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Allgemeinverständliche Zusammenfassung

Die Untersuchung des oberflächennahen Untergrundes erfolgt heutzutage bei Frage-
stellungen aus den Bereichen des Bauwesens, der Archäologie oder der Geologie und
Hydrologie oft mittels zerstörungsfreier beziehungsweise zerstörungsarmer Methoden der
angewandten Geophysik. Ein Bereich, der eine immer zentralere Rolle in Forschung und
Ingenieurwesen einnimmt, ist die Untersuchung von sedimentären Umgebungen, zum
Beispiel zur Charakterisierung oberflächennaher Grundwassersysteme. Ein in diesem
Kontext häufig eingesetztes Verfahren ist das des Georadars (oftmals GPR - aus dem
Englischen ground-penetrating radar). Dabei werden kurze elektromagnetische Impulse
von einer Antenne in den Untergrund ausgesendet, welche dort wiederum an Kontrasten
der elektromagnetischen Eigenschaften (wie zum Beispiel an der Grundwasseroberfläche)
reflektiert, gebrochen oder gestreut werden. Eine Empfangsantenne zeichnet diese Signale
in Form derer Amplituden und Laufzeiten auf. Eine Analyse dieser aufgezeichneten
Signale ermöglicht Aussagen über den Untergrund, beispielsweise über die Tiefenlage
der Grundwasseroberfläche oder die Lagerung und Charakteristika oberflächennaher
Sedimentschichten. Dank des hohen Auflösungsvermögens der GPR-Methode sowie
stetiger technologischer Entwicklungen erfolgt heutzutage die Aufzeichnung von GPR-
Daten immer häufiger in 3D.

Trotz des hohen zeitlichen und technischen Aufwandes für die Datenakquisition
und -bearbeitung werden die resultierenden 3D-Datensätze, welche den Untergrund
hochauflösend abbilden, typischerweise von Hand interpretiert. Dies ist in der Regel ein
äußerst zeitaufwendiger Analyseschritt. Daher werden oft repräsentative 2D-Schnitte aus
dem 3D-Datensatz gewählt, in denen markante Reflektionsstrukuren markiert werden.
Aus diesen Strukturen werden dann sich ähnelnde Bereiche im Untergrund als so genannte
Radar-Fazies zusammengefasst. Die anhand von 2D-Schnitten erlangten Resultate werden
dann als repräsentativ für die gesamte untersuchte Fläche angesehen. In dieser Form
durchgeführte Interpretationen sind folglich oft unvollständig sowie zudem in hohem
Maße von der Expertise der Interpretierenden abhängig und daher in der Regel nicht
reproduzierbar.

Eine vielversprechende Alternative beziehungsweise Ergänzung zur manuellen In-
terpretation ist die Verwendung von so genannten GPR-Attributen. Dabei werden
nicht die aufgezeichneten Daten selbst, sondern daraus abgeleitete Größen, welche die
markanten Reflexionsstrukturen in 3D charakterisieren, zur Interpretation herangezogen.
In dieser Arbeit wird anhand verschiedener Feld- und Modelldatensätze untersucht, welche
Attribute sich dafür insbesondere eignen. Zudem zeigt diese Arbeit, wie ausgewählte
Attribute mittels spezieller Bearbeitungs- und Klassifizierungsmethoden zur Erstellung
von 3D-Faziesmodellen genutzt werden können. Dank der Möglichkeit der Erstellung so
genannter attributbasierter 3D-GPR-Faziesmodelle können zukünftige Interpretationen
zu gewissen Teilen automatisiert und somit effizienter durchgeführt werden. Weiterhin
beschreiben die so erhaltenen Resultate den untersuchten Untergrund in reproduzierbarer
Art und Weise sowie umfänglicher als es bisher mittels manueller Interpretationsmethoden
typischerweise möglich war.





General Summary

Today, near-surface investigations are frequently conducted using non-destructive or
minimally invasive methods of applied geophysics, particularly in the fields of civil
engineering, archaeology, geology, and hydrology. One field that plays an increasingly
central role in research and engineering is the examination of sedimentary environments,
for example, for characterizing near-surface groundwater systems. A commonly employed
method in this context is ground-penetrating radar (GPR). In this technique, short
electromagnetic pulses are emitted into the subsurface by an antenna, which are then
reflected, refracted, or scattered at contrasts in electromagnetic properties (such as the
water table). A receiving antenna records these signals in terms of their amplitudes and
travel times. Analysis of the recorded signals allows for inferences about the subsurface,
such as the depth of the groundwater table or the composition and characteristics
of near-surface sediment layers. Due to the high resolution of the GPR method and
continuous technological advancements, GPR data acquisition is increasingly performed
in three-dimensional (3D) fashion today.

Despite the considerable temporal and technical efforts involved in data acquisition and
processing, the resulting 3D data sets (providing high-resolution images of the subsurface)
are typically interpreted manually. This is generally an extremely time-consuming analysis
step. Therefore, representative 2D sections highlighting distinctive reflection structures
are often selected from the 3D data set. Regions showing similar structures are then
grouped into so-called radar facies. The results obtained from 2D sections are considered
representative of the entire investigated area. Interpretations conducted in this manner
are often incomplete and highly dependent on the expertise of the interpreters, making
them generally non-reproducible.

A promising alternative or complement to manual interpretation is the use of GPR
attributes. Instead of using the recorded data directly, derived quantities characterizing
distinctive reflection structures in 3D are applied for interpretation. Using various field
and synthetic data sets, this thesis investigates which attributes are particularly suitable
for this purpose. Additionally, the study demonstrates how selected attributes can
be utilized through specific processing and classification methods to create 3D facies
models. The ability to generate attribute-based 3D GPR facies models allows for partially
automated and more efficient interpretations in the future. Furthermore, the results
obtained in this manner describe the subsurface in a reproducible and more comprehensive
manner than what has typically been achievable through manual interpretation methods.





Scientific Abstract

Ground-penetrating radar (GPR) is a widely recognized tool for imaging the near-surface
across diverse fields, including engineering, archaeology, geology, and sedimentology. Re-
cent advancements in GPR system design, processing tools, and analysis techniques have
led to an increased adoption of 3D GPR. The collected 3D GPR data sets typically exhibit
superior resolution compared to other near-surface geophysical methods, establishing
GPR as a standard for imaging complex near-surface sedimentary environments.

Despite technological progress in GPR, the development of techniques for interpreting
3D GPR data sets has not kept pace with the growing level of detail in imaged
sedimentary structures. Typically, 3D GPR data sets collected across sedimentary
systems are interpreted manually and, thus, results are frequently considered subjective
and non-reproducible. Furthermore, manual approaches are time-consuming and, hence,
interpretations tend to focus on selected 2D slices assumed to be representative of the
entire 3D data set. To address these challenges and advance towards a more objective,
reproducible, and comprehensive approach for interpreting 3D GPR data sets imaging
sedimentary environments, this thesis reports on the development, evaluation, and
application of attribute analysis and attribute classification to produce classified GPR
facies models.

In contemporary geophysical applications, assessing novel processing, analysis, and
interpretation approaches often involves utilizing subsurface models and corresponding
synthetic geophysical data sets. The first part of this thesis presents a modeling study
resulting in a publicly available 3D GPR data set and model. This model is generated
using outcrop observations and field measurements resulting in a realistic 3D distribution
of electromagnetic properties in a gravel pit. This model is then used to simulate densely
sampled 3D GPR reflection data sets employing commonly used source frequencies.

This thesis focuses on the use of attribute analyses and classifications to structure
the subsurface, employing two prominent multi-trace attribute families: structure and
texture attributes. The second part of this thesis introduces the 3D gradient structure
tensor (GST) approach to calculate GPR structure attributes. It outlines the basic ideas
behind the GST approach, and detailed parameter testing is conducted using synthetic
data sets and models from the first part. The GST approach is subsequently applied
to two GPR field data sets, showcasing its potential for analyzing 3D GPR data sets
imaging diverse sedimentary structures.

In the third part, a set of structure and texture attributes is employed to develop an
attribute-based classification approach in 3D. This methodology is applied to generate a
classified 3D GPR facies model, accurately delineating sandy deposits observed in 3D
GPR data collected on a dune island. The results emphasize the potential of attribute
analysis and attribute classification for deciphering complex sedimentary systems using
3D GPR. Furthermore, the adaptability of this methodology is evident in its successful
application to multi-frequency GPR data, as demonstrated through its application to
synthetic data sets, resulting in detailed 3D multi-scale facies models. While fully realizing
the potential of 3D attribute-based facies classification requires further investigation,
the methods and results presented in this thesis not only contribute to a more efficient,
reproducible, and comprehensive interpretation of 3D GPR data sets but also lay the
scientific basis for future advancements in sedimentary imaging.
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1. Introduction

In the last decades, ground-penetrating radar (GPR) has become a well-established,
non-invasive near-surface geophysical tool (Davis and Annan, 1989; Mellett, 1995; Olhoeft,
2000; Annan, 2002; Daniels, 2004; Annan, 2005a,b; Jol, 2009). GPR has been routinely
employed in various applications ranging from archeological (Vaughan, 1986; Leckebusch,
2003; Manataki et al., 2021; Forte et al., 2021a; Conyers, 2023), engineering (Benedetto
and Pajewski, 2015; Lai et al., 2018; Elseicy et al., 2022), environmental (Peters et al.,
1994; Hubbard et al., 2005), geological (Beres and Haeni, 1991; Neal and Roberts, 2000;
Forte et al., 2021b) to extraterrestrial studies (Fang et al., 2014; Xing et al., 2017;
Giannakis et al., 2024). The increasing use of two-dimensional (2D), and especially
3D, GPR can be attributed to steady developments in data acquisition (Grasmueck,
1996; Slob et al., 2010; Forte and Pipan, 2017) including the use of multi-antenna arrays
(Sato et al., 2004; Leckebusch, 2005; Trinks et al., 2010; Goodman and Piro, 2013)
and coupling with GPS or TTS for kinematic surveying (Böniger and Tronicke, 2010c),
novel processing and analysis techniques including efficient visualization, migration or
filtering techniques (Grandjean and Gourry, 1996; Nuzzo et al., 2002; Grasmueck et al.,
2005; Allroggen et al., 2015; Roncoroni et al., 2023), or the ability to model and invert
complex GPR data sets using state-of-the-art software solutions (Warren et al., 2016;
Giannakis et al., 2016; Warren et al., 2018; van der Kruk et al., 2018). Especially in 3D
surveys, the spatial resolution of GPR is usually unsurpassed compared to all near-surface
geophysical methods and, thus, GPR has become a standard method to image complex
near-surface sedimentary environments, for example, in view of mapping subsurface
architecture including the reconstruction of past depositional environments, to reveal
the nature of sedimentary processes or to aid hydrogeological observations (Beres et al.,
1995; Huisman et al., 2003; Bristow and Jol, 2003; Neal, 2004; Kostic and Aigner, 2007;
Burke et al., 2010; Lang et al., 2017; Switzer et al., 2020). The technical developments in
GPR instrumentation and the ever-increasing computing power result in ever-growing
data sets comprising several 100000 traces imaging near-surface sedimentary structures
in 3D. In contrast, developments of interpretation techniques have not kept pace with
the resulting increase in details and complexity of the imaged sedimentary structures,
because interpreting typical GPR data sets is still widely employed in a manual and, thus,
time-consuming, inefficient, non-reproducible, subjective, and often incomplete fashion.

In general, interpreting GPR data relies on the assumption that, after the application
of a structural imaging processing sequence including interpolation, spatial and frequency
filters, amplitude scaling, and migration, the imaged reflection patterns are directly related
to the buried structures. When interpreting GPR data acquired across sedimentary
environments, the most prominent interpretation technique relies on the concept of
GPR facies (Van Overmeeren, 1998). In detail, following the original ideas of seismic
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facies analysis (Payton, 1977; Vail et al., 1977; Roksandić, 1978), GPR facies are units
composed of characteristic reflection patterns in terms of reflection amplitude, continuity,
geometry, and internal configuration. Typically focusing on the GPR amplitude image,
interpretations are carried out with the help of GPR facies charts (Figure 1.1) often
complemented by previous or subsequent reflection picking and horizon analysis to
delineate the mapped facies (Schmelzbach et al., 2011).

To illustrate this, Figure 1.2a shows a selected 2D slice of a processed 3D GPR data
set imaging sandy Holocene deposits on the island of Spiekeroog (Northern Germany)
across an area of approximately 100 m x 60 m. Figure 1.2b shows the same 2D slice
and additionally highlights different characteristics across the reflection amplitudes and
corresponding spatial patterns (such as continuity, absolute values, contrast, dip angle,
dip direction) which we typically focus on when interpreting such a data set in terms
of GPR facies. Based on these observations and reflection picking, a data set can be
interpreted and delineated into different GPR facies which are then correlated to typical
depositional environments using GPR facies charts (e.g., as indicated in Figure 1.1).
Without a more detailed interpretation of the result, Figure 1.2c illustrates a typical
outcome obtained using such an interpretation procedure for the GPR data shown in
Figure 1.2a and b after Delock (2013). Then, the distinguished facies are interpreted in
terms of sedimentary and depositional processes (McMechan et al., 1997; Corbeanu et al.,
2001; Szerbiak et al., 2001; Lee et al., 2007a,b; Garrison et al., 2010) and, in view of an
integrated geological and geophysical analysis, can be correlated with electro-, hydro-,
and lithofacies (e.g., Heinz and Aigner, 2003; Lang et al., 2017; Winsemann et al., 2018).
Although these largely manual concepts are routinely applied today, the interpretation
results always depend on the interpreter’s expertise. Hence, interpretations are typically
not reproducible and, especially in complex 3D settings, are a time-consuming task.
Thus, interpretations typically focus on a few selected 2D slices of the 3D data set (i.e.,
2D amplitude images as illustrated in Figure 1.2), and, then, the results are regarded
as representative of the entire surveyed area. Especially in complex 3D sedimentary
environments, these simplifications often cannot justify the effort previously invested in
recording and processing the underlying data sets and such approaches bear the potential
of misinterpretations. To address these limitations, this thesis strives towards developing
efficient and more objective tools based on attributes derived from 3D GPR amplitude
data sets to aid and concise typical interpretation processes such that future GPR
studies result in a more complete and comprehensive understanding of the investigated
environments.

1.1. Attribute analysis and classification

In general, we understand attributes as “any measure calculated or extracted from the
data that helps to enhance or quantify features of interpretation interest” (Chopra and
Marfurt, 2007). Here, the term data in general refers to the (processed) 2D and 3D
amplitude images (e.g., Figure 1.2a). When processing, analyzing, and interpreting GPR
data, we often rely on the analogy between GPR and post-stack seismic reflection data.
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Figure 1.1.: GPR facies chart compiled by Van Overmeeren (1998) characterizing the most
frequent facies signatures found across the Netherlands.
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Figure 1.2.: (a) 2D slice of a 3D processed GPR data set imaging sandy deposits on the island
of Spiekeroog (Germany). (b) same as (a) but highlighting characteristic reflection
patterns typically focused on in a manual GPR facies interpretation. (c) same as (a)
but showing the result of a manual GPR facies interpretation as transparent overlay.
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Since the middle of the last century, seismic reflection data are produced in an industrial
fashion, and attributes and attribute-based interpretation strategies are routinely used
to analyze and interpret these data sets. The development of seismic attributes (whose
only constraint often was the availability of computing power) has always been based on
the constantly growing demand for hydrocarbons and the resulting need for efficient and
reproducible strategies to manage the ever-growing size and amount of data sets imaging
diverse geological structures. Starting from single-trace attributes (such as complex
trace or instantaneous attributes; Taner and Sheriff, 1977; Robertson and Nogami, 1984;
Robertson and Fisher, 1988; White, 1991), modern industry-standard data sets are
analyzed using 2D, 3D, and 4D geometrical multi-trace attributes characterizing spatial,
temporal, and spatiotemporal variations in the data (Chopra and Marfurt, 2005, 2006,
2007; Barnes, 2016).

From the application point of view, specific attributes (or attribute families) are
typically used for addressing different tasks of interpretation. One famous attribute
family incorporates multi-trace structure attributes, that highlight spatial and geometrical
variations in seismic volumes or along (previously interpreted) horizons in terms of seismic
reflection amplitude, continuity, dip angle, dip azimuth, or curvature (Marfurt et al.,
1999; Barnes, 2000; Marfurt and Kirlin, 2000; Barnes, 2001; Al-Dossary and Marfurt,
2006; Marfurt, 2006). Up to today, structure attributes are routinely applied to delineate
and characterize seismic facies or to map and analyze discontinuities because, in general,
structure attributes show a physical meaning and, thus, characterize the underlying
data sets plausibly. In general, structure attributes base on the calculation of 2D and
3D reflection dip in terms of angle and direction (azimuth). To calculate reflection dip,
various approaches (depending on characteristics of the input data, the output data
requirements, and available computational power and time) have been suggested including
principal component analysis (PCA), Fourier transform, or amplitude and phase-gradient
techniques such as gradient structure tensors (Bakker, 2002; Tingdahl and Hemstra, 2003;
Marfurt, 2006; dGB Earth Sciences, 2023). Such structure tensors, for example, include
amplitude gradients in all spatial directions and have proven to be a computationally
efficient tool to characterize and quantify structure in 2D and 3D amplitude images.

A second prominent attribute family incorporates multi-trace texture attributes, where
texture is defined by the spatial arrangement of neighboring amplitudes and “refers to a
characteristic pattern defined by the magnitude and variation of neighboring amplitude
samples at a given location in an image space” (Gao, 2011). Although their actual
physical meaning is often debated, texture attributes are a field of active research as they
are a reliable tool to describe and delineate amplitude variations and patterns in a defined
neighborhood and have shown to be promising means to delineate complex geological
features or to quantify subsurface property distributions (Vinther et al., 1995; Gao, 2003,
2004; Yenugu et al., 2010; de Matos et al., 2011; Eichkitz et al., 2013, 2015; Eichkitz
and Amtmann, 2018; Long et al., 2018). To characterize and calculate texture and
related attributes, the approach based on the gray-level cooccurrence matrix (GLCM) has
become a standard technique, and several GLCM texture attributes have been proposed
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in the past (Haralick et al., 1973; Soh and Tsatsoulis, 1999; Eichkitz et al., 2013, 2015;
Eichkitz and Amtmann, 2018).

In the last decades, it has been shown that seismic attributes (including structure
and texture attributes) are promising input measures when aiming for the production of
classified seismic facies models to further automatize interpretation tasks. In general,
there are two options to delineate the input attributes into a finite number of classes or
facies, namely unsupervised techniques such as k-means, self-organizing maps, or fuzzy
c-means (Barnes, 2000; West et al., 2002), and supervised methods such as artificial neural
networks, Gaussian mixture models or support vector machines that also incorporate
(but at the same time critically depend on) geological or geophysical a-priori information
(Coléou et al., 2003; Zhao et al., 2015, 2017; Wrona et al., 2018; Alaudah et al., 2019;
Kaur et al., 2023; Narayan et al., 2023).

Despite the above-mentioned analogy between post-stack reflection seismic and GPR
data, attribute-based analysis in general, and attribute-based classification in particular,
are far from being a standard tool in GPR interpretation workflows. More precisely, only
a limited number of studies indicates the potential of 2D and 3D GPR attribute analysis
in geological (Grasmueck, 1996; Young et al., 1997; Sénéchal et al., 2000; Corbeanu et al.,
2004; Tronicke et al., 2006; McClymont et al., 2008; Tronicke and Böniger, 2013; Zhao
et al., 2018; Forte et al., 2021b; Svendsen et al., 2023) or archaeological applications
(Böniger and Tronicke, 2010a; Zhao et al., 2013, 2016; Trinks and Hinterleitner, 2020;
Forte et al., 2021a). Moreover, at the start of this thesis, only four studies reported the
general applicability of attribute-based classification approaches to produce sedimentary
or geological GPR facies models in 2D (Moysey et al., 2006; Forte et al., 2012; Tronicke
and Allroggen, 2015; Bowling et al., 2018).

In addition to differences in industrial interest, one major reason is that (despite the
far-reaching similarities of elastic and electromagnetic wave propagation; Ursin, 1983)
characteristics of resulting reflection seismic and GPR amplitude images typically differ.
For example, when used to image sedimentary structures, the resulting images differ
in terms of the number and continuity of imaged reflections. This is mainly based on
differences in employed source types, wavelets, wavelengths, and different spatial scales
of investigation addressed by reflection seismics and GPR. Hence, a typical reflection
seismic image shows one to two orders of magnitude more reflections than a typical GPR
image. This indicates that a one-to-one adaption of seismic attribute-based workflows,
even for similar targets, is limited and we need to develop GPR-specific workflows based
on their seismic archetypes. Thus working out an appropriate set of attributes and
applying a proper workflow that reveals the full potential of GPR attribute analysis and
classification is still a challenging task that this thesis wants to further improve.

Following the basic ideas of Tronicke and Allroggen (2015) and considering the imaging
potential of different attribute families for facies characterization mentioned above
(compare also to Figure 1.2b), this thesis focuses on the use of texture and structure
attributes in 3D to evaluate and develop attribute-based analysis and classification
approaches in a systematic fashion (Figure 1.3). To illustrate the potential of the proposed
workflow, but without analyzing the results in more detail, Figure 1.4b anticipates one key

6



Chapter 1 – Introduction

outcome of this study. That is, Figure 1.4a compares the results of a manual interpretation
approach (Figure 1.2c) to the same 2D slice extracted from a full 3D GPR facies model
(b) that has been produced by classification of texture and structure attributes following
the workflow illustrated in Figure 1.3. However, when attempting to formulate novel
approaches in processing, analysis, and interpretation, it has become good practice to
evaluate and reference novelties using subsurface models and the corresponding synthetic
geophysical data sets.

1.2. 3D GPR modeling

Synthetic subsurface models and resulting geophysical data sets are of great interest
throughout the geophysical community to perform feasibility studies, plan and optimize
acquisition campaigns, perform data inversion routines or reference novel processing,
analysis and interpretation routines. For example, the seismic community has been using
standardized 2D and 3D reference models and resulting data sets for numerous geological
settings for decades such as the famous 2D Marmousi model (Figure 1.5a) and its 3D
variants or the SEG salt and overthrust models (Versteeg, 1994; Aminzadeh et al., 1997).
Today, testing and evaluating novel processing and analysis routines using such reference
models and data sets has become good practice.

Synthetic GPR data and models in geological and sedimentary applications have been
used for several years, for example, to understand the physical phenomena governing
electromagnetic wave propagation (Xu and McMechan, 1997; Holliger and Bergmann,
2002; Cassidy and Millington, 2009) or to reference and develop novel data processing,
analysis, and interpretation routines (Cassidy, 2007; Paasche and Tronicke, 2007; Cassidy,
2009; Klotzsche et al., 2010; van der Kruk et al., 2018). Though, up to the beginning
of this thesis, the use of synthetic GPR data to characterize sedimentary environments
commonly focused on application-specific 1D/2D scenarios (Cassidy, 2008; Bricheva et al.,
2021; Schennen et al., 2022), and the corresponding data and models hence were not
made publicly available. Although the physical and numerical principles of modeling
electromagnetic wave propagation using the finite-difference time-domain (FDTD) method
have been well understood and applied for decades (Yee, 1966; Cassidy and Murdie,
2000; Taflove et al., 2005; Adams et al., 2007; Cassidy, 2007; Millington and Cassidy,

Figure 1.3.: Flowchart diagram presenting the main workflow of this thesis.
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Figure 1.4.: a) Result of a typical manual 2D GPR facies interpretation approach for the Spiekeroog
data set (Figure 1.2c) compared to (b) a 3D GPR facies model resulting from an
attribute-based classification approach.

2010), only modern developments in personal computing power and the availability of
open-source well-maintained software solutions have made possible the production of
realistic and complex 3D GPR data sets (Warren et al., 2016). More precisely, taking
advantage of recent developments in GPU-based modeling, gprMax, the most widely
used modeling software in the GPR community today, drastically accelerated 3D GPR
modeling. The resulting speed-up in the order of one to two magnitudes compared to
parallelized CPU computing first enabled GPR users to produce complex 3D data sets
without the need for expensive high-performance computing resources (Warren et al.,
2018). However, modeling realistic 3D GPR data sets in general (and those characterizing
sedimentary or geological scenarios in particular) marks an area of research that was
largely unexplored both at the beginning of this work and today. Hence, to reveal the
potential of the computational novelties and to develop, reference, and evaluate the
proposed workflow and future analysis, processing, and interpretation techniques, one
part of this thesis reports on the production of a realistic 3D GPR data set. This is freely
available to the community in order to act as a first benchmarking and reference data set
for 3D GPR as the Marmousi model did three decades ago for the seismic community
(Figure 1.5b).
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Figure 1.5.: (a) 2D Marmousi model and corresponding synthetic 2D seismic depth image after
Versteeg (1994). (b) 3D model of a gravel pit and corresponding synthetic 3D GPR
depth image.

1.3. Objective and outline of this thesis

This thesis is a cumulative work and comprises four peer-reviewed journal articles (three
of which were written by the candidate as the first author) and five reviewed expanded
abstracts (four of which were written by the candidate as the first author) that are
included as chapters in this thesis. This section provides a general overview of the
structure of this thesis centered around Figure 1.3. For a detailed list of contributions
and information on further work performed in this project, I refer to Appendix E.

Chapter 2 presents a modeling study resulting in a publicly available 3D GPR data
set and model, respectively. I show, how outcrop observations and field measurements
can be used to produce a realistic 3D model of the electromagnetic properties within
a gravel pit. Developing and using an efficient modeling strategy and novel GPU
acceleration in gprMax, I generate a densely sampled 100 MHz GPR data set. The
modeling results are compared to the input parameter distributions illustrating the
feasibility and potential of the presented study. The publicly available model and
data set have been featured on the gprMax website (www.gprmax.com/projects.shtml)
and were well received by the community which is reflected in >500 downloads and
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>3300 views since the data set has been hosted on Mendeley Data in June 2019
(data.mendeley.com/datasets/by3yh79hx4/1).

A major advantage of GPR is its flexibility in terms of source frequencies. Using
the model from Chapter 2, in Chapter 3, I augment the synthetic database with two
more 3D GPR data sets using further source frequencies (50 and 200 MHz) typically
employed to record GPR data in sedimentological applications. Considering frequency-
dependent model discretization requirements and resulting model sizes (i.e., higher
frequencies require finer model discretization leading to increased model sizes), I present
a customized modeling strategy that enables the calculation of a 200 MHz data set
across the whole 3D input model. These modeling studies have also been presented
in the course of an invited talk at the 1st Online Workshop on Ground-Penetrating

Radar Modelling Using gprMax in 2020 (www.youtube.com/watch?v=sw5zncmyKU0).
Appendix A provides an example of how these synthetic data sets can be used to evaluate
novel processing techniques. The chapter presents the development, evaluation, and
application of a 1D/2D/3D scale-based filtering technique relying on the redundant
wavelet transform.

Typically, GPR data recorded across sedimentary systems are interpreted manually,
for example, relying on picking distinct reflection patterns and horizons to structure
the near-surface. An example of such a typical interpretation approach employed to
characterize, delineate, and map the stratigraphy of a complex peat structure in 3D is
presented in Appendix B. However, in this thesis, I focus on the use of attribute analyses
and classifications to structure the subsurface using two prominent attribute families that
have been identified in Chapter 1.1, namely structure and texture attributes. Chapter 4
presents the 3D gradient structure tensor (GST) approach to calculate GPR structure
attributes. I show the basic ideas behind the GST approach and, using the synthetic data
from Chapters 2 and 3, perform parameter testing to analyze the influence of different
filter sizes and types on the resulting structure attributes. The GST approach is applied
to two GPR data sets imaging different sedimentary scenarios. The first example images
sandy deposits on the Island of Spiekeroog, Northern Germany (see also Figures 1.2
and 1.4). Here, the GST approach is successfully used to characterize and quantify the
diverse facies as imaged by the GPR data. The second example images fault strands in
volcanic and lacustrine sediments on the North Island of New Zealand. Here, the GST
approach is applied to characterize and quantify the 3D geometry of the fault strands.
Results of structure attribute analysis of both field examples are compared to previous
interpretation results illustrating the potential of structure attributes in general, and the
GST approach in particular, for the analysis of 3D GPR data.

Although this thesis mainly focuses on GPR data acquired across sedimentary deposits,
Appendix C shows how structure attributes can be used to analyze GPR data imaging near-
surface archaeological remains. Here, in addition to the typically used GPR amplitude
images, I calculate selected GST-based structure attributes in a so-called chained fashion,
this is, these attributes are also calculated across selected attribute images (here, reflection
energy). Comparing the GPR amplitude image and a typical reflection energy image to
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the corresponding structure attributes indicates the potential of structure attributes to
detect and highlight archaeological remains in 3D GPR data.

In Chapter 5 (which includes a paper that is also featured in the Geophysics Bright

Spots section of SEG’s The Leading Edge magazine in January 2022), a set of structure
and texture attributes is used to develop and apply an attribute-based classification
approach. I present and evaluate scale-based filtering and structuring strategies resulting
in an attribute database characterizing the GPR data set in terms of GPR facies. Then,
this attribute database is analyzed using integrated visualization and classification that
is applied to obtain a classified 3D GPR facies model precisely delineating the sandy
deposits in the Spiekeroog data set. As already anticipated in Figure 1.4, this study
indicates the potential of attribute-based analysis and classification to characterize
complex sedimentary environments in 3D using GPR.

The flexibility of GPR in terms of source frequencies enables the characterization
of sedimentary systems at multiple resolutions and spatial scales. In Chapter 6, the
synthetic 50 MHz and 200 MHz data sets presented in Chapter 3 are used to further
develop the attribute-based interpretation approach in view of an integrated classification
of multi-frequency GPR data to obtain multi-scale classified 3D GPR facies models. This
study illustrates that the attribute-based interpretation workflow developed in this thesis
poses a flexible and reliable tool to characterize sedimentary systems at one or multiple
spatial scales using single- or multi-frequency GPR data sets.

Appendix D (which includes a paper that has been awarded by the SEG with Honorable

Mention in the selection of the Best Paper in Geophysics in 2022 ) presents a field study
on Spitsbergen/Svalbard (Norway) in which a comparable workflow based on texture and
structure attributes is applied to delineate structures in a different geological situation
compared to the ones presented above. Here, an attribute-based classification approach
is employed to distinguish faulted and brecciated areas in a paleokarst breccia pipe
from the surrounding (undisturbed) regions. The resulting facies model is compared to
results obtained by a typical horizon-based interpretation approach thus highlighting
the potential of attribute-based analysis and classification to make interpretations of
complex 3D GPR data sets acquired across diverse sedimentary systems a more efficient,
reproducible, and comprehensive task.
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2. 3D modeling of ground-penetrating radar data

across a realistic sedimentary model

Philipp Koyan and Jens Tronicke∗

2.1. Abstract

Ground-penetrating radar (GPR) is an established geophysical tool to explore a wide
range of near-surface environments. Today, the use of synthetic GPR data is largely
limited to 2D because 3D modeling is computationally more expensive. In fact, only
recent developments of modeling tools and powerful hardware allow for a time-efficient
computation of extensive 3D data sets. Thus, 3D subsurface models and resulting GPR
data sets, which are of great interest to develop and evaluate novel approaches in data
analysis and interpretation, have not been made publicly available up to now.

We use a published hydrofacies data set of an aquifer-analog study within fluvio-glacial
deposits to infer a realistic 3D porosity model showing heterogeneities at multiple spatial
scales. Assuming fresh-water saturated sediments, we generate synthetic 3D GPR data
across this model using novel GPU-acceleration included in the open-source software
gprMax. We present a numerical approach to examine 3D wave-propagation effects in
modeled GPR data. Using the results of this examination study, we conduct a spatial
model decomposition to enable a computationally efficient 3D simulation of a typical
GPR reflection data set across the entire model surface. We process the resulting GPR
data set using a standard 3D structural imaging sequence and compare the results to
selected input data to demonstrate the feasibility and potential of the presented modeling
studies. We conclude on conceivable applications of our 3D GPR reflection data set
and the underlying porosity model, which are both publicly available and, thus, can
support future methodological developments in GPR and other near-surface geophysical
techniques.

∗A peer-reviewed journal article of the same title is published as Koyan and Tronicke (2020a) in
Computers and Geosciences 137, article no. 104422. Supplementary material for this article can be found
in an online repository hosted at Mendeley Data (doi:10.17632/by3yh79hx4.1) and is published as Koyan
and Tronicke (2019).
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2.2. Introduction

Ground-penetrating radar (GPR) is a standard geophysical tool increasingly employed in
various archaeological, engineering, environmental, and geological applications (Knight,
2001; Bristow and Jol, 2003; Daniels, 2004; Lai et al., 2018). Within the field of GPR,
synthetic data sets and the underlying models play an important role as they can serve,
for example, to formulate suitable target-specific acquisition strategies (e.g., Samet et al.,
2017; Liu et al., 2018), to reference novel data processing and analysis routines including
data inversion (e.g., Paasche and Tronicke, 2007; Klotzsche et al., 2010), or to study GPR
response to different saturation scenarios within sedimentary deposits (e.g., Kowalsky
et al., 2001). In the seismic community, 3D models and resulting synthetic data sets are
widely used; for example, the famous Marmousi model and its variants or the SEG/EAGE
3D salt and overthrust models (Versteeg, 1994; Aminzadeh et al., 1997) are an actively
utilized reference to test and evaluate novel methodological ideas (e.g., Yang et al., 2014;
Boehm et al., 2016; Métivier et al., 2016). However, up to now there are no publicly
available reference models and data sets for GPR.

To simulate GPR data, numerous implementations typically relying on the Finite-
Difference Time-Domain (FDTD) method have been proposed and continuously developed
throughout the past decades (e.g., Bergmann et al., 1998; Irving and Knight, 2006;
Millington and Cassidy, 2010). The open-source software gprMax (Warren et al., 2016) is
a well-established and well-maintained tool, which delivers a highly flexible FDTD scheme
to model GPR data. The computational effort to tackle FDTD modeling problems in
a 3D fashion is highly demanding (especially regarding calculation time). Thus, the
most recent development within gprMax can be considered as a quantum leap, because
the software now features a GPU modeling engine (Warren et al., 2018). For the first
time, the resulting speed-up allows time-efficient modeling of 3D GPR reflection data
sets with typical constant-offset geometries (commonly consisting of thousands of single
source positions) across 3D models comprising several millions of cells without the need
of high-performance computing resources.

In sedimentary environments, high-resolution 3D GPR images facilitate a deeper
understanding of depositional processes, tectonic activity or the hydrogeological settings
at a field site (e.g., Neal, 2004). However, throughout the whole range of sedimentological
applications, the use of 3D GPR modeling (e.g., to improve near-surface characterization
strategies) has not kept pace with the steady development of modeling tools and
technologies. Hence, the publicly available hydrofacies data set resulting from an aquifer-
analog study within a gravel quarry near the village of Herten in SW-Germany (Bayer
et al., 2011; Comunian et al., 2011) poses an ideal basis to perform 3D GPR modeling
across a realistic sedimentary environment. This data set comprises hydrogeological data
(including porosity and hydraulic conductivity) and facies models, respectively, which
describe heterogeneities within a volume of 16 x 10 x 7 m (length x width x depth)
dominated by sandy and gravelly fluvio-glacial deposits.

In this study, we make use of the novel GPU engine in gprMax to generate extensive
3D GPR data across a realistic 3D sedimentary model. Therefore, we use the Herten
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data set to derive a porosity model showing realistic variations down to the sub-facies
scale. Assuming fresh-water saturated sediments, this porosity model then is translated
into a model comprising fundamental electrical subsurface parameters. After introducing
our modeling setup, we propose an approach to examine 3D effects in synthetic GPR
data. Considering the results of this examination study, we conduct a spatial model
decomposition in order to perform a computationally efficient 3D modeling of a typical
GPR reflection data set across the entire model surface. To analyze this data set, we
apply a standard 3D GPR processing sequence including the analysis of a synthetic
common-midpoint experiment and evaluate our results by a direct comparison to the
input model. Finally, we present our conclusions and discuss the further use of our
synthetic GPR reflection data set and our porosity model, which are both publicly
available (Koyan and Tronicke, 2019).

2.3. Database and model preparation

In this section, we introduce and present the Herten data set. Furthermore, we outline
the derivation of our porosity model and its transformation into the electrical parameter
models which are used as input for modeling 3D GPR data.

2.3.1. Hydrofacies and porosity model

As starting point, we use a high-resolution 3D hydrofacies data set resulting from an
aquifer-analog study within fluvio-glacial deposits. Here, we only give a brief overview of
the steps performed to obtain this data set and summarize the most striking sedimentary
features therein. For a detailed description of the underlying field work, the mapping
procedure, and the sedimentological interpretation, we refer to Bayer et al. (2011). A
precise portrayal of the applied 3D geostatistical modeling is presented by Comunian
et al. (2011).

The 3D data set comprises hydrogeological properties and their spatial distributions
within a well-described gravel quarry near the village of Herten (SW-Germany). There,
mainly poorly to well-sorted sand and gravel sequences formed in a braided-river regime
characterize the subsurface. The data set originates from six parallel digitized outcrop
images with a lateral distance of 2 m between individual images. Supported by sedimentary
mapping performed during excavation (Bayer, 2000), these images are interpreted in terms
of lithological facies resulting in six 16 m wide rasterized 2D facies sections. These sections
cover a depth range of 7 m and show a resolution of 0.05 m. Laboratory measurements of
facies-specific hydrogeological properties including porosity Φ and hydraulic conductivity
K lead to a subdivision of the mapped lithological facies into 10 different variants,
termed hydrofacies. Comunian et al. (2011) use these 2D hydrofacies sections to perform
geostatistical modeling resulting in 3D realizations of the local subsurface architecture
with a resolution of 0.05 m in all spatial dimensions which these authors provide as
supplementary material.
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In Figure 2.1, we visualize the 3D hydrofacies model used in this work (“Realization 1”
of Comunian et al., 2011) and also introduce our coordinate system. The hydrofacies
code is based on a convention from Bayer et al. (2011) compiled from Keller (1996) and
Heinz and Aigner (2003). In Table 2.1, we support the understanding of this model by a
brief description of the different hydrofacies including their representative porosity values
and the associated porosity ranges as compiled by Bayer et al. (2011). Combining the
representative porosity values and the 3D hydrofacies model yields a representative 3D
porosity model for the Herten site of which we show a typical 2D slice at y = 6 m in
Figure 2.2a. Figures 2.1 and 2.2a illustrate that the local subsurface exhibits a highly
heterogeneous 3D architecture showing numerous sedimentary features on the cm- to
m-scale including corresponding porosity variations.

Referring to Figures 2.1 and 2.2a, we discuss the most prominent sedimentary features
and the associated porosity variations. The model is capped by typical accretionary
structures down to a depth of ~1 - 2 m. These structures are formed by a thin, continuous
gravel layer with a sand-rich matrix (sGcm) showing the overall smallest porosity values
embedded in a minimally less condensed facies with a cobble-rich matrix (cGcm). Directly
underneath, we identify cut-and-fill sequences showing an alteration of highly porous,
gently dipping open-framework gravels (Gcg,o and sGcg,o) and less porous sand-gravel
mixtures (mainly sGcm,b). A comparable depositional structure can be found at depths
around 4 m (up to x ≈ 12 m) where it overlays an up to 1 m thick body accommodating
the globally most porous well-sorted gravels and sands (GS-x and S-x). In the deeper parts

Figure 2.1.: 3D view across the Herten hydrofacies model used as starting point in this work
(“Realization 1” of Comunian et al., 2011). Details on the hydrofacies code are
provided in Table 2.1.
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Table 2.1.: Description of hydrofacies code used in Figure 2.1 as well as representative porosity
values and associated ranges (Bayer et al., 2011). Porosity ranges marked by * assumed
for this work (no data provided).

Hydrofacies

code

Description (details) Porosity Φ
(range)

Gcm
Poorly sorted, matrix-supported

gravel (normal)
0.17 (± 0.07)

cGcm
Poorly sorted, matrix-supported

gravel (cobble-rich)
0.15 (± 0.01)

sGcm
Poorly sorted, matrix-supported

gravel (sand-rich)
0.13 (± 0.04)

Gcg,o
Alternating gravel (matrix-free,
clast-supported open framework,

coarse-fine pebbles)
0.26 (± 0.02)

cGcg,o
Alternating gravel (cobbles-coarse

pebbles, open framework)
0.26 (± 0.02)

sGcg,o
Alternating gravel (granules/sand,

open framework)
0.23 (± 0.01)*

sGcm,b
Alternating gravel (bimodal basal

sub-unit with sand matrix)
0.22 (± 0.01)*

fGcm,b
Alternating gravel (bimodal basal

sub-unit with silt/clay matrix)
0.20 (± 0.01)*

GS-x Well sorted gravel (and coarse sand) 0.27 (± 0.07)

S-x Pure, well sorted sand 0.36 (± 0.04)

of the model, beneath the well-sorted sand-gravel body and the cut-and-fill sequences,
the model again exhibits typical accretionary structures dominated by the least porous,
matrix-supported gravels (Gcm and its variants). In this context, we observe thin,
partially discontinuous and (sub)-horizontal to gently dipping layers which locally exhibit
a sequentially graded bedding. These layers include highly porous open-framework gravels
(Gcg,o and its variants) as well as small portions of the most porous, well-sorted sands
(S-x). This results in local high-wavenumber, high-magnitude porosity variations in the
lowermost parts of the model.

The representative porosity model in Figure 2.2a shows considerable multi-scale and
multi-magnitude variations. However, up to now we assume that each hydrofacies shows
uniform properties throughout the entire model and therefore is characterized by a single
representative porosity value. To generate a more realistic porosity distribution in view of
modeling realistic GPR data, we upgrade the representative porosity model (Figure 2.2a)
by introducing heterogeneities at the sub-facies scale. As no deterministic information
on the spatial distribution and correlation of heterogeneities within each hydrofacies are
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available, we take advantage of the fact that a wide range of petrophysical properties
within sedimentary deposits shows fractal characteristics (e.g., Walden and Hosken,
1985; Desbarats and Bachu, 1994). To consider this, we use the popular exponential
covariance model characterized by a commonly observed ratio between vertical and
horizontal correlation length of 1:10 (e.g., Gelhar, 1993) to simulate an independent,
spatially correlated 3D random field with a Gaussian probability density function for
each of the 10 hydrofacies. We perform the numerical realization utilizing the turning
bands algorithm of Emery and Lantuéjoul (2006) allowing for an efficient calculation of
such random fields. We scale the 10 resulting 3D random fields using the porosity ranges
listed in Table 2.1 and add the results to the representative porosity model (Figure 2.2a)
considering the spatial appearance of the respective hydrofacies. In the following, we
limit the precision of this porosity model to three decimal places. Thus, we restrict the
number of different porosity values in the model and therefore the amount of different
property values in the resulting electrical parameter models which is a prerequisite for an
efficient GPR modeling procedure (Section 2.4). In Figure 2.2b, we visualize our resulting
porosity model at the same 2D slice as in Figure 2.2a. Figure 2.3 illustrates the associated
porosity distribution for the entire 3D model as hydrofacies-specific histogram plots.
These plots are normalized to the total number of porosity values and give an impression
of the relative portions of the individual hydrofacies found in the model. Analyzing
Figures 2.2b and 2.3 illustrates that the porosity values within each hydrofacies now
exhibit a commonly observed spatial correlation structure, and are also characterized by
a Gaussian distribution whose mean value, standard deviation, and minimum/maximum
values depend on the associated representative porosity value and range as listed in
Table 2.1.

2.3.2. Electrical parameter models and discretization

Fundamental electrical properties affecting the propagation of electromagnetic waves are
(1) the dielectric permittivity ε = εrε0, where εr is the material dependent dielectric
constant and ε0 the dielectric permittivity of free space, (2) the electrical resistivity
ρ, (3) the magnetic loss σ∗, and (4) the magnetic permeability µ = µrµ0, where µr

and µ0 are the material dependent relative magnetic permeability and the magnetic
permeability of free space, respectively. Due to the absence of magnetic materials in
our model, we fix the magnetic permeability to the value of free space (i.e., µr = 1) and
assume no magnetic loss (i.e., σ∗ = 0). For this modeling study being a first attempt
toward modeling extensive 3D GPR data, we use first-order realistic media; i.e., we
basically assume frequency-independent electrical parameters. Furthermore, we only
consider fresh-water saturated sediments. This allows us to use standard two-component
mixture models without any further assumptions on the material characteristics (not
available for the Herten field site) to translate our porosity model (Figure 2.2b) into εr

and σ, respectively (e.g., Tronicke and Holliger, 2005). More specifically, we obtain a
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Figure 2.2.: Typical 2D profile slices at y = 6 m of (a) porosity model with representative values
from Table 2.1, (b) our porosity model including spatially correlated heterogeneities
at the sub-facies scale, (c) GPR velocity model derived from (b) assuming fresh-water
saturated sediments, and (d) electrical resistivity model derived from (b) assuming
fresh-water saturated sediments.
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Figure 2.3.: Hydrofacies-specific porosity values as histogram plots illustrating the porosity
distribution for the entire 3D model after adding spatially correlated heterogeneities
at the sub-facies scale. Plots are normalized to the total number of porosity values
in our model.

model of εr using the two-component formulation of the complex refractive index model
(CRIM; e.g., Roth et al., 1990; Zakri et al., 1998):

εr =
(

(1 − Φ)
√

εr,m + Φ
√

εr,w

)2
. (2.1)

Here, εr,m is the dielectric constant of the dry matrix and εr,w that of fresh water, which
we set to typical values of 6.9 and 80, respectively (e.g., Kowalsky et al., 2001). To obtain
a model of ρ, we use a formulation of the well-known Archie’s equation for fresh-water
saturated media (Archie, 1942):

ρ = ρw

(

a

Φm

)

. (2.2)

Here, we set the electrical resistivity of the fresh water ρw to a typically observed value of
25 Ωm, and use for the empirical parameters a and m average values for unconsolidated
sand of 0.88 and 1.37, respectively (Schön, 1998). For a better hands-on interpretation
in terms of GPR wave propagation, we translate εr into GPR velocity v using v = c0/√

εr

with c0 being the speed of light in vacuum. In Figure 2.2c, we show a selected 2D slice of
the resulting 3D GPR velocity model. In Figure 2.2d, we visualize the same 2D slice in
terms of electrical resistivity as calculated using Equation 2.2. The electrical parameter
distributions predominantly show GPR velocity values between 0.07 and 0.085 m/ns and

20



Chapter 2 – 3D modeling of GPR data

electrical resistivity values between 150 and 350 Ωm. Within the most porous well-sorted
sands and gravels (S-x, GS-x) and the least porous matrix-supported gravels (Gcm and
its variants), we observe extreme values down to v ≈ 0.06 m/ns and ρ ≈ 80 Ωm and up
to v ≈ 0.095 m/ns and ρ ≈ 500 Ωm, respectively. Comparable values and associated
variations of electrical properties are commonly observed in similar fresh-water saturated
environments (e.g., Klotzsche et al., 2010; Hamann and Tronicke, 2014) and thus, we
consider that our electrical parameter models closely resemble a typical sedimentary
subsurface scenario.

The model discretization is a fundamental property of input models for FDTD GPR
modeling. A rule-of-thumb typically applied to obtain adequate modeling results is that
the discretization should be around ten times smaller than the smallest wavelength of
the propagating electromagnetic wave field (Kunz and Luebbers, 1993). This wavelength
depends on the minimum GPR velocity and the maximum frequency of the propagating
waves, which is approximately 2-3 times as high as the nominal center frequency fc

of a typical broad-band GPR signal. For the chosen saturation scenario, we observe
GPR velocities down to ~0.06 m/ns (compare Figure 2.2c). For our modeling study, we
choose a nominal center frequency fc = 100 MHz typically employed in comparable
sedimentological field applications (e.g., Beres et al., 1995). Thus, we determined a
discretization of 0.025 m in all spatial dimensions for the given modeling situation, which
has been realized in every model presented in this work (starting with a nearest neighbor
interpolated version of the hydrofacies model as shown in Figure 2.1).

2.4. 3D GPR modeling

In this section, we briefly introduce the modeling tool gprMax as well as the key
input parameters for 3D GPR modeling based on the subsurface scenario described
in Subsection 2.3.2. Furthermore, we discuss a numerical approach to examine 3D
effects within modeled GPR data and present the modeling strategy used to produce our
synthetic 3D GPR reflection data set.

2.4.1. Modeling software and basic parameters

gprMax is open-source software to simulate the propagation of electromagnetic waves
using the Finite-Difference Time-Domain (FDTD) method (Warren et al., 2016). This
software is employed in a diverse range of applications; for example, to study GPR
wave propagation in lossy environments (Loewer and Igel, 2016), to investigate the
potential of GPR for landmine detection (Giannakis et al., 2016), or as a forward solver to
inverse problems like full-waveform inversion of cross-hole GPR data (van der Kruk et al.,
2018). Due to the nature of FDTD modeling schemes, especially 3D simulations require
extensive computational resources in terms of processing time. A recent development
within gprMax tackles this problem as the software now offers the possibility to model
on graphics processing units (GPUs) within NVIDIA’s CUDA-framework. As a result,
calculations are now performed up to 30 times faster compared to a multi-core desktop
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CPU using OpenMP parallelization (Warren et al., 2018). For the first time, this allows to
model large and thus complex 3D GPR data sets consisting of thousands of single traces
based on 3D subsurface models with millions of cells on a well-equipped work station
without the need of costly high-performance computing resources. Here, we exploit this
GPU-acceleration using gprMax v.3.1.4 to perform extensive 3D GPR modeling using
our realistic model of subsurface sedimentary heterogeneities.

In the following, we introduce the key modeling parameters used in this work, whereas
study-specific parameters are introduced where applied. As input, we set up a 3D model
comprising the distributions of εr and the electrical conductivity σ = 1/ρ associated with
the distributions of v and ρ shown in Figures 2.2c-d. As discussed in Subsection 2.3.2,
our model shows a discretization of 0.025 m and we assume σ∗ = 0 and µr = 1. Above
the subsurface model, we insert an air layer (i.e., a material with εr = 1, σ = 0, σ∗ = 0,
and µr = 1) with a thickness of 0.5 m. The thickness of the Perfectly Matched Layers
(PMLs), which realize the absorbing boundary conditions, is set to 0.25 m in all spatial
dimensions.

Up to now, no realistic antenna model with our desired nominal center frequency (i.e.,
fc = 100 MHz) is available in gprMax. Hence, we assume a Hertzian dipole source,
polarized perpendicular to the inline (x) direction, emitting a Ricker wavelet with unit
amplitude. Considering both, our GPR velocity distribution (Figure 2.2c) and the
maximum depth of the model, we infer a time window of t = 200 ns. The sampling
interval ∆t ≈ 0.048 ns directly results from the model discretization considering the
3D stability condition for the FDTD method. We place all GPR sources/receivers on
the air-subsurface boundary. For modeling GPR profiles, we realize a constant-offset
GPR reflection geometry commonly employed in sedimentological applications, with a
source-receiver offset of 0.5 m and an inline trace spacing of 0.05 m.

2.4.2. Examination of 3D effects

Having at hand both, a realistic 3D model of sedimentary heterogeneities and a modeling
software allowing for efficient calculation of 3D electromagnetic wave fields, offers an up
to now unique possibility to study 3D effects. Here, the term 3D effects comprises any
phenomena related to energy originating from out-of-plane of a GPR profile acquired
with a typical 2D constant-offset geometry. The following numerical approach allows us
to assess and evaluate such 3D effects.

First, we select three locations in our model at x/y = 5/5, 8/6, 10/4 m around which
we extract 3D sub-cuboids from the model with a size of 8 x 8 x 7 m (x, y, z). In
the center of each sub-cuboid, we place a GPR profile with a length of 1 m (i.e., 21
traces), which is oriented along the x direction (Figure 2.4). This results in a minimum
distance of 4 m in y direction between any GPR source/receiver and the boundary of
the model domain enclosing each sub-cuboid. We start with modeling GPR data across
these sub-cuboids fully containing 3D structures over a distance of ∆y3D = 4 m in y

direction. Then, we iteratively decrease the extent of 3D structures to each side of the
GPR profile (i.e., ∆y3D) by steps of 0.25 m while keeping each model domain at constant
size of 8 x 8 x 7 m. For each step, we fill the remaining cells using replicates of the
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respective outermost 2D (x-z) planes where 3D structures are found. This is repeated
for each sub-cuboid until reaching the 2.5D case (∆y3D = 0); i.e., a 3D model domain
only comprising the 2D subsurface structures found directly beneath the GPR profile.
In Figure 2.4, we illustrate this procedure by showcasing the modeling setup for the
sub-cuboid around the study location x/y = 5/5 m for ∆y3D = 2 m; i.e., the case in
which 3D structures, here shown in terms of GPR velocity, extend 2 m on each side of
the GPR profile (air layer and PMLs not shown for simplicity).

To assess 3D effects in the modeled GPR profiles, we evaluate root mean square (rms)
amplitudes. At each of the three locations and for every ∆y3D, we calculate the rms
amplitude of each trace in a 170 ns time window (starting at 30 ns to suppress any
effects related to high-energy direct arrivals), and average the resulting 21 rms values
of each GPR profile. Figure 2.5 shows these averaged rms values calculated for each
simulated GPR profile as a function of ∆y3D at every of the three locations. To ease the
interpretation, the mean rms values are normalized to the according value calculated for
∆y3D = 4 m at each study location (i.e., the associated sub-cuboid completely contains
3D structures).

When analyzing Figure 2.5, we see that our modeled GPR data exhibit 3D effects. At
each study location, this becomes clear as for ∆y3D larger than ~1.5 m, the normalized
mean rms values show a high stability (i.e., no significant deviations compared to the case

Figure 2.4.: Modeling setup used to examine 3D effects in our simulated GPR data. Here, we
display the case ∆y3D = 2 m at the study location x/y = 5/5 m in terms of GPR
velocity; i.e., 3D structures extend 2 m in y direction to each side of a GPR profile
located in the center part of the model sub-cuboid. Air layer and PMLs not shown
for simplicity.
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Figure 2.5.: Examination of 3D effects at three study locations. Mean rms amplitude values of
each GPR profile as a function of ∆y3D. Values are normalized to the according rms
value observed for ∆y3D = 4 m at each study location.

∆y3D = 4 m), whereas with decreasing ∆y3D these values show a considerable scatter
with deviations up to ~25 % related to 3D effects absent in the underlying GPR data.
Hence, for the given subsurface model and GPR parameter configuration we conclude
that (1) simulating GPR data in a 3D fashion is indispensable to fully capture 3D
wave-propagation phenomena, and (2) the major source of reflected energy present in
the GPR data extends ~1.5 m in crossline direction of a GPR profile.

2.4.3. Modeling strategy

To formulate a suitable strategy for modeling our extensive 3D GPR reflection data set,
we consider the findings from Subsection 2.4.2 as well as the required RAM (commonly a
limiting factor on GPUs) and calculation time, which both depend on the number of cells
in a model domain. Accordingly, we decompose the full 3D model into three separate,
equally sized sub-cuboids. These include the full x and z dimensions of the model and
range from y = 0 - 6 m, 2 - 8 m and 4 - 10 m; i.e., the sub-cuboids show an overlap of 4 m
in y direction. Using these sub-cuboids, we model a total of 51 GPR profiles along the
full x dimension and with a crossline trace spacing of 0.2 m from y = 0 - 4 m, between
y = 4 - 6 m, and from y = 6 - 10 m, respectively. Thus, we assure a minimum distance of
2 m in y direction between the GPR profiles and the border of 3D structures within each
sub-cuboid wherever applicable. Consequently, considering the analyses of Figure 2.5,
we assume that our modeled GPR data show a maximum of 3D character though using
three separate model sub-cuboids. To assure that each GPR source/receiver is located at
an adequate distance from every domain border, we additionally pad the sub-cuboids in
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the horizontal directions by 0.5 m (where necessary) using replicates of the outermost
2D (x-z and y-z) planes.

A result of this modeling strategy is the uni-dimensional reduction in model domain
size which, in turn, linearly decreases the calculation time. Moreover, our strategy
ensures that each of the three sub-cuboids fits onto a single GPU RAM and enables us
to use three NVIDIA GPUs (1x GeForce GTX1070, 2x Tesla K80, hosted by different
workstations) to split the calculation tasks (i.e., one model sub-cuboid per GPU). The
simultaneous use of three GPUs again decreases the overall calculation time significantly.
Consequently, the complete simulation task comprising a total of 15810 traces has been
performed within approximately one month. In Table 2.2, we sum up the key parameters
characterizing our 3D GPR reflection data set, which we obtain by merging the three
data sets individually simulated across the model sub-cuboids.

Common field practice is to complement constant-offset GPR data sets by performing
experiments with a common-midpoint (CMP) geometry at selected locations. An analysis
of GPR reflections observed within a CMP gather yields an estimate of the subsurface GPR
velocity model which then, for example, can be used for migration of the corresponding
constant-offset GPR reflection data set. Thus, we simulate a CMP gather with a center
location at x/y = 8/8 m across the according 3D model sub-cuboid ranging from y = 4 -
10 m. This CMP gather is modeled along the x direction with a trace interval of 0.05 m
and shows a maximum source-receiver offset of 5 m.

2.5. Results and interpretation

In this section, we present and interpret the results of our 3D GPR modeling exercise
based on a realistic sedimentary subsurface scenario (Figures 2.2c-d) and discuss some
of many conceivable applications when having at hand both, a realistic 3D subsurface
model and the corresponding modeled GPR reflection data.

In Figure 2.6a, we show a representative 2D slice of the unprocessed 3D GPR data
(along the same profile shown in Figure 2.2). This modeling result reveals that the multi-
scale and multi-magnitude heterogeneities within the underlying electrical parameter

Table 2.2.: Key parameters describing our simulated 3D GPR reflection data set, which comprises
a total of 15810 traces (51 profiles, 310 traces each).

Parameter Value

Input model size (x, y, z) 16 x 10 x 7 m
Input model discretization 0.025 m

Sampling interval ~0.048 ns
Time window 200 ns

Nominal center frequency 100 MHz
Source-receiver offset 0.50 m
Inline trace spacing 0.05 m

Crossline trace spacing 0.20 m
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fields result in GPR data with a realistic appearance and character. Beyond the high-
energetic direct arrivals dominating travel times up to ~30 ns, we notice a large variety
of commonly observed reflection patterns ranging from (semi-)continuous reflection
structures to complex diffraction and interference phenomena.

To provide a typical GPR depth image (as expected in a corresponding field study), we
apply a standard 3D GPR processing sequence including time zero correction, removal of
direct arrivals, frequency filtering, 3D Kirchhoff migration and amplitude scaling (e.g.,
Allroggen et al., 2015; Schennen et al., 2016). As an example for the further use of our 3D
model and following common field practice, we generated a CMP gather (Subsection 2.4.3)
to estimate a subsurface GPR velocity model for our Kirchhoff migration. Figures 2.7a-b
illustrate the result of a reflection-based spectral velocity analysis and the underlying
modeled CMP gather, respectively. Hence, considering typical uncertainties of such
analyses (e.g., Hamann et al., 2013), we conclude that a constant GPR velocity of
0.085 m/ns characterizes the subsurface velocity field. This is in well agreement with
the GPR velocities present in the model (compare Figure 2.2c) and thus, this constant
velocity is used to perform the 3D Kirchhoff migration and the time-to-depth conversion
of our data.

From the resulting 3D GPR depth image we extract the same profile shown in
Figure 2.6a and present it in Figure 2.6b. To emphasize the 3D character of the
GPR depth image, we visualize it in Figure 2.8 using the same perspective display chosen
for the hydrofacies model shown in Figure 2.1. Comparing unprocessed and processed
data reveals that diffracted energy (visible as hyperbolic events in Figure 2.6a) has
been collapsed and spatial positions of reflections have been corrected in the course of
3D migration. In the GPR depth image, we clearly recognize sedimentary structures
such as the shallow accretionary elements (hydrofacies sGcm embedded within Gcm)
imaged by a slightly undulating reflection, or the cut-and-fill sequences in the central
part of the model (shown in yellow and green colors in Figure 2.1) marked by gently
dipping reflection patterns striking in y direction. Although a detailed interpretation
of these results is beyond the scope of this work, we highlight the unique possibility to
obtain a deeper understanding on the relations between subsurface structures within a
realistic sedimentary scenario and the resultant reflection patterns in GPR images. To
demonstrate this, we show in Figure 2.6c the GPR depth slice of Figure 2.6b together
with the input GPR velocity model (equivalent to Figure 2.2c) as transparent overlay.
Figure 2.6c emphasizes that (1) our GPR data are in good agreement with the input
model, and (2) especially shallow, large-scale features like (semi-)horizontal interfaces as
well as dipping structures (e.g., above, within, and beneath the cut-and-fill sequences)
have been accurately imaged according to their depth, shape, dip, and spatial extend
(compare Figures 2.1 and 2.8). Though, (3) we also notice effects of decreasing resolution
with increasing depth inherent for the GPR method. This can be observed at features
whose extend is beyond local GPR resolution; for example, in regions where small-scale
GPR velocity variations evoked by high-wavenumber, high-magnitude porosity variations
(Subsection 2.3.1) occur. Those features are repeatedly found in the deeper parts of the
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Figure 2.6.: Typical 2D profile slices at y = 6 m of (a) unprocessed 3D GPR reflection data set,
(b) 3D processed GPR depth image, and (c) same as (b) with GPR velocity model
(Figure 2.2c) as transparent overlay.
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Figure 2.7.: (a) Result of a reflection-based spectral velocity analysis of (b) synthetic 3D CMP
gather with a center location at x/y = 8/8 m modeled along the x direction.

model and produce complex interference phenomena which, in turn, entail fragmentary
reflection patterns, and thus complicate a standard reflection-based interpretation.

2.6. Conclusions

We have demonstrated the viability of modeling extensive 3D GPR data based on a
realistic sedimentary subsurface scenario. We used publicly available hydrofacies data
from an aquifer-analog study to infer a realistic, high-resolution 3D porosity model,
which exhibits heterogeneities down to the sub-facies scale. Recent developments within
open-source electromagnetic modeling software gprMax (now including time-efficient
GPU-accelerated solvers) allowed us to extensively model 3D GPR data across such a
large and realistic sedimentary model for the first time. We have proposed a numerical
approach to obtain a deeper understanding of 3D effects in modeled GPR data. The
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Figure 2.8.: A 3D view across processed GPR depth image. For comparability, we use the same
perspective display chosen for the hydrofacies model in Figure 2.1.

results of this study have been considered when performing a spatial decomposition of
the model in order to enable a computationally efficient 3D modeling of an extensive
GPR reflection data set. The application of a standard 3D GPR processing sequence
including the analysis of a 3D modeled common-midpoint experiment provided a realistic,
high-resolution structural depth image. Our results are in good agreement with the input
model thus demonstrating the feasibility and the potential of our modeling studies.

The subsurface model exhibits a large variety of realistic sedimentary features at
different spatial scales. This includes thin, quasi-continuous interfaces as well as dipping
layer sequences showing subtle to strong electrical parameter contrasts. Especially at
greater depths, the resulting GPR reflection data show numerous fragmented reflection
elements and interference patterns which make them, together with the model, a
challenging and thus ideal target and reference to test and evaluate novel (3D) GPR
processing and interpretation methods. For example, this may include the evaluation of
amplitude scaling strategies, filtering, migration, or deconvolution algorithms as well as
benchmarking innovative techniques aiming at a quantitative amplitude interpretation
(e.g., to infer geophysical subsurface parameters), or the investigation of different
interpretation approaches of structural GPR images. The provided porosity model
can form a basis to generate complementary data sets using different GPR frequencies
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and source types, acquisition geometries (as indicated by our CMP example), and/or
using additional geophysical exploration methods (electrical resistivity tomography,
electromagnetic induction etc.) to formulate and reference approaches of an integrated
geophysical interpretation. Moreover, this subsurface model can be adjusted and
perturbed in a study-specific manner; for example, to explore different saturation scenarios
(e.g., when combined with realistic subsurface flow models), to investigate effects of higher-
order realistic media (e.g., by incorporating frequency-dependent properties using a Debye
relaxation model), or to study the detectability of objects such as unexploded ordnance
(UXO) or utility pipes buried within a realistic sedimentary background. In conclusion,
we expect our 3D modeling studies as well as our publicly available GPR reflection data
set and porosity model to pose a beneficial input to the research community.

2.7. Data and computer code availability

Data associated with this article as well as basic matlab and python code to read and
visualize these data can be found at doi:10.17632/by3yh79hx4.1, an open-source online
data repository hosted at Mendeley Data (Koyan and Tronicke, 2019). The 3D GPR
modeling presented in this work has been performed using gprMax v.3.1.4, an open-source
electromagnetic modeling software (Warren et al., 2016, 2018) which can be found at
https://github.com/gprmax/gprMax.
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3. Analyzing 3D multi-frequency ground-penetrating

radar (GPR) data simulated across a realistic

sedimentary model

Philipp Koyan and Jens Tronicke∗

3.1. Introduction

Ground-penetrating radar (GPR) is an established geophysical tool to image and
characterize near-surface sedimentary environments (Neal, 2004). A major benefit of GPR
is its flexibility in terms of selecting the source frequency, which controls the wavelength
of the propagating signal and, thus, the vertical and horizontal resolution capabilities of
the data affecting the level of detail in the resulting structural images or petrophysical
parameter models. Synthetic 2D GPR data including the underlying petrophysical
parameter models are frequently used to evaluate, develop, and reference novel data
processing, analysis, and interpretation techniques (e.g., Bitri and Grandjean, 1998; Ernst
et al., 2007; Allroggen and Tronicke, 2016). Today, novel GPU-acceleration featured in
the open-source electromagnetic modeling software gprMax (Warren et al., 2016, 2018)
and the steady progress in computer hardware enable a time-efficient simulation of densely
sampled 3D GPR data sets. Koyan and Tronicke (2020a) exploit these novelties and use
a realistic sedimentary model to simulate, for the first time, a publicly available constant
offset (CO) 3D GPR data set (100 MHz). In this study, we use this model to generate
complementary CO GPR data sets with source frequencies of 50 MHz and 200 MHz,
which are also typically employed in sedimentary field applications. Furthermore, we
simulate multi-frequency common midpoint (CMP) data. As an exemplary use of this
multi-frequency GPR database, we apply a standard processing flow as typically used to
analyze CO and CMP GPR data collected in sedimentological applications. We evaluate
and compare our results and conclude on possible benefits of multi- frequency GPR data
acquisition in sedimentological field campaigns.

∗A reviewed expanded abstract of the same title is published as Koyan and Tronicke (2020b) in
the proceedings of 18th International Conference on Ground Penetrating Radar, SEG, Global Meeting
Abstracts, 275–278.
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3.2. Model setup and modeling strategy

As input for simulating multi-frequency GPR data, we use a realistic 3D electrical
parameter model as generated by Koyan and Tronicke (2020a), which we show in
Figure 3.1 in terms of GPR velocity. This model bases on a publicly available hydrofacies
data set, which has been derived from sedimentological outcrop mapping, direct sampling,
and geostatistical simulation of an aquifer-analog at the Herten gravel pit (SW Germany;
Bayer et al., 2011; Comunian et al., 2011). Using available porosity data (Bayer et al.,
2011) and assuming fresh-water saturated sediments, Koyan and Tronicke (2020a) generate
a 3D electrical property model of this field site comprising GPR velocity and electrical
resistivity. Within a volume of 16 x 10 x 7 m, the model shows a large variety of
typical sedimentary features on multiple spatial scales. We follow Bayer et al. (2011) to
characterize the main genetic units I-VI highlighted in Figure 3.1. Units I, II and IV
show medium to high velocities related to accretionary elements consisting of sand-rich
gravels. These units include small patches of partially cross-bedded open-framework
gravels resulting in local low-velocity zones. Units III and V show overall low velocities
and comprise cut-and-fill elements marked by sequences of alternating bimodal and
open-framework gravels. Unit VI marks a near-surface high-velocity zone and is formed
by accretionary elements consisting of continuous, (sub-)horizontally stratified gravel
sheets. Taking advantage of a novel GPU engine featured in gprMax, Koyan and Tronicke
(2020a) use the model presented in Figure 3.1 to simulate a publicly available 100 MHz
CO GPR data set across the entire model surface. In this study, we complement this
data set by modeling comparable CO data sets with a source frequency of 50 and 200
MHz. To model GPR data, we use a Hertzian dipole source polarized perpendicular to
the inline (x) direction, add an air layer with a thickness of 0.5 m above the surface, and
place all sources and receivers directly onto the air- subsurface boundary. In Table 3.1,
we sum up the basic modeling parameters used to simulate the 3D CO data sets.

For the first time, GPU-based modeling facilitates a time- efficient simulation of
extensive 3D GPR data sets typically comprising thousands of single source positions.
However, the available RAM of even modern GPUs might become a limiting factor

Table 3.1.: Modeling parameters used to simulate 3D GPR constant offset data sets, each
comprising a total of 51 profiles.

Parameter Value

Source frequency 50/100/200 MHz
Model discretization 0.05/0.025/0.0125 m

Model size 9.6/77/614 MCells
Time Window 250/200/200 ns

Source-receiver offset 0.8/0.5/0.5 m
Inline trace spacing 0.1/0.05/0.05 m

Crossline trace spacing 0.2 m
Number of traces 7752/15810/15810
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Figure 3.1.: Model of the Herten field site in terms of GPR velocity used as input for modeling
GPR data. The main genetic units are labeled from I to VI (for details see text).

for generating such 3D data sets. To perform the modeling procedure as efficient as
possible, we adjust the input model discretization and, thus, the number of cells in the
model considering the velocity distribution (Figure 3.1) and the source frequency content.
Nevertheless, only the input model with a discretization of 0.05 m fits onto a modern
GPU RAM and, thus, solely the 50 MHz CO data set can be modeled in a single run
within approximately one week. To simulate the 200 MHz CO data set, we follow Koyan
and Tronicke (2020a) and perform a model decomposition taking into consideration the
results of an examination of 3D effects in modeled 200 MHz CO data. Accordingly, we
iteratively decompose the full model into sub-cuboids with a size of 4.5 x 4 x 7.5 m (x, y,
z), whose central x and y positions resemble the trace locations of the corresponding 100
MHz CO data set (Koyan and Tronicke, 2020a). For each iteration, we simulate a single
GPR trace in the center of the according model sub-cuboid. Thus, we (1) assure that
each sub-cuboid fits onto a single GPU RAM and (2) preserve the 3D character in the
resulting 200 MHz CO data set, which has been modeled within approximately 10 weeks
using two modern GPUs simultaneously. Sedimentological GPR field campaigns typically
include CMP surveys at selected representative locations; for example, to obtain a GPR
velocity model for migration and time-to-depth conversion of the corresponding CO data.
Thus, we also model CMP data using source frequencies of 50, 100, and 200 MHz across
the corresponding input models (Table 1). The three CMP gathers are oriented along the
x direction, and are modeled around a center position at x/y = 8/5 m using a maximum
source-receiver offset of 5 m, and a trace spacing of 0.05 m.
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3.3. Modeling results and interpretation

As a result of our 3D modeling exercises, we obtain a 50 MHz and 200 MHz CO data
set across the entire model surface, of which we show in Figure 3.2 typical 2D time
sections at y = 6 m together with the 100 MHz data from Koyan and Tronicke (2020a).
In general, all synthetic GPR data show a realistic appearance and exhibit a large variety
of typical sedimentary reflection patterns including (semi-) continuous horizontal to
dipping reflections, diffraction events, and interference phenomena. With increasing
source frequency both the vertical and the horizontal resolution in the GPR time sections
increase. This becomes also evident in the according CMP data, which we show in
Figure 3.3 together with the corresponding velocity spectra resulting from standard
reflection-based spectral velocity analyses. In general, these spectra exhibit comparable
rms- velocity functions as indicated by maximum coherence values around 0.085 m/ns.
With increasing frequency, the spectral resolution in both velocity and time dimension
increases, and we observe significantly sharper maxima indicating better defined velocity
and traveltime values at the corresponding coherence maxima. The 50 MHz CMP
data show well-separated reflections resulting in five distinct peaks in the corresponding
spectrum highlighting the architecture of the main genetic units (Figure 3.1). In the 100
MHz and 200 MHz gathers, we observe additional reflections providing more in-depth
information on layer- internal structures. However, a more detailed analysis reveals
that with increasing frequency the according spectra, especially for the 200 MHz data,
are increasingly contaminated by energy resulting from interference phenomena (e.g.,
around traveltimes of 160 ns in Figure 3.3c. This complicates an interpretation in terms
of meaningful subsurface velocity variations and, without any prior knowledge on the
subsurface architecture (e.g., as obtained from the 50 MHz CMP data), could lead to
erroneous picks in the spectra which, in turn, result in erroneous rms velocity functions.

As an application example for the simulated CO data sets, we employ a typical
structural imaging processing flow including 3D migration to obtain 3D GPR depth
images as they could have been expected in an according sedimentological field campaign.
Based on our CMP results, we use a constant rms velocity of 0.085 m/ns to perform the
migration and time-to-depth conversion of our CO data sets. In Figure 3.4, we present
on top the same 2D slice shown in Figure 3.2 and an example depth slice at z = 2.4 m
(bottom) of the GPR velocity model in Figure 3.4a and the corresponding GPR depth
images in Figure 3.4b-figure 3.4d. In general, the processing results are in well agreement
with the input model as they realistically image the subsurface and, thus, illustrate
a reasonable modeling and processing procedure. The depth images accentuate the
frequency-related resolution capabilities and interference phenomena already discussed
for the CMP data. Regarding a structural imaging, the 50 MHz and 100 MHz depth
images highlight the main subsurface architecture by well-pronounced, quasi-continuous
reflections. However, the limits of resolution of the 50 MHz data become evident when
comparing the imaging of the interface between units IV and V in Figure 3.4b-figure 3.4d,
especially in the presented depth slices. In contrast, the 200 MHz data provide the
highest resolution showing numerous small-scale internal structures but also exhibit a
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Figure 3.2.: Typical 2D time sections at y = 6 m of unprocessed GPR data with a source frequency
of (a) 50 MHz, (b) 100 MHz (Koyan and Tronicke, 2020a), and (c) 200 MHz. For
comparability in terms of traveltime, we show the data after time-zero correction.
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Figure 3.3.: Synthetic CMP data sets centered at (x/y) = 8/5 m with a source frequency of
(a) 50 MHz, (b) 100 MHz, and (c) 200 MHz. To the left of the CMP gathers, we
show the velocity spectra resulting from a reflection-based spectral velocity analysis
(yellowish-brown values indicate high coherence values).

large variety of complex interference patterns. Especially the latter might complicate a
structural interpretation in terms of separating main sedimentological units without any
further information on the subsurface architecture (e.g., as obtained by analyzing the 50
MHz or 100 MHz GPR data).

Figure 3.4.: Typical 2D profile slices at y = 6 m (top) and depth slices at z = 2.4 m (bottom) of
(a) GPR velocity model (same color scaling as used in Figure 3.1), and GPR depth
images obtained from the data simulated with a source frequency of (b) 50 MHz, (c)
100 MHz, and (d) 200 MHz.
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3.4. Conclusions

In this study, we have demonstrated the viability of modeling densely sampled 3D multi-
frequency GPR data using a realistic sedimentary model. Typical analyses of synthetic
constant offset and common midpoint GPR data sets show that, especially in such highly
heterogeneous sedimentary environments, using only a high source frequency does not
always yield the most meaningful results. On the contrary, our synthetic case study
illustrates that the results obtained by analyzing multi-frequency GPR data complement
each other as both 50 MHz and 100 MHz data primarily highlight the main interfaces
and roughly indicate internal structures. Analyzing these data sets provides fundamental
information about the large-scale subsurface architecture which, then, eases and facilitates
a reliable interpretation of the 200 MHz data. These data show a significantly higher
degree of detail more accentuating internal structures and, thus, might be best suitable
for advanced interpretation techniques such as GPR facies (e.g., Van Overmeeren, 1998)
or attribute-based analyses. Hence, we conclude that it is desirable to acquire and
analyze multi-frequency GPR data (e.g., using modern multi-channel instruments) in
comparable sedimentological field studies. Using such a strategy may prevent possible
misinterpretations, facilitates a data interpretation from large to small scales and, thus,
provides a comprehensive understanding of the investigated sedimentary system. To
support future geophysical and GPR developments, the input model and the 100 MHz
CO data set (in HDF5 and VTK data format) including matlab and python scripts to
read and visualize these data can be found at http://dx.doi.org/10.17632/by3yh79hx4.1,
a publicly available data set hosted at Mendeley Data (Koyan and Tronicke, 2019).
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4. 3D ground-penetrating radar data analysis and

interpretation using attributes based on the

gradient structure tensor

Philipp Koyan and Jens Tronicke∗

4.1. Abstract

In near-surface geophysics, ground-penetrating radar (GPR) surveys are routinely
employed in a variety of applications including those from archaeology, civil engineering,
hydrology, and soil science. Thanks to recent technical developments in GPR instrumen-
tation and antenna design, 3D surveys comprising several 100.000 traces can be performed
daily. Especially in complex environments such as sedimentary systems, analyzing and
interpreting the resulting GPR volumes is a time-consuming and laborious task that is
still largely performed manually. In the last decades, several data attributes have been
proposed to guide and improve such tasks and assure a higher degree of reproducibility
in the resulting interpretations. Many of these attributes have been developed in image
processing or computer vision and are routinely used, for example, in reflection seismic
data interpretation.

Especially in sedimentary systems, variations in the subsurface are accompanied by
variations of GPR reflections in terms of amplitudes, continuity, and geometry in view of
dip angle and direction. A promising tool to analyze such structural features is known as
the gradient structure tensor (GST). Up to today, the application of the GST approach is
limited to a few 2D GPR examples. Thus, we take up the basic idea of GST analysis and
introduce and evaluate the corresponding attributes to analyze 3D GPR data. We apply
the proposed GST approach to one synthetic and two field data sets imaging diverse
sedimentary structures. Our results demonstrate that the proposed set of GST-based
attributes can be efficiently computed in 3D and that these attributes represent versatile
measures to address different typical interpretation tasks and, thus, help for an efficient,
reproducible, and more objective interpretation of 3D GPR data.

∗A journal article of the same title has been submitted as Koyan and Tronicke (2023a) to Geophysics
on November 7, 2023.
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4.2. Introduction

In various applications, ground-penetrating radar (GPR) is a well-established geophysical
tool to image near-surface structures (e.g., Daniels, 2004; Annan, 2005b). Typical
subsurface target structures include natural geological features such as soil horizons,
sedimentary layering, or faults and fracture systems (e.g., Knight, 2001; Bristow and Jol,
2003; Neal, 2004; Jol, 2009). If a detailed and accurate three-dimensional (3D) image
is required, 3D GPR surveying is increasingly used. Today, 3D GPR data acquisition
relies on kinematic surveying strategies that combine a single- or multi-channel GPR
instrument with modern surveying technology such as global positioning systems (GPS;
Aaltonen and Nissen, 2002) or tracking total stations (TTS; Böniger and Tronicke, 2010b).
In practice, most 3D data sets are recorded using common-offset antenna configurations
moved along numerous approximately parallel lines with dense in- and cross-line trace
spacing to avoid spatial aliasing (Lehmann and Green, 1999; Grasmueck et al., 2005).

Processing 3D GPR data sets aims at maximizing the information content (in terms of
resolution and signal-to-noise ratio) and the quality of the final 3D structural image (in
terms of reflector positioning and geometry), as needed to derive a detailed subsurface
model. Thus, a typical 3D processing sequence includes standard trace-based processing
steps such as zero-time correction, frequency domain band-pass filtering, and amplitude
scaling (e.g., Annan, 2005b; Cassidy, 2009). For kinematic data sets, the recorded
irregularly spaced traces have to be interpolated to a regular grid after correcting the
GPS/TTS positioning data for latencies (i.e., the time delay between the positional
measurement and its availability to the geophysical instrument; Böniger and Tronicke,
2010b). Furthermore, if the data are collected in areas of rugged topography, we also
have to correct for the position of the GPS receiver (or TTS prism) in relation to the
midpoint of the antenna pair to obtain accurate trace coordinates (Lehmann and Green,
1999). After gridding the data, the application of a 3D migration scheme is necessary to
move dipping reflections to their correct position, unravel crossing events, and collapse
diffractions (Yılmaz, 2001). Because topographic variations can be easily in the order of
the target depths and GPR velocities often vary by more than a factor of two within near-
surface environments, 3D migration schemes explicitly considering surface topography
and subsurface velocity variations are commonly recommended (Allroggen et al., 2015).
For specific processing tasks, the outlined basic processing flow is often complemented by
additional pre- and post-migration processing steps that, for example, aim at enhancing
the data frequency content (e.g., Irving and Knight, 2003; Belina et al., 2009; Economou
and Vafidis, 2012) or at suppressing coherent source-generated noise (e.g., Grasmueck,
1996; Nuzzo and Quarta, 2004; Kim et al., 2007; Wang and Liu, 2017).

The interpretation of processed 3D GPR data is similar to the basic concepts used
for interpreting reflection seismic data; i.e., after 3D migration, we assume that the
data volume represents a reliable image of subsurface impedance contrasts (reflecting
bounding surfaces and other heterogeneities) from which a subsurface model can be
derived (Yılmaz, 2001). Today, this strategy is largely supported by (interactive) 3D
visualizations also using software solutions originally developed for analyzing 3D seismic
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data. Depending on the application, the actual structural interpretation relies on three
different strategies including (1) reflector selection and tracking (e.g., to outline target
geological horizons; Schmelzbach et al., 2011), (2) identifying and isolating abrupt changes
along reflectors (e.g., to highlight edges of buried objects; Trinks and Hinterleitner, 2020),
and (3) delineating units of characteristic reflection patterns (e.g., to identify GPR facies
in sedimentary environments; Corbeanu et al., 2004). Today, these concepts are often
supported by selected attributes (Tronicke and Böniger, 2013; Manataki et al., 2021); i.e.,
measures calculated or extracted from the data that help to enhance or quantify features
of interpretation interest (Chopra and Marfurt, 2007). In the seismic literature, a variety
of attributes have been proposed for analyzing post-stack seismic data (Barnes, 2016) and
some of these measures have also been successfully used to aid GPR data interpretation.
For example, Dossi et al. (2015) use the cosine of the instantaneous phase as an attribute
to pick locally continuous reflection events in an automated fashion, while Böniger and
Tronicke (2010a) use similarity as a multi-trace attribute to highlight discontinuities
and, thus, to improve the interpretation of buried archaeologically relevant objects.
Furthermore, Koyan et al. (2021) use a set of geometrical and textural attributes to
identify and classify GPR facies in Holocene sediments deposited in a coastal environment.

Although the three basic GPR interpretation strategies outlined above are conception-
ally different and typically address different kinds of subsurface targets and structures,
respectively, they all rely on analyzing the continuity (or discontinuity) and the spatial
arrangement of reflector elements and amplitudes, respectively. This indicates that a
set of geometrical attributes characterizing the local structure would represent a proper
starting point for different interpretation tasks. Under the basic assumption that a
processed and migrated GPR data volume images subsurface structures, we propose a
set of attributes calculated from a 3D gradient structure tensor (GST) that comprises
amplitude gradients in all spatial dimensions. For decades, gradient structure tensors
have been known in the fields of image processing and computer vision and used for
estimating local orientation and characterizing local image structures such as lines, edges,
and corners (Kass and Witkin, 1987; Harris and Stephens, 1988; Knutsson, 1989; van
Vliet and Verbeek, 1995). Today, they can be regarded as popular tools for analyzing 2D
and 3D images in various applications including 3D medical imaging and video processing
(e.g., Westin et al., 1997, 2001; Hladuvka and Gröller, 2001; Wright and Pless, 2005;
Khan et al., 2015). Published geophysical applications mainly focus on analyzing 2D
and 3D reflection seismic images including the formulation of structure-oriented filter
procedures (Bakker, 2002; Fehmers and Höcker, 2003; Faraklioti and Petrou, 2005; Hale,
2009; Wu, 2017). For analyzing GPR data, the usage of GST is limited, and published
studies focus on the analysis of 2D data sets; for example, Bowling et al. (2018) apply a
2D GST to identify GPR facies in 2D data collected across carbonate platforms, while
Zhu et al. (2021) use such a tensor to aid the extraction of horizons from 2D GPR data
sets.

In the following, we present the methodological basics which include the definition of
the used 3D gradient structure tensor and its decomposition into a set of eigenvalues and
eigenvectors. From this eigendecomposition, we derive a set of GST-based attributes
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to characterize local structures in 3D GPR data sets. Then, we use these attributes to
analyze various synthetic and field data examples addressing different typical applications
of GPR surveying to evaluate the potential of the proposed attributes.

4.3. Methodology

4.3.1. 3D Gradient Structure Tensor

The basic idea of structure tensors is to comprise the information of partial derivatives
in a local neighborhood (e.g., Knutsson, 1989; van Vliet and Verbeek, 1995; Bakker,
2002; Faraklioti and Petrou, 2005). Focusing on first-order derivatives and 3D data, the
gradient structure tensor N can be defined as

N =







ïI2
x
ð ïIxIyð ïIxIzð

ïIyIxð ïI2
y
ð ïIyIzð

ïIzIxð ïIzIyð ïI2
z
ð






, (4.1)

where Ix, Iy, and Iz represent the partial derivatives of the data I in x-, y-, and z-
direction, respectively. The operator ï·ð indicates a smoothing operation to stabilize the
results for noisy input data. If we use a Gaussian function with a standard deviation
σ as a smoothing kernel, σ can also be considered as a scale parameter specifying the
integration scale; i.e., the local scale at which we calculate the gradients. In practice, we
may implement Equation 4.1 by a one-step convolution filter procedure using Gaussian
derivatives as filter kernels. Because of the well-known separability property of such filter
kernels, the components of N can be efficiently computed also when analyzing rather
large 3D data volumes consisting of more than 1,000,000 individual data points.

If we want to analyze local structures at specific or multiple spatial scales (e.g.,
following linear scale-space theory; Lindeberg, 1993), the implementation of Equation 4.1
often explicitly considers two individual spatial scales implemented using two separated
Gaussian filter operations (e.g., Bakker, 2002; Faraklioti and Petrou, 2005). The first scale
is known as the smoothing or gradient scale and aims at stabilizing the differentiation
process (using a Gaussian filter kernel with a standard deviation σG), while the second
scale represents the integration, tensor, or target scale that is related to the size of the
structures to be analyzed (using a Gaussian kernel with a standard deviation σT > σG).
Here, for analyzing our 3D GPR data examples, we follow this strategy and specify
σG considering the signal-to-noise ratio and the resolution capabilities of our data as
needed for a stable estimation of the individual components of N (typically in the order
of σG ≈ 0.1 m). Then, we specify σT depending on the scale of the target structures
(typically 3σG > σT > 10σG). Because GPR data volumes are often characterized by
different spatial sampling intervals in x-, y-, and z-direction and, furthermore, we may
intend to use anisotropic kernels (e.g., in view of emphasizing horizontal directions when
analyzing stratified structures in our GPR reflection images), we explicitly consider
anisotropic Gaussian kernels defined by σG|T,x, σG|T,y, and σG|T,z. For computing N
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in such a way as well as for performing the following decomposition of the tensor, we
use the computationally efficient implementations as provided by DIPlib, which is an
open-source C++ library steadily developed for more than two decades and licensed under
the Apache 2.0 license (for details see www.diplib.org and www.github.com/DIPlib).

4.3.2. Tensor Decomposition and Interpretation

Characterizing local structures using the 3D gradient structure tensor N (Equation 4.1)
typically relies on an eigendecomposition fulfilling the characteristic equation

N = λ1e1e
T

1
+ λ2e2e

T

2
+ λ3e3e

T

3
, (4.2)

where λi are the eigenvalues (with λ1 g λ2 g λ3 g 0), ei the eigenvectors of N, and the
superscript T denotes the transpose of a vector. The given ordering of λi indicates that
e1 identifies the direction of maximum variation. This decomposition can be visualized
as an ellipsoid where the vectors ei define a 3D rectangular Cartesian coordinate system
while the eigenvalues λi values characterize the semi-lengths of the ellipsoidal shape (as
illustrated by the example sketched in Figure 4.1). Comparing the magnitudes of every
λi to each other allows for identifying different local structures such as planes, lines, or
uniform (isotropic) structures (Table 4.1). For example, in case λ1 k λ2 ≈ λ3 ≈ 0, e1 is
the normal vector of a plane P1 (Figure 4.1) that locally describes the orientation of the
underlying plane-like structure.

In the literature, different λi-based measures have been proposed to summarize the
results of the given tensor decomposition (Equation 4.2) and to identify specific structures.
For example, the trace of the tensor calculated by

Eg =
∑

i

λi, (4.3)

represents the total GST energy Eg and, thus, might be used to highlight intensity and
amplitude variations as well as to normalize individual eigenvalues or further measures
and attributes, respectively (Bakker, 2002). To quantify the similarity of a local 3D
structure to a plane and a line, respectively, the two contrast-independent measures
Cplane and Cline have been introduced by van Kempen et al. (1999):

Cplane =
λ1 − λ2

λ1 + λ2

(4.4a)

and

Cline =
λ2 − λ3

λ2 + λ3

. (4.4b)
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Figure 4.1.: Visualizing a 3D structure tensor N using its eigenvalues λi and eigenvectors ei

obtained by tensor eigendecomposition. While ei define the orientation of the sketched
ellipsoid, the shape is defined by λi representing the semi-lengths of the major axes
of the ellipsoid. For the sketched case λ1 = 2λ2 = 4λ3, e1 is the normal vector of
plane P1 locally describing the orientation of the underlying plane-like structure.

With this definition, both Cplane and Cline vary between 0 and 1 and, thus, can be
used to identify corresponding local structures (see also Table 4.1). In addition, the
orthogonal vectors ei can be used to quantify the orientation of local structures. While
e1 points toward the maximum gradient, e3 identifies the orientation of the smallest
intensity variations. For example, for a plane-like structure (Cplane ≈ 1), the orientation
of e1 is normal to the plane P1 (Figure 4.1) and, then, we can estimate the angles of
structural dip φ and azimuth θ (see also Figure 4.2) defined as

φ = cos
−1

(

z
√

x2 + y2 + z2

)

(4.5a)

and

θ = cos
−1

x
√

x2 + y2
. (4.5b)
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Table 4.1.: Selected 3D local structures as they can be identified by the eigenvalues λi of the 3D
gradient structure tensor and the two confidence measures Cplane and Cline.

Local structure Eigenvalues Cplane Cline

Plane λ1 k λ2 ≈ λ3 ≈ 0 ~1 ~0
Line λ1 ≈ λ2 k λ3 ≈ 0 ~0 ~1

Uniform λ1 ≈ λ2 ≈ λ3 ~0 ~0

In summary, interpreting the eigenvalues and the eigenvectors of the gradient structure
tensor allows us to characterize local structures in a 3D image or data set. In view of
interpreting 3D GPR data sets, such an analysis provides a set of 3D structural attributes
to describe local amplitude continuity and variations (λi, Eg), to characterize structural
shape (Cplane, Cline), and to quantify the local orientation (φ, θ). In the following, we
will evaluate the potential of these attributes to analyze synthetic and field data examples
representing different typical applications of 3D GPR surveying.

4.4. Synthetic example

4.4.1. Model and GPR data

To illustrate the basic ideas and the applicability of the proposed methodology to 3D GPR
data, we use a 200 MHz synthetic data set simulated across a realistic sedimentary model
(Koyan and Tronicke, 2020a,b). In Figure 4.3a, we show the input model in terms of GPR
velocities along selected in- and crossline slices. This model is considered to represent a
realistic sedimentary environment because the underlying structures and parameters have
been derived from a 3D outcrop analog study (Bayer et al., 2011; Comunian et al., 2011).
We follow these authors to label the main genetic units I-VI in the model. In general,
these genetic units are characterized by multi-scale stratigraphic structural variations.
On the large scale (several meters), we observe continuous accretionary elements showing

Figure 4.2.: Definition of structural dip φ and azimuth θ to quantify the orientation of local
structures as used in this study.
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low to medium dip angles and varying dip azimuth (units I, II, IV, and VI). On the
medium scale (several decimeters to some meters), the stratigraphic structures are mostly
continuous, westward-dipping cut-and-fill elements showing the globally highest dip
angles (units III and V). On the small scale (centimeters to some decimeters), we find
discontinuous cross-bedded patches with varying dip angles and azimuth (within units I,
II, and IV).

Using this model, a 200 MHz source wavelet, and in- and crossline trace spacings of
0.05 m and 0.2 m, respectively, Koyan and Tronicke (2020b) model a 3D GPR data
set using open-source software gprMax (Warren et al., 2016, 2018). In Figure 4.3b, we
visualize the modeled GPR data volume along the same in- and crossline slices as shown
in Figure 4.3a after applying a standard processing sequence including 3D migration and
time-to-depth conversion.

4.4.2. GST-based analysis

As given by Equation 4.1 and the corresponding explanations above, the user-specified
parameters to compute and analyze a gradient structure tensor are the gradient and the
target scale σG and σT , respectively. Here, we fix σT = 3σG for all experiments thus
reducing the number of user-specified parameters to one (either σG or σT ). Having at
hand both the input model and the corresponding GPR data set (Figure 4.3a,b) allows
us to study how gradient structure tensors and, consequently, the derived GST attributes
(1) are affected by isotropic (i.e., σT,x = σT,y = σT,z) or anisotropic Gaussian filter kernels
(e.g., σT,x = σT,y > σT,z), and (2) are influenced by different spatial filter scales (in the
following defined by the target scale σT ).

In this work, we refer to any GST attributes using the respective Gaussian filter
kernels and target scales incorporated in the calculation of the corresponding GST. In
Figure 4.3c-f, we show GST energy Eg (Equation 4.3) calculated using different Gaussian
filter kernels and target scales as transparent overlays on the processed GPR data as
shown in Figure 4.3b. For the result shown in Figure 4.3c, we use an isotropic Gaussian
filter kernel (i.e., σT,x = σT,y = σT,z) and a target scale corresponding to a dominant
signal wavelength λd of approximately 0.45 m (considering both the subsurface velocity
distribution and the frequency content of the GPR data). Figure 4.3c illustrates that,
in general, high Eg values highlight regions of high reflection amplitudes and, in turn,
regions of high contrasts in electromagnetic properties (compare Figure 4.3a to 4.3c).
However, to consider and emphasize the stratified nature of the subsurface in the resulting
attribute images, we also consider an anisotropic Gaussian filter kernel characterized by a
ratio between vertical and horizontal scales of 1:5 (i.e., σT,z = 0.09 m and σT,xy = 0.45 m)
and show the result for Eg in Figure 4.3d. Comparing Figure 4.3c and 4.3d illustrates
that by decreasing σT,z, the attribute adapts to the stratigraphic layering. More precisely,
layers and interfaces characterized by high, medium, and low reflection amplitudes in
the GPR data can be precisely related to high, medium, and low values of Eg (compare
Figure 4.3b and 4.3d).

In the next step, we fix the ratio between σT,z and σT,xy to 1:5 and evaluate the influence
of different target scales representatively on the Eg values. For this, we calculate Eg
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Figure 4.3.: 3D synthetic data example illustrating results of a parameter test for GST-based
analysis. We show selected inline and crossline slices of (a) the input model in terms
of GPR velocities, (b) the processed GPR amplitude data volume, and (c-f) the
volume from (b) with GST energy Eg as transparent overlay calculated using different
Gaussian filter kernels as indicated by the different target scales σT,xyz.
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using σT,xy = 0.15 m ≈ λd

3
and σT,xy = 1.35 m ≈ 3λd and show the results in Figure 4.3e

and 4.3f, respectively. Using target scales sized by a fraction of λd yields GST attributes
showing a high degree of structural detail (Figure 4.3e) whereas using target scales
sized by a multiple of λd produces GST attributes emphasizing corresponding large-scale
structural variations (Figure 4.3f).

The parameter test outlined in Figure 4.3 illustrates the advantage of using anisotropic
Gaussian filter kernels to analyze GPR data sets if a layered subsurface is expected
and a reasonable guess on the ratio between horizontal and vertical correlation lengths
is available. Furthermore, small values of σT (i.e., σT < λd) result in a high degree
of structural detail (Figure 4.3e) and might preferably be used as input for advanced
processing and filtering procedures such as dip-steered filters (e.g., Luo et al., 1996). In
contrast, attributes calculated using larger values of σT (i.e., in the order of one to several
dominant wavelengths) are better suited to interpret GPR reflection patterns and facies
(e.g., in view of attribute-based classification procedures as developed by Koyan et al.,
2021).

To further analyze our synthetic data example and calculate further GST-based
attributes, we use σT,xy = 5σT,z = 0.45 m as shown in Figure 4.3d, because we consider
this parameter combination to be a reasonable compromise to analyze large, medium,
and small-scale structural features in GST attributes. In Figure 4.4, we show further
selected attributes derived by decomposing the GST into its eigenvectors and eigenvalues
(Equation 4.2) as transparent overlays on the GPR data along selected in- and crossline
slices.

In Figure 4.4a, we show Cplane calculated using Equation 4.4a. As indicated by the color
scale, Cplane has a defined range between 0 and 1 (Table 4.1). In this example, we observe
values for Cplane between approximately 0.4 (λ1 ≈ 2.5λ2, i.e., a ratio in the order of the
one illustrated in Figure 4.1) and 0.9 (λ1 ≈ 20λ2). In general, Cplane specifies to which
extent the local structure resembles a plane. Therefore, Cplane can be interpreted as a
measure of how confident the absolute values derived from the corresponding eigenvectors
can be interpreted in terms of structural dip angle and azimuth because the measures
resulting from Equation 4.5a and Equation 4.5b are only well-defined in the presence of
plane-like structures. Here, the observed Cplane values allow us to analyze and interpret
the eigenvectors (Figure 4.4b) as well as the derived dip attributes in terms of the dip
angle φ (Figure 4.4c) and dip azimuth θ (Figure 4.4d) with a high level of confidence.

In Figure 4.4b, we show the eigenvector e1 at selected locations along the selected
in- and crossline slices. To ease the interpretation, we add the corresponding plane
P1 (see Figure 4.1) that locally describes the orientation of the plane-like structure
and, thus, the orientation of the reflections as imaged by the GPR data. Comparing
e1 and P1 to the underlying GPR reflections (Figure 4.4b) indicates the potential of
the GST eigenvector-based attributes for describing structural features in terms of dip
angle φ and azimuth θ (Equation 4.5a and Equation 4.5b). This is emphasized by
analyzing Figure 4.4c and 4.4d in terms of absolute values of φ and θ considering the
stratigraphic features present in the input model (Figure 4.3a). In general, we observe an
overall high level of agreement between stratigraphic structures, GPR reflections, and the
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corresponding GST eigenvector-based attributes. For example, the cut-and-fill structures
as found in unit III (Figure 4.3a) are precisely characterized in terms of dip angles
(showing the globally highest values up to 10°) and west-to-west-northwest-dominated
azimuthal directions. Moreover, analyzing the accretionary elements (unit VI) in more
detail highlights the importance of 3D GPR processing and 3D GST-based analysis in
the presence of such complex subsurface structures. This is, although the showcased
inline slice at y = 6 m creates the impression of a largely (sub)-horizontal near-surface
interface, Figure 4.4b-d indicates a southward-dipping structure with dip angles up to 5°.
Overall, these observations are in good agreement with the actual structures observed in
the input model (see Figure 4.3a). In conclusion, we regard this synthetic study as an
important step to demonstrate that GPR interpretation tasks will undoubtedly benefit
from GST-based techniques as these provide a comprehensive and complete understanding
of structural interrelationships, especially in complex 3D settings.

4.5. Field examples

Analyzing a synthetic GPR data set and model allowed us to study the influence of
different parameters used for calculating gradient structure tensors on the resulting
GST-based measures and attributes. We now use the obtained knowledge to analyze 3D
GPR field data sets with the GST method. Although the selected data sets both image
complex sedimentary structures, they fundamentally differ in terms of reflection patterns
and the corresponding target scales.

4.5.1. Example 1 - Facies characterization in sandy deposits

Field site and GPR data

The study area is located on the island of Spiekeroog, one of the seven inhabited East
Frisian Islands located a few kilometers off the coast of Lower Saxony (Germany).
Spiekeroog is a dune island actively growing towards the north-east whose near-surface
geology (i.e., the first 15-20 m below mean sea level) is mainly characterized by (from
top to bottom) recently and actively accumulated dunes, intertidal beach deposits as
well as shallow marine deposits. These Holocene sand deposits are saturated up to
depths of 20-30 m below mean sea level by a freshwater lens which is of vital hydrological
importance as it acts as the island’s main freshwater reservoir (further details in Tronicke
et al., 1999; Röper et al., 2012).

The field site crosses a northwest-southeast striking dune valley in the central part
of the island. Here, Koyan et al. (2021) collected 200 MHz GPR data including a
high-resolution 3D data set covering an area of approximately 5000 m2 with an inline
and crossline spacing of approximately 0.08 and 0.25 m, respectively. These authors
produce a GPR data volume by applying a 3D structural imaging processing approach
including 3D topographic migration (using a CMP-based velocity model), time-to-depth
conversion, and topographic correction. In Figure 4.5, we display this data set within the
freshwater-saturated zone set along selected inline (x-direction), crossline (y-direction),
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Figure 4.4.: Further GST attributes and measures calculated using σT,xy = 5σT,z = 0.45 m

(Figure 4.3d) and Equations 4.2, 4.4a, 4.5a, and 4.5b as transparent overlay across
selected in- and crossline slices of the processed synthetic 3D GPR data volume: (a)
Cplane, (b) e1 and corresponding plane P1 at selected locations, (c) dip angle φ, and
(d) dip azimuth θ.
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and depth slices (z-direction). The shown data set images sandy depositional structures
of varying internal stratification within the saturated zone. These regions significantly
vary, for example, in terms of reflection amplitude, continuity, or dip angle and direction.
This makes this data set a suitable target to apply and further explore the potential and
limitations of the proposed GST method to analyze 3D GPR in terms of sedimentary
structures GPR facies.

GST-based analysis

Using the processed 3D GPR data set (Figure 4.5), we calculate the GST and the
corresponding attributes for the Spiekeroog data set. Based on our geological background,
the layered nature of the data set, and the observations from our synthetic example, we
use target scales of σT,xy = 5σT,z = 0.6 m such that σT,xy corresponds to one dominant
wavelength λd (considering the velocity distribution and frequency content observed by
Koyan et al., 2021). In Figure 4.6, we show selected GST-based attributes (Eg, Cplane,
φ, and θ) as transparent overlays along selected inline, crossline, and depth slices of the
processed GPR data set.

In general, comparing the GST-based attributes and the GPR data set reveals that
the GST approach produces meaningful attribute volumes for Eg, Cplane, φ, and θ
characterized by a high level of agreement with the underlying GPR reflection patterns.
We generally observe Cplane values of 0.4 or higher which means that the eigenvector-
based attributes can be interpreted with a high level of confidence throughout the entire
volume. Analyzing the attribute volumes in more detail shows that variations of these
attributes with depth indicate a zonation summarized in Table 4.2.

Figure 4.5.: 3D processed GPR data set imaging sandy structures in various depositional
environments on the dune island of Spiekeroog (Germany). Depth z refers to the
depth below water table corresponding to the top of a local freshwater lens.
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Figure 4.6.: GST attributes calculated using σT,xy = 5σT,z = 0.6 m as transparent overlay across
selected in- and crossline slices of a subset of the processed Spiekeroog 3D GPR data
volume (Figure 4.5): (a) GST energy Eg, (b) Cplane, (c) dip angle φ, and (d) dip
azimuth θ. Depth z refers to the depth below water table corresponding to the top
of a local freshwater lens.
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In detail, at depths up to z ≈ 5 m, we observe low values for Eg, Cplane, and φ. However,
these are locally disturbed by decreased Cplane values, increased φ values, highly varying
θ values, and/or Eg values. This illustrates locally higher reflection amplitudes (high Eg

values), and discontinuous features (low Cplane values) with anisotropic dip azimuth as
well as a considerable dip angle.

At depths of z ≈ 5 − 7 m, we observe uniformly high Cplane and Eg values along with
minor φ values and, in turn, varying (non-interpretable) θ values. This characterizes a
highly continuous, horizontally layered unit with uniformly high reflection amplitudes.
At depths of z ≈ 7 − 8 m, we observe spot-like features showing the globally highest Eg

values coupled with comparably high Cplane and φ values. This illustrates local anomalies
characterized by discontinuous, high-amplitude reflection patterns. At depths of z ? 8 m,
we notice frequently alternating high and low Eg values. Here, Cplane shows uniformly
high values and we observe the globally highest dip angles (showing values of more than
10°) as well as stable dip azimuth values. This characterizes largely continuous, uniformly
northeast dipping layers with reflection amplitudes varying between low and high values.

The GST-based attributes show a high level of agreement with the underlying GPR
data (Figure 4.5) thus illustrating that the GST approach can highlight and distinguish
sedimentary facies in a meaningful manner. In addition, the zonation outlined by the
GST-based attributes is in agreement with Koyan et al. (2021) who present a GPR facies
model for this field site mainly relying on texture attributes. In general, this model

Table 4.2.: Attribute variations with depth as outlined by the GST-based attribute volumes in
Figure 4.6 and geological interpretation following Koyan et al., 2021.

Depth
GST

Energy Eg

Cplane Dip angle φ
Dip

azimuth θ

Geological

Interpreta-

tion

f5 m

generally
low, locally
increased

values

generally
high, locally

decreased
values

generally
low, locally
increased

values up to
5°

varying

recent and
actively

accumulated
dunes

5-7 m
uniformly

high
uniformly

high
insignificant

non-
interpretable

intertidal
beach

deposits

7-8 m

spots with
globally
highest
values

spots with
globally

lowest values

spots with
values up to

5°

varying
mud lenses,

moor/lagoon
deposits

g8 m

frequently
alternating
between low

and high

uniformly
high

globally
highest

values of
>10°

uniformly
towards

northeast

shallow
marine
deposits
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describes (from top to bottom) recently and actively accumulated dunes (z ≲ 5 m),
intertidal beach deposits (z ≈ 5 − 7 m), local moor and lagoon deposits comprising mud
and clay lenses (z ≈ 7 − 8 m), and shallow marine deposits (z ? 8 m). Moreover, not only
do the general trends of the presented GST-based attributes confirm previous studies
but, using GST analysis, we can also access physically valuable values for dip angle and
azimuth to deepen the understanding of such complex sedimentary systems. As a more
detailed geological and sedimentological interpretation is beyond the scope of this work,
we refer to previous studies that further describe the depositional environments at this
field site (Koyan et al., 2021) and on a more regional scale (Tronicke et al., 1999; Röper
et al., 2012).

4.5.2. Example 2 - Fault characterization in volcanic and lacustrine deposits

Field site and GPR data

The study area is located within the Taupo Volcanic Zone (TVZ), the dominant region
of active volcanism on the North Island of New Zealand where the Pacific Plate subducts
westward beneath the Australian Plate. A specific region of the TVZ is known as
the Maleme Fault Zone (MFZ; Villamor and Berryman, 2001) that forms the central
axis of the Ngakuru Graben comprising faults active over the last approximately 20
ka. The near-surface at the MFZ comprises volcanic and lacustrine deposits that have
been displaced along several fault strands over the last 20 ka. As the TVZ as well as
the entire North Island is subject to frequent shallow earthquakes, an understanding
of the morphology, geometry, and variability of fault zones is crucial here. Although
rough estimates on the location and vertical displacement of fault strands at MFZ can
be inferred from morphological variations, GPR is a promising tool to provide a more
detailed image of the fault geometry.

The field site is located southeast of the actual graben axis at MFZ. Across an area
of approximately 1200 m2 perpendicular to the southwest-northeast striking graben
axis, Tronicke et al. (2006) acquire 100 MHz GPR data including a 3D data set using
an inline and crossline spacing of approximately 0.1 and 0.5 m, respectively. These
authors produce a GPR data volume by applying a 3D structural imaging processing
approach including 3D topographic migration (using a CMP-based velocity model),
time-to-depth conversion, and topographic correction. In Figure 4.7a, we display the
processed data set along selected inline (y-direction), crossline (x-direction) and depth
slices (z-direction). Here, the local y-axis is perpendicular to the graben axis located at
y ≈ -40 m. This data set images two parallel reflections that correspond to the upper
boundaries of Late Pleistocene Tephra and lacustrine sediments. This characteristic
reflection signature is locally interrupted and offset at individual fault strands. Tronicke
et al. (2006) manually track these reflections in the GPR and derived attribute volumes.
Analyzing the topography of these picked horizons allows us to locate the individual fault
strands and characterize their geometry. In Figure 4.7b, we show one of these horizons
and visualize three interpreted fault strands (lower transparency, labels A-C) dipping
towards the northwest (i.e., towards the graben axis). Analyzing the reflection patterns
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in detail reveals that individual fault strands significantly vary, especially in terms of
continuity and dip angle, when compared to the remaining parts of the horizon. This
makes this data set a suitable target to apply our GST approach to analyze GPR data
in view of fault localization and fault characterization.

GST-based analysis

We calculate the GST and the corresponding attributes using the processed 3D GPR
data set (Figure 4.7) considering both the horizontal nature of sedimentary layers and
the more vertical nature of the faults. To accomplish this, we use target scales of
σT,xy = 2σT,z = 0.75 m ≈ λd that enable a compromise between resolving horizontal

Figure 4.7.: (a) 3D processed GPR data set imaging fault strands within volcanic and lacustrine
sediments at the Maleme Fault Zone (North Island, NZ). The local y-axis is
perpendicular to the graben axis located at y ≈ -40 m. (b) Same as for (a) but
with an interpreted GPR horizon. Here, lower horizon transparency marks three
individual fault strands (labels A-C).
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and more vertical vertical features in the resulting attribute volumes. In Figure 4.8, we
display selected GST-based attributes (Eg, Cplane with interpreted fault strands, φ, and
θ) as transparent overlays across the same inline, crossline, and depth slices of the GPR
data shown in Figure 4.7a.

We observe a high level of agreement when comparing the shown attribute volumes to
the corresponding GPR data (Figure 4.7 and Figure 4.8). Moreover, we observe Cplane

values of 0.6 or more (except in regions labeled A, B, and D; Figure 4.8b) which allows us
to interpret the absolute values of φ and θ with a high level of confidence. In general, the
attribute volumes distinguish two fundamentally different regions in the data set. The
larger one shows medium to high Eg values, high Cplane values, low φ values, and θ values
frequently alternating between northeast and southwest. Here, the GST-based attributes
highlight regions in which we can observe the undisturbed reflection signatures of the
upper boundaries of Late Pleistocene Tephra and lacustrine sediments (Figure 4.7b).

In contrast, we locally observe four regions characterized by the globally lowest Cplane

values, the highest φ values, and θ uniformly pointing towards the northeast. Here, the
attribute volumes precisely differentiate the fault strands from undisturbed regions in
the GPR data. The fault strand positioning coincides with the manual interpretation
approach of Tronicke et al. (2006). To highlight this, we label these positions accordingly
in Figure 4.8b and Figure 4.7b.

In the attribute volumes, we also can interpret an additional fault strand (D) that could
not be mapped using a horizon-based interpretation approach. Analyzing Figure 4.8 in
more detail and comparing it with, for example, Figure 4.7 or typical 2D GPR attributes
(see Figure 7b-e in Tronicke et al., 2006) shows the potential of the GST approach to
analyze fault environments. Thus, we conclude that GST-based attributes can provide
comprehensive information on the 3D fault geometry including their vertical and lateral
extent complemented by physically valuable information in the form of dip angle and dip
azimuth. This information can be of immense value for further sedimentological analysis
such as the determination of 3D fault displacement and the temporal development and
variability in faulting regions.

4.6. Conclusion

In this work, we introduce and apply the 3D gradient structure tensor (GST) approach
for analyzing GPR data acquired across sedimentary systems. We present our ideas using
one synthetic and two field 3D GPR data sets exhibiting various reflection patterns at
different spatial scales.

Based on our synthetic example, we introduce the fundamental parameters and their
influence on both the GST calculation and the resulting attributes and measures. Using
two fundamentally different field data sets, we highlight how the GST attribute database
including measures of reflection amplitude, continuity, dip angle, and dip azimuth can
be used to analyze, interpret, and characterize GPR data sets in a full 3D fashion to
highlight structural similarities in terms of GPR facies and structural differences in terms
of fault mapping, respectively.
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Figure 4.8.: GST attributes calculated using σT,xy = 2σT,z = 0.75 m as transparent overlay
across selected inline, crossline, and depth slices of the processed MFZ 3D data set
(Figure 4.7): (a) GST energy Eg, (b) Cplane with interpreted fault strands labeled
A-D (compare Figure 4.7b), (c) dip angle φ, and (d) dip azimuth θ. Note the adjusted
scaling of Cplane values in (b).
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The proposed GST approach is computationally efficient, this is, a single run to
calculate the GST is in the order of some seconds for the shown 3D examples. Then,
from the GST we can derive a comprehensive attribute database as needed for further
processing or interpretation tasks. This database includes eigenvalue-based attributes
(e.g., Cplane and Eg) and eigenvector-based attributes (dip angle and dip azimuth) that
have a plausible physical meaning. The latter allows us to analyze and characterize
features identified in the GPR data or eigenvalue-based attributes in a more quantitive
way thus providing a comprehensive picture of complex GPR data sets and environments,
respectively.

The GST method only incorporates parameters with a clear physical meaning, namely
σG,xyz and σT,xyz (i.e., the scales of Gaussian filter kernels used to calculate the GST). Our
examples show that using, for example, a constant ratio between σG and σT , and a target
scale σT in the order of a dominant wavelength produces reliable results. Additionally,
we show that for typical sedimentary environments, an anisotropic formulation of the
target scales (i.e., introducing a ratio between σT,xy and σT,z) might be advantageous
as the resulting attributes reflect the nature of typical GPR reflection signatures more
precisely. All these choices might look like a drawback of the method, but can also be
understood as an opportunity because the fast calculation times for the GST allow for
extensive parameter testing and/or a multi-scale structure analysis of complex GPR data
sets.

In this work, we focus on qualitative analysis and comparison of the GST attribute
database to characterize stratigraphic similarities or differences in terms of amplitudes,
continuity, and dip. Moreover, these attributes also form a promising database for
integrated structural analysis, for example, in view of attribute-based classification
procedures which could be the major focus of upcoming studies. In contrast to the
presented sedimentological GPR data, GST-based attributes (also the ones not showcased
here such as Cline) might also be a promising tool to analyze and interpret non-
stratigraphic features, for instance, in the of field civil engineering where often more linear
or cylindrical structures such as utility pipes represent the target objects. In conclusion,
we believe that 3D GST-based analysis of GPR data is a promising approach to steer
interpretation tasks in a more objective, quantitative, and reproducible direction.

Data and materials availability

The 3D synthetic input model including a 100 MHz 3D GPR data set are publicly available
(Koyan and Tronicke, 2019). Structure tensor computation and analysis has been per-
formed using the open-source library DIPlib (www.diplib.org and www.github.com/DIPlib).
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5. 3D GPR attributes to generate classified facies

models: A case study from a dune island

Philipp Koyan, Jens Tronicke and Niklas Allroggen∗

5.1. Abstract

Ground-penetrating radar (GPR) is a standard geophysical technique used to image
near-surface structures in sedimentary environments. In such environments, GPR data
acquisition and processing are increasingly following 3D strategies. However, the processed
GPR data volumes are typically still interpreted using selected 2D slices and manual
concepts such as GPR facies analyses. In seismic volume interpretation, the application
of (semi-)automated and reproducible approaches such as 3D attribute analyses as well
as the production of attribute-based facies models are common practices today. In
contrast, the field of 3D GPR attribute analyses and corresponding facies models is
largely untapped. We have developed and applied a workflow to produce 3D attribute-
based GPR facies models comprising the dominant sedimentary reflection patterns in a
GPR volume which images complex sandy structures on the dune island of Spiekeroog
(Northern Germany). After presenting our field site and details regarding our data
acquisition and processing, we calculate and filter 3D texture attributes to generate a
database comprising the dominant texture features of our GPR data. Then, we perform
a dimensionality reduction of this database to obtain meta texture attributes, which we
analyze and integrate using composite imaging and (also considering additional geometric
information) fuzzy c-means cluster analysis resulting in a classified GPR facies model.
Considering our facies model and a corresponding GPR facies chart, we interpret our
GPR data set in terms of near-surface sedimentary units, the corresponding depositional
environments, and the recent formation history at our field site. Thus, we demonstrate
the potential of our workflow, which represents a novel and clear strategy to perform a
more objective and consistent interpretation of 3D GPR data collected across different
sedimentary environments.

∗A peer-reviewed journal article of the same title is published as Koyan et al. (2021) in Geophysics
86(6), B335–B347. This article has also been featured in the Geophysics Bright Spots Section of SEG’s
The Leading Edge magazine in January 2022 (Behura, 2022).
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5.2. Introduction

Ground-penetrating radar (GPR) is a well-established geophysical tool used to image and
characterize near-surface structures and depositional environments across sedimentary
systems (Neal, 2004). Thanks to recent technological developments including the
availability of modern GPR array systems, the integration of differential global positioning
systems or auto-tracking total stations for real-time kinematic surveying, the acquisition
of high-accuracy high-resolution 3D data sets covering areas of thousands of square
meters has become common practice (e.g., Grasmueck et al., 2004; Schennen et al., 2016).
However, methods and developments in data interpretation have not kept pace with the
increasing details and complexity of the sedimentary structures imaged by such densely
sampled 3D GPR data. More specifically, processed 3D data sets, or only selected 2D
subsets of them, are typically interpreted manually, often using concepts known as GPR
facies analyses (e.g., Van Overmeeren, 1998; Kostic and Aigner, 2007; Pascucci et al., 2009;
Burke et al., 2010; Lang et al., 2017). In general, GPR facies describe units composed of
characteristic reflection patterns, and the related interpretation concepts can be regarded
as laborious, especially, when applied to entire 3D data sets. Furthermore, the outcome
of such an interpretation depends on the interpreter’s knowledge and experience and is
thus subjective and often difficult to reproduce.

In 3D seismics, techniques known as attribute-based analyses have been successfully
applied to delineate characteristic reflection patterns and facies, respectively, in a
semiautomated and reproducible manner for decades (Chopra and Marfurt, 2005). This
includes the calculation of manifold attributes and the use of unsupervised classifications
or the application of supervised techniques also considering independent ground-truth
data such as borehole logs or sediment cores (e.g., Chopra and Marfurt, 2007, 2008;
Eichkitz et al., 2013, 2015; Zhao et al., 2015; Eichkitz and Amtmann, 2018; Long et al.,
2018). Moreover, recent developments in 3D seismics focus on the use of machine
and deep learning to structure data sets based on reflection patterns, which represents
a further step in seismic volume interpretation (e.g., Wrona et al., 2018; Alaudah
et al., 2019). In contrast, for the interpretation of 3D GPR data sets collected across
sedimentary environments attributes, in general, find only limited application up to
now (e.g., McClymont et al., 2008; Forte et al., 2012; Zhao et al., 2013). The field
of attribute-based 2D and 3D GPR facies models is largely untapped and only a few
examples can be found in the literature (e.g., Moysey et al., 2006; Tronicke and Allroggen,
2015).

In this case study, we propose a workflow to obtain 3D attribute-based GPR facies
models delineating the dominant structural variations in GPR data volumes and apply it
to a 3D data set acquired across sedimentary structures on the dune island of Spiekeroog
(Northern Germany). After introducing our field site, data acquisition, and processing,
we calculate and filter 3D texture attributes to obtain a database comprising the major
texture variations in our GPR data set. Then, we analyze and visualize meta texture
attributes (obtained by dimensionality reduction of this database) using composite
imaging and (also considering additional geometric information) fuzzy c-means cluster
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analysis to generate a classified 3D GPR facies model. Finally, considering our facies
model and a corresponding GPR facies chart, we interpret our data set in terms of the
main sedimentary units, the related depositional environments, and the recent formation
history at our field site.

5.3. Field data

5.3.1. Geologic setting and field site

Our field site is located on the island of Spiekeroog in Northern Germany. Spiekeroog is one
of seven inhabited East Frisian Islands, an approximately 90 km long, east–west-oriented
group of barrier islands situated in the Wadden Sea National Park a few kilometers off
the coast of Lower Saxony (Germany) within the German Bight. Spiekeroog shows a
maximum extension of 10 km in the east–west direction and 2 km in the north–south
direction. As part of a dynamic system of tides, sea currents, and floods, the island’s
size and shape are in constant change; for example, nowadays the island actively grows
toward the northeast caused by the prevailing westerly winds and coastal protection
activities (Sindowski, 1973; Röper et al., 2012). To characterize near-surface structures
and, thus, typical depositional environments at this dune island, we collected 3D GPR
and topographic data and performed several common-midpoint (CMP) GPR experiments
across a field site known as the “Eierscheeterplatz”. This historical place is located in
the central part of the island, east of Spiekeroog village, and south of the main dune
area (53.771 N/7.713 E). Here, the near-surface geology (i.e., the uppermost 15–20 m
below mean sea level) is mainly characterized by middle to coarse-grained Holocene sands
deposited in typical coastal environments including shallow-marine sequences, intertidal
beach deposits, and actively accumulated dune structures on top (further details can be
found in Röper et al., 2012). These sands are saturated up to depths of 20–30 m below
mean sea level by a freshwater lens (Tronicke et al., 1999); thus, the local subsurface is
of vital hydrogeological importance because it represents the main freshwater reservoir of
Spiekeroog.

Figure 5.1a shows a map of our field site including a digital topographic model
(generated from the positioning data recorded during kinematic GPR data acquisition),
the midpoints and orientations of CMP experiments, the location of our self-tracking
total station (TTS), and the approximate view angle of a digital photograph of our field
site shown in Figure 5.1b. The field site shows a size of approximately 110 x 65 m with
topographic variations up to approximately 3 m associated with dune structures forming
a prominent northwest–southeast-striking depression as well as some local minor hilly
structures characterized by topographic variations up to approximately 1 m. The digital
photograph in Figure 5.1b provides an impression of the local environmental conditions
and the sparse vegetation predominantly consisting of grass, scattered bushes, and small
trees.
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Figure 5.1.: (a) Map of our field site introducing the local coordinate system including a digital
topographic model as obtained from our TTS-based surveying approach, the midpoints
and orientations of CMP experiments (extent to scale), the location of the TTS, and
the approximate view angle of (b) a digital photograph of our field site.

5.3.2. Data acquisition

In May 2012, 3D GPR data were collected along parallel lines in the east–west direction;
that is, parallel to the x-direction of the local coordinate system (Figure 5.1a). Preliminary
tests using different antenna frequencies revealed that, at this field site, the antennas
with a nominal center frequency of 200 MHz offer an optimum compromise between
penetration depth (more than 15 m) and resolution (decimeter scale). Thus, a pair
of unshielded 200 MHz antennas combined with a PulseEKKO Pro GPR system was
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mounted on a sled using a 1 m offset and a parallel broadside antenna orientation. To
provide positioning accuracy in the centimeter range and a high-precision local digital
elevation model as shown in Figure 5.1a, we used a TTS-based GPR surveying approach
following Böniger and Tronicke (2010b,c). Therefore, we mounted a 360° prism on the
sled that was automatically tracked by a TTS (Leica TPS1200) during the entire 3D
GPR survey. Using this GPR surveying strategy, we recorded a total of approximately
218,000 GPR traces separated by an inline and crossline trace spacing of approximately
0.08 and 0.25 m, respectively, resulting in a dense data coverage indispensable for a sound
and detailed 3D imaging of typical sedimentary structures (e.g., Bristow and Jol, 2003;
Grasmueck et al., 2005). In Table 5.1, we summarize the acquisition parameters of this
3D GPR survey. To complement our 3D common-offset data by local velocity estimates,
we performed CMP experiments with a maximum antenna offset of 10 m and antenna
offset increments of 0.1 m using the same GPR and antenna system at three different
locations across the survey site (Figure 5.1a).

Recording our densely sampled 3D data set across an approximately 5000 m2 large sur-
vey area took three days during which we encountered stable weather and environmental
conditions. To control GPR data quality, we additionally recorded 2D common-offset
data along a 50 m long reference profile (using the parameters shown in Table 5.1) and
CMP gathers at the center position of this 2D profile at x/y = 65 m/64.5 m (Figure 5.1a)
on a daily basis. This allowed us to monitor and characterize possible diurnal variations
in the common-offset and CMP data including the inferred velocity models. To illustrate
this, we analyze selected CMP data and results in Figure 5.2. In Figure 5.2c, we show
the CMP gather recorded at x/y = 65 m/64.5 m on the first day of the campaign (after
applying some basic processing including band-pass filtering and amplitude scaling), and
in Figure 5.2b we show the corresponding result of a typical reflection-based velocity
analysis (using unnormalized crosscorrelation as a coherence measure). We observe
numerous reflections in the CMP data resulting in well-separated coherence maxima in
the velocity spectrum (the red colors in Figure 5.2b). From this spectrum, we derive
an interval velocity model under the assumption of a horizontally layered medium (Dix,
1955), which is shown in red in Figure 5.2a. In terms of velocity variations, we can identify
two main layers; that is, at approximately 45 ns, we recognize a decrease in interval
velocity from approximately 0.135 to 0.07 m/ns corresponding to a largely horizontal

Parameter Value

Nominal antenna frequency 200 MHz
Antenna offset 1 m
Time window 600 ns

Sampling interval 0.3 ns
Vertical stacking 16

Inline trace spacing ∼0.08 m
Crossline trace spacing ∼0.25 m

Table 5.1.: Acquisition parameters of the 3D common-offset GPR survey.
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freshwater table at our field site (Tronicke et al., 1999). At larger traveltimes (>45 ns),
we observe further well-pronounced and well-separated maxima in the velocity spectrum
indicating four to five layers within the saturated zone. Reflections in the CMP data
corresponding to spectral maxima found at traveltimes >320 ns originate from dipping
reflectors and are therefore not considered to derive the 1D velocity model. For a daily
comparison, we also show the interval velocity models derived from the CMP surveys at
the same location performed on the two following days of the campaign (the blue and
green models in Figure 5.2a). The daily variations in the shown velocity models range in
the order of a few percent and can thus be regarded as insignificant considering typical
uncertainties in CMP-based GPR velocity analysis (e.g., Hamann and Tronicke, 2014).

In addition, we calculate the mean trace amplitude spectra from our daily recorded
CMP data sets, which we show in Figure 5.3 using the same color coding as in
Figure 5.2a. These spectra exhibit a comparable shape regarding their global and
local maxima and only show spectral amplitude variations in the order of a few percent.
For each day, we observe the global maximum at a frequency of approximately 105 MHz
illustrating a significant frequency downshift compared to the nominal antenna frequency
of 200 MHz. A comparison of the daily velocity models (Figure 5.2a) and the daily mean
amplitude spectra (Figure 5.3) demonstrates a near-perfect reproducibility of GPR data
characteristics including temporal stability and frequency content throughout the three
days of our survey.

5.3.3. Data processing

To obtain a high-resolution, ready-to-interpret 3D GPR data volume, we follow common
practice in processing common-offset 3D GPR data sets (e.g., Böniger and Tronicke, 2010a;
Schennen et al., 2016; Koyan and Tronicke, 2020a) and apply the structural imaging
processing scheme illustrated in Figure 5.4. This includes typically applied temporal
and spatial corrections and filters and a natural-neighbor gridding routine to interpolate
the data onto an equidistant rectangular grid with an inline (x) and crossline (y) trace
spacing of 0.125 and 0.25 m, respectively. Finally, we apply a 3D topographic migration
(Allroggen et al., 2015), using a root-mean-square (rms) velocity model inferred from the
CMP experiments (as indicated in Figure 5.2), followed by a topographic correction.

In Figure 5.5, we illustrate typical inline (Figure 5.5a and 5.5c), crossline (Figure 5.5b
and 5.5d), and time (Figure 5.5e) slices extracted from our 3D GPR data volume after
applying the processing sequence outlined in Figure 5.4. The depth is calculated using
the same velocity model as used for migration and measured relative to the mean water
table located at a traveltime of approximately 70 ns. In Figure 5.5, the example GPR
slices demonstrate a uniform GPR data quality (despite being acquired on three different
days) and a penetration depth of more than 12 m below the water table combined with a
high spatial resolution in the order of a few decimeters. The inline and crossline slices in
Figure 5.5a–5.5d provide high-quality images of the horizontal and dipping sedimentary
structures in different directions, whereas the example time slice in Figure 5.5e highlights
detailed imaging of more complex patterns such as (curvi-)linear bow structures or
isolated lenticular features (exemplified by the blue color). Overall, we observe major
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Figure 5.2.: (a) Interval velocity models derived from CMP gathers recorded on each day of the
GPR survey with a center position at x/y = 65 m/64.5 m (Figure 5.1). The interval
velocity model shown in red has been derived from (b) the result of a reflection-based
spectral velocity analysis (the red colors indicate high spectral values) of (c) the CMP
gather recorded on the first day of the survey.

Figure 5.3.: Mean amplitude spectra derived from the CMP gathers recorded on each day of the
GPR survey after the application of a typical band-pass filter with the same color
code as used in Figure 5.2a.

65



Chapter 5 – 3D GPR attribute-based facies models

Figure 5.4.: Flow diagram illustrating the main processing steps applied to our 3D common-offset
GPR data for structural imaging.

structural variations within the GPR reflection patterns at the scale of some meters in the
depth direction and to tens of meters in the horizontal direction; thus, also considering
the CMP velocity models, our processed 3D GPR data volume indicates zones of different
internal stratification and, hence, diverse depositional environments. To interpret our
data set in more detail and to separate the subsurface into different units and facies,
respectively, we perform attribute-based analyses.

5.4. Attribute-based GPR facies models

In contrast to manual GPR facies analyses, attribute-based analyses of GPR data
allow for characterization and delineation of structural patterns in a (semi-)automated,
reproducible, and, thus, more objective manner. In general, an attribute can be defined
as a measure calculated or extracted from data to enhance or even to quantify features of
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Figure 5.5.: Example slices extracted from our processed 3D GPR data volume along the (a and
c) inline, (b and d) crossline, and (e) time direction. In (a-d), the gray arrows mark
the location of the time slice as shown in (e), where the yellow crosses and labels
indicate the start and endpoints of the inline and crossline slices as shown in (a-d).
In (e), the blue colors mark example lenticular features forming local depression
structures (a-b). Note, all GPR data images in this work are shown with the same
amplitude color scaling, and (if not mentioned separately) the vertical exaggeration
for inline and crossline slices is always two.
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interpretation interest (Chopra and Marfurt, 2007). To perform GPR attribute analyses
and to produce GPR facies models, we basically follow a workflow of Tronicke and
Allroggen (2015), which these authors apply to delineate GPR facies in 2D GPR data
recorded across horizontally stratified deposits. In comparison, our field site and our
3D GPR data set are characterized by more complex structures and reflection patterns,
respectively. Taking this into consideration, we adopt, extend, and further develop their
workflow to delineate our 3D data set into the main sedimentary units and GPR facies,
respectively.

5.4.1. Gray-level cooccurrence matrix texture attributes

GPR facies can be distinguished based on their internal configuration imaged by
characteristic reflection patterns in the GPR data. Texture attribute analysis is a
popular approach to describe such patterns. In contrast to other geophysical attribute
families, such as correlation- or semblance-based measures that are typically used to
analyze and highlight differences and variations in the data including discontinuities,
faults, and fractures (e.g., Barnes, 2016), texture attributes highlight zones of similar
reflection characteristics. Thus, texture attributes are frequently used for advanced
analysis and interpretation of 2D/3D seismic and 2D GPR data (e.g., de Matos et al.,
2011; Zhao et al., 2016) whereas, up to now, the field of 3D GPR texture analysis has
been largely untapped. Gao (2011) defines texture as a characteristic pattern defined
by the magnitude and variation of neighboring amplitude samples in an image space. A
popular statistical method to extract texture information is to calculate features from
the gray-level cooccurrence matrix (GLCM) first introduced as an image processing
tool by Haralick et al. (1973). In general, calculating GLCMs bases on 2D/3D images
or data sets discretized into a specific number of gray levels ng. In a 2D/3D window
centered around an image pixel, different combinations of neighboring pixel values
(cooccurrences) are counted and collected in an ng x ng matrix, the so-called GLCM.
For interpretation of this 2D GLCM information, only a few application examples exist
as it has been recognized to be quite counterintuitive. Thus, Haralick et al. (1973) and
Soh and Tsatsoulis (1999) propose numerous features to condense the GLCM into point
information known as GLCM attributes or features. Thus, if used in a moving-window
approach, the GLCM-based method results in 2D attribute images or 3D attribute
volumes comprising the texture around each pixel or geophysical datum, respectively.
Despite the straightforward implementation of the GLCM method, the actual physical
meaning of the derived attribute values is not clear; therefore, GLCM attribute images
are primarily interpreted qualitatively.

To apply the GLCM method to our processed 3D GPR data volume (Figure 5.5), we
focus on the saturated zone at traveltimes >70 ns where we encounter stable conditions in
terms of subsurface velocity, signal frequency content, and signal wavelength, respectively.
We use a typical value of ng = 16 to calculate mean GLCMs and extract a total of 21
GLCM attributes in 3D including popular attributes such as autocorrelation, cluster
shade, contrast, energy, entropy, and homogeneity (e.g., Chopra and Marfurt, 2007).
The choice of the GLCM window is crucial in such analyses and finding an appropriate
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size, such that the derived attributes highlight features at the scales of interpretation
interest, is not a standardized procedure, and it often involves laborious parameter
testing (especially when applied in three dimensions). In this study, we follow common
practice and use a 3D window sized in the order of a dominant wavelength calculated
using the dominant GPR signal frequency and the velocities in the saturated sediments
(Figures 5.2 and 5.3) and, then, apply scale-based filtering in the next step of our workflow.
To compromise the computational cost of the GLCM procedure and the temporospatial
resolution in the resulting 3D attribute volumes, we extract GLCM features at every
fourth time sample, every second inline sample, and every crossline sample. The resulting
21 attribute volumes comprise a total of 25M values each with a resolution of 0.25 m
and 1.2 ns in the horizontal and vertical directions, respectively. In Figure 5.6a, we show
the GLCM autocorrelation attribute as an example of the obtained 3D GLCM attribute
database. In this visualization, GLCM autocorrelation is plotted as a transparent overlay
on an inline slice extracted from our processed 3D GPR data volume at y = 30.5 m. As
a typical example of a raw GLCM attribute, Figure 5.6a shows a noisy character with
variations on multiple spatial and temporal scales. Especially at small scales (in the
order of a few decimeters), we observe dominant scattered and isolated features as well
as variations showing a wavelet-like character.

5.4.2. Scale-based attribute filtering

In the raw attributes (as exemplified in Figure 5.6a), multiple artifacts and noise
components mask texture patterns at the target scale of several meters, that is, those
of primary interest to characterize and delineate sedimentary structures using our GPR
data set. Hence, an appropriate filtering strategy is needed, whose results highlight
features at the scales of interpretation interest without introducing novel artifacts in the
filtered attributes. Thus, we filter the 3D attribute volumes using an approach based
on the discrete redundant wavelet transform (RWT) (Shensa, 1992), a well-established
tool that has been successfully applied to 1D/2D/3D data sets including those from
image processing, remote sensing, and geophysics (e.g., Leblanc, 2001; Prasad et al.,
2012; Al-Dossary, 2015; Starck et al., 2015; Tronicke et al., 2020a) also including GPR
data and attributes (Tronicke et al., 2020b). This RWT-based approach enables an
undecimated rapid decomposition of a given data set into subsets comprising different
temporal/spatial scales; that is, the decomposed data subsets show the same size as the
input data set, which is advantageous for filtering typical geophysical data sets. Tronicke
et al. (2020a) apply this method to archeogeophysical data and provide a comprehensive
description of the two-step RWT-based filtering procedure used here. In the first step, a
given data set is decomposed into a couple of wavelet planes wn (scale levels) using a
series of cubic-spline wavelet filters. Here, increasing n is related to increasing spatial
and/or temporal scales in the data. In the second step, a filtered data set comprising the
target scales is obtained by reconstruction. In this study, reconstruction is performed by
summation of selected scale levels wn. Due to its two-step implementation, this approach
allows us to perform multiscale analyses; extract features at any scale of interest; and
suppress artifacts, noise, and irrelevant features at any desired scale.
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Figure 5.6.: Example inline slice at y = 30.5 m extracted from the processed 3D GPR data volume.
As transparent overlays, we show three versions of 3D GLCM autocorrelation: (a)
the raw (unfiltered) attribute as calculated directly from the GPR data, and (b)
the detailed and (c) background attribute resulting from our scale-based filtering
approach. All attribute images are normalized to their individual maximum value.
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Using 3D RWT, we decompose our GLCM attribute volumes up to a scale level
n = 8. In Figure 5.7, we show the rms values calculated for w1 to w8 obtained from the
decomposition of the GLCM autocorrelation volume. In this representative example,
the highest rms values are found at the two lowest scale levels, which confirms our
observation of small-scale, high-amplitude noise components, and artifacts in the raw
attribute (Figure 5.6a). To illustrate the filtering capabilities of this scale-based approach,
we show in Figure 5.6b the reconstruction of GLCM autocorrelation using

∑

5

n=3
wn for

the slice shown in Figure 5.6a. In the following, we refer to these reconstructions as
detailed attributes. A comparison of the raw and the detailed attribute images reveals that
small-scale noise components and large-scale variations have been successfully suppressed.
The detailed attribute image highlights texture patterns at small to intermediate scales
and could be used, for example, to guide the visual interpretation of the underlying GPR
data. Because a characterization of the main sedimentary units is the goal of this study,
we also perform reconstructions using

∑

8

n=6
wn, which we term background attributes in

the following; that is, they represent large-scale attribute variations at a scale of some
meters in the vertical direction to tens of meters in the horizontal direction. In Figure 5.6c,
we show the corresponding image of background GLCM autocorrelation for the slice
selected in Figure 5.6a. In Figure 5.7, we highlight the wavelet planes used for the
detailed and background attributes in blue and orange, respectively. Analyzing Figure 5.7
in more detail reveals, that the wavelet planes used for the background attribute show
comparatively small rms values; hence, these attribute components are not visible in the
raw (unfiltered) image. This representative example illustrates that applying the RWT
approach to analyze and filter GLCM attributes helps to unveil texture features at the
target scale for interpretation and represents an efficient and intuitive option to replace
laborious parameter tests of GLCM window sizes.

To provide further insight into the background GLCM attribute database and to
highlight its 3D character, we also show background GLCM correlation, energy, and
entropy in Figure 5.8a–5.8c. Comparable to Figure 5.6, we visualize the attributes as
transparent overlays in a 3D perspective view on a selected subvolume of our processed
GPR data set. Without interpreting these results in detail, we see that the scale-based
filtering approach yields attribute volumes with high continuity in the vertical and
horizontal directions, which highlight areas of large-scale texture and structural variations
in a meaningful way.

5.4.3. Meta texture attributes

Our background GLCM attribute database consists of 21 GLCM attribute volumes (as
exemplified in Figure 5.8a–5.8c), which allow for a visual delineation of different large-
scale GPR reflection patterns. However, comparing the GLCM correlation and energy
(Figure 5.8a and 5.8b), especially at traveltimes >250 ns, reveals that different GLCM
attributes might contain correlated information. Thus, we have to expect redundancy in
our database that has to be eliminated because it might bias the results of the following
classification procedure (which we intend to use for generating attribute-based GPR facies
models in the next step of our workflow). Instead of manually eliminating correlated

71



Chapter 5 – 3D GPR attribute-based facies models

Figure 5.7.: Percentage rms values calculated for the wavelet planes resulting from the RWT-
based decomposition of the 3D GLCM autocorrelation attribute volume. We use
the scale levels n = 3, 4, and 5 (the blue dots) and n = 6, 7, and 8 (the orange
dots) to reconstruct the detailed and background attribute volumes, respectively
(Figure 5.6b–5.6c).

information (e.g., by visually selecting uncorrelated attributes from the background GLCM
database), we use principal component analysis (PCA) to reduce the dimensionality of
our database. PCA is a multivariate statistical tool that is typically used to structure,
simplify, and visualize large databases and has been successfully used, for example, in
seismic data and attribute analyses (e.g., Wang et al., 2015; Zhao et al., 2015). In
general, PCA reduces the correlation between input variables by vector transformations
and results in principal components (PCs) whose number equals the number of input
variables. These PCs show less correlation than the input variables and are ordered by
decreasing variance such that the first PC explains the largest amount of variance in the
database. Selecting the first couple of PCs (i.e., the ones explaining most of the variance)
for further analyses reduces the dimensionality of a database and eliminates redundant
information from a database. In particular, the latter is crucial to obtain reliable and
meaningful facies models from a high-dimensional attribute database using classification
algorithms (Zhao et al., 2015).

In this study, we apply PCA to analyze and reduce our background GLCM attribute
database. In Figure 5.9, we show the variance that is explained by the 21 resulting
individual PCs as orange bars as well as the explained cumulative variance in blue. Our
results show that the first three PCs explain more than 98% of the cumulative variance
of the input database (74% by PC1, 18.5% by PC2, and 6% by PC3); thus, we select
these PCs for further analyses. As PC1, PC2, and PC3 condense the main information
of our background GLCM attributes, we call them meta texture attributes (Zhao et al.,
2015) in the following and number them according to the underlying PCs (i.e., meta
texture attribute 1, 2, and 3). In Figure 5.10, we show the meta texture attributes 1,
2, and 3 as transparent overlays on the same GPR data slice as analyzed in Figure 5.6.
In general, Figure 5.10 demonstrates that our meta texture attributes highlight areas
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Figure 5.8.: A 3D perspective view across a selected subvolume of our processed 3D GPR data
set. As transparent overlays, we show (a-c) selected background GLCM attributes
and (d) the background structural dip, which result from our scale-based filtering
approach. All attribute images are normalized to their individual maximum value.
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of different large-scale structural variations in our GPR data, whereas each of the meta
texture attributes shows different variations indicating three to five sedimentary units.
Now, these meta texture attributes form the basis for further interpretation, that is, to
generate GPR facies models characterizing the sedimentary settings at our field site.

5.4.4. Geometric attributes

As discussed previously, the sedimentary features imaged by our GPR data set show
considerable differences regarding their structural dip (Figure 5.5), which is commonly
regarded as a key feature when interpreting 3D seismic and GPR data. To better quantify
and distinguish sedimentary structures and to complement our meta texture attributes
with geometric and, thus, physically verifiable information, we include 3D structural dip
as an additional attribute. To compute this attribute, we extract the inline and crossline
dip from our GPR data set using a localized PCA approach (e.g., Tingdahl and Hemstra,
2003). Considering the same velocity model as used for migration, we then transform the
inline and crossline dip into the structural dip (i.e., the true geologic dip). To analyze
and use this attribute at the same spatial scales as the meta texture attributes, we apply
the same scale-based filtering approach as used for the GLCM texture attributes (i.e.,
decomposition up to n = 8 and reconstruction using

∑

8

n=6
wn) resulting in a background

structural dip attribute volume. In Figure 5.8d, we show this attribute as a transparent
overlay on a subvolume of our processed 3D GPR data and compare it to selected GLCM
background attributes (Figure 5.8a–5.8c). The structural dip shows minimum (the red

Figure 5.9.: Individual (the orange bars) and cumulative (the blue line) variance explained by
the PCs resulting from PCA of the background GLCM attribute database. The PCs
1–3 (called meta texture attributes here) explain more than 98% of the cumulative
variance in the database and are used for further analyses.
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Figure 5.10.: Example GPR inline slice as shown in Figure 5.6. As transparent overlays, we show
(a-c) the meta texture attributes 1, 2, and 3; that is, the first three PCs resulting
from PCA of the background GLCM attribute database. All attribute images are
normalized to their individual maximum value.
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colors) and maximum (the blue colors) values of 0° and 12°, respectively, and it indicates
three major units characterized by small/no dip at traveltimes up to approximately
250 ns, large dip between traveltimes of approximately 250 and 320 ns, and intermediate
dip at traveltimes larger than approximately 320 ns.

5.4.5. Visualization and classification

Using PCA, we have reduced our background GLCM attribute database (as exemplified
in Figure 5.8a–5.8c) to three meta texture attributes (Figure 5.10) highlighting the major
textural and structural variations in the GPR data. In geophysical data analysis, a
commonly applied composite imaging technique to produce integrated visualizations of
three colocated data sets (such as our meta texture attributes) is known as color stacking
or red-green-blue (RGB) blending (e.g., Henderson et al., 2008; Böniger and Tronicke,
2010b). In general, an RGB-blended image is generated by assigning each of the three
data sets to one particular color channel. The resulting RGB composite image integrates
the information of three different data sets and, thus, simplifies and aids comparative
analyses of a database.

A further step in interpretation, which represents a more quantitative approach to
analyze such databases, relies on unsupervised clustering approaches that are used to
partition the input data into classified models. Among many others, the unsupervised
fuzzy c-means algorithm has proven to be a robust classification method for largely
unexplored data and has been successfully used in different geophysical applications
(e.g., Paasche et al., 2006; Linder et al., 2010; Saraswat and Sen, 2012). In general,
the fuzzy c-means algorithm partitions the input data into a (user-defined) number of
clusters (classes) by iteratively minimizing a distance-based objective function to search
for optimum cluster centers. In contrast to other relevant classification techniques such
as the k-means algorithm, the fuzzy c-means algorithm includes partial memberships
and, hence, provides individual membership information to each of the clusters for every
classified datum. This, in turn, yields information on the integrity of the classified model
and, hence, can be used to efficiently visualize a kind of probability that a datum belongs
to the assigned class. Bezdek (1981) and Bezdek et al. (1984) provide a comprehensive
description, a detailed derivation, and an implementation guide for the fuzzy c-means
algorithm.

To qualitatively interpret the meta texture attributes in terms of GPR facies, we
conduct RGB blending by assigning the meta texture attributes 1, 2, and 3 to the red,
green, and blue color channels, respectively. In Figure 5.11a, we show the resulting
composite GPR facies image as a transparent overlay on the same GPR data slice as
analyzed in Figures 5.6 and 5.10. The major color variations in this composite image
indicate four facies. For example, the yellow colors predominantly highlight continuous
dipping beds whereas the purple colors between approximately 150 and 220 ns emphasize
(sub-)horizontal strata. Because our field site is part of the Wadden Sea National Park,
we lack independent information such as borehole-based logs for validating our GPR
facies models. However, for comparison, we add the local interval velocity model (the
black line) derived from a spectral velocity analysis of the CMP gather recorded at a
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center position at x/y = 53 m/30.5 m which indicates a similar layering compared to
the composite image. Thus, the composite GPR facies image visualizes major structural
variations and now can guide further interpretations including the generation of classified
GPR facies models.

To obtain a classified GPR facies model, we perform fuzzy c-means clustering. As
discussed previously, the number of clusters is a user-defined parameter. The optimum
number of clusters is typically established by statistical evaluation of the results obtained
with varying numbers of clusters, or, if available, by considering a priori information.
Based on the results of our CMP experiments (Figure 5.2), our observations in the
processed GPR data volume (Figure 5.5) and the composite GPR facies image (Fig-
ure 5.11a), and considering the results of parameter tests using different numbers of
clusters (not shown here), we present two versions of a four-class GPR facies model. In
Figure 5.11b–5.11c, we show these models as transparent overlays on the same GPR
data slice as illustrated in Figure 5.11a. The color saturation of the models shown in
Figure 5.11b–5.11c reflects the degree of membership resulting from the fuzzy c-means
clustering approach. For the model shown in Figure 5.11b, we only use the meta texture
attributes (Figure 5.10) as input data; that is, this model can be considered as a pure
texture-based facies model. For the model shown in Figure 5.11c, we use the meta texture
attributes and the structural dip (Figure 5.8d) as input data; that is, this model can
be considered as a dip-constrained texture-based facies model. Comparing these two
models illustrates that the overall structures and facies class distributions show only
minor differences. However, using the structural dip as additional input helps to refine
and constrain the clustering process resulting in higher memberships and an overall
sharper facies model. Thus, we regard the dip-constrained facies model (Figure 5.11c)
as our final model and consider it for further interpretation. As already discussed for
the composite facies image (Figure 5.11a), also our final GPR facies model is in good
agreement with the interval velocity variations derived from our CMP data. To emphasize
the 3D character of our final facies model, we show it in Figure 5.12 in 3D perspective
view as a transparent overlay on the processed 3D GPR data volume. This illustrates that
our four-class solution provides an overall sharp 3D delineation of the individual facies
classes, which show a high spatial continuity in the horizontal and vertical directions. The
final facies model (Figures 5.11c and 5.12) can now be used to interpret the individual
facies classes also in view of depositional environments and history.

5.5. Facies interpretation

Using attribute-based analyses, we have produced a classified 3D GPR facies model
(Figures 5.11c and 5.12) from our processed 3D GPR data volume (Figure 5.5), which
delineates four facies classes based on their individual texture patterns (as measured
by 3D GLCM attributes) and the structural dip attribute (Figure 5.8). Due to strict
environmental protection rules in the Wadden Sea National Park, reference data (such as
borehole-based logs, outcrop, and excavation data) are not available at our field site for a
further geologic interpretation of our facies model (e.g., in terms of sediment composition).
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Figure 5.11.: Example GPR inline slice as shown in Figures 5.6 and 5.10 including an interval
velocity model (the black line) as derived from our CMP data recorded at a center
position at x/y = 53 m/30.5 m (Figure 5.1) using spectral velocity analysis. As
transparent overlays, we show (a) the composite GPR facies image as obtained by
RGB blending of the meta texture attributes as well as two four-class GPR facies
models as obtained by fuzzy c-means clustering using as input (b) the meta texture
attributes only and (c) the meta texture attributes and the structural dip. In (b-c),
the color saturation reflects the degree of membership.
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Figure 5.12.: A 3D perspective view across our processed 3D GPR data volume. As a transparent
overlay, we show our final four-class GPR facies model as obtained by fuzzy c-
means clustering using as input the meta texture attributes and the structural dip
(Figure 5.11c). The color saturation reflects the degree of membership.

Thus, we follow common practice in such sedimentological GPR applications and construct
a GPR facies chart by extracting the typical inline, crossline, and time/depth reflection
patterns from our processed 3D GPR data volume for each of the four facies classes
found in our final facies model. In Figure 5.13, we present this facies chart including
a description of typical characteristics of the extracted reflection patterns (note that,
considering our velocity models as shown in Figure 5.2, a traveltime of 100 ns corresponds
to a depth of approximately 3.30 m in the saturated sediments).

Having at hand and referring to our processed GPR data volume (Figure 5.5), our final
facies model (Figures 5.11c and 5.12), and the corresponding facies chart (Figure 5.13),
we interpret our data in terms of the underlying depositional environments and the recent
formation history of Spiekeroog island, which is extensively discussed by Streif (1990,
2002) and summarized by Röper et al. (2012). Facies class 4 identifies a thin area in
the deepest parts of our GPR data set and shows the globally lowest amplitudes. The
reflections found here exhibit an anisotropic character with discontinuous patterns in the
inline direction and increased continuity in the crossline direction. However, the overall
reflection characteristics of this facies class indicate that the maximum penetration depth
of our GPR data is reached; thus, this facies is not analyzed in more detail. Facies class
3 starts at traveltimes of approximately 250 ns and generally extends over more than
100 ns. Here, we observe high-amplitude quasicontinuous beds with dip angles up to 12°
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Figure 5.13.: GPR facies chart of the facies classes 1-4 from our final 3D GPR facies model
(Figures 5.11c and 5.12) characterizing typical inline, crossline, and depth/time
reflection patterns as extracted from our processed 3D GPR data volume (Figure 5.5).
The individual facies classes identify typical near-surface depositional environments
of a dune island (class 1, recent dunes; class 2, intertidal beach deposits; and classes
3 and 4, shallow-marine beds). The vertical exaggeration for the inline and crossline
slices is 3.5.
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inclined toward the northeast. The layering is dominated by a prograding pattern; that
is, the layer thickness grows in the northeast direction, which is in good agreement with
the overall northeast-oriented growth of the island. These features indicate deposition
in a shallow-marine environment near a former shoreline close to the island’s core. At
the transition between facies classes 2 and 3 (at traveltimes from approximately 200 to
250 ns), we recognize small degrees of membership and observe high-amplitude reflections
also forming local lenticular depression structures, which are also highlighted in blue
in Figure 5.5e. We speculate that these structures are associated with clay or mud
lenses reported for some parts of the island. Such moor and lagoon deposits on top
of marine sediments are typically accumulated during the stage of a dune or barrier
island formation in which the island slowly begins to emerge above the mean sea level
(Streif, 1990). At greater depths (not imaged by our GPR data), more continuous
clay/mud structures deposited during earlier stages of the island’s formation create an
aquitard constraining the structure of the local freshwater lens (Röper et al., 2012).
Within facies class 2 (located at traveltimes between approximately 150 and 200 ns),
we observe medium- to high-amplitude isotropic and continuous reflections forming an
approximately 2 m thick horizontally layered unit. This sequence can be associated with
intertidal beach deposits with individual layers accumulated by the steady turn of the
tide. The uppermost facies class 1 extends up to traveltimes of approximately 150 ns and
is characterized by medium-amplitude, anisotropic reflection patterns with a moderately
continuous and wavy character in the inline direction showing increased continuity in
the crossline direction. Here, moderately continuous patterns are locally interrupted
by quasicontinuous reflection elements oriented parallel to the surface. These features
indicate recently (and, on top, actively) accumulated dune sands deposited since the
island’s steady emergence above sea level. In summary, our attribute-based facies model
reasonably delineates features as imaged by our 3D GPR data set into four facies classes,
which particularly characterize the recent local depositional history in accordance with
the findings of Streif (1990, 2002) and Röper et al. (2012); that is, from bottom to top
we find shallow-marine sediments topped by clay/mud lenses, intertidal beach deposits,
as well as recently and actively accumulated dune sands.

5.6. Conclusion

In this case study, we use state-of-the-art data acquisition, quality control, and processing
to produce a 3D GPR data set that, in detail, images numerous near-surface sedimentary
features and patterns at a field site on the dune island of Spiekeroog (Northern Germany).
To analyze this data set beyond typical manual interpretation approaches, we developed
and applied a workflow combining modern data analysis, filtering, and statistical
techniques to calculate, process, and integrate 3D GLCM texture and geometric attributes
to obtain attribute-based GPR facies models.

In general, the proposed workflow is a four-step approach to obtain 3D GPR facies
models including attribute calculation, filtering, dimensionality reduction, and classi-
fication. Here, we calculate a set of GLCM texture and geometric attributes, and we
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use an RWT-based filtering approach, PCA for dimensionality reduction, and a fuzzy
c-means classification approach. Although this workflow has been successfully applied
to our GPR data set, there are of course various methodologies for each of these four
analysis steps, which might reproduce or even improve the presented results. However, a
detailed discussion of such methodological variants is beyond the scope of this case study.

GLCM texture attributes are a powerful tool to characterize reflection patterns and,
thus, pose an ideal basis to delineate GPR data into sedimentary facies. Features
emphasized in unprocessed GLCM texture attributes critically depend on the size of the
GLCM analysis window and are typically dominated by variations at small scales (in
the order of some centimeters to a few decimeters in the presented data set) related, for
example, to the wavelet character of GPR data. Thus, we implemented an approach
to replace extensive parameter tests of GLCM window sizes and configurations with a
3D scale-based filtering procedure. We believe that this procedure is crucial to obtain
the presented results because it allows for undecimated and rapid filtering to generate
attribute volumes highlighting texture and geometric attribute features at the spatial
scales of interpretation interest.

By integrating meta texture attributes (derived by PCA of our filtered texture attribute
database) with composite imaging and fuzzy c-means clustering, we produced 3D GPR
facies models characterizing the dominant, large-scale texture and structural variations in
our GPR data set. In addition to texture attributes, geometric attributes are commonly
used to describe facies in geophysical analyses of sedimentary systems. In contrast
to GLCM texture attributes, geometric attributes provide quantitative information
about reflection patterns and associated structures. Our results show that considering
additional geometric information such as the structural dip in the classification step helps
to refine and constrain pure GLCM texture attribute-based facies models. Our GPR
facies models are in good agreement with velocity models derived from additional CMP
measurements. Moreover, typical reflection patterns within the facies of our classified
model show characteristic sedimentary features of relevant depositional environments
including shallow-marine sequences, intertidal beach deposits, as well as recently and
actively accumulated dune deposits. Accordingly, our facies model supports a basic
understanding of the recent formation history of the island.

In this study, we focus on the large-scale information extracted from our attribute
database (consisting of texture and geometric attributes) to generate GPR facies models
delineating sedimentary units at a spatial scale of several meters. Therefore, we discard
detailed texture and geometric features corresponding to intermediate scale levels (in the
order of several decimeters to a few meters in the presented data set) in our scale-based
analysis and filtering approach. Thus, a possible extension of our workflow (which we aim
to address in future research) is to use this detailed information to improve and refine our
facies models at the subfacies scale. However, the proposed workflow represents a novel
and clear strategy to obtain GPR facies models in a semiautomated and reproducible
way. Because our interpretation approach comprises only a few user-specified parameters
(e.g., in the scale-based filtering approach), it eases the derivation of reliable facies models
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from 3D GPR data sets and can thus help to perform a more objective and consistent
interpretation of GPR data collected across different sedimentary environments.
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6. 3D Classified GPR Facies Models from

Multi-frequency Data Volumes: A Synthetic Study

Philipp Koyan and Jens Tronicke∗

6.1. Introduction

Ground-penetrating radar (GPR) is a standard technique to image near-surface structures
in sedimentary environments (Neal, 2004). The availability of modern multi-channel GPR
systems enables the acquisition of densely sampled GPR data sets also using multiple
antenna frequencies to image the subsurface at different spatial scales (Lu et al., 2020).
However, today’s interpretation techniques largely rely on single-frequency data sets
typically interpreted in a manual and, thus, subjective and non-reproducible manner, for
example, following concepts of GPR facies as described by Van Overmeeren (1998). More
recently, attribute-based workflows have shown to be a more objective and reproducible
approach to interpret individual 2D/3D GPR data sets and to generate classified facies
models, for example, using unsupervised classification techniques (Tronicke and Allroggen,
2015; Koyan et al., 2021).

To investigate the potential of an integrated interpretation of multi-frequency data
sets, we apply an attribute-based workflow introduced by Koyan et al. (2021) for single-
frequency 3D GPR data in a hierarchical manner to analyze synthetic multi-frequency
GPR volumes. The GPR volumes have been simulated using source frequencies of 50 and
200 MHz across a realistic sedimentary model (Figure 6.1a; Koyan and Tronicke, 2020a,b).
The attribute-based workflow includes the calculation of an attribute database for each
data volume comprising gray-level co-occurrence matrix (GLCM) texture attributes,
a scale-based filtering approach, and the application of principal component analysis
(PCA). The resulting meta texture attributes comprise the dominant information at
the respective spatial scale and represent the input for fuzzy c-means classification.
Classifying our 50 MHz meta attributes complemented by a structural dip attribute
yields a facies model comprising the major structural zonation. To realize an hierarchical
approach integrating data at different spatial scales, we then subdivide these major facies
using the classification results of the corresponding 200 MHz attributes.

∗A reviewed expanded abstract of the same title is published as Koyan and Tronicke (2022) in
the proceedings of 19th International Conference on Ground Penetrating Radar, SEG, Global Meeting
Abstracts, 139–142.
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As a result, we obtain a multi-scale facies model; that is, a model comprising major
structural variations as inferred from the 50 MHz data and also including structural
details as resolved by the 200 MHz data. We compare this model to the input model
to illustrate that our strategy results in a single facies model comprising subsurface
heterogeneities at different spatial scales and represents an initial step towards a more
objective and reproducible interpretation of multi-frequency GPR volumes.

6.2. Synthetic GPR data

As starting point, we use two synthetic GPR data volumes simulated with a source
wavelet center frequency of 50 and 200 MHz (Koyan and Tronicke, 2020b). These GPR
data have been generated using open-source electromagnetic modeling software gprMax
(Warren et al., 2016) across a realistic sedimentary input model inferred from outcrop
observations and geostatistical modeling (Bayer et al., 2011; Comunian et al., 2011;
Koyan and Tronicke, 2020a). The model has a size of 16 x 10 x 7 m and shows diverse
sedimentary variations on multiple spatial scales. In Figure 6.1a, we show the model in
terms of GPR velocity with the main genetic units labeled from I to VI (and separated
by white dotted lines) following Bayer et al. (2011). When comparing these units to
each other, we observe structurally rather homogeneous, large-scale undulating, small-
amplitude velocity variations (unit VI), more heterogeneous regions characterized by
local small-scale, high-amplitude velocity variations partly dipping towards lower x values
(Units I, II, and IV), and alternating sequences showing small-scale, medium-amplitude
velocity variations dipping towards lower x values (Units III and V). Further details and
background information can be found in Bayer et al. (2011), Comunian et al. (2011), and
Koyan and Tronicke (2020a,b).

In this study, we use ready-to-interpret versions of the 50 and 200 MHz data sets
(Figure 6.1b and 6.1c) resulting from a 3D GPR processing sequence including topographic
migration (Koyan and Tronicke, 2020b). In general, the resolution and, thus, the degree
of detail in the GPR volumes increases with increasing source frequency. The 50 MHz
volume images large-scale structures and the major zonation. In contrast, the 200 MHz
volume resolves structural details, for example, within the alternating sequences found in
units III and V. Comparing Figure 6.1a-c also considering the average frequency content
of both data volumes (i.e., peak frequencies of 55 and 181 MHz, and bandwidths of 40 and
126 MHz for the 50 and 200 MHz volume, respectively) reveals that the multi-frequency
GPR volumes complement each other in terms of the imaged spatial scales. This already
indicates that an integrated interpretation of these multi-frequency GPR data might be
a suitable strategy to better understand such complex sedimentary settings.

6.3. GPR attribute databases

To calculate and analyze the attribute databases, we follow Koyan et al. (2021) who
present a workflow to generate attribute-based facies models from a single-frequency
GPR volume imaging structures across a dune island. For each processed GPR volume
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Figure 6.1.: 3D view across (a) the GPR velocity model used as input to model GPR volumes
with a center frequency of (b) 50 MHz and (c) 200 MHz. In (a), the main genetic
units are labeled from I to VI. GPR volumes in b and c are shown after 3D GPR
processing.
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(Figure 6.1b and 6.1c), we calculate a total of 17 texture attributes including contrast,
energy, entropy, and homogeneity using the gray-level co-occurrence matrix (GLCM)
technique (Haralick et al., 1973). To account for the different resolution of the GPR
volumes, we adjust the 3D GLCM window size to the respective average wavelength (i.e.,
~1.6 m and ~0.4 m in all directions for the 50 and 200 MHz data, respectively).

GLCM texture attributes typically show artifacts and noise (e.g., related to the wavelet
character of the GPR data). To eliminate these patterns that might mask texture features
at the target spatial scales (i.e., some decimeters to a few meters for the 200 and 50 MHz
data, respectively), we filter both attribute databases using a scale-based strategy based
on the redundant wavelet transform (RWT; Tronicke et al., 2020a,b).

Moreover, GLCM attributes are prone to contain correlated information resulting in
redundancy in a typical GLCM attribute database which, in turn, biases further analyses
such as unsupervised facies classification. To eliminate correlated information, we perform
a dimensionality reduction of our GLCM databases by applying principal component
analysis (PCA). For further analysis, we use the first three principal components (PCs)
that explain more than 95% of the database variance, and term them meta texture
attributes numbered with respect to the corresponding PC (i.e., meta texture attribute
1, 2, and 3).

Koyan et al. (2021) show that complementing texture attributes with a structural
dip attribute (i.e., the geologic dip angle) for unsupervised classification helps to obtain
sharper GPR facies models compared to results just relying on texture attributes. Thus,
we calculate structural dip volumes for both GPR data sets and (to analyze all attributes
at comparable spatial scales) filter them using the same scale-based approach as applied
to the texture attribute databases. As a result, we obtain an attribute database for
each frequency consisting of three meta texture attributes and a structural dip attribute
comprising the dominant information at the respective spatial scale.

To provide insight into our attribute databases, we show as a transparent overlay on
the corresponding GPR data volume the meta texture attribute 1 (Figure 6.2a and 6.2d)
and the structural dip attribute (Figure 6.2b and 6.2e). Analyzing the databases in more
detail reveals that the multi-frequency attributes complement each other in the same way
as the corresponding GPR data volumes (Figure 6.1b and 6.1c). The 50 MHz attributes
comprise information on the large-scale stratification. For example, the meta texture
attribute 1 indicates three zones characterized by low, medium, and high values which
are less evident in the corresponding 200 MHz attribute (compare Figure 6.2a and 6.2d).
In contrast, the 200 MHz attributes reveal details that are not resolved by the 50 MHz
data and attributes, respectively (compare Figure 6.2a and 6.2b with 6.2c and 6.2d).

6.4. Attribute classification and interpretation

To produce classified facies models, we rely on the fuzzy c-means classification algorithm
that yields a degree of membership to each class for each classified datum. In contrast to
other popular techniques such as k-means, this membership information allows analyzing
the integrity of the classification result. Using the 50 MHz attribute database (the meta

88



Chapter 6 – Classification of 3D multi-frequency GPR data

Figure 6.2.: 3D view across the synthetic (a-c) 50 MHz and (d-f) 200 MHz GPR volumes. As a
transparent overlay, we show the meta attribute 1 calculated from the (a) 50 MHz and
(d) 200 MHz texture attribute database, the structural dip across the (b) 50 MHz and
(e) 200 MHz GPR volume, (c) a major facies model obtained by classification of the
50 MHz meta attributes and structural dip, and (f) a detailed facies model resulting
from classification of the 200 MHz meta attributes and structural dip constrained
by the major facies model as shown in c. Color saturation in (c) and (f) reflects the
degree of membership as provided by fuzzy c-means cluster analysis.
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attributes 1 to 3 and the structural dip) as input data and considering the observations
from Figure 6.2a and 6.2b as well as results of tests with different numbers of classes
(not shown here), we produce a three-class facies model as shown in Figure 6.2c as a
transparent overlay on the 50 MHz GPR volume. Here, the color saturation of the model
reflects the degree of membership to the assigned facies class for each datum.

Analyzing Figure 6.2c in more detail reveals that our approach results in a facies model
sharply delineating three continuous facies characterized by overall high memberships.
Comparing the classification result to the input model (Figure 6.1a) shows that the
three-class model characterizes the major (large-scale) structural variations and zonation
in a meaningful way. That is, facies class 3 mainly comprises the structurally most
homogeneous part located at shallow depths (unit VI), facies class 2 predominantly
characterizes regions showing localized small-scale structural heterogeneities (unit IV and
more heterogeneous parts of unit II such as the one found at x >12 m and depths between
3 and 5 m), and facies class 1 includes zones with repeating small-scale variations found
in the alternating sequences (units III and IV) as well as structurally less heterogeneous
regions showing locally high dip values (major parts of units I and II).

In the next step, we integrate the small-scale structural details contained in the 200
MHz attribute database (Figure 6.2d and 6.2e) into the major facies model (Figure 6.2c).
For this, we use the major facies model to constrain the classification of the 200 MHz
attribute database; i.e., we classify the 200 MHz meta attributes and structural dip in the
regions of facies classes 1, 2, and 3 separately to subdivide these regions into two detailed
classes (a and b) each. To ease the interpretation and maintain comparability between
the major facies model and the detailed facies model resulting from this hierarchical
approach, we show it in Figure 6.2f as a transparent overlay on the 200 MHz volume
with similar colors as used in Figure 6.2c.

The detailed facies model (Figure 6.2f) sharply delineates six classes that show an
overall continuous character and high membership values. Comparing Figures 6.1a,
6.2c, and 6.2f illustrates that by integrating multi-frequency attributes through the
application of our hierarchical approach, the major facies classes 1-3 are subdivided into
detailed facies 1a-3b in a reasonable way. That is, facies class 3b characterizes the largely
homogeneous parts of major facies class 3 (unit VI) whereas facies class 3a coincides
with the region of an embedded undulating high-velocity layer. Facies class 2a includes
regions characterized by only subtle heterogeneities (unit IV) compared to facies class 2b
that comprises the more heterogeneous regions of major class 2 such as parts of unit II
characterized by small-scale, high-amplitude velocity variations. Finally, facies class 1a
distinguishes alternating dipping sequences (unit V) from facies class 1b that includes
less heterogeneous parts of major facies class 1 (unit I and parts of units II and III).

6.5. Conclusions

Using attribute-based analysis, we present a multi-scale classified facies model based on 50
and 200 MHz GPR data volumes generated across a realistic sedimentary model. Having
at hand both the input model and the classification results offers an up to now unique
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possibility to (1) evaluate a recently developed workflow to generate attribute-based
facies models and to (2) test a strategy to integrate multi-frequency/multi-scale GPR
attributes by hierarchical application of this workflow.

Our results show that the facies model inferred from 50 MHz texture and structural
attributes characterizes three large-scale zones of the input model in a meaningful way.
Using this facies model as a constrain for the classification of 200 MHz attributes allows
to further subdivide the three major facies classes into six detailed ones. The resulting
multi-scale facies model is in good agreement with the sedimentary features, structures,
and even sedimentary units found at multiple spatial scales of the input model.

Based on our results, we conclude that this attribute-based workflow poses an efficient
and reliable tool to interpret both single- and multi-frequency GPR data and, thus,
can either be an alternative or guide for typical manual interpretation approaches.
Although further testing of this workflow is required in future studies (e.g., using multi-
frequency and/or further single-frequency GPR field examples), we regard the presented
synthetic study as an important step towards a more objective and reproducible analysis
and interpretation of 3D GPR data acquired or modeled across complex sedimentary
environments.
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Typically, 3D GPR data sets acquired across sedimentary systems are interpreted manually,
for example, using approaches known as GPR facies interpretation. The thus obtained
interpretation results are often considered subjective (i.e., the results depend on the
interpreter’s expertise) and hence non-reproducible. Moreover, manual interpretation
is often time-consuming, especially for complex 3D settings, and, thus, interpretations
typically focus on selected 2D slices that are then interpreted representatively for the
entire 3D data set. To provide a more objective, reproducible, and complete approach for
interpreting 3D GPR data sets imaging sedimentary environments, this thesis reports on
the development, evaluation, and application of attribute analysis and attribute-based
classification to produce classified GPR facies models.

To develop, test, and evaluate the proposed workflow, I follow good practice by
generating and using synthetic 3D GPR data sets and models that are as realistic
as possible. Modeling GPR data is an active and ever-growing field of research and
gprMax (the most widely used GPR modeling software today) is under constant further
development. However, due to the nature of FDTD modeling schemes, the model size
(which is a function of source frequency and velocity distribution) and the available
storage capacity of even modern GPUs (needed for accelerated modeling) mark the
bottleneck of modeling even more realistic 3D GPR data (Delf et al., 2017, 2021). This
could be achieved, for example, by using realistic antenna models (rather than a point
source) that are already available in the modeling framework of gprMax. Moreover,
recent studies also try to increase the level of realism by combining a realistic subsurface
with such an antenna model (Giannakis et al., 2016, 2019; Stadler and Igel, 2022; Patsia
et al., 2023; Stadler et al., 2023) and by additionally incorporating characteristic system
noise (Stephan et al., 2023). However, already the modeling studies presented in this
thesis required the use of special modeling strategies to enable modeling in 3D using
a point source. Moreover, using a realistic antenna model poses new demands that, in
general, lead to a considerable increase in the model size. However, recent developments
in gprMax (which are in the beta-testing phase at the moment) include the possibility of
subgridding the model (Hartley et al., 2018). This will be an important step towards
enabling the combination of complex and extensive 3D subsurface and antenna models
which, in turn, will result in GPR data sets showing an even higher level of realism
compared to the ones presented in this study.

Using the results of Tronicke and Allroggen (2015) as a starting point (Figure 7.1a),
I develop a workflow to produce 3D GPR facies models that is applied to various
synthetic and field GPR data sets in 3D (e.g., Figure 7.1b). This workflow is centered
around the use of structure attributes (calculated using the gradient structure tensor
[GST] approach) and texture attributes (calculated using the gray-level cooccurrence
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Figure 7.1.: (a) Workflow of Tronicke and Allroggen (2015) to produce texture attribute-
based GPR facies models in 2D. The workflow is applied to GPR data imaging
stratified glaciofluvial deposits and the results are evaluated using 1D borehole data
characterizing grain size uniformity U and porosity. (b) Workflow developed in this
thesis to generate texture and structure attribute-based GPR facies models in 3D.
The workflow is applied to different synthetic and field GPR data including a field
data set imaging complex sandy deposits on the island of Spiekeroog. In this study,
the results are evaluated by integrated analysis of this facies model, the GPR data
volume, and geological background information.
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matrix [GLCM] approach). A comparison of these two multi-trace attribute families and
included attributes shows that both carry representative and important information to
characterize the corresponding GPR data. To illustrate the potential of 3D structure and
texture attributes calculated across GPR data, Figure 7.2 shows four prominent structure
attributes calculated using a 3D GST approach (left column) and four prominent texture
attributes calculated using a 3D GLCM approach (right column) across the 3D GPR data
set shown in Figure 7.1b. Although Figure 7.1b illustrates that these attributes can be
used to produce classified GPR facies models in 3D, it is important to mention that these
attributes alone are already excellent means to highlight specific characteristics in the
GPR data volume, for example, to aid and guide manual analyses and interpretations or
as a tool to map and characterize target structures and features in sedimentary, geological,
archaeological, and many more applications. However, I recognized that structure and
texture attributes as well as the corresponding calculation procedures based on the GST
and GLCM approaches, respectively, show some fundamental differences. In general,
these differences play an important role if these attributes are calculated across the entire
data volumes (e.g., in view of a later 3D classification; Figure 7.1b) rather than along
selected depth or profile slices (e.g., to be used as an interpretation guide or mapping
tool; Figure 7.2).

For example, calculating a full set of 3D GLCM attributes is in the order of two to
three magnitudes slower than calculating a set of 3D GST attributes considering the same
input GPR data (i.e., calculation times in the order of some hours for GLCM attributes
and in the order of a few seconds for the GST attributes). Moreover, my studies show
that, typically, GLCM attributes are prone to show wavelet characteristics originating
from the input GPR data. Thus, texture attributes are rather sensitive to the used 3D
search window and resulting attributes have to be filtered (e.g., using scale-based filtering
approaches) considering both the resolution capabilities of the input GPR data and the
spatial scales of the target features such as the facies signatures. Additionally, a GLCM
texture attribute database (typically including 10-20 different attributes) often carries
redundant information which, in turn, requires further processing to reduce the database
dimensionality (such as principal component analysis - PCA).

In general, structure attributes calculated using the GST approach depend on the
shape and size of the employed Gaussian filter kernels. I show that using typical Gaussian
filter shapes (e.g., anisotropic kernels in the presence of preferential directions such as
stratification) and typical sizes (i.e., standard deviations of the filter kernels) in the order
of a dominant wavelength or the target spatial scales produces valid results. Due to
the smoothing (that is already applied in GST calculations by definition), the resulting
attributes are typically not contaminated by noise originating from the wavelet character
of the GPR data. Moreover, the resulting attribute database typically includes physically
meaningful, largely uncorrelated, and verifiable information characterizing the GPR data
in terms of amplitudes, continuity, or dip angle and azimuth. Hence, I conclude that,
in the first instance, a standard attribute-based characterization and interpretation of
3D GPR data should focus on structure attributes that can be calculated comparably
fast and stable. Additionally, the resulting database provides numerous attributes that
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Figure 7.2.: Typical GPR slice extracted from Figure 7.1b and four prominent 3D structure
attributes calculated using a GST approach (left column) and four prominent 3D
texture attributes calculated using a GLCM approach (right column) shown as
transparent overlays.
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characterize diverse features and patterns in the corresponding GPR data. However, if
an even more comprehensive and in-depth characterization of a GPR data set and a
sedimentary environment is of interest, the combination of both structure and texture
attributes has proven to be a reliable approach to produce classified GPR facies models
at different spatial scales in a reproducible and objective fashion.

In this thesis, I focus on the use of structure and texture attributes to generate classified
(single- or multi-scale) 3D facies models from (single- or multi-frequency) GPR volumes.
In the presented studies, the obtained facies models are employed in a rather qualitative
fashion. This is, for example, after the resulting facies models have been evaluated
by qualitative visual comparison to petrophysical borehole logging data (Figure 7.1a)
or 1D GPR velocity profiles, the depositional history is reconstructed by integrated
interpretation of these facies models, the GPR data set, and geological background
information (Figure 7.1b). In future studies, the obtained facies models can be used as
an excellent starting point to further extend the presented interpretation strategies by
including petrophysical properties into the workflow thus extending the so far standard
(reflection-based) definition of GPR facies. To do so, petrophysical properties (such as
porosity, hydraulic conductivity, grain-size distribution, or GPR velocity measured at
a few locations of the investigated field site; Figure 7.1a) could be incorporated into
the workflow by direct correlations to the facies models, or by establishing links relying
on advanced non-parametric statistical tools or suitable machine learning techniques.
Thus, future GPR facies models could be used to predict and interpolate sparse point
information in 2D and 3D as they comprise both petrophysical characteristics and
structural information (in terms of classical GPR facies).

The studies presented in this thesis comprise various applications using 3D field and
synthetic data sets imaging various complex sedimentary scenarios at different spatial
scales, thus highlighting the potential of attribute analysis and classification in general
and the potential and adaptability of the proposed workflow in particular. Although
unveiling the full potential of 3D attribute-based facies classification requires further
investigation, the presented methods and observations are considered an important step
towards a more efficient, reproducible, and comprehensive interpretation of 3D GPR data
sets imaging complex sedimentary environments.
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A. The redundant wavelet transform to process and

interpret GPR data

Jens Tronicke, Philipp Koyan and Niklas Allroggen∗

Summary

To analyze ground-penetrating radar (GPR) data, we propose a multi-scale decomposition
approach based on a redundant wavelet transform (RWT). Our RWT is based on B3-spline
filters and the à trous algorithm, which allows to efficiently decompose 1D, 2D, and 3D
data with a series of 1D convolutions. Using different examples, we demonstrate potential
applications of this approach for data processing and interpretation. Our results show
that the RWT is a powerful and computationally efficient tool to improve GPR data
analysis.

Introduction

Today, densely sampled 2D and 3D GPR data sets are routinely acquired in various
archaeological, engineering, environmental, and geological applications (e.g., Jol, 2009).
To ease the interpretation of such data sets, there is a growing need for efficient data
processing and analysis tools. We investigate a multi-scale decomposition approach and
its potential for different tasks within a typical GPR processing and interpretation flow.

The basic idea of multi-scale analysis is to decompose a given data set into several
subsets representing the data at different spatial or temporal scales. This allows to
visualize the data at various resolutions and, thus, to separate and analyze signal or
image components appearing at specific scales. For such a decomposition, the most
popular tools rely on the wavelet transform including its variants and further developments
(Starck et al., 2015). For decomposing GPR data, we use the discrete redundant wavelet
transform (RWT; Shensa, 1992; Starck et al., 2015). After presenting the methodological
basics, we apply the RWT to analyze field and synthetic GPR data, and evaluate its
potential for rapid multi-scale processing. Our examples include 1D temporal denoising of
GPR traces, 2D spatial decomposition of time slices, and 3D spatial filtering of attribute
volumes.

∗A reviewed expanded abstract of the same title is published as Tronicke et al. (2020b) in the
proceedings of 18th International Conference on Ground Penetrating Radar, SEG, Global Meeting
Abstracts, 400–403.
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Methodology

Our decomposition relies on a discrete RWT (Shensa, 1992) implemented using the à
trous algorithm (Holschneider et al., 1989). In astronomy, this transform is known as the
starlet transform (Starck and Murtagh, 2006) and, more recently, it has also been used
to analyze geophysical data. While Al-Dossary (2015) uses the RWT to enhance channel
patterns in time slices of 3D reflection seismic data, Tronicke et al. (2020) apply it to
magnetic mapping data to ease the interpretation of archaeologically relevant anomalies.

Using Figure A.1, we present the basic concepts of the RWT following Starck et al.
(2015). In the shown example, a given data set a0 is decomposed up to a scale level n

= 3 using a series of low-pass filters Lj into three wavelet planes w1, w2, and w3, and
a final approximation a3. At each scale level j (with j = 1, . . . , n), the wavelet plane
wj is calculated as the difference between the approximations aj−1 and aj , where aj is
obtained after applying Lj to aj−1.

Figure A.1.: The basic concept of RWT-based decomposition. In the shown example, the input
data a0 are decomposed up to three scale levels resulting in three wavelet planes w1,
w2, and w3, and the final approximation a3.

The most popular approach to set up Lj relies on B3-splines which, for 1D data (e.g.,
a time series) and j = 1, results in Lj = 1/16 (1, 4, 6, 4, 1). For j > 1, the filters Lj

are set up by extending L1 via inserting 2j − 1 zero elements between the individual
non-zero filter coefficients of L1. Selecting B3-spline-based filters results in separable 2D
and 3D filters; i.e., the corresponding 2D and 3D filter processes can be implemented by
two and three successive 1D convolutions, respectively. This is computationally more
efficient than performing 2D or 3D convolutions using full 2D or 3D filter kernels. More
details regarding the algorithm are given, for example, by Starck et al. (2015).

The result of applying the series of filters Lj to a data set is a redundant undecimated
decomposition, where all wj and aj are of the same size. If we are interested in some
kind of data reconstruction, such an undecimated decomposition is often preferred.
For example, if the data are decomposed up to level n, the original data a0 can be
completely reconstructed by summing up an and all wj (with j = 1, . . . , n). For filtering
and denoising applications, we may use only selected scales for reconstruction and/or
manipulate individual planes before reconstruction by, for example, thresholding (e.g.,
Donoho and Johnston, 1995) or different normalization strategies (e.g., Tronicke et al.,
2020) to generate a filtered and scale-balanced data set.
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Example 1: 1D trace denoising

To demonstrate the basic ideas of decomposing and reconstructing GPR data using the
RWT, we apply it to a noisy transmitter gather from a crosshole experiment performed
in a sand and gravel-dominated environment for aquifer characterization (Figure A.2a).
The horizontal distance between the two ~25 m deep vertical boreholes is ~15 m. The
data have been recorded using 100 MHz antennas, a fixed transmitter depth of ztra =
10.75 m, and a receiver station spacing of ∆z = 0.25 m. Further details regarding this
data set are given by Rumpf and Tronicke (2014).

Figure A.2.: (a) Raw GPR transmitter gather, (b) same data after trace-based (1D) denoising.
For visualization, the amplitudes of each image are normalized to their individual
rms amplitude values.

In the raw data (Figure A.2a), we recognize the first-arriving direct events and some
secondary arrivals such as the down-going reflected event originating at the groundwater
table at a depth of ~3 m. The data are characterized by high and low frequency noise and
a decreasing signal-to-noise ratio with increasing receiver depth zrec. Thus, the direct
arrivals are not clearly identifiable for zrec ? 20 m. In Figure A.3, we show the result of a
trace-based 1D decomposition of the raw data gather calculated up to n = 9 scale levels.
This spectral decomposition allows us to analyze different signal and noise components
in more detail. For example, w1 is dominated by high-frequency noise while w7 to w9 are
capturing mainly different low-frequency noise components. We also realize that most
of the signal is found in w3 to w5 and, thus, we use these three planes to calculate the
reconstruction shown in Figure A.2b, which is the sum of w3 to w5 shown in Figure A.3.
When comparing Figures A.2a and A.2b, it is evident that our reconstruction (Figure
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A.2b) represents a denoised, band-pass filtered version of the input data, where high and
low-frequency noise is successfully suppressed.

Figure A.3.: Decomposing the crosshole transmitter gather from Figure A.2a up to n = 9 scale
levels resulting in wavelet planes w1 to w9 and the final approximation a9. For
visualization, all shown images are normalized to their individual rms amplitude
values.

Example 2: 2D image decomposition

To illustrate the potential of the RWT approach for a 2D decomposition, we apply it to a
time slice extracted from a migrated 3D GPR data volume at t = 195 ns. The data have
been recorded using 100 MHz antennas across volcanic sediments to image near-surface
faults in a graben system in New Zealand. Further details regarding this data set and
the field site are given by Tronicke et al. (2006).

In Figure A.4a, we show the extracted time slice characterized by patterns at various
spatial scales. This includes high-wavenumber noise features and low-wavenumber
patterns related to sub-horizontal reflection events. We decompose this image using a 2D
RWT up to n = 9 scale levels. The rms amplitudes of the resulting wavelet planes w1 to
w9 and the final approximation a9 are shown in Figure A.5 demonstrating that scale levels
two to six comprise most of the energy of the input image. For the reconstructions, we
use planes two to five to highlight image details including high-wavenumber patterns as
expected for discontinuities related to faults. In Figure A.4b, we show the reconstruction
calculated by summing up w2 to w5. In Figure A.4c, we illustrate an image reconstructed
using the same planes but where each plane has been scaled before summation. Here,
we apply a scaling strategy relying on rms-amplitude normalization; i.e., we divide each
plane by its rms amplitude value (Figure A.5) to balance the contribution of each scale
in the reconstruction. When comparing all slices in Figure A.4, we see that high- and
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low-wavenumber noise is successfully suppressed in both reconstructions, while Figure
A.4c further highlights low-scale structures as intended by the applied scaling strategy.

Figure A.4.: (a) Input time slice and reconstructions calculated by summing up w2 to w5 (b)
without normalization and (c) with normalizing each wj by its rms amplitude. All
images are normalized to their individual rms values.
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Figure A.5.: Normalized rms amplitude values of the wavelet planes w1 to w9 and the final
approximation a9 calculated from the decomposition result of the time slice shown
in Figure A.4a.

Example 3: 3D volume filtering

As a 3D example of RWT-based processing, we use it to filter a 3D GPR attribute
volume. Here, we analyze a synthetic 3D data set simulated across a realistic sedimentary
model using a source wavelet with a center frequency of 100 MHz. The model comprises
heterogeneities at different spatial scales and extends 16 m, 10 m, and 7 m in x-, y-, and
z-direction, respectively. In Figure A.6a, we show an inline profile extracted from this
3D data set at y = 6 m after applying a typical processing flow including migration and
time-to-depth conversion. Without providing a detailed interpretation, this profile shows
reflection patterns as typically observed in sedimentary environments including (semi-
)continuous horizontal and dipping reflections. Further details regarding this publicly
available data set and the underlying model are given in Koyan and Tronicke (2019,
2020).

For a detailed interpretation of GPR data sets recorded in sedimentary environments,
attribute analyses including different textural attributes are increasingly used (e.g.,
Tronicke and Allroggen, 2015). To analyze our synthetic 3D data, we calculate a textural
attribute known as homogeneity from the gray-level co-occurrence matrix (GLCM), which
is a well-known statistical concept to describe texture in 2D and 3D data (Chopra and
Marfurt, 2007; Eichkitz et al., 2013).

In Figure A.6b, we illustrate the homogeneity attribute at an inline profile extracted
from the 3D homogeneity cube calculated from the 3D GPR data volume using a 3D
GLCM approach with a window size of 0.8 m in x-, y-, and z- direction. Without
providing a detailed sedimentological interpretation of Figure A.6b, we realize artifacts
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Figure A.6.: (a) Inline profile extracted from a 3D synthetic data set, (b) same profile extracted
from a raw GLCM homogeneity cube, (c) same as (b) after 3D RWT-based filtering,
and (d) difference between raw and filtered data cubes as illustrated in (b) and (c).
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such as some isolated near-vertical features or the overall remaining wavelet character
of the attribute image. To suppress these artifacts, we decompose the attribute volume
using a 3D RWT up to n = 9 scale levels. After analyzing the 3D decomposition result,
we reconstruct a filtered attribute volume by summing up w4 to w7. In Figure A.6c, we
show an inline profile extracted from this filtered attribute volume at the same position as
the input GPR and the raw attribute data shown in Figure A.6a and A.6b, respectively.
Comparing Figure A.6a-A.6c and, in addition, considering the difference between the raw
and the filtered attribute data (Figure A.6d), we conclude that our 3D filtering strategy
has successfully removed the above discussed artifacts and results in a clear attribute
image which can form the basis for further sedimentological interpretations.

Conclusions

We present a multi-scale decomposition approach based on a RWT to analyze GPR
data. Our implementation based on B3-spline filters and the à trous algorithm allows us
to efficiently compute the decomposition of 1D, 2D, and 3D data using a series of 1D
convolutions. We present different examples on how such an RWT can be used in a typical
GPR processing flow including 1D denoising of GPR time series, 2D decomposition of
GPR time-slice images, and 3D filtering of GPR attribute volumes. For practical use, we
highlight the computational efficiency and the possibility of an almost parameter-free
implementation. Considering the amount of data as provided by modern multi-channel
GPR systems, we believe that RWT-based approaches and related methods are powerful
tools to improve the processing and interpretation of such data sets.
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B. 3D GPR to explore peat deposits: Strategies for

data acquisition, processing, and interpretation

Philipp Koyan, Jens Tronicke, Tim Klose and Julien Guillemoteau ∗

Abstract

In soil sciences and geology, ground- penetrating radar (GPR) reflection data are routinely
used to explore the shallow subsurface. Recognizing that peatlands represent an important
part of the global climate system, there is an increasing need to investigate and characterize
peat deposits in more detail. Up to today, the application of GPR in peatland studies
focuses on collecting 2D data along selected lines to develop models of peat thickness and
stratigraphy. We present a 3D GPR case study from a peatland in northeastern Germany
where we develop a detailed 3D model of the investigated peat body. Our results show
significant variations in peat thickness including a prominent circular depression structure.
We conclude that such structures could not be reliably imaged using 2D GPR surveying
strategies. Thus, our results highlight the benefit of 3D GPR surveying to develop a
more profound understanding of peat deposits and their characteristics.

Introduction

For decades, ground-penetrating radar (GPR) has been successfully used to investigate
peatlands (e.g., Ulriksen, 1982; Hänninen et al., 1992; Jol and Smith, 1995). Typically,
GPR data are used to estimate peat thickness, develop a stratigraphic model of the peat
body, and characterize the underlying mineral deposits (Proulx-McInnis et al., 2013).
Often, point data provided by drillings and push soundings complement such GPR data
sets; e.g., to develop and calibrate a GPR velocity model or to interpret internal peat
layering in more detail. More recently, especially because peatlands are considered to
be a crucial part of the global climate system, there is a growing interest in using near-
surface geophysical methods, including GPR, to characterize peatlands and their carbon
storage capabilities in more detail (e.g., Walter et al., 2016; Comas et al., 2017).

If the goal of a GPR survey is to develop a detailed and reliable model of subsurface
architecture from the recorded GPR data, the benefits of 3D surveying strategies are
well known. Especially, in environments characterized by complex subsurface geometries

∗A reviewed expanded abstract of the same title is published as Koyan et al. (2023) in the proceedings
of 12th International Workshop on Advanced Ground Penetrating Radar.
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or numerous point diffractors, a densely spaced acquisition grid is needed to properly
reconstruct subsurface structures (Grasmueck et al., 2005). Up to today, most published
GPR data sets collected across peatlands rely on a 2D surveying strategy; i.e., GPR
data are collected along selected profile lines where the spacing between individual lines
is much larger than the in-line trace spacing. In such 2D data sets, reflections and
diffractions originating from structures off the surveyed profiles may result in distorted
reflection images and, thus, may lead to misinterpretations.

Here, we present a case study to illustrate the benefits of a 3D GPR surveying strategy.
Our data have been collected across a peat body in northeastern Germany where a
3D subsurface architecture is expected. In the following, we first present more details
regarding our field site and data acquisition. After presenting our GPR processing flow,
we interpret our 3D data volume and, considering available point data, develop a 3D
model of the surveyed peat body.

Materials and Methods

Field Size and data acquisition

Following a dry summer season in 2022, we collected 3D GPR, electromagnetic induction
(EMI), and 2D electrical resistivity tomography (ERT) data to characterize a peat body
near the city of Kremmen (Brandenburg, Germany). Considering the resolution of our
GPR survey in all three spatial dimensions, we expect a two-layer peat body at our
field site, consisting of a poorly saturated (almost dry) peat layer (with a thickness
in the order of a few decimeters) on top of a more water-saturated peat layer (with a
variable thickness up to a few meters). As known from available geological background
information, we expect sand and mud deposits underneath the peat body.

Here, we focus on a 3D GPR data set recorded using a pair of 100 MHz antennas to
image both the interface between unsaturated and saturated peat, and the base of the
peat body, which, in turn, allows us to infer characteristics of the peat body such as
thickness, or volume. Our GPR survey includes a 3D common-offset data set covering
an area of approximately 6000 m2 (50 m x 120 m). This data set has been acquired
using an in- and crossline trace spacing of approximately 0.2 m and 0.5 m, respectively.
Furthermore, we collected collocated positioning and topographic information as recorded
by a tracking total station (TTS) during GPR data acquisition (Böniger and Tronicke,
2010) and common- midpoint (CMP) data gathers at selected locations.

For ground-truthing and in-depth characterization of the peat body, we complement
our geophysical survey with manual push soundings. Pushing a metal rod down until it
strikes the hardened mineral deposits allows us to obtain information on the peat-base
depth up to several meters. When deploying these soundings, we focus on selected profiles
and regions where we expect the thickest parts of the peat body whose location can be
inferred, for example, from preliminary results of the collocated EMI survey in form of
apparent conductivity maps, aerial photography, local vegetation, and topography.
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Data processing

To produce a ready-to-interpret GPR volume allowing us to pick and map the target
interfaces, we apply a state-of- the-art 3D processing flow to our common-offset data
set (e.g., Koyan et al., 2021). This workflow includes DC-shift and time-zero corrections
as well as 1D frequency-domain bandpass filtering, spectral balancing (Tronicke et al.,
2015), and 3D spatial filtering using a wavelet-based strategy (Tronicke et al., 2020)
to suppress noise and reconstruct higher signal frequencies. Furthermore, we use f-k
filtering to remove wavefield components and noise related to, for example, direct arrivals,
varying antenna coupling, or the remains of out-of-plane reflections and diffractions. In
addition, our processing flow includes 3D topographic migration (Allroggen et al., 2015),
topographic correction, and time-to-depth conversion relying on a digital terrain model
(DTM) derived from our TTS-based topographic data, and a root-mean-square (rms)
velocity model obtained from reflection-based analysis of the CMP gathers (not shown
here). Here, we refer to local depth with respect to the maximum topographic elevation
as inferred from our DTM. In Figure B.1, we show a selected inline (a) and depth slice
(b) extracted from the ready-to-interpret GPR data volume. Analyzing Figure B.1a in
more detail reveals a largely horizontal and continuous reflection structure with medium
amplitudes at depths around 0.5 m. In the deeper parts (at depths between approximately
1 m and 2 m), we observe a reflection structure that shows high amplitudes and high
continuity in the southern part of the field site, whereas in the northern part both the
amplitudes and the continuity of this reflection decrease. As indicated by Figure B.1b,
this reflection forms a nearly circular depression structure located in the central part of
our survey area (centered around local x/y coordinates of 40/115 m).

Results and Discussion

GPR interpretation

To analyze our GPR volume in more detail, we interpret the two prominent reflection
structures (as already identified above) in terms of GPR horizons. We use the open-source
software package OpendTect to pick and map two distinct horizons using a combination
of both manual and automated horizon tracking. In Figure B.2, we visualize these two
horizons together with selected inline, crossline, and depth slices extracted from our
processed data volume.

The shallow horizon at depths around 0.5 m can be tracked across the entire survey
area and shows a largely continuous, horizontal character. Thus, we show this horizon
in Figure B.2 as a dotted line plotted only onto the selected inline and crossline slices.
Considering the results from our CMP velocity analysis, EMI mapping as well as geological
information, we interpret this horizon as the interface between a poorly saturated, almost
dry peat, and a more saturated variant underneath. Here, the contrast in water saturation
results in an abrupt change of electromagnetic properties subdividing the peat body. In
terms of GPR velocities, this results in a thin, near-surface high-velocity zone (GPR
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Figure B.1.: Selected, representative a inline and b depth slices extracted from our ready-to-
interpret GPR volume. In a and b, the black dotted lines show the location of
depth slice b and inline slice a, respectively. In b, the gray dotted line illustrates
the location of the central inline slice shown in Figure B.3.

velocities around v 1 = 0.2 m/ns) underlain by a low-velocity zone (GPR velocities
around v 2 = 0.035 m/ns).

At depths between 0.8 m and 2.2 m, we observe a horizon that corresponds to the
priorly identified circular structures. We interpret this horizon as the base of the peat
body that is characterized by a circular depression structure in its central part where
we observe rather steeply dipping flanks and, consequently, a rapid increase in peat
thickness. In regions, where the thickness of the peat body significantly exceeds two
meters, the reflections are highly attenuated and no longer reliably trackable. Thus, the
corresponding GPR horizon shows gaps, especially, in the central part of the circular
depression.

Integrated Interpretation

To further characterize and interpret the peat body (especially in terms of its thickness
and volume), we consider the results from GPR horizon tracking and manual push
soundings. Integrating depth information inferred from the GPR survey and the manual
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Figure B.2.: Results of a horizon-based interpretation visualized together with selected slices
extracted from our processed GPR volume. The dotted lines at depths around 0.5
m indicate a largely continuous, horizontal horizon while the color-coded surface
represents a discontinuous horizon undulating between depths of 0.8 m and 2.2 m.

push soundings allows us to estimate a closed interface corresponding to the peat base
across the entire field site. This results in a model representation of the peat body that
we show in Figure B.3 together with the push soundings along an inline slice crossing the
central part of the prominent circular structure (location indicated by the gray line in
Figure B.1b).

The model illustrated in Figure B.3 subdivides the peat body into an almost dry top
layer characterized by high GPR velocities and a thickness up to 0.5 m, and a layer of
more saturated peat showing considerably low GPR velocities (ratio of approximately
1:6 with respect to the top layer). The interpolated base of the peat body as inferred
from integrated analysis of the corresponding GPR horizon (Figure B.2) and data from
push soundings shows a maximum peat thickness of more than 4.5 m. Having at hand
the top (i.e., the local topography), the internal interface between almost dry and more
saturated peat variants, and the base of the peat body allows us to estimate the total
peat volume at our field site (approximately 8600 m3) as well as the volumetric fractions
of both dry (approximately 2300 m3, i.e., 25 % of the total peat volume) and more
saturated peat (approximately 4200 m3, i. e., 75 % of the total peat volume). For a
detailed characterization of peat bodies also in view of carbon storage, such data represent
important information for evaluating peatlands with respect to their role in the climate
system.
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Figure B.3.: Selected central inline slice extracted from the processed GPR volume (for location
see Figure B.1) overlain by our final subsurface model of the peat body as inferred
from integrating the results of GPR interpretation and several push soundings.

Conclusion

Using a 3D GPR data set (100 MHz), we characterize a peat body in terms of its shape,
internal structuring, and composition. Using state-of-the-art GPR acquisition, processing,
and interpretation techniques (also integrating topographic information and manual
push data), we infer two closed horizons characterizing the base of the peat body and
an internal interface between poorly saturated (almost dry) and more saturated peat
variants.

Our interpretation approach reveals that the peat body is characterized by a circular
depression with steep flanks and a maximum peat thickness of more than 4.5 m resulting
in a total peat volume of approximately 8500 m3 (of which 25% are almost dry and 75%
are more saturated). Such a detailed characterization in terms of subsurface structures
and properties would not be possible using 2D acquisition and interpretation strategies. In
fact, for complex peat bodies such as the one investigated in our study, a pure 2D strategy
bears the potential of distorted imaging and, in turn, provokes misinterpretations.

Our results can be considered as a starting point for a more in-depth pedological
characterization and can provide crucial prior information to constrain interpretations of
other geophysical data sets such as inversions of collocated EMI or ERT surveys.
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C. The gradient structure tensor (GST): An efficient

tool to analyze 3D GPR data for archaeological

prospection

Philipp Koyan and Jens Tronicke∗

Introduction

Ground-penetrating radar (GPR) is a well-established near-surface geophysical tool
commonly applied in archaeological prospection. Thanks to steady developments in
system design and surveying strategies, the acquisition of 3D GPR data sets densely
covering thousands of square meters has become common practice. However, developing
GPR interpretation strategies has not kept pace with technological novelties. Today, the
ever-growing amount of GPR data is still typically interpreted in a manual fashion which
makes interpretation a time- consuming and rather subjective process. Recently, the
application of 3D attributes has shown to be a helpful strategy in GPR data analysis
to concise the interpretation processes and make interpretation a less subjective and
more reproducible task. Attributes enhancing and quantifying structure information such
as dip and continuity are prone to deliver reliable results when incorporated into the
interpretation process (Koyan et al., 2021). The gradient structure tensor (GST) is well
known as a tool to describe structure in 2D/3D/4D image and video processing including
medical applications. GST-based strategies have also been successfully used to interpret
reflection seismic data (e.g., Bakker, 2002) but to our knowledge no examples for the
application to 3D GPR data sets can be found in the literature.

Theory and Method

In 3D, the gradient structure tensor Ν of an image I is defined by smoothed outer
products of the image gradients:

N(x, y, z) =







ïI2
xð ïIxIyð ïIxIzð

ïIyIxð ïI2
y ð ïIyIzð

ïIzIxð ïIzIyð ïI2
z ð






. (C.1)

∗A reviewed expanded abstract of the same title is published as Koyan and Tronicke (2023b) in the
proceedings of 15th International Conference of Archaeological Prospection.
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Here, the indices x, y, z denote the derivatives with respect to the three spatial dimensions
and ï·ð denotes a Gaussian smoothing operation applied to produce stable results at
the target spatial scale characterized by a standard deviation σT (x, y, z). Relevant
information from this tensor can be obtained by calculating its three eigenvalues (λ1 g
λ2 g λ3 g 0) and the corresponding eigenvectors êi with i = 1,2,3. From the orientation
of the eigenvectors, local structure, for example, within locally stratified environments
can be quantified by calculating the dip angle and dip azimuth. In contrast, to detect
and map archaeological targets, we analyze the tensor eigenvalues in terms of planarity
Cplane calculated by

Cplane =
λ1 − λ2

λ1 + λ2

. (C.2)

In general, planarity describes the local structure in terms of continuous regions (Cplane

≈ 1) such as layers in stratified sediments and discontinuous regions (Cplane j 1) such as
debris. Compared to other relevant attribute calculation strategies, the GST procedure (1)
can be considered as computationally efficient (calculation times in the order of seconds for
typical 3D data sets), (2) delivers a wide range of diverse attributes highlighting different
structural characteristics, and (3) enables an intuitive parameter selection because its
output mainly depends on the target-specific parameter σT (x, y, z).

Results and Discussion

To detect the remains of ancient architectural elements in the Palace Garden of Paretz,
Brandenburg (Germany), Böniger and Tronicke (2010) collected densely-sampled 3D
GPR data using a common-offset pair of unshielded 200 MHz antennas covering an
area of approximately 35x40 m. In Figure C.1a, we show selected slices of the GPR
amplitude volume after applying a typical 3D processing sequence including migration,
topographic correction, and time-to-depth conversion. By performing extensive attribute-
based analyses of this GPR volume also considering collocated magnetic and topographic
surveys, the authors identified several anomalies that they interpret using a historical
sketch of the garden from the early 19th century (Figure C.1b). To demonstrate the
potential of our GST-based method, we focus on structure A, where the historical sketch
reports an ancient grotto with rectangular walls underneath a teahouse.

To calculate the GST, we set σT (x, y, z) to 0.35 m such that the Gaussian smoothing
kernels operate in the order of a dominant GPR wavelength. In Figure C.2a, we show
a selected x-y slice of the GPR amplitude volume shown in Figure C.1a at a depth of
approximately 3 m. We observe mainly chaotic reflection patterns appearing to lack a
preferential direction which makes it hard to interpret the GPR data alone in terms of
archaeologically relevant structures. Mainly the same holds for GPR energy, a common
attribute in archaeological GPR prospection, that we show along the same slice in Figure
C.2b. Here, we calculate planarity across the GPR amplitude volume following Equations
C.1 and C.2, and show the result as transparent overlay on the corresponding GPR data
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Figure C.1.: (a) Example slices of the processed data set in terms of GPR amplitude (vertical
exaggeration is 3). (b) Historical sketch of the Paretz Palace Garden highlighting
structure A, a historical grotto located beneath a teahouse (redrawn after Böniger
and Tronicke, 2010).

slice shown in Figure C.2a. Comparing Figures C.1b and C.2c reveals that discontinuous
areas (highlighted by lower planarity values) nearly perfectly trace the apparently well-
preserved walls of the grotto. Additionally, we calculate planarity for the GPR energy
volume and show the result in Figure C.2d as transparent overlay on the corresponding
GPR energy slice shown in Figure C.2b. Comparing Figure C.2b and C.2d shows that
the energy-based planarity highlights the inner part of structure A and thus indirectly
images the outer boundaries of the grotto. Taking also Figure C.1b into consideration
implies that the low energy-based planarity values in the central part of structure A are
caused by discontinuous energy patterns that, in turn, indicate debris originating from
the formerly overlying teahouse.

Conclusion

Analyzing GPR attributes aids the interpretation of the underlying data sets. However,
calculating and selecting an appropriate set of attributes can be a cumbersome procedure.
We apply the 3D gradient structure tensor (GST), a time-efficient, flexible, and compara-
tively objective tool that runs with only a few (target-specific) parameters. Additionally,
applying the GST strategy delivers a selection of attributes to outline diverse structures
in the underlying 3D data sets. Here, by calculating the planarity attribute based on
the GST across a GPR amplitude and a GPR energy volume, we show that GST-based
analysis is a useful mean to detect and highlight a grotto and remains of an associated
teahouse in the ancient Palace Garden in Paretz, Brandenburg (Germany).
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Figure C.2.: Example x-y slices at a depth of approximately 3 m of (a) GPR amplitude, (b)
GPR energy, (c) GST-based planarity calculated across GPR amplitude, and (d)
GST-based planarity calculated across GPR energy.
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D. 3D ground-penetrating radar attribute

classification: A case study from a paleokarst

breccia pipe in the Billefjorden area on

Spitsbergen, Svalbard

Niklas Allroggen, Björn H. Heincke, Philipp Koyan, Walter Wheeler and Jan S. Rønning∗

Abstract

Ground-penetrating radar (GPR) is a method that can provide detailed information
about the near subsurface in sedimentary and carbonate environments. The classical
interpretation of GPR data (e.g., based on manual feature selection) often is labor-
intensive and limited by the experience of the interpreter. Novel attribute-based
classification approaches, typically used for seismic interpretation, can provide faster,
more repeatable, and less biased interpretations. We have recorded a 3D GPR data
set collected across a paleokarst breccia pipe in the Billefjorden area on Spitsbergen,
Svalbard. After performing advanced processing, we compare the results of a classical
GPR interpretation to the results of an attribute-based classification. Our attribute
classification incorporates a selection of dip and textural attributes as the input for a
k-means clustering approach. Similar to the results of the classical interpretation, the
resulting classes differentiate between undisturbed strata and breccias or fault zones. The
classes also reveal details inside the breccia pipe that are not discerned in the classical
interpretation. Using nearby outcropping breccia pipes, we infer that the intrapipe GPR
facies result from subtle differences, such as breccia lithology, clast size, or pore-space
filling.

Introduction

Carbonate and evaporite formations often are subject to dissolution processes, commonly
summarized as karstification. Due to the complexity of karst structures and features (e.g.,
sinkholes, caves, collapse pipes, and underground drainage systems), karst environments

∗A peer-reviewed journal article of the same title is published as Allroggen et al. (2022) in Geophysics
87(4), WB19–WB30. This article has been awarded from the SEG with Honorable Mention in the
selection of the Best Paper in Geophysics in 2022.
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are challenging targets for groundwater exploration, geothermal investigations, pollution
remediation, and other environmental and engineering applications; therefore, they are
the subject of a variety of geologic, morphological, geotechnical, and environmental
studies (e.g., Ford and Williams 2007; White 2007). After collapse and burial, karst
features are preserved as local heterogeneities (paleokarst), which are typically connected
to vertically extending transstratal collapse structures (chimneys), often filled with porous
and permeable brecciated material (breccia pipes) cutting tens to hundreds of meters
through the overlaying strata (Eliassen and Talbot, 2005). Such paleokarst breccias and
the associated faults form potential fluid pathways for economically relevant hydrocarbon,
geothermal, and hydrologic reservoirs (Mazzullo and Chilingarian, 1996; Loucks, 1999;
Goldscheider et al., 2010; Lonoy et al., 2021). However, the modeling of paleokarst
systems is generally restricted by a lack of detailed knowledge on the volume, spatial
distribution, and connectivity of karst features, which are typically below the resolution
limit of exploration seismic surveys (Borghi et al., 2012; Lonoy et al., 2021). Therefore, a
better understanding of paleokarst environments and their collapse processes requires
detailed geophysical imaging to derive information on the structural extent and on the
physical parameters of these subsurface features. Consequently, a range of geophysical
methods has been applied to map karstified areas and the associated subsurface structures
(Kruse et al., 2006; Chalikakis et al., 2011; Carrière et al., 2013).

Due to its fast data acquisition and its ability to image structures with high resolution,
ground-penetrating radar (GPR) is a method particularly suited for detecting subsurface
karst features. Especially in areas without electrically conductive soil cover, GPR is known
to provide detailed information on the shape and extent of karst features (e.g., McMechan
et al., 2002; Chalikakis et al., 2011). However, the complex shape and often large extent
of such karstified areas pose challenges for GPR surveying and interpretation. Despite the
increasing availability of fast and efficient GPR data acquisition strategies (e.g., Trinks et
al., 2018), classical GPR data interpretation still relies on manual workflows making the
interpretation labor-intensive and largely depending on the experience of the interpreter.
After recording and applying an appropriate processing scheme, the data are typically
loaded in an interpretation software application. During the classical interpretation
process, reflection and diffraction patterns are assigned to geologic structures and tracked
as horizons in the presence of continuous reflectors. Areas of similar patterns are
typically summarized as GPR facies that map sedimentary structures as, for example,
different types of karst features (McMechan et al., 2002). More advanced interpretation
strategies incorporate attribute-based workflows. Such workflows rely on attributes
that are typically derived from seismic imaging (e.g., McClymont et al., 2008) or from
attributes that are specifically developed for GPR applications (Böniger and Tronicke,
2010; Tronicke and Böniger, 2013; Allroggen and Tronicke, 2016) and highlight features
and discontinuities that can potentially be missed when following classical layer-based
interpretation strategies.

The basic idea of GPR attribute analysis is to highlight specific characteristics or
features in the data, thereby easing the interpretation of a GPR data set. From this
perspective, an attribute represents a subset of information extracted from the original
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data (Chopra and Marfurt, 2005). In the past decades, numerous attributes have been
suggested, each highlighting a different type of information in the data. Typically, an
attribute highlights a specific property at a specific trace and sample location (e.g.,
instantaneous frequency) or, in the case of multitrace attributes, the relation of a sample
to its surrounding samples (e.g., semblance) in two or more dimensions. Although
attributes can aid classical interpretation, selecting relevant attributes can be time-
consuming, as a compilation of different attributes (attribute database) often is necessary
to image different data characteristics. Furthermore, an attribute is not necessarily tied to
a designated stratigraphic unit, and an individual attribute database might be necessary
for different geologic settings or depositional environments (Van Heteren et al., 1998).
Therefore, interpretation of attributes, and in particular attribute databases, remains a
labor-intensive task.

Interpretation of such attribute databases can be simplified by attribute classification
approaches. Applications of such approaches are known from GPR data collected in
sedimentary (Tronicke and Allroggen, 2015; Koyan et al., 2021) and particularly in
carbonate environments (Forte et al., 2012; Bowling et al., 2018). These classification
approaches rely on dividing an attribute database into discrete groups (classes) that
represent different reflection patterns or geometries (GPR facies). Although interpreting
and validating an attribute database still requires manual interaction, an attribute
classification provides a first step toward a workflow to interpret attribute databases in a
repeatable and objective manner. In the following, we apply an attribute classification
approach to a 3D GPR data set acquired across a single paleokarst breccia pipe located
in the Billefjorden area on Spitsbergen, Svalbard. After processing the 3D GPR data,
including topographic compensation, we interpret the data following a classical horizon-
based strategy and compare this interpretation with the results of an attribute-based
classification. Although GPR attribute classifications have already been used in a few
GPR case studies (Forte et al., 2012; Tronicke and Allroggen, 2015; Bowling et al., 2018;
Koyan et al., 2021), their application on 3D GPR data to date has been limited and
requires further examples and applications.

Methods

Geologic site description

The study site is located on the mesa-like Wordiekammen plateau in the Billefjorden Basin
on Spitsbergen (Figure D.1). The Billefjorden Basin, with its well-exposed strata, breccias,
and half-graben structure, is considered a textbook example for basin development
(Braathen et al., 2011; Smyrak-Sikora et al., 2019, 2021). Furthermore, it is considered
an analog for the Paleozoic and Mesozoic strata on the Barents Sea shelf hydrocarbon
province in part because breccias also have been found there (e.g., Sayago et al., 2012;
Ahlborn et al., 2014; Matapour et al., 2019); because of their crosscutting nature, they
can affect fluid-flow characteristics on a meter- to hundred-meter scale (Simpson, 1988).
Outcrops along the cliffs of the steep mountains along the basin expose late-Carboniferous
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strata that are punctuated by numerous breccia pipes (Dallmann, 1999; Eliassen and
Talbot, 2005; Braathen et al., 2011; Smyrak-Sikora et al., 2019). The 3D GPR data
presented in this study cover one of the breccia pipes, as well as its surrounding wall rock
of the Wordiekammen plateau.

Figure D.1.: Geologic map (Norwegian Polar Institute, 2014) of the field site located on the
Wordiekammen plateau on Spitsbergen, Svalbard. It includes the location of the
GPR survey presented in this study and the 2D GPR lines used to derive an overview
of the distribution of breccia pipes, as shown by Heincke et al. (2008) and Wheeler
et al. (2011).

The Wordiekammen plateau lies at a height of approximately 470 m.a.s.l near the
stratigraphic top of the late-Carboniferous to early Permian Wordiekammen Formation
limestone. The overlying eroded strata would be the Permian-aged gipsiferous Gipshuken
Formation. The Wordiekammen Formation is composed nearly entirely of the Black
Crag Beds (BCB) member, composed of alternating thick (5–20 m) layers of micrite and
wackestone-packstone, dipping approximately 15° west-southwest. They form a series of
cliffs approximately 170 m high. The base of the BCB and Wordiekammen Formation is
marked by a 20 m thick micrite layer and the beginning of a talus slope. This slope is
formed by the underlying late-Carboniferous Minkinfjellet Formation, which consists of
alternating layers of dolostone and gypsum (Dallmann, 1999; Eliassen and Talbot, 2005).
Two blind west-dipping normal faults cut the plateau, forming west-vergent monoclines in
the BCB, each with stratal thickening on the downthrown side (see Figure D.1; Braathen
et al., 2011; Smyrak-Sikora et al., 2019, 2021).

The cliff-forming BCB strata are cut in numerous places by subvertical pipe-like bodies
of limestone breccia, 30–60 m in exposed width, some of which are clearly continuous for
more than 50 m in height (Eliassen and Talbot, 2005). The BCB layers adjacent to the
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pipes are in places displaced by small-offset (>3 m) normal faults. No clear paleocave
passages have been recognized in the BCB, although breccias at the base of the lowest
BCB layer have cavern-roof characteristics (e.g., Loucks, 1999, 2007). Holocene-aged
taphoni caverns exist in the lower BCB sections. The lithology of the breccias is similar to
the BCB, although one pipe outcropping at the north side of the plateau exhibits 0.3–0.6
m diameter subangular clasts similar to the Gipshuken Formation. In the lower half of
the BCB, the breccia-pipe clasts range in size from a millimeter to several meters and in
shape from tabular to rounded. In the few exposures at the upper levels of the BCB,
large clasts (>0.6 m) are rare. The breccia pipes are interpreted to have resulted from
karstification in the Minkinfjellet Formation, recognized widely in the basin by Eliassen
and Talbot (2005), and studied using GPR at the southwestern base of Wordiekammen
plateau by Janocha et al. (2021). That is, dissolution in the Minkinfjellet Formation
formed caverns; the collapse of the cavern roofs continued upward into and through the
BCB as the collapse breccia dissolved and was transported away.

On top of the Wordiekammen plateau, the BCB and the breccias are covered by
an approximately 1 m thick layer of regolith, consisting of 0.01–0.1 m sized clasts of
carbonate. Although the area is almost free of vegetation, such a debris layer effectively
prevents mapping the breccia pipes by conventional geologic field surveying from the
surface. Cliff side outcrops, and exposures in gullies crossing the plateau, expose micritic
layers 2–4 m in thickness with greater porous-limestone thicknesses (>6 m, Figure D.2a).

The BCB micrite layers (carbonate mudstones) have extremely low porosity (<1%),
whereas the wackestone and packstone layers are porous (approximately 5%). These layers
and bodies differ in physical parameters, such as electrical conductivity and permittivity
creating reflections shown in the GPR data (see subsequent sections). The breccias in
the pipes have a similar lithology but a much greater porosity, which (including the
poor sorting) creates GPR reflections distinct from the BCB. Therefore, breccia pipes
are detectable by GPR. For example, Heincke et al. (2008) and Wheeler et al. (2011)
describe a 2D GPR survey covering most of the plateau (approximately 25 m line spacing)
and a similar, though not as extensive, grid of electrical resistivity tomography (ERT)
profiles. By the means of reflection characteristics in these 2D GPR data and their
correspondence to outcropping examples (Figure D.2), the authors identified the breccia
pipes (shown in Figure D.1), including the site for the 3D GPR field study described
herein. In total, 47 distinct pipe-like breccia bodies were interpreted from the 2D GPR
data. The shapes were better constrained for large pipes than small pipes. Pipe area
ranged from 160 m2 to 16,000 m2 with most pipes in the range of 1000–4000 m2 (major
diameter 50–100 m and aspect ratios 1.0–3.0). Half of the pipes were relatively round
(aspect ratios 1.0–1.3). Pipes, on average, tended to be 43 m apart measured between
walls and 109 m apart measured between centers. The distribution of pipe azimuths and
clustering can be deduced from the map (Figure D.1).

For the field study described herein, the objective is to investigate the detailed geometry
and internal characteristics of a single large breccia pipe near the western edge of the
plateau (Figures D.1 and D.2). Therefore, we selected a breccia pipe using the interpreted
2D GPR profiles collected in the winters of 2007 and 2008 (Heincke et al., 2008; Wheeler
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Figure D.2.: (a) Photo of the outcrops at the west face of the Wordiekammen plateau with the
location 3D GPR survey with a size of approximately 80 m × 30 m and 60 m
behind the cliff (CW, Wordiekammen Formation; CM, Minkinfjellet Formation; w,
wackestonepackstone layers; m, micritic layers; and RB, red breccia). (b) Photo
looking down from clifftop at the eroded top of a pipe breccia with clast sizes up to
the meter scale. (c) “Red breccia” at RB in (a) revealing coarse local stratification
within an otherwise chaotic deposit.
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et al., 2011). This pipe, based on the 2D lines, was determined to have an area of 3650
m2, a major axis of 108 m to 153°, and an aspect ratio 2.4. We determined that an
approximately 180 m × 80 m area would cover the indications of breccia on the 2D
profiles, plus a significant amount of wall rock. The coordinates of the southwest corner of
the survey area are 8,735,715 m N, 536,310 m E (UTM 33N, WGS84) with an ellipsoidal
elevation of 473 m.

3D GPR data acquisition and processing

Collecting the 3D GPR data followed parallel lines oriented east–west. As with previous
GPR surveys (Heincke et al., 2008), we used a PulseEKKO 100 system with unshielded
50MHz antennas. GPR test surveys (not shown here) suggest that these antennas provide
a good compromise between penetration depth (up to 40 m) and acceptable vertical
resolution (estimated to be 1 m, considering a wavelength λ of 2 m corresponding to a
velocity of 0.1 m/ns) and postmigration horizontal resolution corresponding to λ/2 ≈ 1
m (Sandring et al., 2017). The receiving and the transmitting antenna were mounted on
a cart at a distance of 2 m from each other in a parallel broadside configuration (Figure
D.3). A trigger wheel was used to realize a trace spacing of approximately 0.4 m in
the inline direction. To avoid spatial aliasing in our 50MHz GPR data set, which is
expected to appear at trace spacings > λ/4 ≈ 0.5 m, Lehmann and Green, 1999), we
chose a rather dense trace spacing of 0.4 m (see Table D.1). The coordinates of each trace
were determined using a differential, postprocessed global navigation satellite system
(using the GPS and GLONASS L1–L2 band) with one antenna located on top of a 2 m
high mast in the center of the acquisition cart (Figure D.3) and another antenna as a
local reference station at approximately 500 m distance at the northwestern edge of the
plateau. The output signal from the trigger also served to mark the trace recordings
in the global positioning system (GPS) memory (resulting in trace positions with an
accuracy of approximately 6 cm). Data collection was hampered by hummocks and
permafrost polygons with diameters of 1– 3 m and heights of 0.3–0.4 m across the central
part of the study site causing severe variations in microtopography. Therefore, GPR
surveying took five full days during summertime (August 2008).

Table D.1.: Table summarizing the 3D GPR acquisition parameters.

Acquisition parameter Value
Nominal center frequency 50 MHz
Recording window length 1129 ns

Sampling interval 1.59 ns
Crossline trace spacing ~0.40 m

Inline trace spacing ~0.40 m
Survey size ~180 m x 80 m

Antenna offset 2 m
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Figure D.3.: A photo showing the GPR antenna cart on a relatively even section of the field site on
top of the Wordiekammen plateau (view toward south). We used additional wooden
constructions to stabilize the GPR antennas and the differential GPS antenna, given
the harsh field conditions.

In Figure D.4, we present a flowchart summarizing the GPR data processing. Our data
processing starts with assigning the measured coordinates to each trace and correcting for
the mast inclination and length (Lehmann and Green, 1999). We apply a microleveling
routine from Mauring and Kihle (2006), originally developed to remove leveling artifacts
in airborne magnetic data, on the topography data to reduce discrepancies associated
with inaccuracies of the GPS height and move all traces onto the same topographic
reference level. After processing the coordinates, we apply a dewow filter and remove
spikes from the GPR data using a crosscorrelation criterion. We align the first arrival
times using the Akaike information criterion (Zhang et al., 2003). Next, we interpolate
the data on a regular grid with a trace spacing of 0.4 m × 0.4 m using a natural neighbor
gridding routine (Sambridge et al., 1995). To further reduce incoherent noise, we apply a
trapezoidal Ormsby band-pass filter (10–20–100–200 MHz) followed by 2D f -k filtering
in the inline and crossline directions.

After performing this standard GPR processing, we apply a topographic 3D Kirchhoff
migration scheme (Lehmann and Green, 2000) using a constant velocity of 0.1 m/ns and a
constant aperture radius of 35 m. This velocity estimate originates from a reflection-based
velocity spectrum, as shown in Figure D.5a (using semblance as a coherence measure)
that is calculated from a common-midpoint (CMP) survey (Figure D.5b) collected close
to the 3D survey site in a nonbrecciated area of the Wordiekammen plateau (see Figure
D.1). This CMP survey reveals reflected energy at traveltimes <600 ns, with two strong
reflection events at traveltimes of approximately 200 ns and 520 ns. Both events align in
the velocity spectrum with a constant stacking velocity of approximately 0.1 m/ns. Such
a constant velocity is in agreement with hardrock conditions ignoring the approximately
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Figure D.4.: Flowchart showing the processing of our 3D GPR data, including full topographic
compensation.

0.5–1.0 m deep active layer with lower surface velocities and potential velocity variations
associated with different conditions inside the breccia pipe.

After migrating the data, we apply a tracewise amplitude gain using a low-pass-filtered
version of the inverse amplitude envelope (Gross et al., 2003) and shift all traces to a
constant topographic reference level (topographic correction) using the same subsurface
velocity (0.1 m/ns) as for the migration. We regard this processing flow (including full
compensation of surface topographic variations) to be essential to place reflections in
the 3D data cube as close as possible to the real positions of the related structures in
the subsurface and, consequently, to obtain reliable attributes. The resulting data pose
a densely sampled and high-resolution 3D GPR volume imaging the breccia pipe in its
central area and revealing the regular westward dipping strata outside the breccia pipe
down to a traveltime of 600 ns (approximately 30 m).

To summarize our data processing results and emphasize the importance of migrating
the data, we present an exemplary inline profile (33.2 m crossline distance) after standard
processing (Figure D.6a) and after applying topographic migration and correction (Figure
D.6b). After applying the standard processing, we observe a series of continuous reflectors
that are interrupted by chaotic reflection patterns. After migration, these patterns collapse
to reveal a narrower fault zone (highlighted in green) and a broader zone with chaotic
reflections and point scatterers in the central area (highlighted in blue). Due to limitations
of our constant velocity assumption, some diffraction hyperbolas seem not to collapse
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Figure D.5.: (a) Reflection velocity semblance spectrum indicating a constant subsurface velocity
of 0.1 m/ns (the blue colors indicate low and the yellow colors high semblance values)
derived from (b), a CMP gather collected next to the investigated breccia pipe (see
Figure D.1).

completely during the migration causing artifacts that affect the classical interpretation
and the attribute classification.

Results

Classical data interpretation

Interpretation of GPR data often relies on the manual identification of targets and
tracking selected horizons. The migrated GPR data (Figures D.6b and D.7) reveal several
piece-wise continuous reflectors surrounding the central brecciated area. We track the
maximum peak amplitude of these reflections using a standard 3D semiautomatic picking
routine relying on manually placed seed points (implemented in the OpendTect software
package). This picking routine provides reliable estimates for continuous horizons, but
it requires manual interactions in the presence of small-offset faults, in which samples
of neighboring traces have low correlation values or significant amplitude differences.
Therefore, the use of such a classical data interpretation is labor-intensive due to setting
appropriate seed points for each horizon and between each fault segment, especially
when determining phase offsets across small-offset faults. In approximately one week of
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Figure D.6.: (a) Inline profile extracted from the 3D GPR volume at 33.2 m crossline distance
after (a) applying a standard processing (and additional topographic correction) and
(b) the same profile after applying topographic migration and correction using a
constant velocity of 0.1 m/ns superimposed by a manual GPR interpretation (green
and blue colors). Position A highlights the apex of a diffraction hyperbola that
collapsed during the migration process indicating the successful application of the
migration.

working time, we picked 10 distinct horizons within the undisturbed sedimentary strata.
These horizons surround the central chaotic reflection patterns of the breccia pipe and
indirectly outline its extent and shape in the 3D GPR volume. In Figure D.7, we present
a 3D view with the picked horizons superimposed on an inline and crossline profile of the
3D GPR volume intersecting with the chaotic reflection and diffraction patterns in the
central brecciated area. The shape of the breccia pipe can be estimated from the central
gap in the horizons caused by heavily fragmented and brecciated rocks. Further classical
interpretation could include the picking and mapping of all fragmented reflections and
faults in the data volume and interpret them in terms of GPR facies. However, for these
3D GPR data, such a procedure is a labor-intensive task and, given the spatial resolution
and extent, becomes impractical for this data set. Furthermore, such an interpretation
depends on the individual geologic and geophysical expertise of the interpreter. Therefore,
we develop and apply an attribute- based classification approach for this study.

Attribute calculation and classification

To provide a repeatable and more objective interpretation approach, we develop and
apply an attribute-based GPR facies classification. To perform such an attribute-based
interpretation, we calculate an attribute database focusing on multitrace attributes with
calculations based on more than one GPR trace and highlight the relations of a sample
at one trace to its surrounding samples. From a broad selection of multitrace attributes,
we manually select only those with a normalized correlation coefficient smaller than 0.8
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Figure D.7.: View to the southeast showing the picked horizons together with an inline profile (at
22 m crossline distance) and a crossline profile (at 130 m inline distance) extracted
from the 3D GPR volume. The lack of continuous horizons in the central area
indirectly outlines the breccia pipe that is characterized by chaotic reflection and
diffraction patterns. For calculating the depth conversion, we use a constant velocity
of 0.1 m/ns.

with all other selected attributes. Therefore, we limit the number of attributes, reduce
redundant information, and simplify the classification process (Zhao et al., 2016).

Our attribute database contains dip attributes, directional semblance, and a set of
gray-level co-occurrence matrix (GLCM) attributes that highlight textural features
(e.g., roughness) of the data (Haralick et al., 1973; Eichkitz et al., 2013). In Table
D.2, we provide an overview on our attribute database and summarize their potential
interpretation. All attributes are calculated within the OpendTect Software package.
In Figure D.8, we present a time slice at a traveltime of 380 ns and the corresponding
attributes (Figure D.8b–D.8h) that will be described in more detail in the following. In
this field example, the presence of surface topography, slightly dipping strata, and
dislocated (i.e., translated or rotated) blocks within the breccia affects multitrace
attributes. Therefore, it is essential for this geologic setting to include attributes with
directional information to obtain meaningful attributes and classification results. To
do so, we calculate a dip volume from the data by applying an fast Fourier transform
(FFT) algorithm (Tingdahl and De Groot, 2003) onto volumes of 1.2 m × 1.2 m × 6
ns and smooth the resulting dips using a step out of four horizontal and six vertical
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Table D.2.: Overview and interpretation of the seven attributes forming our attribute database
that we use in the classification approach.
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Figure D.8.: Example time slice extracted at 380 ns (approximately 19 m) showing (a) the
migrated GPR data and (b–h) the attributes in our attribute database. (i) The
resulting attribute-based classification result along the corresponding time slice.

samples (corresponding to 1.6 m in the horizontal and approximately 0.5 m in the
vertical direction). This dip volume contains information about the dominant local dip
in the GPR data. In undisturbed areas, it indicates the dip of the strata, whereas in
faulted and brecciated areas, the dip direction points in multiple directions. For our
attribute database, we extract the azimuth (no additional smoothing) and the curvature
gradient (second derivative) after applying additional horizontal smoothing more than 8
m from this dip volume and add them to our attribute database (Figure D.8 and D.8c).
Furthermore, we use the dip volume to calculate directional multitrace attributes that
compensate for the general dip of the strata. In contrast to nondirectional attributes that
are calculated within symmetric sliding windows, directional attributes are calculated in
local windows that are warped using the local dip volume (Roberts, 2001; Tingdahl and
De Groot, 2003). Therefore, the shape of the local windows follows the local dip of the
strata, such that these attributes highlight data properties that are mostly independent
of local dip variations. In our attribute database, we include the directional semblance
(with 6 ns time window, Figure D.8d) and a set of four directional GLCM attributes.
These attributes (Figure D.8e–D.8h) are calculated from the GLCM, which contains
information on the distribution of co-occurring samples in a selected window. Our GLCM
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attributes are calculated from a GLCM with 32 gray levels in local windows of 6 ns and
seven traces in the inline and crossline direction, followed by a horizontal smoothing
using a running average with a window size of 2 m in the inline and crossline direction.
Although such textural attributes have no direct physical meaning, they are shown to be
useful to classify seismic and GPR data (Eichkitz et al., 2013; Tronicke and Allroggen,
2015; Zhao et al., 2016; Koyan et al., 2021). In Table D.2, we provide an overview and
detailed description of the seven attributes forming our attribute database that we use
for further interpretation.

Ideally, such an attribute database comprises independent representations of properties
of the processed GPR data. To investigate the correlation of the individual attributes,
we present histograms of all seven attributes and the corresponding crossplots (Figure
D.9). In contrast to previous studies (Tronicke and Allroggen, 2015; Koyan et al., 2021),
we observe rather complex distributions for the different attributes. Most attributes
show a bimodal or even multimodal distribution indicating a clear segmentation of the
attributes in two (e.g., semblance and GLCM standard deviation) or more classes (e.g.,
dip azimuth and GLCM entropy gradient). Such complicated distributions suggest largely
different characteristics for reflection and diffraction patterns across the data volume.
For example, the histogram of the semblance attribute (on the top left shown in Figure
D.9) has two maxima. One maximum at relatively low semblance values indicates the
brecciated area, and the other one at high semblance values indicates high semblance
values in the regular sedimentary strata (Figure D.8d). Other attributes, such as the
dip azimuth, GLCM standard deviation, and GLCM entropy, reveal similar complex
distributions but slightly different spatial patterns (Figure D.8). Therefore, they are
considered to highlight different details in the data. For this data set, it seems that
the bimodal distributions mainly represent the undisturbed sedimentary strata on the
one hand and the disturbed strata within the breccia pipe on the other hand. From
analyzing the attribute crossplots and correlation coefficients, we obtain an overview on
the relation of the attributes within our attribute database and can identify attributes
carrying uncorrelated information that can be used in the classification. Many of the
crossplots show two maxima and thus confirm that there are predominately two types of
data characteristics associated with undisturbed strata and brecciated rocks. However,
the crossplots of the dip azimuth and curvature gradient (Figure D.9) show a spike in
their distribution, which is likely caused by near-zero dip values in the chaotic area of
the breccia pipe, making the calculation of these attributes inaccurate in these regions.

To integrate these characteristics of our attribute database, we apply a k-means
classification algorithm (de Rooij and Tingdahl, 2002; Coléou et al., 2003). The k-means
algorithm distributes multiparameter data into classes (clusters) of similar values. As
input for the classification, attribute samples are arranged in vectors. Each vector
corresponds to a sample in the GPR data set containing all attribute values at that
sample location. In an iterative process, the distances of a given number of random initial
class centers and their nearby attribute vectors are minimized by updating the locations
of the class centers. Within this process, each attribute vector is assigned to the class for
which the distance to its class center is the smallest. To speed up the classification, we
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Figure D.9.: Histograms and crossplots of each attribute in our attribute database. The normalized
correlation coefficient (R) between the attributes is shown on the right side of the
corresponding crossplot.

select 20,000 (approximately 10% of all data samples) randomly distributed locations
within the 3D GPR data and use the corresponding attribute vectors at these locations
to find four class centers from the attribute distribution. We found that using less
than four class centers is insufficient to explain the variability in the data (high final
distance values). In contrast, more classes are not required to explain the specific geologic
features and do not reduce the final distance values significantly. After identifying the
appropriate class centers, we classify the full data set by calculating the distance of each
center to each attribute vector and assign the closest class for each vector. The result
of this classification algorithm is a 3D volume with each sample being assigned to one
class. From the classification result (Figure D.8i), we observe that the breccia and the
regular strata are generally separated into different classes. However, nonunique reflection
patterns (e.g., originating from processing artifacts) create a rather complex classification
result that requires further manual interpretation to derive a 3D GPR facies model.
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Discussion and interpretation

We interpret the classification result in terms of the 3D GPR facies model shown in
Figure D.10. Our GPR facies interpretation is in close agreement with the GPR facies
derived from GPR data collected across breccias within the Minkinfjellet Formation at
the base of the Wordiekammen plateau (Janocha et al., 2021). Based on our classification
result, we interpret three distinct GPR facies.

Figure D.10.: (a) View to the southeast (same as in Figure D.7) on a visualization of the 3D
GPR facies model facies model superimposed on an inline profile (at 22 m crossline
distance), a crossline profile (at 130 m inline distance), and a depth slice (at 14 m).
To visualize the complexity of our 3D facies model, we show additional depth slices
at (b) 15 m depth, (c) 19 m depth, and (d) 23 m depth.

(A) GPR facies A: Comprising classes 1 and 2. This GPR facies is characterized by
continuous and parallel reflections that are slightly dipping, mainly in the direction
of the undisturbed strata of the Wordiekammen Formation. The frequency and
amplitude of the patterns in this GPR facies vary with depth. This GPR facies is
similar to GPR facies A in Janocha et al. (2021).
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(B) GPR facies B: Comprising class 3. This GPR facies is characterized by chaotic
reflection patterns that are inconsistent over short distances (partly below the
GPR resolution) and have low amplitudes, including numerous poorly collapsed
diffraction hyperbolas. This GPR facies is similar to GPR facies B in Janocha et
al. (2021).

(C) GPR facies C: Comprising class 4. This GPR facies is characterized by reflection
patterns that are semidisturbed and associated with, for example, dislocated blocks
and fragments (translated and rotated), thus having a similar architecture but
different amplitude, dip azimuth, and angle relative to the adjacent strata. This
GPR facies has not been described by Janocha et al. (2021).

GPR facies A surrounds the other GPR facies in large parts of our data set and represents
54% of the data volume. This GPR facies is characterized by continuous, mainly gentle
southwest-dipping, parallel reflections that are at some locations offset by small faults.
In position and geometry, it matches the outcropping limestone strata exposed in the
cliffside approximately 60 m west of the study area (BCB member of the Wordiekammen
Formation at this stratigraphic level). Hence, we infer GPR facies A to represent the
typical GPR reflection patterns originating from the undisturbed BCB.

GPR facies B is mainly located in the central part of the survey and occupies 16% of
the 3D GPR volume. This GPR facies is characterized by occasional local reflections
that are horizontally consistent over only a few meters and in cases stacked vertically
over several meters. They intersperse with chaotic zones with no obvious reflections,
and it is likely that it contains material with clast sizes below the resolution limit of our
GPR survey. Nearby cliffside breccia-pipe exposures (Figure D.2) are characterized by a
large range of grain sizes (millimeters to several meters), occasional layering and large
blocks, and areas where fragments with various clast sizes are chaotically distributed.
The patterns of this facies (Figure D.7) are similar to the ones observed in the 2D GPR
profiles across features that are identified as breccia pipes by Heincke et al. (2008) and
Wheeler et al. (2011). Hence, we infer GPR facies B to represent the typical GPR
characteristics of collapse breccias on the Wordiekammen plateau.

GPR facies C occurs locally in the central area (GPR facies B) and in the surrounding
area (GPR facies A). It represents the remaining 30% of the data volume. In the central
area, it presents local reflections that are horizontally consistent (Figure D.10b–D.10d) as
narrow zones patchy to continuous for 20–40 m and in lumpy contact with GPR facies B.
We note that the trends of facies C are partly subparallel to the strike of the layering, as
shown in the crossline profile in Figure D.10a. Furthermore, GPR facies C is associated
with small-offset, steeply dipping, north–south-striking faults (e.g., at an inline distance of
approximately 52 m shown in Figure D.6 and on the inline profile shown in Figure D.10a).
Facies C also is found locally in the uppermost several meters and, thus, in the regolith
and permafrost active layer. We interpret this GPR facies to represent larger, translated,
and rotated features that are related to local small-offset faults or, when located within
GPR facies B (brecciated area), massive blocks of the size of several meters (Figure D.2b)
or sorted materials within the breccia pipe (Figure D.2c). Facies C also could arise from
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dissolution or diagenetic processes related to water ingress along the faults that cut the
breccia bodies. These areas in facies C are intuitively identified based on shape and
location when performing a geologic interpretation of the classification result, and they
require further analysis, including reference data and verification of our classification
result by local borehole data or complementary geophysical and petrophysical information
(e.g., porosity and grain-size measurements). However, with the current classification
approach, we are not able to further distinguish small-offset fault zones from features
associated with larger fragments because they belong to the same class and therefore
originate from similar patterns in our attribute database. Although facies C seems not
entirely consisting of brecciated material, its larger volume compared with facies B (ratio:
1:2) supports outcrop observations of a coarse breccia material at the altitude level of our
survey (Eliassen and Talbot, 2005). However, a detailed analysis of a coarsening upward
trend needs more information because our GPR data do not provide enough penetration
depth and thus require analyzing data from different stratigraphic levels.

In summary, we identify a breccia pipe and image its complex 3D shape and internal
variation within a depth of 25 m below the ground surface (see Figure D.10). Our results
generally agree with the estimated pipe size and area of the 2D GPR data, although we
resolve much more detail regarding the shape and internal variations of the breccia pipe
(compare Figures D.1 and D.10b–D.10d). The direction of the north–south-striking faults
that cut through the breccia pipe generally agrees with the dominant fault direction in
this area. Such detailed observations are generally not possible with other geophysical
and geologic methods because they do not provide the same resolution (seismic and ERT)
or, even given the excellent outcrops situation at the Wordiekammen plateau, can only
provide an incomplete image limited to analyzing exposed features.

Conclusion

We present a 3D GPR data set collected across a paleokarst breccia pipe within the
Billefjorden area on Spitsbergen. After applying a standard processing workflow followed
by a topographic migration and correction, we perform classical horizon picking and
compare this interpretation to the results of an attribute classification approach. Results
of the classical interpretation propose several distinct horizons that are associated with
the slightly dipping strata of the carbonate rocks. These horizons surround chaotic
reflections and diffraction patterns, thus indirectly imaging the shape of the central
breccia pipe. By performing an attribute calculation and subsequent classification, we
identify three distinct GPR facies, revealing details on the shape of the brecciated area
and its inner architecture.

Comparing this classification result with the classical interpretation reveals that both
methods are able to determine the outer margin of the brecciated area. However, in
a classical interpretation, the boundaries of the brecciated areas can only be inferred
from the extent of the picked horizons. This procedure requires a highly labor-intensive
picking procedure depending on the geologic expertise of the interpreter. Contrarily,
after performing an attribute classification, the boundary of the breccia pipe is (with
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some exceptions) directly assigned by the class boundaries. Furthermore, by performing
the attribute classification, we are able to distinguish internal details of the breccia pipe.
As such, we observe 16% of the data volume to belong to fine-grained breccias (facies
B) and 30%of the data volume to belong to coarser collapse breccias and faulted areas
(facies C). Thus, we estimate the ratio of fine material (below the resolution of the GPR
method) and coarse collapse material to be 1:2. Such observations might be relevant
for understanding the collapse processes and for determining the pipe’s hydrologic and
mechanical properties. However, we emphasize that it was not possible to discriminate
certain intrapipe GPR features from those associated with small-offset faults outside the
pipes because both show similar characteristics in our GPR attributes, such that they are
not distinguished by different classes in the classification. A more detailed analysis, for
example, by verification of the attribute classification, requires independent ground-truth
information originating from boreholes, geologic, or complementary geophysical methods
(e.g., ERT or seismic measurements).

Nevertheless, we demonstrate the successful application of an attribute classification
to image a breccia pipe using 3D GPR data. In contrast to a manual interpretation, our
approach provides repeatable results that require a limited number of manual decisions
(e.g., choosing the number of classes and assigning the classes to geologic features), thus
aiding the interpretation of extensive 3D GPR data. Although our attribute classification
approach does not allow for a fully automated data interpretation, it provides the
possibility to analyze GPR data from complex geologic settings in a semiautomated
manner, revealing details that otherwise require labor- and time-consuming manual
interpretation.
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We live on an island surrounded by ignorance.

As our island of knowledge grows, so does the shore of our ignorance.

John Archibald Wheeler (1911-2008)
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GROUND-PENETRATING-RADAR
(GPR) is widely used for character iz ing 
near-sur face sedimentary systems in 
three d imensions. However, manual 
in terpretat ions of the resul t ing 3D 
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