈ att. (3) If an attribute object A in att has a next value then the cursor is moved

on and the attribute object is re-inserted into the min-heap. Otherwise, all Inds

given by A and its list A.refs are proven satis�ed.

Algorithm 1: Spider.

Input: attributes: set of attribute objects with their sorted values and their

respective refs sets (the Ind candidates)

Output: Set of satis�ed Inds.

1 Min-Heap heap := new Min-Heap(attributes) ;

2 while heap != ∅ do
/* get attributes with equal minimal value */

3 att := heap.removeMinAttributes() ;

4 foreach A ∈ att do

/* update list A.refs */

5 A.refs := A.refs ∩ att ;

/* process next value */

6 if A has next value then

7 A.moveCursor() ;

8 heap.add(A) ;

9 else

10 foreach B ∈ A.refs do

11 Inds := Inds ∪ { A ⊆ B } ;

12 return Inds

Theorem 5. The time complexity to identify all unary Inds using Spider, i.e. the

necessary number of comparisons, is O(nt log t) with n attributes and maximally t

values in each attribute, assuming t > n.

Proof. To sort all attribute's values we need O(nt log t) comparisons.

The cost to test the Ind candidates is as follows: We need O(log n) comparisons

to insert one attribute object into the heap depending on its currently viewed value,

29

Chapter 3. Discovering Unary Inclusion Dependencies

and thus O(nt log n) to insert all attributes. To pop attributes from the heap we

need O(nt log n) comparisons for the heap operations and O(nt) comparisons for

identifying the attributes in the minimum value set (Min). The list intersection of

A.refs and att is O(1) assuming both lists are represented as bit vectors of �xed size1,

i. e., we need O(nt) operations for all needed intersections. Thus, the complexity of

Spider to test the Ind candidates (i. e., without sorting) is O(nt log n).

Assuming t > n, we need O(nt log t) comparisons for the complete execution of

Spider, i. e., for sorting and testing.

This analysis shows that the complexity to test the Ind candidates is lower than

the complexity to sort all attribute's values (if t > n). This is a considerable

improvement over the Sql and brute force approaches, which require more e�ort

for testing than for sorting.

Theorem 6. The number of I/Os required to identify all Inds using Spider is

O(n · t
B
logM

B

t
B
).

Proof. We need n · t
B
logM

B

t
B
I/O to sort the attribute's values [65], because each

attribute is sorted just once. To test all Ind candidates in parallel each value is

read at most once, i.e., n · t
B
: Each attribute's values are represented in a single

attribute object and each item in the list of its values is read at most once. Both

tasks together result in O(n · t
B
logM

B

t
B
).

Note that also in I/O testing all Ind candidates is cheaper than sorting all at-

tribute's values. In comparison to time complexity the cost of testing the candidates

reduces even stronger: The time complexity to test all Ind candidates is linearithmic

in the number of attributes (O(nt log n)), while the I/O complexity is only linear in

the number of attributes (O(n · t
B
)).

The experiments in Section 4.1.2 validate the statement that the complexity of

Spider depends only on the number of attributes and the number of their values,

but not on the number of tested Ind candidates.

Spider uses a database to sort and �distinct� the values of all attributes, and

then writes the sorted lists to disk. Thus, the total time of a run consists of sorting

inside the database, shipping the sets to a client, writing them to disk, and reading

1Note that the complexity of operations at bit vectors is O(1) if the maximum number of items

is constant, and O(MaxItems) if the bit vector must be implemented with variable size. As we

don't need to vary the size during a Spider run, the complexity in our case is O(1). (see e.g. [24])

30

3.3. Pruning IND candidates

them in parallel for the tests. In Section 4.1.2 we analyze in detail which of these

components dominate the runtime of the algorithm. Before that we evaluate in

Sec. 3.3 several strategies to prune Ind candidates.

3.3 Pruning Ind candidates

In this section we discuss various strategies to prune Ind candidates. The strategies

are safe in that they do not prune candidates unless they are unsatis�ed. For each

strategy we evaluate the impact on various test sets. The pruning strategies are also

applicable to other algorithms for IND detection (see Sections 4.1 and 3.4).

We also and particularly examine the exclusion of entire attributes from consid-

eration. This is possible when all IND candidates that are covered by an attribute

are excluded. Excluding attributes is particularly interesting for Spider, because

its complexity directly depends on the number of involved attributes.

We note already here that we found that the e�ciency improvement of pruning

to be less favorable than one might expect on �rst glance. This e�ect was not

mentioned by related work and also came as a surprise to us.

3.3.1 Simple strategies

A simple pruning strategy (called distinct in Table 3.1) is to compare the number of

distinct values of each IND candidate: Let v(A) denote the number of distinct values

of attribute A. If v(A) > v(B) then there is at least one value in the attribute A that

is not included in attribute B. Thus, the IND candidate A ⊆? B can be excluded

(but not B ⊆?A).

An equally simple test � suggested by [11] � is to compare the maximum and

minimum values of attributes. An IND candidate can be excluded (i) if the maximum

dependent value is greater than the maximum referenced value (we call this strategy

max) or (ii) if the minimum dependent value is lower than the minimum referenced

value (called min).

All three tests are inexpensive, because we can piggy-back the computation of

distinct, max, and min to the procedure of sorting the attributes in the database and

writing them to disk.

The selectivity of these �lters on our test databases is shown in Tab. 3.1. In all

tested databases, the number of IND candidates is reduced by at least a factor of 6

31

Chapter 3. Discovering Unary Inclusion Dependencies

when combining all three tests. While these savings seem impressive we analyze in

Sec. 4.1.3 how the actual runtime is a�ected.

UniProt TPC-H PDB

900MB 1.3GB 2.8GB 32GB

attributes 68 61 1, 215 1, 297

Ind candidates 1, 393 877 219, 106 245, 562

satis�ed Inds 36 33 4, 972 5, 431

attributes in Inds 31 20 448 478

distinct

Ind candidates 910 477 139, 807 157, 818

attributes in Ind candidates 68 58 1, 208 1, 297

distinct & max

Ind candidates 541 295 72, 016 83, 321

attributes in Ind candidates 59 54 997 1, 080

distinct & min

Ind candidates 345 275 61, 920 68, 664

attributes in Ind candidates 54 57 990 1, 042

distinct & max & min

Ind candidates 174 137 22, 655 25, 821

attributes in Ind candidates 49 52 670 709

Table 3.1: Number of remaining IND candidates and attributes after pruning using

distinct, max, and min.

3.3.2 Bloom �lter

The simple �lters described above use only very little information about the at-

tributes. In particular, these �lters are insensitive to the distribution of values

between the minimum and maximum values. Bloom �lters o�er a better adaptation

of the �lter to the data [16]: We hash each attribute's values into a bit-array such

that each bit represents several values. To prune IND candidates we compare the

bit arrays of the two attributes looking for bits that are 1 in the dependent array,

but 0 in the referenced array. If one such bit is found, the candidate is not satis�ed;

otherwise, we still need to test all values. The test can be performed e�ciently by

32

3.3. Pruning IND candidates

a bitwise dep∧¬ref operation, such that in the resulting array a bit is 1 i� the IND

candidate can be excluded.

To achieve an optimal impact on �ltering entire attributes, i. e., �ltering all Ind

candidates that cover these attributes, we experimented with the size of the bit

array and the hash function. Further, we examined whether hashing only pre�xes

of certain length instead of hashing complete attribute values a�ects �ltering. We

tested the PJW, DJB, and SDBM hash functions2. The results of our experiments

regarding the selectivity of the Bloom �lter are shown in Figure 3.6.

 30

 35

 40

 45

 50

 55

 60

 65

 70

23 26 27 210 213 217 220

nu
m

be
r

of
 r

em
ai

ni
ng

 a
ttr

ib
ut

es
 a

fte
r

pr
un

in
g

bit array length

attributes covered by INDs (31)

all attributes (68)

DJB, complete values
DJB, |prefix| = 10

SDBM, complete values
SDBM, |prefix| = 10

PJW, complete values
PJW, |prefix| = 10

(a) UniProt

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

23 26 27 210 213 217 220

nu
m

be
r

of
 r

em
ai

ni
ng

 a
ttr

ib
ut

es
 a

fte
r

pr
un

in
g

bit array length

attributes covered by INDs (448)

all attributes (1215)

DJB, complete values
DJB, |prefix| = 10

SDBM, complete values
SDBM, |prefix| = 10

PJW, complete values
PJW, |prefix| = 10

(b) PDB 2.8GB

Figure 3.6: Impact of varying Bloom �lter parameters on number of remaining

attributes for (a) UniProt and (b) PDB.

2See General Purpose Hash Function Algorithms, www.partow.net

33

www.partow.net

Chapter 3. Discovering Unary Inclusion Dependencies

The DJB shows worst �ltering impact on all tested databases. SDBM and PJW

are comparable on UniProt, but PJW prunes clearly better on PDB data.

The results con�rm the intuition that increasing the size of the bit array leads

to a higher amount of pruned IND candidates and attributes due to an improved

spread of values. On the other hand, large arrays require more memory and more

time for their comparison. The experiments show that a length of 217 bit (which

requires 20MB memory for 1000 attributes) already is very e�ective for the PDB

with respect to pruned attributes and also has very good e�ects on UniProt (see

Fig. 3.6). Longer arrays improve pruning on UniProt only marginally. Although

these results highly depend on the data sets, they show that reasonable reductions

can be achieved with modest memory consumption.

To reduce �lter creation costs we tested the idea not to hash entire values into

the bit array but just pre�xes of a certain length. The hash value of a small pre�x

can be computed much faster and we already expect high selectivity in the �rst few

characters. We tested on pre�x lengths between 1 and 10. Interestingly, hashing

pre�xes of �xed length already leads to impressive results on very small bit arrays.

Larger hashed pre�xes result in larger numbers of pruned IND candidates and at-

tributes � as one would expect. However, we found that hashing pre�xes of length 10

already behaves nearly identical to hashing the complete values with regard to �l-

tering attributes; in UniProt data it is even slightly better than hashing complete

values due to the di�erent distribution of the shorter values to hash buckets (see

Fig. 3.6).

In the context of integration of unknown data sources one cannot determine �the�

optimal setting of parameters without a detailed (and costly) analysis. Nevertheless,

hashing pre�xes of length 10 into a 217 bit array with the PJW hash function seems

to be the combination that covers all tested databases best. The �lter results for

TPC-H and the entire PDB con�rm this statement (see Table 3.2).

The e�ects of combining Bloom �lters (parameters as above) with the simple

pruning strategies are shown in Table 3.2. The Bloom �lter is in almost all cases

more selective than the �lter on number of distinct items, maximum, and minimum

(compare to Tab. 3.1, last line). But the simple �lters catch some IND candidates

that are not pruned by the Bloom �lter. Therefore, all �lters together reach the

best performance.

34

3.3. Pruning IND candidates

UniProt TPC-H PDB

900MB 1.3GB 2.8GB 32GB

#attributes 68 61 1, 215 1, 297

Ind candidates 1, 393 877 219, 106 245, 562

Inds 36 33 4, 972 5, 431

#attributes in Inds 31 20 448 478

distinct & bloom

Ind candidates 245 43 10, 462 12, 130

#attributes in Ind candidates 42 26 454 587

dist., max,min, bloom

Ind candidates 125 40 9, 006 10, 149

#attributes in Ind candidates 35 25 450 518

Table 3.2: Number of remaining IND candidates and attributes using Bloom �lter

and simple pruning.

3.3.3 Filtering and Performance

The overall runtime of Spider is composed of the costs of sorting data, reading

it from the database, writing it to disk, and reading it again for the IND tests.

Therefore, �lters are most useful if they can be applied within the database, thus

reducing the amount of data to be shipped to and considered by a client outside

the DBMS. However, applying the �lters inside the database also costs time. For

instance, to obtain the minimum and maximum value and the number of di�erent

values for an attribute the database must read the entire bag of values of this

attribute � a read that is repeated later for all attributes that cannot be excluded

completely. Note that in general it is impossible to force a Sql database to save

the previously �distinct� attribute's values for reuse. For Bloom �lters expensive

computations, for which database programming languages, such as Transact-Sql

or PL/SQL, are not well prepared (array manipulation, XOR operations), must

take place that might outweigh the simple read-and-compare style of the Spider

algorithm. On the other hand, applying the �lters while we read the sorted columns

from the database comes at almost no additional cost, as by then data shipping has

already taken place. Thus, it is not at all clear where �lters should be applied. We

analyze this trade-o� in Section 4.1.3.

35

Chapter 3. Discovering Unary Inclusion Dependencies

3.4 Related Work

Kantola et al. [42] give a complexity estimation of discovering all unary Inds. They

propose to prune the Ind candidates by data type. They further argue that the

checks for most Ind candidates should terminate quickly as only few inclusion de-

pendencies hold for data sources, but do not propose any approach. We con�rm this

assumption by our brute force approach as we show in Sec. 4.1, but also show that

separately testing all unary Ind candidates is infeasible for large schemas.

Bell and Brockhausen [10, 11] propose to create all unary IND candidates and

test them sequentially by utilizing an Sql join statement. The tested (satis�ed and

not satis�ed) Inds are used to exclude further tests and therefore to reduce the

number of Ind candidates to test. Furthermore, the number of Ind candidates is

reduced by constraints on the data types and maximal and minimal values. The

Sql join statement performs a join on the attributes A and B of the Ind candidate

and compares the number of returned distinct values in A to the number of distinct

values in A and B therefore verifying A ⊆? B and B ⊆? A. We use a similar join

statement in our join approach in Sec. 3.1. Spider considerably outperforms this

approach as we show in Sec. 4.1.2.

Marchi et al. [52, 53] detect unary Inds among same data types by preprocessing

all data and then testing all IND candidates in parallel. The preprocessing assigns

to each value in the database the list of attributes that include this value. This step

is very costly, because all values in all attributes must be combined into one data

structure. We show in Sec. 4.1.2 that Spider outperforms this approach by orders

of magnitude.

Koeller [43] aims to discover composite Inds between two relations. As prerequi-

site he tests unary and binary Inds using a minus approach. This approach equals

our except approach as minus is the Oracle syntax for the Standard Sql except. In

his environment the minus approach runs faster than the join approach. We cannot

repeat these results in our di�ering environment. As we show in Sec. 4.1 in our

environment join outperforms except. Note that Koeller runs experiments only on

relations with 6, 000 to 200, 000 tuples, compared to our data sources with up to

approximately 219 ∗ 106 tuples.

Dasu et al. [25] apply data summaries to detect join paths approximately, i. e., to

detect Inds. They use set resemblance and multiset resemblance � measures of sim-

36

3.4. Related Work

ilarity between two (multi-)sets estimated by using their hash (multi-)set signatures

� to �nd a join path, its size, and its direction. The authors use this approach as a

�rst approximate step in schema discovery to help a human expert. In our scenario

we want to avoid false positive and false negative Inds. Our re-implementation of

this approach did not produce such exact results.

Brown and Haas [20] study algebraic constraints between pairs of attributes to

use them in query optimization. They create Ind candidates by heuristics and data

samples and might therefore miss some Inds. Our aim is explicitly to �nd all Inds.

Sql join statements are used to test the Ind candidates.

Finally, Petit et al. [58] extract Ind candidates from existing applications on a

database by analyzing a workload searching for frequently used equi-joins. These

joins are then tested against the database and rated by a human expert. Again, this

is a heuristic approach that might miss Inds.

37

Chapter 3. Discovering Unary Inclusion Dependencies

38

Chapter 4

Evaluating and Leveraging

Unary Inclusion Dependency

Discovery

In this chapter we evaluate the discovery of unary Inds using our life sciences data

sources and the generated TPC-H instance presented in Section 2.3. We �rst eval-

uate the algorithms regarding e�ciency. E�ectiveness is evaluated by their use in

discovering intra-schema and inter-schema relationships.

4.1 E�ciency of Unary Ind Discovery

For our e�ciency experiments on unary Ind discovery we run two di�erent set-ups.

Our complexity analysis shows that the proposed Sql approaches as well as the

brute force approach depend on the number of Ind candidates. Thus, we decided

to vary this parameter:

• Restricted Ind candidates: In the �rst setting we create only Ind candidates

that have a referenced attribute with only unique non-null values (a potential

primary key). This setting is useful for detecting unary foreign key relation-

ships (through Inds).

• Exhaustive Ind candidates: The second setting removes this restriction, i. e.,

we test all pairs of attributes.

39

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

We exclude candidates with both attributes from the same table (intra-table

references) and candidates with attributes of data type Large Object (LOB) in both

settings. All tests were performed including the distinct �lter. The runtime e�ects

of the other �lters were tested individually in Section 4.1.3.

We tested all algorithms using a Linux system with 2 Intel Xeon processors

(2.80GHz) and 12GB RAM running a commercial object-relational database man-

agement system.

4.1.1 Evaluating the SQL approaches

We run the experiments for the proposed Sql approaches only on the restricted Ind

candidates. As we show, this set-up already reveals the limits of the Sql approaches.

Conforming to the set-up, we used the re�ned, less costly join statement assuming

a unique referenced attribute. Further, we applied the statements to match the

syntax of our used DBMS.

We measured the required time for computing all unary Inds for each of the four

methods on our life science data sets CATH, SCOP, UniProt, and PDB, and on

the generated TPC-H data set. The measured times together with the numbers of

attributes, Ind candidates, and satis�ed Inds are given in Tab. 4.1: We �rst discuss

the experiments on our smaller data sets CATH, SCOP, UniProt, and TPC-H. The

join approach delivers good results, but is quite slow on the TPC-H data. The except

approach shows in all cases the best runtime. The two versions for anti-join di�er

substantially in their runtime: The not exists approach is in all cases the fastest

approach. The not in approach is equally fast only on the CATH and TPC-H data

sets, but in orders of magnitude slower than the not exists approach for SCOP and

UniProt. Note that the evaluation of not in and not exists statements di�ers even

between di�erent DBMS versions [61], and most probably also between di�erent

DBMS. However, in our test environment the not exists approach is the fastest

alternative. As the join approach showed also good results, and as the evaluation of

join queries should be the best optimized operation in most DBMS, we decided to

use the not exists and join approaches for further experiments.

All four approaches are not applicable to discover all Inds in a database of the

size of the PDB. We �rst ran tests on the entire PDB, but stopped after two days

because the RDBMS estimated a particular table-scan to last several more days.

We then eliminated the 9 biggest PDB tables, containing atom coordinates for each

40

4.1. E�ciency of Unary IND Discovery

CATH SCOP UniProt TPC-H PDB

DB size 20MB 17, 5MB 900MB 1.3GB 2.8GB

#attributes 25 22 68 61 1, 215

Ind candidates 68 43 910 477 139, 807

Inds 0 11 36 33 4, 972

join 6 s 7 s 9m04 s 25m02 s 16 h 14m

except 15m27 s 16m05 s 27m35 s 1 h 09m �

not in 5 s 52m11 s 6 h 33m 7m45 s �

not exists 5 s 6 s 3m57 s 7m51 s 10 h 20m

Table 4.1: Runtime performance of the Sql approaches. Ind candidates are re-

stricted to cover unique referenced attributes. We used only a fraction of PDB.

atom in each protein, and thus reduced the database size from 32GB to 2.8GB.

The discovery procedure using not exists �nished within 10 h20m for this reduced

data set, the join approach within 16 h14m.

In an additional experiment we built sorted indexes on any attribute in UniProt

to support two tasks of the query execution: (i) to sort each attribute only once

instead for every tested Ind candidate, and (ii) to support the execution of each

single Ind test. The saved time in testing the Ind candidates was consumed by the

time to generate the indexes. Note that additionally this approach largely increases

the necessary storage for each data set, and is therefore not applicable to large data

sources.

The problems with using Sql for set inclusion are twofold. First, one cannot

tell the optimizer what the real question is, and that, as a consequence, there are

optimization strategies that are clearly better than those used for �ordinary� Sql

statements. Further, the aimed early stop after the �rst violating value in the not

exists, not in, and except approaches depends on the ability of the DBMS to use the

fetch �rst clause for an early abort of the execution. Second, we have to run a single

Sql statement for each Ind candidate. Thus, the attribute's values are read and

compared repeatedly for each Ind candidate.

41

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

4.1.2 Evaluating Spider

We evaluate Spider on our larger data sources UniProt, TPC-H, and PDB as

these sources show a potential for improvement in Ind discovery. We �rst evaluate

restricted and exhaustive Ind candidates. Afterwards, we compare to related work

that discovers exact Inds.

Restricted Ind candidates Experimental runtime results are shown in Ta-

ble 4.2. We directly compare Spider to the fastest Sql approaches (join and not

exists), to the brute force algorithm, and to two re-implemented approaches from

related work � Bell and Brockhausen [11] and Marchi et al. [53] (described later in

this section). Both brute force and Spider greatly outperform the Sql approaches,

which are infeasible for large schemas.

For low numbers of Ind candidates, i. e., UniProt and TPC-H, there is only

a small di�erence between the brute force and the Spider algorithm. For large

schemas with high numbers of Ind candidates the improvement of Spider over

brute force is considerable.

In our example databases, the number of satis�ed Inds depends on the number of

attributes. It does not depend on the database size as can be seen when comparing

the number of satis�ed Inds in TPC-H and the 2.8GB part of PDB. We expect this

behavior for most databases.

Brute force and Spider share the same cost (and time) to sort and �distinct�

the data inside the database, to ship them to the client, and to write them to the

�le system. The real di�erence is the Ind candidate test. The shared overhead for

UniProt and TPC-H is 1m32 s and 6m15 s, respectively. Thus, the Ind candidate

test speeds up for these small schemas by factor of 2 for UniProt and by factor

1.5 for TPC-H. For PDB the overhead is 21m for the 2.8GB part and 5 h 56m for

the complete PDB. Thus, in both cases the speed-up for testing Ind candidates is

75-fold.

To test our algorithm on very large databases with enormous schemas, we use a

SAP/R3 database instance (see Sec. 2.3), which populates 25, 002 non-empty tables

with 237, 836 attributes. The total size is 145GB. We had to reduce the number

of used attributes due to (i) the allowed number of open �les on our system and

(ii) main memory constraints of the Java virtual machine, which made it impossible

to open more than ∼ 25, 000 attribute �les at once. These problems could be

42

4.1. E�ciency of Unary IND Discovery

UniProt TPC-H PDB

DB size 900MB 1.3GB 2.8GB 32GB

#attributes 68 61 1, 215 1, 297

Ind candidates 910 477 139, 807 157, 818

Inds 36 33 4, 972 5, 431

Best SQL approaches

join 9m04 s 25m02 s 16 h 14m �

not exists 3m57 s 7m51 s 10 h 20m �

Our approaches

Brute Force 2m11 s 6m30 s 3 h 29m 19 h 51m

Spider 1m51 s 6m25 s 23m36 s 6 h 07m

Re-implementations of related work

Bell & Brockhausen [11] 4m39 s � 1 h 32m �

Marchi et al. [53] 9 h 58m � � �

Table 4.2: Run-time performance of the algorithms. Ind candidates are restricted

to only cover unique referenced attributes.

circumvented by using partitioning techniques on the candidate sets, but we have

not explored this direction. Instead, we applied a �lter to the original 237, 972

attributes in the SAP/R3 database: We considered only attributes with at least

50 distinct values (aiming to exclude those attributes that cause only low costs in

the Ind test). This restriction resulted in about 230, 000 Ind candidates covering

22, 887 attributes. The size of this excerpt is about 40GB. We identi�ed 3, 927 Inds

within 2 h 38m. These measurements show that Spider is well capable of handling

very large databases with a large number of Ind candidates. Further, together with

our results on the complete PDB (32GB, tested within ∼ 6 hours) it shows that the

runtime depends not directly on the size of the database, but mostly on the number

and size of distinct values in the database.

Exhaustive Ind candidates The results of exhaustively testing all Ind candi-

dates using Spider on our various test data sets are given in Table 4.3. In com-

parison to the restricted test (Table 4.2; repeated for readability in Tab. 4.3), the

runtime increases slightly and more satis�ed Inds are obtained.

The amount of work to sort the data inside the DBMS, to ship them to the client

43

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

UniProt TPC-H PDB

DB size 900MB 1.3GB 2.8GB 32GB

restricted IND candidates

Ind candidates 910 477 139, 807 157, 818

Inds 36 33 4, 972 5, 431

Spider 1m51 s 6m25 s 23m36 s 6 h 07m

unrestricted IND candidates

Ind candidates 2, 235 1, 616 734, 851 837, 358

Inds 116 86 35, 752 40, 415

Spider 2m07 s 6m35 s 24m34 s 6 h 10m

Table 4.3: Experimental results of testing Ind candidates restricted to cover unique

referenced attributes (repeated from Tab. 4.2) and unrestricted Ind candidates using

Spider.

and to write them to �les is identical for both set-ups. The di�erence is the test

of Ind candidates: The increase of satis�ed Inds implies that more values have to

be handled, because attributes cannot be excluded from the Spider heap as early.

Thus, the runtime increases. But note that this is only a slightly increase as opposed

to the increase in the number of Ind candidates and in the number of satis�ed Inds.

For instance, for the entire PDB the number of Ind candidates increases by factor

5.3, the number of satis�ed Inds even by factor 7.4, but the runtime increases only

by factor 1.008. These results con�rm our complexity analysis stating that Spider

is independent of the number of Ind candidates, but only dependent on the number

of attributes.

Comparison to other approaches We compared our algorithms with the ap-

proaches of Bell and Brockhausen [11] and Marchi et al. [53] using our own, careful

re-implementation (see Table 4.2). We made one adaptation to both algorithms: As

a simple �ltering, both methods test only candidates of the same data type. In our

life sciences setting, we usually �nd schemas with only string attributes or no type

de�nition at all, and thus must test all pairs of attributes. For a fair comparison we

assigned the same data types to all attributes; obviously, it would be very simple to

extend Spider to also �lter for data types.

The algorithm of Bell and Brockhausen leverages �lters on maxima and minima

44

4.1. E�ciency of Unary IND Discovery

to prune Ind candidates and utilizes already �nished Ind tests for further pruning,

thus exploiting the transitivity of the Ind relationship. Ind candidates are tested

by Sql join statements. It runs 4m39 s on UniProt data and 1 h 32m on the smaller

part of the PDB, which is three times slower than Spider. Furthermore, the runtime

of this approach strongly depends on the number of Ind candidates � as opposed to

Spider. To show this dependency, we run an experiment exhaustive Ind candidates.

The analysis of the UniProt data set (2, 235 Ind candidates) did not stop within

5 hours and the analysis of the 2.8GB part of PDB (734, 851 Ind candidates) did

not �nish within 19 hours. Spider tests these sets within ∼ 2m and ∼ 25m,

respectively (see also Tab. 4.3).

The approach of Marchi et al. preprocesses all data by assigning to each value in

the database all attribute's names that contain this value. The results are stored in

a table. Afterwards, all Ind candidates are tested in parallel exploiting the sets of

attribute names. We implemented the preprocessing as a PL/SQL script and the

test as a Java program. The preprocessing on UniProt already consumes 9 h 58m,

the actual Ind test only about four minutes, compared to the total run time of

Spider of 1m51 s. Note that Marchi et al. tested their approach only on small

databases with an in-memory implementation; their largest database comes in a

77MB dump �le, compared to our smallest database (UniProt) with 900MB.

4.1.3 Evaluating the E�ects of Pruning

Table 4.4 shows run times when we apply �lters before running Spider. For the

experiment, we read all data out of the database and wrote it to disk. After this

step we �ltered the Ind candidates and applied the Spider test to the remaining

Ind candidates (see Fig. 4.1 a). In the next paragraph we examine the alternative

of �ltering within the database (Fig. 4.1 b).

Database external pruning In Table 4.4, we distinguish two components: (i) the

time to sort and read (inside the RDBMS), ship (to the client), and write the data

to �les (�SRSW �), and (ii) the time to read and test the data at the client (�test�).

As expected, the runtime for reading the data and writing them to disk increases

slightly when applying the �lters, because the bit array for the Bloom �lter has to be

computed. However, it is on �rst sight surprising that, despite the great reduction

in Ind candidates to be tested, the runtime for testing decreases only minimally.

45

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

sort & distinct
each attribute

data

collect meta-data (# items, max,
min, bit array for bloom filter)

while writing data to disk

filter IND candidates

test IND candidates

write data to disk

test IND candidates

sort & distinct
remaining attributes

filter IND candidates

collect meta-data (max, min,
bit array for bloom filter)

data

(a) Database-external pruning.

sort & distinct
each attribute

data

collect meta-data (# items, max,
min, bit array for bloom filter)

while writing data to disk

filter IND candidates

test IND candidates

write data to disk

test IND candidates

sort & distinct
remaining attributes

filter IND candidates

collect meta-data (max, min,
bit array for bloom filter)

data

(b) Database-internal pruning.

Figure 4.1: Steps required for database-internal and database-external pruning.

UniProt TPC-H PDB

DB size 900MB 1.3GB 2.8GB 32GB

distinct 1m51 s 6m25 s 23m36 s 6 h 07m

SRSW 1m32 s 6m15 s 20m59 s 5 h 56m

test 17 s 8 s 2m23 s 11m21 s

distinct & max & min & bloom 1m55 s 6m53 s 24m06 s 6 h 18m

SRSW 1m34 s 6m33 s 21m42 s 6 h 08m

test 20 s 7 s 2m15 s 9m24 s

Table 4.4: Spider with and without �ltering of Ind candidates. Ind candidates

are restricted to cover unique referenced attributes.

This observation recon�rms our claim from Section 3.2 that the runtime of Spider

is independent of the number of Ind candidates, i. e., representing and tracking the

Ind candidates incurs almost no cost.

It is more surprising that even the exclusion of entire attributes does not yield

much speed-up � even though the complexity of Spider depends on the number of

attributes. This observation can be explained as follows: Most of the time for testing

is required by satis�ed Inds, because in those cases the entire value sets need to be

read and compared until the end � there is no early stopping. However, the �ltering

removes only candidates that are certainly not satis�ed and which would require

only a few comparisons by Spider anyway. Thus, �ltering on average removes only

candidates that would not incur much e�ort, anyway.

46

4.1. E�ciency of Unary IND Discovery

Together, excluding unsatis�ed Inds by �ltering outside the database does not

save much time, but costs time for computing the �lters. The next paragraph

evaluates possible approaches of �ltering Ind candidates (and with it attributes)

inside the DBMS. This way, data of attributes not covered by Ind candidates do

not have to be shipped out of the database incurring high I/O cost.

Database internal pruning Given the observations described in the previous

paragraph, it is clear that further optimization of Spider should concentrate on

the SRSW phase (sorting, reading, shipping, and writing into �lesystem). Of the

24minutes to test the 2.8GB part of PDB, approx. 21minutes are spent in the

SRSW phase and less than 3minutes in the test phase (see Tab. 4.4). Thus, we

strived to reduce the number and complexity of queries inside the database and/or

reduce the amount of data to be shipped to the client by applying �ltering already

inside the DBMS.

Note that we consciously decided not to use information on maxima, minima,

and the number of distinct values supplied by the database statistics. We could

demand up-to-date statistics, but this requirement would just mask the necessary

costs. Further, reading those values from the database catalogue opens the door to

incorrect results due to outdated statistics.

Reaching the goal of reducing the costs in the SRSW phase is not as straight-

forward as one might think: The 21minutes of the SRSW phase split down to 2
3
for

reading and sorting the data inside the database, and 1
3
for reading and shipping

them out of the database and writing them to disk. Thus, any �ltering that requires

to scan or sort all values, such as min, max, or distinct, very likely does not im-

prove the overall performance, because the time saved during shipping and testing

is dominated by the time required to scan/sort the data twice.

Another procedure for e�cient �ltering inside the database is to read all tables

once and collect the needed metadata (maximum, minimum, and the Bloom �lter

bit array) for all their attributes on the �y (instead of reading them attribute-by-

attribute). The reading operations can be done e�ciently by a full table scan.

After applying the �lter only the remaining attributes must be sorted and further

processed. Note that the number of distinct values cannot be collected by this

approach (see Fig. 4.1 b).

There are two problems with this idea: (i) All values have to be processed to

47

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

collect the needed metadata instead of only distinct values. The ratio of distinct

values to all values of the complete database varies for our test databases from 4%

to 24%, i. e., at least 4 times as many items have to be processed for collecting

metadata. (ii) The interface between the DBMS and the metadata collector must

be fast enough to process this amount of data. We tested two setups: a Java

interface and a dynamic PL/SQL interface. Both implementations showed that

already reading the data over the interface (without any further processing) takes

more time than sorting the attributes, shipping the sorted �distinct� values out of

the database, and writing them to disk. If this overhead were eliminated by a faster

interface (using for instance a natively implemented method inside the DB kernel),

the overall performance of Spider should speed up greatly because of the large

number of pruned attributes (as shown in Sec. 3.3).

4.2 Leveraging Intra-Schema Inds

In this section we evaluate the identi�ed Inds used directly as foreign keys (Sec. 4.2.1

and propose and evaluate heuristics to �lter foreign keys from Inds to improve the

precision of foreign key discovery (Sec. 4.2.2). Further, we use the identi�ed Inds

to identify the �primary relation� of a data source � a domain speci�c characteristic

of life sciences data sources (Sec. 4.2.3).

4.2.1 E�ectiveness for Real World Data

We now evaluate the quality of detected Inds for one of their ultimate purposes,

their indication of foreign keys. We evaluate UniProt and TPC-H, because their

schema de�nitions come along with foreign keys and thus provide a gold standard.

The BioSQL schema, into which we parsed UniProt, de�nes 21 foreign keys. Of

those we �nd 19 as Inds. The remaining two constraints are de�ned on empty

tables and thus cannot be discovered by any instance-based approach. Another

11 Inds found by Spider are not de�ned as foreign keys in BioSQL but provide

an interesting insight: They result from situations where there are two foreign key

attributes A,B in di�erent tables referencing a primary key attribute C. In addition

to the de�ned Fks A ⊆ C and B ⊆ C, Spider also detects the IND A ⊆ B

and sometimes additionally B ⊆ A (i. e., A = B). Spider found three Inds in

1:1 relationships where only one direction was de�ned as foreign key constraint. Note

48

4.2. Leveraging Intra-Schema INDs

that all these �false positive� Inds actually are semantically correct and constitute

helpful metadata to understand unknown schemas. They are omitted from the

database de�nitions only for technical reasons. For instance, if a 1:1 relationship

is de�ned by two foreign keys, then systems without the ability to defer constraint

checking cannot allow the insertion of tuples.

Further, Spider detected three false positives that each relate a dependent at-

tribute with only a single distinct value to a referenced attribute with about 10, 000

distinct values. Altogether, these results imply a recall of 90% and a precision of

∼ 92% for the detection of unary foreign key constraints in this particular example.

Filtering already at the unary level is very important when it comes to composite

Inds, as shown in Section 5.1. For instance, the BioSQL schema de�nes no com-

posite keys. All the 13 detected composite Inds derive from the three false unary

Inds.

For SCOP we found 11 Inds of which 4 are semantically correct (precision

∼ 36%). The other Inds base on a key built from numerical values only. But

nevertheless, we also aimed at using the Inds for detecting the primary relation of

a data source. This task is very well supported by the detected Inds as we will see

in Section 4.2.3.

TPC-H de�nes seven unary foreign keys and one binary foreign key, which were all

found (recall 100%). We further detected 24 Inds that are false positives (precision

∼ 23%). They all derive from the fact that the database uses only surrogate keys

generated using a counter starting from the same initial number `1'. Thus, we often

detect Inds either between two surrogate keys or between a numeric attribute and

a surrogate key. Such cases, i. e., arti�cial keys generated by sequences ranging over

the same namespace in all tables, are an apparent problem for all instance-based

metadata discovery methods.

Overall, this evaluation shows that not all detected Inds represent foreign keys.

The precision of simply taking every IND as foreign key would be∼ 92% for UniProt,

∼ 18% for SCOP, and ∼ 23% for TPC-H. Thus, we show in the next section methods

to �lter foreign keys from discovered Inds.

The OpenMMS schema�into which we imported the PDB data�does not de�ne

any foreign keys. On the one hand this is a good example for the necessity of

identifying foreign keys, it is on the other hand di�cult to verify the identi�ed

satis�ed Inds. As the OpenMMS schema is very large, we could not perform a

49

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

systematic test. However, we observed that the OpenMMS schema often utilizes

surrogate IDs, i.e., semantic-free integers whose ranges all begin at 1, as primary

keys. This is a case where Inds fail to identify foreign keys. There are Inds between

almost all of these ID attributes, leading to the observed 5, 431 satis�ed Inds with a

unique referenced attribute. We applied the two following simple heuristics to prune

probably uninteresting, yet satis�ed Inds: (i) The referenced attribute must have

more than one value; and (ii) At least 1% of all distinct values of the referenced

attribute must be covered by values of the dependent attribute. Both restrictions

are very weak and should not exclude interesting possible foreign keys, but they

reduced the number of Inds to 2, 480. If we roughly estimate that each of the 116

tables in this schema de�nes one foreign key constraint, we see that further heuristics

are necessary to support the step from Inds to foreign keys.

In the next section we introduce such methods to derive Fks from Inds and

evaluate our results on PDB.

4.2.2 Deriving Foreign Keys

In this section we propose several heuristics to �lter foreign keys from Inds. These

heuristics are based on typical characterizations of foreign keys; we give an intuition

for each heuristic. We combine the heuristics with weights to evaluate Inds. These

results are based on work in [3]. In joint work with Rostin et al. [60] we extend

this approach: we treat the heuristics as features and use machine learning to select

useful heuristics and to combine features to evaluate Inds. We brie�y report on

those results.

Data Sources We use seven data sources for evaluation: three of our life sci-

ence data sources (namely SCOP, UniProt, and PDB), three movie data sources

(Movielens1, the German data source Filmdienst2, and the Internet Movie Database

IMDB3), and our generated TPC-H instance with scale factor one. Table 4.5 lists

the details on size, number of Inds, and number of foreign keys of each data source.

1www.movielens.org
2film-dienst.kim-info.de
3www.imdb.com

50

www.movielens.org
film-dienst.kim-info.de
www.imdb.com

4.2. Leveraging Intra-Schema INDs

Data source size # tables #attributes # Inds #Fks

SCOP 17, 5MB 4 22 11 5

UniProt 900MB 16 68 36 33

PDB 32GB 116 1, 301 5, 431 unknown

Movielens 73MB 7 20 19 6

Filmdienst 135MB 14 83 79 15

IMDB 776MB 22 76 34 13

TPC-H 1, 3GB 8 61 33 9

Table 4.5: Data sources for evaluation of deriving foreign keys from Inds.

Heuristics The �rst characteristic of foreign keys regards the coverage of the

referenced key's values. In many situations a foreign key attaches information to all

values in the primary key.

We use this observation for two heuristics: The large coverage heuristic con�rms

Inds as foreign keys if more than 95% of the referenced values are covered by depen-

dent values. On the other hand, the small coverage heuristic rejects Inds when less

than 1% of the referenced values are covered by dependent values. Figure 4.2 shows

the number of misclassi�cations for di�ering coverage thresholds for all evaluation

data sources except PDB that led us to our choice of thresholds.

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

fa

ls
e

 n
e

ga
ti

ve
s

coverage threshold [%]

(a) small coverage

0

1

2

3

4

5

75 80 85 90 95 100

fa

ls
e

 p
o

si
ti

ve
s

coverage threshold [%]

(b) large coverage

Figure 4.2: E�ects of di�erent thresholds for heuristics small and large coverage over

all evaluation data sources except PDB.

Of course, there are also frequent exceptions from this coverage rule, such as a

small set of premium customers relating to a huge set of customers. That is why we

set the threshold for rejection conservatively.

Real Inds that intend to relate a small subset to a larger set lead us to the sec-

ond characteristic of foreign keys: The observation is that these intended subsets

51

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

distribute over the entire set instead of covering a special data range, as surrogate

keys might do. Figure 4.3a illustrates this di�erence between foreign keys and sur-

rogate keys showing two dependent attributes referencing one referenced attribute

with di�erent value distributions.

1 2 3 4 5 … 47 … 511 … 960 … 1000

1 2 3 4 3 47 511 960

intended
foreign key

referenced

dependent1 dependent2

supposed
surrogate key

(a) intuition

0

2

4

6

8

10

12

14

75 80 85 90 95 100

fa

ls
e

 p
o

si
ti

ve
s

special coverage threshold [%]

(b) e�ects of di�erent thresholds

Figure 4.3: Special coverage heuristic: (a) Intuitive di�erence between an intended

subset and a surrogate key. (b) E�ects of di�erent thresholds over all evaluation

data sources except PDB.

The special coverage heuristic considers the set of referenced values that is spanned

by the minimal and maximal dependent value. Based on our results for our evalu-

ation data sources in Fig. 4.3b we con�rm an Ind as a foreign key if this spanned

set covers more than 95% of the referenced values, and reject it otherwise.

The third characteristic regards the number of distinct dependent values : Usually

a considerable number of di�erent values is used in the foreign key to reference the

key. This observation is backed by Koeller et al. [45] showing that Ind candidates

with fewer than six or seven di�erent dependent values have a high chance to be

satis�ed only by statistical coincidence. We choose a more conservative minimum

threshold to avoid exclusion of true foreign keys.

The number of values heuristic rejects an Ind as a foreign key if there are fewer

52

4.2. Leveraging Intra-Schema INDs

than three distinct dependent values. This heuristic aims at rejecting binary at-

tributes (such as 0 / 1 or male / female) relating another attribute.

Many schema designers use similar attribute names for keys and foreign keys.

That is why our column name heuristic supports Inds with a dependent attribute

name that equals or contains the referenced attribute name or the referenced relation

name.

We considered three more heuristics, but discarded them during our experiments

as they did not provide valuable information that were not covered by other heuris-

tics. However, we introduce them here as they are later used as feature in [60].

The multi dependent heuristic is based on the observation that a single foreign key

references only one key. Thus we reject an Ind if the dependent attribute references

several referenced attributes. Another observation for foreign keys is a similar length

of values in the dependent and the referenced attributes, because they share in part

the same values. This is in fact a simpli�cation of the coverage heuristics. The

last observation is that there are database schemas using controlled vocabulary via

�category relations�, i. e., assigning an id (mostly an integer) to each named category

and using this id instead of the category name as value in the data set. Then there

are semantically meaningful foreign keys between the usages of the described id and

the category relation. But there are also many Inds between such category tables

without any semantic relationship. To reject such Inds between category relations

our small tables heuristic rejects Inds between relations with only few tuples.

Combining Heuristics Using Weights We assign weights to each heuristic to

control their contribution on the overall evaluation of an Ind. Note that most of our

heuristics can only con�rm an Ind, but not reject it (e. g., large coverage), or it can

reject an Ind, but not con�rm it (e. g., small coverage). That means, only a subset

of our heuristics (that di�ers for single Inds) can contribute to the evaluation. To

regard this aspect, we sum up two amounts to evaluate an Ind: (i) the weights for

all contributing, i. e., con�rming or rejecting, heuristics as base and (i) the weights

of all heuristics con�rming the Ind as a�rmation. The ratio of a�rmation to base

is used to evaluate the Ind.

We chose experimentally the following weights: As the number of values heuristic

is very reliable, we assign the highest weight of 100, which cannot be overruled by

the other heuristics. As the special coverage heuristic complements the small and

53

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

Data source # Inds #Fks # true # false # false

positives positives negatives

SCOP 11 5 5 0 0

UniProt 36 33 29 0 4

Movielens 19 6 6 0 0

Filmdienst 79 15 12 1 3

IMDB 34 14 14 1 0

TPC-H 33 9 9 1 0

Overall 212 82 75 3 7

Table 4.6: E�ectiveness of combined heuristics for the evaluation data sources.

large coverage heuristics we assign all three of them a weight of 50. Finally, we

assign a weight of 30 to the column name heuristic. An Ind is evaluated as Fk if

the ratio of a�rmation to base is 100%.

Evaluation We evaluate our data sources using the combined heuristics as de-

scribed above. The results are given in Tab. 4.6. Overall, our method reaches a

precision of 96.1%, a recall of 91.4%, and thus an F-measure of 93.6%.

We were able to exclude all false positives from UniProt. Unfortunately, we also

exclude four real foreign keys. This leads to a precision of 100% and a recall of 87%.

Three false positives relate to Fks with only one to four distinct dependent values

(which reference a relation of controlled vocabulary with 44 referenced values). The

fourth false positive relates to a Fk referencing a key with a single tuple. All four

cases are very hard to evaluate as true Fk for automatic approaches.

For Filmdienst, we miss three foreign keys and declare one Ind as Fk by mistake.

Two false negatives relate an intended subset to the entire set, i. e., both cases match

our intuition of the special coverage heuristic. Unfortunately, this heuristic misses the

foreign keys, because their special coverage value lies slightly below the threshold.

A slight increase of the threshold would introduce misclassi�cations for other data

sources. The third false negative again concerns an Fk with a dependent attribute

having only a single value. The false positive relates to two surrogate keys over an

almost identical range of values.

The single false positive for IMDB covers exactly the same problem of surrogate

keys over a similar range. Also the false positive of TPC-H relates to surrogate

54

4.2. Leveraging Intra-Schema INDs

keys, but here in a special case: A surrogate key is referenced by an attribute

storing counts of available items, which was generated by selecting values out of a

range.

In summary, our heuristics provide good results for foreign keys over �real� data

values. Problems occur for surrogate keys and as a special case for surrogate keys

of controlled vocabulary. We are able to evaluate such Inds to non-Fks as long

as the value ranges di�er. Inds of surrogate keys with similar ranges are very

hard to identify. Probably, the structure of all Fks in a data source could be used

to exclude such false positives. We are not aware of any approach tackling this

problem. Another class of problems relates to identifying Fks with only a single

distinct dependent or referenced value. But we do not consider them as severe

misclassi�cations, because the bene�t of their knowledge is at least questionable.

Note that we do not know the correct number of foreign keys in PDB as there are

no foreign key de�nitions. Thus, we estimated precision (but not recall) by manually

checking the 529 Inds (out of 5, 431) that were identi�ed as Fk by our combined

heuristics. 446 Inds represented meaningful foreign keys. In 18 cases the Inds seem

to reference tables storing controlled vocabularies, but we are not sure if these are

real foreign keys. 65 Inds are false positives, again mostly generated by overlapping

surrogate keys. Taken altogether, we estimate our precision in the range of 84.3%

and 87.7%.

Using Machine Learning For the approach described so far we selected the used

heuristics, their thresholds, and the weights to combine them manually. In joint work

with Rostin et al. [60], we use machine learning to select the useful heuristics and to

learn a classi�er that combines heuristics and sets their thresholds. Therefore, we

de�ned our heuristics as features:

• Heuristics large coverage and small coverage are combined to one feature Cov-

erage, which just returns the coverage of an Ind.

• Heuristic special coverage is represented as feature OutOfRange, but is de�ned

as its complement: It returns the ratio of referenced values outside the range

spanned by the minimum and maximum dependent values to all referenced

values.

• The number of values heuristic is transformed to feature DistinctDependentVal-

ues, which simply returns the number of distinct dependent values.

55

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

• Heuristic multi dependent is extended to three features MultiDependent, Mul-

tiReferenced, DependentAndReferenced: MultiDependent returns the number of

dependent values, MultiReferenced returns the number of referenced values,

and DependentAndReferenced counts how often the dependent attribute is also

used as referenced attribute aiming to consider the structure of Inds in a

simple way.

• Heuristic column name directly transforms to feature ColumnName, which re-

turns nominal values for di�erent similarities (given by equal or contained

referenced attribute name or referenced relation name).

• Heuristic ValueLengthDi� also directly transforms to feature ValueLengthDi�,

which returns the di�erence between average value length of the dependent

and referenced attribute.

• The small tables heuristic is changed to a similar feature TableSizeRatio, which

returns the ratio of the number of tuples in the dependent and referenced

attribute.

• The additional feature TypicalNameSu�x checks if the dependent or referenced

attribute names end with a substring indicating a foreign key and returns

nominal values. We used �id�, �key�, and �nr� (German for �no� � number).

First, we use di�erent feature selection methods to �nd the most valuable features

(and thus heuristics). The results are shown in Tab. 4.7. All four methods con�rm

our manual choice of Coverage, OutOfRange (i. e., the special coverage heuristic), and

ColumnName. Both ranking methods also recommend to use feature ValueLengthD-

i�, which we discarded as heuristic. The reason was that ValueLengthDi� is just a

simpli�cation of Coverage � which is indeed ranked higher by both methods. Addi-

tionally, MultiDependent is recommended by all methods. DistinctDependentValues,

which we selected manually as very trustable, is selected only by the best subset

method with ranked search.

We further evaluate four di�erent classi�ers. Using the J48 classi�cation algo-

rithm and cross-validation at the level of data sources our approach consistently

reaches F-measures above 80% and often close to 100% (average 93%). These re-

sults con�rm our �ndings using manually chosen combined heuristics � at our eval-

uation data sources. Obviously, the advantage of the machine learning approach is

its ability to adapt to characteristics of new data sources.

56

4.2. Leveraging Intra-Schema INDs

C
o
v
er
a
g
e

O
u
tO

fR
a
n
g
e

D
is
ti
n
ct
D
ep
en
d
en
t-

V
a
lu
es

M
u
lt
iD
ep
en
d
en
t

M
u
lt
iR
ef
er
en
ce
d

D
ep
en
d
en
tA
n
d
-

R
ef
er
en
ce
d

C
o
lu
m
n
N
a
m
e

V
a
lu
eL
en
g
th
D
i�

T
a
b
le
S
iz
eR

a
ti
o

T
y
p
ic
a
lN
a
m
eS
u
�
x

consistency subset evaluation

ranked search x x x x x x x

randomized search x x x x x x x

Rank according to

InfoGain 2 1 8 5 7 10 3 4 6 9

χ2-statistics 3 1 8 6 7 10 2 4 5 9

Table 4.7: Results for di�erent feature selection methods. Features selected by

consistency subset evaluation are marked with `x'.

Since publication of that work, a related approach has been published [67], which

discovers single-column and multi-column foreign keys. The general idea is based

on the conjecture that the values in a foreign key build a uniform random sample of

the referenced key. The authors de�ne and discover the distance between the value

distributions of the assumed foreign key and the referenced key as Earth Movers

Distance. This approach provides on the TPC-H schema slightly better results

in e�ectiveness than our work. A comprehensive comparison of both approaches

remains for future work.

4.2.3 Deriving Primary Relations

A �primary relation� is a domain speci�c structural characteristic of many life science

data sources. This relation represents the objects described in the data source, such

as proteins or genes. All other relations provide secondary information on these

objects.

We use two classes of information to choose the primary relation: the inclusion

dependencies and accession number candidates, i. e., attributes with a structure of

an accession number. An accession number is often characterized by the following

properties [47]: The attribute containing the accession number is unique, the values

are typically build of at least one non-digit character, are at least four characters

57

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

long, and the length of all accession numbers in one data source di�ers by at most

20%.

To identify the primary relation of a database, we use the following heuristics:

1. One of the attributes of a primary relation has to be an accession number

candidate.

2. The number of Inds referencing any attribute in a relation containing an

accession number candidate is maximal for the primary relation.

Applying these heuristics to BioSQL we identi�ed three accession number candi-

dates (sg_bioentry.accession, sg_reference.crc and sg_ontology.name). Out of them,

Heuristic 2 identi�es unambiguously the correct primary relation, namely sg_bioentry.

For the OpenMMS schema we �nd nine accession number candidates, and 19

accession number candidates when softening the rules such that only 99.98% of an

attribute's values must ful�ll the criteria of minimum length and containment of at

least one non-digit character. Heuristic 2 leads to three primary relation candidates

(exptl, struct, struct_keywords). Of these, struct is the correct solution, whereas

struct_keywords could be considered as a second primary relation, as it is a table

containing controlled vocabulary. Furthermore, the accession number candidates in

these relations contain exactly the same values, which means they also relate to

equivalent Inds. Thus, an automatic procedure cannot distinguish these relations.

But a distinction is not necessary for the following steps on detecting inter-schema

relationships, because the chosen accession numbers contain exactly equal values.

Additionally, selecting these three relations is a very e�ective pre-selection (three

tables out of 115), which helps a human expert to manually choose the primary

relation.

For SCOP, we identi�ed one accession number candidate classi�cation.scop_id,

which is the old accession number used in SCOP. It is still correct, but the newer

version of SCOP uses an accession number built from numbers only [50]. Thus, we

cannot detect it as an accession number with our current heuristic. Consequently,

we are able to detect cross-references to SCOP using the old accession number when

restricting the detection to the primary relation, but unable to detect cross-references

using the new accession number.

58

4.3. Leveraging Inter-Schema INDs

4.3 Leveraging Inter-Schema Inds

As the goal of this thesis is the integration of several data sources, this section looks

at the usefulness of unary Ind discovery for data integration. For our life sciences

data sources we followed the idea to �nd cross-references between data sources using

accession numbers. Therefore, we restricted Ind candidates to candidates with the

accession number as referenced attribute, which we identi�ed automatically as shown

in Sec. 4.2.3. This way we aimed to reduce the number of identi�ed spurious Inds.

Thus, discovering intra-schema Inds can help to prune the search space for cross-

references between data sources.

For actual discovery of cross-references, the strict requirement of Inds that all

values of the dependent attribute must be included in the referenced attribute pre-

vents discovery of partial, slightly modi�ed, or dirty cross-references. In fact, we

did not �nd any cross-reference between our life science data sources with exact Ind

discovery. This observation a�rms the necessity of weakening the Ind requirement

to discover inter-schema references. We propose several modi�cations of Spider in

the next Chapter 5.

59

Chapter 4. Evaluating and Leveraging Unary Inclusion Dependency Discovery

60

Chapter 5

Extending Inclusion Dependency

Discovery

In this chapter we extend Spider in several ways to discover special forms of Inds:

We need only minor modi�cations to discover composite Inds (Sec. 5.1) and ap-

proximate Inds (Sec. 5.2). Discovering su�x or pre�x Inds reuses general ideas of

Spider, but demands its own algorithm - LinkFinder (Sec. 5.3).

5.1 Composite Spider: Discovering Composite Inds

In the previous chapters we are able to discover only unary Inds. But in real life

we also �nd foreign keys de�ned over composite attributes such as a foreign key

AB in relation R1 referencing a key CD in relation R2. We reuse Spider to enable

composite Ind discovery.

Problem Statement 2: Discovering composite Inds Given relations R1, . . . ,

Rn. Discover all satis�ed composite Inds between composite attributes of these

relations.

Composite Inds can be identi�ed by creating and testing composite Ind candi-

dates level-wise. Unsatis�ed Inds at lower levels can be used to prune the space

of potential candidates at higher levels, because satis�ed Inds of lower levels are a

precondition for a composite Ind: If A 6⊆ C, then there exist no attributes B and

D such that AB ⊆ CD.

61

Chapter 5. Extending Inclusion Dependency Discovery

5.1.1 Extending Spider

We can use Spider with only minor modi�cations to test Ind candidates of each

level. Spider's test procedure is especially suitable for the detection of composite

Inds, because its runtime is independent of the number of Ind candidates. There-

fore, the possibly large number of created Ind candidates are analyzed e�ciently.

Exhaustive Run of Spider To use Spider for composite Inds, we must test

all Ind candidates, i. e., all attribute pairs. Restricting the tests to Ind candidates

covering a unique referenced attribute, could lead to miss Inds that might be a pre-

condition for a Ind of a higher level. We showed in Section 4.1.2 that an exhaustive

run increases Spider's runtime only slightly � as opposed to the numbers of Ind

candidates and satis�ed Inds, which (may) increase largely.

Enumerating Composite Ind Candidates The detection of Inds of level l ≥ 2

is divided into two phases: (i) enumeration of all Ind candidates that could be

satis�ed regarding the satis�ed Inds of level l−1 and (ii) test of those Ind candidates.

We use the GenNext algorithm presented in [52] to create the Ind candidates

level-wise. This algorithm is an adapted AprioriGen algorithm[2] using an order on

attributes: The Ind candidates of level l are generated by sorting all satis�ed Inds

of level l−1 by the �rst l−2 attribute pairs. An Ind candidate is generated from the

union of two level l− 1 Inds with the same �rst l− 2 corresponding attributes and

di�erent attributes at position l− 1. Furthermore, only if all Inds of level l− 1 that

are implied by the generated Ind candidate are satis�ed must the Ind candidate be

tested. For example, if we veri�ed the Inds AB ⊆ DE and AC ⊆ DF , we generate

the Ind candidate ABC ⊆?DEF at the next level. We test this Ind candidate only

if all implied Inds AB ⊆ DE, AC ⊆ DF , and BC ⊆ EF are satis�ed. In [52] the

authors show that this algorithm indeed enumerates all possible composite Inds.

Testing Composite Ind Candidates We modi�ed Spider in the following as-

pects to test composite Ind candidates, preserving the advantage of testing all Ind

candidates (of a given level) simultaneously: We hold composite attributes and their

values in the min-heap, instead of single attribute values. For each level, we query

the sorted composite data sets from the database and write them to disk. This

step is necessary, because we need the correct associations of the attribute values to

62

5.1. Composite SPIDER: Discovering Composite INDs

tuples, which cannot be recovered from the single attribute value �les.

Unfortunately, the number of candidates grows exponentially � not only in the

number of Ind candidates, but also in the number of composite attributes. Thus,

we expect the runtime to increase largely for larger levels. Our experiments in the

next section shall validate this estimation.

5.1.2 Evaluating Composite Spider

We run Composite Spider on our test data sources UniProt, TPC-H, and PDB. The

results are shown in Table 5.1. No composite Ind with level greater than two was

found for UniProt and TPC-H, i. e., no Ind candidate of level 3 was generated. The

results show that the total runtime over all levels is dominated by the requirement to

read and write tuples for each level (denoted as SRSW in Tab. 5.1). This observation

shows again that a database internal �lter on Ind candidates could speed up the

runtime.

When analyzing the 2.8GB part of the PDB we had to resort to a heuristic to

constrain the set of satis�ed unary Inds. When all unary Inds are used to create

composite Inds of level 2, then 368, 997 Ind candidates are created covering 15, 798

composite attributes. The run took ∼ 33hours and resulted in 227, 028 satis�ed

Inds. These Inds implied about 5 ∗ 106 possible Ind candidates at level 3, which

cannot be tested in reasonable time.

However, recall that in the end we are hunting for foreign keys. Since we are

con�dent that the number of actual composite foreign keys at level 2 or 3 in the

data is rather small, we applied two heuristics to prune probably uninteresting, yet

satis�ed unary Inds: (i) The referenced attribute must have more than one distinct

value; and (ii) At least 1% of all distinct values of the referenced attribute must be

covered by values of the dependent attribute. Both restrictions are very weak and

should not exclude interesting foreign keys, but they reduce the number of unary

Inds to 8, 830 and the number of Ind candidates in level 2 to 12, 535 covering 2, 576

composite attributes (see Table 5.1). Thus, we identi�ed 7, 442 Inds of level 2 in

a total runtime of 6 h40m. These Inds implied 13, 647 Ind candidates of level 3

covering 4, 336 composite attributes.

These experiments con�rm that the exponential explosion in the number of can-

didates is real, even when pruning with satis�ed Inds from lower levels is fully

exploited. In the literature there are approaches that especially aim to �nd compos-

63

Chapter 5. Extending Inclusion Dependency Discovery

UniProt TPC-H PDB 2.8GBa

Composite Spider 5m25 s 27m29 s 6 h 40m

level 1

Ind candidates 2, 235 1, 616 734, 851

attributes 68 61 1, 215

Inds 116 86 35, 752

SRSW 1m43 s 6m13 s 20m59 s

test 37 s 17 s 2m41 s

level 2

Ind candidates 20 59 12, 535

composite attributes 14 36 2, 576

Inds 13 21 7, 442

SRSW 8m24 s 25m31 s 6 h 00m

test 44 s 54 s 16m

aWe �ltered unary INDs before running level 2 and stopped execution after this level.

Table 5.1: Experimental results for discovering composite Inds.

ite Inds at larger levels (up to level 41) [44, 54]. These approaches use procedures

as described in Section 3.4 to �nd unary and binary Inds. Using Spider for lower

levels and the approaches of [44, 54] for larger levels would improve composite Ind

discovery at all.

5.1.3 Related Work

Marchi et al. [53] reuse their approach of discovering unary Inds and give a level-wise

approach for discovering composite Inds. We employ their approach for composite

Ind candidate creation but test the candidates with our Spider algorithm. Marchi

et al. extended the level-wise approach for detecting composite Inds in [54]. Their

main idea is to reduce the number of Ind candidates by switching between a top-

down and a bottom-up approach using an optimistic positive border.

Koeller and Rundensteiner proposed to create composite Ind candidates by �nd-

ing cliques in k-uniform hypergraphs [44]. These hypergraphs are made of satis�ed

Inds of lower levels. Unary and binary Inds are tested by an exhaustive approach

64

5.2. Approximate SPIDER: Discovering Approximate INDs on Dirty Data

similar to [11]. Further, the authors extend their approach in [45] by de�ning heuris-

tics to reduce the search space.

[54], [44], and [45] use tests for single Ind candidates on diverse levels. The

strength of Spider is � in contrast � its independence in runtime of the number

of Ind candidates. Note that [54], [44], and [45] aim at �nding composite Inds of

higher levels and run tests either on real world databases with Inds of maximally

level three or on arti�cial databases with higher level Inds (up to level 41). In

our test databases we did not observe such Inds and are not aware of real world

databases with these characteristics. However, Spider could be leveraged to �nd

composite Inds of lower levels followed by [54], [44], or [45] to �nd Inds of higher

levels. Furthermore, note that both projects provide experimental data only for

rather small schemas with only few tables and attributes.

5.2 Approximate Spider: Discovering Approximate

Inds on Dirty Data

In most real-world databases one �nds dirty data whenever foreign key constraints

are not enforced by the system. Potential reasons are faulty parsers for importing

data or simply errors in the data. Thus, we aim to discover approximate Inds. Recall

from Sec. 2.2 that the amount of allowed violating, i. e., not included, values can be

speci�ed in two ways: (i) the number of all distinct, not included values expressed

as a percentage of distinct values or (ii) the absolute number of not included values

(as suggested by [51]). Both values are helpful to rate an approximate Ind.

Problem Statement 3: Discovering Approximate Inds Given relations R1,

. . . , Rn and a threshold for the amount of allowed violating values. Discover all

satis�ed approximate Inds between attributes of these relations regarding the given

threshold.

5.2.1 Extending Spider

The Spider algorithm � with some minor modi�cations � is able to discover approx-

imate Inds very e�ciently (see Alg. 2). In the following we describe modi�cations

65

Chapter 5. Extending Inclusion Dependency Discovery

Algorithm 2: Approximate Spider.

Input: attributes: set of attribute objects with their sorted values and their

respective refs sets (the Ind candidates); threshold for approximate

Inds (absolute number of allowed distinct violating values)

Output: Set of satis�ed approximate Inds.

1 Min-Heap heap := new Min-Heap(attributes) ;

2 while heap != ∅ do
/* get attributes with equal minimal value */

3 att := heap.removeMinAttributes() ;

4 foreach A ∈ att do

/* update list A.refs */

5 A.unsatRefs := A.refs \ att ;
6 A.refs := A.refs ∩ att ;

/* Refs with counter ≤ threshold remain. */

7 foreach ref ∈ A.unsatRefs do

8 ref.counter++ ;

9 if ref.counter ≤ threshold then

10 A.refs := A.refs ∪ {ref} ;

/* process next value */

11 if A has next value then

12 A.moveCursor() ;

13 heap.add(A) ;

14 else

15 foreach B ∈ A.refs do

16 Inds := Inds ∪ { A ⊆ B } ;

17 return Inds

66

5.2. Approximate SPIDER: Discovering Approximate INDs on Dirty Data

that are necessary to collect for each Ind candidate the number of all distinct,

violating values during the test.

Note that the absolute number of allowed distinct violating values can be eas-

ily derived from a given percentage of allowed violating values by multiplying the

given percentage with the overall number of distinct values in the dependent at-

tribute, which is known after reading the attribute's (sorted) distinct values from

the database.

We add a counter to the references in each attribute object in the list refs. These

counters represent the number of violating values of this dependent attribute object.

When updating the list refs of an attribute object we do not discard attributes from

refs directly. Instead we bu�er them in a list unsatRefs and increase the counter

of these objects. If the given threshold is not exceeded, the attribute is re-added

to the list refs. Only once a given threshold of violating values is exceeded, is the

referenced attribute object discarded.

To obtain the absolute number of all violating values, i.e., also counting dupli-

cates, we need the number of occurrences for each value in the dependent attributes.

These can be extracted from the database using a Sql group by statement on the

dependent attribute with count as aggregation function, which does not incur more

work for the database compared to a single sort and distinct. For counting absolute

numbers, every not-included dependent value needs to be multiplied by its number

of occurrences.

5.2.2 Evaluating Approximate Spider

We give experimental results on our test data sources UniProt, TPC-H, and PDB

for the �rst alternative for specifying the tolerated level of dirtyness, i.e., allowing

a certain percentage of distinct values to be not contained. Results are shown in

Table 5.2. We allowed 5% violating distinct values in the dependent attribute, which

we believe is a very high error rate. Thus, the results should be considered as rather

conservative runtime estimations.

At this level there are indeed a considerable amount of approximate Inds in three

of the four data sets. However, compared to the results of exact tests (Table 4.2;

repeated in Tab. 5.2), the runtime increases only minimally. The di�erence stems

from the additional costs for counting and for comparing this number to the given

threshold. Furthermore, more values have to be processed, because attributes are

67

Chapter 5. Extending Inclusion Dependency Discovery

UniProt TPC-H PDB

DB size 900MB 1.5GB 2.8GB 32GB

ind candidates 1, 393 877 219, 106 245, 562

Inds 36 33 4, 972 5, 431

approximate Inds 36 40 10, 737 12, 081

Spider 1m51 s 6m25 s 23m36 s 6 h 07m

approximate Spider 1m57 s 6m26 s 27m25 s 6 h 27m

Table 5.2: Results for discovering approximate Inds. 5% of violating dependent

values were allowed. Ind candidates are restricted to cover unique referenced at-

tributes.

excluded later from all Ind candidates and thus from the Spider heap. But the

experiments show that Spider is very e�cient also for discovering approximate

Inds. Note that for a lower error rate the di�erence to a run without allowed errors

would be even smaller.

5.2.3 Related Work

Marchi et al. [53] extend their approach of discovering unary Inds to �nd approxi-

mate Inds. As the preprocessing step is reused, the disadvantage of this approach

remains.

Furthermore, approaches for discovering unary Inds approximately [20, 25, 45]

are related work for Approximate Spider. We already described the �rst two ap-

proaches in Section 3.4 and the last approach in Section 5.1.3. Spider is able to

give the exact number of not included values, which distinguishes it from all of these

algorithms.

5.3 LinkFinder: Discovering Pre�x and Su�x Inds

The following section considers discovering pre�x and su�x Inds. Recall from

Sec. 2.2 that pre�x (or su�x) Inds are Inds after removing a �xed or variable

pre�x (or su�x) from each attribute in the dependent attribute. This type of Inds

is intended to discover links between data sources. The example of CATH cross-

referencing PDB motivated our de�nition and discovery of pre�x and su�x Inds:

68

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

CATH cross-references PDB accession numbers concatenated with a su�x of two

varying characters, the encoded domain of the considered protein. Thus, we discover

this cross-reference if we discover the su�x Ind domain_list[domain_name] ⊆4,2
s

struct[entry_id], i. e., the su�x Ind with dependent attribute domain_name in rela-

tion domain_list of CATH, referenced attribute entry_id of relation struct in PDB,

a �xed key length of 4 characters, and a �xed su�x length of 2 characters.

This section is based on work in [38] supervised by the thesis' author. But we

choose here a di�erent running example that shows all di�culties in su�x (pre�x)

Ind discovery and a di�erent representation of the algorithm that includes all aspects

of the algorithm, i. e., discovering the su�x Inds and their key and su�x lengths.

We describe in the following the problem of discovering pre�x or su�x Inds

and show the similarities and di�erences to the problem of discovering Inds. We

elaborate the similarity to Spider and show the necessary changes. In the result

we provide a completely new algorithm � LinkFinder.

Based on the aim to discover cross-references between data sources we can dis-

tinguish attributes as exclusively dependent or exclusively referenced attributes for

discovering pre�x (su�x) Inds � as opposed to the problem of discovering Inds

where each attribute can be covered by Ind candidates as dependent or referenced

attribute. Thus, we must consider any combination of an arbitrary dependent at-

tribute with an arbitrary referenced attribute as pre�x (su�x) Ind candidate. We

describe the problem of su�x Ind discovery as follows. The problem of pre�x Ind

discovery describes analogously.

Problem Statement 4: Discovering su�x Inds Given a set of dependent and

a set of referenced attributes; Discover all satis�ed su�x Inds with their key and

su�x lengths, i. e., test any combination of an arbitrary dependent attribute with

an arbitrary referenced attribute as su�x Ind candidate.

5.3.1 Similarities and Di�erences to Ind Discovery

The problem statement shows the similarity to Spider: Each attribute (dependent

or referenced) is part of several pre�x or su�x Ind candidates. Just like Ind can-

didates, pre�x or su�x Ind candidates can be represented by a list of referenced

attributes in a dependent attribute object. Further, any value in the dependent

attribute must be contained in the referenced attribute (but with a di�erent notion

69

Chapter 5. Extending Inclusion Dependency Discovery

of containment compared to Ind discovery). Thus, we aim to reuse the ideas of Spi-

der to save I/O and comparisons: We sort each attribute's distinct values and save

them to disk. Afterwards, we read these values just once to test all pre�x (or su�x)

Ind candidates in parallel. Therefore, we hold attribute objects in a min-heap and

compare their values in a suitable order.

But as there are noteworthy similarities there are even more remarkable di�er-

ences: For Inds we need to �nd for each dependent value an equal referenced value.

For pre�x (or su�x) Inds we have to �nd referenced values that are su�xes (or

pre�xes) for each dependent value. We say a dependent value matches a referenced

value i� the referenced value is a su�x (or pre�x) of the dependent value. Given

the data structure of Spider with all sorted attributes sorted in a min-heap, it is

obviously easier to test if a (referenced) value is the pre�x of another (dependent)

value. Thus, we �rst consider and explain discovering su�x Inds. Afterwards, we

reduce the discovery of pre�x Inds to discovering su�x Inds (Sec. 5.3.4).

Note, that this relaxation of �nding matching pre�xes (i. e., keys) instead of equal

values results in a di�culty: Opposed to Spider each value in a dependent

attribute can match several values in the referenced attribute � depending

on the pre�x or su�x length. Consider for example a su�x Ind candidate A ⊆?
sB

with

• A = {bbc}

• B = {b, bb}

The dependent value bbc matches the referenced value b with su�x length two and

matches referenced value bb with su�x length one. This simple example shows a

major di�erence to Spider: We cannot release a dependent value as soon as we

found a matching referenced value, because following referenced values (of the same

or another attribute) could also match this dependent value. We need to know all

matches as we can illustrate with a slight extension of our example:

• A = {bbc, bcd}

• B = {b, bb}

For A ⊆?
s B, again bbc matches b and bb, but bcd matches only b. All together we

discover a su�x Ind A ⊆1,2
s B with key length one and su�x length two.

70

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

The above example shows even more di�erences to Spider: We need more than

the minimal value of all attribute objects at a time � we need to compare the

minimal dependent with the minimal referenced value. This way, we can

compare e. g., bbc and b in our example. This observation leads us to hold dependent

attributes and referenced attributes in di�erent min-heaps.

A further extension of our example shows a di�erence to Spider regarding the

lists maintained for each su�x Ind candidate. Consider su�x Ind candidates A ⊆?
s

B and A ⊆?
sC with

• A = {bbc, bcd}

• B = {b, bb}

• C = {bb}

For A ⊆?
sC, we cannot �nd the match between bbc and bb in the �rst comparison of

the overall minimal dependent (bbc) and referenced values (b). We get the oppor-

tunity to compare bbc and bb after the �rst cursor movement in B. Thus, we need

two lists with referenced attributes representing su�x Ind candidates:

those that could be su�x Inds after checking all previous dependent values refs,

and those that already matched the current dependent value matchedCurrent.

Furthermore, not only each single dependent value can match several referenced

values. Additionally, each single referenced value can be matched by several

dependent values � as b is matched by bbc and bcd in our example. The problem

is now to decide when we move the cursors in dependent and referenced attributes:

After comparing bbc and b, should we move the cursor in A to compare (and �nd

the match between) bcd and b? This way we would miss the opportunity to compare

bbc and bb. Or should we move the cursor in B to compare (and �nd the match

between) bbc and bb? But now we miss the opportunity to compare bcd and b.

One important observation helps to solve this problem: If several dependent

values match the same referenced value, they share this referenced value

as pre�x (otherwise they would not match this referenced value). Thus, we can

deduce this match by administrating common pre�xes of dependent attributes. As

all values are sorted, values with same pre�xes follow each other, i. e., we cannot

miss matches. In our example, bbc and bcd both match b � and both share b as

pre�x. We move the cursor in A and deduce the match between bcd and b.

71

Chapter 5. Extending Inclusion Dependency Discovery

Taken all together, we can describe the general rules of comparisons and cursor

movements in LinkFinder as follows:

• As with Spider hold the attribute objects in a min-heap, but now divided

in two min-heaps for dependent attribute objects and referenced attribute ob-

jects. Choose in each step those attribute objects with the minimal current

values, i. e., compare the current minimum dependent value minDep and cur-

rent minimum referenced value minRef. Note that there might be several

(dependent or referenced) attribute objects sharing the same value.

• If minDep matches minRef then we found a match: Note this match and

move the cursor in the referenced attribute objects with current value minRef

to �nd further matches for minDep.

• If otherwise minDep > minRef then we did not �nd a match for minDep yet.

Thus, move the cursor in the referenced attribute objects with current value

minRef to �nd possible matches.

• If minDep < minRef then minDep cannot match any following minRef. Thus,

we update the information on matches in the dependent attribute objects with

value minDep and move their cursor.

• The algorithm stops if no dependent or referenced values are left in any at-

tribute object.

5.3.2 LinkFinder By Example

We show in this Section a general run of LinkFinder using an example with two

potentially dependent attributes D1, D2 and two potentially referenced attributes

R1, R2:

• D1 = {baa, bbaa, bbac}

• D2 = {baa, baab, bab}

• R1 = {b, baa, bba, bbb}

• R2 = {ba, bba}

72

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

We have to test four su�x Ind candidates: D1 ⊆?
s R1, D1 ⊆?

s R2, D2 ⊆?
s R1, and

D2 ⊆?
sR2. We chose the example to show di�culties in su�x Ind discovery and their

solution: All three values in D1 share pre�x b, but the second and third value share

the extended pre�x bba. LinkFinder must be able to handle these overlapping

pre�xes to not only discover su�x Ind D1 ⊆1,.
s R1 with key length one and variable

su�x length (i. e., all referencing value b), but also to discover D1 ⊆3,.
s R1 with

key length three and variable su�x length (i. e., baa matching baa and bbaa, bbac

matching bba). Further, LinkFinder must �nd the su�x Ind D1 ⊆.,1
s R2 with

variable key length and a su�x length of one (i. e., baa matching ba, and bbaa, bbac

matching bba). Another di�culty can be seen at D2 ⊆?
sR1: In D2 the �rst two values

share pre�x baa and the third value shares the shortened pre�x ba. LinkFinder

must handle this shortened pre�x to exclude matches for value bab to referenced

value baa in R1, i. e., dismiss su�x Ind D2 ⊆3,.
s R1 and con�rm su�x Ind D2 ⊆1,.

s R1.

Altogether, we observe 5 su�x Inds: D1 ⊆1,.
s R1, D1 ⊆3,.

s R1, D1 ⊆.,1
s R2, D2 ⊆1,.

s R1,

and D2 ⊆2,.
s R2.

We �rst show a run of LinkFinder handling common pre�xes in dependent

attributes, which shows the major characteristics of LinkFinder. Afterwards we

show in a second run handling additionally the possible key and su�x lengths.

Figure 5.1 illustrates this �rst run of LinkFinder. The left hand side shows two

min-heaps with dependent and referenced attribute objects. Dependent attribute

objects track the su�x Ind candidates with their lists refs and matchedCurrent. We

initialize the lists refs of attributes D1 and D2 with R1, R2 indicating the four su�x

Ind candidates.

1. In the �rst step LinkFinder compares the minimum referenced value, i. e., b

of R1, with the minimum dependent value, i. e., baa of D1 and D2. As b is a

pre�x of baa, LinkFinder adds R1 to the matchedCurrent lists of D1 and D2.

Further, it stores the matching pre�x length 1 for R1. As we found a match we

move the cursor in the referenced attribute objects with current value minRef,

i. e., R1.

2. In the second step we compare value ba of R2 with baa of D1, D2 and �nd

again a match. LinkFinder adds R2 to the matchedCurrent lists of D1 and

D2 together with the matching pre�x length 2. Again we move the cursor in

the currently used referenced object, i. e., R2.

73

Chapter 5. Extending Inclusion Dependency Discovery

D
1

D
2

R
1

R
2

D
1.re

fs
D

1.m
atch

ed
C

u
rren

t
D

2.re
fs

D
2.m

atch
e

d
C

u
rren

t

in
itia

lize
R

1, R
2

R
1, R

2

Step
 1

:
b

aa
b

aa
b

fo
u

n
d

 m
a

tch
R

1, R
2

R
1(1)

R
1, R

2
R

1(1)

Step
 2

:
b

aa
b

aa
b

a
fo

u
n

d
 m

a
tch

R
1, R

2
R

1(1), R
2(2)

R
1, R

2
R

1(1), R
2(2)

Step
 3

:
b

aa
b

aa
b

aa
fo

u
n

d
 m

a
tch

R
1, R

2
R

1(1,3), R
2(2)

R
1, R

2
R

1(1,3), R
2(2)

Step
 4

:
b

aa
b

aa
b

b
a

b
b

a
b

a
a

 < b
b

a
 -> m

o
ve cu

rso
r in

 D
1, D

2; m
a

n
a

g
e lists in

 D
1, D

2

R
1, R

2
|p

refix(b
aa, b

b
aa)| = 1

R
1, R

2
|p

refix(b
aa,b

aab
)| = 3

R
1(1)

R
1(1,3), R

2(2)

Step
 5

:
b

aab
b

b
a

b
b

a
b

a
a

b
 < b

b
a

 -> m
o

ve cu
rso

r in
 D

2; m
a

n
a

g
e lists

R
1, R

2
R

1(1)
R

1, R
2

|p
refix(b

aab
,b

ab
)| = 2

R
1(1), R

2(2)

Step
 6

:
b

ab
b

b
a

b
b

a
b

a
b

 < b
b

a
 -> m

o
ve cu

rso
r in

 D
2 (b

u
t en

d
 o

f va
lu

es); m
a

n
a

g
e lists in

 D
2

R
1, R

2

Step
 7

:
b

b
aa

b
b

a
b

b
a

fo
u

n
d

 m
a

tch
R

1, R
2

R
1(1,3), R

2(3)

Step
 8

:
b

b
aa

b
b

b
b

b
a

a
 < b

b
b

 -> m
o

ve cu
rso

r in
 D

1; m
a

n
a

g
e lists in

 D
1

R
1, R

2
|p

refix(b
b

aa, b
b

ac)| = 3

R
1(1,3), R

2(3)

Step
 9

:
b

b
ac

b
b

b
b

b
a

c < b
b

b
 -> m

o
ve cu

rso
r in

 D
1; m

a
n

a
g

e lists in
 D

1

R
1, R

2

m
in

-h
e

ap
 w

ith

d
ep

en
d

en
t attrib

u
te

o
b

jects

m
in

-h
eap

 w
ith

referen
ced

 attrib
u

te

o
b

jects

F
igu

re
5.1:

E
x
am

p
le
ru
n
of
L
in
k
F
in
d
e
r
.
D

1
=
{ba

a
,bba

a
,bba

c},
D

2
=
{
ba
a
,ba

a
b,ba

b},
R

1
=
{
b,ba

a
,bba

,bbb},
R

2
=
{ba

,bba};
T
est

D
1
⊆

?s
R

1 ,
D

1
⊆

?s
R

2 ,
D

2
⊆

?s
R

1 ,
D

2
⊆

?s
R

2
an
d
con

�
rm

D
1
⊆

s
R

1 ,
D

1
⊆

s
R

2 ,
D

2
⊆

s
R

1 ,
D

2
⊆

s
R

2 .
M
ain

tain
in
g
an
d

d
ed
u
cin

g
key

an
d
su
�
x
len

gth
is
sh
ow

n
in

F
igu

re
5.2

u
sin

g
th
e
sam

e
ex
am

p
le.

74

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

3. The third step compares value baa of R1 with value baa in D1, D2 and �nds

the match. As R1 is already included in lists matchedCurrent of D1 and D2

LinkFinder only adds the matching pre�x length 3. Afterwards we move the

cursor in R1.

4. The next step compares value bba of R1 and R2 with baa of D1, D2. As

baa < bba LinkFindermoves the cursors inD1 andD2 and manages their lists

refs and matchedCurrent as follows: We intersect lists refs and matchedCurrent

to get the new list refs, i. e., these referenced attributes are a su�x Ind for all

values in the dependent attribute that have been compared yet. In our case

R1 and R2 include values that match value baa in D1 and D2.

To update list matchedCurrent we need the length of the common pre�x of

the current dependent value and the next value for each dependent attribute

object:

• For D1 we compare baa and bbaa identifying a common pre�x of length

one. Thus, we carry over the matching referenced attributes with a length

of at most one. In case of D1 we carry over R1 with pre�x length 1 (i. e.,

we carry over the match to b), but dismiss matches of length 3 in R1 (i. e.,

baa) and of length two to R2 (i. e., ba).

• For D2 we compare baa and baab and �nd the common pre�x length

three. Thus, we carry over the entire list matchedCurrent, which means

baab also matches b and baa in R1 and ba in R2.

5. The �fth step compares still value bba of R1 and R2 with baab of D2. As baab <

bba, we move the cursor in D2 and update its lists refs and matchedCurrent. We

update refs to R1, R2 and matchedCurrent to R1 with matching pre�x length

1 and R2 with matching pre�x length 2. We discard R1 with matching pre�x

length 3, because of the common pre�x length 2 between baab and bab.

6. We now compare bab of D2 with bba of R1 and R2. As bab < bba we try to

move the cursor in D2 and �nd no next value. Nevertheless we need to update

D2's list refs before we derive the satis�ed su�x Inds: The last value could

exclude su�x Ind candidates that were not excluded so far. For D2 we con�rm

the su�x Inds D2 ⊆s R1 and D2 ⊆s R2.

75

Chapter 5. Extending Inclusion Dependency Discovery

7. We compare value bbaa of D1 with bba of R1 and R2 in the seventh step. We

�nd the match of length 3 and add this information to list D1.matchedCurrent.

Further, we move the cursors in R1 and R2. Note that there is no next value

for R2. This means we will not compare any further value of R2 with upcom-

ing values in dependent attributes (here D1), but we could deduce matches to

previous values in R2 using the dependent attribute object's lists matchedCur-

rent.

8. The next comparison of value bbaa of D1 with bbb of R1. We move the cursor in

D1 and update its lists refs to R1, R2 and matchedCurrent to R1 with matching

pre�x length 1 and 3 and to R2 with matching pre�x length 3 (because of the

common pre�x length three between bbaa and bbac).

9. The last comparison results in bbac < bbb and therefore the tried cursor move-

ment in D1. After updating refs we con�rm the su�x Inds D1 ⊆s R1 and

D1 ⊆s R2.

The shown run results in four con�rmed su�x Inds � but so far we do not

have any information on matching key length or su�x length. We need one last

extension in the algorithm to gather this important information: We track the

matching key and su�x length during the LinkFinder run. This means we must

maintain for any su�x Ind candidate the information on common matching key and

su�x length of already seen comparisons. This information is maintained in the list

refs of dependent attribute objects.

We denote each identi�ed pair of matching key and su�x lengths as pair (keyLength,

su�xLength) for each tracked referenced attribute. In the initial step we denote the

arbitrary length as pair (∗, ∗). Varying key or su�x length are denoted by a dot.

For example a previous match between a dependent attribute D and a referenced

attribute R of key length 1 with su�x length 1 R(1, 1) and a further match of again

key length 1 but su�x length 2 R(1, 2) results in R(1, .) � indicating that we found

so far matches between D and R of constant key length 1 but with varying su�x

lengths.

Figure 5.2 shows the previous example extended by the denoted matching key and

su�x length. We initialize attributes D1 and D2 with R1(∗, ∗), R2(∗, ∗) indicating
the four su�x Ind candidates with arbitrary key and su�x length.

76

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

D
1

D
2

R
1

R
2

D
1.

re
fs

D
1.

m
at

ch
ed

C
u

rr
en

t
D

2.
re

fs

in
it

ia
liz

e
R

1(
*,

*)
, R

2(
*,

*)
R

1(
*,

*)
, R

2(
*,

*)

St
ep

 1
:

b
aa

b
aa

b
fo

u
n

d
 m

a
tc

h
R

1(
*,

*)
, R

2(
*,

*)
R

1(
1,

2)
R

1(
*,

*)
, R

2(
*,

*)

St
ep

 2
:

b
aa

b
aa

b
a

fo
u

n
d

 m
a

tc
h

R
1(

*,
*)

, R
2(

*,
*)

R
1(

1,
2)

, R
2

(2
,1

)
R

1(
*,

*)
, R

2(
*,

*)

St
ep

 3
:

b
aa

b
aa

b
aa

fo
u

n
d

 m
a

tc
h

R
1(

*,
*)

, R
2(

*,
*)

R
1(

1,
2)

, (
3,

0)
, R

2(
2,

1)
R

1(
*,

*)
, R

2(
*,

*)

St
ep

 4
:

b
aa

b
aa

b
b

a
b

b
a

b
a

a
 <

 b
b

a
 -

>
m

o
ve

 c
u

rs
o

r
in

 D
1,

 D
2;

 m
a

n
a

g
e

lis
ts

 in
 D

1,
 D

2

R
1(

1,
2)

, (
3,

0
),

 R
2(

2,
1)

|p
re

fi
x(

b
aa

, b
b

aa
)|

 =
 1

R
1(

1,
2)

, (
3,

0)
, R

2(
2,

1)

R
1(

1,
3)

St
ep

 5
:

b
aa

b
b

b
a

b
b

a
b

a
a

b
 <

 b
b

a
 -

>
m

o
ve

 c
u

rs
o

r
in

 D
2;

 m
a

n
a

g
e

lis
ts

R
1(

1,
2)

, (
3,

0
),

 R
2(

2,
1)

R
1(

1,
3)

R
1(

1,
.)

, (
3,

.)
, R

2(
2,

.)

St
ep

 6
:

b
ab

b
b

a
b

b
a

b
a

b
 <

 b
b

a
 -

>
m

o
ve

 c
u

rs
o

r
in

 D
2

(b
u

t
en

d
 o

f
va

lu
es

);
 m

a
n

a
g

e
lis

ts
 in

 D
2

R
1(

1,
.)

, R
2(

2,
.)

St
ep

 7
:

b
b

aa
b

b
a

b
b

a
fo

u
n

d
 m

a
tc

h
R

1(
1,

2)
, (

3,
0

),
 R

2(
2,

1)
R

1(
1,

3)
, (

3,
1)

, R
2(

3,
1)

St
ep

 8
:

b
b

aa
b

b
b

b
b

a
a

 <
 b

b
b

 -
>

m
o

ve
 c

u
rs

o
r

in
 D

1;
 m

a
n

a
g

e
lis

ts
 in

 D
1

R
1(

1,
.)

, (
3,

.)
, R

2(
.,1

)
|p

re
fi

x(
b

b
aa

, b
b

ac
)|

 =
 3

R
1(

1,
3)

, (
3,

1)
, R

2(
3,

1)

St
ep

 9
:

b
b

ac
b

b
b

b
b

a
c

<
b

b
b

 -
>

m
o

ve
 c

u
rs

o
r

in
 D

1;
 m

a
n

a
g

e
lis

ts
 in

 D
1

R
1

(1
,.

),
 (

3,
.)

, R
2(

.,
1)

m
in

-h
ea

p
 w

it
h

 d
ep

en
d

en
t

at
tr

ib
u

te
 o

b
je

ct
s

m
in

-h
ea

p
 w

it
h

 r
ef

er
en

ce
d

at
tr

ib
u

te
 o

b
je

ct
s

F
ig
u
re

5.
2:

E
x
am

p
le

ru
n
of

L
in
k
F
in
d
e
r
w
it
h
m
ai
n
ta
in
in
g
an
d
d
ed
u
ci
n
g
ke
y
an
d
su
�
x
le
n
gt
h
.
D

1
=
{b
a
a
,b
ba
a
,b
ba
c}
,

D
2
=
{b
a
a
,b
a
a
b,
ba
b}
,
R

1
=
{b
,b
a
a
,b
ba
,b
bb
},
R

2
=
{b
a
,b
ba
};

T
es
t
D

1
⊆

? s
R

1
,
D

1
⊆

? s
R

2
,
D

2
⊆

? s
R

1
,
D

2
⊆

? s
R

2
an
d
co
n
�
rm

D
1
⊆

1
,.

s
R

1
,
D

1
⊆

3
,.

s
R

1
,
D

1
⊆

.,
1

s
R

2
,
D

2
⊆

1
,.

s
R

1
,
D

2
⊆

2
,.

s
R

2
.
A

re
d
u
ce
d
ru
n
w
it
h
ou
t
m
ai
n
ta
in
in
g
an
d
d
ed
u
ci
n
g
ke
y
an
d
su
�
x

le
n
gt
h
is
sh
ow

n
in

F
ig
u
re

5.
1
u
si
n
g
th
e
sa
m
e
ex
am

p
le
.

77

Chapter 5. Extending Inclusion Dependency Discovery

1-3. The �rst three steps run as before, but track matching key and su�x lengths in

lists matchedCurrent. For example in the third step we denote in D1. matched-

Current matches between D1 and R1 of key length one with su�x length two

(i. e., baa to b) and key length three with su�x length zero (i. e., baa to baa)

and matches between between D1 and R2 of key length two with su�x length

one (i. e., baa to ba).

4. The fourth step compares again baa of D1 and D2 with bba of R1 and R2. As

baa < bba, we move as before the cursor in D1 and D2 but manage their lists

refs and matchedCurrent in an extended manner: We intersect the lists refs and

matchedCurrent to get the new list refs � this time preserving the information

on matching key and su�x lengths. To update list matchedCurrent of D1 we

carry over the match of key length 1 with R1 and dismiss the matches of key

length 3 to R1 and 2 to R2. Additionally, we adjust the su�x length for the

match to R1 with key length 1: The current value of D1 baa is shorter than

its next value bbaa. Thus, with the same matching key length 1 (to value b in

R1) we have now su�x length 3. Analogously, we update list matchedCurrent

of D2: We carry over all three matches as the common pre�x length of the

current value baa and the next value baab is three and add one to the su�x

lengths as baab is one character longer than baa.

5. The �fth step compares baab of D2 with bba of R1 and R2. Thus, we move the

cursor inD2 and update its lists refs andmatchedCurrent. To update list refs we

intersect refs and matchedCurrent: R1 is contained in both lists with key length

one and three, but with di�erent su�x lengths. The resulting intersection is

R1(1, .)(2, .). R2 is also contained in both lists with key length 2 and di�erent

su�x length resulting in R2(2, .). The update of list matchedCurrent carries

over the matches to R1 with key length 1 and to R2 with key length 2 as the

common pre�x length between D2's current and next value is two. As the

next value is one character shorter than the current value, we adjust the su�x

lengths by subtracting one.

6. We compare bab of D2 with bba of R1 and R2 in the sixth step, move the

cursor in D2 and manage list refs. As there is no matching key length 3 for R1

in list matchedCurrent, we exclude this key length and remain with matches

R1(1, .) and R2(2, .). This means, we con�rm two su�x Inds: D2 ⊆1,.
s R1 and

78

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

D2 ⊆2,.
s R2 with key length 1 and 2 respectively and varying su�x lengths.

7. The seventh step compares bbaa of D2 with bba of R1 and R2, adds the identi-

�ed matching key length 3 with su�x length 1 to R1 and R2 in list matched-

Current of D2, and moves the cursors in R1 and R2.

8. The next step compares bbaa of D1 with bbb of R1, which results in moving

the cursor in D1 and managing its lists: The new list refs results in matching

key lengths of 1 and 3 with varying su�x lengths for R1. For R2 we observe

a varying key length, but a common su�x length of 1. The new list matched-

Current is the same as the old list, because the common pre�x length between

D1's current and next value is three and both values share the same length.

9. In the last step we compare bbac of D1 with bbb of R1, move the cursor in D1,

and update list refs. We con�rm three su�x Inds D1 ⊆1,.
s R1 and D1 ⊆3,.

s R1,

and D1 ⊆.,1
s R2.

5.3.3 The LinkFinder Algorithm

The data structure of LinkFinder represents the attributes and their values as

attribute objects � similarly to Spider. Each attribute object stores the attribute's

distinct sorted values. The values can be iterated by a cursor, which is set initially

to the smallest value.

For LinkFinder, we distinguish dependent attribute objects from referenced

attribute objects. While referenced attribute objects provide only the iterable values,

dependent attribute objects further hold information on su�x Ind candidates using

two sets refs and matchedCurrent. A su�x Ind candidate A ⊆?
sB is represented by

adding the referenced attribute object of B to the dependent attribute object's set

refs. Set refs represents all su�x Ind candidates that have not been excluded as

unsatis�ed so far. Set matchedCurrent represents all su�x Ind candidates that have

been con�rmed so far for the current dependent attribute's value.

Additionally, each linked referenced attribute object in a dependent attribute

object's sets refs and matchedCurrent is supplemented by the matching key lengths

and the su�x lengths that have been discovered yet.

The LinkFinder algorithm is given in Algorithm 3. The input to LinkFinder

are two min-heaps: depHeap containing the dependent attribute objects with their

79

Chapter 5. Extending Inclusion Dependency Discovery

initialized sets refs and matchedCurrent, and refHeap containing the referenced at-

tribute objects. LinkFinder iterates the attribute objects by processing those at-

tributes with the current minimal dependent and referenced values. Lines 1, 2, 10, 14,

and 29 determine these current minimal attributes minDep and minRef depending

on the applied cursor movements. Lines 4 − 9 process identi�ed matches between

minDep and minRef, i. e., add all referenced attributes in minRef and the cor-

responding key and su�x lengths to all minDep's set matchedCurrent and move

the cursors of all attribute objects in minRef. Lines 11 − 13 handle the case

minDep > minRef, i. e., just move the cursors in all attribute objects in minRef

to enable discovering (further) matches for the current value in all minDep at-

tributes. Lines 15− 28 handle the remaining case minDep < minRef, i. e., move all

cursors in the dependent attribute objects in minDep and update their lists refs and

matchedCurrent to exploit the collected information on matches to the current value

and prepare collecting information on matches to the next value. Therefore, set refs

is intersected with set matchedCurrent to represent all su�x Ind candidates that

have been not excluded as unsatis�ed after testing all value including the current

value. Set matchedCurrent carries over all matches with a maximum key length of

the common pre�x length between the current and the next value in the dependent

attribute object. The su�x lengths are adjusted to consider di�ering lengths of the

current and next value. If there is no next value in the dependent attribute object

all referenced attributes in set refs represent satis�ed su�x Inds. The su�x Inds

are added to the result set.

Complexity analysis for LinkFinder We denote the number of dependent

and referenced attributes as nd and nr respectively, and the maximum number of

values in the dependent and referenced attributes as td and tr respectively. The

number of all attributes is denoted as n, the maximum number of values as t.

Further, we denote the maximum length of all referenced values as lr.

For sorting the data we need O(nt log t) comparisons. Adding and removing

attribute objects to and from the heaps need � as for Spider� O(ndtd log nd +

nrtr log nr).

We need to compare the current minimum dependent and referenced attribute

object's values to identify the next step. After each step either the dependent

attribute object's cursor is moved on or the referenced attribute object's cursor.

80

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

Algorithm 3: LinkFinder.

Input: depHeap: Min-Heap with dependent attribute objects;

refHeap: Min-Heap with referenced attribute objects

1 minDep := depHeap.removeMinAttributes() ;

2 minRef := refHeap.removeMinAttributes() || ∞ ; /* minRef = ∞ if

refHeap is empty; aimed result: minDep < minRef */

3 while depHeap != ∅ do /* get & process attr. obj. with min. value */

4 if pre�x(minDep) == minRef then

/* update sets matchedCurrent and move minRef cursors */

5 foreach ref ∈ minRef do

6 foreach dep ∈ minDep do

7 dep.matchedCurrent.add(

8 ref(ref.value.length, dep.value.length − ref.value.length)) ;

9 if ref has next value then ref.moveCursor() ; refHeap.add(ref) ;

10 minRef := refHeap.removeMinAttributes() || ∞ ;

11 else if minDep > minRef then /* move minRef cursors */

12 foreach ref ∈ minRef do

13 if ref has next value then ref.moveCursor() ; refHeap.add(ref) ;

14 minRef := refHeap.removeMinAttributes() || ∞ ;

15 else /* update sets refs, matchedCurrent; move minDep cursors */

16 foreach dep ∈ minDep do

17 dep.refs := dep.refs ∩ dep.matchedCurrent ;

18 if dep.refs != ∅ ∧ dep has next value then

/* move cursor, upd.matchedCurr. */

19 currentValue := dep.value ;

20 dep.moveCursor() ; depHeap.add(dep) ; nextValue := dep.value ;

21 dep.matchedCurrent.remainPre�xLengthRefs(

22 commonPre�xLength(currentValue, nextValue)) ;

23 foreach ref ∈ dep.matchedCurrent do

24 ref.setSu�xLength(nextValue.length− currentValue.length) ;

25 else /* save suffix Inds */

26 foreach ref ∈ dep.refs do

27 Inds:= Inds ∪ {dep ⊆ref.keyLength,ref.suffixLength
s ref}

28 minDep := depHeap.removeMinAttributes()

29 return Inds

81

Chapter 5. Extending Inclusion Dependency Discovery

Thus, we need at most max(ndtd, nrtr) comparisons. Assuming ndtd >> nrtr, we

need O(ndtd) comparisons.

We assume the representation of sets matchedCurrent and refs as follows: For

storing the included referenced attribute objects we use a bit array with one bit

per referenced attribute (i. e., of length nr). Additionally we store the key and

su�x length in a �bucket� per referenced attribute: Each bucket is stored as two

corresponding arrays � one bit array for key length of length lr and one array storing

the corresponding su�x length.

Adding a referenced attribute object to set matchedCurrent (after a found match)

is then a simple bit-wise OR operation (O(1)). Adding the key and su�x length costs

also O(1). As these update needs to be done at most in each step of LinkFinder

we need O(ndtd) bit-wise operations.

We need to intersect sets matchedCurrent and refs to update set refs and remove

references from matchedCurrent when we move the cursors in dependent attribute

objects. Intersecting both lists is a bit-wise AND on the bit arrays representing

the referenced attribute objects (O(1)). Updating each key lengths array needs also

a bit-wise AND, as there are nr key lengths arrays we need O(nr). Updating the

su�x lengths arrays needs O(lrnr) comparisons and value updates. For removing

references from matchedCurrent we need the common pre�x length, i. e., one com-

parison. We update the key lengths arrays using a key lengths array with bits set to

1 for length lower or equal the identi�ed common pre�x length or set to 0 otherwise.

Intersecting the key length buckets needs O(rn) bit-wise AND operations, updating

the su�x lengths again O(lrnr) value updates. As these updates also need to be

done at most in each step of LinkFinder we need overall O(ndtdlrnr) operations

for this task.

As we assume the e�ort for comparisons much larger than the e�ort of bit oper-

ations, and as the comparisons for the testing part are lower than the comparisons

to sort the data we expect the time to sort the data to dominate the overall runtime

of LinkFinder.

5.3.4 Extending LinkFinder

So far LinkFinder enables discovering exact su�x Inds. Now we want to extend

the algorithm to also discover pre�x Inds as well as approximate su�x and pre�x

Inds.

82

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

Discovering pre�x Inds. LinkFinder uses the order on dependent and refer-

enced attribute's values. Obviously, it is easier to compare if two values share a

common pre�x, which is necessary for su�x Ind discovery. Deciding if two values

share a common su�x is considerably more di�cult � at least if we use the same

order of values. But we can easily reduce the problem of discovering pre�x Inds to

discovering su�x Inds. We need to use the reverse values as input for LinkFinder:

Then all values are ordered starting from their last character, and deciding if one

value is a su�x of another reduces to deciding if a value is a pre�x of this other

value. This means, we can apply LinkFinder without any changes to discover

pre�x Inds� just by using reverse values.

Discovering approximate su�x and pre�x Inds. We already extended Spi-

der to discover approximate Inds as in real world their are dirty data, which neces-

sitate to weaken the Ind requirements. For LinkFinder we face a similar situation:

Remember we aim to discover links between data sources. Due to di�erent versions

of the data sources and due to data sources referencing several data sources from

only one attribute we need to enable discovering approximate su�x and pre�x Inds.

Remember that the amount of allowed violating values, i. e., the error rate, is de-

�ned for approximate su�x and pre�x Inds analogously to approximate Inds (see

Sec. 2.2).

We can achieve this goal by extending LinkFinder analogously to extending

Spider for approximate Ind discovery: We hold a counter for each reference stored

in set refs. When intersecting refs with matchedCurrent to union all information

on matches for all previous values with the current value of a dependent attribute

(Alg. 3, line 17) we only refuse references with an error counter larger than the

threshold. This way, we enable discovery of approximate su�x and pre�x Inds.

5.3.5 Evaluating LinkFinder

We evaluate LinkFinder using our life sciences data sources CATH, SCOP, UniProt,

and PDB. As we are interested in cross-references between data sources we used all

attributes as potential dependent attributes and all accession numbers (identi�ed in

Sec. 4.2.3) as potential referenced attributes.

83

Chapter 5. Extending Inclusion Dependency Discovery

Identi�ed Su�x and Pre�x Inds. First, we look at identi�ed cross-references

to PDB. In Sec. 4.2.3 we identi�ed three potential accession numbers, namely

struct_keywords.entry_id, exptl.entry_id, and struct.entry_id. As all three con-

tain the same data, we list only identi�ed su�x and pre�x Inds to struct.entry_id.

We discovered approximate su�x Inds using LinkFinder. We observed that all

identi�ed su�x Inds with an error rate below 25% are real cross-references.

We identi�ed three su�x Inds from CATH to PDB:

• domain_list.domain_name ⊆4,2
s struct.entry_id with an error rate of 7.2%,

• chain_list.domain_name ⊆4,2
s struct.entry_id with an error rate of 4.5%, and

• names.repr_protein_domain ⊆4,2
s struct.entry_id with an error rate of 3.9%.

All three are correct: Attribute domain_name is built using a PDB accession number

concatenated with a su�x representing the domain of this protein (assigned by

CATH). The �rst two relations, i. e., domain_list and chain_list, represent di�erent

classes of classi�ed proteins. The third used relation names represents all these

classi�cations with an example protein, namely repr_protein_domain. In summary,

we found the expected cross-reference from CATH to PDB.

From SCOP we actually found an unexpected, yet correct cross-reference with

an error rate 14.4%: description.description ⊆4,.
s struct.entry_id. Indeed, the

major part of values in description.description reference an accession number of

PDB with a short comment. We also found the expected cross-reference from SCOP

to PDB: classification.pdb_id ⊆4,0
s struct.entry_id with error rate 0.4%. As the

su�x length is zero we found an actual approximate Ind, which are of course a

special case of approximate su�x Inds.

In UniProt (parsed into schema BIOSQL) we identi�ed accession number sg_bio-

entry.accession. We found three to us previously unknown, but plausible su�x

Inds from PDB to UniProt:

• struct_ref.pdbx_db_accession ⊆6,.
s sg_bioentry.accession with an error rate

of 39.6%,

• struct_ref_seq.pdbx_db_accession ⊆6,.
s sg_bioentry.accession with an error

rate of 45.6%, and

• struct_ref_seq_dif.pdbx_db_accession_code⊆6,.
s sg_bioentry.accession with

an error rate of 40.9%.

These three relations are used in PDB to reference external databases. The high

error rate stems from many di�erently structured values, which are cross-references

84

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

to yet other data sources.

E�ciency of LinkFinder We use all attributes of our life sciences data sources

CATH, SCOP, UniProt, and PDB (except the extremely large relation ATOM_SITE) as

potentially dependent attributes, and the identi�ed accession numbers as referenced

attributes. Thus we test 6, 656 su�x and pre�x Ind candidates over 1, 445 poten-

tially dependent attributes and 5 potentially referenced attributes with a dataset

size of 1.9GB.

We vary the error threshold for discovering approximate su�x and pre�x Inds to

vary the number of identi�ed Inds. In each run we sort, read, ship each attribute's

data from the database and write them to disk, as for Spider. Additionally, we

reverse each value, sort the attribute's values, and write them to disk. In this way,

we are able to discover su�x and pre�x Inds in one run.

Figure 5.3 shows runtime and number of discovered su�x and pre�x Inds for

this set-up. The runtime increases slowly as expected from our complexity analysis,

because more values must be compared to con�rm or (in most cases) dismiss a su�x

or pre�x Ind candidate. Note, that even for an error threshold of 99% and 100%

(i. e., the last two data points in the diagram) the runtime increases only slowly �

as opposed to the number of discovered su�x and pre�x Inds.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

n
u

m
b

e
r

 o
f

p
re

fi
x

 a
n

d
 s

u
ff

ix
 I

N
D

s

ru
n

ti
m

e
 [

m
in

]

error threshold [%]

overall runtime

time to test suffix and

prefix IND candidates

number of suffix

and prefix INDs

Figure 5.3: Runtime and number of identi�ed approximate su�x and pre�x Inds of

LinkFinder over varying error threshold.

The overall runtime splits up as follows: Sorting, reading, shipping each at-

tribute's data from the database and writing them to disk took in average 40min

for each run. Reversing each value, sorting the attribute's values (in main memory),

85

Chapter 5. Extending Inclusion Dependency Discovery

and writing them to disk to enable pre�x Ind discovery took additional 15.6min.

Thus, we con�rm the decision to test su�x and pre�x Inds in one run. The time to

test the su�x and pre�x Inds dominates the increase of the overall runtime, as can

be seen in Fig. 5.3 (red and green line, left axis).

Interestingly, the number of identi�ed su�x and pre�x Inds does not increase

largely with increasing error thresholds: For an error threshold of 99% we only

identify 58 su�x and pre�x Inds, only for an error threshold of 100% we con�rm all

6656 su�x and pre�x Ind candidates. The reason are the restrictive characteristics

of accession numbers as combination of numbers and values (mostly with character or

number for a �xed position). For example, PDB accession numbers are 4 characters

long enabling at most 364 = 1, 679, 616 di�erent values. In our data set we found

only 32, 485 di�erent PDB accession numbers, i. e., only 2% of all possible accession

number values were used. Thus, the probability to �nd a match by accident is

very low. This feature of accession numbers is very useful for su�x and pre�x Ind

discovery, because it allows to set higher error thresholds without losing con�dence

in the identi�ed results.

In an additional experiment we used the same data set as above, but enlarged the

number of potential dependent attributes, which in turn enlarges the number of su�x

and pre�x Ind candidates. We used all 26 identi�ed accession number candidates

from Sec. 4.2.3 and an error threshold of 25%. Thus, the time to prepare the data

structure (i. e., read, sort, reverse the data) remains the same. The time to test

the su�x and pre�x Ind candidates increases from 3min to 4.7min, the number of

identi�ed su�x and pre�x Inds from 15 to 43. These results show that the runtime

increases only slightly compared to the increased number of su�x and pre�x Ind

candidates � which again con�rms our complexity analysis.

5.3.6 Related Work

We are not aware of related work close to our (indeed very special) problem of su�x

and pre�x Ind discovery.

Warren and Tompa [66] propose an approach to discover composite matches be-

tween two schemas: Several attributes of relation A map to one attribute of relation

B. The algorithm chooses attributes of A that should be used and determines their

order. Concatenating the values of attributes in A provides the value in B. But

we do not have two columns - one for the referenced accession number and an-

86

5.3. LINKFINDER: Discovering Pre�x and Su�x INDs

other for the su�x (or pre�x) in the cross-referenced data source � which could be

concatenated to match the referencing attribute.

There are several approaches of learning and leveraging regular expressions from

data, e. g., [18, 48]. We also followed the idea of learning a regular expression for

accession numbers of a given data source. But we found there are too many patterns

for each of our data sources with overlaps to other data source's �accession number

patterns�. Thus, we did not follow this idea further, but instead proposed our

approach of su�x and pre�x Inds.

If we expected only a small set of �xed pre�xes (or su�xes) that must be removed

from the dependent attribute's values such that the Ind holds, we also could use

keyword trees [35]. Reading the potentially dependent values in a keyword tree we

would �nd the pre�xes as several branches starting from root node with broader

splits in branches for the actual accession numbers. After removing the pre�xes

we could test the pre�x Ind candidates using Spider. But following this approach

would exclude discovering su�x Inds, such as CATH referencing PDB with PDB ac-

cession numbers concatenated with an assigned domain, or SCOPs �cross-reference�

to PDB using its description attribute.

87

Chapter 5. Extending Inclusion Dependency Discovery

88

Chapter 6

Discovering Conditional Inclusion

Dependencies

In this chapter we provide two algorithms to discover conditional inclusion depen-

dencies (Cinds). We focus on the de�nition and discovery of �good� conditions.

We �rst regard the requirements of Cind discovery in Section 6.1: We identify and

motivate features of conditions and reveal the need to measure the quality of these

features. We further show the challenges of condition discovery and formulate our

problem statement. In Section 6.2 we formally de�ne the condition features and and

their measures from Sec. 6.1. We provide an Sql approach for condition discovery

in Section 6.3, and our e�cient algorithms Cinderella and Pli in Sections 6.4

and 6.5.

We show the relevance of our approach using the application of discovering can-

didates for missing links in linked open data as described in Sec. 1: We use the

German and the English DBpedia data for persons [15]. The idea is to look for

characteristics of persons in the German DBpedia that are also included in the En-

glish DBpedia, and vice versa. The discovered conditions will probably also match

some persons that are not (yet) included in the other data set. We suggest these

persons as good candidates for missing links.

We use the following relational schema to represent information about persons:

• person(pid, cent, description),

• birthplace(pid, bplace),

• deathplace(pid, dplace)

with foreign key relationships from birthplace.pid to person.pid and from

89

Chapter 6. Discovering Conditional Inclusion Dependencies

deathplace.pid to person.pid. Each person has an identi�er (pid; mostly a per-

son's name), century of birth (cent), and a description. The separate relations for

place of birth and place of death result from the fact that persons in DBpedia can

have several places of birth or death distinguishing for example the country, region,

and city of birth or death. For example, for the actor Cecil Kellaway the places of

birth are Kapstadt and Südafrika and places of death are Los Angeles, Kalifornien,

and United States in the German version of DBpedia. Figure 6.1 shows (part of)

the result of the full outer join over relations person, birthplace, and deathplace

on the foreign key attributes in the English version of DBpedia (Person_EN) and the

German version (Person_DE).

Links between persons in Person_EN and Person_DE in Fig. 6.1 are represented

by an identical pid. For some persons in Person_EN, e. g., Sante Gaiardoni, there is

no link to Person_DE (and vice versa). The inclusion dependency Person_EN.pid ⊆
Person_DE.pid therefore only holds for part of Person_EN. The goal of discovering

Cinds is to identify those conditions within Person_EN that summarize properties

of persons that have a link to Person_DE. In the given example we can observe a

condition deathplace = United States ∧ cent = 18, which can be explained by the

large number of European emigrants in the 19th century to the US.

6.1 Requirements of CIND discovery

We approach the problem of Cind discovery in three steps: (i) detecting an ap-

proximate Ind, (ii) detecting conditions that can turn an approximate Ind into a

Cind, i. e., conditions that hold in the part of the database that satis�es the ap-

proximate Ind, and (iii) choosing a (sub-)set of discovered conditions to build the

pattern tableau of the Cind. The �rst step can be solved using detection methods

for approximate Inds, such as approximate Spider (see Sec. 5.2), or it could be

manually performed by an expert user. The problem of �nding an optimal pattern

tableau has been addressed for Cfds in [32]. Here we assume approximate Inds to

be given and focus on the second step, namely on e�ciently detecting �good� con-

ditions that turn given approximate Inds into Cinds. We outline in related work

how the third step can be realized by applying our algorithms to the ideas of [32].

90

6.1. Requirements of CIND discovery

p
id

ce
n
t

b
ir
th
p
la
ce

d
e
a
th
p
la
ce

d
e
sc
ri
p
ti
o
n

<
h
tt
p
:.
..
C
ec
il
_
K
el
la
w
ay
>

1
8

<
h
tt
p
:.
..
S
o
u
th
_
A
fr
ic
a
>

<
h
tt
p
:.
..
U
n
it
ed
_
S
ta
te
s>

�A
ct
o
r�
@
en

<
h
tt
p
:.
..
M
el
_
S
h
ep
p
a
rd
>

1
8

<
h
tt
p
:.
..
U
n
it
ed
_
S
ta
te
s>

<
h
tt
p
:.
..
U
n
it
ed
_
S
ta
te
s>

�A
m
er
ic
a
n
a
th
le
te
�@

en

<
h
tt
p
:.
..
B
u
d
d
y
_
R
o
o
se
v
el
t>

1
8

<
h
tt
p
:.
..
M
ee
k
er
,_
C
o
lo
ra
d
o
>

<
h
tt
p
:.
..
M
ee
k
er
,_
C
o
lo
ra
d
o
>

�A
ct
o
r
a
n
d
st
u
n
t
m
a
n
�@

en

<
h
tt
p
:.
..
S
a
n
te
_
G
a
ia
rd
o
n
i>

1
9

-
-

�2
O
ly
m
p
ic
cy
cl
in
g
g
o
ld
s�
@
en

(a
)
R
el
at
io
n
P
e
r
s
o
n
_
E
N

p
id

ce
n
t

b
ir
th
p
la
ce

d
e
a
th
p
la
ce

d
e
sc
ri
p
ti
o
n

<
h
tt
p
:.
..
C
ec
il
_
K
el
la
w
ay
>

1
8

<
h
tt
p
:.
..
K
a
p
st
a
d
t>

<
h
tt
p
:.
..
L
o
s_

A
n
g
el
es
>

�.
..
S
ch
a
u
sp
ie
le
r�
@
d
e

<
h
tt
p
:.
..
C
ec
il
_
K
el
la
w
ay
>

1
8

<
h
tt
p
:.
..
K
a
p
st
a
d
t>

<
h
tt
p
:.
..
K
a
li
fo
rn
ie
n
>

�.
..
S
ch
a
u
sp
ie
le
r�
@
d
e

<
h
tt
p
:.
..
C
ec
il
_
K
el
la
w
ay
>

1
8

<
h
tt
p
:.
..
K
a
p
st
a
d
t>

<
h
tt
p
:.
..
U
n
it
ed
_
S
ta
te
s>

�.
..
S
ch
a
u
sp
ie
le
r�
@
d
e

<
h
tt
p
:.
..
C
ec
il
_
K
el
la
w
ay
>

1
8

<
h
tt
p
:.
..
S
ü
d
a
fr
ik
a
>

<
h
tt
p
:.
..
L
o
s_

A
n
g
el
es
>

�.
..
S
ch
a
u
sp
ie
le
r�
@
d
e

<
h
tt
p
:.
..
C
ec
il
_
K
el
la
w
ay
>

1
8

<
h
tt
p
:.
..
S
ü
d
a
fr
ik
a
>

<
h
tt
p
:.
..
K
a
li
fo
rn
ie
n
>

�.
..
S
ch
a
u
sp
ie
le
r�
@
d
e

<
h
tt
p
:.
..
C
ec
il
_
K
el
la
w
ay
>

1
8

<
h
tt
p
:.
..
S
ü
d
a
fr
ik
a
>

<
h
tt
p
:.
..
U
n
it
ed
_
S
ta
te
s>

�.
..
S
ch
a
u
sp
ie
le
r�
@
d
e

<
h
tt
p
:.
..
M
el
_
S
h
ep
p
a
rd
>

1
8

<
h
tt
p
:.
..
A
lm

o
n
es
so
n
_
L
a
k
e>

<
h
tt
p
:.
..
Q
u
ee
n
s>

�.
..
L
ei
ch
ta
th
le
t�
@
d
e

<
h
tt
p
:.
..
S
a
m
_
S
h
ep
p
a
rd
>

1
9

-
-

�.
..
M
ed
iz
in
er
,
..
.�
@
d
e

<
h
tt
p
:.
..
Is
o
b
el
_
E
ls
o
m
>

1
8

<
h
tt
p
:.
..
C
a
m
b
ri
d
g
e>

<
h
tt
p
:.
..
L
o
s_

A
n
g
el
es
>

�.
..
S
ch
a
u
sp
ie
le
ri
n
�@

d
e

<
h
tt
p
:.
..
Is
o
b
el
_
E
ls
o
m
>

1
8

<
h
tt
p
:.
..
C
a
m
b
ri
d
g
e>

<
h
tt
p
:.
..
K
a
li
fo
rn
ie
n
>

�.
..
S
ch
a
u
sp
ie
le
ri
n
�@

d
e

(b
)
R
el
at
io
n
P
e
r
s
o
n
_
D
E

F
ig
u
re
6.
1:

S
el
ec
te
d
d
at
a
of
re
la
ti
on

P
e
r
s
o
n
_
E
N
re
p
re
se
n
ti
n
g
p
er
so
n
s
in
th
e
E
n
gl
is
h
D
B
p
ed
ia
an
d
re
la
ti
on

P
e
r
s
o
n
_
D
E
re
p
re
se
n
ti
n
g

p
er
so
n
s
in

th
e
G
er
m
an

D
B
p
ed
ia
.
A
tt
ri
b
u
te

ce
n
t
p
ro
v
id
es

th
e
ce
n
tu
ry

of
b
ir
th
.

91

Chapter 6. Discovering Conditional Inclusion Dependencies

6.1.1 Features of Conditions

To achieve the goal of identifying good conditions, we need to formulate desired

features of conditions. In the following, we reason over conditions and their features.

Given an approximate inclusion dependency R1[X] v R2[Y] between attributes X in

relation R1 and attributes Y in relation R2: A condition over the dependent relation

R1 should distinguish those tuples of R1 that are included in the referenced relation

R2 from tuples not included in R2. A condition �ltering only included tuples is

called a valid condition. The degree of validity can be regarded as the �precision�

of a condition. Furthermore, a condition should �lter all included tuples; its degree

can be regarded as the �recall� of a condition.

However, our example in Fig. 6.1 shows that simply relying on counting the

number of tuples that match a condition may not give the desired results. In our

example there are multiple tuples for a single person. If we want to �nd a condition

�ltering all included persons, should all tuples for this person match the condition

or does one matching tuple su�ce? Consider the six tuples for Cecil Kellaway in

Person_DE: Cecil Kellaway certainly matches condition deathplace = Los Angeles.

Counting tuples, however, lets this condition look only one-third as good, because

it covers only 2 out of 6 tuples.

This problem is common when discovering Cinds over relations that are derived

by joining relations in a normalized database. The problem is usually aggravated

as the number of relations that are joined increases. In the full version of DBpedia

persons that we use for our experiments, for example, we observe 1, 458 tuples

for James Beaty Jr. Since none of these tuples matches condition deathplace =

Los Angeles the overall tuple count for this condition does not properly re�ect the

number of persons having Los Angeles as their place of death.

To account for these discrepancies we introduce a new feature to characterize the

scope of conditions: We distinguish covering conditions for counting objects, e. g.,

persons, and completeness conditions for counting tuples. More general, a covering

condition counts groups of tuples whose projection on the inclusion attributes is

equal. Note, that completeness conditions su�ce if the inclusion attributes form a

key, i. e., in this case there is only one tuple per group (or person in our running

example).

92

6.1. Requirements of CIND discovery

6.1.2 Quality of Conditions

Our use case requires to �nd valid and covering conditions only with a certain

quality; we search not only for valid conditions that perfectly choose only included

persons. Such Cinds are interesting in and of themselves, but we could not propose

any missing links. We are also interested in �almost valid� conditions with some

non-included persons matching the condition. Furthermore, it is quite unlikely to

�nd a condition covering all included persons. We need to rate conditions by their

number of covered persons. In fact, we �nd in our test data no conditions with

perfect validity, covering, or completeness (see Sec. 7). To measure the quality of a

condition, i. e., the degree of its validity, covering, or completeness, we use precision

and recall measures (see Sec. 6.2).

6.1.3 Challenges of Condition Discovery

Discovering valid and covering, or valid and complete conditions of a given quality

for given approximate Inds poses two major challenges: (i) Which (and how many)

attributes should be used for the conditions? (ii) Which attribute values should be

chosen for the conditions? Within this thesis, we propose algorithms that address

both of these challenges. Given an approximate Ind, our algorithms �nd all selecting

conditions above a given quality threshold for validity and covering (or completeness)

without the need to manually specify the set of attributes over which the condition

is generated.

Recall from the de�nition of Cind (including the de�nition of pattern tableau

TP) in Section 2.2 that a Cind holds for a pair of instances I1 and I2 if

1. selecting condition on I1: Let t1 ∈ I1 match any tuple tp ∈ TP . Then t1 must

satisfy the embedded IND.

2. demanding condition on I2: Let t1 ∈ I1 match tuple tp ∈ TP . Further, let t1
satisfy the embedded Ind with referenced tuple t2 ∈ I2, i. e., t1[X] = t2[Y].

Then t2 also must match tp.

Note that the Cind de�nition treats selecting conditions, i. e., the left-hand side

of the pattern tableau, and demanding conditions, i. e., the right-hand side of the

pattern tableau, separately and asymmetrically: Selecting conditions are required

93

Chapter 6. Discovering Conditional Inclusion Dependencies

to be valid, i. e., to select only included tuples. Further, they should be complete

or covering to be able to build concise pattern tableaux. In contrast, demanding

conditions are required to be complete, i. e., all referenced tuples are required to

match the condition. There is no equivalent notion for validity. In the following, we

focus on selecting conditions, because their requirements subsume the demanding

condition's requirements.

Thus, we propose our problem statement for condition discovery as follows:

Problem Statement 5: Condition Discovery Given an approximate IndR1[A]

v R2[B], two instances I1, I2 of R1, R2 respectively, and quality thresholds for va-

lidity and covering (or completeness); �nd all selecting conditions over an arbitrary

subset of attributes in R1 (of arbitrary size) that satisfy the given quality thresholds.

6.2 Classifying Cinds

In this section we formally de�ne the features valid, completeness, and covering, and

de�ne their degree through the precision and recall of a condition. These features

are used to quantify the quality of individual conditions (i. e., pattern tuples) in a

pattern tableau. All three features refer to selecting conditions.

6.2.1 De�ning Condition Features

Given a conditional inclusion dependency ϕ and instances I1 and I2. Let Iϕ denote

the set of tuples from I1 that satisfy the embedded Ind, i. e., Iϕ = I1 nX=Y I2. We

refer to Iϕ as the set of included tuples. For denormalized relations like those in our

motivating example we are also interested in groups of included tuples that have

equal values in attributes X, e. g., all tuples for Cecil Kellaway. Let gx denote a

group of tuples in I1 having value x for t[X], i. e., gx = {t|t ∈ I1 ∧ t[X] = x}. We

call gx an included group if all tuples in gx are included tuples, i. e., gx ⊆ Iϕ. A

group gx matches a pattern tuple tp, denoted by gx � tp, if any of the tuples in gx

matches tp, i. e., gx � tp ⇔ ∃t ∈ gx : t � tp. Let G1 denote the set of groups in I1

and Gϕ denote the set of included groups. Finally, for a pattern tuple tp let I1[tp]

and Iϕ[tp] denote the set of tuples from I1 and Iϕ that match tp, respectively. G1[tp]

and Gϕ[tp] denote the groups in G1 and Gϕ that match tp, respectively.

94

6.2. Classifying CINDs

Def. 12: Valid Condition A condition is valid if all tuples of I1 that match tp

also satisfy the embedded IND, i. e., I1[tp] ⊆ Iϕ.

Def. 13: Completeness Condition A condition is complete if it matches all in-

cluded tuples, i. e., Iϕ ⊆ I1[tp].

Def. 14: Covering Condition A condition is covering if it matches all included

groups, i. e., Gϕ ⊆ G1[tp].

6.2.2 Measuring Condition Features

One will rarely �nd conditions that are valid, complete, or covering. Our use case,

furthermore, actually requires to �nd conditions that are not perfectly valid. In

the following, we de�ne quality measures for validity, completeness, and covering

that are used to constrain the conditions that are found by our condition discovery

algorithms.

Valid Conditions. The validity of a condition can be measured by the precision

of this condition, i. e., the number of matching and included tuples in relation to

the number of all matching tuples:

valid(tp) :=
|Iϕ[tp]|
|I1[tp]|

A validity of 1 means that all tuples that match tp are included tuples, i. e., tp is

valid. If valid(tp) > γ we call tp γ-valid.

Although the de�nition for valid conditions over tuples also works in the presence

of groups, it is useful to rede�ne the quality measure of this feature for groups:

Consider a condition cent = 18 for persons in Person_DE to be included in Person_EN

(see Fig. 6.1). Counted over tuples, this condition would be 0.8-valid, but over groups

(or persons) it is just 0.67-valid. That is, the three included and matching tuples

for Cecil Kellaway made this condition look �more valid� than it is. The other

way around, several matching tuples for a non-included group would make it look

�less valid� than it really is. So we apply the idea of using precision as measure for

95

Chapter 6. Discovering Conditional Inclusion Dependencies

validity to groups, i. e., we relate the number of matching and included groups to

the number of all matching groups:

validg(tp) :=
|Gϕ[tp]|
|G1[tp]|

We call a condition γ-validg if validg(tp) > γ. Note that validity can also be

interpreted as the con�dence of the rule �If a condition matches a tuple, then this

tuple is an included tuple.� The resulting ratio equals our quality measure.

Completeness Conditions. The completeness of a condition can be measured as

recall of this condition counting the relation's tuples, i. e., the number of matching

and included tuples in relation to the number of all included tuples:

complete(tp) :=
|Iϕ[tp]|
|Iϕ|

A completeness of 1 means that tp matches all included tuples, i. e., tp is com-

plete. If complete(tp) > δ we call tp δ-complete. Completeness is also a measure for

con�dence for the rule �If a tuple is an included tuple, then the condition matches

this tuple�.

Covering Conditions. The quality of covering conditions can be measured by

the recall of these conditions based on the relation's groups, i. e., the number of

matching and included groups in relation to the number of all included groups:

covering(tp) :=
|Gϕ[tp]|
|Gϕ|

A covering of 1 means that tp matches all included groups, i. e., tp is covering. If

covering(tp) > λ we call tp λ-covering. Covering is a measure for con�dence for the

rule �If a group is an included group, then the condition matches at least one tuple

in this group�.

6.3 Discovering Restricted Conditions with Sql

For a given approximate Ind and a set of condition attributes, we can use Sql

to detect conditions and their quality measures. The general idea is threefold:

(i) Compute a left outer join over the dependent and referenced relation, (ii) use the

96

6.3. Discovering Restricted Conditions with SQL

referenced attributes as indicator for included or non-included tuples (or groups),

(iii) group the result by the preselected condition attributes to examine each value

combination as condition. To discover all conditions these 3 steps can be repeated

for each subset of attributes (used as condition attributes).

lhs inclusion attribute condition attributes rhs inclusion attribute

Person_DE.personID Person_DE. Person_EN.personID

cent deathplace

Cecil_Kellaway 18 Los_Angeles Cecil_Kellaway

Cecil_Kellaway 18 Los_Angeles Cecil_Kellaway

Isobel_Elsom 18 Los_Angeles NULL

Cecil_Kellaway 18 Kalifornien Cecil_Kellaway

Cecil_Kellaway 18 Kalifornien Cecil_Kellaway

Isobel_Elsom 18 Kalifornien NULL

Cecil_Kellaway 18 United_States Cecil_Kellaway

Cecil_Kellaway 18 United_States Cecil_Kellaway

Mel_Sheppard 18 Queens Mel_Sheppard

Sam_Sheppard 19 - NULL

Figure 6.2: Left outer join over relations Person_DE and Person_EN as given in

Fig. 6.1, projected on inclusion and condition attributes and grouped by condition

attributes. URL-speci�c parts of values are omitted for readability.

Recall our example on �nding persons in the German DBpedia to be in-

cluded in the English DBpedia. Consider the left outer join over (Person_DE.pid,

Person_EN.pid) grouped by the condition attributes deathplace and cent of

Person_DE (see Fig. 6.2). Person_DE.pid lists all persons in the German DBpe-

dia and Person_EN.pid indicates if a person is included (i. e., a non-NULL value)

or non-included (i. e., a NULL value). Counting values in Person_DE.pid gives the

number of matching tuples, i. e., |I1[tp]|; counting values in Person_EN.pid gives the

number of matching and included tuples, i. e., |Iϕ[tp]|.
Using this observation we can compute the validity and completeness of a condi-

tion. Fig. 6.3a shows the Sql statement to �nd γ-valid and δ-complete conditions

and their quality measures. Note that the statement returns the absolute number of

matching and included tuples. To compute completeness we have to divide this num-

ber by the total number of included tuples. In our example condition Person_DE.cent

97

Chapter 6. Discovering Conditional Inclusion Dependencies

= 18 and Person_DE.deathplace = Los Angeles is computed as 2/3-valid with an ab-

solute value for completeness of 2 (out of 7 included tuples).

Figure 6.3b shows the modi�ed statement to �nd γ-validg and λ-covering condi-

tions by counting the number of distinct values for Person_DE.pid and Person_EN.pid

instead. The results are the number of matching groups (|G1[tp]|), and the number

of matching and included groups (|Gϕ[tp]|). Both values can again be used to com-

pute the quality measures, but now for validg and covering conditions. Our example

condition Person_DE.cent = 18 and Person_DE.deathplace = Los Angeles achieves

more interesting measures as it is computed to be 1/2-validg with an absolute value

for covering of 1 (out of 2 included persons).

SELECT de.cent, de.deathplace,

cast (count(en.pid) as double) / count(de.pid) as valid,

count(en.pid) as completeness_abs

FROM Person_DE de left outer join Person_EN en on de.pid = en.pid

GROUP BY de.cent, de.deathplace

(a) γ-valid and δ-complete conditions

SELECT de.cent, de.deathplace,

cast (count(distinct en.pid) as double) / count(distinct de.pid) as valid_g,

count(distinct en.pid) as covering_abs

FROM Person_DE de left outer join Person_EN en on de.pid = en.pid

GROUP BY de.cent, de.deathplace

(b) γ-validg and λ-covering conditions

Figure 6.3: SQL statements to �nd conditions and their quality measures for embed-

ded IND Person_DE v Person_EN over preselected attributes cent and deathplace.

In summary, it is possible to detect valid and completeness, or validg and cover-

ing conditions and their quality measures using Sql. In our DBpedia 3.6 persons

data set (see Sec. 2.3) there are 12 potential condition attributes leading to 212 − 1

combinations to test. Execution times for the given statements were 1.2 s for valid

and completeness conditions, and in 5.9 s for validg and covering conditions on a

commercial DBMS. Assuming this as the average runtime, the estimated runtime

for all combinations is about 80min and 6 h40min, respectively.

98

6.4. Discovering General CINDs With CINDERELLA

In the next two sections we describe e�cient algorithms to detect all γ-validg

and λ-covering conditions, as well as γ-valid and δ-complete conditions without re-

stricting the attributes that should be used. We describe two di�erent approaches

� �Conditional INclusion DEpendency REcognition Leveraging deLimited Apriori�

(Cinderella) uses an Apriori algorithm and is faster, while �Position List Intersec-

tion� (PLI) leverages value position lists and consumes less memory. We compare

the complexity of both algorithms in Sec. 6.6. We �rst describe our algorithms to

detect validg and covering conditions, and modify them afterwards to detect valid

and completeness conditions.

Both algorithms reuse the idea of a left outer join over the dependent and ref-

erenced relation with the referenced attributes as �ag for included or non-included

tuples (or groups). Our algorithms do not rely on the relational representation of

the data. Instead, we choose a representation for the join result that allows han-

dling multiple uses of one attribute or predicate for a single group. Each group is

represented by three items: (i) the left-hand side inclusion attribute, i. e., the person

identi�er, (ii) a right-hand side inclusion indicator with values Included for included

groups or Null for non-included groups, and (iii) a list of (attribute : value)-pairs

for potential condition attributes, i. e., all attributes of the dependent relation apart

from the inclusion attributes. Figure 6.4 shows this representation for the embedded

IND Person_DE.pid ⊆ Person_EN.pid.

6.4 Discovering General Cinds With Cinderella

Association rule mining was introduced for market basket analysis to �nd rules of

type �Who buys X and Y often also buys Z�. We apply this concept to identify

conditions like �Whose century of birth is 18 and place of death is `United States'

often also is Included (in the English DBpedia)�. We �rst apply this idea to detect

γ-validg and λ-covering conditions, and modify it in Section 6.4.2 to also detect

γ-valid and δ-complete conditions.

There are two challenges: (i) mapping the problem of condition discovery to asso-

ciation rule mining and (ii) improving e�ciency based on characteristics of condition

discovery. To leverage association rule mining we need to prepare our baskets in two

steps: We use the modi�ed representation of the left outer join result as shown in

Fig. 6.4. Note that we only need the right-hand side inclusion indicator and the

99

Chapter 6. Discovering Conditional Inclusion Dependencies

lhs inclusion rhs inclusion potential condition attributes

attribute indicator and values

1 de.pid:Cecil_Kellaway en.pid:Included cent:18,

birthplace:Kapstadt,

birthplace:Südafrika,

deathplace:Los_Angeles,

deathplace:Kalifornien,

deathplace:United_States,

description:�. . . Schauspieler�@de

2 de.pid:Mel_Sheppard en.pid:Included cent:18,

birthplace:Almonesson_Lake,

deathplace:Queens,

description:�. . . Leichtathlet�@de

3 de.pid:Sam_Sheppard en.pid:Null cent:19,

description:�. . .Mediziner,

. . . �@de

4 de.pid:Isobel_Elsom en.pid:Null cent:18,

birthplace:Cambridge,

deathplace:Los_Angeles,

deathplace:Kalifornien,

description:�. . . Schauspielerin�@de

Figure 6.4: Left outer join over Person_DE and Person_EN in Fig. 6.1; Modi�ed

representation handles multiple occurrences of one attribute for a single person.

URL-speci�c parts of values are omitted for readability.

potential condition attributes to build the baskets, because we do not want to �nd

conditions over the dependent inclusion attributes. Second, we must encode the

a�liation of values to their attributes to form basket items. For our example, we

want to be able to distinguish the two conditions birthplace = Los Angeles and

deathplace = Los Angeles. Therefore, we pre�x each value with an attribute iden-

ti�er. Using pre�xes A to D for our example yields the following basket for the

�rst group of Fig. 6.4: { Included, A18, BKapstadt, BSüdafrika, CLos_Angeles,
CKalifornien, CUnited_States, D�. . . Schauspieler�@de }. Now we are able to apply

an Apriori algorithm to these baskets to �nd frequent itemsets and derive rules.

The Apriori algorithm [2] consists of two steps: (i) Find all frequent itemsets that

100

6.4. Discovering General CINDs With CINDERELLA

occur in at least a given number of baskets, and (ii) use these frequent itemsets to

derive association rules. Apriori uses support and con�dence of a rule to prune the

search space. In our case the covering of a condition is a measure for the support

of a condition in the set of included groups, and the validity of a rule corresponds

to the con�dence of the rule. Thus, we apply those measures for pruning in the

Apriori algorithm. A frequent itemset then ensures λ-covering conditions, while the

rule generation step �lters γ-validg conditions.

We could use the original Apriori algorithm to �nd conditions, but we would

waste optimization possibilities based on the following observation: We need only a

special case of association rules to identify conditions, namely rules with right-hand

side item Included, because left-hand side items of such rules build the selecting

condition. Thus, we only need to �nd frequent itemsets containing item Included,

i. e., we can largely reduce the number of itemsets that must be handled and therefore

improve the e�ciency of the algorithm. We describe our algorithm Conditional

INclusion DEpendency REcognition Leveraging deLimited Apriori (Cinderella)

in the next section.

6.4.1 The Cinderella Algorithm

The Cinderella algorithm reduces the number of generated frequent itemsets by

only considering itemsets that contain item Included. Algorithm MultipleJoins is a

Apriori variation that �nds rules containing (or not containing) speci�ed items [62].

It proposes three joins for candidate generation depending on the position of the

speci�ed item in the basket. In our case we can simplify this approach. We reduce

it to only one join, due to our strict constraint of exactly one �xed item (Included).

Algorithm 4 shows the detection of frequent itemsets with item Included. It

assumes (as Apriori) that all items in a basket are sorted by a given order. Further-

more, it assumes that item Included is the �rst element in this order, i. e.,Included

is always the �rst item in any sorted basket or itemset. We therefore can reduce the

three joins of the algorithm MultipleJoins in our case to only one join.

Let Lk denote the set of frequent itemsets of size k. The �rst set L1 is retrieved

by a single scan over all included baskets; L2 is built by combining each frequent

1-itemset with item Included. All further sets Lk are built level-wise by combining

sets of Lk−1 using method aprioriGen-Constrained (see Alg. 5) to itemset candidates

Ck and testing them afterwards. The algorithm stops if Lk−1 is empty.

101

Chapter 6. Discovering Conditional Inclusion Dependencies

Algorithm 4: Apriori-Constrained: Find all frequent (i. e., λ-covering) itemsets

with item Included.
input : Included tuples as baskets: baskets

output: frequent itemsets with item Included

/* single scan over baskets to get L1 */

1 L1 = {frequent 1-itemsets} ;
2 L2 = {(Included, l1) | l1 ∈ L1} ;
3 for k=3; Lk−1 6= ∅; k++ do

4 Ck =aprioriGen-Constrained(Lk−1) ;

5 foreach basket b ∈ baskets do

6 Ct = subset(Ck, b) ;

7 foreach c ∈ Ct do

8 c.count++;

9 Lk = {c ∈ Ck | c.count ≥ λ ∗ |baskets|} ;

10 return (∪kLk)
⋃
L2 ;

Method aprioriGen-Constrained (Alg. 5) combines in the �rst step two itemsets

of size k−1 to an itemset candidate if both itemsets are equal in the �rst k−2 items.

In the second step it prunes such candidates with at least one subset of size k − 1

that contains Included but that is not contained in Lk−1. Creating the candidates

by a self-join of Lk−1 is exactly the same as in Apriori. This procedure works for our

constrained case, because we require Included to be smaller than any other item.

Thus, each created candidate will contain Included. The di�erence to the original

aprioriGen is that only such subsets are considered for pruning that contain item

Included, because only these itemsets can be contained in Lk−1.

After creating the candidate itemsets of size k, the number of occurrences in the

baskets of each candidate is counted. We can apply method subset as described

for Apriori: All candidates Ck are represented in a HashTree to �nd the subset of

candidates Ct contained in a basket very fast. Then, all frequent (i. e., λ-covering)

candidates build set Lk.

The rule generation step uses the identi�ed frequent itemsets and computes the

validity of conditions: The number of included tuples matching the condition is the

number of occurrences (support) of a frequent itemset; the number of all tuples

102

6.4. Discovering General CINDs With CINDERELLA

Algorithm 5: aprioriGen-Constrained

input : frequent itemsets of size k − 1: Lk−1

output: candidates for frequent itemsets of size k: Ck

1 insert into Ck

2 select p.item1, p.item2, . . . , p.itemk−1, q.itemk−1

3 from Lk−1 p, Lk−1 q

4 where p.item1 = q.item1 ∧ . . .∧ p.itemk−2 = q.itemk−2 ∧
5 p.itemk−1 < q.itemk−1 ;

6 foreach candidate c ∈ Ck do

7 foreach (k − 1)-subsets s of c containing item Included do

8 if s 6∈ Lk−1 then

9 delete c from Ck ;

10 return Ck ;

matching a condition is the support of the frequent itemset without item Included.

This number of occurrences must be counted in an extra scan over all baskets,

because we do not have this information up to this step. Again, all itemsets can

be represented in a hash tree to count their occurrences fast. Using both values for

each frequent itemset we can �lter γ-validg conditions.

6.4.2 Discovering Completeness Conditions withCinderella

We can apply the Cinderella algorithm to also detect γ-valid and δ-complete

conditions by a single modi�cation: We only need to build our baskets di�erently.

So far, we built one basket per group to detect λ-covering conditions. Now, we

build several baskets per group, i. e., we build one basket per tuple in the relational

representation. In our running example we now have six baskets for Cecil Kell-

away. Using this slight modi�cation we can apply the Cinderella algorithm as

described. Having only one basket per tuple, we now count tuples instead of groups

and therefore detect γ-valid and δ-complete conditions.

103

Chapter 6. Discovering Conditional Inclusion Dependencies

6.5 Discovering General Cinds with PLI

The Position-List-Intersection (PLI) approach searches for conditions in a depth-�rst

manner and uses an ID list representation for each value of an attribute. Using the

position list representation for conditions the algorithm is able to prune irrelevant

candidate conditions and is for lower numbers of attributes more memory e�cient

than Cinderella because of its depth-�rst approach. The PLI algorithm is a

modi�cation of the algorithm in Ziawasch Abedjans master's thesis [1]. We adapted

the algorithm to discover conditions [6, 7].

The position list representation of values has also been applied by the algorithm

TANE for discovering functional dependencies [41]. While our approach looks for

intersections of lists, the partition re�nement of TANE is based on the discovery of

subset relationships of position lists. In the following, we �rst introduce the concept

of position lists and intersections and then describe the PLI algorithm.

6.5.1 Position Lists and Intersections

The PLI algorithm is based on the idea that every distinct value in an attribute can

be represented by the set of row numbers (or tuple IDs [41]) where the value occurs

in the table. Those sets are referred to as position lists (or inverted lists). Thus,

each attribute is associated with a set of position lists � one for each of its distinct

values. In our case positions can be both tuple IDs when looking for completeness

conditions and group-IDs (e.g., numbers 1-4 in Fig. 6.4) when looking for covering

conditions. In the following, we refer only to group-IDs as we describe the algorithm

for the discovery of λ-covering and δ-validg conditions.

Table 6.5 illustrates the position lists for the attributes cent and deathplace

from the example in Fig. 6.4. The frequency of each value is implicitly given by

the cardinality of its position list. Values having a position list with fewer members

than required by the covering threshold can be ignored for further analysis and are

omitted. We use an additional position list, called includedPositions, for all included

groups. Intersecting the position list of a value with includedPositions returns the

included subset of the groups that match the value. The list includedPositions is

the position list for en.pid's value Included in Table 6.5.

The position lists of an attribute combination can be calculated by the cross-

intersection of the position lists of its contained attributes. Cross-intersection means

104

6.5. Discovering General CINDs with PLI

attribute value position list

cent 18 {1, 2, 4}
19 {3}
Los_Angeles {1}
Kalifornien {1, 2}

deathplace United_States {1}
Queens {2}

en.pid Included {1, 2}
Null {3, 4}

Figure 6.5: Position lists of attributes cent, deathplace, en.pid for the example in

Fig. 6.4 (i. e., left outer join over relations Person_DE and Person_EN of our example).

each position list of one attribute is intersected with each position list of the other

attribute. For example, detection of conditions from the attribute combination

cent, deathplace requires to intersect each position list of attribute cent with the

position lists of each value in attribute deathplace: The intersection of the posi-

tion list of cent:18 with the position list of deathplace:Los_Angeles, for example,

results in position list {1}. Intersecting position list cent:18 with position list

deathplace:Kalifornien results in {1, 2}. Altogether the cross-intersection forms

eight intersections of which four are empty.

6.5.2 The PLI Algorithm

While the Cinderella algorithm traverses the powerset lattice of condition com-

binations breadth-�rst or level-wise, by checking all combinations of a certain size

in the same pass, the recursive PLI algorithm processes the powerset lattice depth-

�rst by checking all possible combinations that contain a certain condition. The

idea of PLI is twofold: (i) We use a special position list for included groups, i. e.,

includedPositions. (ii) We cross-intersect position lists of attributes to test value

combinations (i. e., conditions) for the intersected attributes, e. g., intersect each

position list of attribute A with each position list of attribute B. The cover-

ing of a condition then corresponds to the ratio of the cardinality of its position

list P intersected with includedPositions to the cardinality of includedPositions

(|P ∩ includedPositions|/|includedPositions|). The validity of a condition corre-

105

Chapter 6. Discovering Conditional Inclusion Dependencies

sponds to (|P ∩ includedPositions|/|P |).
The algorithm is based on two phases: First, it retrieves the position lists for

each single attribute and the set of included group-IDs. Second, it retrieves all

combinations of conditions across multiple attributes by cross-intersection of the

position lists of the disjoint attribute combinations. This way it is assured that the

maximum number of concurrent required sets of position lists in memory is bounded

to twice the number of the size of Xp.

Position list retrieval. The algorithm needs to scan the table once for retrieving

position lists of each potential condition attribute. In addition, the position list

includedPositions is retrieved that contains all group-IDs of included groups. This

step is straightforward by iterating through all groups using several hashmaps per

attribute that map each value to a list of group-IDs. At the same time position list

includedPositions is maintained by adding group-IDs of each included group. In our

running example, list retrieval includes includedPositions and position lists for the

attributes deathplace, birthplace, description, and cent.

Multi-attribute analysis. After retrieving the position lists of potential inclusion

attributes, the next step is to discover all γ-validg and λ-covering conditions. In this

step, each value of the current attribute is extended via cross-intersection with values

of other attributes. As long as the result of the cross-intersection contains λ-covering

position lists, the algorithm continues to cross intersect the result with the position

lists of the next attribute in line. Whenever a cross-intersection results in an empty

set, the recursive algorithm backtracks one step in its recursion and substitutes

the last added attribute with the next alternative attribute. The beginning of the

recursion is always a single attribute that contains λ-covering conditions.

The PLI algorithm (Algorithm 6) iterates over all potential condition attributes

ensuring that all attribute combinations are considered. In each iteration function

analyze is called. Using an arbitrary but �xed numerical order over the attributes,

the analyze function traverses all combinations that involve the current attribute and

attributes of higher order. The numerical order prevents that the same combination

is analyzed repeatedly. For convenience, we use numerical identi�ers {1, 2, . . . } for
attributes. Function analyze returns all γ-validg and λ-covering conditions of these

attribute combinations.

106

6.5. Discovering General CINDs with PLI

Algorithm 6: PLI

input : potential condition attributes

output: all γ-valid and λ-covering conditions

/* Start recursive call for each attribute */

1 for i = 1 to |attributes| do
2 analyze (i, getPositionLists (i), ∅, ∅) ;

3 return conditions ;

Function analyze is shown in Algorithm 7. The method traverses the power-

set lattice of the condition attributes depth-�rst. Its parameters are the currently

added attribute (attrNo), the position lists of the attribute (attrNoPLs), the cur-

rent combination of attributes (currComb) (without attrNo), and the position lists

of currComb (combPLs).

The method analyze is initially called with the numerical identi�er of the �rst

attribute attrNo, its position lists attrNoPLs and ∅ for the current attribute com-

bination currComb and its position lists, respectively. At �rst the method builds

a new combination newAttrComb by adding the given attrNo to the current set of

attributes currentComb and creates the new set of position lists newCombPLs by

cross-intersecting the position lists of the given attrNo and the current combination

currComb.

If currComb is ∅, the new combination contains just the position lists attrNoPLs

of the current single attribute attrNo (line 2). Next, each position list in newComb-

PLs is checked for λ-covering and γ-validity (lines 6-11). For this purpose each of

the position lists PL is intersected with the position list of the inclusion attribute

includedPositions. If the corresponding condition of a position list is λ-covering it

is added to the new list of position lists coveringCombPLs that can be extended by

further attributes in the next recursion step. If the condition is also γ-validg, it is

added to the result set conditions.

As long as coveringCombPLs contains any position list, the algorithm can con-

tinue to select the next attribute that can be added to the new set of attributes new-

ColComb. So the method analyze is called for the next attribute in line (i > attrNo),

the new attribute combination newColComb and their position lists respectively.

The method terminates as soon as no further attribute can be added to the current

combination, either because there are no λ-covering position lists or the current

107

Chapter 6. Discovering Conditional Inclusion Dependencies

Algorithm 7: Analyze Attribute Combinations: analyze

input : attrNo, attrNoPLs, currComb, combPLs

output: all γ-validg and λ-covering conditions for given attribute combination

and extensions with attribute number larger than attrNo

/* Build new attribute combination. */

1 newAttrCombs ← currComb ∪ attrNo ;

2 if currComb 6= ∅ then
3 newCombPLs ← crossIntersect (attrNoPLs, combPLs);

4 else

5 newCombPLs ←attrNoPLs ;

/* Check each position list. */

6 foreach pl ∈ newCombPLs do

7 plIncluded ← (pl ∩ includedPositions) ;

/* Compute measures of covering, validg. */

8 if
|plIncluded|

|includedPositions| > λ then

9 coveringCombPLs.add (pl) ;

10 if
|plIncluded|
|pl| > γ then

11 conditions.add(newCombAttrNos, pl.values (), covering, valid) ;

12 if ¬ coveringCombPLs.isEmpty () then

13 for i = attrNo+ 1 to |attributes| do
14 conditions.addAll (analyze (i, getPLs (i), newColCombs,

coveringCombPLs))) ;

15 return conditions ;

108

6.6. Complexity of Cinderella and PLI

attribute was the last attribute. In both cases, the set of generated conditions is

returned.

6.5.3 Discovering Completeness Conditions with PLI

For the discovery of λ-covering conditions we considered group-IDs as positions. For

the discovery of δ-complete conditions on key inclusion attributes the algorithm can

trivially be adapted by using tuple-IDs of the relational representation instead of

group-IDs as positions.

6.6 Complexity of Cinderella and PLI

We now compare our two algorithms in terms of complexity. The search space of

both algorithms is in worst case exponential in the number of attributes: Given n

attributes and the average number of values per attribute v, both algorithms have

to check O(2n · vn) potential conditions.
Using the apriori paradigm of pruning, Cinderella is able to reduce the search

space drastically, depending on the δ and λ thresholds for respectively complete and

covering conditions. The PLI algorithm works depth-�rst and is not able to apply

this pruning strategy. Therefore the search space of the PLI algorithm is always at

least as large as for the Cinderella algorithm. Both algorithms scan the database

only once and therefore require the same disk io.

With regard to memory usage the PLI algorithm outperforms Cinderella for

lower numbers of attributes, since it needs only the position lists for each single

attribute and the position lists that have been created during one complete recur-

sion branch. The upper bound for the total number of position lists in memory is

at most O(2 · n · v) resulting from n · v position lists for the single attributes and

additional n · v position lists that might be created in one recursion branch. The

breadth-�rst search strategy of the Cinderella algorithm, however, requires to

store all
(
n
l

)
generated candidates of each level l in memory. In the worst case, the

number of candidates corresponds to
(
n
n
2

)
for itemsets of size n

2
. Our implementation

of Cinderella holds all baskets in memory, such that we have a resulting memory

complexity of O(
(
n
n
2

)
· v n

2 · n
2
+ v · n). As a position list requires (in most cases)

more memory than an itemset, PLI should outperform Cinderella with regard

109

Chapter 6. Discovering Conditional Inclusion Dependencies

to memory usage for lower numbers of attributes, because of its quadratic com-

plexity compared to Cinderella's exponential complexity. For larger numbers of

attributes Cinderella outperforms Pli. In Section 7.1 we con�rm our complexity

analysis using actual experimental results.

6.7 Related Work

Conditional inclusion dependencies (Cinds) were proposed by Bravo et al. [19] for

data cleaning and and contextual schema matching. In [19], complexity bounds

for reasoning about Cinds and a sound and complete inference system for Cinds

are provided. The problem of discovering Cinds from a given database instance,

however, is not addressed.

Di�erent aspects of Cind discovery have been addressed in [23, 33, 53]: De Marchi

et al. propose data mining algorithms to discover approximate Inds, i. e., Inds that

are satis�ed by part of a given database [53]. To allow mining of approximate Inds,

an error measure is introduced based on the number of tuples that one has to remove

from a database to obtain a database for which a Ind is satis�ed. Likewise, our Ind

discovery algorithm SPIDER has been adopted to discover approximate Inds (see

Sec. 5.2). Approximate Inds are input to our Cind discovery algorithms. The

work on discovering approximate Inds is therefore orthogonal to our work on Cind

discovery.

Algorithms for generating pattern tableaux for given Inds are proposed in [23, 33].

The algorithm in [23], however, assumes that the given Ind is fully satis�ed by the

database, i. e., it does not ensure or check validity of conditions. Golab et al. present

Data Miner, a system for analyzing data quality [33]. Given an approximate Ind,

the system generates a pattern tableau that is a concise summary of those subsets

of the database that a) satisfy, and b) fail the Ind. Golab et al. assume that the

set of attributes over which the pattern tableau is generated (i. e., XP), is given as

input to the algorithm. The fact that pre-selecting XP is not necessary is one of

the major di�erences to our work. A second di�erence is that we introduce the new

concept of covering Inds which is essential for the type of data and use case that

we consider.

The algorithm in [33] is an extension of the algorithm proposed in [32] for gener-

ating pattern tableaux for conditional functional dependencies (Cfds). Cfds were

110

6.7. Related Work

introduced in [27] for data cleaning. Similar to Cinds, a Cfd augments an em-

bedded functional dependency (Fd) with a pattern tableau that de�nes the subset

of the database in which the Fd is satis�ed. In [32] Golab et al. characterize the

quality of a pattern tableau based on properties of support, con�dence, and par-

simony. The authors show that generating an optimal tableau for a given Fd is

np-complete but can be approximated in polynomial time via a greedy algorithm.

Here, we consider the problem of generating conditions for a pattern tableau. Deriv-

ing an optimal tableau from the discovered set of conditions is similar to the basic

greedy algorithm proposed in [32]. To regard marginal local support and con�dence

de�ned in [32], which are necessary to build concise pattern tableaux, we can adapt

our algorithms slightly: Cinderella can compute these measures by re-counting

the itemset frequencies as in the rule generation step. PLI must preserve the posi-

tion list for each identi�ed condition (instead of saving only meta-data). Then the

marginal local supports and con�dences can be calculated for each condition after

choosing conditions for the pattern tableau.

Algorithms for discovering Cfds are also considered in [22, 28]. In contrast to

other approaches, the work in [22] does not assume that the Fd is given in advance.

Discovering Fds, however, is signi�cantly di�erent from discovering approximate

Inds and it therefore is not clear how the algorithms in [22] can be applied to Cind

discovery. Fan et al. propose an algorithm for discovering constant Cfds based on

closed itemset mining [28]. A minimal constant Cfd is a special form of Cfd for

which the pattern tableau contains only constant values for the attribute in the

right-hand side of the embedded Fd. Thus, minimal constant Cfds correspond to

association rules with single attribute in their antecedent with con�dence 100%, i. e.,

to selecting conditions with γ-validity one. Algorithm CFDMiner in [28] uses closed

itemset mining to �nd such association rules. Algorithms for mining association

rules with �xed or constrained antecedent that are based on Apriori were proposed

in [49, 62]. These algorithms were the motivation for our's in Sections 6.4 and 6.5.

Contradiction pattern are also a form of association rules with �xed antecedent [55].

Contradiction patterns were proposed to discover conditions that are frequent within

a subset of a database but not frequent within the remainder of the database. The

de�nitions of con�ict relevance and con�ict potential are similar to our de�nitions

of valid and completeness conditions. Covering conditions, however, cannot be dis-

covered using the algorithms presented in [55].

111

Chapter 6. Discovering Conditional Inclusion Dependencies

112

Chapter 7

Evaluating and Leveraging

Conditional Inclusion Dependencies

In this chapter we evaluate the discovery of conditional inclusion dependencies. We

evaluate the e�ciency of our algorithms in Section 7.1 using our DBpedia persons

data sets and using generated data sets. In Section 7.2 we evaluate the e�ective-

ness of Cind discovery using three applications: Our DBpedia persons use case, a

Wikipedia Images use case used in [33], and a life science use case.

7.1 E�ciency of Cind Discovery

We set up two experiments on the DBpedia 3.6 person data sets (see Sec. 2.3) to

evaluate (i) the e�ect of the number of conditions to be identi�ed, and (ii) the e�ect

of the number of tuples in the dependent data set. Further, we set up experiments on

generated data, which allowed us to vary the number and distribution of condition

attributes over all attributes. We evaluated (i) the e�ect of the number of attributes

(regardless if these are used as conditions or not) and (ii) the e�ect of the distribution

of the condition attributes over all attributes. We measure runtime and memory

consumption in all experiments.

We implemented our algorithms Cinderella and PLI in Java6, and store the

data sets in a commercial DBMS. We run our experiments on a 2x Xeon quad-core

server with 16GB RAM running a 64bit Linux.

113

Chapter 7. Evaluating and Leveraging Conditional Inclusion Dependencies

7.1.1 Varying the Number of Conditions

In this experiment we want to test the e�ect of the number of conditions to be

identi�ed. We use the German DBpedia person data set and its included persons in

the English DBpedia. There are 296, 454 persons in the English DBpedia 3.6 and

175, 457 persons in the German DBpedia 3.6; 74, 496 persons are included in both

data sets. We mapped these data sets into relations (as described in Sec. 2.3) con-

taining 474, 630 tuples for the English DBpedia and 280, 913 tuples for the German

DBpedia with an intersection of 133, 208 tuples.

We vary the number of identi�ed conditions by varying λ or δ for detecting

covering or completeness conditions, respectively.

Figures 7.1(a) and 7.1(b) show the runtime and memory consumption for varying

λ, i. e., for detecting covering conditions. In both diagrams we also show the number

of identi�ed conditions using a secondary y-axis on the right. The runtime of both

algorithms correlates with the number of identi�ed conditions, but Cinderella is

less sensitive to increasing numbers of identi�ed conditions. Generally, Cinderella

is faster than PLI. The memory consumption of Cinderella correlates with the

number of identi�ed conditions, while PLI is much less sensitive to larger numbers

of conditions and generally needs less memory. These observations con�rm our

complexity analysis in Sec. 6.6.

Experiments on completeness conditions reveal equivalent results as can be seen in

Fig. 7.2. In comparison to discovering covering conditions, the number of identi�ed

conditions increases strongly for very low thresholds, which is caused by larger con-

ditions (i. e., over more attributes) satisfying the thresholds. The runtime increases

for both algorithms where more conditions are identi�ed, i. e., for low thresholds.

Memory consumption increases for both algorithms for all thresholds, which results

from an increased amount of work: Cinderella must handle more baskets as each

tuple forms a basket instead of each group. PLI must handle longer position lists,

which result from using tupleIDs instead of groupIDs. Again Cinderella increases

less in runtime while PLI increases less in memory consumption, as expected by our

complexity analysis.

Due to Pli's low memory requirements we were able to detect all conditions cov-

ering at least one person (with validity threshold set to zero). This run took 41min

using 2.4GB memory and returned 566, 830 conditions. A run detecting complete-

ness conditions with an absolute completeness of at least one tuple took 112min

114

7.1. E�ciency of Cind Discovery

0

200

400

600

800

1000

1200

1400

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 0.005 0.01 0.015 0.02 0.025 0.03

n
u

m
b

e
r

o
f

co
n

d
it

io
n

s

ru
n

ti
m

e
[s

]

-covering

Cinderella

PLI

number of
conditions

(a) runtime

0

200

400

600

800

1000

1200

1400

0

0.5

1

1.5

2

2.5

0 0.005 0.01 0.015 0.02 0.025 0.03

n
u

m
b

er
 o

f
co

n
d

it
io

n
s

m
em

o
ry

 c
o

n
su

m
p

ti
o

n
 [

G
B

]

-covering

Cinderella

PLI

number of
conditions

(b) memory consumption

Figure 7.1: Results for varying covering thresholds.

using 5.8GB memory and delivering 9, 214, 406 conditions. With Cinderellas

higher memory requirements, we could perform the same experiment only up to at

least 10 covered persons. The run took 3min20 s using 7.8GB RAM and returned

12, 587 conditions. Clearly, this entire set of conditions is not useful to �nd individ-

ual interesting conditions. But we can use it for a scatter plot as given in Fig. 7.7 in

Sec. 7.2 (evaluating the e�ectiveness of Cind discovery): The scatter plot gives an

intuition about the distribution of conditions and helps to set pro�table thresholds.

7.1.2 Varying the Size of Data Set

This experiment evaluates two aspects of the data set size: (i) the e�ect of the

absolute size of the data set and (ii) the the ratio of included and non-included

groups (or tuples). Therefore, we concatenate multiple instances of the German

115

Chapter 7. Evaluating and Leveraging Conditional Inclusion Dependencies

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 0.005 0.01 0.015 0.02 0.025 0.03

n
u

m
b

er
 o

f
co

n
d

it
io

n
s

ru
n

ti
m

e
[s

]

-complete

Cinderella

PLI

number of
conditions

(a) runtime

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

0.5

1

1.5

2

2.5

0 0.005 0.01 0.015 0.02 0.025 0.03

n
u

m
b

e
r

o
f

co
n

d
it

io
n

s

m
em

o
ry

 c
o

n
su

m
p

ti
o

n
 [

G
B

]

-complete

Cinderella

PLI

number of
conditions

(b) memory consumption

Figure 7.2: Results for varying completeness thresholds.

DBpedia data set. To increase the absolute size of the data set with a constant

ratio of included-to-non-included tuples we consider multiples of the entire data

set. A second class of data sets is created by adding multiples of non-included

persons to decrease the ratio of included-to-non-included persons. In both setups

we ensured to add new persons instead of adding new tuples to the same group

(person) by adding su�xes to values of attribute de.person. Note that the number

of identi�ed conditions is constant in both setups: If we multiply the entire data

set, then all conditions and the ratios remain the same. Multiplying only the non-

included persons has no impact on the covering threshold, because it relates to the

constant number of included persons.

Figures 7.3(a) and 7.3(b) show the runtime and memory behavior for both setups

and both algorithms. Generally, runtime and memory consumption increase with

increasing data size as expected from our complexity analysis. Multiplying only the

116

7.1. E�ciency of Cind Discovery

non-included persons results in a softer increase of the runtime and memory con-

sumption than multiplying the entire data set. This means, the amount of included

tuples is the decisive factor for both algorithms, not so much the size of the entire

data set. Again, Cinderella is faster, while PLI needs less memory.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0 0.5 1 1.5 2 2.5 3

ru
n

ti
m

e
[s

]

number of tuples

Millions

Cinderella
multiple instance

PLI
multiple instance

Cinderella
more non-included

PLI
more non-included

(a) runtime

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 0.5 1 1.5 2 2.5 3

m
em

o
ry

 c
o

n
su

m
p

ti
o

n
 [

G
B

]

number of tuples

Millions

Cinderella
multiple instance

PLI
multiple instance

Cinderella
more non-included

PLI
more non-included

(b) memory consumption

Figure 7.3: Results for discovering covering conditions over varying number of tuples.

Experiments for detecting completeness conditions using equivalent setups show

comparable results (Fig. 7.4). All observations appear even stronger pronounced,

which results again from the increased amount of work for discovering completeness

conditions instead of covering conditions on the same data set.

Our experimental results con�rm our comparison of the algorithms in Sec. 6.6,

as Cinderella is more runtime e�cient due to its additional pruning possibilities,

but needs always more memory than PLI, because of its breadth-�rst search manner

and its in-memory baskets.

117

Chapter 7. Evaluating and Leveraging Conditional Inclusion Dependencies

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

0 0.5 1 1.5 2 2.5 3

ru
n

ti
m

e
[s

]

number of tuples

Millions

Cinderella
multiple instance

PLI
multiple instance

Cinderella
more non-included

PLI
more non-included

(a) runtime

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 0.5 1 1.5 2 2.5 3

 m
em

o
ry
 c
o
n
su
m
p
ti
o
n
 [
G
B
]

number of tuples

Millions

Cinderella
multiple instance

PLI
multiple instance

Cinderella
more non-­‐included

PLI
more non-­‐included

(b) memory consumption

Figure 7.4: Results for discovering completeness conditions over varying number of

tuples.

7.1.3 Varying the Number Of Attributes

We evaluate the e�ect of the number of considered attributes. We generated data

sets of 300, 000 tuples with 150, 000 included tuples over 20 attributes providing 5

conditions of size 3, 10 conditions of size 2, and 20 conditions of size one. Each 300

tuples build a group. We varied the number of attributes for each data set from

10 to 90 and distributed the conditions over all attributes of these data sets. Note

that each condition of size 3 implies three further conditions of size 2 and three

conditions of size 1 with the same or higher validity and covering measures. Thus,

our set-up de�nes overall 85 conditions.

Figure 7.5 shows runtime and memory consumption for Cinderella and Pli.

The runtime increases � as expected � with the number of attributes in a data set.

118

7.1. E�ciency of Cind Discovery

ButCinderella is much less sensitive to increasing numbers of attributes than Pli;

actually the run of Pli over the data set of 70 attributes took 1h 45min compared

to Cinderella with 48s. This observation con�rms our complexity comparison of

both approaches: Pli cannot prune the search space as drastically as Cinderella,

which results in the longer runtime of Pli.

30

40

50

60

70

80

90

100

ru
nt

im
e

[s
] CINDERELLA; condition

attributes distributed over all
attributes

PLI; condition attributes
distributed over all attributes

0

10

20

0 10 20 30 40 50 60 70 80 90 100

number of attributes

(a) runtime

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

m
em

o
ry

 c
o

m
su

m
p

ti
o

n
 [

G
B

]

number of attributes

CINDERELLA; condition
attributes distributed over all
attributes

PLI; condition attributes
distributed over all attributes

(b) memory consumption

Figure 7.5: Results for discovering covering conditions over varying number of at-

tributes.

The memory consumption also increases with the increasing number of attributes.

Pli needs less memory than Cinderella for the �rst two data sets, i. e., for 10 and

20 attributes. For larger data sets Pli consumes more memory than Cinderella.

This observation also con�rms our complexity estimation: The increasing number

of attributes requires more position lists, which are the important factor for Pli.

119

Chapter 7. Evaluating and Leveraging Conditional Inclusion Dependencies

On the other hand, Cinderella stores all data once and additionally the frequent

itemsets, which are constant over all generated data sets for itemset size larger than

one.

7.1.4 Varying Distribution of Condition Attributes

This experiment evaluates the distribution of the actual condition attributes over

all considered attributes: Is the amount of work smaller if a constant number of

conditions covers less condition attributes? We reused the generated data sets from

the previous experiment. Additionally we generated data sets of the same numbers

of tuples, groups, and conditions, but used only the �rst 10 attributes as condition

attributes. That is, the algorithms must consider more attributes � without �nding

any conditions on these attributes.

Figure 7.6(a) shows the runtime and Figure 7.6(b) the memory consumption for

Cinderella and Pli for both set-ups. Surprisingly � at least on �rst sight � the

runtime and memory consumption do not di�er for both set-ups.

On second sight, the decisive factor for both measures is the number of candidates

that must be checked � not the number of attributes. The number of candidates are

the combinations of (sets of) attributes and their values. For Cinderella these

candidates are the built and tested itemsets, for Pli the position list intersections.

This number of candidates does not vary for both set-ups, which in turn results in

the same runtime and memory consumption.

Figure 7.6(c) con�rms this explanation using the example of Cinderella's run-

time: We split up the runtime in its individual parts. The larger amount of attributes

and values, i. e., the larger baskets, increase the time for reading the data and build-

ing the baskets. The time to create the one-itemsets also increases recognizably as

we cannot prune in this step. The runtime for the following steps does not increase

considerably, because of the pruned search space. This observation exactly �ts the

expectation from our explanation.

120

7.1. E�ciency of Cind Discovery

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

ru
n

ti
m

e
[s

]

number of attributes

CINDERELLA; condition
attributes distributed over all
attributes

CINDERELLA; condition
attributes distributed over
first 10 attributes

PLI; condition attributes
distributed over all attributes

PLI; condition attributes
distributed over first 10
attributes

(a) runtime

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

m
em

o
ry

 c
o

m
su

m
p

ti
o

n
 [

G
B

]

number of attributes

CINDERELLA; condition
attributes distributed over all
attributes

CINDERELLA; condition
attributes distributed over first
10 attributes

PLI; condition attributes
distributed over all attributes

PLI; condition attributes
distributed over first 10
attributes

(b) memory consumption

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

ru
n

ti
m

e
[s

]

number of attributes

read baskets

find frequent 1-itemsets

find frequent 2-itemsets

find frequent 3-itemsets

find frequent 4-itemsets

rule generation

(c) runtime of Cinderella split up into individual parts

Figure 7.6: Results for discovering covering conditions over varying number of at-

tributes with varying distribution of condition attributes.

121

Chapter 7. Evaluating and Leveraging Conditional Inclusion Dependencies

7.2 E�ectiveness of Cind Discovery

In this section we evaluate the e�ectiveness of our approach using three applications:

Our DBpedia persons use case, a Wikipedia Images use case, and a life science use

case.

7.2.1 Evaluating the DBpedia Persons Use Case

In this section we point out discovered conditions to show the value of applying the

concept of Cinds to our use case of detecting missing links. Figure 7.7 shows a

scatter plot over all covering conditions with an absolute threshold of at least one

person for persons in the German DBpedia to be included in the English DBpedia,

i. e., 566, 830 conditions. We can see that the conditions spread over the entire range

of γ for validity. The majority of conditions has a λ-covering of less than 0.01, which

corresponds to 744 persons.

Figure 7.7: Identi�ed conditions.

We decided to set the validity threshold depending on the instances. We use

the validity of an empty condition as reference value: As validity is computed as

the fraction of matching and included persons to all matching persons, the empty

condition's validity is the fraction of included persons to all persons in the dependent

data set. We use twice this validity value as threshold for γ-valid conditions.

German DBpedia persons included in the English DBpedia. The validity

of the empty condition is 0.42, i. e., 42% of persons in the German DBpedia are also

122

7.2. E�ectiveness of Cind Discovery

included in the English DBpedia. We used a covering threshold of 0.008 (i. e., 600

persons), which leads to a useful amount of conditions. We identify 85 conditions

with a γ-validity of above 0.84, including 16 conditions with γ > 0.95.

The two conditions among the 85 conditions with γ-validg > 0.84 with the largest

covering measure are description = American actor1 (γ-validg = 0.91, λ-covering

= 0.029, i. e., 2173 persons) or description = American actress (γ-validg = 0.89, λ-

covering = 0.024, i. e., 1791 persons). We also found both conditions in conjunction

with the condition birthcentury = 19 with slightly increased validity and slightly

decreased covering measures.

The above conditions are intuitive and hardly surprising. But we also found the

following unforeseen conditions. Note that these conditions are non-trivial: Similar

conditions that might be expectable were not found (i. e., con�rmed). We found the

following conditions:

• birthcentury = 18 ∧ description = American politician

(γ-validg = 0.94, λ-covering = 0.015)

• birthcentury = 19 ∧ deathplace = California

(γ-validg = 0.91, λ-covering = 0.015)

• birthcentury = 19 ∧ deathplace = Los Angeles

(γ-validg = 0.91, λ-covering= 0.010)

• birthcentury = 19 ∧ deathplace = New York City

(γ-validg = 0.86, λ-covering = 0.012)

Interestingly, we found a class of conditions using only the year of birth, e. g.,

birthyear = 1900, for the years 1900 to 1928 and 1945 to 1947. Each of these

conditions has a γ-validity of above 93% and a λ-covering between 0.8% to 1%,

i. e., 595 to 744 persons. Combining all these conditions using a disjunction results

in a overall validity of 93% and a covering of 28.8% (or 21, 454 persons). The reason

for these conditions can be seen in Fig. 7.8: The English DBpedia contains overall

more persons born in 1900 to 1928 and 1945 to 1947 compared to other years, while

there is no special behavior for these years in the German DBpedia. Thus, persons

born in these years are more likely to be included than others. If we had known

this data skew in advance, we could have guessed these conditions. But detecting

conditions led us to detect this data skew instead of imagining and checking all

possible, guessable variations in the data.

1Note that we provide translated condition values; the actual value is in German.

123

Chapter 7. Evaluating and Leveraging Conditional Inclusion Dependencies

0

500

1000

1500

2000

2500

3000

1800 1850 1900 1950 2000

n
u

m
b

e
r

o
f

p
e

rs
o

n
s

birthyear
English DBpedia German DBpedia

Figure 7.8: Persons per year of birth.

English DBpedia persons included in the German DBpedia. The validity

of the empty condition is 0.25, i. e., 25% of persons in the English DBpedia are also

included in the German DBpedia. We choose a covering threshold of 0.007. We

identi�ed 14 conditions with a γ-validity of above 0.5 with the maximum γ-validity

of 0.66.

We �nd obvious conditions, such as birthplace = Germany (γ-validg = 0.59, λ-

covering = 0.024, i. e., 1, 820 persons) or deathplace = Germany (γ-validg = 0.55, λ-

covering = 0.011, i. e., 832 persons), or again description = actor ∧ birthcentury

= 19 or description = actress (both with γ-validg = 0.60 and λ-covering = 0.01).

But we also �nd the following surprising conditions: We already introduced

in Chapter 6 the condition deathplace = United States ∧ birthcentury = 18 (γ-

validg = 0.51, λ-covering = 0.008, i. e., 888 persons), i. e., persons in the English

DBpedia who were born in the 19th century and died in the United States are

also included in the German DBpedia. This condition could be explained by the

large number of European emigrants to the United States in the 19th century.

We also found the unexpected condition description = road bicycle racer with

γ-validg = 0.66 and λ-covering = 0.012, i. e., 597 persons.

7.2.2 Evaluating a Wikipedia Use Case

A work closely related to ours is [33], which also discovers conditions for Cinds

and builds additionally a pattern tableau, but pre-selects condition attributes and

restricts considered conditions by parsimony. We use the same dataset to compare

the conditions discovered by both approaches.

124

7.2. E�ectiveness of Cind Discovery

Golab et al. [33] use two tables of Wikipedia data, namely table Image with

attributes name, size, width, height, bits, media_type, major_mime, minor_mime,

user, user_text, timestamp, sha1 and the table Imagelinks denoting links from web-

pages to image �les (attributes il_from and il_to). They assert the embedded

Ind image.name ⊆ imagelinks.il_to and build a pattern tableau with completeness

conditions of the pre-selected attributes bits, media_type, and user_text.

If we restrict our algorithms to the same attribute set with the same validity

threshold of 0.85 and a completeness of at least 0.003, we discover the same con-

ditions as [33], except the one on user_text = ProteinBoxBot, which shows a lower

validity in our experiments (γ-valid= 0.622 in our experiments vs. 0.971 in [33]). We

cannot explain this slight di�erence, as we have used the original dataset pointed

to by the authors. Cinderella runs 23s compared to 18s reported by [33] (on

presumably di�erent hardware).

However, our algorithms also discover more detailed conditions, which cannot

be found by [33]: For condition media_type = AUDIO there is another condition

media_type = AUDIO ∧ bits = 0 with the exact same validity and completeness. In

the same manner, the �ve conditions bits = 5, bits = 6, bits = 7, user_text =

Blofeld of SPECTRE, and user_text = Melesse can all be combined with media_type

= BITMAP while covering the same tuples. These stricter conditions give more insight

into the dataset and prevent wrongly generalizing the identi�ed conditions for similar

datasets.

The main advantage of our approach over [33] is that the condition attributes need

not be pre-selected. Running our algorithms without restricting attributes yields

even more interesting results: Unexpectedly, attributes width and height provide

conditions with higher completeness than all other attributes. Conditions width

= 200 ∧ major_mime = image and width = 300 ∧ major_mime = image both reach a

completeness of 0.04, instead of the completeness measures of the above conditions

between 0.003 and 0.008. Conditions height = 300 and height = 200 (each with

completeness = 0.02), height = 240 and width = 240, (each with completeness =

0.01) also have higher completeness. These conditions are non-trivial: other widths

and heights also appear in the dataset with similar frequency. Another interesting

identi�ed condition regarding audio data is bits = 0 ∧ major_mime = application

∧ minor_mime = ogg with completeness 0.008 and validity 0.9. Cinderella ran

78 s to identify 188 conditions with γ-valid > 0.85 and δ-complete > 0.008.

125

Chapter 7. Evaluating and Leveraging Conditional Inclusion Dependencies

In summary, the ability to select the condition attributes automatically led to the

discovery of more completeness conditions satisfying the same validity requirements,

which in turn provide a base to build better pattern tableaux. The authors of [33]

report an overall support of 0.0636, while we discover already individual conditions

with a completeness of 0.04, which corresponds to a support of 0.03. Simply choosing

our top two conditions yields a tableau with a completeness of 0.0824 (support

0.0641).

7.2.3 Evaluating a Life Sciences Application: UniProt

As last use case we consider our test data source UniProt, which references 67

databases � including our test data source PDB. We already mentioned this use

case in Section 1.1.

The BIOSQL schema, into which we parsed the UniProt data, de�nes relation

dbxref with attributes dbxref.dbname and dbxref.accessionnr to store links to other

data sources. Thus, dbxref.accessionnr is the dependent attribute of the approxi-

mate Ind to PDB (which we are able to discover with approximate Spider).

We set up two experiments: First, we used only relation dbxref to discover con-

ditions for the Cind. As attribute dbxref.accessionnr is a key in this relation

we discover completeness conditions. Second, we joined relations of BIOSQL to

dbxref � using the Inds discovered by Spider. We used this join results as input

for condition discovery. In this case we must discover covering conditions, because

dbxref.accessionnr is not a key on the join result.

In the �rst set-up we were able to discover two conditions: dbname = PDB and

dbname = PDB ∧ dbxref_version = 0. Both conditions are correct and provide the

same measures for validity (0.976) and completeness (1.0).

The second set-up provides much more interesting insights: We identi�ed 28

conditions within 74 s. We found condition dbname = PDB ∧ division = HUMAN (and

the more explicit condition dbname = PDB ∧ division = HUMAN ∧ dbxref_version =

0 ∧ bioentry_version = 0 ∧ tax_oid = 2326040) with γ-validg = 0.96, λ-covering

= 0.24. Further we found condition dbname = PDB ∧ division = ECOLI (and again

the more explicit condition dbname = PDB ∧ division = ECOLI ∧ dbxref_version =

0 ∧ bioentry_version = 0 ∧ tax_oid = 2336138) with γ-validg = 0.989, λ-covering

= 0.12. This observation means, about 35% of all proteins in UniProt that reference

PDB are proteins of Human or Escherichia coli: We are able to explain semantically

126

7.2. E�ectiveness of Cind Discovery

which proteins reference PDB and can therefore identify proteins that probably

should cross-reference PDB.

127

Chapter 7. Evaluating and Leveraging Conditional Inclusion Dependencies

128

Chapter 8

Conclusions

In this thesis we propose several approaches for dependency discovery, which aim to

support data integration. We focus on discovering inclusion dependencies � in several

variations � and conditional inclusion dependencies. We use several applications

from data integration in the life sciences and from link discovery for linked open

data to show the relevance of our approaches and to show their e�ectiveness and

e�ciency.

In particular, we propose Spider � an e�cient algorithm for unary inclusion

dependency discovery. Spider leverages the sorting capabilities of RDBMS and

tests afterwards all Ind candidates in parallel while saving computation. We com-

pare Spider to several Sql approaches and a brute force approach providing a

complexity estimation and an extensive experimental evaluation. The complexity of

Spider depends only in the number of attributes, while other approaches depend on

the number of Ind candidates, i. e., the square of the number of attributes. For large

schemas Spider outperforms previous approaches by an order of magnitude. This

feasibility enables pro�ling entirely unknown data sources. It led to a cooperation

with FUZZY! Informatik AG, a German company providing the data pro�ling tool

FUZZY! DIME. The tool's Ind discovery is based on an implementation of Spider.

We leverage discovered Inds for deriving foreign keys. We propose two approaches

for �ltering foreign keys from discovered Inds based on heuristics and machine learn-

ing. Both approaches reach F-measures of in average 93%. Further we use discov-

ered Inds to derive the primary relation of data sources � a domain speci�c property

in life sciences data sources, which is used later on for discovering cross-references

between data sources.

129

Chapter 8. Conclusions

We extend Spider in three ways: (i) Composite Spider discovers composite Inds

in a given schema by generating and testing composite Ind candidates level-wise.

It is especially suited for discovering composite Inds of lower levels, which makes

it a good extension for related approaches targeting discovery of composite Inds

of higher levels. (ii) Approximate Spider discovers approximate Inds, which are

necessary for Ind discovery on dirty data. We con�rm Spider's e�ciency also for

approximate Ind discovery. (iii) LinkFinder discovers su�x and pre�x Inds, which

aim for discovering cross-references between data sources. LinkFinder e�ciently

discovered previously known and even unknown, yet correct cross-references between

our life sciences test data sources.

All these approaches support gathering information for data integration in the

life sciences. We united the algorithms in our tool Aladin to enable discovering and

leveraging data dependencies for data integration. In a �rst step unary, composite,

approximate Inds, and accession number candidates can be discovered. Afterwards,

foreign keys and the primary relation of a data source can be derived. In the third

step, cross-references between data sources can be found using LinkFinder or

approximate Spider.

Future work on inclusion dependency discovery could investigate data sources on

typical pattern of Inds to improve data pro�ling at all: Are there typical pattern of

Inds in data sources? Are there domain dependent pattern? The algorithms pro-

posed in this thesis for discovering Inds in a given data source provide the basis for

this application. Another valuable direction for future work regards re�ning Spider

for parallel, distributed algorithms to support Ind discovery in further increasing

amounts of data, up to Big Data. We propose two alternatives: (i) We split up the

attributes' sorted values into blocks of data with minimum and maximum values

and check the Ind candidates over all attributes for each block in parallel. Only

those Inds are satis�ed that are con�rmed in all blocks. The challenge is to de-

�ne the thresholds to split the set of all attributes' values into equally sized blocks.

(ii) We split up the set of attributes while assigning each attribute to several blocks.

After checking all Ind candidates in each block in parallel, the transitivity of Inds

is used to con�rm or refuse unchecked Ind candidates. Remaining Ind candidates

must be checked afterwards. The challenge is to de�ne the overlap between chunks

of attributes that allows an overall speed-up.

For conditional inclusion dependency discovery we extend the de�nition of Cinds

130

to distinguish covering from completeness conditions. In this way, we enable new

applications showing the value of Cind discovery. In the domain of linked open

data we propose candidates for missing links, in the domain of life sciences we

describe which instances reference other data sources providing a semantical expla-

nation of the cross-references. We propose two algorithms for condition discovery:

Cinderella is based on association rule mining; Pli is based on position list inter-

sections. Both algorithms discover conditions conforming given quality thresholds

without the need to pre-select condition attributes � as opposed to previous ap-

proaches. This feasibility enables discovering unexpected, yet useful conditions as

we showed with our test data sources and with an application from related work.

Our experimental evaluation showed that Cinderella is faster than Pli, while Pli

needs less memory for smaller numbers of attributes (< 20 in our experiments).

Future work on Cind discovery should adapt the distinction of covering and com-

plete conditions to demanding conditions, i. e., the right-hand side of the pattern

tableau, to enable further bene�ts for link discovery in linked open data: Note that

the known Cind de�nition matches only completeness demanding conditions. For

instance, if there is a person in English DBpedia matching the selecting condition

birthplace = California, we could require the referenced person in the German

DBpedia to match birthplace = Kalifornien. But according to the Cind de�ni-

tion this person is not allowed to have also a triple stating birthplace = United

States. Thus, we would need to modify the Cind de�nition for this adaptation.

This modi�cation promises valuable possibilities to leverage Cinds: The obvious

use is to improve data quality, which would be enough justi�cation in itself. But

there is again another application in linked open data. Spoken in our DBpedia

person's use case, we can so far identify persons that should probably have a link

without saying which corresponding person should be linked at. Demanding con-

ditions can provide a set of probably corresponding persons: Consider a selecting

condition selecting included persons; these included persons reference their corre-

sponding persons in the referenced relation. We can discover demanding conditions

over these corresponding persons, e. g., using our algorithms. Persons that match

these demanding conditions but are not (yet) corresponding persons should probably

be linked at from non-included persons matching the selecting condition.

In summary, dependency discovery is a powerful tool for gathering necessary

information for data integration � as we showed using our two motivating application

131

Chapter 8. Conclusions

domains: Data integration in life sciences data sources and link discovery for linked

open data. In today's steeply increasing amounts of data and data sources, e�ective

and e�cient data pro�ling techniques become even more important. This thesis

contributes to this challenge providing several algorithms for the �eld of dependency

discovery.

132

Bibliography

[1] Abedjan, Ziawasch: Discovering unique column combinations within a

database, Hasso-Plattner-Institut für Softwaresystemtechnik an der Universität

Potsdam, Master's thesis, 2010

[2] Agrawal, Rakesh ; Srikant, Ramakrishnan: Fast Algorithms for Mining

Association Rules in Large Databases. In: VLDB '94: Proceedings of the 20th

International Conference on Very Large Data Bases. San Francisco, CA, USA,

1994, S. 487�499

[3] Albrecht, Oliver: Filtern von Fremdschlüsseln aus Inklusionsbeziehungen.

term paper at Humboldt-Universität zu Berlin (Studienarbeit), 2007

[4] Bairoch, A. ; Apweiler, R. ; Wu, C. H. ; Barker, W. C. ; Boeckmann,

B. ; Ferro, S. ; Gasteiger, E. ; Huang, H. ; Lopez, R. ; Magrane, M.

; Martin, M.J. ; Natale, D.A. ; O'Donovan, C. ; Redaschi, N. ; Yeh,

L.S.: The Universal Protein Resource (UniProt). In: Nucleic Acids Research

33(Database issue) (2005), S. D154�9

[5] Baker, P. ; Brass, A. ; Bechhofer, S. ; Goble, C. ; Paton, N. ; Stevens:

TAMBIS: Transparent Access to Multiple Bioinformatics Information Systems.

In: Proceedings of the 6th International Conference on Intelligent Systems for

Molecular Biology, 1998, S. 25�34

[6] Bauckmann, Jana ; Abedjan, Ziawasch ; Leser, Ulf ; Müller, Heiko ;

Naumann, Felix: Covering or Complete? Discovering Conditional Inclusion

Dependencies / Hasso-Plattner-Institut für Softwaresystemtechnik an der Uni-

versität Potsdam. 2012 (62). � Technical Report

[7] Bauckmann, Jana ; Abedjan, Ziawasch ; Leser, Ulf ; Müller, Heiko ;

Naumann, Felix: Discovering conditional inclusion dependencies. In: CIKM

133

Bibliography

'12: 21st ACM International Conference on Information and Knowledge Man-

agement, 2012, S. 2094�2098

[8] Bauckmann, Jana ; Leser, Ulf ; Naumann, Felix: E�cient and Exact

Computation of Inclusion Dependencies for Data Integration / Hasso-Plattner-

Institut für Softwaresystemtechnik an der Universität Potsdam. 2010 (34). �

Technical Report

[9] Bauckmann, Jana ; Leser, Ulf ; Naumann, Felix ; Tietz, Véronique: Ef-

�ciently Detecting Inclusion Dependencies. In: ICDE '07: Proceedings of the

23rd International Conference on Data Engineering. Istanbul, Turkey, 2007, S.

1448�1450

[10] Bell, Siegfried ; Brockhausen, Peter: Discovery of Constraints and Data

Dependencies in Databases / Universität Dortmund, Fachbereich Informatik,

Lehrstuhl VIII, Künstliche Intelligenz. 1995. � Research Report

[11] Bell, Siegfried ; Brockhausen, Peter: Discovery of Data Dependencies in

Relational Databases. In: Statistics, Machine Learning and Knowledge Discov-

ery in Databases, ML�Net Familiarization Workshop, 1995, S. 53�58

[12] Belleau, François ; Nolin, Marc-Alexandre ; Tourigny, Nicole ; Rigault,

Philippe ; Morissette, Jean: Bio2RDF: Towards a mashup to build bioinfor-

matics knowledge systems. In: Journal of Biomedical Informatics 41 (2008),

Nr. 5, S. 706 � 716

[13] Berman, H.M. ; Westbrook, J. ; Feng, Z. ; Gilliland, G. ; Bhat, T.N.

; Weissig, H. ; Shindyalov, I.N. ; Bourne, P.E.: The Protein Data Bank.

In: Nucleic Acids Research 28 (2000), Nr. 1, S. 235�242

[14] Berti-Equille, Laure ; Moussouni, Fouzia: Quality Aware Integration and

Warehousing of Genomic Data. In: ICIQ '05: Proceedings of the 10th Interna-

tional Conference on Information Quality, 2005

[15] Bizer, Christian ; Lehmann, Jens ; Kobilarov, Georgi ; Auer, Sören ;

Becker, Christian ; Cyganiak, Richard ; Hellmann, Sebastian: DBpedia

- A crystallization point for the Web of Data. In: Journal of Web Semantics 7

(2009), Nr. 3, S. 154�165

134

Bibliography

[16] Bloom, Burton H.: Space/time trade-o�s in hash coding with allowable errors.

In: Communications of the ACM 13 (1970), Nr. 7, S. 422�426

[17] Boulakia, Sarah C. ; Leser, Ulf: Next Generation Data Integration for Life

Sciences. In: ICDE '11: Proceedings of the 27th International Conference on

Data Engineering, 2011, S. 1366�1369

[18] Brauer, Falk ; Rieger, Robert ; Mocan, Adrian ; Barczynski, Woj-

ciech M.: Enabling information extraction by inference of regular expressions

from sample entities. In: CIKM '11: Proceedings of the 20th ACM International

Conference on Information and Knowledge Management. New York, NY, USA

: ACM, 2011, 1285�1294

[19] Bravo, Loreto ; Fan, Wenfei ; Ma, Shuai: Extending dependencies with

conditions. In: VLDB '07: Proceedings of the 33rd International Vonference

on Very Large Data Bases, 2007, S. 243�254

[20] Brown, Paul ; Haas, Peter J.: BHUNT: Automatic Discovery of Fuzzy

Algebraic Constraints in Relational Data. In: VLDB '03: 29th International

Conference on Very Large Data Bases, 2003, S. 668�679

[21] Casanova, Marco A. ; Fagin, Ronald ; Papadimitriou, Christos H.: Inclu-

sion dependencies and their interaction with functional dependencies. In: PODS

'82: Proceedings of the 1st ACM SIGACT-SIGMOD symposium on Principles

of database systems. New York, NY, USA : ACM, 1982, S. 171�176

[22] Chiang, Fei ; Miller, Renée J.: Discovering data quality rules. In: Proceed-

ings of the VLDB Endowment (PVLDB) 1 (2008), S. 1166�1177

[23] Curé, Olivier: Conditional Inclusion Dependencies for Data Cleansing: Dis-

covery and Violation Detection Issues. In: QDB 2009: 7th International Work-

shop on Quality in Databases, 2009

[24] Dale, Nell ; Walker, Henry M.: Abstract Data Types. Speci�cations, Imple-

mentations and Applications. Jones and Bartlett Publishers, Inc., 1996

[25] Dasu, Tamraparni ; Johnson, Theodore ; Muthukrishnan, S. ;

Shkapenyuk, Vladislav: Mining Database Structure; Or, How to Build a

135

Bibliography

Data Quality Browser. In: Proceedings of the 2002 ACM SIGMOD Interna-

tional Conference on Management of Data, 2002, S. 240�251

[26] Fan, Wenfei: Dependencies revisited for improving data quality. In: PODS

'08: Proceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART sym-

posium on Principles of database systems. New York, NY, USA : ACM, 2008,

S. 159�170

[27] Fan, Wenfei ; Geerts, Floris ; Jia, Xibei ; Kementsietsidis, Anastasios:

Conditional functional dependencies for capturing data inconsistencies. In:

ACM Transactions on Database Systems (TODS) 33 (2008), Nr. 2, S. 1�48

[28] Fan, Wenfei ; Geerts, Floris ; Li, Jianzhong ; Xiong, Ming: Discovering

Conditional Functional Dependencies. In: IEEE Transactions on Knowledge

and Data Engineering (TKDE) 23 (2011), Nr. 4, S. 683�698

[29] Franklin, Michael ; Halevy, Alon ; Maier, David: From databases to

dataspaces: a new abstraction for information management. In: SIGMOD

Record 34 (2005), Dezember, Nr. 4, S. 27�33

[30] Galperin, Michael Y. ; Fernández-Suárez, Xosé M.: The 2012 Nucleic

Acids Research Database Issue and the online Molecular Biology Database Col-

lection. In: Nucleic Acids Research 40 (2012), Nr. D1, S. D1�D8

[31] Goble, Carole ; Stevens, Robert: State of the nation in data integration for

bioinformatics. In: Journal of Biomedical Informatics 41 (2008), Nr. 5, S. 687

� 693

[32] Golab, Lukasz ; Karloff, Howard ; Korn, Flip ; Srivastava, Divesh ; Yu,

Bei: On generating near-optimal tableaux for conditional functional dependen-

cies. In: Proceedings of the VLDB Endowment (PVLDB) 1 (2008), August, S.

376�390

[33] Golab, Lukasz ; Korn, Flip ; Srivastava, Divesh: E�cient and E�ective

Analysis of Data Quality using Pattern Tableaux. In: IEEE Data Engineering

Bulletin 34 (2011), Nr. 3, S. 26�33

[34] Guérin, E. ; Marquet, G. ; Burgun, A. ; Loréal, O. ; Berti-Equille,

L. ; Leser, U. ; Moussouni, F.: Integrating and warehousing liver gene

136

Bibliography

expression data and related biomedical resources in GEDAW. In: DILS '05:

Proceedings of the Second international conference on Data Integration in the

Life Sciences, 2005, S. 158�174

[35] Gusfield, Dan: Algorithms on Strings, Trees, and Sequences. Cambrige

University Press., 1997

[36] Halevy, Alon ; Franklin, Michael ; Maier, David: Principles of datas-

pace systems. In: PODS '06: Proceedings of the twenty-�fth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, ACM Press,

2006, S. 1�9

[37] Halpin, Harry ; Hayes, Pat ; McCusker, James P. ; McGuinness, Debo-

rah ; Thompson, Henry S.: When owl:sameAs isn't the Same: An Analysis

of Identity in Linked Data. In: ISWC2010: 9th International Semantic Web

Conference, 2010

[38] Hegewald, Jan: Automatisiertes Au�nden von Prä�x- und Su�x-

Inklusionsabhängigkeiten in relationalen Datenbankmanagementsystemen,

Humboldt-Universität zu Berlin, Diplomarbeit, 2007. � also published in

Hegewald, J. Gebauer, D. M. (Ed.) Informationsintegration in Biodaten-

banken. Automatisches Finden von Abhängigkeiten zwischen Datenquellen

Vieweg+Teubner Research, 2009

[39] Hernandez, Thomas ; Kambhampati, Subbarao: Integration of biological

sources: current systems and challenges ahead. In: SIGMOD Record 33 (2004),

Nr. 3, S. 51�60

[40] Hubbard, T. ; Barker, D. ; Birney, E. ; Cameron, G. ; Chen, Y. ;

Clark, L. ; Cox, T. ; Cuff, J. ; Curwen, V. ; Down, T. ; al. et: The

Ensembl genome database project. In: Nucleic Acids Research 30(1) (2002), S.

38�41

[41] Huhtala, Ykä ; Kärkkäinen, Juha ; Porkka, Pasi ; Toivonen, Hannu:

TANE: An E�cient Algorithm for Discovering Functional and Approximate

Dependencies. In: Computer Journal 42 (1999), Nr. 2, S. 100�111

137

Bibliography

[42] Kantola, Martti ; Mannila, Heikki ; Räihä, Kari-Jouko ; Siirtola, Harri:

Discovering Functional and Inclusion Dependencies in Relational Databases.

In: International Journal of Intelligent Systems 7 (1992), S. 591�607

[43] Koeller, Andreas: Integration of Heterogeneous Databases: Discovery of

Meta-Information and Maintenance of Schema-Restructuring Views, Worcester

Polytechnic Institute, PhD thesis, 2001

[44] Koeller, Andreas ; Rundensteiner, Elke A.: Discovery of High-

Dimensional Inclusion Dependencies. In: ICDE '03: Proceedings of the 19th

International Conference on Data Engineering, 2003, S. 683�685

[45] Koeller, Andreas ; Rundensteiner, Elke A.: Heuristic Strategies for the

Discovery of Inclusion Dependencies and Other Patterns. In: Journal on Data

Semantics 5 (2006), S. 185�210

[46] Lenzerini, Maurizio: Data integration: a theoretical perspective. In: PODS

'02: Proceedings of the twenty-�rst ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems. New York, NY, USA : ACM, 2002, S.

233�246

[47] Leser, Ulf ; Naumann, Felix: (Almost) Hands-O� Information Integration for

the Life Sciences. In: CIDR '05: Proceedings of the Second Biennial Conference

on Innovative Data Systems Research, 2005

[48] Li, Yunyao ; Krishnamurthy, Rajasekar ; Raghavan, Sriram ;

Vaithyanathan, Shivakumar ; Jagadish, H. V.: Regular expression learning

for information extraction. In: EMNLP '08: Proceedings of the Conference on

Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA :

Association for Computational Linguistics, 2008, S. 21�30

[49] Liu, Bing ; Hsu, Wynne ; Ma, Yiming: Integrating Classi�cation and As-

sociation Rule Mining. In: KDD-98: Proceedings of the Fourth International

Conference on Knowledge Discovery and Data Mining, 1998, S. 80�86

[50] Lo Conte, Loredana ; Brenner, Steven E. ; Hubbard, Tim J. ; Chothia,

Cyrus ; Murzin, Alexey G.: SCOP database in 2002: re�nements accommo-

date structural genomics. In: Nucleic Acids Research 30(1) (2002), S. 264�267

138

Bibliography

[51] Lopes, Stéphane ; Petit, Jean-Marc ; Toumani, Farouk: Discovering in-

teresting inclusion dependencies: application to logical database tuning. In:

Information Systems 27 (2002), Nr. 1, S. 1�19

[52] Marchi, Fabien D. ; Lopes, Stéphane ; Petit, Jean-Marc: E�cient Al-

gorithms for Mining Inclusion Dependencies. In: EDBT '02: Proceedings of

the 8th International Conference on Extending Database Technology, Springer-

Verlag, 2002, S. 464�476

[53] Marchi, Fabien D. ; Lopes, Stéphane ; Petit, Jean-Marc: Unary and n-

ary inclusion dependency discovery in relational databases. In: Journal of

Intelligent Information Systems (JIIS) 32 (2009), Nr. 1, S. 53�73

[54] Marchi, Fabien D. ; Petit, Jean-Marc: Zigzag: a new algorithm for mining

large inclusion dependencies in databases. In: ICDM '03: Proceedings of the

Third IEEE International Conference on Data Mining, 2003, S. 27�34

[55] Müller, Heiko ; Leser, Ulf ; Freytag, Johann-Christoph: Mining for pat-

terns in contradictory data. In: IQIS '04: International Workshop on Informa-

tion Quality in Information Systems, 2004

[56] Murzin, A. G. ; Brenner, S. E. ; Hubbard, T. ; Chothia, C.: SCOP: a

structural classi�cation of proteins database for the investigation of sequences

and structures. In: Journal of Molecular Biology 247 (1995), Nr. 4, S. 536�40

[57] Orengo, CA ; Michie, AD ; Jones, S ; Jones, DT ; Swindells, MB ;

Thornton, JM: CATH�a hierarchic classi�cation of protein domain struc-

tures. In: Structure 5 (1997), Nr. 8, S. 1093�1108

[58] Petit, Jean-Marc ; Toumani, Farouk ; Boulicaut, Jean-Francois ;

Kouloumdjian, Jacques: Towards the Reverse Engineering of Denormal-

ized Relational Databases. In: ICDE '96: Proceedings of the 12th International

Conference on Data Engineering (1996), S. 218

[59] Rahm, E. ; Bernstein, P. A.: A Survey of Approaches to Automatic Schema

Matching. In: The VLDB Journal 10 (2001), Nr. 4, S. 334�350

[60] Rostin, Alexandra ; Albrecht, Oliver ; Bauckmann, Jana ; Naumann,

Felix ; Leser, Ulf: A Machine Learning Approach to Foreign Key Discovery. In:

139

Bibliography

12th International Workshop on the Web and Databases (WebDB). Providence,

Rhode Island, 2009

[61] Schrag, Roger: Speeding Up Queries with Semi-Joins and Anti-Joins: How

Oracle Evaluates EXISTS, NOT EXISTS, IN, and NOT IN. White paper @

dbspecialists.com. http://www.dbspecialists.com/files/presentations/

semijoins.html. Version: 2005

[62] Srikant, Ramakrishnan ; Vu, Quoc ; Agrawal, Rakesh: Mining Association

Rules with Item Constraints. In: KDD-97: Proceedings of the Third Interna-

tional Conference on Knowledge Discovery and Data Mining, 1997, S. 67�73

[63] Trissl, Silke ; Rother, Kristian ; Müller, Heiko ; Steinke, Thomas

; Koch, Ina ; Preissner, Robert ; Frömmel, Cornelius ; Leser, Ulf:

Columba: An Integrated Database of Proteins, Structures, and Annotations.

In: BMC Bioinformatics 6 (2005), S. 81

[64] Villanueva-Rosales, Natalia ; Dumontier, Michel: yOWL: An ontology-

driven knowledge base for yeast biologists. In: Journal of Biomedical Informat-

ics 41 (2008), Nr. 5, S. 779 � 789

[65] Vitter, Je�rey S.: Algorithms and Data Structures for External Memory. In:

Foundations and Trends in Theoretical Computer Science 2 (2006), Nr. 4, S.

305�474

[66] Warren, Robert H. ; Tompa, Frank W.: Multi-column substring match-

ing for database schema translation. In: VLDB '06: Proceedings of the 32nd

International Conference on Very Large Data Bases, 2006, S. 331�342

[67] Zhang, Meihui ; Hadjieleftheriou, Marios ; Ooi, Beng C. ; Procopiuc,

Cecilia M. ; Srivastava, Divesh: On multi-column foreign key discovery. In:

Proceedings of the VLDB Endowment (PVLDB) 3 (2010), September, S. 805�

814

140

http://www.dbspecialists.com/files/presentations/semijoins.html
http://www.dbspecialists.com/files/presentations/semijoins.html

Selbständigkeitserklärung

Hiermit versichere ich, die vorliegende Dissertation eigenständig und ausschlieÿlich

unter Verwendung der angegebenen Hilfsmittel, angefertigt zu haben. Alle ö�entli-

chen Quellen sind als solche kenntlich gemacht. Die vorliegende Arbeit ist in dieser

oder anderer Form zuvor nicht als Prüfungsarbeit zur Begutachtung vorgelegt wor-

den.

Potsdam, den 2013/02/28

141

	Title
	Imprint

	Contents
	Dependencies for Data Integration
	Data Integration in the Life Sciences
	Link Discovery for Linked Open Data
	Contributions and Outline

	Identifying Database Structure
	Related Topics for Schema Discovery
	Terms and Definitions
	Test Data Sources

	Discovering Unary Inclusion Dependencies
	SQL approaches
	Single Pass Inclusion DEpendency Recognition (SPIDER)
	Basic test for single IND candidates
	Parallel test for all IND candidates with SPIDER
	The SPIDER algorithm

	Pruning IND candidates
	Simple strategies
	Bloom filter
	Filtering and Performance

	Related Work

	Evaluating and Leveraging Unary Inclusion Dependency Discovery
	Efficiency of Unary IND Discovery
	Evaluating the SQL approaches
	Evaluating SPIDER
	Evaluating the Effects of Pruning

	Leveraging Intra-Schema INDs
	Effectiveness for Real World Data
	Deriving Foreign Keys
	Deriving Primary Relations

	Leveraging Inter-Schema INDs

	Extending Inclusion Dependency Discovery
	Composite SPIDER: Discovering Composite INDs
	Extending SPIDER
	Evaluating Composite SPIDER
	Related Work

	Approximate SPIDER: Discovering Approximate INDs on Dirty Data
	Extending SPIDER
	Evaluating Approximate SPIDER
	Related Work

	LINKFINDER: Discovering Prefix and Suffix INDs
	Similarities and Differences to IND Discovery
	LinkFinder By Example
	The LINKFINDER Algorithm
	Extending LINKFINDER
	Evaluating LINKFINDER
	Related Work

	Discovering Conditional Inclusion Dependencies
	Requirements of CIND discovery
	Features of Conditions
	Quality of Conditions
	Challenges of Condition Discovery

	Classifying CINDs
	Defining Condition Features
	Measuring Condition Features

	Discovering Restricted Conditions with SQL
	Discovering General CINDs With CINDERELLA
	The Cinderella Algorithm
	Discovering Completeness Conditions with Cinderella

	Discovering General CINDs with PLI
	Position Lists and Intersections
	The PLI Algorithm
	Discovering Completeness Conditions with PLI

	Complexity of Cinderella and PLI
	Related Work

	Evaluating and Leveraging Conditional Inclusion Dependencies
	Efficiency of Cind Discovery
	Varying the Number of Conditions
	Varying the Size of Data Set
	Varying the Number Of Attributes
	Varying Distribution of Condition Attributes

	Effectiveness of Cind Discovery
	Evaluating the DBpedia Persons Use Case
	Evaluating a Wikipedia Use Case
	Evaluating a Life Sciences Application: UniProt

	Conclusions
	Bibliography

